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Abstract 

 

This research presents two new DSLs (Domain Specific Languages): one to develop audio 

algorithms and a second to order the structure of their connections over time. 

The first one, Omni, allows users to define the behaviour of audio objects at the lowest level. In 

DSP (Digital Signal Processing) terms, Omni is a language that describes the sample-by-sample 

behaviour of an algorithm. It compiles Omni code to native binaries for all the major operating 

systems (macOS, Windows and Linux) that can then be imported and used in creative coding 

environments such as Max or SuperCollider. 

Alga, on the other hand, is a framework for live coding developed as an extension to the 

SuperCollider environment. Its main feature, in contrast with similar projects like TidalCycles or 

FoxDot, is not to define musical patterns whose changes happen statically only on code 

execution (however complex these changes are), but to use the act of manipulating code to 

describe the start of interpolation processes from current states to future ones, over specified 

windows of time. 

This research is situated from the perspective of an electronic music improviser whose main 

motivation is to build these tools to enhance his creative practice. Therefore, development 

choices are both driven by personal aesthetic needs and the desire to have an integrated and 

fluid workflow in live performance scenarios (Alga) and low-level algorithm development 

(Omni). 

The submission includes the source code for both projects, together with installation notes and 

usage examples. Furthermore, x86-64 binaries for various Max objects and SuperCollider UGens 

are provided for all operating systems. 
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Chapter 1 - Introduction 

 

1.1 - Background to the research 

 

The initial idea for creating Omni and Alga was inspired by the need to develop an intimate 

and personal interaction with the machine from the perspective of an electronic music 

improviser. Textual programming languages and their interface, aimed both at algorithm 

development and live coding performances, proved to be, in my case, the most minimal and 

extensible form of interaction between musical intentions and their realization through 

computer generated sounds. Alga is a framework that leverages SuperCollider’s audio 

server to provide a flexible way of connecting modularized components together in real-

time. Omni, on the other hand, supports Alga’s dynamism by allowing the development of 

static audio objects, compiled beforehand with a clean, minimal and extensible syntax. 

These objects represent the sonic building blocks that are structurally arranged with Alga 

in my work as composer and improviser. In fact, despite being two independent projects 

with their separate philosophy and goals, they both share a common reasoning that 

inspired their existence: my own musical practice. 

Since the beginning of computer generated music and sound processing, developing audio 

algorithms has mostly been a technical task for programmers and engineers who know 

low-level programming languages such as C and C++. Audio programming also presents 

many demanding challenges that can at times diminish the accessibility and ease of 

understanding of the underlying code. However, with recent advancements in 

programming language development it is now possible to design tools that can satisfy both 

these requirements. Therefore, just as in other creative fields (Noble, 2009), specific 

dialects, or DSLs, have emerged to bridge between the complexity of machine code and its 

widespread use across the so-called creative coders; artists who use programming tools in 

order to shape their craft. Omni follows this trajectory, being it an audio DSL that can 
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appeal to creative coders, more than software engineers and low-level programmers. In this 

regard, Omni is more akin to a project such as Cycling ‘74’s gen~ (Cycling’ 74, 2011) rather 

than other languages such as FAUST (Orlarey, Fober & Letz, 2009) or SOUL (Storer, 2016), 

which appeal to audiences of trained developers. Nonetheless, Omni can indeed be an 

effective alternative to such languages, as its minimal syntax does not preclude 

performance, being the code compiled down to highly optimized C code. 

Alga operates at a higher level than Omni: the one of audio environments. These 

environments, that usually combine both visual and textual interfaces, do not often expose 

the sample-level operations directly but assemble and connect together pre-compiled audio 

objects. What this allows is an interface for rapidly prototyping audio algorithms and 

musical ideas without the technical overhead of designing specific low-level algorithms. 

Different environments for music making have been developed over the last sixty years, 

ranging from the early Music systems (Mathews, Moore & Risset, 1974), up until more 

recent software like Max (Puckette & Zicarelli, 1990), SuperCollider (McCartney, 1996) and 

PureData (Puckette, 1997). Within these environments, which provide the basic audio 

functionalities, a number of other smaller sub-systems have also been established, each one 

with its own unique set of features. For example, languages like ixi-lang (Magnusson, 2011) 

or bacalao (Fraser, 2020) are cases of embedded dialects in the SuperCollider environment. 

On the other hand, frameworks such as ppooll (Filip, 2005), FrameLib (Harker, 2017) or 

MuBu (Schnell, Röbel, Schwarz & Borghesi, 2009), represent various endeavours to create 

audio contexts with their own specific syntax and functionalities, while still being enclosed 

in the experience of environments such as Max. 

Alga falls in between being a dialect and a framework: it currently is a SuperCollider 

extension library for live coding. Its main feature is to define the connection and structuring 

of audio nodes as a dynamic process. In Alga, defining a new connection via code execution 

does not apply the changes instantaneously, but it instead triggers a process of 

interpolation between a current state of the node to the newly defined one, over specific 

windows of time. The future aim is to provide Alga as a custom language, or dialect, that 
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interacts with the core SuperCollider implementation: the research here presented is only 

comprised of the SuperCollider interface, which is already complete with all the features in 

the forms of usable Classes. In short, while the AlgaLib framework is already usable within 

the SuperCollider environment and syntax, the actual custom language on top of it has not 

been developed yet. 

 

1.2 - An improviser’s perspective 

 

Ideally, the tools for improvising music, regardless of their hardware or software nature, 

should provide the players/users with optimal ergonomics in order for the interface to be 

easily accessible both in rehearsal and live scenarios. Programming languages, considering 

their textual interface, stimulate the performer not on a visual level, as it would be in 

environments like Max, but on a linguistic one: expressing musical intentions becomes an 

act that is deeply related to how the language is designed for both the human and the 

machine. The ability to rapidly communicate with the computer through text is a 

fundamental tenet of live coding languages and was one of the driving ideas in developing 

Omni’s minimal syntax and Alga’s ‘plug and play’ experience: ergonomics of interaction, 

when coming down to DSLs, are key factors for their successful usage. The quicker and 

frictionless the iterative process of coding and experimenting, especially with sonic 

algorithms, the easier it is to engage with the tools in performative scenarios, while also 

improving code readability and compactness. For my practice as improviser, these are 

essential features to bridge the interface between the human intentions and the machine 

interpretation in real-time (Brown, 2016). This process of ‘thinking-in-action’ (Cocker, 

2016) allows me to establish a dialogue at different levels of complexity and abstraction: 

from the lowest algorithmic one, via Omni, to the highest structural one, thanks to Alga. 
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1.3 - Aims and objectives 

 

A common aim for both projects is the accessibility and ease of use of the software. In the 

case of Alga, this approach leads to quickness in its employment in performative and 

rehearsal scenarios. Regarding Omni, the result is a smoother development process of DSP 

code. Interacting with an agile interface to explore sound programming proved to be, in the 

case of my own practice, not only a welcomed addition to quickly prototype ideas, but a 

necessary requirement to enhance the feedback process between initial thoughts on 

specific sonic algorithms and their realization; from the sample-to-sample behaviour in 

Omni, up to the musical arrangement in Alga. Furthermore, the development of Omni and 

Alga is strictly open source: their conception does not come from trying to fit the projects 

into commercial aims of the current pro-audio market, but from the personal need of 

specific features that were not present or easily accessible from other software. 

While common guidelines influenced both projects, they certainly present objectives and 

designs of their own. For Alga, the fundamental aim is to propose a novel way of 

structuring real-time algorithmic improvisation. In contrast with the widespread approach 

of pattern manipulating languages, Alga shifts the attention of the user to the act of 

patching audio nodes, similarly to hardware modular synthesizers. However, the patching is 

not instantaneous, but it activates a process of interpolation from the current state of the 

system to the newly set one. With this solution, Alga proposes a fluid style of composition 

and improvisation, where no abrupt changes transpire unless explicitly prompted by the 

coder. 

Omni’s main objective is to simplify low-level audio programming by providing a minimal 

and extensible syntax; easy to learn for beginners, yet deep enough for expert DSP coders. 

On a linguistic level, Omni, like gen~, aims to be a language for creative coders, where the 

syntax is designed not to get in the way of the developer, abstracting away many of the 

issues that one has to face when dealing with audio programming, while not renouncing on 
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performance. Additionally, Omni also provides users with the depth and flexibility of 

languages that are aimed at engineers and expert audio programmers, as would arguably 

be the case for projects such as FAUST and SOUL. Among other features, one that stands out 

is the presence of a robust object-based system that allows coders to define custom and re-

usable structures and functions, which is a fundamental trait to develop software in a 

modular way. Finally, Omni is developed to be a cross-platform and cross-environment 

language. In fact, it is available for all major operating systems (Linux, macOS and Windows) 

and, thanks to its wrapper approach that is later explained, can be used to create objects for 

common audio environments like Max and SuperCollider. Another aim for Omni, then, is to 

allow users to write their code once and have it working the exact way in multiple contexts. 

Furthermore, an aim for both is to allow other creative coders to be stimulated and 

inspired to challenge long-standing practices with a new technological perspective. In my 

practice, several software projects have performed a similar role. In this regard, FrameLib’s 

novel approach to frame-based audio processing or gen~’s ease of use to design DSP 

algorithms stand out. It is my hope that Omni and Alga can have a similar impact on other 

people’s methods of coding, composing and improvising. 
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Chapter 2 – Methodology 

 

2.1 - Software development through practice and iteration 

 

I have been using both software projects heavily since their conception. Therefore, during 

the development process, their features and goals have been reviewed several times, 

following what I felt it was needed for my musical practice. The process of iterating 

between the coding of the software and its actual real-world usage has been one of the core 

development motifs: iteration and practice, just as in any standard musical training, have 

proven to be incomparable tools of discovery. Alga, in particular, not only augmented a 

constant feedback exchange between the development and the practice, one influencing the 

other, but also provided a learning process resembling the one of an actual musical 

instrument.  However, considering the digital nature of Alga, some distinctions ought to be 

made between the approach to playing physical instruments and the one towards live 

coding instruments. In the case of the latter ones, as the music theorist Andrew Goldman 

states, the absence of the sensory feedback of an acoustic instrument creates a disjunction 

between human movement and improvisational decisions (Goldman, 2019). This process, 

according to the researcher and developer Tim Sayer, generates a difference between the 

cognitive load that a musician undergoes when performing with traditional instruments 

and when performing with digital or live coding ones (Sayer, 2016). In such regards, 

practicing music with Alga provides the same distance between code execution and 

physicality as any other digital instrument and live coding language. 

Different researchers, composers and performers have attempted to blur this discrepancy. 

A particular case is the one of the researcher and improviser Lauren Sarah Hayes, who 

proposes the usage of haptic interfaces for digital instruments in order to provide 

performers with physical feedback and resistance. This approach opens up many 

compositional and improvisational behaviours that would not be possible otherwise, 
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allowing an improviser to develop a new physical relationship with the digital instruments 

(Hayes, 2014). Such an interface, for example, can be developed through video game 

controllers, as Hayes does for her piece Figuring-Operated String. In this composition, in 

fact, she uses a cheap Mad Catz Gametrack controller, which would usually be used for 

golfing videogames (Hayes, 2014, p. 147). Another example is the Feedback Cello by the 

University of Sussex’s researchers Alice Eldridge and Chris Kiefer. They developed an 

electroacoustic instrument that leverages the acoustic body and strings of a cello to 

generate self-resonating feedback through transducers positioned in various places of the 

instrument. The transducers, then, are driven by a digital system developed in 

SuperCollider that listens and responds to the input, in a continuous feedback loop where 

the performer has an active role in interfacing with both the acoustic instrument and the 

digital counterpart (Eldridge & Kiefer, 2017). This sort of human - instrument - computer 

interface, then, essentially hybridizes the nature of the sound generation, while still 

providing the performer with a close physical response to interact with. 

My approach to developing software is akin to the one of an instrument builder. Despite its 

physical disadvantages, I consider the computer as a de-facto musical instrument, as Max 

Mathews, the creator of the early MUSIC family of software, assessed in 1963 (Mathews, 

1963). However, it is not just the developed software as a finished product that should be 

thought as such. In fact, as the creator of the ChucK language Ge Wang suggests, the act of 

programming itself - especially in the field of live coding - is to be regarded as musical 

instrument (Wang, 2008, p. 28). In my practice as coder and musician, the notion of 

developing the software and playing with it completely blur with one another. This mode of 

developing new tools differs from Miller Puckette’s view of music software creation as a 

‘deadly embrace’ between the developer and the user (Puckette, 2014, p. 8). Puckette 

addresses the two roles as being dependent on one another in order for each to be striving, 

technically and creatively. In my case, being in the peculiar position of both the luthier and 

the player allows me to merge the needs of either role in a constant evaluation of technical 

concerns and musical ones. The improvement of the software, then, does not only come 
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from a pre-determined design scheme, but also, and most importantly, from the continuous 

creative usage of the tools themselves. Consequently, both the acts of programming and 

using the code influence one another in a continuous feedback process that is crucial in 

improving either aspect of my practice as programmer, composer and improviser. For 

example, using the software from the beginning of development permitted me to have the 

opportunity of experiencing Omni’s and Alga’s learning curves firsthand. During this 

process, I often found myself forgetting about the overall internal complexity of the system 

hidden behind the minimal syntaxes, inspired by the design of popular interpreted 

programming languages such as Python (Van Rossum, 2007), Ruby (Flanagan & Matsumoto, 

2008) and Lisp (Steele, 1990). In fact, I attempted to apply some of the features that make 

these tools appealing, even to newcomers: a clear and basic syntax that leads to 

prototyping quickness and rapid development of ideas, in contrast with the many pitfalls 

that C-style syntax presents to users, especially novices (Stefik & Siebert, 2013). 

Opening up the development of Omni and Alga brought benefits that were only possible 

thanks to the open-source nature of the projects. This allowed both of them to ‘stand on the 

shoulders of giants’ by leveraging the open-source languages Nim and SuperCollider. Nim 

has been used to develop the entirety of Omni’s syntax via its powerful metaprogramming 

capabilities. By transpiling Omni code to Nim code, it is possible to build upon an already 

mature compiler infrastructure without the overhead and complexity that developing a 

custom one would take, especially for a single developer. Moreover, one more advantage is 

that Omni can be used for all the architectures that Nim supports, which, in turn, are the 

ones that C compiles to, as Nim compiles down to C code. On the other hand, Alga’s sound 

engine, AlgaLib, is coded in sclang, SuperCollider’s interpreted programming language. 

Using this language allowed my development to focus on the novelty of the 

implementation, instead of having to build a cross-platform sound engine from the ground 

up. By utilizing existing software, I was able to exclusively develop my ideas, instead of 

having to build the necessary scaffolding to tie all components together. Moreover, my 
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hope is that integrating the project within a widespread environment such as SuperCollider 

will help with the adoption of Alga. 

 

2.2 - Modular approach 

 

In my work as a programmer I lean towards an abstraction based development process 

(Liskov & Guttag, 1986, pp. 9-17). This allows me to build programs by assembling together 

re-usable building blocks, promoting modularity. Omni presents the user with code blocks 

that represent the unique stages of an audio algorithm: definition of inputs and outputs, 

initialization of variables and processing of the audio loop. Coding with Omni, then, simply 

means to focus on filling these blocks with the necessary code to perform a specific 

algorithm, often without requiring the user of any general-purpose programming 

knowledge. Furthermore, Omni itself is built in such a way to promote re-usability of code 

across different projects: there is no need to duplicate the same delay implementation in 

two different codebases. Instead, it is possible to simply import and re-use the same Omni 

code in both. Alga exposes a different kind of modularity. Indeed, its method is more akin to 

the modularity that stems from the modular synthesizers’ approach to sound generation. 

This approach arguably influenced how audio programming has been handled from its 

inception: defining individual modules that perform simple tasks, creating complexity not 

through the sum of the parts, but via the ways in which they interact with one other. In 

1963, Max Mathews had already envisioned such an approach for computer music. In fact, 

his proposal was to allow composers to develop various instruments by interconnecting 

‘blocks of program that make up the instrument unit’ (Mathews, 1963). Alga’s building 

blocks, AlgaNodes, draw inspiration from this modular technique: musical complexity, then, 

is not the result of coding complexity, but it comes from the intricate relationships 

established when connecting different algorithms together. 
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Chapter 3 - Omni: DSL for low-level audio programming 

 

 

3.1 - What is Omni? 

 

Omni is a minimal and accessible programming language for audio programming, available 

for Linux, macOS and Windows. Minimalism and accessibility are generic terms to convey 

Omni’s goal of being easy to learn and to use, with few constructs to remember before 

writing productive code with it. The aim is for the DSL to have a rather flat learning curve: 

the advanced features of the language should not interfere with the creative coders’ job, 

unless they have an explicit need to use them. Omni attempts to bridge the complexity of 

audio programming and its numerous moving parts with a clear interface that prompts the 

users on specific blocks they have to fill with their code. 

The ease of use starts with the installation process. As long as Nim is installed, which is a 

very straightforward task on all operating systems, Omni can simply be set up via the 

nimble package manager with a one-line command: nimble install omni. Once this 

operation has been completed, the omni compiler will be available to the user. The omni 

Figure 1: A simple Sine oscillator in Omni. 
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compiler itself only builds a shared or static library with the optimized compiled code. This 

OS-specific library is then easily embeddable under any environment and API 

circumstances, even on-the-fly. The reasoning to compile code to shared or static libraries, 

then, is to enable any programmer to easily develop custom wrappers around the omni 

executable, which can act solely as the backend DSP compiler of a bigger project. Thanks to 

Omni’s simple and extensible language core and its wrapper-based approach, it is a very 

simple process for developers to expand Omni by writing new wrappers for specific 

projects. Personally, as a user of Max and SuperCollider, I have developed two wrappers for 

these environments, OmniMax and OmniCollider. Often, then, the creative coder would use 

the omnimax / omnicollider executables instead of calling into the omni compiler directly, 

allowing the same Omni code to be specifically compiled to either a Max object or a 

SuperCollider UGen. It is important to underline that the resulting binary is a fully-fledged 

object in the specific environment, completely integrated in the specific workflow. 

 

3.2 - Contextualizing Omni 

 

Omni is not the only available audio DSL. Similar projects have been developed over the last 

two decades: gen~, FAUST, and SOUL are all examples of languages specifically aimed at 

audio development and prototyping. Thanks to its ease of use, gen~ can be regarded to be a 

tool aimed at creative coders, who would often use a low-level audio DSL to quickly 

prototype specific DSP ideas. On the other hand, FAUST and SOUL, due to their syntax and 

bigger scope of applications, are arguably more appealing to an audience of already trained 

DSP developers and engineers. Within this spectrum, Omni would be located in the middle, 

potentially being attractive for users on both ends. 

The appeal for beginner programmers and creative coders would be the minimal syntax 

that resembles Python’s, which is the gateway to computer programming for a high number 

of people, as demonstrated by being the fastest growing programming language in history 
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(Srinath, 2017). Regarding audio related tasks, Omni eases the way into complex topics 

such as memory allocation / initialization and sample-by-sample processing by defining 

those tasks in specific blocks of code that are aware of their context, and can therefore help 

the coders in their development journey. Context-aware code (Petricek, 2017) is here 

intended as a feature that prevents users from trying to force the system into doing actions 

that should not be done in audio programming, like allocating memory during the 

processing of real-time audio. For example, Omni allows coders to define instances of 

structs, which are its way of defining and allocating data structures, only in the init 

block, which serves the purpose of initializing specific variables to be used in the core of 

the algorithm. On the other hand, if the user attempts to create a struct in the perform 

block, which represents the audio loop, Omni will emit an error at compile time, hinting the 

coders that what they are trying to implement should not happen in the context of DSP 

development. As a result, newcomers would be intuitively informed of some common 

practices in audio programming while they are developing their own algorithms. 

Some of Omni’s features might also appeal to expert DSP developers. First, Omni code is 

performant. In fact, despite its minimal syntax, which, for instance, does not require users 

to express variable types, Omni compiles down to highly optimized C code. As explained 

later, this is achieved by a type inference system that leverages Nim’s metaprogramming 

and code introspection to generate the fastest code possible. Furthermore, Omni provides a 

deep and extensible modular interface that promotes code re-use among different projects, 

allowing programmers to develop their own libraries to be imported and, perhaps, shared. 

Omni’s modularity, thanks to the Data construct that will be later described, also allows 

coders to have dynamic allocation of any type, including ones defined by the user. This 

feature is essential to quickly and reliably declare arrays of structs that are not bound by a 

set number, but can be dynamically defined in the init block via, for example, a param. This 

behaviour is described in section 3.5.3.1. 

Omni’s syntax has been developed with the idea of being welcoming for any type of coder. 

Its goal is to provide a frictionless development process even for the most experienced DSP 
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developers, helping them to focus more on the core of the algorithm rather than on specific 

syntactic complexities. Moreover, the multi-platform and multi-application compilation 

allows coders to develop their code once, being sure that it would work exactly in the same 

manner regarding of the operating system and environment in which it is being used. 

Omni shares the same goal as other audio DSLs, which is to make audio programming more 

accessible and streamlined, simplifying the entry point to the core of the problem: 

specifying an algorithm that performs at the sample level of an audio buffer. Therefore, why 

did I choose to develop a new language instead of perfecting my understanding of existing 

ones? Simply put, no other tool provided me with a set of features best suited to my 

practice as developer and musician. 

 

 

gen~ is an innovative coding environment that proposes a single-sample patching system 

and language that only works within the boundaries of Max, which I am not a user of 

anymore. Besides, whilst it is exceptionally easy to quickly prototype ideas in gen~, it does 

Figure 2: gen~ code example. 
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not provide the programmers with the possibility of defining custom data structures, but 

only functions with many limitations to the scope they provide. In short, gen~ only allows 

the creation of algorithms which are the combination of the in-built objects, without any 

support for expanding the palette of constructs to the developer’s liking. The only 

workaround to achieve similar features is to wrap specific gen~ code into re-usable 

functions, which might resemble some kind of object behaviour. However, this is limited by 

the fact that the only in-built object that is usable in functions is the History one, which 

simply performs a one-sample delay. All the other in-built objects must be declared and 

used solely in the global scope. This makes modularity very limited, as it mostly resolves 

around copy / pasting portions of code across different projects. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: FAUST code example. 
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FAUST, developed at Grame in Lyon by Yann Orlarey, Stéphane Letz and Dominique Fober 

(Grame CNCM, 1982), is an open source project that, unlike gen~, provides users with a 

deeper development of custom objects, and it is distributed with a featureful standard 

library. However, I personally find its functional syntax hard to grasp quickly, as the 

grammar that it proposes is not easily relatable to any widespread programming paradigm. 

As a result, while FAUST code is extremely compact, the understanding of the algorithm on 

a sample-by-sample level is often rather difficult to comprehend. Finally, FAUST directly 

includes in its source code the support for a number of platforms and environments. In fact, 

when installing the faust compiler, a number of faust2 additional commands are also 

bundled with it. The source code for all these wrappers, then, is embedded directly with the 

Faust one, which, in my view, leads the project to being rather monolithic for an audio DSL. 

For example, if one would only use the faust compiler to compile a SuperCollider UGen - 

thus calling the faust2supercollider command - all the other forms of export would be an 

overhead to that single use of the toolchain. Furthermore, this approach proposes a form of 

centralization of the project where the FAUST way of developing a compilation target with a 

custom faust2 interface would be to submit the code changes to the main repository of 

FAUST. Then, once and if the changes are merged, these would now be internal to the 

project itself instead of being an individual project within an ecosystem. 

 

Out of the three languages here proposed, SOUL is the more recent one, having reached its 

1.0 release in January 2021. It is being developed at ROLI (ROLI, 2009) by Julian Storer and 

Cesare Ferrari. As a language, SOUL 1proposes itself to be the new standard in audio 

programming, especially in plugin and applications development. As a consequence, while 

its stated goal is to be easy to learn, a number of stylistic choices were dictated to appeal an 

audience of already trained developers, with a syntax that resembles C’s: the presence of 

brackets and semicolons, the need of declaring variable types, the use of the void concept, 

among other features. Let us consider the simple example of a sine wave generator, which 

is one of the simplest algorithms in DSP development: 
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As a newcomer with no programming experience, I would have to deal with some concepts 

that are adding complexity to such a simple example. Why would I need to express void 

run() considering that the run function must always be void? What is void? Why is void 

relevant to specify functions to execute an audio algorithm? What is the meaning of void 

for an audio programmer? Why is it required to manually advance the sample-by-sample 

loop by calling the advance() function? Where is this function declared? As an expert user I 

could argue that manually advancing the sample count would be practical to express 

different rates for specific components of an algorithm. For beginners, however, it can be 

perceived as a forced action that is required to be done, despite it not being directly related 

to the implementation being developed. 

 

 

 

 
Figure 4: Sine oscillator in SOUL. 
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3.3 - The omni compiler CLI 

 

 

The omni compiler takes one file, a folder or multiple Omni files as positional arguments. 

Multiple flags are available to alter the result of the compilation. It is possible to change 

standard features like output name and directory (--outName and --outDir), together with 

compilation specific behaviours (--lib, --architecture, --compiler, --performBits). 

Moreover, flags for direct interoperability with Omni wrappers and the Nim intermediate 

compiler (--wrapper, --define, --importModule, --passNim) are provided. Finally, the --

exportHeader and --exportIO flags can be used to export the ‘omni.h’ and ‘omni_io.txt’ files 

together with the compiled libraries. The former is used for C interoperability, while the 

latter contains metadata about inputs and ouputs of the compiled Omni code. 

 

 

Figure 5: Help interface of the Omni compiler. 
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3.4 - Language design and implementation 

 

Omni draws inspiration from Python’s and Nim’s coding styles. From both of them, it 

borrows the indentation-based syntax, where specific scopes are determined by tabs and 

spaces, without curly brackets or semicolons. Regarding Python, I took inspiration from the 

quick approach to declaring variables, with no requirements of type specification or 

declarative syntax: it is only required to type a variable name and its value. The choice to go 

towards a pythonic syntax style was determined by the simplicity it allows the user to be 

interfaced with. Omni, however, is a fully statically typed language. In order to ease the 

work of the coder, Omni makes certain assumptions that are possible due to its context 

being limited to a DSL whose scope is solely audio programming. For instance, number 

types in Omni are defaulted to float (whose precision depends on the architecture of the 

machine being utilized), since this is the type that is most likely to be used in DSP to 

perform any calculation. It is certainly possible to declare integers, but this requires the 

user to be explicit about it: 

 

 

 

 

Another example is the avoidance of explicitly setting argument and return types from a 

function, named def in Omni. Again, it is possible to state an explicit return type in case the 

coder is willing to enforce that specific behaviour: 

Figure 6: Simple variable assignment. 
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Once more, considering the limited scope of audio programming, a developer might tend to 

use the first case more, as it includes the second explicit one. This is not enforced by Omni 

itself, but it allows different types of programmer to feel comfortable with the system, 

allowing them to restrict their code to specific behaviours, if required. Other examples of 

Omni’s type system will follow in section 3.5. The rest of Omni’s syntax is mostly inherited 

from Nim, yet with some exceptions. An example is the handling the constructor call for 

structs, which will also be analyzed later. 

While Omni might feel like a dynamic language where no type information is required, its 

compilation results in strictly typed Nim code. This level of type inference has been made 

possible by the extensible metaprogramming capabilities that Nim offers. Finally, Omni is a 

block-based language. In order to compile a valid program, certain blocks of code must be 

filled with the specifics of the algorithm that is being implemented. Then, each block 

represents a specific function in the execution of the code. The analysis and usage of blocks 

will be explained in section 3.5. 

 

3.4.1 - Metaprogramming: choosing the Nim language 

 

Creating a programming language requires the arrangement of several extremely complex 

components. From parsing and lexing the code, to representing its structure in the most 

optimal way with ASTs (Abstract Syntax Tree) (Thain, 2019, p. 83), down to generating 

Figure 7: Two function definitions. 
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native instructions for specific CPU architectures. While I regard myself as a fairly expert 

developer, undertaking the task of building an entire language infrastructure would take 

me years to realize. Yet, a number of modern programming languages provide options for 

metaprogramming. Metaprogramming allows the developer to alter the code generation of 

a program using specific constructs, often called macros. Nim (Rumpf, 2008), Julia 

(Bezanson, Karpinski, Shah & Edelman, 2012), Rust (Matsakis & Klock, 2009) and Zig 

(Kelley, 2016) are examples of languages that use metaprogramming as a powerful element 

to abstract many components of their implementation in macros executed at compile time. 

In short, ‘metaprogramming is the process of writing computer programs that treat 

programs as data, enabling them to analyze or transform existing programs or generate 

new ones’ (Lilis & Savidis, 2019). If the ergonomics of a language allow it, it is possible to 

develop entire dialects on top of a well-built macro system. This is what Omni does with 

Nim. 

Nim provides an extremely powerful macro system that enables the programmer to 

directly manipulate the AST representing the code to produce a new valid AST. This allows 

the developer to implement custom parsers for the AST of any piece of code, as long that 

after their execution they would return a valid AST for Nim’s own parser. Furthermore, a 

feature which is extremely valuable to Omni’s implementation is Nim’s separation of the 

untyped code generation, which enables the syntactic representation of the code, from its 

typed counterpart, which includes the full type inference. Consequently, Nim provides 

different entry points in its parsing stages, which permits the programmers to inject their 

own logic within Nim’s code analysis. For clarity, let us consider the simple variable 

declaration let myVar =  0.0. The first stage, the untyped one in Nim terms, would be the 

simple representation of the code through an AST: 
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This AST is untyped because it does not contain any type information yet. The next stage, 

the typed one, will perform type inference on the AST, thus retrieving the type information 

for the variable myVar: 

 

 

 

 

 

 

 

 

Figure 8: Basic usage of macros in Nim. 
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Figure 9: Defining an extra macro to inspect the typed 
representation of the code. 

Figure 10: Result of the previous code. 
All macros are performed  at 
compilation time. 
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The difference between the two representations, in this simple case, only lie in the 

declaration of myVar as a Sym (Symbol) node, instead of an Ident (Identifier). If 

inspecting the Symbol node with the getType function, it would now be possible to see how 

Nim represents the Symbol belonging to that variable as a float. Through the usage of 

macros, then, Nim allows to modify both of the AST representations at compilation time. 

This powerful distinction allows programmers to inspect and build code that is aware of all 

the type context, enabling the injection of many optimizations directly in the code 

generation stages, without affecting the runtime performance of the compiled binary. Omni 

implements its own parser that acts on Nim’s AST on both of these levels, generating 

optimized Nim code which, in turn, produces C code, finally compiled to machine 

instructions. 

Before using Nim, I have also experimented with other languages. My main project has 

been JuliaCollider (Cameli, 2019), which enables developers to use the Julia programming 

language inside SuperCollider in order to develop algorithms on the fly via JIT (Just-in-

Time) compilation. Julia’s JIT engine, based on LLVM (Lattner & Adve, 2004), allows users 

to compile code very quickly and cache the results directly in memory, instead of writing 

them to a binary file. While I was successful in embedding Julia within SuperCollider’s real-

time memory system, the project presented several other limitations. Stylistically, due to 

Julia’s requirement of prepending of the @ symbol to macros, JuliaCollider’s syntax could not 

be addressed as a standalone language, which was my goal, but rather as a macro sub-

system within a language. Moreover, JuliaCollider could not prevent the user from calling 

Julia functions that should have not been called in a real-time audio context, and the whole 

project relied on the assumption that the coder would not use the system the wrong way, 

with the possibility of crashes. Furthermore, the JIT compilation presented complications 

in terms of synchronization, and the overhead of Julia’s runtime and garbage collector was 

a huge burden with which I had to work around. Some of these problems were solved by 

directly forking the Julia language, and using this patched version of the system in 

JuliaCollider. Nevertheless, keeping up with the language development slowly put my 
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forked version of Julia extremely behind the upstream one. While I would regard 

JuliaCollider as currently being a deprecated project, the development process has surely 

been an invaluable learning experience that allowed me to better design Omni. 

 

 

3.4.2 - The exported interface 

 

The omni compiler generates either a shared or static library containing all the compiled 

functions that are necessary to embed the specific Omni object into any project that 

provides a C compatible ABI or that can simply load shared libraries. This allows Omni to be 

Figure 11: A Sine oscillator in JuliaCollider. 
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easily wrappable by most, if not all, audio applications that already exist. The binary file is 

exported together with an ‘omni.h’ header file that contains all the function definitions that 

compose an Omni library. There are two families of functions: Omni_Init and Omni_UGen 

ones. 

The first family allows the programmer to initialize wrapper specific features, like memory 

allocation and printing. Omni, in fact, enables the developer to specify custom alloc / free 

functions, permitting the library to be embeddable into any project, even ones that use a 

custom memory allocator. In the case of OmniCollider, for example, using SuperCollider’s 

real-time allocator for all of Omni’s allocations has been as easy as calling Omni_InitAlloc 

with the pointer to the specific RTAlloc / RTFree functions. The same philosophy applies to 

the print function, with the Omni_InitPrint call. It is important to specify that, if these 

two functions are never called, Omni will use the system’s malloc / free and printf 

functions instead. Thanks to this interface, Omni provides the programmers that want to 

develop their own Omni wrappers with the possibility of specifying each aspect of the Omni 

execution, permitting them to embed the language in the most ideomatic way for their 

projects. I believe that, by giving access to such introspection, Omni should be flexible 

enough to work in any situation in the most frictionless manner, without the need for 

existing projects to adapt their interface in order to communicate with it. 
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The second family of functions deals directly with the audio algorithm. It includes global 

functions to retrieve information about the number of inputs, outputs, parameters and 

buffers. Furthermore, functions to allocate, initialize, execute and free an instance of an 

Omni object are provided. These are the functions that a wrapper would utilize to actually 

call into the core of the Omni developed algorithm. 

 

 

 Figure 12: Initialization functions in ‘omni.h’. 
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3.4.3 -  Technical analysis: float, function overloading and Data 

 

Before talking about syntax, it is relevant to highlight some of the issues that needed to be 

solved in designing the language. 

On digital systems, audio is considered to be a hard real-time scheduling process, meaning 

that it has to be executed fast enough within specific deadlines in order not to produce 

audio dropouts (Boulanger & Lazzarini, 2010, chapter 3.4). In developing Omni, achieving a 

balance between performance and ergonomics has been one of the most important issues 

to address. Thanks to Nim’s introspection, for instance, it is not necessary to specify the 

type of variables while coding, as they will be inferred by the assignment operator. Types 

Figure 13: Functions regarding the state of an Omni object in ‘omni.h’. 
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can either be numeric (float / int) or custom structs. Since Omni compiles to statically 

typed Nim, explicitly setting a variable type only helps with code clarity, but performance is 

as fast as when types are inferred by the compiler. Considering that most DSP algorithms 

operate with floating point precision, the float type is considered a first class citizen in 

Omni. This means that if a variable is inferred to be numeric, it will be defaulted to be a 

float, unless explicitly set to be an int. This assumption simplifies many operations, and it 

permits the code generator to optimize specific calculations and math functions by calling 

directly C’s stdlib counterparts under the hood. At the same time, if mixing floats with 

ints, Omni, thanks to Nim, has the notion of overloading the function calls depending on 

the type of the arguments. This feature produces another benefit. In Omni, it is possible to 

define a def myFunc(a, b) function that will work for any types of a and b, even if they are 

custom structs, granted that the operations in the body of the function are applicable to 

that specific type of the argument. I would like to mention that, due to timing, I have only 

scratched the surface in terms of optimizations: SIMD, stricter conversions, more inlined 

constructs are just few of the areas that could improve performance even more. Despite 

this, Omni still performs very quickly, as it is shown by this comparison between the same 

granular algorithm developed in Omni and in C++, both compiled to SuperCollider UGens: 

 

Another important behaviour that Omni takes care of is memory management. I wanted 

memory allocation to be transparent to the users, but at the same time I did not want them 

to have to take care of explicitly freeing it in a specific block. Memory allocation only 

happens when instantiating a struct, and it is only possible to do so in the init block. 

Figure 15: CPU usage of granulator in Omni. 

Figure 14: CPU usage of granulator in C++. 
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After that, users can simply access the allocated struct and easily modify its fields, without 

having to worry about memory issues. Furthermore, Omni provides a way to dynamically 

allocate multiple instances of a single struct, thanks to the in-built Data construct. This 

supports any Omni valid type, and it allows the user, for instance, to specify a param that 

will set the number of the entries of the Data at init time. Furthermore, if the Data entries 

are not explicitly initialized by the user, they will be declared using the default constructor 

of the specific struct. This is a very powerful feature that effectively permits users to 

create multiple instances of algorithms with a single line of Data code. For example, if one 

has developed a struct Phasor and wants to allocate 10 of them, it would be as easy as 

this line of code:  

phasors = Data[Phasors](10)  

However, how is all the allocated memory freed? Omni implements its own automatic 

memory management scheme that, at its core, simply logs a pointer to every allocated 

struct, and frees it accordingly when the instance of the Omni object is being deleted. This 

last stage depends on how the wrapper calls the Omni_UGenFree function. 

 

3.5 - Syntax 

 

In this section I will describe all the blocks that compose the Omni language on a syntactic 

level. A block is defined by a keyword followed by a colon. The body of the block needs to be 

indented, delimiting its scope. Each expression, then, happens on a single line of code. 

Optionally, expressions can be separated by a semicolon, allowing them to co-exist on the 

same line. 
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All Omni blocks have access to the global constants samplerate, bufsize, pi and twopi. 

 

3.5.1 - IO: ins, params, buffers and outs 

 

The ins, outs, params and buffers blocks allow Omni to interface with the external world. 

The first two permit users to define the number of inputs and outputs of the algorithm. The 

last ones are used to define specific modes of interaction with the algorithm, as it will be 

later explained. They all provide a similar syntax, while their scope is different. This family 

of blocks share some common properties: 

1 - Dynamic access. In code, specific entries can be accessed via an array syntax: ins[i], 

outs[i], params[i], buffers[i]. 

2 - Optional declaration. All of IO blocks are optional, which means that if they are not 

declared, they are simply defaulted to 0. A special case is handled for ins and outs, which 

implement a dynamic counting behaviour in the perform / sample blocks. In fact, ins and 

outs do not necessarily require to be declared, but they can be inferred by the highest 

in... / out... variable used in the algorithm. For example, the following example would 

Figure 16: Block-based syntax in Omni. 
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be a valid Omni code, and it will be inferred that the ins should have a value of 3 (in3 is the 

highest), and outs should have a value of 5 (out5 is the highest): 

 

3.5.1.1 - The ins block 

 

The ins block defines the number of audio inputs that the algorithm requires. A basic ins 

definition can be as simple as: ins 3. This will declare three variables, in1, in2 and in3 that 

will reference the relative audio inputs. These will only be accessible in the perform and 

sample blocks, the ones that specify the sample-by-sample behaviour of the code, as it will 

be presented later. Optionally, the ins block allows users to specify custom names and 

ranges for the inputs. 

 

 

This example shows the definition of three inputs, named firstInput, secondInput and 

thirdInput. Their values will be automatically clipped by the range expressed in the curly 

brackets. This feature allows to easily define minimum and maximum values, with no need 

Figure 17: Dynamic count 
for ins and outs. 

Figure 18: Usage of the ins block to declare 3 audio inputs 
with specific names and minimum / maximum ranges. 
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to explicitly use other constructs such as if statements in the code. Moreover, the 

expressed input names will be available as aliases to in1, in2 and in3. 

 

3.5.1.2 - The outs block 

 

Similarly to the ins block, the outs block defines the audio outputs of the algorithm. Unlike 

ins, named outs are not used in the Omni code, as they could create confusion with the 

declaration of normal variables. For example, if an out has the name firstOutput, the 

assignment in the sample block ‘firstOutput = someValue’ would have the same semantic 

value as a variable assignment. This problem does not arise for ins, as they are constants 

that are not assignable. Perhaps, if a custom syntax will be designed to assign outputs, like 

SOUL’s << operator, this issue could be erased. However, the names are still used for the 

exported metadata when the --exportIO compiler flag is enabled. 

 

3.5.1.3 - The params block 

 

The params block allows to specify a number of control rate parameters to be used in the 

algorithm. Control rate means that their value is not updated on a sample-by-sample level, 

but once per audio block. params are available in the init and perform / sample blocks. 

The syntax is highly similar to the ins one. The only addition is the possibility of defining a 

default value for a parameter together with the minimum and maximum ranges. 
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3.5.1.4 - The buffers block 

 

The buffers block is used to specify external memory that is being used in the Omni 

algorithm. The way this memory is handled is defined on a per-wrapper basis with very 

simple requirements, which will be later shown in the 3.6 section. For end users, no work 

has to be done: they simply have to declare a buffers block to use memory in the preferred 

creative coding environment or wrapper. An in-depth explanation on how to deal with 

buffers in the actual code will be provided later on in the context of explaining structs. 

 

 

3.5.2 - The init block 

 

The init block is a fundamental element in Omni as it allows users to define the execution 

of a specific action to initialize the state of the algorithm. Here it is possible to create 

structs and declare variables that will be used later in the perform / sample blocks. All 

variables declared in the init block are automatically passed to the successive perform / 

sample blocks, unless a build construct is defined. The build block only allows certain 

Figure 20: Usage of the buffers block. The default values are exported as metadata. 

Figure 19: Usage of the params block. 
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elements to be passed through. By default, every variable declared in the init block will be 

made available in the perform / sample blocks. With build, only the specified ones are 

passed through. Finally, the init block is optional, in case the user does not need to declare 

re-usable variables or structs. 

 

 

3.5.3 - Core of an audio algorithm: perform and sample 

 

The perform and sample blocks represent the core of the audio algorithm, allowing the 

coder to define the sample-by-sample behaviour. 

 

Figure 21: Usage of the init block. 
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perform specifies the audio buffer level, while sample delimits the sample level. In other 

terms, the perform block will be executed once per audio buffer, while the sample block will 

be called each audio sample. It is relevant to underline that the sample block can be 

declared on its own, without being included in a perform block. Usually, one would want to 

declare a perform block when there is the need of updating certain values only once per 

audio buffer, instead of once per sample. Depending on the case, this can speed up the 

performance of certain algorithms. For example, one could rewrite the previous code with 

only using the sample block, in which case the increment is performed sample-by-sample. 

 

Figure 22: Usage of the perform / sample blocks for a simple phasor. 
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As shown in the code, a fundamental property of these blocks is the inheritance of all the 

variables declared in the init block and optionally forwarded via the build construct. This 

allows those variables to have their state updated during the execution of the algorithm. 

The perform and sample are the only mandatory blocks for Omni code to compile 

successfully. 

 

3.5.4 Defining objects with struct 

 

The struct construct allows users to define custom objects that can be used in developing 

specialized algorithms. 

 

 

The syntax is very simple: the list of fields that the struct is composed of is declared after 

the definition of the name of the struct. Following the pythonic style syntax, the fields are 

Figure 23: Same algorithm, but using only the sample 
block. 

Figure 24: A very basic struct, only storing 
a float entry named phase. 
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indented after the definition of the block via the colon. The types of the fields can be 

explicitly expressed. If omitted, they’re defaulted to float. 

 

 

Additionally, structs support the use of generics. Generics in Omni only work with 

numeral types. 

 

Furthermore, structs can contain other structs: 

 

Figure 25: Another basic struct storing three floats. 

Figure 26: Declaring a generic struct and 
instantiating two entries in the init block. 
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Finally, structs support a default initialization value for each field. This value can either be 

a struct constructor, in which case Omni will infer the type, or any def, as long as the type 

of the field is explicit. defs are Omni’s functions, as explained later. 

 

 

structs can only be created in the context of the init block. If created in the perform or 

sample blocks, a compile-time error will be triggered. 

Figure 27: struct containing structs. 

Figure 28: Complex struct with default values. 
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Using the struct Phasor definition, the previous example code in the 3.5.3  section can be 

re-written as: 

 

 

3.5.4.1 In-built structs: Data, Delay and Buffer 

 

Omni offers some in-built structs to serve different purposes: Data, Delay and Buffer. The 

first one represents Omni’s way of allocating memory of any kind. Data supports every 

Figure 29: structs can only be 
instantiated in the init block. 

Figure 30: Using a struct to hold the phase value of the 
phasor. 
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Omni type, including custom structs. Furthermore, for all the non-explicitly initialized 

entries, Data will automatically call the default constructor of the specific type at the end of 

the init block. Therefore, once a Data of a specific type is declared, it is not often required 

to call the constructor for each element of the Data, unless a specific one is required. Omni 

will detect any non-initialized entries and construct them. This is what happens in the 

following example of the data5 variable. Moreover, Omni allows users to specify the 

number of elements of a Data at runtime. In fact, whenever a new instance of the compiled 

object is created, it is possible to retrieve the current value of a specific param to determine 

such behaviour. It is the case of the data5 variable, which allocates a specific number of 

Phasors according to the value of numOfPhasors at initialization time. For instance, in the 

case of compiling such code with omnimax, one could then specify numOfPhasors as an 

attribute when creating the object: myObject~ @numOfPhasors 50. 

 

 
Figure 31: Different ways of creating, initializating and accessing a Data. 
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Delay is a convenience built-in struct to define delay lines. Essentially, it is a Data with 

specific methods to read / write from the delay line. 

 

 

Buffers are declared with the buffers construct. The actual implementation of a Buffer is 

dependent on the wrapper that is being used to compile the current Omni code; buffers 

only work within an Omni wrapper, as illustrated in section 3.5. For ease of explanation, it 

can be assumed that a Buffer is simply an externally allocated Data[float]. 

 

 

 

Figure 32: A simple delay line. 

Figure 33: Reading from a Buffer. 
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3.5.6 def: Omni’s functions 

 

Just as any other programming languages, it is often more convenient to wrap specific 

portions of code into re-usable functions. Omni’s functions are called def, like Python’s. A 

def introduces a custom scope, but it has access to the samplerate, bufsize, pi and twopi 

global variables. A simple def looks like this: 

 

 

A def can have arguments, and the types of these can be inferred by Omni. It is possible to 

force the type of the arguments and of the return type. Furthermore, similarly to structs, 

def supports generics. Generics only support number types, and, in the case of defs, are 

mostly used to define custom constructors for structs that have generics. For standard 

usage, in fact, type inference is a better approach to specify a function to perform on 

multiple types. 

 

Figure 34: Basic usage of def. 
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defs, thanks to the dot calling syntax, can be used to implement specific functions for 

structs, resembling of class methods. This feature is what makes Omni extremely modular: 

developers can develop their own libraries of structs and defs that can then be imported 

(see section 3.4.6) and used across different projects. 

 

 

Figure 35: Different ways of declaring a def. 

Figure 36: Calling a struct / def pair with the method 
syntax. 
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3.5.7 Code composition via the use block 

 

One of Omni’s main features is the ease of code abstraction and modularity. 

Implementations of specific algorithms can be developed using structs and defs, and then 

imported by using the use block: 

 

Phasor.omni  

 

Sine.omni 

 

Figure 37: The ‘Phasor.omni’ file. 

Figure 38: The ‘Sine.omni’ file. This is the file it is going to be 
compiled  
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One fundamental feature of the use block is its support for defining aliases when importing. 

Thanks to the as syntax, it is allowed to import different implementations with the same 

name from different files without generating any naming collisions: 

 

FirstModule.omni  

 

SecondModule.omni  

 

 

 

 

Figure 39: ‘FirstModule.omni’. 

Figure 40: ‘SecondModule.omni’. 
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MyModule.omni  

 

3.6 - Wrappers: OmniCollider and OmniMax 

 

Omni has been developed from the start as a standalone DSL easily embeddable into other 

projects. I believe that this aspect confers a clear identity on its own to the project, without 

the need of having a clear dependence on other coding environments. Furthermore, this 

allows me to keep the development of the Omni repository focused on just the core of the 

language and its features. Being a solo developer, it is crucial for me not to deal with the 

overhead of maintaining code for each platform/environment that Omni would support, 

but to delegate it to whoever needs to utilize Omni in their own projects. 

Omni, together with the static or shared library, provides an ‘omni.h’ file for easy 

interoperability with the compiled code. As a consequence, any language that can load 

shared libraries can quickly utilize Omni’s binaries. Additionally, Omni provides an even 

deeper connection by providing a simple API to define wrappers that operate at the code 

Figure 41: ‘MyModule.omni’. This is the file it is going to 
be compiled. 
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generation level, specifically to support the Buffer interface for the specific environment. 

This is certainly not necessary if the desired wrapper will not use Buffers, but code that 

contains the buffers block will not compile, as it does not for the standard omni command 

unless a valid --wrapper is provided. 

I will here present two examples of wrappers that I wrote for Max and SuperCollider, 

respectively called OmniMax and OmniCollider. These provide an easy one-step compilation 

of Omni code for creative coders. All the process related to getting the specific project’s SDK 

and header files and setting up the C++ sources that call into the Omni compiled binaries are 

abstracted away by simply using the nimble installer: nimble install omnimax / nimble 

install omnicollider will take care of all needed operations, including the installation of 

the correct omni compiler. Under the hood, both OmniMax and OmniCollider follow the 

same structure, which can perhaps serve as a starting point for others to develop their own 

wrappers. At their core, they both simply use the omniBufferInterface Nim macro to 

specify the correct implementation to access Buffers for the individual platform. The rest 

of the code simply maps the environment’s specific calls into Omni’s exported C API, e.g. to 

deal with params. 

To show how an OmniCollider and OmniMax object works within the specific environment, 

let us consider the four blocks that make up how Omni communicates with the external 

world: ins, outs, params and buffers. 
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In the case of OmniCollider, the compiled UGen will treat ins as audio rate arguments, while 

params and buffers will be considered control rate ones. These will also be converted to 

the right rate if the user fails to do so. In the case of multiple outs, OmniCollider will declare 

the UGen as a MultiOutUGen, as per SuperCollider’s specification. 

 

 

In the case of OmniMax, the ins and outs blocks are respectively mapped to the audio inlets 

and outlets of the object. On the other hand, params and buffers can be set via messages 

and attributes. Furthermore, default values can be set directly in the body of the Max 

object: numbers will set params and symbols will set buffers. 

 

Figure 42: IO in ‘MyObj.omni’. 

Figure 43: SuperCollider interface for the IO of an Omni compiled UGen. 
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Figure 44: Max interface for the IO of an Omni compiled object. 
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Chapter 4 - Alga: interpolating live coding language 

 

4.1 - What is Alga? 

 

Alga is a new language for live coding. Its focus is on the interpolation of the connections 

between different dynamic modules at runtime. Hopefully, this will be clear to the reader 

by the end of the chapter. At the time of writing this thesis, Alga is not in its final linguistic 

form, but it is only comprised of the AlgaLib library, which is the core implementation 

developed in SuperCollider. AlgaLib already includes the main concepts of Alga, and it 

works well within the sclang syntax. However, in the future, this implementation will only 

be called from a custom language that will be using AlgaLib and SuperCollider as a backend, 

similarly to the way in which TidalCycles works with its library SuperDirt. For reasons of 

clarity, when I refer to Alga in this thesis, I am solely talking about the AlgaLib 

implementation. 

Like the choice of Nim for Omni, working with SuperCollider allowed me not to have to deal 

with building a multi-platform audio application to support my work. Instead, it permitted 

me to only focus on the novelties that I wanted to implement with Alga. The dynamism of a 

language like sclang, in conjunction with the powerful scsynth and supernova synthesis 

engines, proved to be the perfect choice for this specific project, as they already included a 

sparse library of Unit Generators inside an already proven ecosystem. Finally, I believe that 

the choice of developing parts of Alga in a widespread creative coding environment like 

SuperCollider will hopefully help with the adoption of the project by other people. 
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4.2 - Contextualizing Alga 

 

Alga has been developed in a very flourishing period for live coding languages. Over the last 

ten years, live coding has been a very successful practice in the music landscape, both in 

academic and non-academic circles. The TOPLAP community is arguably the most notable 

organization in the field of live coding, taking care of planning shows, workshops and 

events all around the world (TOPLAP, 2004). From the musicians’ perspective, the appeal 

towards live coding languages comes from their quickness and interactivity in developing a 

sonic/visual live performance via code, often projected on a screen behind the performer. 

This allows the audience to participate and interpret the execution of the musician not only 

from the sonic result, but also through visual stimuli (Roberts, 2016 and Burland & 

McLean, 2016). 

The current main trend of live coding languages, and consequently performances, is 

towards a looping approach to music and sound generation: popular languages like ixi-lang 

and TydalCycles are designed towards the execution of styles that are heavily rhythm or 

pattern-based (Magnusson & McLean, 2018). Personally, while I embrace the idea of live 

coding performances and what they represent, I do not engage in the interface that current 

languages for live coding propose. It is surely possible to work around the interface of such 

tools in order to make them more akin to my idea of music, yet it would still mean to be 

limited by certain aspects of the languages that are immovable. As a composer and 

performer of long-form noise music, how could I run smooth transitions between different 

synthesis nodes using a pattern language like TidalCycles or FoxDot (Kirkbride, 2015), 

whose changes to running synths are only applied at the tick of a pattern? I could design 

such transitions in the definition of a Synth itself – the SynthDef code in SuperCollider terms 

– but this workaround would only be effective for the specific instance of a Synth, and it 

would not be available on a higher level, directly in the language. Taking a non-looping 

approach to live coding does not mean to abandon precise timing or pattern control, as it 

will be later outlined in the context of the AlgaScheduler. In opposition to popular 
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languages Alga shifts the attention from the individual values of a pattern to the state of a 

running audio module, similarly to modular synthesizers. As a consequence, Alga promotes 

a style of improvisation that highlights changes that happen fluently over windows of time, 

instead of instantaneously on pattern execution. 

In the context of SuperCollider, why have I not chosen to utilize an already established 

library like JITLib (Rohrhuber & de Campo, 2011), which already allows users to create 

modules on the fly and connect them together? Firstly, because when establishing a new 

connection JITLib does not interpolate the parameter content, but it simply replaces the 

receiver node with a new one, fading it in with the new connection in place. Fading in and 

out, crossfading, is a completely different process than effectively interpolating the old 

parameter connection with the new one at the input of the receiver. JITLib’s individual 

elements, called NodeProxies and Ndefs, utilize SuperCollider Busses to determine 

connections among the different nodes. A Bus is a simple audio buffer that can be filled by 

any running instance of a Synth on SuperCollider’s audio server. Alga takes the same 

approach, but it expands on it by allowing AlgaNodes, which are Alga’s elements, to store 

metadata information about all the connections that are in place between any AlgaNode 

that is patched to the current one. Contrairly to other classes in SuperCollider, AlgaNodes 

are context aware of the entire chain of connections in which they exist, an aspect that 

provides different benefits. Primarily, it allows Alga to automatically re-order groups on 

the audio server so that there is never a block-size delay between connections, unless 

feedback is involved. This is not dealt with by SuperCollider itself, and it can generate 

problems where a node might be reading from a Bus that has lastly been written to on the 

previous audio buffer, and not the current one. Such an approach generates a delay that is 

problematic for situations that need sample-syncing precision. Alga prevents this 

behaviour entirely without requiring the users to change their code. On the other hand, 

JITLib does not take care of group ordering, allowing delays to occur across nodes. Finally, 

one more benefit is that Alga allows any rate and channels combination to be patched 

anywhere, running appropriate audio to control rate conversions (and vice-versa) and 
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channels re-mappings. These are a fundamental features that permit users to ‘patch 

anything into anything’, with no need to worry about low-level issues like channels count 

and rates conversion during a performance. Once more, these are not aspects that will be 

taken care of for the user by JITLib, adding one more overhead for the user to figure out 

which node can be connected to what, depending on the correct number of channels and 

rate. 

 

4.3 - Dynamic patching through interpolation: demystifying mistakes 

 

The widespread approach to live coding collects a number of features that are mostly useful 

in the context of producing certain types of looped music. Patterns are the core of the 

implementation, but there surely are sonic structures that do not play well with this notion. 

In fact, live coded pattern-based music arguably prevents the users from the expandability 

and discovery that patching or connecting together smaller building blocks allows: each 

instrument in current live coding implementations is often an individual entity that does not 

communicate with the other ones on a sonic level. Instead, they are triggered at specific 

times according to a common clocking system. The modulation of these instruments, then, 

does not follow a modular paradigm, where it is derived from the output value of another 

module, but just from the static value that the pattern holds at the specific moment in time 

in which the event is triggered, however quickly this might occur. To explain this, let us 

consider the case of TidalCycles. Any player, named from d1 to d16 (TidalCycles, 2021), has 

access to the SuperDirt environment to play specific Synths at a specific time. The 

arguments to these synths, which set the specific values of certain parameters, are only set 

once at the triggering of the Synth instance. This means that their values do not change over 

the execution of the Synth, but remain static throughout. Regardless of the speed of 

triggering new Synth instances, then, the actual content of the parameters is always static. 

In TidalCycles, FoxDot or ixi-lang it is not possible to connect the output of a Synth to the 
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parameter input of another. Each player has its own modulation scheme, although it remains 

confined in itself. 

Creative coders, improvisers and composers that do not perform looped music usually have 

to build their own systems either around the limitations of the out-of-the-box experience of 

certain environments in order to fit their specific needs. One such case is the work of Sam 

Pluta, who designed a modular software environment within SuperCollider that he uses for 

his computer music improvisations and compositions (Pluta, 2012). However, being so 

specifically tailored to a personal practice often makes some of these tools not applicable to 

other people’s concerns. While this view could arguably be applied to my design of Alga, I 

believe that the modular approach to sound making that Alga proposes is a well-

established paradigm that should ease in users of any expertise. Alga’s novelty is surely not 

in the modularization of sonic processes, but in how these would interact with each other 

over time. In sound synthesis terms, patching a module to another can be regarded as a 

static action the result of which can be dynamic. The act of patching an LFO module to the 

frequency input of an oscillator will always generate a discontinuity in time between a 

before and an after the connection. The before and after can surely produce a dynamic 

result, depending on the modulation sources, but the moment of connection is of immobile 

nature. At the lowest level, this means that the audio sample in which the new connection 

takes place abruptly switches from reading values from the old modulation source to 

reading the ones from the new one, effectively producing an audible impulse. Alga proposes 

an approach to sonic patching that enhances the nuances of the connection, turning it from 

a static moment to a dynamic one. Connecting two modules together in Alga does not set the 

specific parameter instantaneously, but it triggers a process of interpolation between the 

current state of the receiver and the future one, over a specific amount of time. As a result, 

the discontinuity that comes from static patching is eradicated in favor of a fluid continuity. 

This single feature opens up several experimental traits for composition and improvisation 

that would not be possible in other systems where modules are already often patched 

together or where, as already suggested, dynamism is created by the parallelization of 
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individual blocks. On the other hand, movement and fluidity in Alga are inherent traits 

embedded in the way the connections within the system itself work, as a fundamental 

feature. Among the numerous directions that such characteristics can help with 

composition and improvisation, one that I personally found valuable in my own practice 

has been what I would refer to as the demystification of mistakes by re-iterating the process 

of patching. For the specific kind of music I perform, taking a slower approach to signal 

patching highlighted how it is not quite as relevant to make mistakes in connecting nodes 

the wrong way. Over a 30 seconds long interpolation that can be re-triggered at any stage, 

the mistake in specifying a new connection would be absorbed by the signal flow, sonically 

resulting in just a temporary state of a system in continuous movement. 

 

4.4 - The SuperCollider implementation and technical analysis 

 

This section will be focused on the SuperCollider implementation of Alga, together with 

some technical issues that I had to address in order to develop such software. 

AlgaLib provides a set of SuperCollider classes for the execution of Alga. The main class is 

called Alga, and it stores general information about the state of the system. Furthermore, 

the Alga class manages the initialization of all the elements and the booting of the synthesis 

server via the boot function. This method allows to optionally pass in an instance of 

AlgaServerOptions, which, similarly to ServerOptions, determines the features to boot a 

server with. On a first Alga.boot call, the system will take some time to generate all the 

necessary AlgaSynthDefs that allow dynamic connections to happen. This process happens 

only once, as the definitions are stored in the default SynthDefs directory. 
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4.4.1 - Alga’s atom: AlgaNode 

 

The AlgaNode class is the core of Alga, essentially representing the atomic module that can 

be connected to all the other modules or, likewise, receive their connection. Its concept is 

definitely inspired by modular synthesis, where inputs and outputs of a module are the 

interface through which correlations with the system can happen. The implementation of 

an AlgaNode, similarly to a SuperCollider’s NodeProxy, is described by either a Function or a 

Symbol that points to an AlgaSynthDef. From this description, the AlgaNode infers 

metadata about its state, like the number of inputs and outputs, their names and their rates 

(audio or control). These notions are then stored and used to connect an AlgaNode to 

another by directly referring to specific input and output names. 

With SynthDefs, SuperCollider provides users with an interface to encapsulate sonic 

algorithms into re-usable definitions. While specifying named inputs to the SynthDefs is an 

easy task thanks to the args syntax and the NamedContol class, the description of named 

outputs is not implemented. To define the outputs of a running Synth, SuperCollider 

implements the Out class, which simply writes values to an audio Bus. While this allows 

users to code a single SynthDef to write to as many Busses as they desire, the description of 

these output signals is not provided in a clear way as it is done for inputs. This promotes a 

hierarchical distinction between inputs and outputs: a SynthDef is only described by its 

inputs, while its outputs can vary depending on which Busses they refer to. This feature 

contrasts the one of modular synthesizers, where a single module is not only described by 

its inputs and their names, but also by its outputs. Both inputs and outputs are named and 

outlined in the same panel together. Consequently, in modular synthesizers inputs and 

outputs assume the same semantic value, and it is the same with Alga. This is the scope of 

Figure 45: To boot Alga, simply call Alga.boot. 
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the AlgaSynthDef class, which allows users to define an outsMapping argument to specify 

the name of each output of the UGen function graph. outsMapping are expressed as an 

Array of Symbols and Numbers / Arrays pairs, each representing a specific mapping. The 

Symbols can later be addressed to patch specific outputs of an AlgaNode to specific inputs of 

another one. Furthermore, each output channel is represented by default names through 

the symbols \out1, \out2, etc… Finally, the AlgaNode.new method also provides an 

outsMapping argument, in the case of using a Function as definition, instead of a Symbol 

referring to an AlgaSynthDef. This allows to specify outputs mapping even for temporary 

UGen graph functions. The following example should clarify these notions: 

 

 

The previous example introduced the from function, which allows an AlgaNode to receive 

the output from another node. Its companion method is called to, which reverses the 

sender with the receiver. Furthermore, the << / >> operators are aliases to these functions. 

Figure 46: Handling of outsMapping when making connections. 
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Both paradigms of connecting from and to an AlgaNode are provided because they allow 

users to express the broader concept of patching from the angle that fits their usage more. I 

personally use them both. In fact, while I prefer to express a modulation connection with 

the receiver syntax – e.g. receiving the LFO signal from a node – I would rather address the 

synth to effect behaviour with the sender syntax – e.g. sending a signal to an effect. 

Connecting two modules essentially means mapping some - if not all - of the outputs of one 

node to a parameter input of another node. If no mapping is explicitly specified, the 

AlgaNode will connect all of its outputs to the specific input parameter of the receiver, 

making the right conversions of rate and number of channels. Moreover, AlgaNodes allow 

to scale a received connection accordingly. For example, this allows users to connect the 

same LFO to two different nodes, with the value scaled to fit the specific use case, like 

controlling the frequency of an oscillator, or the amplitude of a modulation, etc… Lastly, 

this behaviour helps with defining a library of AlgaSynthDefs that, like with the modular 

synthesizers’ CV mapping, have a standardized output range, further incrementing the 

interoperability of different modules. 

 

 

Figure 47: Simple Alga example: an LFO mapped to an 
oscillator's frequency parameter. 
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AlgaNodes provide the possibility to mix the entries at the input, allowing to dynamically 

add nodes to a specific modulation of a parameter. The functions that enable this behaviour 

are mixFrom / mixTo, together with the <<+ / >>+ operators. Expanding the previous 

example, one more LFO with a frequency of 10Hz can be added to modulate the same \freq 

parameter. 

 

 

Just as it is possible to patch nodes together, it is also possible to remove certain 

connections with the disconnect function or the <| operator. 

 

 

When making any connection between AlgaNodes, Alga also takes care of automatically 

converting the rate and channel count of the sender to match the ones of the receiver. 

Indeed, it is possible to connect an audio rate AlgaNode to a control rate parameter, and 

vice-versa. Likewise, connecting a 5 channels node to a 2 channels parameter is also 

permitted by simply reading values from the smallest common number (2) of channels. On 

the other hand, if the sender has fewer channels than the receiver, Alga will wrap the 

Figure 48: Adding another LFO to modulate the same \freq 
parameter. 

Figure 49: Removing connections. 
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channels of the sender accordingly. Again, this helps with the ‘patch anything into anything’ 

approach that Alga promotes. 

 

 

Finally, Alga also ensures that anytime a connection is made between two AlgaNodes the 

respective groups on the server are arranged so that the receiver willl always follow the 

sender. In audio terms, this means that there will not be any delay between the connection, 

as the process of writing and reading from the specific Busses happen on the same audio 

buffer. This re-ordering also affects all the connected nodes, effectively creating a 

connection graph that always respects connections order. It is also possible to feedback the 

nodes’ connections, which Alga will detect introducing a block-size delay only to the 

feedback connection, not the whole graph. 

 

Figure 50: Converting audio rate to control rate and mapping channels 
accordingly. 
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After the introduction of some core ideas about AlgaNodes, the main feature of Alga can 

now be illustrated: the interpolation of the connections. Everytime a new connection is 

established, Alga will interpolate from the current state of the patched parameter to the 

value of the newly made connection over a specified window of time. Alga allows to re-

trigger the interpolation at any stage, allowing a dynamic exchange between the coding 

experiments and the sonic results. In fact, once an interpolation has been triggered, one 

does not have to wait for the interpolation process to be completed before a new one is 

specified. Instead, Alga will consider the current dynamic state as the new starting point, 

before starting the movement towards the new one. To enable the interpolation behaviour, 

every connection function takes a time parameter, which sets the length of the transaction. 

It is also possible to set the interpolation time for all the connections to the AlgaNode by 

setting the connectionTime / ct variable. Furthermore, the interpolation time can be 

specifically indicated for a single parameter and all its subsequent patching by calling the 

connectionTime_ function with the parameter symbol as an extra argument. 

 

Figure 51: A simple feedback example. 
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Any definition of an AlgaNode is not static once it has been set, but it can be replaced at any 

time with a call to the replace function. In such case, Alga will maintain all connections to 

the node being replaced for all the parameters that keep the same names. Furthermore, 

Alga will re-connect the node to all the receivers that it was connected to as a sender, 

respecting the connectionTimes of all of them. The replace function is an essential feature 

in developing a dynamic system like Alga. By providing the option of not only ‘patching 

anything into anything’, but also of ‘replacing anything with anything’, Alga allows users to 

model the way in which they use the software at each stage: any action is thus rendered 

reversible with the same behaviour that triggered it in the first place. 

 

Figure 52: Core of Alga: interpolating connections. 
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What are the technical issues that were required to be addressed in order to implement the 

AlgaNode class? First, an AlgaNode contains a number of elements that have to perform in 

sync with each other so that the system can function correctly. These elements are split 

between language-side metadata about the state of the node, and server-side information 

about running Groups, Synths and Busses. Both of these different kinds of data are stored 

in per-parameter IdentityDictionaries. An IdentityDictionary is a collection of object-

value pairs in which the object act as a key, similarly to how hash tables work (Maurer & 

Lewis, 1975). In the case of Alga, the key is often the Symbol that represents a parameter 

name. The metadata IdentityDictionaries store information such as which AlgaNodes 

are connected to a specific parameter of this node (inNodes), and which AlgaNodes this 

node’s output is connected to (outNodes). Furthermore, these dictionaries hold the values 

of per-parameter connectionTimes (paramsConnectionTime), channels mapping 

(paramsChannelMapping) and scaling values (paramsScaling). These all need to be stored 

for the replace mechanism to work correctly, re-using already set values when necessary. 

Figure 53: A slightly more complicated example of the interpolation behaviour. 
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Before talking about the IdentityDictionaries that store information on the state of a 

node on the audio server, let us first consider what is the nature of the data they hold. In 

order to perform audio operations on a SuperCollider server, Groups, Synths and Busses 

must be used. A Group is a ‘collection of other nodes organized as a linked list’ 

(SuperCollider, 2021). In simple terms, it is a container that can store other nodes, in this 

case Synths, that are looped through sequentially every tick of the audio scheduler. A 

Synth, then, ‘represents a single sound producing unit’ (SuperCollider, 2021), and a Bus 

simply describes the reference to an audio buffer that is available for users to be filled in 

with the output of their Synths. In fact, the way audio is streamed out of SuperCollider is 

through the first N audio Busses, where N is the number of outputs the server was booted 

with. 

Alga leverages the combination of these three basic elements to describe different 

operations that are needed to perform the process of interpolation. An AlgaNode has three 

groups on the server: a synthGroup, a normGroup and an interpGroup. These groups store a 

different set of Synths which, on the language side, are handled by the normSynths, 

normBusses, interpSynths and interpBusses IdentityDictionaries. 
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The synthGroup is used by the synth variable, which is the actual Synth that performs 

sound as described in the body of the AlgaNode. It writes its values to a Bus called 

synthBus. This synth reads the value of each of its parameters from a Bus, called normBus, 

that is being written by a normSynth. There are one normSynth and one normBus per 

parameter. A normSynth is a Synth instance on the normGroup. It reads its values from 

multiple interpBusses and normalizes their interpolation envelopes so that they always 

sum up to 1, which is fundamental for the retriggering at any stage of the interpolation 

behaviour that Alga proposes. Before explaining why this is the case, the interpSynths, 

Figure 54: Anatomy of an AlgaNode on the SuperCollider server. 
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which are the core of the entire interpolation behaviour, need to be introduced. As of now, 

there are two types of interpolation envelopes, both handled by interpSynths. One is a 

rising one (0 to 1), and it is triggered any time a connection with a new node is made. The 

other is a descending one (1 to 0), which is also triggered on a new connection, but it is 

applied to the old connected node. Anytime a new connection to a parameter is made, 

multiple interpSynths are active per-parameter, each one following their own envelope 

trajectories. An individual interpSynth, created on the interpGroup, reads from the 

synthBus of a connected AlgaNode, applies rate and channel conversions, multiplies the 

result with a rising / descending envelope and writes its output to an interpBus. The 

interpBus, then, consists of two elements: the converted and scaled signal, and the rising / 

descending envelope itself. 

 

 
Figure 55: Behaviour of an interpSynth. 
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The process of normalizing the envelope shapes in the normSynth is essential to never 

allow any envelope from any interpSynth to be prominent over the others. The idea is that 

the rising envelopes will dictate the direction of the interpolation, while the descending 

ones will only scale down the weight of specific nodes over the period of connectionTime. 

For the purpose of dynamic re-triggering, both envelope shapes provide a \fadeTime 

parameter that sets the speed of the interpolation at runtime. For example, if a 20 seconds 

long interpolation is taking a place, and after 5 seconds the user prompts a connection to a 

new node with a connectionTime of 3 seconds, the descending envelope that is applied to 

the old interpolation will be 3 seconds long, and not 20. The normalization of the envelopes 

in the normSynth, on the other hand, will make sure that all values are correct in relation to 

each other: the sum of the envelopes will always be 1. 

In order to make sure that these actions are in sync between the language and the server, 

Alga utilizes a custom scheduling system called AlgaScheduler, which is the topic of the 

next section. 

 

 

Figure 56: Behaviour of a normSynth. 
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4.4.2 - AlgaScheduler: keeping things in order 

 

One of the fundamental assumptions when connecting two AlgaNodes is that they need to 

be correctly instantiated on the server. In SuperCollider terms, the meaning of this concept 

is that the Groups and Synths that represent a specific AlgaNode must have been made 

ready to perform their calculations before allowing nodes to be connected to one another. 

Such a task should not be handled at the user level, but it should be taken care of behind 

the hood by the system, allowing all actions to be synchronized between sclang and scsynth. 

The AlgaScheduler class serves this purpose exactly. While it operates in the background 

and the user does not have to know about it, the AlgaScheduler is the core element that 

permits any Alga action to take place in a reliable and reproducible manner. 

The added complexity of a system where every module can be connected to each other at 

any time is an issue that other live coding languages do not usually have to deal with. In 

these environments, instruments are often isolated, with their own chain of effects and 

modulations that is not affected by any other external stimulus. On the other hand, Alga 

needs to make sure that all access to any node is synchronized not only between language 

and server, but also between each other. In order to solve this, the AlgaScheduler 

implements a waiting queue of actions that is clock synced (defaulted to TempoClock) 

which can be prompted to wait at any stage, allowing to chain the execution of any Alga 

code sequentially. This feature effectively permits the creation of entire patches where the 

code execution, including the necessary synchronization, is read from top to bottom. 

Internally, anytime an Alga function is called, a new action will be pushed to the queue of 

the AlgaScheduler. This action is composed of three elements: a condition, a function 

and a sched value. The condition is a function that is checked until it returns true. Once it 

is true, the function will be executed and the action will be taken off the queue. If the 

condition remains false after a set amount of time (which defaults to 5 seconds), the 

action will be removed from the queue and an error will be prompted on the console. This 
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can happen if the user is trying to make connections between nodes that do not exist yet on 

the server. In the case of complex patches, where multiple replace calls happen at the 

same time, this behaviour makes sure that both the language and the server are 

synchronized when trying to express new connections. Finally, the sched value allows the 

check for the condition, and thus the execution of the function, to be scheduled on a 

Clock. This permits the system to synchronize multiple actions together, ensuring that they 

will all happen at the exact same time. In server terms, this signifies that the specific 

commands to create or connect nodes will have the same OSC timestamp, resulting in their 

execution to be performed at the start of the same audio buffer. 

 

The AlgaScheduler provides an argument, cascadeMode, that specifies one of the following 

two behaviours. If false (the default), the condition of the actions in the queue are 

checked in parallel, executing the relative functions and freeing the action queue 

accordingly. If true, the conditions are checked in order. This means that the second 

condition in the queue will not be checked until the first one is true, etc. This allows the 

AlgaScheduler to be extremely precise in the specifying the order in which certain actions 

are required to happen, regardless of their scheduled time. The AlgaPatch class, in fact, is a 

simple abstraction around this notion. An AlgaPatch simply takes a function that 

Figure 57: Thanks to the AlgaScheduler, all actions are correctly timestamped, 
respecting connections order. 
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represents the user’s patch. The AlgaScheduler, then, will be switched to cascadeMode, 

triggering the actions in the exact order in which they are specified, effectively reproducing 

the code until the last line. This allows to have reproducible patches everytime, with no 

need to re-define all the connections by triggering the individual lines of code. This 

example proposes two oscillators which modulate each other in feedback fashion. Calling 

an AlgaPatch makes sure to sync all the actions the same way, every time: 

 

 

 

 

 

 

 

 

 

Figure 58: An AlgaPatch. 
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Chapter 5 - Bringing the two worlds together 

 

Both Omni and Alga are independent projects. Nevertheless, I personally use them in 

conjunction with each other in my musical practice. By no means the way in which I 

integrate them is the one correct way of using either of the two, as I believe that they are 

versatile enough to be individually employed in the practice of other creative coders, 

composers and improvisers. 

Joining coding with composing is a position that is not peculiar to my practice, but it is a 

widespread approach among creative coders. For instance, Alex McLean and Sam Pluta 

have shown how developing a custom software around one’s creative needs can enhance a 

sonic practice with new inputs, and vice-versa. The case of TidalCycles proved to be a 

successful one not only for its creator’s musical practice, but also for a vast community of 

coders and performers (McLean, 2014). On the other hand, Pluta, as already mentioned, 

created a system that is custom-tailored to his own way of improvising computer music. 

The program he developed is the fundamental element that allows him to perform his 

music the exact way he envisions (Pluta, 2012). Arguably, Sam Pluta’s music could not be 

created with any other piece of software. Such an approach to instrument development 

does not have to be limited by the creation of solely high-level software; tools that act on 

the structural level of sound, similarly to Alga. Composers like Dario Sanfilippo, in fact, 

developed entire compositional systems in low-level languages. In Sanfilippo’s case, this is 

FAUST. In his case, the choice of a language like FAUST was dictated by his interest in 

developing Complex Adaptive Systems (CASes), which heavily rely on the use of complex 

feedback interactions. A low-level language like FAUST, then, provided him with the 

possibility of single sample feedback processing, which is essential to develop the accurate 

filter algorithms that are required for CASes. Coding with low-level concerns, then, assumed 

the same value as the process of composing: the code itself becomes the composition 

(Sanfilippo, 2020). There also are projects that explicitly embrace the dicothomy between 

the low-level and high-level stages of the audio stack, leveraging them for both technical and 
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creative purposes. One such case is the Extempore live coding programming lanugage 

(Sorensen, 2018), developed by the coder and improviser Andrew Sorensen. The novelty of 

this language resides in providing users with a unified interface across high-level structural 

concerns and low-level algorithm development. In Extempore the two ends of the spectrum 

share the same Scheme-like (Dybvig, 2009) syntax within a shared runtime environment, 

with minor differences in regard to memory handling and types annotation for the low-

level part. Extempore, then, is a live coding tool that can appeal different kinds of 

improvisers and performers, as it allows them, depending on their expertise, to design 

their live instruments at both levels of abstraction. 

 

In designing my own tools, I prefer to separate the different concerns that the two levels 

present with syntactic solutions that leverage the strengths of the context in which they are 

used. In my view, the difference in time representation between the low-level and high-level 

stages of audio processing resemble the ones that Curtis Roads analyzes in his seminal 

work Microsound. Here Roads proposes to approach music as a product of different time 

scales, ranging from the smallest micro-structure of individual sonic objects up to the largest 

Figure 59: Extempore code example 
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macro-structure of the form of a composition (Roads, pp. 3-4). Omni and Alga each 

represent one of the two stages. Thus, they propose solutions that I believe are functional 

to the time scale they individually constitute in the audio stack. While there are clear 

syntactic technical differences between the two projects, in my creative work I see a clear 

continuum between the high-level structuring of audio algorithms with Alga and the low-

level development of such algorithms via Omni. In my case, the two poles share a common 

middle-ground: the SuperCollider language. My workflow involves creating audio objects in 

Omni, compiling them with the OmniCollider wrapper, and then using the resulting UGens in 

my practice with Alga. This hybrid approach to improvisation and composition is a crucial 

element of my endeavours as a creative coder, as it stimulates my musical thinking on 

multiple levels, from the lowest to the highest one. Moreover, this allows every aspect of 

my work to influence one another: composing does not stop when coding, just as coding 

does not end when composing. The way I tackle such concerns is to treat the low-level 

implementations of specific algorithms with Omni as nodes, grains of a larger macro 

structure, arranged within the Alga environment. Usually, the music I improvise involves 

chaotic feedback oscillators being fed into each other to create sonic movement not through 

explicit modulations, but from the emergence resulting from complex interactions between 

simple entities. In this regard, Omni allows me to experiment with the inner 

implementations of the chaotic oscillators with various algorithms, usually adapted from 

the nonlinear dynamics of strange attractors (Ruelle, 1995). On the other hand, Alga is 

helping me to play with these noise structures by dynamically patching them together, 

disclosing how their feedback interactions work not in the moment of creating a connection 

from one to another, but in the process of interpolating the different states over long 

periods of time. 

 

 

 



  82 

Chapter 6 - Future work and conclusions 

 

6.1 - Omni’s roadmap 

 

Omni is a project that will continue beyond the scope of my Post Graduate degree. There 

are many features which I am still working on, or have not been implemented yet. 

Currently, I am working on a JIT version of the Omni compiler, named OmniJIT, in order to 

make it compile code on the fly, instead of having users call into the compiler themselves 

whenever they introduce a change to their code. This would allow programmers to easily 

embed the entire Omni compilation pipeline in their own projects. The development of 

OmniJIT is also bringing some unexpected benefits that will be applied to the mainline Omni 

compiler. Mainly, these regard the removal of the need of the explicit Nim dependencies 

from the user, allowing both Omni and OmniJIT to be completely redistributable and 

standalone. 

Additionally, two other side-projects that will be released are OmniJUCE and OmniWeb. The 

first one, as the name suggests, will permit users to compile Omni code into VST / AU / 

Standalones using the JUCE framework (Storer, 2004). The second one will allow Omni code 

to be compiled and run on the Web as Web Audio Modules (Kleimola & Larkin, 2015). 

Regarding syntax, I envision Omni to become a context-aware programming language 

(Petricek, 2017), where each block not only has a unique scope, but also a unique syntax. 

This means that the syntax of the language itself is adaptive to the various block contexts. I 

would want to implement two new blocks that highlight this idea: the process block and 

the chain block. The former would be a way of encapsulating certain algorithms into audio 

classes that have the same structure of an Omni file. In other words, the current struct / 

def approach to modularity would exist as a low-level interface, while the new process 

block would be the one used to define re-usable audio algorithms. This example should 

clarify this notion: 
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By itself, the behaviour of the process block can currently be implemented with structs 

and defs. However, paired with the chain block, a new mode of defining algorithms can be 

implemented. The chain block would act as an alternative to the init / perform / sample 

blocks. This new block would propose a functional style of patching different algorithms 

together, instead of the current sample-by-sample approach. The previous example, using 

the chain block, could be rewritten as follows: 

 

Figure 60: Example of a process block 
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The chain block, then, could be used to express an algorithm as a series of connections 

between processes going left to right. In order to express feedback and delays, the 

connections can be reversed from right to left, using square brackets to delimit sections: 

 

 

The implementation is still highly experimental, and it needs a lot of testing. The reasoning 

to propose such a syntax is to ease the process of developing algorithms even more. One 

would use a process to specify the sample-by-sample behaviour of a single entity. Then, 

there would be the choice of defining how this process interacts with other processes. 

This is achieved by either using the default init / perform / sample syntax, dealing with 

sample-by-sample programming which can be more useful for certain algorithms like filter 

Figure 61: Example of a chain block 

Figure 62: Proposed syntax for feedback operations in the chain block 
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development, or the patching syntax with the chain block, which can perhaps be more 

creatively inspiring to develop things like chaotic systems and oscillators. 

Additionally, together with many optimizations to the code, I would also want to 

implement a specific syntax for oversampling (Smith, 2002): 

 

 

To conclude, another goal would be to develop support for multi-rate processing, especially 

regarding FFTs (Boulanger & Lazzarini, 2010, chapter 7). However, as of now, I personally 

do not have a clear idea in my mind on how to implement it or how to make it fit into the 

Omni syntax scheme. 

 

6.2 - Alga’s roadmap 

 

As for Omni, I do intend to keep developing Alga. The first improvement is going to be the 

implementation of a new class, AlgaPattern. This is an experimental feature that is 

currently being actively developed. The idea behind it consists in applying the same 

interpolation behaviour of AlgaNodes to the manipulation of pattern-based instruments. 

These require many concerns to be addressed, especially regarding the interpolation of the 

triggering of the pattern. In fact, while the interpolation of pattern parameters can be 

achieved with a similar implementation as the interpolation of parameters of an AlgaNode, 

interpolating the intervals at which sound is produced proved to be a more complicated 

problem to solve. This issue mainly arises from the fact that it is difficult to guarantee that a 

Figure 63: Proposed syntax for oversampling in Omni 
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pattern will be in sync with the others during and after the process of interpolation. This 

would require an additional implementation in the AlgaScheduler in order to fluidly sync 

all patterns together, regarding of their interpolation state. 

Another improvement that will be implemented is the possibility for the user to specify any 

kind of interpolation function. As of now, this function is a simple half-cosine function that 

goes either upwards or downwards, over a specific duration. It would be interesting to 

provide users with an interface to define custom interpolation points for the upwards 

interpolation, which would then be inversed to implement the downward counterpart. 

Perhaps, this interface could be worked around the Env class. In fact, the Env class allows 

users to define specific points of an envelope. It seems like the perfect candidate for this 

implementation. 

Finally, the bigger improvement to Alga will be the development of a custom live coding 

language that will translate its syntax to calls into the AlgaLib’s sclang implementation. I 

envision this project to be developed in Nim, following what I learnt by developing Omni. I 

imagine the interface to be extremely minimal, with few operators to specify all of Alga’s 

features: defining and replacing a node, establishing connections, specifying parameters, 

etc… My idea is to develop the language as a REPL process (van Binsbergen et al., 2020), 

similarly to TidalCycles, that will be the only interface the user would have to deal with. 

This would bring two benefits: first, it would not require the coder to have to deal with the 

SuperCollider interface, which can be very verbose for specific operations. Secondly, by 

having a REPL, it would be quite trivial to embed the process in any text editor of the user 

liking, sending specific lines of code to the running process to be interpreted. I do not have 

a specification in mind yet for how the syntax should look like, as I would like to complete 

the AlgaLib implementation with AlgaPatterns before focusing on the actual live coding 

language. 
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6.3 – Conclusions 

 

With this research project I introduced two new DSLs, Omni and Alga, which both serve a 

different purpose. The former allows users to define low-level algorithms and compile them 

to native binaries for any operating system. The latter is a live coding dialect within 

SuperCollider that proposes a new way of structuring sound objects by interpolating the 

connections between them. I have also presented the reasoning for their existence, which is 

my practice as coder, composer, and improviser. In fact, they both allow me to not only 

determine what music I want to create, but also how I want to make it. As a creative coder, 

this is an invaluable source of inspiration that propels any of my creative outputs. 

In their current state, both projects present limitations which will be addressed in the 

future, as mentioned in the previous two subsections. In the case of Omni, I believe that the 

current biggest limit is the absence of a JIT compiler, which would be essential to further 

increase the rapid development process. This is a feature that is present in other DSLs like 

gen~ and FAUST, and it would increase the appeal towards Omni for creative coders that do 

not want to explicitly deal with CLIs (Command Line Interfaces) to compile their 

algorithms. Regarding Alga, there currently are two important limitations: the absence of 

the notion of patterns and the limitations of being embedded in the SuperCollider 

environment. Firstly, the introduction of the notion of AlgaPaterns will surely be beneficial 

to provide users with an environment that would be more complete to fit any live coding 

need. Secondly, the development of a standalone language on top of AlgaLib will allow users 

to interface with a syntax that is designed from the ground up to forward all the concepts 

that Alga proposes, without the need of using the intermediate SuperCollider stage and 

adapt to its rules. 

I believe that both projects can have an impact on other people’s practice as creative 

coders. Omni proposes new ways to tackle the development of low-level audio algorithms 

with a minimal and easy to learn syntax, without compromising on performance and 
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features’ depth. These can be valuable characteristics for beginners and expert DSP 

developers alike. Alga, by taking a different approach to live coding, can help other 

musicians to develop a practice that draws inspiration from the world of modular 

synthesizers, with the unique feature of the interpolated patching. This single mode of 

operation separates Alga from other audio software, placing it in the position of being an 

unicum in the current landscape. 
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