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Abstract 
 
 
The main aim of this project was to quantitatively characterise the developed surface 
topography of finishes on stainless steel sheet using three-dimensional surface analysis 
techniques. 
At present surface topography is measured using (mainly) stylus profilometry and analysed with 
2D parameters, such as Ra, Rq and Rz. These 2D measurements are not only unreliable due to 
a lack of standardised measurement methodology, but are also difficult to relate directly to the 
actual shape of the topography in 3 dimensions. They bear little direct relation to the functional 
properties of the surface of stainless steel, making them less useful than their 3D counterparts. 
Initially it is crucial to ensure that the surface topography data collected is correct, accurate and 
relevant, by defining a measurement strategy. Models of the surface topography are developed 
encompassing the usual features of the topography and variations in the topography caused by 
production or 'defects'. The functional features are discussed and predicted relevant parameters 
are presented. 
The protocol covers the selection of the correct measuring instrument based on the surface 
model and the size of the relevant functional features so that the desired lateral and vertical 
resolution and range is achievable. Measurement data is then analysed using Fast Fourier 
Transforms (FFTs) to separate the different frequencies within the spatial frequencies detected 
on the surface. The frequency of the important features shows up dominantly on a Power 
Spectral Density (PSD) plot and this is used to find the correct sampling interval to accurately 
reconstruct the 3D surface data. The correct instrument for further measurements is then 
selected using a Steadman diagram. Operational details of the measuring instruments available 
for this project are given and variables for these instruments are discussed. Finally, 
measurement method recommendations are made for each of the four finishes modelled. 
Based on this surface characterisation an attempt is made to identify the 3D parameters that 
give a quantitative description of common stainless steel sheet finishes with respect to some 
aspects of their production and functional performance. 
An investigation of the differences in manufacturing processes, gauge and grade of material is 
presented, providing an insight into the effect on topography of such divergences. The 
standardised 3D parameter set is examined to determine its sensitivity to common variations in 
the topography of the 2B finish and therefore their potential relevance. 
A new data separation technique of the material probability curve for use on the 3D datasets 
establishes a cut-off (transition point) between the two main functionally relevant features of the 
2B surface (plateaus and valleys) by finding the intersection of the asymptotes of a fitted conic 
section, giving a non subjective methodology to establish the section height. The standardised 
3D parameters are then used on the separated data, with the aim of being more functionally 
relevant to the main surface studied. 
Functional tests to rate capability of these parameters in the areas of optical appearance, 
lubricant retention and corrosion are carried out and the appropriate topography parameters are 
related to their performance. 
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Chapter 1 Introduction 

 

 

1.1. Introduction 

 

As the usage of stainless steel increases there is a demand for better and improved variations, 

including different surface finishes which are optimised for service performance, for example 

appearance, cleansibility or lubricant retention and this has led to the introduction of a range of 

finishes (see table 2.1). Also, with the development of manufacturing routes, the surface 

characteristics of the product ‘off the mill’ may change and it is to be expected that variations in 

the processing history will influence both the appearance and the properties of the established 

finishes. These finishes are not normally subject to any quantitative specification, except 

possibly comments on relative ‘dullness’. However, it is now accepted that the nature of the 

topography of a surface can have a significant influence on the efficiency and functional 

performance of the surface [1]. 

In virtually all applications it is becoming more important to reduce the variations in the 

topography of the common finishes, for example consistency of appearance for architecture 

applications where large areas of material are used. Sheet is usually formed into products using 

drawing and/or bending techniques (it is also employed as the most frequent starting point for a 

range of other surfaces either developed within the process route, i.e. roll patterning or coil 

polishing, or during and after fabrication as a result of shot and bead blasting, directional or non-

directional mechanical polishing or electrochemical polishing). For many applications it is 

important that a specific surface finish is produced consistently and it would be advantageous to 

have a means of specifying and checking the surface properties by selecting parameters that 

are relevant to the end functions. 

Since the growth and improvement of digital computers there have been significant changes in 

the way in which surfaces can be measured and viewed. Recently there have been attempts to 

standardise the numerous parameters that can be obtained from the various surface 

measurement methods and the procedures for their derivation are also the subject of 

standardisation. 

 

1.2. Overall Aims and Objectives 

 

1.2.1 Aims 

 

The overall aim of this research project is to characterise quantitatively the developed surface 

topography of some widely used finishes on stainless steel sheet using three-dimensional 

surface analysis techniques. Based on this surface characterisation an attempt has been made 

to identify 3D parameters for quantitative description of stainless steel sheet with respect to 

some aspects of their functional performance. 

 



2 

1.2.2 Objectives 

 

� Using the 3D techniques available, define a measurement strategy and protocol to effectively 

measure stainless steel sheet topography. 

� Investigate the differences in topography across a range of grades and gauges of stainless 

steel using 3D topography parameters. 

� Investigate the ability of 3D topography parameters to correlate with functional requirements 

of lubricant retention, optical appearance and corrosion. 

� Develop a set of written procedures for industrial application to effectively characterise 

stainless steel sheet surface roughness. 

 

1.3. Thesis Layout 

 

1.3.1 Chapter 3 The 'Functional' Surfaces 

 

The functional topographical features of four finishes are determined, with respect to the 

process/es by which they were made. A model of the surface topography is developed for WHB 

(white hot band), 2B, BA (bright annealed) and a unidirectional finish (brushed) encompassing 

the usual features of the topography and variations in the topography caused by production or 

'defects'. The functional features are discussed and predicted relevant parameters are 

presented.  

 

1.3.2 Chapter 4 Measurement Strategy 

 

The measurement strategy has been designed to ensure correct, accurate and relevant 

collection of topography data. Feature identification is carried out based on the surface model 

and the average sizes of the features are found. The protocol covers the selection of the correct 

measuring instrument based on the surface model and the size of the relevant functional 

features. Operational details of the measuring instruments available for this project are given 

(Somicronic stylus instrument, Taylor Hobson Talysurf stylus instrument, Wyko NT2000 optical 

interferometer and DME AFM) and variables for these instruments are discussed. The strategy 

includes a statistical method of assessing how many measurements are needed for a surface, 

which is presented for the 2B finish. Finally, measurement method recommendations are made 

for each of the four finishes modelled in chapter 3. 
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1.3.3 Chapter 5 The Effects of Variations in Produc tion 

 

There is inherent variability in the surface topography produced due to differing process stages 

and grade of material. The desired thickness determines the number of passes through the 

rolling mill and the final finishing operation can be either skin-passing or tension levelling (this is 

source dependant, either Source 1 or 2, respectively). Results of the initial study into the 

topographical effect of variations in thickness, grade and source are presented and discussed. 

 

1.3.4 Chapter 6 Optical Appearance 

 

The available instrumentation is discussed and sample variation with respect to appearance is 

considered. The effect of rolling direction to appearance measurement direction, angle of 

appearance measurement and sample grade variation is studied and initial measurement trials 

are completed to assess the general optical properties of the 2B finish with regard to other 

finishes. The relationship of four optical descriptors to 3D topography parameters is presented 

and discussed. 

Particular attention is paid to the 2B finish, being the principal product of Outukumpu, and a new 

method of analysing the data to separate the important features of the topography is developed. 

 

1.3.5 Chapter 7 Lubricant Retention 

 

A simplified method (based on drip tests) to assess the lubricant retention properties of 

topography is offered. The development of the technique includes proof of the equipment 

resolution and approach suitability for testing the 2B finish. Results are presented to show the 

relationship of 3D topography parameters to the ability of a surface to retain oil. 

 

1.3.6 Chapter 8 Corrosion 

 

In collaboration with Birmingham University several hand-polished unidirectional finishes and 

brushed production finishes were assessed and rated on their corrosion resistance. A new 

method was developed at Birmingham University, allowing faster evaluation than existing 

standard salt spray tests. Surface measurements were made in an effort to find the potential 

connection between certain surface characteristics and the susceptibility of a surface to pitting 

corrosion and the findings are presented and discussed. 
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1.3.7 Chapter 9 Summary of Discussions 

 

A summary of the discussions from each chapter is given as a brief guide to the findings of the 

project. Comprehensive assessment of the 2B finish on stainless steel sheets is outlined. The 

overall significance of the results is discussed. 

 

1.3.8 Chapter 10 Conclusion 

 

A summary of the conclusions from each chapter is given and a set of 3D parameters for the 

characterisation of the 2B stainless steel finish is suggested. Conclusions are drawn, the 

perceived contributions to knowledge are identified and suggestions for further work made. 
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Chapter 2 Literature Survey 

 

 

2.1. Summary of the Chapter 

 

Initially the production of stainless steel is considered, with particular attention given to the effect 

of process stage on the development of surface topography. Common applications of stainless 

steels are discussed and the functional implications of their surface topographical 

characteristics are considered. (The work is set into context with work carried out to assess the 

behaviour of various surfaces in the areas of tribology, optical appearance and corrosion.) 

A detailed review of surface topography measurement is presented with emphasis on 3D 

instrumentation capabilities. Popular data filtering techniques are considered prior to the 

discussion of the conventional methods of characterisation. Numerical methods such as 

parameterisation are presented alongside some of the new surface or application specific 

methods. The concepts involved in sampling theory are introduced to aid in the measurement 

protocol developed for stainless steel. 

 

2.2. Stainless Steel 

 

2.2.1 History 

 

Harry Brearley made the first commercial cast of stainless steel in Sheffield in 1913. He was 

experimenting with alloys to produce steel for rifle barrels, which would not erode. He produced 

steel with 12.68% chromium and 0.24% carbon which, when he attempted to etch the surface 

with acid for inspection, was not affected. He had a local cutler make some knives using the 

new material that were not corroded by water or mild acids in food. These first stainless steels 

were difficult to work but they initiated the addition of a high content of chromium to promote 

corrosion resistance properties in steel. 

Nowadays, stainless steel is categorised as having at least 10.5% chromium, although there are 

many other alloying agents used to enhance different properties of the material. The chromium 

in the steel combines with oxygen in the air to produce a thin, transparent, chrome-rich oxide on 

the surface, resisting oxidative corrosion. If this passive film is broken (by scratching) the layer 

will quickly reform and recover the exposed surface, as long as there is a supply of oxygen to it. 

Variances in the passive film are not detectable by topographical methods. 

 

2.2.2 Composition/Grades 

 

There are four main types of stainless steel, ferritic, martensitic, austenitic and duplex, each 

have different microstructures depending on their predominant metallurgical phase. The 

austenitic and ferritic steels account for approximately 95% of stainless steel production (70% 

austenitic, 25% ferritic [2]). 
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Martensitic stainless steels were the first to be developed for commercial use, as cutlery, and 

have a comparatively high carbon content of 0.1 – 1.2% with 12 – 18% chromium. They are 

used where high strength or hardness is required, as they can be heat treated to enhance these 

properties. They are magnetic but are, however difficult to weld and possess only moderate 

corrosion resistance compared to other types. Typical uses are knife blades, surgical 

instruments, pins and spindles and stressed engineering components. Heavily tempered, low 

carbon steels are used for oil and gas pipelines and for service at elevated temperatures. 

An austenitic crystal structure is formed when sufficient amounts of austenite stabilising alloys 

such as nickel are added to the steel. By far the most common grades of stainless steel are 

austenitic steels, with basic compositions of around 18% chromium and 8% nickel. Austenitic 

stainless steels find widespread use for their excellent corrosion resistance, weldability and 

formability. They possess good strength properties at both high and especially low 

temperatures, are easy to clean and are therefore hygienic. Austenitic steels are non magnetic 

and can only be hardened by cold working. As the most commonly used type of stainless steel 

many applications are evident, in architecture, food and chemical processing, computer parts 

and most obviously kitchen sinks. 

Ferritic stainless steels are low carbon stainless steels with 12 to 18% chromium. The corrosion 

resistance is dependant on the chromium content, with good resistance at 18%. Their 

formability is good, but not as good as the austenitic grades and weldability is poor. Ferritics are 

magnetic but hardening by heat treatment is not possible. Typical uses include automotive trim 

and exhausts and hot water tanks. 

The nickel content of duplex stainless steels is balanced to give equal formation of ferrite and 

austenite in the final structure. They generally contain a relatively high amount of chromium, 

between 18 and 28% and have a moderate content of nickel, in the range 4.5 to 8%. Most 

duplex stainless steels also contain 2.5 to 4% molybdenum, which increases the corrosion 

resistance, especially to chloride ion attack. They also have superior resistance to stress 

corrosion cracking and a higher tensile and yield strength than both austenitic and ferritic grades 

(around twice as strong).  

 

2.2.3 Stainless Steel Production  (Figure 2.1) 

 

The production of stainless steel begins in most cases with melting a charge of high-grade 

scrap steel and ferro alloys in an electric arc furnace. The molten metal is then tapped into a 

transfer ladle, where any slag is taken out. The contents of the ladle are then poured into a 

refining vessel (an argon/oxygen decarburisation vessel or AOD) where argon and oxygen are 

blown through the mix to greatly reduce the carbon level in the material before being further 

refined in a ladle arc furnace. Additional alloys are added here and the final correct chemical 

composition for the material is achieved. The molten metal is passed to a continuous caster, 

where it is solidified as it travels through the machine and cut into slabs or bloom. For sheet 

production slabs 1200 – 2000 mm wide are hot rolled, on a Steckel or 4-high mill, from around 

200 mm thickness to coil of about 5 – 10 mm thickness. The hot rolled, coiled material is 
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annealed and descaled to produce ‘white hot band’, which is the starting point for most coil and 

sheet production. 

The hot band coils are then softened through gas fired furnaces. After cooling in air, the outer 

scale is loosened via a process of fine shot blasting. The majority of the scale is then removed 

using a neutral electrolyte process. 

Since many stainless steel products are made from thinner gauge material the hot band 

undergoes further reduction by cold rolling, usually in a Sendzimir mill (or ‘Z’ mill) which is 

capable of large reductions. This reduces the gauge and improves the strip geometry and 

surface finish.  

For all of the designations there are two ways of achieving final gauge. Material can be ‘single 

cycle’ rolled, where the material is rolled close to its intended final gauge from hot band before 

being annealed, descaled and skin-passed or ‘double cycle’ rolled, for thinner products. This 

involves more than one cold rolling operation, where hot band is rolled, removed for 

intermediate annealing and descaling (to alleviate work hardening) and rolled for a second time 

(sometimes three cycles are required) to its final gauge before final annealing, descaling and 

skin-passing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Stainless steel manufacturing process diagram to cold rolled strip stage 

 

2.2.3.1 Production of Mill Finishes (Figure 2.2) 

 

The cold rolled coil for a 2D or 2B finish from the Sendzimir mill is re-annealed (or softened) 

during which high temperature oxide film is produced on the surface. This second softening 

stage is required because when the stainless steel is rolled on the Sendzimir mill it becomes 

work hardened. If it were to be further rolled or be subject to a forming process, large forces 

would be required and the material may crack and fracture. Annealing the sheet produces a 

softer microstructure by the process of recovery and effectively brings some new undeformed 

WHITE HOT 

BAND 
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grains to the surface (recrystalisation). The nature of the annealing conditions influence the type 

of scale formed. If it is in an oxidising atmosphere or if the strip is cooled in air (as it is for white 

hot band, 2D and 2B finishes) a combination of mechanical scale loosening, for example shot 

blasting, and surface chemical or electrochemical attack is used. 

Final eradication of the scale from cold rolled strip is achieved in an agitated acid bath, where 

the material is fed slowly through to ensure total cleansing. As this is accomplished the acid also 

has an increased effect on the grains of material at or near the surface. The selective chemical 

attack at the grain boundaries occurs because they are relatively high-energy sites in the crystal 

lattice. 

The final control of shape and finish is performed in two ways. The material can be fed through 

a skin pass mill, which is a light but high-speed pass. It is not meant to greatly reduce the 

thickness of the sheet as this would again lead to a work hardened material, making the sheet 

unsuitable for further processing (i.e. drawing, bending and other forming). Coils may also be 

put through a tension levelling device, where the coil is lightly stretched, achieving similar 

results.  

The 2R finish is developed by annealing the cold rolled material from the Sendzimir mill in a 

controlled, protective atmosphere of hydrogen and nitrogen, referred to as bright annealing. In 

this process the final oxide film is thin and protective so no further descaling treatment is 

required. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Stainless steel manufacturing process diagram to finishing stage 
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2.2.4 Surface Finish 

 

2.2.4.1 Designation 

 

The range of steel surface finishes encompassed by the designations 2D, 2B and 2R account 

for the greater part, by surface area, of stainless steel flat products. The definitions of these 

terms can be seen in table 2.1, adapted for use from BSEN 10088-2:1995 [3], with associated 

process routes. 

 

Table 2.1: Definitions of designated finishes [3] 

 

 Finish Name Process route Finish 

2D Cold rolled, annealed and pickled Matt with low 
reflectivity 

2B Cold rolled, annealed, pickled, skin 
passed (or tension levelled) 

Smooth but ‘dull’, 
pearly grey Mill finishes 

2R (Bright 
Annealed) Cold rolled, bright annealed Smooth and 

shiny 

Brushed 2B or 2R base finish with 
unidirectional brushing 

Unidirectional, 
medium 

reflectivity 

Polished 2B or 2R base finish with 
unidirectional polishing 

Sometimes called 
satin look, more 

glossy than 
brushed 

Peened 

A 2B or 2R finish is peened with 
glass bead providing a hardened 
surface, which makes visible the 

annealing process to which the base 
metal was subject to in the 

manufacturing process. 

The appearance 
is quite unusual 

Texture rolled 
2B or 2R base finish is embossed 
with repetitive patterns stamped 

onto metal sheets. 

Dependant on 
pattern 

Derived 
finishes 

Abraded Base finish can be abraded using 
various materials and methods 

Dependant on 
abrasive and 
method used 

 

2.2.4.2 Applications 

 

The finishes that are applied to stainless steel sheet have a number of functions, figure 2.3. The 

most obvious use of particular finishes is aesthetics. The popularity of stainless steel kitchen 
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appliances did not originate with its pleasing appearance, however, but from its resistance to 

food acid corrosion and its hygienic quality. 

The corrosion resistant properties are inherent for stainless steel due to it self-repairing passive 

layer (figure 2.4) and the elimination of the need for coating or painting means no pits or 

scratches in the applied surface which would promote bacteria build-up. The 'mirror' finish was 

popular as it is very easy to clean; although more matt and brushed finishes are becoming 

increasingly desirable in the home because of the 'fingerprinting' nature of the smoother finish 

(the oil marks left by fingertips are far more visible on the mirror finish [4]). In the food and drink 

production industry much of the processing equipment is made from stainless steel, which has 

the additional benefit of ease of cleaning and does not impart any taste to the products. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Common 'surface dependant' functions for stainless steel 

 

The corrosion resistance and ease of cleaning also make stainless steel an excellent choice for 

public amenities like litterbins, ticket machines and lamp posts. Most grades are suitable for 

long-term outdoor use and combine good life-cycle costs with low maintenance costs, as dirt 

and graffiti can be washed off with water. 

 

 

 

 

 

 

 

 

Figure 2.4: Self repairing passive layer on stainless steel [5] 

 

Architecture is a growing market for stainless steel, in terms of surface finishes, for building 

cladding and in smaller amounts for things like lift interiors, doors and handrails. The mirror 

Stainless Steel 

Surface 

Appearance  
Consistency 
Gloss 
Reflectance 

Adherence/Retention  
Lubricant retention 
Coating adherence 
Soil adherence 
Cleansibility 

Corrosion  
Micro-crevices 
Deposit retention 
Connectivity 

Tribology  
Formability 
Connectivity 
Wear 
 

Chemistry  
Passive film 
 



11 

finish is used for highly decorative effects, where as large areas are normally covered with the 

more matt or brushed finishes. A building clad in stainless steel would require great uniformity 

from the smooth mirror finish (which would disappear at certain aspects in sunlight), so it is 

more usual to see mill rolled, brushed, peened or texture pressed finishes where large areas are 

to be covered. Colours such as bronze effect and deep blues can be applied to the sheet prior 

to forming giving even more versatility. 

The 2B finish is very popular in industrial applications, or when an 'industrial look' is desired and 

2B and 2R are normally the raw material for further 'finishing' lines. 

 

2.2.4.3 Origin of Micro-scale Surface Features in M ill Finishes 

 

The surface finish of the final product depends on a number of factors within its process route, 

predominantly the final stages. The topography produced in the final stages is examined more 

closely in the determination of the surface features that are to be measured for the purpose of 

characterisation; this is carried out in further detail in chapters 3 and 4. 

There is inherent variability in the surface topography produced due to differing process stages, 

grade of material and one-off variations known as 'defects'. Different process stages for the 2B 

finish occur in cold rolling, where the desired thickness determines the number of passes 

through the rolling mill and the final finishing operation can be either skin-passing or tension 

levelling, see figure 2.5 (this is source dependant, either Source 1 or 2, respectively). Other 

stages of the process route can produce discrepancies, like the 'greying' effect of over pickling 

or a general streaky appearance may be evident where variation existed in the white hot band. 

Variations due to the grade arise because of the individual properties of the materials and 

therefore slightly different reactions to the same processing operations. When all of these 

variables are the same, inconsistencies in the final finish can still occur.  Roll imprints may be 

seen as a result of roll wear or lubrication problems and other faults such as scratching may be 

visible. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: The effects of differing processes: Interferometer images of 

a) skin passed 2B (Source 1) and 

b) tension levelled 2B (Source 2) 

a) b) 
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2.3. Functional Surfaces 

 

2.3.1 Introduction 

 

A surface can be either functional or non-functional. Functional surfaces are those where the 

properties of the surface influence the performance of the component. A control loop was 

suggested by Stout & Davis [6], figure 2.6, showing the interdependence between the required 

functional behaviour of the surface, the manufacturing of it and the characterisation of its 

topography. 

So if the function requires the surface to react in a certain manner the surface characteristics 

can be specified and a suitable manufacturing process chosen. This theory also works in the 

reverse direction; if a surface is manufactured by a particular process then given the necessary 

conditions the behaviour of the material may be predicted and controlled. Understanding the 

relationship between the surface features and component application can optimise the quality of 

functional surfaces.  

 

  

Figure 2.6: Control loop showing interdependence between manufacture, characterisation and 

function [original from 6] 

 

Surface interactions are affected by various properties and all must be considered for a full 

characterisation covering all functional aspects. The chemical composition of a surface affects 

such aspects as resistance to corrosion and chemical or biological adhesion. Residual stresses 

and other mechanical properties like hardness can affect the ability of a surface to deform in 

further forming or rolling operations. When all of these properties are stable the micro-scale 

surface topography of a surface can have an effect on appearance, lubricant retention (which is 

important for forming behaviour) and corrosion resistance. This project deals with the micro-

scale surface topography in relation to functional aspects of stainless steel, as it is relatively 

easy to measure non-destructively, producing an ideal measurand. 

 

 

 

 

 

Manufacturing 

Function Characterisation 
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2.3.2 Influence of Micro-topography 

 

2.3.2.1 Effect of Micro-topography on Functionality  

 

The understanding of the relationship between steel sheet topography and function is a vital 

part of product and process improvement. The way in which the surface topography of a 

component affects its ability to perform differs depending on the desired function. The major 

areas of previous study into metal surfaces have fallen into two categories; tribological concerns 

and appearance. Further separations within these main groups are possible, as seen in table 

2.2, along with links where dual functions have been studied. 

 

Table 2.2: Main areas of past research 

 

Tribology Appearance 

Formability Coatings 

Wear Painting 

Surface wetting/Lubricant retention Gloss 

 

It has long been known that ‘the smoother the better’ approach to wear and sealing properties is 

not necessarily true. It has been found by many researchers [7, 8, and 9] that some surface 

roughness is desirable when using liquid lubricants, where valleys on the surface retain oil in the 

contact region. A certain roughness on auto body panels, for painting, is also required for the 

paint to adhere to the surface, although there is still optimisation work to find the best finish for 

final paint appearance, adherence of paint and amount of paint used [10]. 

In terms of stainless steel the grade chosen is obviously very important to achieve corrosion 

resistance in certain environments. Since the highly resistant grades are more costly initially, 

research into methods of improving the corrosion resistance of the standard grades, such as 

special surface finishes, better component design and cleaning regimes has become more 

crucial. In the past it was believed that smoother surfaces had better corrosion resistance, as 

they do not 'trap' contaminants and if outdoors are more easily 'cleaned' by rainwater. This may 

be true to some extent, although recent work has studied the effects of processing to final 

product design on corrosion resistance [11]. 

The effect of topography on the functionality of stainless steel surfaces in this project will be 

confined to three areas; appearance, lubricant retention and corrosion resistance. Further 

discussion of past research in these specific areas is given in the relevant sections of this 

chapter, 2.3.3 Optical Appearance, 2.3.4 Tribology and 2.3.5 Corrosion Resistance. 
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2.3.2.2 Effect of Production on Topography 

 

The cause of failure of a work piece can be due to many factors and since scrapping 

components is not economical, the source should be identified with a view to elimination. 

Surface texture is the fingerprint of manufacture [6] and as such can be used as a control for 

production purposes. Changes in the process, whether they be intentional or not, effect the final 

finish of a component and if the features of surface topography can be traced to the point in the 

process where they were created the effect can be either controlled (for the engineering of 

surfaces for a specific function) or eliminated (for defects). 

It is to be expected that variations in the processing history will influence both the appearance 

and the properties of the designated finishes (2D, 2B & 2R). For example, it is well established 

that the 2B Ra roughness value decreases with the degree of cold reduction from the hot band 

stage. 

Firstly, features of the original hot band surface and those imprinted during its descaling that 

have endured the rolling operations may be retained. These can be in the form of defects in the 

sheet, like deep pits or heavy shot blast marks (used to clean the sheet); other shallower 

troughs may also be present as a result of hot rolling scale. At the white-hot band stage the 

surface is very rough and irregular. 

The cold rolling process is not only used to reduce the gauge of the sheet but also to improve 

and consolidate the surface. The differences in methods and tribological conditions of cold 

rolling generate various surface characteristics, often the shallower pits present on the hot band 

surface are eliminated and the intermediate descaling (pickling) effects are minimised.  

As mentioned previously, the next step depends on the finish required. After being rolled to the 

intended final gauge the material for 2D and 2B finishes is annealed again and must be 

descaling in an agitated acid bath. 

This descaling method is highly influential to the surface and chemical attack on the metal 

substrate can be preferential, for example at grain boundaries in the recrystallised, annealed 

structures, giving rise to etching effects on the surface. It creates a ‘matrix’ of grain boundary 

valleys; figure 2.7, where the metal surface has been depleted of chromium during the oxidising 

process. Some of the grain boundaries are left intact so the remaining grain ‘plateau’ regions 

vary in size. This is the cold rolled, annealed and descaled surface that has a matt finish with 

low reflectivity, known as 2D (see table 2.1). 

The plateau regions are relatively untouched at this stage, since they are the ‘new’ grains and 

so most have not been rolled. ‘Skin passing’, in a light but high-speed mill can enhance strip 

geometry and surface brightness. The skin pass, performed at the Sheffield site, does not alter 

the mechanical properties materially but it serves to reduce thickness and improve ‘shape’ 

tolerances and gives a final finish to the plateau regions. Being a light pass it does not totally 

smooth out the plateau regions but merely removes or flattens the higher asperities making the 

surface optically brighter. The skin pass also has a tensioning device, which helps to alleviate 

the effect of form and waviness created in the rolling process. The other method of brightening 

the surface, used at the Source 2 site, is to use a light tension device. The effect on the visible 
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appearance of the sheet is similar but has not been investigated in detail at a microscopic level. 

The surface is now designated as the 2B finish that has a 'pearly grey' appearance. 

Consequently there are two main features which distinguish the 2D and 2B surfaces, plateau 

regions and a pattern of valleys and to fully quantitatively characterise the surface every detail 

of these features must be measurable. 

 

 

 

 

 

 

 

 

 

Figure 2.7: Interferometer images showing etched grain boundary valleys and plateau regions 

on 2B stainless steel 

 

The annealing method for 2R material has a totally different effect on the surface. As no oxygen 

is present in the process no scale is formed and so no descaling is needed. The final product is 

highly reflective and bright with a mirror like finish. 

These finishes are not normally subject to any quantitative specification, except possibly 

comments on relative ‘dullness’. It is now accepted however that the nature of the topography of 

a surface can have a significant influence on the efficiency and functional performance of the 

sheet surface [1] and it is considered that a quantitative analysis of the surface is highly 

desirable if a deeper understanding of the surface function is to be gained. 

 

2.3.3 Optical Appearance 

 

The appearance of an object is influenced by many factors, the interaction of light with the 

surface, the direction of both light source and viewer, the objects’ physical characteristics and 

subjective human perception. Generally a distinction is made between chromatic properties, like 

colour and geometric atributes, such as gloss, reflectance and haze. Instruments to measure 

these properties are also seperated into two groups, those that measure the physical properties 

of distributed light, like spectrophotometers and goniophotometers and psychophysical analysis 

instruments that give measurements that correlate with the human perception of light 

distribution, like colourometers and glossmeters [12]. 

 

2.3.3.1 Perception of Appearance 

 

The appearance of a product is often used by consumers as a measure of the quality of the 

product and the materials it is made from. There is a psycological relationship [13] between 
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appearance and performance and durability. When given a choice between similar product 

function, a consumer will inevitably buy what looks best. Manufacturers of stainless steel 

products also realise the importance of uniformity of appearance, as variability in a group of the 

same products indicates to the end-user poor process or production control and therefore 

inferior quality. 

How a material appears to the eye is dependant on the effect it has on light falling on it (the 

incident light). The light distribution can be characterised as either reflection or transmission and 

further divided into diffused and undiffused components. This gives four main types of light 

distribution, see figure 2.8, with most metals having a strong specular reflection property and a 

degree of diffuse reflection [14]. 

 

2.3.3.2 Instrumentation to Measure Reflectance 

 

Instruments are separated into two groups, physical and psychophysical analysis types [14]. 

The appearance attributes of relevance for stainless steel are geometric rather than colour 

related and because of the nature of metals, only specular reflection meters are suitable for 

measuring the gloss, haze, specular reflectance and distinctness of image which are of interest. 

Generally known as glossmeters, the first commercial instrument was probably the Ingersoll 

Glarimeter developed in 1914 [15] for measurement of white paper gloss. 

Modern glossmeters generally consist of two parts, the optical unit containing the light source, 

lenses and receptors and the readout unit which converts the electrical signals into meaningful 

instrument readings. 

There are three common geometries, 20°, 60° and 85°, at which gloss (see table 2.3) can be 

measured (depending on the amount of gloss). This is to give better resolution for all surfaces, 

since a measurement at 20° on two low gloss surfaces would show little difference. 
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Figure 2.8: The four main types of light distribution 

 

2.3.3.3 Parameters to Measure Reflectance 

 

The perception of appearance can be thought of in many different ways and so parameters 

need to incorporate considerations for gloss, reflectivity, image clarity, degree of greyness or 

brightness and hue. Optical properties like these are considered on a nano-scale, Thomas has 

stated, [16], ‘When surface irregularities are present at wavelengths comparable with those of 

visible light the appearance of the surface will alter, e.g. a painted surface such as a car body 

may appear dull instead of glossy (amplitude 0 – 10 nm)’. 

Gloss (or specular gloss) is the general term for the attribute of 'shininess' of surface and it is a 

concept used to define sheet surface quality. In 1952 five kinds of reflection were defined [14], 

table 2.3, and it was generally accepted that an observer perceives not only the mirror image 

angle light but also components close to the specular angle. 

Very smooth surfaces will have very high gloss values, as most of the incident light is reflected 

in the mirror image angle. Surface roughness will scatter the light, reflecting it at different angles 

to the mirror image, reducing these gloss values. 
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Table 2.3: Types of gloss [14] 

 

Types of 
reflection Characteristics 

Specular gloss Shininess, brilliance of 
highlights 

Haze or absence 
of bloom 

Halo or milky appearance 
near to reflected highlights 

Distinctness of 
image Sharpness of mirror image 

Sheen Gloss at grazing angles 

Contrast gloss Difference between specular 
and non specular areas 

 

2.3.3.4 Sheet Metal Appearance 

 

The appearance of sheet metals is governed by the extent of their reflection (diffuse and 

specular) as they do not possess transmission properties. They range in magnitude from the 

mirror-like (wholly specular reflection on a highly polished, flat surface) to the very matt (wholly 

diffuse reflection normally associated with rough finishes). Their optical properties depend 

mainly on their production method, although metal composition can have an effect (due to the 

materials reaction to the applied processing).  

The appearance effects of production methods on stainless steel finishes are varied and it is 

possible to produce both matt and highly reflective surfaces (though the work involved deems 

this uneconomical). The mill and derived finishes (seen in table 2.1) can have distinctly different 

surface topographies, although their appearance may be very similar. 

The key features that affect the optical properties of 2D and 2B surfaces can be deduced by 

comparing the production methods and end appearance of the two. The 2B finish is basically a 

skin passed 2D finish and as a result is much brighter than the matt 2D finish. Skin passing is 

used to enhance surface brightness and increase reflectivity by removing or consolidating the 

higher asperities present on the 2D finish. Optical properties of the studied surfaces are 

discussed in detail in chapter 6. 

 

2.3.4 Tribology 

 

2.3.4.1 Background 

 

It is well known that, in forming operations, smooth surfaces are prone to scratching and galling 

as they friction weld easily to the forming die [17]. Surfaces with valleys allow lubricant to be 

held in the surface at the contact zone during forming, reducing friction and welding problems. 

Additionally these valleys act as debris traps, keeping contaminants away from the contacting 

surfaces [17, 18]. Wihlborg and Gunnerson [19] also found that friction is lower in surfaces with 

a large number of small isolated pockets. The development of a parameter to describe these 
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properties resulted in the use of the ‘WC index’ [20], which is discussed in section 2.4.5. It has 

been shown [21] (whilst studying aluminium sheets for stretch formed automotive panels) that it 

is important for friction and forming behaviour that surfaces possess both open and closed 

voids. 

 

2.3.4.2 Functional Tests 

 

Testing can be either practical, using the actual process and conditions of manufacture for a 

component, or experimental, where rigs are used to simulate the process and variables of 

manufacture can be changed and controlled. The effect of surface topography on tool friction 

properties was classically studied using a Draw Bead Simulation or ‘DBS’ tests [22], and 

variations of it, like the Bending Under Tension or ‘BUT’ test [23]. These can be used to analyse 

either the tool surface or the formed products’ surface, both before and after testing and galling 

behaviour. A static oil retention test was developed by OCAS to study the effects during coiling 

or blanking [10]. A drip test can be used to study the lubricant retention and surface wetting 

properties of a finish.  

 

Draw Bead Simulation (DBS)  

Draw bead simulation or strip drawing tests have been used for many years to study the effects 

of friction, die and blank surface finish, draw speed, lubricant type and virtually every other 

variable in sheet product forming. Figure 2.9 is a schematic of a simple draw bead simulator. 

The sample is drawn through the stationary dies, with an indentation force applied. Lubricant 

can be applied to the sample before testing and the indentation and pull forces are measured 

during testing by strain gauges. The dies can be smooth to simulate rolling or can be roughened 

to study the effect of friction and the contact angle of the die can be changed. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9: Schematic of a simple Draw Bead Simulation [22] 

 

Bending Under Tension (BUT) Tests  

The bending under tension rig, figure 2.10, is a variation of the draw bead simulator, sometimes 

referred to as a radial strip drawing rig which simulates the contact between the sheet and the 
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die radius in a drawing operation [24]. The sample sheet is stretched over a cylinder 

representing the die radius and is pulled whilst the force is monitored. By using a rolling cylinder 

sliding friction at the contact zone can be found in relation to the pulling force. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10: Bending Under Tension equipment [23] 

 

Drip Tests  

Film retention tests have been used traditionally for testing lubricant film retention properties, 

related to forming operations. It is a relatively straightforward method, whereby a shaped 

coupon of material, see figure 2.11, is coated with lubricant that is then left to run off the sample. 

The method of application of oil and the initial film thickness is made independent of the film 

retention properties, by allowing the sample to hang for a set time before weighing the sample 

for the first time. The film thickness at set time intervals (up to 2 weeks is the norm) can then be 

related to the lubricants film retention properties. There are variations of this method, chosen 

depending on the lubricant being tested and the availability of a roller press (giving a known 

initial film thickness), for the preferred method. 

Similar methods can be used to test the lubricant retention properties of a surface, by varying 

the samples rather than the lubricant used. By controlling the amount of oil initially applied, then 

weighing the drips with respect to time, an indication of the surfaces ability to hold or distribute 

lubricant can be found. 

The tribological property of lubricant retention is studied in further detail in Chapter 7. 
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Figure 2.11: Shape of sample used for drip testing 

 

2.3.5 Corrosion Resistance 

 

2.3.5.1 Background 

 

Corrosion can be defined as the chemical reaction or the electrochemical reaction of a material 

with its environment. For ferrous metals, it is usually referred to as atmospheric corrosion. 

Oxidation is the direct chemical reaction between the material and oxygen. Oxidation can be a 

help or a hindrance. For instance, for stainless steel “corrosion” forms an oxidation layer giving 

strong retardation of additional corrosion through passivation (the passive film, see section 

2.3.4.2). 

Corrosion is another consideration that must be taken into account when selecting materials, 

either working alone with the environment, or working with other materials to perform a function. 

Since materials degrade, the rate and extent of this degradation must be controlled; some 

applications require more control than others. For instance, in the food industry, food processing 

equipment cannot tolerate even a minute amount of metal corrosion, particularly if metal ions or 

particles are released into the surrounding environment.  

 

2.3.5.2 Corrosion Mechanisms of Stainless Steel 

 

The corrosion resistance of austenitic stainless steel is the result of the passivating chromium 

oxide film that forms on its surface. To maintain the protective layer, a chromium content of at 

least 11% and a supply of oxygen are required. The film is self-repairing in air at room 

temperature but if not enough oxygen is present and the film is damaged corrosion will occur. 

Most stainless steels are susceptible to corrosion such as intergranular and stress corrosion, 

crevice corrosion and pitting. Grade 316L is commonly used for marine applications [25] due to 

its outstanding resistance to localised corrosion, however, the greatest shortcoming with this 

type of stainless steel is their vulnerability to pitting and/or crevice corrosion in the presence of 

chloride under static or stagnant conditions. The breakdown of the passive film on stainless 

steel occurs in the presence of chloride ions which subsequently results in the initiation of pits. 

Samples are etched to aid 
positioning of oil drops 
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There are three identifiable phases to pitting of stainless steel. According to some research [26] 

pit nucleation in stainless steel is unstable since pit propagation is not always achieved. The 

nucleation current required dies continuously and most pit initiation events terminate. If the 

nucleation current is maintained and the pit survives then the pit growth is called metastable. 

Pitting only becomes stable when an effective barrier against diffusion is achieved and the 

nucleation current density is high enough. Stable pitting is a diffusion controlled reaction and the 

diffusion barrier is often related to pit depth [26]. 

 

2.3.5.3 Methods of Assessing Pitting Corrosion Susc eptibility 

 

Currently, a number of tests are used for ranking pitting susceptibility for different surface 

finishes, for example salt spray testing [27] and critical pitting temperature measurements [28]. 

However, these are relatively slow (up to a number of weeks). Common electrochemical testing 

methods include: Zero Resistance Ammeter (ZRA), Potentiostatic, Potentiodynamic and 

Galvanostatic. Two of these methods have been used within the scope of this project and are 

discussed in detail in chapter 8. 

 

2.3.5.4 Relationship of Topography to Corrosion 

 

B.Lee and C.Watanatham (Outukumpu UK Foundation for Research and Development students 

based at Birmingham University) have investigated pitting phenomena and localised corrosion 

behaviour with respect to variations in surface topography. Particular interest lies in the shape 

and relative depth of existing pits on plateaus or in valleys and whether certain topographies 

promote the initiation of pitting corrosion, crack initiation or the ease of release of an ion from a 

pit, as this directly effects the pitting corrosion susceptibility, see figure 2.13. It is thought that a 

combination of valley depth and aspect ratio (crevice acuity) parameters will be required for 

functional use. 

 

 

 

 

 

 

 

 

Figure 2.12: Pitting corrosion: attack on crevices – dependence on shape [reproduced from 8] 
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2.4. Surface Topography Measurement 

 

2.4.1 Instrumentation 

 

There is now an extensive range of 3D measuring equipment available for the engineer, 

metallurgist, biologist, etc. The techniques for the use of 3D instruments are also becoming far 

more defined and standardised but it can be difficult to choose the right method and equipment 

for a particular type of surface. 

Some equipment can be easily eliminated from the choice based on the type of surface to be 

examined and the capabilities of the instrument. For example, a contacting stylus type 

instrument cannot be used to measure soft surfaces, due to the damage that the tip causes and 

surfaces with sharp peaks or valleys are distorted in relation to the geometry of the tip. 

Interferometry is not recommended for very rough finishes and the surfaces must possess a 

certain specular reflectance to be measured accurately. 

Considering these problems there is a strong argument to suggest that before measuring 

commences the features that define or characterise the topography of the surface (the ‘unit’ 

features) must firstly be established. 

 

2.4.1.1 Instrument Selection 

 

There are many instruments that can be used for 3D surface measurements, making the 

selection of the right technique difficult. The most common classification of instrument types is 

into three groups, contact, non-contact and scanning probe microscopy, see figure 2.13. 

By far the most widely used technique (in industry) is the 2D contacting stylus instrument. There 

are however, certain obvious limitations in this method and as a result other techniques are 

establishing themselves in a number of disciplines. The following section on instrument 

selection explains some of the options that are available with the advantages and 

disadvantages of each. 

 

2.4.1.2 Stylus Instrument 

 

The first stylus profilometers were developed in the 1930’s. Work on the first transmission and 

scanning electron microscopes prompted their conception as an advance on the optical 

specular reflectance methods which, although a widely used method of areal measurement, 

presenting the root mean squares (RMS) roughness parameter, did not give quantitative height 

information or an image of the surface topography [6, 16]. Early stylus measurements were 

carried out by traversing the probe across the surface and recording the vertical movement of 

the lever. The major differences of these systems were in the logging of data, three common 

methods were magnification of an optical lever [29], a mirror/lever system recording the 

deflections of a light beam on photographic film [30] and mechanically amplifying the movement 

of the probe to scratch a smoked glass plate [31]. These gave a profile of the surface 
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topography with quantitative height information and were adequate for most isotropic 

engineering surfaces. It wasn’t until about thirty years later that Williamson and Peklenik et al 

[32, 33], proposed three-dimensional measurement with the stylus instrument. This was realised 

by Sayles and Thomas [34] who, in 1976 added computer control to a 3D-stylus instrument. 

Many 3D systems are now commercially available and associated software has greatly 

improved. 2D systems are still used for profiling and in standards definition because of the 

speed and ease of measurement, which is not always true of 3D systems. The construction of 

the instruments is similar, but because of the nature of this project only the 3D assembly and 

features will be discussed. 

Many authors [16, 34] have exhaustively discussed the mechanism of a 2D-stylus instrument 

and 3D systems are fairly similar in construction. The basic instrument consists of a stylus probe 

that is traversed across a surface, a pick-up, which is physically attached to the tip and converts 

the vertical movements into an electrical signal. This signal is then amplified and digitised to be 

processed by a computer, see figure 2.14. A linear variable differential transformer (LVDT) or an 

optical transducer are used in the pick-up mechanism and the translation stages are controlled 

by a gearbox driven by either a stepper motor, a DC motor or a linear motor regulated by a 

driving unit [35]. 

The pick-up arrangement sometimes includes a skid, which is either flat or has a large radius. 

The skid rests on the surface, usually in front of the stylus tip, following the macro surface or 

waviness of the topography, therefore acting as a high pass filter. Although skid-type stylus 

systems are less sensitive to external vibrations (making them more suitable for shop floor 

environments) they do not give a true measurement of the macro and micro surface topography 

and can cause distortion of the roughness profiles obtained, see figure 2.15 [36], particularly for 

surfaces with sudden steps. 

With 2D methods a profile of the surface is obtained and the conventional method to realise the 

third dimension of movement to give an area map of the surface is the raster scan. A raster 

scan is a collection of parallel profile traces where each individual profile is displaced laterally a 

short distance from the previous one. All the profiles must be referenced to the same origin for 

the resulting areal plot to be a true raster scan. These 3D maps can then be displayed visually 

on a computer screen and/or used to calculate areal parametric descriptors. A radial scan is 

different as the profiles are taken with respect to radial angles and all traces have the same 

point of origin [37, 38]. This system is rarely used in current 3D data acquisition due to its 

difficulties in accurate physical realisation, amongst other things. 

Stylus instruments are one of the oldest and probably the most popular methods of assessing 

surface topography and are therefore very well known and the measurement problems are now 

thoroughly investigated and documented [6, 8, 31, and 35]. Approved national and international 

standards exist for measurements using 2D stylus instruments, instilling confidence and 

ensuring consistency of measurements and results [16, 31]. Stylus systems also possess some 

element of self-cleaning, as the tip is traversed across the surface. 

Correct measurement results however must take into account the effects of stylus load and tip 

geometry, figure 2.15. Although the load on the stylus is small (typically in the order of mN), 
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when it is transmitted to the surface via a very small area the resultant pressure is high and can 

damage the surface. In some cases asperities can be deformed plastically as well as elastically 

[31] and soft surfaces are therefore not measurable. 

The data that is gained is distorted because of the effect of the tip geometry. It acts as a low 

pass filter, preventing asperities that are smaller than the radius of the tip being accurately 

resolved, see figure 2.15 [39]. Features like overhangs and pit hoods known generically as re-

entrant features cannot be measured and may actually be damaged during measurement. The 

final drawback of stylus instruments for 3D work is time, measurement times are extremely high, 

a 4 x 4 mm area with a 1000 x 1000 point matrix may take as much as 3 hours to complete. 

Other, unavoidable sources of errors are the conversion of the mechanical signal (given by the 

stylus tip) to the electrical signal (generated in the coils) and the conversion of this continuous, 

analogue signal to a digital one that is the computer input. 
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Figure 2.13: Classification of surface topography instruments based on the physical principles of 

measurement [35] 
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Figure 2.14: Schematic of a general stylus instrument with an inductive probe 

 

Figure 2.15: Effect of stylus tip radius on measurement results [39] 

 

2.4.1.3 Interferometery 

 

Until the 1970’s optical interferometry could only be used for qualitative analysis and 

visualisation of surface topography. The technique was difficult and time consuming until 

developments in computing and electronics allowed complex analysis of optical fringe intensity 

and sophisticated graphics to be exploited. 

There are two main approaches to interferometric measurement available in commercial 

instruments, phase shifting and vertical scanning (PSI & VSI). They both work on the same 

basic optical principles, but VSI was developed to measure the rougher surfaces which were not 

previously measurable using PSI. 
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Equation 2.1 

The PSI system was developed by Bruning in 1977 and figure 2.16 shows a schematic diagram 

of a modern system. Filtered white light is passed through a beam splitter within the 

interferometer. Half of this incident beam is directed toward the specimen surface under 

examination and half to the reference surface, normally a very smooth mirror. 

When the two wave fronts recombine and interfere they are collected by the charge coupled 

device (CCD) detector and an interference pattern or fringes are produced. Deviations in the 

pattern are actually deviations of phase between the two beams (either constructive or 

destructive) and can be related to height deviations between the test and reference surfaces (or 

more specifically height deviations of the test surface, since the reference has a known, near 

zero roughness). These interference phenomena can be collected and viewed as an 

interferogram. Quantitative height deviations are found by computer software that analyses the 

interferograms. 

Phase shifting is enabled by driving the reference surface with a piezoelectric transducer (PZT). 

Once three or more interference patterns, for different axial positions of the reference surface, 

are measured the height distribution, h(x,y), for each coordinate pair, (x,y), can by found from 

the phase, Φ(x,y) by equation 2.1 [40]. 

 

 

The CCD detector is actually recording the intensity of the fringe pattern for the axial positions of 

the reference sample (Ι(x,y)) and equation 2.2 is used to find the phase Φ(x,y). 

 

 

 

Where A = average intensity, B = constant and i = axial shift position, α = controlled phase 

angle 

Most PSI systems at best detect phase differences of λ/4 [41] where λ is approximately 650nm, 

limiting the point-to-point range to around 150nm. For rougher surfaces visible white light is 

used, in VSI mode. Due to the short coherence length of unfiltered white light, interference 

happens over a very shallow depth of field (height band) for each focus plane. In this mode, 

instead of measuring the phase difference of the interference the CCD records the coherence, 

or degree of modulation of the fringes for different path lengths. By using the PZT to scan 

vertically above the test surface the modulation (fringe contrast) and therefore the intensity 

increases as the sample is brought into focus then decreases as it is translated past focus 

(figure 2.17) through the full depth of surface features. Frames of interference data are captured 

and a signal for each point on the surface is recorded. Algorithms are used to demodulate the 

envelope of this fringe signal and a vertical position corresponding to the peak of the 

interference signal (the point of best focus) is extracted for each point, see figure 2.18. The 

optical path difference is found for points across the surface and 3D roughness is deduced from 

these path differences. 
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Figure 2.16: Schematic of a basic interferometer set-up (for Phase Shifting 

Interferometry, PSI) 

 

The level of reconstruction of the topography is very accurate (with a quoted vertical resolution 

of approx 0.3nm for PSI and 3nm for VSI) and the measurement time is small, around a few 

seconds, after initial set-up time. Being non-contacting, both hard and soft materials can be 

measured without the risk of damage. The major limitation of these methods is that the test 

surface must reflect at least approximately 15% of the incident light to the detector and be 

optically homogeneous. This level of reflected light also affects the resolution of slopes on the 

surface, as angled light reflection may return insufficient intensity to the detector (around 15° is 

the limit) and higher slopes have been known to cause fringe ambiguities (near λ/4) [41]. 

Lateral and vertical resolutions are better than for a stylus instruments, but results are generally 

in good agreement. The vertical range is also limited, and so accurate measurement of surfaces 

with large amplitude features may not be possible. Re-entrant features cause problems for both 

stylus instruments and interferometers. 
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The point of maximum modulation 
is taken as the focal point for the 
surface being measured 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.17: Intensity of light through optical path length showing maximum modulation 

point of focus [40] 

 

 

 

 

Figure 2.18: Fringe demodulation algorithm: deduction of 3D topography data from OPD 

 

2.4.1.4 Atomic Force Microscope (AFM) [42, 43, 44] 

 

The AFM was developed in 1986 by Binnig et al [45], and is a derivative of the Scanning 

Tunnelling Microscope (STM). The device is often likened to a stylus instrument on a smaller 

scale, as it utilises a scanning tip on a cantilever, see figure 2.19.  

An AFM tip is approximately 10µm in length, in a tilted tetrahedron shape and the point is 

sharpened to less than 10nm in diameter. The tip can be made from a fractured diamond 

fragment or carbonaceous material (SiC or SiOi) via finely controlled micro-lithography or 

electron beam deposition and is attached to the free end of an aluminium or gold-coated silicon 

oxide cantilever of 100-200 µm in length. 

There are three modes of measurement in atomic force microscopy, contacting, non-contacting 

and intermittent contacting. All of the modes rely on the response of the cantilever to the forces 

present when the tip moves close to the surface. The inter-atomic forces (repulsive) and the van 

der Waals forces (attractive) change as the distance between the sample surface and tip 

changes, see figure 2.20. 
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Figure 2.19: Representation of an Atomic Force Microscope 

 

In contact AFM mode the tip makes soft "physical contact" with the sample. The cantilever has a 

low spring constant; lower than the effective spring constant holding the atoms of the sample 

together. As the scanner traces the tip across the sample the contact force causes the 

cantilever to bend to accommodate changes in topography. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.20: Interatomic force vs. distance curve: the effect of distance between atoms 

on the interatomic force [43] 

 

In the contact regime, the cantilever is held less than a few nanometres from the sample 

surface, and the inter-atomic force between the cantilever and the sample is repulsive. This 

repulsive force balances almost any force that attempts to push the atoms closer together. This 

means that when the cantilever pushes the tip against the sample, the cantilever bends rather 

than forcing the tip atoms closer to the sample atoms. Even if a very stiff cantilever is used to 



32 

exert large forces on the sample, the inter-atomic separation between the tip and sample atoms 

does not decrease. 

Currently most commercial systems detect the position of the cantilever with optical techniques. 

In the most common scheme, shown in figure 2.21, a laser beam bounces off the back of the 

cantilever onto a position-sensitive photo-detector (PSPD). As the cantilever bends, the position 

of the laser beam on the detector shifts. The PSPD itself can measure displacements of light as 

small as 1nm. The ratio of the path length between the cantilever and the detector to the length 

of the cantilever itself produces a mechanical amplification. As a result, the system can detect 

sub-nanometre vertical movement of the cantilever tip. Other methods of detecting cantilever 

deflection rely on optical interference, or even a scanning tunnelling microscope tip to read the 

cantilever deflection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.21: The beam-bounce detection scheme of an AFM [43] 

 

Once the AFM has detected the cantilever deflection, it can generate the topographic data set 

by operating in one of two modes - constant-height or constant-force mode. In constant-height 

mode, the spatial variation of the cantilever deflection can be used directly to generate the 

topographic data set because the height of the scanner is fixed as it scans.  

In constant-force mode, the deflection of the cantilever can be used as input to a feedback 

circuit that moves the scanner up and down in z, responding to the topography by keeping the 

cantilever deflection constant. In this case, the image is generated from the scanner's motion. 

With the cantilever deflection held constant, the total force applied to the sample is constant. 

Constant-force mode is generally preferred for most applications. Constant-height mode is often 

used for taking atomic-scale images of atomically flat surfaces, where the cantilever deflections 

and thus variations in applied force are small. Constant-height mode is also essential for 

recording real-time images of changing surfaces, where high scan speed is essential. 
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In “non-contact” atomic force microscopy an AFM cantilever is vibrated near the surface of a 

sample. The spacing between the tip and the sample is on the order of tens to hundreds of 

angstroms, see figure 2.20. This mode is desirable because it provides a means for measuring 

sample topography with little or no contact between the tip and the sample. The system vibrates 

a stiff cantilever near its resonant frequency (typically from 100 to 400 kHz) with an amplitude of 

a few tens of angstroms. It detects the changes in the resonant frequency or vibration amplitude 

as the tip comes nearer to the sample surface. The sensitivity of this detection scheme provides 

sub-angstrom vertical resolution in the image, as with contact AFM. The resonant frequency of a 

cantilever varies as the square root of its spring constant. In addition, the spring constant of the 

cantilever varies with the force gradient experienced by the cantilever. Finally, the force 

gradient, which is the derivative of the force versus distance curve shown in figure 2.20 changes 

with tip-to-sample separation. Thus, changes in the resonant frequency of a cantilever can be 

used as a measure of changes in the force gradient, which reflect changes in the tip-to-sample 

spacing, or sample topography. 

In this mode, the system monitors the resonant frequency or vibrational amplitude of the 

cantilever and keeps it constant with the aid of a feedback system that moves the scanner up 

and down. By keeping the resonant frequency or amplitude constant, the system also keeps the 

average tip-to-sample distance constant. 

Intermittent-contact atomic force microscopy is similar to the non-contact mode, except that the 

vibrating cantilever tip is brought closer to the sample so that at the bottom of its travel it just 

barely hits, or "taps" the sample, hence the usual term ‘tapping mode’. The operating region is 

indicated on the force versus distance curve in figure 2.20. As for non-contact mode, the 

cantilever's oscillation amplitude changes in response to tip-to-sample spacing. An image 

representing surface topography is obtained by monitoring these changes.  

Some samples are best handled using intermittent contact instead of contact or non-contact 

AFM. This is because the tip is less likely to damage the sample than in contact mode because 

it eliminates lateral forces (friction or drag) between the tip and the sample. In general, it has 

been found that ‘tapping mode’ is more effective for imaging larger scan sizes than non-contact 

mode. It has recently become an important AFM technique since it overcomes some of the 

limitations of both contact and non-contact AFM. 

The measuring time for relative areas are slightly faster on the AFM compared to a stylus 

instrument but still much slower than on an interferometer. It can also be employed as a non-

contact method and surfaces do not need to possess any specific optical or other properties. 

The AFM method is capable of resolving features that are theoretically atomic scale vertically 

and nanoscale laterally. However, the measurement range horizontally and vertically is limited, 

small areas and fairly smooth surfaces are most favourable when using this technique. 

Traceability is difficult to obtain using conventional techniques and standards are not yet 

available. 
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2.4.1.5 Scanning Electron Microscope (SEM) 

 

The transmission electron microscope (TEM) was the first type of electron microscope (EM) to 

be developed in 1931 by Knoll and Ruska. The theoretical limit of magnification (approximately 

1000 times) for light microscopes had been reached and development of EM’s was driven by 

the desire of scientists to study the fine interior structure of organic cells. A light microscope with 

perfect lenses and illumination cannot distinguish details smaller than half the wavelength of 

light, for example half the wavelength of white light is approximately 0.275 microns (this is the 

theoretical interferometer level).  

To ‘see’ smaller objects ‘illumination’ by accelerated electrons, with extremely short 

wavelengths was developed. For example, when pushed to their limits EM’s can resolve the 

diameter of an atom. The first scanning electron microscope (SEM) was developed by von 

Ardenne in the early 1940’s. All von Ardennes equipment and research was destroyed during 

the Second World War (approximately 1944) and further, commercial development was 

therefore delayed until, in 1947, Charles Oatley continued von Ardennes work, improving the 

‘scanning’ capabilities of the instrument. The first commercial instruments became available in 

the mid sixties. 

A stream of monochromatic electrons is produced in an electron gun and is condensed by the 

first condenser lens, see figure 2.22. Working in conjunction with the condenser aperture it 

reduces the number of high-angle electrons and limits the amount of current in the electron 

stream. The second condenser lens forms the stream into a fine thin, coherent beam, which 

then passes through an objective aperture, eliminating the remaining high-angle electrons. The 

beam then passes through the scan coils, where, by varying the voltage applied, a magnetic 

field deflects the beam in a grid pattern, producing the scanning motion. Before striking the 

sample, the beam passes through the objective lens, where it is focused on to the desired area 

of the specimen. 

The whole column and sample chamber must always be at a vacuum when in use. This is due 

to the inability to produce a stable electron beam when gases are present. Transmission of the 

beam through the optics column may also be hindered by the presence of other molecules, 

which could react with the beam and form compounds or ‘condensation’ on the surface of the 

sample, obscuring detail. 
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Figure 2.22: Basic Scanning Electron Microscope equipment [46] 

 

As the beam strikes the sample, at each scan point, interaction occurs which is detected and 

analysed. The detectors basically count the number of interactions that occur and display them 

as a pixel on a cathode ray tube (CRT) where the intensity of the pixel is proportional to the 

number of interactions counted. The beam is moved to the next spot on the sample and the 

detection process is repeated throughout the scan. Separate detectors are used to ‘count’ 

different interactions, relating to various properties of the sample, see figure 2.23. 

Only two of the interactions shown in figure 2.23 yield topographical information, primary 

backscattering and secondary electron emission. These are discussed in more detail below and 

further information on these and other interactions can be found in [46, 47]. 

There are two broad categories of electron scattering, elastic and inelastic. When an electron 

undergoes elastic scattering there is little or no change in its energy. There is a change in the 

electrons momentum and therefore in the direction of its velocity vector due to the relationship p 

= mv. Typically electrons are scattered at an angle of approximately 60 degrees, although 0 to 

180 degrees is possible. Essentially Rutherford scattering, elastic scattering occurs due to 

interaction between the negative electron and the positive nucleus of an atom in the sample. 

When the scatter angle is such that the electron is directed back out of the sample, a 

backscattered electron, the backscatter detector collects it to give information about the sample 

composition (atomic number) and the topography.  
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Figure 2.23: Interactions between electrons and sample in a scanning electron 

microscope 

 

When inelastic scattering occurs there is a transfer of energy from the beam electron to the 

electrons surrounding atoms in the sample (excitation). The amount of energy transferred is 

dependant on the process that ensues, which could be phonon excitation, plasma excitation, 

secondary electron excitation, continuum X-ray generation or ionisation of inner shells, and can 

range from a fraction to many kilo electron volts. When secondary electron excitation happens 

electrons with a ‘low’ (<50eV) energy are emitted from the sample and are collected by the 

secondary electron detector and used to give topographical information of the surface. 

The advantages of the SEM over light microscopes are clear, they have very much larger depth 

of field (therefore larger areas can be viewed) and far greater resolution is possible, but their 

main disadvantage is the sample limitation. Samples must be conductive and due to the use of 

a vacuum, live cell interaction cannot be studied using the SEM. For gaining topographical 

information of stainless steel samples the advantages in range and resolution are significant. 

The major disadvantage is the inability to measure in the third dimension, or depth of 

topographical features. For this reason the SEM is used qualitatively and as a lateral quantifier 

only, rather than as a primary surface measurement instrument. 

 

2.4.1.6 Instrument Capabilities  

 

It is clear that certain instruments have specific vertical and horizontal measurement ranges for 

which they are best suited. Additionally certain aspects of their physical attributes (probe size 

and geometry, transducer sensitivity, movement error scan length, datum, scale resolution etc.) 
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also define their window of performance. When comparing the performance of the different 

instruments however problems occur as to the criteria upon which comparisons should be 

made. A method for delineating the effective working range has been developed by Steadman 

[48]. 

The method is based around the limiting response of the instrument to sinusoidal surface 

perturbations. The limiting factors considered are the vertical range and resolution, the 

horizontal range and resolution, horizontal datum and probe size/geometry. This analysis results 

in a working amplitude wavelength space (A.W. space) for the given instrument. Figure 2.24 

shows the construction of the Steadman diagram for an example instrument. The limitations of 

wavelength, height, curvature and slope are accounted for when drawing the bounding 'box'. 

An amplitude-wavelength plot for common instruments is presented in figure 2.25. In this figure, 

the two axes represent the resolutions (towards the origin of the axes) and the ranges (away 

from the origin of the axes) of the instruments both in vertical and horizontal directions. Each 

block in the figure indicates the working area of an instrument. The lengths of two orthogonal 

lines drawn from any point, P, in the area gives an indication of the ratio of range to resolution, 

the longer the length, the bigger the ratio. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.24: Construction of a Steadman diagram [49] 

 

Figure 2.25 clearly shows that the specific working areas of the different instruments define an 

instrument's suitability for making a given measurement. The large working area of the stylus 

instruments illustrates its wide applicability. It should be noted that the STM/AFM systems have 

the highest resolution but limited range. Interferometric systems have high resolution but a 

greater range than the scanning microscopes. 

The Steadman diagram has been modified to illustrate the ranges and resolutions of the 

instruments available for use in this project. It will be used to aid the selection of the correct 
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method for measuring stainless steel surfaces. But first it is necessary to investigate the 

geometry of the features of stainless steel topography, or in other words what ranges and 

resolutions are actually required to resolve the features of relevance on the surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.25: Amplitude wavelength plot of a range of 3D surface measurement instruments 

 

2.4.2 Sampling the Surface Data 

 

‘Sampling is the process of defining the instantane ous points at which the data are to be 

observed’ [50]. 

 

When a data signal is converted from analogue to digital, the signal must be sampled and 

quantised. Digital sampling is normally performed at equal intervals of time on a signal and it is 

this interval that is the important variable. If the interval is unnecessarily small, redundant data 

will be collected and the correlation of points would yield misleading results. If the interval is too 

large a phenomenon called aliasing will occur, where the high and low frequency components of 

the signal become confused. In terms of surface topography data however, the interval is spatial 

rather than time based. 

The frequency of the features is needed to ensure that the demands of the Nyquist theorem [50] 

are met. The theorem states that for a periodic signal, the sampling interval should be smaller 

than half of the wavelength of the signal. If this theorem is not satisfied then aliasing will occur, 

as mentioned previously. This is the normal value of short wavelength limit for the sampling 

interval, but as stated, it is for periodic signals, which surface topography data cannot be 

assumed to be. 

Firstly there are a number of methodologies to decide on the correct sampling interval required 

for a particular surface topography, measuring instrument or functional interest, but initially the 

important features of the surface must be identified. Obviously, it is desirable to measure the 

largest area possible, to get as many of the variations as possible. By increasing the area, 
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resolution is usually sacrificed, so there is a trade off between being able to measure at a high 

enough resolution to observe the critical features, see figure 2.26, and having a large enough 

sample area to include all the critical points. This issue of sampling interval for the surfaces 

used in the present study will be analysed in detail in later chapters. 

Many researchers have studied the problem of optimising sampling intervals for several different 

surfaces and utilising a variety of instruments. In the main, studies have been confined to stylus 

measurements [51], using spectral analysis [52], linear interpolation [53], parameter variation 

[54], cumulative power spectra and deep valley analysis [55]. Stout et al [41] concluded that 

choosing optimal sampling intervals for practical applications was not a trivial affair and that 

experience is necessary. Further useful recommendations were made; in particular that setting 

the intervals in both orthogonal directions equal is acceptable for both isotropic and anisotropic 

surfaces. The issue of sampling interval for the surfaces used in the present study is analysed in 

detail in chapter 4. 

 

 

 

 

 

 

 

 

 

 

Figure 2.26: Aliasing: the effect of using a large sampling interval for surface 

measurements 

 

2.4.3 Quantitative Characterisation of Surface Topo graphy 

 

In the past many common finishes have been defined in terms of a two-dimensional parameter 

value, i.e. Ra and Rq. It is now accepted that the difference in surface topographies with the 

same Ra value is too variable to be used as an acceptable functional characterisation tool, 

figure 2.27 [41]. Ra purely measures average surface heights; it takes no account of peak 

asymmetry or peak spacing. Since the growth and improvement of digital computers there have 

been significant changes in the way that surfaces can be measured and viewed. Three-

dimensional techniques had always needed too much processing power to be commercially or 

computationally viable but the 1980’s developments in computing changed this and from the 

1980's 3D surface metrology instruments became increasingly widely available. 
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Figure 2.27: The ambiguity of 2D parameters: different surfaces, same Ra [39] 

 

It is now accepted that the characteristics of a surface cannot be completely interpreted without 

three-dimensional information, as important features can be missed or misinterpreted using two-

dimensional profiles and various models that have tried to study performance using these have 

failed. Pfestorf et al [56] studied two textured metal surfaces, laser and electron beam textured 

(EBT). Due to the deterministic properties of these finishes (patterned or structured), the 

common 2D parameters were deemed unsuitable for clear characterisation. Anamalay et al [57] 

deemed 2D profilometer measurements limited for surface feature recognition for machine wear 

characteristics and used instead a laser scanning confocal microscope, producing 3D data sets 

but still calculating 2D parameters (it is assumed that this was due to the non-standardisation of 

3D parameters at the time). Sullivan et al [58] stated that 2D representation of 3D surfaces 

could be misleading and used a 3D surface analysis system to study the surface geometry with 

a view to estimating contact regions. For the detailed study (metal pipe joints) the authors show 

that 3D characterisation is essential for the prediction of joint performance. 

There has been some previous work using 3D measurements for characterising the 2B finish 

[59] but a criticism of this investigation was due to a problem in the sampling conditions used 

(conditions were not chosen with reference to the important features of the surface but based on 

the limits of the instrument available). This is an area of 3D techniques that is becoming 

increasingly important as the shift from 2D continues. The influence of sampling on 3D 

measurements is more significant and the emphasis for this investigation is on devising the 

correct sampling methodology for the surface being measured. 

It is also being suggested that the ‘parameter rash’ that occurred in 2D measurements [60] be 

avoided by standardising 3D parameters before the techniques have widespread use. This 

implies that before developing new parameters it is vital that original parameters are checked to 

ensure their functional significance before further 3D parameters are developed [35]. 

Further detail of 2D and 3D parameters is given in section 2.4.5 Characterisation. 

 

2.4.4 Filtering 

 

Measured topography data contains three major pieces of information – roughness, waviness 

and form. Surface roughness relates to the closely spaced, short wavelength features that are 
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left on the surface by the process of production, i.e. machining marks or, in the case of 2B 

stainless steel, plateau roughness and valleys. Waviness is the component of surface texture on 

which the roughness is super-imposed. In general, waviness refers to longer wavelength 

irregularities caused by vibrations or deflections in the machining or rolling process. The general 

shape of a surface is termed form and is not usually considered a part of surface texture. 

Roughness and waviness are super-imposed on the form, see figure 2.28, which is usually 

either purposely added to the component (the curve of a cylinder liner) or an undesirable 

deviation of shape resulting from insufficient rigidity of support in the production process (i.e. 

surface tensioning lost in rolling process). 

 

Figure 2.28: Roughness, waviness and form of surface topography data [16, 61] 

 

In order to examine surface roughness the form and waviness components must be removed 

from the data set before analysis. Firstly, the reference datum for analysis and topography 

characterisation must be decided. Previous research [41] suggests that the least squares mean 

plane be used. 

The least squares mean plane has a recognised mathematical definition, ‘a plane such that the 

sum of the squares of asperity departures from this plane is a minimum’. A full discussion of its 

advantages compared to the other popular methods is given in [41]. The plane can be used as a 

levelling plane, to remove tilt from the data set. Further digital filtering can be employed to 

separate the components of waviness and roughness. There are many considerations when 

selecting filters, most importantly that they should be chosen with the application of the data in 

mind. There are numerous filters that have been developed or expanded for 3D characterisation 

[62]. 

Discussion here is limited to two of the most used digital filters, the Gaussian and the robust 

Gaussian. Stout et al [41] recommend the use of the Gaussian filter saying, ‘The Gaussian filter 

is ideally suited for smoothing surfaces with rich features.’ Surface roughness and waviness can 

be separated with no phase distortion in a single filtering procedure. It is essentially a low-pass 

filter. This method of filtering is strongly based on the assumption that the micro-geography of 

the surface is constructed of similar sinusoidal waveforms with various wavelengths, which most 

are not. This can result in significant topographical features being averaged out giving a 

distorted filtered surface for analysis. It is also not fully suited for nano-surface characterisation 
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unless it can be proven that the nano-surface itself obeys Gaussian distribution rules. These 

factors are the driving force behind current filtering research projects, allowing effective 

dominant feature separation. Multi-scalar functional surface filtering, nano-surface analysis and 

robust filtering techniques are being investigated. Some of the more relevant, new techniques 

include the robust Gaussian filter and 3-D envelope filters (part of the e-system [63]) and 

wavelet analysis. 

Robust filters are currently being developed for use in the analysis of surfaces that have 

significant extreme data points. The special filter according to DIN 4776 [64] has in the past, 

filtered multi-processed surfaces like plateau honed cylinder bores, so called ‘functionally 

stratified’ surfaces. The influence of the outliers results in a filtered surface that is skewed and 

therefore is not subject to normal random error assumptions.  

The Gaussian filter distorts the significant outliers, or pits, on the surface. The low weighting of 

the pit areas on the above surface by the robust Gaussian filter results in an accurate 

reconstruction of the surface after filtering. Figure 2.29 [62] clearly shows the difference 

between a standard Gaussian filter and the new robust Gaussian filter. 

The newly developed robust Gaussian filters overcome the significant problems associated with 

the standard Gaussian filters: 

� The effect of extreme data points (outliers) is reduced. 

� The effects of edge distortions are largely eliminated thus allowing all of the measured 

data to be used in the surface characterisation. 

 

 

 

 

 

 

 

 

 

 

Figure 2.29: The difference between Standardised and Robust Gaussian filters 

 

The principle of the rolling ball filter in 2-D, or envelope system is show in figure 2.30. This 

method is very functional as it is based on actual physical contact. In 2-D it is visualised as a 

circle, having a specific radius r or R, traced over the topography of the surface and contacting 

at certain points. The reference lines, or the filtering planes, are the loci of the rolling circles. 

Extended to 3-D with a rolling sphere on a plane, this method gives a useful functional 

simulation of contact. Development of these filters was part of the part of the EC project number 

3374/1/0/170/90/2 [65]. 
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Figure 2.30: The effect of the Envelope system on surface topography data [49] 

 

Wavelet analysis can be used to decompose a surface signal into the scale-space, without an 

assessment of frequency content of the original signal. In this case, the surface topography can 

be interrogated via a flexible transmission bank according to intended functional information that 

is required to be drawn from it. The roughness, waviness and form information involved in 

surface topography are separated and recovered respectively. The multi-scalar functionally 

relevant topographical features are identified and captured. The main difference between 

wavelet analysis and classical Fourier analysis is that Fourier analysis is a breakdown of a 

signal into a series of harmonic content, and then this space-based information is transferred 

into frequency-based information. The limitation of Fourier analysis is that it can only identify 

frequency events over space without any information about local position. Wavelet analysis can 

overcome this problem. In wavelet analysis, the space-based information is then transferred into 

scale-based information, which provides not only the frequency events of the original signal but 

also keeps their location properties completely identified.  Another useful property is that there is 

no distortion of the data boundary.  As a result, specific topographical features can be identified 

with very little or no prior frequency information. Due to this ability, wavelet analysis will become 

a very powerful tool in surface texture analysis in the future. It is possible that wavelet analysis 

will become a general surface filtering method and it will be used in primary roughness 

separation through to topography pattern recognition (paragraph from [66]). Currently, however, 

as development of these filters progresses, little proof of their success is available. 

 

2.4.5 Characterisation 

 

Surface characterisation can be achieved in several ways. Classification is usually made 

between methods by examining their scale dependency. Figure 2.31 shows some of the most 

popular methods for obtaining information about surface topography. 

Currently, the finishes produced on stainless steel by cold rolling are not normally subject to any 

quantitative specification, except possibly comments (based on visual examination of reference 

samples) on relative ‘dullness’. In the main they are visually inspected for defects and possibly 

mentally compared to the usual finish produced. Obviously, skilled and experienced personnel 
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do this and although it is reasonable to say if the finish is incorrect, the causes and effects of 

certain differences cannot be speculated on.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.31: A classification of the popular surface characterisation techniques (adapted from 

[41]) 
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Two-dimensional profiles have usually been analysed using statistical, spectral or time series 

analysis techniques. The latter two methods will not be discussed here, as they are deemed not 

relevant in this project. Further discussion of the methods can be found in [67 and 68].  

The statistical parameters that refer to different parts of the signal from the instrument begin 

with different letters: 

• R for roughness 

• W for waviness 

• P for the primary profile 

Established 2-D statistical descriptors include Ra and Rq, etc., which are embedded in many 

standards. Historically, Ra, the arithmetic mean deviation of the assessed profile, was one of the 

first parameters used to quantify surface texture. Unfortunately, Ra may be misleading in that 

many surfaces with grossly different features may have the same Ra, but function quite 

differently. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.32: Three distinctly different profile shapes with similar Ra values 

 

Ra only quantifies the “absolute” magnitude of the surface heights and is insensitive to the 

spatial distribution and z-direction of the surface heights (a deep valley will result in the same Ra 

value as a high peak). Despite its shortcomings, Ra is a good, simple monitor of changes during 

production of the surface. Rq, the standard deviation of the profile height distribution suffers from 

the same drawbacks as Ra, but is more sensitive to outlying features because of the squared 

term. 

The two other common amplitude parameters are Rsk, skewness and Rku, kurtosis (the second 

and third moments of the profile height distribution). The skewness, Rsk is a measure of the 

asymmetry of the profile about its mean line. Negative skew indicates a predominance of 

valleys, whilst positive skew is seen on surfaces with more peaks. When the surface texture is 

composed of non-normally (or non-Gaussian) distributed high peaks or deep valleys, the 

kurtosis, Rku becomes very large (i.e. »3). When the surface is composed of a slowly varying, 

“rolling” hill type texture, the kurtosis will be less than 3. A kurtosis of ~3 indicates that the 
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surface distributions are Gaussian in nature.  Rku is a good indicator for when an otherwise 

Gaussian distributed surface may have some defects. 

The typical spacing parameter is Rsm is the mean distance between peaks and there are two 

usual hybrid parameters, the average profile slope, ∆a (the mean of the slopes of individual 

profile facets) and the root mean square profile slope, ∆q. Other common 2D parameters are 

related to the bearing ratio curve and are known as the Rk parameters [70] and are described at 

the end of the characterisation section on page 49 and in table 2.5. For further details and 

equations of the common 2D parameters, refer to appendix 4. 

A comprehensive survey of academic and industrial research trends on 3D parameters was 

carried out in 1992. This resulted in the modification of a draft proposal for 3-D parameters [41], 

based on a project supported by the Commission of the European Communities for which a 

primary set of 14 parameters was proposed. Further to this report, a modified ‘field set’ of 

parameters was finalised, and can be seen in table 2.4. 

Some of the 3-D parameters have been extended from their 2D equivalents whilst others were 

specifically developed for use with 3-D topography data. The original recommendation was that 

all of these new parameters were denoted by an ‘S’ (for surface) instead of the conventional ‘R’ 

(for roughness) in their 2-D counterparts. Most of them are, but the new 'volume family' 

parameters are denoted by a 'V' (for volume). There are five parameters describing the 

amplitude properties, three describing the spatial properties, three hybrid parameters describing 

properties which are affected by either amplitude or spacing or both, a set of curve and related 

descriptors (including two curves) which include the five volume family parameters and three 

linear areal material ratio curve parameters, a group of slope and fractal functions and two other 

parameters, which have been included because of the popularity of their 2D counterparts. 

Detailed definitions of the most commonly used 3D parameters can be found in appendix 5 and 

further information in [35 and 41]. 
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Table 2.4: Field set of 3-D parameters [65] 

Family Parameter name Nomenclature 
and Units 

Root mean square deviation Sq (µm) 

Skewness Ssk  

Kurtosis Sku 

Maximum peak height Sp (µm) 

Maximum valley height Sv (µm) 

Amplitude 
Parameters 
 

Maximum height of texture surface Sz (µm) 

Density of Summits Sds (1/mm2) 

Fastest decay auto-correlation length Sal (mm) 
Spacing  
Parameters 
 

Texture aspect ratio Str 

Arithmetic mean peak curvature Ssc (1/µm) 

Root mean square slope of the assessed texture 
surface S∆q 

Hybrid  
Parameters 

Developed interfacial area ratio Sdr (%) 

Areal material ratio of the texture surface Smr (curve) 

Inverse areal material ratio of the texture surface Smr% (tp%) 

Areal material ratio curve of the texture surface (curve) 

Linear areal material ratio curve parameters 
Sk, Spk, Svk, (µm) 
SMr1, SMr2 (%) 
 Areal height amplitude curve 

 
(curve related) 

Void volume Vv (tp%) 

Material volume of the texture surface Vmp (µm3/mm2) 

Core material volume of the textured surface Vmc (µm3/mm2) 

Core void volume of the texture surface Vvc (µm3/mm2) 

Curve and 
Related 
Parameters 

Valley void volume of the texture surface Vvv (µm3/mm2) 

Slope histogram (histogram) 

Volume scale plot Svs (s) plot 
Slope & 
Fractal 
Methods 

Fractal dimension Sfd 

Texture direction of the texture surface Std (deg) Other  
Parameters 
 Ten point height of surface S5z (µm) 
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Other 3-D parameters have been investigated since this set was devised. One of the most 

interesting (in the present context) is the Wihlborg-Crafoord index (WCindex) [20]. Wihlborg and 

Crafoord use the index to describe the frictional behaviour of a sheet and tool in a contact 

situation. It is defined as the number of isolated oil pockets (NIOPt) multiplied by the border 

length of the lubricant area at the area fraction of contact (BLα) and divided by the area fraction 

of contact (α); see equation 2.3. The index gives information about the degree to which the 

contact zones will be supplied with lubricant.  

 

Where: 

NIOPt = number of pockets required to achieve micro plasto hydrostatic lubrication (MPHSL) 

BLα= amount of possible sources for MPHSL to set in and 

α= the amount of material supplied with lubricant by the two components 

 

The total number of isolated oil pockets was used separately by Wihlborg and Crafoord [20]. A 

pocket is defined as having at least two connected data points that are located at a lower height 

in the topography than the evaluation height, which corresponds to the area fraction of contact. 

Their chosen truncation level in this case was 10nm, based on the size of the utilised lubricant 

molecules and the vertical resolution of the instrument used (Somicronic 3D, resolution 4nm). It 

is also stipulated that oil pockets should not have contact with the edges of the measurement, 

although no functional explanation is given. 

The WCindex is used to describe the frictional behaviour, instead of simply the number of isolated 

oil pockets, as it gives a relationship between the density of oil pockets and the border length at 

contact, therefore including lubricant behaviour in the MPHSL regime (given by NIOPt, [69]) with 

the micro plasto hydrodynamic lubrication (MPHDL) regime. 

Visualisation methods are vitally important in 3-D surface analysis, far more than for 2-D profile 

analysis. In fact it is sometimes considered the only objective in using 3-D methods and is 

certainly accepted as the only adequate way to gain a full appreciation of a surface’s 

topography. New computer technology has led to an increase in the use of visual techniques 

and the development of sophisticated hard and software means the methods are both powerful 

and flexible in the representation and manipulation of surface topography data. 

Finally and perhaps most importantly for this project, there are various functional 

characterisation techniques to consider. The main methods are those outlined in DIN 4776 [70] 

and motif combination [41, 65 and 71]. 

The functional characterisation method proposed by Bodschwinna [72] and standardised in DIN 

4776 was designed for use with highly stressed surfaces that are relatively flat on top and highly 

grooved or pored at the bottom. The standard defines a series of parameters, Rk, Rpk, Rvk, Mr1 

and Mr2, collectively known as the Rk parameters. They are derived from the profile Abbott-

Firestone curve (or Bearing Area curve) assigning them individual functional roles, see figure 

2.32.  

Equation 2.3 

α
αBLNIOP

WC t
index

×
=
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Figure 2.33: Graphical representation of the DIN 4776 parameters 

 

Table 2.5 outlines the standard DIN 4776 parameters with a brief description of their functional 

significance. Care must be taken when analysing surfaces with these parameters as a double-

step process, reducing the significant outliers has to be adopted for highly grooved surfaces 

before the Abbott-Firestone curve is calculated. This procedure is standardised in DIN 4776 

[70]. 

 

Table 2.5: Description of DIN 4776 parameters (adapted from [41]) 

 

Notation Name Meaning Function 

Rk 
The core 

roughness 
depth 

Measures the height of the 
core material portion 

Small Rk gives rise to a high 
mechanical resistance and high load 
carrying capacity during contacting 

operations 

Rpk 
The reduced 
peak height 

Denotes the height of the 
profile peak projecting 
beyond the core profile 

Small Rpk values mean a surface will 
have good running-in properties with 

respect to surface geometry 

Rvk 
The reduced 
valley depth 

Denotes the proportion of 
profile valleys extending into 
the material below the core 

profile 

Large Rvk values mean a surface 
has good oil retention properties 

Mr1 Peak 
material ratio Bearing area point See figure 2.33 

Mr2 Valley 
material ratio Bearing area point See figure 2.33 

 

This characterisation method is easily extendable for use in 3-D surface metrology. However, 

the filtering requirements have not yet been standardised for this use. The reason for looking 

briefly at this technique in this project is its effectiveness in the analysis of surfaces with 

relatively flat tops and grooves, similar to the plateaus and valleys seen on the 2B surface. 
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The motif combination method is also useful for analysing data with significant outliers (the deep 

valleys). Motifs were first introduced in 1982 [73] with the definition: ‘the motif is the part of a 

profile between two peaks’. The technique is essentially a pattern recognition exercise that was 

developed in the French automobile industry. Motif combination is reportedly a complementary 

approach to solving specific technical problems and useful for characterising non-Gaussian 

height distribution surfaces. The 2-D motif was established experimentally although Scott [71] 

has developed a general theory for the method. Taylor Hobson Ltd. is currently investigating the 

3-D (or areal) motif combination procedure as part of the project EC number 3374/1/0/170/90/2. 

The most recent findings are detailed in [65], with background on motif combinations in 2-D in 

[41]. 

 

2.5. Overall Aims and Objectives 

 

2.5.1 Aims 

 

The overall aim of this research project is to characterise quantitatively the developed surface 

topography of some widely used finishes on stainless steel sheet using three-dimensional 

surface analysis techniques. Based on this surface characterisation an attempt has been made 

to identify 3D parameters for quantitative description of stainless steel sheet with respect to 

some aspects of their functional performance. 

 

2.5.2 Objectives 

 

Using the 3D techniques available, define a measurement strategy and protocol to effectively 

measure stainless steel sheet topography. 

Investigate the differences in topography across a range of grades and gauges of stainless steel 

using 3D topography parameters. 

Investigate the ability of 3D topography parameters to correlate with functional requirements of 

lubricant retention, optical appearance and corrosion. 

Develop a set of written procedures for industrial application to effectively characterise stainless 

steel sheet surface roughness. 
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Chapter 3 The 'Functional' Surface Models 

 

 

3.1. Summary of the Chapter 

 

The functional topographical features of four finishes are determined, with respect to the 

process/es by which they were made. A model of the surface topography is developed for WHB 

(white hot band), 2B, BA (bright annealed) and a unidirectional finish (brushed) encompassing 

the usual features of the topography and variations in the topography caused by production or 

'defects'. The functional features are discussed and predicted relevance is presented. 

 

3.2. Introduction 

 

In this chapter the functional, topographical features of four finishes, which are the subject of the 

present study, are discussed with respect to the processes by which they are manufactured. A 

model of the surface topography, based on initial inspection of the surface (by SEM and 3D 

techniques), is developed for WHB (white hot band), 2B, BA (bright annealed) and a 

unidirectional finish (brushed). The models encompass the usual features of the topography and 

variations in the topography caused by production 'defects'. The functional features are 

discussed and predicted relevant parameters are presented. Particular attention is paid to the 

2B finish, being the principal product of Outukumpu. 
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3.3. White Hot Band (WHB) 

 

3.3.1 Review of WHB Production 

 

White hot band material is produced by hot rolling, annealing and descaling continuously cast 

slabs or bloom and is typically 5 – 10mm thick. During hot rolling, the length of the coil is 

increased as the gauge thickness is decreased. Bulk deformation of the material occurs, 

whereby many of the original surfaces’ features are consolidated. Due to the heat used in this 

process and the following annealing, a thick, black, oxide scale is formed on the surface (this 

material is known as black hot band), which must be eradicated before cold rolling. The cleaning 

regime to yield the white hot band material is achieved by using aggressive shot blasting 

(loosening the scale) and finally acid pickling (eradication of the scale). 

 

3.3.2 Model of the Surface Topography of a WHB Surf ace 

 

A model of the typical surface topography of the white hot band material is determined by initial 

inspection of the surface with reference to the process by which it was developed. SEM images 

of the surface at different degrees of magnification show mainly severe shot blast damage. Shot 

blasting leaves a distinctive topography consisting of randomly spaced pits, which are created 

when the shot hits the surface. The size and shape of these pits is dependant on the type and 

size of shot used. Evidence of shot blasting with spherical shot can be seen on the white hot 

band surface using the interferometer, figure 3.1. Also evident on this surface are some small 

areas of rolled topography, where the rolls have made contact and the surface is ‘smooth’. In 

these areas, viewed at higher magnification than the shot damage (figure 3.2), indications of the 

pickling process can be seen as the grain boundary regions have been removed (inter-granular 

attack). Rolling effects are not evident on the majority of the surface due to the production of the 

oxide scale during hot rolling which prevents the rolls from contacting the surface directly and 

the aggressive shot blasting marks are the most prominent features. Therefore the model is 

similar to that of a shot blast surface, with small plateaus of grains and the valleys created in 

pickling. 
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Figure 3.1: Axonometric and contour interferometer images of white hot band stainless steel 

topography 
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Figure 3.2: High magnification Scanning Electron Microscope image of white hot band stainless 

steel topography 

 

3.3.3 Predicted Functional Relevance for WHB Featur es 

 

The white hot band finish is used only as the raw product for further processing and therefore 

has limited functional relevance. The damage caused by shot blasting must be kept to a 

minimum to achieve good consolidation of the surface features in subsequent cold rolling 

operations, although evidence of remnant damage in other finishes is rare and the main 

features of interest are very deep, high aspect ratio pits on the surface that are difficult to 

consolidate. 
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3.4. 2B 

 

3.4.1 Review of 2B Production 

 

The 2B finish is produced by cold rolling the white hot band, producing coils that are of 

approximately final gauge, typically 0.7 – 5 mm thick. Cold rolling the coils also improves the 

surface finish, as asperities are flattened and pits consolidated, The coils are then annealed to 

alleviate work hardening, which forms another black oxide scale on the surface. The scale is 

removed by acid pickling only at this stage, since shot blasting would cause damage to the 

surface. The coils are then finished by skin passing or tension levelling. 

 

3.4.2 Model of the Surface Topography of a 2B Finis h 

 

A model of the typical surface topography of 2B material is determined by initial inspection of 

the surface with reference to the process by which it was developed. SEM images of the surface 

at different degrees of magnification show that the original white hot band surface features are 

usually effectively consolidated during the cold rolling operation, figure 3.3. The pickling 

procedure creates a matrix of valleys, which tend to be approximately ‘V’ shaped. The valleys 

are located at the grain boundaries of the stainless steel, which are chromium rich. During 

pickling these grain boundaries are preferentially etched giving the network of valleys. The 

remaining surface grains that are unaffected by the pickling process are relatively flat and 

plateau-like due to the final finishing operation, although at higher magnifications (figure 3.4) 

micro roughness (particularly deep, small area pits remnant of the hot band surface) is evident 

on these plateaus. Therefore the model, figure 3.5, includes plateaus with micro roughness and 

a matrix of interconnecting valleys. 
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Figure 3.3: SEM and interferometer images of 2B surface finish on stainless steel showing 

relatively flat plateaus and matrix of valleys 
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Figure 3.4: SEM and AFM images of a 2B surface finish on stainless steel showing plateau 

micro-roughness 
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Figure 3.5: The developed model of the 2B surface finish 

 

3.4.3 Predicted Functional Relevance for 2B Feature s 

 

The 2B finish has been used in general industrial applications, like vessels and pipe work, for 

many years and is still the largest constituent of production for Outukumpu.  It is not generally 

used in food or chemical processing as the valleys in its topography make it more difficult to 

clean than finishes like bright annealed. Due to its origins, the finish is often chosen for its 

appearance where an 'industrial look' is desired, in applications like street furniture and lift 

interiors, etc. The relatively smooth plateau regions give the finish its distinctive reflectance. The 

interconnecting valleys can aid the spread of lubricant in forming operations like the deep 

pressing used to make sinks. 
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3.5. BA 

 

3.5.1 Review of BA Production 

 

The BA finish is produced by cold rolling the white hot band, in the same way as for the 2B 

finish. The coils are then annealed in a controlled atmosphere where the final oxide film is thin 

and protective so no further descaling treatment is required. In this annealing method no scale 

is formed since no oxygen is present in the process and therefore descaling by pickling is not 

required. 

 

3.5.2 Model of the Surface Topography of a BA Finis h 

 

A model of the typical surface topography of BA material is determined by initial inspection of 

the surface using an SEM and interferometer. The cold rolling procedure consolidates the 

majority of features from the white hot band surface topography and the controlled annealing 

procedure brings new grains to the surface by the process of recovery (recrystalisation). This 

means that the main features of the BA surface topography are those developed in the 

annealing process, although some remnant hot band features may be evident, figure 3.6a. The 

thermal effects of annealing in a controlled atmosphere produce a surface with a very smooth, 

mirror-like finish, with few visible features, figure 3.6b. At higher magnifications, some can be 

seen, figure 3.6a. The surface model is therefore almost flat, with occasional raised grain 

boundaries, figure 3.7. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Interferometer images of the BA surface finish on stainless steel showing the effects 

of processing 
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Figure 3.7: The developed model of the BA surface finish 

 

3.5.3 Predicted Functional Relevance for BA Feature s 

 

The BA finish is used where either cleanliness or appearance are important. The BA finish is 

hygienic and easy to clean because it does not have deep pits or valleys, where dirt could 

become trapped. It is however generally not used for large areas where appearance is 

important, as non-uniformity in the finish is obvious. The smooth topography is also prone to 

fingerprinting as the natural oils sit on the surface, rather than spreading into pits or valleys. 
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3.6. Unidirectional (Brushed) 

 

3.6.1 Review of Brushed Finish Production 

 

There is a range of standard unidirectional finishes available, but they are all commonly 

produced using either 2B of BA product as a precursor material. The final finish is normally 

produced using different types of brushes or grades of glass paper. In this instance we will 

consider the unidirectional finish produced by brushing on a 2B base.  

 

3.6.2 Model of the Surface Topography of a Brushed Finish 

 

A model of the typical brushed surface topography has been developed by studying SEM and 

interferometer images. The majority of the surface has unidirectional troughs and ridges, similar 

to those of a ground finish but on a smaller scale, figure 3.8. The troughs vary in size and depth 

and since there is no further processing, the ridges have rough edges. The brushing is soft and 

so the base 2B topography is also evident on the surface, particularly the etched grain 

boundaries, which are too deep to be affected by the bristles, figure 3.9.  Therefore the model is 

mainly troughs and ridges with remnant 2B features seen aerially, figure 3.10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Interferometer image of a brushed finish on stainless steel showing unidirectional 

troughs and ridges 
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Figure 3.9: SEM images of a brushed surface showing remnant 2B features 

 

 

 

   

 

 

 

 

 

 

 

 

Figure 3.10: The developed model of a brushed surface finish 

 

3.6.3 Predicted Functional Relevance for Brushed Fe atures 

 

The main function of brushed finishes is aesthetics, although they are also popular in areas like 

kitchens due to their ease of cleaning. Brushed finishes are ideal for covering larger areas as 

minor variations in the finish are only seen if they impair the directionality, i.e. if they are 

perpendicular to the rolling direction. 
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3.7. Conclusions 

 

This chapter has presented a series of models of the primary production surfaces produced by 

the sponsoring company, Outukumpu. The models provide a basis for further study of functional 

performance with respect to surface topography and give a foundation for drawing functional 

and metrological hypotheses for the following chapters. 
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Chapter 4 Measurement Strategy 

 

 

4.1. Summary of the Chapter 

 

The measurement strategy has been designed to ensure correct, accurate and relevant 

collection of topography data. Feature identification is carried out based on the surface model 

and the average sizes of the features are found. The protocol covers the selection of the correct 

measuring instrument based on the surface model and the size of the relevant functional 

features. Operational details of the measuring instruments available for this project are given 

(Somicronic stylus instrument, Taylor Hobson Talysurf stylus instrument, Wyko NT2000 optical 

interferometer and DME AFM) and variables for these instruments are discussed. The strategy 

includes a statistical method of assessing how many measurements are needed for a surface, 

which is presented for the 2B finish. Finally measurement method recommendations are made 

for each of the four finishes modelled in chapter 3. 

 

4.2. Introduction 

 

The 'usefulness' of measured data used to quantify surface texture is dependant on several 

factors: 

� The quality of the measured data and the confidence level and repeatability of the 

parameters calculated from it.  

� The repeatability of one measured data set (or set of parameters) to another. 

� The ability to relate the measured features to their point of production or to their post 

process functionality. 

In an effort to avoid producing data that is of little use to the project a measurement strategy is 

needed to address these issues. In addition, the developed measurement strategy can also be 

applied by the sponsoring company to their wider range of surface finishes. Firstly a protocol is 

defined, covering sample preparation and instrument selection. Secondly general instrument 

and measurement variables are presented, enabling a full strategy of measurement to be 

defined for each of the common finishes encountered by the sponsoring company. 
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4.3. Protocol  

 

4.3.1 Sample Preparation 

 

Obviously to aid in all of the issues of quality, repeatability and functional usefulness, the 

samples initial conditions must be free from external influences. This can be achieved by 

obtaining a good, undamaged sample of material (the sample must be of a suitable size for an 

SEM chamber, i.e. not bigger than about 100 mm square, depending on the instrument). 

Following this it is essential to clean the sample with a polishing cloth and solvent to remove any 

oil and using compressed air to blow away any pieces of loose dirt or contaminants. 

 

4.3.2 Feature Identification 

 

Firstly, to ensure that the measured data has a direct relationship to the process area or 

function of interest, qualitative identification of the dominant features of the topography that will 

affect them must take place. It is suggested that an instrument with a large range of area 

resolutions is utilised, such as an optical or scanning electron microscope.  

Obviously, it is also desirable to measure the largest area possible; to get as many of the 

topographical variations as possible, but the importance of resolution is greater. Utilising an 

SEM to view the surface and analyse the features at different magnifications is the best option. 

Any significant features found should relate to the point in the production process where they 

were created. This initial analysis and feature identification has been carried out in chapter 3, 

where models of the topography of the common finishes have been developed. 

The images should then be manipulated to include at least 10 features of interest on one view. 

A method of meshing the images obtained can be used as a manual assessment of the 

dimensions of the features of interest, a similar the procedure of ASTM E112-96e1 [75] is 

recommended. The average and minimum sizes of the features from at least 5 images should 

be calculated. In a general production environment this procedure need only be carried out on a 

few occasions in order to establish models of the surfaces to be tested or when new finishes are 

being developed. For example the 2B finish average grain size dimensions results from this type 

of analysis. 

 

4.3.3 Instrument Selection 

 

An instrument should be selected on the basis that the desired lateral and vertical resolution 

and range is achievable. In terms of the lateral and vertical resolution and range the Nyquist 

theorem states that for a periodic signal, the sampling interval should be smaller than half of the 

wavelength of the signal. Therefore, for a minimum features size of x µm, the first suggested 

sampling interval is x/2 µm. 

The sample should then be measured and a frequency spectrum analysis carried out on at least 

10 measured areas. This involves using FFTs (Fast Fourier Transforms) to separate the 
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Equation 4.1 

different frequencies within the spatial frequencies detected on the surface. The frequency of 

the important features should show up dominantly on a Power Spectral Density (PSD) plot and 

this is used to find the correct sampling interval to accurately reconstruct the 3D surface data. 

 

4.3.3.1 Frequency Spectrum Analysis Method 

 

On a PSD plot, the high frequency limit that relates to the initial estimate of sampling interval 

from the SEM analysis (see equation 4.1) should be selected. This value should then be 

entered and the inverse FFT run, to show a reconstruction of the surface at this limiting 

frequency. If an unacceptable difference in the reconstructed surface is observed, a new high 

frequency limit must be sought. 

The surface should be measured using an instrument with a higher lateral resolution and the 

maps used to re-run the frequency spectrum analysis. At least 10 maps should be used and the 

high frequency limit that relates to the new sampling interval obtained. The inverse FFT should 

again be run on these maps and the reconstructed surfaces analysed. There should be a good 

reconstruction at this level of resolution, if there is not then a further instrument, with a higher 

lateral resolution must be sought. If the reconstructions are 'good' then the high frequency limit 

should be reduced in intervals or by visual examination of the PSD plot, until a minimum high 

frequency limit and therefore a maximum sampling interval is found. 

Re-arranged as:  

 

Based on the sampling interval found by the frequency spectrum analysis the instrument for 

further measurements can be selected using a Steadman diagram [48] (an 

amplitude/wavelength plot, figure 2.27) or a table of instrument capabilities, see table 4.1. 

Once chosen, other variables of the instrument can be investigated with relation to a particular 

surface to optimise the measurement conditions. Common measurement variables for the 

instruments available for this project are presented in the following section. 

 

 

 

 

 

 

 

 

 

frequency2

1
interval Sampling

×
=

interval sampling2

1
limitfrequency  High

×
=



67 

Table 4.1: Instrument Capabilities 

 

Instrument  Type/Mode 
Measurement 

Area 

Lateral 

Resolution 
Vertical Range 

Vertical 

Resolution  

Somicronic 80 x 80 mm 
2 µm to       

58 µm 
±3 mm 6 nm 

S
ty

lu
s 

Taylor Hobson 

Ltd – Talysurf 

series 2 PGI 

50 x 90 mm 1.25 µm to ±5 mm 4 nm 

Wyko NT2000     

PSI mode 

45 x 60 to   

3700 x 4900 

µm 

160 nm to 

15.5 µm 
160 nm 0.3 nm 

O
pt

ic
al

 In
te

rf
er

om
et

er
 

Wyko NT2000      

VSI mode 

45 x 60 to   

3700 x 4900 

µm 

160 nm to 

15.5 µm 

Overall = ±300 µm 

Pixel to pixel = 600 nm 
3 nm 

A
F

M
 

Veeco DI 

Dimension 

3100 

230 nm sq to 

40 µm sq 

0.2 nm to 2.5 

µm 
10 nm 0.1 nm 
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4.4. Measurement Variables (excluding area size and resolution) 

 

4.4.1 Stylus Instrument 

 

There are very few controllable variables when considering stylus measurements, providing that 

the same instrument is used. Tip load is typically low, 75 mg and should be relatively constant 

so the main variable is tip size, which would have a major effect on the measurement results if 

changed between measurements (see section 2.4). 

 

4.4.2 Interferometry 

 

When using an interferometer to measure surface topography there are a number of 'user 

defined' factors, which must be carefully selected to allow correct, quality, repeatable 

measurements. 

 

4.4.2.1 Mode 

 

There are commonly two modes in which to operate on current interferometers; PSI and VSI 

(see 2.4.1.3 Interferometry). The limiting factor for these modes is the actual surface roughness; 

PSI is only capable of measuring point-to-point roughness differences of up to about 150 nm. 

For rougher surfaces, VSI must be employed. Determining the mode to be used is only difficult if 

the surface measured initially in one mode is near to this limit. When this occurs, it is advisable 

to measure the surface with an instrument capable of higher resolutions, to determine the point-

to-point range and proceed to use the appropriate interferometer mode. 

 

4.4.2.2 Modulation Threshold 

 

The standard description of modulation threshold is: ‘It determines the signal-to-noise level for 

which a given pixel is considered “valid”.’ [40]. To optimise sampling conditions for a particular 

surface this description and its actual effect(s) on the measured data must be investigated so 

that an accurate threshold value can be established.  

As the interferometer scans through focus at evenly spaced intervals it captures frames of 

interference data. An interference signal for each point on the surface is recorded. In vertical 

scanning mode the software uses an algorithm to process fringe modulation data from the 

intensity signal, which is then used to calculate the corresponding surface heights. 

In VSI mode the irradiance signal is sampled at fixed intervals as the optical path difference is 

varied by a continuous translation of the vertical axis through focus.  Since white light has a 

short coherence length the interference fringes are present over only a short depth for each 

focus position with the best contrast fringe occurring at best focus. The fringe contrast, or 

modulation, increases as the sample is translated into focus, reaches a peak (for a single point) 
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at best focus and then falls as the sample is translated past focus. The system measures the 

degree of fringe modulation (or coherence). Effectively any readings below the modulation 

threshold are discarded. If the surface has low reflectivity or the roughness scatters the reflected 

light, the difference between the modulation threshold and the signal noise is less distinct. In 

this case the user can select a lower modulation threshold. This has the effect of recording more 

surface data but can allow signal noise to be recorded as surface data. Increasing the 

modulation threshold has the effect of reducing the level of noise recorded, but less surface 

data is also registered and much of the surface is considered as 'bad data'. Consequently a 

balance should be sought between recording 'bad data' and 'signal noise'. To some extent small 

amounts of bad data can be compensated for by software interpolation techniques but an upper 

limit of acceptance should be set (see next section). 

The correct modulation threshold must be determined for each individual surface, as the effects 

vary dependant on topography. A number of measurements should be taken over a range of 

modulations thresholds and a parameter variation analysis performed. An alternative approach 

could be to define the modulation threshold for a given percentage of bad data, e.g. 75%. Since 

the effects need to be related to the particular surface topography, no general rules are 

presented here, results for the examined surfaces are presented in the following sections. 

 

4.4.2.3 % Bad Data 

 

During measurements data that falls outside the modulation threshold, or where the scan length 

is too short (i.e. deep pits), or where the intensity of returned light is not sufficient, is returned as 

immeasurable, or bad data. This can be restored using software algorithms based on 

interpolation techniques and quoted as a percentage of the total pixels. A decision must be 

made on the allowable % bad data, as it is not advisable to rely on the 'data restore' facilities of 

the software, especially for large areas of immeasurable data (data restore relies on the data 

which is collected to 'interpolate', giving the 'expected' surface topography). Judgement and 

experience is required where surface topographies present this problem and results variability 

should be carefully examined. Levels of 40% bad data as being acceptable are applied in some 

industrial applications; however 20 - 25% bad data would be a more acceptable figure for 

laboratory work. 

 

4.4.3 AFM 

 

The variables associated with AFM measuring are mode and tip type. In general AFMs operate 

in three possible modes; contact, intermittent contact (or tapping) and non-contact. Differences 

between these modes are described in section 2.4.1.4 Atomic Force Microscopes. The choice 

of mode is dependant on the capability of the instrument and the sample material and 

topography. Presently, contact mode is rarely used except for vary smooth surfaces, as tip 

damage can occur due to the high pressure between tip and sample. Non-contact mode is 

obviously desirable for softer samples although intermittent contact mode has been found to be 
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more reliable for larger area scans and relatively rough surfaces as encountered in the steel 

sheet industry. 

 

4.4.4 Number of Measurements per Sample 

 

Repeatability of results is affected by inherent variance in surface topography and can be 

achieved by ensuring that enough of the surface has been measured. The number of 

measurements required per sample is dependant on both the measurement method 

(instrument) and the surface topography.  

Confidence in the results obtained can be achieved by carrying out a statistical variance test of 

relevant surface parameters. Obviously 'relevance' is related to the process and function of 

surfaces and therefore is presented with respect to each examined surface in the following 

sections. The statistical analysis is achieved by simply plotting variance of parameters from an 

increasing number of measurements (averaging) and accepting the number of measurements 

that gives a variation in the parameters of less than 10% for 3D measurements [76] and 16% 

[17] for profile measurements. 

 

4.4.5 Parameter Selection 

 

Parameters should be selected for their functional relevance to the surface topography. 

Obviously, this varies from surface to surface and cannot be generalised (hence the diversity of 

the 3D field set, section 2.4.5 Characterisation). Discussion of expected parameter correlations 

for the 2B stainless steel surface finish and their functionality is given in section 4.5.1.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



71 

4.5. Examples 

 

4.5.1 Recommended Measurement Method for a 2B Finis h 

 

Initially the important features of the surface must be identified. To decide on the critical 

sampling interval work has been carried out in chapter 3 to establish the major features of the 

2B finish. By viewing a range of 2B product surfaces using a scanning electron microscope the 

features of the surface were recognised as plateau regions and a network of interconnecting 

valleys. The SEM images reveal that the plateaus and valleys are of various sizes and the 

plateau regions are not totally smooth but have a micro surface roughness in the form of small 

pits and shallow ‘troughs’ (relative to the deeper valleys). The small features must be resolvable 

using the chosen sampling interval and the average and minimum dimensions of both the 

plateaus and valleys are also needed. 

 

4.5.1.1 Protocol for a 2B Finish 

 

Measure the features: A scanning electron microscope (SEM) was employed to show the areal 

geometry of the surface features and images, figure 4.1, were collected from different samples, 

in several areas and at varying degrees of magnification. The images were manually examined 

and analysis based on methods in ASTM E112 [75] used to collect the data in table 4.2. 

 

Table 4.2: Data collected from SEM study for a 2B finish 

 Average Maximum Minimum 

Plateau Diameter (µm) 9.1 12.3 4.5 

Valley Width (µm) 0.7 1 0.4 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: SEM images showing plateaus and valleys on 2B at x5k & x10k magnifications 

 

Meet the demands of the Nyquist theorem:  The initial estimate of required sampling interval 

for 2B finish was calculated, based on the Nyquist theorem. The smallest feature on the surface 
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is the minimum valley width, 400 nm, so the initial estimate of sampling interval is half this, 200 

nm. 

Chose a suitable instrument:  After using a Steadman diagram an optical interferometer was 

chosen (Wyko NT2000 in VSI mode) and surface data files were studied. The surfaces were 

measured with a lateral sampling interval of 160 nm. 

Run frequency spectrum analysis:  Frequency spectrum analysis (using Fast Fourier 

Transforms) was used to determine the frequencies of the surface features. The frequency of 

the valleys of a 2B surface showed up dominantly on a Power Spectral Density (PSD) plot and 

this was used to find the correct sampling interval to accurately reconstruct the 3D surface data. 

Firstly surface data files from the Wyko NT2000 interferometer in VSI mode were studied. The 

surfaces were measured with a lateral interval of 160 nm. From these 3D maps the PSD plot 

was created for many 2D profiles, using a real time FFT, right-hand graph of figure 4.2. It can be 

seen that the important frequencies lie below about 1500 mm-1. This equates to a required 

sampling interval of approximately 330 nm. The actual reconstructed surface at this interval can 

be viewed by entering a high frequency limit at this level and running an inverse FFT (the 

reconstructed surface is the blue line on the left profile image in figure 4.2; the red line is the 

actual measured surface). 

The estimation of sampling interval from the SEM study of 200 nm relates to a frequency of 

2500 mm-1 and the actual minimum measurement interval of 160 nm for the Wyko NT2000 

interferometer in VSI mode relates to a frequency of 3125 mm-1. The reconstructed surfaces at 

these intervals reveal a very high correlation with the original measured surface, see figure 4.3. 

These figures were checked by using the same frequency spectrum analysis on higher 

resolution surface maps measured on an Atomic Force Microscope, AFM. The lateral sampling 

interval for the AFM measurements was approximately 40 nm (10 µm x 10 µm area). In this 

case the important frequencies lie below 2000 mm-1 (an interval of 250 nm) and the initial 

estimate of a suitable frequency of 1500 mm-1 is too low to accurately reconstruct the surface 

data, see figure 4.4.  

The results of the practical and mathematical analyses on the determination of sampling interval 

are very similar. From the SEM investigations a 200 nm interval is suggested. Using the 

frequency spectrum analysis, a frequency of 2000 mm-1 is suggested to accurately reconstruct 

the surface data, equating to an interval of 250 nm.  

Re-select a suitable instrument:  The Wyko NT2000 interferometer in VSI mode at 100 times 

magnification has a sampling interval of 160 nm, indicating its suitability for measuring the 2B 

surface. 
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High frequency limit = 2500 mm-1 

High frequency limit = 3125 mm-1 

Contour map of surface 
with profile line position 
(units are in µm) 

 

 

 

 

 

 

 

 

Figure 4.2: Profile of surface with reconstruction at high frequency limit of 1500 mm-1 and PSD 

plot for surface frequencies 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: The reconstructed surfaces at frequencies of 2500 mm-1 

and 3125 mm-1 with contour map showing area used 

 

 

 

 

 

 

 

Measured surface 

Reconstructed surface 

Realtime FFT Analysis 

Measured surface 

Reconstructed surface 



74 

High frequency limit = 1500 mm-1 High frequency limit = 2000 mm-1 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Comparison of frequency limits and effect on accuracy of profile reconstruction 

 

4.5.1.2 Measurement Variables for a 2B Finish 

 

Modulation Threshold [77] (also see appendix 1)  

As discussed in section 4.3.2.2 the system in VSI mode measures the degree of fringe 

modulation (or coherence) and effectively any readings below the modulation threshold are 

discarded as bad data. If the threshold is raised to avoid using any bad points more and more 

data is lost and the image becomes very broken. Eventually using the data restore facility 

introduces problems when many points are missing. By decreasing the modulation threshold, 

less data points are ignored and there are many points included in the analysis but decreasing it 

too far means that very poor signal noise data is considered in analysis. This can have severe 

effects on the characterisation of the 2B sheet steel. 

 

 

 

 

 

 

 

 

 

Figure 4.5: 2D profile and axonometric plot showing plateaus, 

boundaries and spiky features 

 

The images in figure 4.5 show, as expected, plateau regions with valleys between. They also 

show spikes in the valleys that protrude above the level of the plateaus. These spikes originate 

from the optical artefacts associated with the rapid slope changes from pixel to pixel in the 

valley zones. The limit of detection is based upon a pixel-to-pixel height difference of λ/4 and 

the slope limit depends on this and the chosen magnification. SEM analysis would seem to 

confirm the fact that the spikes are artefacts and not “real”, figure 4.1. 

Spiky 
Features 

Measured surface 

Reconstructed surface 
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A study was carried out to address this problem, determining a suitable modulation threshold. 

Areas of 121 µm x 92 µm and later, 60 µm x 45 µm (magnifications of 50 and 100 times 

respectively) were measured on the surface of a sheet of stainless steel with a 2B finish using a 

Wyko NT2000 optical interferometer. The modulation threshold was varied from 0% to 20% with 

5 data sets obtained for each threshold value at the x50 magnification and 15 for the x100 

(hence the larger error bars). The parameters were calculated and averaged for each 

modulation threshold. The original ‘Birmingham 14’ [41] set parameters were calculated in the 

initial study at 50 times magnification, whereas the new field set [65] parameters were 

calculated for the further study at 100 times magnification, hence there are some differences in 

the actual parameters used. The error bars on figures 4.6 – 4.10 are all half a standard 

deviation of the sample set. 

The average parameter values were plotted against the modulation threshold and all the graphs 

were examined to determine which parameters correctly showed the effects of a variation in 

threshold value. Certain parameters were deemed to be of greater interest due to their 

specificity for the function of the sheet, i.e. analysing plateaus and valleys. 

As can be seen in figures 4.6 to 4.8 the functional volume parameters have a distinctive 

relationship with the modulation threshold. The parameters decrease with an increase in 

threshold value but they ‘describe’ different effects. 

Sm, the material volume, figure 4.6, decreases from 7634 µm3/mm2 at 0% to 5623 µm3/mm2 at 

20%. This is believed to be because at lower threshold values many optical spikes are present 

in the analysis, which adds to material volume whilst not actually being real. As the threshold is 

increased fewer spikes are included in the analysis and so the effect is an apparent decrease in 

material volume. The results also show an unexplained rise in Sm at 2.5% modulation, up to 

8841 µm3/mm2 before the decrease. This anomaly may be due to a combination of things but is 

most probably influenced by small spikes being omitted from the calculation and the data points 

being replaced by points that give a higher material volume, resulting from the interpolation 

algorithms. 
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Figure 4.6: Graph of Sm (Material Volume) against Modulation Threshold (for x50 mag.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Graph of Sv (Valley Void Volume) against Modulation Threshold (for x50 mag.) 

 

Sv, the valley void volume, also decreases, from 49206 µm3/mm2 to 39680 µm3/mm2, figure 4.7. 

However, this parameter stays fairly stable between 0% and 7.5% modulation before it begins to 

decline. It is believed that the omission of optical spikes in the analysis has no effect on the 

valley void volume as the data points are replaced with values outside this range. As the 

modulation threshold is increased it is possible that good valley data is omitted, so decreasing 
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the apparent void volume. A gradual decrease was observed for Vvv, the volume of voids in the 

valleys (figure 4.8), which is the most similar parameter in the new field set to Sv (numbers are 

different due to differences in analysis zones). This shows that the omission of optical spikes in 

the analysis does not seem to have an effect on the valley zone; rather that exclusion of good 

valley data decreases the apparent volume of voids. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Graph of Vvv (Volume of Voids in the Valley Zone) against Modulation Threshold (for 

x100 mag.) 

 

The amplitude group of parameters also displayed a link to the modulation threshold. From 

figure 4.9, it can be seen that Sz, the Ten Point Height and Sq, the Root Mean Square Deviation 

of the surface both decrease. 

The decrease in both can be attributed to the fact that as the threshold value is increased there 

are fewer optical spikes included in the calculations. This will obviously cause a greater 

decrease in Sz (as seen), as it is calculated from only ten points, some of which will inevitably be 

optical spikes of large amplitude (see figure 4.5). The decrease in Sq can also be attributed to 

the fact that there are less high spikes and deep valleys, reducing the deviation from the surface 

mean height. Also the deepest valleys may become missing data as the threshold rises past 5 

or 7.5%. The initial stability of the parameters, between 0% and 2.5%, could indicate that the 

noise level of a signal is, on average, higher at 2.5%.  
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Figure 4.9: Graphs of (a) Sq, Root Mean Square Deviation and (b) Sz, Ten Point Height, against 

Modulation Threshold (for x50 and x100 mags.) 

 

The other two parameters in the amplitude group are Ssk and Sku, the skewness and kurtosis of 

the surface respectively (not shown graphically). The skewness is a measure of the symmetry of 

the amplitude distribution of the data and therefore of the surface deviations about the mean 

plane. The graph of skewness against modulation threshold is difficult to interpret on its own 

since the mean plane will vary for each threshold value. It does however show the value to be 

negative, indicating pits or troughs (Gaussian surface, Ssk = 0). The kurtosis is a measure of the 

peakedness or flatness of the amplitude distribution relative to a normal distribution. For a 
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standard normal distribution the Sku value is 3 (a Gaussian surface), a kurtosis value greater 

than 3 shows a distribution has a sharp peak around the mean, declining rapidly with heavy tails 

(a centrally distributed surface with a few outliers) and a value less than 3 shows a flat topped 

distribution (a more uniform distribution, indicating a surface with less extreme deviations from 

the mean plane). The values of Sku for the 2B surface lie above 3, indicating that it has a central 

distribution with outliers (the valleys and optical spikes). It decreases with increasing modulation 

threshold, as expected, due to the omission of the sharp optical spiky features.  

The only other parameter to be considered is S∆q, the root-mean square slope of the surface, 

from the hybrid family. Figure 4.10 shows a decrease in S∆q with an increase in the modulation 

threshold, apart from the area between 0% and 2.5%, which is relatively unchanged. The 

decrease indicates that the average slopes of the asperities and valley ‘walls’ is falling, or the 

surface is becoming smoother (this parameter is often useful to detect wear on a surface). This 

is attributed to the fact that the optical spikes, with very ‘sharp’ sloped edges are being omitted. 

The area between 0% and 2.5% modulation threshold is stable and so the justification given 

previously (noise level) looks to be correct. 

It is evident from this work that there is a definite relationship between the parameters (and 

measured surface) and the modulation threshold. The results also show that the presence of 

optical spikes affects the analysis of data in a major way. Parameters that rely on extremes are 

greatly influenced, as are the functional parameter set, which do also rely on extremes but to a 

lesser extent. 

Before being able to accurately characterise the surface of 2B steel it is necessary to eliminate 

any variation due to ‘spiky features’ that do not exist in reality. This project goes some way to 

describing the basic effects of varying the modulation threshold but more work on the influence 

of data restore facilities maybe required for other surfaces (see following section on % bad 

data). The average noise level of a signal is apparently around 2.5% as found by these results. 

Good stability of parameters is seen between 2.5% and 7.5%, so the standard 5% modulation 

threshold can be used. 
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Figure 4.10: Graph of S∆q (Root Mean Square Slope of the surface in µm/µm) against 

Modulation Threshold (for x50 and x100 mags.) 

 

% Bad data 

As discussed in section 4.3.2.3, a decision must be made on the allowable % of bad data for 

measurements. The 20% maximum was initially accepted, although during the course of the 

study of modulation threshold, it was discovered that the 2B surface gave good intensity of 

returned light and so a maximum of only about 10% was reached (at 20% modulation). A figure 

of 15% maximum bad data was adopted for subsequent measurements. 

 

4.5.1.3 Number of Measurements per 2B Sample 

 

Repeatability of results is affected by inherent variance in surface topography and can be 

achieved by ensuring that enough of the surface has been measured. The number of 

measurements required per sample is dependant on both the measurement method 

(instrument) and the surface topography.  

Confidence in the results obtained can be achieved by carrying out a statistical T-test of relevant 

surface parameters. The statistical analysis is achieved by simply plotting the percentage 

confidence interval for each parameter from an increasing number of measurements and 

accepting the number of measurements that gives a variation in the parameters of less than 

10% for 3D measurements and 16% for profile measurements. 

Thirty measurements were made of a random 2B sample and the statistical analysis carried out. 

Figure 4.11 shows the graphs of several relevant parameter variations against the number of 

measurements used. Every parameter plotted had a % confidence of less than +- 10% for 12 or 

less measurements, except Sm, which initially went to +- 9% confidence for only 4 

measurements but then rose above the level to finally settle after 19 measurements. 
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A factor of ‘safety’ was added to the necessary 12 measurements and the average parameters 

of 15 measurements will be used for the remainder of this project. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11: Graphs showing the variations of parameter values against number of 

measurements used 

 

4.5.1.4 Parameters Selection 

 

It is important for all finishes that the parameters chosen to describe the surface features are 

relevant to functionality. Table 4.3 shows the 3D parameter set with corresponding potential 

relationships to production and/or functionality. 

The amplitude family should have consistent values for repeated measurements of the 2B 

surface (provided that the sampling interval and area sizes are the same) and so changes in the 

amplitude parameter values will be an indication of surface changes due to production and may 



82 

relate to functionality. S5z is an extreme parameter, the average height of the five highest peaks 

and five deepest valleys or pits. Since the surface topography contains few large peaks it is the 

depth of the valleys that will have a major influence on variations in this parameter. 

 

Table 4.3: 3D parameters set with potential relationships 

●  High  ◐  Moderate ○ Low 

Amplitude Spacing Hybrid 

Sq Ssk Sku Sp Sv Sz Sds Sal Str Ssc S∆q Sdr 

●  ●  ●  ◐  ◐  ●  ◐  ○  ○  ◐  ◐  ◐  
 

Curve and Volume Fra-
ctal Others 

Smr Sk Spk Svk Vv Vmp Vmc Vvc Vvv Sfd Std S5z 

◐  ○  ◐  ◐  ○  ●  ◐  ◐  ●  ◐  ○  ●  
 

The value of Ssk for a 2B finish is large and negative, as it has outliers, the valleys and good 

bearing properties, because of the relatively flat plateau regions. The value of Sku is very large, 

which is also due to the outliers (valleys). These two parameters should be used in conjunction 

with each other to identify surfaces which have relatively flat tops and deep valleys, like 2B and 

plateau honed, from other surface topographies with similar values for the other parameters. 

The spatial and hybrid families are not particularly useful for functionally characterising the 2B 

surface, as it has no particular texture or lay, although they may be useful to show small 

changes when considering optical properties. 

Absolute values for volumes are calculated using the functional volume family of parameters 

and these should have strong relationships to the lubrication retention properties of the surface. 

 

4.5.2 Recommended Measurement Method for a Brushed Finish 

 

Initially the important features of the surface must be identified. By viewing a range of brushed 

product surfaces using a scanning electron microscope the features of the surface were 

recognised as unidirectional ridges and troughs. The SEM images reveal that the ridges have 

rough edges and some remnant 2B finish can be seen in the troughs. The smallest features 

must be resolvable using the chosen sampling interval so the average and minimum dimensions 

of the ridges, troughs and remnant 2B must be found. 

 

4.5.2.1 Protocol for a Brushed Finish 

 

Measure the features: A scanning electron microscope (SEM) was employed to show the areal 

geometry of the surface features and images as in figure 4.12 were collected from different 
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samples, in several areas and at varying degrees of magnification. The images were manually 

examined and the data in table 4.4 gathered. 

 

Table 4.4: Data collected from SEM study for a brushed finish 

 Average Maximum Minimum 

Ridge Width (µm) 450 1100 200 

Trough Width (µm) 550 1300 200 

Remnant 2B features (µm) 450 600 350 

 
Meet the demands of the Nyquist theorem:  The initial estimate of required sampling interval 

for a brushed finish was calculated, based on the Nyquist theorem. The smallest feature on the 

surface is the minimum trough width, 200 nm, so the initial estimate of sampling interval is 100 

nm. 

Chose a suitable instrument:  After using a Steadman diagram an optical interferometer was 

chosen (Wyko NT2000 in VSI mode) and surface data files were studied. The surfaces were 

measured with a lateral sampling interval of 160 nm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12: SEM images of a brushed surface finish showing ridges, troughs and remnant 2B 

features at x2k, x5k & x10k magnifications 
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(a) 

(b) 

Run frequency spectrum analysis:  Frequency spectrum analysis (using Fast Fourier 

Transforms) has again been used to determine the frequencies of the surface features. The 

surfaces were measured with a lateral interval of 160 nm. From the 3D maps the PSD plot was 

created for many 2D profiles, using a real time FFT. The estimation of sampling interval from the 

SEM study of 100 nm relates to a frequency of 5000 mm-1 and the actual minimum 

measurement interval of 160 nm for the Wyko NT2000 interferometer in VSI mode relates to a 

frequency of 3125 mm-1. The reconstructed surfaces at these intervals reveal a very high 

correlation with the original measured surface. In fact for a brushed surface, a frequency of 

2500 mm-1, equating to an interval of 200 nm, almost perfectly reconstructs the surface profiles, 

figure 4.13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13: Profile reconstruction after FFT analysis showing good reconstruction 

(a) Reconstructed surface 

(b) FFT analysis 

 

The results of the practical and mathematical analyses on the determination of sampling interval 

are similar. From the SEM investigations a 100 nm interval is suggested. Using the frequency 

spectrum analysis, a frequency of 2500 mm-1 is suggested to accurately reconstruct the surface 

data, equating to an interval of 200 nm.  

Reconstructed surface 
Measured surface 
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Re-select a suitable instrument:  The Wyko NT2000 interferometer in VSI mode at 100 times 

magnification has a sampling interval of 160 nm, indicating its suitability for measuring the 

brushed surface. 

 

4.5.3 Recommended Measurement Method for a WHB Surf ace 

 

Initially the important features of the surface must be identified. By viewing the white hot band 

surface using a scanning electron microscope and an interferometer the features of the surface 

were recognised as shot blast marks, deep valleys created by pickling and isolated high-aspect 

ratio pits. The smallest features must be resolvable using the chosen sampling interval so the 

average and minimum dimensions of the shot marks, valleys and pits must be found. 

 

4.5.3.1 Protocol for a WHB Surface 

 

Measure the features:  A scanning electron microscope (SEM) was employed to show the areal 

geometry of the valley and pit features and an interferometer was used to determine the width of 

shot marks on the surface. Images as in figure 4.14 were collected from different samples, in 

several areas. The images were manually examined and the data in table 4.5 gathered. 

Meet the demands of the Nyquist theorem:  The initial estimate of required sampling interval 

for a brushed finish was calculated, based on the Nyquist theorem. The smallest feature on the 

surface is the minimum pit width, 250 nm, so the initial estimate of sampling interval is 125 nm. 

 

Table 4.5: Data collected from SEM study for WHB surface 

 Average Maximum Minimum 

Shot Marks Width (µm) 200 300 100 

Valley Width (µm) 1.25 2.5 0.5 

Isolated Pits Width (µm) 0.5 1 0.25 
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Figure 4.14: SEM and interferometer images of a white hot band surface showing size of shot 

mark features 

 

Chose a suitable instrument:  Although an optical interferometer (Wyko NT2000 in VSI mode 

at 100 times magnification) can achieve a lateral sampling interval of 160 nm, the area 

measured would be approximately 50 µm x 100 µm, meaning no shot marks would be fully 

represented. Considering that the 'function' of the white hot band is to be consolidated into the 

smoother rolled surfaces and that it is most common to see remnant shot marks as 'defects' on 

these surfaces, it is important that the shot marks are measured. 

Therefore the initial suggestion is to measure the pits and valleys using the interferometer in VSI 

mode at 100 times magnification and to measure the shot marks using the same instrument but 

at only 2.5 or 5 times magnification (approximately 2 µm and 3.5 µm lateral resolution with 

areas of 0.9 mm x 1.2 mm and 1.8 mm x 2.4 mm, respectively). The same lateral resolution can 

also be achieved on most stylus instruments; however there is a huge time benefit with using an 

optical interferometer. In reality, when attempting to measure the white hot band using the 

interferometer in VSI mode at 100 times magnification, the surface proved too 'dark', i.e. not 

2.26 µm width 
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enough light was returned to the instrument from the surface. Figure 4.15 shows the profile 

reconstruction of a white hot band surface (measured with a lateral interval of 2 µm) with high 

frequency limits of 250 mm-1 and 143 mm-1 (relating to 2 µm and 3.5 µm sampling intervals 

respectively). Good reconstruction is achieved with both limits, although the 250 mm-1, or 2 µm 

sampling interval is recommended as it accurately reconstructs the fine details.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15: FFT analysis and profile reconstructions for high frequency limits showing good 

agreement at (a) 250 mm-1 and   (b) 143 mm-1 

Reconstructed surface 
Measured surface 
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4.6. Conclusion 

 

This chapter has presented a generalised measurement strategy, to aid the selection of 

measurement and instrument selection for any surface topography. The strategy and its 

protocol have then been demonstrated using three common surface finishes produced by the 

sponsoring company. The results of these examples will be used in the remainder of this 

project, ensuring the quality of measurements and functionality of calculated parameters. 

Further, it is suggested that the approach described could be used as a general guide for 

surface metrology of different surfaces. 

A flow chart of the generalised protocol is presented in figure 4.16 to aid in the visualisation of 

the steps involved for the sponsoring company.  
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Measure surface with an 

instrument with a higher 

lateral resolution 

Identify important 

surface features 

Measure the features 

Meet Nyquist 

theorem 

Chose a suitable 

instrument 

Measure surface – 

at least 10 maps 

Run frequency 

spectrum analysis on 

maps and get PSD 

plot 

Select high 

frequency limit and 

reconstruct surface 

by running inverse 

FFT 

Is the 

reconstruction 

good? 

Increase 

estimate of 

high 

frequency 

limit 

Use equation 1 to 

calculate related 

sampling interval from 

high frequency limit 

Select a suitable instrument using 

table and set all other instrument 

variables to suit the surface 

FIRST ESTIMATE OF 
SAMPLING INTERVAL 
 

SECOND ESTIMATE OF 
SAMPLING INTERVAL 
 

THIRD ESTIMATE OF 
SAMPLING INTERVAL 
 

Plateau regions and a network of 
interconnecting valleys 

A scanning electron microscope (SEM) was 
employed to depict the areal geometry of the 
surface features. Images were manually 
examined and analysis used to collect the 
data in table 4.2. 
 

The smallest feature on the surface is the 
minimum valley width, 400nm, so the 
initial estimate of sampling interval is half 
this, 200nm. 

Figure 4.16: Flow chart of test protocol (red boxes show 2B finish results, section 4.4.1) 

Non-contacting optical interferometer (Wyko 
NT 2000 in VSI mode) 

The frequency of the valleys of a 
2B surface show up dominantly on 
a PSD plot 

The Wyko minimum interval of 160nm relates to a 
frequency of 3125mm-1. The reconstructed surfaces 
at these intervals reveal a very high correlation with 
the original measured surface. 

YES NO 

Can’t 

Can 

The results of the practical and mathematical analyses on the 
determination of sampling interval are very similar. From the 
SEM investigations a 200nm interval is suggested. Using the 
frequency spectrum analysis, a frequency of 2000mm-1 is 
recommended, equating to an interval of 250nm. 

The significant frequencies were 
checked using higher resolution 
surface maps measured on an 
Atomic Force Microscope, AFM. 
The lateral sampling interval for the 
AFM measurements was 
approximately 40nm. From this the 
suggested high frequency limit is 
2000mm-1. 

THE WYKO INTERFEROMETER AT 100 TIMES MAGNIFICATION HAS A 

SAMPLING INTERVAL OF 160nm, INDICATING ITS SUITABILITY FOR 
MEASURING THE 2B SURFACE. 
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Chapter 5 The Effects of Variations in Production 

 

 

5.1. Summary of the Chapter 

 

There is inherent variability in the surface topography produced due to differing process stages 

and grade of material. The desired thickness determines the number of passes through the 

rolling mill and the final finishing operation can be either skin-passing or tension levelling (this is 

source dependant, either Source 1 or 2, respectively). The main aim of this chapter is to 

investigate the effect that normal production variations have on the surface topography of 

stainless steel. This is achieved by comparing the relevant measured 3D surface topography 

parameters and relating the differences to variations in the samples’ production, including: 

 

� Variation in nominal thickness of samples 

� Variations in grade of material (316 and 304 grades) and actual, measured thickness 

� Variation in source of material and therefore in the final process step (skin passing or 

tension levelling) 

 

In addition to the above production variations, the micro hardness of the different grades and 

sources is presented, in an attempt to fully understand the issues. 

 

5.2. Introduction 

 

Surface texture is the fingerprint of manufacture [6] and as such can be used as a control for 

production purposes. Changes in the process, whether they are intentional or not, effect the 

final finish of a component and if the features of surface topography can be traced to the point in 

the process where they were created the effects can be either controlled (for the engineering of 

surfaces for a specific function) or eliminated (for defects). 
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5.3. Known Effects of Production on Topography of 2 B Finish (review) 

 

The surface finish of the final product depends on a number of factors within its process route, 

but predominantly it is the final stages that dominate the final topography. 

The cold rolling process is not only used to reduce the gauge of the sheet but also to improve 

and consolidate the surface. The differences in methods and tribological conditions of cold 

rolling generate various surface characteristics, often the shallow pits present on the hot band 

surface are eliminated and the intermediate descaling (pickling) effects are minimised.  

After being rolled to the intended final gauge the material for 2B finishes is annealed again and 

must be descaling in an agitated acid bath. 

This descaling method is highly influential to the final surface and chemical attack on the metal 

substrate can be preferential, for example at grain boundaries in the recrystallised, annealed 

structures, giving rise to etching effects on the surface. The process creates the ‘matrix’ of grain 

boundary valleys, discussed previously in Chapter 2. Some of the grain boundaries are left 

intact so the remaining grain ‘plateau’ regions vary in size. The skin pass, performed at the 

Source 1 site, does not alter the mechanical properties but it serves to reduce thickness and 

improve ‘shape’ tolerances and gives a final finish to the plateau regions. Being a light pass it 

does not totally smooth out the plateau regions but merely removes or flattens the higher 

asperities. The skin pass process route includes a tensioning device, which helps to alleviate 

the effect of form and waviness created in the rolling process. The parallel method of 

brightening the surface, used at the Source 2 site, is to use a light tension device. Both 

processes result in very similar surface topographies. 

Consequently there are two main features that distinguish both of the 2B surfaces, plateau 

regions and a pattern of interconnecting valleys. 

 

5.4. Sample/Production Variations 

 

There is inherent variability in the surface topography produced due to differing process stages, 

grade of material and one-off variations known as 'defects'. Different process stages for the 2B 

finish occur in cold rolling, where the desired thickness determines the number of passes 

through the rolling mill and the final finishing operation can be either skin-passing or tension 

levelling (this is source dependant, either Source 1 or 2, respectively). Other stages of the 

process route can produce discrepancies, like the 'greying' effect of over pickling or a general 

streaky appearance may be evident where variation existed in the white hot band. Variations 

due to the grade arise because of the individual properties of the materials and therefore slightly 

different reactions to the same processing operations. When all of these variables are the same, 

inconsistencies in the final finish can still occur.  Variation across the length and width of the 

sheet are unintentional but can occur due to wear of rolls and differences in the spread of 

lubrication. Roll imprints may be seen as a result of roll wear or lubrication problems and other 

faults such as scoring may be visible. Since the aim of this study is to investigate normal 

production variables, samples have been taken from the middle sections of the strip and 
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although the 15 measurements are taken randomly within the sample area, faults or defects are 

avoided. 

 

5.5. Measurement Method 

 

The measurement strategy (Chapter 4) was followed for this study. For the 2B finish, samples 

were measured using the Wyko NT2000 interferometer in VSI mode at 100 times magnification. 

Fifteen measurements were taken on each sample and the parameter results averaged to give 

stable results [17]. 

 

5.6. Results 

 

Results are given in the form of graphs with parameters against thickness. All error bars are ± ½ 

standard deviations of the 15 measurements taken. Correlation was measured using the linear 

least squares method. 

 

General observations:  

The value of Ssk for a 2B finish is large and negative, due to the presence of valleys and 

plateaus. The value of Sku is very large, which is also due to the outliers (valleys) effecting the 

height distribution. These two parameters are normally used in conjunction with each other to 

identify surfaces which have relatively flat tops and deep valleys, such as 2B and plateau 

honed. 

The spatial and hybrid families are not particularly useful for characterising the differences in the 

basic 2B surface, as the texture or lay is very similar for all grades.  

 

5.6.1 Results for Nominal Thickness Variation 

 

The first ‘set’ of figures (5.1 to 5.6) shows the simplest separation of the samples, by their 

nominal thickness only. All the major grades studied are included and their source is not 

distinguished. 

Sq (Root Mean Square Deviation) decreases with decreasing thickness, as expected, figure 5.1. 

This mirrors the result found using the Ra values in 2 dimensions (appendix 2), meaning that the 

overall roughness of the surface is reduced, or the thinner gauges have a smoother finish. 
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Figure 5.1: Graph of Sq (Root Mean Square Deviation) against nominal thickness for all grades 
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Figure 5.2: Graph of Sz (Maximum Height of Texture surface) against nominal thickness for all 

grades 

 

Sz (Maximum Height of Texture surface, formerly named St) follows a similar trend to Sq, as 

does Sv (Maximum Valley Depth of Texture surface), figures 5.2 and 5.3. These two extreme 

parameters give an insight into the overall change as the material gets thinner. It is not only the 

plateau areas that are smoothed; the valley depths are also reduced. 

 

 

 

 

 



94 

Sv R2 = 0.9471

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

0 1 2 3 4 5 6 7

Nominal thickness (mm)

S
v 

(u
m

)

 

Figure 5.3: Graph of Sv (Maximum Valley Height) against nominal thickness for all grades 

 

The more functional parameters are those derived from the bearing curve and the related family 

(formerly the volume family). The relationship between these four parameters is very interesting, 

see figure 5.4. All four show a steady decrease with reduced thickness. The trend that they 

follow is very alike and this implies that, although the scale of the topography is getting smaller, 

the shape of the features on the surface and their relationship to each other is unchanged. This 

aspect is represented in figure 5.5, using profiles from the thinnest and thickest Source 2 

samples.  
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Figure 5.4: Graph of functional volume parameters against nominal thickness for all grades 

(note: the trend line on this graph is curved due to the use of a logarithmic scale on the y-axis) 

 

Figure 5.4 gives an indication that there are very few peaks left on the surface and that valleys 

dominate (much higher values for Vvv than for Vmp). 

The Vmc and Vvc parameters are very close in value to each other. This shows that within the 

core area of the material the material and voids are of approximately the same volume. 
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Figure 5.5: Profiles of the thickest and thinnest samples from Source 2 

 

The extreme parameter S5z (Ten Point Height of the surface) is calculated using only the ten 

highest points of the topography, figure 5.6. This is material that would be expected to be 

consolidated in the rolling processes. Hence, those samples that have had a greater degree of 

cold rolling (the thinner samples) have the lowest values of S5z.  
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Figure 5.6: Graph of S5z (Ten Point Height of surface) against nominal thickness for all grades 

 

Sa (the Arithmetic Average Roughness), figure 5.7 shows a very similar trend to Sq (figure 5.1), 

as would be expected due to their similarity. It is given for completeness, since its 2D 

counterpart, Ra, is one of the most commonly used surface quality parameters in the industry. 

2mm thick sample from Avesta (304L) 6mm thick sample from Avesta (304L) 



96 

Sa R2 = 0.8978

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7
Nominal thickness (mm)

S
a 

(u
m

)

 

Figure 5.7: Graph of Sa (Arithmetic Average Roughness) against nominal thickness for all 

grades 

 

5.6.2 Results for Grade Variation 

 

Parameters that showed good correlation with grade alterations are: Sq, Sz & Sv from the 

amplitude family, Vmp, Vmc, Vvc & Vvv from the volume family and S5z & Sa (others). 

The variation in results between the different material specifications is shown in the second set 

of graphs (5.8 to 5.14). The two main grades studied are 304 and 316, which are the highest 

production grades by Outukumpu. The actual material thickness is used, rather than the 

nominal thickness, for accuracy. The variation in results between the different material 

specifications revealed that similar trends to those found without grade separation were present. 

Sq (Root Mean Square Deviation) decreases with decreasing thickness for both 304 and 316 

grades, figure 5.8. Using the trend line as a guide, it can be noted that, on average, 304 

materials have slightly higher surface roughness than 316 materials of the same thickness. 

 

 

 



97 

Sq

R2 = 0.9061

R2 = 0.9247

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00
Actual Thickness (mm)

S
q 

(u
m

)

316

304

 

Figure 5.8: Graph of Sq (Root Mean Square Deviation) against actual measured thickness for 

316 and 304 grades 

 

Being extreme parameters, Sz and Sv do not show the trend found for Sq, that 304 is generally 

slightly rougher than 316, figures 5.9 and 5.10. This is almost certainly due to the fact that 

outliers influence them. It is interesting to notice that the 316 materials error bars and therefore 

the spread of the data is much greater than that of 304 materials. This may indicate that 316 is 

more difficult to consolidate, as the spread is highest toward the thicker samples (i.e. those with 

least rolling to consolidate outlying features). This is considered further in section 5.7, where the 

hardness of the main grades is investigated. 
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Figure 5.9: Graph of Sz (Maximum Height of Texture surface) against actual measured 

thickness for 316 and 304 grades 
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Figure 5.10: Graph of Sv (Maximum Valley Height) against actual measured thickness for 316 

and 304 grades 

 

The functional set of parameters (Vmp, Vmc, Vvc and Vvv), figures 5.11 and 5.12, again follow 

similar trends to figure 5.4. Note that the data has been separated over two graphs and does 

not use a log scale on y (as previously). This is simply for clarity. 

Again, it should be noted that, with the exception of Vvv, values for 304 materials are slightly 

higher than for 316 materials. The fact the Vmp is larger for 304, yet Sz is not, could indicate that 

the peaks on 304 material are not necessarily high but do take up more volume (possibly 

'squashed' peaks). 
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Figure 5.11: Graph of functional volume parameters, Vmp (Material Volume of the Texture 

surface) and Vvv (Valley Void Volume of the Texture surface) against actual measured thickness 

for 316 and 304 grades 
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Figure 5.12: Graph of functional volume parameters, Vmc (Core Material Volume of the Texture 

surface) and Vvc (Core Void Volume of the Texture surface) against actual measured thickness 

for 316 and 304 grades 
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Figure 5.13: Graph of S5z (Ten Point Height of surface) against actual measured thickness for 

316 and 304 grades 

 

Figure 5.13, S5z, reiterates the results of figure 5.6 and has a similar trend. 

 

Figure 5.14, Sa, is similar to the result of figure 5.7, as expected and is shown only for 

completeness. 
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Figure 5.14: Graph of Sa (Arithmetic Average Roughness) against actual measured thickness 

for 316 and 304 grades 

 

5.6.3 Discussion of Results for Grade Separation 

 

The most obvious result of the separation of grades is that, in general, 304 grade materials are 

slightly rougher, on average than 316 materials of the same thickness. The extent of this slight 

difference is clarified below studying the average values for 316 and 304 materials of all 

thicknesses. As can be seen in table 5.1 below, with the exception of Sz, all amplitude related 

parameter values for 304 grade materials are higher than for 316 grades. 

 

Table 5.1: Average parameters for 316 and 304 grade materials 

 

Parameter Average 316 Average 304 

Sq 0.585 0.628 

Sz 5.653 5.531 

Sv -3.817 -3.712 

S5z 4.811 5.035 

Sa 0.454 0.484 

 

The fact that Sq and Sa values are higher implies that the 304 materials have slightly higher 

average roughness. However, the difference between the Sz and Sv parameters shows that the 

316 grade materials have a greater range of topography heights (both higher peaks and deeper 

valleys). Since this may have been due to the slightly higher range of thicknesses, table 5.2 

shows average parameters only for nominal thicknesses between 2 and 6 mm where the same 

trends were seen. It is also evident in the data that the spread of results (the standard deviation 

– see error bars on graphs) is larger for the 316 materials. 
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Table 5.2: Average parameters for 316 and 304 grade materials (2 to 6 mm) 

 

Parameter Average 316 Average 304 

Sq 0.716 0.754 

Sz 6.872 6.414 

Sv -4.677 -4.316 

S5z 5.791 5.824 

Sa 0.555 0.584 

 

Changes in topography across the width of strip are apparently caused by variations in rolling 

pressure and lubrication distribution. It was hoped that further samples from within the process 

route could be obtained to track the changes in surface topography at each stage of production. 

This would give a better insight into the way that the final finish is developed and how 

adjustments in the production may affect the outcome but is, in reality, very difficult to 

accomplish in large-scale production such as this and as a result have not formed part of this 

study. 

The other major variation in the sample set is the final process method used. This can either be 

skin-passing or tension levelling (this is source dependant, either Source 1 or 2, respectively).  

Due to the limited number of samples and the processing capabilities of the different 

manufacturing sites, there is only one comparable pair of samples of the same thickness (3 mm) 

that come from different sources. Therefore the analysis of the differences in topography 

caused by the final processing operation is based on the trends found for Source 1 and 2 

samples. 

Figures 5.15 to 5.21 show the results of analysis with separation based on source and thickness 

using all the grades available in the study. 
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Figure 5.15: Graph of Sq (Root Mean Square Deviation) against nominal thickness for different 

sources 
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Different sources (Sz)
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Figure 5.16: Graph of Sz (Maximum Height of Texture surface) against nominal thickness for 

different sources 
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Figure 5.17: Graph of Sv (Maximum Valley Height) against nominal thickness for different 

sources 
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Different sources (Vmc, Vvc)
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Figure 5.18: Graph of functional volume parameters, Vmp (Material Volume of the Texture 

surface) and Vvv (Valley Void Volume of the Texture surface) against nominal thickness for 

different sources 
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Figure 5.19: Graph of functional volume parameters, Vmc (Core Material Volume of the Texture 

surface) and Vvc (Core Void Volume of the Texture surface) against nominal thickness for 

different sources 
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Different sources (S5z)
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Figure 5.20: Graph of S5z (Ten Point Height of surface) against nominal thickness for different 

sources 
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Figure 5.21: Graph of Sa (Arithmetic Average Roughness) against nominal thickness for 

different sources 

 

In all the graphs the Source 1 samples have smaller values of parameters than those of Source 

2 samples in general and this is more obvious when looking at materials of the same thickness 

(for both 316 and 304 grades). This is most apparent on the extreme parameters (Sz and S5z, 

figures 5.16 and 5.20). The difference in processing of the samples is now apparent, the skin-

pass method of final finishing (used on Source 1 samples) gives a smoother and more 

consolidated topography, having better defined edges than those that have undergone tension 

stretching (used on Source 2 samples), see figure 5.22. 
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3mm Source 2 sample (304L)  

 

 

 

 

 

 

 

  

Figure 5.22: Contour map showing surface topography differences between sources 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3mm Source 1 sample (304L) 
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5.7. Hardness Investigation 

 

To further the understanding of the results found for differences in topography for the two main 

production grades, 304 and 316, their bulk hardness and microhardness (surface hardness) 

were tested. 

The results for Vickers hardness of the bulk of the materials are shown in figure 5.23 (error bars 

are too small to show). They are plotted against the actual gauge of the samples tested and 

separated, distinguishing between the different grades (304 and 316) and the two production 

sites (Sources 1and 2). 

As expected, there is only minimal difference in bulk hardness properties between the two 

production methods. Also, the difference caused by gauge variation is small (<40HV between 

the thickest and thinnest samples). This is believed to be due to the bulk properties stemming 

mainly from the properties of the original hot band material. The effects of rolling and pickling do 

not affect the bulk hardness properties. However there is a small but distinct difference between 

the 304 and 316 grades bulk properties, whereby 304 grade material is marginally harder than 

316. 
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Figure 5.23: Vickers Bulk Hardness against gauge thickness for sources 1 and 2 

 

To further this study, the micro-hardness (or surface hardness) has also been tested. The 

results, figure 5.24, show that there is only a small magnitude of difference between the two 

grades of material from the Source 2 site; however, the difference in surface hardness 

properties between the grades from the Source 1 site is more noticeable. This would imply that 
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the skin pass method of finishing used in production at Source 1 gives more distinction between 

the grades, whereas the tensioning device used in Source 2 production does not. 

The difference in surface hardness properties between the two production sites is also more 

noticeable for the 316 grades. This result implies that the Source 2 production method makes 

the surface of the 316 material harder than the Source 1 method of skin passing. 

Additionally, a greater range of surface hardness’s can be seen across the different gauges. 

The thicker samples have a marginally softer surface, implying that the rolling operation to bring 

the sheet to gauge has the effect of hardening the surface. 
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Figure 5.24: Vickers Microhardness against gauge thickness for sources 1 and 2 (error bars 

based on ½ standard deviation of measurements) 

 

5.7.1 Summary of Hardness Investigation 

 

The main findings of this investigation are:  

� The bulk hardness of 304 grade samples is marginally greater than 316 grades. 

� The surface hardness of 304 samples produced at Source 1 is greater than the 316 

grade. 

� The thicker samples have a marginally softer surface. 
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5.8. Conclusions 

 

The general relationship between surface roughness and gauge has expanded into an in-depth 

examination of what is happening to the features of the surface during cold rolling and how 

differences in grade and process can affect the development of features. 

 

� The thinner gauges have a smoother finish. 

� Although the scale of the topography is getting smaller, the shape of the features on the 

surface and their relationship to each other is unchanged. 

� There are very few peaks left on the surface and the valleys dominate the topography. 

� Within the core area of the material, the material and voids are of approximately the same 

volume. 

� On average, 304 materials have slightly higher surface roughness than 316 materials of 

the same thickness. 

� The spread of the data for 316 grade materials is much greater than that of 304 grade 

materials. 

� The peaks on 304 grade materials are not necessarily higher but do take up more volume 

than those on 316 grade materials. 

� The skin pass method of final finishing (used on Source 1 samples) gives a smoother and 

more consolidated topography, having better defined edges than those that have 

undergone tension stretching (used on Source 2 samples). 
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Chapter 6 Optical Appearance 

 

 

6.1. Summary of the Chapter 

 

The available instrumentation is discussed and sample variation with respect to appearance is 

considered. The effect of rolling direction to appearance, measurement direction (in respect to 

the rolling direction of the sample), angle of the measurement, sample thickness and grade 

variation are studied and initial measurement trials are completed to assess the general optical 

properties of the 2B finish with regard to other finishes. The relationship of four optical 

descriptors to 3D topography parameters, including the use of a new analysis method, are 

presented and discussed. 

 

6.2. Introduction 

 

The appearance of a product is often used by consumers as a measure of the quality of the 

product and the materials it is made from. There is a psychological relationship between 

appearance and performance and durability [13]. When given a choice between similar product 

function, a consumer will inevitably buy what looks best, despite having no other evidence to 

back up this view. 

The appearance of an object is influenced by many factors, the interaction of light with the 

surface, the direction of both light source and viewer, the objects physical characteristics, optical 

properties and subjective human perception. As previously mentioned, stainless steel finishes 

are not normally quantitatively assessed. Inspection of the surface appearance is carried out by 

the human eye and the colour and general look is commented on. Phrases like ‘dullness’, 

‘greyness’, ‘pearly’ and ‘matt’ are used, which clearly gives rise to variations in perception 

across inspectors, especially where the product is supplied from multiple manufacturing sites. 

The result of this inspection is a simple statement of whether the product looks good or bad 

(pass or fail criteria). 

Manufacturers of stainless steel products realise the importance of uniformity of appearance, as 

variability in a group of the same products indicates to the end-user poor process or production 

control and therefore inferior quality. Companies are consequently working towards a more 

quantitative assessment method. The ability to link the surface topography features to numerical 

optical property characteristics will yield not only a better understanding of the effects of 

topography on appearance but also enable manufacturers to quantify their pass/fail criteria and 

remove the subjectivity of human perception and eventually increase consumer confidence. 
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6.3. Method of Assessing Appearance 

 

As discussed in section 2.4.3.2 Instrumentation to measure reflectance, instruments are 

seperated into two groups, physical and psychophysical analysis types [14]. The appearance 

attributes of interest for this project are geometric rather than colour related and because of the 

nature of stainless steel, only specular reflection meters are suitable for measuring the gloss, 

haze, specular reflectance and distinctness of image. The instrument used for this project was a 

Panaspect appearance meter (a type of glossmeter), see figure 6.1, providing the following four 

optical parameters (equations given are for 60° illu mination angle): 

 

Gloss (Gls). This is the percentage of light reflected from the sample at the specular angle, 

when compared to that from a perfect mirror and is responsible for reflected highlights and shiny 

or lustrous appearance. 

 

 Equation 6.1 

 

 

Specular Reflectance (Rs) is the proportion of the total emitted light that is reflected from the 

sample to the specular angle rather than diffused either side. 

 

 Equation 6.2 

 

 

Haze (Hz) is the percentage of light reflected from the sample at a range of angles compared to 

that reflected from a perfect mirror and gives the milky or cloudy appearance next to the 

reflected highlights. 

 

 Equation 6.3 

 

 

Distinctness of image (DOI) is a measure of the ratio of light that is reflected from the sample 

over a limited range either side of the specular angle and can be considered as a sharpness of 

an image reflected from the surface. 

 

 Equation 6.4 
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Figure 6.1: Panaspect Appearance Meter 

 

The above definitions of the parameters are given by the instrument manufacturers, based on 

the method of measurement and calculation algorithms and hence, there maybe a slight 

variation from other manufacturers terminology. 
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6.4. Relationship of Topography to Appearance 

 

The appearance of sheet metals is governed by the extent of their reflection (diffuse and 

specular) as they do not possess transmission properties. They range in magnitude from the 

mirror-like (wholly specular reflection on a highly polished, flat surface) to the very matt (wholly 

diffuse reflection normally associated with rough finishes). Their optical properties depend 

mainly on their production method, although metal composition can have an effect (due to the 

materials reaction to the applied processing).  

The appearance effects of production methods on stainless steel finishes are varied and it is 

possible to produce both matt and highly reflective surfaces (though the work involved deems 

this uneconomical). The mill and derived finishes (seen in table 2.1) can result in distinctly 

different surface topographies, although their visual appearance may be very similar. 

The features that affect the optical properties of stainless steel sheet can be deduced by 

comparing the production methods and end appearance of 2D and 2B surfaces. The 2D finish is 

matt with low reflectivity. As discussed previously skin passing enhances surface brightness. It 

is the only difference in the process between 2D and 2B, wherein it removes or flattens the 

higher asperities of the 2D surface to give the 2B surface which is of similar colour but much 

brighter and more reflective. So the deduction is that plateau roughness and, conceivably, the 

area covered by valleys dictates the reflectivity and brightness of the 2B surface. 

Although it is clear how the surface topography of the 2B finish is developed during manufacture 

(section 2.4.2.2 Effect of Production on Topography), there is currently no method to quantify its 

visual appearance. 

 

6.5. Direction and Angle of Measurement 

 

Appearance measurements of gloss (Gls), specular reflectance (Rs), haze (Hz) and distinctness 

of image (DOI) were made at two angles (20 and 60 degrees to the horizontal) and 

longitudinally and transversely to the rolling direction on each surface. 

This gives four variations for each sample, 20° trans versely (20T), 60° transversely (60T), 20° 

longitudinally (20L) and 60° longitudinally (60L). 
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6.6. Initial Measurements 

 

The initial investigation carried out involved samples with very different surface finishes (on 

stainless steel). This was used firstly to assess the ability of the glossmeter to detect large 

differences in gloss and also to give preliminary, average values of the four optical descriptors 

for the 2B surface (gloss, specular reflectance, haze and distinctness of image). The four 

different stainless steel surface finishes studied were: 2B, bright annealed (2R), superbrushed 

and Hyclad (a new finish produced by peening a 2B finish). 

The glossmeter readings were taken at two angles, 20 and 60 and longitudinally and 

transversely to the rolling direction on each sample (shown as L20, L60, T20 and T60 lines on 

the graphs). Sampling for all finishes was carried out in accordance with the test protocol 

(Chapter 4). 

 

6.6.1 Results for 4 Finishes 

 

Figure 6.2 shows a graph of gloss against Sq (Root Mean Square Deviation) for the four 

different stainless steel surface finishes. From this graph, the effect of rolling direction on the 

optical properties looks minimal, with the angle of measurement being more influential, except 

for on the superbrushed finish, where it is expected that rolling direction would be important due 

to the very anisotropic nature of the surface. It is also obvious that the gloss of the 2B surface is 

far lower than that of the bright annealed, which is normally described as “mirror like”. In general 

it can be said that the higher the average roughness, the lower the gloss. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Graph of Gloss (Gls) against Sq (Root Mean Square Deviation) 
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Figure 6.3 shows a graph of specular reflectance (Rs) against Sq (Root Mean Square 

Deviation). The Rs of bright annealed is so much higher than for the other 3 finishes, it is difficult 

to see the relationships between them without separating the graphs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: Graph of Specular Reflectance (Rs) against Sq (Root Mean Square Deviation) 

 

It can be seen that the Rs of the superbrushed finish is heavily dependant on the rolling 

direction and the angle of measurement, again, this is due to the directional nature of the finish. 

The 2B finish again has lower values of Rs than the others alongside a higher average 

roughness. In general it can be seen that the higher the average roughness, the lower the 

specular reflectance. 

 

Figures 6.4 and 6.5 show that haze and DOI do not clearly distinguish between the 4 main 

finishes and have little relationship to the average roughness of a surface. 
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Figure 6.4: Graph of Haze (Hz) against Sq (Root Mean Square Deviation) 
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Figure 6.5: Graph of distinctness of image (DOI) against Sq (Root Mean Square Deviation) 
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6.7. Parameter Assessment 

 

6.7.1 Results for the 2B Finish 

 

The following results show the correlation of the appearance parameters to the 3D surface 

parameters of the 2B finish. 

In past research it has been found that smooth surfaces reflect most of the incident light into the 

zero order, the specular direction, giving high values for Gls, Rs and DOI and diffract only a 

small amount of light either side of the zero order, giving low haze (Hz) readings. 

In general, specular reflectance and gloss were the only appearance parameters that followed 

any trend with distinctness of image and especially haze being very irrational (selection shown 

in appendix 3). 

Sampling for all finishes was carried out in accordance with the test protocol (Chapter 4). Error 

bars are ½ standard deviation of set. Trend lines are of exponential form.  

As expected, the Arithmetic Mean Peak Curvature (Ssc) had a high trend correlation to gloss 

and specular reflectance, figures 6.6 and 6.7, although with error bars added to the graphs, little 

information can be construed, except between the highest and lowest values of Ssc. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6: Graph of Average Ssc (Arithmetic Mean Peak Curvature) against Average Gloss 

(Gls) 
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Figure 6.7: Graph of Average Ssc (Arithmetic Mean Peak Curvature) against Average Specular 

Reflectance 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8: Graph of Average Sdr (Developed Interfacial Area Ratio) against Average Specular 

Reflectance 

 

The Developed Interfacial Area Ratio (Sdr) also showed a high trend correlation to specular 

reflectance, figure 6.8. Again, the large error bars at the higher end of the Sdr values make it 

difficult to deduce any meaningful information. 
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6.8. Development of Data Truncation Method 

 

6.8.1 Introduction 

 

It has been hypothesised that by studying the relationship between the topography (and 

process) variations of different surfaces and their appearance that the plateau data is, in the 

main, responsible for the aspects of appearance (see section 6.4), whereas the valley data 

would be related to lubricant retention and tribological properties. However, it is not discounted 

that the valley data may have an effect on the optical appearance of a surface and consequently 

the effects of each need to be studied. 

A novel method of separating the plateau and valley data has been developed to yield more 

functionally relevant topography parameter results for the 2B surface. The hypothesis would 

suggest that the new parameters are expected to correlate as shown in table 6.1. 

 

Table 6.1: Hypothesised relationship between new parameters and appearance characteristics 

● High   ◐ Moderate ○ Low 

  Function Appearance 

 Feature of Interest  Parameter Reflectance/DOI Gloss 

Average roughness Sq of top data ● ● 

Height of asperities Sz of top data ◐ ◐ 

Number of 

asperities 
Sds of top data ● ◐ 

Slope S∆q of top data ◐ ◐ 

Curvature Ssc of top data ◐ ◐ 

Size Possible using edge detection ● ◐ 

Size distribution As above ● ◐ 

No. of isolated oil 

pockets 

Pattern recognition/related to 

WC 
◐ ◐ 

P
la

te
au

s 

Aspect of pits Further Study Required ◐ ○ 

Max. Depth St ○ ◐ 

Av. Max. depth Svm ○ ◐ 

Av. Depth Further Study Required ○ ◐ 

Slope of walls Further Study Required ◐ ◐ 

V
al

le
ys

 

Wall roughness Further Study Required ◐ ◐ 

B
ot

h Area fraction ratio 
From bearing area curve 

(Further Study Required) 
● ● 
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6.8.2 Derivation of the Method 

 

A method has been sought to separate the data on the 2B surface into the plateau and valley 

regions. The bearing area curve has been used in the past to visualise the different functional 

parts of a surface, see figure 6.9. The data regions can be easily approximated visually, but a 

routine for calculating the point of transition from plateaus to valleys is needed to ensure 

uniformity. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9: Bearing Area curve of 2B surface showing main data regions 

 

The seperation of data for stratified surfaces into functionally relevant sections has been carried 

out (for profiles) in the GPS standard, EN ISO 13565-3:2000 [78]. This standard gives the 

method for identifying and calculating the percentages of the 5 main regions on stratified 

surfaces, plateaus, valleys, outlying peaks and valleys and the region at the transition between 

plateaus and valleys, see figure 6.10. 

This standardised method for calculating the transition point between plateaus and valleys on 

stratified surfaces has been modified to be used with the 3D data sets of the 2B finish. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10: Material Probability curve showing 5 main regions (taken from [78]) 
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6.8.3 Basic Method in Matlab™  

 

1) Plot the bearing area (Abbott-Firestone) curve, of % probability against height of data and 

find the nearest fit polynomial curve to this data. 

2) Express the % probability axis in standard deviations, giving the material probability curve 

(as seen in EN ISO 13565-3:2000 [78]). 

3) Fit a conic section to this curve and rotate and translate to give a centre of zero and find the 

asymptotes of the conic section. 

4) When re-rotated and translated to the original orientation, the transition point is given at the 

intersection of the asymptotes of the conic section, see figure 6.11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11: Transition point on Material Probability curve 

 

All these calculations are carried out in MatLab™ code, and the graphs viewed on the graphical 

user interface (GUI), see figure 6.12. Based on this transition point the surface is sectioned at 

the transition point giving a non subjective methodology of establishing the section height. 
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Figure 6.12: MatLab™ GUI 

 

Further processing is carried out in the SurfStand software (used to calculate the 3D parameters 

previously). The y-axis transition, in micrometers is given as the separation height, and the two 

data sets are treated separately to recalculate ‘plateau’ and ‘valley’ parameters, see figure 6.13. 

Some of these parameters are expected to have a better correlation with the appearance data 

due to increased functional relevance. 
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Figure 6.13: 2B data separated into 1) plateaus and 2) valleys in SurfStand software 
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6.9. Parameter Assessment 

 

6.9.1 Results 

 

The following results show the correlation of the appearance parameters to the 3D surface 

parameters of the separated plateau and valleys features of the 2B finish. 

Sampling for all finishes was carried out in accordance with the test protocol (Chapter 4). Error 

bars are ½ standard deviation of set. Trend lines are of exponential form. It was decided that 

this investigation would use only the results for the 60° glossmeter measurements since it is 

accepted as the universal standard for measuring gloss, since 20° is normally only used for 

surfaces with high gloss values, above about 60 (2B is around 0 to 20). 

Stemming from an investigation into the differences between the 2B and 2D processing 

methods, it was expected that the Root Mean Square Deviation of the surface (Sq) and other 

general roughness parameters (which are not extreme data dependant) like Sa, Sp and S5z (to 

some extent) would also have a high correlation to gloss, specular reflectance and distinctness 

of image. Previously, when the whole of the data was analysed, these simple relationships were 

not found. However, when the average roughness of the plateau data (Sq plateaus) alone was 

used, there was a good correlation to specular reflectance, figure 6.14. Additionally, a 

relationship was found between the Sa of the plateaus and specular reflectance, figure 6.15. 
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Figure 6.14: Graph of Sq (Root Mean Square Deviation) of plateau data against Specular 

Reflectance (Rs) 
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Figure 6.15: Graph of Sa (Arithmetic Average Roughness) of plateau data against Specular 

Reflectance (Rs) 

 

A relationship was found previously (figure 6.6 and 6.7) between Ssc and Gls and Rs, similar 

relationships were found for these parameters of the separated plateau data figures 6.16 and 

6.17. 
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Figure 6.16: Graph of Ssc (Arithmetic Mean Peak Curvature) of plateau data against Gloss (Gls) 
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Figure 6.17: Graph of Ssc (Arithmetic Mean Peak Curvature) of plateau data against Specular 

Reflectance (Rs) 

 

It was also expected that S∆q (Root Mean Square Slope of the surface) would give strong 

correlations to Gls, Rs and DOI, as found by Cao et al [79], since smaller slopes indicate 

smoother surfaces, but this result was not found when all of the surface topography data was 

analysed. When the data was separated, the S∆q value of the plateau data did have a strong 

relationship with the Gls and Rs values, see figures 6.18 and 6.19. 
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Figure 6.18: Graph of S∆q (Root Mean Square Slope of the surface) of plateau data against 

Gloss (Gls) 
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Figure 6.19: Graph of S∆q (Root Mean Square Slope of the surface) of plateau data against 

Specular Reflectance (Rs) 

 

Parameters in the spatial family set are only likely to have a correlation to appearance 

information for surfaces with a well defined direction or lay, although a high density of summits 

on the surface (Sds), if the summits were sizable, would be expected to have an effect on Rs, Hz 

and DOI. No correlation has been found relating any of these appearance parameters to Sds of 

the plateau data; although figure 6.20 shows that there is a relationship between Rs and Sds of 

the valleys. 

Additionally, a correlation between the Sa (Average Roughness) of only the valley data was 

found, figure 6.21.   
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Figure 6.20: Graph of Sds (Density of Summits) of the valleys against Specular Reflectance (Rs) 
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Figure 6.21: Graph of Sa (Arithmetic Average Roughness) of the valleys against Specular 

Reflectance (Rs) 
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6.10. Discussion 

 

The initial trials were used to confirm the instruments suitability for measuring the 2B finish. 

These compared four of the main production finishes leading to the conclusion that the 

Panaspect glossmeter was capable of measuring the relatively low optical properties of the 2B 

surface. Further to this study a wide range of 2B finish samples were measured in an attempt to 

correlate the optical properties with the 3D topography parameters. Correlations were only 

found between the Arithmetic Mean Peak Curvature, Ssc (to gloss and specular reflectance) and 

the Developed Interfacial Area Ratio, Sdr (to specular reflectance only). It was then 

hypothesised that better correlations would be found if the data was separated into the two 

functional areas of plateaus and valleys. 

It was expected that the Sq (Root Mean Square Deviation) of the whole surface topography 

would correlate to Gls and Rs, since it has long been believed that rougher surfaces have lower 

values of these optical properties. This relationship was not found until the data was separated, 

then the Sq of the plateau data correlated to specular reflectance. This indicates that the Sq of 

the whole surface is heavily influenced by the valleys on the surface and the specular 

reflectance is influenced mostly by the microroughness of the plateaus. This may be due to light 

entering the valleys not returning to the detectors and therefore no correlation is evident. 

The same reasoning can be applied to the finding of a relationship between the Sa (Average 

Roughness) of the plateaus to specular reflectance, although in this case, the Sa of the valleys 

was also found to correlate. Since Sa is an amplitude based parameter, this implies that as the 

valley depth increases, the specular reflectance decreases. It is theorised that deeper valleys 

will “absorb” light rather than reflect it back to the detector. 

In general the results agree with the perception, as the average roughness of the surface is 

increased so the specular reflectance decreases. This is not found in relation to gloss. This may 

be due to the relatively low gloss of all the surfaces measured. It may have been evident if a 

higher measurement angle was used in the glossmeter (85° is suggested for low gloss 

surfaces). 

Ssc (Arithmetic Mean Peak Curvature) is related to the radius of curvature, whereby a large 

radius of curvature implies lower peaks which results in smaller Ssc values. More lower peaks 

are found on smother surfaces and hence the Ssc of the plateaus areas relate more closely to 

the gloss and specular reflectance, where as the Ssc increases, the Gls and Rs decrease. This 

is in general agreement with the theory, where the light is being scattered more by a surface 

with high Ssc. 

As S∆q (Root Mean Square Slope of the surface) of the plateaus increased the gloss and 

specular reflectance decreased as expected, since smaller slopes are found on smoother 

surfaces or as the slope of the surface is increased, more light is diffusely scattered meaning 

less light is returned to the detector along the specular angle.  

Parameters in the spatial family set are only likely to have a correlation to appearance 

information for surfaces with a well defined direction or lay, although a high density of summits 

on the surface, if the summits were sizable, would be expected to have an effect on Rs, Hz and 
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DOI. No correlation has been found relating any of these appearance parameters to Sds 

(Density of Summits) of the plateau data, although there is a relationship between Rs and Sds of 

the valleys, as the density of summits in the valleys increases, the specular reflectance 

decreases. This is a complex relationship, since summits in the valleys are found where the 

etching of the grain boundaries has left peaks within the valleys, see figure 6.22. It may indicate 

that these summits have an influence of whether the light is reflected back to the detector, i.e. if 

the topography of the valley bottoms is unaffected by summits (smoother) then it is more likely 

that the light will be reflected back at the specular angle and not diffused by summits. 
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6.11. Conclusions 

 

� The direction of the measurement does not have a significant effect on the optical 

parameters. 

� The angle of measurement does have a significant effect on the optical parmeters, a 60° 

orientation is suggested for the 2B finish. 

� The glossmeter is a suitable instrument to measure two of the optical parameters of the 2B 

finish, gloss and specular reflectance. The haze and DOI cannot be accurately determined 

using this arrangement. 

� The results are in general agreement with past research which established that smoother 

surfaces have higher gloss and specular reflectance. 

� The gloss of the 2B surface can be related to its curvature and slope, whereby an increase in 

either gives a decrease in the gloss. 

� The specular reflectance of the 2B surface is influenced by both the plateau and valley data 

regions. 

� The specular reflectance of the 2B surface can be related to the average roughness, 

curvature and slope of the platau data. 

� The specular reflectance of the 2B surface can be related to the average roughness and 

density of summits within the valley areas.  

 

Table 6.2: Suggested parameter set for optical specification 

 

 Surface Parameter 

Optical 

Parameter 
Plateaus Valleys 

Ssc  
Gloss 

S∆q  

Sq Sds 

Sa Sa 

Ssc  

Specular 

reflectance 

S∆q  
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Chapter 7 Lubricant Retention 

 

 

7.1. Summary of the chapter 

 

A simplified method (based on drip tests) to assess the lubricant retention properties of 

topography is presented. The development of the technique includes proof of the equipment 

resolution and approach suitability for testing the 2B finish. Results show the relationship of 3D 

topography parameters to the ability of a surface to retain oil. 

 

7.2. Introduction 

 

For tribological concerns such as how much lubricant the surface can retain or the extent of tool 

friction in forming operations surface features are critical. In some instances, for example on 

plateau-honed surfaces for cylinder bores, it is important that the surface valleys possess a 

certain amount of interconnectability (so that oil can be distributed around the whole of the 

surface area) and have a specific lubricant reservoir volume [6, 7]. The size, density and slopes 

of asperities on the surface can also affect tool friction and galling behaviour and the volume of 

closed pockets has been cited as a critical factor in calculating work piece friction in drawing 

[80]. 

As discussed in chapter 2, section 2.4.4.2, there are two common testing methods of forming 

behaviour, a Draw Bead Simulation or ‘DBS’ tests [22] and the Bending Under Tension or ‘BUT’ 

test [23]. These can be used to analyse either the tool surface or the formed products’ surface, 

both before and after testing and thus analyse the galling behaviour. A static oil retention test 

was developed by OCAS to study the effects during coiling or blanking [10]. A drip test can be 

used to study lubricant retention, although it has been found that for low quantities of oil this 

type of test may not be suitable. In the present work the effects of sheet topography on the 

lubricant retention properties has been studied, for a number of different finishes and variations 

of the 2B finish, using a modified drip test. 
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7.3. Drip Tests 

 

To test the lubricant retention properties of a surface a known amount of oil is initially applied 

and then the drips are weighed with respect to time giving an indication of the surfaces ability to 

retain lubricant. 

A simplified drip tests method has been devised in the present study, based on the available 

equipment [10]. The methodology involved dripping a given amount of oil on to the drip test 

sheets (figure 7.1) over a set time period (2 minutes). The sheet was then suspended from a 

balance and the mass change of the sheet plus the remaining oil was recorded as a function of 

time. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1: Shape of the sample for drip testing 

 

The balances are standard enclosed flat pan chemical balances, with a mass capacity of 125g. 

The first few tests were carried out by lying the sample plus oil on the pan and weighing, then 

tilting the drip sheet (outside the balance enclosure) at approximately 90° allowing the tip of the 

sheet to touch absorbent paper. After the set time (every 10s for first 2 mins) the sheet is laid 

horizontally on the pan again and weighed. 

There were several problems with this method. Including many variables the major problem 

arose when heavier sheets were tested. A 0.75mm gauge sheet weighed about 80 to 90g with 

oil added. The next thickest sheet (2mm) is more than twice this weight, therefore exceeding the 

mass capacity of the balance. A new method with fewer variables was devised, using a rig to 

hang the sheets above the flat pan balance, see figure 7.2. The weight of oil that has dripped off 

the sheet is recorded with respect to time, with no need for absorbent paper to be used. 

In the modified methodology, a known mass of oil is added (dripped from a burette). This is 

done over a period of around 2 minutes, as before and the sheet is kept as horizontal as 

possible throughout. The sheet is then hooked on to the rig, still horizontal and turned to the 

vertical position as a clock records the elapsed time. This final movement was carried out 

quickly and must ensure that any swinging of the sheet is eliminated. 

The recorded results are the mass of the initial oil added and the mass of oil that has dripped off 

at time intervals of 10s. 

Samples are etched to aid 
positioning of oil drops 
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Figure 7.2: New Rig set-up for drip testing 

 

A percentage of oil retained (compared to the mass of oil originally applied) is calculated using 

equation 7.1. 

 

Where moil = mass of oil that has dripped off at time x (g) 

 mi = Initial mass of oil (g) 
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7.4. Initial Trials 

 

The initial results are presented below in the form of graphs (all trend lines are based on power 

series). 

To decide on the initial amount of oil to use, an optimisation study was carried out, this also 

gave the % error in repeatability of the method. The sensitivity of the method was then checked 

by comparing two different finishes. 

 

7.4.1 Results 

 

7.4.1.1 Optimisation of Method 

 

The optimisation study was carried out using a sample of 0.75mm gauge 2B 316 stainless steel. 

The initial amount of oil applied was varied and the test was repeated 5 times. The average 

error in repeatability of the test was calculated and the best result, with 25 drops of oil (figure 

7.3) chosen. The ±4.8% error was used as the standard error of the percentage of oil retained in 

further studies. 
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Figure 7.3: Graph showing repeatability of test with 25 drops of oil applied 
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7.4.1.2 Sensitivity of Method 

 

Figure 7.4 shows the initial results from tests to check the sensitivity of the measurements. 

Sheets of 2B finish and BA finish both of 0.75mm gauge, were tested five times. The 

repeatability error of ±4.8% (taken from the optimisation study) is represented on the graph by 

error bars. None of these error bars cross, suggesting that we can be confident that the series 

are distinct data sets, outside the degree of repeatability error. 
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Figure 7.4: Graph showing the sensitivity of the test using the 2B and BA finishes 

 

7.4.1.3 Initial Conclusions Concerning the Methodol ogy 

 

The conclusion of the optimisation was that more oil gave better repeatability of results but that 

30 drops of oil (approximately 0.7g) was too much for the size of the sample area, causing run-

off at the edges whilst still being applied. Therefore all subsequent tests were carried out with 25 

drops of oil applied. 

The conclusion from the comparison of 2B and BA samples is that the test is sensitive enough 

to detect differences in the topographies of the samples. Also, as expected, the bright annealed 

surface has a faster run-off of oil than the 2B surface. 

 

 

 

 

Faster 

Slower 
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7.5. 2B Trials 

 

7.5.1 Study of Methodology 

 

Figure 7.5 shows the variation of four different gauges of a 2B finish. In general this indicates 

that the thinner gauge samples have a faster run off than the thicker gauges. Below around 80 

seconds the error bars on the graph interfere, meaning this data is not as clear. This may be 

because in the initial stages, the amount of oil dripped off is very rapid – it is simply surface 

runoff of excess oil and does not closely relate to the differences in the samples. 
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Figure 7.5: Graph showing variation of retained oil across four samples 

 

Figure 7.6 shows the variation of the rolling direction on the material to the drip test direction 

(i.e. the drips run either with or against the rolling direction). 

The lines are separate, indicating that this method is sensitive enough to determine whether the 

direction of rolling has an effect on the lubricant retention for the 2B finish and that retention is 

lower in the direction of rolling. Again the error bars interfere below around 80 seconds. 

 

Note: the variation due to source of the sample is not studied due to a lack of sample 

availability. 
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With and Against Rolling Direction
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Figure 7.6: Graph showing variation of retained oil in relation to direction 

 

7.5.2 Relationship of Lubricant Retention to 3D Top ography Parameters 

 

7.5.2.1 Results and Discussion 

 

The following results show the correlation of the percentage lubricant retention to the 3D surface 

topography parameters of the features of the 2B finish. In order to assess the data, four time 

increments were chosen (60, 120, 240 and 480 seconds) and the percentage lubrication 

retention at these times was plotted against the topography parameters for the 4 samples 

shown in figure 7.5. Topography parameters were calculated using the whole of the data and 

also the separated plateau and valley data. 

Sampling for all finishes was carried out in accordance with the test protocol (chapter 4). Y-error 

bars are ½ standard deviation of the 15 measurements made and X-error bars are ±4.8% (see 

section 7.4.1.1). 

High R2 values of correlation were found with many of the parameters (figure 7.8); although in 

some cases this is simply due to minimal variation in the parameter value. Additionally, many of 

the error bars on these graphs interfere, rendering the information generated ambiguous. Only a 

selection of the most interesting findings are presented graphically. 
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7.5.2.2 Amplitude Parameters 

 

Good correlations were found between many of the amplitude related parameters and lubricant 

retention. Figure 7.7 shows the graphs of Sq (Root Mean Square Deviation) calculated for a) all 

the data and b) the separated valley data. The implication from these graphs is that as the 

roughness increases, the surface will retain a larger percentage of oil. The exception is for the 

time of 60 seconds, where it is thought that the excess oil is rapidly running off the surface and 

therefore is not affected by the roughness. 

Similar results were found for the other amplitude parameters that are based on extreme data: 

Sv (Maximum Valley Height), Sz (Maximum Height of Texture surface), S5z (Ten Point Height of 

surface) and also for Sa (Average Roughness). 
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Figure 7.7: Graph of Sq (Root Mean Square Deviation) for a) all the data and b) the separated 

valley data against % of oil retained 
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Figure 7.8 shows the graph of Sp (Maximum Peak Height). This parameter only had a good 

correlation with the separated valley data, which is unexpected since it is peak related. The 

maximum peak height of the valley data gives an indication of the height of the transition plane 

(where the data is separated from the plateaus) above the mean plane of the surface. As this 

height increases, the percentage oil retained increases (or the flow of oil from the surface is 

slower for higher transition planes). Again, the data at 60 seconds has little meaning due to the 

interference of its error bars. 
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Figure 7.8: Graph of Sp (Maximum Peak Height) for the separated valley data against % of oil 

retained 

 

7.5.2.3 Spacing Parameters 

 

The only spatial parameter to be related to the lubricant retention was the Sds (Density of 

Summits) for the separated data, although the error bars on the valley data sets interfere to an 

extent which renders the result ineffectual. Figure 7.9 shows the Sds of the plateau data, with 

clear distinctions between the points. This graph implies that surfaces with higher summit 

densities (in the plateau micro-roughness regions) have lower oil retention. It follows that the 

runoff is faster for surfaces with more summits, which may indicate that the summits are 

affecting the surface tension properties of the oil (the cohesion of the droplet is lost due to 

summits). The data for 60 seconds is clearer with this parameter, implying that the rapid runoff 

at the beginning of the test is also affected by summit density. 

 

Error bars 
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Figure 7.9: Graph of Sds (Density of Summits) for the separated plateau data against % of oil 

retained 

 

7.5.2.4 Hybrid Parameters 

 

No correlation of hybrid surface topography parameters to lubricant retention was found. This 

may be due to the nature of the testing method (being vertically hung) since it is plausible that 

surface slope and peak curvature affect runoff rates. 

 

7.5.2.5 Curve and Related Parameters 

 

It was expected that the volume family parameters would have a relationship to the lubricant 

retention. 

For the Vmp (Material Volume of the Texture surface) this was only true when it was calculated 

for the separated valley data, figure 7.10. This relates to the amount of material at the peak of 

the valley data, which links to the amount of plateau material. Alternatively, it could convey a 

characteristic of the shape of the valleys, since it is linked to a percentage height of the data 

(the top 10%). A larger Vmp could indicate a steeper valley wall or relatively thinner valleys. An 

increase in Vmp gave a larger retention (or slower runoff). 
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Figure 7.10: Graph of Vmp (Material Volume of the Texture surface) for the separated valley data 

against % of oil retained 
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The Vmc (Core Material Volume of the Texture surface) and Vvc (Core Void Volume of the 

Texture surface) related well to all the data sets, but better correlations were found in the two 

separated sets, since the data has a whole had much larger errors. As the core void volume of 

the data is increased the retention is increased, which would imply that the voids in the core trap 

the lubricant, figure 7.11. 
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Figure 7.11: Graph of Vmc (Core Material Volume of the Texture surface) for the separated 

valley data against % of oil retained 
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Finally, the relationship of lubricant retention to the void volume of the valleys (Vvv) for the valley 

data set is shown in figure 7.12. The trend is similar to that of Vvc, which is to be expected since 

the oil can be trapped through out the valley volume (it is not dependant on the size of 

particles). There is an indication on the graph that the Vvv affects the rapid runoff at the 

beginning of the test, since a relationship can be seen between three of the points, whereby a 

greater volume of valley voids slows down the excess runoff. 
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Figure 7.12: Graph of Vvv (Valley Void Volume of the Texture surface) for the separated valley 

data against % of oil retained 
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7.6. Conclusions 

 

� The conclusion of the optimisation was that more oil gave better repeatability of results up to 

an optimum amount of 25 drops (before edge runoff occurred). 

 

� The conclusion from the comparison of 2B and BA samples is that the test is sensitive 

enough to detect differences in the topographies of the samples. Also, as expected, the 

bright annealed surface has a faster run-off of oil than the 2B surface. 

 

� In general the thinner gauge samples have a faster run off than the thicker gauges (for times 

above 80 seconds). 

 

� Below around 80 seconds the data is unclear. The amount of oil dripped off is very rapid – it 

is simply surface runoff of excess oil and does not closely relate to the differences in the 

samples. 

 

� This method is sensitive enough to determine that the direction of rolling has an effect on the 

lubricant retention for the 2B finish and that retention is lower in the direction of rolling. 

 

� As the roughness increases, the surface retains a larger percentage of oil. The exception is 

for the time of 60 seconds, where the excess oil is rapidly running off the surface and 

therefore is not affected by the roughness. 

 

� Surfaces with higher summit densities (in the plateau micro-roughness regions) have lower 

oil retention. The rapid runoff at the beginning of the test is also affected by summit density. 

 

� An increase in the material volume of the texture surface (Vmp) gave a larger percentage 

retention (or slower runoff). 

 

� As the core void volume (Vvc) of the data is increased the retention is increased, implying 

that the voids in the core trap the lubricant. 

 

� The relationship of lubricant retention to the void volume of the valleys (Vvv) for the valley 

data set has a similar trend to that of Vvc, which is to be expected since the oil can be 

trapped through out the valley volume (it is not dependant on the size of particles). 

 

� The Vvv affects the rapid runoff at the beginning of the test, whereby a greater volume of 

valley voids slows down the excess runoff. 
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Table 7.1: Suggested parameter set for lubricant retention 

 

 Surface Parameter 

Parameter 

family 

Whole of 

data 
Plateaus Valleys 

Amplitude Sq Sq Sq 

Spatial  Sds  

  Vmp 

  Vvc Volume 

  Vvv 
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Chapter 8 Corrosion 

 

 

8.1. Summary of the Chapter 

 

In collaboration with Birmingham University unidirectional finishes and brushed production 

finishes were assessed and rated on their corrosion resistance. New testing methods, 

developed at Birmingham University, are presented. Surface measurements were made in an 

effort to find the connection between certain surface characteristics and the susceptibility of a 

surface to pitting corrosion. 

 

8.2. Introduction 

 

Pitting proceeds by an autocatalytic process in which there is a local increase in chloride and 

acid concentrations due to corrosion product hydrolysis in cavities [26]. Areas on the surface 

which are depleted of chromium (such as the grain boundary valleys in the 2B finish) become 

anodes in the cell and the oxide film on the remaining surface forms the cathode. 

 

8.3. Collaborative Research 

 

In collaboration with Birmingham University several hand-polished unidirectional finishes and 

brushed production finishes were assessed and rated on their corrosion resistance. A new 

method was developed at Birmingham University, allowing faster evaluation than existing 

standard salt spray tests normally used by Outukumpu. Surface measurements were made in 

an effort to find the potential connection between certain surface characteristics and the 

susceptibility of a surface to pitting corrosion. 

The initial objective of the work at Birmingham was to develop an appropriate technique to study 

the effect of surface roughness on pitting corrosion in order to provide an effective way of 

assessing and ranking pitting susceptibility of commercial surface finishes. Currently, a number 

of tests are used for ranking pit susceptibility for different surface finishes, for example salt 

spray testing [27] and critical pitting temperature measurements [28]. However, these can be 

quite slow. The work aimed to investigate electrochemical methods for assessing the pitting 

susceptibility of stainless steel with different surface finishes. 
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8.4. Developed Methods of Assessing Corrosion Susce ptibility 

 

Initially, four different electrochemical methods (Zero Resistance Ammeter (ZRA), 

Potentiostatic, Potentiodynamic and Galvanostatic) to measure forced corrosion were compared 

for hand-prepared samples (using 240, 400, 800, 1200 grit silicon carbide paper). Metastable pit 

current transients were found in both ZRA and potentiostatic measurements. 

(Method descriptions in sections 8.4.1 and 8.4.2 are taken from [80]). 

 

8.4.1 The ZRA Method 

 

The ZRA method permits measurement of metastable pitting corrosion events in terms of 

current and voltage transients under realistic open circuit conditions. The theory is shown in 

figure 8.1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.1: Theory of ZRA method 

 

It is a relatively simple electrochemical technique, requiring two nominally identical working 

electrodes (steel samples) and a standard reference electrode, figure 8.2. Recording both 

current and voltage transients permits verification that current events are due to actual 

corrosion, and not to electrical noise. The magnitudes of these transients range from nanoamps 

to milliamps, and from microvolts to millivolts respectively. Measurements can detect metastable 

pits of less than 1 µm diameter, equivalent to the order of 5 x 10-14 grams of metal being 

released.  
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Figure 8.2: ZRA cell setup 

 

Current peaks from metastable pitting events are recorded against time, figure 8.3. Integration 

of these gives the charge passed, which can then be converted into amount of metal loss using 

Faraday’s Law, equation 8.1. 

          Equation 8.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.3: Recording of current peaks from metastable pitting 

 

The ZRA measurements were carried out in 0.01M FeCl3 and 0.03M NaCl at ambient 

temperature, exposed to lab air. Figure 8.4 shows current transient measured with ZRA for 

samples with different grit surface finishes. The number of metastable pit events in FeCl3 is 

much higher than in NaCl due to the higher oxidizing power of FeCl3. The number of pits also 

decreases in both solutions with increasing grit number (smoother surface) as show in Figure 

8.5. 

 

ZRA V 

Working 
Electrode 1 

Working 
Electrode 2 

Reference 
Electrode 



149 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.4: ZRA measurement for 304 SS with different surface finish: 240, 400, 800, 1200 in 

(a) 0.03M NaCl and (b) 0.01M FeCl3 
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Figure 8.5: The relationship between number of pits on 304 SS in 0.03M NaCl and 0.01M FeCl3 

and grit number of surface finish 

 

8.4.2 The Potentiostatic Method 

 

The potentiostatic method has been used to measure the passive current density (due to 

passive film growth), and also show metastable pitting events. It has the benefit of having a 

smoother background than ZRA data because a constant potential is applied to the sample, 

figure 8.6. This permits easier data analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.6: Potentiostatic method setup 
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Potentiostatic measurements were carried out in 0.03M NaCl at ambient temperature with 

constant potentials of –200, -100, 0, 100, 200 mV (SCE). Figure 8.7 shows an example of 

curves from a potentiostatic measurement at an applied potential of 100 mV/SCE with different 

surface finishes. The number of pits decreases for surfaces with higher grit numbers and also 

increases with applied potential as shown in figure 8.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.7: Examples of potentiostatic measurements showing metastable pits with an applied 

potential of 100 mV/SCE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.8: The relationship between the average number of pitting events for 304 SS in 0.03M 

NaCl solutions and applied potential 
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8.4.3 Discussion and Conclusions of Method Developm ent 

 

The initial work to investigate a suitable method for measuring metastable pitting activity using 

hand-produced finishes concluded that: 

� ZRA and potentiostatic measurements are effective ways of monitoring metastable pitting 

activity on different surface roughnesses. 

� The surface roughness, solution and potential affect the number of pitting events, which can 

be used to indicate pitting susceptibility. 
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8.5. Results 

 

Further to the initial studies, tests were conducted on several commercially produced 

unidirectional finishes. The surface topography of these samples was measured following the 

relevant measurement protocol devised in Chapter 4. The following results show the corrosion 

ranking (given from the research carried out at Birmingham) against various 3D topography 

parameters for 6 samples, table 8.1. The error bars on the graphs are ±½ standard deviation of 

the 15 measurements taken.  

 

Table 8.1: Unidirectional samples 

Sample 

Name 

Finish 

Reference 

Ranking 

1 = best corrosion 

resistance 

6 = worst corrosion 

resistance 

A DPB 3 

B DP1 4 

C DPS 6 

D FP1 2 

E SP1 5 

F SB1 1 

 

Figure 8.9 shows a graph of Sq (Root Mean Square Deviation) in relation to the corrosion 

susceptibility ranking (given by Birmingham University – note it is not a numerical result). The 

trend shows good linear correlation and as expected implies that smoother finishes are less 

susceptible to pitting corrosion. 

Sz (Maximum Height of Texture surface) follows a similar trend to Sq, figure 8.10. 



154 

 

R2 = 0.7622

0.0

0.2

0.4

0.6

0.8

1.0

1.2

F D A B E C

Sample name in order of ranking of corrosion suscep tibility

S
q(

µµ µµm
)

 

Figure 8.9: Graph of Sq (Root Mean Square Deviation) against corrosion susceptibility 
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Figure 8.10: Graph of Sz (Maximum Height of Texture surface) against corrosion susceptibility 

 

It was expected that a clear relationship between corrosion and the topographical properties of 

the valleys on the surface would be found. When studying the volume parameters, only Vvc 

(Core Void Volume of the Texture surface) showed good correlation, figure 8.11. 
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Figure 8.11: Graph of Vvc (Core Void Volume of the Texture surface) against corrosion 

susceptibility 
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8.6. Discussion 

 

Due to the qualitative nature of the corrosion susceptibility ranking it is difficult to draw a 

quantitative assessment of the effects that surface topography have on these results. Figures 

8.9 and 8.10 are related to the amplitude properties of the surface topography, Sq (Root Mean 

Square Deviation) and Sz (Maximum Height of Texture surface). The general trend implies that 

an increase in roughness causes an increase in the corrosion susceptibility. However, since 

some of the samples have very similar roughness this is only a tentative result. 

Figure 8.11 implies that as the void volume in the core of the surface increases corrosion 

susceptibility also increase. This may be because an increase in core volume is due to more 

chromium depleted grain boundary valleys, which are the most likely sites for the initiation of 

pitting corrosion. 

Further analysis of the results was carried out by researchers at Birmingham University to 

explain the differences between the preparations of the samples, table 8.2. 

 

Table 8.2: Differences between sample preparation methods related to 3D surface topography 

parameters 

 

Samples Differences Parameters used 

B & D 

Polishing media 

B = Aluminium Carbide 

D = Silicon Carbide 

Ssk 

Sku 

Sds 

Vmp 

B & E 

Polishing Grit 

B = 240 

E = 280 

Amplitude 

Spatial 

Vvv 

A & C 

Brushing 

A = 180 grit silicon carbide followed by nylon brush polishing 

C = 180 grit silicon carbide 

Ssk 

Sku 

Sds 

Vmp 

Vvc 

Vvv 

 

Main findings from corrosion work done at Birmingham University (written by Chanada 

Watanatham, Outukumpu UK Foundation for Research and Development student): 

 

Polishing Media  

� Ssk of surface D was a positive value (+) while Ssk of surface B was a negative value (-). This 

indicated that both surfaces had an asymmetric height distribution and the surface D 

probably had more peaks than valleys, while surface B probably had more valleys than 

peaks. 
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� The Sku value for surface D was larger than three while the Sku value for surface B was 

smaller than 3. This indicated that surface D had a centrally distributed surface and surface 

B had a well spread distributed surfaces. This implied that surface D had many high peaks 

and surface B had few high peaks.  

� The Sds values of surface B and D were similar value. This indicated that both surfaces had a 

similar the number of summits on the surface. This was in agreement with SEM images.   

� The Vmp value of surface B was higher than the Vmp value of surface D. This indicated that 

surface B had a plateau surface. 

� The plateau surface shows a characteristically good the retention of solution in the valley 

zone. It was possible that the solutions therefore remained longer on the surface, which 

could be a cause of increased corrosion susceptibility. 

 

Polishing Grit  

� The amplitude and spatial parameters of surface E were similar value with surface B. Then, 

surface E had an asymmetric height distribution and a well distributed surface. This implied 

that surface E had more valleys than peaks overall but the surface still had many high peaks. 

� The Vvv values of surface E were higher than the Vvv values of surface B. This indicated that 

the void volume of surface E was higher than surface that of B. The solution was therefore 

better maintained in the valley zone of the surface E than on surface B. This was possibly 

the reason why the surface E showed a higher corrosion susceptible.         

 

Brushing  

� Ssk and Sku were used to characterise the amplitude characteristics of the surfaces. The Ssk 

values of surface A and C were negative. These showed that both of surfaces had 

asymmetric height distributions. They showed more valleys than peaks. The Sku values of 

surface A and C were larger than three. This indicates that both surfaces had either a 

centrally distributed surface or many high peaks. 

� The Sds values of both surfaces were similar.  

� The Vmp value of surface C was higher than the Vmp values of surface A. This was showed 

that surface C had more of a plateau morphology than surface A. The solution is better 

maintained with a plateau surface morphology than on a spiky surface. 

� The Vvc value of surface C was higher than that of surface A. This indicated that on surface 

C the solution was better maintained in the core than on surface A. 

� Inversely, the Vvv value for surface A was higher than the Vvv value for surface C. It was 

probable that the solution in the valley zone on the surface A was maintained better than on 

surface C. However, surface A had spiky surface morphology, so the solution was not 

maintained in the valley zone. This was possibly the reason why result surface A showed 

less corrosion susceptibility than surface C.     
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8.7. Conclusions 

 

� ZRA and potentiostatic measurements are effective ways of monitoring metastable pitting 

activity on different surface roughnesses. 

� The surface roughness, solution and potential affect the number of pitting events, which can 

be used to indicate pitting susceptibility. 

� An increase in roughness causes an increase in the corrosion susceptibility. 

� As the void volume in the core of the surface texture increases corrosion susceptibility also 

increases. 
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Chapter 9 Summary of Discussions 

 

 

The overall aim of this research project was to characterise quantitatively the developed surface 

topography of some widely used finishes on stainless steel sheet using three-dimensional 

surface analysis techniques. Based on this surface characterisation an attempt has been made 

to identify 3D parameters for quantitative description of stainless steel sheet with respect to 

some aspects of their functional performance. 

 

To effectively measure the topography it is important to first understand what the important 

features of the surface are. This is carried out in chapter 3 where initially, the functional 

topographical features of four finishes are determined and the predicted relevant parameters 

identified, giving respect to the process/es by which they were made. A model of ’normal’ 

features is derived to aid in the development of the measurement strategy. For the 2B finish, 

which is linked to the functions of optical appearance and lubricant retention in chapters 6 and 7 

respectively, the plateau regions with microroughness give the finish its distinctive reflectance 

and the interconnecting valleys can aid the spread and retention of lubricant. For a 

unidirectional finish, which is linked to the function of corrosion susceptibility in chapter 8, the 

model is mainly troughs and ridges with remnant 2B features. 

A generalised measurement strategy is detailed in chapter 4, aiding the selection of 

measurement and instrument selection for any surface topography. The approach described 

could be used as a general guide for surface metrology of different surfaces. The strategy and 

its protocol have been demonstrated using three of the modelled surface finishes, produced by 

the sponsoring company. Once established this protocol is followed during further studies and 

additionally offers the potential to systematically approach the selection of variables for the 

measurement of other surface topographies. A flow chart of the generalised protocol is 

presented in figure 4.16 to aid in the visualisation of the steps involved for the sponsoring 

company (toward objective (iv)).  

 

It is known by the sponsoring company that there is inherent variability in the surface 

topography produced due to differing process stages and grades of material. These variations 

are investigated using 3D topography parameters and a general relationship between surface 

roughness and gauge is expanded into an in-depth examination of what is happening to the 

features of the surface during cold rolling and how differences in the grade and process can 

affect the development of surface features. This initial study, chapter 5, showed that the 

characterisation using 3D surface topography parameters is viable and that variables in 

production can be explained in relation to them. 

 

The sponsoring company is working towards a more quantitative assessment of the appearance 

of the main production finish, 2B. The ability to link the surface topography features to numerical 

optical property characteristics yields not only a better understanding of the effects of 
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topography on appearance but also enable manufacturers to quantify their pass/fail criteria and 

remove the subjectivity of human perception, eventually increasing consumer confidence. 

In chapter 6, initial trials were used to confirm the available instruments suitability for measuring 

the optical properties of the 2B finish. Further to this a wide range of 2B finish samples were 

measured in an attempt to correlate the optical properties with the 3D topography parameters. A 

new method of analysing the data enabling separation of the important features of the 

topography was developed. The effect of rolling direction to appearance measurement direction, 

angle of appearance measurement and sample grade variation was studied. The relationships 

of two of the four optical descriptors to 3D topography parameters were found. 

It has long been believed that rougher surfaces have lower values of these optical properties but 

this relationship was not clearly seen until the data was separated using the newly developed 

method. The results show that specular reflectance is influenced mostly by the microroughness 

of the plateaus and that light entering the valleys does not return to the detectors and therefore 

no correlation to valley data is evident. However, the same relationship is not found in relation to 

gloss, which may be due to the relatively low gloss of all the surfaces measured. The following 

results were also found: the light is scattered more by a surface with high arithmetic mean peak 

curvature; increases in the root-mean-square slope of the surface of the plateaus decreased the 

gloss and specular reflectance due to diffuse scattering; as the density of summits in the valleys 

increases, the specular reflectance decreases indicating that these summits have an influence 

of whether the light is reflected back to the detector or diffused. 

 

In chapter 7, a simple drip test method is employed to assess the lubricant retention properties 

of topography. The development of the methodology included proof of the equipment 

repeatability and approach suitability for testing the 2B finish. Optimisation implied that more oil 

gave better repeatability of results up to an optimum amount of 25 drops (before edge runoff 

occurred).The average error in repeatability of the test was calculated as ±4.8% and used as 

the standard error of the percentage of oil retained in further studies.  

Good correlations were found between many of the amplitude and volume related parameters 

and lubricant retention. The implication is that as the roughness increases, the surface will 

retain a larger percentage of oil and that the voids in the core and valley areas trap the lubricant. 

The exception is for the time of 60 seconds, where it is thought that the excess oil is rapidly 

running off the surface and therefore is not affected by the roughness. 

It was found that surfaces with higher summit densities (in the plateau micro-roughness regions) 

have lower oil retention possibly due to surface tension effects. The rapid runoff at the beginning 

of the test is also affected by summit density and the valley void volume. 

In collaboration with Birmingham University several hand-polished unidirectional finishes and 

brushed production finishes were assessed and rated on their corrosion resistance. Two new 

methods (developed at Birmingham University) which allow faster evaluation than existing 

methods are used to find the connection between certain surface characteristics and the 

susceptibility of a surface to pitting. This connection was only briefly discussed due to the 

difficulty in comparing quantitative 3D topography data with a qualitative corrosion susceptibility 
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ranking. The two main (tentative) findings were in line with expected results: increases in the 

average roughness and the void volume in the core of the surface texture causes an increase in 

the corrosion susceptibility possibly due to an increase in pit initiation sites. 
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Chapter 10 Conclusion 

 

10.1. Conclusions 

 

The overall aim of this research project was to characterise quantitatively the developed surface 

topography of some widely used finishes on stainless steel sheet using three-dimensional 

surface analysis techniques. Then, based on this surface characterisation attempt to identify the 

3D parameters that give a quantitative description of common stainless steel sheet finishes with 

respect to some aspects of their production and functional performance. 

 

The major objectives were outlined as: 

 

� Using the 3D techniques available, define a measurement strategy and protocol to effectively 

measure stainless steel sheet topography. 

� Investigate the differences in topography across a range of grades and gauges of stainless 

steel using 3D topography parameters. 

� Investigate the ability of 3D topography parameters to correlate with functional requirements 

of optical appearance, lubricant retention and corrosion. 

� Develop a set of written procedures for industrial application to effectively characterise 

stainless steel sheet surface roughness. 

 

A number of studies were developed and completed in order to fulfil these aims and objectives. 

 

The main conclusions towards objective (i) are: 

 

� Using the correct measurement strategy is imperative to avoid misleading data. A 

generalised measurement strategy is detailed in chapter 4. A flow chart of the protocol is 

presented in figure 4.16 to aid in the visualisation of the steps involved for the sponsoring 

company (toward objective (iv)). 

� To effectively measure the topography it is important to first understand what the important 

features of the surface are. 

� For the 2B finish, which is linked to the functions of optical appearance and lubricant 

retention in chapters 6 and 7 respectively, the plateau regions with microroughness give the 

finish its distinctive reflectance and the interconnecting valleys can aid the spread and 

retention of lubricant. 

� For a unidirectional finish, which is linked to the function of corrosion susceptibility in chapter 

8, the model is mainly troughs and ridges with remnant 2B features. 
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The main conclusions towards objective (ii), for the 2B finish, are: 

 

� The thinner gauges have a smoother finish. 

� Although the scale of the topography is getting smaller, the shape of the features on the 

surface and their relationship to each other is unchanged. 

� There are very few peaks left on the surface and the valleys dominate the topography. 

� On average, 304 materials have slightly higher surface roughness than 316 materials of the 

same thickness. 

� The spread of the data for 316 grade materials is much greater than that of 304 grade 

materials. 

� The peaks on 304 grade materials are not necessarily higher but do take up more volume 

than those on 316 grade materials. 

� The skin pass method of final finishing (used on Source 1 samples) gives a smoother and 

more consolidated topography, having better defined edges than those that have undergone 

tension stretching (used on Source 2 samples). 

 

The main conclusions, correlating the functional requirements of optical appearance to 3D 

topography parameters of a 2B finish, towards objective (iii) are: 

 

� The glossmeter is a suitable instrument to measure two of the optical parameters of the 2B 

finish, gloss and specular reflectance. 

� The haze and DOI cannot be accurately determined using this arrangement. 

� The results are in general agreement with past research which established that smoother 

surfaces have higher gloss and specular reflectance. 

� The gloss can be related to the curvature and slope of the surface, where an increase in 

either gives a decrease in the gloss. 

� The specular reflectance is influenced by both the plateau and valley data regions and is 

closely related to the average roughness, curvature and slope of the plateau data and the 

average roughness and density of summits within the valley areas.  

 

The main conclusions, correlating the functional requirements of lubricant retention to 3D 

topography parameters of a 2B finish, towards objective (iii) are: 

 

� A drip test method can be used to assess the lubricant retention of a surface. 

� The repeatability of results is affected by the initial amount of oil applied. 

� The bright annealed surface has a faster run-off of oil than the 2B surface. 

� In general the thinner gauge samples have a faster run off than the thicker gauges (for times 

above 80 seconds). 

� Below around 80 seconds the data is unclear. The amount of oil dripped off is very rapid – it 

is simply surface runoff of excess oil and does not closely relate to the differences in the 

samples. 
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� This method is sensitive enough to determine that the direction of rolling has an effect on the 

lubricant retention for the 2B finish and that retention is lower in the direction of rolling. 

� As the roughness of the surface increases, it retains a larger percentage of oil. The 

exception is for before 60 seconds, where the excess oil is rapidly running off the surface 

and therefore is not affected by the roughness. 

� Surfaces with higher summit densities (in the plateau micro-roughness regions) have lower 

oil retention. The rapid runoff at the beginning of the test is also affected by summit density. 

� An increase in the material volume of the texture surface gave a larger percentage retention 

(or slower runoff). 

� As the core void volume of the data is increased the retention is increased, implying that the 

voids in the core trap the lubricant. 

� The relationship of lubricant retention to the void volume of the valleys for the valley data set 

has a similar trend to that of void volume of the core, which is to be expected since the oil 

can be trapped throughout the valley volume (it is not dependant on the size of particles). 

� The void volume of the valleys affects the rapid runoff at the beginning of the test, whereby a 

greater volume of valley voids slows down the excess runoff. 

 

The main conclusions, correlating the functional requirements of corrosion susceptibility to 3D 

topography parameters of a unidirectional finish, towards objective (iii) are: 

 

� ZRA and potentiostatic measurements are effective ways of monitoring metastable pitting 

activity on different surface roughnesses. 

� The surface roughness, solution and potential affect the number of pitting events, which can 

be used to indicate pitting susceptibility. 

� An increase in average roughness causes an increase in the corrosion susceptibility. 

� As the void volume in the core of the surface texture increases corrosion susceptibility also 

increases. 

 

The above conclusions lead to the suggested parameter set, table 10.1, for the characterisation 

of the 2B finish. 
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Table 10.1: Suggested parameter set 

 

Unidirectional

Parameter                                Symbol
Processing 
Variations

Appearance
Lubricant 
Retention

Corrosion General

Root mean square deviation Sq W P W & P W W & P
Maximum peak height Sp V
Maximum valley height Sv W
Maximum height of texture surface Sz W
Density of Summits Sds V P P & V
Root mean square slope of the surface Sdq P P
Arithmetic mean peak curvature Ssc P P
Material volume of the texture surface Vmp W V V
Core void volume of the texture surface Vvc W V W V
Valley void volume of the texture surface Vvv W V V
Ten point height of surface S5z W
Average Roughness Sa V

Finish
2B

 

W = Whole data 

P  = Plateau data 

V = Valley data 
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10.2. Contributions to Knowledge 

 

� The company had very limited knowledge of the effects of processing and process variations 

on the stainless steel topography. They now have an in depth understanding of these effects 

and maybe able to better control any detrimental outcomes in addition to being able to give 

their customers an expanded specification. 

� The protocol gives a uniform method to measure important surface features instilling 

confidence in the results. 

� The relatively new 3D surface topography parameters have proven useful in linking 

topography data to functional aspects and a novel data separation technique has been 

developed and proven to give enhanced analysis capabilities for the 2B finish on stainless 

steel sheet. 
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10.3. Suggestions for Further Work 

 

� Extension/confirmation of the protocol for new instruments, methods and different surface 

topographies. 

� Further work on different types of surfaces and materials in respect of functionality. 

� More comprehensive work on lubricant retention properties using improved equipment such 

as a bending under tension or draw bead simulation rig. 

� Development of a standard tool pack for surface measurement and analysis (industry 

specific). 

� Further investigation of enhanced data analysis (data separation) for characterisation of 

functional surfaces. 
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Quantitative Characterisation of Surface Finishes on Stainless 
Steel Sheet using 3D Surface Topography Analysis 
 
A. Waterworth *, L. Blunt, X. Jiang                         
 
Centre for Precision Technologies, University of Huddersfield, UK 
 
 
Abstract 
 
Since the growth and improvement of digital computers there have been significant changes 
in the way that surfaces can be measured and viewed. The ‘parameter rash’ that occurred in 
two-dimensional measurements [1] is being avoided by standardising 3 dimensional 
parameters before the techniques have wide spread use. Huddersfield University is heading 
much of this standardisation work, with the support of the Commission of the European 
Communities [2]. 

As the usage of stainless steel increases quantitative surface characterisation of the 
products assumes greater importance. There is a demand for an expanded range of surface 
finishes for aesthetic reasons and also for a deeper understanding of tribological factors in 
sheet metal forming and processing. To enhance further the degree of control over end 
product performance which can be exerted during strip processing, it would be advantageous 
to have a means of specifying and checking the surface properties by selecting parameters that 
are relevant to the end functions. 

When the surface characteristics are determined, by means of parametric descriptors, the 
functional performance of the surface should be related to them. A measurement strategy for 
the correct acquisition of data and an optimised sampling methodology is presented. Then the 
use of the primary three dimensional parameter set [2] for characterising surface features on 
cold rolled stainless steel sheet is investigated. 
 
Keywords: Three dimensional measurement, surface characterisation, stainless steel sheet 
 
 
1 Introduction 
 
The use of 3D techniques for measuring surface topographies is becoming more popular, as 
the equipment and methods improve and the advantages are realised. The correct use of these 
techniques can yield a better understanding of the processes by which surfaces are formed and 
the ability to control the development of the finish to give the desired functional performance. 

                                                        
* Acknowledgements to the AvestaPolarit UK Foundation for Research and especially Dr.D.Dulieu for their 
financial and intellectual support and for the provision of samples. 
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For this project the aspects of sampling are studied and consideration is given to the use 
of the data collected to aid functional characterisation. 

An established stainless steel designation, the finish produced by the 2B process 
route, has been chosen to demonstrate the primary parameter set [2]. The designation 
2B is described in BSEN 10088-2:1995 [3] as a surface produced by the process of cold 
rolling, annealing, removing the scale formed on annealing and skin passing. Scale 
removal methods, mechanical and chemical, cause microscale attack of both the grains 
on the surface of the strip and at the grain boundaries. The final strip surface roughness 
depends upon the prior strip history and the nature and extent of the surface attack on 
descaling. To smooth and brighten the surface, as well as improve strip shape, a light 
cold rolling pass is applied to the annealed strip as part of the process route. This pass 
has the effect of flattening the grain regions (or plateaus), but leaves them surrounded 
by a network of valleys formed partly by the etched grain boundaries, see figure 1. 
These features have functional significance. Stainless steel sheet is usually formed using 
a combination of drawing, bending and stretching processes. It is also employed as the 
most frequent starting point for a range of other surfaces either developed within the 
process route, i.e. roll patterning or coil polishing, or during and after fabrication as a 
result of shot and bead blasting, directional or non-directional mechanical polishing or 
electrochemical polishing. 
 

Figure 1: Optical interferometer images showing grain boundaries in 2B stainless 
steel 

 

Initially a set of parametric descriptors is required to measure the surface features 
and relate them to the section of the manufacturing route where they were created. This 
can be used to reduce or control the variations in the topography of the common 
finishes. The solution lies in measuring the surface in the correct manner to gain 
information about the features of the surface that are relevant and describing those 
features mathematically and statistically using parameters that can be related to the 
functions. 

The bulk of the work in this study is concentrated on the sampling conditions for 
measurement, specifically the evaluation of the sampling interval. This will be 
employed to legitimately acquire data with the appropriate instrument. The relevance of 
the primary set of 3D parameters is examined and their application in characterising the 
2B finish is discussed. Conclusions will be drawn relating to both the sampling interval 
found, the methods of determining it and the extent to which the existing 3D parameters 
characterise the surface. 
 
 
2 Sampling Methodology 
 
When measuring a surface using a modern instrument a signal representing the surface 
roughness is converted from an analogue to a digital signal. This signal must be 
sampled and quantised. Digital sampling is normally performed at equal intervals of 
time on a signal and it is this interval that is the important variable. If the interval is 
unnecessarily small, redundant data will be collected and the correlation of points would 



177 

yield misleading results. If the interval is too large a phenomenon called aliasing will 
occur, where the high and low frequency components of the signal (the surface 
roughness) become confused. 

There are a number of methods to decide on the correct sampling interval required 
for a particular surface topography, measuring instrument or functional interest, but 
initially the important features of the surface must be identified. Obviously, it is 
desirable to measure the largest area possible, to get as many of the variations possible. 
By increasing the area resolution is sacrificed, so there is a trade off from being able to 
measure at a high enough resolution to observe the critical features and having a large 
enough sample area to include all the critical points. The frequency of the features is 
needed to ensure that the demands of the Nyquist theorem [4] are met. It states that for a 
periodic signal, the sampling interval should be smaller than half of the wavelength of 
the signal. If this theorem is not satisfied then aliasing will occur. The result is the 
normal value of the short wavelength limit for the sampling interval, but this is for 
periodic signals, which surface topography data is not.  
 
2.1 SEM Analysis 
 
To decide on the critical sampling interval work has been done to establish and measure 
the major features of the 2B finish. By viewing a range of 2B product surfaces using a 
scanning electron microscope the features of the surface were recognised as plateau 
regions and a network of interconnecting valleys. These images reveal that the plateaus 
and valleys are of various sizes and the plateau regions are not totally smooth but have 
surface roughness in the form of small pits and shallow ‘troughs’ (relative to the deeper 
valleys). These small features must be resolvable using the chosen sampling interval so 
the average and minimum dimensions of both the plateaus and valleys are needed. 

A scanning electron microscope (SEM) was employed to depict the areal geometry 
of the surface features and images as in figure 2 were collected from different samples, 
in several areas and at varying degrees of magnification. The images were manually 
examined and analysis (based on intercept methods in ASTM E112 [5]) used to collect 
the data in table 1. 

 

Table 1: Data collected from SEM study 
 

 Average Maximum Minimum 
Plateau Diameter (µµµµm) 9.1 12.3 4.5 

Valley Width (nm) 700 1000 400 
 

 

Figure 2: SEM images showing plateaus and valleys on 2B at x5k & x10k 
magnifications 

 
The initial estimate of required sampling interval for 2B finish was calculated, based 

on the Nyquist theorem, mentioned previously. The smallest feature on the surface is 
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Realtime FFT Analysis 

Inaccurate 
outlying data 

Inaccurate 
outlying data 

the minimum valley width, 400nm, so the initial estimate of sampling interval is half 
this, 200nm. 

 
2.2 Frequency Spectrum Analysis 
 
Frequency Spectrum analysis (using Fast Fourier Transforms, FFT’s) has been used to 
determine the frequencies of the surface features. The frequency of the valleys of a 2B 
surface show up dominantly on a Power Spectral Density (PSD) plot and this can be 
used to find the correct sampling interval to accurately reconstruct the 3D surface data. 
Firstly surface data files from a non-contacting optical interferometer (Wyko NT 2000) 
were studied. The surfaces were measured with a lateral sampling interval of 160nm. 
From these 3D maps (see example map in figure 1) the PSD plot is found for numerous 
2D profiles, using a real time FFT, see right-hand graph of figure 3. It can be seen that 
the important frequencies lie below about 1500mm-1. This equates to a required 
sampling interval of approximately 330nm. The actual reconstructed surface at this 
interval can be viewed by entering the high frequency cut-off at this level and running 
an inverse FFT. The reconstructed surface on the left profile image in figure 3 is so 
closely matched to the actual measured surface; the difference is only noticeable on the 
outlying data. The estimation of sampling interval from the SEM study (200nm) relates 
to a frequency of 2500mm-1 and the Wyko minimum interval of 160nm relates to a 
frequency of 3125mm-1. The reconstructed surfaces at these intervals reveal a very high 
correlation with the original measured surface. 
 

Figure 3: Profile of surface with reconstruction at high frequency cut-off of 1500mm-1 
and PSD plot for surface frequencies 

 
The significant frequencies were checked using higher resolution surface maps 
measured on an Atomic Force Microscope, AFM. The lateral sampling interval for the 
AFM measurements was approximately 40nm. In this case the important frequencies lie 
below 2000mm-1 (an interval of 250nm) and the initial estimate of a suitable frequency 
of 1500mm-1 is too low to accurately reconstruct the detailed valley bottom and fine 
plateau roughness data, figure 4.  
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Figure 4: Comparison of high cut-offs and their effect on accuracy of profile 

reconstruction 
 
2.3 Comparison 
 

The results of the practical and mathematical analyses on the determination of 
sampling interval are very similar. From the SEM investigations a 200nm interval is 
suggested. Using the frequency spectrum analysis, a frequency of 2000mm-1 is 
recommended, equating to an interval of 250nm. The Wyko interferometer at 100 times 
magnification has a sampling interval of 160nm, indicating its suitability for measuring 
the 2B surface. 

 

 
 
3 Functional Requirements 
 
3.1 Functional Relevance 
 
The requirements of characterisation are numerous and dependant on the functional 
specifications for the surface in post-processing. A surface can be either functional or 
non-functional. Functional surfaces are those where the properties of the surface 
influence the quality of the component. A control loop was suggested by Stout & Davis 
[6], figure 5, showing the interdependence between the required functional behaviour of 
the surface, its manufacture and the characterisation of its topography. 
 

Figure 5: Simplified control loop showing interdependencies [original from 7] 
 
If the function requires the surface to react in a certain manner the surface 

characteristics can be specified and a suitable manufacturing process chosen. This 
theory also works in the reverse direction; if a surface is manufactured with particular 
properties then the behaviour of the material under further processing can be predicted 

Manufacturing 

Function Characterisation 

High frequency cut-off = 1500 mm-1 High frequency cut-off = 2000 mm-1 
Reconstructed surface 
Measured surface 
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and controlled. The quality of functional surfaces can be optimised by understanding the 
relationship between the surface features and component application. 

Appearance can be thought of in many different ways and so parameters need to 
incorporate considerations for reflectivity, image clarity, degree of greyness or 
brightness and even hue. Optical properties like these are considered on a nano-scale, 
Thomas has stated, [8], ‘When surface irregularities are present at wavelengths 
comparable with those of visible light the appearance of the surface will alter, e.g. a 
painted surface such as a car body may appear dull instead of glossy (amplitude 0 – 10 
nm)’. Conceivably the features that affect optical properties are plateau roughness and 
the area fraction of plateaus to valleys. These dictate such aspects as the reflectivity and 
brightness of the surface. 

For tribological concerns like how much lubricant the surface can retain or the 
extent of tool friction in forming operations different features are important. Lubricant 
retention is related to the valley characteristics like depth, slope, void volume and 
interconnectability. In some instances, like on plateau honed surfaces for cylinder bores, 
it is important that the surface possesses a certain amount of interconnectability (so that 
oil can be distributed around the whole of the surface) and have a specific lubricant 
reservoir volume (these parameters are currently under investigation for the second year 
EC project, number 3374/1/0/170/90/2, [9]). The size, density and slopes of asperities 
on the surface can also affect tool friction and the final appearance of a formed 
component. 

Cleansibility characteristics and adhesive bonding factors are a combination of 
plateau and valley features. They could be related to the areas occupied by plateaus and 
valleys, the slope of asperities and valley sides and the plateau micro-roughness. 

Pitting phenomena and localised corrosion behaviour with respect to variations in 
surface topography is currently under investigation. Particular interest lies in the shape 
and relative depth of existing pits on plateaus or in valleys and whether certain 
topographies promote the initiation of pitting corrosion or crack initiation. It is thought 
that a combination of valley depth and aspect ratio (crevice acuity) parameters will be 
required for functional use. 
 
3.2 What can 3D do now? 
 
Some of the standard 2D parameters have been developed for use with 3D topography 
data. A comprehensive survey of academic and industrial research trends on this subject 
was carried out in 1992. This resulted in the modification of a draft proposal for 3D 
parameters [2], for which a primary set of 14 parameters was proposed. An ‘S’ (for 
surface) instead of the conventional ‘R’ (for roughness in their 2D counterparts) denotes 
all of these new parameters. The most thorough description of the primary set can be 
found in [2], a brief summary table is presented below (table 2).  
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Table 2: Standardised 3-D parameter set, [2] 
 

Family Nomenclature Parameter 
Sq Root-mean-square deviation of the surface 
Sz Ten point height of the surface 
Ssk Skewness of topography height distribution 

Amplitude 

Sku Kurtosis of topography height distribution 
Sds Density of the summits of the surface 
Str Texture aspect ratio of the surface 
Sal The fastest decay autocorrelation length 

Spatial 

Std Texture direction of the surface 
S∆q Root-mean-square slope of the surface 
Ssc Arithmetic mean summit curvature of the surface Hybrid 
Sdr Developed interfacial area ratio 
Sbi Surface bearing Index 
Sci Core fluid retention Functional Index 
Svi Valley fluid retention 

 
Of this set of 14 parameters, the amplitude family should have consistent values for 

repeated measurements of the 2B surface provided that the sampling interval and area 
sizes are the same. Sz is an extreme parameter, the average height of the five highest 
peaks and five deepest valleys or pits. Since the surface topography contains few large 
peaks it is the depth of the valleys that will have a major influence on variations in this 
parameter. 

The value of Ssk for a 2B finish is large and negative, as it has outliers (the valleys) 
and good bearing properties, because of the relatively flat plateau regions. The value of 
Sku is very large, which is also due to the outliers. These two parameters should be used 
in conjunction with each other to identify surfaces that have relatively flat tops and deep 
valleys, like 2B, from other surface topographies with similar values for the other 
parameters. 

The spatial and hybrid families are not particularly useful for functionally 
characterising the 2B surface, as it has no particular texture or lay. The functional 
indexes are good for the comparison of similar surfaces, but not as useful when only one 
surface is under examination. 

Absolute values for volumes are calculated using the functional volume family of 
parameters. These three extra parameters, in table 3, were suggested in the initial study 
[2] and have since been formalised. The second EC report [9] deemed them useful for 
distinguishing between the functional zones of two bearing surfaces. 

 

Table 3: Additional functional volume family of parameters 
 

Family Nomenclature Parameter 
Sm Material volume of the surface 

Sc Core void volume of the surface Functional Volume 

Sv Valley void volume of the surface 

 
The existing parameters do cover a range of the roughness aspects that are required 

for characterisation but it has been decided that further, more specific parameters are 
needed for a full, functional characterisation of the surface finish of stainless steel. 
 
3.3 Future 
 
Further to the relevant parameters in the primary set and to make the set explicit, it is 
necessary to develop some new parameters to give functional significance. The first 
investigation into this matter was carried out by Dobbin, [10], who, because of the 
topography of the 2B finish, decided that meaningful parameters would be found by 
truncating the data to separate the plateau regions from the valleys. The chosen 
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truncation level was at Sq from the mean plane. A set of six parameters was devised for 
analysing the data, summarised in table 4.  

 

Table 4: Summary of ‘Truncated parameters’ 
 

‘Zone’ Nomenclature Parameter Description Functionality 

Plateau ‘Sq’ Average roughness 
Calculated as Sq but on the top section 

of the truncated data 
Appearance, friction and wear, 

adhesion, etc. 

‘St’ Maximum valley depth 
Maximum vertical distance, from the 

truncation level 
Brightness, lubrication & dirt 

retention 

‘Svm’ Average maximum 
valley depth 

The average of successive values of 
the maximum valley depths over a 

sampling length 
As above & sealing, adhesion 

‘Sq’ Average valley depth 
Calculated as Sq but on the lower 

section of the truncated data 
As above 

Not given Area fraction ratio 
Ration of the total contacting area 

over the sampling area 
Appearance, bearing properties, 

forming, etc. 

Valley 

Not given Volume of voids 
The air volume enclosed between the 

truncation plane and the material 
beneath that plane 

Lubricant retention, 
wetting/cleansibility 

 Heights of asperities 
Calculated as Sz but on the top section 

of the truncated data 
Appearance, tool friction/wear, 
bearing area, forming, sealing 

 Density of asperities 
Calculated as Sds but on the top 

section of the truncated data 
As above 

 
Size and distribution of 

plateau regions 
Using edge detection on truncated 

data 
As above & adhesion/surface 

wetting 

Other 

Plateau 

params. 

 Isolated pits 
Number/size etc of isolated pits on 

plateaus 
Appearance, tribology, especially 

local corrosion/pitting 

 Interconnectability Using ‘motif’ combination 
Lubricant retention, forming, 

wetting 
Other 
Valley 
params.  Aspect ratio Depth to width of valley 

As above & crack initiation/local 
corrosion 

 
These parameters would certainly be functionally relevant to the 2B surface but the 

study carried out by Dobbin was inconclusive due to a deficiency in the sampling used. 
Research into a more functional choice of truncation level is in progress and the 
application of these parameters and other ‘truncated’ parameters (see table 4) are under 
investigation. 
 
 
4. Conclusions 
 

• Certain parameters from the primary set could be used to describe some of the 
sheets’ characteristics. It is thought that the truncated parameters outlined in 
tables 4 and 5 provide a functionally relevant set for characterisation of the 2B 
surface. 

• The characterisation by statistical methods is useful as long as the sampling 
conditions are properly defined. In this case, for the 2B finish the recommended 
sampling interval is 200nm. An interval of 160nm is appropriate and is achieved 
using the Wyko NT 2000 interferometer with a magnification of x100. 

• Both the practical and mathematical methods of determining the correct 
sampling interval gave similar results for the 2B surface finish. This may not be 
the case for all surface topographies, so it is suggested that for functional 
applications a combination of approaches like the ones presented here be 
employed. 
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Appendix 2 

2D Ra Values 



185 

2D Ra values for the 2B finish, provided by D.Dulieu, Ou tukumpu. 
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Appendix 3 

Distinctness of Image and Haze Graphs 
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Sq of plateaus to DOI
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Appendix 4 

2D Parameters 
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Glossary of Surface Texture Parameters by Michigan Metrology [82]  

 

Ra{ XE "Ra" }, the roughness average, is the arithmetic average of the absolute values of the 

surface height deviations measured from the best fitting plane, cylinder or sphere. Ra is 

described by: 

∫∫=
aa dxdyyxZR ),(

 

 

Rq{ XE "Rq" }, the root mean square (rms) roughness is the rms (standard deviation) or “first 

moment” of the height distribution, as described by: 

( )∫∫=
aq dxdyyxZR 2),(

 

 

Rsk{ XE "Rsk" }, the skewness, is the ‘second moment” of the height distribution. 

( )∫∫=
a

q
sk dxdyyxZ

R
R 3

3
),(

1
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Rku{ XE "Rku" }, the kurtosis, is the “third moment” of the height distribution, described by: 

( )∫∫=
a

q
ku dxdyyxZ

R
R 4

4
),(

1

 

 

Rp, Rv, and Rt are parameters evaluated from the absolute highest and lowest points found on 

the surface. Rp{ XE "Rp" }, the maximum peak height, is the height of the highest point, Rv{ XE 

"Rv" }, the maximum valley depth, is the depth of the lowest point and Rt{ XE "Rt" } the 

maximum height of the surface, is found from Rp – Rv.   

 

The parameters Rpk, Rk, Rvk, Mr1, and Mr2 are all derived from the bearing ratio curve based on 

the ISO 13565-2:1996 standard. The bearing area curve is a measure of the relative cross-

sectional area of a plane, passing through the measured surface, from the highest peak to the 

lowest valley. Rpk{ XE "Rpk" }, the reduced peak height is a measure of the peak height above 

the nominal/core roughness.  Rk{ XE "Rk" }, the core roughness depth is a measure of the 

nominal or “core” roughness (peak-to-valley) of the surface with the predominant peaks and 

valleys removed. Rvk{ XE "Rvk" }, the reduced valley depth, is a measure of the valley depth 

below the nominal /core roughness. Mr1{ XE "Mr1" }, the peak material portion, indicates the 

percentage of material that comprises the peak structures associate with Rpk. Mr2{ XE "Mr2" }, 

the valley material portion, relates to the percentage of the measurement area that comprises 

the deeper valley structures given by 100%-Mr2. 
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Appendix 5 

3D Parameters 
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Areal Surface Parameters [41, 82]  

 

AMPLITUDE PARAMETERS 

Six parameters are used for characterising the amplitude property of surfaces.  They are 

classified into four categories, i.e. (i) dispersion, (ii) asymmetry of the height distribution, (iii) 

sharpness of the height distribution and (iv) extreme. 

 

(1) Root Mean Square Deviation of the Surface S q 

This is a dispersion parameter defined as the root mean square value of the surface departures 

within the sampling area. 

 

 

          (1) 

 

Where M is the number of points per profile and N is the number of profiles.  

Sq is a very general and widely used parameter.  In statistics, it is the sample standard 

deviation. 

 

Application 

The Sq parameter represents an overall measure of the texture comprising the surface. Sq is 

insensitive in differentiating peaks, valleys and the spacing of the various texture features. The 

figure below demonstrates two very different surfaces with identical Sa and Sq values, indicating 

the insensitivity of these parameters. Nonetheless, once a surface type has been established, 

they may be used to indicate significant deviations in the texture characteristics. 

 

 

 

 

 

 

 

 

 

Ssk and Sku{ XE "Ssk and Sku" } are the Skewness and Kurtosis of the 3D surface texture 

respectively. Figuratively, a histogram of the heights of all measured points is established and 

the symmetry and deviation from an ideal Normal (i.e. bell curve) distribution is represented by 

Ssk and Sku.  Mathematically, the Ssk and Sku are evaluated as follows: 

 

(2) Skewness of Topography Height Distribution S sk 
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This is the measure of asymmetry of surface deviations about the mean plane. 

 

                             

           (2) 

 

This parameter can effectively be used to describe the shape of the topography height 

distribution.  For a Gaussian surface that has a symmetrical shape for the surface height 

distribution, the skewness is zero.  For an asymmetric distribution of surface heights, the 

skewness may be negative if the distribution has a longer tail at the lower side of the mean 

plane or positive if the distribution has a longer tail at the upper side of the mean plane. This 

parameter can give some indication of the existence of "spiky" features.  

 

(3) Kurtosis of Topography Height Distribution S ku 

This is a measure of the peakedness or sharpness of the surface height distribution. 

                                                                                

           (3) 

 

This parameter characterises the spread of the height distribution.  A Gaussian surface has a 

kurtosis value of 3.  A centrally distributed surface has a kurtosis value larger than 3 whereas 

the kurtosis of a well spread distribution is smaller than 3.  By a combination of the skewness 

and the kurtosis, it may be possible to identify surfaces that have a relatively flat top and deep 

valleys. 

 

 

 

 

 

 

 

 

 

Application 

Ssk represents the degree of symmetry of the surface heights about the mean plane. The sign of 

Ssk indicates the preponderance of peaks (i.e. Ssk>0) or valley structures (Ssk<0) comprising the 

surface. Sku indicates the presence of inordinately high peaks/ deep valleys (Sku>3) or lack 

thereof (Sku<3) making up the texture.   If the surface heights are normally distributed (i.e. bell 

curve) then Ssk is 0 and Sku is 3. Surfaces described as gradually varying, free of extreme peaks 

or valley features, will tend to have Sku <3.  Ssk is useful in specifying honed surfaces and 

monitoring for different types of wear conditions. Sku is useful for indicating the presence of 

either peak or valley defects which may occur on a surface. 
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(4) The Highest Peak of the Surface S p 

This is an extreme parameter defined as the height of the highest peak from the mean surface 

plane within the sampling area.  

( )p pS MAX η=
             with    pη

>0        (4) 

Where pη
 are the highest surface summits on the surface, which relies on the eight nearest 

neighbour summits definition, i.e. a peak is defined if it is higher than its 8 nearest neighbours. 

 

(5) The Lowest Valley of the Surface S v 

This is an extreme parameter defined as the height of the lowest valley from the mean surface 

plane within the sampling area.  

( )v vS MIN η=
               with    vη

<0                                   (5) 

Where vη
 are the lowest surface valleys on the surface, which relies on the eight nearest 

neighbour summits definition. 

 

(6) Height Deviation between the Lowest and Highest  Points of the Surface S z 

This is an extreme parameter defined as the maximum of the absolute heights of the highest 

peaks and the depths of the deepest pits or valleys within the sampling area.  

( )z p vS S S= +
                                                               (6) 

Where Sp and Sv are the highest surface summits and lowest surface valleys on the surface 

respectively, which relies on the eight nearest neighbour summits definition. 

 

Application 

Sz is useful in characterising the “envelope” that contains most of the surface heights, 

particularly when Sa or Sq is dominated by general texture features. The texture of sheet steel is 

typically specified with Sz as well as shaft surfaces when considering sealing applications. Sz 

may demonstrate a change sooner than Sa or Sq as a surface is modified such as when 

studying a wear mechanism. 
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SPATIAL PARAMETERS 

Introduction:  Autocorrelation Function{ XE "Autoco rrelation Function" } (ACF) 

The development of the spatial parameters involves the use of the mathematical technique of 

the Autocorrelation Function (ACF).  This section will review the basic concepts behind the ACF, 

necessary to understand the various spatial parameters. 

The ACF is found by taking a duplicate surface (Z(x-�x,y-�y)) of the measured surface ((Z (x, 

y)) and mathematically multiplying the two surfaces together, with a relative lateral displacement 

(�x,�y) between the two surfaces. Once multiplied together, the resulting function is integrated 

and normalized to Sq, to yield a measure of the area of overlap between the two functions. If the 

shifted version of the surface is identical to the original surface then the ACF is 1. If the shifted 

surface is such that all peaks align with corresponding valleys then the ACF will approach –1. 

Thus the ACF{ XE "ACF" } is a measure of how similar the texture is at a given distance from 

the original location. If the ACF stays near 1 for a given amount of shift, we conclude that the 

texture is similar along that direction. If the ACF falls rapidly to zero along a given direction, then 

we conclude that the surface is different and thus “uncorrelated” with the original measurement 

location.  

 

 

 

 

 

 

 

 

For the turned surface above, the ACF in the X direction falls to zero quickly as the peaks of the 

shifted surface align with the mean plane. The ACF along X becomes negative as the peaks of 

the surface align with the valleys of the shifted surface. Shifting along the Y direction, the 

surface is near identical to the original resulting in the ACF in the Y direction remaining near 1. 

 

 

 

Four parameters are used to characterise spatial properties, density of summits, texture aspect 

ratio, fastest decay autocorrelation length and directionality of surface lay. 
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(7) Density of Summits of the Surface S ds 

This is the number of summits of a unit sampling area, which relies on the eight nearest 

neighbour summits definition. 

                                 

           (7) 

 

Application 

Sds is a key parameter when considering surfaces used in applications such as bearings, seals 

and electronic contacts. The manner in which the summits elastically and plastically deform 

under load is related to the Sds parameter. Depending on the application, a low Sds may result in 

high-localised contact stresses resulting in possible pitting and debris generation. In applications 

involving sliding components, a number of summits are needed to prevent optical contacting 

while maintaining a reasonable load distribution. Summit density may also be related to the 

cosmetic appearance of a surface once painted. 

 

(8) Texture Aspect Ratio of the Surface S tr 

Str{ XE "Str" }, the texture aspect ratio, is a measure of the spatial isotropy or directionality of the 

surface texture. This is a parameter used to identify texture strength, i.e. uniformity of texture 

aspect. For a surface with a dominant lay, the parameter will tend towards 0, whereas a 

spatially isotropic texture will result in a Str of 1. It is defined by the Areal Autocorrelation 

Function (AACF). Str can be defined as the ratio of the fastest to slowest decay to correlation 

length, 0.2, of the AACF function. 

 

           (8) 

 

Where                                  

                         

 

 

In principle, the texture aspect ratio has a value between 0 and 1.  Larger values, say Str>0.5, of 

the ratio indicates uniform texture in all directions, i.e. no defined lay. Smaller values, say 

Str<0.3, indicates an increasingly strong directional structure or lay.  Since the size of the 

sampling area is finite, it is possible that the slowest decay of the AACFs of some anisotropic 

surfaces never reaches 0.2 within the sampling area. In this case the longest distance of the 

AACF along the slowest decay direction can be used instead.  

 

Application 

Str is useful in determining the presence of lay in any direction. For applications where a surface 

is produced by multiple processes, Str may be used to detect the presence of underlying surface 
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modifications.  Str may find application in finding subtle directionality on an otherwise isotropic 

texture. 

(9) The Fastest Decay Autocorrelation Length S al 

Sal{ XE "Sal" }, the auto-correlation length, is a measure of the distance over the surface in an 

optimum direction such that the new location will have minimal correlation with the original 

location. This is a parameter in length dimension used to describe the autocorrelation character 

of the AACF.  It is defined as the horizontal distance of the AACF that has the fastest decay to 

0.2. In other words Sal is the shortest autocorrelation length that the AACF decays to 0.2 in any 

possible direction.  

 

           (9) 

 

For an anisotropic surface Sal is in a direction perpendicular to the surface lay. A large value of 

Sal denotes that the surface is dominated by low frequency (or long wavelength) components, 

whilst a small value of Sal denotes the opposite situation. 

 

Application 

Sal is a quantitative measure as to the distance along the surface by which one would find a 

texture that is statistically different from the original location. Sal is useful in establishing the 

distance between multiple measurements made on the surface to adequately determine the 

general texture specification of the surface. 

 

 

 

 

 

 

 

 

Introduction: Angular Power Spectral Density Functi on (APSDF) 

The development of the spatial parameters involves the use of the advanced mathematical 

technique of the Angular Power Spectral Density Function{ XE "Angular Power Spectral Density 

Function" } (APSDF{ XE "APSDF" }). This section will review the basic concepts behind the 

APSDF necessary to understand the Std spatial parameter. 

Based on Fourier analysis, we can consider the surface texture to be composed of a series of 

sine waves in all directions with different frequencies and amplitudes. The power spectrum is a 

measure of the amplitude of each sine wave for a particular frequency, along a given direction. 

Thus for a 3D surface, the power spectrum would be displayed as a “3D” function in which the X 

and Y axes represent the various spatial frequencies for a given direction. The amplitude of the 

power spectrum (displayed on the Z axis) represents the amplitude of the sine wave at a 

particular spatial frequency direction. The angular power spectrum is found by integrating the 
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amplitudes of each component sine wave as a function of angle. The table below demonstrates 

a crosshatched surface, the power spectral density of the surface and the angular power 

spectral density function. 

 

(10) The Texture Direction S td 

Std{ XE "Std" }, the texture direction, is determined by the APSDF and is a measure of the 

angular direction of the dominant lay comprising a surface. Std is defined relative to the Y axis. 

Thus a surface with a lay along the Y axis will return a Std of 0 deg. 

 

 

 

 

 

 

 

 

 

 

 

The bright regions of the power spectrum for 

the crosshatched surface correspond to higher 

amplitude sine waves at a given combination 

of spatial frequencies along the X / Y 

directions. The two dominant bright lines are 

thus along a direction perpendicular to the two 

lay patterns of the crosshatched surface. 

 

The APSDF is found by integrating the power 

spectrum from the centre out radially and 

displaying the relative magnitude vs. angle. 

The two peaks in the APSDF correspond to 

the large sine wave amplitudes found along 

directions perpendicular to the two lay patterns 

of the crosshatched surface. 

 



200 

(11) 

 

 

 

Application 

Std is useful in determining the lay direction of a surface relative to a datum by positioning the 

part in the instrument in a known orientation. In some applications such as sealing, a subtle 

change in the surface texture direction may lead to adverse conditions. Std may also be used to 

detect the presence of a preliminary surface modification process (e.g. turning), which is to be 

removed by a subsequent operation (e.g. grinding). 

 

HYBRID PARAMETERS 

The hybrid properties of a surface are a combination of both amplitude and spacing.  Any 

changes that occur in either amplitude or spacing may have an effect on the hybrid property.  

Three hybrid parameters are calculated here.  

 

(11) Root-Mean-Square Slope of the Surface S ∆∆∆∆q 

This is the root-mean-square value of the surface slope within the sampling area. 
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Application 

S∆q is a general measurement of the slopes, which comprise the surface and may be used to 

differentiate surface with similar average roughness, Sa as demonstrated below. S∆q may find 

application for sealing applications and surface cosmetic appearance. 
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(12) Arithmetic Mean Summit Curvature of the Surfac e Ssc 

This is defined as the average of the principal curvatures of the summits within the sampling 

area. Since the sum of the curvatures of a surface at a point along any two orthogonal directions 

is equal to the sum of the principal curvatures. 

 

           (12) 

 

 

 

 

 

This parameter can only be calculated after the summits. 

 

Application 

Ssc is useful in predicting the degree of elastic and plastic deformation of a surface under 

different loading conditions and thus may be used in predicting friction and wear characteristics 

of a system. 

 

 

(13) Developed Interfacial Area Ratio S dr 

This is the ratio of the increment of the interfacial area of a surface over the sampling area. 

                                                               

           (13) 

 

 

Where the interfacial area of the quadrilateral is defined as: 
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The developed interfacial area ratio reflects the hybrid property of surfaces. A large value of the 

parameter indicates the significance of either the amplitude or the spacing or both. 

 

Application 

Sdr may further differentiate surfaces of similar amplitudes and average roughness. Typically Sdr 

will increase with the spatial intricacy of the texture whether or not Sa changes. Sdr is useful in 

applications involving surface coatings and adhesion. Sdr and may also find relevance when 

considering surfaces used with lubricants and other fluids. Sdr may be related to the surface 

slopes and thus may also find application related to the manner in which light is scattered from a 

surface. 

  

 

 

 

 

 

 

 

 

FUNCTIONAL PARAMETERS 

Sk Parameters 

The Sk parameters are a simple approach where the knee-shaped bearing area curve is 

approximated by a set of straight lines.  The Sk construction is designed to divide the bearing 

ratio curve into three sections: the small peaks above the main plateaus, the plateaus 

themselves and the deep valleys between plateaus.  The first step is to slide a "window" across 

the bearing ratio curve looking for the minimum secant slope. The window is 40% tp wide. As 

the window slides across the curve it intersects two points on the curve. The goal is to find the 

position where the slope between the two points is minimised, or since the window has constant 

width, where the height Htp between the two points is minimised.  

Once the window with minimum secant slope is found, the Sk parameters can be calculated out 

from the intercept of this slowest decay line and the bearing curve and its X and Y axes. 

 

(14) Reduced Peak Height S pk  

Spk is an estimate of the small peaks above the main plateau of the surface. These peaks will 

typically be worn off (or down) during the run-in period for a part. Generally, it would be 

desirable to have a fairly small Spk.  

 

(15) Core Roughness Depth S k 

The parameter Sk is the vertical height between the left and right intercepts of the line through 

the ends of the minimum Htp 40% window. 
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Sk correlates with the depth of the working part of the surface, the flat part of the bearing area 

curve. After the initial running in period (i.e. after the peaks represented by Spk are worn down), 

this part of the surface carries the load and most closely contacts the mating surface. 

Sometimes this part of the surface is called the "core roughness" or the "kernel" (hence the k 

subscript).  

 

(16) Reduced Valley Height S vk  

Svk is an estimate of the depth of valleys that will retain lubricant in a functioning part.  

 

(17) Peak Material Component S mr1 

Smr1 is the fraction of the surface that consists of small peaks above the main plateau.  

 

(18) Peak Material Component S mr2  

Smr2 is the fraction of the surface that will carry load during the practical lifetime of the part. 

Alternatively, 100%- Smr2 is the fraction of the surface that consists of deeper valleys that will 

retain lubricant.  

 

(19) Material Filled Surface Peak Area S a1  

Sa1 denotes the “area” of the peak portion of the bearing ratio curve. It is related to Spk and Smr1. 

 

(20) Lubricant Filled Surface Valley Area S a2  

Sa2 denotes the “area” of the valleys in the Sk construction. It is related to Svk and Smr2. Sa2 is the 

oil retention "volume" of the surface. 

 

Functional Volume Family 

Four improved functional parameters derived from the volume information of a bearing ratio 

curve are proposed. This parameter set is the so-called volume family, which is based on an 

assumption that the peak material embraces 0~10% of the bearing area whilst the core and 

valley ranges cover 10~80% and 80~100% of the bearing area respectively. The volume family 

addresses the disadvantages of the index family and develops the Rk family advantages.  These 

functional parameters can characterise not only the common functional properties of surfaces, 

for instance, area and volume geometrical properties, but also interpret wear and tribological 

properties in a running-in procedure. The volume family has enormous practical significance 

and can be used to numerically evaluate the bearing area ratio of surfaces. 

 

(21) Peak Materiel Volume of the Surface V mp 

Firstly, the peak material volume is defined as the material portion enclosed in the 10% bearing 

area and normalised to unity. 

  

           (17) 
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The peak material volume is not only a geometrical descriptor of the surface, but also has 

significant functional implications. The peak material volume may reflect wear and the running-in 

properties. A plateaued surface, such as an automotive bearing surface which needs a good 

load bearing capability and good lubrication retention, will have a high peak material volume; 

whereas a spiked surface, such as a bored surface, will have a low peak material volume.  

 

(22) Core Material Volume of the Surface V mc 

The core material volume is the material portion enclosed from 10% to 80% of surface bearing 

area and normalised to the unit sampling area.   
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(23) Core Void Volume of the Surface V vc 

The core void volume is the void portion enclosed from 10% to 80% of surface bearing area and 

normalised to the unit sampling area. 
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Where 

max max( ) ( ) ( 1)( 1) ( ) ( )v v mV h V h M N x y h h V h= − − − ∆ ∆ − +�
 

 

(24) Valley Void Volume of the Surface V vv 

The valley void volume of the unit sampling area is defined as a void volume at the valley zone 

from 80% to 100% of surface bearing area. 
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(21) 

(22) 

0.8( )

( 1)( 1)
v

vv

V h
V

M N x y
=

− − ⋅∆ ∆
 

The void volume is proposed here to provide a direct inspection of lubrication and fluid retention 

of surfaces. It represents the fluid retention ability of a highly worn surface. For the same reason 

a plateaued surface will give a high valley volume whereas a spiked surface will give a large 

core volume.  

 

OTHER PARAMETERS 

The Sa parameter for characterising the amplitude property of surfaces is given here due to the 

wide use of its equivalent parameter in 2D and the fact it has been adopted by some instrument 

manufacturers. 

 

(25) Arithmetical Average of the Surface S a 

This is the average value of the absolute heights over the entire surface. It may be obtained by 

adding individual height values without regard to sign and dividing the sum by the number of the 

data matrix. 

1 1

1
( , )

N M

a i j
j i

S x y
MN

η
= =
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Where M is the number of points per profile and N is the number of profiles. Sa is a very general 

and widely used parameter. 


