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Abstract

Whilst Part inspection and dimensional validation (PIDV) is a well-established practice for
external and accessible features, the capture and analysis of internal features and the
dimensions associated with them has always been an issue. As parts designed for additive
manufacture become more widely used, this issue is compounded, since internal features and
hollows can be easily introduced. For parts manufactured through additive manufacture or by
traditionally cast methods, if the internal structure requires PIDV or an in-line validation check,
the internal structure will need to be revealed so that a measurement can take place. Presently,
the only available solutions to this issue are destructive measurement, or X-ray computed
tomography (XCT) scanning. Neither of these solutions are universally practical, and in the
latter case not readily available.

This thesis introduces an alternative method for measuring internal features. The method
requires an intentionally induced temperature differential between the internal and external
features. The resultant temperature distribution is measured on the surface using a
thermographic camera.

Using this technique, in combination with standard multi-view projection, this method of data
recovery can discern an object’s internal structure and provide inferred measurements for that
structure. This result, combined with any industry-standard method for the measurement of the
external features, can provide a complete 3D digital recreation of the object in question. This
technique has the benefits of being non-destructive, not requiring extensive training or
knowledge to operate, and being more affordable and more portable than XCT.

The aim of this investigation was to devise and evaluate the feasibility of this approach. This
process began with a series of FEA simulations to prove that internal geometric measurements
could be extracted from forcibly induced surface temperature profiles and that the spatial and
temperature resolution required for this extraction were sufficient. For low conductive
materials, with forcible induced internal temperatures or around 100°C, internal edge
extraction was possible to within 1.5mm. From this initial validation, a series of physical
experiments using 3D printed, and machined artefacts were performed to validate the computer
simulations and understand the limitations when using a real thermographic camera, rather than
picking ideal data from a simulation.

The experimental results showed that through the thermal manipulation of an object’s internal
structure, geometric dimensions could be resolved to within +/-1.8mm with a repeatably of
0.6mm. When combined with external surface data from industry-standard capture techniques,
this novel approach successfully resolved a complete Computer Aided Design (CAD) “solid
model” encapsulating a holistic set of geometric measurements.

In addition to findings relating to spatial accuracy, and material limitation, this research has
highlighted how this capture technique can discern differing internal structures based on
temporally gathered temperature data. When the temperature data from the test artifacts is
gathered temporally, the resultant data shows differing results for curved, angled, and straight
internal faces respectively. This, going forward, would allow for the automatic categorisation
and recognition of internal features based upon the recovered thermal response.
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Chapter 1. Introduction

In this chapter, the focus of this investigation is introduced, and a general overview is presented.
Also, outlined in this chapter is the thesis structure, detailing the contents of all additional

chapters.

1.1. Overview

Inspection and dimensional validation (PIDV) of manufactured engineering components or
products is an important stage of the manufacturing process. In manufacturing, such a
component, part or product is referred to as the workpiece [1] and the inspection of which
ensures conformity to the customer requirements, and traceability as part of the manufacturing

process.

The concept of part inspection is as old as the manufacturing process itself, as the state of the

final product has always needed to be known.

Whether measuring a part as part of an in-line inspection cycle, or when performing the final
part inspection, the process and objective is the same; to capture dimensional information.
Today, there are multitudes of different metrology devices available for the measurement of
objects, from simple callipers and micrometres to high accuracy coordinated measure machines
(CMM) and optical scanners. The choice of measurement device usually depends on the
complexity of the part under scrutiny and accuracy requirements. Simple geometric shapes can
have their dimensions recovered easily using simple tactile means. More complex geometric
shapes, or parts with large dimensions may require the use of a CMM for ease of capture. Parts

whose geometry is comprised of free-form surfaces can be captured using the same techniques



however, it is considerably more complex and time consuming. These Parts generally have

their dimensions recovered by non-contact optical techniques.

One main challenge that persists in PIDV regardless of capture technique is the recovery of
internal feature geometry. This issue has now been further highlighted by the advent of new

additive manufacturing technologies.

For a designed component undergoing traditional subtractive manufacturing processes, internal
PIDV should not be an issue as during the design phase it will be considered whether the
internal structure needs to be inspected and allowances made if necessary. However, additive
manufacture now offers designers new versatilities in part design that until now were physically
impossible to produce, especially in the areas of internal structure. Parts with internal structures
and complex voids, that would otherwise be impossible to machine in subtractive terms can

now be easily produced.

However, these new manufacturing techniques present a new problem with respect to the PIDV
of these potential complex internal structures. This problem is mainly due to the limitations of

the metrology equipment currently available to most manufactures.

Currently using CMM’s to capture internal data is a possibility but the CMM probe may not
have the length to reach all the features (see Figure 1-1). Another common problem is a feature
with larger dimensions may only be accessible through a connecting feature with a smaller set
of dimensions. This will block the probe from contacting the larger features, shown in Figure

1-2.
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Optical systems suffer from a similar potential issue. Active optical systems generally work on
the principle of emitting light, which interacts with the object under scrutiny. The light emitted
at a specific angle with respect to the object. The light hits the object and is reflected back to a

receiver at the same angle it was emitted. This is shown in Figure 1-3.
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Figure 1-3: Generalized View of an Active Optical System

However, problems with this kind of system start to occur when attempting to capture internal
features, such as bores, or features with sharp concave corners. This occurs because the
geometry of features may consist of angles that are smaller than the emitter/receiver angle,
shown in Figure 1-3 as a. If a feature has a smaller angle than a, the beam cannot complete its
path from emitter to feature to receiver. This can lead to incomplete data recovery, sometimes
called missing data error, which is a common issue with parts that have complex geometry or
have been subjected to an imperfect scanning procedure [2]. With concave edges, this problem
can be overcome by re-orientating the scanner head with respect to the feature in question in
order to change the viewing angle. However, this approach would not be applicable when
trying to capture bores, deep recesses, and internal geometry. When using a laser scanner to
capture bores or deep recesses, one might find the same problem when scanning edges, yet this
cannot be overcome by any amount of re-orientation of the scanner head. The bore might be
too deep for the optimal range of the scanner, or the diameter may be too small, stopping the

emitted beam from returning.



Whether or not a tactile probe or optical scanner can capture data from shallow bores or
relatively sharp corners is academic if the object in question has a structure consisting of closed

off or sealed internal features because there is no physical access.

This is a common problem with respect to traditional cast parts, and this same problem will

potentially be present with additively manufactured parts.

Cast parts such as engine blocks or turbo charger casings, shown in Figure 1-4, can have
complex internal geometries. By design, these internal structures may not need to be inspected
so do not need to be reached by inspection tools. From the initial design and manufacture point
of view this might be acceptable, however if dimensional validation is required at a later stage,
for example, if the part is not operating optimally, problem will arise. In additional to
dimensional validation, there is also the potential need to validate the internal structure visually.
As said additive manufacture allows designs to incorporate new design aspects in manufactured
parts. This may include internal webbing and supports that whilst do not need to be
dimensionally validated, may be critical to load distribution etc. Therefore, it may be necessary
to ascertain that these features have survived the printing process and have not collapsed or

deformed.

Figure 1-4: Cross section of a turbo charger showing cast internal structures.



At this stage, there are two potential ways to preform PIVD or internal visual inspections on
objects of this nature; the first would be to incorporate the use of a more complex recovery
system, for example, a Magnetic Resonance Imaging (MRI) scanner, or X-ray Computed
Tomography (CT) scanning. The second would be to employ destructive techniques, such as
bisecting the part in question, to access the internal features so that they can be measured by
means that are more traditional. However, if the exercise is to inspect the component, then
have it resume its operation, destroying it to measure it would not be the best approach.
Destructive techniques might be a potential option in batch production where one component
can be sacrificed for inspection purposes, but if destructive techniques are indeed not suitable,
the only existing options for recovering the geometric data from internal features is the use of

one of the more complex techniques previously mentioned, such as CT scanning.

Magnetic, X-ray, and acoustic techniques in the form of MRI scanners, CT scanners, and
Ultrasound scanners have the ability to “look into” an object and are discussed in further detail
in Chapter 2. Whilst these devices can recover the internal geometry of an object, this ability
comes at a price that may preclude their use in some scenarios. Again, the positives and
negatives of these devices are illustrated in detail in Chapter 2; but they can be very expensive
to acquire and operate, can be limited in scope in terms of material and size of object they can
measure, and can have complex operational requirements with respect to power and training

requirements.

Therefore, given the limitations of traditional tactile and optical data capture methods, and the
requirements and scope of the current possible alternatives, this investigation focuses on a new

method for obtaining information about complex internal geometry.

This new idea investigates using a combination of infrared thermography (IRT) and a form of

parallel projection to deduce the geometry of an internal structure. In principle, any object



hotter than absolute zero will emit radiation. The intensity and spectral composition of the
emitted radiation is determined by the temperature and thermal properties of the radiating
material. This radiated emission can be remotely sensed and captured to determine the radiant
temperature of an object [3]. This practice is generally called thermography. Determined by
the laws of conduction heat will also flow from hot to cold, so in theory heated internal features
that have temperatures that are higher than the surrounding surfaces will see a conduction of
heat towards those cooler surfaces. Once the heat flow reaches the surface of a part, the change
in temperature will cause the objects emitted radiation to change, which in turn can be captured
by an IR camera. Due to the temperature differential between the hotter internal features and
the cooler material between them, the captured data will show the shape of the internal structure
in a single 2D plane. However, this practice alone would not be enough to recreate the internal

structure of an object spatially.

As with CT scanning, where multiple X-ray measurements are taken from different angles, this
system will also require an indexable rotation of the part to acquire multiple thermograms to
ensure a compete 3D rendition of an object internal geometry. By using a form of projection,
a second and possibly third set of data taken from two separate perpendicular views will be

needed to complete the data set and show all 3D spatial data of the internal geometry.

Parallel projection is a style of graphical projection mainly used in mechanical design and is a
way of representing a 3D object through the projection of several 2D views (shown in Figure
1-5 is orthogrtapic projection, a dependant projection form of parallel projection). Whilst this
is the most common way of using parallel projection, the technique discussed here will use it
in reverse to generate 3D objects from several 2D views. In addition to this, traditional parallel,
and in particular orthographic projection, utilises three separate views (as shown below). This
proposed technique for internal data capture may not use all three separate views, but for the

purposes of this thesis will still be referred to as parallel projection.
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Figure 1-5: Example of Orthographic Projection

This principle of taking several views of an object to create one 3D entity can be combined
with the proposed principles of thermographic capture. If one takes several thermograms of an
object that has been subjected to internal heat generation, combines them together through the
principles of parallel projection, the result will show the complete internal structure of an object

from which geometric information can be deduced.

1.2. Thesis Structure

- Chapter 1: Introduction

Chapter 1 of thesis outlines the rationale behind this thesis. This chapter details the need for

PIDV of internal structures and current limitations that exist in acquiring them.
- Chapter 2: Literature review

The literature review is split into two main areas. The first details the context of PIDV and
focuses on the current solutions available for the PIDV of internal structures, chief amongst
which is XCT. The use of XCT for internal measurement is discussed here, including several
of the issues currently associated with using XCT in the manner. The second part of this
literature review will look at areas in which thermography and metrology have been previously
combined. This will ensure the novelty of this work but also help identify areas that can be

built upon to further this research.



- Chapter 3: Motivation, aim, objectives, scope, and methodology

Chapter 3 details the motivation behind this research based upon the findings from the literature
review. It goes on to then outline the aim, objectives, and the scope of this project. Finally, the

main methodology detailing how this work will be performed is then presented.

- Chapter 4: Preliminary FEA analysis and results

Chapter 4 provides the details, results, and discussion of preliminary Finite Element Analysis
(FEA) simulations used to confirm the feasibility of the proposed approach. The FEA is used
to ensure that heat conduction from an internal cavity to the surrounding external surfaces can
be observed, and that temperature profiles from which geometric features can be deduced are
observable. Chapter 4 also details how internal edge position is affected by different boundary
conditions, such as, thermal conductivity, depth and geometry of cavity, and heating

techniques.

- Chapter 5: Experimental Investigation

The main investigative part of this thesis is presented in chapter 5. In this chapter, the following

is discussed:

e The techniques used to capture and digitise the external features of an object.

e The algorithm used to detect and extrapolate the internal geometry of the same
object in 2D, as well as filtering and edge detection techniques.

e The capture of internal dimensions of artifacts with differing internal structures and
materials.

e The accuracy and repeatability of this proof-of-concept system

e The use of projection to discern and observe the internal geometry in 3D



e The amalgamation of both the internal and external data sets into a single usable 3D

object.

This chapter also discusses several differing examples using the afore mentioned techniques.

- Chapter 6: TTI - Timed thermal imagery

Chapter 6 explains the evolution of the software developed in chapter 5 into a system that can
track the drift of an edge position results, detected through a series of thermal images. It
explains how temporally tracking edge position results can be used to better estimate the
geometry of an objects internal structure. Curved and angled edge recovery is assessed as a

case study for using this enhanced extraction software.

- Chapter 7: Conclusions and future work

This chapter provides a summary of the research and how the aim and objectives set forth in
Chapter 3 have been met. It then goes on to draw the main conclusions from the work and
states the contributions to knowledge that this research has provided. Several areas requiring

further study that has arisen from this work are also presented here.
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Chapter 2. Literature Review

In this chapter a literature review of the current methods available for the inspection of
workpiece internal features is presented. This review also highlights the issues connected with
these current methods, and how those issues present a problem for modern industrial

metrology.

In addition, this review also assesses previous work that has been performed in the combined
area of metrology and thermal imagery, and to verify if these two subject areas have been used

in conjunction before with respect to internal feature PIDV.

This chapter is split into five main sections. The first introduces the introduce the area of part
inspection and dimensional validation. The second section of this review will look at the current
solutions to internal feature PIDV, and their limitations. Section three is added because infrared
thermography or ‘thermal imaging’ is not normally associated with PIDV therefore this section
starts by introducing the subject area of infrared thermography, thermal imagery, and its
applications before reviewing how thermography and metrology are currently used in
conjunction. The fourth section of this review discusses areas of interest were thermal imagery
and metrology have been combined, to either resolve geometric dimensions or use thermal
imagery as a form of thermal overlay on 3D models. The fifth section will then summarise the

finding from the previous four sections.

2.1. Introduction to part inspection and dimensional validation

This first section will briefly introduce inspection and dimensional validation, the need behind

it and some of the data acquisition methods currently available to perform part inspection.

Part inspection and dimensional validation (PIDV) is a critical part of the manufacturing

process, ensuring design verification and conformity, quality control and traceability
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throughout the manufacturing process. In manufacturing, maintaining a robust inspection
system can ensure the quality of the end product and can have an effect on production costs as

the impact of rework is potentially reduced.

Typically speaking, the act of PIDV involves the taking of measurements from a manufactured
article and comparing those measurements to a known set of nominal dimensions, as set out by

the designer.

Today, depending on the part complexity and the accuracy of the required inspection there are
a multitude of inspection data acquisition techniques available to perform dimensional
validation. Figure 2-1 shows a collection of tactile and non-contact data acquisition techniques

currently available for performing dimensional validation.

The data acquisition methods shown in Figure 2-1, between them can deal with most industry
inspection requirements. This can in part be attributed to designers’ attitude towards the
manufacturing process and the subsequent required inspection. Today the majority of
manufacture is still performed by subtractive means, meaning that designers need to understand
the practicalities and limitations when designing parts for these production methods. Features
on components produced by subtractive methods, quite often can be easily inspected as the

physical approach and direction used in manufacturing them can be utilised during inspection.

Even for subtractive manufactured components with internal features, inspection should still
be possible as if a cutting tool can make the internal feature, an inspection system should be
able to reach the same feature. In addition, designers can also make allowances in the

component design to allow for inspection if necessary.

However, problems arise when trying to use the same inspection techniques and data aquation

methods on parts produced by additive means.
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Figure 2-1: Data acquisition methods

Over the last two decades additive manufacture (AM) has become more and more integrated
in terms of it being a mainstream manufacturing method. Initially considered as an esoteric tool
limited to specific applications and industries [4], the advent of more affordable machines and
a drive within manufacturing to utilises this technology has seen it become a more prominent

fixture within the manufacturing sector.

Unlike traditional subtractive manufacturing, which involves the removal of material from
stock or a billet, AM, as the name suggests, “builds” up the component layer by layer. This can
be performed by several different methods, fused deposition modelling (FDM), selective laser

sintering (SLS), and stereolithography (SLA), to name a few [5].



In contract to subtractive methods, which can require, fixturing and tooling, thus constraining
the design process, AM, with this layer-by-layer approach can in theory create any complex
shape or topology [6]. This approach to design is further enhanced by the ease of which internal
features can be incorporated into component design. At this point internal features can be
broken down into two separate categories: 1, specific internal features with a direct purpose,

such as internal conduits and cavities, and 2, infill lattices for support.

Looking the first category: specific internal features, AM allows for a much more optimal
placement of internal features, without the need to consider external tooling or tooling reach
etc. The second category: infill lattices, is a procedure that has come about with the advent of
AM. Infill lattices or other internal cellular structures, allow for production of lightweight parts
without reducing the parts nominal mechanical properties. That said, these internal structures

can also be optimised to ensure a specific part stiffness or directional strength [7].

However, this advancement in design and manufacturing versatility, comes at the cost of ways
to perform typical quality assurance, especially with respect to internal features. Typical tactile
and optical techniques do not have the reach or the field of view to perform PIDV on these
potentially complex or sealed internal features. Whilst there are methods and technique to
provide quality assurance, which will be covered in detail in the next section, Everton et al [8]
state that this lack in established quality assurance, especially in the area of in-situ metrology
is possible the biggest technological barrier in allowing AM to become a more mainstream

practice in manufacturing.

PIDV is essential in any manufacturing quality control process, and AM parts are not exempt
from this. Arguable PIDV is even more critical in AM parts, as not only is dimensional data

required to validate the design. If the design is utilising a cellular structure to provide internal
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support or stiffness, additional validation may be needed to ascertain that this structure is

correct and has not failed during the manufacturing process.

2.2. Internal Part measurement

As previously mentioned, there are other techniques utilised by PIDV that are more suitable
for the extraction of internal data. X-ray Computerised tomography (CT), ultrasonic scanning,
and magnetic resonance imaging (MRI) are three of the more specialised forms of data
acquisition. One advantage these methods have over optical and tactile alternatives is the ability
to penetrate an object to reveal and measure internal features and cavities. Whilst they may
have the ability to penetrate the solid outer shell of an object to reveal the internal structure,
these systems are not without issue. The following literary review section will look at the three
above mentioned data capture techniques, reviewing their data capture methods, limitations,
and suitability when used with respect to PIDV of internal features of additively manufactured

parts.

2.2.1. X-ray Computerised Tomography (CT) Scanning

X-ray Computerized Tomography, more commonly referred to as CT scanning, is a scanning
technique that employs the use of high energy X-rays. In industrial CT scanners, the system
consists of an X-ray tube and an in-line detector, located in either side of the object under
investigation. The object is then rotated allowing for the capture of multi-directional
radiograms [9]. This layout is slightly different in medical grade CT scanners where the X-ray
tube and detector rotate around the subject [10]. Each radiogram or projection is the same as a
single X-ray; with rotation, enabling the object to be viewed from any point in a minimum of
a 180° field of view. Each projection consists of hundreds of line integrals that, depending on
the intensity of the exposure, determine the depth of the projection. This builds up a complete

representation of the object in three dimensions at multiple depths. The number of projection
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and line integrals the object is subjected to, and the exposure time dictates image clarity and
therefore accuracy. Modern clinical CT scanners will now take around a thousand projections,
each consisting of several hundred-line integrals, through a full 360° field of view, to maximise
the clarity of the resultant radiogram [11]. Even though the main area of usage for CT scanning
has been in the medical world, it does have a growing presence in other disciplines, particularly
for inspection purposes in manufacturing which has benefitted from increased performance in
the machines as well as ongoing research into performance evaluation and industrial metrology.
Industrial CT scanning differs from typical CT scanning found in hospitals due to the objects
being scanned. Medical CT scanners can scan medium to large objects, such as humans and
large animals, because organic matter can be thought of as having a low attenuation coefficient.
The attenuation coefficient of a material is related to how X-rays propagate through said
material in terms of absorption and scattering. Metallic materials generally have high
attenuation coefficients and as such require higher photon energy leading to higher drive
voltages than their medical counterparts. Medical CT scanners normally operate in the range
of 120-130KV, whilst their industrial counterparts start at 225KV [12]. This higher attenuation
coefficient in metallic objects also limits the size of the object an industrial CT scanner is able
to accept. If an objects size is increased but the power level of the scanner remains the same,
the X-ray photons will not be able to penetrate through the object before photoelectric
absorption occurs, which in turn leads to electron scattering. If a response is recorded in the
detector, these additional electrons, ejected by proton impacts, will be o