
University of Huddersfield Repository

Su, Yang, Xu, Zhijie and Jiang, Xiang

Stream-Based Data Filtering for Accelerating Metrological Data Characterization

Original Citation

Su, Yang, Xu, Zhijie and Jiang, Xiang (2008) Stream-Based Data Filtering for Accelerating
Metrological Data Characterization. In: Proceedings of the 14th International Conference on
Automation and Computing. ICAC, pp. 81-85. ISBN 978-0-9555294-2-0

This version is available at http://eprints.hud.ac.uk/id/eprint/4744/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

 1

Stream-Based Data Filtering for Accelerating

Metrological Data Characterization

Yang Su
a,b

 Zhijie Xu
a
 and Xiangqian Jiang

a

aSchool of Computing & Engineering, University of Huddersfield

Queensgate, Huddersfield HD1 3DH, UK
b
School of Communication & Information Engineering, Xi’an University of Sci. & Tech., Xi An 710054, China

E-mail:y.su@hud.ac.uk

Abstract: The main task of engineering surface metrology is to

characterize a surface by assessing components such as form,

waviness and roughness that correspond to different

wavelength segments in the frequency domain, which are often

extracted by deploying filtering techniques. The effectiveness

of a specific kind of filtering algorithms is jointly determined

by their filtering accuracy and computational efficiency. In

this paper, a data stream-based programming paradigm is

introduced which takes advantage of the programmability and

parallel computation capacity of modern graphics process unit

(GPU) to execute and accelerate the Gaussian filtering process

that is extensively used in surface metrological data

processing. In contrast to the results obtained by running

MATLAB simulation kit for similar processes, the software

framework speeds up the filtering process substantially while

yielding satisfying accuracy as that of the corresponding

MATLAB program, which proved the practicability and

validity of the proposed computation model.

Key words: Surface metrology, Graphics process unit, Gaussian

filtering, Parallel computation

1 Introduction

Form, waviness and roughness are three main factors

used to assess quality of a surface. These elements can be

characterized as various frequency components, for

instance, the roughness corresponds to high frequency (or

short wavelength) components, the waviness corresponds to

medium frequencies, and the form to low frequencies [1].

As a result, filtering techniques, -- for instance, Gaussian

filter (GF), Gaussian regression filter (GRF) and spline

filter -- are widely used in surface metrology to extract

various frequency components to assess an engineering

surface. One of the key problems of metrology data

processing by applying filtering techniques is its

computational accuracy and efficiency which often poses as

a dilemma that has to be addressed [2]. In some cases,

efficiency has to be sacrificed for more accurate processing

results, especially in the case when raw metrology data

coming in of a huge size.

In recent years, with the development on

programmability of graphics process units (GPUs),

General-purpose computing on graphics process unit

(GPGPU) has been becoming a trend that issues data

intensive computing on GPU rather than to CPU [3].

Various GPU languages such as high level shading

language (HLSL) from Microsoft Co., C for graphics (Cg)

from Nvidia Ltd, and OpenGL Shading Language (GLSL)

from Silicom Graphics that were originally developed for

on-screen rendering are starting to support the applications

of GPGPU. As examples, linear algebraic and partial

differential computations can now be carried out on most of

the off-the-shelf GPUs on today’s market. The chief

characteristic of GPGPU is its adoption of the data parallel

computational paradigm that is achieved by the stream

processing, which supplied the foundation for GPGPU’s

superior computational efficiency over CPU-based

approach.

In this paper, a software framework and its

corresponding prototype for implementing GPU-

accelerated Gaussian filtering for 3D metrological data

processing is presented. This prototype employs the

technique of Off-Screen Rendering (OSR) to the primitive

metrological data in the model space. With OSR activated,

Framebuffer Object (FBO) introduced by OpenGL has been

employed as the solution for the process of render-to-

texture, which is more flexible and efficient than the

conventional approach of GPGPU filtering by using Pixel

Buffer (PBuffer) only for data storage. The results of this

approach are compared with those obtained by MATLAB

simulations to validate the accuracy and effectiveness of the

new technique.

The remainder of this paper is organized as follow:

Section 2 gives a brief introduction to Gaussian filtering

that is commonly used in surface metrological data

processing, Section 3 presents the framework and prototype

of the new GPU accelerated 2D Gaussian filtering

technique that is based on OSR, Section 4 evaluates the

performance of the proposed framework with Section 5

concludes and highlights the future works.

2 Review of Gaussian filtering in Metrology

The Gaussian filtered mean line is established as the

reference line in 2D surface metrology by the ISO 11562-

1996 standard and ASME B46-1995 standard [4,5].The

 2

impulse response of recommended Gaussian filter in spatial

domain is given as

2(/)1
() ct

c

h t e
π αλ

αλ
−= (1)

where t is the independent variable in the spatial

domain,
c

λ is the cut-off wavelength (in the units of t) , α

is a constant and ln 2 / 0.4697α π= = .

For 3D surface assessment, a reference surface, also

known as the mean surface, must be established. The

reference surface can be obtained by employing a 2D

Gaussian filter which corresponds to the following impulse

response

2 21
(,) exp{ [() ()]}

xc yc xc yc

x y
h x y

π

βλ λ β λ λ
= − + (2)

where ,
xc yc

λ λ are the cut-off wavelengths along x- and

y-directions respectively and 2
ln 2 /β α π= = . From

Eq.(2), we can see

2 2

2 2

1
(,) exp{ [() ()]}

1 1
exp[()] exp[()]

() ()

xc yc xc yc

xc xc yc yc

x y
h x y

x y

h x h y

π

βλ λ β λ λ

π π
β λ β λ β λ β λ

= − +

= − −

=

�

�

 (3)

According to this separable property, a 2D Gaussian

filter can be implemented by using two independent 1D

Gaussian filters, one in the x-direction, and the other in the

y-direction. If u(x,y) is used to stand for the primitive

unfiltered profile and w(x, y) for the filtered reference

surface, then the filtered profile - w(x, y) is equivalent to the

convolution between u(x,y), that is

(,) (,)* (,)

(,) (,)

w x y u x y h x y

u h x y d dξ η ξ η ξ η
+∞ +∞

−∞ −∞

=

= − −∫ ∫
 (4)

For an actual digital signal processing system, the

continuous input and output signal are discrete and finite.

The discrete and finite form of Eq. (1) which is expressed

as the value of k-th sample point

2(/)1
ck

k

c

h e
π ξ αλ

αλ
− ∆= (5)

hk actually stands for the value of k-th sample point

when sampling the continuous impulse response according

to a interval ξ∆ . For an unfiltered surface profile u(x,y),

its discrete output of filtered surface by 2D Gaussian

filtering is

(,) (,) (,)

() (,) ()

([, 1..., 1,] [, 1..., 1,])

m n

i s i k s j k j x y

k m j n

m n

k x i k s j j y

k m j n

w x y u x y h x y

h x u x y h y

i m m m m s n n n n

ξ ξ

ξ ξ

− −
=− =−

− −
=− =−

= ∆ ∆

= ∆ ∆

∈ − − + − ∈ − − + −

∑ ∑

∑ ∑

� � �

� �

 (6)

For applications in surface metrology, the waviness and

roughness are strictly limited within the micron scale,

sometimes even to the nano-metre dimension [6]. To

extract these miniature components from a measured

surface, it requires that the kernel radius of a Gaussian

filter, i.e., parameter m and n, must be large enough to

guarantee the filtering accuracy. This essential step brings

in a large amount of computation and results in the problem

of computational efficiency. For example, when a primitive

surface that was sampled at the size of 1024×1024 being

filtered by a 2D Gaussian filter with kernel radius of 200, it

took MATLAB program nearly 20 seconds to complete the

calculation and rendering on a 2.6GHz PC with 2GB

memory. For tackling this problem, Yuan et al. presented a

new fast algorithm for constructing a series of Gaussian

filters according to the approximation of Gaussian function

through applying central limit theorem to reduce the

multiplication operations in the procedure with certain

degree of success.

In the last decade, graphics processing unit (GPU) has

matured substantially and being viewed as a powerful

embedded parallel processor with the ability of stream-

based processing. Hardware acceleration is more accessible

for speeding up scientific computation. Section 3 presents a

GPGPU-based framework for 2D Gaussian filtering for

improving processing efficiency of Gaussian filters for

surface metrology.

3 GPU-accelerated 2D Gaussian filtering

3.1 Improving Data Efficiency using OSR

The display traversal in GPU’s graphic pipeline can be

divided into three tiers; namely geometry processing,

rasterization, and fragment operation. These three tiers

convert a set of planar polygon into a raster image in a

virtual scene [7]. Geometry processing and fragment

operations are issued in vertex pipeline and fragment

pipeline respectively. Both vertex pipeline and fragment

pipeline in early GPU issue a fixed sequence of processing

stages. Modern GPUs are programmable and used as

parallel processors; both the vertex processor and the

fragment processor can be used for issuing algorithm/model

devised by developers. For most of GPGPU applications,

feedback loop is essential but pains-taking slow in which

the intermediate results of calculation need to be stored on

GPU but not visible. To solve this problem, off-screen

 3

rendering -- similar to rendering into on-screen window --

is highly recommended in GPGPU [8, 9].

In actual implementation practices, Pixel buffer

(PBuffer) was first introduced by OpenGL for off-screen

rendering which is defined with an enumerated list of

available pixel formats. PBuffer can be bound to a texture

directly for render-to-texture, which is achieved by

instruction WGL_ARB_render_texture in OpenGL [10].

The biggest complaint of PBuffer is its requirement for

unique GL contexts that include device context of graphics

device interface (GDI) and rendering context. It means that

the application must keep track of multiple sets of states,

which is cumbersome and inconvenient. Additionally,

context switching between different PBuffers is an

expensive operation. To solve this problem Framebuffer

Object (FBO) entered as a better render-to-texture solution.

Except integrating directly with regular textures like the

PBuffer, FBO requires no extra GL contexts and allows

depth, stencil and color buffers to be shared among

framebuffers which are impossible for PBuffer-based

approach [11].

In this application, primitive surface metrological data

originates from the model space with the proposed GPU-

accelerated Gaussian filtering applies FBO as the solution

for executing instructions.

3.2 Proposed software framework

The flow and framework of the proposed GPU-

accelerated 2D Gaussian filtering system is depicted in

Fig.1

Figure 1. Framework of GPU-accelerated 2D Gaussian filtering

In this structure, fragment shader is employed for

calculation since the fragment pipeline normally provides

more computational horsepower than vertex pipeline as

there are more fragment streams. In addition, texture

lookups are more efficient in fragment programs. The

pseudo-code of a fragment program implemented in this

research is shown in Fig.2.

Figure 2. Pseudo-code of fragment program

float Filtering (uniform samplerRECT data : TEXUNIT0, // the metrology data

 uniform samplerRECT kernel: TEXUNIT1, // Gaussian filter’s kernel

 uniform int kernel_width, // kernel width in x- direction

 uniform int kernel_height, // kernel height in y-direction

 uniform float2 kernel_offset, // kernel offset

 float2 pos : TEXCOORD0 // texel position in TEXUNIT0

) : COLOR

{

 float c = 0;

 for(int y=0; y<kernel_height; y++) {

 for(int x=0; x<kernel_width; x++) {

 float weight=texRECT(kernel, float2(x, y)).r;

 c += texRECT(data, pos + float2(x, y) + kernel_offset).r * weight;

 }

 }

 return c;

}

 4

For visualizing the filtered data, the computational

results need to be transferred from GPU’s memory back to

CPU’s memory at current stage in the form of vertex array.

Although GPU has powerful parallel processing ability, this

process creates a bottleneck for applications [12]. For

example, it has been tested in our research that to transfer a

1124×1124 single precision floating-point block from

Nvidia’s 7900 GPU back to CPU took nearly 7 seconds.

To partially resolve this problem, the devised

framework in this project employs the solution of data

splitting that splits a set of data from its original size into

several smaller blocks for speeding up data transfer from

and to CPU. Potentially supported by Nvidia’s Scalable

Link interface (SLi) technology, data splitting works as

follows: firstly, the primitive metrological data is split into

n parts where n is constrained to square of an integer to

guarantee the normal texture lookup in fragment program;

then these n parts of data is convolved with the kernel of

2D Gaussian filter respectively and the filtered data is

stored in n dynamic textures which are all bounded with a

same Framebuffer object. At last, the data in n dynamic

textures will be read back to vertex array in CPU. For the

correctness and integrity of filtered data, the detailed

process of splitting on the primitive data with the original

size of W×H and storing mechanism for the filtered data in

the form of n dynamic textures is shown in Fig.3.

Figure 3. Data splitting and storage in fragment program

4 Performance evaluation

The primitive surface used in our test is shown in Fig.4,

which is sampled at the size of 1024×1024. The amplitude

of surface terrain varies within micron level. The cut-off

wavelength of 2D Gaussian filter, along x- and y-

directions, are both equivalent to 0.8. The sampling interval

within the cut-off wavelength, as donated in Equation (6),

were both set to 0.016, thus the kernel radius of 2D

Gaussian filter along x- and y-directions are both 50.

Figure 4. A primitive surface profile

Fig.5 and Fig.6 show the results obtained by MATLAB

simulation kit and the developed GPGPU programming

respectively, from which it can be seen that GPU-

accelerated Gaussian filtering obtains the same accurate

results as those obtained from MATLAB simulations.

Figure 5. Result of Gaussian filtering issued by MATLAB

simulations

 5

Figure 6. Result of GPGPU-based Gaussian filtering

To verify computational efficiency of the developed

GPGPU programming framework, the run time of each

stage of the model and the run time of MATLAB

simulation programs are listed in Table 1. If only consider

the time utilized in issuing filtering algorithm (convolving

with Gaussian filter), the GPGPU programming framework

has a speed up factor that is of ×10 scale. Although

transferring the computational results form GPU back to

CPU is still a bottleneck, the GPGPU programming

framework has gained a better performance than CPU-

driven MATLAB calculation.

Table 1. Processing time of GPGPU program and

MATLAB simulation

 GPGPU MATLAB

Data from CPU to

GPU
0.62s Not required

Convolving with

Gaussian filter
0.41 s 4.94s

Data from GPU to

CPU
1s Not required

5 Conclusions and future work

So far in this project, a software framework for GPU-

accelerated Gaussian filtering has been designed and

developed. Testing results have revealed its superiority over

a pure CPU based implementation. However, there are still

problems to be solved before wider adoption. One of the

shortcomings of Gaussian filter used in surface

metrological data processing is that it brings in edge effects.

To overcome this problem, other kinds of filtering

techniques, such as Gaussian regressive filter, Rk filter,

spline filter, and wavelet-based filter on GPGPU need to be

investigated. These filters are believed to possess higher

processing accuracy than conventional Gaussian filter but

unavoidably costing more computational time. Proposing a

benchmark and guidelines for designing “hardware”-

oriented solutions for these filters is one of the primary

tasks for the next stage of the project.

GPGPU is a relatively new research area with limited

number of published solutions. It is believed that

approaches in increasing case studies will encourage GPU

manufactures and shader language developers to work

closer and “shaping” the next generation of GPUs. Some

new GPU hardware structures, platforms and tools -- such

as DX10-Confirming graphics cards and CUDA language

have already promised new potentials for future

applications.

Acknowledgment

We would like to thank Dr Shaojun Xiao and Dr Feng

Xie in the Centre of Precision Technology in Huddersfield

University for obtaining us the MATLAB simulation

program to evaluate our model’s performance by

comparing with the results of running the MATLAB

program.

[1] J. Raja, B. Muralikrishnan, Shengyu Fu. “Recent

advances in separation of roughness, waviness and

form”, Journal of the International Societies for

Precision Engineering and Nanotechnology, Vol. 26,

2002, pp.222-235.

[2] M. Numada, T. Nonura, K. Kamiya, et al. “Filter with

variable transmission characteristics for determination

of three-dimensional roughness”, Precision

Engineering, Vol. 30, 2006, pp.431-442.

[3] J. D. Owens, D. Luebke, N. Govindaraju, et al. “A

Survey of General-Purpose Computation on Graphics

Hardware”, Computer Graphics Forum, Vol. 26, Issue

1, 2007, pp.80 -113.

[4] ISO 11562:Geometrical product specification(GPS)—

surface texture: profile method—metrological

characteristics of phase correct filters. Geneva:

International Organization for Standardization,1996.

[5] ASME B46.1:Surface Texture: Surface Roughness,

Waviness, and Lay. New York: American Society of

Mechanical Engineers,1995.

[6] L. Blunt, X. Q. Jiang. “Advanced techniques for

assessment surface topography: Development of a

basis for 3D surface texture standards

‘SURFSTAND’”, Kogan Page Science, London, 2003.

[7] K. Engel, M. Hadwiger, J. M. Kniss, et al. “Real-Time

Volume Graphics”, Course Note 28 in

SIGGRAPH2004, 2004, pp. 14~18.

[8] S. Guthe, W. Strasser. “Advanced techniques for high-

quality multi-resolution volume rendering”, Computers

& Graphics, Vol. 28, Issue 1, 2004, pp.51-58.

[9] Juekuan Yang, Yujuan Wang, Yunfei Chen. “GPU

accelerated molecular dynamics simulation of thermal

conductivities”, Journal of Computational

Physics, Vol. 221, Issue 2, 2007, pp. 799-804.

[10] Christopher Oat. “Rendering to an off-screen buffer

with WGL_ARB_pbuffer”, Technology paper of ATI

 6

Inc. pp.1-13. Available on:

http://ati.amd.com/developer/ATIpbuffer.pdf.

[11] Emil Persson. “Framebuffer Objects”, Technology

paper of ATI Inc. pp.1-12. Available on:

http://ati.amd.com/developer/SDK/AMD_SDK_Sampl

es_May2007/Documentations/FramebufferObjects.pdf.

[12] I. Geys, L. V. Gool. “View synthesis by the parallel

use of GPU and CPU”, Image and Vision

Computing”, Vol. 25, Issue 7, 2007, pp.1154-1164.

