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Abstract

Recent advances in Automated Planning not only involve the improvements in plan-

ning efficiency but also the enhancement in granularity in which planning domains are

modelled. A significant progression is in the move from discrete domain models to

mixed discrete-continuous models i.e. hybrid domain models. While planning with hy-

brid domains has been studied for decades, the knowledge engineering of those domain

models is still a challenge, particularly for real-time complex domains. It is impera-

tive to understand how to effectively and efficiently formulate the planning models to

achieve maximum productivity with minimum wasted effort or cost. One of the main

engineering challenges of hybrid domain models involves encoding the frequent fluctu-

ation of underlying processes with continuous updates in the world state. The occurring

numerical changes with the variation of parameters can be too complex to be formu-

lated accurately by human manual efforts.

This thesis proposes a method utilising machine learning techniques which results in

the formulation of a run-time representative estimation of continuous changes in var-

ied process parameters. The method incorporates statistical analysis to acquire process

models from real-world data for hybrid planning domains. We assume that domain

knowledge has been already encoded in an initial hybrid domain model (in this thesis,

that is a PDDL+ model). We then use the method to create an improved process model

(within the same encoding language of PDDL+) which is embedded into the process

specification of the original, pre-engineered domain model.

By exploiting the quantitative data from hybrid planning domains, firstly the proposed

approach, with the help of statistical methods, identifies the associations (i.e. depen-

dencies or inter-dependencies) between a single outcome and single/multiple predictor

numeric variables in the underlying process. Based on the deduced statistical relation-

ship among variables, the appropriate linear regression technique with corresponding

statistical tests are nominated and implemented to formulate the process model. Then

the constructed process model is embedded/adjusted into the pre-engineered hybrid do-
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main models. The learned process model, in the form of a mathematical function, auto-

matically approximates/adjusts the quantity of an outcome variable with the continuous

variations in different predictor features in order to efficiently and accurately control

the corresponding process in hybrid planning domains.

To empirically evaluate our approach, we utilise pre-engineered models (in PDDL+)

of an Urban Traffic Control (UTC) domain and a Coffee domain. For the UTC domain,

we experiment with the real-time traffic data that is collected from AIMSUN simulator

utilised in the SimplifAI project (McCluskey, Vallati and Franco 2017). Besides, for

coffee domain, we collect the real-time data from an observational study that is con-

ducted by Easthope (2015). The evaluation results demonstrate that the automatically

learned values of numeric process variables by our method are more rational than the

formulation values of process variables declared statically in the original domain mod-

els. Besides, it reveals that the learned process models can provide more accurate sim-

ulation output, which can consequently lead to higher-quality plans. Along with that,

by automatically identifying the effective process variables and removing the irrelevant

ones from the learned process models, it can assist the knowledge engineering tasks of

modelling/adjusting the dynamically changing process variables with their values in the

hybrid planning domains, without declaring them statically.

Keywords: Automated Planning, Knowledge Engineering, Machine Learning, Mixed

Discrete-Continuous Representations, Process Models, Correlation Analysis, Regres-

sion Analysis.
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CHAPTER 1

Introduction

In this era of automation, Human life is surrounded by different types of intelligent sys-
tems which play a variety of roles in the society such as medical care, education, mili-
tary operations, factory automation, business transaction, intelligent transportation, and
household assistance etc. Intelligent systems employ Artificial Intelligence (AI) to per-
form tasks that generally require human intelligence like planning, learning, reasoning,
problem solving, perception, and knowledge representation. Intelligent Autonomous
Systems (IAS) is the study of developing such intelligent agents that can perceive the
surrounding environment and response accordingly without human assistance. Plan-
ning and Learning are the major capabilities that such automated systems should have.
Basically, Planning is a cognitive process which involves reasoning with knowledge
about actions and change to generate strategies or plans to achieve a goal (Preece et al.
2015). Whereas, Learning is a process of getting new knowledge, making connections
with the prior knowledge and transfer knowledge in order to improve performance (Am-
brose et al. 2010).

Automated Planning (AP), also known as AI planning, is a pivotal branch of AI that
synthesises plans or a series of actions. Through the plan execution, it guides the in-
telligent agents transforming the environment from initial state to a desired goal state.
The abstract architecture of AP has logically separated into two parts: Planning Engine
and Domain Model (McCluskey 2012) as shown in Fig 1.1. A planning engine (Plan-
ner) is a generic software system to automatically generate plans based on the given
domain knowledge. A domain model as a formal specification of the planning problem,
provides information of the application area facilitating the planner to apply techniques
accordingly.

In general real-world planning applications require models representing both discrete
and continuous changes to variables such as numeric resources for completing a task.
Unlike the classical planner with discrete domain knowledge, the hybrid planner has the
ability to handle both discrete changes and continuous transition with hybrid (mixed
discrete-continuous) domain knowledge. The hybrid planning domain has additional
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Fig. 1.1 Abstract architecture of planners (McCluskey 2012)

expressive features to model the time-dependent continuous processes and also the ex-
ogenous events that are occurred by the uncertain environment. It enables the hybrid
planner to reason with external events and their interaction with continuously changing
numeric values in order to generate real-time plans.

In AI, Machine Learning (ML) is considered as compulsory behaviour of an intelligent
system for enabling the learning ability from experiences, observations or by direct in-
structions automatically. Based on the learning outcomes, the system can make better
decisions or predictions, develop skills and improve actions accordingly without hu-
man or programmed instructions (Carbonell et al. 1983). There has been a long history
of utilising ML techniques in Automated Planning (AP), with the intent of automati-
cally extract, refine, organise and exploit the domain knowledge. Consequently, The
acquired knowledge assists the planning agents to improve the planning performance,
plan quality and domain theory (Zimmerman and Kambhampati 2003, Jiménez et al.
2012). Also, to some extent, it mitigates the knowledge engineering (KE) issues by au-
tomatically acquiring adequate domain models instead of manual encoding (Tate et al.
2012, Tate and Wickler 2015).

A domain model represents the conceptualised and formalised knowledge within a plan-
ning application as analysed, reasoned and deployed by the planners for plan genera-
tion. To describe the discrete and continuous behaviours with time constraints, a hybrid
(planning) domain model supplies advanced modelling components over classical do-
mains. Domain modelling languages for instance PDDL+ (Fox and Long 2002), ANML
(Smith et al. 2008),

∫
-PDDL+ (Ramirez et al. 2017) are applied to encode hybrid do-

mains according to the problem statement. The enhanced expressivity of such languages
brings the opportunity of handling external events to support controllable uncertain sit-
uations. Besides it allows the time-dependent processes for ceaseless state update and

2



the action executions for instantaneous state transition. Recently, the PDDL+ modelling
language has become more acceptable in the AI planning world to solve real-time prob-
lems. It has overcome the limitations of PDDL family by supporting the predefined
exogenous events to avoid plan failures in the dynamic world (Fox and Long 2002). In
addition, it can involve linear (Shin and Davis 2005, Coles et al. 2012, Coles and Coles
2014) and non-linear continuous changes (Penna et al. 2009, Bryce et al. 2015) along
with the simultaneous changes on different numeric fluent or quantities by initiating and
terminating the processes.

In Automated Planning (AP), Knowledge Engineering (KE) is the process of capturing
and formulating the application knowledge, which are encoded into the domain model
for use in the planning engines (McCluskey, Vaquero and Vallati 2017). The overall KE
process involves the acquisition, formulation, validation and maintenance of domain
knowledge. There are three basic KE methods that are followed in the planning com-
munity to build a domain model such as (1) coding manually, or simply hand-coded
by domain/planning experts, known as Knowledge Engineers, (2) employing the UML
based tool/method, e.g. itSIMPLE (Vaquero et al. 2007), and (3) deploying the hier-
archical, object based tool, e.g. GIPO (Simpson et al. 2007). A Knowledge Engineer,
having expert knowledge and experience in domain modelling languages, formulates
the (planning) application knowledge and encodes them into the domain models using
a text editor or any built-in editor e.g. PDDL Studio (Plch et al. 2012). The most com-
monly used KE method among them is (1) hand-coding by the Knowledge Engineers.
Besides, the existing KE tools (mentioned in the methods 2 and 3) do not support the
hybrid (planning) domains (e.g. the PDDL+ domain model) that can represent the real-
time planning applications (Shah et al. 2013). Therefore the AP community depends
on the skills of Knowledge Engineers in order to manually formulate/encode the hybrid
domain model with PDDL+ representation.

Automated Planning with Hybrid Domains (APHD) has shown its eligibility to solve
real-time planning problems, dealing with numeric and temporal constraints (Piotrowski
et al. 2016, Scala et al. 2016). However, the set up and use of hybrid planning has great
challenges in terms of (a) computational difficulty of solving planning problems and (b)
engineering difficulty in creating the knowledge model of hybrid domains (McCluskey
and Vallati 2017). To handle the dynamic behaviours of real-time planning applica-
tions, a hybrid planner depends on the domain knowledge to apply planning techniques
accordingly. Therefore, the performance of a planner along with flexible configuration
and technical reformulation as well as the plan quality are quite affected by the effective
engineering of domain knowledge (Vallati et al. 2015). This thesis focuses on the area
(b) to get more effective domain models in order to improve planner performance with
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efficient planning outcomes. The thrust is to utilise ML techniques to induce process
knowledge (i.e. continuous changes) in PDDL+ hybrid domains. In particular, this the-
sis exploits ML techniques and statistical methods to automatically learn the continuous
time-dependent changes occurred in the real-time (planning) domains.

In this thesis, we propose a machine learning based approach with statistical analy-
sis to automatically acquire process models (PM) from real-world data (i.e. quantitative
time-series data) for hybrid planning applications. We assume that the domain knowl-
edge has already been created and encoded in an initial hybrid domain model within a
PDDL+ representation, and the learned process model will be integrated/adjusted into
the process specification of pre-engineered hybrid domain model. The intent is to bet-
ter represent the underlying process of already engineered hybrid models in terms of
automatically approximating and adjusting the dynamically varying process parameters
with their values, by utilising training data.
A process model (PM), in the form of mathematical function, represents the causal re-
lationship between an outcome and predictor (one or more) numeric variables in the
process of hybrid domains. It estimates the effects of continuously fluctuating predic-
tors on outcome variable by means of continuous assignment expression. At first, our
proposed approach, with the help of statistical methods, infers the associations among
the outcome and predictor variables in the respective process from quantitative data.
Based on the inferred relationship among process variables, the appropriate (linear) re-
gression technique with corresponding statistical test is nominated and implemented in
order to formulate the process model. Finally the induced PM is integrated/adjusted
into the process description of pre-engineered hybrid planning domains. While inves-
tigating the automatic learning of process models, this thesis is distinguished in doing
that in the context of the need to use learned domain model as the input to a plan genera-
tion engine, and therefore the learned process model must be created within the original
language (in this thesis, that is PDDL+).

1.1 Motivation

The hybrid planning techniques have the potential to be used in real-world applications
in which the successful AP operations are quite dependent on the effective knowledge
engineering (KE) of domains. Although languages such as PDDL+ has been adapted to
model real-time autonomous systems, it is still a challenge for the knowledge engineers
to handle its expressivity with respect of process description. Some issues usually arise
during the creation of domain models along with process knowledge engineering such
as model quality (dynamic or static), accuracy, adequacy, consistency, correctness and
completeness (McCluskey and Vallati 2017, McCluskey et al. 2016). The rationale to
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learn the process knowledge for hybrid AI Planners are summarised below:

i Difficulties in pre-engineering - Modelling a domain requires Knowledge En-
gineering (KE) experts for this particular application, where all possible features
should conform to the system requirements. While reasonable specifications of
the model are formulated they may not be so accurate and need some dynamic
testing. As an example, the process specification that simulates flow through one
of the road junctions in the traffic domain is given below:

Fig. 1.2 flowrun green process of Traffic Domain (McCluskey and Vallati 2017)

In Figure 1.2, the process flowrun green allows car to flow from road1 to road2
if the corresponding green is on. One of the preconditions to start this specific
process is the road2 occupancy must be less than the road2 capacity. KE ex-
perts make some approximations for these two values based on the historical/real
sensor data, then calculate the vehicle flow rate or turn rate accordingly. But
there might be some better approximations for different cases (Figure 1.3) based
on the road situations. Besides, the vehicle flow rate may also depend on other
factors such as the density of intersections, the number of non-motor vehicles,
the gradient of roads, the speed limit, the density of bus stops and the number
of lanes (He and Zhao 2013). Those influencing factors usually vary in different
road junction scenarios. Therefore, it is crucial to specify a general process model
(e.g. flowrun green) for all road links with different influencing factors (features).
Consequently, it becomes a challenge for KE experts to identify effective features
affecting the outcome process variable dynamically.
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(a) Approximation 1

(b) Approximation 2

Fig. 1.3 flowrun green process with different approximations

ii Hard to encode – One of the main KE issues of hybrid domains is the modelling
of process knowledge with dynamic variants. The components of process spec-
ification change continuously, so that it is more difficult in expressing complex
relations/ hybrid representations than in classical planning. Succinctly, the un-
derlying processes involve frequent fluctuations of numeric parameters with the
continuous updates in the world state. Hence, it becomes difficult to encode the
complex numeric changes by hand every single time it happens.

iii Changes over time – In this dynamic world, the process description may need to
change over time to reflect the changing reality. For remodelling the processes,
manual/static assumptions may not be accurate while only depending on the skills
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of KE experts (Bryce, Benton and Boldt 2016, McCluskey, Vaquero and Vallati
2017). Therefore, it will be better if they are automatically learned and adjusted
in the physical system.

iv Existing Domain Learning Systems – Machine Learning (ML) is considered to
be an important area from which tools to assist the knowledge engineering (KE)
process can be formed. These techniques can automatically extract, exploit, re-
fine and adjust the domain knowledge such as model description, state variables,
planning outcomes, or achievable goals in the planning system (Zimmerman and
Kambhampati 2003, Jiménez et al. 2012). Empowering the KE approaches with
ML techniques, can mitigate the occurring KE issues and human-made errors as-
sociated with the development, debug and maintenance of the complex domains
(Tate and Wickler 2015, Tate et al. 2012). Despite the long history of apply-
ing ML in KE tools, some learning aspects still need to be explored, particularly
learning with the time dimension for real-world domains (Arora et al. 2018). Be-
sides, the existing automated knowledge engineering tools such as AMAN (Zhuo
and Kambhampati 2013), LOCM (Cresswell et al. 2013), RIM (Zhuo et al. 2013),
and NLOCM (Gregory and Lindsay 2016) do not support hybrid domains and
need to broaden up their scopes to bring them into practical use (Jilani et al.
2014, Arora et al. 2018).

1.2 Aims and Objectives

This thesis aims to take an initiative to tackle the challenges of engineering hybrid (plan-
ning) domains in terms of modelling process descriptions (i.e. the continuous changes).
One of the main challenges is to manually capture and encode the continuously chang-
ing quantities of varying (numeric) parameters in the underlying processes of real-world
planning domains. This thesis focuses on utilising ML techniques to acquire the pro-
cess knowledge defines in the hybrid (planning) domain, with the intent to automatically
model/adjust the dynamically changing process parameters with their values, without
declaring them statically/manually. The aim is to automatically refine and improve the
hybrid domain model, which can enhance the simulation accuracy. By upgrading the
simulation accuracy, the purpose of this thesis is to provide higher-quality plans that are
applicable to the real world applications. Besides, by mitigating the knowledge engi-
neering challenges, it can support the knowledge engineers to build more accurate and
rational hybrid domain models in order to generate realistic plans. As a consequence,
the hybrid planning engines will become more accessible, and ubiquitous in everyday
life.
The proposed approach is to collect real/simulated data from the running of processes
in the domain, and, utilising a pre-engineered hybrid domain model, use a method in-
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corporating machine learning tactics from the collected data to induce an improved
process description. It provides a process model with appropriate feature selection and
efficient linear approximation as output. To effectively learn the process model, this
thesis’s emphasise is on applying statistical modelling using regression analysis in hy-
brid hypothesis space. A regression model is used to infer the relationship between two
or more numeric variables that estimate the outcome variable based on the predictor
features.
The main focus of this thesis is to improve the hybrid domain model in respect of Dy-
namicity and Versatility, by automatically inducing the process models. A PDDL+
process simulates continuous changes in the numeric variables that are initiated by
changes in the world. Therefore, learning the process model from real-time data with
PDDL+ formulation, will lead to a more rational (hybrid) planning model without hav-
ing to declare the dynamic knowledge as static facts. Also, it will enhance the Dynam-
icity of the planning model by updating the learning data set in order to capture and
adjust/integrate the changing requirements. Besides, by adding new predictor variables
in the learning data set, it will enable the planning model to adapt other numeric fea-
tures automatically in the process that will boost its Versatility. For example in figure
1.4, the outcome variable (y) may have relationship with other predictor variables (i.e.
X3) in a process. In addition, the values of y and X may need to modify or update over
time with the changes in dynamic states. On this account, it is required to update the
existing parameter values, add new rows of values, or add new feature columns in the
learning data set, so as to keep the process model up-to-date.

Fig. 1.4 Improve the Hybrid Domain model in terms of Dynamicity and Versatility

The primary objectives of this thesis are summarised below:

i Automated acquisition of process model - the Process Model (PM) will be
learned and acquired automatically from the partial domain knowledge and input
data. For instance, the UTC domain model (Appendix: C.1) in SimplifAI project
includes three processes: keepgreen (keeps the green/intergreen on and updates
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the greentime value), flowrun green (allows car to flow if the corresponding green
is on) and keepinter (calculate the timing between colour interchange). In the
UTC domain, the most important / tricky process is the flowrun green, where the
other ones are a device to make the model work. Therefore, flowrun green pro-
cess will be experimented in order to embed the learned process model with the
intent of estimating the traffic flow rate automatically.
The traffic flow, in terms of vehicles per hour, is the rate at which vehicles pass
a given point on the roadway. In the urban road network, the vehicle flow rate
is influenced by different factors e.g. the density of bus stops, the speed limit,
cross flow, incoming and outgoing road saturation, which can vary according to
the road infrastructure (He and Zhao 2013). The proposed approach induces Pro-
cess Models, by exploiting real-time traffic data, that can estimate the vehicle turn
rate for each road link with the variation in corresponding influencing factors. In
that way, the automated acquisition of process models will enhance the versatil-
ity of hybrid (planning) domain model by automatically adopting/adjusting many
different features in the PM.

ii Refine the process knowledge - the automatically acquired process models will
modify the current domain knowledge (i.e. the process description) that will be
applied in the hybrid planning engine. In that way, it will keep the application do-
main up-to-date and allow planners to make plans according to the environment,
so as to achieve the dynamicity of the hybrid domain models. For example: in
urban traffic network, the custom complex mathematical models with predefined
policies and manual dealing process are not enough to cope with unpredictable
situations such as road accidents, natural calamities, and road repairs. The learned
process model embedded with UTC planning domain can automatically adjust the
timings of signal phases according to the estimated traffic flow rate in a particular
road situation.

iii Automated configuration of process model for simulation and testing - AI
hybrid planning techniques with PDDL+ model can generate more efficient, opti-
mised and goal-directed strategies automatically from real time sensor/historical
data (Vallati et al. 2016). It involves manual changing in the PDDL+ representa-
tion for multiple times to simulate and test the data in different scenarios. This
manual configuration procedure may contain errors which can be avoided with
the automated acquisition of process model.

iv Assist knowledge engineers in model construction - By automatically learning
the continuous fluctuation in underlying processes of hybrid planning domains,
it will help to construct more accurate and adequate hybrid domain models than
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hand crafted.

v Improve plan quality - it will assist the planning engine to make a large number
of correct plans suitable for ongoing dynamic events. The induced process model
will help the planner to adjust itself with global constraints and produce more
improved plans.

vi Bring into community use - the main difference between classical and hybrid
domain is the ability to modelling continuous change. The current automated
knowledge engineering tools are not suitable to handle continuous dynamics of
the domain. These tools has made the classical planners usable for common
users. But modelling the hybrid domain is still time consuming and needs experts
knowledge. Therefore, to make the hybrid planning engine more accessible and
open up to general use, automated hybrid domain acquisition is required.

1.3 Thesis Contribution

This thesis contributes to the area of research into knowledge engineering for AI plan-
ning with real-world hybrid domains. The main contributions are highlighted as fol-
lows:

* To the best of our knowledge, this is the first work on learning continuous effects
of processes within planner-acceptable formulations of hybrid planning domains.
Besides, without declaring statically, it learns the dynamic values of numeric vari-
ables from real-world historical/sensor data and adjust them in the process effects
automatically. In that way, it facilitates the knowledge engineering task of mod-
elling processes with dynamically changing parameters in the real-world hybrid
(planning) domains.

* It controls a process according to the dynamic fluctuations in corresponding pro-
cess parameters that reflect the changing reality of real-world domains. By auto-
matically handling the dynamicity/versatility of underlying processes in the hy-
brid (planning) domains, the proposed approach will support the knowledge en-
gineers to construct realistic planning domains more efficiently.

* It approximates the more rational and pragmatic value of outcome variable in the
running process that upgrades the simulation accuracy. Consequently, the im-
proved simulation output aids the planning engine to produce high-quality plans.

* It automatically identifies the significant/ineffective process variables (i.e. nu-
meric features) along with their interdependencies that is crucial for engineering/re-
engineering the process knowledge with dynamically varying parameters. In
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other words, the proposed approach can assist the knowledge engineers by au-
tomatically choosing effective process parameters and identifying/removing the
irrelevant ones from the process models.

* We explore different linear regression techniques along with statistical methods
that reveals their potentiality of facilitating knowledge engineering tasks. Be-
sides, this thesis has shed some light on the knowledge engineering gaps in mod-
elling hybrid domains with processes, which can be filled up to some extent by
utilising the statistical analysis with regression techniques. The research com-
munity, specifically the planning community, will benefit from this thesis that
proposes a new approach of modelling process effects/continuous changes in the
numeric features (i.e. process parameters) for hybrid planning domains.

Following are the published works that have been achieved during the Ph.D. re-
search:

� Workshop Papers
Title: Acquiring Process Knowledge in Hybrid Planning Domains using Machine
Learning
Authors: Rubiya Reba, Rabia Jilani, Alan Lindsay and Lee McCluskey
Workshop: The Knowledge Engineering for Planning and Scheduling Workshop
(KEPS)
Location: Nancy, France
Date: June 14-19, 2020

Title: Acquiring Process Knowledge in Hybrid Planning Domains using Machine
Learning
Authors: Rubiya Reba, Rabia Jilani, Alan Lindsay and Lee McCluskey
Workshop: The 35th Workshop of the UK PLANNING AND SCHEDULING
Special Interest Group (UK PlanSIG 2020)
Location: Online
Date: 16th December 2020

� Conference Paper
Title: Refining Process Descriptions from Execution Data in Hybrid Planning
Domain Models
Authors: Alan Lindsay, Santiago Franco, Rubiya Reba, and Thomas L. Mc-
Cluskey.
Book title: Proceedings of the International Conference on Automated Planning
and Scheduling
Conference: The 2020 ICAPS conference
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Location: Nancy, France
Date: October, 2020

1.4 Thesis Structure

This thesis is organised into eight chapters. The contents of each chapter are sum-
marised below.

� Chapter 1 provides a brief introduction of this thesis. It explains the aims and
objectives of this research work. Besides, it discusses our motivation for this
work. The contribution of this thesis in the knowledge engineering process are
also highlighted in this chapter.

� Chapter 2 explains the concept of Automated Planning with Hybrid Domains
(APHD) that reflect the realistic hybrid systems in order to solve practical prob-
lems in real-world applications. It gives an overview of various domain mod-
elling languages that are used to encode classical/temporal planning problems in
Automated Planning. Besides, it discusses the modelling features with semantic
and syntactic structure of PDDL+ language that are utilised to encode the hybrid
planning domains. This chapter also demonstrate the potentiality of hybrid (plan-
ning) domains over classical domains in terms of producing realistic plans. Some
state-of-the-art hybrid planners (i.e. planning engines) are also mentioned that
can generate plans with PDDL+ domains. This chapter ends with an overview of
some applications of APHD solving real-world problems.

� Chapter 3 reviews some earlier and recent published works on learning heuristics
and domain (action) models in classical/temporal planning domains by exploit-
ing Machine Learning (ML) techniques. Also, it briefly explains the existing
research works on implementing ML in hybrid planning domains. Some cur-
rent approaches of inducing process models/learning continuous effects and their
differences from our proposed approach are discussed. Finally it highlights the
current research gap in the field of learning/refining the process knowledge for
hybrid planning domains.

� Chapter 4 introduces the process model (i.e. process modelling) that is imple-
mented throughout this thesis. This chapter explores the statistical methods of
data collection, data pre-processing/preparation and data analysis that have been
utilised in this thesis. Besides, it investigates several ML techniques (i.e. linear
regression) that have been exploited to formulate the process models from data.
Finally, some statistical tests are suggested that prove/verify the significance of
our constructed process models.
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� Chapter 5 details our proposed PMI method in hybrid planning domains. It
describes the steps of acquiring a process model (PM) from input data and its
integration into the pre-engineered hybrid domains. Besides, it mentions some
evaluation metric in order to assess the learned domain models.

� Chapter 6 demonstrates the real-world case studies that have been chosen to
experiment/implement our PMI method such as Coffee domain (i.e. making
espresso with personalised taste) and UTC domain from SimplifAI (i.e. con-
trolling traffic signal phase according to flow rate). The rationales for employing
PM in order to improve those hybrid planning domains are also given.

� Chapter 7 It describes the empirical analysis that is conducted with the cases
mentioned in chapter 6. Besides, it demonstrates the evaluation results with
learned domain models in the corresponding cases.

� Chapter 8 concludes this thesis by summarising the overall work that has been
accomplished so far and providing the future direction to improve/enhance our
work further. It also discusses the limitations of this research work.
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CHAPTER 2

Automated Planning with Hybrid Domains (APHD)

With the advancement of AI Planning technology, the Automated Planning with Hybrid
Domains (APHD) is becoming more acceptable in order to solve real-world problems.
A real-time system, also known as hybrid system, involves both analogue and digital
computations of system components for completing any task. Therefore, a planner or
planning engine must have the ability to handle two kind of primary behaviours such as
instantaneous discrete change and continuous transition over time in respect of produc-
ing realistic plans.
Basically, classical planning techniques are applicable in static environment, where a
single agent (or planner) works with a set of non-temporal and deterministic actions to
achieve a predefined goal. On the other hand, the hybrid planning techniques are capa-
ble to generate temporal plans with instantaneous as well as durative action sequence
in the dynamic world. In addition, it allows the interaction between discrete events and
continuous processes during the state transition of physical components.
To implement the hybrid planning strategies in realistic applications, a planning engine
requires detailed knowledge specification of the hybrid system. In AI planning, a do-
main model is used to describe the application requirements including the definition of
objects, classes of different objects and their relations, all probable actions and func-
tional properties. Since the hybrid system involves time-dependent discrete-continuous
changes in the numeric resources, the hybrid domain model is used instead of classical
domain model to express such entities.
The formal model of hybrid domain is based on the hybrid automaton, which can
represent the mixed discrete-continuous system and contain numeric variables, con-
trol modes, invariant, events, jump and flow conditions. Domain modelling languages,
for example, PDDL+ (Fox and Long 2002),

∫
-PDDL+ (Ramirez et al. 2017), ANML

(Smith et al. 2008) are utilised to encode hybrid domains according to the problem
statement. The expressive power of such hybrid modelling languages for use with auto-
mated hybrid planner brings the opportunity of handling temporal processes, exogenous
events, instantaneous and durative action executions in the current state.
Recently, the PDDL+ modelling language has become popular in the planning commu-
nity and a centre point of research in the AI planning field in comparison with other

14



planning languages. It has overcome the limitations of classical/temporal planning lan-
guages by supporting the predefined exogenous events to avoid plan failures in the
dynamic world (Fox and Long 2002). Moreover, PDDL+ planning can involve linear
(Coles and Coles 2014, Coles et al. 2012, Shin and Davis 2005) and non-linear contin-
uous changes (Bryce et al. 2015, Della Penna et al. 2009) with the help of processes.
Besides, this plan specification language allows simultaneous changes on different nu-
meric fluent or quantities by initiating and terminating the concurrent processes and
actions. These qualities have widen up the scope of applying hybrid planning tech-
niques in real-world applications. However, the set up and use of hybrid planning has
great challenges in terms of (a) computational difficulty of solving the planning prob-
lems and (b) engineering difficulty in creating the knowledge model of hybrid domains
(McCluskey and Vallati 2017).

A hybrid planning engine, also known as hybrid planner, applies planning techniques
based on the application knowledge described in the (hybrid) domain models. There-
fore, a planner performance along with the plan quality, flexible configuration and re-
formulation of planning strategies are quite affected by the effective engineering of the
domain knowledge (Vallati et al. 2015). On this account, Knowledge Engineering (KE)
plays a vital role in the field of Automated Planning (AP). It involves the acquisition,
formulation, validation and maintenance of (planning) application knowledge that are
finally codified into the domain models (Jilani et al. 2014). To encode a (planning) do-
main model, the current KE approaches require domain experts/knowledge engineers
who must have expertise, knowledge and hands-on experience in the corresponding
planning application (Arora et al. 2018). However, the manual encoding of complex
real-world domains induces human-made errors, during the creation of domain models,
due to the limitations of human knowledge, capturing dynamically changing states, or
handling unpredictable events. Besides, it becomes a challenge to develop, debug and
maintain a real-time domain models by hand, as the granularity of planning applications
becomes higher (McCluskey et al. 2002).

To mitigate the KE issues that are occurred by manual encoding of domain models, AI
planning community is utilising Machine Learning (ML) techniques in order to acquire
the domain models automatically (Arora et al. 2018). The long history of exploiting
ML techniques in Automated Planning (AP) has shown its eligibility to automatically
extract, refine, organise and exploit the domain knowledge (see Chapter 3, for detailed
discussion). Machine Learning (ML), as a compulsory behaviour of an Intelligent Au-
tonomous System (IAS), enables an agent to learn from experiences/observations, per-
ceive the world, develop skills, make better decisions and perform/improve the actions
accordingly without human or programmed instructions (Carbonell et al. 1983). In that
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way, it assists the planning agents/knowledge engineers to improve the planning perfor-
mance, plan quality and domain theory by automatically compensating the incomplete
domain knowledge (Zimmerman and Kambhampati 2003, Jiménez et al. 2012).

In this thesis, our main focus is on the aforementioned area (b) to get more effective
(hybrid) domain models by tackling the challenges of engineering hybrid domains in
terms of modelling process descriptions (i.e. the continuous changes). The thrust is to
exploit ML techniques and statistical methods with an intent to automatically induce
the process models (see Chapter 4, for detailed discussion). In other words, the pro-
posed ML based approach (explained in chapter 5) automatically learns the continuous
time-dependent changes that are occurred in real-time (planning) domains. The primary
objective of this thesis is to automatically refine and improve the hybrid domain models
in respect of Dynamicity and Versatility (mentioned in chapter 1), by utilising the ML
techniques with statistical analysis.

This chapter begins with an introduction of Automated Planning, followed by a de-
scription of primary elements of an automated planning system (section 2.1). Then it
details the modelling languages for classical and hybrid planning domains, along with
the comparison between classical and hybrid planning domains that emphasises the
need for implementing hybrid domains in AI (Automated) planning applications (sec-
tion 2.2). The basic definition of hybrid systems/hybrid domains is also given (section
2.3). Besides, it describes the modelling components of PDDL+ language in hybrid do-
mains with example (section 2.4), proceeds to mentioning the existing hybrid planners
that support PDDL+ models (section 2.5) . At the end, some real world applications of
hybrid planning domains with PDDL+ formulation are highlighted (section 2.6).

2.1 Automated (AI) Planning

Generally, Planning is a cognitive process of human brain. It involves reasoning, learn-
ing from experience and knowledge to generate a sequence of actions in order to achieve
a desired goal (Rogers et al. 2011). In Artificial Intelligence, Planning is one of the ma-
jor capabilities of an Autonomous Intelligent Systems (AIS) or robots that enables the
system to solve a given problem automatically without the human intervention (Ghal-
lab et al. 2016). Automated planning has a varied range of applications such as control
spacecraft mission or planetary exploration, manage non-player characters in embedded
games, handle large-scale machineries or refinery process of chemical plants, regulate
autonomous vehicles, virtual human or humanoid robots and so on (Ghallab et al. 2004).
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2.1.1 Motivation

There are theoretical and practical reasons that Automated Planning has become a po-
tential research field in AI (Ghallab et al. 2004, 2016). Theoretically, it provides rational
and deliberative behaviours to the autonomous agents enabling them to reason about ac-
tions. In that way, planning is one of the main requisite to design an Autonomous Intel-
ligent System (AIS). Practically autonomous agents can handle repetitive monotonous
as well as complex risky tasks more efficiently than human. Based on this discussion,
planning plays an integral part of AI.

2.1.2 Conceptual Model

The conceptual model for automated planning is illustrated in figure 2.1 that describes
the basic prototype of a planning system (Ghallab et al. 2004). It has three main com-
ponents: a state-transition system, a controller and a planner.

Fig. 2.1 A Conceptual Model for Automated Planning (Ghallab et al. 2004)

State-transition system, Σ

State-transition system, Σ (or discrete-event system) represents all possible situ-
ations of a real-world system. It is a 4-tuple Σ = (S,A,E, γ), where,

S = S0, S1, S2, . . . is a finite set of all probable situations that a world can
be. S0 is the initial state which describes the current position of the system;

A = a1, a2, . . . is a finite set of all possible actions that can be applied to
change the state of the system;

E = e1, e2, . . . is a finite set of events that can be triggered or occurred by
the internal dynamics of the system;
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γ : S × (A ∪E)→ 2S is a state-transition function that takes current states
of the world S and action A or event E as input. It changes the current state
of the system by applying the actions or events and concludes a new set of
states.

Planner
A planner takes a description of the system Σ, initial state S0 and objectives (or
goal states) explaining a planning problem. Then it constructs a plan (a policy
or a sequence of action) in order to achieve the given objective or reach the goal
state.

Controller
A controller receives observations including the complete information about the
current state of the system. Then it provides applicable actions based on current
state and given plans to the state-transition function γ.

2.2 Planning Domain Representation Languages

A Planning system is logically separated into two mandatory parts: Planning Engine
and Domain Model (McCluskey 2012). The planning engine creates plan based on the
knowledge encoded/represented in the domain model. In the usual planning system, an
user inputs the domain model to the planning engine in order to get a plan (illustrated in
figure 1.1). Generally, a domain model contains objects of different types/classes, ac-
tions, states and goals. In the following sections, different types of modelling languages
such as STRIPS, ADL, PDDL are briefly described.

2.2.1 STRIPS

STRIPS (Stanford Research Institute Problem Solver) is the first planning system im-
plemented in the Shakey, the first automated mobile robot (Fikes and Nilsson 1971).
Fikes and Nilsson (1971) developed STRIPS as a planning component in the software
of Shakey. Afterwards the language used in the STRIPS became the formal input lan-
guage of the planners. The STRIPS representation of States, Actions and Goals is
deliberated with an example shown in figure 2.2 below.

2.2.1.1 STRIPS representation of Domain Model

• A STRIPS state is denoted by a conjunction of propositional positive-literals. The
literals are function-free and grounded. It assumes situations to be false if they
are not mentioned in the states which is called ‘Closed World Assumption’.

• A STRIPS action contains four elements are as follows:
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– preconditions – a conjunction of function-free positive literals which must
be true before applying the action

– Positive literals – it will be added to the current state

– Negative literals – it will be removed from the current state

– Effect – a conjunction of function-free literals which represents the result-
ing state or new state. Literals which are not stated in the effect remain
unchanged.

• A goal is a partially specified state which will be satisfied if all literals are true.

Fig. 2.2 STRIPS Representation of Block-World Domain

2.2.2 ADL

ADL (Action Description Language) is an extension of the STRIPS language which
overcomes the syntactic and semantic constraints (Pednault 1989). Pednault (1989)
has developed this action language to handle the real-world problems where STRIPS is
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insufficient. The modifications of STRIPS in the ADL are explained with an example
shown in figure 2.3 below.

2.2.2.1 ADL representation of Domain Model

• The ADL States can be expressed by positive and negative literals. Unspecified
literals are considered as unknown rather than false, known as the Open World
Assumption.

• The Goal states can be a conjunction or dis-junction of the literals and may con-
tain quantified variables.

• In addition, Pednault (1989) has added some advanced features for instance: Con-
ditional effects, types and built-in equality predicate.

Fig. 2.3 ADL representation of Block-world Domain

2.2.3 PDDL

McDermott (2000) describes the Planning Domain Definition Language (PDDL) as a
formal specification of planning problems. Initially, it is considered as the standard
domain input language for the AIPS-98 planning competition to regulate the competing
planners. Syntactically it is inspired by some basic modelling languages such as ADL
(Action Description Language) (Pednault 1989), UMCP (Erol et al. 1994) and UCPOP
(Weld and Penberthy 1992). Generally, a PDDL model contains objects of different
types/classes, actions, initial states and goals. Besides that, it includes some additional
features in the syntax, for example, requirements, constants, and predicates (Boolean
value of an Object).
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2.2.3.1 PDDL representation of Planning Domain

In PDDL model, the description of a planning domain is divided into two parts: Domain
definition and Problem definition.

• Domain Definition - Basically it defines the domain name, predicates of objects
and description of all possible actions in the planning domain. The basic structure
of domain definition is shown in figure 2.4a below.

• Problem Definition - The problem definition mainly includes the objects, initial
state and goal description of the planning problem. Usually, the PDDL planning
problem is written in the format as presented in figure 2.4b below.

(a) Planning domain description in PDDL representation

(b) Planning problem description in PDDL representation

Fig. 2.4 Basic Structure of PDDL planning model

2.2.3.2 Different versions of PDDL

The earliest version of PDDL is the PDDL 1.2 (McDermott et al. 1998) that was used
in the first International Planning Competition (IPC) (McDermott 2000). With the pro-
gressive versions of PDDL, it has become the official language of IPC. Different ver-
sions of PDDL with feature extensions are listed in the table 2.1 below.
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Table 2.1 PDDL versions with feature extensions

Versions Feature Extensions

PDDL 2.1 (Fox and Long 2003) • Temporal planning with durative
actions

• Durative actions with fixed time
period

• Continuous/Discrete effects
• Plan optimisation with metric minimi-

sation/maximisation
• Numeric fluent for continuous (non-

binary) variables

PDDL 2.2 (Edelkamp and Hoffmann 2004) • Derived Predicates to handle facts
dependencies

• Timed initial literals for exogenous
events

PDDL 3.0 (Gerevini and Long 2005) • Preferences for the quality measure-
ment of a plan

• State-trajectory constraints with safety
conditions or operating conditions

PDDL 3.1 (Kovacs 2011) • Object-Fluent with numerical and
object-type functions

Table 2.1 summaries the improved features of PDDL versions for modelling clas-
sical/temporal planning domains. However, such classical/temporal domains have lim-
itations for modelling realistic problems in terms of handling both discrete and con-
tinuous changes with non-linear time limits and external events. As mentioned earlier,
a real-time hybrid system, also defined as hybrid domain, may require interaction be-
tween discrete and continuous components with time-dependent dynamics. Therefore,
to generate realistic plans, a planning agent must be able to interact with continuously
changing quantities and obtain up-to-date information about their numeric features.

2.2.4 Classical vs Hybrid Planning Domains

For overcoming the limitations of classical domain, the hybrid domain (planning) mod-
els have been supplemented by two main components which are processes and events.
In comparison with classical domain, a hybrid domain involves the time-dependent
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discrete-continuous changes in numeric resources. Besides, it also allows interaction
between discrete events and continuous processes. Figure 2.5 illustrates the compari-
son between classical and hybrid planning domains.

Fig. 2.5 Comparison between Classical and Hybrid Planning Domains

The hybrid domain modelling language, named PDDL+ (Fox and Long 2006) is the
remarkable extension of PDDL2.1 (Fox and Long 2003) which can handle both contin-
uous and discrete changes in the planning domain. Fox and Long (2006) has developed
PDDL+ for modelling real world problems where other PDDL languages are insuffi-
cient. A real-time system or Hybrid system (mentioned in next section 2.3) can be
represented by a hybrid automaton (Henzinger 1996) with mixed discrete-continuous
states. Therefore, the theory of Hybrid Automata (HA) is applied in the PDDL+ se-
mantics. In the section 2.4, the objectives of PDDL+ along with the modelling features,
semantic/syntactic structure and the comparisons with PDDL2.1 are discussed in de-
tails.

2.3 Hybrid Systems/ Hybrid Domains

In a dynamic world, realistic problems may require both discrete and continuous changes
in the feature components to solve tasks. These problems are described by hybrid sys-
tems where the analogue features are controlled by digital components (Thomas and
Henzinger 1996). Specifically a hybrid system (also known as hybrid domain) is a real-
time dynamic system that exhibits both discrete and continuous behaviours by embed-
ding the digital element in the analogue environment. For example, controlling traffic
flow by digital traffic signal, electric kettle with temperature control, automatic thermo-
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stat with temperature adjustment, chemical refinery processes controlled by valves and
embedded computer system with digital and analogue devices etc.

2.4 Modelling Hybrid Domains with PDDL+

The main objective of PDDL+ is to model the realistic problem such as Petroleum re-
finery production, Planetary lander and the Satellite observation domain which involve
continuous and discrete fluctuations in numeric resources (Fox and Long 2002, 2006).
Besides, Fox and Long (2006) explained that PDDL+ has the potentiality to connect AI
planning research with practical applications.

2.4.1 Modelling Features

PDDL+ has three main components to model a hybrid domain: durative/instantaneous
Action, Event and Process. Process execution occurs continuous fluctuations on nu-
meric quantities that can be initiated and terminated by an action or event. An action
is taken by the agent and an event can be triggered by the external environment that
brings discrete modification in the system. This three-part structure of modelling pro-
cesses with continuous effects is referred as the start-process-stop model. In addition,
PDDL+ allows the activation or deactivation of multiple continuous processes with dis-
crete changes at the same time which is called Happening. Figure 2.6 illustrates the
recharging process of rover domain in PDDL+ planning model (Fox and Long 2002).
In this example, when the sun arrives an action “active-charger” induces the “charg-

ing” process which increases charge-level consuming the sunlight. Besides, when sun
disappears or the charge is full, an event “stop-charging” halts the “charging” process.

Fig. 2.6 The recharging process of rover domain in PDDL+ model (Fox and Long 2002)
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2.4.2 Semantic and Syntactic structure

Henzinger (1996) defined the semantics of Hybrid Automata (HA) based on the labelled
transition system, therefore PDDL+ semantics include HA along with labelled transi-
tion system. Figure 2.7 depicts a model of hybrid automaton for the recharging process
in rover domain (Fox and Long 2002). In this model, labelled edges denote the events
or discrete changes that update the system from one control mode to another. Here,
the control switch “active-charger” changes the charge-level through the real-valued
variables such as charge, recharge-rate, and d

dt
charge.

Fig. 2.7 The recharging process of rover domain in Hybrid Automaton model (Fox and
Long 2002)

The syntactic structure of PDDL+ is formed on the basis of PDDL languages in
conjunction with durative actions of fixed-length from PDDL2.1 and timed initial liter-
als from PDDL2.2. PDDL+ events are similar to PDDL actions with a prerequisite of
numeric preconditions. PDDL+ processes are similar to the actions defined in PDDL
2.1 with an exception of always containing #t literal for time-dependent continuous ef-
fects. The execution time period of a process instance is denoted by #t over which the
preconditions of running process are satisfied. The numeric post-condition (effect) of
a process is time-dependent, that brings the continuous change by updating numeric
expressions. As an example, we can consider the “charging” process in rover domain
(figure 2.6). Where the charge-level of rover ?r increases continuously as a function of
the charge-rate of ?r. Such continuous change in the charge-level is expressed by the
numeric expression below:

( increase (charge ?r) (* #t (charge-rate ?r) ) )
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2.4.3 PDDL2.1 Vs PDDL+

PDDL2.1 is restricted in expressing the continuous changes (McDermott 2003). Com-
paratively, PDDL+ is more expressive to model the continuous as well as the discrete
behaviours with the start-process-stop model. PDDL2.1 is limited in modelling the dis-
cretised time-dependent effects. On the contrary, PDDL+ can discretise the time period
in order to execute the exogenous events of world and reason about their consequences.

2.5 Hybrid (PDDL+) planners

Piotrowski et al. (2016) has developed the first heuristic planner named DiNo that can
handle non-linear process and events with full PDDL+ features. To manage the complex
non-linear system dynamics, DiNo depends on the novel SRPG+ (Staged Relaxed Plan-
ning Graph+) heuristic with the discretise-and-validate approach. As a predecessor of
DiNo, UPMurphi (Della Penna et al. 2012) also supports the full set of PDDL+ features
by implementing the discretise and validate approach. It can solve realistic planning
problems of hybrid systems by the explicit model checking algorithms on top of the
CMurphi model checker (Della Penna et al. 2009). Nevertheless, UPMurphi has lim-
ited scalability with the lack of heuristics, particularly the domain-specific heuristics.
Scala et al. (2016) develop an automated planning system which is called Expressive
Numeric Heuristic Search Planner (ENHSP). It applies the interval-based (generalised)
relaxation for hybrid planning that improves the numeric planning heuristics. It allows
wider range of mathematical functions with non-linear conditions in the planning prob-
lems. Moreover, it supports simple/non-linear numeric planning with classical domains
(i.e. PDDL2.1) as well as PDDL+ hybrid domains including autonomous processes and
discrete events.
Bryce et al. (2015) introduces the SMT (Satisfiability Modulo Theories) based plan-
ning in hybrid systems that can adopt nonlinear continuous changes by SMT encoding.
Later on, the dReal SMT is integrated with the proposed HNSolver algorithm where the
PDDL+ planning is modelled as a HA (Hybrid Automata) Network (Bryce, Bogomolov,
Heinz and Schilling 2016). This approach relies on the language of dReach where the
PDDL+ problems are translated into complicated hybrid system problems. Besides, it
can not handle the full set of language features contained in PDDL+, specifically the
exogenous events (Cashmore et al. 2016). To overcome those limitations, Cashmore
et al. (2020) presents a new SMT encoding for PDDL+ models named as SMTPlan+. It
is a SMT-based PDDL+ planner for hybrid systems that supports full range of PDDL+
features including external events.
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2.6 Applications

Automated Planning with Hybrid Domains (APHD) have been applied in a wide range
of practical applications for solving real-time problems. For instance, Della Penna et al.
(2010) represents a complete PDDL+ model for the batch chemical plant. By utilising
the UPMurphi (Della Penna et al. 2009) hybrid planning tool, it generates a set of pro-

duction polices for the plant. The aim is to produce saline solution with a given concen-
tration. Besides, Fox et al. (2012) cast the multiple battery load management problem
as a hybrid (PDDL+) planning problem. Where, they build the effective policies for
battery switching under uncertainty. Their experimental results with two battery sys-
tem demonstrate that the proposed approach can improve 5% to 15% battery lifetime.
Piacentini et al. (2016) presents PDDL+ modelling for solving the Unit Commitment
(UC) problem in the electrical power industry. They compare the planned solutions
with a traditional MIP (Mixed Integer Programming) approach that shows ∼ 3% simi-
larity with MIP. Vallati et al. (2016) introduces a hybrid planning based traffic control
system with PDDL+ models to control vehicle flow in the urban road network. The
goal is to handle unexpected traffic congestion during uncertain events such as road
accidents/repair, natural calamities etc. Their experimental analysis shows that the pro-
posed PDDL+ approach can generate effective signal plans with unexpected traffic sit-
uations by considering the current traffic condition and the network structure. Other
real-world applications of APHD are Policy learning for autonomous feature tracking
(Magazzeni et al. 2014), Power substation management (Bell et al. 2009), Planning for
persistent underwater autonomy (Palomeras et al. 2016, Cashmore et al. 2017), Au-
tonomous maintenance of submerged oil and gas infrastructures (Maurelli et al. 2016)
etc.
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CHAPTER 3

Machine Learning (ML) in Automated Planning (AP)

In AI, Machine Learning (ML) is one of the intelligent behaviours of an autonomous
system. It enables the system to learn from experience, develop skills and improve ac-
tions automatically without any human assistance or programmed instructions (Mitchell
et al. 2013). Typically, the learning process of ML is classified in terms of how much
reasoning or deliberation the learner has to undergo (Russell and Norvig 1995). The
basic ML approaches are: learning by example (supervised), learning by observation
(unsupervised), learning by analogy (semi-supervised) and learning by discovery (Re-
inforcement).
According to the surveys conducted by Jiménez et al. (2012) and Zimmerman and
Kambhampati (2003), there has been a long history of using ML techniques to aid
Automated Planning (AP). Jiménez et al. (2012) reviews the ML techniques in AP
for defining the action models and control knowledge that can improve the planning
performance. Besides, Zimmerman and Kambhampati (2003) observe the Automated
Planning (AP) systems and Machine Learning (ML) techniques to analysis the role of
learning in the planning. They suggest that the integration of ML components with AP
systems can accelerate the planning process, enhance plan quality and refine domain
theory. Applying ML techniques to assist AP can fall into approximately two areas e.g.
(1) Learning Heuristic (i.e. Automated Skill Acquisition) to refine the knowledge of
a system already have and (2) Learning Domain Model (i.e. Automated Knowledge
Acquisition) to gain the new knowledge from the environment.
This chapter concisely summarises the current ML approaches for Learning Heuristics
and Domain Models in AP. Besides, some recent works on implementing ML in hybrid
planning domains are discussed that implicate the necessity of ML in APHD. We also
review the existing approaches for inducing process models in the hybrid systems. At
the end, the current state of ML applications in learning the hybrid (planning) domain
knowledge are highlighted with issues.
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3.1 Learning Heuristics

The inductive learning technique can be used to generate the heuristics and search con-
trol rules from the classical domain knowledge in order to accelerate planning tasks
(Leckie and Zukerman 1998). Veloso et al. (1995) demonstrates an architecture called
PRODIGY which includes different ML mechanisms to learn about control knowledge
with respect to improve domain and plan quality. It is also shown that AI reasoning
in planning performance can be improved with regard to enhance the planner’s solv-
ability. This PRODIGY architecture together with the inductive generalisation pro-
cess can repair the plans by observing the action executions and resulting states (Wang
1996). Percassi et al. (2020) combines machine learning and heuristic search in or-
der to improve (domain-independent) planning performance with action costs. Par-
ticularly they utilise the inductive learning approach to predict the plan cost which
is deployed in the proposed bound-sensitive heuristic function of a state-space plan-
ner. Another supervised learning based approach is presented by Gomoluch (2020)
for domain-independent planning, where the heuristic functions are learned from the
data representing multiple domains and then deployed on unseen domains. The ex-
perimental evaluation demonstrates the potentiality of proposed approach in terms of
improving original heuristics. Kocsis and Szepesvári (2006) implements the Reinforce-
ment Learning (RL) technique named the Markovian Decision Problems (MDPs) in
the Monte-carlo planning algorithm to guide the action selection process and produce
the optimal plans. Besides, Leonetti et al. (2016) exploits the Reinforcement Learning
(RL) technique to solve complex decision-making problems with action constraints.
The proposed method is called Domain Approximation for Reinforcement LearnING
(DARLING). De La Rosa et al. (2008) defines the decision tree (supervised learning
technique) based heuristic methods along with the Enforced Hill Climbing algorithm to
acquire the action policy and node evaluation order for domain-specific models. Later
De la Rosa et al. (2011) presents the relational decision tree based solution for reduc-
ing node evaluations in (forward-chaining) heuristic planning, where Domain-specific
Control Knowledge (DCK) is learned from the good quality solutions of a heuristic
planner. Based on the learning, they build (domain-dependent) decision trees which
capture the best possible actions taken by the planner. The experimental results reveal
that heuristic planner integrated with learned classifiers can solve larger problems than
state-of-the-art planners.
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3.2 Learning Domain (Action) Models

Reinforcement Learning methods can be used to learn action models for self-improving
reactive agents to solve complicated tasks (Lin 1992). Watkins and Dayan (1992)
presents an algorithm named Q-learning on the basis of Markovian domains to improve
the quality of actions by learning about the optimal acts. Later the Q-learning approach
is joined with the Reinforcement learning to generate optimal exploration techniques
by learning the joint actions values (Claus and Boutilier 1998). Sutton (1991) combines
the machine learning methods with the reactive execution of the planning agent. The
stated architecture is called Dyna. It observes the planning outcomes and updates the
models by making changes in action effects. Lanchas et al. (2007) defines an inductive
relational ML approach to learn the action-duration from plan execution and induce a
new action model. The modelling procedure includes three-phases:(1) knowledge ac-
quisition, (2) model learning and (3) redefinition of the action mode. The plan with
the new action model takes less execution time to achieve a goal. McCluskey et al.
(2009) develops the inductive learning based knowledge acquisition system named OP-
maker2. It inputs the partial domain model along with the solution sequences of plan-
ning task and postulates the full domain model including plan heuristics as output. This
method can induce domain models for efficient plan generation and reduce the prob-
lem of knowledge engineering. The LOCM (Learning Object-Centred Models) system
induces the PDDL domain models from the example plans by exploiting the assump-
tions with the inductive learning (Cresswell et al. 2013). This novel LOCM algorithm
does not require in-depth domain knowledge to analyse the action traces. Further the
LOCM domain representation is generalised in the LOCM2 algorithm that is able to
learn wider range of domain models (Cresswell and Gregory 2011). Later the output
of LOCM2 is used in the LOP (LOCM with Optimised Plans) domain model acquisi-
tion system which takes the optimal plans as input. It observes the static relations to
induce the domain models for shorter plan generation (Gregory and Cresswell 2015).
Jilani et al. (2015) introduces a graph-based machine learning tool named ASCoL (Au-
tomated Static Constraint Learner) that identifies the static relations between predicates
in a planning domain. It can input any type of plan traces i.e. optimal/sub-optimal
goal-oriented or random walks in order to output improved domain models. Gregory
and Lindsay (2016) demonstrate a domain model acquisition system (NLOCM) to learn
action costs from the action traces in the numerical planning domain. In NLOCM, the
constraint programming approach with the fragment of PDDL has applied to observe
actions with minimal input. Segura-Muros et al. (2018) formulates an algorithm called
PlanMiner-O2 based on the inductive rule learning techniques that learns action models
with costs. PlanMiner-O2 can generate valid PDDL domain models dealing with high
levels of incompleteness and some levels of noise.
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3.3 ML in the Hybrid Planning Domains

Say et al. (2017) presents deep network learning based approach to acquire Mixed Inte-
ger Linear Program (MILP) formulation of hybrid models from observations, where the
MILP-based Hybrid Planner is used instead of the PDDL+ hybrid planner that learns
and optimises nonlinear hybrid planning problems with deep net models. A similar ap-
proach named Tensorflow is demonstrated by Wu et al. (2017) that learns plans through
backpropagation to optimise the given expressions. The approach can work well on
solving highly non-linear planning problems, however it does not support the PDDL
family of languages as input. Bhatti et al. (2019) builds an architecture that integrates
the Model Predictive Control (MPC) techniques into the automated hybrid planner (i.e.
PDDL+ planner). The objective is to guide the automated planning search with effec-
tive approximation of planning heuristics. Their experimental analysis shows that the
proposed approach can enhance the planning performance of state-of-the-art planners.
Lindsay et al. (2020) proposes a machine learning (i.e. decision tree) based approach for
refining the process description in hybrid planning domains. The presented approach
identifies the significant temporal features and states of original planning domains by
exploiting the observational data. The intent is to effectively capture and refine the
continuous process effects along with the relationships between functions and propo-
sitions. The empirical evaluation exhibits more accurate simulation with the refined
domain models that can consequently lead to higher quality plans. Besides, it can re-
duce the knowledge engineering efforts by automatically refine the domain models.

3.4 Inducing Process Models

Langley et al. (2002) presents an approach that induces the process models from contin-
uous (time-series) data for scientific and engineering domains, where a process model
specifies a set of processes that describe the causal relations between input and output
variables in the form of differential/static equations. Their learning system called IPM
(Inductive Process Modeler) inputs a set of generic processes and time-series data about
quantitative variables in order to construct a process model. Unlike the tradition induc-
tive approach in ML, IPM conducts constrained search through the space of process
models that incorporates the Lagramge (Todorovski and Dzeroski 1997) program to find
the best model with optimal parameter estimations. Later, Langley et al. (2003) extends
the IPM method in response to deal with some specific challenges posed by overfitted
models, unobservable variables, and numeric conditions on processes. The extended
IPM algorithm includes a gradient-descent method along with the explicit specification
of unobservable variables. This work is further improved by Todorovski et al. (2005)
in a system named HIPM that induces process knowledge and organises them in a hi-
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erarchical manner. The HIPM algorithm implements the heuristic beam search with
knowledge-guided refinement operators for searching through the model space more
effectively. The system inputs a hierarchy of generic processes, entities/hierarchy of en-
tities with associated variables and a specified beam width. Langley and Arvay (2017)
describes a more flexible inductive process modelling approach which is called FPM
(Flexible Process Modeling). The FPM system automatically produces new generic
processes to construct an acceptable model in the absence of sufficient processes. It
implements two approaches i.e. Naive approach and Heuristic approach by utilising the
SPM (Arvay and Langley 2016) program in order to induce consistent process models
with corresponding differential equations.

3.5 Current State

From the discussion in section 3.1 and 3.2, we can perceive that there has been a long
history of applying ML techniques in the classical/temporal planning domains with re-
spect to improve planning heuristics and domain theory. Comparatively, there is very
less work (reviewed in section 3.3) on applying ML techniques in APHD with regard to
upgrade the hybrid planning heuristics, refine the hybrid domain knowledge or improve
the plan simulation output. Specifically, learning the hybrid domain models with time
dimension has got less attention in the AI planning community (Arora et al. 2018).
Furthermore, The existing methods/approaches (discussed in section 3.4) for inducing
process models do not support the hybrid planning domains that can apply in the AI
planning applications. In other words, they have experimented with processes in the
population dynamics domains instead of considering the hybrid domains in AI plan-
ning applications. Besides, none of the aforementioned methods (reviewed in section
3.4) utilises the regression technique to induce process models from real-world data.
For instance, Langley et al. (2003) used synthetic data instead of real-time observa-
tional data. However, induced process model in the form of mathematical equation is
a complementary to this thesis, where the induced process model represents the causal
relationship between dependent and independent variables.
Although, the area of ML utilisation in hybrid planning systems has received research
attention in recent years but still can not make as much stride as the classical/tempo-
ral planning systems. The very recent published work done by Lindsay et al. (2020)
(reviewed in section 3.3) appears as a first to learn and refine the process knowledge
for hybrid planning domains. This thesis is trying to utilise ML techniques in order
to improve the hybrid (planning) domain models. In particular, the proposed approach
automatically learns and estimates the continuous changes of numeric fluent in the pro-
cesses that are represented by process models. The learned process models are embed-
ded/adjusted in the existing hybrid domain models with PDDL+ formulation. The aim
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is to refine/upgrade the process knowledge and enhance the simulation accuracy that
can consequently improve the plan quality.
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CHAPTER 4

Statistical Methods and Analysis with ML Techniques

In this thesis, we propose a machine learning based approach with statistical analysis,
named PMI, that automatically learns the continuous time-dependent changes occurred
in hybrid (planning) domains (details in next chapter 5). Particularly, the PMI formu-
lates Process Models (PM) by exploiting real-world data (i.e. quantitative time-series
data) for hybrid planning applications (described in previous chapter 2). There has been
a long history of applying Machine Learning (ML) techniques in the classical/tempo-
ral planning domains with respect to refine and improve (planning) domain knowledge
(reviewed in previous chapter 3). Comparatively, there is very less work on applying
ML techniques in hybrid planning domains (highlighted in section 3.3). This thesis
utilises the ML techniques incorporated with statistical analysis in order to refine the
hybrid domain knowledge. It involves a range of statistical methods to conduct statis-
tical analysis of real-time data used in planning applications. In particular, it includes
mathematical formulas, models and ML techniques that extract information about con-
tinuous changes in the quantity of numeric variables. Based on the knowledge extracted
from continuous processes, a Process Model (PM) is induced which approximates the
continuous effects in hybrid planning domains.

This chapter provides the formal definition of the kind of PM we are interested in.
It investigates the classification of data types, the sources for collecting raw data and
the steps of data preparation. Besides, it describes the statistical methods for analysing
data and the ML techniques to formulate the PM accordingly. At the end, the statistical
tests are discussed that are conducted to assess the significance of the resulting PM on
the observed data.

4.1 Process Modelling

Basically, a PM is defined as a mathematical function which estimates the total varia-
tion in one quantity, y by partitioning the variability into its deterministic components
x1, x2, ..xn, plus an additional component, ε (Heckert et al. 2002). Where, the ε explains
random variations (errors) in the data. As an example, according to Charles’s Law (Dal-
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ton 1802), the volume of gas increases proportionally with temperature increment and
vice versa. The PM represents the total variation of measured pressure in a gas tank by
the variability in temperature of gas. Equation 4.1 represents the general form of the
PM.

ŷ = f(~x; ~β) + ε (4.1)

Usually the term “model” denotes more than just explaining the deterministic vari-
ation in terms of the mathematical function. However, this thesis employs the “Process
model”, or in short “PM”, as a mathematical function of numeric variables in the hy-
brid planning domain. Specifically it describes the continuous changes in the numeric
quantities in terms of mathematical equation.
Three main components of PM: the outcome variable (ŷ), the mathematical function (
f(~x; ~β) ) and the random errors (ε) are briefly described below.

1. Outcome Variable - The outcome variable, ŷ, known as “response variable”, is a
quantity that is measured by the changing quantities of other variables. It is also
called dependent variable because the quantity of y depends on the input values
of other variables. In short, y is an outcome of ongoing process, often as a result
of variations in input variables.

2. Mathematical Function - The mathematical function, often termed as “regres-
sion function” or “regression equation”, describes the deterministic variation in
the outcome variable, ŷ. It contains two parts: predictor variables, ~x and cor-
responding parameters (also known as regression coefficients), ~β. The predictor
variable, also called “independent variable”, causes a change in the quantity of
outcome variable. Whereas the parameter of corresponding predictor indicates
how the variation in predictor is related with the changes in outcome variable
(detailed discussion in section 4.5.2).

3. Random Error - Random error, ε defines the deviation between the estimated
value of outcome variable (ŷ) and the actual value (y) in the data. It signifies the
statistical function-based relationship between the outcome and predictor vari-
ables which can not be absolutely deterministic in the real world.

4.2 Data Collection

Data collection is the prerequisite step of constructing the process model (statistical
model) where the quality of data collected determines the quality of resulting model.
General principles of choosing the data sources and types are applied based on the
problem areas such as comparative, screening/characterising, modelling and optimising
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(Heckert et al. 2002). There are mainly two types of sources/methods of collecting
statistical data: Primary and Secondary (Groebner et al. 2018). The primary source
data are collected from an observational study or resulting from an experiment, for
instance survey, simulation, questionnaire etc. On the other side, the secondary source
data are collected from other researches that are made available by others for instance
books, reviews, catalogue etc. Moreover, the statistical data can be classified into two
main categories: qualitative and quantitative (illustrated in the diagram 4.1).

Fig. 4.1 Classification of Statistical Data (Groebner et al. 2018)

1. Qualitative data: Qualitative data is categorical which describes the attributes
that can be observed but not measured. Some examples are gender (male/female),
citizenship, name etc.

2. Quantitative data: Quantitative data is numerical value that is used to express
amount, range or quantity. Examples of quantitative data includes height, weight,
number of children etc. Quantitative variables are further classified into two parts:
discrete and continuous. A discrete variable is countable and can only be a whole
number, e.g. number of students in a classroom. On the contrary, a continuous
variable can take any value in some interval, e.g. temperature.

4.3 Data Preparation

After collecting the data, the next step is to manipulate or transform the source data
into a form that can be analysed accurately. Correct data preparation leads to an under-
standing of the data that facilitates to build right model (Pyle 1999). Data preparation
involves a range of activities described briefly below:
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4.3.1 Data Pre-processing

The real-world data often contains many errors such as having missing values, dupli-
cate entities, incorrect attribute values or inconsistent variables which can cause a low
quality of models (Danubianu 2015). Data pre-processing is a method of resolving
such issues by cleaning the data and ensuring the data quality. In other words, it organ-
ises the data into a proper format, so that features can be easily interpreted by the ML
algorithms.

4.3.2 Feature Encoding

Feature encoding performs data transformations such that ML algorithms can easily
accept the features as input. For example, mathematical transformation using equa-
tions, binary conversion of qualitative (categorical) variables, altering the measurement
scales, truncating the decimal places etc.

4.3.3 Train/Test split

After feature encoding is completed, the dataset is divided into two parts: Training and
Testing sets. The training dataset are exploited to train ML algorithms with an intent to
build a model that fits on this data. The fitted model tries to learn the features and intri-
cacies of the training data, so that it can make predictions on new data (general data). To
test the model hypothesis and measure the prediction accuracy, the model is applied on
the testing dataset. It is worth noting that the split of train/test data may arise the model
overfitting or underfitting issues that affects the predictability of the model (Jabbar and
Khan 2015). Overfitting indicates that the model is fitted on the training data very
closely (Figure: 4.2) but may fail to fit on the new data or predict future observations
accurately. On the contrary, the underfitted model does not sufficiently fit the training
samples (Figure: 4.2) and also is not generalised to other data. As a consequence, the
model can not make inferences on new data with poor predictive ability. The issues
of model overfitting/underfitting can be avoided by the cross validation (Prechelt 1998)
discussed below.

Fig. 4.2 An example of underfitting and overfitting with a model that’s “just right!”
(Bronshtein 2017)
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4.3.4 Cross Validation

The cross validation (CV) method splits the data into k number of subsets where k-
1 subsets are used as training data holding the last subset as testing data. The most
commonly used CV method is K-Folds Cross Validation (Anguita et al. 2012). In K-
folds cross validation, the data is randomly divided into k folds (or subsets) where k-1
folds are used for training and 1 fold for testing. The whole procedure repeats k times
rotating the test set. To finalise a model, the resulting models from across the iterations
are analysed based on the performance metrics such as mean square error, standard
deviation etc. Figure 4.3 demonstrates an example of 5-Fold cross validation (K = 5)
where the dataset is split into 5 folds. The entire procedure iterates 5 times taking one
fold (orange box) as testing set and the other folds (green boxes) as training set in each
iteration.

Fig. 4.3 5-Fold Cross Validation (K = 5) (Krishni 2018)

4.4 Correlation Analysis

Correlation analysis is a statistical method, which is used to measure the association
between two quantitative features e.g., the relationship between a dependent, y and an
independent variable, x or between two independent variables (x, x). In other words,
it statistically infers how strong the relationship of each variable pair (x, y) in a bi-
variate data where each x data point has a corresponding y data point. Based on the
relationship significance (correlation coefficient) among features, different regression
techniques (discussed in the next section 4.5) are applied with an intent to construct the
process model (Equation 4.1). To calculate the correlation coefficient, we have applied
the Pearson Correlation Coefficient (PCC), or simply Pearson’s r method that identifies
the feature associations (between x and y) along with their inter-dependencies (between
x and x).

4.4.1 Pearson Correlation Coefficient (PCC)

Pearson correlation coefficient (PCC), also known as the bivariate Pearson Correlation,
estimates the correlation coefficient (r) which indicates the strength and direction of
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linear relationship between pairs of quantitative variables (Cohen 2013). Pearson’s cor-
relation coefficient between two sample variables x and y is denoted by r or rxy, and is
calculated by the formula (Zaiontz 2015a) below:

rxy =
cov(x, y)

sxsy
(4.2)

where,
cov(x, y) is the covariance between two sample random variables x and y, and is

defined by the formula (Zaiontz 2015a):

cov(x, y) =

∑n
i=1(xi − x̄)(yi − ȳ)

(n− 1)
(4.3)

sx and sy are the sample standard deviations of x and y respectively that are calcu-
lated as follows (Zaiontz 2015b):

sx =

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2 (4.4)

sy =

√√√√ 1

n− 1

n∑
i=1

(yi − ȳ)2 (4.5)

In equation 4.2 , substitute the estimates of covariance and standard deviations by the
formula 4.3, 4.4 and 4.5, we can obtain a formula for rxy as follows:

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(4.6)

where,
n is the sample size,
xi, yi are the individual sample points indexed with i,
x̄ = 1

n

∑n
i=1 xi and ȳ = 1

n

∑n
i=1 yi are the sample mean of x and y respectively.

The values of correlation coefficient range from -1 to +1 where the sign (- or +) in-
dicates the direction of the relationship and the magnitude implies the strength of the
relationship. A correlation coefficient of +1 implies that two variable have positive lin-
ear relationship, a correlation coefficient of -1 specifies the negative linear relationship,
while a correlation coefficient of zero signifies that two variables have no linear rela-
tionship (illustrated in Figure 4.4).
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Fig. 4.4 The spectrum of the correlation coefficient (-1 to +1) (Gogtay and Thatte 2017)

The strength of linear relationship can be assessed by the general guidelines (Cohen
2013) given below:

0.1 < |r| < 0.3 : small or weak correlation
0.3 < |r| < 0.5 : medium or moderate correlation
0.5 < |r| : large or strong correlation

Pearson’s correlation coefficient can only infer the linear relationships among quantita-
tive variables, denoting that it can not assess the non-linear relationships or the relation-
ships among qualitative (categorical) variables. Besides, it only reveals the existence
of significant relationship among variables without inferring the cause and effect (Gog-
tay and Thatte 2017). Therefore, correlation analysis is accompanied by the regression
analysis that expresses the causal relationship among variables in the form of a mathe-
matical equation.

4.5 Regression Analysis

Regression analysis is a statistical method that is used in supervised machine learning
for forecasting, prediction, time series modelling and determining cause-effect relation-
ship between variables (Freund et al. 2006). More specifically, the goal of regression
analysis is to formulate a mathematical equation, known as regression model, that de-
fines the outcome variable (y) as a function of the predictor variables (x). The regres-
sion model predicts the value of outcome (dependent) variable based upon the value of
one or more predictor (independent) variables. There are various types of regression
techniques which are primarily chosen depending on three metrics: number and type
of independent variable/s, type of dependent variable and shape of the regression line
(Gogtay et al. 2017). Basically, it follows three steps to conduct the regression analysis:
(1) Analysing the correlation, (2) Estimation of the parameters of regression model, (3)
Interpretation of these parameters. Steps are discussed below:
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4.5.1 Analysing the correlation (strength of relationship between variables)

Correlation analysis has been described in the previous section 4.4 that identifies the
feature (variable) associations and their interdependencies based on the results of sta-
tistical test (PCC). From the values of correlation coefficient (r) and out of innumerable
forms of regression, the appropriate regression technique has been nominated that best
suit our learning problem depending on the type and number of independent variables.
Aforementioned in the section 4.4.1, PCC can only determine the existence of linear
relationship among variables, hence we have implemented different linear regression
techniques driven by the following three cases to measure the causal effect of the rela-
tionship:

i y is related to a single x-variable (Simple Linear Regression)

ii y is related to multiple x-variables (Multiple Linear Regression)

iii y is related to multiple x-variables where x variables are correlated (Multicollinear-
ity)

4.5.2 Estimation of the parameters of regression model

After determining the suitable regression technique from the first step (correlation anal-
ysis), the second step of regression analysis is to formulate the mathematical equation
(shown in 4.1) by estimating the parameters or regression coefficients. The aim is to
fitting the regression (linear) line through a cloud of data points, in such a manner that
the distances between the regression line and the data points are minimised. This is to
understand the underlying relationships and appropriately measure the outcome vari-
able (y) on the basis of values of the predictor variables (X). The regression techniques
employed in this thesis with corresponding statistical tests are described below.

4.5.2.1 Simple Linear Regression

Simple Linear Regression is a statistical method that estimates the relationship between
a continuous dependent variable, y and a continuous or discrete independent variable,
x. The regression model (process model) is represented by the equation of a straight
line (Equation 4.7), known as regression line, that best fits the observed (training) data
(Craven and Islam 2011).

ŷ = β0 + β1 ∗ x (4.7)

Where,
β0 = y-intercept, i.e. the value of y where x = 0 and the line intersects with the y-axis
β1 = slope of the line (also known as regression coefficient), describes the change in y
due to a unit change in x
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ŷ = the predicted or estimated value of outcome variable, y based on the given value of
predictor variable, x.
To find the best fit line, or simply approximate the appropriate value of β0 and β1, the
most commonly used technique is “Least Squares Method” (James et al. 2013). For
fitting the regression line through a set of data points, it estimates the parameters by
minimising the Residual Sum of Squares (RSS), also known as the Sum of Squared
Residuals or Errors (SSR or SSE), which is defined as follows

RSS = e21 + e22 + · · ·+ e2n,

or equivalently as

RSS = (y1 − β0 − β1x1)2 + (y2 − β0 − β1x2)2 + · · ·+ (yn − β0 − β1xn)2. (4.8)

where, ei = yi − ŷi represents the ith residual which is the difference between the ith
observed response (or, actual) value and the ith response value that is predicted by the
linear regression model. The residual, also known as the deviation or error (e), can be
defined as the vertical distance between the regression line and the data point. Equation
4.9 represents the mathematical approach of getting the best fit line with the property
that the Residual Sum of Squares, RSS, or the e2i of N data points is minimum.

Min(RSS) = Min(
N∑
i=1

e2i ) = Min(
N∑
i=1

(yi − ŷi)2) (4.9)

To minimise the RSS, the Least Square method estimates the values of β1 and β0 using
the basic formula below (Equation 4.10 and 4.11 respectively) (James et al. 2013):

β1 =

∑N
i=1(xi − x̄)(yi − ȳ)∑N

i=1(xi − x̄)2
(4.10)

β0 = ȳ − (β1 ∗ x̄) (4.11)

where, N = Total data points, x̄ = 1
N

∑N
i=1 xi and ȳ = 1

N

∑N
i=1 yi are the mean of x

and y respectively. Figure 4.5 provides the graphical illustration of a simple regression
model obtained from the least squares coefficient estimates (4.10 and 4.11).

4.5.2.2 Multiple Linear Regression

Multiple Linear Regression is an extension of Simple Linear Regression where the out-
come variable, y depends on two or more predictor variables, X . The general form of
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Fig. 4.5 Simple Linear Regression Model with Residual plot

multiple Linear regression model is given below (Equation 4.12) (Berry et al. 1985):

ŷ = β0 + β1x1 + β2x2 + · · ·+ βkxk (4.12)

Where, ŷ = the estimated (predicted) value of the dependent variable, y,
X = { x1, x2, . . . , xk } = k distinct predictor (independent) variables
β0 = y-intercept that is the value of y when all independent variables, X are equal to
zero,
β1, β2, . . . , βk = The regression coefficient of corresponding x variable that determines
the partial contribution of respective x variable. In other words, each regression coef-
ficient, βi measures the change in y given a unit change in the respective xi variable,
holding all the other independent variables constant. It can be expressed as follows:

β1 =
∂y

∂x1
, β2 =

∂y

∂x2
, . . . , βk =

∂y

∂xk

In multiple linear regression, the parameters are estimated employing the same Least
Square method that is used in the context of simple linear regression. The approach is
to choose β0, β1, β2, . . . , βk that minimise the residual sum of squares (RSS):

RSS =
n∑

i=1

(yi − ŷi)2 =
n∑

i=1

(yi − β0 − β1xi1 − β2xi2 − · · · − βkxik)2 (4.13)

Unlike the simple linear regression estimates stated in 4.10 and 4.11 for finding the val-
ues of β coefficients, the method of Least Square is extended with multiple independent
variables that expresses the regression line in the form below (Equation 4.14 ) (Zaiontz
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2014a):

ŷ − β0 = β1(x1 − x̄1) + β2(x2 − x̄2) + · · ·+ βk(xk − x̄k) =
k∑

j=1

βj(xj − x̄j) (4.14)

Aforementioned in the equation 4.13, the objective is to find a regression line (Equation
4.14) that best fits the given set of n points (x11, . . . , x1k, y1), . . . , (xn1, . . . , xnk, yn).
Hence, the best fit regression line has the given form (equation 4.15) (Zaiontz 2014b):

ŷ − ȳ =
k∑

j=1

βj(xj − x̄j) (4.15)

where, the coefficients βm are the solutions to the following (equation 4.16) k equa-
tions in k unknowns. The basic formula of estimating covariance between two sample
variables, cov(x, y) is stated in the equation 4.3.

cov(y, xj) =
k∑

m=1

βm ∗ cov(xm, xj) (4.16)

In multiple linear regression, the model selection process is required to select the best
combination of predictor variables that build an optimal predictive (regression) model.
The approach is to compare multiple models containing different subsets of predic-
tors with the intent to select the best model with minimum prediction error. The most
commonly used linear model selection technique is Stepwise Regression. The stepwise
regression, also known as stepwise selection, is an iterative process of adding/drop-
ping predictors in the regression model based on a specified criterion. Some criteria
for analysing variables in order to discern the significant subset of variables are: the
residual sum of squares (RSS), the residual mean square (RMS), the squared multi-
ple correlation coefficient (R2), the adjusted R2, Akaike information criterion (AIC),
Bayesian information criterion (BIC), F-tests or t-tests (Hocking 1976, Burnham and
Anderson 2004). There are three basic methods of stepwise regression listed below
(Bruce et al. 2020):

a) Forward Selection, this method starts with no predictor variables in the model
and adds the most significant predictor variable in each iteration. The procedure
terminates when none of the variable left that is statistically significant. The steps
of forward stepwise selection procedure is given below (figure 4.6):
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Fig. 4.6 Forward Stepwise selection procedure (James et al. 2013)

b) Backward Elimination, this method initially adds all predictor variables in the
model and eliminates the least significant variable in each iteration until all pre-
dictors are statistically significant. The steps of backward stepwise selection pro-
cedure is given below (figure 4.7):

Fig. 4.7 Backward Stepwise selection procedure (James et al. 2013)

c) Stepwise Selection, also known as standard stepwise regression combines the
forward and backward selection techniques that repeatedly adds and removes pre-
dictors as needed.

After implying the specified selection strategy, the stepwise regression estimates the
coefficients of the regression model by applying Least Square method to the retained
variables.

4.5.2.3 Multiple Linear Regression with Shrinkage method

The multivariate data set often contains two or more predictor variables that are cor-
related with each other. In such situations, the existence of near-linear relationships
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among the predictor variables is referred as Multicollinearity, or collinearity. The pres-
ence of collinearity causes different problems in the regression context which ultimately
degrade the predictability of the resulting model (Faraway 2002). Since the collinear
variables tend to increase/decrease together, it can be difficult to determine the distinct
effect of collinear variables on the outcome variable. As a consequence, it inflates the
standard error of regression coefficients (β) by reducing the accuracy of estimated β
values.
To deal with multicollinearity in the multiple linear regression, the first step is to detect
the collinearity and determine the severity of collinearity before fitting the model. For
detecting the multicollinearity, some of the common methods are listed below (Paul
2006):

• A simple way is to inspect the signs (+/−) of the regression coefficients. If the
regression coefficients of two or more predictor variables have opposite sign from
what we would expect then it may indicate the existence of multicollinearity.

• A better way is to evaluate the correlation matrix of the predictors (rx,x) that de-
scribes the strength of relationship among variable pairs (discussed in the section
4.4). If the absolute value of an element of this matrix is larger (≥ 0.5) then it
specifies a pair of high collinearity. However, the correlation matrix is not appli-
cable where three or more variables are highly correlated even if there is no pair
of particularly high correlation. In that situation, referred as Multicollinearity, the
variance inflation factor (VIF) is considered instead of the correlation matrix.

• The Variance Inflation Factor (VIF) is the ratio of the variance of βi when fitting
the full model divided by the variance of βi if fit on its own. In other words, it
measures how much the variance of a regression coefficient (βi) is inflated due to
multicollinearity in the model. The basic formula of computing the VIF for each
variable is given below in equation 4.17 (James et al. 2013):

V IF (βi) =
1

1−R2
Xi|X i

(4.17)

Where, R2
Xi|X i

denotes the coefficient of determination which is the squared
multiple correlation coefficient (R2) from a regression of Xi onto all of the other
predictors. For instance,
In the regression model, y = β0 + β1X1 + β2X2 + β3X3

R2
1 is obtained from regressing X1 on X2 and X3 as follows:

X1 = α0 + α1X2 + α2X3

Similarly,
R2

2 is obtained from, X2 = α0 + α1X1 + α2X3, and
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R2
3 is obtained from, X3 = α0 + α1X1 + α2X2

A rule of thumb for interpreting the variance inflation factor is stated below
(James et al. 2013):
VIF = 1 (the complete absence of collinearity)
1 < VIF ≤ 5 (Moderately correlated)
VIF > 5 (Highly correlated)

After identifying the existence and severity of the multicollinearity among predic-
tors, the next step is to apply different remedies to handle multicollinearity in the model.
Some of the solutions for correcting the multicollinearity are briefly described below
(Paul 2006):

• Model Respecification
In some cases, Model respecification of the regression equation can lessen the
impact of multicollinearity which involves the redefinition or reformation of cor-
related regressors (predictors). One approach is to combine the collinear variables
together into a single predictor. For example, x1, x2, and x3 are linearly corre-
lated, now find some function such as x = (x1 + x2)/x3 or x = x1 ∗ x2 ∗ x3 etc.
that represents the correlated regressors without altering the actual information
content.

• Variable Elimination
The simplest method of solving multicollinearity problem is the elimination of
collinear variables from the regression model. A stepwise regression as a model
selection technique can be used to determine which of the variable to drop. How-
ever, it may degrade the predictive power of the model in specific cases i.e. the
dropped predictors have significant influence on the outcome variable, y. There-
fore, special care is required in the variable selection process in order to ensure
the model quality.

• Ridge Regression
Ridge regression (Hoerl and Kennard 2000) is an alternative linear regression
(least square) technique that is used when the multivariate data set suffers from
multicollinearity or contains a large number of variables superior to the sample
size. It is also known as shrinkage or regularization method to fit a linear model
containing all predictors by shrinking the coefficient estimates towards zero. The
consequence of shrinking the coefficient values, is to reduce their variance and
also allows the less significant predictors to have a coefficient close to zero.
The aforementioned least squares approach of fitting regression line, estimates the
value of β0, β1, . . . , βk that minimise the residual sum of squares (RSS) shown
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below:

RSS =
n∑

i=1

(yi − β0 −
k∑

j=1

βjxij)
2,From Equation (4.13)

Ridge regression calculates the coefficient estimates using the same least squares
technique with a slight difference in minimisation quantity. Specifically, the val-
ues of ridge regression coefficient, βR are approximated to minimise RSS along
with a shrinkage penalty stated in the equation 4.18 :

Min(
n∑

i=1

(yi − β0 −
k∑

j=1

βjxij)
2 + λ

k∑
j=1

β2
j ) = Min(RSS + λ

k∑
j=1

β2
j ) (4.18)

Equation 4.18 trades off two different criteria using RSS and the shrinkage penalty,
λ
∑k

j=1 β
2
j . By minimising the RSS, the ridge regression chooses appropriate co-

efficient estimates that best fit the regression line. However, the second term,
λ
∑k

j=1 β
2
j (shrinkage penalty) shrinks the estimates of βj , so that the predictor

variables with minor contribution to the outcome variable, y, have their coeffi-
cients close to zero. The shrinkage penalty is not applied to the intercept, β0
which is actually the mean value of the outcome, y when all predictors, xi1 =

xi2 = · · · = xik = 0, therefore the estimated intercept will take the form,
β0 = ȳ =

∑n
i=1 yi/n.

The amount of shrinkage penalty is adjusted by the tuning parameter, λ. The
range of possible λ values is 0 to ∞. When, λ = 0 specifies the penalty term
that has no effect on the ridge regression and consequently generates the simple
least square coefficients. However, the effect of shrinkage penalty raises with the
increment of λ value to∞ (as λ → ∞) which brings the ridge regression coef-
ficients close to zero. For each value of λ, ridge regression generates a different
set of coefficient estimates with an intent to select the best model among them.
Therefore, determining a good value for λ is critical. Cross validation (discussed
in 4.3) is performed on the ridge regression for determining the appropriate tuning
parameter, λ (Golub et al. 1979). The approach is to compute the cross-validation
error for each value of λ and select the model with smallest cross-validation error.

4.5.3 Interpretation of parameters (Regression Output)

The last step of regression analysis is the interpretation of regression parameters, or
simply the test for significance of regression model. It involves two types of statisti-
cal tests i.e. the t-test and the analysis of variance (ANOVA). The t-test is a statistical
hypothesis test on the regression coefficients which indicates the test for significance
of individual coefficient (Allen 2004). Conversely, ANOVA, as a generalisation of the
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t-test, is a statistical method to test the significance of entire regression model (Turner
and Thayer 2001).

Test on Individual Regression Coefficients (t-test)
The t-test conducts the hypothesis tests on the regression coefficients which are obtained
by applying regression technique. The aim is to diagnosis the significance of individual
regression coefficients in the regression model i.e. the regression model become more
effective by adding a significant variable, conversely, an insignificant variable can make
the regression model worse by degrading the prediction ability. To test the significance
of a particular regression coefficient, βj , the statements for hypothesis test are expressed
as follows:

Null Hypothesis,H0 : βj = 0 [Change in xj does not affect y]

Alternative Hypothesis,H1 : βj 6= 0 [Change in xj affects y]

The test statistic used for this test is given below:

t =
βj

se(βj)

Where, se(βj) is the standard error of βj . The test statistic, t , follows a t distribution
with (n - 2) degrees of freedom, where n is the total number of observations. The null
hypothesis, H0, is true if the estimated value of the test statistic lies in the acceptance
region stated below:

−tα/2,n−2 < t < tα/2,n−2

where, −tα/2,n−2 and tα/2,n−2 are the critical values for the two-sided hypothesis.
tα/2,n−2 is the percentile of the t distribution corresponding to a cumulative probabil-
ity of (1−α/2) and α is the significance level. Alternatively, the p value corresponding
to the test statistic, t , can also be used. If the p value of corresponding test statistic, tβj

is less than the significance level, α, then it is concluded that βj is significant and the
null hypothesis, H0 : βj = 0, is rejected. Consequently, the alternative hypothesis, H1

is accepted which implies that relationship exists between xj and y.

Test for Significance of entire Regression model (Analysis of Variance Approach)
The analysis of variance (ANOVA) is a statistical procedure to test the significance of
regression that is the statistical inference of the existence of linear relationship between
the outcome variable and at least one of the predictor variables. The approach is to
analyse the variance of the observed data which is partitioned into components that are
then further employed in the test for significance of regression. The aim is to determine

49



whether the regression model can be applied to the observed data. The statements for
the hypotheses are:

Null Hypothesis,H0 : β1 = β2 = · · · = βk = 0 [No regression relationship]

Alternative Hypothesis,H1 : βj 6= 0 for at least one j

To test the hypothesis H0 : β1,2,...,k = 0, ANOVA uses F -tests which compares two
types of variations, i.e. the variation between the sample means, and the variation within
each of the samples. The basic formula of ANOVA test statistics is stated below, which
is known as F statistic or F -ratio.

F =
Explained Variance

Unexplained Variance
Or, F =

Variation between sample means
Variation within the samples

Equivalently, F =
MSR

MSE

where,
the regression mean square, MSR = the regression sum of squares, SSR

the respective degrees of freedom, dof(SSR)
, and

the error mean square, MSE = the error sum of squares, SSE

the respective degrees of freedom, dof(SSE)
.

If the null hypothesis, H0, is accepted then the statistic F follows the F distribution
with k degrees of freedom in the numerator and n− (k + 1) degrees of freedom in the
denominator. Otherwise, The null hypothesis,H0, is rejected if the calculated statistic,
F , is such that:

F > fα,1,n−2

where, fα,1,n−2 is the percentile of the F distribution corresponding to a cumulative
probability of (1 − α) and α is the significance level. Alternatively, the p value corre-
sponding to the test statistic, F , can also be used. If the p value < the desired level of
significance, α, then H0 : β1 = β2 = · · · = βk = 0 is false (or rejected), indicating
that at least one coefficient out of β1, β2, . . . , βk is significant. Specifically, a relation
does exist between the outcome variable and either all or at least one of the predictor
variables.
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CHAPTER 5

The PMI Method in Hybrid Planning Domains

In this thesis, we assume that a knowledge engineer, for a particular application, has
assembled, created and encoded an initial hybrid domain model within the PDDL+ rep-
resentation. Our proposed method, named PMI (Process Model Improvement), results
in a learned mathematical function (i.e. process model) that is used to adjust and im-
prove a process description within that previously engineered, original domain model.
In particular, the PMI method utilises machine learning techniques along with statisti-
cal analysis (discussed in previous Chapter 4) to formulate the Process Model (PM) by
exploiting real-world data collected from actual execution of the process. The learned
process model, in the form of a mathematical function, automatically approximates/ad-
justs the quantity of an outcome variable with the continuous variations in different
predictor features in order to efficiently and accurately control the corresponding pro-
cess in hybrid planning domains.
This chapter describes the step by step procedure of PMI method that involves data
collection, data preparation, PM formulation, embedding the learned PM into the pre-
engineered/original hybrid domain model, and finally the evaluation of learned domain
model embedded with PM (section 5.3). Besides, it discusses the assumptions and
the basic requirements of PMI method in order to formulate PM for hybrid planning
domains (section 5.1). The automation abilities along with the manual steps are also
highlighted here (section 5.2 ).

5.1 Assumption and Requirements

As mentioned earlier, the proposed PMI method assumes that an initial hybrid domain
model, also called original domain model, has already been created by a domain ex-
pert/knowledge engineer, wherein the formulated Process Model (PM) is adjusted/em-
bedded into the process description.

To formulate Process Models (PM), the basic requirements of PMI method are sum-
marised below:

• Our proposed PMI method constructs the process models by analysing observa-
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tional/simulation data with the help of ML techniques and statistical methods.
Therefore, the quantitative (time series) data of numeric variables are required to
be exploited by PMI method

• To initiate the procedure of PMI, a domain expert/knowledge engineer has to
manually define an outcome and one/more predictor features of a process which
effects need to be learned. In other words, dependent and independent variables
of the process have to be identified a priori in order to formulate the process model

• The formulated process model specifies the causal (linear) relationship between
an outcome (i.e. dependent variable) and one or more predictors (i.e. independent
variables). Hence, the input data should contain the quantitative values of depen-
dent and independent variables that are learned to find their interdependencies
and apply (linear) regression techniques accordingly

• The learned process models estimate the quantities of numeric variables that fluc-
tuate over time, thence it does not accept the numeric variable with constant value

5.2 Automation of PMI

The PMI method is partially automated; in particular the important, complex step of PM
formulation is automated. The end to end method does require a knowledge engineer
to perform the overall process. In detail:

• Data Collection: This step is manual.

• Data Preparation: This step is partially automated, where initially a knowl-
edge engineer requires to identify the attributes or features that need to be trans-
formed/encoded. Besides, the PMI method automatically splits the input data
into training and test set implementing the cross validation method (discussed in
chapter 4).

• PM Formulation: This step is automated. The real-world data collected from
actual execution of the process is input, and it outputs a process model (i.e. a
mathematical function) that approximates the quantity of an outcome variable
with the continuous variations in different predictor features in the process.

• PM Integration: This step is partially automated in that a knowledge engineer
needs to manually adjust the objects, predicates, parameter types, preconditions,
and other numeric expressions etc in the process specification accordingly, while
automatically embedding the learned PM into that pre-engineered process speci-
fication.
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• Evaluation of Learned Model embedded with PM: This step is manual.

• Deployment and Planning: This step is manual.

5.3 Steps of PMI method

Figure 5.1 presents an abstract view of the overall PMI method, which takes quantitative
(time-series) data along with the pre-engineered, original hybrid domain model (i.e.
PDDL+ domain and problem definition) as input. In particular, input data contains
the quantities of numeric variables that appear in the learned PM. It finally outputs the
learned domain model with embedded PM that facilitates and automates the estimation
of an outcome variable given a set of predictor variables (i.e. numeric features) in the
underlying process.

Fig. 5.1 PMI: abstract architecture

5.3.1 Data Collection

Initially, the PMI method takes the quantitative time-series data that is collected from
the primary sources such as observational study/simulation output. The definition of
data collection sources and the quantitative data types are provided in section 4.2.

5.3.2 Data Preparation

After collecting the raw data, the data are manipulated/transformed into a form that can
be analysed accurately by the Machine Learning (ML) algorithms and statistical meth-
ods, in order to build the right model. Data preparation steps are: data pre-processing,
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feature encoding, splitting data into two parts i.e. training and test set (detailed discus-
sion in section 4.3). The training set is exploited to train ML algorithms with an intent
to build a PM that that can make better predictions on new data (or, general data). To
conduct the statistical test (mentioned in section 4.5.3), the testing set is utilised that
evaluates the model hypothesis of learned PM and measures the prediction accuracy.
PMI method divides the input data into training and test set by employing the cross
validation methods (illustrated in section 4.3.4).

5.3.3 Formulation of PM

After preparing the raw data, the PMI method formulates the Process Model (PM) from
the prepared data by conducting the Correlation Analysis and Regression Analysis con-
secutively. The earlier chapter 4 provides the detailed description of the statistical meth-
ods and ML techniques that are implemented in Correlation analysis (section 4.4) and
Regression Analysis (section 4.5). The current section explains the steps of Correla-
tion Analysis and Regression Analysis that are carried out by PMI method in order to
formulate a PM.

5.3.3.1 Correlation Analysis

To formulate a PM from the input data, at first the PMI infers the relationship among
variables i.e. Feature associations and Feature interdependencies by executing the cor-
relation analysis. Feature associations define the correlation between a dependent/out-
come variable (y) and one or more independent/predictor variables (X), where Feature
interdependencies indicate the correlation among independent variables.
The PMI method performs the Pearson’s r correlation test (mentioned in section 4.4.1)
that statistically infers how strong a relationship is between two variables, based on
the estimated values of the correlation coefficient (r). In simple word, it indicates that
how likely the changes in one variable affect the other variable. Varying in the range
between −1 and +1, r measures the magnitude of association, or correlation, as well
as the direction of the identified features’ relationship (shown in figure 4.4). The esti-
mated Pearson Correlation Coefficient (PCC) between y and x is denoted by rx,y , and
between the two different x variables is denoted by rxi,xj

. After conducting the Pear-
son’s r correlation test, the results can be categorised into three different cases in order
to nominate the appropriate linear regression technique.

• Case 1 : y is related to a single x-variable
In case 1, there is only one variable pair (x, y) with the correlation coefficient
value (i.e. PCC value) rx,y ≥±0.1. Besides, the PCC value of all x-variable pairs
(i.e. rxi,xj

) are less than ±0.1. By following the general guidelines for assessing
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the estimated PCC values (given in section 4.4.1), we can infer that a cause-
effect relationship exists between y and a single x-variable with rx,y ≥ ±0.1,
where x-variables are not inter-correlated. In this case, Simple Linear Regres-
sion (discussed in section 4.5.2.1) is applicable to formulate the model of causal
relationship between y and a single x variable.

• Case 2 : y is related to multiple x-variables
In case 2, some variable pairs (x, y) have PCC values (rx,y) greater than or equal
±0.1, which indicates the existence of relationship among y and more than one
x-variable. Similar to case 1, all independent variables are non-correlated with
rxi,xj

< ±0.1. Therefrom Multiple Linear Regression (MLR) technique such as
Stepwise Regression (described in section 4.5.2.2) is suitable to model the linear
relationship among y and x variables that can involve more than one x variable.

• Case 3 : y is related to multiple x-variables where x-variables have intercor-
relation
Similar to Case 2, some variable pairs (x, y) have PCC values rx,y ≥ ±0.1.
Different from case 1 and case 2, at least one x-variable pair has PCC value
rxi,xj

≥ ±0.1. After interpreting PCC values, we can conclude that y is de-
pendent on multiple x-variables where some/all x-variables have interrelation.
The phenomenon in which two or more predictor variables are linearly related in
multiple regression is known as multicollinearity. To deal with multicollinearity,
different techniques e.g. stepwise regression and ridge regression are applied con-
cerning the severity of intercorrelation (detailed explanation in section 4.5.2.3).
Therefore the Variance Inflation Factor (VIF) for predictors (i.e. x variables) is
measured that quantifies the strength of intercorrelation (discussed in the next
section).

Based on the inferred relationship among variables, the PMI method nominates the
appropriate regression analysis, that is carried out to formulate the PM for three dif-
ferent cases (mentioned above). The next section describes the formulation procedure
of PM by exploiting the nominated regression technique with corresponding statistical
test.

5.3.3.2 Regression Analysis

The PMI method performs the regression analysis that outputs in a learned mathemati-
cal function (i.e. regression model) to express the causal relationship among variables.
In other words, the formulated regression model, represented by PM, automatically ap-
proximates/adjusts the quantity of an outcome variable with the continuous variations
in different predictor features.
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The pseudocode below explains the formulation procedure of PM that automatically
nominates the appropriate regression technique based on the PCC values, and then ac-
cordingly applies the nominated regression technique on the training data. The proce-
dure takes a time series data (TSD) as input. TSD contains the quantitative values of
a regressand (i.e. outcome variable, y) and multiple regressors (i.e. predictor variables,
X) that tend to change over time. Finally, it outputs a regression model, ŷ which is
represented by our process learning hypothesis, or the learned PM.
In line 1, the procedure starts by taking the input data TSD, then it estimates the PCC
values by conducting the correlation test on TSD (given in line 2). In line 3 and 4, it ob-
serves the estimated PCC values (i.e. rx,y and rxi,xj

) for case 1 (mentioned in previous
section 5.3.3.1), where y is related with a single x-variable. If the conditions in line 3
and 4 are true then the linear regression technique is applied on the training data (shown
in line 5). The regression coefficients (i.e. β0 and β1) are estimated that formulates the
regression model.
In line 8 and 9, it assesses the estimated PCC values (i.e. rx,y and rxi,xj

) for case 2
(mentioned in earlier section 5.3.3.1), where y is dependent on multiple x-variables and
x-variables are not correlated. If the conditions in line 8 and 9 are true then the multiple
linear (i.e. stepwise) regression technique is applied on the training data (shown in line
10). The regression coefficients (i.e. β0, β1, β2, . . . ) are estimated that formulates the
regression model.
In line 8 and 12, it examines the estimated PCC values (i.e. rx,y and rxi,xj

) for case
3 (mentioned in earlier section 5.3.3.1), where y is related to multiple x-variables and
x-variables are interrelated, this phenomenon in regression is called multicollinearity.
To deal with multicollinearity, stepwise regression and ridge regression are applied con-
cerning the severity of intercorrelation. Therefore the Variance Inflation Factor (VIF)
for x-variables are measured that quantifies the strength of intercorrelation (shown in
line 13).
The VIF is a transformation of the R2 (the squared multiple correlation coefficient) re-
sulting from predicting x by other predictor variables in the model (expressed in equa-
tion 4.17). The value of VIF > 5 confirms the existence of high collinearity and the
value of VIF between 1 and 5 (i.e. 1 < VIF < 5) indicates the moderate correlation
among independent variables (as discussed in section 4.5.2.3). If there is no collinearity
existed between x-variables, then the value of VIF should be less than or equal 1 i.e.
VIF ≤ 1.
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Procedure 1 Automated Process Modelling with Correlation and Regression Analysis
Input: Time Series Data, TSD = {y,X}, i.e.

Regressand, y = {y | y ∈ Q}
Regressors, X = {x1, x2, . . . , xk | x ∈ Q, k ∈ N>0}
where, {Q}= Set of Rational Numbers,
{N>0}= Set of Non-zero Natural Numbers

Output: Regression Model, ŷ = f(X, β) = β0 + f(xi, βxi
)

where, β0 = Intercept,
βxi

= Slope (Regression coefficient of y on xi),
x ∈ X and i = {1, 2, . . . , n(X)} . n(X), the number of elements of set X

1: procedure GetPM(TSD)
2: PCC ← CorrelationTest(TSD) . PCC is the set of Correlation Coefficients
3: if ∃!r ∈ rx,y|r ≥ ±0.1 then . rx,y ⊂ PCC

4: if ∀q ∈ rxi,xj
|q < ±0.1 then . rxi,xj

⊂ PCC

5: (β0, β1)← LinearRegression(y, x)
6: end if
7: end if
8: if ∃r ∈ rx,y|r ≥ ±0.1 then
9: if ∀q ∈ rxi,xj

|q < ±0.1 then
10: (β0,βxi

)← StepwiseRegression(y, X)
11: end if
12: if ∃q ∈ rxi,xj

|q ≥ ±0.1 then . V IF is the set of Variance Inflation Factor
13: V IF ←MulticollinearityTest(X)
14: if ∀v ∈ V IF |1 < v ≤ 5 then
15: (β0,βxi

)← StepwiseRegression(y, X)
16: end if
17: if ∃v ∈ V IF |v > 5 then
18: (β0,βxi

)← RidgeRegression(y, X)
19: end if
20: end if
21: end if
22: pf ← ANOVAtest(y, X) . p-value of f -statistic, pf
23: pt← T-test(y, X) . p-value of t-test, pt
24: if pf < 0.05 AND pt < 0.05 then
25: ŷ ← f(X, β) . ŷ represents PM
26: end if
27: end procedure

In this thesis, we conduct the correlation analysis as a prerequisite of regression
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analysis, where the Pearson Correlation Coefficient confirms only the presence of rela-
tionship among predictor variables without quantifying the severity (medium/high) of
intercorrelation. Therefore, VIF is calculated which is basically the squared Pearson
Correlation Coefficient. In a nutshell, the VIF can not be less than 1, if the correlation
coefficient confirms the existence of linear relationship among predictor variables.
By assessing the the severity of multicollinearity from VIF values, the procedure applies
the ridge regression and stepwise regression in case of high and moderate collinearity
respectively (shown in line 15 and 18 respectively).

After applying the corresponding regression technique in three different cases (dis-
cussed above), the mathematical function is formulated that represents the Regression
model and from it create the learned PM. To assess the statistical significance of regres-
sion model, statistical tests are conducted such as the t-test and ANOVA test (F statistic)
shown in line 22 and 23 (described in section 4.5.3). In line 24, if the p-values for both
the F-test and the t-test are less than the significance level of 0.05, then we can conclude
that regression model (shown in line 25) fits the data. In other words, the variation of y
has explained well by the estimated regression equation that formulates the PM.
An exceptional situation may occur with all p-values > 0.05, when the outcome vari-
able (y) does not dependent on any predictor variable (X). In short, y is not related
with any x-variable. In Planning context, such type of exceptions is quite impossi-
ble/rare because Domain/Planning experts model a process (i.e. continuous change)
based on some relationship assumptions between continuous numeric variables.

5.3.4 Integration of the PM

After applying the appropriate regression technique, we will get a regression model,
represented in PM, to better explain the causal effect of numerically changing variables
in a process. The resulting PM is integrated/adjusted into the process description of
previously engineered, original hybrid domain model with PDDL+ formulation. As
mentioned earlier, the PDDL+ has the ability to model continuous processes in the hy-
brid planning domains, whereas the dynamically changing quantities of numeric com-
ponents are defined statically. In this thesis, the learned PM automatically estimates and
adjusts the outcome variable based on the predictor features accordingly in the PDDL+
domains.

The learned PM exhibits the proposed process learning hypothesis with effective fea-
ture selection and appropriate approximations in terms of β values (stated in equation
5.1). It can identify the effective features (i.e. independent variables, x) with non-zero
β values as well as eliminate unnecessary features with the corresponding β value to
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0. For instance, if any x does not have impact on the resulting model, then it will set
the corresponding β value to 0. Finally, the PM is embedded/adjusted into the process
description of pre-engineered PDDL+ domain for modelling the continuous effects.

In PDDL+ hybrid domain model, the time-dependent continuous change on a numeric
variable is expressed by means of a special modelling component named process. The
generic structure of a process with PDDL+ representation is shown in figure 5.2 (Fox
and Long 2006). where #»p denotes the parameters of discrete predicates and #     »px,y sym-
bolises the parameters of numeric fluent (i.e. the continuous functions). The process
instance runs over the time period expressed by the special variable #t. The process
effect occurs the time-dependent continuous changes (increase or decrease) on the
numeric fluent by updating the numeric expressions in terms of #t literal.

(:process name-process

:parameters ( #»p, #     »px,y)

:precondition ( (starting-conditions #»p, #     »px,y) )

:effect ( (increase (name-functions #     »px,y) (* # t 1) )

)

)

Fig. 5.2 Generic structure for a PDDL+ process

In this thesis, the learned PM, in the form of numeric expression, is embedded/ad-
justed into the previously engineered process specification as a process effect. The
following generic structure shown in figure 5.3, exhibits the PDDL+ process embedded
with the learned PM (stated in equation 5.1).

ŷ =f(X, β) = β0 + β1x1 + β2x2 + · · ·+ βkxk

Here,

ŷ = Estimated value of the outcome variable, y

X = Set of Predictor variables, x

β0 =y-intercept, i.e. the value of y where x = 0

βi =Regression coefficient of respective xi variable,

i.e. defines the change in y due to a unit change in xi

βi =0 ,for xi that does not affect y

(5.1)
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(:process name-process

:parameters ( #»p, #     »px,y)

:precondition ( (starting-conditions #»p, #     »px,y) )

:effect ( and

(assign (name-outcome # »py) (f( #   »pX ,β)) )

(increase (name-predictors #   »pX) (* # t 1) )

)

)

Fig. 5.3 Generic structure for a PDDL+ process augmented with PM

In figure 5.3, # »py designates the parameter of outcome variable (y) and #   »pX symbol-
ises the parameters of predictor variables (X), where, the change in # »py value is esti-
mated by the function f( #   »pX ,β) with the fluctuation in #   »pX values. The time-dependent
continuous changes (such as increase or decrease) take place on the numeric fluent,
#   »pX by updating the expressions in terms of #t literal.

5.3.5 Evaluation of Learned Domain Model

By integrating/adjusting the Process Model (PM) into the process description of pre-
engineered PDDL+ domain, we acquire a new domain model, that is called the learned
domain model. Before deploying the new domain model in the planning applications, it
is mandatory to evaluate the model effectiveness, accuracy and performance. There are
several statistical tools or metrics for model evaluation, like Graphical residual analysis,
Root Mean Squared Error (RMSE), Root Mean Squared Logarithmic Error (RMSLE),
R-Squared (R2), and Adjusted R-Squared (Adjusted R2) etc that are applied in accor-
dance with the type of problems. An evaluation metric provides feedback by explaining
the model performance and discriminating the model results. Based on the feedback
from evaluation metric, the learned model is improved and continue tuning until the
desirable accuracy or result is acquired. Some evaluation metrics are briefly described
below:

i Residual analysis
The primary tool for model evaluation is the graphical residual analysis (Heckert
et al. 2002). As demonstrated in the figure 4.5, the residuals are the differences
between the actual outcome values and the corresponding prediction values esti-
mated using the regression function. The mathematical definition of the residual
for the ith observation in the data set is expressed below:

ei = yi − f(~xi; ~β) (5.2)
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Where, yi denotes the ith observed (actual) value of outcome variable in the data
set, and
f(~xi; ~β) represents the regression function (defined in the equation 4.1) that out-
puts the corresponding predicted value of ith observation in the data set
Graphical method of residual analysis illustrates the deviation of predicted value
from the actual observation, particularly, the relationship between the regression
model and the observational (training) data. For instance, the random distribution
of errors in the residual plot indicates that the regression model fits the data well.
On the contrary, the non-random structure signifies that the model fits the training
data poorly.

ii Root Mean Squared Error (RMSE)
One of the most widely used evaluation metric is the Root Mean Squared Error
(RMSE), also called the Root Mean Square Deviation (RMSD) given by the equa-
tion 5.3 (Chai and Draxler 2014). It squares the errors to prevent the cancelling
of positive and negative values, therefore, provides the probable magnitude of the
error terms. Besides, the square root enables to explain deviations of large num-
bers. As RMSE is sensitive towards outlier values, the outlier values are removed
from the training data before applying this metric.

RMSE =

√∑N
i=1(Actuali − Predictedi)2

N
=

√∑N
i=1(yi − ŷi)2

N
(5.3)

Where, N is the total number of observations.

iii Root Mean Squared Logarithmic Error (RMSLE)
Unlike the RMSE, the RMSLE metric of regression calculates the log of the ac-
tual and prediction values which empowers it to handle outliers (Saxena 2019).
The basic formulation of RMSLE is stated below (equation 5.4). It suffers from
the biased penalty issue i.e. it incurs larger penalty when the predicted value <

actual value, conversely, less penalty is acquired when the predicted value > the
actual value. Therefore, RMSLE metric is used in certain regression problems
where the underestimation is unaccepted but the overestimation is tolerated.

RMSLE =

√√√√ 1

N

N∑
i=1

(log(yi + 1)− log(ŷi + 1))2 (5.4)

5.3.6 Deployment and Planning

The last step is to deploy the final model (i.e. the learned domain model with PDDL+
representation) in the hybrid planning engines (i.e. PDDL+ planners) in order to gen-
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erate real-time plans with more accurate and rational simulation output. The learned
model consists of two parts: Domain definition and Problem definition. The domain
definition integrates the Process Model (PM) into the process description of existing
PDDL+ model. The problem definition initialises the values of regression parameters
i.e. intercept, β0 and regression coefficients, βj for corresponding process variables.

5.4 Discussion

In the field of Artificial Intelligence (AI), Automated Planning (or, AI Planning) solves
planning problems based on the (planning) application knowledge represented in do-
main models which is usually captured and encoded by the knowledge engineers/do-
main experts. Therefore AI planning depends on the experts knowledge in order to
build domain models, and consequently produce effective plans. Besides, AI plan-
ning generally has limited data requirements for modelling hybrid domains. This thesis
proposes a method, named PMI, that formulates Process Models (PM) by exploiting
real-world data collected from actual execution of the underlying process in (hybrid)
planning domains. The resulting PM, in the form of mathematical function, is inte-
grated/adjusted into the process description of previously engineered, original (hybrid)
domain model. In short, the proposed PMI method requires quantitative (time-series)
data along with the pre-engineered, original hybrid domain model in order to build
the learned (planning) domain model with embedded PM. Hence the proposed PMI
method may introduce additional burden on Knowledge Engineering (KE) task by in-
troducing additional requirements (i.e. relies on reliable data) and supplementary steps,
for instance, data collection and data preparation etc. However, introducing additional
steps on KE task for hybrid (planning) domains is a trade-off between reducing the KE
effort of modelling processes, for instance, automatically identifying the significant/in-
effective process variables (i.e. numeric features) along with their interdependencies,
approximating the more rational and pragmatic value of process variable (i.e. outcome
variable), capturing the dynamic fluctuations in process parameters and adjust them in
the process effects automatically etc.
Moreover, the Machine Learning (ML) techniques along with statistical methods used
in PMI provide results/outputs that are all interpretable. It means the constructed ML
models (in this thesis, that is process models, or regression models) are easily verifi-
able and understandable for knowledge engineers/domain experts. In other words, the
interpretable Process Models are easy to explain the values and accuracy of their find-
ings. For instance, we can simply extract the relationships/interdependencies between
process variables from the Pearson Correlation Coefficient (PCC) values. Besides, we
can easily identify the significance of entire regression model from the p-values of t-test
and ANOVA test (F-test).
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CHAPTER 6

Case Studies

In this chapter we explore the domains that can be used to illustrate and evaluate the
PMI Method. We investigated hybrid domains which had existing domain models, as
well as novel domains.
In summary, the range of domains considered were:

- a large case study being attempted by McCluskey, Vallati and Franco (2017)
aimed at generating traffic management plans

- the set of ’commonly’ available PDDL+ domain models, including the Bouncing
ball, Block World, Vending Machine and Coffee domains.

- the novel domain of ultra-precision surface polishing, where plans are for polish-
ing tool movements (Walker et al. 2019)

We require a set of criteria to be true before a domain could be used:

i firstly, and most importantly, we require a reliable set of ’real’ process data values
to be available for the learning phase. PMI focuses on learning the continuous
fluctuation of numeric values in the processes of hybrid planning domain. To
learn the values of continuous features/variables, we need to exploit the quantita-
tive (time series) data that we can harvest within the domain.

ii secondly, domain modelling needs to pose a challenge for knowledge engineers,
in the sense that the initial domain model’s processes descriptions are likely to
be imperfect when specified a priori, and may well change often depending on
environmental factors. In other words, learning process improvements during op-
eration are important. In our study, this is often the case with physical planning
domain applications, as the models of the processes used are invariably approxi-
mations, and need to be maintained.

Applying these criteria to the range of domains left us with the traffic management
domain, and the coffee domain. The surface polishing domain would be, like traffic
management, an excellent domain to use in this study. After exploring this application

63



for some time (and creating an initial process specification for polishing domain, given
in Appendix F), however, we were unable to capture appropriate training data due to
the pandemic situation of COVID-19 around the world ( discussed in section 8.2.1).
This domain we intend to use in future work (see chapter 8, for details), once the data
is available. Hence, to demonstrate the feasibility of the proposed approach and to
evaluate it on the real planning application, we use the PDDL+ encoding of the Coffee
domain and the Urban Traffic Control (UTC) domain as case studies (detailed in section
6.1 and 6.2 respectively).

6.1 Coffee Domain

Coffee is one of the most popular beverages consumed by people around the world. Due
to its variety of tastes and aromas, it has become a regular drink nowadays. Basically,
coffee is prepared by brewing the roasted coffee ground with hot water. Different brew-
ing methods are used to prepare coffee with desired flavour. Worldwide, specifically in
Europe, espresso is the most common method of brewing coffee.
An espresso shot is prepared by brewing the finely ground compacted coffee with hot
water under pressure. The brewing process extracts the solids and dissolved compo-
nents from the ground coffee that promotes the flavours. Therefore, the proper extrac-
tion of coffee grinds defines the standard taste of an espresso shot.
The Planning Research group at KCL (King’s College London) has introduced a hy-
brid planning based coffee making process with PDDL+ representation (KCL-Planning
2019). The KCL planning research focuses on applying the domain-independent plan-
ning in real-time applications. The PDDL+ formulation of coffee domain, proposed by
KCL-Planning (2019), can brew coffee within a specified range of water temperature.
The detailed discussion on PDDL+ model of coffee domain is provided below.

6.1.1 Original PDDL+ constructs to brew coffee

KCL-Planning (2019) formulates a very basic model of coffee domain that simply
brews coffee with heated water. If the water is cold, it increases the water tempera-
ture. When the water temperature reaches the boiling point, the coffee brewing process
is activated automatically. Table 6.1 below summaries the PDDL+ modelling compo-
nents used to perform different functionalities e.g. brewing coffee, heating and cooling
water etc. The PDDL+ encoding of original coffee domain (KCL-Planning 2019) is
provided in Appendix A.1.
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Modelling components
(Action/Process/Event/Durative action)

Functionalities

:action heatwater(w) Initiates the heating(w) process when
the water w is cold

:process heating(w) Increases the temperature of water w

until reaches at it boiling point (i.e. 100)

:event stop-heating(w) Stops the heating(w) process when
temperature of water w exceeds 100

:event boil(w) Activates the durative action
makecoffee(c, w) when the water w is in
boiling state

:durative-action makecoffee(c, w) Takes actions for making the coffee c

with hot water w where the temperature
of water w should be between 60 to 80

:process cooling(w) Decreases the temperature of water w

when its temperature surpasses 18

:event stop-cooling(w) Triggers the cooling state of water w

when its temperature drops below 18

Table 6.1 PDDL+ modelling components of Original coffee domain (KCL-Planning
2019)

In the table 6.1, an action “heatwater” initiates a process “heating” that increases
the water temperature. An event “stop-heating” halts the heating process with the water
temperature > 100◦C. Another event “boil” activates the brewing process that is rep-
resented by the durative action “makecoffee”. During the brewing process, the overall
temperature of water should be between 60◦C to 80◦C. The “cooling” process is used
to maintain the temperature of hot water within the specified range (i.e. from 60◦C to
80◦C).

6.1.2 Rationale for using PM to improve Coffee domain

In the original coffee domain formulated by KCL-Planning (2019), the coffee brewing
process only considers the water temperature to prepare an espresso shot. Other fac-
tors that could put in the PDDL+ model of coffee domain are missing e.g. brewing
time, coffee dosage, coffee-to-water ratio, coffee particle size (finer or coarser grind)
etc. Those factors along with the water temperature affect the extraction of coffee that
decides the taste of espresso (Andueza et al. 2003, Ludwig et al. 2012, Melrose et al.
2018). KCL-Planning (2019) defines the water temperature statically without consid-
ering the extraction yield or the taste of coffee. Hence, the original coffee domain
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(KCL-Planning 2019) is not a good approximation in the context of preparing espresso
shots with standard taste.
In this thesis, we reformulate the PDDL+ coffee domain that demonstrates the coffee
brewing process for making espresso according to taste. In other words, the coffee is
brewed according to the expected coffee yield% that defines espresso taste. It main-
tains the quantity of coffee yield% by regulating the brewing temperature and brewing
time during brewing process. The water temperature is the brewing temperature when
it reaches the ground coffee and extracts flavour from it, whereas, brewing time is the
amount of time that the water is in contact with coffee grounds.

6.1.3 Reformulated PDDL+ model to brew coffee

The PDDL+ model of coffee domain is reformulated that is partially inspired by its
original PDDL+ construct (KCL-Planning 2019). Unlike the brewing process defined
in original coffee domain, the reformulated coffee domain includes the start-process-
stop model instead of using durative action. The PDDL+ modelling components of the
proposed coffee domain are listed in table 6.2, where two consecutive processes are
used such as “heating” to heat the water and “brewing” to brew coffee ground with
heated water. Appendix B provides the entire PDDL+ model with a sample problem
definition.
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Modelling components
(Action/Process/Event/Durative action)

Functionalities

:action heatwater(c, w) Activates the process heating(w) when
have coffee c and cold water w

:process heating(w) Raises the temperature of water w

:event stop-heating(w) Halts the process heating(w) once the
temperature of water w reaches the
expected brewing temperature

:action brew-coffee(c, w) Starts the brewing(c, w) process with
coffee c and hot water w

:process brewing(c, w) Brews coffee c by calculating the
extraction yield with the increment of
brewing time. Assuming that brewing
temperature of water w is constant

:event stop-brewing(c, w) Stops the brewing(c, w) process when
the expected yield is acquired

:action serve-coffee(c, w) Terminates the whole coffee making
procedure once the coffee c is
expectedly brewed with water w

Table 6.2 PDDL+ modelling components of Learned coffee domain

This thesis analyses the coffee data that has collected from the observation study
conducted by Easthope (2015). The aim is to induce the PM for extraction yield, which
is then embedded in the brewing(c,w) process of reformulated PDDL+ model. The
learned coffee model with PM (given in Appendix B.1) estimates the value of extrac-
tion yield based on the basic learning factors such as brew time and brew temperature.
As a consequence, it can automatically adjust the amount of extracted coffee yield dur-
ing the brewing process. Subsequently, it has extended the scope of deploying other
influencing factors in the coffee brewing process. For instance, pump pressure, tamp
pressure, roasting degree etc. Next section 6.1.4 explains the observational study of
coffee brewing process and exposes the results derived by Easthope (2015).

6.1.4 Observational Study

In the study conducted by Easthope (2015), espresso shots (22 grams each) were sam-
pled for each temperature: 92, 94, 96, and 98 degrees Celsius given in the table 6.3,
6.4, 6.5 and 6.6 correspondingly. Table 6.3 to 6.6 summarise the data for extraction
temperature along with the brewing time and corresponding extraction yield, beverage,
TDS and dose. Here, TDS (Total Dissolved Solid) percentage decides the strength of
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the coffee, Dose indicates the coffee ground in grams and Yield percentage is the total
amount of extracted element from the ground coffee. Yield percentage is calculated
from beverage, TDS and dose by the given equation 6.1:

yield[%] = beverage[g] ∗ (
TDS[%]

dose[g]
) (6.1)

Cup Temperature(◦C) Beverage(g) Brew Time(sec) TDS Yield% Dose(g)

1 92 48.3 29 8.41 18.4 22

2 92 46.6 28 8.7 18.4 22

3 92 48.2 29 8.53 18.8 22

4 92 46.2 30 9.26 19.3 22

5 92 47.1 30 9 19.3 22

6 92 47.1 32 9.11 19.5 22

Table 6.3 Data for 92◦C extraction temperature

Cup Temperature(◦C) Beverage(g) Brew Time(sec) TDS Yield% Dose(g)

1 94 46.7 29 9.09 19.3 22

2 94 46.2 30 9.22 19.3 22

3 94 47.1 32 9.01 19.3 22

4 94 46 31 9.28 19.4 22

5 94 45.4 30 9.39 19.4 22

6 94 47.8 30 9.03 19.5 22

Table 6.4 Data for 94◦C extraction temperature

Cup Temperature(◦C) Beverage(g) Brew Time(sec) TDS Yield% Dose(g)

1 96 44.8 29 9.43 19.1 22

2 96 45 29 9.43 19.2 22

3 96 46.1 30 9.24 19.3 22

4 96 45 29 9.49 19.4 22

5 96 46.2 30 9.41 19.7 22

6 96 47.2 30 9.23 19.7 22

Table 6.5 Data for 96◦C extraction temperature
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Cup Temperature(◦C) Beverage(g) Brew Time(sec) TDS Yield% Dose(g)

1 98 46 28 9.25 19.2 22

2 98 47.2 29 9 19.3 22

3 98 47 30 9.08 19.4 22

4 98 48 31 8.89 19.4 22

5 98 48.9 31 9.03 20 22

6 98 48.6 30 9.06 20.1 22

Table 6.6 Data for 98◦C extraction temperature

According to the study carried out by Easthope (2015) and SCA (2018), the ideal
yield percentage is between 18% - 22%. The study reveals that yield% raises con-
sistently with the increment of brewing temperature. Figure 6.1 illustrates the upward
trend of extraction yield% by estimating the average extraction yield% relative to brew-
ing temperature shown in the table 6.7

Fig. 6.1 Effects of brewing temperature on yield% (Easthope 2015)

Water Temperature (◦C) Yield Percentage (%)
92 18.95
94 19.38
96 19.40
98 19.57

Table 6.7 Average extraction yield(%) relative to brewing temperature (◦C) in espresso

Aside from the extraction, brewing temperature also affects the taste of espresso
shot (Korhonen 2019). There are three components extracted from the coffee grounds
that determine the taste of the coffee such as caffeine (dissolved in water), volatile oils
(evaporate into air for flavour and aroma) and organic acids (bring bitter taste). Based
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on the research conducted by Easthope (2015), the water temperature to brew coffee
grounds affects the taste of coffee as follows (table 6.8):

Water Temperature (◦C) Espresso taste

92 The coffee has high acidity but with
lower body, sweetness and
bitterness

98 It has medium acidity with lots of
sweetness, bitterness, full body and
with strange powdery mouthfeel

94 - 96 With balanced acid, high levels of
sweetness, good body, and low
bitterness

Table 6.8 The brewing temperature (◦C) affects the taste of coffee

Besides, the brewing time affects the extraction yield for instance longer extraction
time results a higher extraction yields, whereas shorter brewing time outcomes lower
extraction yields (Roman Corrochano 2017). As a consequence, the taste of espresso is
also influenced by the brewing time as shown in the figure 6.2 (Brushett 2014).

Fig. 6.2 Brewing time (extraction time) vs compounds extracted (Brushett 2014)

6.1.5 Application of PMI method for the Coffee Domain

This section explains the procedure of PMI method (described in chapter 5), that have
been carried out, for learning and implementing the PM in coffee domain.
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6.1.5.1 Data Collection

As a first step of PMI method (mentioned in section 5.3.1) for formulating the Process
Model (PM), the statistical data is collected manually from the observational study, that
has conducted by Easthope (2015). The raw data includes the forty sample reading
of 22g espresso shots, where each ten shots has been prepared at brew temperature
92◦C, 94◦C, 96◦C and 98◦C respectively. For each espresso shot, the beverage weight
(between 46-48 g) and the brew time or shot time (between 28 – 32 seconds) have been
recorded in the data. Besides, the TDS (Total Dissolved Solid) readings are given in the
data that are used to calculate the corresponding extraction yield (shown in the equation
6.1). Besides, Easthope (2015) has tasted and recorded the samples with estimated
extraction yield in the observational data (summarised in the table 6.7 and 6.8). The raw
data are categorised into four temperature group and is sorted by the extraction yield%.
To avoid inconsistent extraction behaviour, Easthope (2015) removes the outliers (two
lowest and highest data points) from the observational data. The dataset with reduced
sample size is provided in the tables 6.3 - 6.6.

6.1.5.2 Data Preparation

After collecting the raw data, the data needs to be prepared that can be efficiently ex-
ploited by ML techniques in order to build PM with appropriate feature approximations.
At first, the data for four temperature groups are merged, that helps to analyse all data
in one go. Next, the irrelevant or inconsistent feature columns are removed from the
dataset that can degrade the quality of PM. For example, the constant value of Dose(g),
the weight of Beverage(g) and the reading of TDS which are only used to calculate
yield% (stated in the equation 6.1). After cleaning the data, the PMI automatically split
the entire dataset into two parts: training and testing sets using the Cross-Validation
(CV) method (mentioned in section 5.3.2). It implements the K-fold Cross-Validation
approach (discussed in section 4.3.4) by utilising the scikit-learn (or sklearn) library in
a Python program. Due to the small sample size, the entire dataset is divided into 5

folds. In 5-Fold CV (K=5), the formulation of regression model repeats 5 times with 1

distinct fold as testing data and the rest 4 folds as training data (as illustrated in figure
4.3). The best fitted model is automatically selected based on the lowest MSE (Mean
Squared Error) value among all resulting models, which is finally represented by the
PM (detailed discussion in the next section).

6.1.5.3 Formulation of PM

From the data preparation step, we get the prepared data that can be accurately analysed
by exploiting the ML techniques in order to formulate the Process Model (PM). The
input data contains three quantitative features such as Brew Temperature(◦C), Brew
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Time(sec) and corresponding Yield%. For identifying the relationship among those
continuous variables, the PMI method performs the correlation analysis (mentioned
in section 5.3.3.1). On the basis of resulting correlation coefficient, the appropriate
regression analysis is carried out to construct the PM. The output of correlation and
regression analysis are demonstrated below, along with the statistical methods and ML
techniques that have applied.

Correlation Analysis
For estimating the correlation coefficient (r), the PMI method executes the Pearson

Correlation Coefficient (PCC) test on the input data (discussed in section 5.3.3.1), where
the dependent variable (y) is yield% and the independent variables (X) are Brew Tem-
perature (x1) and Brew Time (x2). Table 6.9 exhibits the outcome of correlation test
which contains the values of Pearson’s r such as rx1,y, rx2,y and rx1,x2 . The magnitude
of relationship between y and x variables is denoted by rx1,y and rx2,y correspondingly.
Whereas, rx1,x2 indicates the strength of interrelation between two x variables.

Yield% Brew Temperature(◦C) Brew Time(sec)
y x1 x2

Yield% 1

Brew Temperature(◦C) 0.551416365 1

Brew Time(sec) 0.529255767 −0.036273813 1

Table 6.9 Result of Correlation test (Pearson’s r) for Coffee domain

The strength of linear relationship based on r value
0.1 < |r| < 0.3 : small or weak correlation

0.3 < |r| < 0.5 : medium or moderate correlation

0.5 < |r| : large or strong correlation

Table 6.10 The general guidelines of assessing the relationship based on Pearson’s r
value (Cohen 2013)

From table 6.9, we get the PCC values such as rx1,y = 0.551416365, rx2,y =

0.529255767 and rx1,x2 = −0.036273813. By assessing those values according to the
general guidelines (stated in table 6.10), PMI method infers that yield% is highly de-
pendent on the brew temperature and brew time with the respective values of rx1,y and
rx2,y greater than 0.5 (green highlights in table 6.9). Besides, the absolute value of
rx1,x2 < 0.1 (red highlight in table 6.9) signifies that brew temperature and brew time
are not correlated. In conclusion, the fluctuation in brew temperature and brew time
affect the value of yield%, where brew temperature and brew time are independent of
each other.
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Regression Analysis
After interpreting the results of correlation test, the PMI method nominates the Multi-

ple Linear Regression (MLR) technique to formulate PM, where y is related to multiple
x-variables (i.e. Case 2 in section 5.3.3.1). In other words, the outcome variable, yield%
depends on two non-correlated predictor variables i.e. brew temperature and brew time.
To formulate a PM, PMI method performs the stepwise regression with forward selec-
tion, that identifies and adds the most effective predictor variables in the model based
on specified criterion (detailed in section 4.5.2). Here, the adjusted R-squared is used
as variable selection criterion for achieving the optimal fitted linear model. We have
specifically developed a python program, where the statsmodels module (Seabold and
Perktold 2010) are used, that facilitates the PMI method to automatically explore the
statistical data and estimate the statistical models.
As mentioned in earlier section 6.1.5.2, the input dataset is divided into two parts: train-
ing set and testing set using the 5-Fold cross validation method. The MLR technique
exploits the training set to learn the regression model by approximating the regression
coefficients or parameters of the model. The aim is to predict the value of outcome vari-
able (yield%) for a given value of predictor variables such as brew temperature and brew
time. The testing set is used to measure the prediction accuracy of the model in terms of
Mean Squared Error (MSE). MSE is an average value of the squared errors where error
is the difference between the actual and estimated value of the outcome variable. The
PMI method computes the MSE value using the built-in function “mean squared error”
that is imported from sklearn.metrics python module.
The entire procedure of constructing regression model repeats until each fold is used as
a testing set at some point. In each iteration, the MLR technique with forward selection
is executed to specify the model by determining and including the most effective predic-
tor variables in the regression equation. Besides the parameters of regression model are
estimated, for instance intercept, β0 and the regression coefficient of corresponding pre-
dictor variables, β1, β2 etc. Finally, the best fitted model with lowest MSE is selected
among all resulting models. Table - 6.11 provides the estimated parameter values of
regression model in each fold along with corresponding MSE and RMSE (defined in
equation 5.3) values.
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KFold Intercept Coefficient of x1 Coefficient of x2 MSE RMSE
β0 β1 β2

1 9.500395 0.063336 0.129335 0.171047 0.41357

2 2.17130 0.08921 0.29181 0.10417 0.32276

3 3.597629 0.103934 0.196035 0.0280 0.1673

4 4.296596 0.094365 0.202254 0.039457 0.19863

5 2.684641 0.105094 0.223383 0.13012 0.3607

Table 6.11 Estimated Regression Coefficients for Coffee domain in each fold of K-folds
cross validation (where K = 5)

From Table - 6.11, we find the final regression equation with lowest MSE value of
0.0280 where the intercept (β0) value is 3.597629 and the regression coefficient of brew
temperature (β1) and brew time (β2) is 0.103934 and 0.196035 respectively. Therefore,
the mathematical equation of the formulated regression model can be written as follows
(equation 6.2).

y = β0 + (β1 ∗ x1) + (β2 ∗ x2) (6.2)

where, y = extracted yield, x1 = brew temperature and x2 = brew time
To assess the significance of predictors in the regression model (equation 6.2), PMI
method conducts the t-test, where the predictor with a p-value less than 0.05 indicates
at least a 95% chance of true relationship between outcome and predictor variable in
the population. Besides, the ANOVA test (F statistic) is performed to evaluate the
statistical significance of entire regression model. From ANOVA test, p-value less than
the significance level of 0.05 suggests that the regression model fits the data. In a
nutshell, the resulting regression model with p-values < 0.05, formulates the Process
Model (PM). Table – 6.12 summaries the output of statistical tests. It exhibits that the
p-values from both F -test and t-test are less than 0.05 (green highlights in the table).
Therefore we can conclude that the estimated regression model (highlighted with green
colour in table 6.11) signifies the PM for extraction yield.

74



Table 6.12 Statistical Significance Tests for Regression (Coffee domain)

Regression Statistics

Multiple R 0.795877296

R Square 0.63342067

Adjusted R Square 0.587598254

Standard Error 0.27897268

Observations 19

ANOVA

df SS MS F P-value

Regression 2 2.151630003 1.075815001 13.82337996 0.000326095

Residual 16 1.245212103 0.077825756

Total 18 3.396842105

T-test

Coefficients Standard Error t Stat P-value

Intercept 3.597628763 3.008066652 1.195993699 0.249123121

Brew Temp. (◦C) 0.103934098 0.026020344 3.99433985 0.00104438

Brew Time (sec) 0.196035107 0.05719659 3.427391498 0.003454577

6.1.5.4 Integration of PM

The resulting PM explains the cause and effect relationship between outcome (i.e. ex-
traction yield) and predictors (e.g. brew temperature and brew time) in the coffee brew-
ing process. It automatically estimates the amount of extraction yield with the variations
in brew temperature and brew time. The mathematical formula of PM is given in the
equation 6.2, where the approximated parameter values (i.e. β0, β1 and β2) are provided
in the table 6.11 (KFold 3).
The learned PM is integrated and adjusted into the “brewing” process description of
previously engineered, coffee domain (given in Appendix B.1). Figure 6.3 shows the
“brewing” process with embedded PM. For a given brew temperature, it calculates the
value of extraction yield with the variation in brew time, where brew time is incre-
mented using the #t literal. Also, assuming that brew temperature is constant during the
brewing process.
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Fig. 6.3 Brewing process with PM in the coffee domain

6.2 Urban Traffic Control(UTC) Domain

With the increasing number of vehicles in urban road network, it has become a chal-
lenge to manage and control traffic system in a reasonable and effective way. There
has been continuous progress in developing traffic signal control system with the evo-
lution in science and technology. Basically, three main strategies are followed by UTC
for controlling traffic congestion in normal situation i.e. Fixed-time multiple periods
(Little et al. 1981), Model-based Predictive (Papageorgiou et al. 2007) and Adaptive
traffic signal control system like SCATS (Lowrie and PR 1982) and SCOOT (Brether-
ton 1990). Those techniques generally depend on the complex mathematical models
and predefined policies which are not compatible with unexpected UTC situations (Wei
et al. 2019).
Recently, Automated Planning (AP) has shown its eligibility to apply in UTC applica-
tions, with the advancement of AI planning technology (Cenamor et al. 2014, Vallati
et al. 2016). The AP based traffic control system can model the UTC problem using a
declarative language in conjunction with powerful reasoning engines. Therefore, new
actions along with sensor information can be easily added/modified in the model, which
can keep the UTC model up-to-date in accordance with traffic conditions.

The UK research council funded SimplifAI (McCluskey, Vallati and Franco 2017) is
a project spanning several years aimed at deploy AI Planning to help in Urban Traffic
Management Control (UTMC). In SimplifAI, Vallati et al. (2016) introduces a hybrid
planning based traffic control system with PDDL+ representation to control vehicle
flow in both normal and exceptional road situations. The main focus is to deal with
unforeseen traffic congestion during uncertain events such as road accidents/repair, nat-
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ural calamities etc. In particular, the proposed PDDL+ encoding of UTC problem
can control the traffic green phase on the basis of road network congestion. Vallati
et al. (2016) emphasis on the macroscopic model of UTC rather than using microscopic
model based planning approach. In microscopic model, each vehicle is represented in-
dividually along with detailed description which has limited scalability to exploit plans
(Chrpa et al. 2016). On the other hand, macroscopic model overcomes the mentioned
limitation by considering the flow of vehicles on a road network to cover large areas.
The effectiveness of such hybrid planning-based approach with PDDL+ formulation of
UTC domain has been discussed by McCluskey and Vallati (2017).

Pozanco et al. (2018) proposes an automated planning based traffic control system,
named APTC (Automated Planning for Traffic Control). It overcomes two main dif-
ficulties of implementing planning systems in UTC: (1) engineering of traffic control
model to exactly resemble the current road situations; and (2) the scalability of planning
algorithms to produce plans in accordance with dynamic events and road diversity. To
solve the aforementioned problems, the proposed system continuously learns a domain
knowledge to get an accurate planning model as well as applies distributed planning
approach to divide the large city network into a set of areas. Therefore, the planning
problem is distributed with respect to individual areas, which is solved asynchronously.
In APTC model, a traffic domain is encoded as a discrete model with simple PDDL rep-
resentation based on the UTC model in IAS (Intelligent Autonomic System) developed
by Gulić et al. (2016). Besides, it follows domain-dependent approach, where actions
are executed to handle traffic lights according to the street density level, rather than the
traffic flow. If a high density is detected, it activates the actions to turn green light on
for a fixed time, leading towards the reduction of density level.

In this thesis, the UK research council funded SimplifAI project is being used as a
main case study. This section (6.2) describes the basic model for UTC problem, along
with the assumptions that are made in the SimplifAI. Besides, it details the PDDL+ con-
struct that regulates the road junctions. It then highlights the rationale for using PM in
the UTC domain, concluding with the application of PMI method for the UTC domain.

6.2.1 Basic Model for UTC problem

In UTC problem, a road network can be represented by a directed graph, where the
edges represent the road sections and the vertices symbolise the road junctions (or in-
tersections) that are the entry/exit points of connected road sections. Vehicles enter a
region of the road network through the entry point of junction and leave from the exit
point of that junction. Each road section has a maximum capacity which specifies the
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maximum number of vehicles that a road section can serve. The occupancy (or queue)
specifies the number of existing vehicles on a road section. Figure 6.4 depicts a road
network of two junctions J1 and J2 with eleven connected road sections i.e. road1 to
road11. The direction of arrows indicates the incoming and outgoing traffic flow for the
road section road10. Vehicles can enter the road10 from road1 and road11 as well as
can egress the road10 by heading three different directions e.g. road5, road7 and road9.
q(road10, J2) defines the occupancy (or queue) of the road10 section which is the traffic
congestion in the road10 section towards the junction J2.

Fig. 6.4 An example of a road network in UTC model (Vallati et al. 2016)

6.2.2 Model Assumptions

In SimplifAI, the PDDL+ formulation of UTC domain only considers the junctions
with connected road sections to construct the basic model of road network. Where,
vehicle flow in each junction are regulated by the corresponding traffic lights. Besides,
it is assumed that the flow of vehicles follows the correct lane without blocking other
vehicles heading towards the different directions. Traffic congestion in each junction
is measured by the flow rate between incoming and outgoing road section or road link.
Flow rate, also called the turn rate, is the number of vehicles per unit time that leave
a road link, r1, pass through the associated junction, J and enter another road link, r2
(expressed in equation 6.3). r1 and r2 denote the incoming and outgoing road link of
the junction J respectively.

turnrate =
n

t
(6.3)

Where, turnrate = traffic flow (veh/sec)
n = number of vehicles passing through r1 to r2 during time t
t = duration of time interval (sec)
The traffic flow between r1 and r2 is activated when the signal phase (i.e. green light
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phase) of respective junction J is on. Each junction contains a specific number of se-
quential signal phases (or stages) which allows the traffic flow between connected road
links. For each signal phase, the minimum and maximum phase time (green time of
traffic light) along with the inter limit (amber time of traffic light) are defined. Within
those ranges, the planner can handle the phase activation/deactivation based on the traf-
fic congestion. For instance, n3969 is a road junction which is connected with 4 other
junctions e.g. n3972, n7646, n6612 and n3968 through the road links illustrated in
figure 6.5 below. It has three signal phases: s3969 s0, s3969 s1 and s3969 s2 that trig-
gers consecutively with a specified interval (intergreen or amber light time). The green
arrow directs the traffic flow of connected road links in each signal phase.

Fig. 6.5 Signal phases of junction n3969: Phase s0, s1 and s2.

6.2.3 Modelled Area and Experimental Data

For modelling the road network with PDDL+ encoding, Vallati et al. (2016) contem-
plates the Manchester (UK) urban area (figure 6.6). Figure 6.6 highlights some road
junctions (red dots) in Greater Manchester which are used for modelling UTC domain.
Due to the complex structure of junctions and the memory scalability issues of adjust-
ing enormous junctions, the UTC model includes a specified set of junctions, named
as controllable junctions, during plan generation (McCluskey and Vallati 2017). For
instance, figure 6.7 illustrates an abstract view of controllable road junctions that is a
part of Manchester (UK) urban region (depicted in figure 6.6) and is employed in the
UTC model.
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Fig. 6.6 A part of modelled area with active road junctions (red dots) in Greater Manch-
ester (Image sourced from Transport for Greater Manchester, 2018).

Fig. 6.7 Abstract view of UTC region with controllable junctions (Blue Vertices). The
direction of arrows indicate the traffic flow.

In SimplifAI project, the historical traffic data of selected urban regions have been
exploited which contain the topology of road links, vehicle capacity of all links, traffic
flow rate between road sections, minimum-maximum green time of signal phase, traffic
signal position (active or inter), intergreen time between phases of signals etc. These
data items are encoded in the traffic model wherein the numerical constraint of occu-
pancy level is set as goal. The ENHSP (Scala et al. 2016) PDDL+ planner is adopted to
produce a signal plan P which contains the switching sequence of signal phases with
time i.e. the deactivation of current phase and the activation of next phase in a junction.
An industry-standard, proprietary simulator called AIMSUN (Barceló and Casas 2005)
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is used to execute the plan P from a given initial state, I . At any time T assuming that
the state of every junction agrees with the planning simulation of P from state I .

6.2.4 PDDL+ constructs to regulate road junctions

For regulating the traffic flow in each junction (or intersection) of a road network, the
PDDL+ modelling components with functionalities are discussed in the table 6.13 be-
low. The complete PDDL+ model with domain and problem definition is given in Ap-
pendix C.1.

Table 6.13 PDDL+ modelling components of Original UTC domain (McCluskey and
Vallati 2017)

Modelling components Functionalities
:action switchPhase (p, i) The planner takes this action when a

phase, p of a controllable junction, i is
active (i.e. green time is on) and the
green time reaches the given limit of
minimum phase time. As a consequence,
it enables the event trigger-inter (p, i).

:event maxgreenreached (p ,i) It activates when the green time of active
phase, p in a junction, i exceeds the given
limit of maximum phase time. Conse-
quently, it allows the event trigger-inter

(p, i) to execute.

:event trigger-inter (p, i) It deactivates the current phase, p of junc-
tion, i by turning on the intergreen phase
(i.e. amber light phase) of p. Besides, it
resets the green time counter of junction,
i to zero.

:process keepinter (p, i) It starts counting the intertime (i.e. am-
ber light time) when the phase, p of junc-
tion, i is in intergreen position. It stops
once exceeds the given limit of intertime.

Continued on next page
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Table 6.13 – continued from previous page
Modelling components Functionalities

:event trigger-change (p, i) It is turned on when the intertime of
intergreen phase, p surpasses the inter
limit. As an effect, it switches the sig-
nal phase from p to p1 by deactivating
the intergreen phase, p and activating the
phase, p1.

:process keepgreen (p, i) It starts counting the greentime (i.e.
green light time) when the phase, p of
junction, i is in active position. It stops
once the greentime exceeds the maxi-
mum phase time or the planner deacti-
vates the current phase, p.

:process flowrun green (p, r1, r2) It is executed simultaneously with the
keepgreen (p, i) process when the phase,
p of junction, i is activated (i.e. green
time is on). It allows the vehicles to move
from road, r1 to road, r2 at the given flow
rate (non-zero value) till r1 has no vehi-
cle or r2 exceeds its capacity (shown in
figure 1.2).

6.2.5 Rationale for using PM to improve UTC domain

In the original formulation of UTC domain with PDDL+ constructs (table 6.13), the
dynamic state of a road network at any instant T consists of:
A - occupancy of every road section i.e. incoming/outgoing vehicles of a road section
B - “active” or “intergreen” situation of the current phase for every signalised junction
Besides, it contains the static knowledge such as link/junction connections, capacity
of road section, and assumed traffic flows. Other static knowledge that could put in
PDDL+ model are missing at the moment e.g. link lengths, or number of lanes in a
link. Moreover, the occupancy (mentioned in A above) is generally inadequate due to
the coarse description of process for traffic flow between links. As well as, other as-
sumptions that the domain model makes are unfeasible, for instance, assuming that the
traffic flows across a link instantaneously. Specifically, the flow rate (or turn-rate) of ve-
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hicles between two road sections is predefined as a static value which took no account
of the changing features of the road network.

This thesis analyses the traffic data taken from AIMSUN in the form of variations in
traffic flow over a phase of the junction. The aim is to induce the PM of the turnrate (i.e.
the vehicle flow rate between road links) which is then embedded in the flowrun green

(p, r1, r2) process of original PDDL+ formulation. The learned model of UTC domain
can regulate the turnrate value based on different learning factors such as green time,
inter time and incoming/outgoing road saturation, which reflects the difference between
road links. As a result, it estimates the more accurate and representative value of the
turnrate automatically without having to declare it statically. At the same time, it has
broaden the scope of employing other influencing factors in the UTC model. For exam-
ple the speed limit, cross flow, the number of non-motor vehicles and the density of bus
stops can affect the traffic flow rate in the urban roads (He and Zhao 2013).

6.2.6 Application of PMI method for the UTC Domain

This section explicates the steps of acquiring and implementing Process Models (PM)
in the UTC domain.

6.2.6.1 Data Collection

The first step of PMI, for constructing the PM, is to collect traffic data from AIMSUN
(Barceló and Casas 2005) simulator that has been utilised in SimplifAI project. The
AIMSUN provides traffic simulation models of road junctions. A traffic model repre-
sents the road traffic state, for instance, controllable junctions (or the active connected
links), signal phases (or stages) of each junction, sequence of signal phases, status (i.e.
active or inter) of signal phases, green time/inter time of junctions, turnrate of road
links, occupancy (i.e. number of existing vehicles) and vehicle capacity of road links
etc.
To empirically analyse the UTC domain, we exemplify a set of active (also known as
controllable) junctions of selected urban region as illustrated with the blue vertices in
figure 6.7 . Traffic situations of that particular region are observed by AIMSUN for one
hour (3600 seconds) period. The traffic observations (i.e. traffic simulation models) are
recorded for every 5 seconds. From the recorded traffic models, we extract the traffic
data for each signal phase of a junction.
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6.2.6.2 Data Preparation

After collecting the traffic data, the PMI method prepares the data that can be analysed
and exploited appropriately in order to formulate the PM. The irrelevant or inconsistent
features are removed from the data, for instance, the inter time/occupancy with all zero
values, the outlier value of road capacity etc. Finally, we will get the refined data that
contains the green time, inter time, turnrate and incoming/outgoing road saturation for
each road-link.
For each link of a signal phase, the PMI method divides the data into two parts: training
and testing sets applying the K-fold Cross-Validation (CV) method. Due to the large
size of sample data, the data is divided into 2 folds. In 2-Fold CV (K=2), the formula-
tion of regression model repeats 2 times with the swapped data-sets (i.e. training and
testing). Where, training set is exploited by the statistical methods and ML techniques
to induce the regression model. On the other side, testing set is employed to measure
the Mean Square Error (MSE) of resulting model. The MSE value quantifies that how
well the model fits new data. Besides the best fitted model is selected with the lowest
MSE value among resulting models.

6.2.6.3 Formulation of PM

From the data pre-processing steps e.g. organising, refining and encoding, the data is
prepared for applying statistical methods and ML techniques. The aim is to induce PM
of turnrate that automatically measures the vehicle flow rate of each link in the corre-
sponding signal phase.
To demonstrate and report the empirical results of correlation and regression analysis
(detailed in next chapter 7), we select the junction n3969 which has three signal phases
s0, s1 and s2 (depicted in figure 6.5). Table - 6.14 lists the connected links of junction
n3969 that are activated when the corresponding signal phase is ON. For the sake of
brevity, we present the full experimental results for a particular junction n3969. The
outcome of correlation and regression analysis are described below, along with the sta-
tistical methods and ML techniques that have been applied by PMI method.
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Link number Signal phase Incoming road Outgoing road
(road1) (road2)

s0 link1 s3969 s0 n6612 n3969 n3969 n3972

s0 link2 s3969 s0 n6612 n3969 n3969 n7646

s0 link3 s3969 s0 n3972 n3969 n3969 n6612

s1 link1 s3969 s1 n6612 n3969 n3969 n7646

s2 link1 s3969 s2 n3968 n3969 n3969 n3972

s2 link2 s3969 s2 n3968 n3969 n3969 n6612

s2 link3 s3969 s2 n3968 n3969 n3969 n7646

Table 6.14 Active links in corresponding signal phases (s0, s1 and s2) of junction
n3969

Correlation Analysis
The Pearson Correlation Coefficient (PCC) method is applied to estimate the the cor-

relation coefficient (r) from the input data. Where the dependent variable (y) is turnrate
and the independent variables (X) are greentime (x1), intertime (x2), road1 satura-
tion (x3) and road2 saturation (x4). The PCC test results for each signal phase are
summarised below with figure 6.8, 6.9 and 6.10 consecutively. Where, Pearson’s corre-
lation coefficient between y and each x variable is denoted by rx1,y, rx2,y, rx3,y and rx4,y
consecutively. Besides, the correlation between two different x variables is signified
by rxi,xj

. By following the general guidelines (defined in table 6.10), PMI method as-
sesses the PCC values for each link to infer relationship among variables. The presence
of correlation between two variables is highlighted with green colour in the PCC tables
(shown in figure 6.8, 6.9 and 6.10).

Signal phase s0

(a) Pearson’s r for link1 in phase s0
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(b) Pearson’s r for link2 in phase s0

(c) Pearson’s r for link3 in phase s0

Fig. 6.8 Result of Correlation test (PCC) for signal phase s0 in UTC domain

Figure 6.8 demonstrates the result of correlation (PCC) test for each link in signal
phase s0. PMI method infers that turnrate of link1 is dependent on greentime,
road1 and road2 saturation with the corresponding rx,y value greater than 0.3,
where road1 and road2 saturation are correlated with greentime. For link2, the
turnrate is only related with road2 saturation, whereas the value rx1,x3 > 0.5 indi-
cates the strong relationship between greentime and road1 saturation. For link3,
turnrate depends on greentime, road1 and road2 saturation, where greentime and
road1 saturation are moderately correlated (i.e. 0.3 < rx1,x3 < 0.5).

Signal phase s1

Fig. 6.9 Result of Correlation test (PCC) for signal phase s1 in UTC domain

From figure 6.9, we get the PCC values for signal phase s1 with an active link.
Here, turnrate is correlated with only road2 saturation. Road1 saturation corre-
lates with greentime and intertime.
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Signal phase s2

(a) Pearson’s r for link1 in phase s2

(b) Pearson’s r for link2 in phase s2

(c) Pearson’s r for link3 in phase s2

Fig. 6.10 Result of Correlation test (PCC) for signal phase s2 in UTC domain

Figure 6.10 illustrates the PCC values of each link for signal phase s2. PMI
method infers that turnrate of link1 depends on greentime, intertime and road2
saturation (table in figure 6.10a), where, road1 and road2 saturation are strongly
correlated (i.e. |rx3,x4| > 0.5). For link2, turnrate has relationship with greentime,
intertime and road2 saturation, where, road1 saturation correlates with intertime.
The turnrate of link3 is moderately correlated with intertime, whereas, road1 sat-
uration has relationship with intertime (i.e. |rx2,x3| > 0.3).

In conclusion, it is clear that turnrate of each road-link is either moderately or highly
dependent on one or more independent variables (or predictors), where the predictors
have (medium/strong) correlation with each other.

Regression Analysis
From correlation analysis, PMI method have identified the feature associations and

their interdependencies in order to nominate the appropriate regression technique. PMI
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method have chosen the Multiple Linear Regression with Shrinkage method according
to the Case3 (i.e. y is related to multiple x-variables with inter-correlation) discussed
in section 5.3.3.1, where the outcome variable (i.e. turnrate) depends on intercorre-
lated predictor variables i.e. greentime, intertime, road1 saturation and road2 satura-
tion. Such phenomenon in the multiple regression is called multicollinearity, where
two or more predictor variables are linearly related. To deal with multicollinearity, PMI
method have applied two different regression techniques e.g. stepwise regression and
ridge regression based on the severity of multicollinearity.
At first, PMI method estimates the Variance Inflation Factor (VIF) (defined in section
5.3.3.2) for predictors that detects the strength of intercorrelation among x variables.
For each link in the signal phases (i.e. s0, s1 and s2), the VIF values have calculated
that are listed in table 6.16a, 6.16b and 6.16c respectively. To estimate the VIF for given
predictors, PMI method have utilised the built-in function “variance inflation factor”

from statsmodels python module (Perktold et al. 2021).

The strength of Multicollinearity based on VIF value
V IF = 1 : Complete absence of collinearity

1 < V IF ≤ 5 : Moderately correlated

V IF > 5 : Highly correlated

Table 6.15 A rule of thumb for interpreting the Variance Inflation Factor (VIF) (James
et al. 2013).

Signal Phase greentime intertime road1 saturation road2 saturation
s0 x1 x2 x3 x4

link1 4.369 1.371 3.514 1.556

link2 2.869 1.213 2.857 1.037

link3 1.235 1.055 1.221 1.044

(a) VIF values for each link: Phase s0

Signal Phase greentime intertime road1 saturation road2 saturation
s1 x1 x2 x3 x4

link1 5.228 2.605 5.131 1.012

(b) VIF values for each link: Phase s1
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Signal Phase greentime intertime road1 saturation road2 saturation
s2 x1 x2 x3 x4

link1 1.817 2.163 2.211 2.139

link2 1.943 2.418 1.322 1.187

link3 1.808 2.175 1.322 1.024

(c) VIF values for each link: Phase s2

Table 6.16 VIF values for the signal phases: s0, s1 and s2 consecutively

Table 6.16 provides the VIF values for each link of corresponding signal phase.
Those VIF values are interpreted by following the rules given in table 6.15. For signal
phase s0 (table 6.16a), VIF values of predictors are between 1 and 5 that evinces the
moderate correlation among them. Therefore we have applied the Stepwise regression
for each link of signal phase s0. In signal phase s1 (table 6.16b), two predictor variables
(i.e. greentime and road1 saturation) have VIF values greater than 5 that reveals the high
intercorrelation between them. Hence the Ridge regression (i.e. shrinkage method) is
employed for the link of signal phase s1. In signal phase s2 (table 6.16c), all predictors
have VIF values between 1 and 5, thus Stepwise regression is performed for each link.
In summary, the Stepwise regression is nominated for all links in signal phase s0 and
s2. On the other side, Ridge regression is selected for the link of signal phase s1.

In this thesis, we have implemented the stepwise regression with backward elimina-
tion approach that identifies and removes the least significant predictor variables from
the model based on specified criteria (detailed in section 4.5.2). To perform backward
elimination, we have encoded a function named “backward elimination” in the Python
program (given in Appendix E). It conducts statistical tests e.g. f -statistic and t-test,
that quantify the significance of predictor variables in the regression model. Based on
the p-values (i.e. greater than the significance level of 0.05) from f -statistic and t-test,
the insignificant predictors are removed from regression model. To exploit statistical
data and build statistical models, PMI employs the statsmodels module (Seabold and
Perktold 2010). Moreover it utilises the built-in function sklearn.linear model.Ridge to
perform ridge regression.
Above mentioned in section 6.2.6.2, the input dataset is divided into two parts: training
set and testing set utilising the K-Fold cross validation (CV) method. To learn the re-
gression model, the training set is exploited by the Multiple Linear Regression (MLR)
techniques e.g. stepwise regression and ridge regression. The intent is to predict the
value of outcome variable (i.e. turnrate) for the given values of predictor variables i.e.
greentime, intertime, road1 saturation and road2 saturation. Whereas the testing set is
required to measure the prediction accuracy of the model in terms of Mean Squared
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Error (MSE). To calculate MSE values, PMI method have utilised the built-in function
“mean squared error” from sklearn.metrics python module.
In 2-Fold CV, the entire procedure of formulating regression model repeats two times
by swapping the training and testing sets. As a consequence, it provides two models
with approximated parameters, for example intercept (β0) and the regression coefficient
of corresponding predictor variables, β1, β2 β3 and β4. For each link in signal phases
(i.e. s0, s1 and s2), the estimated parameter values of regression model in different
folds are provided below (tables 6.17a, 6.17b and 6.17c respectively).

(a) Estimated Regression Coefficients for each link in signal phase s0

k-fold Phase Intercept Coeff. of Coeff. of Coeff. of Coeff. of MSE
s0 x1 x2 x3 x4

(β0) (β1) (β2) (β3) (β4)

k=1 Link1 −0.062 0 0 1.019 1.539 0.196

k=2 Link1 1.475 −0.007 0 −0.629 0.666 0.117

k=1 Link2 0 0 0 0 0 N/A

k=2 Link2 0.091 −0.0004 0 −0.068 −0.063 0.0001

k=3 Link2 0.053 0 0 0 −0.0889 0.0005

k=1 Link3 0.058 −0.002 0 4.010 2.137 0.152

k=2 Link3 0.119 0 0 3.326 1.349 0.125

(b) Estimated Regression Coefficients for each link in signal phase s1

k-fold Phase Intercept Coeff. of Coeff. of Coeff. of Coeff. of MSE
s1 x1 x2 x3 x4

(β0) (β1) (β2) (β3) (β4)

k=1 Link1 0 0 0 0 0 N/A

k=2 Link1 0.107 0.0004 0.0109 −0.136 −0.074 0.0002

k=3 Link1 0.094 0.0002 0.0056 −0.093 −0.091 0.0002

k=4 Link1 0.0951 0.0002 0.0068 −0.1008 −0.081 0.0002

k=5 Link1 0.098 0.0001 0.005 −0.081 −0.1007 0.0005
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(c) Estimated Regression Coefficients for each link in signal phase s2

k-fold Phase Intercept Coeff. of Coeff. of Coeff. of Coeff. of MSE
s2 x1 x2 x3 x4

(β0) (β1) (β2) (β3) (β4)

k=1 Link1 0.330 0 −0.113 0 3.612 0.830

k=2 Link1 1.496 0 −0.090 −1.366 −0.756 0.065

k=1 Link2 −0.010 0 0 0 4.499 0.080

k=2 Link2 0.364 0 −0.054 0 0 0.172

k=1 Link3 0 0 0 0 0 N/A

k=2 Link3 0.246 0 −0.0295 0 0 0.038

k=3 Link3 0 0 0 0 0 N/A

k=4 Link3 0.365 0 −0.0298 0 −0.369 0.117

Table 6.17 Estimated Regression Coefficients for signal phases s0, s1 and s2 respec-
tively with K-fold cross validation

From Table - 6.17, we get the final regression model (highlighted with Gray colour
in the table) with lowest MSE value for each link in corresponding signal phases s0,
s1 and s2. Here, we have found some exceptional cases during model formulation, for
instance, the turnrate has all-zero values (e.g. fold 1 in s0 link2), all predictors have
p-values greater than 0.05 (e.g. fold 1 in s2 link3), multiple folds have similar (lowest)
MSE values (e.g. fold 1 to 4 in s1 link1) etc. To handle those cases, we have utilised
different fold sizes in the K-fold CV, e.g. k = 3 for s0 link2, k = 5 for s1 link1 and k =
4 for s2 link3. Besides, we have used different performance metrics (i.e. p-values from
F -test and t-test) to analyse the models with similar (lowest) MSE values, for instance,
the model in k = 2 is finalised with p-values < 0.05 for s1 link1.
With estimated parameters i.e. the intercept β0, the regression coefficients β1 of green-
time (x1), β2 of intertime (x2), β3 of road1 saturation (x3) and β4 of road2 saturation
(x4), the mathematical formula of regression model can be written as follows (equation
6.4):

turnrate = β0+(β1∗greentime)+(β2∗intertime)+(β3∗road1sat)+(β4∗road2sat)

(6.4)
To measure the significance of predictors in the formulated regression model (equa-

tion 6.4), we conduct the t-test. Where the p-value < 0.05 for corresponding predictor
(excluding the intercept) indicates at least a 95% chance of true relationship between
outcome and predictor variable in the population. Also, the ANOVA test (F -test) is per-
formed to evaluate the statistical significance of entire regression model. From F -test,
p-value less than a significance level of 0.05 suggests that the regression model fits the
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data. In a nutshell, the regression model with all p-values < 0.05 represents the Process
Model (PM). For conducting the statistical significance tests for regression model, we
have employed the built-in method “statsmodels.formula.api” in the Python program.
Besides, significance tests for the ridge model is performed by utilising the Python
module “ regressors.stats” (Haas 2015). The output of statistical test (e.g. F -test and
t-test) for each link in signal phases s0, s1 and s2 are demonstrated below (figure 6.11,
6.12 and 6.13 consecutively). The results exhibit that the p-values from both F-test and
t-test are less than 0.05 (highlighted with red box in the figure). Hence we can conclude
that the estimated regression models (specified in table 6.17) signify the PM of turnrate
for corresponding links.

(a) Results of F -test and t-test for link 1

(b) Results of F -test and t-test for link 2
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(c) Results of F -test and t-test for link 3

Fig. 6.11 Statistical significance tests for regression models in signal phase s0

Fig. 6.12 Statistical significance tests for the regression model in signal phase s1
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(a) Results of F -test and t-test for link 1

(b) Results of F -test and t-test for link 2
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(c) Results of F -test and t-test for link 3

Fig. 6.13 Statistical significance tests for regression models in signal phase s2

6.2.6.4 Integration of PM

The resulting PM represents the statistical relationship between one dependent variable
(i.e. vehicle flow rate between roads) and a series of independent variables (e.g. traffic
signal active/interval time, occupancy/capacity of roads). It estimates the rate of vehicle
flow (defined as turnrate) in active road junctions based on different influencing factors,
for instance, greentime, intertime, incoming and outgoing road saturation that affect the
traffic flow rate. The mathematical formula of PM is given in equation 6.4. Where,
the approximated parameter values (i.e. β0, β1, β2, and β3) for the junction n3969 are
provided in table 6.17 (highlighted with Gray colour).
The estimated PM of turnrate is integrated and adjusted into the existing “flowrun green”

process of previously engineered (hybrid) planning model for controlling traffic flow
(provided in Appendix D.1). Figure 6.14 below shows the process “flowrun green”

that has incorporated PM in its effect. For an active signal phase p in junction i, it cal-
culates the turnrate of vehicle flow from incoming road r1 to outgoing road r2. Where,
the occupancy of r1 decreases and the occupancy of r2 increases by the estimated turn-
rate value with time (defined by #t literal).

95



Fig. 6.14 flowrun green process with PM in the UTC domain
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CHAPTER 7

Empirical Analysis and Evaluation

As evidence of the concept of learning by the application of our system, this chapter in-
cludes the empirical analysis and evaluation of the proposed PMI method on the running
examples, i.e. Urban Traffic Control (UTC) domain and Coffee domain (elaborated in
previous chapter 6). The focus of the analysis is to test the effectiveness of the learned
Process Model (PM) that is embedded into a pre-engineered, original domain model,
specifically to learn an accurate model of the continuously changing features in a pro-
cess description. The aim is to refine/improve the process knowledge in hybrid planning
domains with respect to enhance the simulation accuracy, which can ultimately lead to
higher-quality plans.

7.1 Coffee Domain

Aforementioned in the earlier chapter (section 6.1), the bonafide coffee brewing re-
quires efficiently controlled brewing time with temperature to get personalised espresso
taste. In this thesis, we have reformulated the PDDL+ model of the coffee domain (pro-
vided in Appendix B.1), that is partially inspired by the original coffee domain (given
in Appendix A.1), where the coffee brewing procedure is regulated by the PM for ex-
traction yield%. In simple terms, it brews coffee according to the espresso taste (i.e.
expected coffee yield%). It estimates the extracted coffee yield% in terms of variation
in the brewing time with specified brewing temperature. To formulate the PM, we have
exploited the coffee data that is taken from the observational study (discussed in sec-
tion 6.1.4) conducted by Easthope (2015). Then the learned PM is embedded into the
process specification of pre-engineered coffee domain, that is our reformulated PDDL+
coffee domain (see section 6.1.5, for details). Finally, we evaluate the learned domain
with embedded PM (given in Appendix B). The intent is to assess how well it improves
the simulation accuracy, and consequently the plan quality.

7.1.1 Evaluation of the Learned Domain Model

We evaluate the learned domain model with embedded PM in order to measure its per-
formance and effectiveness in the real planning applications e.g. brewing coffee ac-
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cording to personalised taste. For evaluating the learned (coffee) domain model, we
deploy the domain model with embedded PM in the hybrid planning engines that can
generate realistic plans. In this thesis, we have formulated the learned domain model
with PDDL+ representation. Therefore, the ENHSP (Scala et al. 2016) hybrid planner
has been utilised which supports PDDL+ domain models. The learned domain model
with PDDL+ constructs has two parts: Domain definition and Problem definition. The
domain definition contains the PM that is integrated into the brewing process (given in
appendix B.1). The parameters value of PM are initialised in the problem definition (an
example is given in appendix B.2).
Aforementioned in section 6.1, the brewing temperature and brewing time both affect
the coffee extraction (i.e. yield%), which defines the flavour and aroma of espresso.
The expected espresso taste with corresponding extraction percentage (i.e. yield%) is
listed in the table - 7.1. During the coffee brewing process, the learned domain model
can control the extraction of coffee. For a given brewing temperature (shown in table
7.1), the Process Model (PM), that is embedded in the learned domain model, estimates
yield% with increment of brewing time.
In this thesis, the learned (coffee) domain model is experimented with four differ-
ent problem tasks for the temperature 92◦C, 94◦C, 96◦C and 98◦C respectively. The
ENHSP provides plan for each task using the same domain model with different tem-
perature reading and corresponding expected yield%. The sample plan for each separate
problem with different brew temperature is provided below in figure 7.1.

Brew Yield Espresso taste
Temp.
(◦C) (%)

92 18.95 The coffee has high acidity but with lower body, sweetness and bitterness

94 19.38 With balanced acid, high levels of sweetness, good body, and low bitterness

96 19.4 With balanced acid, high levels of sweetness, good body, and low bitterness

98 19.57 It has medium acidity with
lots of sweetness, bitterness, full body and with strange powdery mouthfeel

Table 7.1 Expected espresso taste with yield% at specific brew temperature (data ex-
tracted from table 6.7 and 6.8)
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Fig. 7.1 Four different plans to brew coffee according to the espresso taste (defined by
yield%)

Figure 7.1 exhibits four different plans where the plan is from heatwater coffee1

water1 to serve-coffee coffee1 water1. On the left of each plan, the time is defined at
which the actions need to be executed. For convenience, the ENHSP planner also out-
puts the internal events call in the semi colon separated lines.

Afterwards, the produced plans are simulated in the PSIM (PDDL+ plan simulator de-
veloped by Lindsay et al. (2020)) to explore the values of estimated yield% with time.
For each temperature, table 7.2 demonstrates the simulation result of corresponding
generated plan. Here, the total Brew time (sec) is taken by the planner to attain the Ex-
pected yield% (given in table 6.7) with corresponding Brew temperature (◦C). Besides,
the Estimated yield% represents the final outcome of extraction yield% achieved by the
planner.
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Table 7.2 Simulation Result of the plan for each temperature (◦C)

Brew Temperature (◦C)

92◦C 94◦C 96◦C 98◦C

Total Brew Time (Sec) 31.00 32.00 31.00 31.00

Expected yield% 18.95 19.38 19.40 19.57

Estimated yield% 19.041 19.445 19.456 19.664

Error (%) 9.1% 6.5% 5.6% 9.4%

From table 7.2, we have calculated the error (%) for each temperature reading using
the value of expected yield% and estimated yield%. Error (stated in equation 5.2),
also known as residual, denotes the difference between the actual or expected outcome
value and the corresponding estimated or predicted value. As an evaluation metric of
our learned model, we have utilised the anticipated error (%) in the graphical residual
analysis (discussed in section 5.3.5). Figure 7.2 illustrates the bar graph displaying the
residual of yield% at each temperature, where all the residuals (%) or errors (%) are
less than 10% which is acceptable.

Fig. 7.2 Bar graph displaying Brew Time (sec) with corresponding yield error (%) at
various temperatures

7.1.2 Discussion

By analysing the simulation result (table 7.2) and the residual bar graph (figure 7.2),
we can conclude that the learned domain model approximates the more rational and
pragmatic value of outcome variable (i.e. yield%), which is very close to the actual
value (i.e. expected yield%). Consequently, the improved simulation output aids the
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planning engine to produce high-quality plans (as stated in the Aims and Objectives,
section 1.2). Bedsides, without declaring the process parameters (e.g. brewing time)
statically, the PM embedded in coffee domain can adjust the brewing time automati-
cally according to the expected yield% in the brewing process. Hence, it can control
the brewing process automatically by estimating the yield% according to the changing
parameters (i.e. brewing time and temperature). In that manner, it can facilitate the
knowledge engineering task of modelling processes with dynamically changing param-
eters in the real-world hybrid (planning) domains (as mentioned in Thesis Contribution,
section 1.3).
Furthermore, the Process Model (PM) is formulated by exploiting the real-time dataset,
thereby updating/adding new numeric features in the learning dataset can enhance the
Dynamicity of the planning model as well as boost its Versatility (as described in
the Aims and Objectives, section 1.2). For example, the extraction of coffee or coffee
yield% (i.e. the outcome variable), that defines the espresso taste, may depend on other
factors such as coffee dosage, coffee-to-water ratio, coffee particle size (finer or coarser
grind) etc in the brewing process. In addition, the values of process parameters in the
learning dataset may need to modify or update over time with the changes in dynamic
states. On this account, by updating the existing parameter values, adding new rows
of values, or adding new feature columns in the learning data set, it can keep the pro-
cess model up-to-date and consequently, improve the hybrid domain model in respect
of Dynamicity and Versatility. Moreover, during the formulation of PM, it identifies
the significant/ineffective process variables automatically along with their interdepen-
dencies, for instance, yield% is dependent on brewing time and brewing temperature,
which are independent from each other. In that way, it can assist the knowledge engi-
neers by choosing effective numeric features (i.e. process parameters) and removing
the irrelevant ones from the process models (as stated in Thesis Contribution, section
1.3).
By interpreting the planning output for different problem tasks (given in figure 7.1), we
can say that the learned domain model provides individual plan in accordance with the
espresso taste, by automatically manipulating the brewing process . In a nutshell, the
learned domain model with embedded PM can generate advanced plans by enhancing
the simulation accuracy (as discussed above).

7.2 Urban Traffic Control (UTC) Domain

As mentioned in previous chapter (section 6.2), the traffic flow rate in a road junction
fluctuates over time which can be affected by different factors e.g. incoming/outgoing
road saturation, active (green) time, inter time, cross flow, peak/off-peak hour, low ca-
pacity roads with parking spaces, and number of lanes etc. Those influencing factors
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vary according to the road infrastructure. In the original PDDL+ formulation of UTC
domain (given in Appendix C.1), the vehicle flow rate of each road link is statically
defined across a junction. Besides, the estimation of flow rate does not contemplate the
dynamically changing factors of the road network. For this thesis, we aim to use PMI
to improve the flow rate PM that is embedded in the existing PDDL+ model of UTC
domain (given in Appendix D.1). The Process Model (PM) of flow rate estimates the
vehicle turn rate of each road link in terms of variation in the corresponding influencing
factors. To induce the PM, we have utilised the traffic data that has been experimented
in SimplifAI (McCluskey, Vallati and Franco 2017) project (discussed in previous chap-
ter, section 6.2). This section evaluates the learned UTC domain with embedded PM to
measure the simulation accuracy of turnrate values. Specifically, it assesses the effec-
tiveness of PMI in the hybrid planning domain with respect to improve the simulation
output, and consequently the quality of generated plans.

7.2.1 Evaluation of the Learned Domain Model

In this thesis, we evaluate the learned model to measure its performance and effective-
ness in the real planning applications e.g. controlling traffic flow in the urban road
junctions/intersections. For evaluating the learned model, we have utilised the ENHSP
(Scala et al. 2016) PDDL+ planner to generate plans. Besides, produced plans are
simulated in the PSIM (PDDL+ plan simulator developed by Lindsay et al. (2020)) to
explore the values of turnrate with time.
The learned model is experimented with a particular set of road junctions in the Manch-
ester (UK) urban area (abstract view in figure 6.7), where the PM of turnrate for each
link is formulated and adjusted from the originally-engineered UTC planning model.
From a specified initial state, we produce signal plans for both original and learned
UTC planning model to achieve a common goal. Both plans are individually simulated
in the PSIM to observe turnrate values. To assess turnrate errors, the estimated turnrate
values in learned model and the static turnrate values in original model are compared
with the corresponding real-time turnrate value observed in AIMSUN. Finally, we cal-
culate the mean value of squared turnrate errors for both models that is defined as MSE
(Mean Squared Error) of turnrate. For Original and Learned model, the respective fig-
ures 7.3a and 7.3b provide the MSE of turnrate values observed after 200, 600, 800,
1200 and 1600 seconds of simulation. Here, MSE values are estimated from the simu-
lation output of three different time periods (i.e. 1 hour long each). The estimated MSE
values for each period (i.e. T1, T2 and T3) are plotted as a line graph shown in figure
7.4.
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(a) MSE (Mean Squared Error) of turnrate values in Original Model

(b) MSE (Mean Squared Error) of turnrate values in Learned Model

Fig. 7.3 Estimated MSE of turnrate values observed after 200, 600, 800, 1200 and 1600
seconds of simulation in T1, T2 and T3 period

(a) MSE (Mean Squared Error) of turnrate values observed in T1
period
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(b) MSE (Mean Squared Error) of turnrate values observed in T2
period

(c) MSE (Mean Squared Error) of turnrate values observed in T3
period

Fig. 7.4 MSE comparison between original and learned UTC models with the turn-rate
observed in AIMSUN after 200, 400, 600 and 800 seconds of simulation.

As an evaluation metric of our learned model, we have estimated the MSE of turn-
rate values for original and learned UTC models. By analysing the MSE values (figure
7.3) with line graphs (figure 7.4), we can conclude that the learned model improves sim-
ulation accuracy and produce less error as compared to the original UTC model with
static turn-rate across the road junctions.

Furthermore, we deploy the learned model in the hybrid planning engines in order to
generate real-time plans. In this thesis, the learned model is formulated in PDDL+ plan-
ning language. Therefore, a PDDL+ planner (we chose ENHSP for this) is employed to
produce plans that supports PDDL+ representation of planning models. As mentioned
earlier, the PDDL+ (hybrid) planning model consists of two parts: Domain definition
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and Problem definition. The domain definition of learned UTC model integrates the
PM into the “flowrun green” process effect (given in appendix D.1), whereas the pa-
rameters value (i.e. β-values) of PM are initialised in the problem definition (a sample
problem is given in appendix D.2).
To demonstrate the efficiency of learned model in plan generation, we have taken a
simple planning problem with a single junction n3969, where the goal is to reduce traf-
fic congestion in a specific road n3968 n3969 that becomes active in the signal phase
s3969 s2. With the same set of initial states and goal, we have produced the signal
plans from original and learned UTC model. The domain and problem definition of
original and learned UTC model are given in appendix C and D correspondingly. Fig-
ure 7.5a and 7.5b below provide the signal plans generated from original and learned
model respectively.

(a) Plan generated from Original UTC model
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(b) Plan generated from Learned UTC model

Fig. 7.5 Signal Plan for reducing traffic congestion in n3968 n3969 with Original and
Learned UTC model

Figure 7.5 exhibits two separate plans to reduce vehicle congestion in a specific road
n3968 n3969, where the plan is defined by the sequence of action “switchPhase” taken
with time. The action “switchPhase” activates the next signal phase by deactivating the
current phase. Besides, the internal events are indicated by the semi colon separated
lines that occur during plan generation. The resulting signal plans (figure 7.5a and 7.5b)
show that the learned model takes less signal cycle with time to reduce congestion in
n3968 n3969. On the other hand, the original model requires more than one signal
cycle with additional time to achieve goal.

7.2.2 Discussion

By analysing the simulation output (given in figure 7.3) and the error graph (illustrated
in figure 7.4), we can conclude that the learned domain model approximates the more ra-
tional and pragmatic value of outcome variable (i.e. turnrate), which is very close to the
actual value (i.e. the real-time turnrate value observed in AIMSUN). Consequently, the
improved simulation accuracy aids the planning engine to produce high-quality plans
(as stated in the Aims and Objectives, section 1.2). Bedsides, without declaring the
process parameters (e.g. turnrate or flow rate of vehicles) statically, the PM embedded
in UTC domain can adjust the turnrate automatically according to the corresponding
influencing factors (i.e. incoming/outgoing road saturation, active (green) time, inter
time etc.) in the road junctions. Hence, it can automatically control the flowrun green
process (i.e. allows car to flow if the corresponding green is on) by estimating the
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turnrate according to the changing parameters (i.e. active/green time, inter/amber time,
incoming/outgoing road saturation etc.). In that manner, it can facilitate the knowledge
engineering task of modelling processes with dynamically changing parameters in the
real-world hybrid (planning) domains (as mentioned in Thesis Contribution, section
1.3).
Furthermore, the Process Model (PM) is formulated by exploiting the real-time dataset,
thereby updating/adding new numeric features in the learning dataset can enhance the
Dynamicity of the planning model as well as boost its Versatility (as described in the
Aims and Objectives, section 1.2). For example, the vehicle flow rate on a road junction
may depend on other factors such as the gradient of roads, the density of intersections,
the density of bus stops, the speed limit etc when the corresponding signal phase is
active. Additionally, the values of process parameters in the learning dataset may need
to modify or update over time with the variations in dynamic states. On this account,
by updating the existing parameter values, adding new rows of values, or adding new
feature columns in the learning data set, it can keep the process model up-to-date and
consequently, improve the hybrid domain model in respect of Dynamicity and Versa-
tility.
Moreover, during the formulation of PM, the proposed PMI method identifies the sig-
nificant/ineffective process variables automatically along with their interdependencies,
for instance, the turnrate on the road s0 link1, for the signal phase s0 (i.e. an active
link in the signal phase s0 of road junction n3969, stated in table 6.14), is dependent
on greentime, road1 and road2 saturation, where the road1 and road2 saturation are
correlated with greentime. Therefore, the formulated Process Model (PM) of turnrate
for s0 link1 contains the corresponding effective process parameters, i.e. greentime,
road1 and road2 saturation (highlighted in the table 6.17a). Besides, the turnrate on
another road s2 link2, for the signal phase s2, is influenced only by the road2 sat-
uration. Hence, the formulated PM of turnrate for s2 link2 contains only the road2

saturation and removes others (shown in table 6.17c). In that way, it can assist the
knowledge engineers by choosing the effective numeric features (i.e. process param-
eters) and removing the irrelevant ones from the process models (as stated in Thesis
Contribution, section 1.3).
By interpreting the planning outcome generated by the Original and Learned UTC
model with same set of problem task, we can say that the learned domain model pro-
vides better plan for the traffic signal phase in accordance with the traffic congestion,
by automatically approximating the the more rational and pragmatic value of turnrate.
In a nutshell, the learned model can advance the plan quality by improving simulation
accuracy in terms of adjusting the numeric features automatically. The learned UTC
model improves planning by approximating the appropriate flow rate, in order to obtain
the traffic signal plans accordingly.
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7.3 Related Work

Bay et al. (2002) combines machine learning methods with human expert knowledge
for revising the initial models of engineering domains. The revised models in the form
of mathematical equations represent the physical devices, for instance, a battery model
on the International Space Station. An equation discovery program named Lagramge
(Todorovski and Dzeroski 1997) is implemented to search mathematical models, that
estimates parameters and score models. The engineer’s knowledge is utilised that con-
strains the search space in order to make the equation discovery feasible. The system
inputs a set of initial equations that describes the system behaviour, data on the ob-
servable variables in the equation, and the knowledge about equations i.e. all plausible
independent variables, functional forms, parameter values, and their dependencies. Af-
ter taking inputs from user, the problem is transformed into equation discovery task
utilising the Lagramge program. Lagramge searches through the space of equations
and evaluates candidate models according to the MDL (Minimum Description Length)
score function. Finally it returns the best model that better explains the data. In contrast
to this work, our proposed PMI method implements the regression techniques instead
of Lagramge program to find the best fitted model. Besides, it involves different statis-
tical tests (i.e. the t-test and ANOVA) to evaluate the significance of regression model.
Moreover, the proposed PMI method formulates the process models (i.e. regression
model) by exploiting the real-time data without inputting the initial models/equations
or parameter values. Also, it automatically infers the dependencies among independent
variables by performing the statistical test, i.e. Pearson’s correlation coefficient. Learn-
ing models in the form of mathematical functions, as proposed by Bay et al. (2002),
is complementary to our work, where we learn the process models that represent the
continuous effects in the processes of hybrid planning domains.

Fine-Morris et al. (2020) presents an algorithm that learns planning actions with con-
tinuous effects and symbolic literals of operators for waypoint navigation simulations.
As input, it takes a set of preprocessed positive and negative examples generated by
simulation. It employs the MAX-SAT constraint solver for identifying the symbolic
preconditions. Besides, it exploits the logistic regression to learn the continuous ef-
fects of numeric state variables with preconditions. This algorithm is similar to our
proposed approach in the context of learning continuous effects by fitting regression
models. However, the basic difference is that Fine-Morris et al. (2020) learns the con-
tinuous effects with preconditions of durative actions for classical/temporal domains
that are represented in STRIPS (Fikes and Nilsson 1971) notation. On the contrary, we
focus entirely on learning the continuous effects of processes for hybrid domains with
PDDL+ representation. Additionally, our proposed PMI method applies different types
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of regression techniques according to the inferred relationship among numeric input
variables (i.e. process parameters).

Segura-Muros et al. (2021) develops a domain learner named PlanMiner that learns
planning domains (i.e. a set of numeric action models) from plan traces with partial
knowledge of intermediate states. The planning domains are learned with numeric
predicates and arithmetic/logical relations between predicates which are represented
in PDDL modelling language. PlanMiner applies a selection of preprocessing, classi-
fication, and symbolic regression techniques to extract information from plan traces,
prepare the planning data, and infer arithmetic/relational expressions that define the
precondition and effects of action models. Unlike our PMI method, PlanMiner learns
arithmetic/relational expressions in action models for classical domains with PDDL for-
mulation. The PMI method learns the process models (i.e. regression models), in the
form of mathematical equation of numeric fluent, for hybrid domains with PDDL+ rep-
resentation. The major difference is that PlanMiner utilises symbolic regression tech-
nique to search the best fitted arithmetic expression. On the contrary, our PMI approach
implements different linear regression techniques to formulate the regression models
that are represented by process models. Besides, PlanMiner learns the entire action
model with preconditions and effects from plan traces, whereas we exploit the real-time
data to construct the process models that are embedded/adjusted in the process effect
of existing hybrid domain models. Similar with our work, PlanMiner does not support
non-liner relationship between numeric fluent.

The most recent work on implementing ML techniques in APHD (Automated Planning
with Hybrid Domains) with regard to refine the domain models is presented by Lind-
say et al. (2020) (discussed in section 3.3). This work is relevant to our work in terms
of learning/improving the process knowledge in hybrid planning domains. The main
difference is that Lindsay et al. (2020) refines the process effects with preconditions by
exploiting the decision tree learning approach, whereas our PMI method learns/formu-
lates the process models by utilising different linear regression techniques.

A comparison table of related research illustrating how they meet certain desirable re-
quirements and strengthening the case for the introduction of the proposed PMI method
is given below (table 7.3):

Author Bay et al. (2002)

Algorithm used Lagramge (Todorovski and Dzeroski 1997), an equation discovery
program
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Input A set of initial equations along with the variable data, theoretical
knowledge about equations i.e. all plausible independent variables,
functional forms, parameter values, and their dependencies etc.

Output The mathematical models that better explain the data

Environment Engineering domains, for instance, a battery model on the Interna-
tional Space Station

Merits Can reduce model development time and improve model quality that
represents physical devices

Limitations Structure of the model (i.e. initial equation) along with the parame-
ter values and their dependencies has to be provided explicitly by the
human expert;
Requires the engineer’s knowledge to constrain the search

Author Fine-Morris et al. (2020)

Algorithm used MAX-SAT constraint solver that identifies the symbolic precondi-
tions, and Logistic regression that learn the continuous effects of du-
rative actions

Input a set of pre-processed positive and negative examples generated by
waypoint navigation simulation

Output the continuous effects with preconditions of durative actions

Environment Classical/Temporal planning domains represented in STRIPS (Fikes
and Nilsson 1971) notation

Merits Capable of learning action models combining symbolic literals and
continuous effects under noisy training data

Limitations Requires background knowledge for computing complex numeric lit-
erals, such as durative effects;
Does not address temporal considerations

Author Segura-Muros et al. (2021)

Algorithm used Classification and Symbolic regression techniques that discover rela-
tional/numeric expressions, or extract the preconditions and effects of
the actions

Input Plan traces, and partial knowledge of intermediate states

Output A set of numeric action models with numeric predicates, and arith-
metic/logical relations between predicates

Environment Classical planning domains with PDDL representation

Merits Able to learn valid planning domains (i.e. a set of numeric action
models with preconditions and effects), even with high levels of in-
completeness in the input states
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Limitations Does not support the planning domains with durative actions; Unable
to learn the non-liner relationship between numeric fluent

Author Lindsay et al. (2020)

Algorithm used Supervised Machine Learning approach (i.e. decision tree)

Input the pre-engineered hybrid planning domains with observational data

Output the significant temporal features and states of original planning do-
mains

Environment Hybrid planning domains with PDDL+ representation

Merits Can reduce the knowledge engineering effort in producing a detailed
process model by the automated refinement of hybrid (planning) do-
main models

Limitations Does not consider the associations/dependencies between numeric
features (i.e. process parameters) in the processes; Can not identify
the effective/insignificant numeric features automatically in the under-
lying processes; Unable to capture important phenomena in the run-
ning processes, and consequently inadequate to capture the dynamic
fluctuations in the numeric variables

Method Process Model Improvement (PMI)

Algorithm used Different linear regression techniques (i.e. Simple linear regression,
Stepwise Regression, Ridge regression etc.) with corresponding sta-
tistical tests (i.e. VIF, ANOVA, t-test etc.), and Statistical methods
such as Cross Validation, Pearson Correlation Coefficient etc.

Input Quantitative (time-series) data along with the pre-engineered, original
hybrid domain model (i.e. PDDL+ domain and problem definition)

Output The learned domain model with embedded Process Models (i.e. The
PDDL+ domain definition integrated with the mathematical Process
Model, and The PDDL+ problem definition that initialises the coeffi-
cient values of Process Model)

Environment Hybrid planning domains with PDDL+ representation
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Merits Upgrades the simulation accuracy by approximating the more rational
and pragmatic value of outcome variable in the running process;
Improved simulation output with the refined domain models can con-
sequently lead to higher quality plans;
Facilitates the knowledge engineering task by automatically learns the
dynamic values of numeric variables, without declaring them stati-
cally;
Assists the knowledge engineers by automatically identifies the signif-
icant/ineffective process variables (i.e. numeric features) along with
their interdependencies

Limitations Cannot address non-linear relationships among numeric variables (i.e.
process parameters);
Unable to formulate Process Models in the absence of relevant data,
or the relationship between outcome and any predictor variables

Table 7.3 Comparison table of Related research
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CHAPTER 8

Conclusion and Future Work

A hybrid planner requires adequate modelling of numeric features and their continu-
ously changing effects in the processes of real-time (hybrid) planning domains (Fox
and Long 2006). Besides, the accurate measurement of such continuous variables are
essential to effectively control a process in hybrid domains. In this thesis, we pro-
pose a method, named PMI, to automatically learn accurate and run-time representative
estimation of continuous changes in the processes of hybrid planning domains. Specifi-
cally, PMI method estimates the fluctuating quantities of numeric variables utilising the
process models. The process models are formulated from real-time observational/sim-
ulation data by exploiting different linear regression techniques. The learned process
models are then integrated into the process effects of pre-engineered hybrid domain
models with PDDL+ representation, whereas the parameter values of process models
are initialised in the problem definition of PDDL+ domain model.

To illustrate the feasibility of PMI method and evaluate on realistic planning applica-
tions, we perform empirical analysis with the PDDL+ model of Urban Traffic Control
(UTC) domain and Coffee domain. The results demonstrate that the learned process
model integrated with an engineered hybrid domain model provides more accurate plan
simulation which is more rational and closer to the actual process model. Besides, the
Learned domain model is more rational and pragmatic by automatically estimating/ad-
justing the continuously changing quantities of numeric fluent without declaring them
statically. In addition, PMI method can assist knowledge engineering task by choos-
ing effective process parameters (i.e. numeric features) and identifying/removing the
irrelevant ones from the process models. In a nutshell, the learned process models inte-
grated into hybrid planning domains can lead to higher-quality plans by enhancing the
simulation accuracy.

8.1 Limitations

We demonstrate with empirical analysis that the induced process models can identify/-
choose the effective numeric fluent and efficiently approximate their changing quanti-
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ties in the processes of hybrid planning domains. However, the proposed PMI method
has three main limitations that we discuss in this section.
First, the PMI method formulates Process Models (PM) by exploiting real-world data
collected from actual execution of the underlying process in (hybrid) planning domains.
In other words, the PMI method entirely relies on the relevant data with respect to
formulate process models for corresponding planning domains. Therefore, the perfor-
mance of PMI method depends on the availability of relevant data. However, ensuring
or managing the data availability emerges some challenges such as data relevance, data
quality, data accessibility, reliability of access, timeliness, and continuity of information
etc.
Second, the PMI method focuses on learning the continuous linear changes in the pro-
cess parameters. Therefore the formulated process models represent the linear relation-
ship between outcome and predictor variables. In other words, the PMI method cannot
address non-linear relationships among numeric variables.
Third, an exception can happen where the outcome variable (y) may not be dependent
on any predictor variables (X). In short, y may not related with any X variables in
the process. Though, in AI planning context, such type of exception is quite impossi-
ble/rare because knowledge engineers/domain experts build hybrid domain models with
processes based on some relationship assumptions among numeric variables.

8.2 Future Work

There are a number of possible future directions to enhance and improve our work
further. First, the PMI method only learns the Process Model (PM) that automatically
capture and adjust process effects, or continuous changes in the numeric features for hy-
brid planning domains. In future work we will expand our method within a framework
for learning/inferring arithmetic and relational (i.e. logical) expressions that define the
precondition and effects of processes. Second, we will reduce the manual efforts of
modelling processes by automating the entire step of PM integration, for instance, it
will automatically learn/adjust the learned PM along with the objects, predicates, pa-
rameter types, preconditions, and other numeric expressions etc in the process speci-
fication accordingly. Third, we will consider non-linear relationship among numeric
variables in order to capture the non-linear effects of processes in the hybrid (planning)
domains. Thereby various non-linear regression techniques will be experimented with
hybrid domains and will be utilised accordingly. Fourth, Lasso regression can be a
better shrinkage method than ridge with respect to handle Multicollinearity with highly
correlated predictors (i.e. independent variables). However, ridge works well with large
set of predictors and have most impact on outcome, for example, traffic flow rate is af-
fected by several influencing factors in the UTC domain. In our future work we will
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apply both of the shrinkage methods such as Lasso and Ridge regression according to
the (planning) application domain. Fifth, the significance test of ridge regression mod-
els developed by Cule et al. (2011) can be useful, where the t-test may fail to provide
satisfactory results. Therefore, it will be implemented along with other statistical tests.

8.2.1 Potential Application Area

For future work, we aim to explore some potential application areas where the need
of learning/refining domain knowledge with processes is crucial. For instance, Au-
tonomous manufacturing cell for creating Ultra-Precision Surfaces (UPS) (Walker et al.
2019), Urban Traffic Management (UTM) for autonomous management of traffic flows
(Antoniou et al. 2019), and petroleum refinery production for getting more cost-effective
refinery (Fox and Long 2006) etc.

An example of a potential application of our process improvement method from a dif-
ferent but no less important area, is one in the domain of Ultra Precision Manufacturing
(UPM), where an automated planning process is needed to control the path and forces
of a polishing tool within polishing processes (Walker et al. 2019, 1998, Kim et al.
1996). After a grinding process in surface manufacture, we need to polish the surface
of the work-piece. For bonnet polishing, the surface material is removed by pressure of
the pad, friction of the abrasive-slurry and the velocity of work-piece/bonnet-pad. The
Material Removal Rate (MRR) is normally calculated using Preston’s equation:

MRR = K × P × V

where P = pressure, V = Velocity and K = Preston coefficient which takes into account
the work-piece material, polishing pads, abrasive size and material etc. Then the es-
timated MRR is used to predict the surface-form (Roughness of the surface in RMS
or PV). Within a process model formulating the action of polishing, for input to an
automated planner, Preston’s equation would be used as the first approximation to de-
termine the removal of surface material over time. However, it is known in the UPM
community that it is not possible to pre-engineer an accurate process model formulation
by hand, given the range of features that the removal process depends on, for varying
materials and tools. Given training data that measures the removal rate for a particular
scenario, it is clear that a method (such as the one we propose in this thesis) to learn a
more accurate removal rate is feasible. While we studied this domain with the inten-
tion of using our approach on it and investigate with real-time data, at the time of this
thesis work the worldwide COVID-19 pandemic in the United Kingdom started in late
January 2020. Due to the faster-spreading of Coronavirus disease (COVID-19) across
the country, the UK government imposed an immediate national lockdown. During the
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lockdown situation, all schools, universities, laboratories, non-essential shops etc were
closed except grocery stores and pharmacies. Besides, all household mixing as well as
official/educational meeting were banned. Consequently, it was not possible to collect
training data to feed the machine learning algorithms, hence we see this as future work.
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Scala, E., Haslum, P. and Thiébaux, S. (2016), Heuristics for numeric planning via
subgoaling, in ‘Proceedings of the Twenty-Fifth International Joint Conference on Ar-
tificial Intelligence’, pp. 3228–3234.

Seabold, S. and Perktold, J. (2010), statsmodels: Econometric and statistical modeling
with python, in ‘9th Python in Science Conference’.
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Appendix A

PDDL+ representation of Coffee Domain (Original Model)

A.1 Domain Definition

1 (define (domain COFFEE)

2 (:requirements :typing :durative-actions :fluents :timed-initial-

literals :time

3 :duration-inequalities)

4
5 (:types coffee water)

6
7 (:predicates

8 (havecoffee ?c - coffee)

9 (hot ?w - water)

10 (cold ?w - water)

11 (madecoffee ?c - coffee ?w - water)

12 (heating ?w - water)

13 (cooling ?w - water)

14 (boiled ?w - water)

15 )

16
17 (:functions

18 (temperature ?w - water)

19 )

20
21
22 (:durative-action makecoffee

23 :parameters (?c - coffee ?w - water)

24 :duration (>= ?duration 1)

25 :condition (and

26 (at start (boiled ?w))

27 (over all (>= (temperature ?w) 60))

28 (over all (<= (temperature ?w) 80))

29 (at start (havecoffee ?c))

30 )

31 :effect (and (at end (madecoffee ?c ?w)) )

32 )
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33
34
35 (:action heatwater

36 :parameters (?w - water)

37 :precondition (and (cold ?w))

38 :effect (and (not (cold ?w))

39 (heating ?w)

40 )

41 )

42
43
44 (:process heating

45 :parameters (?w - water)

46 :precondition (and (heating ?w) (<= (temperature ?w) 100))

47 :effect (increase (temperature ?w) (* #t 2))

48 )

49
50
51 (:event stop-heating

52 :parameters (?w - water)

53 :precondition (and (>= (temperature ?w) 100) (heating ?w))

54 :effect (and (not (heating ?w)))

55 )

56
57
58 (:event boil

59 :parameters (?w - water)

60 :precondition (and (>= (temperature ?w) 100)

61 (not (boiled ?w))

62 )

63 :effect (and (boiled ?w)) ;; boiled used in the durative action

64 )

65
66
67 (:process cooling

68 :parameters (?w - water)

69 :precondition (>= (temperature ?w) 18)

70 :effect (decrease (temperature ?w) (* #t 0.5))

71 )

72
73
74 (:event stop-cooling

75 :parameters (?w - water)

76 :precondition (and (<= (temperature ?w) 18) (cooling ?w))

77 ;; Assume we are working with a room temperature of

78 ;; 18 degrees

79 :effect (and (not (cooling ?w)))
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80 )

81
82 )

A.2 Problem Definition

1 (define (problem COFFEE1)

2 (:domain COFFEE)

3 (:objects

4 water1 - water

5 coffee1 - coffee

6 )

7
8 (:init

9 (havecoffee coffee1)

10 (cold water1)

11 (= (temperature water1) 7) ;; Cold tap water at 7 degrees

12 )

13
14 (:goal (and (madecoffee coffee1 water1)))

15 )
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Appendix B

PDDL+ formulation of Coffee Domain (Learned Model)

B.1 Domain Definition

1 (define (domain coffee)

2 ;;(:requirements :typing :durative-actions :fluents :timed-initial-

literals :time :duration-inequalities)

3 (:types coffee water)

4
5 (:predicates

6 (havecoffee ?c - coffee)

7 (hot ?w - water)

8 (cold ?w - water)

9 (madecoffee ?c - coffee ?w - water)

10 (heating ?w - water)

11 (brewing ?c - coffee ?w - water)

12 (brewed ?c - coffee)

13 )

14 (:functions

15 (temperature ?w - water)

16 (brew-temperature ?w - water)

17 (brew-time ?c - coffee ?w - water) ;brew-time or shot time

18 (eyield ?c - coffee ?w - water) ;eyield = expected yield

19 (yield ?c - coffee ?w - water)

20
21 ;;coefficients

22 (beta0 ?c - coffee ?w - water)

23 (beta1 ?c - coffee ?w - water)

24 (beta2 ?c - coffee ?w - water)

25 )

26
27 (:action heatwater

28 :parameters (?c - coffee ?w - water)

29 :precondition (and (havecoffee ?c) (cold ?w) )

30 :effect (and (not (cold ?w)) (heating ?w) )

31 )

32
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33 (:process heating

34 :parameters (?c - coffee ?w - water)

35 :precondition (and (heating ?w))

36 :effect (and (increase (temperature ?w) (* #t 2)) )

37 )

38
39 (:event stop-heating

40 :parameters (?c - coffee ?w - water)

41 :precondition (and (heating ?w)

42 (>= (temperature ?w) (brew-temperature ?w))

43 )

44 :effect (and (not (heating ?w)) (hot ?w) )

45 )

46
47 (:action brew-coffee

48 :parameters (?c - coffee ?w - water)

49 :precondition (and (hot ?w) (<= ( yield ?c ?w) 0) )

50 :effect (and (brewing ?c ?w) )

51 )

52
53 (:process brewing

54 :parameters (?c - coffee ?w - water)

55 :precondition (and (brewing ?c ?w))

56 :effect (and

57 ;;**** brewing process with PM of extraction yield *****

58 ;;Assume, the temperature is constant (multiple regression)

59 (assign (yield ?c ?w)

60 (+ (beta0 ?c ?w)

61 (+ (* (beta1 ?c ?w) (temperature ?w))

62 (* (beta2 ?c ?w) (brew-time ?c ?w))

63 )

64 )

65 )

66
67 (increase (brew-time ?c ?w) (* #t 1))

68 )

69 )

70
71 (:event stop-brewing

72 :parameters (?c - coffee ?w - water)

73 :precondition (and (brewing ?c ?w) (>= (yield ?c ?w) (eyield ?c ?

w)) )

74 :effect (and (not (brewing ?c ?w))

75 (brewed ?c)

76 )

77 )

78
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79 (:action serve-coffee

80 :parameters (?c - coffee ?w - water)

81 :precondition (and (brewed ?c))

82 :effect (and (madecoffee ?c ?w))

83 )

84
85 )

B.2 Problem Definition (For Temperature 96◦C)

1 (define (problem coffee-maker)

2 (:domain coffee)

3 (:objects

4 water1 - water

5 coffee1 - coffee

6 )

7
8 (:init

9 (havecoffee coffee1)

10 (cold water1)

11
12 ;; Cold tap water at 8 degrees or 7 degrees

13 (= (temperature water1) 8)

14 (= (brew-temperature water1) 96)

15
16 ;;expected yield for brewing temperature 96 is 19.40

17 (= (eyield coffee1 water1) 19.40)

18 (= (yield coffee1 water1) 0)

19 (= (brew-time coffee1 water1) 1)

20
21 ;; intercept

22 (= (beta0 coffee1 water1) 3.597629)

23 ;; regression coefficient of brew-temperature

24 (= (beta1 coffee1 water1) 0.103934 )

25 ;; regression coefficient of brew-time

26 (= (beta2 coffee1 water1) 0.196035 )

27
28 )

29
30 (:goal (and (madecoffee coffee1 water1)) )

31
32 )
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Appendix C

PDDL+ representation of UTC Domain (Original Model)

C.1 Domain Definition

1 (define (domain urbantraffic)

2 ;;(:requirements :typing :fluents :time :timed-initial-literals :

duration-inequalities :adl)

3
4 (:types junction link stage)

5
6 (:predicates

7 (controllable ?i - junction)

8 (inter ?p - stage)

9 (active ?p - stage)

10 (next ?p ?p1 - stage)

11 (trigger ?i - junction)

12 (contains ?i - junction ?p - stage)

13 )

14
15 (:functions

16 (turnrate ?p - stage ?r1 - link ?r2 - link)

17 (interlimit ?p - stage)

18 (occupancy ?r - link)

19 (capacity ?r - link)

20 (maxgreentime ?p - stage )

21 (mingreentime ?p - stage )

22 (greentime ?i - junction)

23 (intertime ?i - junction)

24 )

25
26 ;; the maximum time limit for green has been reached, but no need

to restart token!

27 (:event maxgreenreached

28 :parameters (?p - stage ?i - junction)

29 :precondition (and (active ?p)

30 (contains ?i ?p)

31 (>= (greentime ?i)
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32 (maxgreentime ?p))

33 )

34 :effect (and (trigger ?i) )

35 )

36
37 ;; process that keeps the green/intergreen on, and updates the

greentime value

38 (:process keepgreen

39 :parameters (?p - stage ?i - junction)

40 :precondition (and (active ?p) (contains ?i ?p)

41 (< (greentime ?i) (maxgreentime ?p))

42 )

43 :effect (and (increase (greentime ?i) (* #t 1 ) ) )

44 )

45
46
47 ;;allows car to flow if the corresponding green is on

48 (:process flowrun_green

49 :parameters (?p - stage ?r1 ?r2 - link)

50 :precondition (and

51 (active ?p)

52 (> (occupancy ?r1) 0.0)

53 (> (turnrate ?p ?r1 ?r2) 0.0)

54 (< (occupancy ?r2) (capacity ?r2))

55 )

56 :effect (and

57 (increase (occupancy ?r2) (* #t (turnrate ?p ?r1 ?r2)))

58 (decrease (occupancy ?r1) (* #t (turnrate ?p ?r1 ?r2)))

59 )

60 )

61
62 ;; let the planner in control to stop the green before maxgreen

63 (:action switchPhase

64 :parameters (?p - stage ?i - junction)

65 :precondition (and (controllable ?i)

66 (active ?p) (contains ?i ?p)

67 (> (greentime ?i) (mingreentime ?p) )

68 )

69 :effect (and (trigger ?i) )

70 )

71
72 (:event trigger-inter

73 :parameters (?p - stage ?i - junction)

74 :precondition (and (trigger ?i)

75 (active ?p)

76 (contains ?i ?p)

77 )
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78 :effect (and (not (trigger ?i))

79 (not (active ?p))

80 (inter ?p)

81 (assign (greentime ?i) 0)

82 )

83 )

84
85 (:process keepinter

86 :parameters (?p - stage ?i - junction)

87 :precondition (and

88 (inter ?p) (contains ?i ?p)

89 (< (intertime ?i) (interlimit ?p) )

90 )

91 :effect (and (increase (intertime ?i) (* #t 1 ) ) )

92 )

93
94 (:event trigger-change

95 :parameters (?p ?p1 - stage ?i - junction)

96 :precondition (and (inter ?p) (contains ?i ?p)

97 (next ?p ?p1)

98 (>= (intertime ?i) (- (interlimit ?p) 0.1) )

99 )

100 :effect (and (not (inter ?p))

101 (active ?p1)

102 (assign (intertime ?i) 0)

103 )

104 )

105
106 )
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C.2 Problem Definition (for junction n3969)

1 (define (problem manchester)

2 (:domain urbantraffic)

3 (:objects

4 n3969 - junction

5 n3969_n6612 n6612_n3969 n3972_n3969 n3969_n3972 n3969_n7646

n3968_n3969 - link

6 s3969_s2 s3969_s0 s3969_s1 - stage

7 )

8 (:init

9
10 (controllable n3969)

11 (active s3969_s2)

12
13 (next s3969_s0 s3969_s1)

14 (next s3969_s1 s3969_s2)

15 (next s3969_s2 s3969_s0)

16
17 (contains n3969 s3969_s0)

18 (contains n3969 s3969_s1)

19 (contains n3969 s3969_s2)

20
21 (= (greentime n3969) 0)

22 (= (intertime n3969) 0.0)

23
24 (= (interlimit s3969_s0) 1.0)

25 (= (interlimit s3969_s1) 5.0)

26 (= (interlimit s3969_s2) 9.0)

27
28 (= (mingreentime s3969_s0) 18)

29 (= (maxgreentime s3969_s0) 117)

30 (= (defaultgreentime s3969_s0) 28)

31 (= (mingreentime s3969_s1) 26)

32 (= (maxgreentime s3969_s1) 115)

33 (= (defaultgreentime s3969_s1) 35)

34 (= (mingreentime s3969_s2) 10)

35 (= (maxgreentime s3969_s2) 89)

36 (= (defaultgreentime s3969_s2) 44)

37
38 ;;capacity

39 (= (capacity n6612_n3969) 102.55667774)

40 (= (capacity n3969_n6612) 76.1414616636)

41 (= (capacity n3972_n3969) 58.5186831)

42 (= (capacity n3969_n3972) 58.7995689051)

43 (= (capacity n3969_n7646) 8.12771104258)
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44 (= (capacity n3968_n3969) 38.116362703)

45
46 ;;occupancy

47 (= (occupancy n6612_n3969) 83.0)

48 (= (occupancy n3969_n6612) 0)

49 (= (occupancy n3972_n3969) 17.0)

50 (= (occupancy n3969_n3972) 50.0)

51 (= (occupancy n3969_n7646) 1.0)

52 (= (occupancy n3968_n3969) 37.0)

53
54 ;;=============== turnrate ======================

55 ;;s3969_s0

56 ;;---------- link1 ---------------

57 (= (turnrate s3969_s0 n6612_n3969 n3969_n3972) 1.030303)

58 ;;---------- link2 ---------------

59 (= (turnrate s3969_s0 n6612_n3969 n3969_n7646) 0.30303)

60 ;;--------- link3 ----------------

61 (= (turnrate s3969_s0 n3972_n3969 n3969_n6612) 1.583333)

62
63 ;;s3969_s1

64 ;;-------- link1 ----------------

65 (= (turnrate s3969_s1 n6612_n3969 n3969_n7646) 0.2)

66
67 ;;s3969_s2

68 ;;------- link1 ----------------

69 (= (turnrate s3969_s2 n3968_n3969 n3969_n3972) 0.741379)

70 ;;------- link3 ----------------

71 (= (turnrate s3969_s2 n3968_n3969 n3969_n7646) 0.465517)

72 ;;------ link2 -----------------

73 (= (turnrate s3969_s2 n3968_n3969 n3969_n6612) 0.2)

74 )

75
76 (:goal

77 (and

78 (< (occupancy n3968_n3969) 1)

79 (active s3969_s0)

80 )

81 )

82 )
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Appendix D

PDDL+ formulation of UTC Domain (Learned Model)

D.1 Domain Definition

1 (define (domain urbantraffic)

2 ;;(:requirements :typing :fluents :time :timed-initial-literals :

duration-inequalities :adl)

3
4 (:types junction link stage)

5
6 (:predicates

7 (controllable ?i - junction)

8 (inter ?p - stage)

9 (active ?p - stage)

10 (next ?p ?p1 - stage)

11 (trigger ?i - junction)

12 (contains ?i - junction ?p - stage)

13 )

14
15 (:functions

16 (turnrate ?p - stage ?r1 - link ?r2 - link)

17 (interlimit ?p - stage)

18 (occupancy ?r - link)

19 (capacity ?r - link)

20 (maxgreentime ?p - stage )

21 (mingreentime ?p - stage )

22 (greentime ?i - junction)

23 (intertime ?i - junction)

24
25 ;;intercept

26 (beta0 ?p - stage ?r1 - link ?r2 - link)

27 ;;coeffcient of greentime

28 (beta1 ?p - stage ?r1 - link ?r2 - link)

29 ;;coeffcient of intertime

30 (beta2 ?p - stage ?r1 - link ?r2 - link)

31 ;;coeffcient of road1 saturation (occ/cap)

32 (beta3 ?p - stage ?r1 - link ?r2 - link)
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33 ;;coeffcient of road2 saturation (occ/cap)

34 (beta4 ?p - stage ?r1 - link ?r2 - link)

35 )

36
37
38 ;; the maximum time limit for green has been reached, but no need

to restart token!

39 (:event maxgreenreached

40 :parameters (?p - stage ?i - junction)

41 :precondition (and (active ?p) (contains ?i ?p)

42 (>= (greentime ?i) (maxgreentime ?p))

43 )

44 :effect (and (trigger ?i) )

45 )

46
47
48 ;; process that keeps the green/intergreen on, and updates the

greentime value

49 (:process keepgreen

50 :parameters (?p - stage ?i - junction)

51 :precondition (and (active ?p) (contains ?i ?p)

52 (< (greentime ?i) (maxgreentime ?p))

53 )

54 :effect (and (increase (greentime ?i) (* #t 1 )) )

55 )

56
57
58 ;; let the planner in control to stop the green before maxgreen

59 (:action switchPhase

60 :parameters (?p - stage ?i - junction)

61 :precondition (and (controllable ?i)

62 (active ?p) (contains ?i ?p)

63 (> (greentime ?i) (mingreentime ?p) )

64 )

65 :effect (and (trigger ?i) )

66 )

67
68
69 (:event trigger-inter

70 :parameters (?p - stage ?i - junction)

71 :precondition (and (trigger ?i)

72 (active ?p)

73 (contains ?i ?p)

74 )

75 :effect (and (not (trigger ?i))

76 (not (active ?p))

77 (inter ?p)
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78 (assign (greentime ?i) 0)

79 )

80 )

81
82
83 ;;********* flowrun_green process with PM of turnrate *****

84 (:process flowrun_green

85 :parameters (?p - stage ?r1 ?r2 - link ?i - junction)

86 :precondition (and (active ?p) (contains ?i ?p)

87 (> (occupancy ?r1) 0.0)

88 (< (occupancy ?r2) (capacity ?r2))

89 )

90 :effect (and

91 ;;----- assign turnrate value ------

92 (assign (turnrate ?p ?r1 ?r2 )

93 (+ (beta0 ?p ?r1 ?r2)

94 (+ (* (beta1 ?p ?r1 ?r2) (greentime ?i) )

95 (+ (* (beta2 ?p ?r1 ?r2) (intertime ?i))

96 (+ (* (beta3 ?p ?r1 ?r2) (/(occupancy ?r1) (capacity ?r1)))

97 (* (beta4 ?p ?r1 ?r2) (/(occupancy ?r2) (capacity ?r2)))

98 )

99 )

100 )

101 )

102 )

103
104 (increase (occupancy ?r2) (* #t (turnrate ?p ?r1 ?r2)))

105 (decrease (occupancy ?r1) (* #t (turnrate ?p ?r1 ?r2)))

106 )

107 )

108
109
110
111 (:process keepinter

112 :parameters (?p - stage ?i - junction)

113 :precondition (and (inter ?p) (contains ?i ?p)

114 (< (intertime ?i) (interlimit ?p) )

115 )

116 :effect (and (increase (intertime ?i) (* #t 1 ) ) )

117 )

118
119 (:event trigger-change

120 :parameters (?p ?p1 - stage ?i - junction)

121 :precondition (and (inter ?p) (contains ?i ?p)

122 (next ?p ?p1)

123 (>= (intertime ?i) (- (interlimit ?p) 0.1) )

124 )
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125 :effect (and (not (inter ?p)) (active ?p1)

126 (assign (intertime ?i) 0)

127 )

128 )

129 )
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D.2 Problem Definition (for junction n3969)

1 (define (problem manchester)

2 (:domain urbantraffic)

3 (:objects

4 n3969 - junction

5 n3969_n6612 n6612_n3969 n3972_n3969 n3969_n3972 n3969_n7646

n3968_n3969 - link

6 s3969_s2 s3969_s0 s3969_s1 - stage

7 )

8 (:init

9 (controllable n3969)

10 (active s3969_s2)

11
12 (next s3969_s0 s3969_s1)

13 (next s3969_s1 s3969_s2)

14 (next s3969_s2 s3969_s0)

15
16 (contains n3969 s3969_s0)

17 (contains n3969 s3969_s1)

18 (contains n3969 s3969_s2)

19
20 (= (greentime n3969) 0)

21 (= (intertime n3969) 0.0)

22
23 (= (interlimit s3969_s0) 1.0)

24 (= (interlimit s3969_s1) 5.0)

25 (= (interlimit s3969_s2) 9.0)

26
27 (= (mingreentime s3969_s0) 18)

28 (= (maxgreentime s3969_s0) 117)

29 (= (defaultgreentime s3969_s0) 28)

30 (= (mingreentime s3969_s1) 26)

31 (= (maxgreentime s3969_s1) 115)

32 (= (defaultgreentime s3969_s1) 35)

33 (= (mingreentime s3969_s2) 10)

34 (= (maxgreentime s3969_s2) 89)

35 (= (defaultgreentime s3969_s2) 44)

36
37 ;;capacity

38 (= (capacity n6612_n3969) 102.55667774)

39 (= (capacity n3969_n6612) 76.1414616636)

40 (= (capacity n3972_n3969) 58.5186831)

41 (= (capacity n3969_n3972) 58.7995689051)

42 (= (capacity n3969_n7646) 8.12771104258)

43 (= (capacity n3968_n3969) 38.116362703)
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44
45 ;;occupancy

46 (= (occupancy n6612_n3969) 83.0)

47 (= (occupancy n3969_n6612) 0);;0

48 (= (occupancy n3972_n3969) 17.0)

49 (= (occupancy n3969_n3972) 50.0)

50 (= (occupancy n3969_n7646) 1.0)

51 (= (occupancy n3968_n3969) 37.0)

52
53 ;;============== turnrate ===========================

54 ;;s3969_s0

55 ;;---------- link1 ------------------

56 (= (turnrate s3969_s0 n6612_n3969 n3969_n3972) 0)

57 (= (beta0 s3969_s0 n6612_n3969 n3969_n3972) 0.091)

58 (= (beta1 s3969_s0 n6612_n3969 n3969_n3972) -0.0004)

59 (= (beta2 s3969_s0 n6612_n3969 n3969_n3972) 0)

60 (= (beta3 s3969_s0 n6612_n3969 n3969_n3972) -0.068)

61 (= (beta4 s3969_s0 n6612_n3969 n3969_n3972) -0.063)

62
63 ;;------------ link2 -------------------

64 (= (turnrate s3969_s0 n6612_n3969 n3969_n7646) 0)

65 (= (beta0 s3969_s0 n6612_n3969 n3969_n7646) 1.475)

66 (= (beta1 s3969_s0 n6612_n3969 n3969_n7646) -0.007)

67 (= (beta2 s3969_s0 n6612_n3969 n3969_n7646) 0)

68 (= (beta3 s3969_s0 n6612_n3969 n3969_n7646) -0.629)

69 (= (beta4 s3969_s0 n6612_n3969 n3969_n7646) 0.666)

70
71 ;;----------- link3 -----------------------

72 (= (turnrate s3969_s0 n3972_n3969 n3969_n6612) 0)

73 (= (beta0 s3969_s0 n3972_n3969 n3969_n6612) 0.119)

74 (= (beta1 s3969_s0 n3972_n3969 n3969_n6612) 0)

75 (= (beta2 s3969_s0 n3972_n3969 n3969_n6612) 0)

76 (= (beta3 s3969_s0 n3972_n3969 n3969_n6612) 3.326)

77 (= (beta4 s3969_s0 n3972_n3969 n3969_n6612) 1.349)

78
79 ;;s3969_s1

80 ;;------------- link1 --------------

81 (= (turnrate s3969_s1 n6612_n3969 n3969_n7646) 0)

82 (= (beta0 s3969_s1 n6612_n3969 n3969_n7646) 0.070)

83 (= (beta1 s3969_s1 n6612_n3969 n3969_n7646) 0.000)

84 (= (beta2 s3969_s1 n6612_n3969 n3969_n7646) 0.003)

85 (= (beta3 s3969_s1 n6612_n3969 n3969_n7646) -0.055)

86 (= (beta4 s3969_s1 n6612_n3969 n3969_n7646) -0.072)

87
88 ;;s3969_s2

89 ;;----------- link1 ---------

90 (= (turnrate s3969_s2 n3968_n3969 n3969_n3972) 0)
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91 (= (beta0 s3969_s2 n3968_n3969 n3969_n3972) 1.496)

92 (= (beta1 s3969_s2 n3968_n3969 n3969_n3972) 0)

93 (= (beta2 s3969_s2 n3968_n3969 n3969_n3972) -0.090)

94 (= (beta3 s3969_s2 n3968_n3969 n3969_n3972) -1.366)

95 (= (beta4 s3969_s2 n3968_n3969 n3969_n3972) -0.756)

96
97 ;;--------- link3 --------------

98 (= (turnrate s3969_s2 n3968_n3969 n3969_n7646) 0)

99 (= (beta0 s3969_s2 n3968_n3969 n3969_n7646) -0.010)

100 (= (beta1 s3969_s2 n3968_n3969 n3969_n7646) 0)

101 (= (beta2 s3969_s2 n3968_n3969 n3969_n7646) 0)

102 (= (beta3 s3969_s2 n3968_n3969 n3969_n7646) 0)

103 (= (beta4 s3969_s2 n3968_n3969 n3969_n7646) 4.499)

104
105 ;;----------- link2 ----------------

106 (= (turnrate s3969_s2 n3968_n3969 n3969_n6612) 0)

107 (= (beta0 s3969_s2 n3968_n3969 n3969_n6612) 0.246)

108 (= (beta1 s3969_s2 n3968_n3969 n3969_n6612) 0)

109 (= (beta2 s3969_s2 n3968_n3969 n3969_n6612) -0.0295)

110 (= (beta3 s3969_s2 n3968_n3969 n3969_n6612) 0)

111 (= (beta4 s3969_s2 n3968_n3969 n3969_n6612) 0)

112
113 )

114
115 (:goal

116 (and

117 (< (occupancy n3968_n3969) 1)

118 (active s3969_s0)

119 )

120 )

121 )
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Appendix E

Python Function (Backward Elimination)

1 #*******************************************************************

2 # Function to apply stepwise regression with Backward Elimination

3 # Based on p-value of f-statisitc and t-test

4 #*******************************************************************

5

6 import pandas as pd

7 import statsmodels.formula.api as smf

8

9

10 def backward_elimination(data, outcome, predictors):

11

12 # == verify all-zero values of outcome variable ====

13 # -- if true then stop and return "None" ----

14 if all(value == 0 for value in data[outcome]):

15 print(outcome, "has all-zero values")

16 return "None"

17

18 # === drop predictor with all-zero values ===

19 for x in predictors:

20 if all(value == 0 for value in data[x]):

21 predictors.remove(x)

22

23 # iterate loop till no predictor left in the model,

24 # otherwise break loop

25 no_of_predictors = len(predictors)

26 while no_of_predictors != 0:

27

28 # == formulate model ===

29 formula = "{} ˜ {} + 1".format(outcome, ’ + ’.join(predictors

))

30 model = smf.ols(formula, data).fit()

31

32 # == check p-value of t-test (should be < 0.05) ====

33 # --- if all p-values of t-test less than 0.05,

34 # then check p-value of f-statistic ---
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35 if (all(model.pvalues.loc[i] < 0.05 for i in predictors)):

36 #= check p-value of f-statistics (should be < 0.05) =

37 if model.f_pvalue < 0.05:

38 print("p-value of f statistics is (< 0.05) : ", model

.f_pvalue)

39 print("***** Get the final model *****")

40 break

41 else:

42 print("EXCEPTION: p-value of f-statistic > 0.05,

Though All p-values of t-test < 0.05")

43

44 # otherwise, check which predictor has p-value > 0.05

45 else:

46 for x in predictors:

47 # Eliminates the least significant predictor

48 #i.e. p-value > 0.05

49 if model.pvalues.loc[x] > 0.05:

50 predictors.remove(x)

51 print(x, " is eliminated from the model with p-

value (>0.05) : ", model.pvalues.loc[x])

52

53 # --- update the length size of predictor list

54 no_of_predictors = len(predictors)

55

56 # === if there all predictors are eliminated due to

57 # all-zero values OR p-value > 0.05 ===

58 if len(predictors) == 0:

59 return "None"

60 else:

61 return model
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Appendix F

An initial Process Specification For Polishing Domain

Fig. .1 An initial process specification for Polishing Domain

150


	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Motivation
	Aims and Objectives
	Thesis Contribution
	Thesis Structure

	Automated Planning with Hybrid Domains (APHD)
	Automated (AI) Planning
	Motivation
	Conceptual Model

	Planning Domain Representation Languages
	STRIPS
	ADL
	PDDL
	Classical vs Hybrid Planning Domains

	Hybrid Systems/ Hybrid Domains
	Modelling Hybrid Domains with PDDL+
	Modelling Features
	Semantic & Syntactic structure
	PDDL2.1 Vs PDDL+

	Hybrid (PDDL+) planners
	Applications

	Machine Learning (ML) in Automated Planning (AP)
	Learning Heuristics
	Learning Domain (Action) Models
	ML in the Hybrid Planning Domains
	Inducing Process Models
	Current State

	Statistical Methods and Analysis with ML Techniques
	Process Modelling
	Data Collection
	Data Preparation
	Data Pre-processing
	Feature Encoding
	Train/Test split
	Cross Validation

	Correlation Analysis
	Pearson Correlation Coefficient (PCC)

	Regression Analysis
	Analysing the correlation (strength of relationship between variables)
	Estimation of the parameters of regression model
	Interpretation of parameters (Regression Output)


	The PMI Method in Hybrid Planning Domains
	Assumption and Requirements
	Automation of PMI
	Steps of PMI method
	Data Collection
	Data Preparation
	Formulation of PM
	Integration of the PM
	Evaluation of Learned Domain Model
	Deployment and Planning

	Discussion

	Case Studies
	Coffee Domain
	Original PDDL+ constructs to brew coffee
	Rationale for using PM to improve Coffee domain
	Reformulated PDDL+ model to brew coffee
	Observational Study
	Application of PMI method for the Coffee Domain

	Urban Traffic Control(UTC) Domain
	Basic Model for UTC problem
	Model Assumptions
	Modelled Area and Experimental Data
	PDDL+ constructs to regulate road junctions
	Rationale for using PM to improve UTC domain
	Application of PMI method for the UTC Domain


	Empirical Analysis and Evaluation
	Coffee Domain
	Evaluation of the Learned Domain Model
	Discussion

	Urban Traffic Control (UTC) Domain
	Evaluation of the Learned Domain Model
	Discussion

	Related Work

	Conclusion and Future Work
	Limitations
	Future Work
	Potential Application Area

	           References

	Appendix PDDL+ representation of Coffee Domain (Original Model)
	Domain Definition
	Problem Definition

	Appendix PDDL+ formulation of Coffee Domain (Learned Model)
	Domain Definition
	Problem Definition (For Temperature 96C)

	Appendix PDDL+ representation of UTC Domain (Original Model)
	Domain Definition
	Problem Definition (for junction n3969)

	Appendix PDDL+ formulation of UTC Domain (Learned Model)
	Domain Definition
	Problem Definition (for junction n3969)

	Appendix Python Function (Backward Elimination)
	Appendix An initial Process Specification For Polishing Domain

