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Abstract 

Chemiluminescent oxidations with manganese reagents have been 
investigated using flow and spectroscopic techniques. 

An assay has been developed for ascorbic acid using the chemiluminescent 
oxidation of ascorbic acid with permanganate in acid medium. The assay has 
a linear range of 5xl 0-7 to 1 X, 0-3 mol dM-3 and has been applied to a range of 
food supplements and fruit juices. 

The addition of a manganese (11) catalyst extends the applicability of acid 
permanganate to the determination of sugars and polyhydric alcohols. The 
reaction has been optimised for the determination of mono and disaccharides 
in a flow injection system. 

Development of a reagent based on manganese (111), in a methanol and 
sulphuric acid solution, has further extended the scope of the reaction 
enabling the determination of fructose in the range 1 X1 0-7 to 1 X1 0-3 mol d M-3. 
The reagent has successfully been used in post column detection with HPLC. 

It has been established that the light emission occurs after manganese (VII) 
has been reduced and appears to be connected with the production and 
disappearance of Mn (111). Chemiluminescence spectroscopy has shown that 
the spectra are the same for a large number of aliphatic and aromatic 
polyhydroxy compounds. The spectrum remains the same whether the 
oxidising reagent is Mn (VII), Mn (IV) or Mn (111), indicating that the same 
emitting species is involved in all these reactions and that it involves Mn(III) 
and/or Mn(II). 
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CHAPTERI 

INTRODUCTION TO THE RESEARCH PROBLEM 

1.1 Introduction to the Research 

Chemiluminescence as an analytical tool has been the subject of considerable 

interest since the discovery, at the end of the last century, of luminescent chemicals 

such as luminol and lophine. The popularity and potential of the technique is shown 

by the large number of publications on the subject. These include books, journal 

articles, reviews' 
2,3,4,5,6,7 

and articles in the technical8 and popular press. 

In the absence of noise, even very low levels of light are readily measured with 

simple instrumentation. In chemiluminescent reactions the only source of radiation is 

the chemical reaction. As no external light source or wavelength restriction is 

required the system is inherently sensitive. Most chemiluminescent reactions in 

solution are fast and proceed at room temperature and are therefore readily linked 

with systems such as flow injection9 and immunoassay. 'O, " 

Wide linear ranges can be achieved; up to five orders of magnitude. This makes the 

techniques particularly suitable for determinations where analyte concentration can 

vary greatly. The simplicity of the equipment makes the technique attractive for field 

applications. The development of miniature photomultiplier tubes and rugged 

photodiode systems makes field systems even more attractive. The rapid response 

of many chemiluminescence systems suggests applications in process control, 

where analytical results are used to monitor streams and to initiate processes. 

Most reported analytical applications of chemiluminescence have been in the medical 

and environmental sectors. More applications are now appearing in the area of food 

analysis. " The determination of ATP is the most widely used application of 
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bioluminescence in the food industry and luminol is probably the most frequently 

used chemiluminescent reagent. The use of peroxyoxalate chemiluminescence is 

gaining popularity, particularly as a detection system for HPLC or other separation 

techniques. Solvents often used in HPLC are compatible with peroxyoxalate 

reagents. Gas phase chemiluminescence, particularly determination of nitric oxide is 

used, often with gas chromatography, in environmental and food analysis. 

There are relatively few reactions which generate chemiluminescence, and most of 

them are oxidations. Foods contain many components which are readily oxidised. 

Polyhydroxy compounds, for example simple sugars and polysaccharides, which are 

the structural and storage materials in plants are readily oxidised. Many minor 

components of foods also contain multiple hydroxy groups. Examples are ascorbic 

acid and vitamins with anti-oxidant and other metabolic functions. Foods can also 

contain undesirable components, such as toxic metabolites of fungal or bacterial 

origin, metals and residues of agricultural chemicals, which can be oxidised by 

simple oxidising agents to yield chemiluminescence. 

Direct chemiluminescence, in which the oxidation of anatyte is the source of 

luminescence, has the advantage of needing only simple reagents and avoids the 

cost and toxic hazards associated with some chemiluminescent reagents and their 

solvent systems. Selectivity can be introduced through separation systems such as 

HPLC and affinity chromatography. In some cases additional specificity can be 

achieved by exploiting differences in rates of the reaction of the oxidising agents with 

different components in the sample mixture. 
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1.2 Aims of the Research Programme 

The aims of this project were to investigate oxidation reactions of food components 

which give direct chemiluminescence, and to use these reactions to develop 

analytical methods suitable for use in process analysis and control. The studies were 

also designed to increase the understanding of the mechanisms of the reactions. 

1.3 Analytical Techniques Selected for the Research Programme 

Many chemiluminescent reactions are known to be fast. Techniques applicable to 

fast reactions in solution were selected for the studies. These were flow injection, 

continuous flow methods and stopped-flow techniques. 

Flow injection analysis is based on the dispersion of a sample in a flowing carrier 

stream. The size of sample and rate of dispersion were readily controlled and varied 

enabling different points of the reaction to be sampled by the detection system. 

Continuous flow and stopped-flow methods enabled complete mixing of reagents. In 

continuous flow, as in flow injection, different points in the reaction could be sampled 

by controlling the speed at which the mixed stream passed through the flow cell. An 

increased flow rate decreased the time interval between mixing and sampling by the 

detector. The stopped flow technique allowed the reaction to be monitored 

throughout the reaction time. 

While most chemiluminescent reactions are fast, some of those studied were found 

to take several minutes to reach maximum emission. Batch techniques were applied 

to these systems. Emitted light was measured using a liquid scintillation counter 

modified to act as a photon counter. 

For both fast and slow reactions, where the emission was sufficiently intense, studies 

of the chemiluminescence emission spectra were undertaken using a fast scanning 
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fluorimeter. An extended range photomultiplier was used in the fluorimeter to 

measure wavelengths over 650nm. Complementary studies were undertaken using 

UV-visible absorbance spectroscopy to investigate the fates of oxidising species in 

the reactions. 

The detection systems used were photomultiplier and photodiode based. These 

were selected for ease of use and low cost. Principles of the analytical techniques 

selected are discussed in Chapter 2. 

1.4 Chemiluminescent Systems Included in the Research Programme 

Direct chemiluminescence was selected for study as the reagents are simple, readily 

available, and low cost when compared with many specific chemiluminescence and 

bioluminescence reagents. Oxidation reactions which give direct chemiluminescence 

are known; some have been studied extensively. For most of these reactions the 

mechanisms are not fully understood. Several oxidation systems were investigated 

to establish whether light was emitted during oxidation of food components. Of the 

systems examined, oxidation with permanganate showed the greatest potential and 

was selected for detailed study. 

Permanganate oxidations have been studied for some considerable time and the 

production of chemiluminescence with a range of organic compounds has been 

reported. A survey of analytical applications of permanganate chemiluminescence is 

presented in Chapter 2. Chemiluminescence from the permanganate oxidation of 

carbohydrates was identified and investigated. This class of compound was not 

previously reported to give chemiluminescence in this type of system. The reaction 

was investigated and methods were developed for the determination of sugars and 

related carbohydrates in solution; the results are described in Chapter 4. A related 
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reaction was identified and developed for the determination of trace levels of ascorbic 

acid, a water-soluble vitamin; this is described in Chapter 5. 

Investigation of the permanganate oxidation with sugars indicated the involvement of 

intermediate manganese oxidation states in the reactions. Reports by other workers 

have also indicated this. A novel reagent for chemiluminescence, based on 

manganese (111), is described in Chapter 6. The application of the new reagent to the 

chromatography of carbohydrates is reported in Chapter 7. 
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CHAPTER 2 

INTRODUCTION TO ANALYTICAL METHODS 

2.1 Luminescence 

2.1.1 Historical Perspective" 

The phenomenon of luminescence, of light being produced in the absence of heat, 

has been known throughout history. The first true luminescences observed was 

bioluminescence in luminous organisms including insects, fungi and the bacteria on 

rotting wood and flesh. Electroluminescence was observed as the aurora borealis 

and ignis lambens, a silent electric discharge observed under some atmospheric 

conditions. The earliest written reference to luminescent animals is in Chinese 

poetry of around 150OBC and there are other references in ancient writings from 

Japan and India. 

The Greek philosopher Aristotle (384-322BC) gave the first recorded detailed 

description of luminescent animals and other luminescence phenomena in De Anima. 

This discussed the differences between luminescence and items which have colour 

and are seen in daylight. In the first century AD Caius Plinius Secundus, Pliny the 

Elder, described luminous glow-worms, fungus, lantern fish and jellyfish in Historia 

Naturafis. During the Middle Ages various authors including St Isidore of Seville, in 

the 6th century, Rabanus Maurus, Archbishop of Mainz in the 9th century and 

Hildegard of Bingen in the 12'h century made references to luminous insects and 

other luminescence phenomena. 
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The first book totally devoted to luminescence was published at Zurich, in 1555, by 

Conrad Gesner. Generally referred to as De Luminarfis it was titled, in translation, 

A short commentary on rare and marvellous plants that are called lunar either 

because they shine at night or for other reasons, and also on other things that shine 

in darkness. It drew on the ancient authors, describing luminous plants and animals, 

also luminous stones, and included Gesners own ideas on the subject. 

Ancient and medieval authors on luminescence had been mainly concerned with 

describing luminescent objects. From the beginning of the 17th century more 

attempts were being made to explain these phenomena. Francis Bacon (1561-1626) 

wrote several works on light and luminescence including The Advancement of 

Leaming (1605), Topica Inquisitionis de Luce at Lumine (published before 1612) and 

Sylva Sylvarum or A Natural History in Ten Centuries (published 1627). The lafter 

describes sixteen experiments with shining wood, fish and flesh. At about the same 

time an Italian, Vincenzo Cascariolo of Bologna, found that a local mineral consisting 

of native barium sulphate could be made to phosphoresce; this was the Bolognian 

phosphor or Lapis Bononiensis. Other inorganic luminescences were then 

discovered; the most important being that of phosphorus, first prepared in 1669 by 

Hennig Brandt. Thermoluminescence in certain types of fluorspar, which emit light 

when warmed slightly, was recognised as a separate form of luminescence in 1676 

by Johan Sigmund Elsholtz. 

Robert Boyle made an extended study of the properties of luminescing matedals. 

His first studies were into diamond and were reported in 1663. Diamond can display 

phosphorescence, thermoluminescence, electroluminescence and also 

triboluminescence, which is the property of emitting light for a short while when 

broken. Preparing phosphorus independently of Brandt, Boyle's work on the element 

was published in 1680 as The Aetial Noticula. His best known studies into 

luminescence related to shining flesh and wood and the effects of air on these. 
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These experiments were made possible by the vacuum pump invented by Otto von 

Guericke in 1650 and improved by Boyle and Hooke in the 1660S. The results were 

reported in the Philosophical Transactions, on December 16 1672 as "Some 

Observations about Shining Flesh". Reports of these experiments appear to have 

circulated widely. In the play "The Virtuoso", a satire on the Royal Society, written in 

1676 by Thomas Shadwell for the Dukes Company, a character described the 

essential features of these experiments: 

"There was a lucid sirfoin of beef in the Strand. Foolish people thought it bumed 

when it only became lucid and crystalline by the coagulation of the aqueous juice of 

the beef by the corruption that invaded it. Tis frequent. / myseff have read a 

Geneva Bible by a leg of pork.... 'fis the finest light in the wodd. But for all that, / 

could eclipse the leg of pork in my receiver by pumping out the air. But immediately 

upon the appulse of the air let in again, it becomes lucid as before. j714 

At this time many philosophers, including Isaac Newton (1642-1727) and Robert 

Hooke (1635-1702), considered that the emission of light was connected with 

vibrations in the emitting object. Newton considered that the light was propagated in 

the form of a stream of particles while Hooke and Christian Huygens (1629-1695) 

supported the wave theory of propagation. Hooke also made a number of studies of 

luminescence phenomena. 

During the 18th century many materials were found to be luminescent, including 

several observed by Jacopo Bartolomeo Beccari and co-workers in Bologna. These 

workers developed a classification of luminescence by the method of excitation. 

They did not use modem terminology, but otherwise the classification is very similar 

to those in current use. 

By the early 19tý' century the wave theory of light became more widely supported due 

to the work on diffraction by Thomas Young (1773-1829) and Augstin Fresnel (1778- 
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1827). In 1802 the first spectrometer to use a slit was proposed by Hyde Wollaston 

enabling the first good spectra of phosphors to be observed. In the 1850's 

publications by Edmond Becquerel (1820-1891) described the composition of the 

exciting light, and later the emitted light of fluorescent materials. 

Several new inorganic luminescent systems were reported in the 18th century, 

including the white flash observed when lime is mixed with a strong acid. In 1877 

Bronislaus Radziszewski synthesised lophine, a triphenylimidazole, and found that it 

emits light when dissolved in an alkaline solution of alcohol and shaken with air. This 

discovery essentially founded the science of solution chemiluminescence. In 1888 

the term chemiluminescence was proposed by Eilhard Wiedeman (1852-1928) to 

describe light emission occurring as a result of chemical processes. 

The next major discovery in solution chemiluminescence was that of pyrogallol, 

described by J. M. Eder in 1887, and studied in detail by Trautz and Shorigin in 1905. 

In 1887 Raphael Dubois demonstrated that light is emitted from the mixture of a 

luciferin and luciferase in the presence of oxygen and discovered the 

chemiluminescence from aesculin, a glucosidic compound present in horse-chestnut 

bark. Several more chemiluminescent compounds were discovered in the early part 

of this century. These included lucigenin by K. Gleu and P. Petsch in 1935 and 

luminol, which was discovered by H. O. Albrecht in 1928. Luminol is still the most 

widely used chemiluminescent compound for analytical applications. 
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2.1.2 Types of Luminescence 

Luminescence is the emission of radiation, particularly in the ultraviolet, visible or 

infrared parts of the spectrum, by atoms or molecules, which occurs when the 

species in an electronically excited state returns to its ground state. 

There is a range of luminescence phenomena, which can be classified in various 

ways. The following classification uses the mechanism by which the emission is 

initiated. 

2.1.2.1 Luminescence Induced by the Absorption of Radiation 

- Photoluminescence: from the absorption of visible, ultra-violet or infrared 

radiation. 

-- Fluorescence 

-- Phosphorescence 

- Radioluminescenece: from the absorption of X-rays or y-rays. 

- Anodoluminescence : from interaction with alpha particles 

- Cathodoluminescence: from interaction with beta particles 

2.1.2.2 Luminescence in Hot Materials 

- Pyroluminescence: from metals in flames 

- Candolurninescence from incandescent solids 

- Thermolurninescence : from mild heating of solids 

2.1.2.3 Luminescence due to Vibration 

- Triboluminescence : from rearrangements in solids subject to pressure 

- Sonoluminescnce : from exposure to ultrasonic sound waves in solution 
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2.1.2.4 Luminescence where the Excited state is Produced in a Chemical 
Reaction 

- Chemiluminescence: the excited state is produced in a chemical reaction 

- Bioluminescence: the excited species is formed in an enzyme mediated reaction. 

- Electrogenerated chemiluminescence: the excited species is formed in a reaction at 

an electrode surface. 

All these forms of light emission are distinct from the light emitted by hot bodies, 

which is termed incandescence and where the colour and intensity are dependent on 

the temperature of the emitting body, according to the Kirchoff and Stephan- 

Boltzmann laws. 

Analytically fluorescence, bio- and chemiluminescence have the widest application. 

2.1.3 Photoluminescence 

For a singlet ground state molecule photoluminescence is either short-lived 

fluorescence from a singlet excited state or phosphorescence from a triplet state. 

This is shown in Figure 2.1. Energy is absorbed by a molecule and raises the energy 

to an excited singlet state S2 or S3. By means of internal conversions the species 

falls to the lowest singlet excited state and then returns to the ground state emitting 

fluorescence of longer wavelength than the exciting light. The lifetime of the process 

is short, less than 10-5 sec. Where intersystem crossing occurs a triplet energy state 

can be achieved, the decay of which is slower than the singlet state, yielding 

phosphorescence, which can continue for seconds or minutes after illumination 

ceases. Intersystem crossing is strictly a 'forbidden electronic transition', therefore 

phosphorescence is considerably less intense and less common than fluorescence. 
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Figure 2.1 Energy states in Photolurninescence 
A Absorption F Fluorescence Emission P Phosphorescent Emission 

2.1.4 Generation of Chemiluminescence 

For chemiluminescence the source of excitation energy is a chemical reaction and 

occurs when a large fraction of the exothermicity of the reaction is converted into 

excitation energy. The second step is a luminescence step as described above. 

AG -> --> hv 
Cherniexcitation Luminescence 

Chemiluminescence reactions are described as direct or sensitised. In direct 

chemiluminescence the reaction generates an excited state molecule which emits the 

light. In a sensitised reaction the energy from the primary excited product is 

transferred by one of a number of mechanisms to a fluorescent acceptor molecule. 

This then loses energy by emitting light at its own characteristic fluorescence 

wavelength. This mechanism is also known as energy transfer chemiluminescence. 

REACTANTS PRODUCT* hv 

FLUOROPHORE -+ FLUOROPHORE* ->hv 

Additional classification into adiabatic and non-adiabatic chemiluminescence has 

been made 15 but is of limited usefulness. Adiabatic chemilurninescence describes 
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reactions where an electronically excited reactant reacts to give an electronically 

excited product, which then emits light in a subsequent step. 

REACTANT --> REACTANT* --> PRODUCT* -> PRODUCT +hv 

All chemiluminescent reactions therefore include at least one non-adiabatic step as 

electronically excited species eventually result in ground state products. 

For chemiluminescence to occur reactions must be exothermic and a large fraction of 

the energy must be converted into electronic excitation energy. 

k 

so 

Figure 2.2 Schematic of a Chemiluminescent Organic Reaction 
* is the potential energy surface for the excited state and So is the surface for the 
ground state. 

AG + AT 
Free energy 

* 

Electronic Excitation 
hv 

Light 

For the reaction to be chemiluminescent in the visible region (400-750nm) the energy 

required is in the range 160-300W mol-1, as derived from the combined Planck- 

Einstein equations: 
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E= hct), 

The energy generated in the reaction can be lost as vibrational and rotational energy 

(heat). If a suitable pathway exists, as shown in Figure 2.2, an excited species can 

be produced and the energy, if not lost in non-radiative processes, can be emitted as 

a photon either directly or after transfer to a suitable fluorophore. 

2.1.6 Quantum Efficiency 

The chemiluminescence efficiency of a chemiluminescent reaction depends on three 

factors: 

(DCL '«": (DC X (DEX X (De 

where OCL is the total quantum efficiency, (Dc is the efficiency of the chemical 

reaction, (DEx is the efficiency of population of the excited state and (D. is the 

efficiency of emission. 

In the case of indirect chemiluminescence, where the emission is from a second 

fluorescing species the, acceptor species, further terms, (DT, and (De A are added. The 

term(DTdescribes the efficiency of energy transfer and (D. A relates to efficiency of 

emission from the acceptor molecule. 

(1)CL "«2 (DC X (DEX X (DT X (De A 

Quantum efficiencies of many chemiluminescent reactions are low, those used 

analytically are typically in the range 0.001 to 0.1 and up to 0.5 for peroxyoxalate 

systems. Reactions with lower quantum efficiencies, down to 10-15, often called 
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ultraweak can also be used analytically, 
16,17,18,19,20 

particularly when the time of 

emission is relatively long. 

Some reactions have particularly high quantum efficiencies, approaching 1. These 

are mainly bioluminescent reactions, where the presence of other biological 

molecules such as proteins is believed to protect emitting species from loss of energy 

by interaction with solvent or other molecules. Natural selection, during the course of 

evolution selects for the most efficient luminescence systems for particular 

environments resulting in the high quantum efficiencies and spectral characteristics. 

In marine environments luminescent species typically emit green light. Terrestrial 

species emit blue light to enabling it to be seen from the maximum distance. 
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2.1.6 Types of C hemi luminescence Reactions 

The majority of chemiluminescent reactions involve oxidation of a substrate and all 

systems used analytically are of this type. Other chemiluminescent reactions include 

electron transfer, fragmentation and pericyclic rearrangements. 

2.1.7 Gas Phase Reactions 

Chemiluminescence in the gas phase is common, for example, the air afterglow in 

the upper atmosphere. This is due to the recombination of reactive species formed 

by the action of ultraviolet radiation from the sun, and includes red and green 

emissions from atomic oxygen and other inorganic species. 

The luminescence of nitric oxide is used analytically as the basis for commercial NO, 

monitors and in the gas chromatographic determination of volatile N-nitrosamines. 21 

These are suspected carcinogens, produced during cooking of foods containing 

nitrite and nitrate preservatives. 

The effluent from the gas chromatograph is passed into a heated reactor containing a 

catalyst of tungsten oxides where the weak N-NO bonds are cleaved giving a nitrosyl 

and an organic radical. Reaction of the nitrosyl radical with low pressure ozone 

forms excited nitric oxide which rapidly decays back to the ground state emitting in 

the near infra-red at 1200nm. 

RIR2N-NO --> RjR2N + NO 

NO+ 03 
--> 

N02* + 02 
-* 

N02 + hv 

An optical, filter absorbing light below 600nm, eliminates chemiluminescence from 

the reaction of ozone compounds such as hydrocarbons and carbon monoxide. The 

detector has a linear range of five orders of magnitude and a detection limit of less 

than one nanogram. The gas phase chemiluminescent reactions of ozone with 
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hydrocarbons at atmospheric pressure and of sodium vapour with nitrous oxide are 

also used as sensitive detectors for gas chromatography. 22,23 

The reaction of metal vapours with halogens is often chemiluminescent. For 

example the reaction of manganese vapour as atoms and small molecules with 

chlorine or fluorine gives complex chemiluminescence spectra. 24 The spectra include 

both sharp bands and broad emissions, possibly from Mn2 and Mn2X species. 

Thermally induced low-pressure gas phase decomposition of nitrate esters and 

nitramines gives blue-green chemiluminescence. This has been used for detection 

of explosives directly, or after gas chromatographic separation. 25 

2.1.8 Reactions in Solution- Biolurninescence 

This type of chemiluminescence is derived from reactions in organisms including 

bacteria, fungi and insects. It is due to the oxidation of certain substrates in the 

presence of enzymes and cofactors such as ATP and flavin mono- and dinucleotides. 

Firefly (Photinus pyralis) bioluminescence 26 involves the oxidation of the luciferin 

shown in Scheme 2.1. 

The enzymes (luciferases) responsible have been isolated from luminous organisms 

and are widely used in analysis. 27 As the intensity of luminescence is proportional to 

the amount of co-factor the above reaction can be used to measure ATP as follows: 

Luciferin(red) + ATP+ Enz -+ Enz-Luciferin(red)-AMP 

Enz-Lucifedn(red)-AMP+02--> Enz-Lucifedn* + AMP -> Enz + Luciferin + hv 

Using this system very low levels of ATP can be detected, down to 10-17 Mol. M This 

reaction forms the basis of a very widely used technique of hygiene assessment in 

the food processing industry in both continuous flow29and batch3o formats. 
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Scheme 2.1 Mechanism for the Bioluminescence from Firefly 

2.1.9 Reactions in Solution - Chemiluminescence 

Chemiluminescent reactions which do not involve oxidations are rare, however an 

examples is reactions of radical anions with aromatic amines 31 (Scheme 2.2). 

NAr3 

NAr3 + Light 

Scheme 2.2 
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The rearrangement of Dewar benzene to benzene (Scheme 2.3) is another example. 

In this case the emission is weak and an efficient acceptor is required as a 

sensitiser. 32 

(I ) 

inefficient 

-*.. - * 

I 11+ 
* 

Acceptor ip. Acceptor w Acceptor + Light 

Scheme 2.3 

2.1.9.1 Luminol 

Perhaps the most widely used chemiluminescent reaction is that of luminol (5- 

aminophthalhydrazide). Blue luminescence with a Xmax of 425nm is produced when 

luminol reacts with a wide range of strong oxidants, including molecular oxygen, in 

alkaline solution. 

* 

NH2 ' 

Luminol 

qH 
I 
qH 

2NaOH + 02 No 

C02- 

C02- 

NFý 

C02- 

C02 

NH2 

N2 + 2H20 

hv 

3-aminophthalate 

Scheme 2.4 
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The excited species is considered to be the 3 aminophthalate-33,34 In dimethyl 

sulphoxide the quantum yield is approximately 5% and is reduced to less than 1% in 

protic solvents. In analytical applications the most frequently used oxidant is 

hydrogen peroxide. This reaction is catalysed by a variety of metal ions and haem 

containing enzymes. The reaction with haem is the basis of the application luminol in 

locating blood stains in forensic investigations. Metal ions including Co(II), Cu(II), 

Fe(II), Cr(Ill) and Ti(Ill) have been determined to pg levels. The reaction with luminol 

has also been used to determine enzymatically generated peroAde. The reaction of 

sulphite with immobilised sulphite oxidase gives hydrogen peroxide, which can be 

determined by luminol chemiluminescence. This technique has been used as a very 

sensitive assay for sulphite in environmental samples. 35The application of luminol 

chemiluminescence has been reviewed. 9 

Several inorganic and organic materials can inhibit Luminol chemiluminescence. The 

suppression of the signal is dependent on the concentration of inhibitor and can be 

used analytically, for example in the determination of sulphite in wine. 36 

2.1.9.2 Polyphenols 

Pyrogallol, gallic acid and related polyhydroxybenzenes react with oxidants including 

molecular oxygen and hydrogen peroxide in the presence of a metal catalyst.. The 

chemiluminescence is red, has a spectral maximum Xmx, in the region of 600nm and 

depends on the phenol used. At high pH autoxidation of the phenol occurs. After a 

period of autoxidation reaction with hydrogen peroxide yields blue 

chemilurninescence with kmax zý 480nm. 37 A mechanism, which includes singlet 

oxygen, has been proposed for the red chemiluminescence produced. 38 As the 

maximum is significantly below 633nm, where singlet oxygen emits, and depends on 

the phenol singlet oxygen cannot be the major emitting species. 
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2.1.9.3 Peroxyoxalate 

coo 

00- 
+ CO 2+02 

With quantum yields of up to 0.5, the most efficient non-enzymatic chemiluminescent 

reactions are those based on peroxyoxalate. These reactions are the basis of the 

light sticks used in emergency lighting. The chemiluminescence is indirect; an 

oxalate ester reacts with hydrogen peroxide producing a high-energy intermediate 

which can excite a wide range of acceptor molecules. 39 Radiative decay of the 

excited fluorescent molecules emits light of spectrum identical to the fluorescence 

spectrum of the acceptor molecule. A wide range of fluorescers can be used, for 

example the xanthene dyes fluourescein (yellow/green) and rhodamine (red). A base 

catalyst, generally imidazole, is used to increase the reaction rate. 
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The nature of the intermediate responsible for exciting the fluorophore has been 

proposed as 1,2 dioxetanedione. 

0-0 

/. "0 
1,2- dioxetanedione 

It was found4o that oxalate esters with electronegative substituents have the largest 

chemiluminescent efficiencies. The presence of electronegative substituents on the 

aromatic rings makes the O-Ar better leaving groups increasing the reaction rate. 

This is consistent with the scheme proposed by RauhUt. 41 In this scheme the 

reaction is initiated by the nucleophilic attack of hydrogen peroxide on one of the 

carbonyls of the ester followed by ring formation in which the OOH substituted in the 

first stage displaces the second OAr giving the dioxetanedione intermediate. This is 

shown in Scheme 2.6. 

ArO 11 11 -OAr 
00 

H202_ 
so- ArOH 

T 

ArO- FT -OOH 
00 

ArOH 

0-0 

00 

F 

Scheme 2.6 

C02 

hV 
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Chemiluminescence from dioxetanes and dioxetanones, which are structurally 

related to the proposed dioxetanedione intermediate, is postulated to prooeed 

thorough a chemically initiated electron exchange luminescence (CIEEL) 

mechanism. 42 McCapra43incorporated the CIEEL mechanism into the peroxyoxalate 

mechanism. He postulated a short-lived charge transfer complex between the 

dioxetanedione intermediate and the fluorophore. The return of the electron to the 

fluorophore is sufficiently energetic to leave the fluorophore in the excited state. 

Many attempts have been made to explain the strong dependence of the 

chemiluminescence efficiency on the structure of the aryl group. 

Several other intermediates have been proposed. CatteraII44proposed a cyclic high- 

energy intermediate in which the aryl group stabilises the formation of charge transfer 

complexes with the fluorophore. The proposed structure is shown as intermediate A 

below. Milofsky45 postulated intermediate B. Multiple pathways might also be 

involved. 

0-0 

Ar0--- 
OH 

Intermediate A 

Ar 0-0 
0 

Nu 0- 
0 

Intermediate B 

Analytically peroxyoxalate chemiluminescence can be used to measure any of the 

reagents involved in the reaction, that is fluorophore, base catalyst, peroxide or 

oxalate. Most commonly the fluorophore is the analyte and a 100-fold increase in 

sensitivity over conventional fluorescence measurement can be achieved. 

Peroxyoxalate chemiluminescence is widely used as a post column detection system 

for HPLC of environmentally important fluorescent materials such as carcinogenic 

polyaromatic hydrocarbons (PAHs). 46 It is also widely applicable in trace analysis of 
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analytes such as amino acids, which can be readily derivatised with fluorescent 

reagents such as dansyl chloride. Determinations in the fm range have been 

reported. 47 Some readily oxidised non-fluorescing compounds can quench the 

peroxyoxalate signal. As there are relatively few of these in biological samples this 

can be a selective technique. 48 The main limitation of the use of peroxyoxalate 

systems is the incompatibility of aryl oxalate esters with water and their limited 

solubility in the organic solvents, such as acetonitrile, generally used in HPLC. 

2.1.9.4 Ruthenium and Electrochemiluminescence 

Many systems are being developed that are based on the chemiluminescence of 

Tris(2,2'-bipyridyl)ruthenium (Ru(bPY)3 

2 

-N- 

'R Lf 
N 0000"' ""4 

Chemiluminescence from Ru(bPY)3 2+ was first described in 1966.49 It is produced 

when various oxidants or reductants react with the oxidised or reduced forms of 

Ru(bPY)3 2+ giving the excited species which emits at 610nm. Chemically generated 

Ru(bPY)3 2+ has been used with chromatographic systems and recently with capillary 

electrophoresis. 50 The oxidised and reduced forms can also be generated 

electrochemically where an annihilation reaction between reduced and oxidised 

forms generated gives the excited species. The original Ru(bPY)3 2+ species is 

regenerated. 
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Ru(bPY)3 2+ 
- e- -+ Ru(bPY)3 3+ 

Ru(bPY)3 2+ + e- -> Ru(bPY)3+ 

Ru(bPY)3 3+ + Ru(bPY)3++ -ý Ru(bPY)3 2+* + Ru(bPY)3 2+ 

Ru(bPY)3 2+ * -* Ru(bPY)3 2+ + hv 

Applications for Ru(bPY)3 2+ ECL in flow injection, HPLC and biosensors have been 

51 described. Electrogenerated chemiluminescence is increasingly used as an 

analytical technique. It has the advantage that the reacting species are produced in 

situ from stable precursors allowing use of unstable reagents. The systems are more 

complex than those using chemiluminescent reagents. Electrochemical cells are 

required which can be subject to problems such as fouling of electrodes. Electrode 

cleaning protocols are often required to achieve adequate repeatability. 52 

2.1.9.5 Singlet Oxygen 

A species considered responsible for chemiluminescence in a range of reactions is 

singlet oxygen. Singlet oxygen is produced in many inorganic reactions in solution 

for example the reaction of hydrogen peroxide with hypochlorite. This reaction is 

accompanied by the evolution of large amounts of gas. 

H202 + OCI- 
-> Cl- + H20+102 

The orbital configurations of the three lowest states are shown in table 2.1 15 
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Table 2.1 Electronic Orbital Configurations of Molecular Oxygen 

State Orbital Occupancy Spectral Lewis Orbital 
Design- Structure Description 
ation 

S2 0-0 

(7C*x)1(7E* 
Y)I 

S, 'Ag 0=0 

X) 
2 

To 3 
0-0 

9 

J;? 

Y)l 

The emission spectrum shows sharp bands characteristic of gas phase emissions 

with energies as shown in table 2.2 

Table 2.2 Emission Bands from Sinalet Oxvaen 
Transition EnergykJmol-1--- kma, nm 
1 Ag-+ 3z 

9 94 1268 

1z 3z 
-, g-)ý 9 157 762 

'Ag'Ag -->2 
3Z 

9 189 634 v=O 

703 v=l 
'Ag'Eg-->2 3Eg 250 478 

The strongest bands are the two from the 'Ag'A. 
-->2 

3Zg transition arising from the first 

two vibrational levels of the singlet state dimol. 53 Singlet oxygen has been suggested 

as the emitting species in reactions such as peroxide oxidation of formaldehyde. 54 
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2.2 Flow Analysis 

2.2.1 Flow Injection Analysis 

The technique of flow injection analysis (FIA) was introduced in 1975 by Ruzicka and 

Hansen55 and has become one of the most widely used techniques in routine 

analysis. Up to 1997 over 7000 papers were published on this technique. It is a 

continuous method of analysis in which samples are injected into a flowing stream 

contained in a narrow tube. This allows dispersion of the injected solution in a 

controlled manner. 

Prior to the introduction of FIA, continuous flow methods based on the work of 

Skeggs-56,57were in wide use. The Skeggs system, which was commercialised in the 

Technicon Autoanalyser systems, used bubbles of air or nitrogen to segment the 

flowing streams to reduce carry over between samples. The first continuous flow 

systems were developed for the determination of urea and glucose in blood and had 

the advantage over automated batch reactors of lower reagent consumption and 

mechanically simpler equipment. The factors controlling dispersion in segmented 

streams were studied by many groups58 in order to optimise flow, segmentation and 

frequency for any tubing system. 

In a flow injection system the reagent stream is unsegmented and continuous. The 

sample is injected as a zone, which is transported towards a detector, which 

continuously records a physical parameter such as absorbance or electrode 

potential. During the passage towards the detector the sample zone disperses in a 

reproducible way and reacts with the reagents in the carder stream. As there is no 

requirement to remove gas bubbles, design of the detector is simpler than for 

segmented flow. A comparison of the parameters for segmented and flow injection 

analysis in Table 2.3 shows the advantages of the FIA system over segmented flow 

systems. 
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Table 2.3 Comparison of Segmented Flow and Flow týjection Analysis 

Sample Introduction 

Sample Volume/ ýtl- 
Response Time/sec 

Tubing i. d. /mrn 

Detection 

Throughput/samples hr' 

Precision/% 

Reagent consumption 
Washout Cycle 

Kinetic Analysis 

Data 

Semented Flow 
Aspiration 

200 to 2000 

Flow Iniection 
Injection 

10 to 100 

120 to 2000 

2 

Equilibrium homogeneity 

80 
1 

3 to 60 

0.5 to 0.7 

Controlled partial dispersion 

300 
1 

High Low 

Essential None 

Not Possible Possible 

Peak Heiaht Peak Heiaht 

Peak Area 

Peak Width 

Peak-Peak Distance 

Data from doublets 

In its simplest form, as shown in Figure 2.3, a pump propels the carrier stream 

through a tube and a specific, reproducible volume of sample is injected. After a 

period of dispersion, during which chemical reactions may occur, the sample passes 

through a detector. 

Carrier 
lj 

Injection Valve 

Pump 

Detector 

Fig 2.3 Single Line FIA Manifold 
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In an ideal injection system the sample is injected as a plug. In narrow tubing blocks 

of fluid move more quickly in the centre of the tube than near the walls giving the 

parabolic profile of laminar flow. In addition diffusion occurs axially and radially 

between the blocks of fluid. This secondary movement of fluid results in a washout 

effect accounting for the low mutual contamination of successive samples. 

I 

): i 

Sample Injected 

Radial Diffusional 
Transport 

Laminar Flow 

Axial Diffuslonal 
Transport 

Fig 2.4 Convective and Diffusional Transport in Flow Injection Analysis 

Output to a chart recorder the detector response is in the form of a peak Figure 2.5 

0 
c 
c3) 
ý5 

cmax 

th 

Time 

Figure 2.5 FIA Signal output 

S- Injection point, H-Peak height, A- Peak Area, W -Peak Width, 
tb-Peak Width at baseline Cmax-maximum concentration of analyte 
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Height, area and width59,60 can all be used quantitatively, however peak height is 

most commonly used. The peak height is related to the concentration of the injected 

solution by dispersion D as follows: 

C/C"' 

Where CO is the concentration of analyte in the solution injected and Cmax is the 

concentration of analyte at the measurement point or top of the analytical peak. 

Systems are classified according to the magnitude of D as limited dispersion where 

1>D>3, medium dispersion where 3>D>10 and large dispersion for D>10. 

Analytically, medium dispersion systems are most widely used as sufficient time 

elapses for reactions to proceed far enough for accurate measurement of the 

reaction products. In the case of fast chemiluminescent reactions limited dispersion 

systems are often appropriate. 

The factors affecting dispersion have been reviewed. 
61,62,63 Where a relatively large 

sample volume is injected little or no mixing occurs in the middle of the sample zone 

resulting in two reaction zones and two peaks. The differences in peak heights or 

areas have been used in flow injection titrations64 and to obtain kinetic data65 and 

stability constants. 66 

Addition of elements to the manifold allows sequential addition of reagents as 

merging zones. Sample clean-up procedures such as dialysis, liquid-liquid 

extraction67 and enzymatic conversionsP8 have also been developed. Flow injection 

methods based on gas diffusion have been used, for example in the determination of 

ammonia from protein digests. The acid digest is injected into a carder stream which 

is merged with a stream containing excess hydroxide. Ammonia gas is generated 

which diffuses across a gas permeable membrane into an acceptor stream 

containing an indicator. 69 A particular advantage of flow injection systems is the 
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possibility of using unstable reagents, which are formed in the manifold immediately 

prior to reaction with the analyte. Examples are strongly reducing agents, which are 

unstable to atmospheric oxidation. Unstable chromium (11) has been generated in a 

flow system and used immediately. 70 Partial re-oxidation can occur but is 

reproducible and therefore does not affect precision. 

2.2.2 Sequential Flow Injection Analysis 

A recent development, which uses the principles of controlled dispersion, is 

sequential injection analysis (SIA). Introduced by Ruzicka and Marshall, 71 it involves 

aspiration of sequential aliquots of sample reagents and carder solutions into a 

holding coil. Reversing the flow direction allows dispersion and reaction, as in 

conventional flow injection. The flow then proceeds to the detector. Recently a new 

SIA system has been proposed and applied to the determination of phosphate by the 

molybdenum blue reaction. In this system the sample forms the carder and reagents 

are sequentially injected. This system corresponds to reverse flow injection and is 

particularly applicable to process control systems. 72 SIA has the advantage that a 

single manifold can be applied to many systems and that reagent and sample 

consumption are very low. The requirement for accurate timing of valve and pump 

movements, hence computer control, makes the system more expensive to set Up. 73 

2.2.3 Post Column Applications 

Flow injection principles have wide application as post column systems in 

chromatography. The analyte is separated from other components in the sample in 

the chromatographic column, where it also undergoes dispersion. Reagents are 

added to the column eluate to derivatise the analyte or to modify the mobile phase, to 

facilitate detection by an appropriate detector. As with classical FIA, non-segmented 

systems have replaced earlier segmented systems. 
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2.2.4 Instrumentation for Flow Injection 

2.2.4.1 Pumps 

Peristaltic pumps, commonly used in FIA, have the advantage of low cost and 

reliability. Pump tubes of different materials make these pumps compatible with a 

wide range of solvents and reagents. The direction of flow can be easily changed for 

SIA applications. Peristaltic pumps can be subject to considerable pulsation, 

particularly where significant back-pressure is introduced by manifold components. 

Wear of pump tubes can result in gradual changes in flow rate and hence slow drift of 

the analytical signal. Reciprocating pumps are less suitable as they require pulse 

damping and cannot be reversed. They are most often used in post column 

applications in chromatography, where high back-pressures may be present. 

Syringe pumps provide smooth pulse-less and reversible flow and are the pumps of 

choice for SIA. They are expensive and have limited capacity, requiring refilling 

between experiments. The use of a diaphragm micropump has been reported where 

the rapid oscillation of the diaphragm at 50-601-lz results in very little flow pulsation. 74 

2.2.4.2 Injection Systems 

Precision in FIA is dependent on accurate and reproducible injection. The system 

most often used consists of a loop injection valve as used in HPLC. 

Sample 

Pump 
Detector 

Waste Loop 

A Sample Loading B Sample Inject 

Figure 2.6 Loop injeCtion valve for FIA 
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Ideally the carrier flow should not be disturbed, however as the valve is turned all the 

channels are temporarily closed giving in a rise in back pressure, then a pulse on 

reaching the inject position. It is important that the valve is actuated quickly and 

reproducibly, therefore motor and pneumatic actuators are often used. Valve injection 

is also appropriate for sequential systems in which case a multi-port valve is used, 

with each reagent/carrier/sam pie delivered through adjacent ports. 

2.2.4.3 Manifold Design 

The simplest manifold design is the single line system described above. The tubing 

in which dispersion occurs is typically 0.5 to 1mrn internal diameter, of a chemically 

stable material such as PTFE. Mixing of reagents is achieved using Y or T pieces of 

inert material. For chemiluminescence applications, where limited dispersion is 

required, the narrower tubing diameters, up to 0.5mm id are preferred. Where delays 

are required, for a slow reaction to take place, delay coils of dispersion tubing are 

used. Generally reactor tubing is wound in coils, however more complex formats 

such as knitted open tubular (KOT) reactors have been recommended, in order to 

reduce dispersion while achieving adequate radial mixing. 75 FIA systems are 

generally low pressure and push fittings are often sufficient for linking tubes, however 

flanged and ferrule joints are also used. Joints must be smooth to avoid 

disturbances of laminar flow. 

For many applications the analyte is injected into the stream of carder. FIA systems, 

in which a reagent is injected into a stream containing the analyte, are generally 

called reverse FIA. These are widely where the analyte stream is taken from a 

process or the reagent is expensive or hazardous. 
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2.2.4.4 Detection Systems 

Spectrophotometry is the most widely used detection system and many reactions 

giving products which absorb light in the visible or ultraviolet, or are fluorescent, have 

been automated in flow injection format. Examples of analytes include cations, 
76,77,78 

anions, 
79,80 

and organic species such as glucose. "' Metals are also commonly 
detected by atomic absorption spectrometry. 59 

Electrochemical detectors based on potentiometric, amperometric and conductimetric 

measurement are used. An alternative to conventional conductimetry is the bulk 

acoustic wave impedance sensor (BWIAS), which does not suffer from high 

background signals; it has recently been described for use in FIA systems. 82 

Flow injection incorporating gravimetric determination has been described. 83 A 

precipitate of cuprous oxide is formed from the reaction of reducing sugars with 

Fehling's solution and is gathered on a glass sinter suspended under an analytical 

balance. Good repeatability was reported demonstrating the repeatability of a flow 

injection format. The time-consuming washing and drying stages of classical 

gravimetry were not required. 

Recently flow injection has been used to deliver samples to biosensors. Biosensors 

are analytical devices consisting of a transducing element covered by an appropriate 

layer of a recognition material, which is brought into contact with the sample. 

Transducers are commonly electrochemical or optical. Recognition elements consist 

of one or more enzymes immobilised in a membrane or layer, or immunological 

components, for example antibodies. Whole cells or tissues can also be used. 84 The 

performance of biosensors is generally diffusion controlled, particularly in the case of 

electrochemical transducers. Flow injection, which has strictly reproducible timing of 

events in the assay cycle, is particularly appropriate. In a flow injection system the 
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time of exposure of analyte to the recognition layer, and hence the amount of analyte 

converted, can be readily controlled by vadation of flow rate. The analytical range of 

the assay can be controlled In this way. The time of exposure can be used to 

discriminate between analyte and interfering species, which may diffuse at different 

rates in membranes. 85 FIA/biosensor applications have been reviewed by Hansen. 86 

2.2.5 Flow Injection with Chernilurninescence Detection 

Many chemiluminescent reactions are fast and are therefore particularly suited to FIA 

systems. Applications of chemilurninescence in flow injection have been reviewed-9 

All the major solution reactions, discussed in section 2.2.1, have been used in FIA. 

In particular a large number of applications use luminol chemiluminescence to 

determine metals. A wide range of transition metals is known to enhance luminol 

chemiluminescence. 87 

Chemiluminescence has several features, which make it particularly suitable for use 

in flow injection. The reactions are often fast therefore the limited dispersion of flow 

injection results in sharp peaks and high sampling rate. As no external light source is 

required the detection of chemiluminescence is limited only by the sensitivity of the 

light detector used. No scattering is present in the detector eliminating a major 

source of noise in fluorescence systems. 

The most commonly used detector is the photomultiplier (PMT). Diode systems, 

charge-coupled devices (CCD) and photographic methods are also used. Systems 

available for detection of chemi- and bioluminescence have been reviewed. 88 89 

2.2.5.1 Photomultipliers 

A PMT consists of an evacuated tube containing a photosensitive cathode consisting 

of two or more alkali metals, a chain of electrodes called dynodes and an anode. 

35 



When a photon strikes the photocathode a photoelectron is ejected as a result of the 

photoelectric effect. The photoelectron is focused towards the first dynode where it 

causes emission of a number of secondary electrons. These are accelerated and hft 

the next dynode each releasing a further number of electrons. Further multiplications 

occur along the dynode chain resulting in a pulse, typically 5 ns long, at the anode. 

This is output to a recorder or data capture device, via a signal amplifier if necessary. 

Amplifications of 106 are typical. In order to cause the photoelectric effect the 

wavelength of the light must be below a critical level, which depends on the 

photocathode matedal. 

The kinetic energy Ekinof the photoelectron is given by: 

Ekin= hv -W 

Where W is the 'work function' of the photosensitive material, h is the Planck 

constant and v is the frequency of the light. 90 The threshold of the photoelectric 

effect corresponds to hv =W for which the velocity of emitted electrons is 0. While 

the photocathode has good sensitivity in the UV, in practice, the PMT range depends 

on the material of the window, generally optical glass, or silica. Photomultipliers 

commonly used for FIA/chemiluminescence systems have good sensitivity in the 

range 300 to 600nm, which is appropriate for the luminol Xmax at 425nm. Other PMTs 

can detect light in the near IR up to 1200nm but the quantum efficiency is lower. 

For high sensitivity and low limit of detection it is necessary to achieve a high signal 

to noise ratio. This can be done by increasing the signal or decreasing the noise. If 

another signal is present it may be possible to identify and correct for it. Random 

noise is generally of a physical, often thermal, nature and can be characterised by 

frequency spectrum, amplitude distribution and the mechanism responsible for its 

generation. Contributors to the total include9' Johnson noise generated by any 
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resistor across its terminals and is an example of white noise. It depends on the 

resistance and temperature, is irreducible and increases linearly with frequency. 

Shot noise is a consequence of the charge quantum nature of electric current. 

Flicker noise depends on the construction of the resistor, its material and connections 

and has a spectrum approximating to the reciprocal of frequency (1/f). 

For a PMT "dark noise" is that produced when the photocathode is shielded from 

external optical radiation. Wright92 has reviewed the factors affecting the noise in a 

PMT. Dark current is dependent on temperature and cooling the photocathode to 

around OT can reduce noise significantly. Other sources of noise are Cerenkov 

radiation from cosmic rays, from radio-isotopes, such as4OK, present in the glass of 

the tube, dust and potential gradients in the tube envelope. Residual gas molecules 

can be ionised near the anode, light emission can occur resulting in optical feedback 

to the photocathode. If photocathode material is deposited on dynodes in 

manufacture the dynodes can behave as weak photocathodes giving a pre-pulse at. 

After pulses are probably due to ionisation of residual gas between the cathode and 

the first dynode. These can be, in the order of 1% per photoelectron, but can be 

reduced by the use of suitable focusing before the first dynode. Exposing the 

photocathode to quite low levels of ambient light increases dark noise and it can take 

up to several days for the dark noise to reach equilibrium after exposure, Noise can 

be minimised by keeping the PMT clean, cooling and shielding from radiation. 

Spikes, or burst noise, can be caused by temporary breakdown of capacitors. 

In addition to the noise arising from the PMT, noise can arise from amplifier 

components and recording equipment, resulting in little gain in S/N on amplification. 

While photomultipliers, are sensitive and versatile, a problem is reproducibility of 

signal, which can be poor. It is necessary to calibrate PMTs with appropriate 

standards on each use. Miniature PMTs are now available which can be powered by 

12V supplies, enabling development of small systems for field use. 
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2.2-6.2 Photodiode Systems 

These form the basis of many commercial luminometers and chromatographic 

detectors. The wavelength range depends on the diode material and most systems 

have a range up to 1500 nm making them particularly useful in the near infra red, for 

example the gas phase emission of nitrogen dioxide. Diode array and intensified 

diode array systems have been used to collect chemiluminescence spectra. 93 Diode 

systems are robust and can be connected to fibre-optic systems for remote sensing. 

2.2.5.3 Photographic Systems 

Photographic systems have long been used for visualising chemiluminescent 

reactions and are very sensibve as long exposure times can be used. They have 

been used to image ultraweak chemiluminescence and that from living cells. A 

widely used application of photographic systems is molecular biology for DNA studies 

where labelled probes with specific probe binding are detected by the use of 

chemiluminescent substrates and autoradiography. These probes typically have the 

same sensitivity as radioactive labels and need shorter exposure times. 95 

2.2.5.4 Charge Coupled Devices (CCD) 

With similar applications to photography, CCD systems have the advantage of 

electronic storage of images, and have been used in systems for quantification of 

protein and nucleoticle blots and micro-titre plates. The systems have high sensitivity 

and good resolution but are expensive and require extensive data handling capacity. 

As with autoradiographic systems, the data is recorded in two dimensions96 and 

spectral information can also be obtained. 
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2.3 Stopped-flow Techniques 

2.3.1 Principle of the Stopped Flow technique 

The stopped-flow technique, introduced by Chance in 1940,97,98was developed to 

study the kinetics of fast reactions. The technique has been reviewed by Crouch99 

and GomezHenz. " 

The basic instrumentation consists of a mixing chamber, into which two reagents are 

rapidly delivered. The flow is stopped suddenly so that the solution comes to rest in 

a very short time, of the order of a few milliseconds. An observation point is present 

after the mixing chamber where measurements are made on a stationary element of 

mixed solution. The reaction is followed using a rapid technique such as absorbance 

or fluorescence spectrophotometry, thermal measurements or electrochemistry. 

Most systems are based on the design introduced by Gibsonlol 102 which was 

developed for the study of enzyme kinetics. In this system the flow through the 

observation chamber is stopped by a small piston which is pushed along by the 

reaction mixture until it reaches an external stop. This brings a portion of mixed 

reactants to an almost instantaneous stop in the observation chamber. The syringe 

can be arranged to contact a microswitch and so initiate data capture by associated 

equipment. Figure 2.7 shows a typical system. The system can be actuated 

manually or, by means of a pneumatically driven piston. The key features of the 

system are the syringes, the mixing system and the observation point. The drive and 

stopping syringes need to move smoothly and now typically consist of smooth bore 

glass with Teflon tipped plungers. 103 To enable fast reactions to be observed the 

mixing of reagents must be accomplished, vvithin 1-2ms To minimise dead time, the 

distance between the mixing point and the observation point must be short. Dead 

time has been defined as the time taken by the solution to flow from the mixer to a 

point half way through the observation cell. " 
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E. 

Figure 2.7 Schematic of a Gibson Stopped Flow system: 

0 

A sample reservoirs, V valves, T seating, P stopping piston, S drive syringes, D drive plate, E 
exhaust valve, L light source, M mixing point, N photomultiplier, 0 oscilloscope 

Simple stopped-flow systems such as the system of HiTech Scientific Ltd, '04 use T 

piece mixing where one reagent flows at right angles into the other. This is adequate 

for reactions with half times of 10 msec or more, More complicated mixing systems 

have been proposed, including jets arranged semi-tangentially, to impart a rotary 

motion to the liquid, giving effectively complete mixing within one or two msec. 

Detectors must be capable of following signal change in the millisecond range. UV- 

visible spectrophotometry is the most often used. Electrochemical and more recently 

mass spectrometric detectors" have been used. As reaction rates are strongly 

dependent on temperature accurate thermostating is recommended. 

Stopped flow technique has been most used to obtain rate information on fast 

reactions but is becoming more used in routine analytical applications. '06 
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2.3.2 Application of Stopped Flow to Spectroscopic Studies 

The use of stopped-flow techniques has allowed fast reactions to be followed 

precisely. The choice of suitable observation methods enables tracking of starting 

materials and products and may allow formation and decay of transient products to 

be followed. The availability of rapid scanning UV-vis spectrophotometers, and 

computers capable of acquiring and analysing the large volumes of data generated 

has enabled collection of time resolved spectra and identification of transient species. 

Two approaches for spectral collection are used. In the first a conventional 

spectrophotometer is used with mechanical scanning and a single element detector. 

The signal is sampled at a high rate relative to the scan rate. Alternatively a diode 

array system can be used vvith full spectrum illumination of sample. Post-sample the 

light is dispersed in a polychromator and collected on a linear diode array, spectra 

being formed from the individual elements of the array. In each case the data is 

acquired as a three-dimensional data-set with absorbance as a function of 

wavelength and time. The technique has been applied in studies of transition states 

in enzyme reactions. '07 

2.3.3 Application of Stopped Flow to Chem flurninescence 

Stopped-flow technique was applied to chemiluminescence by Chance et al'08who 

looked at the kinetics of light production from the reaction of luciferin/luciferase/ 

oxygen. Using photographic recording of a cathode ray oscilloscope the decay was 

found, in some cases, to be exponential. Repeatability was poor, probably due to the 

use of crude extracts of luciferase. Many stopped-flow systems have used luminol 

as the chemiluminescent reagent. Perez-Bendito and co-workers have used the 

maximum of the timenuminescence profile'09 and rates of chemiluminescence 

generation and decay. ' 10,111,112 
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A typical intensity time profile is shown in Figure 2.8 

Figure 2.8 Intensity-Time profile for a Stopped-flow Experiment Showing 
Zones used for Determination of Rates of Formation and Decay. 

Wide dynamic ranges have been achieved using the measurement techniques, peak 

height, peak area and rates of formation and decay. Hydrogen peroxide in the range 

5xl 0-5to 1 xl 0"' mol dM-3 was measured using the luminol-peroxide-cobalt system. 110 

2.3.4 Stopped-flow in Flow Injection 

In addition to stopped-flow as described above, analytical, particularly kinetic data 

can be obtained by stopped flow injection. 113,114 A conventional flow injection system 

is used, in which the analyte is injected into a stream of carder. In the dispersed 

zone a concentration gradient of analyte in carrier is formed and after a determined 

time the flow is stopped and dispersion ceases. The change in signal of the element 

of solution in the detector then depends on the rate of the reaction. By selection of 

the interval between injection and stop time different points on the dispersion 

gradient, corresponding to different analyte concentrations can be observed. Both 

single line manifolds and merging zones have been used and permanganate 

oxidations have been studied by this technique. 115 Doubly stopped flow systems, 

have been described. ' 16 More than one aliquot of sample is injected and each is 

treated in a different way before being stopped in the observation cell. 
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Additional modifications can be used to increase selectivity in stopped-flow injection. 

A chasing zone system has been descdbed' 17 in which a second reagent is injected 

after the sample. On dispersion the second reagent reacts with the dispersion tail of 

the sample, the sample/carder and sample/carrier/second reagent elements are 

stopped in the detector and the kinetic measurement is undertaken. Successful 

application of this technique dependends on accurate timing and instantaneous 

response of the pump. The reaction mixture is stopped in the observation chamber 

by stopping the pump in front of the chamber, in contrast with the Gibson system 

where the flow is stopped after the observation point. Stopped-flow injection is not 

applicable to the very fast reactions, which can be examined by conventional 

stopped-flow. 
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2.4 Permanganate Oxidations 

Oxidation reactions with permanganate ion in acid solution have been known for a 

long time and have been thoroughly reviewed. ' 18 Despite well over a century of 

study the mechanisms are still not fully understood. 

The highest oxidation state of manganese is permanganate, Mn (VII), an ion with 

tetrahedral geometry. '19 The standard reduction potentials for manganese species in 

acid and base medium are shown below: 

Table 2.4 Standard Redox Potentials for Manganese Species 
Oxidation Acid Reduction Base Reduction 
State Potential/V Potential N 

0 Mn Mn 

-1.19 -1.55 

mn 2+ Mn 2+ 

1 
+1.51 1 

-0.20 
Mn 3+( 

aq)D Mn(OH)3 
1 +0.95 1 +0.1 

IV Mn02 Mn02 
+2.26 

1 
+0.93 

V Mn04 3-D 

11 +0.27 

VI HMn04- D Mn04 2 

1 
+0.56 1 +0.56 

Vil Mn04- Mn04- 
D Disproportionates 

The first systematic study of the kinetics of the reaction between permanganate and 

oxalate was made by Harcourt and Esson in 1866.120 Using iodometric methods, 

they studied the effects of permanganate and oxalic acid concentrations. The 

stoichiometry is precise and is used to standardise volumetric Mn04- solutions. 
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2MnO4- + 5C204 2- 
+ 16H+ -+ 2Mn 2+ +1 OC02 + 8H20 

It was also observed that addition of manganese sulphate at the start of the reaction 

increases the rate of reaction with the rate increasing up to the permanganate: 

manganese sulphate ratio of 2: 3. The reaction was initially suggested to proceed by 

the initial formation of manganese dioxide and subsequent reaction of manganese 

dioxide with oxalic acid. 

The reaction is autocatalytic in nature. Manganese (11), produced in the reaction can 

react with permanganate ion producing manganese (111) which is stabilised by 

complexation with oxalate. 121 The permanganate/ oxalate/ acid reaction was 

reported to yield chemiluminescence by Stauff and Bergman'22, who reported blue 

and yellow/green emissions. These workers also suggested that when manganese 

(11) was present at the start of the reaction red emission occurs in addition to the blue 

and yellow/green emissions. 

Manganese (111), disproportionates rapidly in water'23 as follows: 

2Mn'll -> Mn" + Mnlv 

but can be stabilised by a range of inorganic and organic ligands including fluoride 124 
, 

pyrophosphate, 125 azide'26 or a large excess of manganese(II). Complexes are 

readily broken down on heating, for example the manganese (III)-trisoxalato complex 

is rapidly broken down at 600. A mechanism involving a radical anion intermediate'27 

has been proposed. The formation of this complex is the reason that permanganate/ 

oxalate titrations are normally carried out at elevated temperatures. The use of 

surfactants or crown ethers 128 has been proposed to prevent formation of the 

trisoxalato complex and so increase the rate of reaction in oxalate/permanganate 

titrations. 
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Mn(C204)33- 
-> Mn 2+ 

+2C204 2- +C02 + C02-* 

Koupparis and co-workers'29 used stopped-flow to follow the disappearance of 

permanganate ion at 525 nm, in the first step of the reaction. They found that the 

reaction is first order in permanganate and Mn (11) and second order in oxalate ion. 

They used this relationshipas the basis of a kinetic measurement of Mn(II). 

Manganate (Mn VI) is stable in very basic solutions but in solutions less than 1mol 

dM-3 in hydroxide concentration disproportionation occurs: 

3MnO4 2- + 2H20-> 2MnO4- + Mn02 + 40H- 

Manganate oxidations tend to be much slower than permanganate oxidations and 

oxidation with manganese V (hypomanganate) is even slower. In solutions lower 

than 4mol dm-3in hydroxide ion, disproportionation occurs rapidly: 

2MnO43- + 2H20 --> 
Mn042- + Mn02 + 40H- 

Manganese (V) is an intermediate in the reaction between hydrogen pero)dde and 

permanganate in strongly basic solution, however no chemiluminescence has been 

reported for permanganate oxidation in alkaline medium. 

Manganese (IV), as manganese dioxide, is one of the products of the above 

disproportionation reactions and is usually formed as a black/brown insoluble solid. 

The reaction of permanganate with thiosulphate to give manganese dioxide is well 

known, 130 however if dilute neutral solutions are mixed in stoichiometric ratio colloidal 

sols can be prepared . 
131 These can be used as oxidising agents without the normal 

solubility problems associated with manganese dioxide. 

8MnO4- +3S203 
2- 

+ 2H+ -+ 8MnO2 + 6SO4 2- 
+ H20 
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The colloidal sols are stable, probably due to anions on the surface of the colloidal 

particles. In mildly acid solutions (pH 4-5) the manganese dioxide sol is reduced by 

oxalic acid and the following reduction sequence has been proposed where R is the 

reductant: 

R Mn(IV) R 
Mn(IV) -* Mn(II) -* Mn(III) -+ Mn(II) 

Early workers suggested that manganese (11) is formed directly in the first step, and 

when sufficient has formed, reacts with more Mn(IV) giving Mn(III), which then reacts 

with more reductant. Other workers have suggested that Mn(III) is formed directly. 132 

The formation and reduction of colloidal manganese dioxide has been suggested as 

an explanation'33 for the apparent oscillatory kinetics in the permanganate oxalate 

reaction. '34, '35 

Most permanganate oxidation reactions utilise potassium permanganate, however 

copper permanganate'3, '37has been used to improve specificity of some oxidations. 

Aqueous potassium permanganate solutions are reasonably stable if kept in the dark 

but undergo photochemical decomposition with evolution of oxygen and precipitation 

of manganese dioxide. The photochemical reaction is catalysed by manganese 

dioxide. It has been suggested that the reaction occurs by light induced formation of 

a Mn(V) peroxo complex which then undergoes reductive elimination 138 giving 

products. Acid or alkaline solutions of potassium permanganate are much less 

stable than neutral solutions. 

With prolonged heating, most organic compounds are degraded by permanganate to 

carbon dioxide, however in basic solution oxalate can be a major product. The broad 

reactivity of permanganate with organic compounds is used in the preparation of pure 

water, where distillation from permanganate results in water free from organic 

contaminants. The reaction is also used in methods for chemical oxygen demand, or 

permanganate index'39 in waters. Some regulatory authorities, including the EU, 
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consider that the reaction is too general and methods based on dichromate are 

preferred. Permanganate time in spiritous preparations'40 and solvents is used as a 

quality measure for high purity solvents for applications such as HPLC- 

Monohydric alcohols are reasonably stable to neutral and mildly acid permanganate 

but are readily oxidised in basic and strongly acid solution. 

Oxidation of alkenes involves the formation of a cyclic manganese ester' 
18,141,142,143 

with, at high pH, formation of glycols. At low hydroxyl ion concentration (x-hydroxy 

ketones are formed (Scheme 2.7 ). 

H 

\Al \V 
+ Mn04- M n02- 

RH 
R--O 

H 

M n04- 
IF 

HH 
IV R--O\ VI 0M n02- 

ago n02 

R0R0 

-H 
HH0 

H20 

IF 

0H 
IV 

+Mn0 

Scheme 2.7 
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Studies of the reaction of unstable Mn(V), produced from permanganate and 

arsenic(III) with vicinal diols found the same products as in the reaction of 

permanganate with the parent olefin. This suggested the formation of a 

manganese(V) ester prior to the formation of the cyclic manganese ester shown 

below. In the presence of excess substrate and a suitable complexing agent, such 

as pyrophosphate, the main manganese species is manganese (111). '44 If the 

oxidising species is Mn(VI) however, C-C bond cleavage is present to some extent 

as shown in Scheme 2.8. 

R 
Mn \11 H 

R-- 
00 

H 

H 

t 

if 

IV 
An03 

H 
H 

RHC--O 

H 

0\ 
IV 

M n03- 

H ---T-0 
H 

Scheme 2.8 

Permanganate oxidations of many other classes of organic compounds have been 

studied including aromatic acids and polyphenols, '45 " aldehydes, "' amino acids'48 

and carbohydrates. 149,150,151,152 in the case of ascorbic acid a mechanism has been 

proposed in which the principal oxidising species is manganese (VII), '53as shown in 

Scheme 2.9. 

As discussed above, manganese (111) can be stabilised and as such used directly as 

an oxidant. It is milder and often more specific than permanganate. ", '55. In addition 
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to the use of stabilised forms, Mn(III) oxidations are carded out using Mn(III) 

electrochemically generated from Mn(II). 156 

RRH 
OH 0 Vil 

HMn04- 0M 
Vil 0 

OH 
0 

RHR0+ 
oý 

Slow 
0 tiMnO4- 

0 mn043- 

*"0.0 
H20 OH 

0, 
H0 

R0+R0+ 

0 
Fast 

0+ H30+ 
OH 

H20 r07 

00 

R 
R=CHOHCH2OH 0 

0 
0 

0 

Scheme 2.9(a) 

2 Mn M Mn (VII) + Mn (111) 

2Mn (111) Mn (IV) + Mn (11) 

Mn(IV) + Mn(V) 
Fast 

w Mn(VII) + Mn(II) 

Scheme 2.9 (b) 
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2.4.1 Chemilurninescence from Permanganate Reactions 

Chemiluminescence from the reaction of inorganic compounds and permanganate 

has been used analytically. 157 For example the reaction of permanganate vvith 

sulphite gives luminescence which is thought to be due to excitedS02- It is weak 

and riboflavin or 3-cyclohexylammoniumpropane sulphonic acid is used as a 

sensitiser. Bile acids such as cholic acid can also act as sensitisers in this reaction 

which has been used for their determination. "' Stronger chemiluminescence is 

observed when permanganate is mixed with a sodium carbonate/potassium 

hydroxide solution. It has been suggested that the chemiluminescence is due to 

singlet oxygen. 159 

A large number of permanganate oxidations of organic compounds are known to give 

direct chemiluminescence. Most of these reactions are in acid medium. The 

following table shows some of the compounds determined by permanganate 

chemiluminescence. Limits of detection and relative intensities were determined 

using both batch and flow methods. 

Table 2.5 Analvtes Investiaated bv Permanaanate Chemiluminescence 
Compound Examples of Structures Sensitivity Reference 
Investigated 

Ethanol$ CH3CH20H 1% Montalvo'60 

Ascorbic acidl H 0.3 x 10-6 M ZhU161 

HO 0 0 

H OH 

Morphinel HO 0 OH 1X10-10 M Abbott'62 
Abbott'63 
Barnett'64 
Barnett" 

N 
I 

U 113 
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Morphine OCH3 0 OH morphine E3arnett" 
Oripavinej 5X1 0-8 M 
Pseudomorphine oripavine 
(dimer of morphine) 0.71 re morphine 

pseudomorphine 
0.29 re morphine N 

I 
UH3 

NH2 
OH 

Relative to Tsaplev'17 
Morphine 
Hydroquinone NH2 Morphine 

1.0 
N- 0.1 
phenyenediaminel HO OH 0.11 
Ascorbic acid 0.11 
Metol OH 0 0.04 
Floroglucinoll OH OH 0.08 
Thymol 

& 

0.004 
Rutin 

rN., ., 
II 

OH 4ýý, "Ilk 
0.004 

Quercetint 0 H1 00 0.001 

OH 

Codeine: OU-13 3x1 0-7 M Christie' 

Eugenoll OH JXJO-5 M Mitsana- 
Isoeugenol OH 1 X1 0-4 M Papazoglou" 
Caffeic Acid I 20gg/mL 

CH2-CH=--CH2 

Cimetidinej 

C142SCFýOýNHQNHCH I- 
11 
NCN 

Catecholamines Relative to Ikkai'70 
and Polyhydroxy- H Adrenaline 
benzenes OH 

HO OH 
Pyrogallol 2.9 

Including , 
OP, Gallic Acid 0.4 

Adrenaline or* 
Hydroquinonel 
Pyrogallol C02H 

Gallic Acidj OH 
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Pyrogallor H 
JX104M EvmiridiS171 

HO 0ý1 OH 

Epinephdnel H 0.03 to Defteros 172 

Norepinephdne HO = 
.,., 

CH3 0.05gg/mL 
Dopamine N 

I 
L-Dopa H 

I 

um 
OH 

L-dopaj C02H 62ýig/L "-"'; Vanj773 

, w%%NH2 
H 

OH 

OH 

Brucinet 1.5x 10-9 QW174 
H3CO 

H 
N 11010 1 H3CO H 

0 0 
0 

- - Strychninet fh u f 7'6 

N 
H 

0 
0 

Epheddnesl CH3 
Fj , wN FL 

H CH3 

- Benzocaine 0 0ý'ýýWýCH 0.003-0.04gg/mL 2hang'76 

Buticaine 3 
Butoform 
Procainet CH3 
Tetracaine 

NH2 
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Humic acid Complex polyhydroxy 0.7mg/L Marino 1-77 

polyaromatic 

Hydrazones of C=NNH2 3x1 0-6M Ahmed 178 

Aromatic ketones (Rhodamine 
Benzophenone sensitised) 
hydrazonel 

2,4 dinitrophenyl NHNH2 jX10-7 - M-3 mol d 179 Townshend 
hydrazine* Townshend'80 N02 

I 

N02 

Carbonyls by 2x1 0-7 mol dM-3 Townshend"31 
attenuation of 2,4 CH3(CH2)4CHO for hexenal 
dinitrophenyl 
hydrazine 
Tetracyclinel 0.4gg/mL Li18 
Oxytetracycline OH 

OHH 0.56ptg/mL 
Chlortetracycline 0.6gg/mL 

(Sensitised) 

OH 
0 OH 0 0 

lmipraminej - \ LopezPaz 183 

z 

"* 

) 
C 

o 

5X1 0-7 mol dM-3 

, N 
(; H2CH2CH2N(CH3)2 

Chlorpromazine* 
2x1O-6moI dM-3 

*ýý Cs 

N 
I 
(; H2CH2CH2N(CH3)2 

5-hydroxytryptamine 2x1 0-6 mol dM-3 Barnett 184 

(serotonin) HO OH 2x1 0-6mol dM-3 

5-hydroxytryptophan 2x1 0-5mol dm-3 
5-hydrxyindole-3- 0 
acetic acidl NH 

Vitamin B6 OH -3 58ng cm I 
(pyridoxinel) 

HO 
I OH 

N 
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Udc Acidj 0 55ng CM-3 LOW 

HN -NH 

0NN0 
HH 

Riboflavinj CH2(CHOH)4CH20H 
I 

62 ng CM-3 

N N H3C a 

IN NH 
H3C 

Medazeparn* CH 
13 

jX10-5 mol dm-3 Sultan""' 

N-, 

c K, N 

Cr:, H5 

Naltrexonej 2.5 ng CM-3 Campiglio 

HO 

HCL 

OH 

0 

tStructures shown 

In addition a recent publication has suggested the use of the reaction as a monitoring 

method for chemical pollutants. Gallic acid was used as a model compound. '90 

As can be seen from the above, a wide range of structures is capable of producing 

chemiluminescence on reaction with permanganate, although some of these need a 

sensitiser to achieve adequate sensitivity for trace analysis applications. There are 

no clear structural requirements for chemiluminescence. Adjacent hydroxy groups 

have been suggested as indicators for the potential for chemiluminescence'69 on 

permanganate oxidation, however it is clear that other features are significant. 
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2.5 The Use of Flow injection and Chemiluminescence in Food Analysis 

Food production and processing form an important part of the UK economy, 

contributing significantly to exports both within the European Union and in the world 

market. 

Production and sale of foods are regulated in the UK by the Food Safety Act 1990191 

and associated regulations. The food and agricultural sectors require a large number 

of analyses for various reasons including food safety, nutritional value, quality and 

reasons relating to international trade, where issues of authenticity and origin may 

have very large financial consequences. Together with control of weights and 

measures, regulations to ensure that food has not been 'rendered injurious to health $ 

and is 'of the nature and quality demanded by the purchaserwere among the first 

statutory requirements which necessitated physical and chemical measurement to 

ensure compliance. 

Food adulteration has been recorded since the since the Middle Ages. Statutes for 

particular foods including beer and wine were introduced, mainly to protect revenue. 

Lack of reliable methods of analysis meant that the consumer had little real 

protection. In 1860 an Act for Preventing the Adulteration of Food was passed, 

which established the appointment of Public Analysts bringing, for the first time, 

qualified analysts into the public regulation of food safety. The Sale of Food Act 

1875, Food and Drugs Act 1955 and Food Act 1984 preceded the current Act which 

meets the requirement of the Directives of the European Union. 192 

Frequently results are required quickly, for example where perishable commodities 

are taken into a manufacturing line. Multiple analysis may be required as food 

products are typically inhomogeneous. While good sampling practice can reduce the 

uncertainty, 193 the analysis of many samples taken from different points in the bulk 

gives information On the level and distribution of the analytes. In process control both 
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fast and multiple analyses are required. For example in fermentations where the 

change of a parameter such as pH or sugar content is used to identify the need to 

Start the next stage of processing. 

As discussed in earlier sections the use of chemiluminescence detection, particularly 

with flow injection, answers both of the needs. The use of chemiluminescence in 

food analysis was reviewed 12 with a range of applications being described. The 

majority of chemiluminescence methods so far developed have been for water 

analysis rather than the more complex food matrices. 

Determination of N-nitrosamines, using gas chromatography with chemiluminescent 

detection of nitric oxide, has been discussed in section 2.1.7. It is used for foods such 

as cured meats, which are likely to be subject to nitrosating conditions and with 

HPLC separation for non-volatile nitrosamines. " 

Other than determination of ATP as an indicator of microbial contamination the most 

widely used chemiluminescence reagent used in food analysis is luminol. Reactions 

which produce hydrogen peroxide, such as oxidation of glucose by glucose oxidase, 

and catalysis of the luminol/hydrogen peroxide reaction by metal ions have been 

used in food analysis. Chromium (111) has been determined in a range of food 

products including bread and shrimp. Selectivfty was achieved since complex 

formation of EDTA with chromium is slower than complex formation with other metal 

ions. 195 The enzymatic conversion of sucrose to glucose with invertase and 

mutarotase together, followed by reaction with glucose oxidase as above, has been 

used for analysis of soft drinks and cereals. 96 A similar system with galactosidase, 

in place of invertase has been used for determination of lactose in milk after dialysis 

in a flow injection system. 197 Enzyme reactors with luminol detection have been used 

to determine free amino acids in cheese'98 and soft drinks. 199 The luminol reaction 

has also been used to determine levels of lipid hydroperoxides formed during lipid 
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oxidation as an indication of oxidative rancidity. 2w A similar system has been used as 

an indicator for gamma irradiation of foodstuffs including milk meat and spices2o' and 

bones and seafood shells. 
202 

The lucigenin reaction has been used to determine trace levels of cobalt in orchard 

leaves (a standard reference material). 203 A complex extraction system had to be 

used to avoid interference from iron and magnesium which are often present in 

biological systems at a great excess > 105 over cobalt. 

The measurement of chemiluminescence emitted directly from food samples, due to 

reactions within the food matrix or with atmospheric oxygen, is generally of low 

intensity, but has been used to monitor oxidation in oils and fats, 16 and after 

hydration, in cereals. 204 Attempts have been made to use the ultraweak 

chemiluminescence emission as an indicator for gamma irradiation. Peroxyoxalate 

methods have been used in conjunction with flow injection in determination of amines 

in fish. 205 

While a number of organic food constituents such as vitamins including thiamine, 206 

folate207 and riboflavin" have been determined by chemiluminescence these 

methods have been mainly applied to synthetic systems such as pharmaceutical 

preparations. 

A major new application of chemiluminescence detection is in immunoassay, where 

chemiluminescent labels are replacing radiolabels as they do not have the health 

hazards and waste disposal problems encountered with radioactivity. A further 

advantage is the simple measuring equipment used, since no light source is required 

as in fluorescence or spectrophotometric measurement. Labels used include luminol 

and isolurninol dedvatives such as aminobutylethylisoluminol, acridinium 

compounds, 2m oxalate esters and bioluminescent systems. The various labels and 

techniques have been reviewed. ' 
1,210,211 Most applications are in medical 
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diagnostics, however there is scope for using chemiluminescent labels for the full 

range of immunoassays used in food analysis. 

Many of the systems discussed above are or are potentially amenable to flow 

injection formats. Lopez-Fernandez et al have reviewed 200 methods using flow 

injection in food analysis including five luminescence methods and has developed a 

set of criteria to evaluate the quality of such methods. 212 

A more frivolous application of chemiluminescence in foods has recently been 

reported 213 in which it was proposed to use coelentrazine a luciferin produced in 

jellyfish in a luciferase system to produce glowing foods, beverages and cosmetics. 
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CHAPTER 3 

METHODS AND MATERIALS 

3.1 Chemicals 

Chemicals were from the following sources. Reagents were of analytical grade, 

unless otherwise indicated. 

Acros, Loughborough, UK 

D- IsoAscorbic Acid C6H80 

Aldrich Chemical, Co UK 

Hydrogen Peroxide 30% stabilised H202 

Avocado 

Luminol C8H702N3 

BDH, Poole, UK 

Ethanal C2H40 

Glucosamine C6H13NO5 

Glycerol C31-1803 

Nicotinic acid C6H502N 

Oxalic acid 98%C204H2.2H20 

Pyridoxine C8H, 103N. HCI 

Propan 1,2-diol C3H802 

Propanone C3H6O 

Fluorescein C20HI205 

Rhodamine 13 C28H3103N2 

Ribose C5HjoO5 
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Trehalose C12H22012 

Aluminium chloride A1C13 

Ammonium nitrate NH4NO3 

Cobaft(II) chlodde COC12.6H20 

Copper(I I) sulphate CUS04.5H20 

Metaphosphoric acid HP03 

Iron(Ill) chloride >95% FeC13 . 

Iron(II) sulphate 99% FeS04.7H20 

Potassium bromide KBr 

Potassium chloride KCI 

Potassium iodide KI 

Potassium permanganate KMn04 

Sodium nitrite NaN02 

Sodium sulphite NaS03 

Tin(II) chloride SnC12.21-120 

Breckland Scientific, Thetford UK 

Activated Charcoal 

Fluka, Gillingham, UK 

Dehydro-L (+)-ascorbic acid, dimer >99%, C12HI2012 

Methanal 36% (stabilised) CH20 

Fisher Scientific, Loughborough, UK 

Acetic acid C2H302 

Hydrochloric acid SG 1.18 HCI 

Nitric acid HN03 
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Sulphuric acid SG 1.84 H2SO4 

Sodium pyrophosphate Na4P207-1 OH20 

Tetrahydrofuran C4H80 

Sigma Chemical Company, Poole, UK 

Arabinose, C5H, 
005 

L+ Ascorbic acid C6H806 

Cellobiose C12H22012 

D- Fructose <0.05% glucose CrH1206 

Dextran MW 2xl 06 

D+ Glucose >99.5% CrH1206 

D+ Galactose >98%C61-11206 

Lactose C12H22012. H20 

Maltose 98%Cl2H22Ol2. H20 

D-Mannitol C6H1406 

Meso-ErAhritol C4H, 004 

Myo-inositol C6H1206 

D- Sorbitol C6H1406 

Sucrose >99.5%Cl2H22012 

Xylose, C5HjoO5 

2,6-Dichloro indophenol C12H502NC12 

2,4 Dihydroxybenzoic acid C7H604 

2,5 Dihydro)(ybenzoic acid C7H604 

2,6 Dihydroxybenzoic acid C7H604 

Flavin mononucleoticle C17HjqN409PNa2 

o-Phenylenediamine C6H8N2.2HCI 

Pyddoxine C7H, 103N. HCI 
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D-Saccharic acid potassiumC6H9O8K 

Thiamine C12Hl6N40SCI HCI 

Manganese(III) acetate Mn(C2H302)3 

Manganese(IV) oxide Mn02 

Manganese(II) sulphate (MnS04. H20) 

Polyphosphoric acid H2PO3 

Trisodium Tripolyphosphate Na3P3010 

Sodium hydroxide NaOH 

Methanol CH30H 

Ethyl acetate C4H802 

Ethanol C21-1501-1 

Acetonitrile CH3CN 
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3.2 Preparation of solutions 

3.2.1 Potassium permanganate solutions 

Solutions were prepared by dissolving the required amount of potassium 

permanganate (Mr 158) in cleionised water, or the required strength of sulphuric acid.. 

Solutions in water of 0.1 mol dm-' were stored refrigerated for up to 1 week. Working 

and acidic solutions or were prepared before use. Solutions were kept in the dark 

3.2.2 Manganese sulphate (11)/ Sulphuric acid 

Manganese (11) sulphate monohydrate, was dissolved in the required strength of 

sulphuric acid. Solutions were stored for up to 1 week. 

3.2.3 Manganese (111) Reagent - Aqueous Final Formulation 

Manganese sulphate monohydrate, 1.5g, was dissolved in 60 CM3 water and 20CM3 

concentrated sulphuric acid was added with stirring. The mixture was cooled in an 

ice bath to below 100. Potassium permanganate, 0.158 g, was dissolved in 20CM3 

water with stirring. The permanganate solution was added slowly to the manganese 

sulphate solution with constant stirring. Stirring was continued for 10 minutes and 

the solution was kept in ice during use. The solution was freshly prepared each day. 

3.2.4 Manganese (111) Reagent - Methanol Final Formulation 

Manganese sulphate monohydrate, 1.5g, was dissolved in 20 CM3 water and 1 OCM3 

concentrated sulphuric acid was added with stirring. The mixture was cooled in an 

ice bath to below 100 and 40 CM3 methanol was added with stirring. The mixture was 

cooled again to below 100. Potassium pen-nanganate, 0.158 g, was dissolved in 

1 OcmI water with stirring. The permanganate solution was added slowly to the 
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manganese sulphate solution with constant stirring. Stirring was continued for a 

further 10 minutes and the solution was kept in ice during use. The solution was 

freshly prepared each day. 

3.2.5 Ascorbic Acid solutions 

3.2.5.1 Aqueous 

Prepared daily, the required amount of ascorbic acid was dissolved in demineralised 

water (pH 4.8-5.5); dilutions were prepared in dernin. water and stored in the dark. 

3.2.5.2 Phosphate Stabilised 

Solvent: Metaphosphoric acid, 20g, and glacial acetic acid 50CM3 were dissolved in 

1dM3 dernineralised water. The solution was kept refrigerated and in the dark for up 

to 4 weeks. 

Standards: The required amount of ascorbic acid was dissolved in 100 CM3 

metaphosphoric/ acetic solvent. Dilutions were prepared in the same solvent. 
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3.3 Samples 

Samples were purchased locally or provided by Chemlab. 

3.3.1 Samples for Vitamin C analysis 

Juice 1 Fruit juice concentrate, vitamin C declared greater than 45mg/1 00ml 

Juice 2 Fruit juice ready to drink, vitamin C declared greater than 15mg/1 00ml 

Tablet 1 200mg vitamin C tablet, vitamin C declared 200mg/tablet sorbitol excipient 

Tablet 2 ADC multivitamin tablet, vitamin C declared 60mg/tablet lactose excipient 

Tablet 3 Multivitamin powder, vitamin C declared as 60mg/sachet includes vitamins 

AIDE and water soluble vitamins in a base including citric acid and sucrose. 

3.3.2 Beers 

Bifter beer 1 -Parkins special, Sainsbury, 4% ABV 

Bitter beer 2 -Traditional bitter, Sainsbury 3.4% ABV 

Bitter beer 3- Worthington best bitter 3.6% ABV 

Stout 1 -Mackesons, 3% ABV 

Stout 2- Guinness Original, 4.3% ABV 

Lager 1- Skol, 3.4% ABV 

Lager 2- Carling Black Label, 4.1 % ABV 

3.3.3 Brewing Materials 

Malt Extract 1- Amber malt extract (dry) 

Malt Extract 2- Munton's Dark malt extract (liquid) 

Malt Extract 3- Brupaks pale malt extract (liquid) 

Malt Extract 4- Edme DIVIS malt extract (liquid, high diastatic) 

Isomerised hop pellets, Lupofresh 

Dried hops variety Bramling cross 

Brewcon isomerised hop extract. 
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3.4 Instrumentation and Equipment 

3.4.1 Volumetric Equipment 

Standard laboratory glassware, volumetric flasks, one mark and graduated pipettes, 

burettes, and air displacement pipettes (Gilson, Anachem). 

3.4.2 Weighing 

Weighing was carded out using 2 place top pan (Salter BP2200) and 4 place 

(Precisa 120A) or 4/5 place (Precisa 405M-200A) analytical balances as appropriate. 

3.4.3 Batch Counter 

Time courses of slow and low intensity chemiluminescence reactions were monitored 

using a liquid scintillation counter model (Packard 2002), from which the calibration 

source had been removed. 

3.4.4 Fluorescence Spectrophotometry 

Fluorescence and chemiluminescence spectra were measured using a fast scanning 

fluorescence spectrophotometer, Hitachi model F-4500, (Hitachi Ltd, Japan) fitted 

with either standard or extended range PMT detectors. Data capture was using a 

Pentium PC with Hitachi software version 4.11 

Fluorescence cuvettes, 10mm path length with four clear sides, from quartz, optical 

glass and polymethylmethacrylate. 

For continuous flow -1 Omm path length flow cell, optical glass (Hellma, Germany) 
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3.4.5 Stopped Flow Measurements 

Hitech SF20 rapid kinetic accessory, with pneumatic actuator. 10mm flow cell 

configured for Hitachi fluorimeter (Hi-Tech, Salisbury UK) 

3.4.6 UV-Visible Spectrophotometry 

UV and visible spectra and UV-visible absorbance time courses of reactions were 

measured using scanning spectrophotometers, Shimadzu model 160A (Shimadzu 

corporation, Japan) and Unicam model Delta 2 (Unicam, Cambridge, UK) Silica and 

optical glass cuvettes 10mm and 2mm path length. 

3.4.7 Flow Injection Analysis 

3.4.7.1 Pump 

Four-channel peristaltic pump, Ismatec model H07331 (Ismatec, Carshalton, UK), 

with minicartridges and three-stop tygon tubing of various internal diameters. 

3.4.7.2 Injection Valve 

Rheodyne model 5020 low-pressure loop injection valve with 0.8mm id flow 

passages and interchangeable loops (Rheodyne, Cotati, CA, USA) actuated by a 

Universal Valve switching module. 

3.4.7.3 Detectors 

Photomultiplier Thorn EMI blue sensitive bialkali (type 9813B) and red sensitive 

trialkali S20 (type 9816B) in Thorn EMI housing powered by a Thorne EMI type 

PM28B high voltage source (Thorn EMI Electron Tubes, Ruislip UK) used at 1.3kV 

unless otherwise indicated 

Photodiode detector model CL1 (Chemiab, Great Dunmow, Essex, UK) 

68 



3.4-7.4 Manifolds 

Various manifolds were constructed using 0.5mm id PTFE tubing with flanged 

connectors and 1.02mm id tygon tubing. Mixing was carried out in a low dead 

volume Kel-F T-piece, or nylon Y-piece as required. 

3.4.7.5 Chart Recorder 

BD40 and BD20 Chart recorders (Kipp and Zonnen, Delft, Nethedands) 

3.4.7.6 Data Capture 

Pico ADC 100 connected to 386PC (Pico Technology, Hardwick, UK) 

3.4.8 Cyclic Voltametry 

Potentiostat -pAutolab with Autolab software (Ecochemie). 

3.4.9 pH Measurement 

pH meter model 292 (Pye Unicam, Cambridge, UK) or hand held pH monitor were 

used depending on required accuracy, calibrated with pH 4,7 and 9.2 buffers 

prepared from buffer tablets (BDH). 

3.4.10 HPLC Equipment 

Beckman System Gold 118 Solvent Module (Beckman, Fullerton, CA, USA) 

Rheodyne 7125 loop injection valve (Rheodyne, Cotati, CA, USA) 

Column 25 cm 4.6id containing 5gm Supersil arninopropyl silica packing (Supelco, 

Poole, UK) 

Post column system consisting of : photodiode detector model CL1 (Chemlab, Great 

Dunmow, Essex, UK), Four-channel peristaltic pump Ismatec model H07331 
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(Ismatec, Carshalton, UK) supplied with minicartridges and three-stop tygon tubing 

0.052mm id and low dead volume Kel-F T-piece (Supelco, Poole, UK). 

3.4.11 Data Handling 

Chart recorder peaks were measured manually. 

Batch counter output was recorded manually. 

Results were entered into data analysis packages manually. 

Data from the fluorescence spectrophotometer, Autolab potentiostat and ADC100 

were converted into text files and imported into spreadsheets of data analysis 

packages. 

Data analysis was undertaken using Origin version 4.1 (Microcal) and Excel versions 

5.0 and '97(Microsoft). 214 Where error bars are shown in the graphs these are 

calculated as the sample standard deviation for the replicate measurements for that 

point. Unless otherwise indicated six replicate measurements were made for each 

point. 

Coefficient of regression, calculated through the Origin programme. Unless 

otherwise indicated, error bars were not used to weight the regression . 
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3.5 Calibration procedures 

3.6.1 Peristaltic Pumps 

Pumps were calibrated for different pump tubes by weighing amounts of deionised 

water delivered in one minute at various pump rates. Repeatability for multiple 

aliquots was acceptable with RSDRs for 10 sequential measurements of less than 

1%. Linear regression was used to calculate flow rates for intermediate speeds. 

Regression coefficients were good and better than 0.99. 

3.5.2 Air-displacement Pipettes 

Volumes delivered were checked by weighing replicate aliquots of deionised water215 

and found to be within manufacturees specifications. 

3.5.3 Calibration of FIA Sample Loop 

The volume of sample delivered by the loop injector in was measured by 

216 spectrophotometry using a method based on that of van Straden. Replicate 

injections of 0.1 mol dm-3 potassium permanganate were made into a stream of 

cleionised water flowing at 2.5cm min-' in a single line manifold. The samples were 

collected in a 50CM3 volumetric flask and diluted to volume. The absorbance of the 

solutions was measured at 525nm. A calibration line over the range 4x1 0-5 to 2x1 0-4 

mol dm-3was prepared from the same stock solution, using a previously calibrated air 

displacement pipette. The sample volume was found to be 75.6±0.9 gL. For larger 

volumes additional tubing, supplied with the injection valve, with stated volumes of 

I OOgL or 500gL was inserted. 
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3.5.4 UV-Visible Spectrophotometers 

UV visible spectrophotometry was used to follow reactions of permanganate in the 

wavelength range 400 to 700nm. The peak maxima measured for dilute aqueous 

permanganate solutions agreed well with published data. 

3.5.6 Fluorescence Spectrophotometer 

3.6.6.1 Fluorescence Mode 

Using the manufacturers instructions, accuracy of wavelength measurement, signal 

to noise and drift parameters were determined. Wavelength accuracy for excitation 

and emission monochromators was confirmed, by measuring the wavelength of a 

spectrum line for the xenon lamp source. In all cases the indicative peak was within 

the specification at 451± 1 nm. Signal to noise and drift were determined by scanning 

for 10 minutes at the wavelength of the maximum Raman peak for water. The 

specification for signal to noise and drift was met or exceeded for the standard 

photomultiplier tube. 

3.5.6.2 Chemiluminescence Mode 

The accuracy of the wavelength measurement of the spectrofluorimeter was 

established using two well-characterised spectra. The emission from luminol was 

used for the low wavelength region, and that of singlet oxygen for the high 

wavelength region. 

a) Luminoll Emission at 425nm The lurninol reaction, in aqueous solution, is known 

to have a wavelength maximum at 425nm. 33 A spectrum, run using continuous flow, 

has a consistent with literature values. An example is shown as Figure 3.1. 
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b) Singlet Oxygen Emission at 633 and 704 nm As discussed in section 2.1.9, 

singlet oxygen is known to emit as a number of sharp bands in the red and near-infra 

red. The reaction between peroxide and hypochlorite in alkaline solution is known to 

generate singlet oxygen. Due to the speed of the reaction and the short lifetime of 

singlet oxygen in an aqueous system it was not possible to use continuous flow and 

the semi-flow method was used. Individual spectra were noisy therefore replicate 

spectra were collected and averaged mathematically. The average from fifty runs 

consisted of two sharp peaks with maxima at 636 and 704nm. These maxima are 

consistent with literature values. 53,93 The spectrum is shown as Figure 3.2. 
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The peak at approximatley 550nm was observed in many systems and was 

considered to be an artefact, possibly due to reflections in the optical path. 
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Additional checks of wavelength precision were undertaken using a range of light 

emitting diodes (RS Components) connected to a 9V battery and resistor. Spectra 

were measured using various combinations of slit width (2.5,5,20nm), scan speed 

(30000,2400,240 nm sec7l), PMT voltage (400,700 and 950V) and response time 

(0.004,0.1 sec and Automatic). 

For the fastest scan speed, the use of a response time of O. 1sec resulted in peaks 

with Xmx at approximately 10nm longer than when faster response rates were used. 

For fast scan speeds short response times, were used for collecting spectra although 

noise levels were high. The maximum wavelengths for LEDs were determined by 

fitting Gaussian functions to the spectral data and found to be as shown in Table 3.1: 

Table 3.1 Spectral Maxima for LEDs Determined on Hitachi F4500 Fluorimeter 
Colour RS Part no NominalXm.,, km. Found?, max 95%Cl 
Green 2285427 565 565.3-565.9 

Yellow 2285433 590 580.8-581.8 

Orange 2275449 625 629.1-630.5 

Red 2285405 700 686.2-688.1 

The deviation between the nominal and observed X,. means that the diodes cannot 

be used to confirm wavelength accuracy but as their use is quick apparent changes 

in kmax response for each diode would indicate problems with accuracy. 

3.5.6 Stopped Flow Equipment 

The repeatability of the system was using the fast chemiluminescence from luminol. 

Five sets (A to E) of eleven injections were carded out and time to peak maximum 

and peak area were measured for each run. 

The stopped--flow system consisted of: 

Syringe 1: Luminol lxlo-3mol d M-3, Co (11) lxlO-2mol dm-3in carbonate buffer pH 10 

0.1 mol dM-3. Syringe 2: Hydrogen peroxide 0.03%. Drive pressure: 6 bar. 
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For the time to peak maximum there is a significant difference between the 

repeatability for individual syringe positions (injections) and the repeatability for 

injections from the same syringe filling (sets). The resufts are shown in Table 3.2. 

Table 3.3 shows the results for the area measurement. 

Table 3.2 Time to Peak Maximum Table 3.3 Peak Area 
Mean SD RSDR% 

Injection 
1 115.8 1.79 1.54 
2 117.61 2.61 2.22 
3 119.4 1.34 1.12 
4 122.0 2.83 2.32 
5 126.8 2.17 1.71 
6 128.21 2.17 1.69 
7 134.0 4.80 3.58 
8 134.8 4.15 3.08 
9 137.4 3.65 2.65 
10 140.4 1 3.78 2.69 
11 144.4 2.19 1.52 
Set 
A 129.7 10.77 8.30 
B 131.2 1 11.37 8.66 
c 128.7 9.41 7.31 
D 129.0 9.38 7.27 
E 127.2 9.11 7.16 

Mean SD RSDR% 
Injection 

1 68290 6156 9.01 
2 56901 5430 9.54 
3 54764 4477 8.18 
4 58356 3319 5.69 
5 59876 1 1968 3.29 
6 61089 2041 3.34 
7 58962 2948 5.00 
8 57422 3181 5.54 
9 57449 1 3585 6.24 
10 56752 3060 5.39 
11 59644 6588 11.04 
Set 
A 56573 6093 10.77 
B 57763 3421 5.92 
c 61507 5356 8.71 
D 61704 2588 4.20 
E 57683 5422 9.40 

The statistical significance was confirmed by carrying out the one way ANOVA 217 

Table 3.4 Analysis of Variance for Stopped-Flow replication 
a) ANOVA for Time to Peak Maximum 
Source of SS df F P-value F crit 
Variation 
Between 4625.3 10 51.86 4.9E-21 2.054 
Groups 
Within 392.4 44 
Groups 
Total 5017.7 54 

b) ANOVA for Peak Area 
Source of SS df F P-value F crit 
Variation 
Between 6.23E+08 10 3.59 0.001525 2.054 
Groups 
Within 7.64E+08 44 
Groups 
Total 1.39E+09 54 
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It can be seen that the F value exceeds the critical value showing that there is 

significant difference within the groups for time to peak maximum. A similar analysis 

for peak area also shows significant difference within the groups. 

c) ANOVA for time to peak maximum for individual syringe 

. 
P-oýrýts- 
Source of SS df F P-value F crit 
Variation 
Between 93.9 4 0.233 0.919 2.56 
Groups 
Within 5047.6 50 
Groups 
Total 5141.53 54 

For precise work on fast reactions it was necessary to reload syringes between each 

injection in order to use the same syringe position for replicate experiments. As 

shown in table 3.4 c this gives satisfactory repeatability. 

3.5.7 Batch Counting System 

The modified liquid scintillation spectrophotometer had previously been calibrated 

using luminescence standards. It was found that, on average 6.7 photons were 

required per count. This equivalence was used to convert counts per counting 

interval (usually 12 sec) to photons/sec. As the emission spectrum of the 

luminescence standard has a maximum at around 440nM218 the calibration is not 

strictly applicable at 700nm, the emission maximum of the reactions studied. 
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3.6 Experimental Procedures 

3.6.1 Flow Injection Experiments 

Flow injection was studied using a number of different manifold designs using both 

single and multiple line manifolds and using both analyte and oxidant as injectant. 

Sample 

Manifold I 
P -Pump D- Detector R- Data recording V- Injection valve 

Lin 

Lin 

Sample 

Manifold 2 
P -Pump D- Detector R- Data recording V- Injection valve Y-Y piece 

Line 

Line 

Sample 

Manifold 3 
P -Pump D- Detector R- Data recording V- Injection valve T-Y or T piece 
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219 -mm id The detector, based on a published design, consisted of a coiled tube of 0.5 

PTFE placed beneath the photocathode of the PMT inside the light tight housing. All 

experiments were undertaken at room temperature, except when the manganese 

reagent was used which was kept in an ice bath at 2-5'C. 

Where Y pieces were used the following configuration was applied in all cases: 

Carder /Sample 

Detector 

Oxidant 

Mixing Configuration Yl 

When aT piece was used one of the three following configurations was used: 

Carder/Sample 

Detector 

Oxidant 

Configuration TI 

Carder/Sample 

Oxidant 

Detector 

Configuration T2 

3.6.2 Chemiluminescence Time Course Experiments 

Oxidant 

Detector 

Carder/Sample 

Configuration T3 

Chemiluminescence time course investigations were undertaken by batch counting, 

using the Packard 2002 liquid scintillation spectrometer, modified for photon counting 

and operating in coincidence mode. Where the emission was sufficiently intense the 

Hitachi fluorescence spectrophotometer was used with the source turned off. 
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3.6.3 Batch Counting 

Aliquots of analyte and carder solutions were introduced into a low-potassium glass 

liquid scintillation vial and mixed by swirling. The vial was closed with a resin screw 

cap and introduced into the sample chamber of the spectrometer. The spectrometer 

was started and the number of counts in 12 sec was determined to establish the 

background. The vial was removed from the spectrometer and an aliquot of oxidant 

was added, at the same time a stopwatch was started. The contents of the vial were 

mixed by swirling and the vial was returned to the spectrometer. After 15sec from 

the introduction of oxidant counting was started and counts recorded at 12 sec 

intervals until the count rate was typically less than 100 counts/1 2 sec. 

3.6.4 Fluorescence S pectro photometer 

Aliquots of sample/carder and oxidant were mixed using batch, semi-flow, continuous 

flow or stopped flow as required. The spectrometer was started as the final 

component was added and the luminescence was monitored at the required 

wavelength using the instrumental conditions in Table 3.5. 

Table 3.5 Instrumental Parameters for Chemiluminescence Time-course 
Exg)eriments 
System Data Wavelength Slit Width PMT Voltage Response 

collection / nm nm N /sec 
Sugar/ Seconds 700 20 950 0.01 
Permanganate 
Ascorbic/ Milliseconds 700 20 950 0.004 
permanganate 
Sugar/ Milliseconds 700 20 950 0.004 
Mn(III) 
Sugar/ Milliseconds 440 20 950 0.004 
Peroxide 
Luminol/Co(ll)/ Milliseconds 425 10 700 0.004 
Peroxide* 
*System used to check stopped-flow performance 
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3.6.5 Chemiluminescence Spectrophotometry 

Chemiluminescence spectra were collected using the Hitachi fluorescence 

spectrophotometer by batch, semi-flow, continuous flow or stopped flow as required. 

3.6.5.1 Batch Procedure 

A fluorescence cuvette of optical glass, quartz or plastic was placed in the cell holder 

and reagents were added at timed intervals. The final solution was added quickly 

using an automatic pipette. After a previously established time the scan was started. 

For fast reactions the final solution was introduced using a syringe through a 0.5mm 

id PTFE tube and the scan started immediately. 

3.6.5.2 Semi-flow Procedure 

Reagents were added to a cuvette, as for the batch method. The final reagent, 

normally the oxidant, was pumped into the cuvette through a 0.5mm id PTFE tube by 

means of a peristaltic pump. Several spectra were collected a few seconds after 

starting the pump. 

3.6.6.3 Continuous-flow Procedure 

Reagents were pumped using a multi-channel peristaltic pump,. mixed in Y fittings 

and passed though delay coils if required. The mixed solutions passed though a 

flow-cell in the fluorimeter. The flow rate and length of delay coil were adjusted to 

achieve maximum signal and spectra were collected. 

3.6.5.4 Stopped-flow Procedure 

Reagents were mixed using the stopped-flow accessory. For fast reactions timing 

was achieved by altering the scan range and for slow reactions the scan was 

collected after a time established in a time-course experiment. In all cases the 
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fluorimeter was operated in luminescence mode with the source turned off, a sift 

width of 20nm and response automatically set according to the scan speed. Other 

conditions were as shown in Table 3.6. 

Table 3.6 Instrumental Parameters for Collectina Chemiluminescence Snectra 
Type Reaction Scan speed Data collection 

type /nm min-' 
Batch Slow 2400 Single scans 

Fast 30000 Repeat scans averaged 
Semi-flow Fast 30000 Repeat scans averaged 

Continuous Slow/fast 1200 Single scans 
30000 CAT(computerised averaging for 

transients) 
Stopped Slow/fast 30000 Repeat scans averaged 

flow I I 

3.6.6 Consumption of Permanganate 

The consumption of manganese species in oxidation reactions was followed by the 

change in absorbance at appropriate wavelengths. The same concentrations and 

volumes of solutions used for chemiluminescence measurements were mixed in a 

spectrophotometer cuvette and a time scan was started. Absorbance measurements 

were taken at intervals of 10 or 15 sec depending on the speed of the reaction. 

3.6.7 Determination of Vitamin C 

Ascorbic acid was determined in food supplements and fruit by titration with 2,6- 

dichlorophenol indophenolm and fluorimetricaly after oxidation to dehydroascorbic 

acid and reaction with o-phenylamine diamine. 22' 
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CHAPTER 4 

RESULTS AND DISCUSSION 

PERMANGANATE CHEMILUMINESCNCE 

4.1 Oxidation of Food Systems 

As previously discussed, many food systems display chemiluminescence related to 

oxidative degradation of components such as oils and fats. Attempts have been 

made to relate the chemiluminescence to quality aspects such as beer staling"' 19 and 

oxidative rancidity of oils. 16 It has been suggested that the emitting species is an 

activated oxygen species such as singlet oxygen, a hydroxy- or hydroperoxy radical. 

The mechanism of oxidative rancidity is complex and starts when oxygen is taken up 

by fats with formation of hydroperoxides, (ROOH). When the level of hydroperoxides 

reaches a certain point, after an induction period, the rate of oxidation accelerates 

and volatile products are formed. Peroxides may be further oxidised to diperoxides 

leading to polymer formation and fission reactions forming aldehydes, semi- 

aldehydes, aldehydo-glycerides, hydroxyl compounds and finally organic acids. 

Dehydration reactions give keto-glycerides, and oxidation of other double bonds 

forms epoxides, hydroxy- and dihydroxy-glycerides leading to off-flavour and odour in 

the food. Some specific unsaturated compounds, especially trans-2-nonenal are 

thought to be responsible for the 'cardboard' off flavour in beers. Maillard reactions, 

between carbohydrates and proteins, responsible for non-enzymic browning in foods, 

are known to give low levels of chemiluminescence. 94 In DIVISO the 

chemiluminescence from Maillard reactions is sufficiently strong for a spectrum to be 

measured. A blue/green band was reported at 500nm and a red band at 695nm. 
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Beer was chosen for initial investigation as staling and deterioration are of 

considerable economic importance. Beers contain many hydroxy and polyhydroxy 

compounds which, as discussed in section 2.1.7-2, have long been known to give 

chemiluminescence on oxidation. Particularly important components of beer are the 

iso (x- and iso 0- acids as shown in Scheme 4.1, compounds produced which are 

produced during boiling from the (x- and 0- acids present in hops. The iso acids are 

responsible for the bitterness of beers and contribute to their stability. 

Iso-Alpha Acids 

Humulone 

Cohumulone 

Adhumulone 

Scheme 4.1 

R 
CH2(CH3)2 

CH(CH3)2 
CH(CH3)CH2CH3 

Free radicals generated during autoxidation are capable of degrading isohumulones 

yielding carbonyls including aldehydes which are responsible for off flavours. It was 

found that addition of metal ions and/or hydrogen peroxide to beer increased the 

amount of chemiluminescence observed. 222 Addition of EDTA or sulphite reduced 

the emission. This is consistent with the participation of free radicals in the 

mechanism. It was thought if oxidation of iso acids generated chemiluminescence it 

might be possible to develop an analysis for them in beers. 

4.1.1 Oxidation of Beer by Various Oxidising Species 

4.1.1.1 Batch Experiments 

Initially chemiluminescence from a5 CM3 aliquot of a freshly opened sample of beer, 

(canned bitter beer, purchased locally) was counted for 2 minutes using the batch 
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counter. A fresh sample was heated to 65' and counted for 2 minutes. As expected 

from literature, 17 higher chemiluminescence was observed at higher temperatures. 

Table 4.1 Photon Emission by Fresh Beer Samples 
Temp/ C' Photons/sec 

10 100 

40 210 

60 550 

4.1.1.2 Preliminary Flow Injection Studies 

Using a single line flow injection manifold, the beer sample previously used was 

injected into carrier streams containing oxidants, known to give chemiluminescence. 

The oxidants were neutral periodate, acid permanganate, peroxide with copper in 

alkaline solution and cerium (IV) in acid solution. Only the permanganate and 

peroxide systems gave a signal with permanganate giving the higher signal. 

Repeating the experiment using a photodiode detector confirmed that only 

permanganate and peroxide give a signal and suggested that the emission from the 

Figure 4.1 Effect of Permanganate Concentration on CL Signal 
from Bitter Beer 
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Error bars represent standard deviation for 10 replicate injections 
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permanganate reaction was at longer wavelength than from the peroxide system. 

The signal depended on the permanganate concentration as shown in Figure 4.1 

4.1.1.3 Batch Experiments with Permanganate and Peroxide 

Batch experiments were undertaken where the beer sample was added to oxidant. 

Emitted light was followed by batch counting until no more counts were observed. 

Figure 4.2 Chemiluminescence Time-course for the reaction 
of Beer and Permanganate in Acid solution 
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Figure 4.3 Chemiluminescence Time-course for the Reaction of 
Beer and Peroxide in Alkaline solution 
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Figures 4.2 and 4.3 show the chemiluminescence time courses for the reaction of 

beer with permanganate and peroxide. 

It can be seen that the peroxide reaction is much faster than the permanganate 

reaction with much of the emission occurring in the 'dead time' of the spectrometer 

when no readings can be taken. The peroxide time course data fits well to an 

exponential function. 

As chemiluminescence reactions are typically fast, as for the peroxide profile, it was 

decided to investigate the unusual profile from the permanganate reaction. The 

reaction was carried out on two samples of each of three types of beer. Conditions 

were as above. The times to the maximum signal and the maximum counts 

calculated as photons/sec were measured. The results in Table 4.2 show that there 

is a significant difference between the results for stout and those for lager and bitter. 

The maximum chemiluminescence broadly follows the typical levels of free sugars in 

the beer types. 

Table 4.2 Chemiluminescence Time orofiles for Different Beer Twes 
Sample Seconds 

to Max 
Average Maximum 

Phot/sec 
Average Typical 

Sugars 
q/1 OOCM3 

Declared 
Ethanol 
ABV 

Lagerl 180 150 29447 39977 1.5 3.2 

Lager2 120 50507 

Bitter 1 120 132 56500 46550 2.3 3.1 

Bitter 2 144 36600 

Stout 1 48 48 94033 94807 2.1-4.2 2.9-4.0 

Stout 2 48 95580 

Ethanol is a significant component in beer and the declarations of alcohol by volume 

for the samples examined are also given in the above table. A method has been 

described for determination of ethanol of potable spirits (40 to 50% ABV), using the 
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chemiluminescence from permanganate oxidation. 160 To get a good signal the 

reaction was carded out in 95% nitric acid, which is difficult to use in a flow system. 

Reaction of ethanol with permanganate under the same conditions as for the beer 

samples gave only a very low signal. 

The other major components of beers are water (90-95%), carbon dioxide (2-3%) 

and carbohydrates (2-5%) including free sugars and oligo- and polysaccharides. 

Several hundred minor components are also found in beers. These include higher 

alcohols, organic acids, nitrogenous compounds including free amino acids and 

proteins, esters, aldehydes, ketones, sulphur compounds, polyphenols, B-vitamins 

and inorganic salts present at levels from parts per million to 0.1 %. 223 
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4.2 Oxidation of Carbohydrates by Permanganate 

4.2.1 Batch Experiments 

It was decided to investigate the source of the permanganate chemiluminescence by 

examining materials used in beer production. Laboratory prepared hot water extracts 

of dried hops, iso hop pellets and malt extract were found to give similar 

chemiluminescence time profiles to those for beer samples. 

A sample of commercial isomerised hop extract which contains high levels of iso 

alpha acids was diluted to the level which would be present in beer. The reaction 

with acid permanganate resulted in no emission, although as expected the 

permanganate was reduced, giving a colourless final solution. This shows that hop 

iso- acids are not responsible for the permanganate chemiluminescence of beers. 

Among the nitrogen containing components of beers are free amino acids and oligo- 

peptides. The amino acids alanine, lysine and cystine were examined as before. 

Permanganate was reduced but no signal was seen, showing that the main nitrogen 

components of beer are not responsible for the observed signal. 

Glucose was previously reported to interfere in the chemiluminescence assay for 

various medicines, where it is be used as an excipient. "3 It was considered that the 

carbohydrates might be responsible for the chemiluminescence observed. Malted 

and unmalted barley and other cereals are the main carbohydrate source in beers. 

In commercial brewing the hot water extract of cereals, wort, is boiled with hops prior 

to fermentation with a selected yeast, Saccharomyces cerevisiae or S. 

carlsbergensis. If the hot water extract is concentrated by evaporation malt extract is 

produced which is widely used in domestic brewing and in production of foods such 
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as breakfast cereals. Malt extracts are readily available in different grades including 

those produced from highly roasted malt and types with high diastatic activity. 

The major components are glucose, maltose and glucose oligosaccharides in 

proportions which depend on time and temperature of malting and post treatment.. 

Malt extract was used as a model for the carbohydrate component in beer and was 

found to give a chemiluminescence time profile similar to that for the beers. It was 

also found that glucose, a major component of malt extract gave the same profile. 

The nutdtionally important mono and disaccharides: glucose, fructose, galactose, 

maltose sucrose and lactose were selected for study in the reaction with 

permanganate. In each case excess substrate was used as indicated by the 

complete disappearance of the permanganate colour during the reaction. 

The reaction time courses, for equal concentrations of the mono and disaccharides 

are shown in figures 4.4 a and b. 

It can be seen that both the rate of reaction and the size of the signal is different for 

each sugar. The double peak for fructose is probably due to saturation of the 

detector. The larger signals for disaccharides when mixed with sulphuric acid before 

addition of the permanganate are due to parital hydrolysis of the disaccharides to 

monosacchaddes. 

Using glucose as a representative sugar, glucose and permanganate concentrations 

were varied. An increase in glucose concentration resulted in a constant maximum 

signal with a decreasing time to reach the maximum signal while the total counts 

increased. An increase in permanganate concentration gave an initial increase in 

signal then a constant maximum while the total counts increased. 
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Figure 4.4 Chem iluminescence Time-courses for the Permanganate Oxidation 
of Mono- and Disaccharides 
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A similar pattern was observed for a simpler polyhydroxy compound, glycerol, 

CH20HCHOHCH20H as shown in Figue 4.5, and for other sugars and polyhydroxy 

compounds including saccharic acid. Formaldehyde gave a similar response. 

Figure 4.5 Chemiluminescence from the Reaction of Glycerol with 
Permanganate 
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As excess sugar was used further aliquots of permanganate gave further 

chemilurninescence. From Table 4.3 it can be seen that the second aliquot 

increases both the rate of the reaction and the total light emitted. 

Addition of further aliquots of permanganate results in further increases in reaction 

rate and signal until the all the substrate has reacted. At this point brown manganese 

dioxide precipitates from the solution. 
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Table 4.3 Effect of Multiple Additions of Permanganate on Carbohydrate 
Chemiluminescence 
Sugar Aliquot 1 Aliquot 2 

Time to max 
/ sec 

Total Counts 
X1 0-6 

Time to max/ 
sec 

Total Counts 

Glucose 290 1.28 75 1.39 

Fructose 255 1.19 50 1.22 

Galactose 150 0.75 50 0.84 

Maltose 330 1.01 100 1.31 

Sucrose 450 1.34 90 1.96 

Lactose 360 1.35 100 1.85 

2. Oml sulphuric acid 2 mol dm-", Sugar 0.5ml 0.28 mol dm-'J, 0.25ml permanganate 
0.1 mol dm 3, permanganate addition repeated after 10 min 

As discussed in Chapter 2.4, the oxidation of organic compounds by permanganate 

is autocatalytic. When further aliquots of permanganate were added the manganese 

(11) present increased the rate of the reaction. With a faster reaction there was less 

time for energy to be lost in ways other than chemiluminescence. This would also 

explain the increased total emission. The addition of manganese (11) as manganese 

sulphate to the sample increased the reaction rate and enhanced the signal. Results 

for batch experiments showed the enhancement of signal and increased rate of 

chemiluminescence production with increasing manganese (11) The results are shown 

in Table 4.4. 

Tnhia AA Tha F:. fftm-r-t nf Mannanamse(Ill on the Chemiluminescence Sianal 

Manganese(ll)/ 
mol dM 3 

Maximum 
Counts Xj 0-5 

SD 
Xj 0-3 

Time to Max 
/sec 

SD 

0 0.120 0.68 606 18 

5x164- 1.199 3.57 104.7 3.5 

lxfO"--- 1.515 3.11 74.6 1.5 

Reaction mixture: Sulphuric acid U. (b mol am -, Ulucose u. ubmoi am -, permanganate 
1.25xlO-3mol dm-3, manganese sulphate, as above 

It was found that iron(II) sulphate also gave an increased signal and reaction rate, 

copper(II) and cobalt(II) had no effect on either the rate or the signal. Comparisonof 

iron(II) ion with Manganese(II) showed that both increase the rate of reaction. For 
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the same concentration of metal, the increase in emission due to manganese (11) is 

larger, and the signal continues to increase with increasing manganese (11) 

concentration. For iron (11) while the peak height, and total counts do not as shown in 

Figure 4.6 a, b and c. 

Figure 4.6 Effect of Fe(II) and Mn(H) on Chemiluminescence Signal 
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It has been reported 224 that manganese (111) species can form pseudohalide 

complexes It was therefore decided to investigate the effect of chloride and bromide 

on the glucose/ sulphuric acid/ permanganate system. 

Addition of 0.01 mol d M-3 chloride gave a slight increase in the rate of 

chemiluminescence emission, as shown in Figure 4.7, but had no significant effect on 

the signal size. An equivalent addition of bromide increased the rate more and 

increased the signal, expressed as total counts by approximately 50%. Higher levels 

of halide were not used due to the liberation of chlorine or bromine from the system. 

Figure 4.7 Effect of Halide on Chemiluminescence Signal 
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4.2.2 Flow Experiments 

Flow experiments were carded out using reverse FIA. A dual line manifold was set 

up in which aqueous sample was mixed with sulphuric acid containing manganese 

sulphate in aY piece. Permanganate was injected into the mixed stream. Eadier 

work had indicated that the emission was towards the red end of the spectrum; 

therefore a red sensitive photomultiplier tube was chosen as the detector. Some 

studies were also undertaken using a photodiode detector, which is sensitive up to 

11 00nm. 

Optimisation was undertaken using a one variable at a time (OVAT optimisation). 

Due to the large number of parameters involved multivariate optimisation was not 

considered appropriate at the preliminary stage. 

4.2.2.1 Photomultiplier Voltage 

A voltage of 1.2kV was used in initial studies. This gave adequate sensitivity without 

excessive noise or background signal. When output to the chart recorder the 

baseline noise was in the order of 0.02mV and blank values were in the order of 

0.2mV. The use of higher voltages improved sensitivity but increased noise and 

background and also gave rise to intermittent spiking. 

4.2.2.2 Sulphuric Acid Concentration 

An increase in acid concentration gave an increased signal. At concentrations above 

2 mol dM-3 increases were small. It was also found that concentrated acids were 

detrimental to materials used in the flow lines of the photodiode detector. The above 

concentration, corresponding to 1 Omol dM-3 in the mixed sample/carder stream was 

used for further work. 
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4.2.2.3 Manganese Sulphate Concentration 

The signal was found to increase with increasing manganese sulphate concentration 

up to 0.5 mol dM-3 

. 
This was approximately the limit of solubility of manganese 

sulphate in strong acid. At concentrations above 0.2 mol d M-3 the increase in signal 

was small and problems were found with manganese dioxide precipitation in the flow 

passages of the injection valve. Table 4.5 shows the parameters obtained by linear 

regression analysis. The results are also shown in Figure 4.8 using a log-log plot for 

clarity. 

Table 4.5 Effect of Manq-anese SulDhate Concentration on Chemiluminescence 
[MnS041 

/moldM-3 
Slope 

mV mol-'dM3 
Intercept 

/Mv 
R 

0 1.4 0.005 0.98400 
0.1 402.7 0.061 0.99943 
0.2 982.5 0.562 0.99978 
0.4 1265.1 0.304 0.99993 

Figure 4.8 Effect of Manganese Sulphate Concentration on 
Chemiluminescence of Glucose 
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4.2.2.4 Optimisation of Permanganate Concentration 

Potassium permanganate concentration was varied in the range 0.01 - 0.05mol dM-3 

It was found that different sugars had different optimum concentrations, this is 

considered to be due to the different rates of reaction. The concentration used, 

0.025 mol dM-3, was the optimum for glucose. The variation is shown in Figure 4.9. 

Figure 4.9 Effect of Permanganate Concentration on 
Chemiluminescence for Glucose 
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4.2.2.5 Optimisation of Flow rate 

Calibrations for glucose, at flow rates from 1 to 5 CM3 min-' per channel, were run for 

different manganese (11) sulphate concentrations, other conditions as above. For 

0.1mol dM-3 manganese sulphate the optimum was 1.3 CM3 min -1 per channel and 

for 0.2 mol dM-3 the optimum was 1.9 CM3 min-' per channel, corresponding to 30rpm 

with 1.02 mm id pump tubing. The optimum flow rate varies between sugars and for 

different catalyst concentrations due to the changes in reaction rates. For 

comparisons the 30 rmp flow rate was adopted. The optimum also reduces with 

sugar concentration, however good linearity can still be achieved. 
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4.2.2.6 Replication of Calibration 

Calibration lines for glucose under the above conditions were run seven times over a 

period of two weeks. Signals for three glucose concentrations were measured and 

corrected for the blank values. The statistical parameters are shown in Table 4.6. 

Table 4.6 Statistical Evaluation of Repeatabilitv of Glucose Calibration 
[Glucose] 
/mol dm- 

Mean 
/mV 

Standard deviation 
/mV 

RSD /% 

0.001 1.46 0.23 15.8 

0.005 6.87 1.33 19.4 

0.010 14.27 2.93 20.6 

It can be seen that the responses are of the same order with RSDR up to 20%. As 

discussed in section 2.2.5.1, there are various factors that can affect the sensitivity of 

photomultipliers. It is probable that much of the observed variation is due to day to 

day variation in the photomultiplier response. Calibration lines must be run on each 

occasion, however the repeatability is sufficiently good to show if the system is 

performing acceptably. 

4.2.2.7 Calibration Lines for Sugars and Related Compounds 

Several sugars and related polyhydroxy compounds were examined over several 

days and regressions calculated. The results are shown in Table 4.7. 

The comparatively poor signals for the disaccharides are consistent with the findings 

from the batch experiments. There is insufficient time during dispersion for 

significant hydrolysis to occur. A delay toil would improve the signal size, however 

for complete hydrolysis, at the acid strength, used heating would be necessary. 

Hydrolysis of sucrose at 1 00"C226 in a flow system has been reported as have 

systems based on enzymic hydrolysis with immobilised invertase (EC 3.2.2.26). 226 
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Table 4.7 Calibration Parameters for Suaars and Polvhvdroxv Communds 
Compound Slope /mV mol &ýýý 

Value SID 
Intercept /mV 
Value SID + 

R 

Glucose 983 9 0.6 0.2 0.9998 
Galactose 1787 22 -0.5 0.4 0.9996 
Fructose 5062 9 1.3 0.6 0.9999 
Arabinose 1557 15 0.6 0.3 0.9998 

Xylose 1532 13 0.6 0.3 0.9998 

Maltose 294 18 0.06 0.5 0.9981 
Sucrose 222 16 0.16 0.07 0.9894 

Lactose 840 1 0.15 0.02 1.0000 

Mannitol 1461 18 1.2 0.7 0.9995 

Glycerol 195 5 0.5 0.2 0.9984 

In order to directly compare the responses for different sugars and related 

compounds 0.1 mol dm-1 solutions of each sugar were injected, runs, on each of two 

days. The results, with 95% confidence intervals, are in Table 4.8. 

Table 4.8 A Dav to Dav Reoroducibilitv of Sianal for SuQars and Polvols 
Compound Day 1 

mv 
Day 2 

mv + 
Residual 

Glucose 60.7 0.957 51.3 0.98 -0.914 
Galactose 121.3 3.32 107.8 2.99 2.79 

Fructose 222.3 3.85 207.9 1.88 14.9 

Arabinose 189.8 1.92 151.0 2.90 -13.7 
Xylose 133.1 2.22 108.0 3.35 -7.30 
Maltose 13.2 0.182 15.6 0.905 4.77 

Sucrose 1.39 0.037 1.17 0.052 0.630 

Lactose 23.5 0.646 16.67 0.408 -3.13 
Mannitol 13.6 0.204 

Sorbitol 46.8 1.92 

Meso erythritol 24.3 0.498 18.8 0.683 -1.70 
1,2 Propandiol 14.2 0.238 11.8 0.224 0.099 

Glycerol 7.5 0.333 9.42 0.258 3.56 
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A plot of results for day 2 against results for day 1 has a regression coefficient of 

0.9946, shown in Figure 4.10. Examination of the plot and the residuals, which are 

shown in the final column of Table 4.8, shows a fairly even distribution of points. The 

points for both the pentoses used have negative residuals and excluding these points 

gives a regression of 0.99875. These results tend to confirm that the major cause of 

day to day variation is the detector response, however the apparent differences 

between the pentoses and the other compounds suggest that kinetic or other effects 

may be also significant. 

Figure 4.10 Regression for Day to Day Variation in Signal for 0.1 mol dM-3 
Mono- and Disaccharides and Polyols 
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Conditions as above 

In addition to the polyhydric compounds shown above the monohydric alcohols 

methanol and ethanol were investigated. There was a slow reaction with the 

permanganate/ manganese (11), shown by the decrease in permanganate colour after 

several hours but no measurable light was emitted. 

Some simple carbonyl compounds were examined under the same conditions. 

Glucose was run for comparison and the results are shown in Table 4.9. All reacted 
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with permanganate/ manganese(II) but only oxalic acid gave a significant amount of 

light. In the absence of manganese(II) the signal from ethanal was higher but the 

response for propanone was lower than that for a water blank. 

Table 4.9 Chem! luminescence Signal for 0.1 mol dm-3 
solutions of Simg)le Carbonvi ComDounds sowtions ot sim ie carbonyl compouni 

Compound Signal 
mv + 

Glucose 53.41 0.525 

Oxalic acid 7.81 1.622 

Methanal 0.046 0.007 

Ethanal 0.461 0.010 

Propanone 0.011 0.003 

It can be seen from the slopes of the calibration lines that the response for fructose is 

higher than for the other sugars. This difference in response was also clear from the 

batch studies described above in Figure 4.4. The response for fructose is higher 

than for glucose or the disaccharides, although galactose gave the fastest emission. 

The slopes of the calibration lines for the different sugars and polyols are broadly in 

the same order as reported rates of reaction for these compounds with 

permanganate in acid pyrophosphate. 148 For the hexoses the present work gave 

signals decreasing in the order fructose > galactose > glucose, for pentoses 

arabinose > xylose and for polyols sorbftol > mannitol > erythritol > propan 1,2-diol 

glycerol. For the saccharides the reported first order rate constants are in the same 

order. For mannitol and sorbitol the reported first order rate constants are almost 

identical whereas the signal observed is higher for sorbitol than for mannitol. 

4.2.2.9 Relationship between Saccharide Structure 227 and Chemiluminescence 

Monosaccharides occur predominantly in ring forms as hemiacetals from the 

condensation of the carbonyl with a hydroxyl at the farther end of the chain. The size 

of ring formed depends on which hydroxyl group is involved in hemiacetal formation. 
101 



For pentoses and hexoses six member rings (pyranose forms) and five member rings 

(furanose forms) are possible. Two stereoisomeric forms, or anomers, are possible 

for each of the ring forms for example the Howarth representations for the a- and 0- 

anomers for the pyranose forms of glucose are shown as Scheme 4.2. 
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Scheme 4.2 

In solution ring forms of monosaccharides are in equilibrium with the straight chain 

form. Ring and straight chain structures for fructose 228 are shown in Scheme 4.3. 
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The move to equilibrium in solution is responsible for mutarotation, the change in 

specific rotation of a solution of. one anomer to an equilibrium value. For glucose the 

equilibrium specific rotation is +520. The mutarotation can be acid, base or enzyme 

catalysed. The transition passes through the open chain form which, while present at 

levels below 0.1% in solution, is responsible for the reactions which are typical of 

carbonyl compounds, such as the reactions with Fehling's and Tollen's reagents. 

In acid solution the rate of mutarotation is fast compared with the rate of oxidation. 

However, to explain the observed reaction rate differences in the oxidation with 

permanganate, it has been suggested that the first step of the reaction involves the 

ring forms. This is in contrast with oxidation with chromium (VI) and vanadium (V), in 

which the rate determining step is considered to be decomposition of an open chain 

metal saccharide complex. 149 Neither chromium nor vanadium have been found to 

give chemiluminescence under similar conditions to the present permanganate 

studies. 

In addition to the mutarotational equilibria between the ring forms, there are equilibria 

between two conformations of the pyranose ring, termed Cl and 1C. The furanose 

ring also has two conformations for the ring, termed envelope and twist. While the 

furanose inter-conversion is considered to be rapid, the furanose forms clearly have 

different stabilities depending on whether the -CH20H, the largest substituent on the 

ring, is in an axial or equatorial position. The consequent position of the hydroxyl 

groups, as axial or equatorial, then has an effect on the oxidation of the molecule. 

For example, with glucose, in the CI conformation of the 0 anomer, all the hydroxyls 

and the -CH20H group are in equatorial positions. The stability conferred in this state 

has been postulated as the reason that glucose is the predominant sugar in living 

systems, both as a structural element and metabolic intermediate. 
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Scheme 4.4 

Studies using NMR, m, 230 and more recently chiral chromatographic techniques, -"3' 

have determined the proportions of the conformations in various solutions. The 

equilibrium composition depends on temperature and solvent, however, for the 

hexoses and pentoses; examined above, the proportions listed in Table 4.10 have 

been reported for aqueous solutions. The equatorial and axial confirmations of the 

hydroxyls in the C1 confirmation are also shown in Table 4.10. 

Table 4.10 Percentage of different Conformers in solution at Equilibrium 
Hexoses, in Water and Pentoses Deuterium oxide 

Hexose Pentose 
Sugar Glucose Galactose Fructose Arabinose Xylose 

a Furanose <1 <1 <1 2.5 <1 

Furanose <1 <1 25 2 <1 

a Pyranose 36 27 8 60 36.5 

Pyranose 64 73 67 35.5 63 

Positional conformation for the 0 Pyranose form 

C1 hydroxyl Equatorial Equatorial Equatorial Equatorial Equatorial 

C2 hydroxyl Equatorial Equatorial Equatorial Equatorial Equatorial 

C3 hydroxyl Equatorial Equatorial Equatorial Equatorial Equatorial 

C4 hydroxyl Equatorial Axial Axial Axial Equatorial 

In the case of pentoses, there is no bulky -CH20H substituent on C5 of the pyranose 

ring. The hydroxyl groups dictate the preferred conformation of the molecule. 
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Referring to Table 4.7, it can be seen that the presence of the furanose form and an 

axial-equatorial configuration about the C3-C4 bond gives higher chemiluminescence 

signals in both the hexose and pentose sets. 

In the batch studies, the concentration of substrate sugar or sugar alcohol was in 

excess over the permanganate concentration. Under these conditions, the first 

oxidation product is a saccharide with one lower carbon number. In the case of 

glucose the smaller saccharide is the pentose arabinose. Formic acid is also 

produced in this reaction 149and the final manganese species is Mn (11). 

Disaccharides consist of monosaccharides linked through glycosidic linkages 

between the slightly acidic hydroxyl on the C1 in aldoses or C2 in ketoses with a 

hydroxyl on another sugar molecule. Where the hydroxyl of the second sugar is the 

C1 in aldoses, or C2 in ketoses, the resulting disaccharide is non-reducing. A non- 

reducing disaccharide will not undergo the reactions characteristic of the aldehyde 

group such as the reaction with Fehling's solution. In addition to the glycosidic 

linkage between two monosaccharides, hydrogen bonds can form between the 

sugars, as shown for sucrose in Scheme 4.5. 
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As sugars possess more than one hydroxy group capable of linking through a 

glycosidic bond, a wide range of di- and oligosaccharides is possible. The 

saccharide unit linked through the C1 can no longer mutarotate, although the second 

saccharide can still mutatrotate unless it is itself linked through its C1 hydroxyl. 

Referring to Table 4.7, it is seen that the response for sucrose, a non-reducing 

disaccharide, is considerably smaller than for the reducing sugars. Other non 

reducing sugars are not found at significant levels in foods; however trehalose, a 

disaccharide, where both glucose molecules are linked through C1, is found in edible 

mushrooms. Trehalose gives virtually no chemiluminescence with permanganate. 

For the D-mannitol/ D-sorbitol pair of sugar alcohols, the signal for sorbitol is more 

than three times that for mannitol. The compounds, which are straight chain, differ in 

the position of one OH substituent as shown in Scheme 4.6. 
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In the case of polyhydric alcohols, reduction results in carbonyl formation, as shown 

in Chapter 2 Scheme 2.8, and clearly there are no possible ring structures. The 

orientations of the hydroxyl group differ, with consequent differences in the ease of 

forming bridging complexes between manganese species and hydroxy groups. The 

ease of formation of complexes will also depend on the ionic size and the geometry 

of the manganese species, which is commonly octahedral for manganese (111) and 

manganese (IV) and tetrahedral for manganese 
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4.2.3 Data Handling for Flow Injection System 

Data analysis for the flow injection experiments was by measurement of peak height 

on a chart recorder. Photomultiplier output is in the form of a current input into a 

chart recorder with high impedance, typically 1 MQ, giving a voltage response, which 

is recorded as a pen deflection. At a late stage in this project a data capture system 

ADC-PC with data logging software became available. As with the chart recorder, a 

high impedance, nominally 1 MQ, results in a voltage which can be converted into a 

digital signal. The ADC has variable, software selectable, input range from ± 20V to 

+ 50mV, and maximum data acquisition rate of 1000 points sec-1. There is also the 

facility for averaging data points during collection. High acquisition rates were not 

necessary and 10 points sec-1 gave sufficient data for analysis of sharp FIA peaks. 

Data was stored as text files and input into the Origin data analysis package. In 

order to compare height, area and rate information a glucose calibration was carded 

out using conditions previously established. The ADC range was varied from 1V for 

0.1mol dM-3 solutions to 5OmV for 0.00 1 mol dM-3 solutions. 

For rate determination stopped flow injection was used. Two injections were made 

under normal FIA conditions, a further injection was made and at the estimated top of 

the peak the pump was stopped. The signal was followed until the curve started to 

flatten and the pump was restarted. When the signal reached base line the set of 

three injections, was repeated. The raw data was as Figure 4.11. 

The data was inverted, to give positive peaks, and area and height were measured. 

The decline in chemiluminescence fitted well to an exponential function. The rate 

was measured by fitting a linear function to the top part of the decline as shown in 

Figure 4.12. Approximately 200 data points were used to determine the slope and 

correlation coefficients were typically greater than 0.98. 
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... 
Figure 4.11 Raw Data from ADC 100 
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Calibration lines for the three measurement methods were constructed and the 

parameters were as shown in Table 4.10. 
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Figure 4.12 Height, Area and Slope Determination 
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ression varameters Tor meig t, Area ana bio pe 
I ntercept Slope R Linear R Log-log 

Height -0-007 2.078 0.99678 0.99825 

Area 0.34 10.401 0.99682 0.99846 

Rate -6.6x 10-4 0.814 0.9857 0.99980 

Coefficient of regression (R) values for all three methods are similar, showing no 

advantage in using area measurement. 

An alternative to measuring area is fitting to Gaussian or exponentially modified 

Gaussian (EMG) curves. For the data set both functions gave lower areas than the 

peak find method. Table 4.11 shows areas for the two peaks in Figure 4.13 by 

integration on raw and smoothed data and by Gaussian and EMG methods. 

ý)2/w 
2) Gaussian function, area form y= yo + A/(w47r/2)exp(-(X-)(, 

yo is baseline offset, A is peak area, w is width at half height and x, is peak centre 

For the EMG function the Gaussian function is convoluted with an exponential decay. 

Table 4.12 Comparison of Area Measurement Methods 
Method Peak 1 (arbitrary 

units) 
Peak 2 (arbitrary 

units) 
Integration 0.00470 0.00492 

Smoothi ng/I nteg ration 0.00464 0.00472 

Gaussian 0.00290 0.00289 

Exponentially Modified 
Gaussian 

0.00451 0.00436 

*Smoothing by 13 point Savitzky-Golay method"" 

The EMG fit appears to give a good approximation of the experimental data. The 

smallest measurable signal for the ADC is 0.012 mV, however amplitude of the 

baseline noise is approximately 0.15mV. For S/N of 3 the limit of determination is 
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2x1O' mol dM-3 on a peak height basis. Using the chart recorder baseline noise is 

tYPically 0.02mV equivalent to a limit of detection of 6x1 0-5 mol dM-3. 

Figure 4.13 FIA Peaks used in Comparison 
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4.2.3.1 Flow Injection Analysis of Carbohydrate Mixtures 

80 

The differences in calibration parameters for different carbohydrates, shown in Table 

4.6 above, mean that it is not possible to set up a simple calibration for total sugars. 

To investigate the possibility of applying the technique to mixtures of sugars 

equimolar mixtures of glucose vvith fructose, galactose and arabinose and a mixture 

of arabinose with xylose were run under the same conditions as above. For each 

pair calibrations for the individual sugars and for the mixture, over the range 1 xi 0-4 to 

0.1 mold M-3 of individual or total sugar, were run at the same time and the calibration 

parameters were measured. The results are shown in Table 4.13. 
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Table 4.13 Comparison of Calibration Parameters for Single Sugars and 
Mixtures 

Sugar Mixture Slope 
M3 mV mol-' d 

Sugar 1 

Slope 
M3 mV mol-'d 

Sugar2 

Slope 
M3 mV mol-' d 

Mixture 
Glucose/Fructose 1525 8438 6072 

Glucose/Galactose 1514 2302 1151 

GI ucose/Arabi nose 1225 4763 2381 

Arabinose/Xylose 1601 1604 1340 

The signal for a mixture does not represent the sum of signals for the individual 

sugars. Only for the arabinose and xylose mixture, where the individual sugars have 

virtually identical calibrations, the gradient for the mixture is close to the gradients for 

the individual sugars. 

4.14 Calibration Lines for Mixtures of Glucose and Fructose 
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The difference in the response is partly due to the difference in rate between the 

reactions with the different sugars although this is clearly not the only factor. For 

equal concentrations of sugar, the reaction with galactose gives the fastest response, 

while the signal from the reaction with fructose gives the highest response. 

It was considered that it could be possible to exploit the difference in reaction rates 

by measuring different points along the reaction profile. In order to investigate this 

mixtures of glucose and fructose were prepared to contain 0 to 0.1 mol dM-3 of each 

sugar with two points for each decade giving a total of 64 points. Replicate injections 

were carried out for each point at two flow rates. Repeatability of injections was 

generally good with relative standard deviation below 5%. 

Figure 4.16 Three Dimensional Plots for Chemiluminescence of 
Glucose/Fructose Mixtures 
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Calibration lines for the mixtures are shown in Figure 4.14. There are significant 

differences between signals at the two flow rates. Three-dimensional plots of 

glucose against fructose at the two flow rates again show distinct differences as 

112 



shown in Figure 4.15. This suggests that it may be possible to use chemometric 

techniques to predict concentrations of the individual sugars in mixtures by 

measuring the chemiluminescence at different flow rates. Alternatively using a 

detector array, it could be possible to measure the chemiluminescence at different 

times after mixing. 
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4.2.4 Spectroscopic Investigations 

In order to investigate the mechanism of the chemiluminescence from the reaction 

between permanganate and sugar, spectra of the emission were measured. Initial 

experiments were undertaken by the batch method. As there is a delay of several 

seconds, even in the presence of a catalyst, it was possible to mix the reagents and 

place the cuvette in the cell holder without loss of signal. Sugars were dissolved in 

acid containing manganese (11) sulphate. Permanganate was added and the solution 

mixed. After the required interval, estimated from the batch experiments, a spectrum 

was collected. High scan speeds were used to minimise the effects of the increase 

and decrease of total emission through the time of emission. 

Initial experiments used the standard photomultiplier with low sensitivity for 

wavelengths above 600nm. A typical spectrum is shown in Figure 4.16. 

Figure 4.16 Chemiluminescence Spectrum for Permanganate Oxidation 
of Glucose 
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Fifting of a Gaussian function gave a peak maximum at 651 nm. Individual spectra 

were noisy and repeatability of intensity was poor. Repeatability of wavelength at 

maximum intensity and peak width were good as is shown in Table 4.14. 

Table 4.14 Parameters for 12 Spectra for Glucose-Permanganate, Reaction 
X Max nm Width nm Height Area 

Mean 658.9 71.36 1225 1.434 Xj 05 

Standard Deviation 1.83 5.47 697 6.1 X 104 

RSD % 0.28 7.7 56 55 

Spectra for a range of sugars and carbohydrate rich food products were measured. 

The spectra were similar suggesting that the same emitting species is responsible for 

the emission. The results are shown in Table 4.15. 

Table 4.16 Parameters from Gaussian fit to Carbohydrate/Permanganate 
Soectra 
Sample X Maximum 

nm 
Height 
at A-max 

Width 
nm + 

Area 
+ 

Glucose 658.7 0.24 1590 73.6 0.82 142814 2450 

Galactose 655.4 0.24 1470 70.6 0.85 124205 2082 

Fructose 657.4 0.24 1350 74.2 0.93 122885 2216 

Arabinose 654.5 0.23 1650 69.4 0.55 150180 1245 

Xylose 655.2 0.25 2310 69.9 0.56 202180 1693 

Maltose 656.4 0.43 400 80.5 0.88 39897 374 

Sorbitol 655.6 0.40 630 71.0 0.87 49250 589 

Glycerol 656.8 0.26 690 62.4 0.54 50893 428 

Formalin 653.7 1.08 195 85.7 2.45 18077 540 

Saccharic acid 653.4 0.39 270 65.8 0.88 22438 310 

Dry Malt Extr 1 660.2 0.23 1860 74.2 0.54 167450 1330 

Dry Malt Extr 2 662.0 0.36 770 73.9 0.84 69073 844 

Beer Solids 658.8 0.16 1150 68.4 0.36 95462 526 

95% Cl quoted 

Spectra from second aliquots of permanganate, or from adding manganese (11) 

sulphate at the beginning of the reaction, did not alter the parameters for the 

spectrum. A glucose/ permanganate/ manganese(II) spectrum is in Figure 4.17. 

115 



Figure 4.17 Chemiluminescence Spectrum for Permanganate Oxidation 
of Glucose with Manganese (11) 
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The spectral maxima were significantly higher that those reported for the 

permanganate oxidation of ethanol in gin, " at approximately 580nm. The maximum 

or for the permanganate oxidation of morphine and related alkaloids'65was reported 

to be around 61 Onm. 

4.2.4.1 Problems with Recording Spectra 

As discussed in 3.5.5.2 it was necessary to use the fastest response rate possible, 

resulting in a high level of noise. Most spectra required averaging and/or smoothing. 

It was also thought that the low efficiency of the standard PIVIT at wavelengths above 

600nm could affect the observed Xmx, therefore a PMT sensitive up to appro)dmately 

900nm was used for subsequent work. The wide range PMT has lower sensitivity in 

the region up to 500nm where many chemiluminescent emissions occur. A typical 

spectrum for the permanganate glucose reaction is shown in Figure 4.18 
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Figure 4.18 Chemiluminescence Spectrum for Permanganate Oxidation 
of Glucose using a Wide-range PMT 
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As can be seen in Figure 4.19 the maximum wavelength found using the extended 

range PMT is 40-50nm higher than the apparent maximum using the standard PMT. 

Figure 4.19 Comparison of Chemiluminescence Spectral Maxima for 
Permanganate, Oxidation of Glucose using Standard and Wide-range 
PMT Using Gaussian Curves 
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This probably explains the discrepancy between this work and the findings of other 

workers. If PMTs of different efficiencies at long wavelength are used, and 

instrumental response times are slow, considerable errors can be introduced into 

spectral measurements. 

In most instances Gaussian fits were used to estimate kmax. Information on the 

bandwidth was also obtained using these fits. For asymmetrical bands the use of 

Gaussian fits to the whole data set could result in large differences between 

observed and calculated maxima. An alternative way of estimating the wavelength of 

the band maximum was to calculate the differential function of the data. Smoothed 

differential spectra were drawn using the spectrofluori meter software, as shown in 

Figure 4.20. In this case the maximum wavelength from the Gaussian fit is nearly 

30nm longer than estimated from the first derivative of the spectrum. 

Figure 4.20 First Derivative of Chemiluminescence Spectrum 
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In addition to estimating kma,, derivatives of spectra can indicate other features such 

as hidden peaks. For a noisy spectrum, additional features are not readily observed. 
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Spectra generally had high noise levels and derivative spectra required considerable 

smoothing. Gaussian fiffing was used unless secondary features were suspected. 

Figure 4.21 Comparison of Singlet Oxygen and Permanganate Spectra 
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The spectra from the permanganate oxidations were compared with the spectrum for 

singlet oxygen (section 3.5.5.2) which is known to show peaks at 634 and 704nm. 

This confirms that the spectrofl uori meter with the long range PMT gives accurate 

values for spectral maxima. Figure 4.21 shows superimposed spectra of singlet 

oxygen and the permanganate/ glucose/ manganese (11) system. 

The addition of bromide, previously shown to increase the rate of the reaction did not 

affect the position of the maximum. For example a fit to the spectrum from the 

reaction of 0.156 mol d M-3 glucose, 1.25 mol dm-3 sulphuric acid, 3.1x1 0-2 mol dM-3 

potassium bromide and 6.25xl 0-3 mol dM-3 permanganate in a total volume of 1.6 

cm 3 using a moderate scan speed (12000 nm min-) gave the following parameters: 

4^,,, 704nm, band width 132 nm. 
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4.2.4.2 Inner Filter Effect 

As the emission from the permanganate reaction is in the red end of the spectrum, 

and both permanganate ion and mangnanese (111) absorb in this region, it was 

considered that there could be an inner-filter effect. This is attenuation of emitted 

radiant power due to absorption by the solution matirx. Inner filter effects have been 

identified as problems in fluorescence chemiluminescence and bioluminescence. 233 

The effect was suggested as an explanation for variation of spectra with time in the 

permanganate/ ethanol reaction. '60 Correction procedures have been proposed for 

fluorescence234and for chemiluminescence. 23-5 

The correction for chemiluminescence spectra used a dual pathlength flowcell to 

estimate the magnitude by measuring the ratio of chemiluminescence intensity from 

the 5mm and 10mm paths. The cell was moved to bring each of the two light paths 

into line with a collimated monochromatic optical system at a frequency of 2 Hz. The 

two intensities were measured at different wavelengths. It was reported that the 

system could be used to correct spectra from apparently quenched reactions. 

The ratio of intensity R is related to the absorbance by the expression: 

R (ratio of intensity) = Pb'/Pb = (1-e-2.303eb'c )/(l -e 
2.303p-bc ) 

Where V and b are the two path lengths such that b<b, Pb, and Pb are the respective 

radiant powers, c is concentration andF, is the molar absorbtivity. 

It was considered unlikely that permanganate ion would cause an inner filter effect, 

as the emission maximum is at a longer wavelength than the absorbance bands for 

permangante at 525 and 545nm. Colloidal manganese dioxide could be formed 

during the reaction which has a broad absorbance profile extending into the red end 

of the spectrum. 
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A Possible inner-filter effect was investigated for the galactose/ sulphuric acid/ 

permangante system. Chemiluminescence intensities were compared using 0.2 and 

1cm pathlength cuvettes. If reabsorbtion of light is absent, or negligible, the intensity 

of light from 1 Omm should be five times that for the 2mm. It would be expected that 

any effect would be more marked for shorter than for longer wavelengths as any 

overlap between the absorbance and emission spectra would be greatest. Three 

wavelengths were used; the observed emission maximum of 700nm and points 50nm 

above and below this. At wavelengths around the maximum absorbance of 

permangante ion, 545nm, no emission was seen. Peak areas were measured for the 

three wavelengths and the two path lengths, 10mm and 2mm; replicate 

measurements were made at each point. 

Table 4.16 Relative Chemiluminescence Intensity for 1cm and 
0.2cm Path lenq-ths 
k/nm Long path 

Area + 
Short path 

Area Ratio 
650 13247.98 532.05 2404.64 90.23 5.51 

700 19374.19 777.94 3605.19 179.49 5.37 

750 11226.30 478.17 2144.27 142.61 5.24 

Table 4.16 shows the mean results for the areas and the ratios for each wavelength. 

The ratio was found to be greater than 5 at each point, possibly due to internal 

reflection from the back face of the cuvette. No inner filter effect was evident. 

4.2.5 Investigation of Phosphate Effects on Spectral Characteristics 

Addition of high levels of phosphate to the batch glucose/ permanganate/ sulphuric 

acid reaction mixture prevented the oxidation reaction. This was shown by the 

persistence of the purple colour of permanganate, even after considerable periods. 

From FIA studies it had been shown that the presence of phosphate in the acid or 

sugar solutions resulted in a decrease in chemiluminescence. Many workers have 
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reported increased luminescence in the presence of phosphates, for example in 

assays for morphine. '63, '64 it was decided to investigate the effect on the time course 

of the sugar/ permanganate reaction. Previous workers have used polyphosphates 

which have variable composition therefore pyrophosphate was selected as it was 

readily available and of known composition. Fructose was used as the model sugar 

due to the high signals observed even in the absence of added manganese 

Concentrations of pyrophosphate in the range 4xlO-5 to 4xl 0-4 mol d M-3, in the 

sulphuric acid solution, were used. As expected the reaction was slower in the 

presence of pyrophosphate and the total light emitted decreased. The spectra were 

unchanged from those for the reaction in the absence of phosphate, as shown in 

Figure 4.22. Chemiluminescence was measured at maximum emission, 700nm. 

Figure 4.22 Spectra for the Reaction of Fructose with acid 
Permanganate in the Presence of Pyrophosphate 
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As expected, an increase in pyrophosphate concentration resulted in a slower 

reaction. Examples of average runs are shown in Figure 4.23. 
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Figure 4.23 Effect of Pyrophosphate on 
Chem ilum inescence Time-course 
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Only a limited range of phosphate concentrations could be run, as at high 

concentration the reaction profile was very broad and low. For the higher phosphate 

concentrations the repeatability of the determination was better than for the lower 

concentrations. Measurements were carried out in a batch mode and it is probable 

that the variation is partly due to the mixing of reagents in the cuvette. 

Fitting of the peaks using Origin functions enabled area, height and width at half 

height to be estimated and related to the pyrophosphate concentration. In addition, 

the time to peak maximum was plotted against the pyrophosphate concentration. For 

area the correlation was poor, the linear regression coefficient was 0.7061. For other 

parameters correlation was observed between the measured parameter and the 

pyrophosphate concentration. The data for peak height, shown in Figure 4.24, fitted 

closely to a second order exponential decay. The large errors are due to mixing. 
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Figure 4.24 Relationship Between Peak height and 
Pyrophosphate Concentration 
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The time required to reach the peak maximum also shows a non-linear relationship 

with the pyrophosphate concentration, which fits to a second order polynomial as 

shown in Figure 4.25. 

Figure 4.25 Relationship Between Time to Reach Peak 
Maximum and Pyrophosphate Concentration 
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The final parameter examined was width at half height. In this case a linear 

relationship was observed as shown in Figure 4.26. In this case the repeatability is 

poor at the higher concentrations. 

Figure 4.26 Relationship Between Width at Half-height and 
Pyrophosphate Concentration 
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These relationships indicate the potential use of the inhibition of the sugar 

permanganate reaction in determination of phosphate concentrations. 

Other phosphate species, polyphosphoric acid and sodium tripolyphoshate were 

examined using the same procedure. Polyphosphoric acid contains a range of 

polyphosphates, the sample used was predominantly penta-polyphosphoric acid but 

also contained tri- tetra- and other polyphosphoric acids, and was found to give large 

variations in response. Tripolyphosphate gave a similar result to pyrophosphate, 

however the suppression of the reaction is greater than that for pyrophosphate. 

Figure 4.27 shows the relative suppression in peak height due to tripoly and 

pyrophosphates using a log linear plot. 
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Figure 4.27 Log-linear plot Showing the Effect of Phosphate 
Concentration on Glucose Permanganate Chemilurninescence 
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The reactions studied are all slow, taking tens of seconds to reach maximum, 

emission while the reactions with the compounds investigated by many other workers 

are fast. Pyro and polyphospates affect the reaction by stabilising manganese 

species, particularly manganese (111). The apparent enhancement of fast reactions 

may in fact be due to the phosphate slowing the reaction sufficiently to enable 

repeatable measurement in FIA systems. Little has been published about the rates 

of these reactions. 

Unear Fft for Tripotyphosphate 
FWam Value Error 
A -2939.13 479.74 
B -2139.89 221.77 
R -0.97418 
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4.3 Investigation of Permanganate Reduction 

In order to further investigate the nature of the chemiluminescence emission, studies 

were undertaken to establish if permanganate ion is still present when the emission 

of light occurs, and to identify other manganese species present in the reaction. 

Permanganate ion has a characteristic spectrum in the visible region as Figure 4.28. 

Figure 4.28 Absorbance Spectrum of Permanganate ion 
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The emission maximum is at a longer wavelength than the absorbance bands for 

permanganate. The emitted light is not lost due to absorbance. 

Fluorescence spectra were measured for the product of the permanganate reaction 

with a range of different carbohydrates; no fluorescence was observed at the 700nm 

for any excitation wavelength. An excited species can transfer energy, through non- 

radiative processes, to an accepting fluorophore which emits at its characteristic 

wavelength, as discussed in section 2 1.4. There is no indication that this happening 

in this reaction. If an original excited species, with a lower emission wavelength 

maximum was formed during the reaction, and not seen due to inner fifter effect, it 
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could transfer the energy to a suitable acceptor fluorophore. The use of rhodamine B 

as a sensitiser in permanganate chemiluminescence has been reported. 178 

Fluorescent dyes, rhodamine B and fluorescein were added to permanganate/ 

glucose reactions. The excitation and emission maxima for are shown in Table 4.17. 

Table 4.17 Fluorescence Characteristics for Xanthene dyes 
Compound Xrný, ýEx X,, ýýErn 
Fluorescein 450 525 

Rhodamine B 510 585 

In each case the chemiluminescence emission spectrum was unchanged. Xanthene 

dyes fluoresce very strongly; therefore it would be expected that formation of an 

excited species emitting in the region 400 to 550nm would result in an emission 

spectrum characteristic of one of the dyes. An intermediate excited species, with an 

emission wavelength above 550 could be tested for in the same way using cyanine 

dyes, many of which absorb at above 600nm and emit in the near infra red. 236 Such 

dyes have been used as sensitisers in peroxyoxalate systems, 237 but are not 

generally commercially available. 

Figure 4.29 Absorbance Spectrum for the Reaction of Acid 
Permanganate and Glucose 
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During the oxidation the permanganate spectrum can be seen to collapse uniformly 

over the range 500 to 650 as for the example of galactose in Figure 4.29. 

Absorbance values for the collapse of the permanganate spectrum for a reaction 

mixture of sulphuric acid 0.92mol dM-3 
, glucose 0.1 mol dm -3 

, permanganate 0.01 mol 
dM-3 and manganese sulphate 4xl 0-3, are shown in Table 4.18. For the three 

characteristic permanganate peaks 545,525 and 506nm, there is a consistent 

decrease in absorbance. This suggests that no species which absorbs strongly in the 

range 500 to 545nm, other than permanganate ion, is being formed or removed. 

Table 4.18 Change of Absorbance with Time at 
Different Wavelengths Relative to Absorbance at 
15 sec for Glucose/Permanoanate/Manaanese(ii) 

Time Wavelength/nm 

/sec 545 525 506 475 450 

15 1.00 1.00 1.00 1.00 1.00 

30 0.89 0.87 0.87 0.92 1.01 

45 0.71 0.68 0.68 0.78 1.00 

60 0.46 0.43 0.45 0.60 0.95 

75 0.22 0.21 0.23 0.41 0.81 

90 0.07 0.08 0.10 0.26 0.61 

105 0.03 0.04 0.06 0.17 0.42 

120 0.02 0.03 0.04 0.12 0.30 

135 0.02 0.02 0.03 0.09 0.24 

150 0.02 0.02 0.03 0.08 0.20 

Reported absorbance spectra of manganese species include maxima at 600nm for 

manganate (VI) (Mn04 2- ) and 750 for Mn043-, hypomanganate. These species are 

unstable in acid, but have been recorded, using rapid scanning techniques, as 

transient intermediates in oxidations, at pH 9.3 to 12.5.238 In acid solutions a probable 

intermediate is manganese (111) which has an absorbance maximum at 500nm. 

Disproportionation occurs resulting in low concentrations of this species. The final 
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The final product of the reaction is manganese (11), which is very stable due to its 3d 

configuration. The high spin hexaquo ion [Mn(H20)6 ]2+ is very pale pink and does not 

absorb significantly in the visible region. Using glucose as the model suga, the time 

course of emission was compared with the change in absorbance at 525, to follow 

the reduction of permanganate ion. The study was undertaken with and without the 

initial presence of manganese (11). The results are shown in Figures 4.30 and 4.31. 

Figure 4.30 Comparison of Absorbance and Chemiluminescence Time- 
course for Glucose/ Sulphuric acid/ Permanganate 
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Figure 4.31 Comparison of Absorbance and Chemiluminescence Time 
courses for Glucose/ Sulphuric acid/ Permanganate/ Manganese (11) 
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The comparisons show that in the presence or absence of initial manganese (11) the 

emission of chemiluminescence takes place after most of the permangante ion has 

been reduced. Eader results showed that this is not due to internal filter efffect. 

Repeating the absorbance studies at different wavelengths, 525,475 and 300nm, 

gave the time courses showin in Figure 4.32. 

Figure 4.32 Absorbance Time-courses at Different Wavelengths 
2.5, -I 

2.0 

1.5 
c 
cc 

-0 
0 1.0 

0.5 

0.0 L 

0 100 200 300 4W 500 600 
Time/see 

Concentrations as for figures 4.30 and 4.31, position of chemi luminescence maxima 
indicated by the vertical lines 

In the absence of initial manganese(II), all three wavelengths show the same profile. 

A lag time, during which there is little change in absorbance, is followed by a 

decrease to zero absorbance. In the presence of manganese(II) there is an 

immediate decrease in absorbance at 525 and 475nm due to the decrease in 

permanganate ion, however at 300 there is an initial increase followed by a sharp 

decrease. Chemiluminescence emission reaches a maximum while the absorbance 

at 300nm is still more than half its maximum value. The absorbance at 300 reaches 

zero after the chemiluminescence emission has finished. Addition of iron 

sulphate to the reaction increases the rate of disappearance of permanganate and 
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chemiluminescence emission. There is a fast reduction of permanganate to 

manganese(II) which can then catalyse the reaction. The absorbance time courses 

Figure 4.33 Comparison of Absorbance and Chemiluminescence 
Time- courses for Glucose/Sulphuric acid/Permanganate firon(II) 
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at 525 and 475nm, shown in Figure 4.33 are similar to those seen when manganese 

(11) is present at the start of the reaction. At 300nm however, no initial increase is 

seen and considerable absorbance is present after the light emission ceases, due to 

the presence of iron (111) complexes. 

The most characteristic absorbance peak for manganese (111) is in the region of 

500nm, depending on solvent. The molar absorptivity for this species is small 

compared with that for permanganate. It is therefore difficult to interpret absorbance 

changes at this wavelength. In the presence of manganese (11) an increase, due to 

manganese(III), can be observed at in the region of 300nm. In the absence of 

catalyst an isosbestic point appears to be present at 270nm during the early part of 

the reaction, therefore this wavelength was also monitored. 

Absorbance at 
300nm 
475nm 
525nm 
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The addition of phosphates such as pyrophosphate results in an inhibition of the 

chemiluminescence, both in terms of the speed and the intensity of the emission. 

The generation of manganese (111) was followed at 270nm and 304nm and the loss of 

manganese (VII) was followed at 545nm as before, in the presence and absence of 

pyrophosphate. The absorbance at 304nm was lower that at 545nm, but otherwise 

the time course was similar in shape. The absorbance profiles at 270nm and 545nm 

and the chemiluminescnece profiles are shown in Figure 4.34, for runs with and 

without pyrophosphate. 

Figure 4.34 Effect of Pyrophosphate on the Chemiluminescence 
and Permanganate Absorbance Time-courses 
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Chemiluminescence emission occurs after the majority of the permanganate has 

been reduced. Manganese (111) initially increases and the majority of the emission 

occurs while the level is at its highest. The stabilisation of manganese (111) by 

pyrophosphate is clear from the higher absorbance at 270nm. The emission takes 

place when the level of manganese (111) is high, strongly suggesting that a 

manganese (111) species is involved with the emitting species. 
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Another species known to form a complex with manganese (111), stabilising it in 

solution, is oxalate. A trioxalato complex Mn(C204)3 3- is formed which is unstable to 

heat. Although chemiluminescence has been reported for the permanganate/ 

oxalate reaction, '22 attempts to collect spectra were not sucessful. In the flow 

injection system, described above, oxalate was found to give one tenth of the peak 

height for glucose. The effect of oxalate on this system was investigated. 

Oxalate increased the rate of reaction considerably, while inhibiting the 

chemiluminescence. Time profiles for two concentrations of oxalate are shown in 

Figue 4.35. At 304nm there were initially large increases in absorbance, followed by 

decreases to 0 AU after chemiluminescence emission was complete. It can be seen 

that the light emission takes place while the level of manganese (111) is high, again 

suggesting that the excited species is associated with manganese (111). 

Figure 4.36 Effect of Oxalic acid on the Chemiluminescence 
and Permanganate Absorbance Time-courses 
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4.4 Summary 

Investigations into the reaction between aliphatic polyhydroxy compounds and 

permanganate, in acid medium, have shown that the emitted chemilurninescence can 

be used analytically for their determination in solution - 

The reactions are catalysed by the presence of manganese (11) and other reducing 

agents including iron (11) and halide ions. Only in the case of manganese (11) is there 

significant enhancement of the signal. The chemilurninescence intensity depends on 

the acid concentration, with sulphuric acid giving the highest signals. 

The size of the chemiluminescent signal varies considerably with the nature of the 

polyhydroxy compound and appears to be related to the stereochemical configuration 

of the compound, in a way that is not yet fully understood. 

For simple polyhydroxy compounds the trend shows 

chemiluminescence as the number of hydroxy groups increases. 

an increase in 

Chemiluminescence spectroscopy has shown that all the reactions have emission 

maxima at 700nm, independent of the compound used. This is a longer wavelength 

than previously reported for permanganate chemiluminescence. 

The emission of light follows the reduction of manganese (VII) and appears to be 

related to the presence of manganese (111) in the reaction mixture. 
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CHAPTER 5 

DETERMINATION OF ASCORBIC ACID 

5.1 Determination of Ascorbic acid 

Among compounds related to carbohydrates, it was found that the reaction of 

ascorbic acid with permanganate gave a more intense chemiluminescence than the 

carbohydrates already studied. It was decided to study this system in more detail, to 

optimise it and to investigate the application of the method to food supplements. 

5.2 Reasons for Determination of Ascorbic acid 

Ascorbic acid 
Dehydroascorbic acid 

Ascorbic acid (vitamin C) is a water-soluble anti-oxidant vitamin present naturally in a 

wide range of foods, particularly fruit and vegetables. It is an essential nutrient in 

mammals although most species can synthesise their own from glucose. In humans 

the absence of the enzyme 1-gluconolactone oxidase means that sufficient Vitamin C 

must be obtained from the diet. The principal form of the vitamin is ascorbic acid; the 

first oxidation product, dehydro ascorbic acid has some physiological activity. 

Ascorbic acid has limited stability and is lost from foods during storage, preparation 

and cooking. Many foods are supplemented with the vitamin and nutritional 

supplements are available in which ascorbic acid is present alone or is formulated 
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with other micronutrients. Levels in supplements are from one, to many times the EU 

recommended daily allowance of 60mg for most individuals. It has been suggested 

that higher intakes can be beneficial in preventing and treating a range of diseases' 

and intakes of the order of several grams per day have been suggested. ' " Other 

workers consider that the high levels could be harmful. 242 

Ascorbic acid is used as an anti-microbial and antioxidant in foods and beverages, 

as an alternative to, or in conjunction with, nitrite or sulphite. Ascorbate is added to 

flour as an improver in breadmaking243 in the widely used Chorleywood Bread 

Process (CBP). In this process ascorbic acid is oxidised to dehydroascorbic by the 

action of ascorbic acid oxidase, naturally present in flour. Dehydroascorbic acid 

oxidises glutathione to a dimeric form, which is inactive in the gluten disulphide 

exchange reactions of gluten development. 

5.3 Methods of Determination 

Ascorbic acid has been determined by a variety of methods, many based on its 

oxidation. Tillman's reagent, 2,6-Dichlorophenolindophenol is the most commonly 

used, in titrimetnc220 and spectrophotometric methods. Rate measurement using a 

stopped-flow method has also been described . 
244 Direct titration is widely used for a 

range of foods but is subject to interference from reducing species such as sulphite. 

A more specific method was developed by Deutch. 221 Ascorbic acid is oxidised to 

dehydro ascorbic by atmospheric oxygen and an activated charcoal catalyst. 

Derivatisation of dehydroascorbic acid with o-phenylene diamine gives a fluorescent 

product. This method has been automated using a segmented flow system. 

Flow injection systems have used spectrophotometric measurement after reaction 

with iodine245 or the reduction of Fe 3+ 
and formation of Prussian Blue. 246 Other 
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detection systems described recently have included amperometry247 and 

potentiometry. 248 Methods using luminol chemiluminescence have been proposed, 

using oxidants including iron (111)249 and hexacyanoferrate(ill). 250 The reactions of 

ascorbic acid with many oxidising agents have high enthalpy changes. Reactions 

with iodine monochloride 251 and ceriurn (IV)252are used in thermometric methods 

Permanganate is used as a titrimetric reagent for determination of ascorbic acid 

using both visual and potentiometric endpoints. 253 This reaction has been shown to 

give direct chemiluminescence. Since starting this study a batch method based on 

this has been reported. "51 

5.4 Development of a Flow Injection-Chemiluminescence Assay 

Initial investigations were made using a single line manifold (Manifold 1 section 

4.3.2.1). To achieve the required flow rates the flow from two pump tubes, each 

pumping the same solution, was combined before the sample was injected. 

5.4.1 Optimisation of Flow-rate 

The reaction was found to be fast. The effect of flow rate was examined for an 

analyte range of WOW 5xl 0-4mol dm-3and 1 Xj 0-4 mol dm-3permanganate. The 

results are shown in Figure 5.1. The signal increased with increasing flow rate. At 

low ascorbic concentration the signal continued to increase up to the point where 

problems were found with leaking joints in the manifold. At higher ascorbic 

concentrations the optimum flow rate was found to be 4cm 3 min--l. 

At slow flow rates double peaks were observed for the jX10-3 mol dM-3 ascorbic acid. 

This shows that no reaction is occurring in the centre of the injected volume of 75gL. 

At the higher flow rate single peaks were observed. 
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Figure 5.1 The Effect of Flow Rate on CL Signal 
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5.4.2 Optimisation of Acid Concentration 

Using 2x1 0-4mol dM-3 permanganate, calibration lines were run for ascorbic acid in 

the range jX10-6 to jX10-4 mol d M-3 
. The acid concentration varied from 0.1 to 

1.25mol d M-3 . Higher acid concentration gave in a higher signal as in Table 5.1: 

Table 5.1 Effect of Sulphuric Acid Concentration on CL Signal 

Sulphuric Acid /mol dM-3 Intercept/mV Slope/ mV mol-1 dM3 R 

0.1 -0.61 5.18xl 04 0.99889 

0.25 -1.23 8.26xl 04 0.99911 

0.5 -1.41 
1.10X105 0.99902 

0.75 -1.70 1.21xl 05 0.99933 

1.0 -2.33 1.27xl 05 0.99936 

1.25 3.07 1.35xl 05 0.99908 
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Above 0.75mol dM-3 sulphuric acid the increase in signal was small and this 

concentration was used, directly in the single line manifold. In the two line manifold 

1-5mol dm-' was used as a dilution to 0.75mol dM-3 resulted. As the pKa of ascorbic 

acid is 4.04 the reaction represents oxidation of undissociated ascorbic acid. 

Sulphuric acid was selected as this had been used for the work with carbohydrates. 

Sulphate can stabilise manganese (111) in solution and we consider that manganese 

(111) is involved in the chemiluminescence reaction. Other workers have investigated 

permanganate oxidations in perchloric acid'5' 254 therefore a comparison was made 

between these acids. Nitric and hydrochloric acids were also investigated. These 

were not expected to have the same effect on manganese (111) in the system. The 

signals for sulphuric and perchloric acid carriers were very similar as in Figure 5.2. 

The slopes were 2.41x1O 5 and 2.39x105 mV mol-1 dm3 respectively. As expected 

nitric acid gave lower signals, with a slope of 1.92xl 05 mV mol-1 dm3. Hydrochloric 

acid also gave a lower signal. The difference between sulphuric and perchloric acids 

was small; sulphuric acid was preferred for reasons of safety 
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Figure 5.2 The Effect of Mineral Acid on CL Signal 
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5.4.3 Optimisation of Permanganate Concentration 

The effect of permanganate concentration was investigated. As shown in Table 5.2, 

linear range depends on the permanganate concentration. Higher permanganate 

concentrations are needed to extend the range to high ascorbic acid concentrations. 

Table 5.2 Effect of Permanganate Concentration on CL Signal 

Permanganate/ Analyte range Intercept/ Slope/ mV R 
mol dM 3 /mol dm-3 mv mol-1 dM3 

5x1 0-5 1 X1 0-6 to 1 X1 0-3 4.38 1.01X105 0.96940 
1 X1 0-16 to 5X1 0-4 1.88 1.46xl 05 0.99125 

1 X1 0-4 1 X1 0-6 to 1 X1 0-3 1.55 1.1 9xi 05 0.98893 
1 X1 0-6 to 5X1 0-4 -0.21 1.51X1 05 0.99954 

5xl 0-4 1 X1 0-6 to 1 X1 0-3 
-1.64 8.20 X1 04 0.99702 

1 x1 0-6 to 5xl 0-4 
-1.66 8.23xl 04 0.98659 

1 X1 0-3 5xl 0-6 to 1 X1 0-2 2.27 3.62xl 04 0.99828 

5x1 0-6 to 1 x1 0-3 
-1.75 5.41 X1 04 0.98049 

6.4.4 Effect of Modifiers 

A two-line manifold (manifold 3) was used to investigate the effect of modifiers on the 

system. Potential modifiers were added to the acid carder stream and ascorbic acid 

solutions were injected into it. Permanganate was added immediately before the 

detector via aT piece using configuration Tl, as shown in section 3.6.1. 

Borate is known to affect the selectivity of oxidation of carbohydrates that have 

hydroxyls on adjacent carbons . 
255 The complexes have generally been studied in 

alkaline medium, as polyborate anions are present at low pH. Borate is known to 

form complexes with dehydroascorbic acid, this complex is the basis of the 'borate 

blank' method of correction for interferences in the fluorimetric method of analysis. 221 

Boric acid was added to the carder at 0.2 mol dM-3 but had no effect on the signal. 
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As discussed earlier, phosphates are reported to increase chemiluminescence in 

some fast permanganate reactions; for example polyphosphoric acid has been used 

to enhance signals for codeinelr38 and similar alkaloids. Polyphosphoric acid, 

metaphosphoric acid and trisodium tripolyphosphate were added to the carrier in the 

range 1 to 10% w/v. A slight increase in signal was observed but the linear ranges 

were shorter, giving no advantage over unmodified carriers. 

Pyrophosphate was previously observed to significantly reduce the rate of emission 

form the reaction with carbohydrates, probably due to stable complexes formed with 

manganese (111). Low concentrations of pyrophosphate were added to the carder. 

Results for additions up to 0.5% showed little change, however concentrations of 1 

and 5% gave decreased gradients for the calibration lines, as expected from work 

with carbohydrates. The results are surnmarised in Table 5.3. 

Table 5.3 Effect of Pyrophosphate Addition to the Carrier 

Pyrophosphate 
/% 

Range/ mol dM-3 Intercept/ 
mv 

Slope/mV mol-1 dM3 R 

0 jX10-6 to 5xl 0-5 
-1.19 5.07xl 05 0.99437 

1 1 Xj 0-6 to 1 Xj 0-4 
-0.45 2.73xl 05 0.99919 

5 
11 

1 Xj 0-6 to 1 Xj 0-4 

1 
-0.41 2.27xl 05 

11 
0.99725 

1 

The effect of flow rate on the signal in the presence of pyrophosphate was examined 

for jX10-5 mol dm-3ascorbic acid. The effect is shown in Figure 5.3. Pyrophosphate 

results in a slight increase in signal for higher flow rates suggesting that the reaction 

is faster, consistent with the findings of other workers for fast reactions. As the 

increase is small and the linear range is reduced phosphate was not used. 

Surfactants are known to enhance a range of chemiluminescent reactions, which 

may be due to energy transfer processes within the micelle. 256 The 

chemiluminescence from the oxidation of xanthene dyes is reported to be enhanced 
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using surfactants. 257 Other reasons for enhancement may be increased solubility or 

stabilisation of reacting species. It is known that the rate of the permanganate-oxalic 

acid reaction is increased in the presence of surfactants, dispensing with the 

requirement for carrying out the titrations at above 60o. 258 It was therefore decided to 

investigate the effect of an anionic surfactant, sodium dodecyl sulphate, and a 

cationic surfactant cetyltrimethylammonium bromide. Solutions of surfactant in the 

acid carrier were prepared at concentrations slightly above the critical micelle 

constant (CIVIC). Both surfactants resulted in inhibition of the signal, therefore the 

final system used an unmodified carrier. 

5.4.5 Preparation of Standard Solutions 

In solution ascorbic acid is unstable to light and atmospheric oxygen. Initial work was 

carried out using aqueous ascorbic acid solution, kept in closed flasks in the dark. 

The oxidation is catalysed by metal ions, which may be present in the sample matrix, 

therefore ascorbic acid is generally extracted into an acid extracting solution. Various 

additives, including oxalic acid and EDTA, 259 have been proposed to minimise 
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interference from co-extractives. The most widely used extracting solutions contain 

metaphosphoric and acetic acids. Standard solutions in 2% metaphosphoric acid 

and 5% acetic acid and were found to be stable for 24hours refrigerated in the dark. 

5.4.6 Assessment of Interferences 

A range of materials, which could potentially interfere with the determination in foods 

and nutritional supplements, were identified and assessed to establish the maximum 

tolerable mole ratio. 

5.4.6.1 Inorganic 

Using a single line manifold a range of potentially interfering ions was examined, 

Reagent concentrations were 1 mol dm-3 sulphuric acid and U10-4 mol dM-3 

permanganate. Ion: ascorbic acid ratios up to 100: 1 were used to establish the 

maximum ratio of interferent to ascorbic acid which gives less than 5% change in 

response compared with neat ascorbic acid. The species chosen were nutritional 

minerals, metals likely to come into contact with food such as tin and aluminium, and 

anions used as preservatives, nitrite and sulphite. 

Interference was observed as a decrease in signal. Table 5.4 shows the maximum 

tolerable mole ratios and Figure 5.4 shows the effect of anion: ascorbic acid ratio on 

the signal. 

Table 5.4 Interference to Chemiluminescence Signal from Inorganic Species 

Species Maximum Tolerable Mole Ratio 
NH4+9 C02+, Cr3+, Mg2+, Zn 2+ 100 

A13+ 
, Sn + 10 

CU2+ 0.1 

Mn 2+ 

, Br, N02-9SO3- 0.01 
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Figure 5.4 Effect of Interfering Anions on the Chemiluminescence 
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6.4.6.2 Organic 

A range of organic compounds such as vitamins, carbohydrates and organic acids, 

which are likely to be present at significant concentrations in foods and food 

supplements were identified and examined as above. As for the inorganic materials, 

interference was observed as a decrease in signal. The maximum tolerable mole 

ratios for the organic compounds examined are shown in Table5.5. Figure 5.5 

shows the effect of the polyols mannitol and sorbitol. 

Table 5-5 Interference to Chemiluminescence Sianal from Oraanic Soecies 
Species Maximum Tolerable Mole Ratio 

Vitamin B1 100 

Vitamin B2, Nicotinic Acid, Vitamin B6 10 

Glucose, Fructose, Sucrose, Lactose 10 

Mannitol Sorbitol 1 
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Figure 5.5 Effect of Interfering Carbohydrates on the 
Chemiluminescence 
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Typical ratios of the interfering species (total metal or vitamin) to ascorbic acid in 

common foodstuffs will not interfere in the assay260. It is possible that the high levels 

of mannitol or sorbitol, which are used as excipients in food supplement formulations, 

could limit the applicability of this method. 

5.4.7 Other Compounds Related to Ascorbic acid 

The first oxidation product of ascorbic acid, dehydroascorbic acid can constitute 10 to 

20% of the vitamin C content of fruits and vegetables. 261 in some fruits such as 

acerola cherry in excess of 50% of the vitamin is present as dehydroascorbic acid. A 

3x1 0-4mol d M-3 solution of dehydroascorbic acid gave a peak height equivalent to 

0.2% of that for the same concentration of ascorbic acid. 

D-iso ascorbic acid (erythorbic acid) is not naturally present in foods and has little 

vitamin activity but is a permitted antioxidant in cooked meat products. As expected, 

the two isomers gave identical signals. The presence of erythorbic acid can be 

established by thin layer chromatography, if its presence is suspected in a sample. 
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5.4.8 Analysis of Real Samples 

Three samples of food supplement tablets of different compositions and two fruit 

juice samples were assayed by chemiluminescence. Two standard methods, 

titrimetrym using 2,6 dichlorophenol indophenol and the fluorescence, 221 were used 

for comparison. For each sample, aliquots were taken for each method from the 

same extract. The results are in Table 5.6. 

Table 5.6 Ascorbic acid found in food suDolements and fruit drinks 
Sample Decl DClCP titration Fluorimetric method Chemiluminescence 

/mg No Mean 
/mg 

SD/mg No Mean 
/mg 

SID 
/mg 

No Mean 
/mg 

SID 
/mg 

Tablet 1 200 6 192.7 2.13 6 178.9 9.61 6 202.5 4.67 

Tablet2 60 6 62.0 0.83 5 61.8 4.49 6 75.2 3.46 

Powder 60 6 57.8 1.86 5 63.3 2.28 6 56.4 1.70 

Juicel >45 6 80.3 1.18 6 81.1 1.80 6 102.3 3.69 

Juice2 >15 7 61.0 0.44 5 55.6 0.99 6 56.4 0.79 

5.4.8.1 StatiStiCal Comparison 

Visual examination of results for individual samples showed a difference in variance 

between the methods with, generally, high variance for the fluorescence method. As 

the method is multistage, and was carried out manually, the higher variance was 

expected. Tablet 1 had a considerably higher level of ascorbic acid than the other 

samples and higher variances for all methods, although the relative standard 

deviations were similar to those for the other samples. 
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A paired t test for samples was used to compare methods. At the 95% confidence 

level there is no significant difference between any of the methods, as shown in 

Table 5.7. 

Table 5.7 t-Test: Paired Two Sa! pjhý for Means 
Tvs F F vs C T vs F 

Observations 5 5 5 

Correlation coefficient 0.99704 0.98934 0.98711 

df 4 4 4 

t Statistic 0.7969 -1.533 -1.365 
P(T<=t) two-tail 0,4702 0.2000 0.2440 

t Critical two-tail 2.776 2.776 2.776 

T- DCPIP titration, F -fluorescence, C- chemiluminescence 

Other statistical tests were carried out including a principal component analysis which 

showed a high correlation between the three methods. The non-parametric 

Friedman test also showed no significant difference between the methods. 
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5.5 Batch Studies 

It was apparent from the flow studies that the reaction between ascorbic acid and 

permanganate is very fast compared with the reaction between sugars and 

permanganate catalysed by manganese (11). The emission from the ascorbic 

acid/permanganate reaction was measured using the batch system. As for the 

carbohydrates, the reaction could only be investigated over a narrow range of 

reductant concentrations. At high concentrations the emission took place within the 

non-measuring period of the instrument. For low concentrations no emission was 

observed, although reduction of permanganate could be observed in the solution. 

The results are shown as Figure 5.6. 

Figure 6.6 Time course for Chemiluminescence from Ascorbic acid/ 
permanganate I sulphuric acid 
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permanganate. CL measured after 15 sec then at 12 sec intervals 

In each of the examples shown there appear to be two phases of the reaction, an 

initial intense emission followed by a second slow, low intensity emission, a similar 

pattern to that observed for carbohydrates reacting with manganese (IV) and 

manganese (111) solutions, which will be discussed in Chapter7. 
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5.6 Spectroscopic Studies 

5.6.1 Batch Studies 

Initially both batch and semi-flow methods were used to collect spectra. Using the 

narrow range PMT, the spectra were very similar to those for carbohydrates using 

the same system. In a semi-flow experiment 0.5CM3 0.5 mol dm-3ascorbic acid in 2 

mol dM-3 was placed in a cuvette and 0.1 mol dm-3 pemanganate in water was 

pumped in at approximately 1.8 CM3 min -1. Relative standard deviations were 0.3% 

for 5.3% for bandwidth and 9.0% for peak height. The poorer repeatability for 

height was partly due to the changing concentrations of reactants as the mixing 

progressed. The similarity of the spectra of the emissions from sugar/ 

permanganate/ Mn(II) and ascorbic acid/ permanganate suggests that the same 

species is responsible for the emission in both systems. 

5.6.2 Stopped Flow Studies 

As the reaction is fast, a stopped flow system was used to follow the 

chemiluminescence emission. As for batch experiments, the emission has an initial 

high narrow signal after the mixing time. This was followed by a further period of 

emission of approximately half the maximum intensity. 

As discussed in 3.5.6, variation was found in the time to the peak maximum 

depending on the position of the syringes. Mathematical smoothing using the 

Savitsky-Golay method was used to clarify the features. Twenty spectra were 

averaged and the result is shown in Figure 5.7. 

The reaction is fast and even with the fast scanning capability only part of the 

spectrum could be collected and is shown in Figure 5.8. 
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Figure 5.7 Time-course of Chem i luminescence for Ascorbic 
acid/Permanganate/Sulph uric acid 
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The leading edge of the band fits well to a Gaussian function with kmax at 700nm. As 

for the semi-flow method the results show that the emitting species is probably the 

same as that in carbohydrate permanganate reactions. 
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As shown in Scheme 2.9, manganese (VII)153 has been proposed as the primary 

oyidising species in the permanganate/ ascorbate reaction. Fluoride and 

manganese (11) had no effect on the rate of reaction confirming this. Pyrophosphate 

reduced the rate and intensity of the chemiluminescence emission. 

5.7 Summary 

A method has been developed for the determination of ascorbic acid in solution. It is 

based on the direct chemiluminescence from the reaction between ascorbic acid and 

permanganate in acid solution. The method uses flow injection and detection using a 

red-sensitive photomultiplier. 

The method is fast, simple and is not subject to interferences from levels of other 

components typically found in food supplements. 

Spectroscopic studies have shown that the emitting species is probably the same as 

that responsible for the chemiluminescence emitted in the reaction between 

permanganate and carbohydrates. 
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CHAPTER 6 

DEVELOPMENT OF A MANGANESE (111) REAGENT FOR 
CHEMILUMINESCENCE 

6.1 Reasons for Using Other Manganese Species 

Manganese (VII) is a strong oxidising agent capable of oxidising a wide range of 

organic and inorganic compounds. Many of the oxidation reactions are autocatalytic, 

dependent on the initial production of manganese (11). The consequence is that 

without an initial concentration of manganese (11) the reactions have a characteristic 

lag time before the reaction occurs at significant rate. This can be seen as a slow 

initial reduction in the absorbance due to manganese (VII) at 500 to 600nm. As the 

reaction proceeds the rate increases with a faster decrease in absorbance. Figure 

4.28 showed a typical profile for the decrease in absorbance due to manganese (VII) 

at its maximum of 545nm. This was in the absence of a catalyst. 

Where such a reaction yields chemiluminescence, the emission of light starts only 

when most of the manganese (VII) has been reduced, whether or not a catalyst is 

present at the start of the reaction. It is clear therefore that the chemiluminescence is 

associated with a lower oxidation state of manganese, previous results suggesting 

manganese (111) or manganese (11). 

Other manganese species, particularly manganese (111) and manganese (IV) have 

been used in organic oxidations, generally under neutral or acidic conditions. Their 

milder oxidising powers can result in more specific reactions. It was decided to 

investigate whether lower oxidation states of manganese would also give 

chemiluminescence, and to investigate its nature. 
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Manganese (IV) is generally used in heterogeneous reactions in the form of prepared 

manganese dioxide powder or as manganese dioxide sol. The sol can have good 

stability in neutral solution at concentrations up to 1 x1 0-3. 

Manganese (111) is reasonably stable as complexes with ligands such as acetate, 

acetylacetonate and EDTA. However even these forms decompose slowly in 

solution. In some cases the ligand is itself oxidised by the manganese species. 

Manganese (111), can also be produced electrochemically262and this source has been 

used in oxidations. 

6.2 Manganese (IV) Oxide 

Prepared manganese dioxide is used as a mild oxidising agent. Oxidation takes 

place on the solid surface, possibly by direct binding of organic species to 

manganese atoms. Oxidations of phenolic compounds and ascorbic acid, in neutral 

solutions have been described. 253 Polyhydroxy aliphatic alcohols such as glycerol 

and sorbitol, and simple aldehydes did not show significant reactions. 

6.2.1 Studies with Prepared Manganese dioxide solid 

Commercially prepared manganese dioxide, a finely divided black powder, was 

shaken with excess acidified ascorbic acid. The solid was found to dissolve readily, 

but no light was observed. Acid solutions of sugars had no obvious effect on the 

solid even on prolonged standing. 

6.2.2 Studies with Manganese dioxide Sol 

A stable manganese dioxide sol was produced by reducJng permanganate with a 

stoichiometric amount of thiosulphate. The average size of the colloidal particles for 

a 5xj 0-4 mol dm-3 preparation was reported to be 120nm . 
131 A sol at this 
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concentration was found to be stable for several months at room temperature. More 

concentrated sols were also prepared using the stoichiometric amounts of 

permanganate and thiosulphate. At above 2xlO-3mol dm-3 Sol particles coagulated 

within 1-2 hours and solid manganese dioxide precipitated. The 2xlOmol dM-3 Sol 

was stable for several days, but gradually precipitated. The neutral sol reacted with 

ascorbic acid, the brown colour disappearing, indicating reduction of the manganese 

dioxide. In the absence of sulphuric acid no luminescence was observed. In the 

presence of dilute sulphuric acid low level luminescence was observed by batch 

counting. Some manganese dioxide precipitated as the sol was mixed with the acid. 

6.2.3 Flow Studies with Manganese dioxide Sol 

As the addition of acid to the sol resulted in precipitation, prior to the reaction with the 

reductant, it was decided to use a flow system. This enabled the addition of acid to 

take place immediately before the injection of sample. In a flow system the 

coagulation of colloidal particles in the presence of acid should be reproducible. In 

the short time between mixing and reaction of sample the degree of coagulation was 

expected to be low. Any oxidation reaction would be in acid medium and the 

oxidising reagent would consist of manganese dioxide particles in the process of * 

coagulation. Manifold 2 was used to mix the sol and sulphuric acid in aY piece. 

Ascorbic acid solutions were injected through the loop injection valve. 

The signal was found to increase with increasing manganese (IV) concentration and 

increasing acid concentration. The signal was lower than that with permanganate 

and linearity and repeatability were not good. In the absence of injected ascorbic 

acid manganese dioxide precipitated in the manifold, coating the inside of the tubing. 

This was removed by injecting strong ascorbic acid. 

155 



Attempts to obtain signals for sugar solutions using this system were unsuccessful. It 

was found that the presence of additional manganese (11) gave a detectable signal. 

Due to the problems of precipitation, Manifold 3 was used, with the sol added as a 

merging zone, via a T-piece, immediately before the detector. The sugar was 

injected into a carder of 0.1mol dM-3 manganese sulphate in 2 mol dM-3 sulphuric 

acid. The chemiluminescent reaction with manganese dioxide sol was taking place 

in acid medium. As before, any coagulation of particles was expected to be 

reproducible and limited due to the short time between mixing and detection. Typical 

calibration plots for glucose are shown in Figure 6.1. 

Figure 6.1 Calibration for Glucose using Manganese dioxide Sol 
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Linearity and repeatability were satisfactory, as shown by the parameters for linear 

fits. The signals achieved with, the maximum sol concentration, were poor in 

companson with those with permanganate; additional manganese (11) was required. 
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For some combinations of acid, manganese dioxide sol and manganese (11) sulphate 

concentrations, pink solutions were produced. For these mixtures manganese 

dioxide precipitated slowly after standing at room temperature. Absorbance spectra 

of these solutions were run and will be discussed in section 6.2.4.2. 

A range of solutions containing different amounts of manganese dioxide sol and 

manganese (11) sulphate were prepared and used directly as carriers in a single line 

manifold. Solutions of glucose and fructose were injected. 

Increasing the manganese (IV) concentration in the mixture had a marked effect on 

the chemiluminescence signal, up to the limit of stability. This is shown in Figure 6.2. 

Figure 6.2 Effect of Manganese (IV) Concentration on Calibration 
line for Glucose and Fructose 
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The concentration of manganese (11) in the FIA system did not appear as significant 

as that of manganese (IV). This can be seen from the slopes of the calibration lines 

in Table 6.1, which show little variation. A maximum was observed for fructose but 

not for glucose. 
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Table 6.1 Calibration Parameters for Glucose and Fructose 
Varvinq Manaanese (11) Concentrations 

Mn(II) Intercept Slope R 
-3 /mol dM /Mv M3 /Mvmol-' d 

0.04 0.03 29.9 0.9996 
(D 
0 0.08 0.03 37.8 0.9998 0 0 :3 0.12 0 02 38 6 0 9999 . . . 

0.16 0.06 40.7 0.9996 
0.04 0.22 318 0.9994 

(a 0.08 0.13 378 0 9998 0 - . 5 0.12 0.09 341 0.9984 
U - 0.16 0.07 292 0.9999 

6.2.4 Spectroscopic Studies with Manganese dioxide Sol 

6.2.4.1 Chemiluminescence Spectrophotometry 

Manganese dioxide sol, 2xl 0-3 mol d M-3 was mixed with 0.5 mol dM-3 xylose in 4mol 

dM-3 sulphuric acid in a batch systern. The chemilurninescence was followed at 

700nm using the fluorescence spectrophotometer. 

Figure 6.3 Chem fluminescence Time-course of the Reaction 
between Xylose and Manganese dioxide Sol 
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Xylose was selected as the response is higher than for glucose and is stable in acid 

solution. The time course of the reaction is shown in Figure 6.3. 

Two maxima were observed, one at approximately 5 sec and a larger one at 35 sec. 

The intensity of the emission is low compared with the intensities obtained using 

permanganate solution with similar concentrations of sugars. It is believed that the 

first peak is due to the reaction with a small amount of manganese (111) in the 

solution. This is immediately reduced to manganese (11) resulting in the fast 

emission, followed by the slower reduction of manganese (IV) from the surface of the 

colloidal particles giving the gradual increase and decay of the luminescence. 

The emission spectrum is shown in Figure6.4. It is identical to that for permanganate 

oxidation indicating that the same excited species is responsible. 

Figure 6.4 Chemiluminescence Spectrum for the Reaction Between 
Xylose and Manganese dioxide Sol 
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6.2-4.2 Absorbance Spectrophotometry 

The absorbance spectrum of the neutral manganese dioxide sol was measured and 

is shown in Figure 6.5. It is, as described in the literature, a broad absorbance 

decreasing towards 600nm. 

Figure 6.5 Absorbance Spectrum for Neutral Manganese dioxide Sol 
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Absorbance measurements on the manganese dioxide sol/ manganese sulphate/ 

sulphuric acid carriers used in FIA showed absorbance below 400nm and a low, 

broad absorbance band with maximum at 485nm indicating the presence of 

manganese (111). 

Figure 6.6 shows the spectra for two levels of manganese (IV) with manganese 

Spectra for manganese (IV) sol and manganese (11) solution, acidified to the same 

extent as the mixtures, are shown for comparison. Re-scaling the wavelength range 

between 400 and 600nm shows a band, for the mixtures, at approximately 500nm. 

0.5 
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Figure 6.6 Absorbance Spectra for Manganese dioxide Sol, Manganese 
sulPhate and Sulphuric acid Mixtures 
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Addition of pyrophosphate to the manganese (IV)/ manganese (11) mixture resulted, 

as expected, in increased stabilisation of manganese (111). For the same 

concentrations of manganese, the absorbance band at around 500nm was 

approximately ten times larger in the presence of pyrophosphate. 
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6.3 Manganese (111) Acetate 

The compound of manganese (111) frequently used in synthesis is the triacetate. It is 

a pink to red solid with an acetic odour, which gradually decomposes in air. 

The compound did not dissolve readily in acid and prolonged shaking with 2 mol d M-3 

sulphuric acid, to give a 0.1 mol dM-3, in resulted in a cloudy pink suspension. 

6.3.1 Spectroscopic Studies 

Spectra were recorded for different sugars and sugar concentrations. In order to 

achieve a sufficiently concentrated manganese (111) acetate solution the solid was 

shaken with sulphuric acid immediately before addition of sugar solution. The 

reaction was fast and spectra were recorded immediately after mixing. Different 

weights of manganese acetate were also investigated. The reaction products in all 

cases were clear colourless to pale yellow solutions. The spectra were all of the form 

expected for permanganate oxidations. Figure 6.7 shows the average of 10 spectra. 

Figure 6.7 Spectrum for the Reaction of Manganese (111) 
acetate Sulphuric acid and Glucose 
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Four monosaccharides, three hexoses and a pentose, were treated with between 

and 8mg of manganese (111) acetate. The molar ratio of sugar to manganese was in 

the range 20 to 50. Using Gaussian fits, height at and band-width were 

calculated for each spectrum. The results are shown in table 6.2. 

Table 6.2 C hemi luminescence Spectrum Parameters for 
Suqar/ Manq-anese (111) acetate Reactions 
Sugar Centre 

nm 
Width 
nm + 

Height 
Units + 

Glucose 705.36 1.83 106.45 3.20 3353 421 

Galactose 703.50 1.66 106.21 3.07 3445 496 

Fructose 706.25 1.56 104.54 4.63 9465 810 

Xylose 704.56 0.92 106.12 4.18 3874 650 

For xylose, the effect of varying the amount of manganese (111) acetate was 

investigated further. In all cases the peak maximum was in the same region but 

increased with increasing ratio of manganese (111) to xylose, as shown in Figure 6.8. 

Figure 6.8 Relationship between C hemi luminescence Spectral 
Maximum and Amount of Manganese (111) acetate 
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The reason for the movement of the peak centre is probably due to the kinetics of the 

reaction. As the acetate is not completely dissolved before addition of the sugar the 

light emission continues as more acetate dissolves. No such correlation between 

k, ax and manganese concentration was seen for manganese (VI I). 

The results for peak height correlated less well but appeared to show a maximum as 

shown in Figure 6.9. 

Figure 6.9 Relationship Between Chemiluminescence Band 
Maximum Emission and Amount of Manganese (111) acetate 
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Using the apparent optimum manganese (111) concentration established above, the 

relationship between xylose concentration and peak height was determined. The 

correlation was good as shown in Figure 6.10. 
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Figure 6.10 Relationship Between Chem i luminescence Band 
Maximum Emission and Xylose Concentration 
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It was previously shown that, with permanganate, the signal size increases with 

increasing manganese concentration. A comparison was made between the signals 

for oxidations with permanganate and manganese acetate. In this study integrated 

time plots were used for the comparison. Glucose, fructose and the sugar alcohol 

mannitol were examined. The results for fructose are shown in Figure 6.11. 

Figure 6.11 Comparison between Chemiluminescence emission 
for Permanganate and Manganese (111) acetate with Fructose 
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For all the sugars examined increasing the amount of manganese as permanganate, 

resulted, as expected, in an increase in total emission. Permanganate was found to 

give a higher signal than the equivalent amount of manganese as manganese 

acetate. 

Investigation of the time of reaction between manganese acetate and sulphuric acid, 

prior to the addition of sugar, demonstrates the degradation of the compound. After 

five minutes the peak height was less than 20% of the original, shown in Figure 6.12. 

Figure 6.12 Stability of Acid Manganese (111) acetate 
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While intense spectra were obtained using high concentrations of freshly prepared 

manganese (111), the poor stability of the solution makes the system impractical for 

use in flow systems. 
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6.4 Manganese (111) Sulphate 

The reaction of manganese (111) acetate and sugars is fast compared with the 

reaction between sugars and permanganate. There is no lag time between mixing 

and the reaction reaching its maximum rate. This shows the potential for manganese 

acetate as an oxidant in the chemiluminescent reaction with sugars. The poor 

solubility and stability of the compound make it impractical for general use in FIA. 

The studies on manganese dioxide sol show that some manganese (111) is produced, 

This can be seen from the pink colour of the solution and the absorbance band at 

around 500nm. The chemiluminescence signal from the carder solutions produced 

was low compared with that from permanganate, limited by the maximum 

concentration of sol that could be reliably produced. 

6.4.1 Manganese (111)/ Manganese (11) Reagents - Flow Injection Studies 

It was decided to attempt to produce acid manganese (111) solutions directly without 

manganese dioxide as an intermediate. Sulphate and high acid concentrations are 

known to stabilise manganese (III). Mixtures were prepared by mixing 0.1 mol dm-3 

permanganate, with 4 mol dM-3 sulphuric acid containing 0.4 mol dm-3manganese 

sulphate and water to give different ratios of manganese (11) and permanganate. 

Each mixture was used as a carder in a single line manifold and 0.05 mol dm-1 

fructose in water was injected. The responses are shown in Table 6.3. The results 

show a significant increase in signal with increasing permanganate and hence 

increasing manganese (111). At high pemanganate concentration the system was 

unstable and manganese dioxide precipitated 

167 



Table 6.3 Calibration slopes for Fructose with Increasing Concentrations 
Of Manaanese HII and (Vill 

Manganese (VII) 

1 Xj 0-4 1 Xj 0-3 lxlo -2 

jX10-3 4.27 ± 0.20 11.03 ± 0.21 2.60 ± 0.15 

jX10-2 28.83 ± 0.34 343.50 ± 4.35 Mn02ý 

0) 
c 
co i xi 0-1 20.50 ± 0.35 342.08 ± 3.68 Mn02ý 

m 

6.4.1.1 Effect of Manganese (111) Concentration 

As no pernanganate could be seen in the absorbance spectra it was assumed that all 

the permanganate had been reduced to manganese (111) as follows: 

Mn(VII) + 4Mn(ll) --> 5Mn(III) 

The effect of increasing the manganese (111) concentration was further investigated. 

In each case the molar ratio of permanganate to manganese (11) in the mixture was 

constant at 1: 20. Figure 6.13 shows the relationship between manganese (111) 

concentration and chemiluminescence signal 

Figure 6.13 Relationship Between Manganese (111) Concentration 
and Chemilurninescence 
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At high concentrations of manganese (111), greater than 1 Xj 0-2, the reagent had 

limited stability. A dark brown precipitate of manganese dioxide formed after a short 

time. The chemiluminescence signal was higher than had been observed for 

optimum concentrations of permanganate. For the most concentrated solution the 

absorbance at 500nm is nearly 1. OAU showing the high concentration of manganese 

(111) present. 

A range of solutions was prepared with different concentrations of manganese (111) 

and different Mn(III) : Mn(II) ratios. A high acid concentration, 4 mol dM-3, Was used 

as this, as expected, stabilised the reagent. Calibrations for glucose, in the range 
jX10-4 to jX10-1 mol dm-3, were made using the manganese mixtures that gave 

stable solutions. The single line manifold was used. The parameters for the 

calibration lines are shown in Table 6.4. 

Chemiluminescence increased with increasing manganese (111) concentration up to 

the point where the solution was unstable. 

Table 6.4 Calibration Line Parameters for Fructose with Varying 
Manuanese (11) to Manaanese (111) Ratios 
Manganese 
(111) /mol dm-3 

Mn(Il): Mn(III) Intercept/ mV Slope/ 
M3 

mv 

mol-1 d 
R 

4x10-3 1: 0.25 0.37 382.7 0.9990 

4x1 0-3 1: 1.5 0.40 351.5 0.9985 

4x1 0-3 1: 11.5 0.32 318.2 0.9983 

2x1 0-2 1: 1.5 0.87 1200.8 0.9995 

2x1O-2 1: 11.5 1.43 1659.3 0.9991 

4x1-O 2 

- 

1: 1.5 1.41 1659.9 0.9991 

Ull 0--; _- 1: 11.5 1.76 2571.1 0.9993 
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6.4.1.2 Effect of Manganese (11) Concentration 

In order to investigate the effect of manganese (11) a series of carriers was prepared 

to contain 2xl 0-3 mol dM-3 manganese (111) and manganese (11) in the range 1 X, 0-3 to 

0.5 mol dm-3. 

Absorbance measurements on the solutions showed a slight increase with increasing 

manganese (11) from 0.995 to 1.138. The regression line for the relationship between 

manganese (11) and absorbance had the following parameters: R 0.9389, intercept 

1.029 AU slope 0.115 AU mol-' dm3. 

The molar absorbtivity of manganese (111) sulphate, prepared electrochemically, is 

reported to be in the order of 120 dM3 CM-1 mol -1 and to vary with pH . 
262 The high 

value is attributed to the presence of the hydrolysed species Mn(OH)2+ the 

concentration of which decreases with increasing acid concentration. Further 

hydrolysis of this species to Mn(OH)2+ has also been suggested. 

Calibration lines for glucose were constructed as above. For all the calibration lines 

regressions of the lines were good, at least 0.9999. There is marked reduction in 

signal with increasing manganese (11) content, shown by the slopes of the calibration 

lines in Table 6.5. The relationship is not linear; the maximum slope observed, 1143 

mV mol -1 dM3 is considerably higher than found for the permanganate system. For 

a 0.1 mol dm-3solution changing the flow rate has a slight effect on the signal size. 

The variation of signal with the manganese (11) concentration is shown in Figure 6.14. 

This is considerably lower than the changes in signal with pump speed found for the 

permanganate system. 
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Table 6-s Pararnatam- fnr Fructose with Increasina Mn (11) Concentration 
Mn(II)/moI dM-3 Intercept/ mV Slope / mV mol-' dM3 R 

0.010 0.49 1143.5 0.99994 

0.013 0.532 1018.0 0.99994 

0.018 0.534 1017.8 0.99996 

0.028 0.41 893.9 0.99997 

0.058 0.38 859.3 0.99995 

0.108 0.37 838.2 0,99994 

0.208 0.25 737.9 0.99997 

0.508 0.29 637.6 0.99992 

1.008 0.22 447.0 0.99993 

Figure 6.14 Effect of Flow-rate on Chemiluminescence 
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6.4.1.3 Effect of Phosphates 

As discussed previously, the addition of phosphates has been reported to enhance 

the signal for some permanganate systems. It was thought that adding phosphate 

might allow lower acid concentrations to be used. A range of reagents was prepared 

to contain 0.05 mol dM, 3 manganese (111). Trisodiurn trimetaphosphate (TTMP) was 

added at 0,2 and 5% w/v. In addition low and high Mn(lI): Mn(III) ratios were 

prepared. The composition of the mixtures is as shown in Table 6.6. 

Table 6.6 Preparation of Phosphate Manganese (111) Solutions 
Carder TTMP/% Mnll: Mnlll Acid/% Absorbance 

Xmax 
Absorbance/ 
AU @491 nm 

1 0 9.2: 1 20 488.5 1.763 

2 0 1.2: 1 20 Precipitated 

3 2 1.2: 1 20 491.0 1.750 

4 5 1.2: 1 20 495.5 1.700 

5 2 9.2: 1 20 494.0 1.796 

6 5 9.2: 1 20 497.5 1.737 

7 2 0.2: 1 20 488.5 1.716 

8 5 0.2: 1 20 491.0 1.702 

9 5 9.2: 1 10 Precipitated 

Absorbance measured on 1 in 3 dilution in 20% sulphuric acid against 20% sulphuric 
acid 

For the solutions with low Mn(ll): Mn(lll) ratio in the absence of phosphate 

stabilisation, precipitation occurred within a few minutes. This was also the case for 

h the lower acid concentration. Later it was shown that, with adequate cooling, it was 

possible to produce stable solutions with lower manganese(II) manganese (111) ratios. 

The absorbance values and wavelength maxima were consistent showing that the 

manganese (111) concentration was approximately the same in all the solutions. 
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Using the single line manifold, calibrations for glucose and fructose were carded out 

for the concentration range 1xio-4 to 0.1mol dm. The effect of flow rate was 

examined using 0.1 mol dm-3glucose and fructose. A flow rate of 1.3 CM3 min-' was 

selected to give reproducible peaks for both glucose and fructose and was a 

compromise rather than an optimum for either sugar. Regressions were calculated 

for each solution. The results are shown in table 6.7. 

Table 6.7 Calibration line parameters for Glucose and Fructose with varying 
Manqanese (11) and Manaanese fill) Concentrations 

Glucose Fructose Ratio @ 

m 
Intercept/ 
mv 

Slope/ mV 
M3 mol-1 d 

R Intercept/ 
mv 

Slope/mV 
M3 mol-1 d 

R 72 
0 

0.05 mol 
M-3 d 

3.94 3553 0.99787 54.3 21510 0.99045 1 6.3 

3 0.20 1995 0.99995 25.0 20753 0.99527 2 12.1 

4 0.30 1068 0.99994 12.8 17592 0.99788 5 18.1 

5 0.68 1918 0.99977 37.4 20011 0.99315 3 12.3 

6 0.35 1240 0.99991 23.2 17808 0.99483 4 16.7 

7 0.02 599 0.99994 -4.06 13046 0.99951 7 20.8 

8 -0.08 924 0.99924 0.30 15815 0.99988 6 17.6 

It can be seen from the values for slope that for both glucose and fructose the order 

in which the slope increased is the same. This is shown in column 8 of the table. 

The ratios of signal for fructose and glucose differ, as shown by the example for 0.05 

mol dm-3solutions shown in the final column of the table, however the ratio increases 

in almost the reverse order to the increase in slope. 

It can also be seen that the effect of phosphate is to reduce the signal and that 

increasing the manganese (11) to manganese (111) ratio results in an increased signal. 
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Figure 6.15 A Effect of Flow-rate on Chemiluminescence 
for Glucose 
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Figure 6.15 B Effect of Flow-rate on Chemiluminescence 
for Fructose 
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Figures 6.15 A and B show the effects of flow rate on the chemiluminescence signal. 

The reaction with fructose is faster than the reaction with glucose, and the effect of 

changing flow rate is more pronounced for fructose than for glucose. Phosphate may 

be useful for slowing the reaction in some circumstances but in FIA, where fast 

reactions are desirable, there is no advantage in its use. 
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6.4.2 Spectroscopic Studies with Glucose 

Using carrier 1 as described in Table 6.7, in a batch experiment, chemiluminescence 

time profiles were constructed for glucose and saccharic acid (1,6 hexandioic acid). 

The results are shown in Figure 6.16. 

Figure 6.16 Chemiluminescence Time-profile for the Reaction of 
Glucose and Saccharic acid with Manganese (111) in acid medium 
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Saccharic acid gave a typical profile for a fast chemilurninescent reaction. The data 

agrees well with an exponential decay function. The profile for glucose shows an 

initial decrease followed by a fairly flat area and a final decrease to baseline. The flat 

area appears to show some oscillation; this can be seen more clearly in the 

expanded lower figure. The same degree of oscillation was not observed again in 

repeated attempts, nor in any UV studies. Oscillation has been reported in a 

permanganate oxalate system, shown by the change in absorbance of 

permanganate. 134 A possible explanation is formation and reduction of colloidal 

manganese(IV) reducing and increasing the concentration of manganese 

available for reaction and hence the chemiluminescence emission. This is analogous 

to the mechanism suggested by Keki'33for in the permanganate oxalate system. 

The relationship between the change in manganese (111) and the chemiluminescence 

emission was investigated, using the same technique previously used, to show that 

chemiluminescence emission occurs after permanganate ion has been reduced. 

Manganese (111) concentration was monitored by absorbance at 490nm and 

chemiluminescence emission was monitored using the modified liquid scintillation 

counter. Four manganese (111)/ manganese(II) solutions in sulphuric acid were 

prepared, two of which contained phosphate. The reaction between the mixtures and 

glucose was investigated. The agreement between replicate runs was good. The 

comparisons are shown in Figures 6.17 and 6.18. All the chemiluminescence 

profiles show a rapid decline, following a slight increase in the case of the phosphate 

containing mixtures. When a value, approximately half of the highest value, was 

reached there was a gradual return to baseline. The absorbance measurements 

show a smooth decrease in absorbance related to the decrease in manganese 

concentration 
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Figure 6.17 Chemiluminescence and Absorbance Tme-profiles for the 
Reaction of Glucose with Manganese (111) in acid medium 
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Figure 6.18 Chemiluminescence and Absorbance Time-profiles for the 
Reaction of Glucose with Manganese (111) in acid Phosphate medium 
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Multiple absorbance scans between 200 and 500nm showed a uniform collapse of 

the spectrum and no isosbestic points were observed. This is shown in Figure 6.19. 

Figure 6.19 Absorbance Spectra for Manganese (111) Reagent 
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In the absence of glucose no luminescence was observed and no significant 

decrease in absorbance over 1000 sec. This is the control shown in Figure 6.17A. 

The findings are consistent with those from FIA, in that phosphate has slowed the 

reaction. In the presence of phosphate the maximum emission occurs more than 15 

sec after the start of the reaction. In the absence of phosphate the maximum is 

within the instrument dead time. Total luminescence from systems with phosphate 

appears to be higher than that without. The results are summarised in Table 6.8. 

Table 6.8 Effect of Phosphate on Total Emission for Glucose 
Mn(ll)/ 
mol dm-3 

TTMP/ 
% 

Maximum 
Counts/1 2sec 

Total Counts Time at 
inflexion/sec 

Counts at 
inflexion 

0.092 0 2.02xl 04 2.60xl 05 51.3 1.14xl 04 

0.012 0 2.53xl 04 2.70xl 05 51.3 1.33 X1 04- 

0.092 0.4 1.97xl 04 2.96xl 06 63.0 1.10 X104 -- 

0.012 0.4 1.82xl 04 3.09xl 05 63.0 1.11X104 

Statistical analysis shows that the differences between the signals are not significant. 

The results of one way ANOVA are summarised in Tables 6.9 A and B. 
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Table 6.9 A ANOVA for Maximum signal 
Source of SS df ms F P-vaiue F crit 
Variation 

Between 8.39E+7 3 2.80E+7 2.59 0.125 4.066 
Groups 
Within 8.62E+7 8 1.08E+8 
Groups 

Total l. 7E+8 11 

Table 6.9 B ANOVA for Total Counts 
Source of SS df ms F P-vaiue F crit 
Variation 

Between 4.59E+9 3 1.53E+09 1.57 0.270 4.066 
Groups 
Within 7.78E+9 8 9.72E+08 
Groups 

Total 1.24E+l 0 

The change in chemiluminescence signal with time indicates that there are two or 

more phases to the emission. The time to the inflexion between the two parts of the 

curve was estimated from the second derivative and the size of the signal at this 

point was measured; the results are shown in the final column of Table 6.8. The 

shape is similar to that seen for the reaction with manganese dioxide sol, shown in 

Figure 6.3. The relative sizes of the peaks are reversed. The same mechanism is 

the probable explanation for this observation. The initial high peak is due to the 

reaction of glucose with manganese (111), which is in high concentration. At the same 

time, disproportionation of manganese (111) is taking place. The final, broad emission 

is due to the oxidation of analyte, which is in excess, by manganese (IV). The 

second phase of chemiluminescence continues for a longer time due to the colloidal 

nature of the species formed. Production of manganese dioxide might be expected 

during the reaction. This would be indicated by an increase in absorbance over a 

wide wavelength range. In particular the change in absorbance at 400nm would be 

expected to be slower than at 490nm; this was not observed. 
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6.4.3 Flow Studies with Phenolic Compounds 

The chemilurninescence emitted on oxidation of polyphenolic compounds such as 

pyrogallol and gallic acid is well known, as discussed in section 2.9.1.2. Most of 

these reactions are in neutral or alkaline conditions and use hydrogen peroxide as 

the oxidant. There is a recent report on the permanganate oxidation"' of pyrogallol. 

The optimum pH for this reaction was stated to be 1.0. 

It was decided to compare any luminescence from the reaction of permanganate with 

dihydroxy benzoic acids with that for glucose. The single line manifold was used as 

before and 0.01 mol dM-3 analyte was injected 
. 

The relatively low concentration was 

selected due to the low solubility of the aromatic acids. Table 6.1 Oshows the results, 

Table 6.10 Comg)arison of CL Sionals for Glucose and Dihvdroxv benzoic acids 
0% TTMP 2% TTMP 

Analyte Peak height Relative to Peak height Relative to 
/Mv + Glucose /Mv Glucose 

Glucose 49.6 0.81 1.00 32.8 1.07 1.00 

2,4 dihydroxy 1.73 0.036 0.04 1.43 0.017 0.04 
benzoic acid 
2,5 dihydroxy 3.07 0.13 0.06 1.98 0.081 0.06 
benzoic acid 
2,6 dihydroxy 18.8 0.31 0.38 18.9 0.52 0.57 
benzoic acid 
Reagent contains 0.05 mol dm-3 Mn(III), 0.06 mol dW'(Mnll), 3.6 mol dm-" sulphuric 
acid and trisodium trimetaphosphate as above 

The chemilurninescence from the hydroxy benzoic acids was unexpectedly low. Only 

2,6 dihydroxy benzoic acid (y-resorcylic acid) gave a signal comparable with that for 

glucose. The signals for 2,4 dihydroxy benzoic (p- resorcylic) and 2,5 dihydroxy 

benzoic (genistic) acids were less than a tenth of that for glucose, with or without 

phosphate. The reactions are fast compared with permanganate oxidations of 

sugars. 
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6.4.4 Further Flow Studies with Prepared Manganese (111) Reagents 

6.4-4.1 Investigation of the Manganese (111) Reagent in a Post-column Format. 

To investigate the potential use of the system in a post column format for use with a 

separation system a new manifold was set up. Sugar solution was injected into a 

water carrier and the reagent was added immediately before the detector via aT 

piece, manifold 3. This system was compared with the reverse FIA system, manifold 

2. It was found that considerable precipitation of manganese dioxide occurred unless 

a high concentration of acid was present in the carrier stream. The results are shown 

in figure 6.20. 

For both manifolds there was a significant blank signal. The results in figure 6.20 

were corrected for the blank but still showed deviation from linearity for the 10-5 mol 

dM-3 pea s. 

Figure 6.20 Comparison of Manifolds 2 and 3 for Calibration Lines with 
Glucose and Manganese (111) Reagent 
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, Glucose concentration as indicated carrier 1.8 mol dM-3 acid. 
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Examination of the parameters for the linear fits demonstrates that manifold 2 gave 

considerably higher signals as shown in Table 6.11 

Table 6.11 Parameters for Glucose Calibration lines 
Manifold intercept/ mV Slope / mV 

mol-' dM3 
R 

2 1.7 3292 0.9992 

3 1.7 1776 0.9978 

Results with manifold 3 demonstrated the reagent's potential usefulness in a post 

column situation. The sensitivity was considerably better than with permanganate. 

Manifold 2 gave the higher signals and was used in further optimisation. 

6.4.4.2 Effect of Manganese (111) and acid Concentrations 

Strong manganese (111) reagent was prepared, as before, in 20% of concentrated 

sulphuric acid (3.6 mol d M-3) . 
Dilutions were carried out using 20% sulphuric acid to 

give nominal manganese (111) concentrations between 0.0025 and 0.05 mol dM-3 . For 

each reagent, glucose at 0.1,0.01 and 0.001 mol d M-3 was injected. 

Figure 6.21 Effect of Manganese (111) Variation using Manifold 2 
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An almost linear relationship between manganese (111) concentration and signal was 

observed as shown in Figure 6.21. 

The effect of the acid concentration was also investigated further. Using the full 

strength reagent, nominal manganese (111) 0.05 mol d M-3, the concentration of acid in 

the second line was varied between zero and 5 mol dM-3 giving a range of acid 

concentrations from zero to 2.5 mol d M-3 in the mixed acid/ glucose solution. 

Figure 6.22 Effect of Acid Variation using Manifold 2 
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At acid concentrations up to 1 mol dM-3 severe precipitation of manganese dioxide 

occurred resulting in a downward drift in signal. It was necessary to clean the system 

after a small number of injections. When the second line contained water only two or 

three injections could be carded out before cleaning was necessary. The results, 

which are shown in Figure 6.22, show a large, non-linear negative relationship 

between acid strength and signal height. At low acid concentration Mn 3+ is 

hydrolysed to Mn(OH)2+ which is a more reactive species, 262 possibly explaining the 

higher signal. 
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6.4.4.3 Effect of Manganese (11) Concentration 

Continuing to use manifold 2 the effects of manganese (11) concentration in the 

carrier and in the inject were investigated. From previous work it was evident that, as 

expected, high levels of acid and high levels of manganese (11) stabilise the 

manganese(III) reagent. It was found that using 20% concentrated acid and cooling 

the reagent on ice during preparation and in use a reagent with a Mn(Il): Mn(III) ratio 

of 1: 1 could be reproducibly prepared. Using a nominal Mn(Ill) concentration of 

0.025 mol dM-3 Mn(Il): Mn(III) ratios in the range 1: 1 to 10: 1 were prepared and used 

as the inject. 

As for the previous experiments, glucose concentrations of 0.1,0.01 and 0.001 mol 

dM-3 were used. When the manganese (11) concentration in the inject was increased 

there was a decrease in the size of the signal. The results are shown in Figure 6.23. 

A decrease in signal of approximately 10% was observed for a tenfold increase in 

manganese (11) concentration. The relationship is not linear. 

Figure 6.23 Effect of Manganese (11) Concentration in the Inject 
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As for the previous experiments, glucose concentrations of 0.1,0.01 and 0.001 mol 

dM-3 were used. When the manganese (11) concentration in the inject was increased 

there was a decrease in the size of the signal. The results are shown in Figure 6.23. 

A decrease in signal of approximately 10% was observed for a tenfold increase in 

manganese (11) concentration. The relationship is not linear. 

Finally, manganese (11) was added to the carder so that glucose and manganese (11) 

were mixed before the manganese(Ill) was injected. The concentrations of glucose 

and acid were as for the previous experiment. In this there was little change in the 

chemiluminescence signal with increasing manganese (11) concentration. 

6.4.4.4 Comparisons for Different Saccharides and Related Compounds 

Calibration lines were run for a range of saccharides and related compounds using 

the conditions established above for manifold 2. The parameters for linear-linear 

plots are shown in table 6.12. 

As with permanganate, fructose gives a very high response, and linearity is lost at 

the top of the concentration range. The log-log calibration lines for saccharides and 

polyols are shown in Figures 6.24 A and B. 

It can be seen that for the polyols an increase in the number of hydroxy groups 

results in an increase in the except for glycerol (three hydroxy) which gives a lower 

signal than would be expected. This is the same pattern that was observed with 

permanganate. 
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Table 6.12 Parameters for Calibration lines for Saccharides and Related 
Compounds 
Compound Slope /mV mol dm--3 

Value sd ± 

Intercept /mV 

Value sd + 

R 

Glucose 2389 28 1.5 1.5 0.99979 

Galactose 3731 50 2.5 2.2 0.99973 

Fructose 16439 642 31 28 0.99772 

0.0001 to 0.01 27898 334 2.1 1.9 0.99993 

Arabinose 5128 107 5.2 4.8 0.99934 

Xylose 6057 13 1.1 0.58 0.99999 

Maltose 1487 6.4 0.62 0.29 0.99997 

Sucrose 173 3.2 0.15 0.14 0.99876 

Lactose 1886 12.4 0.78 0.56 0.99994 

Mannitol 3717 738 37.8 33.2 0.94561 

Sorbitol 8758 1628 87 73 0.95188 

Glycerol 201 2.1 0.27 0.10 0.99983 

Meso erythritol 2680 102 4.9 4.6 0.99785 

1,2 Propandiol 1418 29 1.5 1.3 0.99936 

Formaldehyde 16 1.2 0.13 0.05 0.99109 

Glucosamine 13 1.2 0.10 0.05 0.99870 

Concentration range 1x1O-4to 0.1 mol dm-; ' unless otherwise indicated 
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Figure 6.24 A Calibration lines for Mono- and Disaccharides 
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Figure 6.24 B Calibration lines for Polyols and Related Compounds 
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6.4.5 Effects of Organic Solvents on Chemiluminescence Signal 

One of the aims of the project was to investigate the potential of permanganate 

systems in post column liquid chromatography. Manifold 3 was investigated further, 

although this had previously given a lower response than manifold 2. In order to 

simulate a liquid chromatography situation volumes of 1004L or 5004L, consisting of 

lengths of 0.8mm id PTFE tubing, were introduced between the injection valve and 

the T piece. Some dispersion could occur in the tubing; this increased the peak width 

enabling peak shapes to be considered. 

Reverse phase chromatography systems require the use of some non aqueous 

solvent in the mobile phase and methanol was chosen for initial investigation. 

6.4.5.1 Effect of Adding Methanol to the Carrier 

Calibration lines for aqueous glucose solutions were run. A 500gl- dispersion volume 

was used with 80% and 90% methanol carriers and a 100ý1 dispersion volume was 

used with a 90% methanol carder. A comparison of the regressions is given in Table 

6.13. As expected the dispersion volume made a large difference in the peak height. 

In all cases the peak shapes were typical of FIA and chromatography peaks. Even 

with the larger dispersion volumes the peak heights obtained were considerably 

higher than previously observed from the same manifold using 2 mol dM-3 sulphuric 

acid as the carrier. 

Table 6-13 Parameters for Calibration lines for Glucose with Methanol Carriers 
Carrier Slope /mV mol dM-3 Intercept /mV R 

Value sd ± Value sd ± 
80% Methanol 3318 42 -0.3 0.8 0.99951 
500gl- 
90% Methanol 3749 15 -0.5 0.6 0.99996 

500 L 
90% Methanol 5403 31 -0.002 0.6 0.99990 
1004 1 - 
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6.4-5.2 Effect of Adding Methanol to the Reagent 

To increase the percentage of methanol in the system the calibration was repeated 

using standards prepared in 50% methanol and diluting the reagent with an equal 

volume of methanol. Although the reagent concentration was reduced to half, the 

slope of the calibration line increased from' 5403 to 7786 mV mol-' dM3. 

Figure 6.25 Effect of Methanol on the Calibration lines for Glucose 
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mol dM 3 in sulphuric acid 

Figure 6.25 shows the calibration lines for reagent and analyte with and without 

methanol. The position for the calibration line with a2 mol dM-3 sulphuric acid carder 

is shown for comparison. The mixed reagent appeared clear but was orange/brown 

in colour, rather than the clear red of the aqueous reagent. The absorbance, 

scanned between 250 and 700nm, in a2 mm path-length cuvette, showed a broad 

absorbance up to 600nm. A freshly prepared mixture showed a spectrum, shown in 

figure 6.26 typical of manganese (111) which over a period of 10 minutes disappeared 

leaving a spectrum typical of that of manganese dioxide sol. 
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Figure 6.26 Absorbance Spectra for Manganese(111) Reagent with 
Methanol 
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6.4.5.3 Preparation of an Improved Manganese (111) Reagent 

Several attempts were made to prepare a reagent with high manganese (111) in 

methanol with a reduced acid content. Due to the oxidation of methanol by 

permanganate it was necessary to dissolve the permanganate in water, reducing the 

maximum concentration of methanol in the reagent. It was found that by careful 
191 



cooling during preparation, the acid concentration could be reduced to half that 

required for an aqueous reagent. A strict cooling regime made it possible to prepare 

the reagent reproducibly with only occasional failures due to precipitation of 

manganese dioxide. The. reagents were held in ice baths during use although 

warming to room temperature only rarely resulted in precipitation. 

The final methanolic reagent formulation appeared red in colour. Assuming 

quantitative conversion of manganese (VII) to manganese (111), it contained an initial 

manganese (111) concentration of 0.0625 mol dM-3 

. Absorbance scans showed that 

the manganese dioxide sol was gradually formed in the solution, as previously 

described, however the colour and clarity of the reagent was visually unchanged 

during the time of use, up to 6 hours. When stored refrigerated, for more than 24 

hours, the solution became pale pink as the methanol was gradually oxidised. 

The stability of the methanolic reagent at 2' ± 2'C, and at room temperature, 200± 

2'C, was assessed by injection of glucose standards at fifteen minute intervals over 

six hours. The results are shown in Figure 6.27. 

Figure 6.27 Stability of Methanolic Reagent 
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At room temperature there was a large decrease in signal size in the first hour, then 

gradual decrease. When kept cold, the reagent was stable for at least five hours. 

6.4.5.4 Effect of the Ratio of Carrier to Reagent 

It had been found that the signal increased with increasing manganese (111) 

concentration. It also appeared that the rate at which the reagent was added was 

inversely related to the signal. This was studied further by modifying manifold 3 

altering the ratio of flow rates by using a larger pump tube, 2mm id, to deliver the 

carrier and a smaller diameter pump tube 0.05mm id to deliver the reagent, changing 

the ratio of reagent to carder from 1: 1 to approximately 1: 13. Both the aqueous and 

the standard reagent were used with a 90% methanol carrier and standards prepared 

in 90% methanol. The methanolic reagent gave higher signals than the aqueous and 

signals were considerably higher for the 1: 13 ratio than the 1: 1. The linear range for 

glucose was WOW 1x1O-1 mol dM-3 . For fructose and galactose, which both give 

higher signals with the permanganate/ manganese (11) systems, the linear ranges 

were from 2x1 0-7 and 5xl 0-7 mol dM-3 respectively. The upper end of the linear range 

for each was 1 x1 0-2mol d M-3 . 
For fructose the calibration line curved at the top end. 

For galactose the range was limited by the solubility of the sugar in 90% methanol. 

Table 6.14 Parameters for Calibration lines for Monosaccharides 
Analyte Slope /mV mol dM-3 Intercept /mV R 

Value sd ± Value sd 
Glucose 29601 1136 51 47 0.99707 

Aqueous 
Glucose 38836 140 8.5 5.7 0.99997 

Methanolic 
Galactose 70103 1829 8.8 7.5 0.99864 

Aqueous 
Galactose 96238 148 0.86 0.60 1.00000 

Methanolic 
Fructose 170182 5952 26 23 0.99696 

Aqueous 
Fructose 325503 11690 42 44 0.99679 

Methanolic 
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As shown in Table 6.14, slopes for the lines using methanolic reagent are higher than 

those for the aqueous reagent. Considering the difference in flow rates between 

carder and reagent, the differences in methanol concentration and acid concentration 

in the mixed stream are small. The difference must depend on chemistry within the 

reagent before it mixes with the dispersed analyte in the carrier stream. 

The conditions in the methanolic reagent favour production of some manganese (IV) 

oxide sol. The sulphuric acid concentration, and hence both the acid strength and 

sulphate concentrations, are reduced. Hydrolysis of manganese (111) to Mn(OH)2+ 

followed by disproportionation results in production of manganese (IV). Previous 

spectroscopic findings had suggested that both manganese (IV) and manganese 

reactions result in chemiluminescence with the reactions taking place at different 

rates. The UV findings described above are also consistent with the presence of 

increased levels of manganese (IV) in the reagent, prior to mixing with the carrier 

analyte stream. 

The slope for the glucose/ aqueous reagent system is considerably higher than 

previously seen for matched carder-reagent flows. The reagent is mixing with the 

carder stream in a much reduced ratio therefore the acid concentration and sulphate 

concentrations are reduced to a much greater extent than for matched flows, again 

favoudng disproportionation of manganese (111). 

The effects of flow ratios were further investigated using separate pumps for the 

carder and reagent. Methanolic reagent and 90% methanol carrier were used as 

before and 1 X1 0-3, glucose in 90% methanol was injected; pump speeds were varied. 

Figure 6.28 shows the relationship between the peak height and the flow rates of 

carder and reagent. The highest signal is obtained when the carder flow rate is high 

and the reagent flow rate is low. The largest peaks were from a carder to reagent 
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ratio of 32: 1. This value was clearly still not the optimum, however higher carder flow 

rates were impractical due to the increased back-pressure tending to cause leaks. 

The low reagent flow rates gave poorer repeatability for the peak heights. 

Figure 6.28 Effect of Carrier and Reagent Flow-rates on 
Chemiluminescence 
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Further studies were carried out using a ratio of 13: 1 using a single pump 

6.4.6.6 Further Attempts to Prepare Stronger Reagents 

Methanolic reagents were prepared using larger amounts of permanganate to 

contain double the concentration of manganese (111) and manganese (11). Limiting 

solubility of manganese sulphate in methanol limited the final concentration, in which 

case saturated solutions were prepared. Absorbance spectra were measured for the 

preparations and first derivatives were measured in order to estimate the relative 

concentrations of manganese (111). A preparation made using double the amount of 

permanganate, maintaining the ratio of manganese (111) gave a spectrum typical of 
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those for manganese dioxide sol, and showed no peaks on the first derivative. For 

the other solutions the derivative spectra are shown in figure 6.29 and the peak to 

peak data is shown in table 6.15. 
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Figure 6.29 Derivative Spectra for Methanolic Reagents 
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Table 6.16 First Derivative Absorbance Measurements for High-strength 
Manuanese (111) Reaaents 

Potassium 
permanganate 

/g 

Manganese 
sulphate 

/g 

Sulphuric acid 
/cm, 

Derivative 
absorbance 

/AU 

0.158 1.5 10 0.0242 

0.316 2.3 10 0.0063 

0.316 3.0* 10 0.0296 

0.316 2.1 20 0.0536 

0.316 3.0* 20 0.0330 

As expected, a higher manganese (11) to permanganate ratio resulted in a higher 

apparent manganese (111) content. Reagents at this concentration could not be 

reliably produced and the single strength reagents were used for further work. 
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6.4.5 Flow Studies using Ribose and Inositol 

In order to further investigate the relationships between sugar configuration and 

signal size an additional saccharide, ribose and a cyclic polyol, myo-inositiol were 

compared with glucose. Ribose, like fructose, has a significant proportion of the 

sugar in the furanose forms in mutarotational equilibrium in solution. See also table 

4.9. The absence of a bulky CH20H group reduces the difference in stability 

between the a and 0 anorners. 

Table 6.16 Percentacie of Different Conformers in Solution at EauilibriUM264 
Sugar (x Furanose Furanose ot Pyranose Pyranose 

Ribose 6.5 13.5 21.5 58.5 

Fructose <1 25 8 67 

Inositols are cyclic hexanehexols present in plant and animal tissue, frequently 

combined with phosphate. The most widely distributed is myoinositol, which is a 

meso form, shown in Scheme 6.1. 

H 
Scheme 6.1 
myo-inositol 

As with the saccharides the favoured conformation has the largest number of 

hydroxyls in equatorial positions. 

Using manifold 3 with aqueous and methanolic reagents, methanolic carriers and a 

13: 1 carder: reagent flow ratio, calibration lines were run for ribose and myo-inositol. 

Glucose, fructose and mannitol were run for comparison. A flow rate was selected to 
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give the maximum signal for jX10-3 mol dM-3 glucose and maintained throughout. 

The parameters for the calibration lines for saccharides and polyols are shown in 

Tables 6.17 A and B. 

Table 6.17 A Parameters for Calibration lines for Monosaccharides, 
Analyte Slope /mV mol dm-3 

Value sd 
Intercept /mV 
Value sd 

R 

Aqueous 
Glucose 18977 79 0.66 0.32 0.99997 

Ribose 
jX10-6 to jX10-2 

49931 3051 14 13 0.99261 

Ribose 
jX10-6 to jX10-3 

112250 104 0.69 0.47 0.99987 

Fructose 
jX10-6 to jX10-2 

149528 3452 15 14 0.99894 

Fructose 
1 X1 0-6 to 1 X1 0-3 

220060 87 0.65 0.39 0.99998 

Methanolic 
Glucose 31720 90 0.71 0.40 0.99999 

Ribose 
1 X1 0-6 to 1 X1 0-2 

35278 900 4.4 4.0 0.99903 

Tahle 6-17 B Parameters for Calihration lines for Polvols 
Analyte Slope /mV mol dM-3 Intercept /mV R 

Value sd Value sd 
Aqueou 
Mannitol 25014 3326 15 14 0.96640 
jX10-6 to jX10-2 

Mannitol 92908 1864 1.13 0.84 0.99940 
jX10-6 to jX10-3 

Myo Inositol 220.5 9.8 0.28 0.04 0.99609 
jX10-6 to jX10-2 

Methanolic 
Mannitol 7185 1873 9.1 8.4 0.91143 
jX10-6 to jX10-2 

Mannitol 40852 596 0.33 0.30 0.99979 
, X, 0-6 to jX10-3 t 

Myo Inositol 282 0.16 a 
1 X1 0-6 to 1 X1 0-2 

a Average of highest and lowest concentrations only, intermemate concentrations 
gave no measurable signals 

As anticipated, the response for ribose was higher than that for glucose. It was lower 

that that for fructose, showing that the proportion of furanose form in the equilibrium 
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mixture, 20: 80 for ribose and 25: 75 for fructose, is probably not the most significant 

factor for the intensity of signal from different saccharides. 

The response for myo-inositiol is very low, and the relationship is anomalous. This 

appears to be due to the slow rate of reaction. Plots of signal against flow rate using 

methanolic reagent for the saccharides and polyols are shown in Figure 6.30. As a 

single pump was used the carrier: reagent ratio was maintained. 

Figure 6.30 Effect of Flow-rate on Chemiluminescence for 
Saccharides and Polyols 
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The highest signal for the saccharides is at approximately 2.5 CM3 min-', the flow rate 

used in constructing the calibration lines above. For the polyols the maximum for 

mannitol was 1.5 CM3 min-' and that for inositol was below the range examined 

showing that the emission is essentially complete before the detector is reached. 

As discussed previously, there was day to day variation in the signal due to the 

variability of the photomultiplier. Under optimum conditions the linear response for 

fructose was over the range jX10-7 to jX10-2 mol d M-3 
, as shown in Figure 6.31. 
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Figure 6.31 Calibration line for Fructose in Methanol with 
Methanolic Manganese (111) Reagent 
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6.4.6 Kinetic Studies Using Batch Counting 

In order to study the rate of emission in more detail batch counting was used as 

before. To achieve a satisfactory rate of emission mixtures were prepared consisting 

of 2 CM3 carrier, 2 mol dM-3 sulphuric acid, and increasing volumes of 0.1 mol d M-3 

glucose to give between 0.002 and . 02 mol dm-3. The reaction was started using 0.1 

cm 3 methanolic reagent. In all experiments excess reductant was used, as confirmed 

by the colourless appearance of the solution at the end of the experiment. It was not 

possible to control the temperature of the reaction. Room temperature was recorded 

and is indicated in the corresponding tables. Manganese (111) reagents were stored 

on ice before use. As the mass of reagent was small compared with the mass of the 

vial and reaction solutions the difference in temperature due to the addition was small 

and reasonably consistent. 
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Figure 6.33 Chemiluminescence Time-courses for 
Methanolic Manganese(Ill) Reagent with Glucose 
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The curves, which are averages for three runs are shown in Figure 6.33. The curve 

data fitted well to an exponential decay model and it was found that a run time of 7 

minutes was sufficient to define the slope satisfactorily. Curves were fitted using the 

Solver fitting routine in the Excel software package. 114 The slope over the first 15 

seconds was calculated in units of counts (12sec)-l sec-'. 

Figure 6.34 Relationship between the Initial Slope and 
Concentration of Glucose. 
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Figure 6.34 shows the relationship between the initial slope and concentration of 

glucose. The data, as expected, fitted well to a sigrnoidal function. 

Stopped-flow studies have shown that the emission is fast. At these concentrations 

of reductant and manganese (111) the excited species is produced very quickly. 

Where the emission profile approximates to an exponential decay it represents the 

emission of light from a population of the excited species which is no longer being 

formed. This was clearly not the case in the studies described above in section 

6.4.2. At lower reductant concentration more than one stage producing emitting 

species was seen. For a profile which fits the exponential decay function the initial 

rate of decay of emission is proportional to the concentration of emitting species 

generated. This, in turn, depends on the rate of the reaction generating the species, 

allowing a comparison to be made between rates of reaction for different analytes 

A log-log plot of the data in Figure 6.33 is shown as Figure 6.34. 

Figure 6.34 Relationship Between the Initial Slope and 
Concentration of Glucose. 
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It is a straight line with a slope of 2.5 and an intercept of 7.85. The results of repeat 

runs over ten days are shown in Table 6.18. 

Table 6.18 Reoeatabilitv of Glucose Resoonse Linear-Linear Calibration lines 
Date T/ T Range Slope I ntercept R 

16-03-98 22 2.1x1 0-3 
- 3.7xl 0-2 2.50 7.85 0.9995 

19-03-98 21 4. Ox1 0-3 
- 3.2x 1 0-2 2.10 6.74 0.9982 

20-03-98 23 3.3xl 0-4 
- 3.3xl 0-2 2.14 7.19 1.0000 

23-03-98 22 3.3x1 0-4 
- 3.3x 1 0-2 2.23 7.18 0.9974 

24-03-98 23 3.3xl 0-4 
- 3.3x 1 0-2 2.57 7.76 0.9992 

25-03-98 24 3.3x1 0-4 
- 3.3x1 0-2 2.20 7.23 0.9968 

Mean 2.29 
± 0.196* 

7.325 
± 0.414* 

9 95% Cl 

Using the differential method to calculate the rate and order of the reaction shows 

that under the conditions used the reaction is approximately second order in glucose 

The variation in rate does not correlate with the observed temperature differences 

Figure 6.35 Relationship Between the Initial Slope and 
Concentration of Manganese (111) 
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Figure 6.35 shows the relationship between initial slope and reagent concentration. 

Slope and intercept are very similar in sulphuric acid and methanol medium. 

A range of saccharides and polyols was examined as above, using the sulphuric acid 

medium. The analyte concentration range was limited at the upper end by the 

linearity of the log-log plot. Additional points were established by doubling dilutions 

of analyte until the shape of the time course could no longer be represented by an 

exponential decay function. Glucose was run as a standard with each set. The 

parameters for the log-log plots are shown in Table 6.19 

Table 6.19 Parameters for Linear fits to Log- Log plots for Saccharides and 
Polvols 
Analyte T/ 

0C 
Range Slope Intercept R 

Glucose 
(from 7.18) 

2.29 
0.196* 

7.325 
0.414* 

Galactose 23 3.3x1 0-4 
- 3.3x 1 0-2 2.26 7.24 0.9983 

Fructose 23 2. Oxl 0-3 
- 3.3x1 0-2 1.41 7.13 0.9925 

Ribose 21 1.6xl 0-3 
- 8. Ox1P 2.11 8.48 0.9985 

Arabinose 22 3.3x1 0-4 
- 3.3x 1 0-2 

-- 

2.29 8.31 0.9998 

Xylose 22 3.3x1 0-4 
- 3.3x1 6: 2 1.99 7.26 0.9988 

Maltose 23 3.3x1 0-4 
- 3.3x1 0-2 2.15 6.55 0.9957 

Lactose 23 3.3x1 0-4 
- 3.3x 1 0-2 2.07 6.60 0.9992 

Dextran 21 3.3x1 0-4 
- 3.3x 1 0-2 

as monosaccharide 
1.98 3.84 0.9866 

1,2 
Propandiol 

23 3.3x1 0-4 
- 3.3x1 0-2 1.86 6.23 0.9964 

Glycerol 24 1.7xl 0-2 
-0.17 

- 

1.74 4.64 0.9909 

Erythritol 24 3.3x1 0-4 
- 3.3x1 6: r 1.82 6.27 0.9943 

Mannitol 24 3.3x1 0'4 
- 3.3x1 0 -2 

-0.17 1.88 0.8677 

Sorbitol 24 5. Ox1 0-4 
- 3.3x 1 0-2 0.54 5.03 0.9995 

95% Cl 
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The time course for sucrose showed a lag similar to those observed for 

permanganate reactions. This is due to the acid hydrolysis of sucrose followed by 

the reaction of fructose and glucose with manganese (111). No slopes could be 

calculated. Attempts to run myo-inositol were unsuccessful as the limit of solubility 

was reached before a significant signal was obtained. The reaction with ascorbic 

acid was too fast to measure; the reaction was complete within first 15 sec. 

Using a Mest the values for slope and intercept were compared with the set of results 

for glucose. With the exception of fructose, the values for the saccharides are not 

significantly different from those for glucose. For the polyhydroxy compounds, 

however, only propan 1,2-diol and erythritol have slopes approaching 2. For sorbitol 

the dependence on the reductant concentration is fractional and for mannitol there is 

no apparent dependence on the reductant concentration, suggesting that a different 

mechanism is operating. 

Figure 6.36 Log- Log plots of Initial Slope against Concentration for 
a Representative Saccharides and Polyols 
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Figure 6.36 shows plots for a number of saccharides and polyols. 
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In order to assess the possibility of using the reagent in determination of 

polysaccharides, a dextran of average molecular weight 2x106was examined under 

the same conditions. The result is included in Table 6.19 with the concentration of 

dextran expressed as monosaccharide. The signal is considerably lower than those 

for the other materials but the slope not significantly different from those for mono- 

and disacchaddes. 

6.4.7 Chemiluminescence Spectroscopy Using Stopped- Flow 

Chemiluminescence spectra were run for fructose and glucose in a range of solvents. 

As the reactions are fast stopped-flow and continuous flow methods were used. The 

methanolic manganese (111) reagent was, diluted in 10% sulphuric acid in methanol. 

A typical stopped-flow time course at 700nm is shown in Figure 6.37 it is the average 

of ten experiments. 

Figure 6.37 Chemiluminescence Time-course at 700nm for the Reaction 
of Fructose in methanol with Manganese (111) reagent - Stopped-flow 
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Figure 6.38 shows the spectrum for the same reaction. As the reaction is fast the 

scan was made immediately on mixing. Fitting a Gaussian curves to the data gave a 

peak maximum of 700 ±1 Onm, irrespective of the solvent. The peak parameters for 

glucose and fructose in a range of solvents are shown in Table 6.20. 

Figure 6.38 Chemiluminescence from the Reaction of Fructose in 
Methanol with Manganese (111) Reagent - Stopped-flow 
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Syringe 1 Manganese (111) reagent diluted 1+ 4 sulphuric acid 10% in methanol 
Syringe 2 Fructose 0.0 1 mol dM 3 in methanol 

Table 6.20 Parameters for Chemiluminescence Spectra for Sugars in 
Oraanic Solvents bv Stowed-flow 

Sugar Solvent ? ýfnax/ nm Width/ nm Peak area 

Fructose Methanol 700.8 100.2 109781 

Fructose Ethanol 701.7 99.9 110746 

Fructose Acetone 704.9 107.6 58720 

Fructose Ethyl acetate/ 
methanol 

701.9 98.7 74042 

Glucose Methanol 693.0 122 20867 

Glucose Ethanol 699.7 97.2 11167 

Glucose Ethyl acetate 
/methanol 

704.5 102 11006 
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Spectra were also collected using continuous flow. Sugar solutions were prepared in 

methanol as before but the methanolic manganese (111) reagent was used without 

dilution. The required ratio of reagent to sample was established by using different 

pump tubes. To improve the signal to noise ratio multiple fast scans were averaged 

instrumentally using the computerised averaging for transients (CAT) facility. Again 

the wavelength maxima were 700±10nm. It was found that the signal intensity 

increased with increasing flow rate up to a maximum at 7 CM3 min '. Spectra for 

fructose in methanol at three different flow rates are shown in figure 6.39. 

Figure 6.39 Chemiluminescence from the Reaction of Fructose 
in Methanol with Manganese (111) Reagent - Continuous-flow 
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The spectral maxima are the same as for permanganate reactions, irrespective of the 

solvent mixture used, confirming that the same emitting species is probably involved 

in all the reactions and that it involves a manganese species. 

Gauss fit for Glucose /Methanol 
Area Center Width Height 
87952 693.0 94.1 745.42 
1.2867E5 691.8 92.6 1109.3 
1.7902E5 692.3 94.2 1516.7 
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6.5 Electrochemical generation of Manganese(Ill) 

Several workers have produced manganese (111) electrochemically' 
55,262 for use in 

oxidation studies. In order to investigate the possibility of using electrog e ne rated 

manganese (111), cyclic voltarnmetry was undertaken on a solution of manganese 

sulphate in sulphuric acid.. 

Figure 6.40 Cyclic Voltammogram for Manganese (11) sulphate 
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The voltarnmogram is shown in Figure 6.40. Two oxidation peaks were observed at 

1.3 and 1.7V, suggesting that manganese (11) can be readily oxidised 

electrochemically for use as an oxidant. 
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6.6 Summary 

The reaction of sugars with manganese (IV) dioxide sol was investigated and found 

to give CL in the presence of acid. The emission of light was faster than had been 

observed for permanganate. The intensity of emission was limited by the maximum 

concentration of sol that could be prepared. The CL time-course suggests the 

presence of two oxidising species, probably Mn (IV) and Mn (111). 

Oxidation of sugars with Mn (111), both as commercial acetate and Mn (111) sulphate in 

strong acid prepared from permanganate, was also found to give fast light emission. 

As for Mn (IV), two phases were observed for the CL time-course. The prepared Mn 

(111) reagent was found to give significantly more intense chemiluminescence than 

permanganate for aliphatic polyhydroxy compounds. Further modifications in acid 

concentrations and preparation technique produced an improved reagent. A flow 

injection determination for sugars and related carbohydrates was optimised using the 

new reagent. The CL time-courses for reactions with sugars and polyols indicated 

that different mechanisms are present in the generation of the excited species. 

Methanol was found to significantly enhance the emission for the Mn (111) reagent, 

indicating the potential for use of the reagent for post-column detection in 

chromatographic systems using organic solvents. 

Chem ilu mi nescence spectra from the reactions of sugars and polyols compounds 

with Mn (IV) and Mn (111) species were the same as the from reactions with 

permanganate indicating that the same emitting species is probably generated in all 

the manganese oxidation reactions. 

Initial investigations suggest that electrochemical generation of the manganese 

reagent is possible, with the potential of in-situ generation of the oxidant in the 

analytical flow injection, or post column system. 
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CHAPTER 7 

APPLICATIONS OF THE MANGANESE (111) REAGENT 

HPLC WITH CHEMILLIMINESCENCE DETECTION 

The determination of carbohydrates using the permanganate or manganese 

reagents in flow injection systems is suitable for cases where individual 

carbohydrates are present. If the ratio of sugars in a mixture is known it is possible 

to prepare a suitable calibration mixture to determine total sugar. If the sugars are 

previously separated in a chromatographic system then it is possible to accurately 

determine levels of individual compounds. 

7.1 Chromatographic analysis of carbohydrates 

High performance liquid chromatography (HPLC) is the most used separation 

method for identification and determination of sugars in foods. 26,5-266 

7.1.1 Choice of Chromatographic System 

Many phases have been used for the separation of carbohydrates, the choice 

depending on whether only mono and disaccharides are to be determined or if a 

determination of oligosaccharides is also required. 

Of silica based phases the most frequently used is the aminopropyl-bonded phase 

with an acetonitrile/ water mobile phase. Octadecyl silica and diol bonded silica 

phases are also used. Unbonded silica phases can be used by modifying the mobile 

phase with arnines, but these systems are not now often used. Cyclodextrine 
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bonded phases are also available and can separate anomeric forms of 

monosaccharides. 231 The other main type of separation used is ion chromatography, 

with both anion and cation systems based on polystyrene divynilbenzene. Ion 

chromatography columns have the advantage of a wide pH range but are expensive. 

For polysaccharides size exclusion systems can be used. 

7.1.2 Detection Systems 

Sugars do not absorb UV light at analytically useful wavelengths therefore UV and 

fluorescence detectors cannot generally be used on the underivatised analytes. 

Wavelengths below 200nm have been used but, as most HPLC solvents also have 

significant absorbance at below 200nm, the system is only suitable for very high 

sugar concentrations. 

Refractive index detectors are often used but are highly susceptible to changes in 

column temperature and solvent composition so in practice the limit of detection of 

sugar is 5 to 10ýtg. They are still commonly used for analysis of foods containing 

more than 1% of each sugar. The evaporative light scattering detector (ELS) is 

applicable to any non-volatile solute and has been used for detection of sugars. 267 

Good sensitivity, in the region of 30ng on column, has been reported. 26" ELS 

detectors have poor linearity over the wide working ranges required in food analysis. 

As the detector measures a bulk property, like the refractive index detector, it is not 

selective. 

For low levels of saccharides ion chromatography with pulsed amperometric 

detection is used. The system is very sensitive, capable of detecting ng amounts of 

sugars, and has been used to determine levels of sugars in authenticity studies. 
M 270 

The systems are expensive to buy and run. 
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In order to improve the sensitivity using normal or reverse phase HPLC pre-or post- 

column derivatisation is used to make UV absorbing or fluorescing products. 27' In 

general post column derivatisation is preferred, as derivatives may be unstable and 

reagents and secondary products could affect the chromatography. Post column 

methods for carbohydrates have been reviewed. 272 Several classical reactions have 

been adapted based on conversion of sugars to furfurals in strong mineral acid. 

Condensation with a reagent such as orcinol, anthrone or carbazole gives derivatives 

that absorb in the UV or visible regions. These systems have limits of detection of 

the order of 20ng, depending on the carbohydrate. Fluorescing and electroactive 

derivatives have been prepared by reaction with ethylenediamine, 2-cyanoacetamide 

and arginine. Limits of detection down to 4ng have been achieved. These reactions 

require long reaction times and/or heating to temperatures of more than 1000, 

necessitating the use of long post column reactors, some of several meters in length. 

Band broadening is considerable. Segmentation has been used to limit dispersion. 

Chemiluminescence detection systems for HPLC have been proposed. 
273,274 

Systems based on lumin01275,27" and peroxyoxalate', 
1.2' 

are the most widely used. 

Permanganate chemiluminescence has been used for detection of morphine'62 279. A 

detection system based on the manganese (111) chemiluminescent reaction would 

have the advantages of a rapid reaction with mild conditions. 

Aminopropyl bonded silica was chosen as the chromatographic phase. Columns 

were readily available are the most widely used columns for sugar analysis. 

7.2 Linking the Permanganate CL System to a Chromatograph 

Attempts were made to use permanganate directly, as in Figure 8.1. A standard 

chromatographic system with an acetonitrile/water mobile phase was set up. 
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Pipnpýq 

Figure 7.1 Post-Column Detection Manifold 

Acidic manganese sulphate/ ferrous sulphate was mixed with the column eluent and 

then aqueous permanganate was added immediately before the detector as in Figure 

7.1. Problems were found with maintaining adequate flows of the two reagents using 

a peristaltic pump and no working system was obtained. 

7.3 Linking the manganese (111) CL System to a Chromatograph 

After the manganese (111) reagent was developed a simple single line post column 

system was set up as figure 7.2. 

7.3.1 Separation System 

The glucose/cellobiose separation was taken as a model to assess the practicality of 

using the manganese (111) reagent in a post column detection system. The system 

was selected as of interest in enzyme studies in the formation of glucose oligomers. 

Typical sugar levels are below levels which can be measured using a refractive index 

detector. 

The solvent most commonly used for the separation of sugars on aminopropyl 

columns is between 70 and 90% acetonitrile in water. It is known that acetonitrile 
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can quench some chemilurninescence systems and R was found that the 

permanganate chemiluminescence was strongly quenched. The standard 

chromatographic mobile phase was therefore unsuitable for use with the proposed 

post-column detection system. 

Figure 7.2 Post Column Chemiluminescence Detection System for Sugars 

ADC 

.......... 

PC 

SR- Solvent reservoir, RP- HPLC Pump, IV- Injection valve, C- HPLC column, RR- 
reagent reservoir, PP- Peristaltic pump, D- Detector, DC- Analog/digital converter 
PC-Computer 

As discussed in Chapter 6.4.5.1, methanol enhances the chemiluminescence, this is 

believed to be by stabilising the intermediate manganese species manganese (IV) 

and manganese (111). Although methanol is widely used as a solvent in reverse- 

phase HPLC no satisfactory separation of sugars has been reported using a 

methanol/water system. 

Few solvent systems other than acetonitrile/water or acetonitrile/ buffer have been 

reported, however ethanol/acetonitrile/water, 
2W, 281 

and acetone /ethyl acetate/water282 

have been reported to give adequate separation for small sugars. 
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A number of solvents were examined using a flow injection system to investigate the 

effect on the chemiluminescence signal. The chemiluminescence signals for glucose 

with the manganese (111) reagent using different solvents are shown in Table 7.1, 

Results are expressed relative to the signal with methanol. 

Table 7.1 Relative Signals for Glucose /Manganese 
Chem iluminescence using Chromatography Solvents 

Solvent Relative signal 

Methanol 1.00 

Ethanol 0.69 

Tetrahydrofuran 0.46 

Ethyl acetate 0.39 

Acetone 0.20 

Acetonitrile 0.03 

It is clear any acetonitrile would seriously affect sensitivity and that acetone is, also 

undesirable. Attempts were made to achieve separation with methanol/water, 

ethanol/water and ethanol/methanol/water and with methanol/tetrahyd rofu ran but no 

satisfactory separations were achieved for the model sugars. 

Finally mixtures of ethyl acetate and methanol were investigated and near baseline 

separation of equirnolar concentrations of glucose and cellobiose was achieved. The 

mobile phase was ethyl acetate/ methanol 55: 45 and a typical chromatograrn is 

shown in Figure 7.3. The mobile phase flow rate was optimised at 2 CM3 min-' which 

gave a separation in 6 minutes with adequate resolution and peak shape. 

216 



Figure 7.3 Chromatographic Separation of Glucose and Cellobiose 
using Manganese (111) Post-column Chemiluminescence Detection 
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The chromatographic parameters for glucose and cellobiose at jX10-3 mol dM-3 are 

shown in Table 7.2 

Table 7.2 Chromatoc-irag)hic Parameters for Glucose and Cellobiose 
Parameter Glucose TCellobiose 

Resolution/% 96 

K' 6.5 8.9 

Plates 440 370 

Asymmetry 1.7 2.0 

It can be seen that the efficiency of the column is poor, this could be due to an 

ageing column. The symmetry of the peaks is also poor but typical for sugars 

analysed on an amino column. 
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7.3.2 Optimisation of Post-column Parameters 

The methanolic manganese (111) reagent developed in the flow injection studies 

described in Chapter 6 was used unmodified. 

The conformation of the mixing T was varied and the highest signal was obtained for 

that shown in figure 7.2 with the reagent flowing straight through the top of the T and 

the column eluent entering through the side arm. The lowest signal was when the 

column eluent passed straight through the T and the reagent entered through the 

side arm. A peristaltic pump was used to pump the reagent so the back pressure 

generated at the T piece could affect the rate and reproducibility of pumping if 

reagent is added through the side arm. When, reagent is pumped straight the 

column eluent, which is pumped at a higher rate can aid the flow of reagent and 

improve the mixing efficiency resulting in a higher signal. 

Increasing the eluent flow rate increased the signal. Above 2.0 CM3 min-' the back 

pressure on the column was high therefore this flow rate was used for further studies. 

The effect of reagent flow rate was studied by varying both the pump speed and the 

tubing diameter. It was found that a low flow rate was required as shown in Figure 

7.4. The results are consistent with those from the flow injection studies. 

The use of more dilute reagent reduced the signal for a given flow rate showing that 

the decrease in signal at high flow rate is due to the increased dispersion at high flow 

rates and that a high concentration of manganese (111) is required in the reagent. A 

flow of 0.08 CM3 min-' was selected. Below this the repeatability became poor. it is 

probable that with the use of a piston pump, capable of reliably delivering low flow 

rates, higher signals could be achieved. 
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Figure 7.4 The Effect of Reagent Flow Rate on Peak Height 
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7.3.3 Calibration for Glucose 

A calibration for glucose over the range U10-5 to jX10-3 mol dM-3 gave excellent 

linearity R=0.999 and good reproducibility, RSDR of 3.86% for nine injections of 

1x1O-4mol dM-3 glucose. 

A calibration line is shown in Figure 7.5. The limit of detection, 217 calculated over the 

range jX10-5 to 1x1O-4mol dM-3, was found to be 4x1O-6mol dM-3, the equivalent of 

15ng on column for a 20ý1 injection. The limit of detection is comparable to that 

quoted for light scattering detectors. 
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Figure 7.5 Calibration line for Glucose 
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7.4 Summary 

A post column system for detection of sugars has been developed. The system 

shows linearity over two orders of magnitude and a limit of detection for glucose of 

15ng on column. This better than detection of underivatised sugars by UV or 

refractive index and equivalent to that for evaporative light scattering. The limit of 

detection is of the same order as for the classical sugar reactions which have been 

adapted as post column systems and does not require prolonged heating in order to 

develop the detectable species. The fast reaction allows the chemiluminescent 

reagent to be added immediately before the detector limiting the amount of 

dispersion and minimising peak broadening. The low optimal flow rate of reagent, 

which is derived from inexpensive chemicals, makes the system economical to run. 
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The chromatographic parameters, plate number and asymmetry, were poor, 

therefore further studies are required to improve the chromatographic system. 

Alternative columns should be investigated for separation of a wider range of sugars, 

however the present system is suitable for studies involving glucose. As the reagent 

is compatible with aqueous systems the system will be equally suitable for use with 

ion chromatography systems as an alternative to the expensive, gold electrode, 

pulsed amperometric detector. The reagent will also be suitable for use with 

cyclodextrin columns. Separation of anomers on cyclodextrin has been reported 

using an ethyl acetate/methanol/water phase231 which has been shown to be 

compatible with our reagent. 

It was shown earlier, in section 6.4.6 that oligosaccharides give lower signals that 

monosaccharides, particularly in the case of non-reducing sugars such as sucrose. 

A large molecule such as dextran with an average molecular weight of 2x1 06 can 

give a signal with the reagent. This shows the potential of the reagent as a post 

column detection system in polysaccharide chromatography, for example in 

glycobiology where, derivatisation methods are currently widely used283. 
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CHAPTER 8 

SUMMARY AND CONCLUSIONS 

8.1 Summary of the Project 

8.1.1 Permanganate Chemiluminescence 

The utility of permanganate chemiluminescence in analysis of non-aromatic 

polyhydroxy compounds such as sugars and sugar alcohols has been demonstrated. 

The oxidation of polyhydroxy compounds by permanganate, catalysed by 

manganese (11) gives red chemiluminescence. The size of the signal is greatest for 

fructose and smaller for glucose and disaccharides. Non reducing sugars such as 

sucrose and trehalose giving the smallest signals. 

For simple polyhydroxy compounds the trend in chemiluminescence response is for 

an increase in signal as the number of hydroxy groups increases. The emission of 

light has been shown to follow the reduction of manganese (VII) and to be related to 

the presence of manganese (111) in the reaction mixture. 

8.1.2 Manganese (111) Chem i luminescence 

A reagent based on manganese (111) in sulphuric acid has been developed which 

gives significantly higher signals for aliphatic polyhydroxy compounds than acid 

permanganate. The system has a wide a linear range which, for fructose, is five 

orders of magnitude, from jX10-7 to jX10-2 mol dm-3. 

The presence of alcohols enhances the signal and allows the use of less 

concentrated acids, making the reagent very compatible with chromatographic 

solvent systems. 
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8.1.3 Chemiluminescence sPectrOscOPY 

Chemiluminescence spectroscopy has shown that the emitting species from 

permanganate and manganese (111) reagent are the same and invotve a manganese 

species probably manganese (111) or manganese (11). A wide range of hydroxy 

compounds including saccharides, aliphatic polyols, ascorbic acid and some phenolic 

compounds have been shown to give the same chemilurninescence emission 

spectrum. 

8.2 Analytical Applications 

Ascorbic acid has been determined in extracts of food supplements and fruit juices 

using direct permanganate chemiluminescence with flow injection. 

A post column system has been developed for determination of sugars separated by 

HPLC. The system has sensitivity comparable with that of evaporative light 

scattering detectors and is linear over at least two orders of magnitude. The reaction 

is fast and requires no heat or delay coils minimising band broadening due to 

dispersion. The manganese (111) reagent, is prepared from inexpensive components 

making the system simple and economical to run. 

8.3 Future Work 

Recent reports have described a range of compounds that give direct 

chemilurninescence with permanganate in acid medium. Many of these do not have 

any hydroxy groups and several include amino groups. Spectroscopic studies with 

some of these could give additional information regarding the nature of the 

manganese emitting species. Preliminary experiments with phenolic compounds 

showed that the chemiluminescent reaction with permanganate is much faster than 
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that for saccharides, even in the presence of manganese (11) catalyst. Further 

studies of these compounds should also give additional information about the 

emifting species. 

Initial investigations have indicated that electrochemical generation of the 

manganese (111) reagent is possible, with the potential of in situ generation of the 

oxidant in the analytical system. This would overcome the requirement of cooling the 

reagent making it even more attractive for process control applications. 

A limited data analysis has been carded out on flow injection measurements which 

has shown the potential for multiple component analysis. It may be possible to 

exploit the kinetic differences between reactions of permanganate or manganese 

with the range of reducing compounds such as mixtures of sugars. The increasing 

availability of simple and rugged miniature photo diode detectors will enable sampling 

of chemiluminescence at several different times in the dispersion path, or after zone 

merging. Chemometric techniques can then be applied to the data sets generated. 
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