Feteira, A., Gillie, Lisa .J., Elsebrock, R. and Sinclair, D.C. (2007) Crystal structure and dielectric properties of LaYbO3 ceramics. Journal of the American Ceramic Society, 90 (5). pp. 1475-1482. ISSN 0002-7820

The crystal structure and dielectric properties of LaYbO3 ceramics prepared by the mixed-oxide route have been investigated. Rietveld refinements performed on X-ray and neutron diffraction data show the room-temperature structure to be best described by the orthorhombic Pnma space group [a=6.02628(9) Å, b=8.39857(11) Å, and c=5.82717(7) Å; Z=4, and theoretical density, Dx=8.1 g/cm3] in agreement with electron diffraction experiments. LaYbO3 ceramics fired at 1600°C for 4 h attain 97% of Dx and their microstructures consist of randomly distributed equiaxed grains with an average size of 8 μm. Conventional transmission electron microscopy shows densification to occur in the absence of a liquid phase and reveals domain-free grains. The relative permittivity, r, of LaYbO3 ceramics at radio frequencies is 26 in the range 10–300 K; however, a small dielectric anomaly is detected at 15 K. At room temperature and microwave frequencies, LaYbO3 ceramics exhibit r 26, Q × fr20 613 GHz (at 7 GHz), and τf−22 ppm/K. Q × fr show complex subambient behavior, decreasing from a plateau value of 20 000 GHz between 300 and 200 K to a second plateau value of 6000 GHz at 90 K before decreasing to <1000 GHz at 10 K. The large decrease in Q × fr at low temperature may be related to the onset of antiferromagnetism at 2.7 K.1

Restricted to Registered users only

Download (1MB)
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email