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Abstract: The main task of engineering surface metrology is to 

characterize a surface by assessing components such as form, 

waviness and roughness that correspond to different 

wavelength segments in the frequency domain, which are often 

extracted by deploying filtering techniques. The effectiveness 

of a specific kind of filtering algorithms is jointly determined 

by their filtering accuracy and computational efficiency. In 

this paper, a data stream-based programming paradigm is 

introduced which takes advantage of the programmability and 

parallel computation capacity of modern graphics process unit 

(GPU) to execute and accelerate the Gaussian filtering process 

that is extensively used in surface metrological data 

processing.  In contrast to the results obtained by running 

MATLAB simulation kit for similar processes, the software 

framework speeds up the filtering process substantially while 

yielding satisfying accuracy as that of the corresponding 

MATLAB program, which proved the practicability and 

validity of the proposed computation model. 
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1 Introduction 

Form, waviness and roughness are three main factors 

used to assess quality of a surface. These elements can be 

characterized as various frequency components, for 

instance, the roughness corresponds to high frequency (or 

short wavelength) components, the waviness corresponds to 

medium frequencies, and the form to low frequencies [1]. 

As a result, filtering techniques, -- for instance, Gaussian 

filter (GF), Gaussian regression filter (GRF) and spline 

filter -- are widely used in surface metrology to extract 

various frequency components to assess an engineering 

surface. One of the key problems of metrology data 

processing by applying filtering techniques is its 

computational accuracy and efficiency which often poses as 

a dilemma that has to be addressed [2]. In some cases, 

efficiency has to be sacrificed for more accurate processing 

results, especially in the case when raw metrology data 

coming in of a huge size. 

In recent years, with the development on 

programmability of graphics process units (GPUs), 

General-purpose computing on graphics process unit 

(GPGPU) has been becoming a trend that issues data 

intensive computing on GPU rather than to CPU [3]. 

Various GPU languages such as high level shading 

language (HLSL) from Microsoft Co., C for graphics (Cg) 

from Nvidia Ltd, and OpenGL Shading Language (GLSL) 

from Silicom Graphics that were originally developed for 

on-screen rendering are starting to support the applications 

of GPGPU. As examples, linear algebraic and partial 

differential computations can now be carried out on most of 

the off-the-shelf GPUs on today’s market.  The chief 

characteristic of GPGPU is its adoption of the data parallel 

computational paradigm that is achieved by the stream 

processing, which supplied the foundation for GPGPU’s 

superior computational efficiency over CPU-based 

approach. 

In this paper, a software framework and its 

corresponding prototype for implementing GPU-

accelerated Gaussian filtering for 3D metrological data 

processing is presented. This prototype employs the 

technique of Off-Screen Rendering (OSR) to the primitive 

metrological data in the model space. With OSR activated, 

Framebuffer Object (FBO) introduced by OpenGL has been 

employed as the solution for the process of render-to-

texture, which is more flexible and efficient than the 

conventional approach of GPGPU filtering by using Pixel 

Buffer (PBuffer) only for data storage. The results of this 

approach are compared with those obtained by MATLAB 

simulations to validate the accuracy and effectiveness of the 

new technique.  

The remainder of this paper is organized as follow: 

Section 2 gives a brief introduction to Gaussian filtering 

that is commonly used in surface metrological data 

processing, Section 3 presents the framework and prototype 

of the new GPU accelerated 2D Gaussian filtering 

technique that is based on OSR, Section 4 evaluates the 

performance of the proposed framework with Section 5 

concludes and highlights the future works. 

2 Review of Gaussian filtering in Metrology 

The Gaussian filtered mean line is established as the 

reference line in 2D surface metrology by the ISO 11562-

1996 standard and ASME B46-1995 standard [4,5].The 
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impulse response of recommended Gaussian filter in spatial 

domain is given as 
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where t is the independent variable in the spatial 

domain, 
c

λ  is the cut-off wavelength (in the units of t) , α 

is a constant and ln 2 / 0.4697α π= = . 

For 3D surface assessment, a reference surface, also 

known as the mean surface, must be established. The 

reference surface can be obtained by employing a 2D 

Gaussian filter which corresponds to the following impulse 

response 
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where ,
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λ λ are the cut-off wavelengths along x- and 

y-directions respectively and 2
ln 2 /β α π= = . From 

Eq.(2), we can see 
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According to this separable property, a 2D Gaussian 

filter can be implemented by using two independent 1D 

Gaussian filters, one in the x-direction, and the other in the 

y-direction. If u(x,y) is used to stand for the primitive 

unfiltered profile and w(x, y) for the filtered reference 

surface, then the filtered profile - w(x, y) is equivalent to the 

convolution between u(x,y), that is 

( , ) ( , )* ( , )

( , ) ( , )

w x y u x y h x y

u h x y d dξ η ξ η ξ η
+∞ +∞

−∞ −∞

=

= − −∫ ∫
 (4) 

For an actual digital signal processing system, the 

continuous input and output signal are discrete and finite. 

The discrete and finite form of Eq. (1) which is expressed 

as the value of k-th sample point  
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hk actually stands for the value of k-th sample point 

when sampling the continuous impulse response according 

to a interval ξ∆ . For an unfiltered surface profile u(x,y),  

its discrete output of filtered surface by 2D Gaussian 

filtering is 
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For applications in surface metrology, the waviness and 

roughness are strictly limited within the micron scale, 

sometimes even to the nano-metre dimension [6]. To 

extract these miniature components from a measured 

surface, it requires that the kernel radius of a Gaussian 

filter, i.e., parameter m and n, must be large enough to 

guarantee the filtering accuracy. This essential step brings 

in a large amount of computation and results in the problem 

of computational efficiency. For example, when a primitive 

surface that was sampled at the size of 1024×1024 being 

filtered by a 2D Gaussian filter with kernel radius of 200, it 

took MATLAB program nearly 20 seconds to complete the 

calculation and rendering on a 2.6GHz PC with 2GB 

memory. For tackling this problem, Yuan et al. presented a 

new fast algorithm for constructing a series of Gaussian 

filters according to the approximation of Gaussian function 

through applying central limit theorem to reduce the 

multiplication operations in the procedure with certain 

degree of success. 

In the last decade, graphics processing unit (GPU) has 

matured substantially and being viewed as a powerful 

embedded parallel processor with the ability of stream-

based processing. Hardware acceleration is more accessible 

for speeding up scientific computation. Section 3 presents a 

GPGPU-based framework for 2D Gaussian filtering for 

improving processing efficiency of Gaussian filters for 

surface metrology.  

3 GPU-accelerated 2D Gaussian filtering 

3.1 Improving Data Efficiency using OSR 

The display traversal in GPU’s graphic pipeline can be 

divided into three tiers; namely geometry processing, 

rasterization, and fragment operation. These three tiers 

convert a set of planar polygon into a raster image in a 

virtual scene [7]. Geometry processing and fragment 

operations are issued in vertex pipeline and fragment 

pipeline respectively. Both vertex pipeline and fragment 

pipeline in early GPU issue a fixed sequence of processing 

stages. Modern GPUs are programmable and used as 

parallel processors; both the vertex processor and the 

fragment processor can be used for issuing algorithm/model 

devised by developers. For most of GPGPU applications, 

feedback loop is essential but pains-taking slow in which 

the intermediate results of calculation need to be stored on 

GPU but not visible. To solve this problem, off-screen 
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rendering -- similar to rendering into on-screen window -- 

is highly recommended in GPGPU [8, 9].   

In actual implementation practices, Pixel buffer 

(PBuffer) was first introduced by OpenGL for off-screen 

rendering which is defined with an enumerated list of 

available pixel formats. PBuffer can be bound to a texture 

directly for render-to-texture, which is achieved by 

instruction WGL_ARB_render_texture in OpenGL [10]. 

The biggest complaint of PBuffer is its requirement for 

unique GL contexts that include device context of graphics 

device interface (GDI) and rendering context. It means that 

the application must keep track of multiple sets of states, 

which is cumbersome and inconvenient. Additionally, 

context switching between different PBuffers is an 

expensive operation. To solve this problem Framebuffer 

Object (FBO) entered as a better render-to-texture solution. 

Except integrating directly with regular textures like the 

PBuffer, FBO requires no extra GL contexts and allows 

depth, stencil and color buffers to be shared among 

framebuffers which are impossible for PBuffer-based 

approach [11]. 

In this application, primitive surface metrological data 

originates from the model space with the proposed GPU-

accelerated Gaussian filtering applies FBO as the solution 

for executing instructions. 

3.2 Proposed software framework 

The flow and framework of the proposed GPU-

accelerated 2D Gaussian filtering system is depicted in 

Fig.1

 

 

Figure 1. Framework of GPU-accelerated 2D Gaussian filtering 

In this structure, fragment shader is employed for 

calculation since the fragment pipeline normally provides 

more computational horsepower than vertex pipeline as 

there are more fragment streams. In addition, texture 

lookups are more efficient in fragment programs. The 

pseudo-code of a fragment program implemented in this 

research is shown in Fig.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Pseudo-code of fragment program

float Filtering (uniform samplerRECT data :   TEXUNIT0,      // the metrology data 

                        uniform samplerRECT kernel: TEXUNIT1,      // Gaussian filter’s kernel  

                        uniform int kernel_width,                                   // kernel width in x- direction 

                        uniform int kernel_height,                                  // kernel height in y-direction 

                        uniform float2 kernel_offset,                              // kernel offset 

                        float2 pos : TEXCOORD0                                  // texel position in TEXUNIT0 

                        ) : COLOR 

{ 

  float c = 0; 

  for(int y=0; y<kernel_height; y++) { 

   for(int x=0; x<kernel_width; x++) { 

        float weight=texRECT(kernel, float2(x, y)).r; 

         c +=  texRECT( data, pos + float2(x, y)  + kernel_offset).r * weight; 

          } 

      } 

     return c; 

} 
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For visualizing the filtered data, the computational 

results need to be transferred from GPU’s memory back to 

CPU’s memory at current stage in the form of vertex array. 

Although GPU has powerful parallel processing ability, this 

process creates a bottleneck for applications [12]. For 

example, it has been tested in our research that to transfer a 

1124×1124 single precision floating-point block from 

Nvidia’s 7900 GPU back to CPU took nearly 7 seconds. 

To partially resolve this problem, the devised 

framework in this project employs the solution of data 

splitting that splits a set of data from its original size into 

several smaller blocks for speeding up data transfer from 

and to CPU. Potentially supported by Nvidia’s Scalable 

Link interface (SLi) technology, data splitting works as 

follows: firstly, the primitive metrological data is split into 

n parts where n is constrained to square of an integer to 

guarantee the normal texture lookup in fragment program; 

then these n parts of data is convolved with the kernel of 

2D Gaussian filter respectively and the filtered data is 

stored in n dynamic textures which are all bounded with a 

same Framebuffer object. At last, the data in n dynamic 

textures will be read back to vertex array in CPU.  For the 

correctness and integrity of filtered data, the detailed 

process of splitting on the primitive data with the original 

size of W×H and storing mechanism for the filtered data in 

the form of n dynamic textures is shown in Fig.3.  

 

Figure 3. Data splitting and storage in fragment program

4 Performance evaluation 

The primitive surface used in our test is shown in Fig.4, 

which is sampled at the size of 1024×1024. The amplitude 

of surface terrain varies within micron level. The cut-off 

wavelength of 2D Gaussian filter, along x- and y- 

directions, are both equivalent to 0.8. The sampling interval 

within the cut-off wavelength, as donated in Equation (6), 

were both set to 0.016, thus the kernel radius of 2D 

Gaussian filter along x- and y-directions are both 50.    

 

Figure 4. A primitive surface profile 

Fig.5 and Fig.6 show the results obtained by MATLAB 

simulation kit and the developed GPGPU programming 

respectively, from which it can be seen that GPU-

accelerated Gaussian filtering obtains the same accurate 

results as those obtained from MATLAB simulations. 

 

Figure 5. Result of Gaussian filtering issued by MATLAB 

simulations 
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Figure 6. Result of GPGPU-based Gaussian filtering 

To verify computational efficiency of the developed 

GPGPU programming framework, the run time of each 

stage of the model and the run time of MATLAB 

simulation programs are listed in Table 1. If only consider 

the time utilized in issuing filtering algorithm (convolving 

with Gaussian filter), the GPGPU programming framework 

has a speed up factor that is of ×10 scale. Although 

transferring the computational results form GPU back to 

CPU is still a bottleneck, the GPGPU programming 

framework has gained a better performance than CPU-

driven MATLAB calculation. 

Table 1. Processing time of GPGPU program and 

MATLAB simulation 

 GPGPU MATLAB 

Data from CPU to 

GPU 
0.62s Not required 

Convolving with 

Gaussian filter 
0.41 s 4.94s 

Data from GPU to 

CPU  
1s Not required 

 

5 Conclusions and future work 

So far in this project, a software framework for GPU-

accelerated Gaussian filtering has been designed and 

developed. Testing results have revealed its superiority over 

a pure CPU based implementation. However, there are still 

problems to be solved before wider adoption. One of the 

shortcomings of Gaussian filter used in surface 

metrological data processing is that it brings in edge effects. 

To overcome this problem, other kinds of filtering 

techniques, such as Gaussian regressive filter, Rk filter, 

spline filter, and wavelet-based filter on GPGPU need to be 

investigated. These filters are believed to possess higher 

processing accuracy than conventional Gaussian filter but 

unavoidably costing more computational time. Proposing a 

benchmark and guidelines for designing “hardware”-

oriented solutions for these filters is one of the primary 

tasks for the next stage of the project. 

GPGPU is a relatively new research area with limited 

number of published solutions. It is believed that 

approaches in increasing case studies will encourage GPU 

manufactures and shader language developers to work 

closer and “shaping” the next generation of GPUs. Some 

new GPU hardware structures, platforms and tools -- such 

as DX10-Confirming graphics cards and CUDA language 

have already promised new potentials for future 

applications. 
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