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ABSTRACT 

Vision-based Remote Vibration Measurement (VRVM) has been actively researched in 

recent years, because its non-contact and full-field property can fulfil non-intrusive 

monitoring of large infrastructures and measuring vibration of structure that is difficult to 

install sensors. As data collected from camera are images rather than vibration response, 

there is a necessary process of extracting vibration signal from video footages, however, 

existing VRVM methods provide low accuracy in acquiring vibration responses, which is 

due to its inherent weakness. 

Targeting at addressing this key limit, this PhD study dedicates to develop a novel 

framework based on the principle of array signal processing (ASP). In recent decades, ASP 

has advanced rapidly on extensive applications including radar, sonar, seismology, acoustic 

and so forth. In this study, a pixel array signal processing (PASP) framework is established 

by analogy between the pixel array (selected pixels of image) and other advanced arrays in 

relevant area. The proposed framework consists of three phases: The first is to constitute a 

pixel array by selecting characteristic pixels from reference frame of video. The second is to 

implement array signal processing paradigm to obtain vibration responses with high signal-

to-noise ratio (SNR). Finally, it is to extract the diagnostic features or modal parameters from 

the filtered signals. Under this framework, a group of methods are developed to meet 

requirements of different scenarios, and thus lead to following key findings and novel 

contributions:  

It has been derived in theory that the maximum gain of Signal-to-noise ratio (SNR) is a 

determined value for a given video dataset, which is equal to the number of array elements 

(characteristic pixels). It suggests that higher number of the characteristic pixels should be 

used for achieving higher SNR vibration responses. 

Subsequently, a mode-shape-based adaptive spatial filtering (MASF) approach, a method 

based on singular value decomposition value (SVD) and a data independent spatial filtering 

(DISF) approach are proposed respectively. In particular, the proposed MASF was 

mathematically proved to be a least mean square filter (LMSF). Moreover, the gain of MASF 
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was verified through simulation on synthetic video footages, in which MASF enhanced SNR 

by times of pixel number (about 2000) to identify weak mode from noisy images. 

Finally, extensive experiments were carried out for fulfilling two common scenarios, 

including: (1) an experimental modal analysis for a free-free beam with high frequency (up 

to 6,389Hz) modes but small responses (at micrometre lever), along with (2) the condition 

monitoring of a multistage gearbox with mesh frequency (up to 1,145Hz); and (3) a free-

fixed wind turbine blade with low frequency (up to 250Hz) modes but high responses (over 

0.2 meter), along with (4) the condition monitoring of a reciprocating compressor with 

rotating frequency (about 15Hz). These results validate the outperformance of proposed 

methods in accuracy, efficiency, and robustness, which is highly conducive to development 

of the vision-based modal analysis and condition monitoring. 
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1 INTRODUCTION 

In the first section, the research status of vision-based vibration measurements is 

investigated through an extensive literature review. To overcome the weakness of existent 

methods, this research project aims to propose a novel framework based on the principle of 

array signal processing, which has found extensive applications in radio antenna, seismic 

arrays, microphones, accelerometers, and telescopes. Accordingly, the research aim and 

objects of pixel array framework are proposed.  
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1.1 Background of non-contact vibration measurements 

It is well known that dynamic characteristics plays an important role on structural health 

monitoring[1], [2], and mechanical design & manufacturing[3], [4]. Additionally, vibration 

signal is also a key manner of monitoring the operating condition of rotating machinery[5]–

[7]. Currently, the vibration measurements for condition monitoring or modal test mainly 

relies on piezoelectric accelerometer[8], [9], however, the accelerometer also possesses 

some disadvantages, such as it is inaccurate at low frequency, the sensor’s loading have great 

impact on the lightweight structure, sensing network is complex and expensive for large-

scale infrastructure. 

For above reasons, the non-contact measure techniques have attracted extensive attention in 

the past several decades, which include the laser Doppler vibrometer (LDV) [10], [11], 

radar-based vibration measurement (radar displacement monitoring) [12], vision-based 

vibration measurement, electronic speckle pattern interferometry (ESPI) [13], [14] and 

holographic interferometry [15], [16]. Amongst them, LDV, radar displacement monitoring 

and vision-based vibration measurement are three most active fields over the last decade, 

because they are advantageous in different scenarios according to the particular requirement 

of test. Their research status and characteristics are outlined respectively as follow. 

• Laser Doppler Vibrometry 

Laser Doppler Vibrometry (LDV) was invented just after a few years of invention of laser, 

which transmits a focused laser beam and receives a scattered light from vibrating object, 

then the Doppler shift between the incident light and reflected light is used to measure 

accurate displacement, which is also called as the Mach–Zehnder interferometer [17]. 

Nowadays, LDV has been widely used in structural health monitoring, Micro-

electromechanical systems (MEMS), rotating machinery, hearing, and acoustics [18]. 



1 INTRODUCTION 

3 

 

 
Figure 1-1 CSLDV on a vehicle cab showing scan pattern (left), measured velocity spectrum (top right) and 

ODS reconstructed from polynomial fit (bottom right) [18], [19] 

In particular, the invention of scanning laser Doppler vibrometer (SLDV) boosted its 

application on the experimental modal analysis (EMA). SLDV can measure an area of 

structure point by point, in which the orthogonal scanning mirrors controlled by computer 

are used to relocate the direction of laser beam [18]. In this way, SLDV can reach a much 

higher spatial resolution than accelerometer array, which can only measure very limited 

number of points.  

Figure 1-1 shows a modal experiment based on a continuous scanning laser Doppler 

vibrometer (CSLDV) with single frequency excitation. The spectrum displayed the 

excitation frequency and its harmonic sidebands spaced by the scan frequencies. The 

deflection pattern is generated by the related frequency components. The precision of 

CSLDV can be limited by signal drop-outs, primarily related to surface quality, and speckle 

noise, especially at higher scan speeds. That shows the effect of speckle noise, which is a 

major disadvantage of the LDV. Due to this optical phenomenon, the laser signal at a few 

points is missed by ‘speckle drop-out’, and the intensity of noise is related to the roughness 

of surface [20]. 

• Microwave radar-based vibration measurements 

On the other hand, the radar-based measurement earn also more attention, which can track 

small displacement with high sensitivity[12], [21]. The principle of radar-based 

measurement is that transmits electromagnetic signals at specific frequencies and receives 
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echoes to measure the displacement and velocity based on the baseband signal processing. 

The radar wave can be generally categorized as the single-tone continuous wave (CW) and 

frequency-modulated continuous wave (FMCW). Unlike CW radar, FMCW radar do not 

have DC offset problem and can distinguish multiple targets from static clutters. In 2010, a 

stepped-frequency continuous wave (SFCW) radar is proposed to measure the displacement 

of civil engineering structure [22]. In 2014, a hybrid radar system combines the FMCW and 

interferometry mode to achieve a universal performance [23]. 

 
Figure 1-2 The setup of radar-based displacement measurement of a rectangle target [24]. 

To meet real-time displacement measurement the approximated maximum likelihood 

approach is proposed in 2017, which can estimate the phase value of beat frequency [24]. 

The experimental result shows the error is less than 0.025mm. In addition, a parameterized 

de-alternating (PDA) method is proposed to detect multiple targets, in which the beat 

frequency is up to 1583.3Hz, but the algorithm cannot separate two similar distance, because 

of the limited frequency resolution [25]. Furthermore, the radar-based measurement is used 

to detect vital sign including the heartbeat and the breathing conditions under a very low 

SNR [26], [27]. 

However, the accuracy of radar-based measurements are influenced by multi-point scattering, 

especially when the distance of multiple points to the radar is less than the distance resolution, 

the beat frequencies will be aliased. In addition, the sampling rate of displacement is limited 

by the length of sweep circle[26].  

• Vision-based vibration measurement (high-speed camera) 
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Comparably , the high-speed camera is increasingly used to measure vibration with the high 

spatial resolution [1], which is often called as vision-based [28]–[31], camera-based[32], [33] 

vibration measurements or sometimes photogrammetry [34] . Like other forementioned non-

contact measurement [35], [36], the vision-based methods can be substituted for 

piezoelectric accelerometer in the scenarios[37], where installing accelerometer is difficult, 

or the loading of accelerometer affects the characteristics of lightweight object[35]. 

Furthermore, the high-speed camera can measure vibration at dense spatial points 

simultaneously at pixel level, which cannot be reached by radar-based methods and scanning 

laser Doppler vibrometer (SLDV).  

 
Figure 1-3 A schematic of vision-based modal analysis on a sticker impacted by a hammer [38] 

Thus, a large number of research on vision-based vibration measurement arises  on modal 

analysis, health structural monitoring, and condition monitoring of rotating machinery [39]–

[41], particularly, the cases of application will be detailed in next section. Inevitably, it also 

faces a serial of challenges such as the accuracy in high frequency range, robustness to light 

condition and computational cost.  

To compare three techniques, accuracy of LDV is limited by the surface roughness of target; 

Microwave radar sensing is difficult to distinguish multiple targets with the similar distance 

to receiver; Vision-based methods require high-quality and stable light condition. Overall, 

In the competition of three technologies, none of them show absolute superiority or 

inferiority. In fact, the demand of actual test determines which is the most appropriate 

measurement, for example, the surface quality of the measured object, the amplitude and 

frequency range of vibration signal, the measurement distance, and lighting conditions, etc. 

On the other hand, the three technologies can be not only competitive, but also 

complementary. One typical analogy is that autonomous vehicle (AV) generally equipped 

with cameras, microwave radar, lidar and even ultrasonic sensing to detect objects 

simultaneously. Similarly, it is possible to fuse laser, radar, vision-based method, and even 
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microphone arrays together to improve the range, spatial resolution, and accuracy of 

vibration measurements. 

1.2 Background of vision-based vibration measurements 

1.2.1 Applications of vision-based vibration measurements 

As vision-based vibration measurement has attracted considerable attention in recent 

decades, [42], [43], a variety of applications of vision-based measurement is introduced to 

exhibit the superior performance in some typical scenarios [1]. 

1.2.1.1 Experimental modal analysis (EMA) 

According to the application scenarios and conditions, the camera-based modal analysis can 

be generally classified into two main branches: operational modal analysis (OMA) and 

experimental modal analysis (EMA) [9],[44]. EMA is a test method for characteristics of a 

structural vibration which has been developed over the last 50 years [45]. In EMA, the 

excitations are artificially designed to act on the test specimen, and both the input forces and 

the responses are collected to identify the modal parameters. Generally, that process is based 

on the curve fitting methods of frequency response functions (FRFs) in frequency domain 

or impulse response functions (IRFs) in the time domain [46]. The temporal parameter 

(natural frequency and damping ratio) and spatial (mode shapes) parameter are two elements 

of modal properties. 

 
Figure 1-4 The stereo cameras are used to measure the mode shape of a wind turbine [47] 
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In essence, all the temporal parameters can be identified from response of one single point. 

However, the spatial parameters can only be identified by responses of multiple points. If 

accelerometers are used, cost and setup time will increase greatly with the number of 

measurement points.  

In contrast, vision-based measurement can collect thousands of points on object 

simultaneously without mounting any sensor, as a result, the mode shape can be obtained 

densely on pixel level. Therefore, a great number of studies on vision-based EMA was 

conducted [43], [47]. To take just one example, a vision-based EMA for wind turbine blade 

is carried out by using a pair of high-speed cameras. As shown in Figure 1-4, the obtained 

mode shape is with a high accuracy and resolution [46]. 

1.2.1.2 Operational modal analysis (OMA) 

Alternatively, operational modal analysis, also known as ambient modal identification, is a 

method that identifies modal parameters under operating condition and without artificial 

excitation [48], [49]. Because conducting EMA can be challenging for large-scale 

infrastructure, in that case, the excitation is often unknown and operational boundary 

conditions can change the modal properties. 

In OMA, the excitation is often unknow and assumed as steady-state broadband random, so 

that only measuring the output vibration of a structure is required [48]. As the camera can 

collect the output vibration remotely, The camera-based OMA has been widely applied to 

the structural health monitoring of large-scale structures in civil engineering [29], [50], such 

as bridges [33], infrastructures [32] and wind turbines [51]–[53].  

One case is shown in Figure 1-5, the mode of wind turbine blade is identified by using a 

vision-based operational modal analysis (OMA) [54] .The tests were conducted on a pitch 

controlled, variable speed wind turbine with a rotor diameter and tower height of 80 m. A 

system consists of four CCD cameras and retro-reflective markers to provide higher 

visibility. 
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Figure 1-5 A remote shooting system for operational modal analysis of wind turbine blades, on the blades 

and tower, a set of reflective markers are installed in advance [54]. 

The result shows measurement error was in the range of 5mm or 1/16,000 of field of view. 

The deformations on the turbine could be measured with an average accuracy of 25 mm from 

a measurement distance of 220 m. This case shows the capacity of vision-based method to 

monitor remote targets. 

1.2.1.3 Other pioneering applications 

Except for EMA and OMA, more and more new applications of vision-based method are 

found, due to the non-contact and full-field property. Consequently, an increasing number 

of outcomes on this topic from academic institutes and commercial companies are published 

on top journals in recent decades. Some typical examples are taken in last five years as 

follows.  

• Vibro-impact absorber 

To measure the vibration of a free ball vibro-impact absorber, the digital image correlation 

(DIC) combined with the high-speed camera is employed to capture the motion of absorber 

[35]. The vibro-impact absorber generally consists of two components, first one is a main 

structure window with a cavity, the second one is free oscillating mass which are interacted 

during the impact. However, the behaviour of ball and the contact area cannot be measured 

by classical accelerometer. 
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Figure 1-6 Photograph of vibro-impact absorber, the motion of ball is tracked using DIC [35] 

As shown in Figure 1-6, the vibro-impact phenomenon of ball can be captured by vision-

based method. That overcomes the difficulties encountered to measure the displacement of 

free oscillating mass with conventional sensors. 

• Marine propeller blades underwater 

The vision-based method was employed to monitor dynamic response of rotational structure 

under water [55], by carrying out extra calibration of cameras and correction of light 

refraction. In this test, 3D displacement fields of marine propeller blades in operation is 

measured using a pair of stereo cameras. This research shows advantage of remote 

monitoring for underwater rotating structure.  

 
Figure 1-7 The setup of vision-based measurement of a marine propeller blade under water [55] 

• Local damage detection 

The vision-based measurement was used to localize the damage[51], [56]. The 3D-DIC can 

measure anomalies of mode shapes and curvature mode shapes caused by local damage [57]. 

A razor cuts in circular and rectangular membranes with different boundary conditions is 

detected. Based on 3D-DIC, the locations of damage can be identified in the first two or 

three mode shapes. 
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Figure 1-8 The setup of 3D-DIC that include a pair of cameras and the light source, which collect images 

from two perspective synchronously [57] 

A novel method based on 3D-DIC is proposed to detect local damage without excitation 

signal and any added mass in membranes under different boundary conditions. 

1.2.1.4 Challenges in applications 

Inevitably, all applications face specific challenges in practice. For example, light condition 

and the image resolution in long-distance shooting is a big limitation in OMA. In contrast 

with OMA, the sampling frequency and extracting the small displacement amplitudes of 

modes at high frequency (generally about micrometre [58]) is also a great challenge for EMA. 

Because the object tested in EMA [59] is relatively small and generates higher frequency 

components. Thus, the analysis of dynamic behaviour in higher frequencies plays an 

important role in EMA. The other challenges also includes complex calibration for camera, 

computational cost etc.  

1.2.2 Existing methodology of vision-based vibration measurements 

The accelerometer collects vibrational acceleration directly, in contrast, the data collected 

from camera is a frame sequence, which requires a process of extracting vibrational motion 

from image. Currently, this extracting processing mainly uses a principle of window-based 

image registration[60], which belongs to an important subject ‘motion estimation’ in 

computer vision [61]. Based on this principle, three algorithms are most developed and used, 

i.e., digital image correlation[62]–[64], phase-based motion magnification (or optic flow) 

[65]–[67], and gradient-based optic flow[68], [69]. In this section, the theory, and 

applications of these algorithms are introduced and analysed respectively.  
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1.2.2.1 Digital image correlation 

The number and quality of published works displays that the digital image correlation (DIC) 

is the most common approach for vision-based modal analysis currently [1], [44], [70]–[72], 

which aims at measuring the 2D or 3D strain or displacement based on maximizing the 

correlation coefficient of given subset between frames [70], [73]. The speckle pattern is 

usually painted onto the object surface or that is offered by the texture of the specimen’s 

material to enable discrimination between different groups of pixels (subset). DIC technique 

is used to measure the full-field stress and strain of wind turbine blades were explored [74], 

[75] and results from DIC agree with strain gauge data well. Recently, the Laser-light speckle 

is associated  with DIC to avoid painting on surface of object [76] . 

Helfirck et al. [44] measured the mode shape of a dryer which show the mode shape in high 

frequency range cannot be measured when the displacement is less than the noise floor [77]. 

Although DIC involves a large amount of computation and limited by the noise floor, it is 

proved that DIC is a viable option for EMA and other vibration applications [72]. 

Based on a systematic uncertainty assessment of DIC, the result shows DIC can provide 

good results and a high (subpixel) displacement resolution, typically quoted at a hundredth 

of a pixel [78]. DIC can also be used to estimate the strain over a certain gauge length. The 

gauge test of 50 pixel, an uncertainty of 0.2 pixel on displacement estimate produce a 

maximum uncertainty in strain about 0.8%, however, the corresponding uncertainty can 

decline to 0.02 pixel while reducing the 7-pixel motion to 3.5 pixel.  

A high spatial density is another advantage of full-field measurement. A research showed 

model updating for localized parameter based on DIC and high-speed camera has a better 

performance than accelerometer [79]. 

For rotating structures, the vibration analysis is carried out by digital image correlation using 

image measured by cameras, which is applicable for constant and varying speed[80]. The 

crucial process is removing rigid body motion components from the primary responses. For 

this purpose, the translation vector and rotation matrix is calculated, which can denote the 

rigid transformation between positions in captured two neighbour images. The results of the 

experiments show that a higher accuracy and clearer spectra of response through getting rid 

of rigid body motions. If the vibration is subtle, the vibration with single frequency is more 
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identifiable. The results also show the misalignment of mode shape is the shortage of this 

method. 

By tracking the location of a particular marker, the vibration of a rotating beam is measured 

[81], as an electro-dynamic shaker excites the beam. But the requirement of test rig is very 

high, and the density is low due to the number of markers on structure is very few. In another 

case, a rotating wind turbine blade are measured using 3D-DIC, the motion contains both in-

plane and out-of-plane motion. The balanced and unbalanced turbine is compared, the 

balanced turbine showed two harmonic components on out-of-plane spectra. With adding 

weight, sub-harmonics occurs successively.  

1.2.2.2 Phase-based motion magnification 

The phase-based motion magnification [66], [82] or phase-based optical flow [51], [83] is 

another approach to estimate displacement for modal analysis, [65], [84], to which, the 

surface preparation is not needed [85]. The advantage is the phase of image is much more 

robust than original intensity data, such as it is not prone to be contaminated and it can 

determine motion field more accurately. Meanwhile, its computation cost is lower than 3D 

DIC and 3DPT, by avoiding the image registration in two stereo cameras. The local phase 

and amplitude are determined by filtering an image with the complex steerable pyramids, 

and then the constant phase contours are used to estimate the displacement or magnify the 

motion [67], [86].  

Chen et al. first identified the modes with phase-based motion magnification. Through 

cantilever beam and pipe test, modes were extracted and visualized. The phase-based motion 

magnification can be associated with DIC, 3D point tracking and other optical methods [87]. 

In [47], the modes of a 2.3 meter wind turbine blade are extracted by combining motion 

magnification and DIC, which shows the phase-based motion magnification can improve the 

signal to noise ratio (SNR) of the estimated displacement. However, the procedure of loading 

local steerable filter is complex and time-consuming, and the determination of parameters in 

the algorithm is difficult, especially the selection of frequency band to be magnified. Because 

the motivation of research is to magnify motion to human vision [88]. 

Furthermore, a Hilbert phase-based motion estimation is proposed, in which, the phase 

variation and physical motion is connected based on the Hilbert transform [89]. In addition, 

the original video is decomposed into mono-component signals by using the Butterworth 
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band-pass filter and peak-picking method. In simulated video, the identified correlation 

coefficient can reach 99.55%. A simply supported beam is tested for experimental validation 

to make comparison with conventional phase-based method, the Hilbert phase-based motion 

estimation showed an obvious superiority.  

1.2.2.3 Gradient-based optical flow 

As a universal algorithm, the gradient-based optical flow and its variants are also widely 

used  in image-based modal analysis [90], [91]. Besides a typical one LK-optical flow[68], 

the simplified gradient-based optical flow is developed recently [27], which takes a subset 

or a pixel as an independent sensor and linearizes the relation between displacement and 

intensity. However, compared with conventional optical flow method, the accuracy 

improvement of this approach is not quite noticeable. Afterward, a hybrid identification 

method that combines a high-speed camera with accelerometers is developed [26], 

nevertheless, the mode shape extracted is noisy and not reliable. 

1.2.3 Evaluation of window-based image registration (WIR) 

All above approaches can be summarized into a window (a local kernel) based image 

registration method[61], because all that take advantage of a neighbourhood operation, 

which could either be a subset (window/patch) in DIC or gradient-based optical flow, or be 

a local kernel for convolution with image in phase-based methods[61].  

 
Figure 1-9 Schematic of window-based image registration, its two steps are (a) and (b) respectively 

Figure 1-9 illustrate the basic procedures of window-based image registration, which first 

selects a set of windows and then match them individually between the adjacent frames. The 

difference of three algorithms is the norms used for registration as listed in Table 1-1. 

The inherent difficulty of these methods is the determination of window size. If the window 

size is too large, the displacement inside a window is aliased by averaging. Instead, if the 

window size is too small, the obtained result will be very noisy. In addition, the estimation 
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of displacement in each window is completely irrelative, which ignores the high correlation 

between responses of a dynamic system [92]. 

Table 1-1 Different norms used in three common window-based image registration 

Algorithm Norm of image registration 

Digital image correlation (DIC) max𝐶(𝑢, 𝑣) = ∑ ∑ (𝐼1(𝑥 + 𝑢, 𝑦 + 𝑣)𝐼2(𝑥, 𝑦))𝑦𝑥  [77] 

Phase-based Motion magnification 
𝐴𝜃(𝑥, 𝑦)𝑒

𝑗𝜙𝑖(𝑥,𝑦) = (𝐺2
𝜃 + j𝐻2

 𝜃) ⊗ 𝐼𝑖(𝑥, 𝑦) [83] 

min𝐸(𝑢, 𝑣) = ‖𝜙1(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝜙2(𝑥, 𝑦)‖
2 

Gradient-based optical flow min𝐸(𝑢, 𝑣) = ‖𝐼1(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝐼2(𝑥, 𝑦)‖
2 [68] 

In this rigid framework based on image processing, the bottleneck of measure accuracy is 

difficult to be broken through. In this sense, this research project devotes to introduce a novel 

framework based on array signal processing. Because the vibration is a distinctive motion, 

for which, motion on all spatial elements is correlated, that is a special situation cannot be 

considered, during computing in an image registration method. 

1.3 Research motivation 

Based on analysing pros and cons of window-based image registration methods, this Ph.D. 

project proposes a novel framework to improve accuracy, and computational efficiency of 

vision-based vibration measurements (VVM), so that can pave a way for broadening the 

applications of using high-speed camera for full-field vibration measurements. 

As the defects of window-based image registration is evaluated in last section, the desired 

framework should be designed: 

• To utilize all characteristic pixels to extract displacement rather than isolated 

windows. 

• To enhance SNR of desired signal to a detectable degree, especially in high 

frequency range. 

• To obtain dense spatial estimation of mode shape on pixel level, instead of results 

from sparse windows. 

• To improve the computational efficiency of algorithms. 

To achieve these goals, this study conducts a cross-disciplinary research, in which the 

methodology of array signal processing (ASP) is originally introduced into VVM based on 

the similarity between proposed pixel array and other sensor arrays in respect to the basic 
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underlying principle. In the proposed framework, a signal pixel or a small subset serve as a 

displacement sensor [38], and then a set of pixels in image is taken as a sensor array to 

improve signal quality. It should be noted that here the sensor specifies a unit measuring 

displacement. The history and principle of ASP is detailed in next section, and chapter 2 

demonstrates how pixel array framework is developed by an analogy with other ASP 

applications. 

1.4 Background of array signal processing 

As an important area in the field of signal processing, array signal processing (ASP) focus 

on processing spatial signals sampled by a sensor array. The history of array signal 

processing dates back to World War II’s antennas array. Nowadays, it has found wide 

applications to most sensor arrays, such as radar applications [93], wireless communications 

[94], acoustics [95] and so on [96]. The same underlying principle of ASP can govern 

different kinds of wave fields, which commonly includes: 1) Acoustic waves including 

sound waves, 2) electromagnetic waves including microwave and light, 3) mechanical waves 

in solids including vibrations.  

1.4.1 Applications of array signal processing 

In this section, the microphone array antenna array are taken to instantiate applications of 

ASP on acoustic wavefield and microwave wavefield. 

1.4.1.1 Antenna array 

An antenna array is a set of individual antennas to transmit or receive radio signals jointly. 

The antenna array (sometimes called phased array) often takes advantage of the specific 

phase relationship to enhance the power of radio wave in a desired direction, this gain of 

signal is also known as directivity [97]. For example, radar system utilize electronic scanning 

arrays, in which a digital phase shifter controlled by a computer can steer the direction 

without moving the antennas, as shown in Figure 1-10. 

The development of phased array antennas was originally started from radar systems for 

military use, however, that has found uses in many new areas that require directional 

antennas, like Bluetooth, wireless communication, satellite communications, and wireless 

local area network (WLAN). It can be expected in future that the scope of applications will 
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boom in such as vehicle radar, spanning IoT, and even wearable electronics, since these 

antenna arrays become smaller and more intelligent [98]–[101]. 

 

Figure 1-10 Phased array antennas of radar system [99]  

However, from perspective of principle behind these applications, the methods of antenna 

array signal processing (AASP) like spatial filtering works in a similar way, and even the 

objectives are basically similar, which are to enhance signal from direction of interest, or to 

find the direction of signal source.  

1.4.1.2 Microphone array  

A microphone array is a set of acoustic transducers arranged in a particular geometry. The 

applications includes systems for enhance voice, surround sound technologies, acoustic 

source localization, robotic navigation and so forth [95], [102]–[106]. Accordingly, the 

functionalities of microphone array signal processing (MASP) can be mainly classified as 

the sound enhancement and source localization. An application of sound source localization 

in condition monitoring is acoustic camera (or acoustic imaging) as shown in Figure 1-11. 

The acoustic camera consists of 64 microphones arranged as spiral, which can localize the 

sound source within a small range as shown by color contour. The location is derived by 

applying the adaptive spatial filtering on 64 channels of acoustic signals.  
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Figure 1-11 An acoustic camera is used to conduct condition monitoring of a compressor [107] 

Actually, a large number of methods for MASP are borrowed and generalized from the 

method for AASP. However, the issues in MASP cannot be well tackled based on the 

borrowed AASP methods. Because there are still many distinctions between the acoustic 

signal collected by microphone array and the radio wave received by antenna. For example, 

the microphone array usually processes a broadband signal, or the environmental noise and 

the signals are highly non-stationary.  

1.4.2 Conceptual framework of array signal processing 

Although various applications are found, many textbooks and theories focus on the common 

fundamental principle without a reference to any particular application [96], [108], [109]. 

Because the mathematic framework of ASP is the same across different applications. In 

theory, the array signal model can be generalized as following expression [108], 

𝒙(𝑡) = 𝑨(𝜃)𝒔(𝑡) + 𝜼(𝑡) (1-1) 

𝒙(𝑡) represents the snapshot data received by array elements [108], which denotes signals 

emitted from several signal sources. 𝑨(𝜃) is the array manifold matrix determined by the 

direction-of-arrival (DOA) 𝜃 of signal source, and 𝜼(𝑡) represents the noise[110]. 

 
Figure 1-12 A schematic of that microphone array enhances acoustic signals based on spatial filtering 
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As signal model shown in Figure 1-12, received signals of one signal source 𝒔(𝑡) have 

different phase, which can be attributed to that 𝒔(𝑡)’s arrival time on each sensor is different. 

There are two major functionalities by processing this model, first is estimation of spatial 

parameters of wavefield and the second is enhancement of some signals of interest [103], 

[110]. The spatial filtering (beamforming) is the central methodology to achieve these goals, 

which is a processor to operate weighted sum of array elements [111], 

𝒚(𝑡) = 𝒘𝐻𝒙(𝑡) (1-2) 

in which 𝒘𝐻 is the conjugate transpose of weight vector, 𝒚(𝑡) is the filtered signal. Overall, 

there are two major categories data-independent or adaptive spatial filtering, that is classified 

depending on whether the statistics of signal are considered in forming the spatial filters 

[110]. 

Figure 1-12 shows an example of spatial filtering on microphone array. The delay of arrival 

time is a parameter relating to the angle 𝜃 (direction) of signal source [112]. The weight 

vector is designed to shift phase of signals to compensate temporal delay from a selective 

direction, also known as a ‘delay and sum array’[113]. it is to achieve enhancement of 

desired signal from selective direction and suppression of noise and interference[102], [114], 

[115]. 

The adaptive spatial filtering is also widely used to estimate the parameters [116], [117]. In 

addition, another important parameter estimation is subspace of eigenstruture method, such 

as the MUSIC (MUltiple SIgnal Classification) and ESPRIT (estimation of signal parameters 

via rotational invariant techniques)[108], [118]. 

1.5 Research aim and objectives 

In order to meet the increasing demand for precision and applicability of full-field vibration 

measurement in modal analysis and condition monitoring, this PhD research aims to develop 

a novel framework based on the principle of array signal processing that is targeted at 

extracting weak vibration signal more accurately and robustly from high-speed camera 

footages, which can fulfil the detection of diagnostic feature (or identify modal parameters). 

To achieve this research aim, the main objectives are identified and prioritized as follows: 
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• To set up a novel framework that can incorporate from measuring vibration to extracting 

features (or identifying parameters), which can accomplish the vision-based modal 

analysis and vision-based condition monitoring. 

• To develop algorithms that can enhance SNR of vibration signal, especially for weak 

signal in high frequency. 

• To develop algorithms that can achieve accurate and dense estimation of mode shape. 

• To carry out simulation study by programming and using commercial software, in order 

to verify theoretical calculation and guide experiments. 

• To design and implement a set of experiments, in order to validate proposed methods 

and expand applications of proposed methods. 

1.6 Position of proposed method in research field  

To clarify the status of proposed method, a schematic is drawn to illustrate where the 

proposed method is positioned at the research field, as shown in Figure 1-13. Firstly, the 

objective of research is clearly the same to conventional frameworks, which is to estimate 

weak vibration by using a high-speed camera. The conventional frameworks can be tracked 

back to the topic of motion estimation in the discipline of computer vision. 

 
Figure 1-13 A schematic of where the position of proposed method is in research field. 

Nevertheless, the proposed framework exploits the principle from a completely different 

discipline, i.e., array signal processing. That depends on an insight on the inherent similarity 

between pixel array and other sensor arrays, even though the camera is used in vibration 
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measurements. This cross-discipline research drive the improvement of algorithm 

performance and has been verified by experiments, which is detailed throughout this thesis.  

1.7 Thesis structure 

This thesis is organised into nine chapters to present the work done to achieve the research 

aim and objectives. In Figure 1-14, the structure of this thesis is illustrated by proposed key 

equation and diagram, and the contents of each chapter are briefly listed below: 

Section 1 Introduction 

Chapter 1 – The first chapter presents outlook of this project and current status of 

this field. 

Section 2 Proposed Methodology 

Chapter 2 – This chapter describes overview of proposed methodology based on 

analysis of signal model. 

Chapter 3 – This chapter describes methods for forming a pixel array from an image. 

Chapter 4 – This chapter proposes the spatial filtering method to enhance signal. 

Chapter 5 – This chapter details estimate of mode shape by using iterative and non-

iterative methods.  

Section 3 Modelling and Simulation 

Chapter 6 – This chapter begins simulation study, which includes the finite element 

analysis and synthetic video analysis. 

Section 4 Experiments 

Chapter 7 – This chapter records two experiment of modal analysis on a free-free 

stainless beam and wind turbine blade. 

Chapter 8 –This chapter conducts two experiment of condition monitoring on a 

reciprocating compressor and a gearbox.  

Section 5 Summary 

Chapter 9 – The conclusions, achievements and novelty of the research and 

suggestions for future work are presented in the last chapter. 
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Figure 1-14 A schematic structure of the thesis, (a) is Eq. (2-1), which represents the model of the formed 

pixel array signal 𝒖, (b) is Eq. (2-2), which denotes enhancement of modal signal 𝒛 based on spatial filtering, 

(c) is Eq. (4-6), which denotes the estimate of mode shape based on the optimization of weight vectors 𝑾. 
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In addition, the published materials are incorporated in thesis following the guidance of 

university. [1]-[5] in the list of publications are declared as my own written works, the details 

of reproduction are annotated in the introduction of each chapter and cited at that specific 

paragraph. 

1.8 Key finding 

This chapter illustrates the research status thoroughly by reviewing important literatures 

about this PhD project. Afterwards, the research aim and objectives are proposed aiming at 

the defects on existing methods.  
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2 OVERVIEW OF PIXEL ARRAY FRAMEWORK 

This chapter sketches out the key conceptions and workflow of proposed pixel array 

framework (PAF). The research dedicates to surpass accuracy of conventional vision-based 

vibration measurements by bringing in the principle of array signal processing. First, two 

main targets in ASP (signal enhancement and spatial parameter estimation) is analysed from 

perspective of pixel array. Subsequently, to demonstrate the position of PAF in research 

field, an analogy analysis is carried out between pixel array and microphone array. 

Furthermore, three steps of workflow are outlined, which are corresponding to the content 

of Chapter 3 to Chapter 5 respectively. Finally, an overall comparison with conventional 

methods is drawn to illustrate the deep reason why the PAF can achieve these advantages. 

It should be noted that some paragraphs in this chapter are expansion or reproduction of 

the published materials [1] in list of publications, such as section 2.1.1 and 2.2, and the 

specific paragraphs are annotated by a citation. 

 

 

Highlight:  

• The novel framework based on array signal processing is proposed.  

• The signal model differs between pixel array and conventional array. The 

conventional array has phase shift generally but pixel array has amplitude variation.  

• The proposed methodology specializes the algorithm of array signal processing to 

address particular issue in this research. 
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2.1 Conceptual framework of pixel array processing 

2.1.1 Array signal model of pixel array 

The most significant distinction between pixel array and other sensor arrays is that the signal 

amplitude changes over different pixels, instead of phase shift. Figure 2-1 shows a resonant 

object, the mode shape shows a form of standing wave [92]. Each pixel can capture a local 

element of this standing wave, all elements oscillating in phase, but their amplitudes are 

different. That implies that the scale and direction (positive or negative) of collected signals 

are different. The signal model should obey the principle of modal superposition [9], [119], 

𝒖(𝑡) = 𝜱(𝑥)𝒛(𝑡) + 𝜼 (𝑡) (2-1) 

in which, 𝒖(𝑡) ∈ ℝ𝑚 is the output of pixels that collects the responses at dense multiple 

points, 𝒛(𝑡) = [𝑧1(𝑡), 𝑧2(𝑡) … 𝑧𝑛(𝑡)]
𝑇 ∈ ℝ𝑛𝒛(𝑡)  denotes a group of modal signals at 𝑛  

orders of natural frequencies [111], as shown in Figure 2-1, the array structure matrix 𝜱 =

[𝝋1, 𝝋2, … , 𝝋𝑛] ∈ ℝ
𝑚×𝑛 denotes mode shape with 𝑛 orders, i.e., the amplitude of modal 

signal on that spatial point, and finally, 𝛈(𝑡) ∈ ℝ𝑚 is the random noise components. 

Besides the resonant object, Eq. (1-1) can also conceptualize any other vibrating objects. 

The conception of 𝜱  can be broadened to be the spatial element’s amplitude of its 

corresponding signal 𝒛𝑖, 𝒛𝑖 can be a wideband signal, not merely a mode. For the case that 

𝜱 is not a mode shape, 𝝓𝑖 denotes amplitude of a travelling wave 𝒛𝑖 in every spatial points.  

 
Figure 2-1 Schematics of modal superposition of a free-free beam, the dynamic response are superposed by 

several modes. 
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This array signal model demonstrates the signals received by pixel array contains the same 

wave 𝒛(𝑡) and 𝜱(𝑥) determines different amplitudes of spatial elements. 

2.1.2 Vibration signal enhancement based on spatial filtering 

Enhancing the vibration signal to be detected based on spatial filtering is first goal of this 

research. According to the definition of spatial filtering (beamforming) [111], it means a 

weighted combination of array signals, which is illustrated as Figure 2-2, 

𝒛̂(𝑡) = 𝑾𝑇𝒖(𝑡) (2-2) 

in this pixel array case, 𝑾 = [𝒘1,𝒘2,… ,𝒘𝑛] ∈ ℝ
𝑚×𝑛

 is the weight vectors. As 𝒛(𝑡) is desired 

signal to enhance, the output 𝒛̂(𝑡) of this filter is designed to be an estimator of 𝒛(𝑡), because 

the goal of spatial filter is to enhance modal signal 𝒛(𝑡).  

 

Figure 2-2 A schematic of that pixel array enhances vibration signal 

The proposed pixel array is very similar to that of other sensor arrays like microphone array 

as shown in Figure 1-12 but with difference in array weight formulation. Because the 

difference in array signal model, there is no phase shift, but amplitude shift. Comparatively, 

as shown in Figure 2-2, the weight vector for the pixel sensor array is designed to change 

amplitude of signals along the mode shape, which can be described as a ‘matching and sum 

array’[92]. Intuitively, the weight vector is similar to flip ‘green waves’ to ‘red waves’ to 

unify the direction of vibration before sum in Figure 1-12. 

2.1.3 Mode shape estimation 

Estimating mode shape 𝜱(𝑥) is another goal in vision-based vibration measurements, which 

should be incorporated into the issue of parameter estimation in ASP. According to the 

property of vibration, 𝜱(𝑥) can be either a stand wave in modal analysis or the propagation 

for a travelling wave in rotating machinery. 
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According to the theory of ASP, the adaptive spatial filtering, and subspace methods are two 

effective tool for parameter estimation [108], [118], which were used to estimate the 

direction of arrival 𝑨(𝜃) successfully. In this study, aiming at the signal model Eq. (1-1), a 

novel ASF based on mode shape searching and a subspace method based on SVD are 

developed to estimate the mode shape. 

2.1.4 Analogy analysis between pixel array and other sensor arrays 

The analogy analysis between the pixel array and other arrays are laid in Table 2-1.  

Table 2-1 Comparison between the pixel array processing and conventional array processing 

In terms of two array signal models, they both can be expressed by using a linear matrix 

multiplication. While the difference exists in the physical meaning of equation, in which the 

spatial matrix can be either the direction of arrival 𝑨(𝜃) or mode shape 𝜱(𝑥). However, in 

essence, the basic underlying principle is the propagating wavefield identically, regardless 

of the signals are collected from whether an acoustic wavefield 𝒙(𝑡) or a vibration wavefield 

𝒖(𝑡) on solid. This same fundamental principle makes the application of ASP can cut across 

different disciplines.  

As the example of microphone array shown in Figure 1-12, the weight vector is designed to 

shift phase of signals to compensate temporal delay from a selective direction, also known 

as a ‘delay and sum array’ [102], [114], [115] [113]. Comparatively, the pixel array is known 

as a ‘matching and sum array’, they all can achieve enhancement of desired signal and 

suppression of noise. 

 Conventional array processing Pixel array processing 

Signal model 𝒙 = 𝑨(𝜃)𝒔 + 𝜼 𝒖 = 𝜱(𝑥)𝒛 + 𝜼 

Array signal Sensors’ output  𝒙 Pixel’s output  𝒖 

Spatial matrix Phase shift  𝑨 of DOA 𝜃 Mode shape  𝜱 along pixel coordinate 𝑥 

Signal of interest Signal transmitted from a source  𝒔 Modal displacement  𝒛 

Methodology 𝒚 = 𝑾𝑇𝒙 𝒛̂ = 𝑾𝑇𝒖 

Spatial filtering Linear combination of array signals Linear combination of array signals 

Parameter 

estimation 
Estimate Direction of arrival 𝜃 Estimate mode shape  𝜱 

Schematic Figure 1-12 Figure 2-2 
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2.2 Workflow of pixel array framework  

As the conceptions of array signal processing is introduced, this research proposes a novel 

framework for vision-based vibration measurements [92]. The proposed framework mainly 

includes three key modules: pixel sensor array formation, array signal processing, and the 

feature extraction for modal identification or condition monitoring, which is illustrated in 

Figure 2-3. 

  
Figure 2-3 Schematic of the proposed framework, which is comprised of array formation, array processing 

and feature extraction 

First, to form a sensor array by selecting pixels sensitive to displacement in a reference image 

[111]. By taking each pixel or a subset as a displacement sensor, the performance as criterion 

for these sensors.  

Second, to process the signal matrix collected by array. One of proposed methods is an 

adaptive filter to match mode shape and enhance modal displacement. Based on proposed 

array signal model, as illustrated in Figure 2-4 (a), the oscillating intensity captured by pixels 

at different space elements are combined to enhance each modal displacement. According 

to modal superposition, each dynamic response can be decomposed into several modes [111], 

as shown in Figure 2-4 (b). In each mode, all space elements are oscillating with the same 

frequency and in phase. As shown in Figure 2-4 (b), its mode shape 𝜱 displays a form of 

standing wave, in which the motion direction is opposite across nodes, as denoted by the red 

and green arrow, respectively. The weight vectors 𝑾 are thus designed for this structure, 

which is set to match the mode shape, so that the constructive waves will be generated.  
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Figure 2-4 Schematic diagram of the proposed method,  (a) Illustration of using a pixel sensor array to 

enhance modal displacement signal and (b) the principle of modal superposition [111] 

Third, to extract feature from proposed time sequence and spatial characteristics for purpose 

of condition monitoring or modal analysis. In modal analysis, that is modal identification, in 

which a frequency domain method, the Least-squares rational function (LSRF) is used to 

identify modal parameters including the natural frequency and damping ratio. Alternatively, 

the feature extraction method for diagnosis such as time-synchronous signal average is used 

for condition monitoring as one instance.  

2.3 Contrast with window-based image registration 

This section compares the theory and the properties of pixel array framework (PAF) with 

the window-based image registration, as shown in Table 2-2.  

Table 2-2 Comparison between the spatial filtering and window-based methods 

It can be seen in Table 2-2, that the prime difference between the two methods is the 

principles behind them. The local operator used in window-based methods is versatile for 

 Pixel array framework Window-based image 

registration 

Range of application Mechanical vibration No constraint of motion form 

Principle Array signal processing Computer vision 

Displacement sensors One pixel One window (subset) 

Operation on sensors To sum them up coherently To use them incoherently 
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different forms of motion such as measuring strain or deformation. However, in modal 

analysis, all space elements oscillate around an equilibrium point at the same frequencies. 

Aiming at this distinctive motion, the PAF adds the correlated signals coherently to extract 

and enhance vibration information. 

2.4 Key findings 

This chapter overlooks overall framework of this research, which is detailed in following 

three chapters, i.e., formation of sensor array, signal enhancement and mode shape estimate. 

According to above analysis, the performance of array processing is highly potential to 

surpass image registration in theory. Therefore, the project aims to propose a novel approach 

by specializing algorithms of array signal processing to address particular issue in vision-

based vibration measurement. 
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3 PIXEL ARRAY FORMATION BASED ON EDGE 

DETECTION 

Generally, the structure of conventional sensor arrays is determined at the stage of 

hardware design. However, the proposed pixel array is distinctive because it needs 

determining the array based on the particular captured image. In formation of this array 

structure, only pixels located at the edge are selected, because these characteristic pixels 

are sensitive to estimate displacement. Therefore, an edge-detection-based formation 

approach is proposed for pixel array framework in this chapter.  

First, in order to pick out the pixels that are sensitive to vibration signal, the transfer function 

between pixel intensity and displacement is investigated, which is influenced by the point 

spread function (PSF). Second, the influence of displacement amplitudes (motion is small or 

large) on characteristic of pixel-equivalent sensor is analysed. Therefore, the Euler method 

and Lagrange method are developed for large and small motion. Meanwhile, the obtained 

signal quality is evaluated based on SINAD. 

It should be noted that some paragraphs in this chapter are expansion or reproduction of 

the published materials [1] and [2] in list of publications, such as section 3.1 and 3.2, and 

the specific paragraphs are annotated by a citation. 

 

Highlight:  

• A transfer function is used to indicate the relationship between pixel intensity and 

displacement. 

• Point spread function can blur the image and non-linearize transfer function.  

• Euler Description is applicable to small displacement within the scope of gradient 

area. 

• Lagrange Description is applicable to large displacement over the gradient vanishing 

area. 
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3.1 Equivalent displacement sensor by pixels 

As sensors are fundamental elements for collecting signals in of ASP, to determine the 

characteristics of sensor and array structure (geometry of sensor locations) are necessary 

before the ASP. For the proposed pixel array, not all pixels of image are effective to measure 

displacement. For example, the motion have no impact on the intensity of a pure color region 

without obvious texture. Because those pixels’ intensity are equal to other neighbour pixels 

i.e., the image gradient is zero. In addition, it is important for the equivalent sensor (pixel) 

to figure out its transfer function between displacement (input) and pixel intensity (output) 

and the sensor characteristics in the formation of pixel array [92]. 

3.1.1 Point spread function 

The basic principle of vision-based vibration measurement is to estimate displacement based 

on the change of pixel intensity. The effect of displacement to intensity is often simplified 

as a linear relationship [38]. However, this assumption cannot be strictly satisfied, due to the 

effect of image blurring[61]. Moreover, the displacement is a pixel-level oscillation in 

vibration measurement, so the non-linearity cannot be neglected relative to the micro-motion 

scale indiscreetly [92] . 

 
Figure 3-1 (a) The schematic diagram of experiment (b) Illustration of image blurring process and (c) One-

dimensional representation of the blurring process 

Figure 3-1 shows the process of the blurring in respect of video shooting, image, and function 

expression respectively. To carry out the theoretical analysis of intensity-displacement 

relationship, an ideal image is synthesized in a numerical way, in order to simulate a sharp 

edge on experimental object. In experiment, a sharp edge is often created by painting black-
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white stripes onto the surface of target object to improve contrast of image. The region shown 

in Figure 3-1 (b) is the simplified image of experimental object, which only contains a bright 

and dark area without transitional region, and for simplification, the edge between two areas 

is set to be horizontal exactly. In this case, each column has the same value, as one column 

shown in Figure 3-1 (c). The advantage of this simplification is that the intensity-

displacement relationship can be investigated under a single coordinate first, before being 

expanded the conclusion to two-dimension case. 

When the pattern edge of object projects on image, the sharp edge will be blurred into a 

smooth curve due to the defocus aberration [61]. The point spread function (PSF) is often 

used to describe this blurring effect, the blurred image can be represented by convolution of 

the predicted sharp image and PSF: 

𝐹(𝑥, 𝑦) = 𝑝(𝑥, 𝑦) ∗ 𝑏(𝑥, 𝑦) (3-1) 

in which, 𝑝(𝑥, 𝑦) is a sharp edge described by step function, 𝑏(𝑥, 𝑦) is the PSF kernel, 

symbol of ∗ represents a convolution operation and 𝐹(𝑥, 𝑦) is the blurred image [68]. In 

engineering field, PSF is approximated typically by using a Gaussian profile [120]. 

To attentively investigate the transfer function of displacement and intensity, one row is 

picked out of an image to build a one-dimension function 𝐹(𝑥). Figure 3-1 (c) illustrates the 

one-dimensional representation of convolution: 𝐹(𝑥) = 𝑝(𝑥) ∗ 𝑏(𝑥) . The PSF is 

approximated by the Airy disk, that results in 𝐹(𝑥)  forming a cumulative distribution 

function (CDF) of Gaussian distribution. This profile causes the nonlinearity between 

intensity and displacement. 

3.1.2 Transfer function between intensity and displacement 

When the displacement 𝑢 needs to be solved in a video footage, at least two frames 𝐹(𝑥) 

and 𝐼(𝑥) need to take into consideration. According to the principle of optical flow [68], 

displacement 𝑢  is solved by minimizing measure of difference between the translated 

 reference frame 𝐹(𝑥 + 𝑢)  and current frame 𝐺(𝑥) . That is to say, translate the frame 

𝐹(𝑥 + 𝑢) to match current frame, that turns out the distance 𝑢 is: 

𝐺(𝑥) ≈ 𝐹(𝑥 + 𝑢) (3-2) 

Under pixel-level displacement, this equation can define the relationship between intensity 

of single pixel and its received displacement [121], where the current intensity 𝐼(𝑥) is viewed 
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as output of displacement 𝑢  [38], its mapping between input 𝑢  and output 𝐼(𝑥) follows 

𝐹(𝑥 + 𝑢) . In optical flow methods, the relationship often simplified as, 

𝐹(𝑥 + 𝑢) = 𝐹(𝑥) + 𝐹′(𝑥)𝑢 + 𝑜(𝑢) (3-3) 

in which, 𝐹(𝑥) and 𝐹′(𝑥) are intensity and gradient at pixel 𝑥 respectively, 𝑜(𝑢) represents 

a higher order infinitesimal of displacement 𝑢. Sometimes, a more accurate model contains 

the second derivative is used as, 

𝐹(𝑥 + 𝑢) = 𝐹(𝑥) + 𝐹′(𝑥)𝑢 +
𝐹′′(𝑥)

2
𝑢2 + 𝑜(𝑢2) (3-4) 

Form perspective of a sensor, and the measured intensity can be taken as a transfer function 

𝐹(𝑥 + 𝑢) plus a measurement error. 𝐹(𝑥 + 𝑢) in Eq. (3-4) takes the pixel coordinate 𝑥 as 

parameter. Furthermore, 𝐹(𝑢) can be expressed by using a cumulative normal distribution 

function to approximate the Airy disk as point spread function (PSF), that yields, 

𝐹(𝑢, 𝑥𝑖) =
𝑅

2
erf (

𝑢 + 𝑥𝑖 − 𝜇

√2𝜎
) + 𝑍𝑜 (3-5) 

In this expression, 𝑒𝑟𝑓  is the Gaussian error function [122], which is the function of 

cumulative Gaussian distribution. Additionally, 𝑅  denotes the span of total range, 𝑍𝑜 

denotes zero offset at centre point, 𝑥𝑖  is the pixel coordinate. 𝜎  is the variance in error 

function, which reflects the radius of Airy Disk. 𝜇 denotes the central points of cumulative 

distribution function (CDF) [123]. Then when the measure noise of camera is considered, 

𝐼(𝑢, 𝑥𝑖) = 𝐹(𝑢, 𝑥𝑖) + 𝜂 (3-6) 

by which, as the output of transfer function, the intensity value 𝐼(𝑢, 𝑥𝑖) on pixel 𝑥𝑖 can be 

obtained for this one-dimension case. In Eq. (3-6), 𝜂 denotes the random image noise. 

3.1.3 Characteristics of equivalent sensor 

To check the omitted nonlinear term 𝑜(𝑢) in Eq. (3-3), it can be ignored in the conversion 

between measured signal (intensity) into wanted signal (displacement) generally. In this case, 

a linear sensitivity 𝑆 = 𝑓(𝑥) is generally used to simplify the transfer function as illustrated 

in Figure 3-2. 
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Figure 3-2 Schematic of transfer function of a single pixel, which is not accurate if the displacement is larger 

than the effective measure range. 

In Figure 3-2, the blue one denotes the actual output-input curve of measured intensity, the 

red line denotes the linearized curve by using sensitivity 𝑆 . The characteristics of this 

equivalent sensor are expatiated individually as follow. 

• Sensitivity 𝑆 = 𝑓(𝑥𝑖) is a linear transfer function shown as the slope of ideal curve 

in Figure 3-2. This will determine the strength of signal collected by a pixel 𝑓(𝑥𝑖). 

• Nonlinearity 𝑁𝐿 = 𝑜(𝑢)  is deviation of an actual transfer function from the 

linearized transfer function, which indicate the distortion in collected signal. It can 

be expanded further into  

𝑁𝐿 =
𝑓′(𝑥𝑖)

2
𝑢2 +

𝑓′′(𝑥𝑖)

6
𝑢3 +⋯ (3-7) 

• Area division:  

o Linear area refers to distortionless area, in which the error between ideal 

curve and actual curve is small enough to ignore. It specifies the region with 

nonlinearity is less than 5%.  

o Nonlinear area refers to area with distortion is too large to ignore, even than 

linear components, but the gradient is not zero. 

o Vanishing gradient area refers to the region’s gradient is zero. If pixel locates 

at this area, the intensity cannot respond to displacement, so that only noise 

can be measured. 
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• The sensor resolution Δ𝑥𝑚𝑖𝑛 or measurement resolution is the smallest change that 

can be detected, which is also called quantization. For example, if the color bit is 8, 

the resolution should be Δ𝑥𝑚𝑖𝑛 = 1/256. 

• Drift or zero offset 𝑍𝑜 is defined as the output signal that slowly changes independent 

of the measured property. It is the initial intensity without displacement at each pixel 

𝑍𝑜 = 𝐹(𝑥𝑖) at initial position 𝑥𝑖.  

• Span of total range 𝑅  is distance of maximum and minimum measurable value, 

which depends on the contrast of this area. 

The above characteristics reflects the performance of equivalent sensor, especially the 

sensitivity and non-linearity, because the sensitivity determines the strength of output signal, 

and the nonlinearity determines the degree of signal distortion, which will be investigated in 

following sections. 

3.2 Evaluation of signal quality 

According to above analysis, the collected signal consists of desired signal, noise, and 

distortion, all of which are associated with subset size. A comprehensive indicator is required 

to evaluate the performance of each pixel sensor. The signal-to-noise and distortion ratio 

(SINAD) is used as an index because it can involve signal, noise, and distortion together to 

judge the signal quality. 

3.2.1 Distortion caused by nonlinearity 

Due to the analysis of nonlinearity, its impact on error of signal is investigated here [92]. As 

one pixel is taken as a sensor measuring displacement, its sensitivity is different at different 

position. The blue curve shown in Figure 3-3 represents actual output-input curve Eq. (3-8) 

in a small region of interest (ROI), just like Figure 3-1 (b) and (c), 

𝐼𝐶(𝑢; 𝑥) = 𝐹(𝑥 + 𝑢) (3-8) 

in which the noise is set as 𝜂 = 0 here, as only is the effect of nonlinearity surveyed now. 
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Figure 3-3 Sensor characteristics of pixels at different locations on one edge 

The red straight lines are linearised transfer function of different pixels 

𝐼𝑓(𝑢; 𝑥𝑖) = 𝐹(𝑥𝑖) + 𝐹′(𝑥𝑖) × 𝑢 (3-9) 

The nonlinearity can be therefore derived by:  

𝑒𝐼(𝑢; 𝑥𝑖) = 𝐼𝐶(𝑢; 𝑥) − 𝐼𝑓(𝑢; 𝑥𝑖)  (3-10) 

which are shown as the clearance between blue curve and red lines in Figure 3-3. 𝐼𝑓(𝑢; 𝑥𝑖) 

of three pixels has significant difference of the sensitivity and nonlinearity, that reflects the 

sensitivity and nonlinearity depending on pixel location 𝑥 in Figure 3-3. 

Subsequently, the static input 𝑢  is replaced by a dynamic input 𝑢(𝑡)  to investigate the 

distortion caused by nonlinear transfer function. In frequency domain, the signal distortion 

will produce a bunch of unwanted frequency components [124], [125], as shown in Figure 

3-4(d), which can be classified as two types: harmonic distortion is the harmonics of rigid 

mode [61] and intermodulation distortion is sideband of normal mode [62]. Harmonic 

distortion is many high-order harmonics of fundamental and intermodulation harmonics is 

sideband of high frequency modes. These distortions will attenuate the original frequency 

components. 

To simulate a response of hammer test, the displacement of a damping vibration signal is set 

as the input 𝑢(𝑡),  

𝑢(𝑡) = 𝐴1𝑒
−𝑟1𝑡 cos(2𝜋𝑓1𝑡) +𝐴2𝑒

−𝑟2𝑡 cos(2𝜋𝑓2𝑡) + ⋯ (3-11) 

response 𝑢(𝑡)can contain 𝑛 orders of mode theoretically, but here just a rigid mode at 𝑓1 =

3 Hz and a normal mode at 𝑓2 = 3 Hz are set, because that is sufficient to reflect two kinds 

of distortion. Besides, 𝐴𝑖  denotes the amplitude of modal signal, 𝑟𝑖  denotes the damping 

ratio of that mode. Then to substitute Eq. (3-11) 𝑢(𝑡) into Eq. (3-8) and Eq. (3-5), that yields 
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𝐼𝑐(𝑡, 𝑥𝑖) = 𝐹(𝑢(𝑡), 𝑥𝑖) (3-12) 

According to Figure 3-4, the nonlinearity exists in the collected signals, Figure 3-4 illustrates 

the distortion that the nonlinearity imposed on original signal. Figure 3-4(a) represents a 

region of image including five pixels. It shifts left and right following a displacement 𝑢(𝑡) 

in Figure 3-4 (c). Figure 3-4 (b) shows intensity signals captured at location 𝑥1, 𝑥2 and 𝑥3 

with image noise. Additionally, waveforms show an obvious distortion due to the nonlinear 

profile, this phenomenon can also be found in experimental data.  

 
Figure 3-4 Intensity signal of different pixels captured under motion (a) ROI of image, (b) response: intensity 

signal, (c) excitation displacement signal and (d) spectrum of the real output signal 𝐼𝐶(𝑡)  

3.2.2 Image Noise 

The image noise is determined by many factors comprehensively, which is described by a 

noise model, in which the quantization error is studied particularly [126]. Because the 

displacement is possible to result in change of intensity under one color-bit. It is potential to 

be a great influence of image noise.  

The error of quantization can be either periodical or random, which is determined by 

characteristics of the input signal. When the input is a periodic signal, the quantization will 

produce a periodic error, which distributes at certain frequencies. In contrast, when the input 

signal contains random component, the quantization error will be random. The quantization 

error is uniformly distributed between −1/2 LSB and +1/2 LSB, hence it is related to the 

resolution 𝑄, which is the color bits of pixel in this image case. The signal-to-quantization-

noise-ratio (SQNR) is used to indicate the image noise, 
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𝑆𝑄𝑁𝑅 ≈ 1.761 + 6.02𝑄 (𝑑𝐵) (3-13) 

where the input signal is a full-scale sinusoidal wave. 

3.2.3 Signal-to-noise and distortion ratio 

Based the above analysis, the components consist of the signal, distortion, and noise, in all 

of which, the signal is desired component, others are unwanted components [92]. To 

consider them comprehensively, the signal to noise and distortion (SINAD) is adopted to 

evaluate the performance of each pixel, because it allows to take all the signal strength, noise 

influences and nonlinear distortion into account [127]. That can be expressed as, 

𝑺𝑰𝑵𝑨𝑫 =
𝑃𝑠

𝑃𝑑 + 𝑃𝑛
 (3-14) 

where the power of linear component 𝑃𝑠 = 𝐸[𝐼𝑓(𝑡)
2] represents the power of signal, the 

nonlinear error 𝑃𝑑 = 𝐸[𝑒(𝑡)
2]  represents the power of distortion, and 𝑃𝑛 = 𝐸[𝜂(𝑡)2]  is 

noise power [128]. 

By calculating SINAD of 𝑥1, 𝑥2, 𝑥3, it yields 86.5 2.15 0.57, respectively. Furthermore, it 

shows that trend of SINAD reaches the maximum at the centre of edge and gradually 

decreases to zero towards both sides. In this area, only a part of pixels is sensitive to 

displacement. For example, if the pixel has no pattern, its SINAD will be zero or very small. 

Obviously, this pixel has no contribution to measure displacement.  

 
Figure 3-5 Comparison of SINAD between the proposed method and window-based method, (a) pixels 

selected based on two kinds of methods on image, (b) SINAD of selected pixels and (c) array structure based 

on edge detection 

Figure 3-5 compares the signal quality of selected by using SINAD with the window-based 

registration, Figure 3-5 (a) is the transposed region of synthetic image in Figure 3-1 (b), in 

that each row is equal to 𝐼(𝑥) in Figure 3-4 (a). The blue box represents the pixels selected 

by using SINAD, the red box represents a subset often used in window-based methods. The 

average SINAD of the red box is far smaller than that of the blue box because it contains 

many pixels with small or zero SINAD, these pixel collects poor signal even no signal 
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components. Comparably, the pixels in blue box are selective about high performance. That 

makes difference of efficiency in signal acquisition between the proposed method and 

conventional methods. As shown in Figure 3-5 (b), the pixel at the centre of edge possesses 

the largest SINAD, which exhibits the quality of displacement signal obtained from each 

individual pixel is uneven. 

In summary, the edge detection-based formation approach can get all sensitive pixels 

involved in computation, meanwhile exclude all useless pixel from computation to improve 

the signal quality in data acquisition. To select these pixels, the Sobel edge detector is applied 

on the reference image, which yields a binary matrix 𝐴𝑠(𝑥, 𝑦) as shown in Figure 3-5 (c). 

That denotes the spatial coordinates of pixel sensors in the array, known as the array structure 

of sensor array [100]. The pixels with value one in 𝐴𝑠(𝑥, 𝑦) should be selected as elements 

of the sensor array to record the intensity signals while other pixels will be removed.  

3.3 Euler description vs Lagrange description 

The Lagrangian and Eulerian description (specification) are terminology in fluid dynamics 

originally, which refers to two ways in observing the flow field. It is brought in to represent 

a similar methodology in computer vision [129], [130]. Specifically, the Eulerian description 

is a way of looking at fluid motion that focuses on specific locations. In contrast, the 

Lagrangian description is a way that the observer follows individual fluid particle. 

In this research, this conception is brought in to differentiate manners of observing motion 

in image. Eulerian description refers to looking at displacement on one fixed pixel or subset, 

which is found to be suitable for small displacement. In contrast, Lagrangian description 

focuses on measuring position of one object, which is more applicable to large displacement.  

3.4 Equivalent sensor based on Euler description 

3.4.1 Transfer function of subset 

In addition, the scale of displacement 𝑢 is another important factor. If 𝑢 is too large and get 

access to gradient vanishing area, displacement will become not detectable. To tackle this 

problem, a subset can play the role of a sensor in place of single pixel. Its sensitivity 𝑆𝑠𝑢𝑝 

can be therefore obtained as follow, 
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𝑆𝑠𝑢𝑝 =
1

𝑛
∑𝑆(𝑥𝑖)

𝑛

𝑖=1

=
𝑅

𝜎𝑛√2𝜋
∑𝑒−

1
2
(
𝑥𝑖−𝜇
𝜎

)
2𝑛

𝑖=1

 (3-15) 

which means sensitivity of subset. As shown in Figure 3-6 (b), the sensitivity decreases while 

the subset consists of more pixels, but the scope of linear area gets broad. 

 
Figure 3-6 (a) Transfer function of subset with different size, the expand of linear area at the exchange of 

decreasing sensitivity, (b) The gradient of transfer function, which decide the marked sensitivities are  

In a similar way, the nonlinearity of subset can be derived.  

𝑁𝐿 =
𝑅

√8𝜋𝜎𝑛
[∑𝑒−

1
2
(
𝑥𝑖−𝜇
𝜎

)
2

]𝑢2
𝑛

𝑖=1

 

+
𝑅

√72𝜋𝜎𝑛
[∑((𝑥𝑖 − 𝜇)

2 − 1)𝑒−
1
2
(
𝑥𝑖−𝜇
𝜎

)
2

]𝑢3
𝑛

𝑖=1

+⋯  

(3-16) 

This equation demonstrates the nonlinearity shrinks with increase of subset size, therewith 

the linear area transfer function is broadened as shown in Figure 3-6 (a). Moreover, the noise 

level will go down due to average, which will be discussed in following section. That means 

the sensitivity, nonlinearity, and noise level decrease with respect to subset size 

simultaneously. It turns out a trade-off exists in the signal power, distortion power and noise 

power, which will determine the subset size jointly. 
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3.4.2 SINAD under different displacement amplitude 

However, the increasing displacement amplitude will influence SINAD, because the linear 

area is narrow. Once the displacement exceeds this area, the transfer function changes 

dramatically with gradient vanishing. To broaden the linear area, a subset can be used to be 

that equivalent sensor by combining several pixels aside the edge centre in place of an 

individual pixel. Figure 3-7 shows the relationship between amplitudes of exciting 

displacement and three components in the intensity response.  

 
Figure 3-7 Displacement’s influence on single pixel and subset, as shown, the single pixel is more sensitive 

to amplitude of input signal 

The set of blue lines is from a single pixel, and the red lines are derived from a subset 

consisting of nine pixels, which are pixels in a line perpendicular to the edge as shown in 

Figure 3-7. For the single pixel, the distortion increases significantly due to its narrow linear 

area, and that reduce the signal components simultaneously. Instead, in subset case, the 

signal keeps strong, and the distortion is small relatively, because of its wider linear area. In 

addition, the noise floor is a value irrelated to amplitude of excitation signal.  
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Figure 3-8 Displacement’s influence on SINAD of single pixel and subset  

It turns out that the SINAD of a subset of nine pixels is higher than a single pixel, because 

the displacement is larger than one pixel, which has been beyond the linear area of one pixel 

as shown in Figure 3-8.  

 
Figure 3-9 The spectra of signal from a single pixel and a subset, the single pixel is distorted severely (upper 

figure), in contrast, the subset keeps high fidelity (lower figure). 

At this large displacement situation, the distorted signal can even be submerged in noise 

floor, as comparison that Figure 3-9 shows. For the single pixel, its natural frequency has 

been distorted into several sidebands. In contrast, the natural frequency keeps steady, 
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because it can be taken as a large subset, so that the displacement cannot exceed the measure 

range of that. 

3.4.3 SINAD and size of subset  

However, what is the optimal size of subset, this section studies the relationship between 

subset size and SINAD. The subset refers to a one-dimension pixel array, which is aligned 

with perpendicular the edge. Figure 3-10 illustrates signal, distortion and noise varies with 

respect to subset size under a displacement with an amplitude of five pixels. Even through 

the signal, distortion and noise components are decreasing, their decay rates are different, 

that turns out to the SINAD reaches maximum when subset radius is equal to displacement 

amplitude, which is marked by a red circle.  

 
Figure 3-10 Subset size’s influence on SINAD, the red dot represents the max SINAD. 

That shows a correlation between subset size and displacement amplitudes, i.e., the subset 

should be able to cover the displacement. As the displacement is being increased from one 

pixel to eight pixels, the result supports this correlation holds true.  
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Figure 3-11 Subset size’s influence on SINAD under different displacement amplitude. 

In essence, as shown in Figure 3-11, SINAD declines continuously with the growth of 

displacement amplitude. Actually, when the subset radius is larger than radius of point 

spread function (PSF), the equivalent sensor of subset has no advantage than feature tracking 

methods (i.e., Lagrange description). In this simulation, the radius of PSF is around three 

pixels, so if displacement is larger than three pixels, the Lagrange description should be 

chosen in principle. Additionally, the SINAD will not decline with displacement amplitude.  

3.5 Equivalent sensor based on Lagrange description 

If the amplitude of displacement gets access to gradient vanishing area, an overlarge subset 

will contain some ineffective pixels in gradient vanishing area, and further lead to a poor 

performance in signal quality. For this kind of motion, displacement measured by tracking 

position of a certain point will get higher performance, for example, using corner detectors 

or sparse optical flow can track motion of a feature. One instance is modal analysis of wind 

turbine blades, the displacement of blade tip is often larger than ten or more pixels. Thus, a 

coarse-to-fine edge detection approach is developed for this large displacement case. 

First, the procedures of smoothing noisy image are illustrated in Figure 3-12, by using an 

experimental image (Figure 3-12 (d)), 

𝐼𝑠(𝑥) = 𝐼(𝑥) ∗ 𝑔(𝑥) (3-17) 
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the one row of image 𝐼(𝑥) (Figure 3-12 (a)) is convoluted by using a gaussian kernel 𝑔(𝑥) 

(Figure 3-12 (b)), that yields a smoothed image 𝐼𝑠(𝑥). This operation aims to get rid of the 

local gradient caused by noise, meanwhile remain the high gradient of edge as shown in 

Figure 3-12 (c).  

 
Figure 3-12 The original image is convoluted by a Gaussian kernel in order to suppress the noise in image 

Consequently, the image gradient can be used to detect the edge. In order to obtain the 

subpixel level location of edge, the first gradient 𝐼𝑠
′(𝑥) and second gradient 𝐼𝑠

′′(𝑥) of image 

is derived. Thus, the subpixel edge is determined as the point where the second gradient is 

zero 𝐼𝑠
′′(𝑥) = 0, as shown in Figure 3-13.  

 
Figure 3-13 Schematic of process how the subpixel edge centre is determined, which uses the first and 

second order of image gradient 
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The process of determining 𝐼𝑠
′′(𝑥) = 0 is shown in Figure 3-13. First, the maximum 𝐼𝑠

′(𝑥) is 

used to determine the location of pixel-level edge 𝑥𝑚, (Figure 3-13 (a)). Then the pixel 𝑥𝑚−1 

and 𝑥𝑚+1 beside 𝑥𝑚 is used to interpolate the subpixel edge 𝑥𝑓𝑖𝑛𝑒, the interpolation can be 

expressed as, 

𝑥𝑓𝑖𝑛𝑒 = 𝑥𝑚 +
1 − 𝑠𝑚+1

2
𝑥𝑚+1 +

1 − 𝑠𝑚−1
2

𝑥𝑚−1 (3-18) 

in which 𝑥1 =
𝐼𝑠
′′(𝑥𝑚)

𝐼𝑠
′′(𝑥𝑚)−𝐼𝑠

′′(𝑥𝑚+1)
, 𝑥2 =

𝐼𝑠
′′(𝑥𝑚)

𝐼𝑠
′′(𝑥𝑚)−𝐼𝑠

′′(𝑥𝑚−1)
 presents the distance between zero 

point and former pixel, 𝑠𝑚+1 =
𝐼𝑠
′′(𝑥𝑚)𝐼𝑠

′′(𝑥𝑚+1)

|𝐼𝑠
′′(𝑥𝑚)𝐼𝑠

′′(𝑥𝑚+1)|
, 𝑠𝑚−1 =

𝐼𝑠
′′(𝑥𝑚)𝐼𝑠

′′(𝑥𝑚−1)

|𝐼𝑠
′′(𝑥𝑚)𝐼𝑠

′′(𝑥𝑚−1)|
 denotes if or not 

the neighbouring pixel cross zero. Through above steps, the subpixel accuracy of edge can 

be obtained, and then the change of 𝑥𝑓𝑖𝑛𝑒 in each frame is made up of the displacement signal. 

This example can reflect the distinction between Euler description and Lagrange description. 

The Euler description uses the intensity at fixed pixel to estimate displacement. In contrast, 

the Lagrange description uses the position of a feature point to estimate displacement. They 

are appropriate for small and large displacement, respectively.  

3.6 Key findings 

In VVM, the formation of pixel array is not direct like other sensor arrays. In conventional 

cases, the array structure is fixed, but the pixels of an image cannot be used directly. Because 

it is not all pixels of image are useful to estimate displacement. In this section, an edge 

detection-based formation approach is proposed for formulating the pixel array, that can get 

all sensitive pixels involved in computation meanwhile exclude all useless pixel from 

computation to improve the signal quality in data acquisition. Furthermore, the influence of 

displacement amplitude on pixel array formation is investigated, the key findings are listed 

individually. 

• A transfer function between intensity and displacement is formulated based on point 

spread function. 

• The transfer function is further divided into linear area, nonlinear area and gradient 

vanishing area. 

• Two classes of methods to form a sensor array are proposed based on Euler 

description and Lagrange description respectively. 
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• Applicable scope of two options is evaluated according to SINAD. Overall, small 

displacement (within its Airy disk) prefers Euler description, otherwise Lagrange 

description get priority. 
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4 ENHANCEMENT OF MODAL DISPLACEMENT BASED 

ON SPATIAL FILTERING 

After formulation of a pixel array, this section focuses on signal enhancement on modal 

displacement signal based on the principle of ASP. Because a major challenge in vision-

based vibration measurement is extracting the weak displacement signal from noisy footages, 

especially in high-frequency range, considering that the displacement of motion is most 

insensitive in high-frequency among the variables that are used to describe a vibration 

(displacement, velocity, and acceleration). Furthermore, the upper bound of array gain is 

found according to Cauchy–Schwarz inequality, which is of importance to find out what the 

minimum detectable signal (MDS) is theoretically, when the noise floor and image size was 

already determined in a given image. Finally, a constraint condition is imposed to make 

implementation of adaptive filtering practicable.  

It should be noted that some paragraphs in this chapter are expansion or reproduction of 

the published materials [1] and [2] in list of publications, and the specific paragraphs are 

annotated by a citation. 

 

 

Highlight:  

• The SNR gain before and after spatial filtering relates to number of array elements. 

• The SNR gain is also influenced by matching degree between weight vector and 

mode shape. 

• Max array gain or minimum detectable signal demonstrates the limit of capacity of 

displacement estimate exists for a given image sequence. 

• Imposing constraint on Euclidean norm of weight vector can equalize functionality 

of signal power and SNR in spatial filtering. 
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4.1 Spatial filtering based on maximization of SNR 

From the relationship described in Figure 3-4, the displacement can be converted from 

intensity signal following the Eq. (4-1) [92], 

𝒖(𝑡) =
𝑰𝐴(𝑡) − 𝐹

𝐹′
 (4-1) 

in which 𝑰𝐴(𝑡) denotes a vector of intensity signal of pixel sensors selected by using array 

structure 𝐴𝑠(𝑥, 𝑦), 𝐹 is pixel’s intensity in reference image and 𝐹′ is image gradient that is 

equivalent to the slope in Figure 3-4(a). Many existing methods can be used to solve the 

image gradient 𝐹′(𝑥), the Sobel operator is chosen in this study.  

According to modal superposition, each dynamic response can be decomposed into several 

modes [111], as shown in Figure 2-1. In each mode, all space elements are oscillating with 

the same frequency and in phase. Its mode shape 𝜱 displays a form of standing wave, in 

which the motion direction is opposite across nodes, as denoted by the red and green arrow, 

respectively. The weight vectors 𝑾 are thus designed for this structure, the weight vector is 

set to match the mode shape, so that the constructive waves will be generated. 

As a result of conversion, 𝒖(𝑡) becomes a vector of displacement signals collected by the 

sensor array. The dynamic response 𝒖(𝑡) can be further regarded as a linear combination of 

multiple modes according to the principle of mode superposition [131]. Taking into 

inevitable noise influences, 𝒖(𝑡) can be expressed in a matrix form: 

𝒖(𝑡) = 𝜱𝒛(𝑡) + 𝜼(𝑡) (4-2) 

where 𝒖(𝑡) ∈ ℝ𝑚 is raw displacement signals from a sensor array with 𝑚 elements. 𝜱 =

[𝝋1, 𝝋2, … , 𝝋𝑛] ∈ ℝ
𝑚×𝑛 is mode shape matrix with 𝑛 modes, in which 𝝋𝑖 ∈ ℝ

𝑚 is a mode 

shape vector. 𝒛(𝑡) = [𝑧1(𝑡), 𝑧2(𝑡) … 𝑧𝑛(𝑡)]
𝑇 ∈ ℝ𝑛  is a vector representing modal 

displacement, i.e., displacement under modal coordinate, 𝜼(𝑡) ∈ ℝ𝑚  is a white Gaussian 

noise vector subject to 𝜼 ∼ 𝑁(0, 𝜎𝜂
2). It is noted that the modal displacement 𝒛(𝑡) is the 

target to be estimated in this study. 

Conventional methods use measured 𝒖(𝑡)  to identify modal parameters directly, but 

window/subset derived 𝒖(𝑡) usually have low SNR and such direct method often result in 

poor results. Considering there are a large number of channels/pixels available, an array 
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signal processing scheme can be employed for enhancing the targeted components 𝒛(𝑡). 

According to spatial filtering approach, the estimator of modal displacement 𝑧̂𝑖(𝑡) can be 

obtained by applying weight vectors 𝑾 = [𝒘1,𝒘2, … ,𝒘𝑛] ∈ ℝ
𝑚×𝑛

 to the measured response 

𝒖(𝑡) [111], which yields: 

𝒛̂(𝑡) = 𝑾𝑻𝒖(𝑡) = 𝑾𝑻𝜱𝒛(𝑡) +𝑾𝑻𝜼(𝑡) (4-3) 

in which 𝐳̂(𝑡) ∈ ℝ𝑛 is an estimator of 𝒛(𝑡). As illustrated in section 2.3, the structure of 

array signal processing shows that each output 𝑧̂𝑖(𝑡) is a linear combination of all array 

elements. By multiplying 𝑾, the displacement signals are transformed from a m-dimension 

spatial coordinate into n-dimension modal coordinate. 

To examine the effect of 𝒘𝑖 more conveniently on a particular estimator 𝑧̂𝑖(𝑡), Eq. (4-3) is 

rewritten as 

𝑧̂𝑖(𝑡) =∑𝒘𝒊
𝑻𝝋𝒋 𝑧𝑗(𝑡) + 𝒘𝒊

𝑻𝜼(𝑡)

𝑛

𝑗=1

 (4-4) 

It shows that 𝑧̂𝑖(𝑡)  is composed by two parts:𝒘𝑖
𝑇𝝋𝑗 𝑧𝑗(𝑡)  due mainly to the modal 

contribution and noise 𝒘𝑖
𝑇𝒏(𝑡) due to noise influence. To extract the weak displacement 

signal, the weight vector 𝐰𝑖 needs to be designed so that the ratio between signal component 

and noise component i.e., SNR of 𝑧̂𝑖(𝑡) is maximized. Due to the signal components of 

interest in 𝑧̂𝑖(𝑡) is only 𝑧𝑖(𝑡), which turns out that other modal signals should be ignored in 

𝑧̂𝑖(𝑡) and hence result in the 𝑖𝑡ℎ term 𝒘𝑖
𝑇𝝋𝑖𝑧𝑖(𝑡) alone. Therefore, the SNR of array output 

𝑧̂𝑖(𝑡) can be expressed as: 

𝑆𝑁𝑅[𝑧̂𝑖(𝑡)] =
𝐸{[𝒘𝑖

𝑇𝝋𝑖 𝑧𝑖(𝑡)]
2}

𝐸{[𝒘𝑖
𝑇𝜼(𝑡)]2}

 (4-5) 

where the weight vector 𝒘𝑖 is the variable of this equation. Taking output 𝑆𝑁𝑅[𝑧̂𝑖(𝑡)] as an 

objective function and 𝒘𝑖 as a variable, it enables an optimization problem to formulate as: 

𝒘𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝒘𝑖

𝑆𝑁𝑅[𝑧̂𝑖(𝑡)]   (4-6) 

The SNR of 𝑧̂𝑖(𝑡) is the ratio between power of signal and variance of noise: 

𝑆𝑁𝑅[𝑧̂𝑖(𝑡)] =
𝐸{[(𝒘𝑖

𝑇𝝋𝑖) 𝑧𝑖(𝑡)]
2}

𝐸{[𝒘𝑖
𝑇𝜼(𝑡)]2}

 (4-7) 
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Eq. (4-7) can be reformed into following equation, 

𝑆𝑁𝑅[𝑧̂𝑖(𝑡)] =
𝐸{(𝒘𝑖

𝑇𝝋𝑖)
2𝑧𝑖(𝑡)

2}

𝐸{𝒘𝑖
𝑇𝜼(𝑡)𝜼(𝑡)𝑇𝒘𝑖}

 (4-8) 

Due to the expectation is with respect to the time 𝑡, other components can be taken out of 

expectation. Meanwhile, 𝑹η =  𝜼(𝑡)𝜼(𝑡)𝑇 denotes the covariance matrix of noise [111]. 

𝑆𝑁𝑅[𝑧̂𝑖(𝑡)] =
(𝒘𝑖

𝑇𝝋𝑖)
2𝐸{𝑧𝑖(𝑡)

2}

𝒘𝒊
𝑻𝑹𝜂𝒘𝒊

 (4-9) 

in which, signal power can be presented by 𝜎𝑧𝑖
2 = 𝐸{𝑧𝑖(𝑡)

2}. Then because 𝜼(𝑡) is Gaussian 

noise, its covariance matrix is 𝑹η = 𝜎𝜂
2𝑰. 

𝑆𝑁𝑅[𝑧̂𝑖(𝑡)] =
(𝒘𝑖

𝑇𝝋𝑖)
2

𝒘𝑖
𝑇𝒘𝑖

𝜎𝑧𝑖
2

𝜎𝜂2
 (4-10) 

According to Cauchy–Schwarz inequality, 

𝑆𝑁𝑅[𝑧̂𝑖(𝑡)] ≤
(𝒘𝑖

𝑇𝒘𝑖)(𝝋𝑖
𝑇𝝋𝑖)

𝒘𝑖
𝑇𝒘𝑖

𝜎𝑧𝑖
2

𝜎𝜂2
 (4-11) 

By cancelling the same item of 𝒘𝑖
𝑇𝒘𝑖 , the maximum SNR of the output is a value 

independent of the weight vector. 

𝑆𝑁𝑅[𝑧̂𝑖(𝑡)] ≤ (𝝋𝑖
𝑇𝝋𝑖) 

𝜎𝑧𝑖
2

𝜎𝜂2
 (4-12) 

in which, 𝜎𝑧𝑖
2 = 𝐸{𝑧𝑖(𝑡)

2} represent signal power and 𝜎𝜂
2 is the variance of noise. It shows 

that if and only if 𝒘𝑖  and 𝝋𝑖  are linearly dependent, SNR is maximized. According to 

Cauchy–Schwarz inequality, it can be shown that 𝑆𝑁𝑅[𝑧̂𝑖(𝑡)] has its upper bound. In another 

word, the upper bound of SNR can be reached, while 𝒘𝑖 paralleling with mode shape vector 

𝝋𝑖 , i.e., it yields that 𝝋̂𝑖 = 𝒘𝑜𝑝𝑡 ,  because they are dimensionless. In this way, a SNR-

maximized 𝐰𝑖 can be found. 

4.2 Constraint form of optimization problem 

The maximization of SNR establishes between mode shape and modal displacement signal 

[92]. That pave the way for estimate mode shape and obtain desired signal, however, SNR 
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is difficult to be estimated accurately from experimental data. To make implementation of 

proposed method feasible, a constraint optimization is transformed from Eq. (4-5) and (4-6). 

With a unit weight vector 𝒘𝑖, i.e., ‖𝒘𝑖‖
2 = 1, the denominator in the middle term of Eq. 

(4-10) is eliminated, which turns Eq. (4-5) into a constraint optimization problem: 

𝑚𝑎𝑥   
𝒘𝑖

𝑆𝑁𝑅(𝒘𝑖) = (𝒘𝑖
𝑇𝝋𝑖)

2  
𝜎𝑧𝑖

2

 𝜎𝜂2
 

(4-13) 

𝑠. 𝑡.       ‖𝒘𝑖‖
2 = 1 

in which ‖𝒘𝑖‖ is the Euclidean norm (also called the vector magnitude, Euclidean length, or 

2-norm) of vector 𝒘𝑖 [132], [133]. To unfold it, that can be expressed as, 

‖𝒘𝑖‖
2 =∑(𝒘𝑖,𝑘)

2
𝑚

𝑘=1

= (𝒘𝑖
𝑇𝒘𝑖) (4-14) 

In addition, the noise power 𝜎𝜂
2  is constant unrelated to 𝒘𝑖  as displayed in Eq.(4-10). 

Therefore, 𝑆𝑁𝑅(𝒘𝑖) is determined by its part of signal power 𝑃(𝒘𝑖) = (𝒘𝑖
𝑇𝝋𝑖)

2𝜎𝑧𝑖
2 only. 

This means that 𝑃(𝒘𝑖) can substitute 𝑆𝑁𝑅(𝒘𝑖) to serve as the objective function. In practice, 

𝑃(𝒘𝑖) can be easily obtained by measuring the power spectral density at frequency of 

interest. After the optimization problem is fully defined based on Eq.(4-13), the mode-shape-

based adaptive spatial filter (MASF) is established. Then a searching scheme based on 

node/antinode is put forward as one example of many potential numerical solutions. 

4.3 Array gain  

To evaluate the performance of array, the conception of array gain is introduced, in order to 

exclude the influence of input signal, which implies the gain of SNR before and after spatial 

filtering [118]. 

𝐺𝑎 =
𝑆𝑁𝑅[𝑧̂𝑖(𝑡)]

𝑆𝑁𝑅̅̅ ̅̅ ̅̅
𝑖𝑛 

   (4-15) 

where 𝑆𝑁𝑅̅̅ ̅̅ ̅̅
𝑖𝑛 is defined as the average input SNR over all pixels.  

In order to find the array gain, the input SNR of each pixel is calculated as: 
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𝑆𝑁𝑅𝑖𝑛 =
𝐸 {[𝜑𝑖𝑗 𝑧𝑖(𝑡)]

2
}

𝐸{[𝜂(𝑡)]2}
 (4-16) 

The φij can be taken out of expectation, and then substitute 𝜎𝑧𝑖
2 and 𝜎𝜂

2 into Eq. (A8). 

𝑆𝑁𝑅𝑖𝑛 =
𝜑𝑖𝑗 

2𝜎𝑧𝑖
2

𝜎𝜂2
 (4-17) 

The mean power of input signal is: 

𝑆𝑁𝑅̅̅ ̅̅ ̅̅
𝑖𝑛 =  

1

𝑚
∑𝜑

𝑖𝑗
 2 

𝑚

𝑗=1

(
𝜎𝑧𝑖

2

𝜎𝜂2
 )   (4-18) 

It can be written into a form of inner product of 𝝋𝒊. 

𝑆𝑁𝑅̅̅ ̅̅ ̅̅
𝑖𝑛 =

1

𝑚
(𝝋𝒊

𝑻𝝋𝒊) (
𝜎𝑧𝑖

2

𝜎𝜂2
 ) (4-19) 

The array gain is defined as the gain of SNR between output and input signals. 

𝐺𝑎 =
𝑆𝑁𝑅[𝑧̂𝑖(𝑡)]

𝑆𝑁𝑅̅̅ ̅̅ ̅̅
𝑖𝑛

 (4-20) 

Substituting Eq. (4-12) and Eq. (4-19) into Eq. (4-20) yields 

𝐺𝑎 ≤
(𝝋𝒊

𝑻𝝋𝒊) 𝐸{𝑧𝑖(𝑡)
2}

𝐸{𝜂(𝑡)2}

1

𝑚
(𝝋𝒊

𝑻𝝋𝒊) 
𝐸{𝑧𝑖(𝑡)

2}

𝐸{𝜂(𝑡)2}
⁄  (4-21) 

By cancelling all the same terms, only 𝑚 remains.  

𝐺𝑎 ≤ 𝑚 (4-22) 

In addition, the analogous relationship between array gain 𝐺𝑎 and number of array elements 

𝑚 can be easily found in many kinds of sensor arrays [118].By excluding the same terms in 

Eq. (4-21), it shows that the upper bound of array gain is 𝑚, where 𝑚 is the number of array 

elements. Eq. (4-22) shows that the maximum array gain 𝐺𝑎 depends only on the number of 

array elements 𝑚, it is often expressed in dB. 

𝐺𝑑𝐵 ≤ 10 log10(𝑚) (4-23) 

In general, increasing number of array element 𝑚 enables a higher SNR output, which can 

be achieved conveniently by this video-based measurement [92].  
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4.4 Minimum detectable signal  

Furthermore, the lower bounder of detectable signal using image-based measurement can be 

determined. Minimum detectable signal is an index that is defined by a least power of a 

signal that is detectable or discernible from the noise floor [126]. Based on analysis in 

Section 3.5.1, the noise floor is composed of quantization noise, image noise that can be 

expressed as, 

𝑁𝑓 = 10𝑙𝑜𝑔10(𝑁𝑖 + 𝑁𝑄) (4-24) 

in which the 𝑁𝑖  and 𝑁𝑄  represent the image noise and quantization noise respectively. 

Thereafter, the MDS can be seen as a value resulting from the noise floor, array gain and the 

required minimum 𝑆𝑁𝑅𝑚𝑖𝑛 jointly. 

𝑆𝑁𝑅𝑚𝑖𝑛 = (𝑀𝐷𝑆 + 𝐺𝑑𝐵) − 𝑁𝑓 (4-25) 

In particular, 𝑆𝑁𝑅𝑚𝑖𝑛 specifies threshold that the minimum signal to be recognized from its 

noise floor [19]. Based on the above descriptions, multiple factors (noise intensity, array 

gain and required SNR) will determine MDS of the system. If Eq. (4-25) converts to (4-26), 

MDS can be analysed. 

𝑀𝐷𝑆 = 𝑆𝑁𝑅𝑚𝑖𝑛 + 𝑁𝑓 − 𝐺𝑑𝐵 (4-26) 

Firstly, the color depth determines the scale of quantization noise, the light source and 

camera parameters determine the random noise. If noise floor gets higher, MDS will be 

larger, i.e., the weak signal cannot be recognized. Array gain is determined by the estimation 

method, if array gain get lager, MDS becomes smaller. Finally, the required SNR is adapted 

based on requirement of post-processing method or a human operator. 

4.5 Key findings 

The core component of algorithm is proposed in this chapter, by which the spatial 

propagation of signal (mode shape in modal analysis) and the time sequence of desired signal 

can be obtained in principle. The conclusions can be summarized as follow. 

• The upper bounder of array gain is determined by number of array element (effective 

pixels selected). 

• The array gain is affected by weight vector, while the pixel array is finalized. 
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• Consequently, the minimum detectable signal (MDS) can be determined by 

considering the array gain and noise floor.  

• Finally, signal power can replace SNR in optimization problem by imposing a 

constraint condition to make the algorithm executable. 
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5 ESTIMATE OF MODE SHAPE BASED ON SPATIAL 

PARAMETER ESTIMATION 

As the optimization problem has been defined in Chapter 4, this chapter aims to estimate 

spatial parameter, specifically mode shape. Two typical methodologies of spatial parameter 

estimation in ASP is employed to estimate the mode, which are the adaptive filtering method 

by a process of maximizing the output signal power and subspace method. In comparison, 

the adaptive filtering can obtain higher SNR, which is acquired in exchange of pre-setting 

the elementary shape of mode shape and an iterative process. In terms of algorithm 

properties, it is proved that the proposed adaptive filter is least mean square filter, and the 

objective function is equivalent to modal assurance criterion, which are crucial property to 

guide the future development. 

It should be noted that some paragraphs in this chapter are expansion or reproduction of 

the published materials [1] in list of publications, such as section 5.1.3.1 and 5.1.4, and the 

specific paragraphs are annotated by a citation. 

 

 

Highlight:  

• An adaptive spatial filtering based on node/antinode searching is developed for 

estimate of mode shape. 

• The proposed adaptive spatial filtering is a least mean square filter. 

• SVD based method can estimate mode shape and natural frequency without iteration, 

but capability of noise suppression is low relatively.  

 

 



5 ESTIMATE OF MODE SHAPE BASED ON SPATIAL PARAMETER ESTIMATION 

57 

 

5.1 Adaptive filtering method  

5.1.1 Properties of proposed algorithm 

The optimization problem is defined completely in Chapter 4; however, estimating mode 

shape requires to solve the optimization problem in adaptive spatial filtering. To tackle that, 

some crucial properties of proposed algorithm are investigated first.  

5.1.1.1 Least mean square filter 

This section will prove that the proposed method is a least mean square filter, in order to 

connect the error and signal power together. First, the error of 𝒘 is defined as the difference 

between 𝒘 and ±𝝓. Since 𝝓 is a dimensionless, positive, or negative sign of 𝝓 have no 

difference in presenting mode shape.  

𝒆 = {
𝒘 − 𝝓          𝑖𝑓 𝑐𝑜𝑠𝜃 > 0
𝒘 + 𝝓          𝑖𝑓 𝑐𝑜𝑠𝜃 < 0

 (5-1) 

The sign is determined by initial 𝒘 is set close to 𝝓 (𝑐𝑜𝑠𝜃 > 0) or −𝝓 (𝑐𝑜𝑠𝜃 < 0), as 

shown in Figure 5-1. 

 

 
Figure 5-1 Schematic of relationship among weight vector 𝒘, error vector 𝒆 and mode shape vector 𝝓 under 

(a), (b) two potential directions 

As the principle of least squares, the square of error is defined as the cost function.  

‖𝒆‖2 = ‖𝒘 ±𝝓‖2 (5-2) 

That can be expanded as follow.  

‖𝒆‖2 = ‖𝒘‖2 + ‖𝝓‖2 ± 2𝒘𝑇𝝓 (5-3) 

The inner product arises in Eq. (5-3), which is also in the objective function of the proposed 

adaptive filtering.  
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𝒘𝑇𝝓 = ±
1

2
(‖𝒘‖2 + ‖𝝓‖2 − ‖𝒆‖2) (5-4) 

Square this term, so that it will be equal to the proposed objective function, 

(𝒘𝑇𝝓)2 =
1

4
(‖𝒘‖2 + ‖𝝓‖2 − ‖𝒆‖2)2 (5-5) 

in which ‖𝒘‖2 and ‖𝝓‖2 are constants, as a result, maximizing (𝒘𝑇𝝓)2 is equivalent to 

minimize ‖𝒆‖2. The equation below is established constantly,  

‖𝒘‖2 + ‖𝝓‖2 ≥ ‖𝒆‖2 (5-6) 

which can also be derived from geometry in Figure 5-1. Moreover, 𝒘 is likely to converge 

on 𝝓 or −𝝓 based on (5-1). But there is no difference between 𝝓 and −𝝓 in principle, that 

depends on the initial value. By now, the proposed filter has been proved to be a least mean 

square filter (LMSF), so all beneficial property of LMSF can be used to design the solution. 

5.1.1.2 Modal assurance criterion  

The modal assurance criterion (MAC) is a statistical indicator that is most sensitive to large 

difference and relatively insensitive to small differences in the mode shapes. This yields a 

good statistic indicator and a degree of consistency between mode shapes[134].  

One normalized MAC is defined as the normalized scalar product of the two sets of vectors 

𝒘  and 𝝓. The resulting scalars are arranged into the MAC matrix 

𝑀𝐴𝐶(𝒘,𝝓) =
|𝒘𝑇𝝓|2

(𝒘𝑇𝒘)(𝝓𝑇𝝓)
 (5-7) 

𝒘  denotes the exerted weight vector, which is the supposed estimator of mode shape. 𝝓 

denotes actual mode shape to be measured. In this sense, the result of objective function is 

equivalent to MAC. This equation provides an approach of model updating [135], [136]. If 

𝒘  is derived from finite element analysis, 𝒘 can be updated based on the measured data 𝝓 

directly. 

5.1.2 Principle of adaptive filtering  

As proved in section 5.1.1.1, maximizing (𝒘𝑇𝝓)2 is equal to minimizing ‖𝑒‖2. Following 

the strategy shown in Figure 5-2, the result of (𝒘𝑇𝝓)2 can substitute error 𝒆 as the feedback 

to update the weight vector 𝒘. 
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Figure 5-2 Schematic of a typical adaptive spatial filter, the error is replaced by signal power, which has been 

proved equivalent 

In conclusion, the proposed algorithm operates under a standard paradigm of adaptive spatial 

filtering, in which the signal power (equivalent to error 𝑒(𝑡)) serves as the feedback, and 

then the weight vector is updated to approach to actual mode shape 𝝓 in a close loop. 

5.1.3 Approximation of mode shape of continuous structure 

In physics, mode shape of a continuous structure is often a type of normal mode presenting 

a form of standing wave. In addition, the location of nodes and antinodes shows where the 

strongest and weakest vibration occurs, which highly influences the performance and safety 

of the object under test. Generally, standing waves are thought to be produced by interference 

between waves reflected back and forth at natural frequencies, so that nodes and antinodes 

can be viewed as the characteristics of a standing wave. In three-dimensional scenario, it 

generally exists in forms of nodal lines, nodal diameters, or nodal circle of common 

engineering structures, such as turbine blades, aircraft wings, crane structures and so forth 

[92]. 
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Figure 5-3 A schematic of how a standing wave is generated by two travelling waves from opposite direction, 

the dynamic process can be observed by animation in [137]. 

 
Figure 5-4 The harmonics of standing wave, the node number is increasing with order of harmonics [138], 

[139] 

In addition, the location of nodes and antinodes shows where the strongest and weakest 

vibration occurs, which highly influences the performance and safety of the object under test. 

5.1.3.1 Approximation using a sinusoid-based piecewise function 

As mode shape can be taken as a wave signal, the sinusoidal function is chosen for 

numerically approximating the desired mode shape [92]. The nodes and antinodes split the 

weight vector 𝒘 into 𝑗 pieces 𝑤𝑗 to formulate a piecewise function and each piece can be 

denoted by 
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𝑤𝑗(𝑦) = 𝐴𝑗  cos (
2𝜋

𝜆𝑗
𝑦 + 𝜓𝑗)             0 < 𝑦 <

𝜆𝑗

4
 

(5-8) 

in which 𝑦 is local coordinate inside each piece of function, 𝐴𝑗, 𝜆𝑗, 𝜓𝑗 is the undetermined 

amplitude, wavelength, and initial phase, respectively. Its derivative can be obtained as 

𝑑𝑤𝑗

𝑑𝑦
= − 

2𝜋𝐴𝑗

𝜆𝑗
sin (

2𝜋

𝜆𝑗
𝑦 + 𝜓𝑗)             0 < 𝑦 <

𝜆𝑗

4
 

(5-9) 

Following the physical property of wave, the mode shape and its changing rate should be 

continuous, therefore, the constructed function and its derivative will be continuous as well. 

This means the amplitudes should be identical on both sides of a node/antinode, thereafter, 

the boundary condition is imposed on the endpoints of every piece as following, 

𝑤𝑗(
𝜆𝑗

4
) = 𝑤𝑗+1(0)           

(5-10) 

Likewise, its derivative also accords with continuity, 

𝑤𝑗̇(
𝜆𝑖
4
) = 𝑤̇𝑗+1(0)           

(5-11) 

Naturally, the value of 𝑤𝑗 at a node should be zero as well as its derivative at antinode should 

be zero, and then the boundary condition can be further simplified at a node.  

 
Figure 5-5 A schematic of connection between pieces of piecewise function, it should be noted that the 

condition imposed on node and antinode are different. 

Thus, there exists a relationship for two adjacent amplitudes 𝐴𝑗 and 𝐴𝑗+1, as shown below. 

This represents the parameters on both side of a node accord with this equation, namely they 

share the same included angle 𝜃𝑗 . Similarly, at the antinode, two pieces share one amplitude, 
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𝑖𝑓  𝑤𝑗(0) = 0， 

 {

4𝐴𝑗

𝜆𝑗
=
4𝐴𝑗−1

𝜆𝑗−1
= tan 𝜃𝑗

𝐴𝑗 = 𝐴𝑗+1 

     
(5-12) 

Likewise, if the 𝑤𝑗 starts with an antinode and end up with a node, the relationship is like 

this, it should be noted that the subscription is different from Eq. (5-12) 

𝑖𝑓  𝑤𝑗 (
𝜆𝑗

4
) = 0,   

{

4𝐴𝑗

𝜆𝑗
=
4𝐴𝑗+1

𝜆𝑗+1
= tan 𝜃𝑗

𝐴𝑗 = 𝐴𝑗−1 

      

(5-13) 

By imposing the above boundary conditions, the neighbouring pieces are coupled by the 

shared 𝐴𝑗 or 𝜃𝑗 , and then based on the Eq. (5-12), 𝐴𝑗 can be calculated by  

𝐴𝑗 =
1

4
𝜆𝑗 tan(𝜃𝑗)             

(5-14) 

Then, the local coordinate and local phase in each piece can be derived from the global 

coordinate. 

𝑥 = 𝑦 − 𝑙𝑗             (5-15) 

𝜓𝑗 =
𝜋

2
(𝑗 − 1)             

(5-16) 

in which the 𝑙𝑗 is the location of node/antinode, which is explained in detail in section 5.1.3.2. 

Correspondingly, 𝑥 is under global coordinate. Then substitute all variables into the Eq. 

(5-8), 

𝑤(𝑥) =
𝑡𝑎𝑛(𝜃𝑗)𝜆𝑗

𝐿
cos(

2𝜋

𝜆𝑗
(𝑥 − 𝑙𝑗) +

𝜋

2
(𝑗 − 1))  𝑙𝑗 < 𝑥 < 𝑙𝑗+1  (5-17) 

in which 𝑥 ∈ (0, 𝐿) and 𝐿 is the length of object. By using this function and considering 

specific boundary condition, the profile of arbitrary mode shape can be approximated 

numerically, if only the mode shape shows a form of standing wave.  

5.1.3.2 Representation of free-free object 

The elementary shape of each mode shape can be described by a piece of sinusoidal 

piecewise function with parameters of all locations 𝑙𝑗 of nodes/antinodes  
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𝑙𝑗 = {0, 𝑑1, 𝑎1, 𝑑2, 𝑎2, … , 𝐿} ∈ (0, 𝐿)       (5-18) 

𝑗 𝜖 ℕ𝑛 is number of all node/antinodes, 𝐿 is the length of object, 𝑑𝑘 and 𝑎𝑘 denotes location 

of nodes and antinodes respectively. Because of the constraint in Eq. (5-12), these parameters 

are coupling as follows, 

𝑡𝑎𝑛 (𝜃𝑘)

𝑡𝑎𝑛 (𝜃𝑘) + 𝑡𝑎𝑛 (𝜃𝑘+1)
 =

𝑎𝑘 − 𝑑𝑘
𝑑𝑘+1 − 𝑑𝑘

    (5-19) 

𝜃𝑘  denotes included angle its 𝑡𝑎𝑛 (𝜃𝑘)  is the ratio of amplitude 𝐴𝑗+1  to a quarter of 

wavelength 𝜆𝑗, which is one factor of the amplitude of each piece. Hence, there is 

ℎ𝑗 = {𝑡𝑎𝑛 (𝜃1), 𝑡𝑎𝑛 (𝜃1), 𝑡𝑎𝑛 (𝜃2), 𝑡𝑎𝑛 (𝜃2),… }                              (5-20) 

where ℎ𝑗  is hence defined as a coefficient dependent of 𝑎𝑘, 𝑑𝑘  and 𝑑𝑘+1 . Between the 

adjacent node and antinode 𝑙𝑗 and 𝑙𝑗+1., the wavelength 𝜆𝑗 is determined by their distance of 

them, 

𝜆𝑗 = 4(𝑙𝑗+1 − 𝑙𝑗) (5-21) 

Then considering the free-free boundary condition, a piecewise function for twist mode 

shapes in one-dimension can be constituted as 

𝑤(𝑥) =
ℎ𝑗𝜆𝑗

𝐿
cos(

2𝜋

𝜆𝑗
(𝑥 − 𝑙𝑗) +

𝜋

2
(𝑗 − 1))          𝑖𝑓    𝑙𝑗 < 𝑥 < 𝑙𝑗+1  (5-22) 

in which, 𝑥 ∈ (0, 𝐿) and 𝑤(𝑥) is the weight vector to be optimized. 

Likewise, a piecewise function for bending mode shape is defined with undetermined 

parameters 𝑙𝑗  to be optimized, other parameters are dependent of 𝑙𝑗 , and coupling due to 

continuity and smoothness condition. 

𝑤(𝑥) =

{
  
 

  
 
𝜋ℎ1𝜆1
2𝐿

(1 −
𝑥

𝑙2
)                                                  𝑖𝑓     𝑥 < 𝑙2

ℎ𝑗𝜆𝑗

𝐿
cos (

2𝜋

𝜆𝑗
(𝑥 − 𝑙𝑗) +

𝜋

2
(𝑗 − 1))     𝑖𝑓 𝑙𝑗 < 𝑥 < 𝑙𝑗+1

(−1)𝑛  
𝜋ℎ𝑛𝜆𝑛
2𝐿

(𝑥 − 𝑙𝑛)                                 𝑖𝑓   𝑥 > 𝑙𝑛−1

 (5-23) 

In this numerical expression, the mode shape can be represented by variable node location. 

5.1.3.3 Representation of cantilever object 

In comparison, the mode shape of cantilever object can be expressed similarly. The fixed 

end is a node, and another end is an antinode constantly.  



5 ESTIMATE OF MODE SHAPE BASED ON SPATIAL PARAMETER ESTIMATION 

64 

 

𝑤(𝑥) =

{
  
 

  
 
ℎ𝑗𝜆𝑗

2𝐿
[cos (

4𝜋

𝜆𝑗
𝑥) − 1]                               𝑖𝑓 𝑥 < 𝑙2

ℎ𝑗𝜆𝑗

𝐿
cos (

2𝜋

𝜆𝑗
(𝑥 − 𝑙𝑗) +

𝜋

2
𝑗)       𝑖𝑓 𝑙𝑗 < 𝑥 < 𝑙𝑗+1

(−1)
𝑛+1
2  
𝜋ℎ𝑛𝜆𝑛
2𝐿

(𝑥 − 𝑙𝑛)                   𝑖𝑓   𝑥 > 𝑙𝑛−1

 (5-24) 

These two representations demonstrate that the sinusoid-based piecewise function can 

represent mode shape under different boundary condition.  

5.1.3.4 Representation of 2D and 3D mode shape 

The representation of 2D or 3D mode shape is similar to 1D case, which needs to  𝑥 axis and 

𝑦 axis is equal to the 1D situation. However, due to their different geometry, the matrix 𝑀 

is applied to rotate or transform the coordinate. 

𝚽(𝑥, 𝑦) = 𝝓(𝑨𝒙)𝝓(𝑨𝒚)𝑇 (5-25) 

In a similar way, the 2D mode shape can be defined in a polar coordinate system, 

𝚽(𝜃, 𝑟) = 𝝓(𝑨𝜽)𝝓(𝑨𝒓)𝑇 (5-26) 

5.1.3.5 Approximation error 

The sinusoidal function can approximate the profile of mode shape basically, since the 

sinusoid function can compose any periodical function based on the Fourier expansion. 

However, the error exists inevitably because the mode shape is often nonstandard sinusoid 

function. Because the inner force influences the local deformation, which is also related to 

the geometry and boundary condition of object. That leads to the curvature cannot be 

matched at every point. However, the profile shows a high consistency overall as shown in 

Figure 5-6. 
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Figure 5-6 Comparison between numerical expression and FEM 

To evaluate the performance of the proposed algorithm, the difference of weight vector and 

the mode shape obtained from FEA is calculated. The errors of free-free beam and cantilever 

beam are shown in Figure 5-7. The largest error is less than 10%, and more importantly, it 

does not bias the estimation of mode shape on the whole.  

 
Figure 5-7 Approximation error of free-free beam and cantilever beam 

5.1.4 Node/antinode searching approach 

Based on the above analysis, the location of nodes/antinodes can denote a mode shape 

approximately by a few parameters [92]. By moving location of each node in the weight 

vector 𝒘𝑘 along direction of increasing signal power 𝑃𝑘, the maximal 𝑃𝑘 can be obtained. 
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Figure 5-8 Workflow of Node/antinode searching approach 

In this expression, the number of variables can be reduced significantly, from number of 

pixels to number of nodes and antinodes, which makes the optimization problem feasible. 

Based on this piecewise function, the workflow shown in Figure 5-8 of optimization process 

can be described as follows: 

• Set 𝑤(𝑥) using node/antinode location 𝑙𝑖 as parameter. 

• Set initial value of node/antinode location 𝒍𝑖𝑛𝑖, and obtain 𝒘(𝒍𝑖𝑛𝑖) 

• Apply 𝒘(𝒍𝑖𝑛𝑖) on the input signals to obtain the output signal 𝒛̂, and calculate its 

power 𝑃(𝒘𝑖𝑛𝑖) at a frequency range where the mode lies in. 

• Determine the iteration direction based on initial value and the first iteration, which 

moves the node by one-pixel distance and compares the power 𝑃(𝒘𝑖) with initial 

one, if the power increases, it is taken as the direction for the following iterations, 

otherwise, the opposite direction will be used. 

• Move the node/antinode 𝒍𝑘  and obtain its 𝑃(𝒘𝑘). and repeat this step along the 

direction of increasing 𝑃(𝒘𝑘) 

• Terminate when 𝑃(𝒘𝑘) starts to drop, and then determine the optimal weight vector 

𝒘𝑜𝑝𝑡 which has the maximum 𝑃(𝑤). 
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5.2 Subspace of eigenstructure method 

5.2.1 Singular value decomposition of array signal model 

The node/antinode searching method can obtain mode shape with high accuracy but it 

requires knowing elementary shape of mode shape, for example, a standing wave. However, 

some situation cannot meet this assumption, for example, when the boundary condition is 

uncertain, or the structure is not a continuous object. To improve the robustness of PASP 

framework, and eigen-decomposition method is developed, which transforms the collected 

input signals matrix 𝑼 using singular value decomposition (SVD). In this way, the mode 

shape and the time sequence of modal signal can be extracted from 𝑼. 

𝒖(𝑡) = 𝜱𝒛(𝑡) + 𝜼(𝑡) (5-27) 

The modal superposition is still the model of signal, then the covariance matrix 𝑹𝑍 of modal 

signal can be written as, 

𝑹𝑍 = 𝒛(𝑡)𝒛(𝑡)
𝑇 = [

𝜎11
2 ⋯ 𝜎1𝑛

2

⋮ ⋱ ⋮
𝜎𝑛1
2 ⋯ 𝜎𝑛𝑛

2
] (5-28) 

As the modal signals 𝒛(𝑡) are narrowband signals at different frequencies, obviously they 

are vectors of an orthogonal basis [140] that yields, 

𝜎𝑖𝑗
2 = {

0               𝑖𝑓 𝑖 ≠ 𝑗

𝜎𝑧𝑖
2              𝑖𝑓 𝑖 = 𝑗

 (5-29) 

The orthogonality of this basis can be proven by Fourier series [141], that means covariance 

of different modes are zeros, except the variance of that mode signal. Thus, Eq. (5-28) can 

be simplified as 

𝑹𝑍 = 𝜮𝑧
2 = [

𝜎𝑧1
2 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝜎𝑧𝑛

2
] (5-30) 

The signal matrix can be therefore converted to an orthogonal matrix. 

(𝜮𝑧
−1𝒛(𝑡))(𝜮𝑧

−1𝒛(𝑡))𝑇 = 𝜮𝑧
−2𝜮𝑧

2 = 𝑰 (5-31) 

Moreover, according to the definition, the mode shape are a set of eigenvectors that yields, 
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𝜱𝐻𝜱 = 𝑰 (5-32) 

 Therefore, if SVD acts on 𝒖(𝑡), 

 

The components of decomposition are corresponding to mode shape 𝜱, normalized modal 

signal 𝜮𝑧
−1𝒛(𝑡) and the square root of covariance matrix 𝜮𝑧 respectively, but the noise 𝜼(𝑡) 

will influence the estimate accuracy. 

5.2.2 Robustness and applicability 

The SVD-based method does not need any prior knowledge of mode shape and the iteration 

process for optimizing. Hence, its applicable to discrete system and uncertain boundary 

conditions. 

However, the noise resistance of eigenvalue-based method is lower relatively, when the 

signal power is smaller than noise, the modal signal cannot be extracted. In addition, if the 

measured mode shape is not orthogonal to each other, for instance, the twist and bending 

mode from 2D perspective. In this case, the mode shape obtained from SVD will bias against 

actual real mode shape. 

5.3 Discussion 

The SVD-based method and adaptive spatial filtering method are proposed, the distinction 

of two methods is summarized as following table  

Table 5-1 Comparison between SVD and ASF method 

Overall, these two methods are suitable for different situations. The SVD-based method 

needs higher SNR but the result without bias if mode shape is orthogonal. In comparison, 

the adaptive spatial filtering needs parametric representation of mode shape in advance and 

a close-loop optimization. 

𝒖(𝑡) = 𝜱𝜮𝑧(𝜮𝑧
−1𝒛(𝑡)) + 𝜼(𝑡) (5-33) 

 Singular Value Decomposition Adaptive Spatial Filtering 

Control Open loop Close loop 

Orthogonality  Required to mode shape Not required 

Prior knowledge Not required 
Prior knowledge to represent mode 

shape  

Signal band Narrowband Not necessary 

Computational 

Efficiency 
Low in high-dimension matrix 

Low in high-dimension weight 

vector 
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5.4 Key findings 

To estimate the mode shape from pixel array, two classes of methods are proposed in this 

section, i.e., the adaptive filtering method and SVD based method and then their pros and 

cons are compared. In summary, the adaptive filtering can obtain higher SNR in exchange 

of the known elementary shape of mode shape and an iterative process. In contrast, the SVD-

based method does not rely on prior knowledge and iteration, but it is more prone to noise. 

In addition, it is proved that the proposed adaptive filter is least mean square filter, and the 

objective function is equivalent to modal assurance criterion, which are crucial properties to 

developing more efficient algorithm in PASP framework. 
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6 MODELLING AND SIMULATION STUDY 

The numerical simulation is studied to verify the proposed approaches which contains the 

finite element analysis and synthetic data analysis. Firstly, the finite element models (FEM) 

of test objects in experiment are built, which is used to predict the test result, especially 

simulate the cracks of wind turbine blade with different length. Secondly, a synthetic video 

is constructed in order to implement PASP on simulated data. Finally, the effectiveness of 

proposed methods is verified, especially the theoretical array gain (AG) and minimum 

detectable signal (MDS) have got proved. 

It should be noted that some paragraphs in this chapter are expansion or reproduction of 

the published materials [1] and [2] in list of publications. For example, [1] is expanded in 

section 6.1.1 and 6.2, as well as [2] is reproduced in 6.2.5.1. The specific paragraphs are 

annotated by a citation. 

 

 

 

Highlight:  

• The FEM of wind turbine blades and a free-free beam are built to predict the result 

of experiment. 

• The effectiveness of proposed method for modal identification is verified through 

simulation. 

• The AG and MDS found in theory are verified in simulation. 
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6.1 Finite element analysis 

6.1.1 Free-free beam 

To predict the experiment, the finite element model (FEM) of a free-free beam is formulated 

by using a FEA software ANSYS. The procedures contain material setting, meshing, 

imposing boundary condition and result analysis. Table 6-1 shows the material’s parameter 

of stainless steel used in simulation. 

 
Figure 6-1 the imposed mesh of finite element model. 

Figure 6-1 displays the mesh of model, which is important to the accuracy and computational 

cost. The Hex element is chosen from multiple trails, and the element length is 5mm. The 

boundary condition stays empty because the boundary condition of experiment is free-free. 

Figure 6-1 shows the simulated natural frequencies, which can used to compare with 

experimental result in section 7.1. 

Table 6-1 properties of beam’s material  

Stainless steel  

Density 7.75 × 10−6 𝑘𝑔/𝑚𝑚2 

Young’s modulus 1.93 × 105 𝑀𝑃𝑎 

Poisson’s ratio 0.31 

Bulk modulus 1.69 × 105 𝑀𝑃𝑎 

Shear modulus 7.36 × 104 𝑀𝑃𝑎 

Isotropic secant coefficient of thermal expansion 1.7 × 10−5  1/℃ 

Compressive ultimate strength 0 𝑀𝑃𝑎 

Compressive yield strength 207 𝑀𝑃𝑎 
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Tensile ultimate strength 586 𝑀𝑃𝑎 

Tensile yield strength 207 𝑀𝑝𝑎 

The natural frequencies are listed Table 6-2, and its corresponding mode shapes are in Figure 

6-2 [92]. 

Table 6-2 The FEA result of natural frequencies 

Order 1 2 3 4 5 

Natural frequency (Hz) 1,252.7 2,570.9 3,362.4 5,255.2 6,345.7 

These modes all take the form of standing waves, the blue areas represent nodal lines where 

the vibration is zero nearly. 

 
Figure 6-2 Some simulated mode shape, left hand side lists bending mode shapes, right hand side lists 

twisting mode shapes. 
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6.1.2 Wind turbine blade 

For the test of wind turbine blade, several FEMs are formulated, in particular a crack is set 

on the model in order to simulate the damage on blade and analyse its influence on modal 

parameters. 

 
Figure 6-3 The imposed mesh of FEM of wind turbine blade 

Due to the curved shape of blade, the shape of mesh is set as Tetrahedrons as shown in Figure 

6-3. The boundary condition is a fixed support imposed on the axial and radial surfaces of 

screw holes, to simulate the experimental boundary condition as shown in Figure 6-4. 

 
Figure 6-4 The fixed boundary condition is imposed on the area marked by blue color 

The material is set as a composite material containing glass fibre, whose property is listed 

in . 

 

Table 6-3. 



6 MODELLING AND SIMULATION STUDY 

74 

 

 

Table 6-3 property of wind turbine blade’s material  

Epoxy S-Glass UD  

Density 2.6 × 10−6 𝑘𝑔/𝑚𝑚2 

Young's Modulus X direction 5 × 104 𝑀𝑃𝑎 

Young's Modulus Y direction 8,000 𝑀𝑃𝑎 

Young's Modulus Z direction 8,000 𝑀𝑃𝑎 

Poisson's Ratio XY 0.3 

Poisson's Ratio YZ 0.4 

Poisson's Ratio XZ 0.3 

Shear Modulus XY 5,000 𝑀𝑃𝑎 

Shear Modulus YZ 3,846.2 𝑀𝑃𝑎 

Shear Modulus XZ 5,000 𝑀𝑃𝑎 

The result of simulation is listed in Table 6-4 and Figure 6-5 respectively. The root of wind 

turbine blade is fixed, where can be taken as the fixed end of cantilever beam as shown in 

Figure 6-5. 
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Figure 6-5 Mode shape under fix support at root, (a)first order, (b)second order, (c)third order, (d) forth order 

Table 6-4 The FEA result of natural frequencies 

Order 1 2 3 4 

Natural frequency (Hz) 10.8 29.6 53.2 65.7 

 

6.1.3 Crack of wind turbine blade 

Since modal parameters are important index to detect structural damage in structural health 

monitoring, different cracks are set on blade model to simulate different degrees of damage 

in this section as shown in Figure 6-6. 

 
Figure 6-6 FEM of (a) the intact wind turbine blade and (b) simulated crack on the region with high damage 

risk 

The crack was set about 30% away from the root as shown in the Figure 6-6, where is 

considered as a location prone to damage [40], [142], [143]. Then the depth of crack is 

changed successively to observe difference of mode shape. As the mode shape is a non-

dimensional value, the result 𝚽𝑖 exported from ANSYS was normalized by its Euclidean 

norm ‖𝚽𝑖‖, 

𝚽̅𝑖 = 𝚽𝑖 ‖𝚽𝑖‖⁄  (6-1) 

The normalized mode shapes 𝚽̅𝑖 with different depth of crack as shown in Figure 6-7, but 

the difference is too little to show in chart, thus that are amplified in two red windows. 
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Figure 6-7 The normalized mode shapes with different depth of crack, the difference caused by crack is 

amplified in two red windows 

𝜁𝑖 =
𝚽̅𝑖 − 𝚽̅1

‖𝚽̅1‖
× 100% (6-2) 

Actually, the norm of exported mode shape is basically the same but with a little numeral 

error. Next, we used this equation to compare the degree of mode shape change. 

 
Figure 6-8 (a) The change of mode shape with different crack depth (b) The relationship between cut 

intersection area and the change of mode shape, which is well fitted by a quadratic function. 

The result in Figure 6-8 (a) show a correlation between crack depth and change of mode 

shape. The lines represent different depth in centimetre from 0cm to 12cm. Furthermore, a 
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quadratic function is used to fit this correlation as shown in Figure 6-8 (b), which shows the 

maximum variation (the position marked by a red dashed line in Figure 6-8 (a)) of mode 

shape is basically equal to the quadratic of the cross-sectional area caused by the crack. 

The simulation results show the possibility of detecting cracks based on mode shape. 

However, the small crack cannot change mode shape distinguishably. For example, a 0.5cm 

crack changes the mode shape less than one thousandth based on the relationship shown in 

Figure 6-8 (b). However, the stress around crack will be doubled by this small crack, because 

even small crack can have a significant impact on the stress distribution of structure. In this 

sense, the vision-based method still faces significant challenges on damage detection. 

6.2 Modal identification using simulated signal  

6.2.1 Setup of synthetic footages 

To verify the proposed method, a simulated dataset is obtained by a synthetic video footage 

in MATLAB [92]. Figure 6-9 shows a reference image where the black-white stripe pattern 

is painted on one face of a free-free beam. The image is blurred by a 5 × 5 PSF kernel and 

the region of interest has 25 × 1000  pixels. The colour depth is set as 8-bits and the 

sampling rate is set as 1,500 fps. In addition, the resulted images are further blurred by a 

noise floor of 5.66 dB white noise.  

 
Figure 6-9 One representative frame in synthetic video footages 

The oscillation of the pixel intensity was simulated in accordance with the response of 

dynamic system, in which four damping signals were set to simulate the response of free-

free beam under impact excitation. The characteristics are detailed in Table 6-5, in which 

the rigid body mode at 3 Hz with amplitude of 1/2 pixel is also included to simulate real test 

sensoria when the beam lay on a soft base. The amplitudes of other three modes were set 

lower by a factor of ten, corresponding to a SNR that varies by 20 dB, which allows the 

performance of proposed algorithm to be evaluated sufficiently under different SNRs [126] 

so that it can be reliable applied to process images captured by high speed camaras. 

Modes  Rigid 1st  2nd  3rd  

Frequency 3 Hz 73 Hz 277 Hz 457 Hz 
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Table 6-5 Setting of dynamic characteristics 

 

 

 

 

An array structure 𝐴𝑠(𝑥, 𝑦) is constructed by applying edge detection on reference image of 

synthetic video. As shown in Figure 6-10 (a), two white rows represent one value in 𝐴𝑠(𝑥, 𝑦) 

that are 2000 selected pixel sensors of array, data matrix  𝒖(𝑡) is constructed to be of 

2000×6000. Figure 6-10 (b) shows a typical signal of 𝒖𝒊(𝑡) at pixel 𝑖 = 4. As the pixel is 

located at the red rectangle in Figure 6-10(a), the selected pixel is likely to have the highest 

output as the three modes all produce the highest responses. However, the spectrum of the 

signal in Figure 6-10(b) shows just modal response at the 1st mode at 73Hz, but it is not 

possible to find the responses from two high orders of modes at 277Hz and 457Hz. This 

shows that the noise level of the raw signal is too high, making it difficult to resolve the two 

higher modes directly.  

 
Figure 6-10 Information in simulated footages, includes (a) sensor array 𝐴𝑠(𝑥, 𝑦) obtained by edge detection 

(b) intensity signals of one array element and its spectrum 

Amplitude 1/2 pixel 10/256 pixel 1/256 pixel 0.1/256 pixel 

SNR 9.7 dB -11.7 dB -31.8 dB -51.8 dB 

Mode 

shape 
Rigid 

body 
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6.2.2 Adaptive spatial filtering  

Performing the procedures described before, the results can be seen from Figure 6-11, every 

modal displacement 𝑧̂𝑖(𝑡) is strengthened individually based on its corresponding weight 

vector. Furthermore, the power of modal displacement 𝑃(𝑤𝑖) is increasing when the weight 

vector is approaching to the pre-set mode shape. The convergence rate is related to the 

number of the nodes, and the error of mode shape is mainly affected by the noise level. For 

example, for the first and the second mode, the correct nodes can be always found with 

insignificant errors, that means the error of node location is under one pixel. For the third 

mode shape, the average error 𝐸𝑟𝑟(𝝋𝑖) is up to 8.32% in ten sets of Monte Carlo test, but it 

still allows capturing the main profile features and therefore makes the amplitude at 457Hz 

being clearly visible. The estimated result shows smoothness is because the used sin-based 

function is smooth originally. The estimate error exists on the location of nodes, as well as 

on different curvature between estimated mode shape and real value.  

 
Figure 6-11 Three obtained modes using spatial filtering (a) output signal (b) spectrum of output signal (c) 

optimum weight vector 𝒘𝑜𝑝𝑡 and pre-set mode shape 𝝋𝑖 (d) signal power 𝑃(𝑤𝑖) and the error of estimated 

mode shape 𝐸𝑟𝑟(𝝋𝑖) changes with iteration 

LK optical flow as a typical window-based method is compared with spatial filtering using 

the same video footage. 20 windows with size of 10×10 pixels are selected uniformly on 

image.  
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6.2.3 Modal identification 

The FRFs from spatial filtering and LK optical flow are used as the system response to 

identify the modal parameters using LSRF, respectively. Figure 6-12shows the stabilization 

diagrams, it can be observed that both methods can identify the first mode stably. However, 

when the amplitude decreases under 1/256 pixel in the second order, the stability of LK 

method declines greatly. In the third order, the LK method could not already identify the 

mode anymore, but spatial filtering could still get a good result. 

 
Figure 6-12 Stabilization diagrams from results of (a) Spatial filtering and (b) LK optical flow, respectively 

As legends shown in Figure 6-2, the ‘𝑜’, ‘+’ and ‘⋅’ represent the stable results identified in 

different model order. If results are consistent at a frequency, that means the identified 

natural frequency is reliable [9]. 
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Figure 6-13 Natural frequency and damping ratio identified using Spatial filtering and LK optical flow 

Figure 6-13 compares the identified natural frequencies and damping ratio.  The signals from 

spatial filtering can successfully identify the third mode with a SNR of -51 dB, while LK 

optical flow cannot identify it. Moreover, the identification error of spatial filtering is smaller 

than that of LK optical flow method. Since video footage is the same and both results are 

identified by LSRF, the difference of them depends thoroughly on SNR of signals obtained 

by spatial filtering and LK optical flow. 

 

6.2.4 Robustness of mode shape estimation 

To verify the robustness of the proposed method, it was applied to match different mode 

shapes which were created by setting the beam with different boundary conditions with 

different elasticities of end supports. The initial value 𝒘𝑖𝑛𝑖  is still the same in three cases, 

however, the optimizer 𝒘𝑜𝑝𝑡  can approach to the different mode shapes 𝝋  through 

iterations, as shown by the first two modes in Figure 6-14. Although when SNR is too low 

in the third mode (-51.8 dB), the error of mode shape estimate turns visible. It demonstrates 

that the algorithm relies on the prior knowledge of solution forms i.e., standing waves, but 

the specific parameters of solutions are determined by measuring the change in signal power. 

In this numerical way, the profile of mode can be approximated even on complex continuous 

structures. 
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Figure 6-14 𝒘𝑜𝑝𝑡   estimation under different boudary conditions (a), (b) and (c) 

6.2.5 Verification of signal quality 

6.2.5.1 Quantization noise 

In image noise, one component is the quantization error, which can be either periodic or 

random [126]. To observe the quantization error, an intensity variation caused by a 

displacement with two frequency components, is calculated from Eq. (7), 

𝐼(𝑡) = 𝐹(𝑎1 cos(2𝜋𝑓1𝑡) + 𝑎2 cos(2𝜋𝑓2𝑡) + 𝑛(𝑡)) (6-3) 

in which, 𝑓1 = 3𝐻𝑧, 𝑓2 = 457𝐻𝑧,  𝑎1 = 1𝑝𝑖𝑥𝑒𝑙,  𝑎2 = 1/256 𝑝𝑖𝑥𝑒𝑙. The Figure 6-15 (a) is 

the pure signal without noise, the quantization errors are regularly distributed over multiples 

of 3Hz, making the original signal difficult to identify. Because it is not evenly distributed 

in the frequency domain, it cannot be considered as noise for average denoising. Then, the 

noise is gradually added to the signal, the error gradually changes from the modulation peaks 

to the uniformly distributed noise in the frequency domain.  
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Figure 6-15 Schematic of quantisation error  

The upper diagrams are waveforms, the local of signal is amplified to present the quantized 

signal and quantization errors. Figure 6-16 shows the signal spectra with 0dB, -80 dB and -

60 dB noise added, respectively. 

 
Figure 6-16 The testing signals with different level of noise. 

From the time domain diagram of the quantization error (middle diagrams), it can be seen 

that the error amplitude always falls in the range between 0 and 0.5, and the amplitude is 

basically the same, but the signal with random term is easier to resolve, and also easier to 

process. 

Likewise, the damped sine wave is compared with the standard sine wave in Figure 6-17 

since it is a common type of signal in modal analysis. It turns out that the damped amplitude 

has an equivalent effect to noise dither. Because the variation of amplitude increases the 

randomness of error.  

 
Figure 6-17 The test using undamped displacement and damped displacement. 

In summary, the SQNR of each set of signals above is roughly equal to the theoretical value 

49.9 dB obtained with the difference just being the randomness. In practice, the periodic 
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error cannot occur generally since the random term always exists. Thus, the quantization 

noise can be taken as a gaussian noise, whose power is merely related to Q. 

 

6.2.5.2 Verification of array gain 

Another simulation is implemented to examine array gain 𝐺𝑎 of Eq. (4-23) under different 

number of pixels m [92]. Figure 6-18 shows 𝐺𝑎  increase trend as the number of array 

elements increase from 400 to 4000 with a step of 400, which was obtained when the input 

noise is 5.6dB and other parameters remain unchanged for the synthetic datasets underlying. 

 
Figure 6-18 SNR gain of spatial filtering with respect to number of sensor elements 

According to Eq. (4-23) , the distance between magenta and red line is exactly the array gain 

𝐺𝑎 . That shows a great consistency between theory and simulation. It demonstrates that 

increasing array elements is an effective way to improve output SNR. It also explains how 

the third mode of 1/2560 is extracted, because signal is enhanced by about 2000 times that 

results in its SNR excesses the identifiable threshold. In the synthetic image, ROI has a total 

of 25 rows of pixels, but only 2 rows at the centre of edge are utilised. In practice, without 

changing any other shooting conditions, just spraying more high-contrast patterns can add 

more array elements effectively. 

6.2.5.3 Verification of Minimum Detectable Signal  

Figure 6-19 shows a synthetic image for image-based modal analysis, which is constructed 

by white and black stripes while contaminated by gaussian noises. Suppose the required SNR 
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is -20dB, so far, all the items in MDS have been determined. The MDS obtained by 

simulation is compared with the theoretical value. The number of channels is adopted from 

200 pixels to 1000 pixels, the color depth is considered to be 8 bits, 12 bits and 16 bits. 

  
Figure 6-19 Input-output curve of an equivalent intensity-displacement sensor. 

It can be observed from Figure 6-19 that the simulation results are basically consistent with 

the theoretical ones. The yellow line is the power of a standard sinusoidal signal with an 

amplitude of 0.02 pixels, which can be effectively detected with 500 pixels or more being 

used. Secondly, the color depth has little influence on the results, because the quantization 

noise accounts for a very small pro-portion compared to the overall noise. The simulation 

results show that the MDS estimation is reliable, and MDS can be predicted before the 

experiment and improved by adjusting the parameters. 

6.3 Key findings 

This section mainly covers simulation works including finite element model and signal 

processing using synthetic video data. Specifically, the FEM of wind turbine blades, and a 

free-free beam are built to predict the result of experiment. The result shows change of modal 

parameters caused by crack is not significant, that is very challenging to detect crack from 

mode shape. On the other hand, the effectiveness of proposed method for modal 
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identification is verified through simulation, and the obtained AG and MDS is verified 

through simulation. 
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7 APPLICATION OF VISION-BASED VIBRATION 

MEASUREMENT TO MODAL ANALYSIS 

Two experiments of vision-based modal analysis are carried out to validate proposed 

methods in this section. First is a free-free beam, another is wind turbine blade, mode of 

both which are identified by a hammer test and captured by a high-speed camera. Afterwards, 

the proposed PASP methods are compared with a typical window-based method, LK optical 

flow. The beam test shows the proposed adaptive spatial filtering method has significant 

advantage on output signal SNR. The wind turbine blade test shows the SVD-based method 

can obtain accurate mode shape, however, the difference caused by small crack is too subtle 

to detect. 

It should be noted that some paragraphs in this chapter are expansion or reproduction of 

the published materials [1], [4] and [5] in list of publications, such as [1] in section 7.1 and 

[4] & [5] in 7.2.1, and the specific paragraphs are annotated in a form of citation. 

 

 

 

Highlight:  

• Compared with LK optic flow (a typical conventional window-based method), the 

proposed adaptive spatial filtering method has higher performance on SNR gain. 

• SVD-based method can obtain mode shape of wind turbine blades, which is more 

accurate than conventional LK optic flow. 

• The change caused by crack cannot be detected by vision-based method when crack 

is very small. 
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7.1 Modal analysis of free-free beam 

7.1.1 Experimental Setup 

To further verify the proposed method, an experimental study was carried out, which 

measures the vibration responses of a fee-free rectangular beam with the dimension of 

284 × 20 × 75mm and stainless-steel [92]. The layout of the test setup is shown in Figure 

7-1. Two flexible porous material blocks are used to support the beam, avoiding too large 

amplitudes of the rigid mode. An impact hammer is used to excite the free-free beam with 

two white strips as illustrated in Figure 7-1 (b). A Phantom (SN24006) high-speed camera 

was equipped with Nikon 35mm 1:1.8G lens, and the sampling rate was 14,000 fps and the 

resolution was 96 × 1024 (height×width) for multiple tests. An LED light provides a high 

luminous intensity and a uniform lighting. In the meantime, the acceleration signal was also 

collected by a piezoelectric accelerometer for benchmarking with the results with camera-

based measurements. In addition, a finite element model (FEM) was built in ANASYS 

software to mainly validate the mode shapes obtained by the proposed method. 

 
Figure 7-1 Experiment data, (a) setup of experiment (b) one frame in experimental video, (c) blurred edge in 

red rectangle, (d) one column of blurred image, (e) intensity signals of three pixels in that column (f) 

spectrum 
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Figure 7-1 (c) shows the blurring effect by amplifying a small region of image in Figure 7-1 

(b), which validates the analysis made based the simulated image. The intensity profile 

Figure 7-1 (d) also agrees with the predicted 𝐹(𝑥) . Besides, Figure 7-1 (e) shows the 

intensity at pixel dotted in Figure 7-1 (d), which is analogous to the distortion of simulated 

signal. Figure 7-1 (f) shows the spectrums from the outputs of three pixels, except for first 

mode at around 1261 Hz, all other modes are submerged in noise floor. 

Applying the edge detection to the reference image of Figure 7-1 (b), according to analysis 

in section 3.4, 4000 pixels are selected to formulate the sensor array. As a result, a data matrix 

of 4000×3000 is constructed as 𝒖(𝑡), meaning that the temporal sample points are 3000 

which covers the entire transient responses caused by the impact. 

7.1.2 Implementation of Nodes/antinodes Searching Scheme 

Figure 7-2 shows four groups of weight vectors generated. In each group, the differences are 

generated by changing one parameter of the expression, which is one of parameters to be 

optimized. Once the node location is fed into the programmed function, the corresponding 

weight vectors will be produced as shown in Figure 7-2. 

 
Figure 7-2 A schematic of weight vectors that change continuously, from (a) to (d), the node number of 𝑤𝑖  is 

different. The set of lines in each figure represents a processing of that the piecewise function changes with 

moving node location. 

The operation of spatial filtering is 𝒛̂(𝑡) = 𝑾𝑻𝒖(𝑡) . Ten signals in 𝒖(𝑡)  with 

1000 𝑝𝑖𝑥𝑒𝑙𝑠 × 3000 𝑡𝑖𝑚𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 are shown in Figure 7-3.  
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Figure 7-3 Ten examples in input signal 𝒖(𝑡) matrix of experimental footages 

The power spectral density (PSD) of output signal 𝒛̂(𝑡) are shown in subplot (c) from Figure 

7-4 to Figure 7-9 respectively. The initial nodes are set arbitrarily at 170, 425, 800 in pixel 

coordinate, which are optimized one by one. The default searching direction is set arbitrarily 

towards left. First, move first node to 169, the output signal power shows decline. That 

indicates this change enlarges error of mode shape estimate, so that the moving direction is 

adjusted to the right (Figure 7-4 (a)). Then the first node of weight vector goes back to 170 

and continue to move along right direction until the signal power declines again at location 

257, that indicates the last location 256 can enable signal experience strongest constructive 

interference (Figure 7-4 (b)). In this process, the signal power increases smoothly from 

1.04e-4 to 1.25e-4 (Figure 7-4). This smooth curve accords with theoretical prediction of 

𝑃(𝒘𝑖) = (𝒘𝑖
𝑇𝝋𝑖)

2𝜎𝑧𝑖
2, because when 𝒘𝑖 is set as a unit vector, 𝑃(𝒘𝑖) should be a cosine 

function of included angle between 𝒘𝑖 and 𝝋𝑖. 
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Figure 7-4 First searching step: (a) Weight vector, (b) node location changes with iterations, (c) PSD of 

output signal and (d) peak of PSD at natural frequency changes with iterations 

Then, the program searches the second node location. Because the default direction makes 

signal power increase in first iteration, the following steps keep moving in this direction until 

termination condition occurs, i.e., when the signal power declines. 

 
Figure 7-5 Second searching step: (a) weight vector (b) Node location changes with iterations (c) PSD of 

output signal (d) Peak of PSD at natural frequency changes with iterations 

On basis of the obtained location of two nodes, the antinodes are searched in the same way.  
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Figure 7-6 Third searching step: (a) weight vector (b) Node location changes with iterations (c) PSD of 

output signal (d) Peak of PSD at natural frequency changes with iterations 

In order to test the robustness, another initial weight vector is set as 350, 513, 675 to execute 

the same program. At this run, first node location is optimized to 262, which is slightly 

different from 256. This phenomenon is caused by noise influence. However, the results of 

two tests can converge in a very close range, no matter the initial location is on the left or 

the right side of optimized result. Moreover, the required moving directions are different in 

two tests, however, a very consistent result shows up. That illustrates the initial value has 

not influenced on the result, instead the noise level will affect the accuracy more. 
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Figure 7-7 First searching step: (a) weight vector (b) Node location changes with iterations (c) PSD of output 

signal (d) Peak of PSD at natural frequency changes with iterations 

Correspondingly, the second node is optimized to 733. Even the default searching direction 

(left) is not the wanted one (right), the signal power can adjust the searching direction 

adaptively by using the first iteration result. 

 
Figure 7-8 Second searching step: (a) weight vector (b) Node location changes with iterations (c) PSD of 

output signal (d) Peak of PSD at natural frequency changes with iterations 

Then the antinode can be obtained in the same way.  
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Figure 7-9 Third searching step: (a) weight vector (b) Node location changes with iterations (c) PSD of 

output signal (d) Peak of PSD at natural frequency changes with iterations 

For the purpose of comparison, FEM is obtained from ANSYS, whose node location are at 

242, 500, 757 in a coordinate from one to one thousand.  

 
Figure 7-10 Comparison of twice test results and FEM 

Considering that the FE model also has error with measurement, and the optimized result 

can converge steadily from different initial values, this result is reliable and acceptable. All 

other modes are found by going through the same program with just modifying the input 

node number. 
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7.1.3 Result Analysis 

Comparing the proposed method with FEM shows the estimated 𝒘𝑜𝑝𝑡 and 𝒛̂𝑖(𝑡) generally 

match the prediction in FEM. The beam can show both bending modes and the twist modes 

when hitting on a conner of the beam. These modes can be observed by the 3D mode shapes 

shown in Figure 7-11. However, when shooting one face (2D perspective of the beam it 

cannot fully separate the twisting (the 2nd and 4th) modes from bending (1st, 3rd, and 5th) 

modes. As a result, mode mixing can occur, especially, the modes with stronger response in 

low frequency range will be more likely to appear in the high frequency modes. As shown 

in Figure 7-11, the 2nd mode (twisting) appears in the 3rd and 5th mode (bending), and the 1st 

mode (bending) shows up in the 4th mode (twisting). However, such model mixing can be 

easily recognised and separated out as their frequency values are the same across different 

modes. Furthermore, multiple tests have shown that 𝒘𝑜𝑝𝑡 always converges in a small range, 

and the selection of initial weight vector does not affect the final result. 

 
Figure 7-11 Comparison of vibration mode identification result from (a) spatial filtering and (b) FEM 

In addition, the resulted displacement spectrum is compared with the LK optical flow and 

the result of accelerometer in Figure 7-12.The spectrum of spatial filtering is a sum of five 

outputs in 𝒁̂(𝑓). It can be seen that the peaks of all five modes are detectable in spatial 

filtering, however, LK optical flow cannot detect the fourth and fifth modes due to its limited 

noise suppression capability. 
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Figure 7-12 Comparison of spectra obtained from accelerometer, spatial filtering and LK optical flow. 

The LSRF [144] is still used to identify the modal parameters. The results from 

accelerometer, spatial filtering, LK optical flow and FEM are compared in Figure 7-13. The 

LK optical flow merely detect first three modes and miss last two modes at high frequency. 

By contrast, the spatial filtering detected all five modes in frequency range and highly 

consistent with the acceleration. 

 

Figure 7-13 Comparison of modal parameters identified in experiment: (a) the natural frequency and (b) 

damping ratio  

The natural frequencies of acceleration, spatial filtering, optical flow, and finite element are 

compared together. A consistency of the five detected frequencies proves that the output of 

spatial filtering with high SNR can ensure that weak modes in high frequency can be 

identified accurately. The error of damping ratio in spatial filtering is still acceptable and it 

shows great advantage than LK method. 
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7.1.4 Discussion 

Above are the detailed procedures about how the mode shape is obtained in the program. In 

summary, the prior knowledge of mode shape is required about the node number, the 

property of standing wave and boundary condition, which can be obtained through 

theoretical analysis. But the exact node location is obtained by measuring signal power of 

experimental data (PSD of output signal at corresponding natural frequency). FEM is just 

used to compare with them. The result showing smoothness is because the employed 

sinewave-based function is smooth originally. Actually, the error shows on the location of 

nodes and also on the curvature between the estimated and real value. 

 
Figure 7-14 Spatial filtering for a pixel sensor array  

The weight vector is used to match mode shape in this research. As shown in Figure 7-14, 

weight vector can change the destructive components into constructive components to 

enhance the signal power. Even though the mode shape is unknown at the beginning, an 

inaccurate assumption of weight vector can be applied to the input signals and generate a 

part of constructive components. By changing the weight vector gradually, the signal power 

will increase or decrease with respect to the variation of constructive degree in each step. If 

the weight vector gets close to the real mode shape, the signal power will increase. Otherwise, 

the signal power will drop. Thus, the power of output signal can indicate the matching degree 

between the weight vector and the mode shape. In this sense, the proposed algorithm just 

uses a common principle of adaptive filtering, in which its desired signal is each mode. As 

shown in Figure 7-14, when most destructive components turn into constructive, the mode 

shape can be found eventually. This is a typical optimization problem in adaptive filtering, 

once this problem is defined, it must have solutions. The proposed node/antinode searching 

method is not the unique solution, not applicable to all situation and can be further improved 

in the future.  
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As the effectiveness of the proposed method has been verified by simulation and experiment, 

the principle, estimation precision and computational efficiency of MASF compares with 

the window-based image registration, as shown in Table 7-1.  

Table 7-1 Comparison between the MASF and window-based image registration 

It can be seen in Table 7-1, that the prime difference between the two methods is the 

principles behind them. The local operator used in window-based methods is versatile for 

different forms of motion such as measuring strain or deformation. However, in modal 

analysis, all space elements oscillate around an equilibrium point at the same frequencies. 

Aiming at this distinctive motion, the method based on pixel array framework can extract 

and processes vibration information more pertinently so as to reduce redundancy of image 

more efficiently.  

Regarding to the computational efficiency, MATLAB is used to implement this algorithm 

on a laptop with Intel Core i7-7700HQ CPU @ 2.80 GHz processor and 16G GB RAM. 

Both the proposed method and LK optical flow are carried out to extract displacement signal 

using the same experimental dataset, the proposed method costs 29.7s totally, by contrast, 

LK optical flow takes 101.9 s [92].  

7.1.5 Conclusions of current experiment 

The experiment demonstrates the proposed adaptive spatial filtering can reach higher SNR 

than LK optic flow, which is a classic window-based image registration method. all five 

modes within frequency range are identified accurately, with the highest frequency being up 

to 6388 Hz, which cannot be identified with LK optical flow method. The fundamental 

reason for such an improvement can be attributed to two factors: firstly, the formation of 

 Mode-shape-based adaptive 

spatial filtering 

Window-based image 

registration 

Range of application Mechanical vibration  No constraint of motion form 

Principle Array signal processing Image registration 

Equivalent 

displacement sensor 
One pixel One window (subset) 

Output signal 
Displacement under modal 

coordinate 

Displacement under space 

coordinate 

Total of pixel usage Number of array elements: m Total pixels in all windows 

Number of outputs Expected modal orders: 𝑛 Number of windows 

Maximum gain Number of array elements: m Not explicit 
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sensor array takes pixel’s sensitivity to displacement into account, so that the signal quality 

is guaranteed in data acquisition; secondly, spatial filtering can make modal displacements 

experience constructive interference by utilizing the correlation of all dynamic responses. 

7.2 Modal analysis of wind turbine blade 

In this section, experimental modal analysis of wind turbine blades is carried out by using 

conventional method and proposed method under different condition. Compared with 

stainless beam, the frequency range is lower, but the displacement amplitude is much larger, 

thus the Lagrange description and SVD is adapted. 

7.2.1 LK optical-flow-based method 

In this experiment, the LK optical flow is employed to extract displacement, four markers 

are tracked to obtain the displacement of blade. 

7.2.1.1 Experimental setup & instrumentation 

In this research, an experimental rig consists of a set of blades from a 2kW wind turbine and 

an air excitation system [145]. The model of wind turbine is iSTA Breeze I-2000, it has 3 

composite blades with length of 107 cm and weight 650 g. To obtain vibration modal 

properties (frequency, damping ratio and shape) of these lightweight blades in laboratory, 

the blades is fixed on a frame shown in Figure 7-15 and excited by air pulses. In this way, 

the measurement was carried out which are more similar to the real operating conditions. In 

addition, 7 black markers are made on the trailing edge as the objective to be tracked by a 

remote high-speed camera for obtaining the flap-wise vibration as illustrated in Figure 7-15. 

Distance=2.47m

Air excitation

Piezoelectric 
sensors

Markers

 
Figure 7-15 Schematic diagram of experimental rig and instrumentation of the high-speed camera and the 

accelerometers 
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The air excitation system is made up of a compressor to generate high pressure air, an air 

pressure regulator gauge, and a solenoid valve. This system can produce an air impulse to 

excite blades, being like natural excitation due to a strong wind turbulence. In combination 

of the high-speed camera set at 2.47 metres away from the blades, this test system can 

measure the vibration modes in a remote way and expected to be more accurate compared 

conventional contact measurements. 

The video measurement system consists of a high-speed industrial camera with a single lens. 

The high-speed camera uses a CMOS sensor, the resolution is 640×480 pixel and the 

maximum fps is at 600. In this experiment, frames per second was set to 200 fps for low 

computational cost and found is sufficient to identify the vibration properties. The captured 

videos then are processed in Python & OpenCV and MATLAB based on the forementioned 

method in previous sections. 

Meanwhile, for the verification of the photogrammetric results obtained, acceleration 

responses were also collected by 4 piezoelectric accelerometers. These sensors are mounted 

at points near location of markers.  

7.2.1.2 Vibration measurement based on LK optical flow 

Unlike accelerometers measuring the acceleration straightforwardly, vision-based method 

needs to detect and track markers in the video, get the trajectory of markers’ motion, and 

then convert trajectory of pixel in successive images into physical displacement in space, 

finally solve the accelerations through differential calculation. The signals are acquired by a 

four-channel dynamic measurement system which is hosted by laptop in Figure 7-16. The 

vibration signal extracted from image includes three steps. First, to verify the accuracy of 

optical measurement. While the camera is capturing the video, piezoelectric accelerometer 

is collecting acceleration at the same time. Because the traditional contact sensor is precise 

and frequency range is wide, the vibration signals collected from accelerometers can be 

regarded as a good reference to verify the error of the vision-based method.  
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Figure 7-16. Acceleration of 5 markers acquired from photogrammetry 

The second step, the baseline condition is obtained. All used piezoelectric accelerometers 

are removed from the blades. since mass of the sensors inevitably has impact on the dynamic 

characteristics of the blades. So that using camera we can obtain the more real dynamic 

characteristics of healthy condition,  

The third step, according to other researchers’ previous research [17], the trailing edge 

deformation and real load distribution at root end are two important factors leading to failure. 

Thus, at the non-destructive condition, loosening the screws at the end root and adding mass 

near the trailing edge are implemented to simulate the typical fault on the wind turbine blades. 

The aim is clear that judge the fault using photogrammetry. 

The comparison between vision-based methods and accelerometer signals in the time 

domain and frequency domain is shown in Figure 7-17. Sampling rate of piezoelectric sensor 

is 1.5k Hz, that is significantly higher than vision-based method (200 Hz).  
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Figure 7-17. Comparison of comparison between vision signals and accelerometer signals in Time domain 

and frequency domain 

Apparently more high frequency components can be acquired by the accelerometers. 

Meanwhile, the resolution of CMOS sensor also has the influence on the result. Despite 

these, the amplitude and frequency values are well agreeable. Given that large-scale wind 

turbine blades have lower natural frequency, in this case the vision-based method should be 

very effective. 

7.2.1.3 Modal Identification 

It is well validated that the stochastic subspace identification (SSI) is reliable, so that it is 

implemented to identify the modal parameters [146]. The stabilization shown in Figure 7-18 

exhibits the process of identifying the modes over different model orders.  
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Figure 7-18. The stabilization diagram of the method of accelerometer and photogrammetry 

As shown in legend, ‘𝑜’ represents the stable results identified in different model order, the 

color of ‘𝑜’ is random just for display effect. A consistent result means the identified natural 

frequency is reliable [9]. To calibrate the results, the stabilization diagram and the results are 

provided in Figure 7-18 and Figure 7-19 respectively for the case of normal blade conditions. 

The identified natural frequency, damping ratio, and the modal shape are used to implement 

a condition monitoring method, which are shown in Figure 7-19 and Table 7-2. Although, 

there are different spurious modes in these two diagrams, both they successfully identify the 

same modes. 
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Figure 7-19. The mode shape for the first and second modes 

In Figure 7 19, the differences for first and second natural frequencies is 0.31% and 0.1% 

respectively. However, the error of damping ration is more obvious, which is common 

problem in using output-only methods. Moreover, two mode shapes are consistent with each 

other for the two methods. These then confirms that the vision-based system shows 

acceptable performance. 

7.2.1.4 Damage Detection based on Modal Parameters 

Because the modal parameters of wind turbine blades can be accurately extracted from 

photogrammetry. The damage detection based on vision method can be implemented 

logically. The artificial faults are set to check out if this method is stable and sensitive to 

some common fault of the wind turbine blades. All in all, the change of natural frequency 

can indicate the faults, regulation of damping ratio is not very clear. Modal shapes keep 

feature of first and second order mode but cannot see a significant change. 

At the beginning, all sensors are removed from the blade to test the parameters of baseline 

condition, so that the faulty cases could have a standard. Since part mass are subtracted, the 

natural frequency increase naturally, comparing with the above verification test. 

After that, the sensors as 3 extra masses (11g per sensor) are gradually added on the blade, 

the change of frequency are discovered clearly, especially when the third mass block is added 
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near the end of the blade, where often accumulates most snow or ice and cause most 

enormous imbalance and lead to fault easily.  

Table 7-2 Difference of modal parameters caused by fault 

 First order Second order 

Natural 

frequency 
Change 

rate  

Dampi

ng ratio 

Change 

rate  

Natural 

frequency 
Change 

rate  

Dampi

ng ratio 

Change 

rate  

Baseline  8.79Hz 0% 1.4% 0% 29.73Hz 0% 0.9% 0% 

Icing 

or 

frozen 

1  8.63Hz -1.82% 1.0% -28.57% 28.87Hz -2.89% 1.3% 44.44% 

2  8.34Hz -5.12% 1.6% 14.29% 28.65Hz -3.63% 1.2% 33.33% 

3  7.50Hz -14.68% 1.4% 0% 26.83Hz -9.75% 1.0% 11.11% 

Loosen 8.61Hz -2.05% 1.2% -14.29% 29.26Hz -1.58% 1.4% 55.55% 

Finally, the screw which fix blades on the shaft was loosened, this part always bears huge 

stress. Therefore, this fault is chosen to simulate early crack or loosening. From table 1 it 

can be seen that the change in natural frequency is distinctive, which allows for an 

assessment of blade conditions [145]. 

7.2.1.5 Modal Identification using Unmanned Aerial Vehicle 

Because of the non-contact property of vision-based measurement, increasing studies on 

remote structural health monitoring based on camera on an unmanned aerial vehicle (UAV) 

[147]–[151]. To test the feasibility of monitoring on-site wind turbine, the flap-wise 

vibration of a wind turbine blade is measured using the UAV and post-processed by the 

stabilization algorithm [152].  

The blade is fixed by a clamp and excited by a wood hammer. The black-white square 

markers are stuck on the clamp and the wall as the background points. The UAV is hovering 

about 1.5m in front of the blade in Figure 7-20.  
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Figure 7-20 Hovering UAV captures blade 

Figure 7-21 shows the trajectories of feature points tracked by the optical flow method. The 

background trajectories are used to work out the displacement drift, and foreground 

trajectories are compensated to obtain the accurate displacement of the blade. Because of the 

diffuse noise frequency, band pass filter cannot achieve good effect. But the homography 

matrix can represent motion between each frame. The homography transformation is used 

to perform video stabilization. The procedures are: 1) 4 still points in frame are tracked to 

get their trajectory. 2) Relying on these trajectories, the homography matrices are estimated. 

3) Then the frame can be reconstructed and stabilized using the homography matrix. In this 

reconstructed video, displacement drift is suppressed by estimated transformation. 

 
Figure 7-21 Trajectories of feature points 

The spectrum as shown in Figure 7-22 is derived from the displacement signal, the first mode 

is extracted successfully, which is 9.612 Hz. The residual of the drift is about 0.38 Hz, but 

since it is distant from the inherent frequency of blade, it can be separated from the mode.  
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Figure 7-22 Spectrum of wind turbine blade displacement 

In summary, the first mode of a 1.5m wind turbine blade are identified by an UAV. That 

result validates the video stabilization is effective for modal identification. But the second 

and higher order modes are missed. The factors are multiple, including the ego-motion, 

subtle displacement relative to resolution and the sample rate of camera. These influence 

factors will be addressed in the future research [152]. 

7.2.1.6 Conclusions of current experiment  

In this research, modal parameters identified using a vision-based method are validated by 

the result of the traditional piezoelectric sensor-based method. The difference of the natural 

frequency is less than 0.31%. Furthermore, the healthy case and the faulty cases are 

differentiated by the image signals distinctly. The mass change of blades as small as 11g can 

be detected, which is shown more significantly when the added mass is more distant from 

the root.  

In conclusion, high-speed camera combines with the air impulse excitation is an effective 

way to detect the mass addition and loose fault. However, the spatial density and the 

frequency range still need further improvement for crack detection.  

7.2.2 Array signal processing method 

In previous section, the method used in vision-based measurement is a typical window-based 

method, LK optical flow. It can obtain the natural frequency and mode shape. However, its 

spatial density has only five points and the frequency band is narrow. Therefore, the 

framework based on array signal processing is used to make up for the above deficiencies. 

According to the analysis in section 3.3 and section 5.2, the LaGrande description and SVD 

is selected to deal with condition. 
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7.2.2.1 Experiment setup  

In this experiment, a wind turbine blade segment of 465 mm is fixed on a cramp as shown 

in Figure 7-23, one high-speed camera is used to capture motion of blade. The strip on the 

leading edge is painted to increase the contrast, in order to enhance the feature for tracking. 

A Phantom (SN24006) high-speed camera equipped with Nikon 35mm 1:1.8G lens was 

employed in this test. The sampling rate and the resolution were set as 500 fps and 

1280 × 128 respectively. 

 
Figure 7-23 Experiment setup of wind turbine blade and the manual crack as damage 

Totally, three damage cases are set to test the diagnosis ability of vision-based method, 

which include intact blade as baseline, a 5 mm crack and an 8 mm crack at 35 mm from root. 

An impact hammer is used to excite the blade.  

 
Figure 7-24 One frame from experimental video in experimental modal analysis of wind turbine blade 

From the frame of experimental video Figure 7-24 One frame from experimental video, the 

blade has a high-contrast, however the background is complex. 

7.2.2.2 Pixel array processing and result analysis 

To extract the displacement from video footages, the coarse-to-fine edge detection approach 

is for this large displacement case. The algorithm is detailed in Section 3.5, firstly the image 

is smoothed by using a gaussian kernel, and then image gradient is calculated to detect the 

edge, where has the largest gradient. Subsequently, its second order gradient is calculated to 
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refine the edge position. The subpixel estimate of edge is determined at where the second 

gradient is zero. It can be known from the above that the greatest image gradient value 

indicates position of edge, thus the second order gradient is taken, and its zero value is used 

as the subpixel estimate of edge.  

Through above steps, the subpixel accuracy of edge can be obtained, and the displacement 

of every row will form a matrix of input signal. The mode shape and time sequence of each 

mode are obtained by SVD of the input signal matrix. There are three modes are 

decompressed as shown from Figure 7-25 to Figure 7-27.  

 
Figure 7-25 The first mode of three different cases. The spectrum, mode shape and the difference of mode 

shape are shown in upper, middle, and lower figures.  

The first order of natural frequency is 17.6 Hz, even though its spectrum is clean, three cases 

cannot be distinguished, as well as the mode shape. In middle figure, to compare mode shape 

of three cases directly, the mode shape is overlapped completely. If the difference of mode 

shape is calculated, that show a noisy and crossed value.  
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Figure 7-26 The second mode of three different cases. The spectrum, mode shape and the difference of mode 

shape are shown in upper, middle, and lower figures 

As for the second mode at 78.3Hz, the natural frequency and mode shape is still very close 

to each other, and the difference of mode shape show a noisier contour, due to lower SNR 

in higher frequency. 
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Figure 7-27 The spectrum, mode shape and the difference of mode shape are shown in upper, middle and 

lower figures 

The third mode is 199.3Hz, that also show a similar graph. Because the mode is very weak, 

the spectrum and mode shape get noisier. Likewise, the crack cannot be detected by 

frequency or mode shape.  

7.2.2.3 Conclusions of current experiment 

Based on above analysis, the mode shape and natural frequency can be identified based on 

SVD of array signal matrix accurately. Compared with LK optical flow, the density of mode 

shape is improved significantly. Meanwhile, the weak mode is identified up to 200 Hz, which 

cannot be obtained through LK optical flow.  

However, the small crack detection remains large challenges, because the mode shapes are 

affected by crack too subtly. 

7.3 Key findings 

This section uses two experiment to validate proposed method. Compared with conventional 

window-based method, the proposed adaptive spatial filtering method has higher 

performance on SNR gain. SVD-based method can obtain mode shape of wind turbine 
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blades, which is more accurate than result calculated from LK optic flow. However, the 

change caused by crack cannot be detected by vision-based method, when crack is very small. 
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8 APPLICATION OF VISION-BASED VIBRATION 

MEASUREMENT TO ROTATING MACHINERY 

CONDITION MONITORING 

Two condition monitoring experiments are conducted to validate the proposed methods in 

this chapter. The vibration of a reciprocating compressor and a gearbox are measured by 

the vision-based method, and the fault features are extracted based on the vibration signals. 

The experiment on compressor validates the LK optical flow can extract the features in low 

frequency band, like rotating frequency, but not valid in higher frequency range. In contrast, 

the experiment on gearbox verifies the proposed data-independent spatial filtering combined 

with time-synchronous averaging can manage to extract the sideband of two mesh 

frequencies. Even though many aspects of proposed methods can be further improved, this 

early-stage research shows the promise of vision-based condition monitoring in the future.  

It should be noted that some paragraphs in section 8.1 are expansion or reproduction of the 

published materials [3] of list of publications, and the specific paragraphs are annotated in 

a form of citation. 

 

 

Highlight:  

• The vibration of a reciprocating compressor and a gearbox are captured by a camera, 

and the fault features are extracted from image data.  

• The experiment of compressor shows the LK optical flow can extract the features in 

low frequency band, like rotating frequency, but not valid in higher frequency range.  

• In contrast, the experiment on gearbox shows the proposed method combined with 

Time-synchronous averaging can manage to extract the sideband of two mesh 

frequencies.  
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8.1 Condition monitoring of a reciprocating compressor 

8.1.1 Experimental setup 

The experiment was carried out on a two-stage single acting reciprocating compressor 

(Figure 8-1). Which is powered by a 2.5KW three-phase induction motor. The motor drives 

the pistons to reciprocate in cylinders of a V-shaped chamber. The first stage cylinder with 

the second stage cylinder is connected by an intercooler coil. At the end of air flow, the 

compressed high-pressure air is stored in a tank with a maximum capacity of 1.38Mpa [107] . 

 
Figure 8-1 Schematic diagram of the two-stage reciprocating compressor 

To investigate vision-based condition monitoring, camera and conventional instrument are 

set up jointly.  

On one hand, one dynamic pressure transducer is mounted on the top of cylinder and an 

accelerometer is installed on top of the compressor chamber as shown in Figure 8-2. On the 

other hand, the shooting equipment is a smart phone, which resolution is 4k (3840×2160), 

and the frame rate is 30 per second. An LED provides sufficient lighting. A checkbox marker 

is stuck on chamber for tracking with side length of 4.7 mm.  



8 APPLICATION OF VISION-BASED VIBRATION MEASUREMENT TO ROTATING MACHINERY 

CONDITION MONITORING 

115 

 

 
Figure 8-2 Setup of the test rig, the dynamic pressure sensor, accelerometer, and the marker are highlighted 

in the picture.  

Two operating conditions are set. First, a healthy condition is set as the base line. Second, a 

discharge valve leakage (DVL) is employed manually. The cylinder pressure and vibration 

are collected to distinguish two cases.  

8.1.2 Result analysis 

8.1.2.1 Cylinder pressure and vibration  

The Figure 8-3 exhibits the pressure of Baseline and DVL respectively the cylinder in single 

stroke, which is most direct indicator of leakage. The DVL would delay the intake valve 

opening moment and advance the discharge valve opening moment. In each cycle, the 

transported air volume and pressure increase will be less than the normal condition. 

Consequently, the efficiency of the machine would decrease. That will further result in the 

delay of vibration signal [153]. 
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Figure 8-3 Air pressure of 2-stage cylinder in angular domain 

Next, the acceleration signal is collected to analyse the change of dynamic characteristics 

caused by DVL. The Figure 8-4 shows the time synchronized average of vibration signals 

and its spectrum in single stroke, which shows amplitude of the high frequency components 

are modulated by the rotational speed, and the rotational frequency exists in the meantime. 

But the distinction between baseline and DVL is not obvious. To extract effective indictor, 

more advanced algorithm is required to analyse the modulation components, like modulation 

signal bispectrum (MSB). To simplify this process in a non-contact measurement, the vision-

based method is developed. 

 
Figure 8-4 (a) Dynamic pressure and vibration in angular domain (b) spectrum of vibration signal 
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It is clear in Figure 8-4 (b) the significant peak is distributed uniformly, that is because all 

vibration is modulated by the rotational frequency (Figure 8-5). Furthermore, the rotational 

frequency of compressor is very stable because the motor and load are fixed for a specific 

compressor. It can be seen in Figure 8-5, the rotational frequency varies within 0.3 Hz and 

0.05 Hz difference between baseline and DVL in the range of the 50 psi and 100 psi, which 

is equivalent to 3 rpm. Therefore, it can be thought basically that the frequency of rotation 

is a determined feature for a compressor, although the leak of valve will decrease the 

rotational frequency 0.05 Hz [107]. 

 
Figure 8-5 Change of rotational frequency with increase of tank pressure 

8.1.2.2 Vision-based measurement based on LK optical flow 

As the characteristics of compressor is known based on above analysis, the aim is to study 

how to extract the features based on the video. Firstly, the subpixel corner detection[154] is 

implemented to find the features, which calculates the inner product of corner point and 

surrounding pixels to refine the accuracy. Afterwards, the LK sparse pyramid optical 

flow[155], [156] is adopted to track the corners. Total 16 corners are detected and tracked 

steadily (figure 5.3). A block size is around 36.5 × 36.5  pixel, so that a millimetre-to-pixel 

conversion can be calculated as 0.1288 mm/pixel. This conversion is related to the shooting 

distance or the focal distance. 
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Figure 8-6 Feature points detected in real frame 

The displacement of feature points in time domain is shown in Figure 8-7. The amplitude in 

the range of ±1 pixel, which means the displacement is less than ±0.12 mm. 

 
Figure 8-7 Displacement signal based on LK optic flow 

Although the frequency band is limited, the rotational frequency and its second order 

harmonic can be extracted using this method as shown in Figure 8-8, because the rotational 

frequency can only exist within this range.  

 
Figure 8-8 Spectrum of displacement signal based on LK optic flow 
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The advantage of this method is it can use a relative low sample frequency method to monitor 

basic operating condition of reciprocating compressor. 

8.1.3 Conclusions of current experiment 

In this early-phase experiment, the displacement is difficult to detect in high frequency, not 

only because of the limitation of camera’s sample rate, but also the subtle displacement 

amplitudes. Thus, the accuracy of current algorithm can meet the requirement of measuring 

rotating frequency and first order harmonics, which can reflect some basic condition of 

machine.  

In conclusion, even though the conventional vision-based vibration measurement can extract 

the feature signal in low frequency such as rotational frequency around 7.6 Hz. The 

interference signal and noise will interfere the feature extraction and will affect the accuracy 

the robustness of fault diagnosis. Considering this situation, the hardware and processing 

method require further improvement. For this reason, the spatial filtering method is carried 

out and tested on a gearbox. 

8.2 Condition monitoring of gearbox 

By contrast with the modal signal, the vibration of rotating machinery is a wideband signal, 

which leads to that the signal power in Eq. (4-13) is difficult to obtain. Thus, a data 

independent spatial filtering method is used to extract key features for operating condition 

of gearbox.  

8.2.1 Background of mesh frequency and its sidebands of gearbox 

The mesh frequency and their sidebands are important signature correlating to most fault of 

gearbox, which can be caused by modulation due to gear pitting and misalignment. The 

rotation frequency of gear and pinion holds following relationship, 

𝑓𝐺𝑒𝑎𝑟 = 𝑓𝑃𝑖𝑛𝑖𝑜𝑛 ×
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑛𝑖𝑜𝑛 𝑡𝑒𝑒𝑡ℎ(𝑁𝑝) 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑎𝑟 𝑡𝑒𝑒𝑡ℎ(𝑁𝑔)
 (8-1) 

which can be rewritten in the equivalent form: 

𝑓𝑚𝑒𝑠ℎ = 𝑓𝑃𝑖𝑛𝑖𝑜𝑛 ×𝑁𝑝 = 𝑓𝐺𝑒𝑎𝑟 × 𝑁𝑔 (8-2) 



8 APPLICATION OF VISION-BASED VIBRATION MEASUREMENT TO ROTATING MACHINERY 

CONDITION MONITORING 

120 

 

𝑓𝑚𝑒𝑠ℎ is the tooth-mesh frequency, also called gear-mesh frequency, is the rate at which gear 

and pinion teeth periodically engage. If gearbox has gear tooth pitting or shaft misalignment, 

the distributed sidebands will appear in both sides of mesh frequency.  

𝑓𝑠𝑖𝑑𝑒𝑏𝑎𝑛𝑑,𝑃𝑖𝑛𝑖𝑜𝑛 = 𝑓𝑀𝑒𝑠ℎ ±𝑚 × 𝑓𝑃𝑖𝑛𝑖𝑜𝑛 (8-3) 

The sidebands of gear fault frequency appear at different rotating frequencies according to 

the location of faults. 

𝑓𝑠𝑖𝑑𝑒𝑏𝑎𝑛𝑑,𝐺𝑒𝑎𝑟 = 𝑓𝑀𝑒𝑠ℎ ±𝑚 × 𝑓𝐺𝑒𝑎𝑟 (8-4) 

in which 𝑚 is the order of harmonics. That will show multiple sidebands in spectrum, which 

can reveal the location of faults reliably. This experiment aims to test whether the proposed 

vision-based method can detect the sideband [157]. 

8.2.2 Experimental setup 

A Phantom (SN24006) high-speed camera equipped with Nikon 35mm 1:1.8G lens was 

employed in this experiment. The sampling rate was 6,000 fps and the resolution was 

512×576, simultaneously an accelerometer is used to capture the vibration for comparison 

as shown in Figure 8-9. 

 
Figure 8-9 Experimental setup of condition monitoring of gearbox by using a high-speed camera. 

One frame of captured video is shown as Figure 8-10, which show a low brightness due to 

short exposure time, that will lead to a weak signal power of vibrational displacement 

estimated from this dark image. In this sense, the potential improvement of experiment is 

the enhancement of light source. In this experiment, there the tooth number of two pairs of 

gear are59 13 47 58 respectively, thus it will turn out two mesh frequency based on the Eq. 

(8-2). The first-stage mesh frequency 𝑓𝑚1 = 316.75Hz  and the second-stage mesh 

frequency 𝑓𝑚2 = 1145.1Hz. The rotating frequency of three shaft (one gear frequency and 
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two pinion frequencies Eq. (8-2)) are measured at 𝑓𝑟1 = 5.36𝐻𝑧, 𝑓𝑟2 =  24.37𝐻𝑧 𝑎𝑛𝑑 𝑓𝑟3 =

19.74𝐻𝑧. 

 
Figure 8-10 One frame of experimental video 

The mesh figure (Figure 8-11) shows intensity signals of one image. The intensity of white 

stripe just reaches about 120, which is lower than a half of maximum, which shows a huge 

potential of signal strength improvement. According to the analysis in section 3.1.3, the 

brightness determines the sensitivity of displacement directly. 

 
Figure 8-11 Intensity matrix observed in a 3D perspective. 

8.2.3 Result analysis 

8.2.3.1 Formation of sensor array 

As described in 3, the edge detection method is used to formulate the pixel array. To remove 

the interference in image (such as shadow, reflection, and defect of painted pattern), the pre-

processing to form the pixel array is carried out through following steps, 
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• Calculate the image gradient on the axis perpendicular to strip. 

• Select the pixels, whose gradient is larger than a selected threshold. 

• Use dilate operation in order to connect disconnected edges. 

• Use erode operation in order to remove spare pixels of edges. 

• Remove the small objects from binary image. 

• Obtain the image gradient of pixels in this binary image.  

• Find the peaks on the edge and choose the edge breadth. 

Thereafter, a pixel array is formulated, each pixel of which has high sensitivity to vibration. 

 
Figure 8-12 The pixel array selected according to the image gradient, which will be used to estimate 

vibration. 

It should be noted that p, then the dimension of array will be reduced from image size to the 

number of pixels on the edge, in this case, there are 5137 pixels in pixel array. 

8.2.3.2 Data independent spatial filtering (DISF) 

The vibration signal of rotating machine is different from modal test, which can still be 

represented by 𝒖(𝑡) = 𝜱𝒛(𝑡) + 𝜼(𝑡) i.e., the Eq. (2-1). 𝜱 cannot call the mode shape now, 

but it is a value that is equivalent to mode shape in equation. In this case, 𝝓𝑖 denotes every 

spatial element’s amplitude of the signal 𝒛𝑖. Likewise, 𝒛𝑖 is no longer to be the modal signal, 

it is a wideband signal here.  

Considering 𝝓𝑖  generated from the impact and vibration of rotating machine, the wave 

propagation tends to be traveling instead of standing. 𝝓𝑖 is thus taken as rigid-body mode 

shape and approximated by a constant. According to Eq.(4-13), 𝒘𝑖 = 𝝓𝑖 should still hold 
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on, and a vector with uniformed elements 𝒘 = [1,1, … ,1]𝑇 is used as weight vector. Since 

the weight vector is a pre-set value based on property of travelling wave independent of 

collected data, it is called a data independent spatial filtering (beamforming) [111]. Figure 

8-13 shows the output signal went through this filtering and the feature components emerged 

in spectrum.  

 
Figure 8-13 Spectrum of acceleration and displacement from image. 

The spectrum of displacement and acceleration show different tendency in Figure 8-13, 

concretely, the displacement is sensitive in lower frequency, but attenuates fast with increase 

of frequency. Moreover, a component at 2083Hz and sideband occurs in displacement 

spectrum based on vision method, which cannot find in acceleration. It is likely to arise from 

motion of camera, but that did not affect the characteristic frequency. 

Overall, the signal component in frequency range is detectable basically. To obtain more 

accurate fault characteristics, the side band of two mesh frequency will be further enhanced 

based on Time-synchronous Averaging (TSA). 

8.2.3.3 Time-synchronous averaging 

Full machinery component interaction arises in a every single rotation period. Time-

synchronous averaging (TSA) is a rotation-based average, which is averaging over uniform 

rotation angles or complete rotations. It is conducive to supress noise, disturbance, or 

periodic signal content that is not coherent with the rotation. Based on different shaft 

frequency, its corresponding sideband of mesh frequency can be detected more clearly. For 

example, the sideband 𝑓𝑚1 ± 𝑛𝑓𝑟1  around first-stage mesh frequency 𝑓𝑚1 = 316.75Hz is 

averaging over the first shaft frequency 𝑓𝑟1 = 5.36𝐻𝑧 as shown in Figure 8-14(a). Likewise, 
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the second rotating shaft frequency 𝑓𝑟2 =  24.37𝐻𝑧 is used to enhance its corresponding 

sideband 𝑓𝑚1 ± 𝑛𝑓𝑟2, however, no significant sidebands are detected. It is consistent with 

acceleration signal, which shows that the gear on this shaft generates few sidebands.  

 
Figure 8-14 TSA spectrum in the frequency range around the first mesh frequency of first-stage gears for 

three rotating speeds 

The second harmonic of first-stage mesh frequency 2𝑓𝑚1 = 633.5 𝐻𝑧  is obvious. In 

addition, the first rotating sideband2𝑓𝑚1 ± 𝑛𝑓𝑟1 around 633.5 𝐻𝑧 can be detected in Figure 

8-14 (a). 

 
Figure 8-15 TSA spectrum in the frequency range around the second mesh frequency of first-stage gears for 

three rotating speeds 

As shown in Figure 8-16 (b) and (c), the sidebands 𝑓𝑚2 + 𝑛𝑓𝑟2, 𝑓𝑚2 + 𝑛𝑓𝑟3 of second-stage 

mesh frequency at 𝑓𝑚2 = 1145.1Hz are still recognizable, though no longer obvious. The 
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sideband is weak even in acceleration spectrum, that shows the difficulty to extract this weak 

feature. 

 
Figure 8-16 TSA spectrum in the frequency range around the first mesh frequency of second-stage gears for 

three rotating speeds 

Finally, the second harmonic of second-stage mesh frequency 2𝑓𝑚2 = 2290.2 cannot be 

found as shown in Figure 8-17. Because the high frequency component in displacement 

spectrum is far smaller than in the low frequency range. That shows the feature has gone out 

of the detectable range of vision-based method in this experiment. 

 
Figure 8-17 TSA spectrum in the frequency range around the second mesh frequency of second-stage gears 

for three rotating speeds 
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8.2.4 Conclusions of current experiment 

In this section, by using the spatial filtering and TSA jointly, the sidebands of first harmonic 

of first-stage mesh frequency at 316.75Hz are recognized very clear. Decreasingly, the 

sideband of second-stage mesh frequency at 1145.1Hz can only be recognized barely. 

However, the second order of second mesh frequency at 2274Hz is too weak to detect. 

In summary, although the vision-based method cannot reach the accuracy of acceleration at 

this phase, the result still shows the capability of vision-based method to diagnose the fault 

of gearbox. Furthermore, the improvement on hardware (light source and camera) and 

algorithm can promise vision-based method to reach the accuracy of accelerometer in the 

future. 

8.3 Key findings 

The vibration of a reciprocating compressor and a gearbox are captured by a camera, and the 

fault features are extracted from image data. The experiment of compressor shows the LK 

optical flow can extract the features in low frequency band, like rotating frequency, but not 

valid in higher frequency range. In contrast, the experiment on gearbox shows the proposed 

method combined with time-synchronous averaging can manage to extract the sideband of 

two mesh frequencies. Even through the methods can be improved in many aspects, this 

early-stage research shows the promise of vision-based condition monitoring. 
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9 CONCLUSIONS AND FUTURE WORKS 

In previous chapters, the research on theory, simulation, and experiment are detailed. In the 

last chapter, the key points of above parts are summarized. 
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9.1 Objectives and achievements 

This Ph.D. project mainly developed a novel framework based on array signal processing 

for vision-based vibration measurement. The main achievements are listed corresponding to 

research objectives. 

• Objective 1: To set up a novel framework that incorporates from measuring vibration to 

extracting features (or identifying parameters), which can accomplish the vision-based 

modal analysis or condition monitoring. 

• Achievement 1: A PASP framework is proposed that can achieve the vision-based 

vibration measurement with high-accuracy, through a connected sequence including 

forming pixel array, array processing and extract features (modal parameter for modal 

analysis and diagnostic feature for condition monitoring). 

 

• Objective 2: To develop algorithms that can enhance SNR of vibration signal, especially 

for weak signal in high frequency. 

• Achievement 2:  

o A (MASF) algorithm is developed, which can enhance SNR by the number of 

pixels in array, and then the detection of weak signal is achieved in numerical 

simulation and experiment. 

o An SVD-based method is developed, which can extract weak signal without 

using iterative process.  

o A data-independent spatial filtering is developed for condition monitoring 

because the vibration wave propagation of rotating machinery tends to be a 

travelling wave. 

 

• Objective 3: To develop algorithms that can achieve accurate and dense estimation of 

mode shape. 

• Achievement 3:  

o A Node/antinode searching scheme is developed to implement the proposed 

MASF, which can obtain the mode shape by searching the location of 

node/antinode at a pixel level. 
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o The proposed SVD-based method can also realize estimation of mode shape, 

which is applicable to the mode shape that cannot be represented by its 

node/antinode.  

 

• Objective 4: To carry out simulation study by programming and using commercial 

software, in order to verify theoretical calculation and guide experiments. 

• Achievement 4: A group of FEM is built by using Ansys, which manage to predict the 

experiment result. In addition, a synthetic video is created by coding in MATLAB, which 

is used to verify the proposed equations and predict the experiment result. 

 

• Objective 5: To design and implement a set of experiments, in order to validate proposed 

methods and expand its applications. 

• Achievement 5: A group of pioneering vision-based experiments are conducted, the 

main achievements in four experiments are listed respectively.  

o In modal analysis of free-free stainless beam, the natural frequencies and mode 

shape up to 6388 Hz are identified, which cannot be achieved by conventional 

methods. 

o In modal analysis of wind turbine blade, the natural frequencies and mode shape 

are identified without prior knowledge and iterative process, which justify the 

robustness and applicability on large displacement response (about 0.2 m).  

o In condition monitoring of reciprocating compressor, a simple setup is combined 

with conventional LK optical flow to measure the rotating speed of motor, that 

validates the conventional method can monitor the basic parameter such as the 

rotating speed but not sufficient for high frequency range. 

o In condition monitoring of gearbox, the high-speed camera is combined with 

proposed framework to diagnose the fault, in which the mesh frequency up to 

1145Hz and their sidebands are detected clearly. That shows the proposed 

framework not only can conduct modal analysis, but also is effective to wideband 

signal in condition monitoring. 
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9.2 Conclusions 

Overall, this PhD project sets up a novel pixel array signal processing framework for vision-

based vibration measurement, which is comprised of pixel array formation, pixel array signal 

processing and the feature extraction (or parameter identification). This framework tends to 

take pixels as an array of displacement sensors, rather than an image. Furthermore, a serial 

of approaches under this framework is proposed to meet requirements of various test 

scenarios. In addition, the simulation and experiment study were conducted to validate the 

performance of proposed, which shows the measurement accuracy is highly improved than 

conventional methods. The conclusions of specific approaches are drawn as follow. 

• An edge detection-based formation approach is proposed for formulating the pixel array, 

that can get all sensitive pixels involved in computation, meanwhile exclude all useless 

pixel from computation, which leads to improving the signal quality in data acquisition. 

• A mode-shape-based adaptive spatial filtering approach is proposed, which can obtain 

the high-SNR modal displacement by using with high computational efficiency. In 

particular, a node/antinode searching scheme is proposed based on sinusoid-based 

piecewise functions, which works as an adaptive filter to match mode shape and enhance 

modal displacement. It shows that the proposed method can identify the weak natural 

frequency in the high frequency range and estimate the mode shape of continuous 

structures. Through theoretical analysis, the upper bounder of array gain is found, which 

is an explicit value equal to the number of array elements. In simulation, the theoretical 

array gain is verified, and a weak mode with amplitude of 1/2560 pixel is detected 

through enhancing its SNR by nearly 2000 times. In experiment of a free-free beam, all 

five modes within frequency range are identified accurately, with the highest frequency 

being up to 6388 Hz, which cannot be identified with LK optical flow method.  

• An SVD-based method is proposed to identify mode shape that cannot be represented by 

its node/antinode. In the experimental modal analysis of wind turbine blade, the SVD-

based method is used to identify the modal parameters, within the frequency up to 250Hz 

and the displacement magnitude about 0.2m. Compared with LK optical flow, the spatial 

density of mode shape and bandwidth of natural frequency are improved significantly.  

• A data independent spatial filtering is proposed for condition monitoring of rotating 

machinery. In experiment of multistage gearbox, the proposed spatial filtering combines 
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with time-synchronous signal average to detect the diagnostic feature up to 1145Hz, i.e., 

the mesh frequency and its sidebands successfully. The result demonstrates that the 

PASP framework has sufficient capability of monitoring rotating machinery, and the 

accuracy is promising to increase with the development of algorithm and hardware in the 

future. 

The reason of improvement can be attributed to that the array signal processing is more 

pertinent to structural vibration than the conventional image registration method. Because 

the structural vibration is a distinctive motion that all space elements is oscillatiing subtlely 

around a equilibrium point at the same frequencies. Aiming at this distinctive motion, the 

method based on array processing can extract and processes vibration information more 

effectively so as to reduce redundancy of image more efficiently. 

However, there is still a development prospect in the robustness and accuracy of the 

framework, which will be discussed in the section of future work. 

9.3 Novelties 

• A novel framework is first proposed based on the principle of array signal processing. 

Compared with the conventional framework of window-based image registration, the 

proposed framework can break through current limit of SNR by overcoming inherent 

defect of image registration methods.  

• An edge detection method is first developed to select pixels for computation. Compared 

with selecting pixel from a rectangle window, the quality of acquired signal is improved 

significantly. 

• A mode-shape-based adaptive spatial filtering approach is first developed. Moreover, the 

maximum gain of ASF is found, which cannot be achieved by conventional methods. 

• A node/antinode search scheme is fist developed to solve the optimization problem in 

adaptive spatial filtering with high computational efficiency. 

• The vision-based condition monitoring of gearbox is first carried out. The promising 

results show the potential of extensive applications to vision-based condition monitoring 

in the future. 



9 CONCLUSIONS AND FUTURE WORKS 

132 

 

9.4 Contribution to knowledge 

The contribution of this Ph.D. project to knowledge can be summarized into following two 

aspects. 

• This study innovates framework of VVM completely. The existing methods are based 

on the window-based image registration, which belongs to the methodology of image 

processing or computer vision. In contrast, the proposed framework stems from the array 

signal processing, as a result, enhancement of signal power is more significant than 

conventional framework. Because the constructive interference of signal can only be 

achieved based on the array processing, but not the principle of image processing. 

• The proposed framework expands theory and applications of array signal processing. As 

a mature discipline, the array signal processing has been applied to almost all sensor 

arrays. The application on VVM further expands the conception of ASP, especially the 

weight vector of spatial filter cannot only achieve the phase shifter but also the amplitude 

adjustment. 

9.5 Future works 

Many future works will be derived from this new framework, the direction can be 

categorized into improving robustness and accuracy. 

• In terms of robustness or applicability, more complex situations require to consider, such 

as 1) the uncertain boundary condition, 2) 3D measurement for complex-shape objects, 

3) the adaptive spatial filtering for wideband sign and so on. 

• Regarding to the further improvement on accuracy, 1) the noise model of image, 2) the 

convexity of optimization, 3) the adaptive filtering for identifying the damping ratio and 

4) upgrading the experiment setup etc. are suggested to investigate in the future.  

In summary, this pioneering research can inspire more potential works that are worthy of 

research in the future. 
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