
University of Huddersfield Repository

Hughes, Peter

Validation of safety risk prediction tools and traffic models for railway level crossings

Original Citation

Hughes, Peter (2021) Validation of safety risk prediction tools and traffic models for railway level 
crossings. Doctoral thesis, University of Huddersfield. 

This version is available at http://eprints.hud.ac.uk/id/eprint/35596/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/



Peter Hughes 

A thesis submitted to the University of Huddersfield 

in partial fulfilment of the requirements for the 

degree of Doctor of Philosophy 

 

 

 

 

 

 

Peter Hughes 

School of Computing and Engineering, University of Huddersfield 

August 2021 

 

 

Validation of safety risk prediction tools and 

traffic models for railway level crossings 





3 

Abstract 

There are approximately 6000 level crossings in Britain where the trains and 

road users cross at the same level. In the ten-year period from 2006 to 2016, there were 

86 fatalities as a result of collisions between trains and road users at level crossings. 

Around the world there are a number of safety risk prediction tools in use by road and 

railway authorities which consider physical and operational features of a level crossing 

as inputs and produce a prediction of the safety risk for the crossing. There is little 

information regarding the method of calculation used in any of the tools and no evidence 

can be found of validation of the results produced by the tools. There is also a large 

degree of variety between the features that are considered by the tools; the only 

commonality that can be found is that every tool uses an underlying traffic model to 

account for how safety risk varies as road traffic volume increases at level crossings. The 

most common traffic model is traffic moment – which is the product of road and rail 

traffic in a day – although some other models are used notably the hypothesis developed 

by Stott (1987) and the model developed by Peabody and Dimmick. 

Until recently it has not been practical to test the degree to which any of the 

traffic models correlate with observed collisions due to unavailability of the data. The GB 

railway infrastructure manager has made information available on the numbers of road 

users traversing each level crossing, together with the numbers of collisions that have 

occurred. As such it is now possible to perform more rigorous tests of the degree to 

which the outputs of traffic models correspond with collisions. Furthermore, in recent 

years there have been advances in computer technology that have introduced new 
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techniques to obtain information from observation data; these techniques include 

machine learning methods that can be used to identify trends and, in many cases, extract 

meaningful information, from observed data. There is no information in the available 

literature that shows that either these data, nor these emerging computation techniques 

have been applied to the study of safety risk prediction tools, which provides a clear 

avenue for research that is explored in this work. 

This work tests: 

• whether it is reasonable to expect safety risk prediction tools to be able to 

produce reliable estimates of risk; 

• the degree to which the risk predictions from current safety risk prediction tools 

correlate with observed rates of collision; and 

• whether it is possible to use modern data analysis methods to determine a more 

accurate method of risk prediction.  

The outcomes of this work make a number of contributions to the prior knowledge 

on level crossing safety, in particular: 

• Whilst safety risk prediction tools are widely used around the world, no evidence 

can be found of the predictive accuracy of any of the tools. 

• The various tools are all based on underlying traffic models although, again, 

there is no evidence of the accuracy of any of the models. Newly available data 

make it possible to test the models for level crossings in Britain. 

• When tested, it was found that the most commonly used traffic model – traffic 

moment – provides a good theoretical model in idealised conditions but does not 

appear to correlate well with real-world conditions. 

• In fact none of the traffic models that can be tested were found to correlate well 

with observed collisions. Remarkably a model based on observation of collisions 

in the 1930s is better at describing collision rates than a model specifically 

created in the 1980s to describe British level crossings. 
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• It was found that, whilst none of the traffic models correlates well with observed 

collisions, there does appear to be a power-law that describes collision rates. 

Importantly it appears that the rate of collisions per road user decreases as the 

number of road users increases at a level crossing. This finding is especially 

significant as it provides the first evidence to support the practice of level 

crossing closure as a means of improving safety.  

• A study was undertaken using machine learning techniques to determine whether 

it was possible to correlate data on physical and operational features of level 

crossings with rates of collisions. It was found that, as with the previous studies, 

traffic volumes do correlate to a small degree, however no other correlation can 

be found in the data. 

Whilst undertaking this work, additional contributions were made, specifically: 

• a meaningful unit of level crossing safety was established, and 

• a method for comparing observed collision rates against theoretical models that 
can be used for overdispersed data was identified. 

 

As well as advancing the theoretical knowledge on level crossing safety, this work 

provides meaningful results that are useful to the day-to-day management of the railway. 
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Glossary 

The following terms have a specific meaning within this document. 

Term Definition 

active warning device A warning device provided at a level crossing that 
changes state when a train is approaching or occupying 
the level crossing. 

AHB automatic half barrier (q.v.) 

alpha (α) value  The probability that natural variation in a set of data 
leads to differences so large that the null hypothesis 
(q.v.) is rejected when it is in fact true. 

automatic half barrier An arrangement of active warning devices (q.v.) that 
provides flashing lights and a barrier over the approach 
carriageway of a level crossing. 

descriptive model A type of traffic model (q.v.) that provides a result based 
on empirical observation rather than mathematical 
reasoning (see predictive model, q.v.). 

feature In machine learning (q.v.), a property of an object that is 
used to determine its classification. 

label In machine learning (q.v.), a category that has already 
been applied to data. 

machine learning A method of determining an algorithm based on analysis 
of data. 
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Term Definition 

null hypothesis A hypothesis that there is no significant difference 
between two samples of data: any observed differences 
are the result of natural variation in the two sets. 

overdispersed A description of a data sample where the standard 
deviation is greater than the mean value. 

overfitting A statistical phenomenon where a curve has been fitted 
to data in such a way as to make the residual error 
between the model and the observations smaller than the 
natural variation in the data. 

passive warning device A warning device provided at a level crossing that does 
not change state when a train is approaching or 
occupying the level crossing (for example a sign). 

Peabody Dimmick model A traffic model (q.v.) proposed by Peabody and 
Dimmick (see United States Department of 
Transportation, 2007). 

predictive accuracy The degree to which a safety risk prediction tool (q.v.) 
creates results that agree with observed collision rates. 

predictive model A type of traffic model (q.v.) that provides a result based 
on mathematical reasoning rather than empirical 
observation (see descriptive model, q.v.). 

safety risk prediction tool A mathematical tool that provides a safety risk estimate 
for an individual level crossing. 

SMIS Safety Management Intelligence System; a database of 
safety-related incidents on the GB railway. 
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Term Definition 

SRPT safety risk prediction tool (q.v.) 

Stott’s hypothesis A traffic model (q.v.) proposed by Stott (1987). 

testing set In machine learning (q.v.), a subset of data that is used to 
test a candidate algorithm. 

traffic model A part of a safety risk prediction tool (q.v.) that describes 
how variation in road traffic volumes affects safety risk. 

traffic moment A type of traffic model (q.v.) that is the product of trains 
per day and road vehicles per day traversing a level 
crossing. 

training set In machine learning (q.v.), a subset of data that is used to 
determine a candidate algorithm. 

undersaturated A type of traffic flow where vehicles are moving and are 
not being delayed by other traffic on the road. 

VT traffic moment (q.v.) 
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Chapter 1: Introduction 

1.1 Level crossing safety 

The GB railway network has been built up since the 1820s, it currently has 20,000 

miles of track and is an essential part of the UK's transport infrastructure operating more 

than a billion passenger journeys and carrying tens of millions of tonnes of freight each 

year (Network Rail, 2018). The railway network interacts with other infrastructure, in 

particular there are more than 6000 level crossings where road users can traverse the rail 

line. Level crossings are normally classified by their three main characteristics: 

accessibility, ownership, and types of warning devices. The different types of 

accessibility of level crossings are those that are on footpaths and can generally be 

accessed only by pedestrians, compared with those that are on roads and allow for the 

passage of motor vehicles over the railway. The different types of ownership separate 

those level crossing that are on public roads and can be accessed by all road users, 

compared with those that are on private property and are not necessarily available for 

members of the public. The main distinction in the types of warning devices are those 

level crossings where there are static signs that warn road users of the presence of a level 

crossing: such level crossings are usually referred to as having passive warning devices. 

By contrast are those level crossings that have active warning devices which are 

assemblies of flashing lights, bells, and gates which provide a barrier between road users 

and the railway. Active warning devices operate a short time before the arrival of a train 

at a level crossing and continue to provide a warning until the train has passed. 
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Level crossings are distinct from grade separation (bridges or tunnels) that 

provide physical distance between road users traversing the rail and trains operating on 

the track. At level crossings there is no such separation: trains and road users cross at the 

same level and there remains a possibility for a collision to occur. 

When collisions occur, there is the potential for serious consequences, 

unfortunately, in the ten-year period from 2006 to 2016, there were 86 fatalities as a 

result of collisions at British level crossings (RSSB, 2016). Reducing the number of 

collisions and fatalities is a high priority for the railway (RSSB, 2016), however the 

provision of warning devices at level crossings is expensive, and the cost of grade 

separation can be much higher (Wullems et al., 2013). To date, Network Rail has spent 

£200 million on improvements to level crossings (Global Rail Review, 2018). 

1.2 Level crossing safety risk prediction tools 

Given the high cost of interventions to improve safety at level crossings, railways 

around the world typically maintain lists of planned works they intend to perform in the 

future. In determining which interventions have the highest priority, railways often use 

safety risk prediction tools (SRPTs) which provide a method to compare the safety risk 

amongst level crossings. To calculate a risk score, these tools usually consider a 

combination of physical and operational characteristics of a level crossing such as: the 

number of road approaches to a level crossing; the distance on the approach that a road 

user can see the level crossing; or the number and speed of trains traversing the level 

crossing. The calculated risk scores are used to prioritise safety investment for new safety 

interventions, for example: improving sighting distances for road users approaching a 



 

23 

level crossing; installing automatic warning devices; or even replacing a level crossing 

with a grade separated crossing (Office of Rail and Road, 2011). The Rail Safety and 

Standards Board (RSSB, 2007) state that SPRTs: 

allow risk assessments to be carried out without having to conduct a 

bespoke risk assessment for each crossing, although bespoke data 

may be used, thus permitting assessments to be done with a higher 

degree of consistency and reduced effort. A model that produces a 

quantitative measure of risk (either a relative ‘score’ or an ‘actual’ 

measure of risk such as fatalities per year) allows the identification of 

highest risk crossings which can then be regarded as highest priorities 

for taking action to reduce risk. 

The SPRTs in use by railways around the world vary in the features they use as 

inputs and their methods of calculation, however the method of calculation is not always 

published. It can therefore be expected that different tools would provide different risk 

predictions for a given level crossing. There is no clear evidence of validation of any of 

the SRPTs, and it is not clear to what degree the risk predictions correspond with 

observed collision rates. 

Despite the difference between the differed SRPTs used by different railways 

around the world, a common feature is that each tool contains some form of traffic model 

which describes how collision rates are expected to vary with changes in road and rail 

traffic volumes (RSSB, 2007). When considering the effect that road and rail traffic 

volumes have on rates of collisions, it is axiomatic that a collision can occur only when 

the level crossing is occupied by a road vehicle and a train at the same time. The simplest 

model of how risk increases with traffic is to assume that if the road traffic over a level 

crossing were to double then there would be twice as many opportunities for a collision 
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to occur; similarly a doubling of train volume would also double the opportunities for 

collision. If collisions occur at random with the arrival of each road vehicle then the 

number of collisions at a level crossing would be proportional to the product of the 

number of road vehicles and trains using a level crossing in a given time (Hughes, 2002). 

The product of road vehicles and trains traversing a level crossing is known as the traffic 

moment (Evans and Hughes, 2019) and often referred to as VT being the product of the 

number of road vehicles per day (V) and the number of trains (T). Many SRPTs assume 

that the rate of collisions at a level crossing is directly proportional to the traffic moment. 

As such, traffic moment is considered a normaliser for level crossing collisions: to 

compare the relative safety risk of two level crossings it would necessary to divide the 

observed collisions in a given period by the traffic moment. 

Whilst the majority of the SRPTs use traffic moment as the normaliser for 

collision there are a few tools that use other methods of determining how road traffic 

volumes affect collision rates. As with the SRPTs overall, there is currently no validation 

of the rate at which collisions vary at level crossings with varying road traffic volumes. 

Whilst the majority of SRPTs use traffic moment as a normaliser, it is notable that 

this is not the case for all SRPTs, in particular there are two other traffic models in use, 

Stott’s hypothesis and the Peabody Dimmick model. Where these models are used, they 

are applied in place of traffic moment as a normaliser. 

Until recently it has not been practical to test the degree to which any of the traffic 

models correlate with observed collisions due to unavailability of the data. The GB 

railway infrastructure manager, Network Rail, has published data on the numbers of road 

users traversing each level crossing, together with the numbers of collisions that have 
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occurred (Network Rail, 2017). As such it is now possible to perform rigorous tests of the 

degree to which the outputs of traffic models correspond with collisions. Furthermore, in 

recent years there have been advances in computer technology that have introduced new 

techniques to obtain information from observation data (Golio, 2015), these techniques 

include machine learning methods that can be used to identify trends and, in many cases, 

extract meaningful information, from observed data. There is no information in the 

available literature showing that either these data, nor these emerging computation 

techniques have been applied to the study of SRPTs, which provides a clear avenue for 

research that is explored in this work. 

1.3 Research method and intended contribution of this work 

Traffic moment is widely used as a normaliser in SRPTs, however there is a lack 

of evidence to support the validity of this approach; there is a need to confirm whether it 

is appropriate to use traffic moment in this way. Such a test would be relatively simple to 

carry out since the method of calculation for traffic moment is clear (it is simply the 

product of road and rail traffic volumes in a day), unlike the full methods of calculation 

used in SRPTs which are not publicly available and, therefore, cannot be tested. 

Furthermore, the methods of calculation for both Stott’s hypothesis and the Peabody 

Dimmick model are published. Using the newly available data on road and rail traffic 

volumes, it would therefore be possible to test the degree to which these traffic models 

correlate with observed collisions at level crossings. 

It would be desirable to test the correlation between the results of SRPTs – rather 

than just their traffic models – with observed collisions. It can be expected that the risk 
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predictions made by SRPTs are not exactly the same as the results of the calculation of 

traffic models, instead it can be expected that the risk prediction is affected by other 

factors such as road traffic speed, or the number of operational railway tracks. However 

the fact that all SRPTs contain an underlying traffic model indicates that traffic models 

are considered important in the calculation of safety risk. Furthermore it can be expected 

that over a large enough sample, the overall effect of traffic models on risk prediction can 

be tested. 

Furthermore, using publicly available data that regarding level crossing 

characteristics, together with modern advanced techniques for identifying patterns in 

data, it is possible to perform tests to determine whether there are any correlations 

between the characteristics of level crossings that are reported in the available data and 

observed rates of collisions. 

Given the serious consequences that can result from collisions at level crossings, 

and the expense involved in providing warning devices, it is in the public interest to have 

confidence in the methods that are used to allocate funding for level crossing safety 

interventions. However since there is information regarding the various traffic models 

that underpin the tools has been made available, it is possible to test the way in which 

road and rail traffic volumes affect collision rates. In 2017, Network Rail published data 

on road traffic volumes at level crossing traffic, which had not previously been available. 

These data provide an opportunity for an empirical study to determine whether, and to 

what degree, road traffic volumes affect collision rates at level crossings. 
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The purpose of this research is to use the newly available data together with the 

information that is available on the SRPTs to establish: 

• whether it is reasonable to expect SRPTs to be able to produce reliable estimates 

of risk; 

• the degree to which the risk predictions from current SRPTs correlate with 

observed rates of collision; and 

• whether it is possible to use modern data analysis methods to determine a more 

accurate method of risk prediction. 

A novel aspect of this work is that it brings data from the railway in a way that 

has not previously been performed. Specifically the study uses Network Rail data 

regarding level crossings and road traffic volumes and data regarding collisions at level 

crossings. The study considers two sources of collision data: collision data from Network 

Rail, as well as data from the database of all railway accidents in Britain. The 

combination of these data sources is a significant novelty of this study. Comparing the 

observed collision rates, normalised by road traffic volumes, with the traffic models is a 

further novelty of this study. 

It is intended that this study will not only provide new information in the study of 

level crossing safety, but it will also provide information that is genuinely useful to the 

GB railway. An improved understanding of the correlation between road traffic volumes 

and collision rates at level crossings can better inform safety management strategies of 

the railway. Using advanced computational methods a test will be performed to 

determine whether it is possible to develop a method of calculation that uses the available 

data on level crossing characteristics to create an accurate predictor of collision rates. In 
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effect this work would develop a validated SRPT for level crossings. It is intended that 

this study will contribute to the on-going efforts to improve the safety of the railway. 

1.4 Scope of this research 

This research considers collisions between road vehicles and trains traversing 

level crossings. In this study, level crossings are classified in accordance with the scheme 

used by Network Rail (2017) and Evans and Hughes (2019). There are three main classes 

of level crossing: railway-controlled; those with automatic warning devices; and those 

passive warning devices (refer to Section 2.3.1 for a fuller description of these classes). 

Each class is further divided in two sub-classes: those level crossings that are accessible 

on public roads; and those that are accessible only from private property or accessible 

only to railway staff. The scope of this study includes all classes of level crossing. 

However the level crossings are not evenly distributed between the classes: there are 

approximately 40 times as many passive, private level crossings are there are railway-

controlled private level crossings. For the classes where there are few level crossings, 

there are correspondingly fewer recorded collisions. Nevertheless data is available on all 

classes of level crossing, and for the sake of completeness, all classes have been included 

in the scope of this study. 

Within the scope of this study, a collision is considered to be any event where a 

train and a road vehicle come into contact on a level crossing regardless of whether a 

train struck a road user who is already on the level crossing panel, or whether a road user 

struck a train. This research does not consider other types of accident that may occur at a 

level crossing; such as derailments or train-to-train collisions, that are not the result of 
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collisions with vehicular road users at level crossings. Also beyond the scope of this work 

is any analysis of collisions between pedestrian road users and trains: there are 

fundamental differences between pedestrian movements and the operation of road 

vehicles. For example road vehicles are more limited in how they can move: vehicles in a 

queue over a level crossing cannot disperse in the way that a queue of pedestrians would 

be able to. Furthermore it takes considerably more distance to bring a road vehicle to a 

stand when it is moving at speed than it would for a pedestrian to stop on the approach to 

a level crossing. The study also does not include collisions with equestrians, users of 

mobility aids including mobility scooters, nor user of toys such as skateboards. 

The study also does not consider collisions where it is believed that the collisions 

occurred as a result of a motivation by the road user to self-harm (suspected suicide 

events) since the purpose of the study is to understand the managerial controls that can be 

put in place to reduce the numbers of collisions. The controls that exist at level crossings 

are mostly visual and audible warning devices which can be disregarded by a person who 

is motivated to purposefully collide, indeed advanced warning of an approaching train 

actually provides information that a road user needs if they are intended to purposefully 

cause a collision. Enforcement controls, such as red-light cameras (which detect and 

photograph vehicles that traverse the level crossing whilst stop signals are showing), 

allow for post-hoc punishment of people who contravene rules. Deterrents based on 

future punishment can be expected to have reduced impact on a person who is intending 

to avoid the future. 

The data for this study have been obtained from GB railway authorities, 

specifically Network Rail and RSSB, consequently the scope of this study covers only 
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level crossings in Britain that are operated by Network Rail. Since the method of 

calculation of the existing SRPT is not known, it is not possible to propose modifications 

to the existing tool. However, where possible, the study intends to identify a model, or 

models, that provide better correlation with the observed collisions than the existing 

traffic models. This study will look to identify if correlations can be found between 

particular warning devices, or combinations of warning devices. However the work will 

not look to determine the cost-benefit of specific devices, since new technology is 

continuing to make new types of warning device available that, in many cases, are 

substantially less expensive than existing devices (Wullems et al., 2013). 

1.5 Structure of this thesis 

Following this introduction, Chapter 2 reviews prior work that has been 

undertaken that is relevant to this research. The review considers a range of literature 

including those that address the theory of collision causation at level crossings, the types 

of warning device, safety risk prediction tools, and the traffic models used in the tools. 

The review identified a number of traffic models with traffic moment being the most 

widely used. The review concludes by examining the literature on emerging methods for 

determining data-driven safety risk prediction tools. 

Based on the findings of the review, the study in Chapter 3 applies two 

approaches to test the validity of traffic moment as a normaliser for collisions at level 

crossings. The approaches are mathematical derivation and Monte Carlo simulation. The 

purpose of this study is to use a theoretical method to test the simplest, most common, 
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element of many SRPTs to test whether it is reasonable to expect SRPTs to be able to 

produce reliable estimates of risk. 

To test the degree to which the risk predictions from current SRPTs correlate with 

observed rates of collision, Chapter 4 describes the experimental method that was used 

including the method to prepare the source data as well as the method of calculation to be 

applied given the overdispersed nature of the data. The results of the experiment are 

presented in Chapter 5, which also provides a discussion of the interpretation of the 

results. Chapter 6 describes a study to determine traffic models based on empirical study 

of the data and discusses the implications of the results with particular application to 

whether the current approach to close level crossings to improve safety can be supported 

by the available evidence. 

Chapter 7 describes a study that was undertaken to establish whether it is possible 

to use modern data analysis methods to determine a more accurate method of risk 

prediction. The findings of the overall study are summarised in Chapter 8 which provides 

a discussion of the implications of the results and ties together some of the findings of the 

literature review in Chapter 2 to provide recommendations that employ emerging 

technologies. A conclusion is provided in Chapter 9. 

1.6 Contribution 

The following contribution to current knowledge has been made in this chapter: 

Contribution 1: It has been identified that there is a gap in the knowledge of 

SRPTs for level crossing and that there is an opportunity to advance the current state of 
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knowledge by using newly available sources of data and by combining data sources on 

level crossings and observed collisions in a way that has not previously been performed. 
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Chapter 2: Background to level crossing safety risk prediction 

This chapter provides background to the key concepts considered in this work. 

Firstly there is a review of the literature on level crossings and the relationships between 

physical characteristics of level crossings and collisions rates. There is also a 

consideration of the warning devices that are used at level crossings as well as a 

consideration of other methods of reducing collision rates at level crossings. 

This chapter also includes a discussion of safety risk prediction tools that are used 

for level crossing risk assessment and the underlying traffic models that are used for these 

tools as well as considering emerging approaches to developing data-driven safety risk 

models for the railway. 

2.1 Safety risk 

Risk is defined by the International Organization for Standardization (2018) as 

“the effect of uncertainty on objectives”, whilst this broad definition of risk applies to all 

effects on objectives – whether these effects are desirable or otherwise – it is common 

that structured risk management activities concentrate on only the adversely effects on 

objectives. Risk management activities usually measure risk in terms of the likelihood of 

occurrence of a specific impact, or type of impact, on objectives. When considering the 

management of safety risks, the types of impact are often categorised as the types of 

injuries that may result from the occurrence of an uncertain event: for example minor 

injuries, major injuries or fatalities. The likelihoods of specific impacts are similarly 

categorised to describe those outcomes that are expected to occur frequently and those 

that are expected only rarely. Higher risks are those that have the largest impact on 
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objects and those that are expected to occur more frequently. Figure 2.1 has been adapted 

from Jordan et al. (2018) and shows how a matrix is used to classify risks in three 

categories: low, moderate, and high. 

 
Figure 2.1: Example matrix for risk classification, adapted from Jordan et al. (2018) 

 

The main objective of a level crossing is to allow road and rail traffic to traverse 

the same area without collision and with minimal delay to road users and trains. In this 

situation the risk arises as a result of the uncertain behaviour of road users: whether they 

will observe, understand, and correctly comply with the requirements to yield to trains 

and, therefore, avoid collisions. 

Collisions at level crossings can result in a range of impacts to the health and 

safety of individuals. In many cases collisions result in fatalities to road users and 

perhaps also to train crew and passengers on trains. In other cases collisions can result in 

damage to property but no major injuries: for example such an outcome can occur if a 

road vehicle is struck by a slow-moving train that causes damage to the exterior of the 

vehicle but does not cause physical injury to its occupants. 
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The specific outcomes that result from a collision between a train and road 

vehicle can vary depending on a number of factors such as the degree of physical 

protection provided by a vehicle, safety devices within the vehicle, or even pre-existing 

health conditions of people in a vehicle. Currently there is no theory to describe the 

specific safety impacts that can be expected as a result of collisions at level crossings and 

therefore these factors are considered to be random since they are beyond the control of 

road and rail authorities. For this study it is considered that the key objective of road and 

rail authorities is to avoid all collisions between road users and trains. As such the only 

measure of impact in this study will be whether or not a collision results from a road user 

traversing a level crossing; the measure of risk will be affected solely by the likelihood of 

collisions occurring. 

2.2 Theory of level crossing collision causation 

Much of the literature on level crossing safety look to establish correlations 

between physical and operational characteristics of level crossings and collision rates. 

Although not explicit in any of the literature there appears to be an underlying 

assumption that the physical and operational characteristics of a level crossing affect road 

users' situational awareness and motivation to stop at a level crossing, which in turn 

affects the likelihood of a collision. This model of causation is shown diagrammatically 

in Figure 2.2. 
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Figure 2.2: Diagrammatic representation of assumed causation model 

 

The assumption that physical and operational factors affect collision rates can be 

found in much of the literature, for example, Oh et al. (2006) who studied behaviour at 

level crossings in Korea and concluded that “the proximity of crossings to commercial 

areas ...[is] associated with larger numbers of accidents”. Larue (2016) found that the 

longer the time between the start of flashing light warnings at the arrival of a train at a 

level crossing the greater the likelihood of a collision. Starčević et al. (2016) found that 

rumble strips on the approach to a level crossing correlate with fewer collisions. Haleem 

(2016) found that the likelihood of fatalities at private level crossings was influenced by 

the train speed. 

The main observation on reading the literature on level crossing safety is that 

whilst many researchers have performed many studies and have discovered specific 

correlations between physical and operational features of level crossing and the 

occurrence of collisions there appears to be no overarching consensus amongst the 

researchers. The researchers do not attempt to place their discoveries within a risk 

framework that describes level crossing safety in general, nor can any such overarching 

framework be found in the literature. To date, the many studies that have been carried out 

on level crossing do not contribute to a general theory. 
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2.3 Classes of level crossings and the hierarchy of controls 

The one clear factor that has been shown to affect safety risk at level crossing is 

level crossings is the nature of the warning devices. Evans and Hughes (2019) 

demonstrate that the rate of fatalities per road user traverse reduces by at least an order of 

magnitude at level crossing where there are active warning devices. This reduction in 

fatality rate occurs for both vehicular level crossings as well as pedestrian level crossings, 

despite the large underlying differences in rates of collision. 

2.3.1 Passive and active warning devices 

Passive warning devices are fixed signs that mark the presence of a level crossing 

and indicate to road users that there is a need to check for the presence of trains before 

traversing. These warning devices are referred to as passive warning devices since the 

warning provided by the signs does not change state to indicate the presence of a train. 

Conversely, active warning devices are signs that change state – often by showing 

flashing red lights and sounding bells or alarms – to indicate that a train is approaching or 

is occupying the level crossing. Active warning devices sometimes include provision of a 

barrier across either all road carriageways or, in some cases, across only the approach 

carriageway to the level crossing. In Britain, wherever a barrier is provided across all 

carriageways, the operation of the warning is controlled manually by a railway employee 

who can observe the level crossing either directly, or by close-circuit television (CCTV). 

Where the barrier is across only the approach carriageway, the operation of the warning 

is controlled automatically by the approach of a train, this type of level crossing is 

therefore known as an automatic half-barrier (AHB) level crossing. Figure 2.3 which is 
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reproduced from the Office of Rail Regulation (2011) provides schematic view of an 

AHB level crossing. 

 

 

Figure 2.3: Schematic layout of an automatic half-barrier (AHB) level crossing 
reproduced from the Office of Rail Regulation (2011) 

 

In Britain the minimum time between the warning starting and a train arriving at a 

level crossing is 13 seconds (Office of Rail Regulation, 2011, §2.48). Whilst this is the 

minimum time, the actual warning time may be longer especially when the warning is 

manually activated by a railway employee (RSSB, 2019). 

2.3.2 Hierarchy of warning devices 

The one area within the literature where there does appear to be consensus is in 

the assumption that active warning devices contribute to lower safety risk than passive 

devices, and furthermore that warning devices with barriers lead to a lower safety risk 

than those without barriers. It is particularly noteworthy that this belief in the relative 

safety risk arising from each category of warning device has persisted for a long time, for 

example the model of level crossing collisions developed by Peabody and Dimmick in 
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1941 (US DoT, 2007) gives a lower prediction of collision rates if active warning devices 

are present at a level crossing compared with only passive devices. The term hierarchy is 

often used to describe the way in which it is believed that some warning devices are 

superior to others in reducing safety risk, for example ALCAM (2007) and 

Wullems et al. (2013). Despite the belief in a hierarchy of controls being ubiquitous 

amongst level crossing safety practitioners for such a long time there is no consensus on 

the exact categorisation of warning devices. It is common in the literature for the 

hierarchy to be expressed as being comprised on only three types of device, viz.: 

• active warning devices with barriers; 

• active warning devices without barriers; then 

• passive warning devices. 

However Baker and Heavisides (2007) describe the hierarchy as: 

a. manually controlled level crossings; 

b. automatic level crossings with half barriers; 

c. automatic level crossings with no barriers; 

d. passive level crossings with gates; then 

e. passive level crossings with no gates. 

A further problem with the concept of the hierarchy of warning devices is the lack 

of evidence to support its correctness. For a long time there remained little empirical data 

to show that active devices are actually better than passive devices at reducing safety risk. 

Hughes (2012) highlights that within Australia there are more fatalities at level crossings 

with active warning devices than at level crossings with passive devices. However the 

paper discusses that since active devices are generally installed at level crossings with 

larger volumes of road and rail traffic, these are the level crossings where there are more 
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opportunities for collisions. Therefore, when normalised by road vehicle traverses, it is 

not clear whether active warning devices do reduce risk in accordance with the hierarchy. 

Hughes sums up the discussion by stating “the available evidence in Australia is mute on 

whether active warning devices provide any better protection [than passive warning 

devices]”. 

More recently, however, Evans and Hughes (2019) note that “data has been made 

available by the GB railway infrastructure manager, Network Rail which provides a 

detailed inventory of level crossings in GB. The data include the type of each crossing, 

and the numbers of crossings or ‘traverses’ per day”. These data allowed a study of 

fatalities at British level crossing for a number of categories of warning devices and 

normalise the fatalities by road user traverses. The results of the study are the first 

empirical results to support the long-standing belief in the hierarchy, however in their 

study they considered only three types of vehicular level crossing, viz.: 

• railway-controlled (which corresponds with category a. listed by Baker and 

Heavisides above); 

• automatic (corresponding to category b.); and 

• passive (corresponding to category e.). 

Within this three-level hierarchy, their results showed that per traverse each type 

of level crossing had approximately an order of magnitude fewer fatalities than the type 

below it. 

2.3.3 Other warning devices and the three Es 

Aside from the provision of signs, lights, bells and barriers, there are other 

devices that are used to warn road users of the presence of level crossings. The technical 
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manual for the Australian SRPT (ALCAM, 2007) list a number of other devices 

including: 

• overhead mounted (mast arm) traffic control; 

• passive tactile advance warning (e.g. rumble strips); 

• Rail-X pavement marking; 

• hand signallers (also known as flagmen); 

• street lighting at crossing; and 

• maintenance program for vegetation. 

Whilst these are common warning devices at level crossings, none of the literature 

discussing a hierarchy of warning devices makes any mention of these devices.  

Hughes (2002) introduces another categorisation of risk control at level crossings, 

the Three Es: engineering, education and enforcement. Engineering refers to physical 

controls at, or near to, the site of a level crossing that provide either passive or active 

warning of the presence of a level crossing and the need for road users to take action. 

Education refers to public information and education programmes aimed to promote an 

understanding of the safety risk associated with level crossing and encourage correct 

behaviour by road users. Figure 2.4 shows an example poster used in an education 

programme conducted in Britain. 
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Figure 2.4: An example poster used in an education programme in Britain 

 

Enforcement programmes are comprised of a method of detecting then penalising 

road users who contravene the requirement to yield to trains at level crossing. In practice 

such enforcement is usually applied only at level crossings with active warning devices 

where there is a clearly defined period when road users must keep clear of the level 

crossing. During a study at a level crossing in Croatia, Barić et al. (2018) noted that on 

the day when a uniformed police officer was present “the proportion of illegal crossings 

by pedestrians and cyclists alike fell nearly to zero”. However it is not clear that the 

benefits of either education or enforcement programmed extend after the programmes 

have finished. Whilst this is only a small piece of evidence, it is clear that enforcement 



 

43 

programmes may be a practical measure to reduced collisions at level crossings – at least 

during periods when enforcement agents are visible to road users. 

Despite education and enforcement controls being widely used in an attempt to 

reduce level crossing safety risk, the discussions of a hierarchy of controls never refers to 

these two classes of control. Again it appears that whilst there are many researchers and 

railway safety agencies working to reduce safety risk at level crossings, there is no 

overarching theory of that addresses the entire scope of risk management at level 

crossings. 

2.4 Safety risk prediction tools 

Provision of warning devices at level crossings can be expensive (Wullems et al., 

2013). In order to ensure that the benefit from the expenditure on warning devices can be 

maximised, road and railway authorities around the world attempt to determine the safety 

risk at individual level crossings and then prioritise the provision of controls using a risk-

based approach to provide optimal risk reduction for a given cost. In doing so, road and 

railway authorities around the world have adopted a range of SRPTs (RSSB, 2007). 

The widespread use of SRPTs raises a number of interesting points. Firstly is that 

the purpose of an SRPT is to attempt to determine some measure of safety risk at 

individual level crossings. The tools vary between: 

• those that attempt to create an absolute rating of risk in that they attempt to 

predict the number of collisions that may occur during some future period; and 

• those that create a relative measure of risk in that they rank level crossings in 

order of safety risk without making predictions about numbers of future 

collisions. 
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In either case, an underlying assumption in such tools is that it is in some way 

possible to determine safety risk at level crossings. This assumption conflicts with the 

fact that, as discussed, there does not appear to be any overarching theory of the 

underlying factors that affect safety risk at level crossings. Therefore it is not clear how 

an accurate SRPT can be created. Regardless of this lack of an underlying theory such 

tools abound, RSSB (2007) identified 23 SRPTs in use around the world. 

A second observations is that the various SRPTs use different methods of 

calculation to determine safety risk. RSSB, note that obtaining information about each of 

the tools was a difficult task and, in some cases, the information was not available. In 

other cases, information was shared confidentially with RSSB for the purposes of their 

study and is not generally available. The information that is available, especially from 

RSSB's detailed report, makes clear that different methods of calculation are used to 

estimate safety risk in the different tools. This use of different methods of calculation 

raises a question. It is likely that the different methods of calculation would each lead to 

different risk estimates for a given level crossing. It can therefore be expected that some 

of the SRPTs produce results that are more accurate than others. In fact it is possible – 

perhaps likely – that some SRPTs produced inaccurate risk estimates when compared 

with observed collision rates. 

It is theoretically possible that each SRPT is correct within its own domain. 

Perhaps the differences in road and railway operations leads to innate differences in level 

crossing safety risk that require different SRPTs. Whilst not impossible, such a prospect 

seems infeasible. All over the world motor vehicles are fundamentally similar in design, 

furthermore the designs of warning devices around the world are uncannily similar: 
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overwhelming most warning devices uses signs that show a steam train silhouette; active 

warning devices are, overwhelmingly, flashing red lights accompanied with bells or 

sirens. The proposal that different jurisdictions have fundamentally different causes of 

collisions at level crossings does not accord with intuition, neither is there any evidence 

in the scientific literature that this is the case. Again, there is no overarching theory of 

level crossing safety that would allow a reasoned discussion of how safety risk can vary 

as a result of the different road and railway operations in different jurisdictions. 

The most important observation, however, is that no evidence can be found of any 

tests having been carried out to determine the degree to which the predictions of any 

SRPTs correlates with observed collisions. This absence of evidence is an serious 

impediment to the development of level crossing safety theory. Since the SRPTs are often 

used by public road and railway authorities as methods of prioritising public spending, it 

might be considered that the methods of calculation and the results of tests of predictive 

accuracy of the models would be in the public interest and the absence of tests could be a 

concern to the public. Cynically it could be imagined that tests might have been 

conducted but that the correlation between prediction and observation was too poor for 

the road or rail authorities to feel confident publishing the results. If this were the case, 

then there is an even greater cause for concern. 

2.5 RSSB review of safety risk prediction tools 

In 2007 RSSB published a report titled Use of Risk Models and Risk Assessments 

for Level Crossings by Other Railways which describes a review of 23 tools for 

determining safety risk from thirteen countries. In undertaking this work RSSB note: 
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Significant effort has been made to identify all level crossing models 

in use or being developed in rail administrations around the world. It 

is, however, impossible to be certain that the above list includes all 

models that exist or that are undergoing development. 

The following sections provide an overview of the risk prediction tools reviewed 

by RSSB and the use of traffic models in the tools. 

2.5.1 Overview of tools 

In their review, RSSB provide a general description of SRPTs as tools that “tools 

that allow risk assessments to be carried out without having to conduct a bespoke risk 

assessment for each crossing, although bespoke data may be used”. Whilst their review 

does not provide a detailed description of the algorithm used in any of the tools, several 

examples are provided of the physical and operational characteristics that are used inputs 

for various models. Examples of typical characteristics are shown in Table 2.1. 

Table 2.1: Typical physical and operational characteristics of level crossings used as 
inputs to SRPTs 

Physical characteristics Operational characteristics 
• Visibility of the level crossing from 

the road approach 
• Gradient of the road approach 
• Width of the road at the level 

crossing 
• Proximity to other road intersections 
• Construction of road surface (paved, 

or unpaved) 

• Maximum train speed over the level 
crossing 

• Proportion of freight train traversals 
• Longest approach warning time 
• Heavy vehicle proportion 
• Number of operational rail lines 

 

RSSB note that there is a variety of methods used to calculate outputs from the 

various inputs used by the models. They classify the method of calculation in three 
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categories. The first category they describe as parameter gate tools which use “simple 

parameters as decision guides”. These tools do no produced a risk estimate, rather they 

provide guidance for the selection of warning devices that are required at each level 

crossing. The second category are described by RSSB as weighting factor tools which 

perform some calculation on the inputs to produce a numerical output which presents 

some indication of safety risk. These numerical values may be relative scores to provide a 

ranking of level crossings against each other, and thereby help create a priority listing for 

interventions. Conversely the numerical results may represent absolute risk predictions of 

the numbers of collisions that can be expected at a level crossing in the future. Finally 

there are the statistically driven tools use statistical methods from analysis of prior rates 

of collision to provide risk estimates of future rates of collision. 

The report notes that the output of an SRPT does not necessarily provide the only 

data used to determine the warning devices required at a level crossing, nor for 

prioritising interventions, rather “the model itself will provide only a part of the overall 

process for decision-making on level crossings”. Figure 2.5 has been adapted from RSSB 

to show the flow of data from the inputs to the model to the decision-making process and 

emphasises that the output from the SRPT is an input to the evaluation and decision-

making that leads to interventions at level crossing. 
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Figure 2.5: Application of SRPTs in decision-making process, 
adapted from RSSB (2007) 

2.5.2 Use of traffic models in tools 

Information about some of the tools was provided to RSSB through private 

agreements with the owners of the SRPTs which means that the details of the tools are 

not publicly available. One area where there is information regarding all of the SRPTs is 

that each uses some traffic model that describes how safety risk varies with varying road 

traffic and train volumes at a level crossing. The review identified that most of the SRPTs 

consider that safety risk varies in proportion to traffic moment: the product of the number 

of vehicular road users and trains in a given period (usually one day). Table 2.2 shows a 

summary of each of the tools studied by RSSB and the underlying traffic models for 

each; a dash (–) indicates that the traffic model is not specified. Notes are provided after 

the table. 
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Table 2.2: Summary of traffic models identified in RSSB (2007) 

Country Tool Traffic model Notes 

GB (rail) Automatic Level Crossings Model – (1) 

 All Level Crossings Risk Model 
(ALCRM) Stott's hypothesis  

 Event Window Model –  
GB 
(highways) COBA Junction Model – (2) 

Australia Risk Based Scoring System (RBSS) Traffic moment (3) 

 Australian Level Crossing 
Assessment Model (ALCAM) Traffic moment  

 RAAILc –  

Canada Collision Prediction Model Traffic moment  

 GradeX – (4) 

India Train Vehicle Unit Traffic moment  

Ireland Network Risk Model Traffic moment  

 Level Crossing Prioritisation Tool Traffic moment  

Japan Closed Road Traffic Indicator Traffic moment  

 Level Crossing Danger Index Sum of road traffic volume, train 
volume, and passengers per day (5) 

Northern 
Ireland 

Risk Assessment and Investment 
Appraisal –  

New Zealand Product Assessment Modified traffic moment (6) 

 Accident Prediction Model – (7) 

Russia Rail and Road Intensity Matrix Non-linear, categorical risk prediction (8) 

Spain Crossing categorising criteria Traffic moment  

 FMEA method Traffic moment  

Sweden Factors to determine crossing 
protection Traffic moment  

USA APF and SPF Traffic moment  

 GradeDEC.NET Traffic moment  
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Notes for Table 2.2: 

(1) RSSB (2007) state: “there is no detailed specification or mathematical 

description of the model”. 

(2) RSSB (2007) notes that the traffic model is a non-linear function of road 

user volumes, but the exact form is not specified. 

(3) The traffic model is not specified in RSSB (2007), however it is noted that 

the model does use traffic moment. 

(4) The tool does not appear to normalise collision risk predictions by traffic 

volumes, rather the risk calculation appears to consider prior collision 

history at each level crossing. 

(5) RSSB (2007) notes that the model: “is a traffic moment, weighted by 

exposure to passengers as a measure of potential consequence severity, 

and also weighted by accident history”. 

(6) The tool considers uses a traffic model that is similar to traffic moment, 

but the model is weighted for the time of day that rail traffic operates. 

(7) Similar to Note (2), the model based on an unspecified non-linear function 

of road user volumes. 

(8) The tool does not provide a risk prediction per se rather it provides risk 

categorisation based on road traffic and train volumes. 

2.6 Proliferation of SRPTs 

During the study of SRPTs, it is notable that some countries appear to have more 

than one tool for determining safety risk, the reason for this is unclear. It might be 

assumed that the different tools produce different results: otherwise there would be no 

need for more than one tool. Taken together with the lack of information on validation of 

any of the tools, it must be assumed that there is uncertainty regarding the most 

appropriate method for calculating safety risk. It can be expected that if a railway 

authority were to discover that their tool is highly accurate in risk prediction – and 



 

51 

therefore a valuable method for allocating resources to public – it would be in the 

interests of the railway to make this information publicly available. Furthermore, if it 

were demonstrated that there were an accurate tool that was universally applicable then, 

over time, the tool would be adopted by all railways from all countries. The proliferation 

of different tools is suggestive of a situation where no tools has been developed that has 

generally good predictive accuracy. 

2.7 GB Railways' ALCRM 

Whilst most of the SRPTs use traffic moment as the traffic model, it is notable 

that the tool used by the GB, the All Level Crossing Risk Model (ALCRM) uses a 

different model. As noted in RSSB (2007) the ALCRM does not assume “that risk is 

proportional to traffic moment (as with all other models)”, rather the tool uses a 

hypothesis proposed by Stott in 1987 to determine how safety risk varies with changing 

road traffic volumes. In reviewing the efficiency of the ALCRM in 2007, Baker and 

Heavisides (2007) state that abandoning a simple proportional model and adopting Stott’s 

hypothesis “has caused a significant re-appraisal of which are the highest-risk level 

crossings in GB. Some crossings are now shown by the ALCRM to be relatively higher 

risk than previously thought, while other more busy crossings may actually be safer”. 

Despite the fact that the use of Stott’s hypothesis has led to a re-evaluation of safety risk, 

no information is provided to show whether incorporation of the hypothesis leads to a 

better match between predicted and observed collision rates. 

Stott's hypothesis regarding the effect that varying traffic volumes have on safety 

risk is described below. However, as for a number of the SRPTs, the choice of traffic 
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model is the only information that is available on the method of calculation used in the 

ALCRM. 

Stott's hypothesis describes a non-linear relationship between road traffic volume 

and safety risk, however it is notable that the hypothesis does not describe any 

relationship between train volume and safety risk. Rather it appears that the hypothesis 

considers that the risk is constant per train and therefore that safety risk will increase 

proportionally with train volume in the same way as it does with the traffic moment 

model. It is not clear that this such an assumption is necessarily valid, the description of 

the Australian SRPT (the ALCAM) provided by Hughes (2002) shows that the tool 

considers that train volume can contribute to safety risk at level crossings: at low train 

volume the ALCAM considers that road users who regularly use the level crossing may 

become used to the idea that trains are rare and will not expect a train arrival and 

consequently will fail to adequately prepare on the approach to the level crossing. 

Conversely where there is a high volume of trains at a level crossing, regular road users 

may tire of waiting for trains and may feel encouraged to cross in front of an approaching 

train. If the effects are real, it is not clear the degree to which each affects safety risk; it is 

theoretically possible that the effects perfectly balance each other in a way that makes 

safety risk exactly proportional to train volume. However there is not information 

available on whether such an assumption is reasonable.  

2.8 The United States Department of Transportation SRPT 

The RSSB review is the most comprehensive source found for reviewing the 

various SRPTs that are in use, however it is not complete. Wullems et al. (2013) describe 
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the SRPT used by the United States Department of Transport which is underpinned by 

the traffic model developed by Peabody and Dimmick in 1941. The original source of 

this model can no longer be found, although it is described in the Railroad-Highway 

Grade Crossing Handbook (United States Department of Transportation, 2007). The 

Peabody Dimmick model was developed based on a study of collisions that occurred in 

29 states over a five-year period. The Peabody Dimmick model describes a non-linear 

relationship between road traffic volume and safety risk, although the relationship is 

different to that described by Stott's model. Again, the model neglects to mention any 

relationship between train volume and safety risk and it again appears that the tool 

assumes that safety risk is entirely proportional to train volume. 

2.9 Summary of traffic models used in SRPTs 

The review of traffic models identified six models used in the various SPRT, 

these are summarised in Table 2.3. Amongst these models, detailed information exists for 

three of the models to be studied further, being: 

• traffic moment; 

• Stott's hypothesis; and 

• Peabody Dimmick's model. 
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Table 2.3: Traffic models used in SPRTs 

Traffic model Application Notes 

Traffic moment Used in 12 SRPTs – 
Sum of road traffic volume, train 
volume, and passengers per day 

Used in Japanese Level 
Crossing Danger Index 

Requires knowledge of the number of 
passengers on a train 

Stott's hypothesis 
Used in GB (rail) All 
Level Crossings Risk 
Model (ALCRM) 

– 

Non-linear, categorical risk 
prediction 

Used in Russian Rail and 
Road Intensity Matrix – 

Modified traffic moment Used in New Zealand 
Product Assessment 

Requires knowledge of the proportion of 
trains operating at night 

Peabody Dimmick Used in United States' 
DoT model – 

2.10 Classification of proximate causes of collisions in the 
ALCAM 

An exception to the general dearth of information regarding mechanisms of 

calculation is the Australian Level Crossing Assessment Model (ALCAM) described by 

Hughes (2002). A notable feature of the ALCAM which, from the available information, 

appears to be unique, is the categorisation of proximate causes of collisions at level 

crossings, which are dubbed accident mechanisms. Examples of accident mechanism 

used in the ALCAM include: 

• road users being distracted by adjacent distractions which leads to a 

collision; 

• road users being warned too late of the need to stop and consequently not 

having sufficient time to avoid a collision; and 

• road users queuing over a level crossing. 
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The ALCAM considers 19 accident mechanisms, which are grouped into three 

categories. The categories describe cases where road users are: 

• unaware of a level crossing, or are aware of the level crossing but unaware of the 

need to stop; 

• aware of a level crossing but are unable to take action to avoid a collision; and  

• aware of the level crossing and able to avoid a collision but misjudge their 

traverse in a way that results in a collision. In this case the misjudgement includes 

cases where road users wilfully breach active warning devices. 

This categorisation is intuitively appealing in that it accords with a simple 

classification of allocation of blame, however it does not appear to be supported by either 

theory nor observation. In this regard the classification may be viewed as a starting point 

for further research, however in the time since publication of Hughes's work, no such 

studies appear to have been undertaken. 

2.11 Traffic models 

This section describes in detail the three traffic models that are studied further in 

this research. 

2.11.1 Traffic moment 

Baker and Heavisides (2007) define traffic moment as “the product of the number 

of trains and number of level crossing users”. The same measure is dubbed the VT 

product by Hughes (2002) who explains it as “the product of the daily number of road 

vehicle crossings (V) and the daily number of train crossings (T)” and goes on to assert: 

“the expected number of accidents at a level crossing is proportional to the probability 
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that a single road user on a single crossing will be involved in an accident multiplied by 

the number of chances that there are for accidents to occur”. It would appear that Hughes 

considers it axiomatic that traffic moment is a natural normaliser for level crossing 

collisions and may be the reason that 12 SRPTs shown in Table 2.2 use traffic moment 

was also used as the normaliser for collisions. Whilst it appears that there is support for 

the concept of using traffic moment as a normaliser, there is no evidence for why this 

should be the case. Traffic moment is therefore a predictive model is that is was derived 

by means of logical reasoning, rather than collection of empirical data collection. 

2.11.2 Stott's hypothesis 

An alternative predictive traffic model was proposed by Stott (1987). Stott states 

“at first sight it might seem intuitive that increasing the [road] traffic volume would bring 

proportionately more collisions” but goes on to propose a more complex hypothesis: 

“assume, first, that on the great majority of occasions, drivers stop when the lights 

show...second, assume that if a vehicle does stop it acts effectively as a barrier to all 

following vehicles”. The hypothesis further proposes that if a road user breaches the 

holding point at a level crossing soon after the active warning has started, the road user 

has the opportunity to recover before any trains arrive, and is therefore unlikely to be 

involved in a collision. It is only road users who breach the holding point just before the 

arrival of a train who are likely to be involved in collisions. Furthermore, the higher the 

level of road use at a level crossing, the more likely it is that road users will arrive at the 

level crossing early and stop correctly, forming a barrier to those who arrive later. In 

summary, Stott hypothesised that: for zero road users there is a zero likelihood of 

collision; the likelihood of a collision per activation of the level crossing warning initially 
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increases as the number of road users increases; however for high numbers of road users 

the likelihood of a collision decreases to a low value. Stated mathematically, the 

hypothesis is that the number of collisions at a level crossing varies in accordance with a 

distribution over the number of road users at the level crossing in the form: 

probability of a collision per activation 
of the level crossing warning = PC × e-m(T-t)-e-mT 

Where: 

PC is the probability that a road user arriving at the holding point of a level 
crossing fails to stop in accordance with the warning; 

e is the base of the natural logarithm; 
m is the rate that road users arrive at the level crossing; 
T is the time between the active warning starting and a train arriving at the 

level crossing; and 
t is the minimum time required for a road user to recover from a breach. 

Stott proposed the following values for calculating the hypothesised collision rate: 

PC = 0.0001; T = 40 seconds; t = 2 seconds. Figure 2.6 provides a graphical 

representation of the hypothesised distribution presented by Stott. 
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Figure 2.6: Schematic representation of hypothesised collision rate over road 
traffic volume, adapted from Stott (1987) 

In his hypothesis, Stott presumed that road traffic arrivals would not be constant 

during a 24-hour period and, although it is not explicitly stated in his work, it is implied 

that to determine an overall rate of collisions it is necessary to calculate the expected 

collision rate in each hour and sum the results for a full day. The traffic distribution 

presumed by Stott is shown in Table 2 of Annex C of his paper (1987) and reproduced in 

Table 2.4 below. 
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Table 2.4: Distribution of road user arrivals throughout a day 
copied from Stott (1987) 

Time of day Proportion of road user arrivals at a 
level crossing 

00:00 hours to 07:00 hours 0% 
07:00 hours to 08:00 hours 5% 
08:00 hours to 09:00 hours 7% 
09:00 hours to 10:00 hours 6% 
10:00 hours to 11:00 hours 7% 
11:00 hours to 12:00 hours 7% 
12:00 hours to 13:00 hours 6% 
13:00 hours to 14:00 hours 6% 
14:00 hours to 15:00 hours 7% 
15:00 hours to 16:00 hours 8% 
16:00 hours to 17:00 hours 9% 
17:00 hours to 18:00 hours 8% 
18:00 hours to 19:00 hours 5% 
19:00 hours to 20:00 hours 5% 
20:00 hours to 21:00 hours 5% 
21:00 hours to 22:00 hours 4% 
22:00 hours to 23:00 hours 3% 
23:00 hours to 00:00 hours 2% 

 

It is notable that while Stott considers varying road traffic volume, it is considered 

that train arrivals are constant throughout the day. 

2.11.3 Peabody Dimmick model 

Faghri and Demetsky (1986) state that the Peabody Dimmick model was first 

published in 1941 “based on 5 years of accident data from rural crossings in 29 states of 

the USA”. Unlike the other two models, the Peabody Dimmick model is therefore 
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descriptive in that it is based on empirical observation of collisions. The model gives the 

expected number of collisions at a level crossing in a five-year period as being: 

A5 = Iu + K (1) 

In this definition: 

K is a parameter obtained from the a graph provided in the text; and 

Iu = !.#$(&
'.()'×+'.(,()

.'.()(
 (2) 

Where: 

V is the annual average daily road traffic; 

T is the annual average rail traffic; and 

P is the protection coefficient which varies for the class of level crossing. 

Values for P are provided by the US Department of Transportation (2007); the 

values applicable to this study are shown in Table 2.5. 

Table 2.5: Values for P provide by the US Department of Transportation (2007) 
used in this study 

Type of warning devices Application to this study Value for P 

Signs Passive warning devices 1.65 

Automatic gates Automatic warning devices 2.56 

Watchman, 24 hours Railway-controlled warning 2.52 
 

The exact calculation for K is not defined parametrically in the original source. 

Figure 2.7 is reproduced from Wullems et al. (2013) and graphically shows the 

relationship between K and Iu. 
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Figure 2.7: Peabody Dimmick relationship between K and Iu 

reproduced from Wullems et al. (2013) 

In order to allow calculation from the formula, Wullems et al. performed a 

polynomial regression to determine: 

K =- 0.0329 Iu5 + 0.3996 Iu4 - 1.604 Iu3 + 2.9503 Iu2 - 1.891 Iu + 0.654 (3) 

Inserting the result from Equation (3) into Equation (1) gives the full calculation 

for predicted number of collisions. This form of the equation was used by 

Wullems et al. (2013) in their work and is the form that will be used for further study in 

this work. 

2.12 Applicability of traffic models for different classes of 
level crossing 

Traffic moment is the most commonly used normaliser in SRPTs. In describing 

the Australian SRPT (ALCAM, 2007), Hughes (2002) explains that the method of 

calculation assumes there is a constant probability that any road user will fail to take 

correct action on the approach to a particular level crossing. The probability of a road 

user error may vary between level crossings and can depend on features such as the 

presence and type of warning device at each level crossing. Assuming that there is a fixed 
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probability of each road user committing an error, the probability of a collision occurring 

depends on whether there is a train on, or approaching, the level crossing at the time the 

error is made. Therefore the probability of a collision increases linearly with the number 

of train arrivals and the number of road users. Applying this reasoning, the traffic 

moment model therefore applies to all level crossings. 

Stott's traffic model was proposed as part of a review of automatic open level 

crossings (Stott, 1987), which are level crossings with active warning devices but no 

barriers nor boom gates over the road approach. As such it is possible that the model was 

never intended to be applied to other classes of level crossing. In proposing the model, 

discusses the behaviour of vehicular road users approaching a level crossing. Stott 

presumes that the first road user to stop at the holding point of a level crossing will cause 

an obstruction on the road that will cause all following road users to stop. He argues that 

a collision can occur only if the first road user fails to stop correctly: failures of 

subsequent road users may result in collisions with other road users but will not result in 

a collision with a train. In making this argument it is not relevant why the first road user 

stopped: whether it was because of the road user looked for an approaching train, or 

because of the warning provided by active devices. Furthermore Baker and Heavisides 

(2007) describe the adoption of Stott's traffic model for vehicular level crossings in the 

British SRPT, seemingly for all classes of level crossing. Whilst Stott proposed his model 

for only a particular class of level crossing, it seems that it can be, and is, used on other 

classes of vehicular level crossing. 

The model proposed by Peabody and Dimmick was based on the number of 

collisions observed at level crossings in Illinois during the 1930s and includes a factor (P) 
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for the class of level crossing. Different values of P are provided for level crossings 

which have stop signs (passive warning devices), those that have automatic gates, and 

those that have a watchman. Therefore it is possible to apply the model for different 

classes of level crossing. For railway-controlled level crossings in Britain the role of a 

signaller in manually operating a level crossing's warning system goes beyond that of 

being only a watchman, since the signaller also clears the signal to allow the train to 

approach the level crossing (Evans and Hughes, 2019), as such it is possible that 

application of the model for this class of level crossing is beyond the scope intended by 

Peabody and Dimmick when they created their model. 

2.13 Point estimates predictions of traffic models 

It is noted that the traffic models provide point estimates of the expected numbers 

of collisions that will occur at a particular level crossing. As such, it must be expected 

that all traffic models will be incorrect in some way: the rates of collision predicted by 

the models will always differ from the observed rate of collisions due to natural 

randomness in the environment and the factors that cause collisions. 

Rather than the models giving only point estimates, an alternative approach would 

be for a model to probabilistic predictions for the rate of collisions that can be expected at 

a level crossing. Such probabilistic models could define coefficients of variation for the 

predicted numbers of collisions: in this way the models could be considered to be 

mathematically more correct in that they would not produce results that can be shown to 

be incorrect. Whilst such an approach is appealing mathematically, it is not clear that it 

would necessarily provide any advantage for safety management.  
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The various traffic models, and the SRPTs that use them, have been created to 

provide road and rail authorities with a reliable method to determine which, if any, level 

crossings should be prioritised for investment to reduce safety risk. RSSB (2007) note 

that some SRPTs produce absolute predictions of the numbers of collisions expected at 

each level crossing, whereas other produce relative rankings of level crossings against 

each other. In either case, the tools can be used to prioritise which level crossings require 

more immediate intervention to reduce risk. 

Railway safety legislation in the United Kingdom requires that safety risks are 

reduced to a level that is as low as is reasonably practicable. At the current time, the 

railways do not appear to be claiming that the overall safety risk from all level crossings 

has been reduced so far that no further interventions are required. Therefore a traffic 

model or SRPT will be useful to the railway if it is able to provide an accurate prediction 

of which level crossings have present the highest safety risk. It is likely that a 

probabilistic traffic model will be more complex to create that one that provides only 

point estimates; therefore it is understandable that the models adopted by road and 

railway authorities use point estimates. 

2.14 Data-driven railway safety management 

RSSB's research from 2007 remains one of the most recent works, as well as the 

prominent work collating information on the various SRPTs in use around the world. 

When considering the traffic models that underpin the tools, it is notable that no source 

can be found for the derivation of traffic moment as a normaliser for traffic volume. 

When considering the other main traffic models Stott's hypothesis was published in 1987 
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and the Peabody Dimmick model was developed in the 1930s. Recently there has been a 

dearth of development of SRPTs and their traffic models. 

This stagnation of SRPTs is at odds with the trend in advancement of information 

technology in general and specifically data-driven safety management. An emerging 

research theme on big data risk analysis has focussed on collecting voluminous amounts 

of data on railway operations in order to understand not only accidents that occur on the 

railway (Rashidy et al., 2018; van Gulijk et al., 2016) but also to understand the hazards 

on the railway so that the underlying causes can be removed before an accident occurs 

(Hughes et al., 2016; van Gulijk and McCullogh, 2019). The research concentrates on 

creating descriptive models of hazards and accident causation. With modern information 

technology systems the models can become significantly more complicated than the 

SRPTs used for level crossing safety as they describe subtle effects in the underlying 

mechanisms of accident causation (Hanea et al., 2012). As well as collecting data on 

accidents and hazards, the work is also focussed on collecting data on successful 

completion of safety critical tasks that do not lead to accidents (Hollnagel, 2018; 

Rashidy et al., 2018). In principle the data could be collected and processed to update the 

models in near real-time. 

It is clear that there is an opportunity to apply the findings of this research to 

science of level crossing safety risk management where substantive research does not 

appear to have occurred since 2007 and in one case an underlying traffic model that was 

developed in the 1930s is still being used for modern safety risk management. 



 

66 

2.15 Machine learning 

The founding assumption for use of any SRPT is that there is a relationship 

between the physical and operational characteristics and the safety risk – and therefore 

the rate of collisions – at level crossings. Traditional techniques for determining the 

degree of correlation use statistical methods such as logistic or logit regression. However 

such techniques are limited in their application: Molnar (2018) notes “linear regression 

and logistic regression models fail in situations where the relationship between features 

and outcome is nonlinear or where features interact with each other”. There is no reason 

to assume that the physical and operational characteristics that affect safety risk at level 

crossings should be either linear, or independent of each other. For example the safety 

risk may not be affected simply by the number of heavy goods vehicles (HGVs) 

traversing a level crossing, instead the risk may increase when there is a combination of 

HGVs and a short warning time. Furthermore it is possible that the hazards do not 

correlate linearly with safety risk: hypothetically it is possible that when there is a short 

warning time, road users respond by taking extra care before traversing; where there is a 

long warning time there is a low safety risk. Perhaps the greatest safety risk occurs at 

only some intermediate value of warning time. An exhaustive analysis of all 

combinations of all possible non-linear correlations would be intractable using statistical 

methods, however the emerging science of machine learning is well suited to the task of 

detecting correlations between variables. At present there is no consensus in the literature 

on a definition of the term machine learning, although there is a broad agreement.  
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Definitions from amongst the literature include: 

• “a set of methods that can automatically detect patterns in data, and then 

use the uncovered patterns to predict future data, or to perform other 

kinds of decision making under uncertainty” Murphy (2012), 

• “If a system can improve its performance by performing a certain process, 

it is learning” Li, Zhang and Zhang (2017), 

• “learning can change the performance of the system” (ibid), 

• “learning is the ability to change according to external stimuli and 

remembering most of all previous experience” Bonaccorso (2017). 

These definitions do not agree overall, for example it appears that Li et al. believe 

learning occurs only when a process is being repeatedly performed, whereas Murphy 

implies that learning can occur during a one-off analysis of data. Regardless of these 

differences, the literature all describe machine learning as a process where software 

computes an output using a method that was not previously defined by a programmer; 

instead the calculation method depends on observation of sample data. As Bonaccorso 

implies, machine learning can be a valuable tool to produce meaningful outputs when the 

method of calculation cannot readily be determined by a human programmer. 

Compared with statistical techniques, machine learning methods can be 

computationally expensive (Bzdok et al., 2018), however the increasing power of 

computer systems mean that it is now practicable to perform complex computational 

tasks on personal computers which previously would have been too taken too many 

computing resources to be practicable (Golio, 2015). Consequently there has been a 

recent surge in the application of machine learning methods, a review of internet searches 
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using data provided by Google Trends online data profiling service (2019) shows that the 

number of search requests worldwide has more than quadrupled since 2013. With modern 

computers continuing to become more powerful, the range of problems that can be 

tackled by software is increasing; tasks that were infeasible with earlier software 

techniques are possible with modern computers performing machine learning. 

Bonaccorso (2017) notes “without machine learning there are still many tasks that seem 

far out of computer domain” and goes on to list examples such as: spam filtering, natural 

language processing, and visual tracking with a webcam. One aspect of machine learning 

where there is very nearly a consensus is that there are three main types of machine 

learning methods: supervised learning, unsupervised learning, and reinforcement 

learning. Again, the exact definitions vary between the sources, but there is common 

agreement on the meaning of the terms. 

Supervised machine learning uses software to create a method of calculation from 

observation of data with a number of properties that are classified into one or more 

classes. The role of supervised machine learning algorithm is to identify patterns in the 

properties of an object (within the nomenclature of machine learning, these are often 

referred to as features) that allow reliable prediction of the classification (known as 

labels). Alpaydin (2009) provides an example of classifying whether or not a vehicle is a 

family car based on the vehicle’s price and engine power. In the example it is presumed 

that there is a certain range of prices and a certain range of engine powers that are 

consistent with a vehicle being a family car, outside of either range the vehicle cannot be 

classified as such (perhaps it would be better classified as a truck or a motorcycle). 

Supervised machine learning determines a calculation method from data which is already 
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classified: sometimes called labelled data (Stamp, 2017). These input data are split into 

two sets: the training set and the testing set. The first part of the machine learning process 

attempts to identify patterns in the training set that allow classification of the data based 

on the properties. Once patterns have been identified, the accuracy of the classification is 

tested using the testing set. Since the data in the testing set are already labelled, it is 

possible to compare the classification determined from the machine learning algorithm 

with the prior classification. Once an acceptable level of accuracy has been obtained 

using the labelled data, the same algorithm is then applied to unlabelled data to determine 

classifications. The process assumes that the unlabelled data are sufficiently similar to the 

labelled data that the accuracy of classification prediction will be approximately the same 

between the two cases. 

Unsupervised learning is applied where the data are not labelled; Stamp (2017) 

describes the process as “most useful in cases where we don’t know much about the data” 

as “it can help us determine possible structure (in the data)”. Kyan et al. (2014) provide 

an example of being able to differentiate animals into categories – insects or birds – 

based on the animals’ social dynamics: swarming, hive-making, or flocking. It is 

important to note that unsupervised machine learning algorithms do not label the data; 

rather they identify separations in the data – for example there is a clear separation 

between insects and birds when the properties of social behaviour are considered. It 

remains the task of humans infer meaning from the classifications and provide labels for 

the groups that have been created. Having created a method of separating data, new data 

can be classified into one of the existing classes: a new animal can be classified as either 

a bird or an insect using the same algorithm.  
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Reinforcement learning is described by Alpaydin (2009) as: 

...the learner is a decision-making agent that takes actions in an 

environment and receives reward (or penalty) for its actions in trying 

to solve a problem. After a set of trial-and-error runs, it should learn 

the best policy. 

Invariably the literature exemplify reinforcement learning with cases of software 

undergoing a learning process to achieve improved scores when playing simple video 

games or board games such as noughts-and-crosses or chess (Amato and Shani, 2010). 

During the learning process, a large number of games are played with the software 

initially playing moves at random. If a game ends with the software winning then the 

moves played during the winning game are preferred during future games. Whilst playing 

many games, the software continues to use a stochastic process to select which move to 

play, where the experience from previous games is considered and moves that resulted in 

previous wins are more likely to be selected than those that previously resulted in losses. 

Reinforcement learning requires a large amount of repetition and it is intended that the 

output of the software gradually improves over time to obtained a desired result. 

In summarising these three types of machine learning, a diagram that has become 

widespread in the literature is shown in Figure 2.8; many sources have similar diagrams, 

this version appears in Educba (n.d.) on their website (https://www.educba.com/machine-

learning-algorithms/, retrieved on 21 November 2019). 
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Figure 2.8: Overview of machine learning categories, 
reproduced from Educba (n.d.) 

 

An important aspect of machine learning classification algorithms is that, given an 

input, an output will always be created, however the output may not always be considered 

to be correct when compared to the classification that would be provided by a human. 

Provost and Fawcett (2013) explain: 

...two related fundamental concepts of data science: generalization 

and overfitting. Generalization is the property of a model or modeling 

process, whereby the model applies to data that were not used to build 

the model… Overfitting is the tendency of data mining procedures to 

tailor models to the training data, at the expense of generalization to 

previously unseen data points. 

For example, based on the social behaviours of an animal, a machine learning 

algorithm may assign a particular animal to be in the same category as insects, when the 
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animal is, in fact, a bird. Inaccuracy of output is an inherent feature of machine learning 

algorithms. In many reinforcement learning applications, the first output provided by the 

algorithm is entirely random. It would therefore be unlikely that the output is considered 

correct, rather it is expected that the accuracy of the algorithm will improve over 

repetition until an acceptable level of accuracy is obtained.  

Within the scheme presented in Figure 2.8, the task of identifying how 

characteristics of level crossings correspond with safety risk is a classification problem to 

determine which characteristics correlate with observed rates of collision. Amongst the 

available techniques, some are more accurate at linear classification, while others are 

more suited to nonlinear classification. Again, the literature are not unanimous on the 

machine learning methods that should be applied for classification, although there is 

broad agreement. A number of comprehensive sources were reviewed to identify 

candidate methods. Table 2.6 shows results from a sample of authors that typify the broad 

range of literature available on machine learning; in the table a tick mark (ü) shows 

where authors have proposed a method for machine learning classification tasks. 
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Table 2.6: Machine learning methods for classification 
as identified by various sources of typical sources 

 Authors 

Machine learning method Aggarwal 
(2014) 

Wickham 
(2018) 

Lantz 
(2013) 

Awad and 
Khanna (2015) 

Decision trees ü – ü – 

Random forest – ü – – 

Naive Bayes – ü ü – 

Artificial neural networks ü – ü ü 

Support vector machines ü ü ü ü 

k-nearest neighbours – ü ü – 

 

Each of the candidate methods identified in the literature review are described in 

the sections below. 

2.15.1 Decision trees 

The decision tree method creates a flowchart where each fork in the chart 

represents a classification criterion based on the input data. Repeated forking leads to a 

single classification for each data item. Figure 2.9 shows an example decision tree that 

was created from analysis of data to determine tax payments based on properties of 

individuals, reproduced from Ayyadevara (2018). 
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Figure 2.9: Example decision tree derived from data, 
reproduced from Ayyadevara (2018) 

 

To create a decision tree, it is necessary to determine which properties of the data 

form the decision forks and in which order they should be applied. An algorithm to create 

a decision tree from data – the Iterative Dichotemiser 3 (ID3) method – was described by 

Quinlan (1986). The ID3 algorithm calculates the entropy of every attribute present in a 

given dataset and splits the data so that the resulting sets have the lowest entropy. In 

considering this approach Mohammed et al. (2016) note that this method is susceptible to 

over-partitioning, i.e. splitting data into more classes than necessary, due to the 

assumption that entropy reduction is the best measure to determine the best split. 

Whilst a decision tree created using the ID3 would be optimal in terms of entropy 

reduction at each fork, the process to create such a tree can be computationally expensive 

where there are a large number of properties on the data. An alternative to the ID3 

algorithm is the C4.5 algorithm which uses the information ratio metric instead of 
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entropy to derive forks in the dataset (Fran and Hall, 2011; Larose and Larose, 2014). 

The C4.5 algorithm normalises the entropy reduction from any fork using the number of 

datasets which would result from that fork. This approach removes the problem of the 

ID3 algorithm where a property which has a large amount of variability but is not 

necessarily useful for making real-world classifications is given weight due to the high 

reduction of entropy in the resulting sets. For example, a set of patient data in a hospital 

may contain properties such as patient names, symptoms, and diagnoses. By selecting a 

fork for greatest entropy reduction, the ID3 algorithm might select patient name as the 

most meaningful attribute for prediction of a rare diagnosis, as it is the attribute which 

results in the highest entropy reduction when all names are placed in separate categories. 

For application in this study, a decision tree could be constructed to identify the 

features of level crossings that correspond with observed collisions. It would be possible 

to use training data that describe the features of level crossings, together with a label 

indicating either the number of collisions that have been recorded at the level crossing, or 

the normalised rate of level crossing collisions. Since decision trees predict membership 

of categories, using the method in this way would require level crossings to be 

categorised in terms of their history of collisions. In the simplest case, level crossings 

could be categorised by whether there is any history of collisions or not. A more detailed 

approach would be to categorise the numbers of collisions: for example level crossings 

that have a collision of one or two collisions, and those that have a history of more than 

two collisions. 

Training data describing the features of each level crossing would be applied to 

the method. In theory the features of a level crossing could be any numeric or categorical 
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value such as the maximum speed of trains traversing the level crossing, or the categories 

of trains, such as passenger trains or freight trains. Details regarding other features of the 

level crossing – such as the presence of nearby distractions for road users – could be 

included if these data could be coded as either numeric or categorical values. For 

example Boolean values could be used to indicate whether there were nearby road 

junctions, or signage. The decision tree method could be applied to construct a tree that 

describes the features of level crossings that correlate with categories of observed 

collisions and those that correlate with no history of collisions. 

Data on features of a level crossing could be applied to the resulting decision tree 

to determine the category of collision, or whether no collisions are predicted at an 

individual level crossing. Furthermore the decision tree can be examined to understand 

the method used to predict rates of collision. Features nearer the root of the tree are 

usually the ones that have the greatest impact on the prediction, and therefore are the ones 

that have the greatest impact on the collision prediction. In cases where the resultant 

decision tree produces a high degree of accuracy – even if it is not completely accurate – 

examination of the resultant tree may provide useful information on the features of level 

crossings that correlate with a history of collisions. The resulting tree could therefore be 

used to guide safety interventions at level crossings, even in cases where the trees 

predictions are not completely accurate. 

2.15.2 Random forests 

The random forest method was developed to address the problem of overfitting by 

decisions trees by creating multiple decision trees where each tree uses only a subset of 
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the properties of the data (Berk, 2008). By using only a subset of the properties it is not 

possible for the algorithm to overfit the data. 

Having created a number of decision trees (a forest) the trees are each tested for 

the predictive accuracy. A common method using random forests is to select a number of 

the trees that overall provide the most accurate predictions on the training data. Unseen 

data are then applied to the subset of decision trees and are classified based on the 

majority outcome from all the trees used (Grus, 2019). 

The random forest method is based on the decision tree method and can be used 

in any application where it is possible to create a decision tree. Since the random forest 

method creates a large number of decision trees, the trees in the forest consider different 

features of level crossings and have different criteria for selecting the categorisation of an 

individual level crossing. This approach may produce more accurate predictions than the 

decision tree method, however examination of the many trees created using this method 

will be more difficult than examination of the single tree created by the decision tree 

method. By considering only a subset of the features of level crossings, the various trees 

in the random forest will consider the features in different ways. A feature that is near to 

the root in one tree may not be near the root in another tree: in other trees the feature does 

not occur at all. The larger the number of trees the more difficult it will be to discern the 

main features that affect rates of collision. As such, whilst the random forest method 

might produce more accurate results than the decision tree method, it may be less useful 

for determine appropriate safety interventions. 
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2.15.3 Naive Bayes 

The naive Bayes method uses Bayes’ probability theorem to compute the 

posterior probability that a data item belongs to a particular class based on its features 

(Aggarwal, 2014). The probability of an item belonging to each class is calculated and 

the method assigns the item to the class with the largest probability. An advantage of this 

method is that an explicit probability estimate is provided for each class, therefore it is 

possible to determine the confidence with which a classification has been made. Another 

advantage of the method is that is scales well to large sets of data and can be used in 

cases where there are many features in the data (Witten and Frank, 2002). 

The disadvantage of the naive Bayes method that is most often cited in the 

literature is that the method assumes that the features of the data are independent are do 

not combine to affect the classification of an item (Gan, 2020). As noted above it is 

unlikely that the features that affect level crossing safety risk are independent of each 

other and therefore application of the method for level crossing data could be expected to 

produce unreliable results. Nevertheless, experience of application on real-world data 

“often results in classifiers that work well” (Murphy, 2012), and therefore there is no 

reason not to test the method on level crossing data. A more profound problem with this 

method is the zero-frequency problem which occurs when a combination of features 

occurs in the testing set that has not been previously observed in the training set 

(Binmore, 2008). In these cases the naive Bayes method will produce a zero probability 

estimate for every class. Given the large number of features that can be used to describe a 

level crossing, and the wide variety of level crossings that occur, it is certain that there 

will be level crossings in the test set that contain combinations of features that have not 
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previously been observed in the training data. For this reason, the naive Bayes method is 

not considered suitable for use in classifying level crossing data. 

2.15.4 Artificial neural networks 

Artificial neural networks (ANNs) are commonly described as “the poster child of 

machine learning” and are often considered to be synonymous with machine learning 

(Wujek, 2017; Whitehorn, 2017). Initially proposed in the 1950s, ANNs are an attempt to 

create logic in software that emulates the structure of the human brain (Haykin, 1994). 

An ANN is made up of a number of artificial neurons, each neuron is capable of 

performing only limited computation, typically a single neuron will provide an output 

that is the sum of the weighted inputs compared to a threshold value. The neurons are 

arranged in layers so that the output from a neuron in one layer provides input to a 

number of neurons in the next layer. A large number of artificial neurons arranged in a 

network are able to provide complex output and are typically used for classification tasks. 

An ANN has a large number of parameters defining the weights for each input to 

each neuron, initially the weights are set to random values. To train the network, a 

number of example input data are provided and the random network is used to provide a 

classification. Using the training data, the outputs from the network are compared with 

the expected outputs. Over repeated application of example inputs and comparison of the 

output with the expected results, the weights in the network are updated in an attempt to 

improve the general classification accuracy of the network. Two methods are used to 

update the weights: backpropagation and genetic algorithms. There is no consensus 

regarding which method, if either, should be preferred over the other (Garson, 1998; 

Guo and Uhrig, 1992; Fausett, 1994). As a relatively old technology amongst machine 
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learning techniques, ANNs have been applied for many applications and the literature 

abound with descriptions of successful applications, especially for computer vision 

systems. Nevertheless there remain many cases where ANNs have not been found to be 

successful (Srivastava et al., 2014). 

For understanding safety risk at level crossings, it is possible to apply the ANN 

method in the same manner as decision trees would be applied (refer to Section 2.15.1). 

Data on features of level crossings could be provided as inputs either as numerical or 

categorical values. Since the output of an ANN is a value that corresponds to membership 

of a class, it would again be necessary to create classes to describe observed collisions at 

a level crossing. Again, this categorisation could be a simple Boolean value: whether a 

level crossing has a history of collisions or not; or more a complex categorisation that 

groups the number, or the rate, of observed collisions. 

Unlike the decision tree method, ANNs are often described as being a black box 

method, indicating that the method of calculation cannot readily be interpreted. The 

method of calculation used by an ANN is coded in a large set of weights and threshold 

values in the network. A large number of values are calculated in parallel in the network; 

the results of many calculations are brought together to produce the final output. The 

parallel calculations within the network are determined by a process that simply aims to 

produce an accurate final result and, in many cases, will not be meaningful in terms of the 

real-world operations at level crossings. It is possible that the various parallel calculations 

even have contradictory effects on the output: one calculation may use a set of features to 

indicate a large number of collisions; whereas another calculation may use the same 

features to indicate no collisions. It is only when these results are combined in the final 



 

81 

layers of the network that accurate results are achieved. As with random forests (refer to 

Section 2.15.2) it is possible that an ANN could produce results that have a high degree 

of accuracy, but the results are not more generally applicable to determining useful safety 

interventions at level crossing. 

2.15.5 Support vector machines 

Support vector machines are derived from the techniques used in linear 

regression. The simple example of a support vector machine would be to consider marks 

awarded to students who have taken an exam presented on a number line. Above a certain 

mark (say, 80%) the student is awarded a pass grade, below that mark, the student has 

failed. If there are two properties of the data to be considered then the decision boundary 

is not a single point but a line, for more properties the boundary becomes a plane or a 

hyperplane (Campbell and Ying, 2011). In general there can be a large number of 

boundaries that divide two datasets, the algorithm for development of a support vector 

machine calculates an optimal boundary that maximises the distance between the 

boundary and the datasets. Understanding support vector machines is relatively intuitive 

when there is a single boundary in the data, however real-life cases may not be so 

straight-forward. For example, when considering whether a person is a healthy weight, 

there are a range of values that can be considered healthy: values either above or below 

that range may be unhealthy. As such there is no single boundary upon which to make a 

decision. Support vector machines overcome this problem by transforming to the data to 

inflate the number of dimensions. in general, where there are sufficient dimensions in the 

data, it is always possible to identify a hyperplane that will divide the data in accordance 

with some classification (Lam et al., 2012). 
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For assessing the features of level crossings that correspond with observed 

collisions, it is possible that support vector machines can be applied in the same manner 

as decision trees and ANNs (refer to Sections 2.15.1 and 2.15.4). Again it would be 

necessary to categorise the observed collisions and the method would create predictions 

within those categories. Like ANNs, support vector machines are black box methods: in 

principle it is possible for the software applying the method to show the method of 

prediction, however the results are not necessarily meaningful in terms of the physical 

features of a level crossing, and would be intractable to a human reader. 

2.15.6 k-nearest neighbours 

Based on labelled data, the k-nearest neighbours method computes a distance 

metric between a test data item and every other item in the data set (Witten and Frank, 

2002). The distance metric is determined based on the difference in values for each of the 

item’s features compared with each other data point. In most cases the distance metric is 

the Euclidean distance, however other measures can be used, such as non-linear measures 

that exaggerate the weight given when items have features with close values (Larose and 

Larose, 2014). At the start of the test, a value of k is selected by the analyst; once a 

distance metric has been calculated for each item, the k items with the lowest distance 

metric are considered. The test point is then classified by using a simple vote to 

determine the class that most commonly occurs in the nearest neighbours. If the vote 

produces a tie, then a further test is performed to find which of the tying neighbours are 

closer in order to provide a classification. The process is repeated for every unclassified 

item. 
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A problem when applying the k-nearest neighbours method to large data sets, 

especially for data where there are large numbers of features, is the computational effort 

to calculate the distance to every other point. However this problem occurs only where 

computational resources are scarce, or if results are required in a short period of time. 

Another problem is that in computing the distance metric there is a need to rescale all 

features onto the same scale (for example all value will be between zero and one) to 

ensure that all features are considered equally. Furthermore the method cannot be applied 

reliably in where there are Boolean data (i.e. features of the data that have the value 

either true or false; in some cases these are represented as 1 and 0, or yes and no) 

(Binmore, 2008). The data on level crossings contain many Boolean features, for 

example the presence of advanced warning signs is presented as a Boolean value (yes 

there are advanced warning signs, or no there are not); it is not meaningful to have 

intermediate values for this feature. For this reason, the k-nearest neighbours method is 

not suitable for data describing the many varied features of real-world level crossings. 
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2.15.7 Selection of machine learning methods for this study 

Of the methods described above, five of the seven appear to be suitable for 

classification of level crossings. Table 2.7 summarises the findings from the prior 

sections. 

Table 2.7 Summary of machine learning methods applicable for this study 

Machine learning method Suitability for this study 

Decision trees Suitable for use. 

Random forest Suitable for use. 

Naive Bayes Not suitable due to the zero-frequency problem. 

Artificial neural networks Suitable for use. 

Support vector machines Suitable for use. 

k-nearest neighbours Not suitable due to the occurrence of binary values in the input. 

 

Within the literature there are many examples of the various machine learning 

methods being applied, however there is no clear information describing which methods 

perform better than others for a given task, or for a particular type of data. There are a 

number of papers that apply different methods to the same data in an attempt to identify 

which methods perform better than others, for example Domingues et al. (2018) and 

Nazari et al. (2018), however the results between different studies do not always agree. 

Machine learning is as an emerging technology and it appears that consensus is yet to be 

reached on which methods are preferred for a particular application. 
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2.16 Prior contributions 

This study continues the author's prior work investigating level crossing safety, 

the causes of collisions, and methods to improve warning devices at level crossings. This 

study also extends prior work using modern data analysis techniques to understand safety 

risk on the railway. 

The initial work was undertaken for Queensland Transport in 1999 and 

culminated the creation of an SRPT that was adopted for use by Queensland Rail to 

assess level crossing safety risk (Hughes, 2002). The tool included a method for assessing 

the safety risk of a level crossing both in its current configuration and after proposed risk 

controls had been applied. A rudimentary validation of the tool was undertaken, however 

a rigorous test of the tool's predictive accuracy was not possible due to limits of the data 

that were available at the time. The tool was subsequently adopted by all Australian road 

and railway authorities as the All Level Crossing Assessment Model (ALCAM, 2007). 

A subsequent study was undertaken into the effect of different classes of warning 

devices on safety risk at level crossings in Australia resulting in a conference publication 

(Hughes, 2012a), which was reformatted for publication in a trade journal (Hughes, 

2012b). At this time there had been an abiding belief in the concept of a hierarchy of 

controls (refer to Section 2.3.2) that assumes that active warning devices correlate with 

few collisions per road user traverse than passive devices do. Further it had been assumed 

that the provision of some form of road barrier at level crossings – usually a boom arm – 

correlates with a further reduction in collisions. At that time these assumptions had not 

been proven, again largely due to the absence of data on the number of road user 
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traverses at level crossings. Nevertheless there was a general desire amongst road and 

railway authorities to provide active warning at all level crossings if possible.  

A barrier to the widespread provision of active warning devices is the high cost of 

the equipment involved. Road users come to trust the information provided by level 

crossing warning devices (such as flashing lights) and believe that the absence of a 

warning necessarily indicates that no train is approaching. This approach is at odds with 

the general design philosophy of safety-critical information systems: usually systems are 

designed so that an active indication is required to show that a hazard is not present, 

which means that, if a warning device fails completely, users will assume that a 

hazardous state exists. However if a level crossing warning light assembly were to fail 

completely then it would look exactly as though it were safe for road users to proceed 

onto the level crossing. This inverted design of the warning means that high demands are 

placed on the reliability of level crossing warning devices: the devices must be tolerant to 

a large range of failures, such as power failures, and still be able to provide warnings. 

Furthermore the devices are situated next to railways and roads and have to be designed 

to be robust against a wide range of environmental conditions. These demands result in a 

high cost for any warning devices that acts as an impediment to the widespread 

installation of active warning devices.  

Emerging technology has led to new designs of warning device that use features 

such as light-emitting diodes assemblies for providing warnings, solar power instead of 

wired electrical supplies, and wireless communications. These modern devices allow for 

substantial reductions in the cost of warning devices, however in some cases the low-cost 

devices cannot achieve the high reliability of prior technologies. In 2013, the author 
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undertook a study in conjunction with researchers at the Queensland University of 

Technology to investigate whether there would be a net safety benefit by the widespread 

introduction of low-cost active warning devices, even if such devices could not achieve 

the same level of reliability as prior technologies (Wullems et al., 2013). At around the 

same time, the author took over the directorship of ITS Innovations, a company that 

designed and manufactured low-cost level crossing warning devices. The company's 

product used a number of innovative design features that allowed them to operate for 

long periods without any maintenance or external power supply (Hughes, 2014). 

A significant contribution of the author's prior work was a study undertaken in 

conjunction with a researcher at Imperial College London that used the newly published 

data from Network Rail (2017) to prove the long-standing assumption that active warning 

devices corelate with fewer collisions per road user traverse than passive devices do 

(Evans and Hughes, 2019). Another important contribution of this work was to consider 

the effect of level crossings on road traffic flow: the study derives a formula that shows 

that the total delay to road users as a result of a level crossing activation is proportional to 

the number of road users; the number of train traverses; and the square of the time the 

warning operates for each train approach. 

Concurrent with this most recent work, the author undertook a number of studies 

to investigate how emerging computational methods can be applied to large and diverse 

data sets, and in particular whether application of these methods can be applied to 

improve the overall safety of the railway system (Van Gulijk et al., 2018). These 

investigations have looked to identify efficient methods for collecting data from diverse 

sources to identify hazards arising from train drivers responding incorrectly to stop 
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signals (Rashidy et al., 2018), as well looking at more general methods for handling the 

very large volumes of data that would be encountered if a large number of diverse data 

sources were used for similar studies (Van Gulijk et al. 2016). The study of the use of 

large and diverse data sources has included a number of studies of how information can 

be extracted from text data to support railway safety. One study has focussed on 

identifying patterns in hazard reports written by railway infrastructure workers (Hughes 

et al., 2016), and another identified trends in accident reports written in three different 

languages collected by the Swiss Federal Office of Transport (Hughes et al., 2019). 

These studies of modern approaches to data analysis have informed the methods used in 

this study. It is noted that this study does not make use of any information derived from 

text data, however it is possible that future work could make use of text data – such as 

inspection reports or accident reports – to further improve safety at level crossings. 

The work describes a study that is a corollary of these earlier studies and 

investigates in detail how volumes of vehicular road traffic affect rates of collisions at 

different classes of level crossings. In doing so, this work employs traditional statistical 

approaches as well as emerging machine learning methods for analysing the data. Some 

of the findings of this work form the basis for a joint submission with a professor of 

psychology to investigate how human behaviours affect safety at level crossings. The 

proposal for this subsequent study has already been submitted to Network Rail. These 

contributions are shown graphically in Figure 2.10. 
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Figure 2.10: Graphical summary of prior contributions and 
proposed further study 

2.17 Summary 

There is a sizeable body of literature on level crossing safety. Overall, the 

literature show that there is no overarching theory of level crossing safety risk and in 

particular no consensus on the question how, or even whether, physical and operational 

characteristics of a specific level affect safety risk in general. Various researchers provide 

specific information regarding how individual characteristics have been observed to 

affect collision likelihood in specific cases. It should be noted that the various studies do 

not appear to disagree with each other, however no studies have been found that seek to 

confirm the results obtained by previous researchers. Whilst a number of the parts of a 
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theory of level crossing safety seem to have been developed, no consistent overall theory 

has been developed. 

Despite the lack of a general theory of level crossing safety risk, a number of road 

and railway authorities around the world have developed SRPTs. The SRPTs vary in the 

way that risk is calculated, and it can be expected that the various tools would give 

different risk predictions for the same level crossing. However such a test of correlation 

between the results of the various SRPTs is not possible with the information that is 

currently available: the details of the methods of calculation are not generally made 

available for a number of the tools and no calibration data can be found for any of the 

SRPTs. 

A common feature amongst the various SRPTs is that they all use an underlying 

traffic model to determine how varying numbers of road vehicles and trains affect safety 

risk. Three different models were identified for which there is sufficient detail to perform 

verification of the model. These models are inconsistent with each other and would lead 

to different risk predictions for the same level crossing. 

From the review of the literature it is clear that there is the potential for further 

study that would improve an understanding of the causes of safety risk at level crossings. 

Ideally there would be a complete, consistent and generally agreed-upon theory of the 

way in which physical and operational characteristics of a level crossing affect safety 

risk. Whilst various researchers have provided parts of the information that would be 

required for a full understanding, it is currently not clear whether such a goal is 

achievable. If it were, it is clear that there remains a significant amount of further work to 

realise that ambition. 
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The common feature of all the SRPTs is the underlying traffic models. Unlike the 

tools themselves, there is good information available on each of the models and the 

methods of calculation. In the pursuit of a general theory of level crossing safety risk, 

there is a clear opportunity for further research to provide a contribution by testing the 

degree to which the various traffic models correlate with observed collisions. The data 

from Network Rail that have recently been made available regarding road user volumes 

at level crossings are a valuable resource to testing the various traffic models. 

Advancing information technology has allowed for data to be collected and 

analysed in ways that were not previously possible. A small number of researchers have 

identified ways in which these new analysis approaches could benefit management of 

safety risk on the railway. To date, however, these approaches have not been applied to 

managing level crossing safety. There is a clear opportunity for a study to review the 

traffic models that are used for level crossing safety risk prediction with a view to 

creating an overarching theory and, potentially, to use the emerging data analysis 

approaches that are currently being researched. There is an opportunity to use the new 

methods of machine learning, together with the newly available data, to establish whether 

it is possible to determine an SRPT that makes risk predictions that correlate with 

observed collisions. No studies can be found to date that have considered using machine 

learning methods in this way. 
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2.18 Contribution 

The following contribution to current knowledge has been made in this chapter: 

Contribution 2: This chapter has reviewed the literature that are available on level 

crossing safety and in particular SRPTs and the traffic models that underpin them. The 

review has identified the sources of data that are available for validating the SRPTs and 

methods of testing traffic models including emerging machine learning techniques. 

  



 

93 

Chapter 3: Investigation of traffic moment as a natural normaliser 
for level crossing collisions 

3.1 Purpose and overview of the investigation 

As discussed in Chapter 2, a number of SPRTs consider traffic moment to be a 

fundamental normaliser for collisions at level crossings. Despite this widespread use, no 

prior work can be found to test the validity of using traffic moment in this way. The 

apparent logic for such an assumption is straight-forward: a collision can occur only if 

both a road user and a train occupy are present on the level crossing at the same time. 

Therefore where there are either no road users or no trains then collisions cannot occur. 

As road use and train volumes increase, it can be expected that the number of 

opportunities for a collision to occur will increase. Indeed the product of the number of 

road user and the number of train traversals per day is sometimes called the risk exposure 

(for example see ALCAM, 2007). If it is assumed that collisions occur independently and 

randomly – for example as a result of inattention by road users in a way that is not 

affected by the actions of other road users – then the number of collisions at any level 

crossing will be in some proportion to the risk exposure. As such it can be expected that 

the number of collisions at a level crossing varies in accordance with the product of the 

number of road user and train traverses in a given period. Even if this core assumption is 

accepted – that collisions occur independently and randomly – it is not obvious that 

collisions vary with the product of road user and train volumes. For example if the 

distribution of road user arrivals and train arrivals at a level crossing is not constant 

during a day then it is not clear that an increase in traffic will lead to a linear increase is 

risk exposure. Perhaps road users are generally using a level crossing during the day with 
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only a few arrivals during the night; whereas trains are generally using the level crossing 

at night with only a few arrivals during the day (such as may occur at a level crossing 

over a freight railway). In such a case it is not apparent that doubling the number of road 

users over a day will necessarily double the collision rate. 

This chapter provides a theoretical consideration of the collision rates that could 

be expected for different road user and train volumes at a level crossing if arrivals of road 

users and trains occurred at random and road users took no action to avoid collision. Such 

a scenario is analogous to considering a road bridge over a railway line. With a bridge 

there is no opportunity for a collision, in this case road users will proceed over the bridge 

and trains will travel underneath without regard to the presence of the other. At some 

points in time a road user will be positioned on the bridge exactly over a train passing 

underneath. If the bridge had not existed, and trains and road users traversed the level 

crossing with no regard for each other, then such a situation would present a collision on 

the level crossing. 

It is acknowledged that this model of a level crossing being equivalent to a bridge 

makes a number of simplifications: firstly at real-world level crossings, road users do 

respond approaching trains and usually avoid a collision. Another simplification is that 

road traffic flow cannot always be modelled by road users arriving at random, in some 

cases queuing can affect traffic flow. In spite of these simplifications, the number of 

SRPTs that use traffic moment as an underlying traffic model, it is worth testing whether 

this simplistic model has any validity. 
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Two studies were undertaken to determine whether traffic moment can be 

considered a fundamental measure of collision likelihood. Firstly a theoretical derivation 

was undertaken; secondly a Monte Carlo simulation was performed. 

3.2 Theoretical derivation 

The theoretical derivation considers trains and road vehicles passing over a level 

crossing at random. Figure 3.1a shows a train with length LT and width WT approaching a 

level crossing with speed ST. Similarly the figure shows a road vehicle with length LV, 

width WV approaching at speed SV. A collision will occur if both the train and road 

vehicle are occupying the conflict patch (P) at the same time; such a condition is shown 

in Figure 3.1b. 

 

 

Figure 3.1a: A vehicular road user and a train approach a 
level crossing 

Figure 3.1b: Collision of train 
and road user 
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The conflict patch has a width equivalent to the width of a road vehicle. The 

entire length of the train must pass through the conflict patch. Therefore the amount of 

time the train spends in the conflict patch (tT) is given by equation (1a): 

5+ =
789:;
<;

. (1a) 

By symmetry, Equation 1b shows the amount of time the road vehicle spends in 

the conflict patch (tV). 

5& =
7;9:8
<8

. (1b) 

For a day of duration D and T trains per day, the total proportion of a day that the 

conflict patch is occupied by trains, and therefore the probability of a train being on the 

level crossing at a randomly selected moment, is shown in Equation 2a. 

>?@ABC =
+?;
D

 (2a) 

Similarly, for V road vehicles per day, the probability of a road vehicle being on 

the level crossing at a randomly selected moment is shown in Equation 2b. 

>@EAF	HIJBKLI =
&?8
D

 (2b) 

The probability of these random events coinciding is the product of the terms (2a) 

and (2b): 

>KELLBMBEC =
+?;
D
× &?8

D
 (3) 

Rearranging gives: 

>KELLBMBEC = NO ?;×?8
DP

 (4) 
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Substituting from Equations 1a and 1b gives: 

>KELLBMBEC = NO
Q;RS8
T8

×
Q8RS;
T;

DP
 (5) 

The result in Equation (5) shows that Pcollision is indeed proportional to VT (the 

traffic moment). 

In addition to this primary finding, the result in Equation (5) also shows that 

Pcollision increases if: 

• the length or width of either the train or the road vehicle increases, or 

• S reduces, i.e. the vehicles travel more slowly over the conflict area. 

The first of these points accords with intuition: that random collisions are more 

likely between objects of large size, simply because there is more area to collide with it is 

more likely that a collision will occur. The second point is less intuitive: collisions at 

level crossings could be expected to reduce if the speed of both road users and trains were 

increased. Taking this to the extreme would suggest that increasing the road speed of 

traffic approaching a level crossing to extreme levels could result in ever safer level 

crossings. Clearly such a finding is nonsensical: human drivers have a finite capacity for 

observing the route ahead and therefore limited ability to drive safely at increased speeds. 

Rather this second finding is a mathematical consequence of the idealised model that has 

been used and not a sound basis for road safety programmes. 

It should also be noted that this simple model also disregards simultaneous 

traverses which can occur for one of two reasons, either by: 
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• two road vehicles arriving from different directions on a bi-directional 

road, or 

• two road vehicles arriving from the same direction on a road with multiple 

carriageways. 

Furthermore this derivation does not consider other effects such as queuing that 

could lead to road vehicles being stationary in the conflict patch. 

3.3 Simulation method 

Whilst the simplification in the previous section confirms the intuition that traffic 

moment is proportional to the number of collisions at a level crossing, the method of 

derivation may be overly simplistic in that it considers the rate of arrival of road vehicles 

and trains to be constant throughout the day. An alternative method to analyse the 

relationship between expected collision rate and traffic volumes is to use simulation. 

During a simulation the rate of traffic arrival can be varied during a day. In this way, the 

simulation can consider cases such as train arrivals that occur predominately during the 

night (perhaps as may occur on a freight line) and road vehicle arrivals that occur 

predominately during the day. Another advantage to performing a simulation is that it 

provides a second method of analysis that could act as a cross-check of the results of the 

mathematical derivation. 

A Monte Carlo simulation was programmed for various road user and train 

volumes. The Monte Carlo method is a technique for risk estimation that uses a model of 

a system to calculate the outcome given a particular set of inputs. In this case the system 

is a level crossing; the inputs are the positions and speeds of approaching trains and road 

vehicles; the outcome is a count of how many collisions occur given these input values. 
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The model is recalculated a large number of times using different input values, which are 

randomly selected from a probability distribution. New input values are selected for each 

recalculation of the model. The results of many recalculations are aggregated to obtain an 

overall risk estimate. 

Different simulations were run to allow for different total numbers of road users 

traversing the level crossing in a day. Twenty-one different values were used for the total 

number of road users in a day (V) in a range evenly distributed between zero road users 

per day to 5000 road users per day: therefore between each simulation an additional 250 

road users per day were added. Twenty-five different values were used for the number of 

trains per day (T), distributed evenly between zero and 72 trains per day; a difference of 

three trains per day between each simulation. A simulation was run for each value of V 

against each value of T. 

During a simulation, a day was divided in 24 one-hour periods. For each period, 

the expected number of road users and trains was calculated. Road users and trains were 

not considered to arrive at a constant rate during each one-hour period, rather arrivals 

occurred at random. The probability of an arrival was calculated to achieve the expected 

number of arrivals for each one-hour period. Arrivals were determined using a random 

number generator. Trains arrived singly at random, once a train was clear of the level 

crossing, the next train could not arrive within 20 seconds. Similarly, road users arrived 

singly; a new road user could not arrive within one second of the previous road user 

clearing the level crossing. 

The length of the road vehicles used in the simulation were selected from a 

uniform distribution between 2 metres – which would be typical for a motorcycle – and 
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18 metres which is the longest vehicle permitted on public roads in the UK. The speeds 

of road vehicles were selected from a uniform distribution between 5 miles per hour and 

60 miles per hour. Similarly the lengths of trains was selected randomly from a uniform 

distribution between 15 metres – representing a light engine – and 234 metres which 

would correspond to an inter-city passenger service. The train speeds were randomly 

selected between 5 miles per hour and 125 miles per hour. 

A collision was recorded if a road user and a train were occupying the level 

crossing at the same time. It is possible for more than one road user to collide with the 

same train. The number of collisions that occurred in a day were summed.  

To consider the effects of different distributions of road users and trains, five 

scenarios were considered for different proportions of road user arrivals and train arrivals 

for each hour of the day. The scenarios are discussed below. 

Scenario 1: 'Double flat' 

In this scenario, road user arrivals and train arrivals were constant throughout the 

day i.e. one twenty-fourth of the day's road users arrived during each hour of the 

day. Train arrivals were similarly distributed. 

Scenario 2: 'Stott flat' 

Arrivals of road users were varied over the day in accordance with the distribution 

proposed by Stott and shown in Table 2.4. Train arrivals were constant throughout 

the day, as for Scenario 1. 
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Scenario 3: 'Double Stott' 

Both road user arrivals and train arrivals were varied in accordance with the 

distribution shown in Table 2.4. 

Scenario 4: 'Double rising' 

During the first hour of the day, road user arrivals were zero, the number of road 

users per hour was increased linearly throughout the day until the last hour of the 

day. Train arrival proportions were the same as road user arrivals. 

Scenario 5: 'Rising falling' 

Arrivals of road users were varied over the day as for Scenario 4, the number of 

train arrivals was the inverse of road user arrivals, i.e. train arrivals were at their 

maximum value during the first hour of the day and decreased linearly to zero in 

the last hour of the day. 

Each of the scenarios is shown graphically in Table 3.1. 
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Table 3.1: Graphical representation of distributions over a day 

Scenario 1: double flat 

 

Scenario 2: Stott flat 

 

Scenario 3: double Stott 

 

Scenario 4: double rising 

 

Scenario 5: rising falling 
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For each scenario, simulations were run with different total numbers of road 

vehicles and trains arriving in the day. The total number of road users was varied between 

zero and 5000 road users per day in incremental steps of 250 road users per day (being 21 

different values that were used in the simulations). Train volumes were varied between 

zero and 72 trains per day in incremental steps of three trains per day (25 different 

values). To obtain a large enough sample of statistical significance, each scenario was run 

for an equivalent of 10,000 days (approximately 27.4 years). The total number of trials in 

this study was therefore: 

   5 scenarios 

× 21 values for road user volume 

× 25 values for train volume 

× 24 hourly periods 

× 10,000 days 

= 630 million random trials. 

During the simulations, a collision was counted if a road vehicle and a train were 

occupying the level crossing at the same time.  

During the simulations it was assumed that road user will have an average length 

of six metres and travel at 40 km/h, therefore occupying the level crossing for an average 

of 0.54 seconds. Trains were considered to have an average length of 150 metres and 

travel at 100 km/h; giving a total occupation of 5.4 seconds. 
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The number of collisions for each number of road user arrivals was summed for 

all trains arrivals for each scenario. Similarly the number of collisions for each number of 

train arrivals was summed for all road user arrivals. The null hypothesis assumed that 

collisions should vary linearly with increasing road user arrivals, and independently that 

they vary linearly with increasing train arrivals. To test this case, the numbers of 

collisions were plotted and a linear regression analysis was performed. The results are 

shown in Table 3.2. 
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Table 3.2: Results of simulations 

Scenario Graphical results R2 value of linear regression 
comparison with traffic moment 

Scenario 1 

Double flat 

 

 

0.9853 

 

0.9951 
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Scenario Graphical results R2 value of linear regression 
comparison with traffic moment 

Scenario 2: 

Stott flat 

 

0.9768 

 

0.9867 



 

107 

Scenario Graphical results R2 value of linear regression 
comparison with traffic moment 

Scenario 3: 

Double Stott 

 

0.9789 

 

0.9934 
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Scenario Graphical results R2 value of linear regression 
comparison with traffic moment 

Scenario 4: 

Double rising 

 

0.9649 

 

0.9932 
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Scenario Graphical results R2 value of linear regression 
comparison with traffic moment 

Scenario 5: 

Rising falling 

 

0.9835 

 

0.9918 
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3.4 Summary of results and discussion 

The simulation results for each scenario show very strong linear correlation 

between collision rates and traffic rates for both road and rail traffic: in every case the R2 

values from the test vary between 0.9649 and 0.9951. Together the with results of the 

theoretical derivation, it can be concluded that for the simple case being tested the 

expected collision rates vary linearly with both road traffic and rail traffic. In 

combination the overall expected collision rate varies with the product of the road and 

rail traffic rates: i.e. the traffic moment. 

This finding is perhaps intuitive: certainly the number of SRPTs that use traffic 

moment as the underlying traffic model suggests that when developing collision models 

for level crossings it appears natural to consider traffic moment as the measure for risk 

exposure. Despite this finding being apparently intuitive, no prior work had been found 

that provided any validation of this result. 

Whilst this study has demonstrated the basic relationship between traffic moment 

and expected collision rate, the simplistic approach taken in the analysis and simulation is 

clearly incomplete. Firstly it is clear that road users do not proceed over level crossings 

without regard for approaching trains. Secondly, as noted by Stott, once a road user stops 

at a level crossing to yield to an approaching train, other road users who arrive behind 

will be unable to proceed onto the level crossing unless they bypass the road user who 

has stopped. Also, as noted above, the model used in this study considers only a single 

road carriageway with traffic approaching from a single direction. Where a road has more 

than one carriageway, or traffic approach from two directions, then it is possible that two 
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road vehicles can be on the level crossing at the same time. In this case if one vehicle 

traverses the level crossing safely, then it is very likely that the other vehicle will also 

traverse safely. In these cases the traverses cannot be considered independent of each 

other and therefore one of the basic assumptions of the model is incomplete. Furthermore 

the simple model considers only undersaturated traffic flow, i.e. where vehicles are 

moving and are not being delayed by other traffic on the road. Saturation can occur, for 

example, when queuing occurs at a level crossing during the traverse of a train and the 

queue is unable to completely disperse before the arrival of the next train. Similarly, a 

common situation is that traffic may be queued over a level crossing as a consequence of 

a nearby road junction. 

The hypothesis proposed by Stott addresses one of these simplifying assumptions 

– viz. that once one road vehicle has stopped to yield to a train then other road users 

behind are more likely to stop. However it may be ambitious to expect Stott's hypothesis 

to provide a fully accurate model since there are a number of cases that are not modelled 

in the hypothesis. For example Stott's hypothesis considers only collisions that arise as a 

result of road users breaching the level crossing holding point in the two seconds before a 

train arrives; whereas collisions can occur at level crossings when a road user has become 

stuck on a level crossing perhaps some minutes before the arrival of a train. Also, Stott's 

hypothesis considers only collisions where a train strikes a road user who is already 

occupying the level crossing, and not to cases where a road user strikes a train. Whilst 

there are few sources of information on the proportion of level crossing collisions that 

occur in this way; ATSB (2001) states that for 16% of all fatal level crossing collisions in 

Australia, the point of impact was the side of the train, and in a further 18% of fatal 



 

112 

collisions the point of impact was not known. Stott's hypothesis also presumes that the 

first road user to stop behind the holding point at a level crossing will remain stopped and 

will prevent any further road users from breaching the holding point, however it is not 

clear that this will always be the case. For example if the first road user is a small vehicle 

(perhaps a moped) then subsequent vehicles can readily move around the first road user. 

Similarly if the second road user is a heavy vehicle then its failure to stop could easily 

cause a collision that shunts the first road user onto the tracks. Furthermore, Stott’s 

hypothesis is sensitive the distribution of road traffic throughout a day, however it is not 

clear that the daily distribution or road traffic proposed by Stott is correct for all, or even 

any, of the level crossings in Britain. As discussed in Chapter 2, Stott's hypothesis is a 

predictive model in that it was derived by logical reasoning, rather than empirical data 

collection. It is alluring to consider that it may be possible to construct a more detailed 

predictive model that contains elements from Stott's hypothesis and other factors to fully 

address the other factors that affect collision rate at a level crossing. However it is not 

clear that any such model could ever be developed: the Transportation Research Board 

(2000) note that in cases where saturation occurs it is not possible to create a general 

model of traffic flow since the actual behaviour of traffic depends on the characteristics 

of individual road layouts. 

3.5 Conclusion 

This chapter has provided theoretical rigour and validation to test the common 

notion that traffic moment can be used as an underlying traffic model for level crossing 

collisions. However it is noted that use of traffic moment requires some simplifying 
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assumptions. Furthermore, the complexities of traffic movement, especially during 

saturated conditions, means that it is probably not realistic to expect that any single traffic 

model will be generally applicable for all level crossings. 

The following chapters present an experiment to test the correlation between 

observed collision rates at level crossings in Britain and traffic models. 

3.6 Contribution 

The following contribution to current knowledge has been made in this chapter: 

Contribution 3: The study described in this chapter has used two different 

methods to show that traffic moment is a valid normaliser of collisions at level crossings 

in simple cases where there is: unsaturated traffic; a single carriageway approach in each 

direction; no queuing from nearby roads; and road users take no care to avoid a collision. 
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Chapter 4: Method to test traffic models against 
observed collisions 

The results of the theoretical derivation and simulation presented in Chapter 3 

demonstrate that traffic moment is a valid traffic model in very simplistic conditions. The 

refinement proposed by Stott may provide a more accurate traffic model, however the 

model may be incomplete in that there may be a number of realistic scenarios that are not 

considered in Stott's hypothesis; such as the possibility of simultaneous train movements 

or the possibility that small vehicles stopped at a level crossing might not form an 

effective barrier to subsequent vehicles. This work therefore seeks to test the accuracy of 

the traffic models identified in Chapter 2 viz. traffic moment, Stott's hypothesis, and the 

Peabody Dimmick model – against observed collision rates on the GB railways.  

This chapter describes the process of data collection and correlating observed 

collision data with level crossings; the process of calculating collision rates and 

introduces a meaningful unit for comparing the predicted collision rates with observed 

collisions. The chapter also investigates the statistical methods that can be applied for 

level crossing collision analysis. 

4.1 Data collection 

In order to test the traffic models, data are required on road and rail traffic 

volumes and observed collisions at individual level crossings. Network Rail publish data 

on level crossings in Britain. Section 4.1.1 describes the data that were collected for this 

study; and Section 4.1.2 describes the possible effects that errors in the source data may 

have on the results of the study. 
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4.1.1 Source data 

The version of the data downloaded for this study (Network Rail, 2017) contains 

data on 6510 level crossings and describes, inter alia: 

• a unique identification number for each level crossing (LX ID); 

• the warning devices present at each level crossing; 

• the number of trains traversing each level crossing per day; and 

• the numbers of road users per day in two categories: 

• pedestrians and cyclists, and 

• vehicles. 

Regarding the number of road users, Evans and Hughes (2019) note that the 

counts of traverses: 

“are estimated from counts of users observed over short periods of 

time and grossed up to a full day. Some crossings are described as 

having “infrequent” use by pedestrians or motor vehicles or both. 

Such use is assumed for numerical purposes to be 0.5 traverses per 

day, but the precise assumption does not make much difference to the 

conclusions.” 

Regarding the use of allocated 0.5 traverses per day and the potential for this to 

cause inaccuracy in the over result, they go on to note: 

“Some of the data for individual crossings are likely to have large 

standard errors, but this paper assumes that the counts are reasonably 

accurate when taken over large groups of crossings.” 

The data from Network Rail also contain some information on collisions in three 

categories: near misses; incidents; and accidents. In principle these data could be used to 

determine the number of collisions that have occurred at each level crossing, however no 

definition is provided to describe the meanings of these categories. It is not clear what 
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differentiates a near miss from an incident from an accident. However data on all 

accidents on Britain's railway are collected in a central database, the Safety Management 

Intelligence System (SMIS) which is administered by the Rail Safety and Standards 

Board (RSSB). Data from SMIS are not generally available, but were supplied by RSSB 

on request. Data was obtained on all collisions between trains and road users at level 

crossings between 1996 and 2016 inclusive (being data for 21 full years). The data from 

SMIS detail:  

• SMIS reference number; 

• event date; 

• level crossing category, although this is not coded in the same way as in 

the Network Rail level crossing data; 

• the name of the level crossing; 

• a textual description of the event; 

• additional text data on the location of the level crossing including territory 

and location description; and 

• in some cases, the level crossing identification number that corresponds 

with the LX ID in the Network Rail data. 

Not all of these data were provided for every collision event: for a small number 

of events only the SMIS reference number and date were provided. Data on 491 events 

were provided, of these, 183 related to collisions with pedestrians which are out of scope 

of this study. Of the remaining events, eight were determined by RSSB to be self-harm 

which are also out of scope, leaving 300 collision events to be used in this study. Out of 

these events, an LX ID number was provided for 213 events. Where these data were 
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provided they were assumed to be correct. For the remaining 87 events, an analysis was 

undertaken to determine if it was possible to correlate the event with a level crossing 

listed in the data from Network Rail. The correlation process is described in the next 

section. A summary of the collision data used in the analysis is provided in Appendix A. 

This study has used data from different sources in a way that has not previously 

been done and the combination of data from different sources is a contribution of this 

study. 

4.1.2 Effects of errors in the source data 

The data for this study were provided external sources and it has therefore not 

been possible to confirm the accuracy of the data. The effects of errors in the road user 

count data and the collision data are considered below. 

Firstly, considering road user count data, if there were significant errors in these 

data, there could be an effect on the correctness of the results from this study. Two cases 

need to be considered: systematic errors and random errors in the count data. If there 

were systematic errors in the data, the effect would be that the distribution of collisions 

over road user volumes would be incorrect. In such cases it is possible that even in cases 

where there is a correlation between the observed collision and the rates predicted by 

traffic models then the correlation may not be found as a result of the incorrect data on 

observed collision rates. 

The data on the number of road user traverses were collected by Network Rail. 

During this process, there were some level crossings where no road users were observed 

during the counting period, in these cases the number of road users per day is recorded by 

Network Rail as infrequent. The presence of such level crossings in the source data 
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demonstrate that there is no systematic effect that causes the counts to be too high at 

every level crossing in the data set. The remaining possibility for a systematic bias in the 

data would be an effect that causes the data to be tool low in each case. Again for level 

crossings where there are a small number of road user traverses per day, it is not clear 

how such an error could occur: it can reasonably be expected that staff performing road 

user counts are able to record small numbers of road users without error. If the data on 

road user counts is collected manually, it is possible that where there are large number of 

road users traversing a level crossing then there will be errors in the data. However it is 

not clear that the errors would systematically result in the counts being too low, rather it 

can more reasonably be expected that there would be random errors. 

To some degree it is inevitable that there will be random errors in the data. The 

data have been collected from observations of the numbers of road users traversing each 

level crossing (Evans and Hughes, 2019): naturally there will be some fluctuation in the 

numbers of road users who traverse a level crossing each day. It is possible that the 

effects of some road user counts being too high could, to some degree, balance the effects 

on the overall analysis of some road user counts being too low. Clearly errors in the 

source data will inevitably lead to inaccuracies in the results of the analysis, however it is 

possible that small random errors may not skew the results the point that no correlation is 

found where a correlation does, in fact, exist. 

Secondly, considering data on collisions at level crossings; if there were errors in 

these data, then there will be errors in the results of this study. Given that collisions are 

rare events, even small errors in the source data could cause a significant effect on the 

results of this study. The data provided by Network Rail have three categories of events 
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at level crossing: near misses, incidents, and accidents. However there is no definition of 

any of these terms; for the purposes of this study it has been assumed that the data for 

accidents refers to collisions between road users and trains. Because of the uncertainty 

about the meaning of these data, another source of collision data was sought for this 

study. Data on collisions stored in the SMIS database were provided by RSSB. 

Unlike the data from Network Rail, the data from RSSB are well defined. In the 

large majority of cases the collisions data include a text narrative of the event: it is 

inconceivable that the text narratives are fabricated and it is therefore not possible that 

there is over-reporting of collisions. Similarly it is unlikely that there is under-reporting 

of collisions at level crossings: any collision between a train and an object is a serious 

event and there are robust reporting processes in place for train drivers to report any type 

of collisions. It is extremely unlikely that a collision could occur without a train driver 

being aware, or without the driver reporting the event. 

The data collected by RSSB are used for a number of purposes including directing 

investment for safety programmes and providing safety performance reports stipulated by 

legislation or regulatory requirements. If there were errors in the data collected and 

managed by RSSB then there would be a serious impact on the railway that would extend 

far beyond the scope of this study. The safe operation of the railway relies to a large 

degree on the data collected by RSSB to be accurate. As such it cannot reasonably be 

imagined that there are significant errors in the source data. 
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4.2 Correlation of collision event data with level crossings 

For the 87 events where an LX ID number had not been provided, a systematic 

process was followed to attempt to identify the level crossing where the event had 

occurred and correlate this with data in Network Rail's spreadsheet of level crossings. 

Firstly, where a level crossing name had been provided in the event description, the 

Network Rail data were searched to see if a matching name existed. Level crossing 

names can be unique and where a name is provided that matches a single level crossing in 

the Network Rail data, then it is possible to obtain a good degree of confidence that the 

corresponding level crossing has been found. Examples of level crossing names include: 

Sawbridgeworth Station, Bragg Marsh (Meldon Quarry), and Munllyn. In other cases the 

level crossing name was not given in the data field, however a description of the level 

crossing was often provided in the event narrative description. In some cases the narrative 

description provided a name that could be matched to the Network Rail data, however in 

some cases, even though a name was provided, a match could not be found. The SMIS 

narratives sometimes contained a description of the level crossing's location such as: 

• King's Lynn Service reported that he had struck a car at Coles Harbour LC 

approximately 3.5 miles north of Littelport Station 

• Tan Lan crossing (UWG), approximately one mile on the approach to Llanrwst 

North 

• at Johnstown, between Wrexham General and Ruabon 

• Lowfield Farm UWC on the down Hull line 

Using these data, corresponding locations were sought using an online mapping 

service. Where a level crossing was found that appeared to match the description, the 

geographical location of the level crossing was extracted from the map as latitude and 
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longitude. These location data were then compared with the location data provided by 

Network Rail to identify nearby level crossings. In some cases exact matches were found 

and the LX ID number for the corresponding level crossing was assigned to the event. In 

a small number of cases, additional information on level crossings was obtained from the 

ABC Railway Guide (2019) which is a publicly available data source that contains 

information on level crossing in Britain. Whilst the data in the ABC Railway Guide is, to 

a large degree, a reproduction of the information published by Network Rail, it does also 

contain photographs of many level crossings which can be matched against information 

from the online map. A further data source that was provided for this work was the 

ALCRM database from Network Rail. This data source is not publicly available and was 

made available only for the purpose of this study.  

The data published by Network Rail contains information on current level 

crossings, whereas the ALCRM database contains data on all level crossings including 

those that have been closed. Consequently the ALCRM database contains data on many 

more level crossings that are in the publicly available data set. In a small number of cases 

it was possible to correlate the event described in the SMIS data with a level crossing in 

the ALCRM database that is not listed in the publicly available data; which indicates a 

level crossing that existed in the past (and at the time of the collision) but is no longer 

present. It is not uncommon for level crossings to be closed in response to collisions and 

therefore the reason the level crossing is no longer listed in the public data is because of 

the collision. Since collection of road user volumes at level crossings is a relatively recent 

activity, level crossings that are no longer in operation do not have road user volume 
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data, which is necessary for this study. Consequently these events were not considered 

further in this study. 

The process of allocating an LX ID to an event required care and cross-checking 

to avoid misallocation. For some events it was necessary to use all available sources of 

data to obtain sufficient confidence in the allocation of a level crossing. 

During the work to correlate collisions with level crossings, four of the events in 

the SMIS data contained only an event number and a date: no further information was 

provided and it was therefore simply not possible to correlate these events with any level 

crossing. Similarly these events were excluded from further analysis. These events were 

among the earliest in the dataset with all occurring prior to November 1997; in is notable 

that, in general, the level of detail in the SMIS records appears to increase over time. One 

event had a description of the level crossing location which could be located on the 

online maps: the website's satellite view allows a level crossing to be seen at the location, 

however no nearby level crossings could be found in either the publicly available data nor 

the ALCRM database. It is possible that the omission of this level crossing from Network 

Rail's data is a consequence of a clerical error; alternatively it is also possible that the 

level crossing is not a formal, gazetted level crossing, but is rather an informal crossing 

point that has been established simply as a result of road users frequently traversing the 

rail at this point. In either case, road user volume data is not available and, again, the 

event could not be included in further analysis. 

One of events that had been assigned to a level crossing by RSSB described a 

level crossing that could not be found in either the publicly available data from Network 

Rail nor in the ALCRM database (LX ID 32). However a corresponding level crossing 
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could be found in the ABC Railway Guide which also listed road user volumes and 

therefore these data were used for the study. One collision occurred between a train and a 

motorcycle on a pedestrian footpath level crossing (LX ID 5988), since the vehicular road 

volume given in the data for this level crossing is zero, it was also excluded from the 

analysis. 

Following the work to allocate collisions to level crossing, 284 events remained 

that could be used for further analysis. 

4.3 Observation on collision data from SMIS and Network Rail 

As well as containing details of level crossings, the spreadsheet provided by 

Network Rail also contains data on accidents, incidents, and near misses; however no 

definition is given for the meanings of these terms. It is assumed that the term accident 

refers to a collision between a train and a road user, however the data in the spreadsheet 

do not state whether the collision occurred with a vehicular road user or a pedestrian. For 

completeness, the analysis undertaken in this study used both sources of collision data: 

SMIS data and the accident data from Network Rail’s spreadsheet. Ideally, it would be 

expected that the collision data from the different sources would be in exact agreement. 

Examination of the data identifies that this is not the case: there are significant 

differences between the collision data. For example, in the Network Rail data there is a 

level crossing that has a recorded accident history of five accidents, whereas the same 

level crossing in the SMIS data shows no collisions. Similarly there are three level 

crossings in the Network Rail data which are reported as having had four accidents, 

whereas no collisions are reported in the SMIS data for these same level crossings. 
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Table 4.1 provides a correlation matrix of the number of collisions recorded for each 

level crossing in each data source, the cells of the matrix show the number of level 

crossings with each number of recorded collisions. For example, it can be seen that there 

are 3358 level crossings that have no collisions recorded in either data sources; similarly 

there are 136 level crossings for which the SMIS data shows there have been no 

collisions whereas the Network Rail data show there has been one accident. 

Table 4.1: Number of level crossings by collision counts from the Network Rail and 
SMIS data 

  Number of accidents recorded by Network Rail 
  0 1 2 3 4 5 

Number of 
collisions recorded 

in SMIS 

0 3358 136 12 4 3 1 
1 181 8 1 0 0 0 
2 25 1 0 0 0 0 
3 6 2 0 0 0 0 
4 2 0 0 0 0 0 
5 1 1 0 0 0 0 

 

The main diagonal in Table 4.1 is highlighted to show the only cells that would 

contain non-zero values if the data were perfectly correlated. The presence of non-zero 

values in unshaded cells shows the lack of correlation between the data sets. One reason 

for differences between the data sets may be that the data have been collected over a 

different time period. The data from SMIS contains a list of all collisions recorded in the 

database which, at the time of analysis was a period of 8107 days. Conversely the period 

of observation for accidents in the Network Rail data varied by level crossing from a 

minimum of 365 days to a maximum of 3,693 days. In all cases the observation period 

for accidents in the Network Rail data is less that the observation period for SMIS data. It 

could be expected that in some cases there would be more events recorded in the SMIS 
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database than in the Network Rail spreadsheet. Such an effect would be seen in Table 4.1 

as being non-zero values in the cells below the highlighted diagonal. There are a total of 

219 level crossings where there are more events recorded in SMIS than in the Network 

Rail data. Conversely there are 157 level crossings where there are move events recorded 

in the Network Rail data than are recorded in SMIS. Consequently, the differences in the 

data cannot be readily attributed to differences in the observation periods. 

Another reason for the differences in the data sets may arise from a difference in 

definitions, in particular events in the SMIS database are referred to as collisions whereas 

the Network Rail data refer to accidents. The SMIS data record any event where a train 

came into contact with a road user – either pedestrian or vehicular – at a level crossing, 

whereas there is no definition of an accident in the Network Rail. If there were a 

difference in definitions that somehow accounted for the differences in the data sets, the 

definition of an accident in the Network Rail data would somehow have to include events 

that are not defined as a collision in the SMIS data; i.e. there would have to be a type of 

accident that did not involve a train coming into contact with a road user, and any such 

accident would be outside the scope of this analysis. 

When considering the source data and their use for risk analysis, it is notable that 

the SMIS data contain a larger amount of detail than the Network Rail data and in many 

cases include detailed descriptions of the events. Conversely the Network Rail source 

does not contain any additional data other than the count of events. The SMIS sources 

contains additional data that would allow the counts to be verified, whereas this is not the 

case with the Network Rail data. 
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Overall it can be seen that, within the GB railway industry, there is a lack of 

consistency in recording collisions at level crossings, it is possible that such differences 

could have a profound impact on national safety policy. Hypothetically it can be 

imagined that policymakers – for example RSSB – provide direction based on decisions 

made from analysing one set of data; and the operational railway – for example Network 

Rail – interpret policy and provide interventions on the railway based on another set of 

data. Such a miscommunication could lead to expensive safety interventions being 

applied where they are not required. 

4.4 Unit of level crossing safety 

Within the literature various measures are used for level crossing safety for 

example: 

• RSSB record safety in units of injuries per year for four different types of injury 

to people: fatalities, major injuries, minor injuries, and shock and trauma (RSSB, 

2016); 

• Evans and Hughes (2019) measure safety in units of fatalities as a result of 

collisions per million road user traverses; 

• Barić et al. (2018) report the number of accidents per level crossing with the area 

being studied; whereas 

• the US Department of Transportation (2007) reports injuries per level crossing. 

It is not clear that all of these measures are meaningful for comparing collision 

rates between level crossings. It may feel intuitive to measure safety in terms of the 

number and nature of injuries arising from a hazards such as fatalities and major injuries, 

however such a unit may not be meaningful for proactive management of safety. Whilst it 
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is possible for road or railway authorities to provide controls to reduce the likelihood of 

collisions occurring, it is not clear that they can necessarily influence the outcomes of 

collisions in terms of the numbers or nature of injuries. Injuries resulting from any 

collision may depend on a number of factors such as: 

• the number of people within a road vehicle; 

• pre-existing health conditions of individuals; 

• chance matters of timing of maybe a fraction of a second that may affect the exact 

parts of the train and the road vehicle that come into contact; 

• the crashworthiness of the vehicles involved; and 

• presence of hazards within a vehicle (such as unbound objects that are thrown 

through the passenger area) or absence of safety controls (such as air-bags, or 

containment systems to prevent fuel leaking after a collision). 

These factors cannot be predicted nor controlled in advance by either the road nor 

railway authorities and must therefore be considered to random effects arising as a result 

of collisions. It is clearly not meaningful to measure the efficacy of safety management 

interventions in terms of random effects, rather safety should be measured in terms of 

factors that can be influenced by management interventions which. 

Another consideration is that it is necessary to normalise the collision rate by 

some measure of exposure to collisions. As stated earlier, a collision at a level crossing 

requires the presence of at least one train for a road user to collide with. Again, it may 

appear intuitive to normalise the rate of collisions by the number of trains traversing a 

level crossing in a given time. Whilst the exact measure of exposure may be related to the 

number of trains, the exact measure more complicated. For instance where a collision 

occurs as a result of a road user striking the side of a train that is already occupying the 

level crossing (as described in ATSB, 2001), the measure of exposure is related not only 
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the number of trains but also the length of the trains. Furthermore, where there are 

duplicated tracks it is possible for two trains to traverse a level crossing (often in opposite 

directions) at the same time. In cases where two trains are traversing a level crossing 

simultaneously then, compared to a single train, the amount of time in a day when 

collisions can occur is clearly not doubled. Conversely collisions have occurred at level 

crossings as a result of road users waiting for the first train to pass then moving into the 

level crossing unaware that a second train is approaching. The occurrence of 

simultaneous train traverses at a level crossing therefore has a complicating effect on the 

risk exposure which cannot necessarily be modelled by simply considering the overall 

exposure to be doubled. The data available on train movements in Britain do not describe 

the lengths of trains, nor do they describe situations where trains simultaneously traverse 

a level crossing. It is therefore not possible to provide a complete description of the risk 

exposure from the available data. The majority of train traverses at level crossings do not 

occur simultaneously with other trains, therefore a simplifying assumption for this study 

is that there are no simultaneous train traverses. Furthermore it is assumed that the risk of 

a collision occurs as the result of the presence of a train on a level crossing regardless of 

the length of a train. In effect the assumption is that all trains are of approximately similar 

length. The data provided by Network Rail describe the number of train traverses per day. 

Therefore the unit of risk exposure used in this study will be per train traverse of each 

level crossing for a given time (in this case the units will be per day as used by Network 

Rail). 

The unit of level crossing safety that will be used in this study will therefore be: 

collisions per train traverse per day. 
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For this study, the purpose is to measure the effect of road traffic volume on level 

crossing safety risk; as such the independent variable is the measure of road traffic 

volume. The unit used in this study will be the data provided by Network Rail describing 

the estimated number of traverses of a level crossing each day by road vehicles. 

4.5 Methods for statistical analysis 

The purpose of the analysis is to determine the degree of correlation between 

observed collisions and traffic models used in the SRPTs. There are a number of standard 

tests that can be applied to test correlation between two sets of data. However not all tests 

can be meaningfully applied to all data sets and it is necessary to give consideration to the 

nature of the data in order to select an appropriate test or tests. One correlation test that is 

commonly used is the chi-squared test. However, an important caveat is that this test can 

be applied only when the data being tested are dimensionless: this point is clarified by a 

number of sources, for example Oliveira and Oliveira (2013) state: “we can use the [chi-

squared test] to investigate associations between two binary variables, between a binary 

variable and a categorical variable, and between two categorical variables”. In this case 

it is important to note that a binary variable, is a type of categorical variable that has only 

two values. Other sources that emphasise this point about the chi-squared test include: 

• Crawford and Csomay (2015): “with the chi-square tests, both the 

dependent and independent variables can be nominal data”. 

• Hinton et al. (2014): “a chi-square statistical test allows you to analyse 

frequency data”. 

• Mackridge and Rowe (2018) take a blunt and didactic approach regarding 

the chi-squared test: “you will use two categorical variables”.  
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Gunawardena1 (2011) provides advice on selecting statistical tests and provides a 

number of diagrams illustrating the choices to be made in selecting an appropriate test. 

The first choice depends on the nature of the data. Figure 4.1 shows an adaptation of one 

of the diagrams showing that the chi-squared test can be applied when the data being 

compared are nominal. Other graphics in the source show tests that can be applied for 

other types of data: the chi-squared test is not shown as a test that can be used for any 

data type other than nominal data. 

The variable being analysed in this study is a continuous variable that has units of 

collisions per train traverse per day and therefore has dimensions of TIME-1, as such it is 

clear that the chi-squared test would not be suitable for this study. 

 
Figure 4.1: Selection of a statistical test for nominal data, adapted from 

Gunawardena1 (2011) 

 

In some studies, it may appear prima facie that the chi-squared test has been 

applied to dimensioned data. However in these cases the test has not been applied to the 
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source data, rather the source data have been binned into categories and the count of the 

numbers of entries in each category are used as the test variable in the chi-squared test. 

As such, this application of the chi-squared test uses the categorical data that are derived 

as a result of binning. In order to perform a test in this manner it is necessary to select 

appropriate bins for separating the data, and it is important to note that the selection of 

bins may affect the outcome of the study. In some cases there are natural categories to 

separate the data into, however for continuous variables the selection of bins is, to some 

degree, arbitrary which would result in an unpredictable effect on the outcome of the test. 

As such, use of the chi-squared test in this study could become cumbersome and would 

be unnecessary since there are other tests of correlation that work with dimensioned data 

and do not require arbitrary binning. 

A further consideration is the sparse nature of the data that are used in the study. 

There are many level crossings where no collisions have been observed, as such a large 

proportion of the observation data have a zero value. Even if the data were to be binned, 

there would still be many bins that have zero observations, so the data would remain 

sparse; Renter et al. (2000) note that the chi-squared test is “generally unreliable" when 

applied to sparse data. Again, there are other statistical tests which do not have the same 

problem with sparse data. 

When considering statistical tests it is useful to identify the data type of the 

variables under test using the scales of measurement developed by Stevens (1946), which 

classifies data into one of four types: nominal, ordinal, interval, and ratio. The variable 

under test is dimensioned as discussed. The test variable is also properly sequenced in 

that (for example) two collisions per train traverse per day can meaningfully be 
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considered to be twice one collision per train traverse per day; furthermore there is a 

meaningful zero value. Using Stevens' classification, the test variable is therefore a ratio 

variable. 

There are two further considerations when identifying a statistical test. The first is 

that the correlation test has to be able to test the degree of correlation between two non-

parametric data sets. A number of the statistical tests test for normality of a data set, 

however the traffic models used in the SRPTs do not assume that collisions are normally 

distributed. Furthermore the Peabody Dimmick traffic model, being a descriptive model, 

is based on observed data and cannot be defined as a parametric model. Therefore any 

statistical test must allow for a test of correspondence between non-parametric data. 

The second consideration is that − fortunately − level crossing collisions are rare: 

in fact most level crossings operate for many years without any collisions occurring. 

Consequently when analysing level crossing by the number of collisions (per train 

traverse per day) that have occurred, the data set contains a large number of level 

crossing where the result is zero. In fact the mean number of collisions per level crossing 

is close to zero. Conversely, since there are some level crossings that have a history of 

multiple collisions, there is a non-zero standard deviation in the data. The standard 

deviation is greater than the mean value leading to a situation where within one standard 

deviation of the mean are negative values for the rate of collisions which is clearly 

meaningless. The term overdispersed is applied to such data sets. A number of the 

statistical tests described in the literature assume that, even if the data are not normally 

distributed, they are nonetheless not overdispersed. The test to be applied in this study 

therefore needs to be robust against the effects of overdispersion in the data. 
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There is a substantial body of literature describing statistical tests and the 

applicability of each test. Literature on statistical tests were reviewed to identify a 

suitable candidate (Charan, 2010; McCrum-Gardner, 2008; Kanji, 2006). Within the 

literature there is a commonality in terms of the tests described: amongst the literature 

describing statistical tests in general it is possible to find a number of descriptions of the 

same test (for example the chi-squared test), however much of the literature fail to 

describe any tests that can be applied for overdispersed, non-parametric data. It is 

necessary to research specialist literature in order to identify tests that are suitable for 

over-dispersed and non-parametric data (for example Skovlund and Fenstad, 2001; Dean 

and Lundy, 2014). During the review a number of candidate tests were identified, 

however for various reasons these tests could not be applied. For example the Anderson 

Darling test, the t-test, and the Shapiro Wilk test can be applied only where the data are 

normally distributed. 

One candidate, the Mann-Whitney U test, is a ranking test of ordinal data and 

therefore does not immediately appear to be relevant to the ratio data in the test variable. 

Nevertheless it is possible to create a set of ordinal (ranked) data from a set of ratio data. 

It would then be possible in principle to compare the rankings of the data in order to 

perform some test on the degree of correlation between predicted and observed collision 

rates. However, in practice this is not the case for overdispersed data. Of the 3742 level 

crossings considered in this study, most have no history of collisions. Therefore a ranked 

set of the data would have all of these level crossing ranked equally at the last positiin in 

the list. However, each of the traffic models predict some non-zero collision probability 

for any level crossing that has non-zero road or rail traffic volumes. Therefore any test 
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that compares the rankings of the data sets will find that 95% of the values will have an 

incorrect ranking. It is therefore not meaningful to apply a ranking test on overdispersed 

data sets. 

As a result of the review, one test was identified that is applicable for this 

analysis: the Kolmogorov Smirnov test (Aeron et al., 2011; Antoneli et al., 2018; 

Feigelson and Babu, 2013). The test considers the correlation of two non-parametric data 

sets by comparing the cumulative proportion of the test variable against the cumulative 

proportion of the comparison data set over the full range of values. If the data sets are 

completely correlated then there will be no difference in the values at any point in the 

range. The Kolmogorov Smirnov test considers the maximum difference between the 

cumulative values and, for a given significance level (also known as the alpha value, α) 

whether the two data sets can be assumed to be drawn from the same population. The 

Kolmogorov Smirnov test is insensitive to overdispersed data: where there are zeroes in 

the observed number of collisions, the cumulative value does not increase, however it is 

still possible to compare the cumulated value at that point on the curve with the 

cumulative number of predicted collisions. A further, serendipitous, property of the 

Kolmogorov Smirnov test is that it does not consider the absolute values of the variables 

being tested, merely whether the variables follow a similar shape over the range of 

values. This property is valuable for the study since the absolute collision rates vary 

significantly between classes of level crossing, and the traffic models do not necessarily 

correctly predict absolute numbers of collisions. In presenting his hypothesis, Stott 

proposed a general distribution of how collision rates would vary with numbers of road 

vehicles. The absolute numbers of collisions predicted by Stott's hypothesis depend on 
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the value of the variable Pc. However Stott notes that the value of Pc used in his paper is 

not based on observation, instead it appears to be arbitrary as he notes: “Pc must indeed 

be very small – of the order of 1 in 104 or less”. Conversely, the Peabody Dimmick 

model predicts collision rates that are based on observed collision rates in the United 

States in the 1930s (Faghri and Demetsky, 1986). Changes in road transport technology 

in the time since have significantly altered the overall safety of road transport. 

Consequently, whilst the overall effect of increasing road traffic numbers at a level 

crossing may vary in accordance with the predictions made by the Peabody Dimmick 

model, it cannot be expected that the absolute number of collisions observed would be 

the same as predicted by the model. Furthermore it cannot be expected that the number of 

collisions predicted by Peabody Dimmick would be consistent with Stott's (arbitrary) 

estimate of collision rates. The Kolmogorov Smirnov test is therefore useful as it 

provides a means to test the principles proposed by the traffic models without being 

sensitive to the absolute numbers of collisions. 

The lack of a test of absolute values does not present a problem to this study. If it 

is found that a particular model correlates with observed collision rates, it will be possible 

to analyse the results to determine what the actual probability of a collision per traverse 

should be; in effect it would be possible to use the analysis to determine the correct value 

of Pc to use in Stott's hypothesis or any equivalent factor for the Peabody Dimmick 

model. 
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4.6 Differences in the curves of absolute and cumulative values 

The Kolmogorov Smirnov test compares the cumulative proportion of the 

samples rather than the absolute values. As a result, all values are scaled to be in the 

range from zero to one (more usually written as 0% to 100%), therefore all curves on the 

graph always touch the origin at the bottom-left of the graph (0%, 0%) and take a path to 

the point (100%, 100%) at the top-right of the graph. Since cumulative values are used, 

the shapes of the curves when shown on a graph are not the same as the curves for the 

absolute predicted values. For example, Figure 2.6 shows the distribution of collisions 

hypothesised by Stott, showing that the hypothesised number of collisions initially rises 

as the volume of road vehicles increases, reaches a peak value and then falls. The same 

rising-then-falling shape cannot be seen in the values in the graphs in Chapter 6 since the 

cumulative value will never decrease. Instead the cumulative value of the curve shown in 

Figure 2.6 will initially rise quickly, then the rate of increase will reduce as low 

hypothesised numbers of collisions lead to only a small increase in the cumulative value.  

4.7 Kolmogorov Smirnov test null hypothesis and interpretation of 
alpha values 

The Kolmogorov Smirnov test is a test for correlation between two samples of 

data. The test assumes a null hypothesis that the samples are drawn from the same 

distribution, i.e. that there is correlation between the two samples. Obviously it would be 

very unlikely for any two samples to correlate exactly; natural variation in the data will 

almost certainly create differences between any two samples. Where the differences 

between the two samples are small, it is likely that the null hypothesis is valid. 
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Conversely, where the differences are large, it more likely that the data are not in fact 

correlated, and that some effect other than natural variation explains the differences 

between the samples; in such cases it is assumed that the data are taken from different 

distributions and therefore the null hypothesis should be rejected. 

The significance level for the test, also known as the alpha value (α), is the 

probability that natural variation in the data leads to differences so large that the null 

hypothesis is rejected when it is in fact true. For example, an α value of 1% describes 

a 1% chance of rejecting the null hypothesis, when in fact the samples were drawn from 

the same distribution. Therefore an α value of 1% means that rejection of the null 

hypothesis is less likely than rejection with a higher α value, say, 20%. Consequently 

the α value of 1% requires more variation in the data than an α value of 20% before the 

null hypothesis is rejected. In general, the lower the α value, the more difference is 

required before rejection occurs. The Kolmogorov Smirnov test produces a value that is a 

measure of the cumulated differences between the samples. The test value is compared 

with a critical value to determine whether the null hypothesis can be rejected for a given 

α value. If the cumulated difference is less than the critical value, then the variation in the 

data is considered to be attributable to natural variation and the null hypothesis is not 

rejected. In summary, because the null hypothesis for the Kolmogorov Smirnov test is the 

assumption that the data are correlated, the α value is a measure of the likelihood that the 

null hypothesis is true, but has been falsely rejected. Consequently, the meaning of the α 

value is often counter-intuitive, and it can seem that more variance is tolerated when the 

α value is higher, which is not the case.  
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4.8 Summary of study method 

The level crossings listed in the Network Rail data were categorised into six 

categories as used by Evans and Hughes, viz: 

• passive vehicular public, 

• passive vehicular private or staff, 

• automatic vehicular public, 

• automatic vehicular private or staff, 

• railway-controlled vehicular public, and 

• railway-controlled vehicular private or staff. 

Collision data from the SMIS database were corresponded with each of the level 

crossings in the Network Rail database. Using the census data of road user and train 

traverses for each level crossing, a test variable of collisions per train traverse per day 

was calculated for each level crossing. As noted above, for the majority of level 

crossings, this value is zero. A Kolmogorov Smirnov test was performed to test the 

degree of correlation between the test variable and each of the three traffic models, being: 

• traffic moment, 

• Stott's hypothesis, and 

• Peabody Dimmick's model. 

As discussed, the data from Network Rail also include for each level crossing, 

counts of: 

• near misses, 

• incidents, and 

• accidents. 
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Whilst these terms are not defined, the data themselves may nevertheless be 

meaningful in some way. Consequently the test described above was repeated using the 

data for accidents from the Network Rail data in place of the collision data from the 

SMIS database. 

Overall there are six categories of level crossing, and two sets of data describing 

either accidents or collisions, making a total of twelve sets of observation data. Each of 

these observation data were compared against the three traffic models, making a total 

of 36 tests that were performed. The purpose of the tests is to determine the degree to 

which the observed accidents or collisions corresponds with the traffic models. 

4.9 Contribution 

The following contributions to current knowledge have been made in this chapter: 

Contribution 4: This study has established collisions per train traverse per day as 

a unit that provides a meaningful way to compare collision rates between level crossings. 

Contribution 5: A rigorous review was undertaken to identify a suitable test to 

allow a meaningful comparison of observed collision rates against traffic models. In 

particular the method of testing needs to be robust in cases where data are overdispersed. 

The Kolmogorov Smirnov test was identified as being appropriate for this analysis. 
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Chapter 5: Application of method, analysis results 
and interpretation 

This chapter presents the results of the tests of correspondence between the 

predictions of the traffic models and the observed collision rates. A Kolmogorov Smirnov 

test was performed to determine the degree of correspondence between the predictions of 

various traffic models and observed collision rates. Six categories of level crossing were 

considered: 

• passive vehicular public, 

• passive vehicular private or staff, 

• automatic vehicular public, 

• automatic vehicular private or staff, 

• railway-controlled vehicular public, and 

• railway-controlled vehicular private or staff. 

Two different sources of data were used for the observed collision rate data: 

• collision data from the SMIS database, and 

• accident data supplied by Network Rail. 

The independent variable in the tests was the number of road users traversing 

each level crossing in a day, the dependent variable being tested was the predicted 

collisions per train traverse per day. Tests were carried out for the predictions made by 

the traffic models: 

• traffic moment, 

• Stott's hypothesis, and 

• Peabody Dimmick's model. 
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Since there are six categories of level crossing, two sources of collision data, and 

three different traffic models, a total of 6 × 2 × 3 = 36 tests were performed. The 

subsections below present the results for one of the level crossing categories and one 

source of observation data (giving 12 subsections), and show the results of tests with each 

of the three traffic models. Each subsection contains a graphical representation of the 

values calculated in the Kolmogorov Smirnov test. In the graphs:  

• the observed collision or accident data are shown as orange squares ( ); 

• traffic moment predictions are shown as unfilled blue circles ( ); 

• Stott's collision hypothesis predictions are shown as filled blue circles ( ); and 

• Peabody Dimmick collision predictions are shown as blue triangles ( ). 

The graphs allow for an intuition of the correspondence between the observed 

collisions and accidents and the traffic model predictions: where the orange squares are 

close to any of the blue markers then it can be seen that the observations closely 

correspond to the traffic model. The Kolmogorov Smirnov test produces a single value 

which is a measure of how closely the two distributions correlate with each other over the 

entire range of the independent variable. The value derived from the Kolmogorov 

Smirnov test is compared against a critical value to determine whether the correlation is 

statistically significant for a given alpha (α) value. Kanji (2006) provides critical values 

for five α values, viz.: 1%, 5%, 10%, 15% and 20%. In each subsection a table is 

provided showing the value produced from the test for each of the traffic models when 

compared with the observed data; the critical values for each of the five α values; and a 

comparison of whether the test result suggests that the result is significant for each α 

value. 
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The results in the following sub-sections contain a table that compares the test 

result from the Kolmogorov Smirnov calculation with the critical value for different 

values of alpha to determine whether the null hypothesis (that the data are drawn from the 

same sample) should be rejected as discussed in Section 4.7. The critical values for the 

Kolmogorov Smirnov test are supplied in a table for cases where there are 35 or fewer 

test cases (for example, Kanji, 2006); for cases where there are more than 35 test cases 

(n) the critical values are calculated as shown in Table 5.1 (Massey, 1951): 

Table 5.1: Calculation of critical values in the Kolmogorov Smirnov test 

Alpha (α) value  Calculation for critical value for 
different numbers of samples (n) 

1% 
1.63
√&

 

5% 
1.36
√&

 

10% 
1.22
√&

 

15% 
1.14
√&

 

20% 
1.07
√&

 

The values in Table 5.1 show that rejection is more likely to occur for higher 

values of α, as discussed in Sections 4.5 and 4.7. 

The figures in Sections 5.1 to 5.12 provide a graphical representation of the 

results of the Kolmogorov Smirnov tests. In each graph the cumulative proportion of 

collisions per train traverse per day is plotted over the proportion of road users at each 



 

143 

level crossing. Since both the abscissa and ordinate are showing proportional values, the 

scales on each axis are a percentage value between 0% and 100%. The value on the 

ordinate axis is the cumulative proportion of collisions per train traverse per day and will 

therefore never decrease over the range of road user volumes: in cases where there are no 

observed collision, the cumulative value will remain unchanged; where collisions are 

observed the cumulative value will increase. It is for this reason that all of the values in 

the graphs can be seen to rise from the origin (0%, 0% in the bottom-left corner), to the 

value 100%, 100% (in the top-right corner). 

Discussion of the results is provided in Sections 5.13 to 5.20. 
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5.1 Passive Vehicular Public - SMIS collision data 

Results from analysis of the 112 level crossings categorised as passive vehicular public. 

Graphical results 

 

Figure 5.1: Observed collisions for passive vehicular level crossings using SMIS 
data 

 

Passive vehicular level crossings on public roads are uncommon in Britain, and 

occur only on roads with few road users per day. The maximum value of V for level 

crossings in this class is 570 road users per day; compared to nearly 30,000 for railway-

controlled vehicular public level crossings. For low values of V, the distribution of 

collisions predicted by Stott's hypothesis rises approximately linearly with V. This effect 

is seen by the points indicating traffic moment (VT) and the those indicating the 

predictions of Stott's hypothesis being close to each other on the graph. 
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The same effect can also be seen in Figure 5.2 which also relates to this class of 

level crossing. 

Tabulated results 

  Alpha value 
  20% 15% 10% 5% 1% 

Critical values  0.1011055 0.10771987 0.11527916 0.12850792 0.15402052 

Calculated values: Implication for null hypothesis for Kolmogorov Smirnov test 

VT: 0.17151037 Reject Reject Reject Reject Reject 

PD: 0.65088092 Reject Reject Reject Reject Reject 
Stott: 0.19295071 Reject Reject Reject Reject Reject 
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5.2 Passive Vehicular Public - Network Rail accident data 

Results from analysis of the 112 level crossings categorised as passive vehicular public. 

Graphical results 

 

Figure 5.2: Observed accidents for passive vehicular level crossings using 
Network Rail data 

 

For this class of level crossing, there are only two recorded collisions in the 

Network Rail data source. The effect of this small number of collisions is seen by the 

presences of two bands of orange square markers showing the observed collisions. One of 

the recorded collisions occurred at a level crossing with a small number of road users, 

which is seen by the lower band of orange square markers starting near to the left-hand 

edge of the graph. 



 

147 

Tabulated results 

  Alpha value 

  20% 15% 10% 5% 1% 

Critical values  0.1011055 0.10771987 0.11527916 0.12850792 0.15402052 

Calculated values:  

VT: 0.33776669 Reject Reject Reject Reject Reject 

PD: 0.56946475 Reject Reject Reject Reject Reject 

Stott: 0.32960806 Reject Reject Reject Reject Reject 
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5.3 Passive Vehicular Private or Staff - SMIS collision data 

Results from analysis of the 2114 level crossings categorised as passive vehicular private 

or staff. 

Graphical results 

 

Figure 5.3: Observed collisions for passive vehicular private or staff level 
crossings using SMIS data 

 

This class of level crossings occur only where there are few road users per day. 

Consequently a similar effect is seen in Figure 5.3 to the effect seen in Figures 5.1 

and 5.2. For low values of V, Stott's hypothesis predicts that collision rise approximately 

linearly with V, consequently the points indicating the predictions of Stott's hypothesis 

and traffic moment (VT) are seen close to each other in Figure 5.3. The same effect is 

seen in Figure 5.4. 
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Tabulated results 

  Alpha value 

  20% 15% 10% 5% 1% 

Critical values  0.02327187 0.02479433 0.02653428 0.0295792 0.03545154 

Calculated values:  

VT: 0.24278548 Reject Reject Reject Reject Reject 

PD: 0.42468071 Reject Reject Reject Reject Reject 

Stott: 0.22695449 Reject Reject Reject Reject Reject 
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5.4 Passive Vehicular Private or Staff - Network Rail accident data 

Results from analysis of the 2114 level crossings categorised as passive vehicular private 

or staff. 

Graphical results 

 

Figure 5.4: Observed accidents for passive vehicular private or staff level 
crossings using Network Rail data 

Tabulated results 

  Alpha value 

  20% 15% 10% 5% 1% 

Critical values  0.02327187 0.02479433 0.02653428 0.0295792 0.03545154 

Calculated values:  
VT: 0.3463437 Reject Reject Reject Reject Reject 

PD: 0.39988573 Reject Reject Reject Reject Reject 

Stott: 0.32869292 Reject Reject Reject Reject Reject 
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5.5 Automatic Vehicular Public - SMIS collision data 

Results from analysis of the 579 level crossings categorised as automatic vehicular 

public. 

Graphical results 

 

Figure 5.5: Observed collisions for automatic vehicular public level crossings 
using SMIS data 

Tabulated results 

  Alpha value 

  20% 15% 10% 5% 1% 

Critical values  0.04446768 0.04737678 0.05070147 0.05651967 0.06774049 

Calculated values:  

VT: 0.45391305 Reject Reject Reject Reject Reject 

PD: 0.06520384 Reject Reject Reject Reject ACCEPT 

Stott: 0.22437973 Reject Reject Reject Reject Reject 
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5.6 Automatic Vehicular Public - Network Rail accident data 

Results from analysis of the 579 level crossings categorised as automatic vehicular 

public. 

Graphical results 

 

Figure 5.6: Observed accidents for automatic vehicular public level crossings 
using Network Rail data 

Tabulated results 

  Alpha value 

  20% 15% 10% 5% 1% 

Critical values  0.04446768 0.04737678 0.05070147 0.05651967 0.06774049 

Calculated values:  

VT: 0.53426169 Reject Reject Reject Reject Reject 

PD: 0.13992182 Reject Reject Reject Reject Reject 

Stott: 0.30874185 Reject Reject Reject Reject Reject 
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5.7 Automatic Vehicular Private or Staff - SMIS collision data 

Results from analysis of the 112 level crossings categorised as automatic vehicular 

private or staff. 

Graphical results 

 

Figure 5.7: Observed collisions for automatic vehicular private or staff level 
crossings using SMIS data 

Tabulated results 

  Alpha value 

  20% 15% 10% 5% 1% 

Critical values  0.1011055 0.10771987 0.11527916 0.12850792 0.15402052 

Calculated values:  
VT: 0.41796901 Reject Reject Reject Reject Reject 

PD: 0.27003533 Reject Reject Reject Reject Reject 

Stott: 0.36019325 Reject Reject Reject Reject Reject 
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5.8 Automatic Vehicular Private or Staff - Network Rail accident 
data 

Results from analysis of the 112 level crossings categorised as automatic vehicular 

private or staff. 

Graphical results 

 

Figure 5.8: Observed accidents for automatic vehicular private or staff level 
crossings using Network Rail data 

 

A similar effect is seen in Figure 5.8 to the effect seen in Figure 5.2; only three 

collisions are recorded in the Network Rail data for this class of level crossing which 

gives rise to the horizontal bands of orange square markers. 
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Tabulated results 
  Alpha value 

  20% 15% 10% 5% 1% 

Critical values  0.1011055 0.10771987 0.11527916 0.12850792 0.15402052 

Calculated values:  

VT: 0.41220943 Reject Reject Reject Reject Reject 

PD: 0.51529099 Reject Reject Reject Reject Reject 

Stott: 0.40858888 Reject Reject Reject Reject Reject 
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5.9 Railway-controlled Vehicular Public - SMIS collision data 

Results from analysis of the 774 level crossings categorised as railway-controlled 

vehicular public. 

Graphical results 

 

Figure 5.9: Observed collisions for railway-controlled vehicular public level 
crossings using SMIS data 

Tabulated results 

  Alpha value 

  20% 15% 10% 5% 1% 

Critical values  0.03846036 0.04097645 0.04385199 0.04888419 0.05858914 

Calculated values:  
VT: 0.50275472 Reject Reject Reject Reject Reject 

PD: 0.12546143 Reject Reject Reject Reject Reject 

Stott: 0.18683914 Reject Reject Reject Reject Reject 
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5.10 Railway-controlled Vehicular Public - Network Rail accident 
data 

Results from analysis of the 774 level crossings categorised as railway-controlled 

vehicular public. 

Graphical results 

 

Figure 5.10: Observed accidents for railway-controlled vehicular public level 
crossings using Network Rail data 

Tabulated results 

  Alpha value 

  20% 15% 10% 5% 1% 

Critical values  0.03846036 0.04097645 0.04385199 0.04888419 0.05858914 

Calculated values:  
VT: 0.3633436 Reject Reject Reject Reject Reject 

PD: 0.15183024 Reject Reject Reject Reject Reject 

Stott: 0.23757215 Reject Reject Reject Reject Reject 
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5.11 Railway-controlled Vehicular Private or Staff - SMIS 
collision data 

Results from analysis of the 51 level crossings categorised as railway-controlled 

vehicular private or staff. 

Graphical results 

 

Figure 5.11: Observed collisions for railway-controlled vehicular private or staff 
level crossings using SMIS data 

 

Figure 5.11 shows the same effect as noted for Figures 5.2 and 5.8. There are only 

two collisions recorded for this class of level crossing in the SMIS database, 

consequently horizontal bands of orange square markers are seen in the graph. Similarly 

there is only a single collision recorded in the Network Rail data source for this class of 

level crossing giving rise to the same horizontal banding being seen in Figure 5.8. 
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Tabulated results 

  Alpha value 

  20% 15% 10% 5% 1% 

Critical values  0.14982997 0.15963193 0.17083417 0.19043809 0.22824565 

Calculated values:  

VT: 0.69890993 Reject Reject Reject Reject Reject 

PD: 0.36744083 Reject Reject Reject Reject Reject 

Stott: 0.45870528 Reject Reject Reject Reject Reject 
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5.12 Railway-controlled Vehicular Private or Staff - Network Rail 
data 

Results from analysis of the 51 level crossings categorised as railway-controlled 

vehicular private or staff. 

Graphical results 

 

Figure 5.12: Observed accidents for railway-controlled vehicular private or 
staff level crossings using Network Rail data 

Tabulated results 

  Alpha value 
  20% 15% 10% 5% 1% 

Critical values  0.14982997 0.15963193 0.17083417 0.19043809 0.22824565 

Calculated values:  

VT: 0.99954862 Reject Reject Reject Reject Reject 

PD: 0.8244836 Reject Reject Reject Reject Reject 

Stott: 0.99768152 Reject Reject Reject Reject Reject 
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5.13 Differences over ranges of traffic volumes 

It is noteworthy that the curves for the cumulative numbers of predicted collisions 

appear to change shape in the various tests. For example in Figures 5.1 to 5.4 the curves 

for the number of collisions predicted by Stott’s hypothesis lies close to the traffic 

moment curve, whereas in other graphs, these curves are not closely aligned. This effect 

arises because of the differing range of road vehicles considered in the various tests. 

Table 5.2 shows the maximum count of vehicular road users per day for each category of 

level crossing. 

Table 5.2: Maximum count of vehicular road users per day for each category of 
level crossing 

Level crossing category Maximum count of vehicular road users per day 
Passive vehicular public 570 
Automatic Vehicular Private or Staff 1,253 
Passive Vehicular Private or Staff 1,350 
Railway-controlled Vehicular Private or Staff 12,069 
Automatic vehicular public 17,550 
Railway-controlled Vehicular Public 29,592 

 

Whilst the traffic moment model predicts that collisions should increase linearly 

over the range of vehicular road traffic (V), the Stott and Peabody Dimmick models 

predict non-linear collision rates over V. Figure 2.6 shows that for low values of V the 

predicted collision rate increases nearly linearly. The graph for passive vehicular level 

crossings has a low range of values of V (from 0 to 570 as shown in Table 5.2), over this 

low range of values the collision predictions of the Stott model is nearly linear. This 

effect can be seen in Figures 5.1 and 5.2 which shows that the Stott model and the traffic 

moment model align closely with each other. Conversely the range of V for railway-
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controlled vehicular public level crossings is much wider (from zero to 29,592, as shown 

in Table 5.2). Over this wide range the collision rate predicted by Stott's model increases 

then decreases (Figure 2.6). For these level crossings, shown in Figures 5.9 and 5.10, it 

can be seen that the curves for traffic moment and Stott's model are not closely aligned. 

5.14 Roughness of the traffic moment curve 

In each of the graphs in Figures 5.1 to 5.12 the curve for traffic moment is 

approximately, although not exactly, a straight line. The lack of smoothness arises since 

traffic moment is the product of road vehicles and trains traversing a level crossing, 

whereas the independent variable on the graph's abscissa is only the number of traverses 

by road vehicles (V). Since the number of trains per day will vary between level 

crossings, from point to point along the abscissa, the line will move in an unpredictable 

way, which is what is seen in the graphs. It can be expected that there is some correlation 

between road traffic volumes and train volumes at a level crossing: in busy urban areas it 

is likely that level crossings will have a high volume of both road vehicles and trains. 

Conversely in rural areas it may be expected that there would be few vehicles of either 

mode. However the correspondence will not be exact, for example a private level 

crossing in rural area over a busy mainline rail could have few road vehicles yet many 

trains. In general there is no reason to expect that traffic moment will increase linearly 

with increasing road traffic volumes. Overall the cumulative measure of traffic moment 

will always increase with increasing traffic volumes, however the exact increase at any 

point on the graph will depend on train volumes at each level crossing, which may be 
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independent of road traffic volumes. The effect is a non-linear increase in cumulative 

traffic moment over the range of traffic volumes. 

5.15 Application of the test where there are few recorded collisions 

For some classes of level crossings, there are cases where there is small number 

of recorded collisions. For example Figure 5.8 shows only three recorded collisions, 

which can be seen as a step shape in the orange square markers; a similar effect can also 

be seen in Figures 5.11 and 5.12. These graphs show the results for automatic and 

railway-controlled level crossings on private land or that are used only by railway staff. 

The majority of private or staff level crossings are passive, and therefore there are 

relatively few level crossings in these classes. Furthermore automatic and railway-

controlled level crossings have relatively lower safety risk than passive level crossings, 

which is the reason that there are few recorded collisions for level crossings in these 

classes. 

Whilst the observed collisions in these cases show a stepped shape, the traffic 

models all describe a smooth variation in safety risk over the range of traffic values. 

Consequently it cannot be expected that there will be a good correlation between the 

observation and the traffic models, which is what is seen in the results of the Kolmogorov 

Smirnov test for these cases. Such a lack of correlation is a natural consequence of 

applying statistical methods to data where there are only a small number of observations: 

in general, it is meaningful to apply statistical methods only in cases where there is a 

large number of samples. As discussed in Section 1.4, all classes of level crossing have 
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been included in this study for the sake of completeness, even though the results may not 

have good statistical value in cases where there are few recorded collisions 

5.16 Summary of results 

Table 5.3 provides a summary of the results of the Kolmogorov Smirnov test for 

each of the traffic models for the 12 cases tested. In the table, lower values of the 

Kolmogorov Smirnov test result indicate a better correlation between the data sets. The 

lowest result is 0.0652 for the Peabody Dimmick traffic model for automatic vehicular 

public level crossing using SMIS collision data; this is the only test that shows a 

statistically significant correlation and only with a value of α = 1%. There is a large range 

in the results with the largest results being more than 0.99, however these are for a 

category that contains only 51 level crossings and a small number of recorded collisions 

and therefore may have too few data points for a meaningful analysis to be performed. 
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Table 5.3: Summary of the results of the Kolmogorov Smirnov test for each of the traffic models 

Test Category Number of 
level crossings 

Max number 
of road 
vehicles 

Data source 

Kolmogorov Smirnov test 

Results  Threshold at 
α = 1% Peabody Dimmick Stott Traffic moment 

1 Passive vehicular 
public 112 570 

SMIS 0.6509 0.1930 0.1715 
0.1540 

2 Network Rail 0.5695 0.3296 0.3378 

3 Passive vehicular 
private or staff 2114 1350 

SMIS 0.4247 0.2270 0.2428 
0.0355 

4 Network Rail 0.3999 0.3287 0.3463 

5 Automatic vehicular 
public 579 17,550 

SMIS 0.0652 0.2244 0.4539 
0.0677 

6 Network Rail 0.1399 0.3087 0.5343 

7 Automatic vehicular 
private or staff 112 1253 

SMIS 0.2700 0.3602 0.4180 
0.1540 

8 Network Rail 0.5153 0.4086 0.4122 

9 Railway-controlled 
vehicular public 774 29,592 

SMIS 0.1255 0.1868 0.5028 
0.0586 

10 Network Rail 0.1518 0.2376 0.3633 

11 Railway-controlled 
vehicular private or 
staff 

51 12,069 
SMIS 0.3674 0.4587 0.6989 

0.2282 
12 Network Rail 0.8245 0.9977 0.9995 
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5.17 Overall correlation of the traffic models 

An immediate interpretation of the results may be that none of the traffic models 

correlates well with observed collision nor accidents, but that the Peabody Dimmick 

model performs best amongst the set of poor candidates. Such an interpretation would, 

however, be simplistic and misleading. Figure 5.13 shows the range of results from the 

Kolmogorov Smirnov tests grouped by traffic model. The figure shows that each of the 

models has a results of less than 0.2 for at least one of the tests; similarly each model has 

a test result of more than 0.8 for at least one test. As such it can be seen that in some 

cases each of the tests correlates reasonably well with the observation data and in other 

tests it does not. Overall it could be concluded that none of the models performs 

significantly better than any other. 
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Figure 5.13: Range of Kolmogorov Smirnov results by traffic model 

5.18 Statistical power by number of level crossings 

As previously noted, collisions at level crossings are – fortunately – relatively rare 

events. In general statistical tests are more powerful when there are more data available. 

It may therefore be expected that where there are more level crossings in the test sample 

then it would be possible to obtain better correlation with a traffic model. Figure 5.14 

shows a scatter plot of Kolmogorov Smirnov test values over the number of level 

crossings in the test sample. It can be seen that the largest Kolmogorov Smirnov scores 

are obtained in the categories that have fewest level crossings which may indicate that 



 

168 

when there are fewer data points there is less opportunity for correlation to be found in 

the data. However the converse effect is not seen: the tests with the largest number of 

level crossings do not have the lowest test values. In fact the lowest result is obtained in 

the category that has only 579 level crossings, significantly lower than the 2114 level 

crossings in the most populous category. Overall it can be seen that poor correlation of 

the traffic models against observed collisions cannot generally be attributed to the small 

number of level crossings in the test categories. 

 

Figure 5.14: Scattering of Kolmogorov Smirnov results compared with number 
of level crossings in the test sample 

5.19 Correlation of models by road traffic volume 

As noted above, for low values of road traffic volume (V), the Stott hypothesis 

proposes that collisions should increase with road traffic volumes in a manner similar to 

the increase with traffic moment. For higher values of V, there is a greater difference 

between the models. It therefore needs to be considered whether the correlation between 
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the traffic models and observed collisions varies by the maximum value of V in the test. 

Specifically there is a question whether one model consistently performs better for lower 

values of V and another consistently performs better for high values of V. 

Looking at the results it can be seen, for example, in Figure 5.1 where there are 

relatively low values of V, there appears to be a good correlation between observed 

collisions and the traffic moment and Stott models. Conversely in Figure 5.5 where there 

are larger values of V, there is the best correlation with the Peabody Dimmick model. 

Table 5.4 shows the six categories of level crossing ranked by ascending value of 

maximum V together with the traffic model which had the lowest test value using either 

the SMIS collision data or Network Rail accident data. The table shows that overall the 

Peabody Dimmick model provides the best correlation although, as noted above, there is 

a range of test values and overall there is not good correlation. The test with the lowest 

maximum value of V correlated best with traffic moment, and the test with the highest 

maximum value correlated best with the Peabody Dimmick model. Overall the results are 

inconclusive, it does not appear that there is a clear pattern that correlation is a function 

of V. 
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Table 5.4: Best correlating model by level crossing category ranked by maximum V 
using SMIS data 

Category Maximum road 
traffic volume (V) 

Best correlating 
model 

Kolmogorov Smirnov test 

Result Threshold at α = 1% 

Passive Vehicular Public 570 Traffic moment 0.1715 0.1540 

Automatic Vehicular Private or Staff 1253 Peabody Dimmick 0.2700 0.1540 

Passive Vehicular Private or Staff 1350 Stott 0.2270 0.0355 

Railway-controlled Vehicular Private or Staff 12,069 Peabody Dimmick 0.3674 0.2282 

Automatic Vehicular Public 17,550 Peabody Dimmick 0.0652 0.0677 

Railway-controlled Vehicular Public 29,592 Peabody Dimmick 0.1255 0. 0586 

5.20 Implications of poor correlation for SRPTs 

This study has considered the correlation between observed collisions and the 

rates predicted by traffic models, notably the study has not been able to test the 

correlation between observed collisions and SRPTs since, in most cases, there are no 

details on the methods of calculation in the SRPTs. It is theoretically possible that the 

poor correlation between collision rates and traffic models does not extend to a poor 

correlation with the SRPTs. The traffic models are only one aspect of the tools and, in 

most cases, the tools consider the effects of other factors on the overall risk predictions. 

For example, it is possible that the GB railways' ALCRM model provides very accurate 

predictions despite using Stott's hypothesis as the underlying traffic model: errors 

between actual collision rates and the rate predicted by Stott may be corrected by other 

(unspecified) calculations in the tool. 

It is noted that the ALCRM initially used traffic moment as its underlying traffic 

model, but a change was made to adopt Stott's hypothesis instead (Baker and Heavisides, 

2007). No evidence is available to say whether the change to traffic model increases the 
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predictive accuracy of the ALCRM, however it must be presumed that the change was 

motivated by the desire to improve the accuracy of the tool. It therefore appears that the 

amount of correction that is possible with an SRPT is limited and the choice of 

underlying traffic model has an impact on the overall accuracy of the tool. 

Since the Peabody Dimmick model appears overall to be better correlated with 

collision rates at British level crossings, it could be argued that better results might be 

achieved if it had been selected instead of Stott's hypothesis. However it must be 

considered that the degree of correlation between the Peabody Dimmick model and 

observed collisions is not especially good. Furthermore Stott's hypothesis and Peabody 

Dimmick's model are only two traffic models from a hypothetical infinity of potential 

traffic models that could be used. It seems unnecessary to debate whether one poorly 

correlating traffic model should be selected in preference to any other poorly correlating 

model. A more robust approach would be to identify an appropriate model that has good 

correlation with observed collision. The review of the literature has identified only three 

models that can be tested, and the study described in this chapter has identified that none 

of these three models are good candidates for consideration. This point is considered 

further in the next chapter. 

5.21 Contribution 

The following contributions to current knowledge have been made in this chapter: 

Contribution 6: The study described in this chapter has undertaken rigorous tests 

to compare observed collisions with proposed traffic models. The method was performed 



 

172 

in a repeatable manner that would allow the test to be carried out with any other traffic 

model that may be proposed. 

Contribution 7: Further to the finding in Chapter 3 which showed that traffic 

moment can be a normaliser for collisions in idealised conditions, in real-world 

conditions it does not appear that observed collisions vary in accordance with traffic 

moment. This finding may have profound implications for the many SRPTs that use 

traffic moment as an underlying traffic model. 

Contribution 8: Similarly, it does not appear that in general Stott’s hypothesis is a 

meaningful normaliser for observed traffic collisions. Specifically Stott’s hypothesis was 

developed to describe collisions at automatic vehicular level crossings, however the 

Peabody Dimmick model appears to correlate better with observation in this class of level 

crossing. 

Contribution 9: The descriptive traffic model developed by Peabody Dimmick is 

no worse at describing the rate of level crossing collisions than the predictive hypothesis 

developed by Stott. This finding is particularly noteworthy since the Peabody Dimmick 

model was developed approximately 90 years ago. Again this finding may have profound 

implications for the SRPT that uses this traffic model. 

Contribution 10: In general, none of the proposed traffic models correlated with 

observed collisions with any meaningful degree of statistical significance. 
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Chapter 6: Study of collision rates over number of road users 

The approach of cumulating the values in the Kolmogorov Smirnov test provides 

an effective method to analyse overdispsersed data. However the use of cumulative 

values and normalising the values in a range between zero and one leads to a loss of 

information since the test does not compare the absolute values of the test variable and it 

is not possible to infer the absolute values from the normalised data. This section 

describes an analysis where collision data cumulated over road traffic volume is used, as 

in the Kolmogorov Smirnov test, however absolute values are used. 

6.1 Test with absolute values 

It is hypothetically possible that the absolute values in the test variable and the 

comparison distribution can vary by orders of magnitude, however as long as the 

distributions are similar in shape, the Kolmogorov Smirnov test can still show a high 

degree of correlation between the distributions. The accumulation and normalisation of 

the value also occurs over the range of the independent variable. In the correlation test 

described in Chapter 5 the range of traffic volumes are all scaled from zero to one in the 

tests. This scaling leads to the effect where the comparison distribution appears to change 

shape between the different tests due to the tests being conducted for a different range of 

traffic volumes (being the independent variable in the tests). In principle, the set of 

cumulative values used in the Kolmogorov Smirnov test could provide a useful data set 

that could be used for further analysis of level crossing collisions, however by scaling the 

values of the independent variable (road user volume) to be between zero and one, some 

information is lost that hinders further analysis. 
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Figures 6.1 to 6.6 show the cumulative rate of collisions per train traverse per day 

(being the unit determined in Section 4.4) over the absolute number of road users. These 

graphs are similar to the graphs shown in Figures 5.1 to 5.12, however the road traffic 

volumes have not been accumulated, and the values on neither scale have been 

normalised. The graphs shown in Figures 6.1 to 6.6 have a general shape that 

approximates a power function over traffic volume of the form of: y = axb, where a and b 

are constants. There is no underlying theory to suggest why a curve of this form should 

correlate with observed collisions, rather this equation has been selected for further 

exploration based on observation of the data. 

Mathematical analysis software was used to perform a regression analysis 

determine a best fit power function to each curve. The results of the regression analysis 

are also shown on the figures. Table 6.1 shows the equation of the power curve 

determined during the regression analysis and the R2 value of the fit between the curve 

and the observation data. Discussion of the results shown in Figures 6.1 to 6.6 is provided 

in Section 6.2. 
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Figure 6.1: Cumulative collisions per train traverse per day over road traffic 
volume for Passive Vehicular Public level crossings 

 

 

Figure 6.2: Cumulative collisions per train traverse per day over road traffic 
volume for Vehicular Private or Staff level crossings 

 

In Figure 6.2, there is a concentration of level crossings with low values of road 

user volume: most of the points occur towards the left-hand edge of the graph, there are 

few points occurring at higher values of V. The best-fit line has been heavily influenced 



 

176 

by these points at lower values creating an effect where for higher values of V there is a 

poor correspondence between the cumulative rates of observed collisions and the best-fit 

line. The same effect is seen, although to a lesser degree, in Figure 6.3. 

 

 

Figure 6.3: Cumulative collisions per train traverse per day over road traffic 
volume for Automatic Vehicular Public level crossings 

 

 

Figure 6.4: Cumulative collisions per train traverse per day over road traffic 
volume for Automatic Vehicular Private or Staff level crossings 
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Figure 6.5: Cumulative collisions per train traverse per day over road traffic 
volume for Railway-controlled Vehicular Public level crossings 

 

 

Figure 6.6: Cumulative collisions per train traverse per day over road traffic 
volume for Railway-controlled Vehicular Private or Staff level crossings 

For this class of level crossing, there are only two collisions recorded in the SMIS 

database. Consequently the same effect is seen in Figure 6.6 as is seen in Figure 5.11 

where there are horizontal bands of points indicating the number of observed collisions. 
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Table 6.1: Equations and R2 values of the curves determined 
from the regression analysis 

Graph Equation of curve determined 
by regression analysis 

R2 value of regression 
curve fit to data 

Figure 6.1: Passive Vehicular Public y = 1.0×10-4V0.432 0.821 
Figure 6.2: Passive Vehicular Private or Staff y = 1.5×10-3V0.725 0.551 
Figure 6.3: Automatic Vehicular Public y = 2.0×10-4V0.544 0.919 
Figure 6.4: Automatic Vehicular Private or Staff y = 3.0×10-4V0.444 0.944 
Figure 6.5: Railway-controlled Vehicular Public y = 2.0×10-5V0.521 0.952 
Figure 6.6: Railway-controlled Vehicular Private or Staff y = 4.0×10-5V0.192 0.572 

 

For smooth discrete functions, the cumulated value of the test variable is the 

integral of the function. Where the equation of the cumulated curve is known, then it is 

possible the determine the shape of the underlying distribution by differentiating 

cumulated function. With the values shown in Table 6.1, differentiating the equations 

over V would give an equation of the form: 

CP(collision per train traverse per day) = a'Vb' 

where: 

CP is the cumulative probability; 

V is the number of road users per day; 

a' and b' are constants determined during the differentiation. 

 

Such an equation is an estimate of the rate at which collisions per train traverse 

per day vary over road user volumes for each category of level crossing. Table 6.2 shows 

the formulae that are determined from differentiating the results shown in Table 6.1. 
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Table 6.2: Differentiated results of regression curves described in Table 6.1 

Level crossing category CP(collision per train traverse per day) estimate determined from 
differentiation of formulae in Table 6.1 

Passive Vehicular Public 4.3×10-5V-0.568 
Passive Vehicular Private or Staff 1.1×10-3V-0.275 
Automatic Vehicular Public 1.1×10-4V-0.456 
Automatic Vehicular Private or Staff 1.3×10-4V-0.556 
Railway-controlled Vehicular Public 1.0×10-5V-0.479 
Railway-controlled Vehicular Private or Staff 7.7×10-6V-0.808 

 

6.2 Interpretation of non-zero collision predictions 

As noted above, there are many level crossings where there is no history of 

collisions having occurred. It is this phenomenon that gives rise to the overdispersion 

seen in the data set. Conversely all traffic models predict non-zero collision rates for all 

level crossings. This apparent anomaly between observation and risk prediction is a 

common feature of safety risk management, especially for rare events. It can be seen in 

Table 6.2 that the predicted number of collisions for each level crossing is very small, for 

example the risk prediction in the first row of the table is 4.3×10-5V-0.568 per day, which 

means that even for a level crossing with a low value of V, the predicted number of 

collisions will never be less than 4.3×10-5, furthermore as V increases the predicted rate 

reduced further. Clearly it is not possible to have 10-5 collisions per day: collisions are 

discrete events that can occur in only whole numbers. The predicted small numbers of 

collisions means that there will be many level crossings where there remains a low risk of 

a collision occurring, even though no collisions have yet been observed. In order to 

validate the correctness of risk predictions for rare events it is necessary to aggregate the 
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observations over either a large period of time at individual level crossings, or across a 

large sample of level crossings over a small period. 

6.3 Collection of near-collision data 

Overfitting is an effect that can occur during regression analysis when a curve has 

been fitted to data in such a way as to make the residual error between the model and the 

observations smaller than the natural variation in the data. An overfitted model describes 

noise in the sample rather than the general trend, and can have poor predictive accuracy 

for unseen data samples. Figure 6.7 shows an example of overfitting. The relationship 

shown by the data in the figure is a simple power function where some random error has 

been introduced to the data. Figure 6.7a shows the actual relationship between the data 

when the random variation has been removed; Figure 6.7b shows an example of an 

overfitted curve that has better correlation with the source data, but incorrectly describes 

the noise in the data. 

 

  

Figure 6.7a: Correct generalisation of 
noisy data 

Figure 6.7b: Overfitting of a trend line 
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 Overfitting can occur when there are too many parameters in a model that is 

being applied to observed data, or where there are too few observations. In this study the 

railway-controlled vehicular private or staff category of level crossings has a history of 

only two collisions in the SMIS database. For this category it is not possible to reliably 

infer general trends in the data and there is any regression model will necessarily overfit 

the data. 

In general, level crossing collisions are – fortunately – rare events. Evans and 

Hughes (2019) state that in some cases fatalities occur only at a rate of one per five 

billion vehicle traverses. Therefore random events – even rare random events – can have 

an impact on the overall accuracy of any model. It is possible to imagine a road user who 

is in some way impaired and driving unsafely. Such a road user may have a high 

likelihood of being involved in an accident at any point during their journey; by chance 

the accident occurs at a level crossing. The accident would correctly be recorded as a 

level crossing collision, however the underlying cause of the collision may not be related 

to the presence of the level crossing nor the operation of a train at the level crossing, it 

was simply an accident waiting to happen that happened at a level crossing. Similarly a 

random failure of a road vehicle that leads to the vehicle becoming stranded on a level 

crossing could again lead to a level crossing collision that is nonetheless simply a random 

occurrence. 

If collisions at level crossings were frequent events then occasional random 

events would not have a significant impact on general trends that would be inferred from 

regression analyses. However the relative infrequency of level crossing collisions makes 

all analyses sensitive to random events and can lead to overfitting when performing 
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regression analysis. A possible method to improve the generality of models derived by 

regression analysis may be to inflate the data set by using additional data. As well as 

basing a regression model on observed collisions, it may be possible to include near-

collision events in the analysis. A near-collision might be considered to have occurred 

when a road user was occupying a level crossing until only a few seconds before the 

arrival of a train. 

Obstacle detectors are an emerging technology that can be used to detect the 

presence of obstructions on level crossings and are employed at some locations on the 

GB railway with the intention of preventing collisions at level crossings (Ohta, 2005; 

Hisamitsu et al., 2008; Fakhfakh et al., 2010). However it is not clear how this ambition 

can necessarily be achieved in accordance with railway operations. A high-speed train 

can take more than a minute to come to a stop, whereas a road user can move onto a level 

crossing and be clear again in only a few seconds. There could be a severe impact on the 

efficiency of the railway if all trains were required to take immediate action – perhaps 

commencing full emergency braking – if any obstacle were detected within their braking 

distance. The impact on the railway would be worse if members of the public were to 

vexatiously place obstacles on a level crossing as trains approach. It is clear that the 

ability of obstacle detectors to prevent immediate collisions is limited by operational 

requirements to be able to operate trains reliably at high speed. 

Nevertheless an obstacle detector can identify when there has been an obstacle on 

a level crossing, even if the obstacle was cleared before the arrival of a train. It would be 

possible to determine the time between the obstacle clearing the level crossing and a train 

arriving. In this way obstacle detectors could be used to identify near-collisions in a way 
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that could usefully inform the development of SRPTs. Inclusion of these data would 

create a more robust model than could be possible with collision data alone. 

6.4 Inclusion of additional parameters and predictive accuracy 
testing 

This study has considered the effect of road traffic volume on level crossing 

safety risk and sought to determine the degree to which the predictions of traffic models 

correlate with observed collisions. Naturally there may be factors other than only road 

traffic volume that affect level crossing safety risk. The limit on the scope of this study 

was imposed out of necessity since details of many of the SRPTs is not available, 

however details of each of the traffic models is available. Furthermore there is no general 

theory of level crossing safety risk. the various literature report on different factors that 

may affect risk but there is no general model that lists all the factors that affect safety 

risk. 

A number of descriptive models have been created which correlate in varying 

degrees with observation; some of the models correlate very well (Table 6.1). In 

accordance with the earlier work by Evans and Hughes, the descriptive models consider 

the category of warning at each level crossing (passive, automatic, or railway-controlled) 

and the accessibility of the level crossing (whether public, or private or railway staff). 

However it cannot be expected that these are the only factors that affect safety risk; it is 

expected that there are other factors that also influence the likelihood of collisions. The 

derived traffic models described above could form the basis of a more general descriptive 

model. Such a model could be created by performing a multivariate regression analysis 

on various factors of level crossings. Alternatively, machine learning techniques are an 
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emerging technology (for example Kelleher and Kelleher, 2019; Russell and Norvig, 

2016) which can be used to detect patterns in data sets. For example machine learning 

clustering methods could be used to identify the factors that are most common amongst 

level crossing where more collisions or near-collisions occur compared with those where 

fewer collisions or near-collisions are experienced. Such an approach is consistent with 

the emerging approaches that are being applied more generally for railway safety 

management (Van Gulijk et al., 2018; Hughes et al., 2019; Van Gulijk et al., 2016).  

The predictive accuracy of an SRPT is the degree to which the safety risk 

predicted by the tool correlates with future collisions or near-collisions. A simple test of 

predictive accuracy could be conducted by using an SRPT to calculate at some point in 

the past (perhaps five years prior to the date of the assessment) what risk predictions 

would have been given for a range of level crossings. Such a study could then consider 

the collisions that have occurred during that time period and assess the degree to which 

the risk predictions and observed collisions correlate.  

If it were possible to obtain evidence of the methods of calculation used by the 

various SRPTs, together of results of tests of predictive accuracy of each tool, it might be 

possible to determine which characteristics of a level crossings contribute to safety risk. It 

would therefore be possible to use the empirical results to inform an overarching 

academic theory of level crossing safety risk. 

6.5 Discussion of results 

The analysis described in this section has taken a fairly coarse approach to 

determine an approximate equation for the cumulative probability of a collision over road 
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traffic volume. The approach taken is based on the approach used in the Kolmogorov 

Smirnov test to cumulate the values in the test variable as a means of addressing 

overdispersion in the data. The method of fitting a power curve (y = axb) to the 

distribution is not based on any scientific theory, rather it was based on a requirement to 

fit a curve that would approximately match the data: there is no a priori reason to 

presume that there would be a good fit between the data and a power curve. However the 

high R2 values in Table 6.1 (up to 0.952) show that some of the curves correlate well with 

the observed rate of collisions. With the current understanding of the nature of safety risk 

at level crossings, this high degree of correlation can only be considered to be 

serendipitous. Whilst it is possible that the high degree of correlation is the consequence 

of an underlying phenomenon, at this stage no theory exists to explain why such 

correlation should exist. It is to be noted that the high degree of correlation indicated by 

the R2 scores is not seen in all cases: Table 6.1 shows that the smallest degree of 

correlation is only 0.551. 

Most notably, however, it can be seen that in every case (Figures 6.1 to 6.6) the 

cumulative number of collisions reduces as V increases. This result is shown 

mathematically in the results in Table 6.2 which are all presented in the form 

CP(collisions per train traverse per day) = a'Vb'. In every case the value of b' is below 

zero. Put simply, these results provide a compelling finding that the more road users who 

use a level crossing, the fewer collision occur per traverse. 

This finding has not previously been demonstrated in the literature but has 

important implications for the railway industry in terms of the policy that is currently 

being followed by the GB railway infrastructure manager to close level crossings 
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wherever possible (Network Rail, 2015). However when a level crossing is closed, it 

cannot be assumed that road users will abandon any desire to travel to the other side of 

the rail, rather road users will traverse the rail at other places. In some cases the other 

places may be grade separated crossings – bridges or tunnels – however in some cases the 

other place may be another level crossing. It is not clear that causing road users to divert 

from one level crossing to another will necessarily reduce the overall number of 

collisions; in fact it could potentially lead to more collisions. However the results of this 

study show that level crossing closure can be a valuable tactic as part of an overall 

programme of works to improve level crossing safety. For illustration, consider three 

vehicular level crossings each of the same category (say automatic public), two that have 

identical numbers of vehicular road users per day (say 5000) and the third that had 

exactly twice the number of road users per day as the other two (being 10,000). The third 

level crossing (with V equal to 10,000) will generally have a smaller number of collisions 

per traverse, and therefore will have a smaller number of total collisions than the other 

two combined. 

6.6 Contribution 

The following contributions to current knowledge have been made in this chapter: 

Contribution 11: The study described in this chapter has identified that the 

distribution of collisions over road traffic volume (V) does vary in accordance with a 

power law of the form collisions per train traverse per day = a'Vb'. In every case the 

value of b' is below zero. 
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Contribution 12: The corollary of the observed power law indicates that level 

crossing closure can be considered an effective method to reduce the total number of 

collisions. This finding is particularly significant as the infrastructure manager of the GB 

railway has been undertaking a programme of level crossing closure although, to date, no 

studies have been undertaken to indicate that such an approach can be expected to 

improve safety overall. 
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Chapter 7: Machine learning of characteristics that affect level 
crossing safety 

7.1 Machine learning 

7.1.1 The need for machine learning methods 

The studies in Chapters 3 to 6 have considered the degree to which traffic models 

correspond with observed collisions at level crossings in Britain. No evidence can be 

found of modern machine learning methods being applied in the determination of SRPTs, 

whereas it appears these methods could be useful as they are perfectly suited to 

discovering complex, non-linear correlations between features (such as the characteristics 

of level crossings) and labels (such as observed collisions). 

The data published by Network Rail provides road user census data for all level 

crossings in Britain and it is therefore possible to analyse the degree of correspondence 

between the various traffic models and observed collisions. Since the method of 

calculation of the SRPT used in Britain (the ALCRM) has not been published, it has not 

been possible to assess the degree of correspondence between the results of the SRPT and 

observed collisions. 

In addition to the data on road user volumes at each level crossing, data Network 

Rail also gives additional information listed in Table 7.1. In particular data are provided 

on operational characteristics, hazards and risk controls at each level crossing. It is 

possible to perform a test to determine if there are significant correlations between the 

numbers of collisions at a level crossing and these additional features. 
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Table 7.1: Data on level crossings provided by Network Rail (2017) 

Category Data provided by Network Rail 
Identification 
information Unique number; level crossing name; class of level crossing 

Location Latitude and longitude, location description, railway 
engineers line reference; postcode 

Operational 
characteristics 

Types of train (freight and passenger); rail speed; number of 
trains per day; numbers of road users (vehicular and 
pedestrian) 

Hazards 

Items from the following list: 
blocking back; crossing approach; crossing is near a station; 
deliberate misuse or user error; frequent trains; gates open; 
infrequent trains; large numbers of HGVs; large numbers of 
users; low sighting time; no specific risk drivers identified; 
poor visibility for approaching road vehicles; sun glare. 

Risk controls 

Items from the following list: 
audible alarm; barrier; CCTV monitoring by signaller; full 
barrier equipment; gates; half barrier equipment; road 
markings; road traffic light signals; signage; stop boards 
provided on the train approaches - trains stop and drivers 
sound the train horn before proceeding; telephones provided 
for vehicle users; train signalling protection; whistle boards 
provided on the rail approach in one direction - train horn 
audible warning given (06:00 to 23:59); whistle boards 
provided on the rail approaches - train horn audible warning 
given (06:00 to 23:59). 

Safety-related 
events Numbers of accidents, incidents, and near misses 

Risk assessment 
details 

Date of the most recent assessment and due date of the next 
assessment, risk scores in two categories: individual risk 
ranked from A to M, and collective risk ranked 1 to 13 

 

  



 

190 

Table 7.2 shows example shows the data for four level crossings selected from the 

dataset. 

Table 7.2: Examples level crossings showing values; data taken from 
Network Rail (2017) 

Identification number 2144 6973 4528 3297 
Name Crewkerne Huish Stowgate Church Dam  

Level crossing class 
Public Highway 
Automatic Half 
Barriers 

Public Highway 
Manned Barriers 
CCTV Monitored 

Public Highway 
Automatic Half 
Barriers 

Public Highway 
User worked 
Crossing 

Latitude co-ordinates 50.872099 51.376721 52.678152 52.563754 
Longitude co-ordinates -2.79278 -2.862732 -0.24541 1.577176 

Location South Somerset 
District 

Puxton CP Deeping St. James 
CP 

Reedham CP 

Engineers line reference BAE2-132.0073 MLN1-132.0242 WEB0-084.0835 RBY0-012.1669 
Postcode TA188PF BS246RZ PE6 8RW NR133UE 

Types of trains Passenger & 
Freight 

Passenger & 
Freight 

Passenger & 
Freight 

Passenger & 
Freight 

Line speed (mph) 75 100 75 60 
No. of trains per day 37 100 28 4 
Vehicular road users per day 1296 189 68 1 
Pedestrians or cyclists per 
day 

81 Infrequent 14 Infrequent 

Key risk drivers 
Poor Visibility for 
Approaching Road 
Vehicles 

Large Numbers of 
HGVs 

No Specific Risk 
Drivers Identified 

Infrequent trains; 
Sun Glare 

Risk controls 

Half barrier 
equipment; Road 
traffic light 
signals; Audible 
alarm; Signage 

Train signalling 
protection; CCTV 
monitoring by 
signaller; Full 
barrier equipment; 
Road traffic light 
signals; Audible 
alarm; Signage 

Half barrier 
equipment; Road 
traffic light 
signals; Audible 
alarm; Signage 

Telephones 
provided for 
vehicle users; 
Gates; Signage 

Near Miss history Nil Nil Nil Nil 
Incident history 1 1 2 2 
Accident history Nil Nil Nil Nil 
Current assessment date Mar-16 Sep-15 May-14 Jun-15 
Next assessment due date Jun-18 Dec-18 Aug-17 Aug-18 
Individual risk letter F I E D 
Collective risk number 4 8 6 8 
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The data describe all level crossings in Great Britain from those in rural areas 

with low traffic volumes, to those on heavily used public roads in urban areas. Table 7.3 

shows the range of values for the numerical data for operational characteristics in the 

dataset. 

Table 7.3: Range of values for numerical data on operational characteristics in 
Network Rail (2017) 

Characteristic Lowest value Highest value 

Trains per day 1 479 

Vehicles per day Infrequent 29,592 

Line speed (mph) 5 125 
 

As noted in Section 4.1.1, where the data show that there are infrequent road 

users, the values of 0.5 road users per day was used in this analysis. The level crossings 

also have a range of different hazards and risk controls. Some level crossings have no 

information on hazards, in these cases the entry no specific risk drivers is recorded in the 

dataset. The largest number of hazards recorded for a level crossing was seven, being: 

• poor visibility for approaching road vehicles; 

• crossing is near a station; 

• crossing approach; 

• large numbers of users; 

• sun glare; 

• deliberate misuse or user error; and 

• blocking back. 
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In all cases, level crossings have some signage, therefore all level crossings in the 

dataset have at least one entry for the control devices. The largest number of warning 

devices for a level crossing was six, being: 

• signage; 

• train signalling protection; 

• CCTV monitoring by signaller; 

• full barrier equipment; 

• road traffic light signals; and 

• audible alarm. 

In principle it would be possible to perform a statistical regression analysis to 

determine the degree of correlation between any of these characteristics and the rate of 

collisions at level crossings. However such an analysis would be unwieldy because of the 

large number of characteristics any of which by itself, or in combination with other 

characteristics may impact on safety risk. For example considering the hazards identified 

in Table 7.1, it is possible that by itself large numbers of HGVs (heavy goods vehicles) 

does not have a significant impact on safety risk, however in conjunction with low 

sighting time, the impact of the combination of hazards may be significant. Similarly 

there may be risk controls which are effective only when applied in combination with 

other controls. Furthermore is possible that some risk controls – or combinations of risk 

controls – are effective at controlling on some hazards, or combinations of hazards. 

The data from Network Rail identifies 12 different hazards (ignoring the option 

no specific risk drivers). This list allows for a large number of combinations of hazards to 

be described at any level crossing. The total number of combinations is given by 

summing the binomial coefficients for the number of ways (C) of selecting k items from 
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a list of n options for all values of k from zero to n. Equation 7.1 shows the method of 

calculating the binomial expansion. 

! =	$ %!
'! (% − ')!

+

,-.
 Equation 7.1 

Where: 

C is the total number of combinations; 

k is the number of items to be selected from the list of hazards; 

n is the number of items in the list of hazards. 

 

Since the data from Network Rail identifies 12 hazards, putting the value n=12 

into Equation 7.1 gives a result of Chazards = 4096. Similarly the data identify 14 different 

risk controls which, again, could occur in any combination at a level crossing. Putting the 

value of n=14 into Equation 1 gives a result of Ccontrols = 16,384. Conceivably, any 

combination of risk controls may be effective in reducing safety risk when used with any 

combination of hazards. As such the total number of cases to be considered from these 

data are: 

Ctotal = Chazards × Chazards = 4096 × 16,384 = 67,108,864 

 

Since there are data only 3742 level crossings, clearly it is not necessary to test 

every possible combination of hazards and risk controls. Nevertheless there remains a 

large number of combinations that would be need to be tested during a regression 

analysis to determine with confidence whether there are specific combinations of hazards 

and risk controls that have a significant impact on safety risk. 
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A further complication for performing a regression analysis is that the relationship 

between the characteristics and safety risk may not be linear. The studies described in 

Chapter 6 demonstrates that where there is a relationship between road traffic volume and 

safety risk the covariance does not follow a linear pattern, rather the relationship is better 

described by the formula: CP = a'Vb'. Since no theory has been presented for the possible 

relationships between characteristics and collision rates, the nature of this study is 

exploratory to determine if any plausible relationship can be identified. As such there are 

countless possible types of relationship that could be tested for correlation with 

observation.  

Conversely, a number of the machine learning methods are not expected to be 

exhaustive in their pattern searches, a number of the methods, such as random forests, are 

purposefully designed to generate approximate patterns that avoid overfitting the data. 

Such a heuristic approach substantially reduces the computational effort required in 

analysis and therefore lends itself to the type of exploratory analysis being undertaken in 

this study. The method applied in this study  

7.1.2 Full and fractional factorial design 

When designing experiments where there are a large number of input factors, full 

factorial design is a technique that is often used in chemical processes (Patience, 2017) 

and medical research (Beg and Hasnain, 2019). Full factorial design reduces the number 

of experiments that are needed by measuring the effects of input factors at only the 

extremes of the range their values: both at the extreme low end and the extreme high end 

of the range. Using this approach, it is assumed that the effect of each factor on the output 

at intermediate values can be interpolated from the values at the extreme ends. Using full 
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factorial design, each factor and each combination of factors are tested. Where there are a 

large number of factors, the numbers of combinations can still be large and this approach 

can still require a large number of experiments. 

Fractional factorial design further reduces the number of experiments required by 

assuming that the effects of some combinations of factors can be modelled by 

considering the effects of other combinations: for example the effects of factors A, B, and 

C on the output, can be inferred by examining the effects of factors A and B and also the 

effects of factors A and C on the output. Fractional factorial design allows the number of 

experiments to be reduced by around 50% (Sarker and Nahar, 2018). 

It may appear that full or fractional factorial design could be a useful approach for 

constructing machine learning experiments to reduce the number combinations of factors 

that need to be considered. However there are some important considerations: firstly is 

that the approaches of full and fractional factorial design assume that the effects of 

factors can be modelled by considering their influences at the extreme ends of their 

ranges. In effect there is an assumption that the effect of factors on the output is 

approximately linear: if the effect of a factor at the higher end of its range produces a 

positive effect on the output, then it can be assumed in general that larger concentrations 

of the factor will always produce a positive effect. By considering the effect at only the 

ends of the range this approach to experimental design cannot consider non-linear effects 

that occur at intermediate values. However, as discussed in Sections 2.15 and 7.1.1, it is 

possible that there may be non-linear effects with specific factors, or combinations of 

factors, that affect safety risk at level crossings. Furthermore fractional factorial design 

attempts to reduce the number of experiments by assuming that some combinations of 
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factors do not need to be modelled as the effects of specific combinations can be inferred 

by considering other combinations. Such an approach is valid where the effects of 

particular combinations of a factor are well understood; perhaps as a result of prior 

experiments which have demonstrated that particular factors are independent of each 

other. However in the study of level crossing safety there is a dearth of evidence of the 

effects of any combinations of factors on safety risk. As discussed in Section 2.2, a 

number of researchers have considered the effects of individual factors on level crossing 

safety risk, but there is not sufficient evidence on the effects of combinations of factors to 

be able to confidently assume that some factors are mutually independent in their effect 

on level crossing safety risk. 

Secondly, fractional factorial design is typically applied in cases where there are 

at most dozens of experiments to be performed (Sarker and Nahar, 2018). For the case of 

machine learning considered in this study there are more then 67 million combinations of 

factors to be considered: even a 50% reduction in the number of experiments would still 

leave more than 33 million combinations to be considered. 

Lastly, the approaches of full and fractional factorial design are meaningful for 

experiments that require physical recourses, such as experiments that consider the effects 

of different concentrations of chemical components on a specimen of biological material. 

In such experiments it is common that a factor, such as a chemical reactor, cannot be 

reused once it has been used in one experiment. In these cases the physical resources 

required may be expensive to obtain, or scarcity of materials may mean that there are 

insufficient quantities of materials to perform the full number of experiments. For this 

study, the inputs to the experiments are data stored in electronics computers. Modern 
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computers are able to store large quantities of data very cheaply: the cost of copying and 

storing data to run additional experiments is virtually zero. The main limitation on the 

number of experiments that can be performed is the time required for computation. 

Modern computers are able to perform many millions of computations in a short amount 

of time, and the various machine learning methods use a number of heuristics to reduce 

the computational space that needs to be searched in performing calculations. The 

methods used to reduce the number of experiments required for performing physical 

experiments on physical resources are not necessarily well-suited for addressing the 

requirements of data-driven experiments. 

7.2 Method of application 

Machine learning methods were applied to determine whether a correlation could 

be identified between the features of a level crossing and the history of collisions. Data 

on level crossing characteristics from the Network Rail spreadsheet were used as in the 

preceding work described in Chapters 4 to 6; collision data from the SMIS database was 

used. The level crossing characteristic data used in the analysis were all data fields from 

the following categories shown in Table 7.1: 

• category of level crossing; 

• operational characteristics; 

• hazards; and 

• risk controls. 

Where numeric values were provided for the features, these values were used 

directly in the machine learning process. A one-hot encoding was used to describe the 
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hazards and risk controls, i.e. a separate column was added to the data for each type of 

hazard and for each type of risk control. A value of one was entered in the column if the 

hazard or risk control was present at a level crossing, otherwise the value zero was stored. 

Therefore each level crossing had at least one non-zero entry for risk controls, since all 

level crossings have at least signage even if they have no other risk controls. A column 

was not added for the entry no specific risk drivers since this can be inferred from the 

absence of any non-zero values in any of the columns describing hazards. 

In keeping with the nomenclature described in Chapter 2, these data were used as 

the features for each level crossing, collision data from the SMIS database were used as 

the labels. In Chapters 4 to 6, the collision data were normalised by collisions per train 

traverse per day. Ideally it would be desirable for a machine learning model to be able to 

correctly predict collision rates for a level crossing. For the initial exploratory study it is 

not clear which, if any, of the machine learning methods would be well-suited to identify 

patterns of correlation. Instead level crossings were labelled with a Boolean value 

indicating whether each level crossing had a history of any collisions. The test was 

therefore to determine if the characteristics of a level crossing from the Network Rail 

spreadsheet were adequate to accurately determine level crossings where collisions have 

occurred. In the input data, a value of zero was used to indicated no history of collisions, 

and one was used to indicate that at least one collision had been recorded.  

These data were saved in a tab-separated values file. The file consisted of 38 

columns. The structure of the data is shown in Table 7.4. 
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Table 7.4: Structure of data used in the machine learning analysis 

Columns Data Details 
1 Unique identification number 

for each level crossing. 
– 

2 Description of level crossing 
class. 

See entry for Column 3 below. 

3 Description of level crossing 
class, and a numeric identifier 
for each class. 

The classes and numeric identifiers are: 
5: Passive Vehicular Public 
6: Passive Vehicular Private or Staff 
7: Automatic Vehicular Public 
8: Automatic Vehicular Private or Staff 
9: Railway-controlled Vehicular Public 
10: Railway-controlled Vehicular Private or Staff 

4 Operational characteristic: 
number of trains per day 

Numeric value between 1 and 479. 

5 Operational characteristic: 
maximum train speed 

Numerical value between 5 and 125 (mph). 

6 Operational characteristic: 
speed difference between the up 
and down railway lines. 

Numerical value between 0 and 50 (mph) 

7 and 8 Operational characteristics: 
whether the railway line is used 
by passenger and / or freight 
trains. 

One-hot encoding with values of zero or one for passenger 
trains (Column 7) and freight trains (Column 8). 

9 Operational characteristic: 
number of vehicles traversing 
the level crossing per day. 

Numerical value between 0.5 (infrequent) and 29,592 

10 Operational characteristic: 
number of pedestrians traversing 
the level crossing per day. 

Numerical value between 0 and 30,051. 

11 to 23 Hazards One-hot encodings for each of the hazards: 
• blocking back 
• crossing approach 
• crossing is near a station 
• deliberate misuse or user error  
• frequent trains 
• gates open 
• infrequent trains 
• large numbers of HGVs 
• large numbers of users 
• low sighting time 
• no specific risk drivers identified 
• poor visibility for approaching road vehicles 
• sun glare 
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Columns Data Details 
24 to 37 Risk controls One-hot encodings for each of the risk controls: 

• audible alarm 
• barrier 
• CCTV monitoring by signaller 
• full barrier equipment 
• gates 
• half barrier equipment 
• road markings 
• road traffic light signals 
• signage 
• stop boards provided on the train approaches - 

trains stop and drivers sound the train horn before 
proceeding 

• telephones provided for vehicle users 
• train signalling protection 
• whistle boards provided on the rail approach in one 

direction - train horn audible warning given (06:00 
to 23:59) 

• whistle boards provided on the rail approaches - 
train horn audible warning given (06:00 to 23:59) 

38 Label indicating whether the 
level crossing had a history of 
collisions. 

Boolean value 

 

The file had 3742 rows: one for each vehicular level crossing. 

The tests were performed using a software program written in the Python 

programming language; this language was selected because of the extensive range of 

software libraries available and in particular the widely used sci-kit learn machine 

learning library (Pedregosa et al., 2011). The code used in the tests is shown in 

Appendix B. 

The code contains variables that select which features will be used in the analysis 

and which machine learning method will be applied. The code allowed the user to select 

groups of features to be included in the analysis, for example a group of all features 
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describing hazards, or all features describing risk controls. Alternatively features could be 

selected singly or in any combination, or all features could be included in the analysis. 

Following from the review of machine learning methods described in 

Section 2.15, each test was performed with one of the selected machine learning methods 

for the choice of: decision tree method; random forest; ANN; or support vector machine 

as shown in Table 7.5. 

Table 7.5: Machine learning methods and sci-kit learn configuration 
used in the study 

Method sci-kit learn library module Model configuration 

Decision tree sklearn.tree.DecisionTreeClassifier n/a 

Random forest sklearn.ensemble.RandomForestClassifier max_depth: 5 
n_estimators: 10 

Artificial neural network 
(multi-layer perceptron) 

sklearn.neural_network.MLPClassifier alpha: 1 
max_iter: 1000 

Support vector machine 
(Gaussian radial basis function) 

sklearn.svm.SVC gamma: 2 
C: 1 

 

7.2.1 Recall value 

A significant proportion of level crossings in Britain have no history of collisions. 

Table 7.6 shows the proportion of vehicular level crossings where no collisions have been 

recorded. 
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Table 7.6: Count of level crossings in each class with no history of collisions 

Class of level crossing 

Total 
number of 
level 
crossings 

Number of level 
crossings with no 
history of collisions 

Proportion of level 
crossings with no 
history of collisions 

Passive Vehicular Public 112 102 91.1% 

Passive Vehicular Private or Staff 2114 2040 96.5% 

Automatic Vehicular Public 579 475 82.0% 

Automatic Vehicular Private or Staff 112 88 78.6% 

Railway-controlled Vehicular Public 774 760 98.2% 

Railway-controlled Vehicular Private or Staff 51 49 96.1% 

Total 3742 3514 93.9% 
 

A weighted average of these results shows that 93.9% of vehicular level crossings 

have no history of collisions. As such it would be possible to create a model that 

predicted for any level crossing that there would be no collisions and the model would 

have an overall accuracy of 93.9%. Such a result would not provide a valuable tool for 

risk management on the railway. To address this issue, recall was used as the test of each 

model’s performance, the recall value is given as: /01233 = 456+7	58	796:	;5<=7=>:<
796:	;5<=7=>:<?8@A<:	+:B@7=>:< 

7.2.2 Selection of training set size 

When performing supervised machine learning there is a question regarding the 

proportion of records that should be used to train the model (the training set) and the 

proportion that are used to validate the model (the testing set). If the training set is too 

small, the machine learning method cannot sufficiently learn the characteristics of the 
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data and will provide inaccurate results. Conversely, too large a training set will lead to 

over-fitting and will reduce the generality of the resultant model. 

The literature commonly show cases where the testing sets is 20%, 30% or 40% 

of the data set, for example Stamp (2017), Alpaydin (2009) and Raschka (2015). In 

general, however, little justification is given for the selection of any particular proportion.  

Amari et al. (1997) proposed that the optimal proportion of testing records is 

given by: 

/′5;7 = 	
1
EF

 Equation 7.2 

Where: 

r' denotes the testing set, and r'opt is the optimal value to maximise the 

learning and minimise over-fitting; 

f is the number of features in the data. 

 

A proof of this formula is also given in Guyon (1997). For the data used in this 

study, there are 33 features, being: 7 operational characteristics; 12 values describing 

hazards; and 14 values describing risk controls. Applying Equation 7.2 to this data set 

gives: 

/′5;7 = 	 G
√II = 	0.174 = 17.4% Equation 7.3 

 

Another point to note is that the data used in this study are sparse: most of the 

data describe negative examples (level crossings where there is no history of collisions). 

To provide a large enough sample of positive examples to allow the models to produce 
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accurate results, a large training set will be required; therefore a larger training set of the 

order 80% is again supported. 

Since the training set is a random selection of records from the full data set, it is 

possible that divisions of the data will lead to cases where there are too few positive 

examples in the training set, or too few positive examples in the testing set. To overcome 

this problem that may occur with a single application of the method, each method was 

repeated 1000 times and the results of each test were combined to produce an overall 

recall value. Another approach that can be used to avoid overfitting is to reduce the 

number of features in the data (Guyon, 1997; Alpaydin, 2009). This study uses an 

exploratory approach that identifies the methods that produce the best recall values and 

then applies a reductionist approach to identify which features or sets of features produce 

the best recall values. 

Finally it is noted, that the effect on the accuracy of the results does not 

necessarily vary dramatically when varying the size of the training set. Towards Data 

Science (2020) identified that a 7% variation in the size of the training set produce only a 

2% increase in the precision, recall and f1-scores. Based on these findings, a training set 

of 80% was used for this study. 
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7.2.3 Iterative application 

For each of the methods, tests were run for vehicular level crossings with the 

following sets of features: 

• operational characteristics 

• hazards 

• risk controls 

• all of the above, viz. operational characteristics, hazards, and risk controls 

For four methods with four sets of characterises gives a total of 16 tests. The 

results are shown in Table 7.7. These initial results showed that the decision tree was the 

only method to produce recall values of more than 20%: the recall method of the other 

methods was in every case less than 4% and in many cases zero. Since the decision tree 

method appeared to be the most effective, further tests were performed using this method 

with smaller sets of features to determine whether particular features correlate with good 

recall performance. Tests were run for each class of level crossing for each category of 

features (operational characteristics, hazards, or risk controls). As with the initial results, 

there was a clear distinction in the results: tests performed with operational characteristics 

as features of the data produced recall results of up to 31%, whereas only one of the tests 

that used hazards or risk controls as features produced a non-zero result of only 1.62%. 

The tests were again repeated using the decision tree method, with each of the operational 

characteristics tested individually. The results of all these tests are shown in Table 7.8. 
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7.3 Recall values from machine learning tests 

The recall values for each of the tests are shown in the following tables. Each row 

of the tables shows the mean recall results averaged over 1000 executions of the test. 

Table 7.7 shows the results of the initial tests; the five columns of the table show: 

• test number: a unique identifier for each test; 

• machine learning method: which one of the four methods was used in the 

test; 

• classes of level crossing: the results shown in Table 7.7 are for the initial 

analysis which was applied to all classes of level crossing; 

• features: which of the features (operational characteristics, hazards, 

controls, or all features) where used in the analysis to test for correlations; 

and 

• average recall value: the mean value of the recall value from 1000 tests. 
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Table 7.7: Results of initial tests 

Test Machine learning 
method 

Classes of level 
crossing Features Average recall 

value 
1 Decision tree All operational characteristics 19.97% 
2 Decision tree All hazards 0.00% 
3 Decision tree All controls 0.00% 
4 Decision tree All all 22.03% 
5 Random forest All operational characteristics 0.00% 
6 Random forest All hazards 0.00% 
7 Random forest All controls 0.00% 
8 Random forest All all 0.08% 
9 Artificial neural network All operational characteristics 3.06% 

10 Artificial neural network All hazards 0.00% 
11 Artificial neural network All controls 0.00% 
12 Artificial neural network All all 3.78% 
13 Support vector machine All operational characteristics 0.14% 
14 Support vector machine All hazards 0.00% 
15 Support vector machine All controls 0.00% 
16 Support vector machine All all 0.15% 
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The results in Table 7.7 show that only the decision tree method produces an 

average recall value above 4%, so this method was used for further study. Table 7.8 

shows the results of the tests using only the decision tree method. The column in the table 

show: 

• test number: a unique number for each test, continuing the numbering 

from Table 7.7; 

• classes of level crossing: which class of level crossings the test was 

applied to; 

• features: the groups of features, or individual features that were used in 

the test; and  

• mean recall value: the mean value of the recall value from 1000 tests. 
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Table 7.8 Results of detailed tests 

Test 
number Classes of level crossing Features Mean recall 

value 
17 Passive Vehicular Public operational characteristics 31.61% 
18 Passive Vehicular Private or Staff operational characteristics 11.87% 
19 Automatic Vehicular Public operational characteristics 25.22% 
20 Automatic Vehicular Private or Staff operational characteristics 27.94% 
21 Railway-controlled Vehicular Public operational characteristics 2.77% 
22 Railway-controlled Vehicular Private or Staff operational characteristics 0.30% 
23 Passive Vehicular Public hazards 0.00% 
24 Passive Vehicular Private or Staff hazards 0.00% 
25 Automatic Vehicular Public hazards 0.00% 
26 Automatic Vehicular Private or Staff hazards 0.00% 
27 Railway-controlled Vehicular Public hazards 0.00% 
28 Railway-controlled Vehicular Private or Staff hazards 0.00% 
29 Passive Vehicular Public controls 0.00% 
30 Passive Vehicular Private or Staff controls 0.00% 
31 Automatic Vehicular Public controls 0.00% 
32 Automatic Vehicular Private or Staff controls 1.62% 
33 Railway-controlled Vehicular Public controls 0.00% 
34 Railway-controlled Vehicular Private or Staff controls 0.00% 
35 Passive Vehicular Public Trains per day 47.12% 
36 Passive Vehicular Public Max line speed 0.13% 
37 Passive Vehicular Public Speed difference up/dn 0.00% 
38 Passive Vehicular Public Train type: Passenger 0.00% 
39 Passive Vehicular Public Train type: Freight 0.00% 
40 Passive Vehicular Public Vehicles per day 6.79% 
41 Passive Vehicular Public Pedestrians per day 6.06% 
42 Passive Vehicular Private or Staff Trains per day 0.16% 
43 Passive Vehicular Private or Staff Max line speed 0.00% 
44 Passive Vehicular Private or Staff Speed difference up/dn 0.00% 
45 Passive Vehicular Private or Staff Train type: Passenger 0.00% 
46 Passive Vehicular Private or Staff Train type: Freight 0.00% 
47 Passive Vehicular Private or Staff Vehicles per day 4.72% 
48 Passive Vehicular Private or Staff Pedestrians per day 2.19% 
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Test Classes of level crossing Features Mean recall 
value 

49 Automatic Vehicular Public Trains per day 9.57% 
50 Automatic Vehicular Public Max line speed 6.52% 
51 Automatic Vehicular Public Speed difference up/dn 0.00% 
52 Automatic Vehicular Public Train type: Passenger 0.00% 
53 Automatic Vehicular Public Train type: Freight 0.00% 
54 Automatic Vehicular Public Vehicles per day 17.80% 
55 Automatic Vehicular Public Pedestrians per day 4.83% 
56 Automatic Vehicular Private or Staff Trains per day 19.43% 
57 Automatic Vehicular Private or Staff Max line speed 9.04% 
58 Automatic Vehicular Private or Staff Speed difference up/dn 0.00% 
59 Automatic Vehicular Private or Staff Train type: Passenger 0.00% 
60 Automatic Vehicular Private or Staff Train type: Freight 0.00% 
61 Automatic Vehicular Private or Staff Vehicles per day 27.76% 
62 Automatic Vehicular Private or Staff Pedestrians per day 8.18% 
63 Railway-controlled Vehicular Public Trains per day 0.00% 
64 Railway-controlled Vehicular Public Max line speed 0.00% 
65 Railway-controlled Vehicular Public Speed difference up/dn 0.00% 
66 Railway-controlled Vehicular Public Train type: Passenger 0.00% 
67 Railway-controlled Vehicular Public Train type: Freight 0.00% 
68 Railway-controlled Vehicular Public Vehicles per day 0.00% 
69 Railway-controlled Vehicular Public Pedestrians per day 0.00% 
70 Railway-controlled Vehicular Private or Staff Trains per day 0.00% 
71 Railway-controlled Vehicular Private or Staff Max line speed 0.00% 
72 Railway-controlled Vehicular Private or Staff Speed difference up/dn 0.00% 
73 Railway-controlled Vehicular Private or Staff Train type: Passenger 0.00% 
74 Railway-controlled Vehicular Private or Staff Train type: Freight 0.00% 
75 Railway-controlled Vehicular Private or Staff Vehicles per day 0.00% 
76 Railway-controlled Vehicular Private or Staff Pedestrians per day 0.00% 
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The recall values for Tests 35 to 76 shown in Table 7.8 are repeated in Table 7.9 which sets out 

the results in a different tabular format to allow easier comparison of results by features and classes of 

level crossing. 

Table 7.9: Summary of recall values from rows 35 to 76 of Table 7.8 

 Class of level crossing 

Individual characteristic 

Passive 
vehicular public 

Passive 
vehicular 
private or staff 

Automatic 
vehicular public 

Automatic 
vehicular 
private or staff 

Railway-
controlled 
vehicular public 

Railway-controlled 
vehicular private or 
staff 

Trains per day 47.12% 0.16% 9.57% 19.43% 0.00% 0.00% 
Max line speed 0.13% 0.00% 6.52% 9.04% 0.00% 0.00% 
Speed difference up/dn 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
Train type: Passenger 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
Train type: Freight 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
Vehicles per day 6.79% 4.72% 17.80% 27.76% 0.00% 0.00% 
Pedestrians per day 6.06% 2.19% 4.83% 8.18% 0.00% 0.00% 
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7.4 Interpretation of results 

Considering the results of the initial tests in Table 7.7., nine of the 16 rows show a 

recall value of 0.00%. The mean value of all the results in the table is only 7.03%. Only 

two tests obtained a recall value above this mean: both of these results were obtained 

when the decision tree method was applied. These two results were obtained when the 

features of the tests were either operational characterises, or all characteristics. The tests 

described in Table 7.7 were purposefully broad in their scope as an initial exploration of 

the methods and therefore provide little insight into the correlation between specific 

characteristics of level crossings and collision rates. Rather the tests indicate that if any 

correlation can be found using machine learning methods then it is likely that the decision 

tree method is best suited to the data set to identify the correspondence. Table 7.8 shows 

the results of the further exploration of the data when this method was applied to more 

refined subsets of the data. 

The results for tests 17 to 34 show the results of applying the decision method to 

each class of level crossing individually for each set of features, viz. operational 

characteristics, hazards, and controls. These results show that it is only the operational 

characteristics that consistently produce recall values more than 1.00%. This result 

indicates that there is a possibility that, for a specific class of level crossing, it is only the 

operational characteristics – and not the hazards nor control devices – that have any 

meaningful impact on level crossing safety. Such a finding would be significant as it is 

contrary to the assumptions underlying the creation of many SRPTs, some of which 
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consider a large number of characteristics of level crossings including individual hazards 

and controls (Baker and Heavisides; 2007). 

Prima facie the finding that there seems to be a correlation between operational 

characteristics and observed collision may appear to contradict the findings of the study 

in Chapter 5 which found that, in most cases, there was no statistically significant 

correlation between the traffic models and observed collisions. However it should be 

noted that the study described in Chapter 5 found that there was some degree of 

correlation, but that in all but one case, the degree of correlation was not sufficient to pass 

the Kolmogorov Smirnov test. The machine learning method applied in this study has 

shown, again, that there appears to be some correlation but, once again, the degree of 

correlation does not support any theoretical model. As such, these results serve as a cross-

validation of the two methods: use of statistical methods and the Kolmogorov Smirnov 

test, and the machine learning methods. The most salient finding from these results 

appears to be that although the correlation between operational characteristics and 

observed collisions is weak, it is nevertheless the strongest result in the study. It is 

important to emphasise that this finding does not prove that there is no correlation 

between collision rates and the hazards and controls at level crossings, rather the finding 

shows that no correlation can be found, even when using the machine learning method 

that appears from initial tests (Table 7.7) to produce the largest recall values. For any 

complex system it is never possible to prove that no correlation exists between various 

sets of variables. It remains possible that there is some correlation within the data, albeit 

only a weak correlation, or perhaps a correlation with a theoretical model that has not yet 

been identified. However the machine learning methods used in this study do not require 
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an a priori model for testing, rather the methods attempt to identify with any correlation 

can be found. As such, the lack of a significant results when a range of different machine 

learning methods has been applied provides some indication that there may be no 

meaningful correlation. This result is consistent with the observation that there is no 

evidence of any of SRPT producing results that correlate with observed collision rates 

(Chapter 2). 

Another observation from the results for Tests 17 to 22 is that the recall values for 

railway-controlled level crossings are low compared with other classes of level crossing: 

below 3%, whereas the recall rates of other classes of level crossing are above 11% and 

update to 31%. It is often the case in statistical analysis or machine learning that low 

scores are obtained when there is only a small number of samples in the test data and 

therefore it is not possible to identify general trends that are true for all instances. 

However the small values for railway-controlled level crossings cannot be readily explain 

in this way for the data used in these tests. Figure 7.1 provides graphical representation of 

the numbers of level crossings in each class and the recall values obtained during 

Tests 17 to 22. Again, these results are not, by themselves, conclusive, however they lead 

to a hypothesis that it is possible that whilst operational characteristics have some 

correlation with collision rates, the effect is very much reduced for railway-controlled 

level crossings. It is noted that, in Britain, railway-controlled level crossings have full 

gates or booms covering the full width of the road: both the approach and departure 

carriageways. This type of barrier may, by itself, be the factor that leads to reduced 

collision rates at this class of level crossing (Evans and Hughes; 2019). As such it is 
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possible that when full-width barriers are provided, other operational characteristics of 

level crossings do not have any meaningful bearing on the occurrence of collisions. 

 

Figure 7.1: Recall value over count of level crossings in a class 

 

Tests 35 to 76 consider the effects of individual characteristics for each class of 

level crossing, these data are repeated in Table 7.9 for ease of comparison between 

characteristics and classes of level crossing. These results show that the only individual 

characteristics that produce non-zero recall values are: the numbers of trains per day, the 

maximum line speed, and the numbers of road users. Within these results there is, again, 

a variety in the values, the non-zero values range from 0.13% to 47.12%, with little 

consistency in either the characteristics nor the classes of level crossings that are 

producing the higher or lower values. 

The results in Table 7.9 show that, for some classes of level crossing, it is possible 

to use the decision tree method to identify some degree of correspondence between 
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collisions at level crossings and some operational characteristics, specifically: the 

maximum line speed and the numbers of trains and road users per day. However it must 

be noted that the largest recall value is only 47.12% which. From the definition of the 

recall value, this result means that for level crossings where there is a history of collisions 

then – at best – only 47.12% of these level crossings can be correctly identified by 

considering the characteristics of a level crossing. In summary, the method is no better 

than a random coin-flip at correctly identifying level crossings where there has been a 

history of collisions. Furthermore this value is obtained only after testing a number of 

machine learning methods and selecting the one that consistently produces the largest 

recall values. 

The conclusions that can be drawn from this result are that either: 

1. there exists a correlation between the physical and operational 

characteristics of level crossings and rates of collisions, but the methods 

used were not sufficiently powerful to identify the correlation; or 

2. there is a correlation but the characteristics recorded in the database are 

not the correct data to allow the effect to be identified; or 

3. no meaningful correlation exists. 

It is an underlying assumption in all SRPTs that there is a meaningful correlation 

between the characteristics of level crossings and collision rates, it is therefore necessary 

to consider the implications of these three possibilities. 

The first possible possibility – that there is a correlation, but the methods used 

cannot properly identify it – raises the question of the value of the methods used to create 

the SRPTs currently in use around the world. Furthermore, the question should be asked 
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whether the SRPTs currently in use are in any way effective at identifying level crossings 

where there is a high risk of collision. There various SRPTs around the world use a 

variety of methods to estimate safety risk and there is no evidence available that any of 

them produces results that correlate with observed collision rates. A further consideration 

is that the method that was used in this study uses powerful machine learning techniques 

that have been developed specifically for identifying correlations in data. The method 

used in this study has a number of advantages over the statistical techniques that have 

traditionally been used for identifying correlations in data. In fact the method used in this 

study is relatively modern (the sci-kit learn machine learning library was first published 

in 2007 and has been incrementally revised since) and post-dates the creation of a number 

of the SRPTs. Whilst it is never possible to conclude that no correlation exists, the 

rigorous and methodological approach used in this study, together with use of modern 

machine learning methods, provides a strong argument for the case that there may, in 

fact, be no correlation. 

The second possibility is that the characteristics of a level crossing do affect the 

safety risk – and hence the rate of collisions – but that the data recorded in the Network 

Rail dataset do not describe these characteristics: perhaps there are other characteristics 

that affect the risk. This possibility therefore raises the question of what these other 

characteristics might be. The available data on level crossings describe the physical and 

operational characteristics of the level crossings including the hazards and control 

devices in place. These data have been collected by professional staff from the railway 

who have detailed operational knowledge of level crossings. The staff collecting the data 

are, arguably, the best qualified to identify the data that are relevant. If, in future, it is 
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possible to obtain a broader range of data regarding level crossings, then it is possible that 

the study could be repeated. It should also be considered that physical and operational 

characteristics of level crossings may have only a small influence on level crossing safety 

risk: there may be other characteristics that have a larger affect. For example 

characteristics of road users – such as their skill in driving a vehicle, or whether they are 

distracted, intoxicated or otherwise incapacitated – may have a more significant influence 

on level crossing safety than its physical and operational characteristics. 

The final possibility to be considered is that the class of the level crossing is the 

only factor that has a influence on safety risk (Evans and Hughes; 2019) and that there is 

no other meaningful correlation with other characteristics. This conclusion flies in the 

face assumptions that underlie the development of the many SRPTs in use around the 

world and may initially seem implausible. However the lack of correlation between 

characteristics may be a secondary effect that occurs as a result of road user behaviours. 

The theory of risk homeostasis (Wilde; 2014) states that humans adapt their behaviour to 

the perceived level of risk they face. When applied to level crossing safety, this theory 

proposes that if road users perceive a level crossing to have a high degree of safety risk, 

perhaps because of the presence of hazards or absence of risk controls, they will adapt 

their behaviour to reduce the risk. Currently, no published research can be found on risk 

homeostasis of road users at level crossings and the available data do not lend themselves 

to such a study. It would therefore be a matter for further study to investigate this 

question. 
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7.5 Contribution 

The following contributions to current knowledge have been made in this chapter: 

Contribution 13: The study described in this chapter has demonstrated a method 

of using machine learning techniques to test for correlation between physical and 

operational characteristics of level crossings and observed collisions. The test identified 

that, overall, the decision tree method appears to be the most sensitive method for 

assessing whether any correlation exists. 

Contribution 14: The test has identified that a small degree of correlation can be 

found between operational characteristics and collisions, however no meaningful 

correlation can be found with the data that are collected on hazards and controls. This 

finding does not necessarily imply that no correlation exists, rather that a correlation 

cannot be found with the available data using the methods that have been applied. 
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Chapter 8: Discussion and summary of contributions 

This chapter considers the implications of the findings of this study and 

summarises the contributions of the study. 

8.1 Implications of the findings of the study 

An important finding of this study is that the rate of collisions per road user 

traverse is lower at level crossings where there are more road users. This effect has not 

been identified by other researchers. The focus of this study has been to examine the data 

on observed collisions and provide a description of the collision rates; it has not been to 

posit hypotheses for why the rates of collision might vary with road traffic volumes. 

Nevertheless this study has identified a pronounced effect that is worthy of further 

consideration. There are a number of reasons why this effect may be seen, including 

reasons that arise as a result of road traffic operations; railway operations; or human 

behaviours. These potential reasons are considered in turn below. 

8.1.1 Road traffic operations 

When considering road traffic operations, in general there is a correlation between 

the number of road users (V) traversing a level crossing and the class of level crossing: 

railway-controlled level crossings are generally found where V is higher, and passive 

level crossings are generally found where V is lower (Evans and Hughes, 2019). However 

the effect of the rate of collisions per road user traverse falling at higher values of V is 

seen within each class of level crossing. As such, this study has controlled for effects that 
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may be caused by the different types of warning device associated with each class of 

level crossing. 

A possible reason for the effect was posited by Stott (1987) who argued that the 

first road user to stop at a level crossing will cause an obstruction to following road users. 

By this argument it is only the first road user who has an opportunity to collide with a 

train. As road traffic volumes increase at a level crossing, a larger proportion of the road 

users waiting at a level crossing will be in a queue behind the first vehicle. In this way it 

should be expected that the rate of collision falls away with increased values of V. 

This study has found that actual rates of collision do not correlate well with the 

numerical values predicted by Stott; however this finding does not mean that Stott's 

underlying reasoning is faulty. Rather it may be that Stott's reasoning was sound but the 

formulation of the equation was not sufficiently rigorous to describe real-world effects. 

For example, Stott's equation does not consider the fact that the first vehicle to stop at a 

level crossing may be a small vehicle, such as a motorcycle, that could easily be passed 

by subsequent road users; nor that if the second vehicle in a queue were a heavy vehicle 

that failed to stop, it could easily push a light vehicle into the level crossing. Despite the 

fact that Stott's formulation does not exactly match observation, the reasoning in his 

hypothesis is compelling and may be sufficient by itself to explain the observed effect. 

Another cause related to road traffic operations that may explain the observed 

effect could be a result of the method used to count road traffic volumes. The data 

provided by Network Rail, and used in this study, are the counts of road users traversing 

a level crossing in a day. A simplistic assumption is that when there are more road users 
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traversing a level crossing in a day, then there must be correspondingly more road users 

queued during each operation of the level crossing. Such an assumption may not be valid. 

It is easy to imagine that the busiest level crossings occur in urban areas where 

there are both a large number of road users and train movements. In these urban areas, it 

is likely that is a larger number of adjoining roads than at level crossings in rural areas. 

Consequently there may be more alternative routes for road users to take to avoid a level 

crossing. When road users observe that the warning sequence has started, or a train is 

approaching, they may elect to take an alternative route to avoid the level crossing. The 

alternative route may be longer than the route over the crossing, but may be preferable to 

waiting. If this were the case, then the number of road users waiting at a level crossing on 

each train approach would not necessarily increase in proportion to the total number of 

road users traversing a level crossing in a day. If this were the case, then the rate of 

collisions per road user may not increase as expected with increased road traffic. 

8.1.2 Railway operations 

As noted above, level crossings with larger numbers of road users can be expected 

to occur in urban areas where there are also more train movements. The larger the 

number of train movements that occur at a level crossing, the more likely it is that two 

trains will traverse the level crossing at the same time. Whilst these simultaneous train 

movements are recorded as two separate traverses in the data provided by Network Rail, 

from the perspective of a road user the effect is the same as a single train traverse. Once a 

road user has stopped clear of a level crossing to wait for a train to pass, it does not 

matter whether one train or two pass during the time the level crossing is closed. In these 

cases, the rate of collisions per road user per train traverse will, in effect, be halved. 
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It should be noted that this argument may be true only in cases when the train 

traverses are actually simultaneous. When the traverses are not simultaneous but are 

closely spaced, the warning devices at a level crossing continue to operate after a train 

has traversed to close the road for another train that is approach shortly. In these cases the 

subsequent train may present an increased risk to road users, as road users may become 

impatient, or may believe that the warning equipment is faulty, and might move into the 

level crossing into the path of the subsequent train. In these cases the safety risk may 

increase as a result of increased rail traffic. 

8.1.3 Human behaviours 

Aside from the reasons noted above regarding road traffic operations, it is 

possible that road users change their behaviour in the presence of each other in a way that 

reduces the risk. There are some studies that have identified that compliance to rules 

increases when people believe they are being observed. The phenomenon is known as the 

Hawthorne effect, although the exact nature of the effect is disputed (Wickström and 

Bendix, 2000) and no studies can be found that investigated this effect at railway level 

crossings. However Barić et al. (2018) studied road user compliance at level crossings 

and noted that when a uniformed police officer was present “the proportion of illegal 

crossings by pedestrians and cyclists alike fell nearly to zero”. It is possible that when 

there are more people around, road users assume that there is an increased likelihood of 

being penalised for breaching warnings. Such penalties may be the direct intervention of 

law enforcement, or may simply be the loss of an individual's self-esteem if they believe 

that others observing them are judging their behaviour. In either case the effect would be 
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that the rate of non-compliance, and consequently the rate of collisions,per road user 

traverse can be expected to reduce when there are more road users. 

Another possibility is that road users may have lower expectations of traffic speed 

at busier level crossings. Where there are more road users, individuals may be expecting 

to be delayed for some reason, including traffic congestion, and may be more willing to 

wait at a level crossing. Conversely in rural areas, road users may expect to be able to 

continue unimpeded on their journey; a level crossing may be seen as an unwelcome 

obstacle in their journey that may elicit lower rates of compliance, and consequently 

higher rates of collision, per road user. 

8.2 Summary of contributions 

Table 8.1 provides a summary of the contributions to current knowledge on level 

crossing safety have been established as a result of this work. 

Table 8.1: Summary of contributions 

Contribution 1: 

It has been identified that there is a gap in the knowledge of SRPTs for level 

crossing and that there is an opportunity to advance the current state of 

knowledge by using newly available sources of data and by combining data 

sources on level crossings and observed collisions in a way that has not 

previously been performed. 

Contribution 2: 

This work has reviewed the literature that are available on level crossing 

safety and in particular SRPTs and the traffic models that underpin them. 

The review has identified the sources of data that are available for validating 

the SRPTs and methods of testing traffic models including emerging 

machine learning techniques. 
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Contribution 3: 

Two different methods were used to show that traffic moment is a valid 

normaliser of collisions at level crossings in simple cases where there is: 

unsaturated traffic; a single carriageway approach in each direction; no 

queuing from nearby roads; and road users take no care to avoid a collision. 

Contribution 4: 

This study has established collisions per train traverse per day as a unit that 

provides a meaningful way to compare collision rates between level 

crossings. 

Contribution 5: 

A rigorous review was undertaken to identify a suitable test to allow a 

meaningful comparison of observed collision rates against traffic models. In 

particular the method of testing needs to be robust in cases where data are 

overdispersed. The Kolmogorov Smirnov test was identified as being 

appropriate for this analysis. 

Contribution 6: 

The study described undertook rigorous tests to compare observed collisions 

with proposed traffic models. The method was performed in a repeatable 

manner that would allow the test to be carried out with any other traffic 

model that may be proposed. 

Contribution 7: 

Whilst it was shown that traffic moment can be a normaliser for collisions in 

idealised conditions, in real-world conditions it does not appear that 

observed collisions vary in accordance with traffic moment. This finding 

may have profound implications for the many SRPTs that use traffic moment 

as an underlying traffic model. 

Contribution 8: 

Similarly, it does not appear that in general Stott’s hypothesis is a 

meaningful normaliser for observed traffic collisions. Specifically Stott’s 

hypothesis was developed to describe collisions at automatic vehicular level 

crossings, however the Peabody Dimmick model appears to correlate better 

with observation in this class of level crossing. 
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Contribution 9: 

The descriptive traffic model developed by Peabody Dimmick is no worse at 

describing the rate of level crossing collisions than the predictive hypothesis 

developed by Stott. This finding is particularly noteworthy since the Peabody 

Dimmick model was developed approximately 90 years ago. This finding 

may indicate that the SRPT which uses Stott’s hypothesis as a traffic model 

may produce more accurate results if the Peadbody Dimmick model were 

used instead. 

Contribution 10: 
In general, none of the proposed traffic models correlated with observed 

collisions with any meaningful degree of statistical significance. 

Contribution 11: 

The study identified that the distribution of collisions over road traffic 

volume (V) does, in every case, vary in accordance with a power law of the 

form collisions per train traverse per day = a'Vb'. In every case the value of 

b' is below zero. 

Contribution 12: 

The corollary of the observed power law indicates that level crossing closure 

can be considered an effective method to reduce the total number of 

collisions. This finding is particularly significant as the infrastructure 

manager of the GB railway has been undertaking a programme of level 

crossing closure although, to date, no studies have been undertaken to 

indicate that such an approach can be expected to improve safety overall. 

Contribution 13: 

The study has demonstrated a method of using machine learning techniques 

to test for correlation between physical and operational characteristics of 

level crossings and observed collisions. The test identified that, overall, the 

decision tree method appears to be the most sensitive method for assessing 

whether any correlation exists. 

Contribution 14: 

It was identified that a small degree of correlation can be found between 

operational characteristics and collisions, however no meaningful correlation 

can be found with the data that are collected on hazards and controls. This 

finding does not necessarily imply that no correlation exists, rather that the 

data that are collected do not allow any correlation to be found. 

 

Each of these contributions is discussed below. 
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8.2.1 Contribution 1 – Knowledge gap regarding level crossing safety 

The literature review in Chapter 2 led to a number of findings. Most importantly 

is that there is a large corpus of literature on level crossing safety although the primary 

finding is that whilst there are a large number of works that describe individual studies of 

potential causal mechanisms for collisions at level crossings, there is no generally agreed-

upon theory on level crossings collisions, their underlying causes and the most efficient 

means to improve safety. Furthermore none of the other researchers in this area has 

previously highlighted this lack of an over-arching theory. It would not be unfair to state 

that the general state of research on level crossing safety is directionless. 

The literature appears to agree on only two general themes firstly is that there is a 

general assumption that the physical and operational characteristics of a level crossing 

affect road users' situational awareness and motivation to stop at a level crossing, which 

in turn affects the likelihood of a collision (refer to Figure 2.2). It is therefore believed 

that interventions that affect either the physical or operational characteristics of a level 

crossing will necessarily affect the rate of collisions. Despite this belief being widespread 

within the literature, it is both tacit and unexplored. No prior research has put forward 

this simple statement regarding the belief that physical and operational characteristics 

indirectly affect the likelihood of a collision, nor has any controlled experimentation been 

performed to test the limits of any such causal influence. 

The second general point of consensus is that there is a hierarchy of warning 

devices that can be applied at level crossings that correlate with reduced safety risk as the 

hierarchy is ascended. It is generally believed that passive warning devices correlate with 

greater safety risk that active devices; and barriers correlate with lower safety risk than 



 

228 

open level crossings. This belief is not tacit as a number of researchers refer explicitly to 

the hierarchy, however whilst there is broad agreement regarding the form of the 

hierarchy there is no consensus regarding its exact form and the number of layers in the 

hierarchy. Furthermore non-physical controls, such as education and enforcement 

programmes which are valid controls for reducing level crossing safety risk, are never 

considered to be part of the hierarchy. The belief in the hierarchy has been long-held but 

it is only recently that it has been proven correct by rigorous study. 

8.2.2 Contribution 2 – Proliferation of SRPTs and traffic models 

The literature review in Chapter 2 identified that there are an abundance of SRPTs 

that are used to attempt to determine safety risk at level crossings around the world. Each 

of the models has an underlying traffic model which in most cases is traffic moment. 

There are a number of important observations regarding this proliferation of SRPTs. 

The first observation is that the abundance of SRPTs is at odds with the lack of an 

over-arching theory of level crossing collision causation. It can reasonably be expected 

that SRPTs encode the knowledge of a well-test theory of level crossing safety. Yet 

without any such theory it has to be questioned how the tools have been determined. This 

absence of an underlying theory of level crossing safety is highlighted by the fact that 

SRPT used in Britain was fundamentally changed by switching its underlying traffic 

model (from traffic moment to Stott's hypothesis). It must be presumed that this change 

was necessary since the tool had previously not been producing accurate results. This is a 

serious consideration since the tools are used to direct spending to improve public safety, 

if the tools are not grounded in a robust theory, then it is not clear that the objective of 

public safety can be achieved. The second observation extends the first; from what is 
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known of the various SRPTs it is clear that they do not agree with each other in their 

methods of risk calculation. Since it can be expected that the varying methods of 

calculation produced varied results, and it can also be expected that some tools produce 

more accurate results than other, it must be inferred that there are some SRPTs being 

used that may not be fit for purpose. 

The third observation is that, in general, there is not good information regarding 

the method of calculation used in the SRPTs. For a small number of the tools there is a 

full description of the method of calculation, but these are the exception. For some tools 

there is no information and for the majority there is only sparse information: certainly not 

sufficient for the method of calculation to be reproduced and tested. The fourth 

observation extends the previous point: in the absence of transparency regarding the 

method of calculation, public confidence in the tools could be created if there were 

evidence that rigorous, independent testing of the tools had been undertaken to 

demonstrate the correctness of the tools and their fitness for purpose. Again, no such 

evidence can be found. The final observation is that there is an emerging science in data-

driven safety risk management for the railways, however this approach does not appear to 

have been extended to level crossing SRPTs. 

Overall the review of literature on SRPTs creates a bleak picture: there is no 

reason to believe that any of the tools provide accurate risk predictions yet railways are 

continuing to use them to direct spending on public safety programmes. There does not 

appear to be any work currently being undertaken to test the approach that is being used 

or to bring it up-to-date with modern approaches for railway safety risk management. 
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8.2.3 Contribution 3 – Validation of traffic moment 

Following from the findings of the review of prior work, a simple study was 

undertaken to test the traffic moment as a meaningful normaliser of collisions under 

simple conditions. The study took two approaches, the first a mathematical derivation 

using a simple dynamic model of trains and road vehicles approaching a level crossing. 

The results were that the rate of collisions can be expected to be exactly proportional to 

traffic moment. The second study used a Monte Carlo simulation using 630 million 

random trials over a range of scenarios. The simulation showed a very high degree of 

correlation between collision rates and traffic moment. Whilst the tests of traffic moment 

were simple and the results are not particularly surprising, this work provides a rigorous 

argument that traffic moment can be used as a normaliser for level crossing collisions. 

This study therefore provides a contribution that has long been missing from this field of 

study. 

Finally the study found that whilst there may be a correlation between collisions 

and traffic moment for simple cases, it cannot be expected that the correlation will hold 

under all conditions, or even under any real-world conditions, since complex effect such 

as oversaturation change road traffic behaviour in unpredictable ways. 

8.2.4 Contribution 4 – Unit of level crossing safety 

In order to test observed collision rates against the traffic models it is necessary to 

identify a test variable. Consistent with there being no generally agreed-upon theory of 

level crossing safety, there is no generally agreed-upon unit of level crossing safety. 

Instead there are a range of measures that have been used at different times. A 

contribution of this study is to identify a suitable unit of level crossing safety which can 
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be used to compare not only observed collisions with traffic models but also in the more 

general analysis of level crossing safety for example to compare overall performance 

between different categories of level crossing. The unit determined is: collisions per train 

traverse per day. 

8.2.5 Contribution 5 – Statistical methods to compare overdispersed data 

A further contribution of this study is to identify an appropriate statistical test that 

can be used to test correlation where there are overdispersed, non-parametric data. A 

rigorous approach was taken during the review to consider all statistical tests identified in 

the literature and consider their applicability for this study. A number of tests which may 

prima facie appear to be applicable, such as the Mann Whitney U test and the Shapiro 

Wilk test were discounted during this review. The only test identified that it suitable for 

the test variable in this study is the Kolmogorov Smirnov test. This finding can be applied 

for future studies on level crossing safety risk. 

8.2.6 Contribution 6 – Analysis of traffic models 

A significant contribution of this study was to perform the test of correlation 

between the observed collisions at level crossings in Britain and the three traffic models 

for which the test could be performed: traffic moment, Stott's hypothesis, and Peabody 

Dimmick's model. For all except one of the 36 tests performed, the Kolmogorov Smirnov 

test suggested that the null hypothesis should be rejected: observed collisions cannot be 

considered to have been sampled from the same distribution as any of the traffic models. 

Only for one of the 36 tests did the test not suggest rejection of the null hypothesis and 

that was only at the most permissive value of α = 1% for the Peabody Dimmick model 
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when compared with collisions at automatic vehicular public level crossings using SMIS 

data. Further analysis of the test results, however, showed that none of the models 

correlates well with observation in all cases and the best correlating model varies 

depending on the category of level crossing. 

Following on from the observations above regarding the proliferation of untested 

SRPTs and the lack of transparency in the method of calculation, the main observation to 

be made at this point is that the only test that can be made given the furtive nature of the 

SRPTs does not support the belief that the tools are generally fit for purpose. This finding 

is very serious given the use of the tools to direct spending on expensive level crossing 

warning devices for reasons of public safety. 

An important outcome from this study is the degree to which the Peabody 

Dimmick model corresponds with observation, especially compared with other models. 

The Peabody Dimmick model is a descriptive model based on observation of collisions in 

Illinois in the 1930s. By contrast, Stott's hypothesis was created specifically to describe 

collision rates at automatic level crossings in Britain in the 1980s. Yet the Peabody 

Dimmick model outperforms Stott's hypothesis for the exact class of level crossings it 

was created to described. Since the 1930s there have been significant changes to 

technology: trains are no longer steam-powered; there have been changes to the design of 

road vehicles; a greater proportion of roads are paved. Furthermore there are more 

vehicles and road users have more exposure to traffic and therefore can be expected to 

have acquired different skills for driving. Of course, the largest difference is that the 

Peabody Dimmick model was derived from observed collision rates in Illinois, not 

Britain. It might appear remarkable that there appears to be any correlation at all. The 
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implication is that there may be some underlying invariants that affect level crossing 

safety that are immutable across different continents and approximately 90 years. Again 

in the absence of a general theory of level crossing collision causation, it can only be 

speculated what these invariants may be. 

8.2.7 Contribution 7 – Use of traffic moment as a normaliser 

Whilst there is theoretical evidence to support use of traffic moment as a 

normaliser in idealised conditions, there is poor correlation between traffic moment and 

observed collisions. Traffic moment is the most commonly used traffic model amongst 

the SRPTs studied by previous researchers (RSSB, 2007). This finding could have a 

profound impact for these SRPTs. Since no evidence can be found of validation of any 

SRPT, it is not clear whether the tools produce accurate results, however the work that 

was performed in this study casts doubt on the traffic model that underlies these tools 

and, as such, gives rise to further concern about the suitability of these tools for 

determining level crossing safety interventions. 

8.2.8 Contribution 8 – Use of Stott’s hypothesis as a normaliser 

The SRPT used in Britain (the ALCRM) was initially based on traffic moment, 

however a change was made to instead use Stott’s hypothesis. This change “caused a 

significant re-appraisal of which are the highest-risk level crossings in GB. Some 

crossings are now shown by the ALCRM to be relatively higher risk than previously 

thought, while other more busy crossings may actually be safer” (Baker and 

Heavisides, 2007). However there is no evidence that the change led to risk predictions 
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that were any more accurate than would previously have been made using traffic moment 

as a traffic model. 

The work carried out in this study showed that, overall, Stott’s hypothesis does 

appear to produce more accurate results than traffic moment, the accuracy of Stott’s 

hypothesis is, in some cases, poor. Again, this finding raises a concern regarding the 

suitability of the ALCRM for determining safety interventions at level crossings. 

8.2.9 Contribution 9 – Suitability of descriptive models 

It was found that, in many cases, the Peabody Dimmick traffic model provided 

more accurate predictions of collision rates than the other traffic models. This finding is 

particularly salient since the Peabody Dimmick model is a descriptive model that was 

developed around 90 years ago based on observations in the United States. Conversely, 

Stott’s hypothesis a predictive model that was developed in the 1980s specifically to 

describe level crossing collision rates in Britain. It is therefore remarkable that there are 

cases where the Peabody Dimmick model produces more accurate results than Stott’s 

hypothesis for level crossing in Britain. 

This finding suggests that there may be underlying behaviours of road users that 

affect rates of collisions and that remain relatively constant regardless of significant 

changes in road and railway technology. The corollary of this finding is that the most 

effective means to develop either traffic models or SRPTs, may be to develop descriptive 

tools based on observed road user behaviour. 
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8.2.10 Contribution 10 – Poor correlation of any traffic models 

Overall the poor correlation of the traffic models tested casts doubt on the 

predictive accuracy of any of the SRPTs in use around the world. This study has 

identified that this finding is not necessarily the result of there being a small number of 

level crossing against which to test the models. In some cases the classes of level crossing 

with fewer test samples produced better correlation with traffic models than those with 

more samples. Rather it can be concluded that, in general, the traffic models, do not 

produce good predictions of collision rates. 

It is noted that the traffic models are only one component of SRPTs, as such it 

may be that whilst the traffic models themselves do no produce accurate predictions, the 

SRPTs may produce good predictions by giving consideration to other factors such as the 

hazards and risk controls in place at level crossings. 

8.2.11 Contribution 11 – Observed power distribution of collisions over V 

Having determined that the extant traffic models do not correlate well with 

observed collisions, a further contribution of this study has been to identify, for each class 

of level crossing, a general distribution of how rates of collisions vary over road traffic 

volume. The study identified that, in general, the distribution of collision rates appears to 

vary in accordance with a simple power relationship of the form CP(collision per train 

traverse per day) = a'Vb'. In all cases the value of b' is negative indicating that, in 

general, higher road traffic volumes correlate with fewer collisions per road user traverse. 

The major contribution from this analysis is that the relationship between road 

traffic volume and collisions can be described by a simple power equation which, in most 

cases, corresponds well with observed collisions. This is a significant contribution using a 
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new source of information and analysis of collision data from the railways in Britain. The 

identification of the power function does not confirm a previous hypothesis posited by 

any other researcher, it is an entirely new finding based only the prior study described in 

this work. 

The presence of the power relationship raises two questions; firstly why should 

any such relationship exist, especially since, in some cases, it appears to correlate 

strongly with observation? Unfortunately the absence of a general theory of level 

crossing safety prevents any explanation of the phenomenon, again the state of current 

knowledge renders any attempt at explanation to be nothing more than speculation. The 

second question is whether the relationship is generally true across all level crossings? 

The fact that the Peabody Dimmick model appears to correlate in some cases with 

observed collisions in modern Britain suggests that there may be underlying invariants in 

level crossing collision causation. In which case the identification of such a distribution 

within British level crossings may suggest that the same distribution can be found 

elsewhere around the world. At the current time, the data to perform such an analysis are 

not available. 

The other observation arising from this work might be considered to be a 

validation of a pre-existing hypothesis, but is nevertheless highly significant: that level 

crossing closure can be undertaken as part of a meaningful programme to reduce the 

overall number of collisions at level crossings. The railway infrastructure manager in 

Britain has a policy to close level crossings wherever possible. Until now there has been 

no evidence that such a policy could be expected to reduce the overall number of 

collisions at level crossings. Hypothetically, if the rate of collisions per traverse were 
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found to increase as the volume of level crossing users increased (if b' were found to be 

positive), the closing level crossings would have an adverse effect on level crossing 

safety. The discovery from this work that b' is negative for level crossings in Britain (and 

potentially elsewhere) is a significant contribution to the practical management of level 

crossing safety.  

8.2.12 Contribution 12 – Level crossing closure as a meaningful intervention 

The railway infrastructure manager in Britain has undertaken a programme of 

closing level crossings wherever possible as a means of improving safety. However there 

is no prior evidence that level crossing closure is an effective means to improve safety 

overall. However when a level crossing is closed, it cannot be assumed that road users 

will abandon any desire to travel to the other side of the rail, rather road users will 

traverse the rail at other places, including other level crossings. It is not clear that causing 

road users to divert from one level crossing to another will necessarily reduce the overall 

number of collisions; in fact it could potentially lead to more collisions. This study has 

shown that the number of collisions per road user traverse decreases as the volume of 

road users increases at a level crossing. This finding provides an important validation of 

the programme of level crossing closure as a means to improve safety overall. 

8.2.13 Contribution 13 – Use of machine learning instead of statistical methods 

Determining a relationship between road traffic volume and collision rates is a 

contribution of this study. In effect this work has developed descriptive traffic models for 

twelve classes of vehicular level crossings in Britain. Since these models have been 

derived based on empirical data they could be used in place of the predictive models that 
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have previously been used in the ALCRM (being traffic moment and Stott's hypothesis). 

There are two fundamental difficulties in attempting to create any descriptive model. The 

first lies in being able to determine which variables to include in the model. The reason 

SRPTs are created in the first place is to allocate resources to provide safety risk controls 

at level crossings. It is not expected that the safety risk at level crossings can ever be 

reduced to zero, rather it is expected that provision of suitable controls can reduce the risk 

to an acceptable level. As such there is an implicit admission that the exact causes of 

collisions can never be entirely known nor controlled. After all if it were known in 

advance exactly what would be the cause of a specific collision then the railway would 

take necessary action to prevent the collision occurring. Instead the approach is to take all 

reasonably practicable actions to reduce the risk within the constraints of the resources 

available. As such, since it can never be clear exactly what the causes of collisions are, 

there is no way to be certain that all necessary variables have been included in an SRPT. 

Conversely, creation of a predictive model assumes that it is possible to establish in 

advance what variables are necessary – and by extension – which are not necessary to 

determine safety risk. 

The second difficulty lies in being able to determine how to combine the variables 

to create a model with good predictive accuracy. For example if, in constructing a 

predictive model, it were believed that the speed of trains contributed to safety risk the 

question would be in what way does speed affect the risk? Is the relationship linear: does 

doubling a train’s speed double the safety risk? Or is there some other relationship? 

Similarly there is a question regarding the relative contributions of different factors: does 

sun glare contribute the same amount of risk as train speed, or are the relative 
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contributions different by some factor, if so what factor? A contribution of this work is 

that the tests carried out have established that the predictive models available do not 

outperform a descriptive model. 

Depending on other factors that are used to calculate risk scores in the tool, it can 

reasonably be expected that use of more accurate traffic models will produce improved 

risk predictions than are currently produced by the ALCRM. It may be tempting to 

subject the derived traffic models to a predictive accuracy test using the approach 

described in Chapter 6, however any such test would be tautological and meaningless: the 

test would be performed using the same data that were used to derive the models. 

Whether the models would continue to perform well into the future is an important test 

that could be performed at some point in the future. 

It is likely that the traffic models derived in this study could be improved by using 

a richer source of data than is currently collected to calculate risk predictions from 

SRPTs. Considering the model described in Figure 2.2 which shows the presumed 

relationship that the physical and operational characteristics of a level crossing affect 

road users’ situational awareness and motivation to stop which, in turn, affect the 

likelihood of a collision. It is notable that the current methods of study in level crossing 

safety explicitly collect data on the first and third elements in this chain of causation, viz. 

physical and operational characteristics; and occurrence of collisions. However no data is 

explicitly collected on the middle element in the chain: road users’ situational awareness 

and motivation to stop. It is possible that the lack of explicit consideration of road users’ 

behaviour is a reason why it is not possible to find a meaningful correlation between the 

recorded characteristics of level crossings and observed collisions. Furthermore it is 
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possible that for this reason the SRPTs in use around the world do not provide accurate 

risk predictions, which may explain why no evidence of validation of the models is 

available. Collection of such data would allow for the middle stage of Figure 2.2 to be 

considered as part of the method of calculation in an SRPT.  

It is understood that explicit collection of data regarding road users’ situational 

awareness and motivation to stop is difficult as these are properties of the road users’ 

minds and currently there is no technology that allows road users’ thoughts to be readily 

collected. However it is possible that proxy data could be collected which may allow 

reasonable inferences to be made about road users’ states of mind at a given time; for 

example, data could be collected from level crossing obstacle detectors. These data can 

provide an insight into the occasions when road users approach a level crossing and 

choose not to stop. Other technologies, such as video cameras, may be employed to 

detect how road users change speed on the approach to a level crossing. It is likely that 

there are observable patterns of behaviour that correspond with different levels of 

situational awareness. For example there may be specific changes in vehicle speed when 

a vehicular road user only becomes aware of the need to stop at a level crossing a few 

seconds before arriving at the level crossing. Alternatively there may be different types of 

changes in road speed that occur when road users approaches a level crossing with 

caution, then purposefully decides to breach the warning since they believe they can 

traverse safely before the arrival of a train. 

As well as possibly allowing for inference of road users’ situational awareness, 

collection of data from obstacle detectors would also have the advantage of inflating the 

available data when considering collisions at level crossings as obstacle detectors would 
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allow collection of data on near-collisions, for example instances where a road user is 

occupying a level crossing until only five seconds before the arrival of a train. The larger 

source of data would reduce the likelihood of the derived models over-fitting the 

observation data and therefore improving the general predictive accuracy of the models. 

However it is necessary to raise a caveat: if near-collision data were to be used there are 

two important points to consider: firstly is that not all level crossings are currently fitted 

with obstacle detectors. It would therefore be necessary to determine an appropriate 

method of calculation so that the absence of near-collision data is not interpreted as an 

absence of near-collisions. The second consideration is that near-collisions are not 

collisions. In may be that in some cases the causal factors that lead to near-collisions are 

exactly the same as those that lead to collisions, in which case the difference between 

collisions and near-collisions is merely a matter of uncontrollable random chance and 

near-collision data can be used as a proxy for collision data. In other cases there may be 

significant differences between the causal factors that lead to collisions and those that 

lead to near collisions. In such cases the use of near-collision data would be 

inappropriate. Again the absence of a general theory of level crossing collision causation 

means that currently it is not possible to determine whether near-collisions data can be 

used in this way. Where near-collision data are made available, then a future study should 

be undertaken to determine the degree to which near-collisions correlate with collisions 

and therefore the degree to which they can be used as proxy data. 

It is also observed that if near-collision data can be used in this way, then it would 

be clear that obstacle detectors can have some use to the railway. Currently, the long 
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braking time of trains and the need to run an efficient railway mean that it is not clear in 

what way obstacle detectors can be used to the benefit of railway safety. 

A final observation is that the use of Stott's traffic model to underpin the ALCRM 

when there is no transparency in the method of calculation and no evidence of accuracy is 

an undesirable situation for public safety and should not be tolerated by policymakers. 

This study has demonstrated how an improved traffic model can be derived using data 

that are currently available. The emergence of additional sources of near-collision data 

and new approaches to data-driven safety management together with machine learning 

techniques provide all the components that are needed to create an accurate and 

transparent SRPT for the railways in Britain. The new data and emerging technologies 

also provide for the opportunity to more fully understand level crossing collisions that 

may allow for the creation of a consistent and complete theory of level crossing safety 

that has eluded the field of research until now.  
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8.2.14 Contribution 14 – Poor correlation of hazards and control data with observed 

collisions 

Using the available data on level crossings, together with advanced machine 

learning methods, a study was undertaken to determine whether the occurrence of 

hazards and risk controls at level crossings correlated with observed collisions. The study 

found that whilst road and rail traffic volumes correlate with collisions, no other 

correlations can be found. This finding reinforces the earlier findings in this work that 

there is some degree of correlation between traffic models and collision rates. However 

no meaningful correlation could be found between collisions and the data on hazards and 

risk controls. Per se, this finding may not indicate that hazards and risk controls do not 

affect rates of collision, rather the finding may indicate that the data collected on level 

crossings do not contain the correct items for a correlation to be found. It is possible that 

if data were collected regarding other features of level crossings then meaningful 

correlations could be found. 

Another possibility is that there really is no correlation. The finding in 

Contribution 9 indicates that there may be human factors that affect road user behaviour 

at level crossing and that these factors are largely invariant regardless of 90 years’ of 

advances in road and rail technology. It is further possible that the factors that affect the 

likelihood of collisions at level crossing are not affected by the physical features of a 

level crossing, rather it may be that the fundamental behaviours of road users have the 

largest impact. 
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Chapter 9: Conclusions 

This chapter summarises the findings of this study and discusses further work that 

could be undertaken to address the findings of this study. 

9.1 Summary of findings 

There is widespread use of SRPTs around the world, however the lack of 

evidence of the accuracy of these tools is a concern for public safety. The work in this 

study casts doubt on the accuracy of the traffic models that underpin these tools and on 

whether the presence of hazards and risk controls at level crossing have any meaningful 

correlation with collision rates. It is possible that, in principle, an SRPT could be 

developed that has good predictive accuracy, however it is not clear that the data that are 

currently collected allow such a tool to be created. Rather, this study indicates that there 

may be underlying invariants in human behaviour that affect the likelihood of a collision 

at a level crossing. 

All SRPTs are developed on the assumption that the physical and operational 

characteristics of a level crossing affect road users' situational awareness and motivation 

to stop at a level crossing, which in turn affects the likelihood of a collision as described 

in Figure 2.2. However none of the SRPTs explicitly address the question of road users' 

situational awareness and motivation to stop. Rather it appears to be assumed that if 

sufficient data are collected on the physical and operational characteristics of level 

crossings then an accurate SRPT could be created nonetheless: this study finds that this 

assumption does not appear to be valid. The number of variables that affect level crossing 

safety may be so large that the task of determining how to combine the data to produce a 
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meaningful risk prediction is intractable. Consideration needs to be given to developing 

an SRPT that explicitly considers human factors in determining safety risk. 

The concept of using SRPTs to determine safety interventions at level crossings is 

not fundamentally faulty, however it seems that the application of SRPTs to date may not 

have been effective. It is possible that in the future an accurate tool could be developed. 

Such a tool should be based on a descriptive model determined from real-world 

observation, and would require a much broader range of data than has been collected to 

date. Advanced data analysis techniques such as machine learning can be used to support 

the development of such a tool. As well as the use of emerging technology to develop an 

appropriate model, it is possible that other new technologies can be applied to overcome 

some of the other difficulties in determining level crossing safety. For example obstacle 

detectors could be used to collect data on near-collisions; such extra data would 

overcome some of the problems encountered during this study due to the difficulties in 

analysing overdispersed data. 

From the evidence considered in this study, it appears that the approach of closing 

level crossings could be effective in reducing the overall number of collisions. This 

outcome can be expected regardless of the traffic volume at the level crossing; in 

particular a reduction in the total number of collisions can be expected even when the 

level crossing being closed has only a small traffic volume. This finding supports the 

approach being undertaken by the railway infrastructure manager in Britain to close level 

crossings wherever possible bearing in mind the broader needs of road users and the 

community. 
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Through a rigorous approach of using the best available data and emerging 

machine learning methods, it has been identified that the means are available to produce a 

safety risk prediction tool that can be expected to be more accurate than the ones 

currently in use. It is hoped that the railway act on the results obtained from this study in 

the very real interests of public safety. 

9.2 Further study 

This study has identified some areas where there is a need to address 

shortcomings in the current knowledge of level crossing safety. Possible areas for further 

study are considered below. 

9.2.1 Development of an over-arching theory of level crossing safety 

There has been a significant amount of work carried out by a number of 

researchers investigating level crossing safety. Whilst individual studies have produced 

meaningful results, there is no over-arching theory of level crossing safety within which 

the results of individual studies can be understood. Currently the results of various 

researchers may complement or contradict each other, however there is no structured 

theory for understanding where such overlaps in understanding occur. Furthermore, in the 

absence of a general theory, there is no clear way to identify where there are gaps in the 

current understanding and to direct future research. It can be expected that a general 

theory of level crossing safety would inform the development of an SRPT that correctly 

addresses the factors that affect safety at level crossings, as well as providing the means 

to allow validation of such a tool. 
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9.2.2 Study of road user motivation and situational awareness 

This study has highlighted the need to undertake further study of road users' 

situational awareness and motivation to yield to trains at level crossings. It is proposed 

that a study would start by creating a formal model of road user interactions with each 

class of level crossing, which would detail: 

• what behaviour is required from road users including the required behaviours on 

the approach to the level crossing as well as during the traverse; 

• what information is provided to road users in the form of signs, lights, audible 

warnings etc.; 

• how failures of a road user to understand or comply with warnings can affect the 

likelihood of a collision; 

• the critical points where incorrect behaviour can result in collisions and the 

factors that may cause errors or violations to occur. 

In creating a formal model consideration should be given to the different actions 

required of a road user such as: 

• yielding to an approaching train or a train that is already occupying the level 

crossing; 

• ensuring that there is sufficient space to exit the level crossing after entering, and 

not forming a queue over the level crossing;  

• being aware that a second train may be approaching a level crossing after the first 

train has cleared; and 

• being aware of other hazards, such as the risk of grounding low vehicles, or 

contact with overhead electrical conductors. 

The study should consider the various means of providing visual and audible cues 

to road users. To be generally useful, the study would need to consider how road users 
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interpret the various cues, which is likely to involve some combination of psychological 

experimentation, interviews, focus groups, or direct observation of road user behaviour. 

The model could consider how failure may occur in providing information to road 

users – for example by warning lights being obscured by vegetation or traffic – and 

whether secondary sources of information are available. The study should also explicitly 

consider how different enforcement actions affect road user behaviour. 

A study of this nature has been proposed to Network Rail, and work is expected to 

begin within the next year. 
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Appendix A: Collision data used in study 

This appendix provides a list of the collision data supplied by RSSB and used in 

the study described in Chapter 5. 
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Table A.1: Collision data provided by RSSB 
Event ID Event date Crossing type Level crossing 

name 
Territory description Location description ELR code 

483282 11/04/1996 UWC+MWL   London North Eastern Scorborough LC HBS 
505728 01/05/1996 UWC+T   London North Eastern South Elmsall DOL1 
702902 20/06/1996 AHB   South East Chartham Hatch LC FDM0 
689508 15/11/1996 AHB   London North Western Bescar Lane LC  WBS3 
585381 05/01/1997 UWC+T   Western Bridgwater MLN1 
-2311 16/01/1997 AOCL         
742711 05/02/1997 FP   London North Eastern Mill Lane LC PBS3 
-1607 23/03/1997 AHB         
675095 09/04/1997 MCB     Craven Arms SHL0 
684810 11/05/1997 FP   London North Western Lime Kiln CMD2 
-1608 25/06/1997 UWC+T         
506979 02/07/1997 AHB   London North Eastern Burton Lane No.2 GRS2 
580583 29/08/1997 UWC   South East Mellish House SUD0 
694535 05/09/1997 FP   London North Eastern Sportsfield LC WAG1 
-1609 12/10/1997 UWC+T         
746438 18/10/1997 FP   South East Newtown LC XTD0 
746463 24/10/1997 FP   South East Peas Marsh LC WPH1 
771004 31/10/1997 FP   South East Green Lane LC BTH3 
750212 12/12/1997 FP   London North Western Hard Platts No 1 LC GJC0 
759316 20/01/1998 FP   London North Eastern Manthorpe LC ECM1 
766071 17/02/1998 MCB+CCTV   London North Eastern Rossington L C ECM1 
767172 20/02/1998 UWC+T         
788651 12/05/1998 FP   London North Western Clifton Country Park LC MVE1 
825831 13/08/1998 UWC   South East Trinity Lane LC BGK0 
826324 16/08/1998 FP   South East Dearleap Foot LC BML2 
844966 26/10/1998 FP   London North Eastern Alexander LC TJG1 
849322 14/11/1998 UWC   London North Western Woodside Farm LC DSE0 
853422 02/12/1998 UWC+T   South East Gipsy Lane LC LTN1 
877031 21/03/1999 AHB   London North Western Hixon LC CMD2 
878634 26/03/1999 UWC+T   London North Eastern Allsops Lane UWGT LC SPC5 



 

260 

Event ID Event date Crossing type Level crossing 
name 

Territory description Location description ELR code 

880696 03/04/1999 UWC+T   London North Eastern Shady Lane UWGT LC TJC3 
905091 04/07/1999 FP   South East Eastlands FP LC XTD0 
926659 24/09/1999 FP   London North Eastern Outwoods FP LC WNS0 
964300 29/02/2000 UWC   South East Red Cross Lane Level Crossing BGK0 
966587 11/03/2000 UWC+T   London North Eastern Uttoxeter NSS0 
968377 20/03/2000 FP   London North Eastern Ferryboat Lane Crossing PED5 
985755 18/05/2000 UWC MWL   London North Western Norton Level Crossing CGJ2 
992698 02/06/2000 FP   South East Rochford SSV0 
992763 03/06/2000 FP   South East Lankesters Foot Crossing Stowmarket LTN1 
995975 22/06/2000 AHB   London North Western Hixon LC CMD2 
1026379 11/10/2000 FP   Western SWINDON (South Leaze) MLN1 
1027465 16/10/2000 FP   Scotland Back  Laurencekirk Settlement accommodation crossing ECN5 
1047345 05/01/2001 FP MWL   South East FISHBOURNE TBH2 
1057639 14/02/2001 UWC   South East Lancing BLI1 
1063978 08/03/2001 SP     Gwersyllt WDB1 
1066759 20/03/2001 UWC   South East Bishopstone STS0 
1088247 27/05/2001 FP   Western Lower Howsell Foot Crossing Newlands East WAH0 
1097949 02/07/2001 AHB   Scotland Markle AHB LC ECM8 
1102548 14/07/2001 UWC+T   London North Eastern Boat House LC NEC2 
1105793 22/07/2001 AHB   South East Pevensey Sluice AHB LC WJB0 
1119653 10/09/2001 MCB+CCTV   London North Western Maghull SJO2 
1136186 06/11/2001 FP   London North Western Whitebridge LC Stone Station CMD2 
1147935 23/12/2001 FP   London North Western Saddleworth LC MVL3 
1147751 23/12/2001 AHB   South East Sawbridgeworth AHB LC BGK0 
1168257 09/03/2002 UWC+T     Downs Farm LLA0 
1200372 19/06/2002 UWC   London North Western Bushbury Jcn RBS2 
1204169 01/07/2002 FP   London North Eastern Cottingham HBS0 
1215742 06/08/2002 FP     Tywyn station crossing DJP0 
1223029 29/08/2002 FP MWL   South East Johnson's foot crossing BGK0 
1223732 31/08/2002 FP   London North Eastern Dudley (ECML) ECM7 
1227000 11/09/2002 AHB   South East Moreton (Dorset) BML2 
1262716 27/11/2002 UWC+T     Heol-y-Deliaid foot crossing OVE0 
1279556 28/12/2002 FP   London North Eastern Garforth HUL4 
1417471 07/04/2003 AHB   Western Dunhampstead BAG2 
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Event ID Event date Crossing type Level crossing 
name 

Territory description Location description ELR code 

1478733 20/05/2003 FP   Scotland Banefield Foot crossing NEM7 
1478787 20/05/2003 FP   South East Nr Essex Road CCTV lx BGK0 
1502077 06/06/2003 FP   London North Eastern Thorne North TJG1 
1497873 07/06/2003 FP   London North Western Rylands FP LC MVE2 
1567416 10/08/2003 FP   London North Eastern Green Drift crossing SBR0 
1580675 23/08/2003 FP   London North Eastern Knottingley WAG1 
1626094 06/10/2003 AHB   London North Eastern Snelland AHB lc NOB3 
1626318 11/10/2003 FP   London North Eastern Outwoods foot level crossing WNS0 
1684300 08/12/2003 FP   London North Western Hard Platts No. 1 Foot crossing GJC0 
1693113 15/01/2004 MCB+CCTV   London North Western Canley RBS1 
1697360 31/01/2004 MCB+CCTV   South East St Denys SDP1 
1703501 04/02/2004 FP   London North Eastern Pelham Street SPD3 
1703157 18/02/2004 FP   South East Baileys Drove Foot Crossing, Wool BML2 
1723879 23/04/2004 FP     Tir-Phil CAR0 
1735445 24/05/2004 UWC Bostocks London North Eastern Upper Leigh LC NSS 
1736888 05/06/2004 AHB   South East Pevensey Sluice AHB lc WJB0 
1760443 21/08/2004 SP   South East Gomshall station RSJ0 
1777708 21/10/2004 FP MWL   South East Fishbourne LC (Main Line) TBH2 
1781781 06/11/2004 AHB   Western Ufton BHL 
1782388 08/11/2004 FP   London North Eastern Shepherds Farm crossing SSK1 
1814132 14/03/2005 AHB   Scotland Kirknewton ECA2 
1816572 23/03/2005 AHB   London North Eastern Clara Vale AHB LC NEC2 
1819375 03/04/2005 UWC+T   South East Leigh on Sea FSS2 
1833212 20/05/2005 FP   London North Eastern Bardon Hill KSL0 
1847708 06/07/2005 AHB   South East Eastrea AHB LC EMP0 
1850491 18/07/2005 FP   London North Western Coleshill FC LC NWO0 
1851397 20/07/2005 AHB   London North Eastern Tilford Road AHB LC RAC0 
1856088 07/08/2005 UWC   South East March EMP 
1858491 09/08/2005 FP   Western Fernhill ABD 
1878320 29/10/2005 AHB   London North Eastern Aslockton AHB L.C NOG1 
1882321 13/11/2005 AHB   South East Swainsthorpe LC LTN1 
1884262 21/11/2005 FP   London North Eastern foot crossing near Attenborough station TSN1 
1887480 03/12/2005 SP MWL   South East Elsenham station Foot Crossing BGK0 
1894650 08/01/2006 FP   London North Eastern Cattal HAY1 
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Event ID Event date Crossing type Level crossing 
name 

Territory description Location description ELR code 

1899725 26/01/2006 AHB   South East Wilmington LC KJE3 
1913258 17/03/2006 FP   South East Pegamoid Foot crossing BGK0 
1926280 03/05/2006 AOCL   London North Eastern Seacroft AOCL LC GRS4 
1934341 03/06/2006 UWC   London North Eastern Knottingley WAG1 
1936454 09/06/2006 UWC   Western Midgham BHL0 
1954808 18/08/2006 FP     Abergavenny HNL1 
1959758 06/09/2006 MCB+CCTV   London North Eastern Lincoln Street RAC0 
1975185 13/11/2006 FP   London North Eastern Garforth Moor foot level crossing HUL4 
1986197 01/01/2007 FP   South East Paggett's footpath level crossing BLI1 
1988721 14/01/2007 FP   London North Eastern Royston SBR0 
1988502 15/01/2007 FP     Johnstown foot crossing WSJ2 
1991073 24/01/2007 MCB   South East Wokingham LC RDG1 
1991036 25/01/2007 FP MWL   London North Eastern Ballast Hole MWL FP crossing NOB1 
1997403 23/02/2007 AHB   Scotland Gailes LC AYR4 
2036604 31/07/2007 UWC+T   London North Western Sandringham Avenue LC CWK3 
2039913 11/08/2007 MCB+CCTV   South East Highams Park CJC0 
2040874 16/08/2007 MCB+CCTV   South East Horsham Road LC TBH1 
2054226 17/10/2007 UWC+T   London North Western Penketh Hall LC SDJ2 
2059728 12/11/2007 FP   London North Eastern Green Drift FP MWL SBR0 
2061463 20/11/2007 FP MWL   Western Brimscombe footpath crossing SWM1 
2073360 21/01/2008 UWC+T   London North Western Melrose Avenue UWC-T CWK3 
2073605 22/01/2008 UWC+T   London North Eastern West Lodge UWC-T NEC2 
2078775 13/02/2008 FP   South East Leys Lane footpath crossing ETN0 
2088686 27/03/2008 MCB+CCTV   South East Hythe CCTV LC COC0 
2089464 31/03/2008 SP   Western Tackley UWG-T LC DCL0 
2093407 16/04/2008 FP   South East Moor Lane FP LC SWE0 
2099544 10/05/2008 FP MWL   Western Marsh Barton footpath crossing MWL DAC0 
2099227 10/05/2008 AHB   South East Blackboy Lane AHB LC TBH2 
2099737 10/05/2008 AHB   London North Eastern Marston on Dove LC NSS 
2108462 13/06/2008 MCB+CCTV     Pencoed MBC LC SWM2 
2117825 21/07/2008 FP   South East Itchingfield footpath crossing TBH1 
2145655 22/11/2008 FP   London North Eastern Bayles & Wylies FP MWL crossing RAC0 
2147218 01/12/2008 FP   London North Eastern Snuff Mill Lane HBS0 
2150779 17/12/2008 MCB+CCTV   South East Rainham LC TLL0 
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Event ID Event date Crossing type Level crossing 
name 

Territory description Location description ELR code 

2158325 23/01/2009 AHB   Scotland Gatehead BAK0 
2186158 07/02/2009 UWC MWL   Scotland Moulinearn HGL2 
2247464 02/04/2009 UWC+T   London North Eastern Peth Lane, Ryton, Tyne & Wear (Newcastle-Carlisle line) NEC2 
2248324 03/04/2009 AHB     Eyton WSJ2 
2273424 06/05/2009 FP   Western Fairfield FP LC BHL0 
2296664 19/05/2009 MCB+CCTV   South East Horsham Road LC, Crawley TBH1 
2301107 23/05/2009 UWC+T   Western Trowbridge BFB0 
2381546 12/08/2009 UWC+T   South East Keysworth LC BML2 
2400966 05/09/2009 FP   London North Eastern Bridlington HBS0 
2402523 07/09/2009 FP   London North Eastern Fox Covert foot crossing WEB0 
2468265 02/11/2009 FP   London North Eastern Attenborough nature reserve TSN1 
2498009 29/12/2009 FP   Western Chawson OWW0 
2505907 15/01/2010 MCB+CCTV   South East Horsham Road LC (CCTV) TBH1 
2548930 06/03/2010 AHB   South East Waterloo (Wokingham) LC RDG1 
2583668 16/05/2010 FP   London North Eastern Old Gashouse LC (Morley) MDL1 
2602189 14/07/2010 FP   South East Sherrington LC (Warminster) SAL0 
2608071 09/08/2010 MCB+CCTV   South East Enfield Lock LC (Ordance Road) BGK0 
2635201 15/11/2010 FP   London North Eastern Branston GF DBP1 
2641279 11/12/2010 UWC+T   London North Western Fishermans Path, Freshfield, Formby, Sefton, Merseyside HXS3 
2647179 13/01/2011 UWC   London North Eastern Cleethorpes MAC3 
2648534 19/01/2011 MCB+CCTV   Western Morris Hill CCTV LC, Cheltenham Spa, Gloucestershire BAG2 
2650174 29/01/2011 FP   Western Langport CCL0 
2654008 14/02/2011 FP   South East Sharpenhurst No.3 LC (Christ's Hospital), West Sussex TBH1 
2679191 13/05/2011 FP MWL   London North Eastern Norton-on-Tees STF0 
2696545 25/07/2011 AHB   South East Church Street LC LTN1 
2703867 24/08/2011 FP   South East Gipsy Lane FP LC, Needham Market, Suffolk LTN1 
2713153 03/10/2011 FP   Western Mexico Foot Path crossing, Long Rock, Penzance MLN4 
2737800 28/01/2012 FP MWL   South East Johnsons R/G Footpath crossing, Bishops Stortford, Hertfordshire 

(Harlow-Audley End line) 
BGK0 

2740244 08/02/2012 FP   South East Wool West LC BML2 
2756977 23/04/2012 UWC MWL   London North Eastern Ivy Farm UWCT, Royston, Hertfordshire (Hitchin-Cambridge 

line) 
SBR0 

2759369 02/05/2012 FP   South East Hoo Hall crossing, Kelvedon, Essex LTN1 
2759419 02/05/2012 FP   London North Eastern Kings Mill No.1 bridleway crossing, Mansfield, Nottinghamshire PBS2 



 

264 

Event ID Event date Crossing type Level crossing 
name 

Territory description Location description ELR code 

2763852 22/05/2012 AHB Ufton 
(Aldermaston) 

Western Ufton BHL 

2779902 29/07/2012 AHB   South East New Fishbourne LC TBH2 
2816076 08/01/2013 FP   London North Eastern Thorne South DOW0 
2819113 22/01/2013 AHB     Newcastle Rd LC SYC0 
2819688 24/01/2013 FP MWL   South East Motts Lane (R/G-X) LC (between Witham and Kelvedon) LTN1 
2836320 07/04/2013 UWC+T   London North Eastern Blackhills Farm UWC LEN3 
2857260 27/06/2013 FP   Western Mill Lane FP crossing, Marlow MWB0 
2860705 11/07/2013 FP MWL   Western Springfield Road footpath crossing MLN1 
2880542 03/10/2013 UWC MWL   South East Dernford R/G UWG crossing BGK0 
2885436 26/10/2013 FP   London North Eastern Attenborough TSN1 
2890004 12/11/2013 AHB   Western Sandy Lane LC DCL 
2904257 15/01/2014 FP MWL   London North Eastern KETTON MCB CROSSING,STAMFORD PMJ0 
2920088 24/03/2014 FP   South East Cattishall footpath crossing CCH0 
2936828 31/05/2014 AHB   South East Wharf Road AHB LC BGK0 
2943212 26/06/2014 AHB   South East Wharf Road AHB LC BGK0 
2957922 27/08/2014 UWC+T   London North Western Fishermans Path (UWGT) HXS3 
2959549 03/09/2014 FP   South East Dibleys Foot Crossing ACR0 
2960884 09/09/2014 FP   South East Clappers Lane foot crossing BLI1 
2962496 16/09/2014 FP   London North Eastern Wyke, Lightcliffe golf course footpath crossing MRB0 
2973711 04/11/2014 AHB   South East Sandhill AHB LC BGK0 
2977323 19/11/2014 YDS     Gretsy Lane No.1   
2982776 13/12/2014 FP   London North Eastern Hipperholme (AKA Shibeden Park) footpath level crossing MRB0 
2993967 08/02/2015 FP   South East Glebe Way FP LC VIR0 
2994495 09/02/2015 FP   London North Western Nelson GJC0 
3007093 08/04/2015 FP MWL   South East Cannons Mills LC BGK0 
3060084 24/11/2015 FP   London North Western Old Stoke Road LC PRA0 
3077564 15/02/2016 UWC+T   South East Tide Mills UWC STS0 
3079518 23/02/2016 FP   South East No.22 Grimston Lane Footpath Crossing FEL0 
3080324 27/02/2016 MCB+CCTV   South East Shoreham Station CCTV, Buckingham Road BLI1 
3114917 23/07/2016 MCB+CCTV   South East Stockbridge Road LC TBH2 
3128510 19/09/2016 MCB+CCTV   South East Mount Pleasant BML1 
3132202 05/10/2016 FP   South East Alice Holt foot crossing PAA2 
3140032 09/11/2016 FP   London North Western Old Stoke Road Public FP Crossing PRA0 
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Event ID Event date Crossing type Level crossing 
name 

Territory description Location description ELR code 

3147271 09/12/2016 FP   London North Western Brierfield GJC0 
-27299 06/03/2017 UWC     Stokeswood UWC   
-27741 24/03/2017 footpath     Nowhere foot crossing   
-28641 25/03/2017 footpath     Starcross Level Crossing   
-27655 15/05/2017 AHB     Dimmocks Cote AHB   
-27679 17/05/2017 footpath Nature Reserve   Beeston   
-27725 01/06/2017 UWC     Trenos   
-28163 26/09/2017 footpath     Wallows Lane FP   
-28589 30/01/2018 MCB-CCTV     Lincoln Street   
-28679 17/02/2018 AHB     Barns Green AHB Level Crossing   
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Appendix B: Python code used to run machine learning tests 

This appendix provides the Python source code that was used to perform the 

machine learning tests. The same source code was used for all tests: configuration of the 

code is required to select the features and tests to be performed. The code relies on 

software libraries being installed, specifically datetime, numpy and sklearn. 

 
# User definitions ============================================================== 
#   The path to the source data 
file_path      = r"C:\Users\Staff\ML Analysis" 
file_name      = r"\CALC 12 for import.txt" 
type_column    = 2 
 
# The list of features and the label for this analysis 
operational    = [3, 4, 5, 6, 7, 8, 9] 
hazards        = [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22] 
controls       = [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36] 
all            = operational + hazards + controls 
features       = [9] 
 
# The list of types of level crossings for this analysis 
# Passive Vehicular Public:                         5 
# Passive Vehicular Private or Staff:               6 
# Automatic Vehicular Public:                       7 
# Automatic Vehicular Private or Staff:             8 
# Railway-controlled Vehicular Public:              9 
# Railway-controlled Vehicular Private or Staff:   10 
types          = [10] 
 
# Label: Whether there are any observed collisions [0, 1] : 40 
label          = 40 
 
testing_proportion  = 0.2 
number_of_test_runs = 1000 
discriminator_total = 0 
 
# Start code ===================================================================== 
import datetime 
print(datetime.datetime.now(), "> Importing libraries") 
import numpy 
import sklearn 
from   sklearn.tree           import DecisionTreeClassifier, plot_tree 
from   sklearn.ensemble       import RandomForestClassifier 
from   sklearn.neural_network import MLPClassifier 
from   sklearn.svm            import SVC 
 
# Get the source data and format it into X and y data structures _________________ 
print(datetime.datetime.now(), "> Importing source data") 
source_data = numpy.genfromtxt(file_path+file_name, delimiter="\t") 
no_of_rows  = len(source_data) 
no_of_cols  = len(source_data[0]) 
 
# Using the convention: X is the array of features, y is the  vector of labels 
X = []         
y = [] 
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# Extract the correct columns of the source data into the X and y data structures 
for row in range(1, no_of_rows):                # Literal 1 at start of range because the 
first row (zero) contains headers 
    if source_data[row][type_column] in types:  # collect data only if it is in the list 
of types to collect 
        data_collector = []                     # a temporary array to collect values for 
each row in X 
        for column in range(no_of_cols): 
            if column in features:              # if the current column number is in the 
list of feature numbers we're selecting 
                data_collector.append(source_data[row][column]) 
        X.append(data_collector) 
        y.append(source_data[row][label]) 
# Post condition: the data are now in X and y structures per the features and label 
values 
 
# Run the tests ===================================================================== 
 
for test_count in range(number_of_test_runs): 
    print("=======================================================================") 
    print(datetime.datetime.now(), "> Running model ", test_count + 1, " ________ ") 
 
# ============================== DEFINE THE MODEL BELOW ================================ 
    test_name = "Decision tree (sklearn.tree.DecisionTreeClassifier)" 
    model = DecisionTreeClassifier() 
 
    #test_name = "Random forest (sklearn.ensemble.RandomForestClassifier)" 
    #model = RandomForestClassifier(max_depth=5, n_estimators=10) 
 
    #test_name = "ANN MLP (sklearn.neural_network.MLPClassifier)" 
    #model = MLPClassifier(alpha=1, max_iter=1000) 
 
    #test_name = "RBF SVM (sklearn.svm.SVC)" 
    #model = SVC(gamma=2, C=1) 
# ====================================================================================== 
 
    x_train, x_test, y_train, y_test = sklearn.model_selection.train_test_split(X, y, 
test_size = testing_proportion) 
    model.fit(x_train, y_train) 
    predicted = model.predict(x_test) 
 
    # Get the results ================================================================== 
    true_positive = 0 
    true_negative = 0 
    false_positive = 0 
    false_negative = 0 
 
    for i in range(len(predicted)): 
        if predicted[i] == 1 and y_test[i] == 1: 
            true_positive +=1 
        if predicted[i] == 0 and y_test[i] == 0: 
            true_negative +=1 
        if predicted[i] == 1 and y_test[i] == 0: 
            false_positive += 1 
        if predicted[i] == 0 and y_test[i] == 1: 
            false_negative +=1 
 
    '''print(datetime.datetime.now(), "> Calculating results") 
    print("Test: ", test_name) 
    print("Total rows in source data           : ", no_of_rows) 
    print("Number of rows imported             : ", len(X)) 
    print("Test set size                       : ", testing_proportion) 
    print("Expected number of rows in test set : ", len(X) * testing_proportion) 
    print("Actual   number of rows in test set : ", len(predicted)) 
    print() 
    print("Types          : ", types) 
    print("Features       : ", features) 
    print("Label          : ", label) 
    print() 
    print("True  positive : ", true_positive) 
    print("True  negative : ", true_negative) 
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    print("False positive : ", false_positive) 
    print("False negative : ", false_negative) 
    print() 
    print("Results check  (TP + TN + FP + FN) :", true_positive + true_negative + 
false_positive + false_negative) 
    print()''' 
 
    naive_accuracy = 0 if true_positive == 0 else (true_positive + true_negative) / 
len(predicted) 
    positive_discriminator = 0 if true_positive == 0 else true_positive / (true_positive 
+ false_negative) 
 
    print("Naive accuracy         (TP + TN) / (total)  : ", naive_accuracy) 
    print("Positive discriminator  TP / ( TP + FN )    : ", positive_discriminator) 
    discriminator_total += positive_discriminator 
    print("=======================================================================\n") 
 
average_discriminator = 0 if discriminator_total == 0 else discriminator_total / 
number_of_test_runs #Sometimes there are no true positives to match, so we get a DBZ 
error 
 
print("\n ------------ TEST SUMMARY ------------") 
print("Test\tTypes of level crossing\tFeatures\tLabel\tNumber of tests\tAverage 
discriminator value\n") 
print("%s\t%s\t%s\t%s\t%d\t%f" %(test_name, types, features, label, number_of_test_runs, 
average_discriminator)) 
print(" --------------------------------------") 
print(datetime.datetime.now(), "> Test end") 

 
 


