
University of Huddersfield Repository

Al-Jody, Taha

Bearicade: A Novel High-Performance Computing User and Security Management System
Augmented with Machine Learning Technology

Original Citation

Al-Jody, Taha (2021) Bearicade: A Novel High-Performance Computing User and Security
Management System Augmented with Machine Learning Technology. Doctoral thesis, University of
Huddersfield.

This version is available at https://eprints.hud.ac.uk/id/eprint/35579/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Bearicade: A Novel High-Performance
Computing User and Security

Management System Augmented with
Machine Learning Technology

Taha Al-Jody

High-Performance Computing Research Group
University of Huddersfield

United Kingdom

A thesis submitted in partial fulfilment of the requirements for the
degree of

Doctor of Philosophy

August 2021

I would like to dedicate this thesis to my loving parents, Ali and Nadia
who gave me invaluable faith, inspiration and support.

To my sister, family and friends.

In Memory of my brother.

Copyright

• The author of this thesis (including any appendices and/or schedules to this thesis) owns
any copyright in it (the “Copyright”) and s/he has given The University of Huddersfield
the right to use such copyright for any administrative, promotional, educational and/or
teaching purposes.

• Copies of this thesis, either in full or in extracts, may be made only in accordance with
the regulations of the University Library. Details of these regulations may be obtained
from the Librarian. This page must form part of any such copies made.

• The ownership of any patents, designs, trademarks and any and all other intellectual
property rights except for the Copyright (the “Intellectual Property Rights”) and any
reproductions of copyright works, for example graphs and tables (“Reproductions”),
which may be described in this thesis, may not be owned by the author and may be
owned by third parties. Such Intellectual Property Rights and Reproductions cannot
and must not be made available for use without the prior written permission of the
owner(s) of the relevant Intellectual Property Rights and/or Reproductions.

Acknowledgements

In the name of Allah, the Most Gracious and the Most Merciful

Special appreciation goes to my teacher, mentor and supervisor
Dr Violeta Holmes for her dedicated support, patient guidance and

inspiring encouragement.

I would like to thank my family, friends and colleagues
for their for their continued support.

Abstract

Despite the rising development and popularity of HPC systems, there have been

insufficient advancements towards the security of HPC systems. The substantial com-

putational power, high bandwidth networks, and massive storage capacity provided

in the HPC environment are desirable targets for the attackers.

The majority of educational institution HPC centres provide their users with simple

access methods lacking the modern security needs. Thus, accelerating the systems’

proneness to modern cyber-attacks. The current implementations of HPC access

points, such as web portals, offer users direct access to the HPC systems. Conse-

quently, such web portal implementations affect the HPC system with the same

security challenges faced by cloud providers and web applications. Although attempts

have been made toward securing HPC systems, most of these implementations are

outdated, insufficient with the current security standards, or do not integrate well

with modern HPC access solutions.

To address these security issues, Bearicade, a novel High-Performance Computing

(HPC) user and security management system, was designed, developed, implemented

and evaluated. Bearicade is a data-driven secure unified framework for managing

HPC users and systems security. This framework is an add-on layer to an existing

HPC systems software, collecting over 50 different types of information from multiple

sources within the HPC systems. It offers Artificial Intelligent security solutions with

an added usability and accessibility without adversely affecting the performance and

functionality of HPC systems. Throughout this study, the security and usability of

Bearicade were validated implementing multiple Machine Learning models. It has

been deployed over three years as a production system for students and researchers

at the University of Huddersfield QueensGate Grid (QGG) with considerable success,

protecting the QGG systems from the summer 2020 attacks that has affected many

other HPC systems in research and educational establishments.

Table of contents

List of figures xv

List of tables xix

1 Introduction 1

1.1 HPC Security . 2

1.2 Motivation . 3

1.3 Aims and Objectives . 4

1.4 Methodology . 5

1.4.1 Software Design Models . 5

1.4.2 Adopted Software Design Model . 6

1.4.3 Research Methods . 8

1.5 Summary . 8

2 Literature Review 9

2.1 Access to HPC Systems . 9

2.1.1 Secure Shell (SSH) . 10

2.1.2 Virtual Network Computing (VNC) 11

2.1.3 HPC Access Portal . 11

2.2 HPC Portal Requirements . 12

2.2.1 Functional Requirements . 12

xii Table of contents

2.2.2 Non-Functional Requirements . 13

2.3 HPC Portal Solutions . 15

2.3.1 Open OnDemand . 17

2.3.2 Bright Cluster Manager . 18

2.4 Security in HPC and Distributed Systems . 19

2.4.1 Security Challenges . 20

2.4.2 HPC Systems Performance and Security 23

2.5 Security Solutions for HPC and Distributed Systems 24

2.5.1 Elemental Technologies . 25

2.5.2 Security Information and Event Management System 27

2.5.3 Security Orchestration Automation and Response 28

2.6 Artificial Intelligence Implementations in Security 29

2.6.1 Artificial Intelligent Intrusion Detection Systems 30

2.6.2 Artificial Intelligence in Access Control 31

2.7 Shortcoming of existing HPC Security Practices 33

2.8 Shortcomings of the Existing Security Implementation for HPC 34

2.9 Research Questions . 35

3 Bearicade 37

3.1 Introduction . 37

3.2 Software Architecture . 38

3.2.1 Physical Layer . 38

3.2.2 System Layer . 39

3.2.3 Middleware . 40

3.2.4 Bearicade Stack . 40

3.2.5 Data Acquisition . 45

3.2.6 Application Programming Interface (API) 49

Table of contents xiii

3.2.7 Web-based Terminal and File Manager 55

3.3 Security Implementations . 56

3.3.1 The Open Web Application Security Project 57

3.3.2 User Authentication . 64

3.4 Dashboard Features . 66

3.4.1 Terminal and File manager . 68

3.4.2 Account Information and Customization 71

3.4.3 Users Management . 72

3.4.4 Settings . 77

3.5 Summary . 78

4 Deployment of Bearicade 81

4.1 HPC Grid . 81

4.1.1 Systems Distribution . 81

4.1.2 Access Software at the University of Huddersfield 83

4.1.3 HPC User Access and Privileges . 84

4.2 Data Collection . 86

4.3 Flexibility: Cloud Deployment . 87

4.4 Bearicade Performance Evaluation in The Pandemic 87

4.5 System Usability: SSH vs Bearicade . 88

4.6 Summary . 89

5 Artificial intelligence-based tools for secure access to HPC resources 91

5.1 Using Bearicade . 92

5.1.1 Data Preparation . 93

5.1.2 Models Perquisites . 96

5.2 Initial Model Algorithm Design . 97

5.2.1 Model Per System For Users . 97

xiv Table of contents

5.2.2 Precursory Model Per User Algorithm 103

5.3 Classification of Malicious Linux Terminal Commands 103

5.3.1 Introduction . 103

5.3.2 Data . 104

5.3.3 Training & Evaluation . 105

5.4 Anomaly detection of user behaviour on Bearicade’s login page 106

5.4.1 Introduction . 106

5.4.2 Data . 107

5.4.3 Training & Evaluation . 108

5.5 Model Per User For System . 109

5.5.1 Introduction . 109

5.5.2 Data . 109

5.5.3 Training the Model . 114

5.5.4 Evaluation . 118

5.5.5 Conclusion . 121

5.6 Summary . 122

6 Conclusion 123

References 131

Appendix A Engagement with The Research Community 143

Appendix B Surveys Template 149

Appendix C System Usability Scale (SUS) Results 153

Appendix D Bearicade: Summary and Source Code 157

List of figures

1.1 Agile approach for Bearicade’s Development 7

2.1 Reflected XSS demonstration on Open OnDemand portal 19

2.2 New security balance method for HPC using the barrel theory (Chen et al.,
2017) . 23

2.3 Magic Quadrant for SIEM Evaluation Criteria Definitions 28

3.1 System Architecture Layers for Bearicade (Al-Jody et al., 2020) 38

3.2 Typical HPC Grid Components . 39

3.3 HPC Systems Architecture in the University of Huddersfield from a user’s
perspective . 46

3.4 Application Program Interface (API) . 50

3.5 Authenticating Users to Bearicade’s RESTful API 55

3.6 Terminal and File manager API . 55

3.7 Bearicade’s Configuration . 63

3.8 Bearicade Dashboard: Administrator Main View 67

3.9 Bearicade Dashboard: File Manager . 68

3.10 Bearicade Dashboard: File Editor . 69

3.11 Bearicade Dashboard: File Upload . 70

3.12 Bearicade Dashboard: Server Selector . 70

3.13 Bearicade Dashboard: User Details . 71

3.14 Bearicade Dashboard: Light Theme . 72

xvi List of figures

3.15 Bearicade Dashboard: Users List . 73

3.16 Bearicade Dashboard: Users Details . 74

3.17 Bearicade Dashboard: Users Monitoring . 75

3.18 Bearicade Dashboard: Users Browser Records 76

3.19 Bearicade Dashboard: Users Activity . 76

3.20 Bearicade Dashboard: User Login Attempts 77

3.21 Bearicade Dashboard: Security Settings . 78

3.22 Bearicade Dashboard: Servers Settings . 78

4.1 HPC Systems Distribution at the University of Huddersfield 82

4.2 HPC Systems Architecture in the University of Huddersfield QGG 82

5.1 Viable AI integration for Bearicade’s components 93

5.2 Neural Network . 101

5.3 Training ML with a Million Records . 102

5.4 Mouse events heatmap of a random user accessing Bearicade’s login page . . . 107

5.5 Unique data distribution between users . 110

5.6 Timestamp Matrix Heat-map visualization . 112

5.7 5-fold cross validation sets . 114

5.8 Neural Network model layers visualized . 116

5.9 Different Learning Rate tested with error . 117

5.10 Cross Validation for User A model . 119

5.11 Evaluation for User A model . 120

5.12 Cross Validation for User B model . 120

5.13 Evaluation for User B model . 121

5.14 Training error for User C model . 121

B.1 In-class SUS Survey for SSH access method 150

List of figures xvii

B.2 Online SUS Survey for SSH access method . 151

D.1 Some Features of Bearicade - Bearicade Website (Al-Jody, 2018) 158

D.2 Summary of Bearicade - Bearicade Github Repository (Al-Jody, 2017) 159

D.3 Prerequisite and Deployment Procedure - Bearicade Github Repository (Al-
Jody, 2017) . 160

List of tables

2.1 HPC Portal Solutions . 16

2.2 Security Layers (Chen et al., 2017) . 23

2.3 Security discipline at different layers of security on HPC (Chugh and Chugh,
2010) . 25

2.4 User Authentication Methods Ontology . 32

2.5 Failed SSH login attempts on QGG during a 24-hours timeframe 34

3.1 Playbook roles . 45

3.2 Example of the behavioural data collected from Bearicade users 48

3.3 Action data collected from Bearicade users . 48

3.4 Example of Bearicade’s web-server data log 49

3.5 OWASP top ten risks 2017 . 58

3.6 Recent SSL/TLS Vulnerabilities and Bearicade’s protection against exploitability 60

4.1 Available Functionalities and Features to Administrator from Bearicade . . . 85

4.2 System Usability Scale Score for SSH and Bearicade 88

5.1 Aggregate Information for QueensGate Grid users’ Behaviour on Bearicade . 92

5.2 Users Login Example Row . 97

5.3 Users Activity Example Row . 98

5.4 One-hot encoding . 99

5.5 Classification results of Linux commands (Al-Jody et al., 2020) 105

xx List of tables

5.6 Classification Results of User Behaviour (Al-Jody et al., 2020) 108

5.7 Users Login Example Row . 109

5.8 Model Configuration Parameters and Values 116

5.9 Different Learning Rate tested ranks . 117

5.10 Users’ data summary used to evaluate the model 118

5.11 Real-world test for User A and User B models 122

C.1 System Usability Scale Results for SSH . 154

C.2 System Usability Scale Results for Bearicade 155

Publications

Bearicade: secure access gateway to High Performance Computing systems (Al-
Jody et al., 2020)
This conference paper was presented at The 19th IEEE International Conference on Trust,
Security and Privacy in Computing and Communications. Some information presented in
this conference paper was included in this thesis. Such minor thoughts were paraphrased
and structured throughout Chapters 3 and 5. I would like to confirm that I was the main
author of this conference paper.

Security Orchestration, Automation and Response (SOAR) in HPC (Al-Jody and
Holmes, 2019)
This topic was presented as a poster at the Emerging Technology Conference 2019. I would
like to confirm that there was no particular information used in this thesis “adopted from
this piece of research”.

Chapter 1

Introduction

Supercomputers are also known as High-performance Computing (HPC), a term given to

an extremely powerful computer set. HPC is one of the leading technologies in aerospace,

automotive, finance, military and sciences fields. It is a necessity for research and focuses

mainly on improving computing performance through parallel algorithms, computer architec-

ture and software development. In academia and industry, clusters and grids are the two

dominant ways in deploying High-Performance computing.(Pellerin David et al., 2015)

User management systems for HPC is often an afterthought of current administrative practises

that fail to provide modern security measures for HPC systems. In the research and education

communities, there are no general HPC protection standards. Each organisation has its

own policy, which is often validated by certification authority (CA). Because the HPC

systems are often behind institutional firewalls, most registered users use Simply Secure

Shell (SSH) (Daniel J. Barrett, Richard E. Silverman, 2005) to access given HPC resource.

The institutions often hold training events to educate the users on how to access their HPC

resources; this is sometimes perceived as a barrier to entry to HPC. However, the client-side

software used to access HPC systems are generally insecure or being operated in an insecure

environments, such as Putty (Meister, 2007). Usually, several HPC centres (Vacca, 2004) use

Private Key Infrastructure (PKI) as their primary authentication method. This approach

2 Introduction

has been shown to be reliable. However, even with PKI authentication in place, users with a

low level of security knowledge can face security issues.

Most attacks have a life cycle of development. Every step of its development may result in

indicators that may be hard for security professionals and system administrators to notice.

Hence SIEM systems development was required. SIEM systems provide visualisation of data.

Also, they facilitate the collection of data and events in most system components, giving

system administrators a massive amount of data that they are able to analyse. Due to the

improvements of SIEM systems, security administrators are being swamped with data, which

in most cases might be noise, making attackers mission simpler.

The integration of artificial intelligence tools with security systems like SIEM might help

with this issue and become the systems administrator’s right-hand.

Artificial Neural Network (ANN) could be used to analyse the data from collectors, then

perform data classification, identify patterns, and detect anomalies.

1.1 HPC Security

Cyber Security becomes a significant necessity in every scheme to be enforced. Security

requirements are a crucial topic for high-performance security systems, and more emphasis

should be placed on them.

High-performance computing has received incredible hardware and software development

and enhancement. It also faces a rise in the amount of research, industrial or other business

uses. In addition, the security aspect and user communication and authentication are not

sufficiently developed (Dewayne Adams, 2011).

According to Dewayne Adams, the Chief Technology Officer at Patriot Technologies, high-

performance computing safety varies from standard enterprise-level safety.

From the workshop “Cybersecurity for HPC Systems: Challenges and Opportunities” by

Sean Peisert in the National Institute of Standards and Technology, the threats of High-

Performance Computing Systems could be divided into three sections CIA (Confidentiality,

Integrity, and Availability) (Peisert-Lawrence Berkeley National Lab, 2016).

1.2 Motivation 3

Confidentiality is the vitality and the sensitivity of the data. Integrity focuses on the

authenticity of the code and the adequate usage of computational power. Finally, availability

concentrates on potentials of attack that might affect the availability of the services, such as

Denial of service attacks and overflow attacks.

1.2 Motivation

In the past, security breaches targeting HPC systems tended to be few and far between.

Nowadays, HPC systems are facing an increase in vulnerabilities and attacks. Vulnerabilities

and weak security implementations may lead to attacks such as phishing, malware, account

takeover, data breach, brute-force and many more. In addition, the rewards for attacking

such systems are becoming more valuable. Thus, improving the security of HPC systems is a

necessity (Kesteren, 2019).

At the University of Huddersfield, there is a range of HPC Systems only protected by custom

firewall rules set by the University. There have been various attacks targeting numerous

systems at the University of Huddersfield. Specially Queens Gate Grid Systems and High-

Performance Computing Research group with attack attempts reaching up to 50,000 attacks

per day.

Moreover, a malicious group attacked university data centres in summer 2020 for CPU

cryptocurrency mining. The group was able to gain access to various HPC grids by hopping

between infected SSH accounts. This cyber-attack has impacted several HPC centres in the

United Kingdom, resulting in prolonged downtime in some cases.

Based on the recent meeting of the HPC-SIG Group, which consisted of representatives from

the UK’s High-Performance Computing Community, there is no universally accepted security

framework. The current existing solutions of a security framework for High-Performance

4 Introduction

Computing are private unreleased institutional solutions. The university members of the

HPC-SIG plan to address the issues raised above.

1.3 Aims and Objectives

The overall purpose of this project is to create a novel, data-driven and secure framework for

user and security management enabling autonomous anomaly detection through Machine

Learning technologies with the application in High-Performance Computing (HPC) Systems.

In order to satisfy this aim, the following objectives are addressed:

• Investigate current SIEM and SOAR frameworks designed for usage in HPC systems.

• Explore Artificial intelligent algorithms designed for anomaly detection in access and

usage of HPC systems.

• Find out AI tools and integrations with SOAR systems.

• Devise new novel secure framework specifically for HPC.

• Deploy the framework in the University of Huddersfield Campus Grid for management

of HPC resources and users.

• Allow the University of Huddersfield Campus Grid users to use the framework as the

main gateway for the HPC resources.

• Collect different types of data from various sources within the framework related to

system security.

• Enhance the security of the novel framework using Artificial Intelligence tools.

• Evaluate the effectiveness of the deployed solution, using the system and users’ data,

as reliable and secure framework for accessing and utilising the HPC systems.

1.4 Methodology 5

1.4 Methodology

Methodologies impose a disciplined approach on software development in order to make it

more predictable and efficient. The guidelines from the literature will serve as a way to verify

that the developed solution leads to the achievement of the research goal. Examples of these

guidelines are (i) the definitions of characteristics presented by existing implementations

(ii) the functional and non-functional requirement for an HPC portal (iii) the security

standards and implementations for web applications and servers.

1.4.1 Software Design Models

To build software products, a planned and systematic procedure should be used. Developing

and maintaining the code required to build software is referred to as "software development"

(McCormick, 2012). The process of software development may include ideas based on the

requirement analysis, an essential design of the software, or a change in requirement through

to the final stages of the development of the software. Thus, a flexible and dynamic software

design model has to be adopted for this purpose. Some of the software development models

commonly used are Waterfall, Spiral, UML and Agile models.

Waterfall

The waterfall model is one of the traditional software design models that define the process

for software development into a specific sequence. However many issues have been identified

in the waterfall model, commonly acknowledged issues include dealing with change and

the fact that flaws are sometimes identified too late in the software development process

(Petersen et al., 2009).

6 Introduction

Agile

Agile is one of the most recent models to be introduced as a software development methodology,

it allows for smaller components of the software to be developed first allowing for the ability

to acknowledge changes throughout the process of the development which is happening at

regular intervals (McCormick, 2012).

Prototyping

Prototyping methodology requires building a prototype of the software with the essential

functionalities included. The prototype is developed further as feedbacks are received. This

methodology is appropriate for large projects especially when the requirements are difficult

to define or when the project is unique and there are no examples exist (Despa, 2014).

1.4.2 Adopted Software Design Model

To better justify the adopted software design model, a brief overview of the steps carried in

this research is outlined as such:

1. An extensive literature review will be carried over the current published work around the

access methods and the security around the High-Performance Computing environment.

The current existing HPC security methods will be investigated, demonstrating the

gaps in security for HPC systems.

2. A unified experimental system will be designed as a test-bed to collect data from HPC

systems and users in order to analyse and understand such data and further build the

system to be capable of identifying security issues.

3. Experiments will then be conducted to evaluate the experimental system capability in

identifying security issues and the capability of allowing further research to be carried

in order to advance the security of the unified system contentiously.

1.4 Methodology 7

4. As part of the experiments, novel security platforms and AI tools will be designed,

developed and evaluated using the data gathered over four years.

5. The system will also be evaluated using the University of Huddersfield QueensGate

Grid students access to the system and through a set of questionnaires.

Research

Requirement

Develop

Test

Deployment

Feedback

Bearicade
Agile

Approach

Fig. 1.1 Agile approach for Bearicade’s Development

Considering the known stages of the software design models and the overview of the planned

steps to be carried in this research, Agile methodology is more suitable than the others

for developing Bearicade. As shown in figure 1.1, Bearicade will involve researching and

information gathering for what components should be included in Bearicade and their

functionality. Following the research design requirements will be devised in order to work

on the development of Bearicade. After the development phase, Bearicade will be tested

then deployed on the main QueensGate Grid gateway. The feedback will be sought after the

deployment through the users’ feedback and technical logs on Bearicade.

The Agile methodology is done over several cycles meaning that the phase will be repeated

multiple times to ensure such a large project is completed on time with the required

8 Introduction

functionality. A more in-depth procedure of the deployment process is explained in chapter

Deployment of Bearicade.

1.4.3 Research Methods

Research Methods are a systematic and organised approach to data gathering and analysis

in order to extract information (Jankowicz, 2000). Developing Bearicade will be closely tied

with Data Science, Mathematics and Information Systems. Therefore, different components

of Bearicade could be evaluated through measurements or proofs. Consequently, In order

to evaluate the claims and functionality of Bearicade as a framework, a mixed empirical

research methods approach has been chosen for this purpose.

Surveys Will be conducted before the deployment of Bearicade and after in order to measure

the usability of Bearicade compared to the predecessor access software. In addition, Bearicade

users in the classroom will be observed in order to measure the effectiveness of Bearicade and

modify the requirements. Finally, data gathered through Bearicade will be visualized and

screened then use-cases will involve building Machine learning models in order to evaluate

their own accuracy and Bearicade’s functionality.

1.5 Summary

In this chapter the motivation, aims and objectives of this research and research methodology

were defined. The rest of the thesis is organised as follows: Chapter 2 Literature Review,

Chapter 3 Bearicade, Chapter 4 Deployment of Bearicade, Chapter 5 Artificial intelligence-

based tools for secure access to HPC resources and Chapter 6 Conclusion and future work.

Chapter 2

Literature Review

In this Chapter, there will be a complete list comparing HPC access solutions describing the

requirement and different implementations. The section will explore the security issues and

solutions within the different implementations of HPC and distributed systems along with

Artificial intelligence solutions.

2.1 Access to HPC Systems

Throughout this section different technologies were investigated for the secure access to and

utilisation of the HPC systems. Since HPC systems receive a considerable interest from

attackers trying to get access to HPC cluster due to the high computational power that

HPC systems offer for its users. Therefore, robust and secure access mechanism has to be

implemented in such systems.

Many of the UK’s HPC Centres, especially ones in educational institutions, use Secure Shell

(SSH) as a standard for accessing HPC systems. The usability of HPC systems is considered

to be another limitation to most HPC users.

10 Literature Review

2.1.1 Secure Shell (SSH)

Secure Shell (SSH) is one of the most widely used protocols for protecting network communi-

cations. Since this approach is known for its vigorous history since 1995.

As most HPC centres use SSH as a primary way to interact with the system via a terminal,

requiring a basic knowledge of Bash Unix shell and command language (Newham, 2005) to

get started with interacting with the system. Bash typically run in a window (terminal) that

make use of character encoding methods such as American Standard Code for Information

Interchange (ASCII) Unicode Transformation Format (UTF) in order to render text (Kuhn,

2005). Users then read the text and execute commands, and these commands are prone to

syntax errors. A graphical user interface solution would improve the ease of use.

SSH consists of two elements server and client, and the whole point of SSH is to encrypt the

communication of packets over the server and client. Authentication is one of the client and

server’s main features, and SSH could be configured to authenticate users via passwords or

Public Key Infrastructure (PKI); this will be explored later in this section.

SSH is based on top of Transmission Control Protocol (TCP), meaning that it uses TCP/IP

as its transport mechanism. This gives the protocol a varied range of opportunities and

challenges.

The server component defaulted to run on TCP port 22, allows clients to access the server

remotely rather than being fixed to a local network. On the other hand, this opens up the

opportunity for attackers to target servers with several attacks, especially the server will

be vulnerable to all attack vectors TCP is facing (Daniel J. Barrett, Richard E. Silverman,

2005).

As a solution for HPC users to access their systems, it is considered relatively lightweight for

the system, does not require a demanding setup process, and has little latency and bandwidth

issues. However, the users are still required to be knowledgeable in shell command language

2.1 Access to HPC Systems 11

depending on the system. Also, the users have full responsibility for not sharing their private

key and/or their password with unauthorised individuals.

Secure File Transfer Protocol (SFTP)

Secure File Transfer Protocol (SFTP) is usually used to complement Secure Shell (SSH)

functionality by allowing HPC users to access files on the remote HPC storage nodes and

easily transfer file between the user’s local machine and the main HPC storage nodes (Kruegel,

2004). The functionality of SFTP is similar to Secure File Copy (SCP).

2.1.2 Virtual Network Computing (VNC)

Like SSH, Virtual Network Computing is considered as an HPC access software; it allows

users to control the HPC gateway through a graphical user interface (GUI) (Richardson

et al., 1998). VNC has a significant effect on the gateway’s latency and bandwidth as a result

of the GUI capability.

VNC could also be setup to communicate over Transport Layer Security (TLS), hence all

communication will be encrypted. To authenticate users, a username and password would

be required from the user, and these credentials are typically the same as the system’s

credentials.

2.1.3 HPC Access Portal

Many web HPC systems portals have been created since the 1990s, when Java Applets became

common for full-stack creation, to make it easier for users to access HPC systems remotely.

Using a web HPC dashboard is considered the best way of making use of HPC resources

(Calegari et al., 2019). Upcoming section HPC Portal Solutions, will show the current

implementations of HPC Portal Solutions available. The next section will provide detailed

12 Literature Review

information about these portals’ requirements and analysis of the security vulnerabilities in

some of the popular HPC portal solutions.

2.2 HPC Portal Requirements

This section will outline the requirements that qualify a software to be a suitable HPC

management system. This section will divide and consider the requirements to two sections,

Functional and Non-functional requirements.

2.2.1 Functional Requirements

Functional Requirements are the functions that could be included in the software to operate

an HPC system. Even though Functional requirements are mandatory, this section will

include some of the non-mandatory functions that have been implemented in many HPC

Portals. A 2019 paper on Web portals for High-Performance Computing summarizes two

functional requirements to be mandatory for a High-Performance Computing Web Portals

(Calegari et al., 2019).

Job Management

This is the core functionality of an HPC system: managing the jobs and the applications

executed. This functionality should be able to perform multiple core functions such as submit,

monitor, start, stop and pause (Calegari et al., 2019).

Data Management

This functionality complements the Job Management function by enabling HPC centres data

to be remotely managed by end-users. “So one of the main challenges for HPC as a Service

(HPCaaS) is to make remote data management as flexible as if it were local” (Calegari et al.,

2.2 HPC Portal Requirements 13

2019). The following functions should be considered in the making of this requirement:

“”upload and download files, preview file content, copy, move, rename, delete files, compress

and uncompress archive files, browse user data spaces (restricted to users’ privileges), manage

file ACLs (Access Control List), monitor quota(s)“” (Calegari et al., 2019).

2.2.2 Non-Functional Requirements

Non-Functional Requirements are the specification of software to judge the operation of such

system for HPC users; these requirements are judged by the software’s usability and efficiency.

The following section is an example of the requirements that must be up to standards.

Security

Security is a must for all forms of applications, but it’s particularly important when it’s

hosting sensitive data, research & development data, or nodes with a lot of processing

capacity. More about this feature (see Section Security Solutions for HPC and Distributed

Systems).

Usability

Usability is an important indicator of how interactive a system is. Several papers (Calegari

et al., 2019; Greenberg et al., 2005; Köhler et al., 2013; Sadowski and Shewmaker, 2010)

stressing over the importance of usability, from the usability of developing a Parallel program

to the ease of use when submitting a job to a cluster. As for an HPC portal as a whole, the

system should have the following elements of usability along with a description of how the

element could be measured or/and designed:

• Operability: HPC Portal should be a convenient and straightforward to use. With all

of the functionalities are designed in a way that is easy to be found and executed with

the least number of steps from the user.

14 Literature Review

• Learnability: HPC Portal should be used without any further preparation or knowledge.

The various types of users can all follow the same basic portal workflow.

• Accessibility: Accessibility should be a fundamental requirement instead of an element

of usability; however for HPC portals will be kept as part of the usability. HPC Portal

should be available and simple to use for all users meaning that a number of essential

design keys should be enforced, e.g. (colour contrast, disability)

• Design: HPC Portals is considered to be the brand image of the provider, e.g. (Cloud

Provider, HPCaaS). Therefore, the portal should have an attractive design to reflect

the provider’s image and impress the users.

Performance

HPC systems are made to be fast in execution, meaning that performance is vital in every

scenario. In the backend, every HPC system consists of an HPC job scheduler built on top

of the primary Operating system; these are the two mandatory software layers required to

have a basic functional HPC system. Since any layer added to these layers might cause an

impact on performance, HPC Portals should incorporate solutions that have a minimal effect

on the system’s efficiency. These solutions could vary, and some of the examples are:

• Server Separation: Web portal could set-up their web-server as an example on a

separate node database server on another; this would reduce the bottleneck on the

main node.

• Local Cache Storage: Web portals could store user’s temporary data locally in the

browser to reduce the frequency of pushing and pulling data from the server, thus

reducing the local on the server.

2.3 HPC Portal Solutions 15

2.3 HPC Portal Solutions

This section will list the most known existing solutions available as an HPC Portal and

analyse their security vulnerabilities and implementations.

A survey titled Web Portals for High-performance Computing (Calegari et al., 2019) has

compared the existing HPC Portals.

16 Literature Review

(Activeeon, 2014; Adaptive, 2006; Altair, 2019; Altair Korea Enterprise Computing Division,
2018; Apache, 2016; Atos, 2010; Bright Computing, 2019; Calegari et al., 2019; CyVerse, 2020;
Fujitsu, 2010, 2015; Hudak et al., 2018, 2016, 2017; Inside HPC, 2015; Marru et al., 2011;
McCormack et al., 1999; Nimbix, 2012; NIST, 1998; Pierce et al., 2014; Platform Computing,
2009; Quintero and International Business Machines Corporation. International Technical
Support Organization., 2012; Rescale, 2012; Sampedro et al., 2017; Sims et al., 2001; SysFera,
2014; The Agave Platform, 2013; UNICORE, 1997; Univa, 2019)

Portal Release year Type
1 UNICORE Portal 1997 Open source
2 WebSubmit Portal by NIST 1998 (D)
3 EnginFrame by NICE/Amazon 1999 Commercial
4 Apache Airavata Django Portal 2003 Open source
5 eCompute by Altair 2003 Commercial (D)
6 eBatch by Serviware/Bull 2004 Commercial (D)
7 MOAB Viewpoint by Adaptive Computing 2006
8 HPCDrive by Oxalya/OVH 2007 Commercial (D)
9 HPC Pack Web Components by Microsoft 2008 Commercial
10 Compute Manager by Altair 2009 Commercial (D)
11 Platform Application Center (PAC) by IBM 2009
12 SynfiniWay by Fujitsu 2010 (D)
13 Sysfera-DS by Sysfera 2011 (D)
14 XCS1/XCS2 by Bull/Atos 2011 (D)
15 JARVICE Portal by Nimbix 2012
16 ScaleX Pro by Rescale 2012
17 Agave ToGo 2013 Open source
18 ProActive Parallel Suite by ActiveEon 2014 Open source
19 HPC Gateway Appli. Desktop by Fujitsu 2015
20 Sandstone HPC 2016 Open source
21 Open OnDemand 2017 Open source
22 XCS3 by Atos 2017
23 Orchestrate by RStor 2018
24 PBS Access by Altair 2018
25 Grid Engine by Univa 2019 Commercial
25 Bright Cluster Manager by Bright Computing 2019 Commercial

2.3 HPC Portal Solutions 17

2.3.1 Open OnDemand

Open OnDemand is an open-sourced web-based client portal for HPC systems based on the

Ohio Supercomputer Center OnDemand platform. The project addresses the gap between

traditional HPC access methods such as (SSH and VNC) and accessibility of HPC system

through the web (Hudak et al., 2018).

The project’s source code is available through Github (Center, 2020); the project presents

well-documented installation steps. To review this project, the latest version (1.7.14 at the

time of writing this) of the portal was installed and set up on a cloud server instance running

Centos 7.6. The portal had a number of functionalities, such as a web-based SSH client,

file-manager, and job manager. The portal uses Basic access authentication by default with

support for Shibboleth and CAS Single Sign-On and support for second-factor authentication

and OpenID through third-party integration. There was no implementation of data-gathering

methods in the project. However, support for Google Analytics was provided.

By analysing the portal and its source code, there were a number of security issue presented;

some of these issues will be listed below.

Third-party Libraries

The project makes use of a number of libraries in order to achieve it’s functionality, some of

these libraries are outdated and present the system with a number of security issues. As an

example, (A) jQuery (v3.4.1) (B) Cloud Commander (v5.3.1): provides the functionality of

SSH and file-manager through the web. Some of the vulnerabilities proposed by libraries A

& B will be listed below:

• Authentication Bypass (Library B)

• Cross-site Scripting (XSS) (Library B & A)

• (Regular Expression) Denial of Service ((Re)DoS) (Library B)

• Remote Memory Exposure (Library B)

18 Literature Review

Inadequate Implementation

Along the vulnerabilities listed above, there is more security risk that is present within the

project itself:

• Authentication Credentials Capturing : as the portal makes use of basic access

authentication by default; this authentication mechanism encodes the username and

password pair to base64 format, the web application then passes these credentials in

the request header, allowing an attacker within the same network of the user to capture

their credentials using Man-In-The-Middle attack as an example.

• Header Misconfiguration: cross-domain configuration such as Access-Control-Allow-

Origin are misconfigured, allowing attackers to access requests through arbitrary third-

party domains. In addition, X-Frame-Options and X-Content-Type-Options are not

included, allowing possible ClickJacking and XSS attacks.

• Misconfigured Cookie: cookies initiated by the portal are lacking SameSite attribute,

which is a protection against cross-site request forgery, cross-site script inclusion, and

timing attacks.

• Inessential HTTPS: HTTPS is not required in order for the portal to function,

presenting the users with a high risk of website tampering and eavesdropping attacks.

Demonstrating XSS attack on Open OnDemand

From the vulnerability disscued above from library B, a user is able to create a file/directory

with an XSS payload such as "><svg onload=alert(’XSSpayload’);> as the name, this is then

reflected to all users accessing the same directory containing that payload as demonstrated

in figure 2.1.

2.3.2 Bright Cluster Manager

Bright Cluster Manager (BCM) by Bright Computing offers a complete solution for HPC

centres to build and manage clusters and allow users to submit and monitor jobs. Like most

2.4 Security in HPC and Distributed Systems 19

Fig. 2.1 Reflected XSS demonstration on Open OnDemand portal

HPC portal solutions presented in table 2.1, BCM is a commercial product meaning that the

software is proprietary. Therefore, information gathered about the software were mainly from

available manuals, documentation, and a live demonstration of a software (Bright Computing,

2019).

BCM dashboard has a monitoring functionality that features some measurable information,

mainly hardware gathered information such as usage and jobs data. BCM does not seem to

feature security-related information.

BCM’s developer manual describes a read-only Representational State Transfer (REST)

Application Programming Interface (API). However, this implementation uses basic access

authentication, which comes with critical security issues discussed in 2.3.1.

2.4 Security in HPC and Distributed Systems

High-Performance computing is a dominant tool for research in academia and industry

(Pellerin David et al., 2015), the increased development in HPC has resulted in providers

20 Literature Review

being a desirable target to intruders (Peisert, 2017). In addition, the following are the main

aspect luring attackers to HPC: (1) substantial computational power (2) high bandwidth

network (3) massive storage capacity.

In the beginning, when HPC started being adopted for usage in research and education,

security which is one of the most significant concerns for both users and HPC system

maintainers, was not a significant problem. Nowadays, due to the extensive developments

made towards HPC portals. HPC vendors, such as Institutions or HPCaaS, are moving toward

delivering online interaction with their systems, such as HPC Portals, to their consumers

and clients. Users are provided with an easy access to a pool of high-performance computing

services through HPC systems. This access requires permission to use the internal network,

which is protected by security measures that ensure data protection. (Prout et al., 2016).

Also, HPC portals are made available remotely and accessed through the web. Thus, currently

facing the same security challenges being faced by cloud providers and web application.

There have been concerns about the security and privacy of the data in the cloud especially

from the business and governmental sectors due to the sensitivity of the data especially if the

data is considered to be a national assets (Armbrust et al., 2010; Chang et al., 2011). Studies

showed that there is a direct link between data protection laws and the interest in cloud

computing (Eldred et al., 2015, 2016). Another research proves that is a huge ambivalence

with the adoption of cloud computing due to the security, legal and privacy challenges that

cloud computing raises (Khajeh-Hosseini et al., 2010).

2.4.1 Security Challenges

Report made by Ponemon on security automation (Ponemon, 2013), shows that 88% of

data is stolen in minutes via cyber-attack or data breaches, 85% intrusions have not been

disproved until weeks later; also, the average mitigation time was 123 hours.

Another report written by Verizon (Verizon, 2019) supports Ponemon report, showing 51%

of compromises happens in seconds, 36% in minutes. In addition, 88% of Data exfiltration

happens in minutes. Moreover, 85% of threats are not discovered until weeks later.

2.4 Security in HPC and Distributed Systems 21

Nowadays, all attackers need is an exploitable vulnerability in any component in any layer

of a system, and they can access the system. On the other hand, attacks are receiving

more developments, increasing the number of zero-day exploits and malware that are able

to dodge most firewalls and software alike and able to spread more, making them persist longer.

Security Challenges in HPC

The Security of HPC systems has been a concern and a path of developments since the 1998

(Campbell and Mellander, 2011; Foster et al., 1998; James D. Ballew et al., 2015; Malin and

Van Heule, 2013)

Most common system vulnerabilities are still effective in HPC systems. However, due to an

HPC system’s characteristics, mitigations for those vulnerabilities are not effective and lack

efficiency (Apostal et al., 2012; Simakov et al., 2018).

There has been average progress done into researching security challenges in HPC portals.

There is however, a paper (Eldred et al., 2016) that reports a case study exploring security-

related queries around protecting sensitive data and the security decisions, as a result of a

survey conducted with a number of HPC organisations members. The papers show doubts

about data confidentiality in general, including where the data are stored, the authentication

and authorisation, and other security-related questions.

A paper from 2013 (Malin and Van Heule, 2013) has proposed Continuous Monitoring

for HPC systems. Continuous monitoring is a long-established method for desktop and

mobile operating systems that ensures constant and uninterrupted cyber protection via

multiple ways. The papers by Los Alamos National Laboratory HPC (Malin and Van Heule,

2013) have claimed that the organisation has started developing continuous monitoring

for HPC. Considering that an attacker might attempt to alter multiple vectors such as

firewall, system files and services, the paper has given a hypothetical approach to achieving

a continuous monitoring system. The approach consisted of the following elements:

22 Literature Review

• Firewall Monitoring: a host-based firewall with a continuous test running to ensure

the firewall rules have not been altered or turned off.

• Logs Monitoring: constant monitor of logs to detect unauthorised changes in the

system. Orchestration tools could be used to revert the system to an optimal state.

• Services Monitoring: services are constantly monitored for changes.

• Security Tools Monitoring: constant monitoring for security tools to check if the

tools are functioning properly.

A study (Prout et al., 2016) suggested using Netfilter, a system-level feature, to create a

user-based firewall to administer the connections within the internal network of an HPC

system: this will allow administrators to implement a set of rules. This study has focused on

the impact of firewall rules on the performance of the HPC system.

According to multiple papers (Gantikow et al., 2016; Higgins et al., 2016; Priedhorsky and

Randles, 2017) authors proposed lightweight and secure solutions for HPC by containerising

middleware, environments, or software stacks. Such implementations do not consider exploits

resulted from the more advanced vulnerabilities such as Meltdown and Spectre (Kocher et al.,

2018; Lipp et al., 2018). A paper discussed the proposal of a security balance method for

HPC. The paper (Chen et al., 2017) scrutinised the traditional barrel/bucket theory and

proposed a new barrel theory. The theory consists of multiple barrels on the inside of the

other with each of the barrels representing the following as shown in figure 2.2: "data security,

system security, access control, application security, network security and physical security".

The study suggests security methods for each of the layers (buckets) and security measures

for the layers based on the new theory. The results are summarized in table 2.2.

A recent study (Luo et al., 2019) has emphasised the importance of log auditing in strength-

ening security for HPC systems. The study has listed multiple types of attacks in HPC

systems, and the paper reviews defence strategies for HPC systems.

2.4 Security in HPC and Distributed Systems 23

Fig. 2.2 New security balance method for HPC using the barrel theory (Chen et al., 2017)

Table 2.2 Security Layers (Chen et al., 2017)

Layers Methods
Data Content Auditing, Transfer Protocol
System Back-up, Policies, Firewall
Access Authentication, Authorization
Application Anti-Virus
Network Firewall, Network Standards
Physical Isolation, Monitoring

However, there are no current publications covering the effectiveness of measuring IP reputa-

tion, analysing users’ behaviour and other intelligent techniques within the HPC environment.

2.4.2 HPC Systems Performance and Security

High-Performance Computing systems, by definitions, are systems optimised for high-

performance. A factual statement is that the security of HPC is not being considered

differently than standard computing except for when security is antithetical with performance

(Peisert, 2017).

Red Hat has published an article (Red Hat, 2017) describing the performance impacts

of Meltdown and Spectre (Kocher et al., 2018; Lipp et al., 2018) which are hardware vul-

nerabilities that affected Intel processors, IBM POWER processors, and some ARM-based

microprocessors. The initial impact on performance was 1-20%. However, after optimising

the patches, it has been reduced to 1-8%.

24 Literature Review

A 2018 paper (Simakov et al., 2018) examined the performance impact on HPC systems

when applying those patches for Meltdown and Spectre (Kocher et al., 2018; Lipp et al.,

2018). The paper has found that some HPC application decreased in performance up to 74%.

Another paper about user-based firewall (Prout et al., 2016) demonstrated no performance

issue while using a single-threaded Netcat (Kanclirz and Baskin, 2008) to transfer data.

However, once the test was repeated with ten threads, with 1000 connections each, the

test showed that the speed has halved. Two other papers have tested the performance

of Netfilter/iptables (by Harald Welte, 2000; Purdy, 2004), the results showed minimal

bottleneck, especially when handling a large set of rule and on gigabit networks (Hoffman

et al., 2003; Kadlecsik et al., 2004).

2.5 Security Solutions for HPC and Distributed Systems

Security tools are becoming more prevalent at all layers of the infrastructure, including

programme, network, host, and even client. Firewalls, rules-based network scanners, anti-

virus, IDP, and IPS are the most commonly used methods, as will be discussed later.

With these varieties of security tools protecting most components of a system, security

professionals "must be at an advantage". However, that is not the case, and infiltrators are

succeeding more often with more attacks.

From table 2.3 taken from a paper (Chugh and Chugh, 2010), security of HPC systems

could be divided into 3 layers (i) User/Application (ii) Communication (iii) Resource, each

of these layers are defined by it’s discipline. The authors suggest that existing technologies

could be applied to each discipline successfully. However, each of these technologies will have

constraints on HPC systems.

This section will review existing solutions to monitor and prevent cyber incidents in other

Infrastructure.

2.5 Security Solutions for HPC and Distributed Systems 25

Table 2.3 Security discipline at different layers of security on HPC (Chugh and Chugh, 2010)

Security Layer Discipline

User/Application
Authentication
Authorization
Confidentiality

Communication Privacy
Message Integrity

Resource
Secure Logging
Assurance
Manageability

2.5.1 Elemental Technologies

Elemental Security technologies are the essential practices for securing HPC systems. The

following practices are used in many HPC providers contributing as a base layer of security

(Bulusu et al., 2018).

Operating System Security Hardeneing

This practice is the process of hardening the core of the HPC systems, ensuring that directories,

users, and services are set up with the correct level of privileges and permissions. Examples

of these hardening processes are:

• Password Complexity Requirement: a policy should be implemented to enforce

the requirements of a password; policies may include the length of the password,

complexity i.e. (special characters, numbers, alphabets). Password requirements could

increase the entropy of passwords (Marquardson, 2012)

• Password Expiration: setting a regular password change policy might not be a way

of preventing attackers from compromising passwords. However, it could definitely

help in reducing the potential damage from a compromised password (Marquardson,

2012; Zhang et al., 2010).

26 Literature Review

• File Permission: Unix systems implements the owner, group, and other to files and

directories, meaning that every file has a single owner (Fenzi and Wreski, 2000). Correct

file permissions ensure that users have no access to crucial system files.

• Services and Packages: Additional unwanted services and packages open up oppor-

tunities for potential attacks, as an example, Red Hat Enterprise Linux 6 contains

over 1000 packages and services, most of which are not a necessity for HPC systems

(Dheshmukh and Mahalle, 2014). Over time packages becomes vulnerable, leaving

unpatched vulnerabilities in the system.

• File Integrity: ensuring the integrity of files are a crucial step in preventing many

attacks that typical anti-virus software would not be able to distinguish from a legitimate

use. An example of this is the recent Dirty Copy-On-Write (COW) vulnerability (Alam

et al., 2017; Red Hat, 2016).

• Log Management: collecting logs from different services and system components is

an imperative step for auditing security issues on a system (Vaarandi and Pihelgas,

2014). Logs will contain the activity of services, users and security events such as

elevated commands. A 2019 vulnerability has exploited Sudo version <1.8.28, allowing

a user to run a command as an arbitrary user (MITRE, 2019).

• Firewall: firewall rules offers enhanced network security. Rules should filter inbound

and outbound activity, limiting the system’s exposure to external and internal network

attacks (Prout et al., 2016).

Authentication

Authentication is of vital importance in protecting HPC systems from intruders. As explained

previously in section (Access to HPC Systems), there are multiple ways of accessing HPC

systems. Similarly, there are many methods for authenticating users; below are most of the

popular authentication methods:

• Password Authentication: using a password only to connect to the systems.

2.5 Security Solutions for HPC and Distributed Systems 27

• Public Key Authentication: client provides a key pair to the system where it gets

checked with a list of allowed keys.

• Pluggable Authentication Modules (PAM): different modules could be used as

a way of authenticating users, e.g. (pam_ldap and pam_mysql).

Regular Security Auditing

One of the most significant security issues is the lack of regular security audits (Rasheed,

2014). However, auditing requires personnel’s familiarity with analysis tools and knowledge

of the current vulnerabilities. For HPC systems, patches could hugely impact performance,

as explained in section: (HPC Systems Performance and Security).

2.5.2 Security Information and Event Management System

Security Information and Event Management Systems (SIEM) provide Security Information

Management (SIM) such as log management and activity reports. Also, they provide Se-

curity Event Management (SEM) including real-time devices, network, and user’s activity

monitoring.

SIEM provides four main functionalities but is not limited to (Swift, 2006):

• Log Management: A smart logging server that logs from all nodes attached to a

system, the log should be reported to the SIEM System to be visualised for fast response.

Logs are collected from all different devices and software, such as authentication server

and user activity.

• Intrusion Detection: Artificial Intelligence automates the process of going through

logs and activity in order to detect suspicious behaviour within the system

• Incident Response Automation: Incidents should be reported to system adminis-

trators through some way of communication.

28 Literature Review

• Forensic Investigation Management.

Fig. 2.3 Magic Quadrant for SIEM Evaluation Criteria Definitions

Figure 2.3 (Nicolett and Kavanagh, 2011) above represent the variety of Security Information

and Management Systems. There are 24 systems represented in a graph to show SIEM

systems’ ability compared to their marketing strategies.

Regarding the ability to execute considered product in terms of completeness, features,

capabilities, and other services provided, the highest was Hewlett Packard’s SIEM system

ArcSight which offers a wide range of features and cybersecurity tools. However, the system

has no support for High-Performance Computing System and does not include Artificial

Intelligence tools.

2.5.3 Security Orchestration Automation and Response

In 2017, Gartner, a global research and advisory firm, invented the term SOAR (Stan

Engelbrecht, 2018), to describe a system with layers of security tools stacked together. These

2.6 Artificial Intelligence Implementations in Security 29

tools allow the system to collect data from information about the security of a system from

different sources, detect threats, prioritising attacks, then to respond to these threats without

human input.

SOAR systems are very close in functionality to SIEM systems with the added functionality

of orchestration and automation.

Through the integration of Artificial Intelligence to existing SIEM systems to apply human

intelligence and machine learning would strengthen the Intrusion prevention in the system.

This solution would be beneficial for systems with a large amount of log data generated

hourly, such as in HPC systems.

In (Donevski and Zia, 2018), the author emphasises the importance and the demand on

security automation and management of anomalies, stating that the SOAR system is part of

the equation.

A substantial proof that SOAR systems are at the peak of demand and maturing, Splunk

acquiring Phantom, FireEye acquired Invotas, IBM acquired Resilient, and recently Microsoft

and Rapid7 acquired two more security companies. Most of these companies specialise in

SOAR systems (Jon Oltsik, 2018).

2.6 Artificial Intelligence Implementations in Security

The term "artificial intelligence" (AI) existed for more than 60 years, back when John

McCarthy, a mathematician and also known to be the creator of Artificial Intelligence,

defined a machine that could do what humans are able to do (Shannon, 1956).

With all the advancements that have been made towards Information Technology (IT) present-

ing internet users with convenience and accessibility in accessing diverse information, these

advancements have brought a variety of cybercrimes (Clough, 2015). Cyberattacks present a

global threat to computer systems rapidly, especially nowadays, where almost everyone could

have the knowledge and tools for attacking computer systems. Traditional security software

and Conventional fixed algorithms, such as detectors, are becoming insufficient in monitoring

30 Literature Review

and protection systems. There is a need for a more astute security implementation capable

of differentiating normal and abnormal activities, also, able to react and make decisions in a

timely manner (Dilek et al., 2015). This scarcity could be satisfied with innovative solutions

such as Artificial Intelligence, giving the learning capabilities in monitoring, detection, and

making a decision that is similar to a human’s decisions (Nogueira, 2006; Tyugu, 2011). With

all of the possibilities offered within Artificial Intelligent solutions such as Neural Networks,

Machine Learning, Pattern Recognition, etc., there is a huge potential in such solutions in

improving the security of computer systems (Dasgupta, 2006; Patel et al., 2012; Xiao-bin

Wang et al., 2008).

As previously mentioned, AI implementation could perform human cognitive abilities and

could have sensory functions such as learning, analysing, and reasoning, thus detect then

categorise normal activities and differentiate them from abnormal behaviours.

Survey papers (Berman et al., 2019; Buczak and Guven, 2016; García-Teodoro et al., 2009;

Nguyen and Armitage, 2008; Sperotto et al., 2010; Wu and Banzhaf, 2010) have mentioned

and described the usage of Machine learning in cybersecurity and explained how it solves big

issues of cyber problems.

Some papers have explained the usage of machine learning (ML) or its deep subset learning

(DL) in cybersecurity for particular applications such as intrusion detection, malware, and

spam detection (Apruzzese, G.; Colajanni, M.; Ferretti, L.; Guido, A.; Marchetti, 2018;

Xin et al., 2018). In (Wickramasinghe et al., 2018) the authors explain the usage of DL

in defending cyber-physical systems. For the Internet of Things (IoT), there have been

achievements done in systems security ML (Al-Garadi et al., 2018).

2.6.1 Artificial Intelligent Intrusion Detection Systems

National Institute of Standards and Technology (NIST) describes intrusion as the attempt

of compromising confidentiality, integrity, or availability (CIA). An intrusion Detection

2.6 Artificial Intelligence Implementations in Security 31

System (IDS) is a hardware or software that can monitor computer systems or network

communication to detect signs of such an attempt (Bace and Mell, 2001; Liao et al., 2013).

There have been several research publications proposing implementations of different AI

solutions to build an enhanced IDS systems. In (Linda et al., 2009), the authors presented

an IDS Neural Network model able to detect intrusion attempts with a 100% detection

rate. A similar paper has shown an increase in the detection rate in mobile IDS by reducing

false positives using Neural Network (Barika et al., 2009). Another paper has shown an

implementation of an anomaly IDS using Neural Network by training the model with the

KDD 1999 Data; the model was successful in learning packet behaviour (Al-Janabi and

Saeed, 2011). Using the same dataset, a paper (Ferreira et al., 2011) has presented another

Neural network-based IDS with an accuracy of 99.98% detection rate. Another paper with

a Neural network-based IDS using the KDD 1999 dataset has seen a 100% detection rate

similar to conventional IDS. However, it has produced a performance increase in detecting

Denial of Service attacks (Barman and Khataniar, 2012). There are more papers that have

presented similar implementations (EshghiShargh, 2009; Ferreira et al., 2011; Hassan, 2013;

Herrero et al., 2007; Jongsuebsuk et al., 2013; Ou et al., 2011; Shao-jing et al., 2011; Shosha

et al., 2011; Zhang et al., 2011).

2.6.2 Artificial Intelligence in Access Control

Authentication is a critical step in authorising users to access protected information and

resources safely. Throughout the years, there have been many methods used to authenticate

users. Text passwords are the most common authentication method. Since 1979 a research

of over forty years old showed that passwords come with large security risk (Morris and

Thompson, 1979). However, since then, there have been different methods of access control.

Table 2.4 shows the ontology of different authentication methods that have been used or

could be used to assist in authorising users.

There is a continuous demand in finding new means of authenticating user’s identity (Purgason

and Hibler, 2012). This subsection will cover related work where some of the authentication

32 Literature Review

Table 2.4 User Authentication Methods Ontology

Possession Based Knowledge Based Behavioural Bio-
metrics Based

Physical Charac-
teristics Based

Keys Password Signature Fingerprint
Universal 2nd Factor Secret Questions Voice Face
Identification Docu-
ment

Input Device Be-
haviour (mouse
movements, key-
board strokes)

Iris

Multi-factor Authen-
tication
Smartcards
Device Properties

methods shown in table 2.4 are assisted with Artificial Intelligence to improve its performance

and increase the general security of access control.

There has been a number of research papers published on how to collect and analyse users

behavioural biometrics data to be used as an authentication method or as a second-factor

authentication. Although some papers have shown successful implementation of identifying

imposter and differentiating between individuals without the use of AI by analysing rhythms

in users typing (Bergadano et al., 2003), recent studies have shown that the newer generation

of malware and bots are capable of performing synthetic attacks (Serwadda et al., 2011).

Therefore, there is a need to implement an intelligent system to counter these types of attack.

Artificial Neural Networks (ANN) were used in a study to build an authentication and

discrimination system by recording keystrokes and the time interval between presses of

users when inputting their passwords; this was then converted into an RGB histogram and

train the ANN with this data. The system was successful in identifying 90% of legitimate

attempts and 90% of frauds (Alpar, 2014). Another paper had a similar implementation for

a web application where the users’ password input properties such as timing interval and the

duration of keystrokes were used to train an ANN. This implementation has produced an

average of 1% error rate. Similarly, in (Purgason and Hibler, 2012), the authors have produced

encouraging results in collecting and analysing behavioural data in order to authenticate

user’s identity.

2.7 Shortcoming of existing HPC Security Practices 33

In a 2019 study, authors have discussed the importance of artificial intelligence in user

authentication. Authors have developed a program to gather data from a small number

of users accessing the website and recording (i) mouse click timestamp (ii) coordinates of

the mouse and browser window (iii) URL frequency related information. The data was

then fed to multiple machine learning algorithms and showed an increase in the accuracy of

classification compared to other studies (Kogos et al., 2019).

With the increased usage of internet in users’ daily life (We Are Social, 2020), there is

enough data to be collected from their users’ interaction with a web page in order to identify

each user uniquely (Abramson, 2014a,b; Abramson and Aha, 2013) or partially (Fridman

et al., 2013, 2017). This has not been implemented in HPC systems, with the potential of

preventing unauthorised access. Implementing a system to collect the required data from the

users and use it to identify threats would be a contribution to the community.

2.7 Shortcoming of existing HPC Security Practices

High-Performance Computing Systems are used to for computationally and data intensive

applications, meaning that any performance degradation caused by security implementations

such as IDS/IPS are undesirable. In addition, HPC systems are typically run in critical

industries, process valuable information, and serve certain important customers. Due to this,

High-Performance Computing environments represent a unique paradigm when compared

to other computer systems environments (Bridges et al., 2002). Backing up this statement,

HPC systems have distinct modes of operation, in addition to that the exotic applications

used by the users which tend to be open to users raising a high security threat (Peisert,

2018).

According to HPCSec, a security specialist for HPC environments, HPC is a niche area where

most security experts have not had the experience to work with HPC technologies. Also,

security practices are not applied within the HPC field, and traditional security tools are not

built to be suitable for HPC systems (HPCsec, 2019).

34 Literature Review

The University of Huddersfield’s High-Performance Computing QueensGate Grid (QGG)

receives a large number of SSH login attempts on a daily basis. For example, table 2.5 shows

the number of failed SSH login attempts recorded in a 24-hour timeframe per country; the

total number of attacks was 46890 from 9378 different IP addresses, all of which were banned

from further attempts. During the 24-hour timeframe, login attempts were limited to 5

attempts per IP address every 15 minutes, meaning this number could be vastly increased if

such limitation did not exist.

Table 2.5 Failed SSH login attempts on QGG during a 24-hours timeframe

Country SSH Attempts # IP Addresses
China 18145 3629
United States 4850 970
France 3235 647
Brazil 1830 366
India 1645 329
Germany 1405 281
Singapore 1400 280
South Korea 1315 263
Other 13065 2613
Total 46890 9378

Looking at the literature, there has been little achievements in ML for security systems in

distributed systems, and no advancements in security of HPC.

2.8 Shortcomings of the Existing Security Implementation for

HPC

Throughout reviewing the literature, it was proven that attacks have a life cycle. Attacks

such as breaches take years to discover, especially in large organizations (Verizon, 2020).

Based on the literature review conducted of the current state of HPC systems in terms of

security and access methods, the following shortcomings are apparent:

1. SSH is used by most HPC centres and has not advanced in security; it relies on a

trusted-host authentication mechanism (PKI) by blindly trusting the host providing

2.9 Research Questions 35

the keys, making it an insecure practice hence the May 2020 attack where a malicious

group targeted academic HPC centres in order to mine cryptocurrencies. The group

was able to get access to several HPC grids by hopping between compromised SSH

accounts.

2. Portals lack the automation in managing HPC security. Some portals also lack basic

modern security requirements, as proven in the Open OnDemand portal.

3. No Artificial intelligent based implementations to autonomously manage security within

the HPC environment.

4. No standard framework that was developed for HPC systems to address the issues

stated above.

The gaps in knowledge identified above demonstrate a lack of a unified approach across the

UK research and Higher Education institution for secure access to the HPC systems. There

are developments of HPC portals that attempt to migrate security issues, Nevertheless, they

lack in automating the task of detecting anomalies of users’ activities using AI tools.

In chapter 3, the Bearicade system is proposed to overcome the shortcomings of the existing

security and access systems.

2.9 Research Questions

There a three main research questions that need to be addressed in this research:

• How can the technologies and data provided by this research contribute to the develop-

ment and implementation of SOAR system in HPC?

• To what extent such an implementation can protect HPC systems and authorised

access?

• Will such implementation help in the Management and the usability of HPC systems?

36 Literature Review

In order to address the research questions and validate and evaluate the proposed novel

SOAR framework for HPC system security, a combination of quantitative, qualitative and

experimental empirical research methods will be used. Surveys of users’ experience will

be used to gather and analyse qualitative data on the system’s usability. Data gathered

from the experiments of SOAR implementation and deployment of AI tools in the existing

HPC systems will be used to validate and evaluate the proposed novel system for enhancing

security in HPC systems.

Chapter 3

Bearicade

3.1 Introduction

Security Orchestration Automation and Response (SOAR) has a potential to counter emerging

security concerns in HPC systems. The SOAR principles were used when developing a novel

framework - Bearicade to address the concerns in HPC systems security.

“When designing an HPC portal, as for any other software, use cases have to be thoroughly

studied and specified. All HPC portal functions and features are not always used or even

used at all, depending on the use case. Not all HPC portal users have the same objectives

or use the same workflows. The same applies to organizations delivering the HPC service”

(Calegari et al., 2019)

Bearicade is built on well-known browser features, and it allows for smooth management

and connectivity to HPC systems without requiring specialised user training. The Bearicade

system’s architecture is depicted in Figure 3.1. The two-factor authentication used for user

registration and authorization is either a time-based one-time password or an universal

second factor (U2F). System protection is accomplished by continuously tracking, analysing,

and interpreting data, such as user interaction, server requests, devices, and geographical

locations, among other things. System managers will be able to see unusual user behaviour.

and will facilitate prompt actions in order to mediate the threats. Also, the system does

38 Bearicade

not use SSH as its main external access gateway to the system. Instead, it uses the web

dashboard as a gateway.

3.2 Software Architecture

B
ea

ri
ca

de Web Portal (Frontend)

Controller (Backend)

Inception Middleware

OS System Layer

Nodes Physical Layer

Fig. 3.1 System Architecture Layers for Bearicade (Al-Jody et al., 2020)

In order to demonstrate the performance and the functionality of the proposed framework

and to gather information required for the system to be implemented and developed, a

proving ground has to be set up in the form of an HPC system test-bed. Bearicade will be

deployed and used in the University of Huddersfield’s QueensGate Grid (QGG) main HPC

management system. Bearicade will be implemented on top of the three HPC systems layers,

as seen in figure 3.1, similar to other software access methods for HPC systems; the three

base layers are the physical layer, the system layer, and the middleware layer.

3.2.1 Physical Layer

The physical layer is the base hardware layer of any HPC systems, representing the backbone

of HPC systems granting the powerfulness for the system. In a typical HPC environment,

grid utilizes the power of large sets of computing resources to meet the needs of compiling

intensive high-performance computing, as represented in figure 3.2. Grids consists of multiple

clusters that could be in numerously geographical locations, each of the clusters is a set of

nodes often connected. The clusters mainly consist of a single head node and a number

3.2 Software Architecture 39

Fig. 3.2 Typical HPC Grid Components

of worker nodes. Clusters and nodes could have a variety of functions contributing to the

operability of an HPC grid, i.e. compute, network, management, backup, and storage.

Customarily grids should be connected via a network, enabling the ease of managing all

nodes within each cluster.

Bearicade is designed to run in a separate node(s), meaning that it does not affect the current

configuration of any HPC systems. Bearicade could be deployed on a bare-metal machine or

container ready machine as will be explained in the Deployement of Bearicade section.

3.2.2 System Layer

System layer is the base Operating System (OS) layer of an HPC system, a number of HPC

centres uses RedHat Linux, including RedHat Enterprise Linux (RHEL) and CentOS, which

is compiled version of the open-sourced RedHat Linux. Over the past years, a number of

HPC-ready OS made available such as ROCKS (Rocksclusters, 2018) being one of the last

surviving OS as of 2018 is also based on CentOS. Another popular Linux distributions are

SUSE Enterprise Linux (SLE) and Debain based distributions such as Ubuntu. Both RHEL

40 Bearicade

and SLE uses RPM Package Manager (RPM) to build sources for HPC systems (OpenHPC

Community, 2018).

3.2.3 Middleware

At the University of Huddersfield, deployments of High-Performance computing clusters are

automated through the use of an orchestration tool. This tool is called Ansible, which is an

open-source software provisioning, configuration management, and application-deployment

tool (Red Hat, 2019).

An ansible playbook has been developed at the University of Huddersfield (Higgins et al.,

2018), the playbook uses OpenHPC, which provides all HPC components in a package

(OpenHPC Community, 2018). For the deployment and provisioning of the nodes in every

cluster, the playbook uses Extreme Cluster Administration Toolkit (xCAT), which is an

open-source deployment and provisioning middleware (XCAT, 2018). By providing a config

file and a machine file to include the list of nodes, sensible playbill copied install, boot, and

manage all nodes (Clusterworks, 2018).

3.2.4 Bearicade Stack

Bearicade is a full-stack application that drives the 3 HPC layers (Physical, System, and

Middleware), as with full-stack components, there are two layers to the stack. The controller,

which is the backend of Bearicade being the closest to the HPC system layer. It handles

operations with the system components below it as shown in figure 3.2. The second layer of

the stack is the Web portal which is the frontend of Bearicade and the closest to the users; it

handles users’ interactions and uses the controller to feedback to the system.

3.2 Software Architecture 41

Data Storage

Bearicade is a data-driven framework, meaning that without the information collected from

the users, it would not be able to achieve its purpose. Due to the large number of users of

Bearicade and the number of data generated (i.e. activity, logs), Bearicade requires a reliable,

scalable, and most importantly, secure database. Bearicade makes use of two databases

under the same server, the first of which is an authentication database that stores users login

credentials, sessions, system configuration, and attempts. The second database is used to

store all activities of the users; examples of these data include: how the users interact with

Bearicade, what commands and activity they perform, and classification data. MySQL is the

database server used, is an open-source relational database management system. Data such

as web-server logs and other logs are stored locally in the gateway, enabling rapid append of

data. Section Data Acquisition will explain the types of information being logged and the

purpose of these data.

Controller

Bearicade’s backend is the heart of Bearicade, driving and managing all components together.

The controller is divided into three sub-layers in Bearicade’s backend that together form the

controller; this way, the complexity of the controller is reduced, reducing the load and issues

that could occur in the system. The controller layers are:

• Systems Controller: This layer is what interacts with actual head nodes of the

distributed system. It manages creating, reading, updating, deleting, and syncing local

users to and from all nodes,

• Terminal and File Manager Controller: Terminal and File Manager described in

section (Web-based Terminal and File Manager) uses this layer in order to initiate SSH

login to different nodes, sending commands, and perform file manager actions.

42 Bearicade

• Users Management Controller: This layer has no major interaction with the nodes,

as it’s only used to store users’ account information, credentials, activity, and actions.

All of these data are stored in a separate database

On the ground of having multiple layers to the controller, interactions with the controller are

managed by a single endpoint via a Representational State Transfer (REST) Application

Program Interface (API). Especially with modularity in mind, REST API gives the ability

to developers to design modular plugin for Bearicade, all with the least cost on performance

on the gateway node.

By design, the controller is what manages all parts of the system, meaning that this layer is

the most important layer of Bearicade in the sense of enhancing security. Therefore, it is

crucial giving guidelines to this layer; guidelines will determine what the controller is able

and not able to do. These guidelines are:

1. Data validation: part of quality control of the system, all data received from any

user is validated against a set of requirement defined for each action. This includes the

data type and data filtering.

2. Predefined actions: set of actions are predefined for the controller. The controller is

not able to do additional actions unless implemented by administrators.

3. Minimal User Input: inputs from users are kept to a minimum to ensure the ease

of data validation and reduce risk.

4. Action Logs: all activities that a user performs is logged automatically, as shown in

table (3.3) logs include the what, who, and when data from an activity no matter what

the outcomes are.

5. Linux Permissions: Bearicade Controller runs on the gateway system as a normal

user with privileged access to necessary actions/commands only.

3.2 Software Architecture 43

Web Portal

Bearicade is designed to rely the most of it’s functionality on the backend, meaning multiple

web portals could be developed on a single backend. Nevertheless, a web portal (frontend) is

the only way users are interacting with the systems. Therefore there are multiple aspects

that had to be considered in the design process for this project, as part of the functional and

non-functional requirements for web portal. The frontend is where most of the requirements

are implemented.

• Usability: part of the non-functional requirement for an HPC web portal as explained

in section (Usability)

• Job and Data Management: most operative function for an HPC web portal, discussed

in section (Job Management and Data Management)

• Performance: Bearicade does not impact the performance of HPC systems as it lies in

a separate gateway node.

Keeping the requirements in mind, the web portal had to be designed accordingly.

Deployement of Bearicade

Deployement Orchestration

To keep consistency in the software architecture of the middleware described in section

(Middleware), the deployment process followed a similar orchestration method used in

(Higgins et al., 2018) by developing an ansible playbook. Ansible as an orchestration tool is

a great choice for HPC since it allows access to the nodes in a cluster by using SSH with the

default Public Key Infrastructure. This allows the tool to work without having third-party

agents to be installed on the nodes nor creating a secondary Public Key Infrastructure key

sets for the purpose of establishing a connection. Also, the configuration procedure is divided

into roles which are stored in a YAML file on the system, allowing an administrator to

easily toggle tasks, tweak the configuration, and define nodes by copying and modifying the

44 Bearicade

configuration file without the need for an external database, or central providers which is

exactly what is needed for a geographically distributed systems such as grids.

Containerized vs Bare Metal Environment

Running the Bearicade stack or any software will require a bare metal server to run on, a

containerization solution such as docker on top of the bare metal server could be used to

isolate the software environment. This allows the software to be in a separate environment

which tends to have a better security as it separates the hosts files from the container files.

Containerized solutions could be an enhancement to a system when it is combined with an

orchestration tool as it would allow the reconfiguration of the software without requiring to

re-install Operating System on the host’s system, without compatibility being an issue as

it shares the hosts operating system. In regards to performance, containerization usually

tends to add an additional layer to a system, such as a docker engine in the case of docker.

In HPC systems, both performance and isolation are required (Xavier et al., 2013), and for

this reason, the Bearicade stack could be installed on a separate server node that could act

as the gateway node. This should not affect the performance of the actual HPC compute

nodes at the same time allowing the isolation needed for better security practices and the

ease of reconfiguration. Bearicade stack can be installed on a bare-metal machine without

the use of containerization software. Also, it can be deployed on multiple containers to allow

for better continuous development.

Bearicade Stack Deployement

Bearicade stack consists of 3 Ansible playbooks, each with its own roles. Playbooks allow

administrators to run a fully configured and user-ready Bearicade stack

1 nodes:

2 - name: panda

3 ip: 167.71.138.98

4 ssh_port: 22

5 gateway: true

6 headnode: true

3.2 Software Architecture 45

7 - name: polar

8 ip: 172.12.5.200

9 ssh_port: 22

10 gateway: false

11 headnode: true

12 workers:

13 - 172.12.5.201

14 - 172.12.5.202

15 - 172.12.5.203

Code 3.1 API for listing users

Table 3.1 Playbook roles

bear_install bear_add_user bear_reinstall
validation validation validation
mysql bear/add_user remove
php bear_install
bear/bearify
caddy
traefik
bear/post_bearify

3.2.5 Data Acquisition

As mention in section 3.2.4, Bearicade is a data-driven framework, all of Bearicade’s function-

alities are made possible by the data it collects. Data is what makes the identification of a

wide variety of attacks and the prevention of such attacks possible on a system. Thus, digital

data collection is an important aspect of security for many organizations (Cobb et al., 2018).

As shown in figure 3.3, from an HPC user’s perspective regarding granting access to the

system, in order for the request made by the user attempting access to be approved, the user

must provide multiple sets of data. The first set is the User Identification Data (UID);

this data is stored as plain text in the database. It would be available for all administrators

to preview at any point in time. User’s Identification Data is as follows:

46 Bearicade

Fig. 3.3 HPC Systems Architecture in the University of Huddersfield from a user’s perspective

• Email Address: In the registration phase, the vital data could be used to decide if the

domain used in the registration to be allowed or not. For example (’*.ac.uk’ could be

used to only allow/deny International academic institution). Also, it is used to contact

the user at any time. Depending on the scenario, it may be used as a multi-factor

authentication if needed.

• Name: only used for reference; also, it could be used as part of the verification process

if needed.

• Username: similar to name, with the addition of being used part of the student

verification process (e.g. Student/Researcher/Staff ID).

• Identification Number: randomly generated and added to the user database, making

it effortless for the system to manage users.

The second set of data are the User Secret Data (USD), the vital information that belongs

to the user. The majority of these data are hidden from administrators.

• Two-factor authentication secret: This secret is randomly generated by the system

using a Cryptographically secure pseudorandom number generator (CSPRNG). during

3.2 Software Architecture 47

the registration process and is presented to the user to be saved or scanned via a Quick

Response code (QR).

• Password: Taken from the user and checked on client-side and server-side for strength

requirements predefined. The Password is hashed via bcrypt with an expensive key

setup phase. Also, a 256-bit of random salt added to every hash, making the data is

resilient to data breaches and rainbow tables.

The third set of data are User Classification Data (UCD). These data are collected by

the system from the user’s connection such as:

1. Devices: from every device the following data could collect:

• System Languages.

• System fonts.

• Platform such as operating system, version.

• Web programs such as Java.

• Local system time.

2. Browsers, play a vital role in data collection, from the browser many values could be

gathered, to help improving the system some of these data are:

• Same domain Cookies (e.g. as the system domain is qgg.hud.ac.uk it is part of

hud.ac.uk , meaning all cookies set to *.hud.ac.uk would be gathered.

• Browser version and extension.

• Navigation such as browser history and Referrer.

• Screen resolution.

3. Internet connection is really important in our case since the system could collect

Internet Service Provider (ISP) details, Internet protocol address and sometimes internal

IP address. From these details we could identify:

• Virtual Private Network is used (VPN), The Onion Router (TOR), Crawlers.

48 Bearicade

• IP Threat level (from popular databases).

• Country, and City (accuracy depending on ISP).

• Proxies used.

• Timezone (to be compared with browser and device).

The final set of data is the User Behaviour Data (UBD); these data summarizes how the

user is interacting with Bearicade.

There are two components in this set, the first being the data collected from the users’

interaction with the website via hardware devices such as keyboard or mouse. Collection of

this information has to be done via the client-side, therefore, a Javascript library (Al-Jody,

2019) was implemented into Bearicade that would allow the collection of the behavioural

information shown in table 3.2. Behavioural data is then passed to the backend server for

validation and storage.

Table 3.2 Example of the behavioural data collected from Bearicade users

Data Description
userInfo record browser/device details
clicks track mouse clicks
mouseMovement track mouse movement
mouseMovementInterval time between tracking mouse movements
mouseScroll track mouse scroll
timeCount track time

The second component is the user’s activity which is collected from the actions the user

performs from the web-based terminal and file manager, and if the user is an administrator,

more data are collected such as create, read, update and delete (CRUD) functions on the

system’s data (i.e. users, API). An example of this information is shown in table 3.3.

Table 3.3 Action data collected from Bearicade users

ID date component action
1 2020-01-17 11:27:58 System Created User:"u1762746"
1 2020-02-03 12:08:30 User Deleted:"106"
1 2020-03-01 18:13:11 Terminal Command:"ls -la". Sent to: "cygnus" [Success]
1 2020-04-01 18:13:06 File Manager Command:"ls" [Success]

3.2 Software Architecture 49

More data are collected from unauthenticated users to help secure Bearicade from anonymous

users. The information is collected when an anonymous user access Bearicade and attempts

to authenticate. Attempts data includes Internet Protocol (IP) address of suspected users,

along with the total of attempts and expiration date of a ban which is configurable within

Bearicade.

Another set of information that is collected by Bearicade is the data from the web-server,

and it holds records of requests made to any endpoint of Bearicade; such records holds data

shown in table 3.4

Table 3.4 Example of Bearicade’s web-server data log

Data Type Information Example

Request

Method GET, POST
Protocol HTTP/2.0
Scheme HTTPS, HTTP

Host, path, escaped queries, fragments qgg.hud.ac.uk, /access
?action, #top

Unix timestamp
Size
Status 200, 404, 301
Latency

User Identification

Man In The Middle detection likely, unlikely
Referrer
Cookie authentication token
Remote IP address and port
Browser user agent (OS, browser versions)

3.2.6 Application Programming Interface (API)

The system uses an Application Program Interface (API) which is a software intermediary

that contains predefined actions and dictates how the software’s components should interact

with the servers. API is needed so that it could authenticate the different users’ interactions

with the back-end servers, maintaining privacy and authority of the data.

When a client loads the web page, depending on the user’s role/permission, the system

renders all elements required for the selected role. When all the elements have loaded, the

system multiple POST requests to the API in order to get all the data required to place for

50 Bearicade

Fig. 3.4 Application Program Interface (API)

the elements. At this point, all the steps above are done on the client-side except for the

page data. From now on, the API receives the request and starts processing it. As shown in

figure 3.4, the API server checks for the users’ Login token and tries to verify it in order to

get the following variables:

• If user’s token is active and logged in without a change in the User Classification Data

(UCD).

• If the user has sufficient permission to run the requested action.

• If the user’s request is valid and requiring an existing function from the API.

After all of the variables above are gathered and depending on the output, the API processes

the request with the Database and returns a response to the client, which might contain

valid output or an error for the user interface to process.

Below is an example of a request made to the API end-point, with no token, cookie, or action

provided

1 > POST /controller/api.php HTTP /1.1

2 > Host: qgg.hud.ac.uk

3 > User -Agent: insomnia /6.5.4

4 > Accept: */*

5 > Content -Length: 0

Code 3.2 Request Header

3.2 Software Architecture 51

1 < HTTP /1.1 200 OK

2 < Content -Type: application/json

3 < Server: Caddy

4 < X-Powered -By: PHP /7.2.14

5 < Date: Mon , 10 Jun 2019 21:42:34 GMT

6 < Content -Length: 30

Code 3.3 Response Header

1 {

2 "error": "Permission Denied"

3 }

Code 3.4 Response Body (JSON)

From the example above, the server checks for the users provided details and returns an

error: permission denied.

If the same request was sent again with modified header values, API will make sure to produce

the required response. The request has an added query of a and value of failsCount in-order

to return the number of failed logins for the system.

The Request header will be as follows:

1 > POST /controller/api.php?a=failsCount HTTP /1.1

2 > Host: qgg.hud.ac.uk

3 > User -Agent: insomnia /6.5.4

4 > cookie: authID =7 b8f23a657ba8723ce6293257fcd9a80c3a40966; config=null

5 > Accept: */*

6 > Content -Length: 0

Code 3.5 Request Header

1 {

2 "error": false,

3 "isAdmin": true,

4 "id": "1",

5 "group": [

6 {

52 Bearicade

7 "name": "Administrator",

8 "id": "1"

9 }

10],

11 "failsCount": "515"

12 }

Code 3.6 Request Body

API Actions

As stated, the API has abundant functions to pull all required data for all software components.

The API checks for permissions and the user’s role before attempting to execute an action.

Some actions that require extra permissions would be stated in the action declaration before

attempting to query the data, for example:

1 //list all users action

2 if($isAdmin){

3 $res[’users’] = $conn ->query("SELECT * FROM users")->fetchAll(PDO::

FETCH_ASSOC);

4 }

5 else{

6 $res = array(’error ’ => ’Permission Denied ’);

7 }

Code 3.7 API for listing users

Example list of available actions for Users and Groups control and its functionality:

• listUsers: List all system users from all roles.

• deleteUser: Deletes a system user from the database without deleting local systems

account or data.

• toggleUserActive: Enable or disable user’s account temporarily.

3.2 Software Architecture 53

• listGroups: List all system groups.

• createGroup: Create a group (different from local system groups).

• viewUserBrowserRecords: All devices and browsers a specific user has used to

interact with the system.

• viewUserActivity: List what the user is performing on the system or the web

dashboard.

• viewUserLoginRecords: Every login from a user.

• viewUser: List User Identification Data.

API Keys

The user requesting the action can be authenticated in two ways; the first is as explained

before, being logged in and has a valid cookie containing the login data.

The second method is via API keys, this approach was implemented in order to give the

system a modularity aspect where developers are able to incorporate an additional module

that might be able to enhance the security or improve user experience.

1 MTIzNDU =. dab3734e2eaddcba5e4bb5a8234317e1

Code 3.8 API Key

Keys consists of two parts; the first is a base64 encoded ID of the user; the second part is the

actual key (example 3.8). The key is generated by using an OpenSSL pseudo-random string

of bytes consisting of 20 characters, following that MD5 hash is calculated of the random

string, and the hash is then password hashed using the algorithm bcrypt.

API keys can be authenticated to access API the system only if no present cookie is provided.

54 Bearicade

User Authentication

Users accessing Bearicade’s RESTful API end-point is a multi-process procedure. Figure 3.5,

describes this procedure in details, and the processes go as follows as the users access the

end-point:

1. The server checks for a present authID cookie; if a cookie is available, the server will

check with the backend database to see if a valid session exist; if no valid session were

found, then the system would deny the request.

2. If the server could not find a cookie, the server would check if the HTTP_API_KEY

header is set. If the header is set, then thorough checks will be carried to confirm the

key’s validity:

2.1. Key length is valid.

2.2. Key containing two parts separated by a dot (.).

2.3. Part of the key is an encoded base64 code.

2.4. Part of the key returns a valid user ID.

3. if the session of the cookie active or API key is valid, the server will check if an action

is supplied, which would then check if the user requesting the action is permitted to

that particular action. If permitted, the server would process the action, returning the

data requested. If not, the server would deny the request.

3.2 Software Architecture 55

User

TRUE

FALSE

Cookie
authID
present

FALSE

TRUE

Session
active

Permission Denied

TRUE

FALSEAction
supplied

FALSE

TRUE

User
Allowed
Action

Process Action

TRUE
TRUE

FALSE

Header
API_KEY

Set

FALSE

Header
API_KEY
Valid

Fig. 3.5 Authenticating Users to Bearicade’s RESTful API

3.2.7 Web-based Terminal and File Manager

Fig. 3.6 Terminal and File manager API

Similar to the API used to establish a connection to the database, Terminal and File manager

API follows the same architecture to allow users to access local files all from within the online

portal.

56 Bearicade

As demonstrated in figure 3.6, following the checks made by the web-server for the session,

permission and request. Following the initial checks, which would confirm the integrity

of the user, the system checks for the target path attached to the request, ensuring the

confidentiality of the data and the availability of the system are left intact.

Subsequently, the system loads a generated private key for the targeted user, depending on

the requested action, an SFTP or SSH connection is created and is valid for one request only.

This connection would still follow the systems policies and permissions and would log in as

the user who commenced the request.

There are additional features in the system, which are smart filters that are able to deny

a command providing that the command is blacklisted. For example, if the user runs a

command in /home/user folder such as:

1 rm -rf *

Code 3.9 Deleting files

This command would be allowed and passed to the system. However, if the user is running

the following a slightly modified command in /home/user folder such as:

1 cd /home/anotherUser /; rm -rf *

Code 3.10 Deleting another users files

This command would be denied by the filter, and the user attempting would be flagged, and

their account would be deactivated. Clearly, even if the filter has failed and the command

was passed to the system, user permissions of the system would deny it. The filter only gives

an insight into the users’ activity to systems administrators.

3.3 Security Implementations

According to William Cheswick and Steve Bellovin, "... any program, no matter how

innocuous it seems, can harbour security holes ... We thus have a firm belief that everything

3.3 Security Implementations 57

is guilty until proven innocent." (McGraw, 2006; Viega, 2002). A statement that has proven

to be true by the number of cyberattacks that has happened targeting multiple institutions.

In May 2020, a malicious group targeted academic data centres for CPU cryptocurrency

mining purposes. The group has successfully hopped between compromised SSH accounts

to get access to different HPC grids (EGI CSIRT, 2020). Many of the HPC centres have

been affected by this cyberattack and this has caused a lengthy downtime in some cases.

Fortunately for the University of Huddersfield’s QueensGate Grid, Bearicade was put in

place and remote SSH functionalities for users were disabled.

Throughout the years, there has been a number of published papers describing guidelines on

building secure web applications. However, as technologies advances, cyber-attacks such as

compromising HPC systems advances and becomes increasingly advantageous. Implementing

a number of security mechanisms does not build an invulnerable system; instead, cybersecurity

is a continuous process (Arbaugh, 2002). Software development is a challenging process,

especially with limited resources (Fenton, 2014), adding to that building secure software is a

time consuming and intense challenge (Abunadi and Alenezi, 2016).

3.3.1 The Open Web Application Security Project

The Open Web Application Security Project (OWASP) is a nonprofit organization led by

community security experts providing open-source projects, educational training conferences,

and guidelines aiming to build secure software systems and securing the web. One of the most

important projects by The Open Web Application Security Project is OWASP top-ten which

focuses on developers and web application security, providing a broad list of the most critical

security risks targeting web application. The latest version of this document is 2017; this data

was gathered from specialized security firms, individual surveys, data span vulnerabilities

from hundreds of organizations, and live applications and APIs (OWASP.org, 2017).

This section will focus on details of the top ten security risks explaining the risks that might

have an effect on Bearicade, their impact, and prevention techniques. Table 3.5, shows the

OWASP top ten list of security risks (A1-A10). Some of these risks arise when a particular

58 Bearicade

Table 3.5 OWASP top ten risks 2017

Security Risk
A1 Injection
A2 Broken Authentication
A3 Sensitive Data Exposure
A4 XML External Entities (XXE)
A5 Broken Access Control
A6 Security Misconfiguration
A7 Cross-Site Scripting (XSS)
A8 Insecure Deserialization
A9 Using Components with Known Vulnerabilities
A10 Insufficient Logging & Monitoring

technology is implemented in the web application. Therefore, some of the risks are not a

potential problem for Bearicade, such as A4 XML External Entities (XXE) due to not having

an XML processor.

Injection

A1 Injection is a top-ranked risk in the OWASP top ten for 2013 and 2017 issues. At any

aspect of the application where there is data handling, there is a potential vector for injection.

Since Bearicade relies on SQL database, there is a potential for SQL Injection vulnerabilities

which could result in a data breach, corruption, unauthorized modification, and denial of

service. Bearicade provides a safe REST API described in Application Programming Interface

(API). The API provides a parameterized interface with server-side input validation in order

to eliminate hostile data. Requests made to the API are only available to authenticated

users, and all requests are logged for continuous monitoring.

Broken Authentication

A2 Broken Authentication is the 2nd top-ranked risk in the OWASP top ten for 2013 and

2017 issues, Broken Authentication is when an attacker has access to a list of login details

combinations, or a breached datasets of username and passwords and the attacker is able

to perform a brute force type of attack on the system by trying out combinations, this is

3.3 Security Implementations 59

possible at any point of the authentication process. Bearicade’s users are obliged to use a

password with a specific strength that is then scrutinized on the backend using a pattern

matching and minimum entropy calculation where a minimum score that is measured on the

probability of guesses is allowed. Another prevention method implemented on Bearicade is

a Time-based One-Time Password (TOTP) two-factor authentication (2FA) system. The

users are not able to register on the system without 2FA. Also, there is a configurable limit

on the number of tries for failed login attempts. Upon exceeding the limit, the attempting

user will be banned by IP address. Further prevention could be done by disabling the user

account that is being targeted.

Sensitive Data Exposure

A3 Sensitive Data Exposure is performed by an attacker by stealing data from the user’s

client such as a browser through man-in-the-middle (MITM) attacks or gathering plain-text

data from a server through a data breach, or performing cryptographic decryption on data

that was encrypted using a weak algorithm. Although MITM attacks usually target the

client-side and most popular browsers and security software have implemented a method to

protect the user against them, misconfigured backends could assist an attacker in successfully

hijacking the client’s communication with the server.

60 Bearicade

Table 3.6 Recent SSL/TLS Vulnerabilities and Bearicade’s protection against exploitability

Exploits Not Vulnerable
Heartbleed (CVE-2014-0160) ✓

CCS (CVE-2014-0224) ✓

Ticketbleed (CVE-2016-9244) ✓

Secure Renegotiation (CVE-2009-3555) ✓

Secure Client-Initiated Renegotiation (CVE-2011-1473) ✓

CRIME, TLS (CVE-2012-4929) ✓

BREACH (CVE-2013-3587) ✓

POODLE, SSL (CVE-2014-3566) ✓

SWEET32 (CVE-2016-2183 CVE-2016-6329) ✓

FREAK (CVE-2015-0204) ✓

DROWN (CVE-2016-0800 CVE-2016-0703) ✓

LOGJAM (CVE-2015-4000) ✓

BEAST (CVE-2011-3389) ✓

LUCKY13 (CVE-2013-0169) ✓

RC4 (CVE-2013-2566 CVE-2015-2808) ✓

In the last ten years, there has been a number of Common Vulnerabilities and Exposures

(CVE) shown in table 3.6 that has been used in attacks such as MITM. These CVEs

have targeted specific versions of SSL/TLS. In order to be well-protected against these

CVEs, Bearicade is not supporting older versions of SSL/TLS and only offer a successful

handshake with browsers supporting TLS 1.2 and TLS 1.3. This will cause outdated and

insecure browsers with a handshake failure error. Moreover, Bearicade’s web server uses

2048 bits SHA256 key with RSA and have explicitly defined supported cypher suites denying

downgrade attacks and decryption of secure communication. Using a method described in

(Durumeric et al., 2017) as a prevention technique, Bearicade’s web server uses a plugin to

help detect HTTPS interception by grading the user’s client using tests such as (i) TLS

Versions supported (ii) Cipher Suites provided (iii) Multiple Certificate Validation (iv) Known

TLS Attacks. Bearicade will not authorise clients scoring a low grade, presenting them with

a message, and the request will be logged.

Broken Access Control

A5 Broken Access Control are one of the primary exploitation that is performed by an

attacker to trick the server into performing a request on behalf of other users without the

3.3 Security Implementations 61

required permissions, and this could lead to a leak, unintended modification, or loss of data.

A 2018 study has analysed 330 web applications from the educational, governmental, health,

and private sectors. The analysis conducted has concluded that 39% of the web applications

tested were vulnerable to Broken Access Control attacks caused by improper input validation,

data disclosure, and insecure sessions (Hassan et al., 2018). As discussed, by design Bearicade

does not trust user inputs from unauthorised users to administrative accounts; this is why

user inputs go through input scrutinisation on both client and server-side. Also, when an

authenticated user performs a request to Bearicade’s API, the user does not explicitly provide

a piece of identification information; instead, a cookie is passed along with every request, the

scrutinisation cookie value is then checked for its validity by checking active sessions, then

the user’s device user agent and IP address are verified against the initiator’s user agent and

IP address. This process repeats in the backend server every time a request is initiated; this

control mechanism is present throughout the application.

Header Configuration

Bearicade provides an API to third-party applications in order to build modular plugins for

Bearicade, allowing the implementation of more advanced features and security enhancements.

For this reason, Cross-Origin Resource Sharing (CORS) has been implemented into the API.

CORS is a system that determines whether an application is allowed to access the responses

from the server, overriding same-origin security policies that by default forbid cross-origin

resource sharing. By transmitting HTTP headers in what is called a preflight request, CORS

checks that the server is cognizant of the user’s actions defined in the header.

1 header("Access -Control -Allow -Methods: GET");

2 header("Access -Control -Allow -Origin: dev1.qgg.hud.ac.uk");

3 header("Access -Control -Allow -Headers: API_KEY");

4 header("X-Frame -Options: deny");

5 header("X-XSS -Protection: 1; mode=block");

6 header("Content -Security -Policy: script -src https ://*. qgg.hud.ac.uk")

7 header("Strict -Transport -Security: max -age =86400");

8 header("X-Content -Type -Options: nosniff");

62 Bearicade

9 header("Content -Type: application/json");

Code 3.11 Bearicade’s Response Headers Confirguration

Bearicade defines a dynamic Allowed Access Control Methods, Origin, and Headers from

the application’s request depending on the user and the action performed. As shown in

code 3.11 lines 1-3, the server will only allow a GET request made from dev1.qgg.hud.ac.uk

with a supplied API_KEY header key. Line 4 X-Frame-Options deny the browser from

rendering the content of the page in a frame element (e.g., frame, iframe, embed, or object);

this is a protection procedure to protect the users from falling into click-jacking attacks by

making sure the content is only accessible from the origin site. Line 5-6 is another attack

prevention feature that commands supported browsers to block a request if reflected cross-site

scripting (XSS) is detected. This feature is most useful for older browser complementing

the newer Content Security Policy implementation in browsers to allow scripts to be loaded

from the same domain. Line 7 Strict-Transport-Security ensures that the browser should

only access the page via HTTPS. Lines 8-9 deny applications Multipurpose Internet Mail

Extensions (MIME) type sniffing and make sure that the application process responds as a

JSON document.

Security Misconfiguration and Using Components with Known Vulnerabilities

Improper set up in security-related configurations in web applications and web servers may

result in opening up opportunities for attackers to exploit systems (Mendes et al., 2008). Also,

a large number of Internet-connected devices are using vulnerable components as part of

their system, allowing attackers to perform an automated large scale exploits (Cadariu et al.,

2015). Both of Security Misconfiguration and Using Components with Known Vulnerabilities

are security concerns that could be found in different layers of a system, including web

servers, databases, frameworks, or libraries, among others.

From Bearicade’s configuration shown in 3.7, Bearicade was designed on a minimal platform

as suggested by OWASP (OWASP, 2017), consisting of 3 base components: (i) Caddy

3.3 Security Implementations 63

Web Server

System

PHP FastCGI	Process	Manager SQL Database

Bearicade

Server Side Processing

Frontend

Fig. 3.7 Bearicade’s Configuration

(Caddy, 2020) is used as the webserver of choice for bearicade because of it is minimalism

and security features (Cuppens, 2016) (ii) MySQL Database (iii) PHP FastCGI Process

Manager, all of these components are containerized by default to ensure supplemental isolation

and customizable during Bearicade’s installation. Secure configuration for each of these

components is followed respectively from the documentation of each component.

On top of the three base components, there are two components that form the web application

that is the server-side and the frontend layer. The server-side layer consists of PHP programs

that are compiled on the server. All libraries used in this layer are installed via a dependency

manager that defines the library and the version; this implementation is valid for continuously

inventorying the versions and checking for active vulnerabilities related to these dependencies.

The frontend consists of Javascript libraries, which are also continuously checked using

version scanners.

Cross-Site Scripting (XSS)

Cross-Site Scripting (XSS) enables attackers to compromise a web page viewed by other

users by injecting client-side scripts. According to OWASP, This type of attack is found

64 Bearicade

in around two-thirds of all applications, endangering users by leading to stolen credentials,

session hijacking, or delivering malware.

In addition to the security precautions described in section (Header Configuration), there are

extra measurements to prevent XSS: (i) Bearicade uses Vue.js (Vue.js, 2020) as a progressive

Javascript framework, and by design, Vue.js escape HTML content (ii) automated API

to escape and sanitize content data sent and received (iii) performing scheduled system

scan using the Security Content Automation Protocol (SCAP) standard to detect potential

vulnerabilities.

Insufficient Logging & Monitoring

With all the security implementations put in place to protect against OWASP top ten security

risks, attackers are still managing to intrude into the system by relying on insufficient logging,

monitoring, and timely response from the system maintainers. A 2017 report made by

Ponemon Institute (Ponemon Institute, 2017) shows that in 2016 data breach attacks took

on average 191 days to be identified and an average of 66 days to be contained, enough time

for attackers to cause harm to the system.

As described in section Data Acquisition, Bearicade collects a large amount of data from

the interaction with the system, resulting in leverage of potential monitoring and alert

mechanisms to be implemented in the system giving administrators a way of visualizing this

information through the dashboard. Use-cases of such mechanisms will be discussed and

proven further in the Artificial intelligence-based tools for secure access to HPC resources

chapter.

3.3.2 User Authentication

Bearicade uses a modified open-sourced PHP authentication class (PHPAuth, 2020); the class

was published in 2014 and currently has a large number of contributors, with undergoing

3.3 Security Implementations 65

development, auditing, and bug fixes, making it more reliable to be used when compared to

making an authentication class from scratch.

Email

Bearicade could be configured with a allow/deny-list to either accept or reject email addresses

belonging to specific domain names. For example, the University of Huddersfield are able to

accept email addresses with the *.hud.ac.uk prefix in order to allow individuals from the

institute. Moreover, there is an implementation to check an email address against a list of

disposable email address domains.

Password

Cryptographic hashing is a one-way function that takes a value as an input and generates

a fixed-length unique message digest, also known as a hash. Unlike traditional encryption

functions, which is a two-way function, hashing cannot be reversed, making it impossible to

generate the original input value (Ertaul et al., 2016).

According to a 2016 study, PBKDF2, Bcrypt, and Scrypt are hashing algorithms providing

the best security (Ertaul et al., 2016). Bearicade uses Bcrypt to hash passwords. Since it

was created in 1999 (Provos and Mazieres, 1999), Bcrypt is a memory hardening function,

making it CPU and RAM intensive as well as GPU resilient by design (Metla et al., 2018).

Some cryptographic hashing functions are vulnerable to rainbow tables attack. In a case of a

data leak, attackers would be able to compare the hashed values in the data and compare it

with a list of hashed common passwords (rainbow table) until a match is found. In order

to thwart such an attack, a unique generated value (salt) needs to be added to the input

while hashing; this function is called salting. Bearicade authentication system pulls a unique

16-byte salt from /dev/urandom for each password hashed.

Brute-force attacks are when an attacker attempts to guess the password by trying a random

combination of characters, or a database of commonly used passwords (dictionary attack),

this type of attacks could happen online on a live system or offline in case of a data leak. In

66 Bearicade

order to prevent online attacks, Bearicade limits the number of login attempts to 5 attempts

per user; exceeding the limit will result in banning the offender. When it comes to offline

attacks, the current hashing function uses a "cost" parameter which is the power of two

number (2cost), stating the number of rounds to repeat the bcrypt function, resulting in an

exponential increase in the time taken to calculate the hash.

During registration, the users are required to input a password that needs to meet a specific

strength. Calculation of the strength made possible using pattern matching and minimum

entropy calculation, inputted password are pre-checked on the client-side then post-confirmed

on the server-side using zxcvbn which was developed by Dropbox (Wheeler, 2016).

Two-Factor Authentication

Two-Factor Authentication (2FA) is an essential step to authenticating users by defending

systems against account compromise (Reese et al., 2019). Bearicade is implemented with

Time-Based One-Time Password algorithm (TOTP) (Corp Pei Symantec J Rydell, 2011),

during authentication the user is required to present a One-Time Password (OTP), OTP

values are short-lived depending on the time factor. During registration, users are presented

with a random secret along with a Quick Response (QR) code. Users then can add the

secret/QR code to their prefered 2FA application. This process adds a verification to the

user’s authentication using a piece of hardware device they have, such as smart-phones. This

procedure was achieved using the TwoFactorAuth PHP library (Janssen, 2020).

3.4 Dashboard Features

This section will explore the graphical user interface of Bearicade (dashboard), where the

users can interact with the features implemented in the dashboard and access the clusters

configured. There are currently two versions of the dashboard, the first being for the

regular users giving them access to shell and file manager. The second version is for the

3.4 Dashboard Features 67

administrators, which provides the same features as regular users with added functionality

to monitor and manage the system and its users.

Fig. 3.8 Bearicade Dashboard: Administrator Main View

Figure 3.8 shows a screenshot of administrators’ entry point on Bearicade’s dashboard. On

the main page, administrators are presented with (i) navigation bar (ii) basic statistics such

as number of registered users, recently failed logins, current active sessions, and online users

68 Bearicade

(iii) terminal and file manager element (iv) geographical location of currently active sessions

(v) graph showing new users activity.

3.4.1 Terminal and File manager

The terminal and file manager element is the key feature of Bearicade’s dashboard presented

to both administrators and standard users. Upon initiating a connection by pressing the

connect button, the element will display the file manager GUI as shown in figure 3.9. The

GUI has three key features that are linked using icon illustrated buttons:

• Terminal and File manager toggle button, the button will allow the user to switch

between the terminal and file manager.

• Upload

Fig. 3.9 Bearicade Dashboard: File Manager

3.4 Dashboard Features 69

File Editor

Using the file manager, the users can view the files on the local storage server along with

metadata such as file size and the ownership of the file. The user can click a file in order to

edit, and the element will show a file editor as shown in figure 3.10 and the user can make

changes and save or discard. The user could also choose one of the actions available for files,

such as download or delete the file. Clicking a folder would result in changing the directory

of the file manager.

Fig. 3.10 Bearicade Dashboard: File Editor

File Upload

Users are able to upload files conveniently from within the file manager using the upload

button, as demonstrated in figure 3.11 users are able to drag and drop or choose files wishing

to upload to the local cluster storage.

70 Bearicade

Fig. 3.11 Bearicade Dashboard: File Upload

Server Selector

In the case of the University of Huddersfield’s QueensGate Grid, all the clusters use a single

network shared storage nodes, meaning that the file-manager is the same for the users on all

clusters. However, for the terminal, the users should be allowed to switch between different

clusters in order to submit jobs on different clusters on the grid. This could be done using the

server selector, which is integrated on the File-manager/terminal element on the dashboard

as shown in figure 3.12. Administrators are able to allow and deny users from accessing a

particular cluster within the configuration.

Fig. 3.12 Bearicade Dashboard: Server Selector

3.4 Dashboard Features 71

3.4.2 Account Information and Customization

From within the dashboard, the users are able to view and update limited information

regarding their account via the sidebar as shown in figure 3.13; this information includes Full

name, Email address, and the 2FA Secret along with the QR code. Providing the user with

visual customization, there is a toggle implemented in Bearicade’s dashboard for the user to

be able to switch between dark and light theme as shown in figure 3.14. The dashboard is

set to the dark theme by default; however, user’s preference will be saved on their browser

via a cookie.

Fig. 3.13 Bearicade Dashboard: User Details

72 Bearicade

Fig. 3.14 Bearicade Dashboard: Light Theme

3.4.3 Users Management

Bearicade’s Users Management is dedicated to the administrators. This section will cover

most of the Bearicades user interface’s functionalities part of the users’ management. The

part of the user interface shown in figure 3.15 demonstrates users’ main page. The page has

a list of all users registered on Bearicade. Through the list, administrators are able to view

the users’ full name, username, and email, administrators, are also able to search via this

information.

3.4 Dashboard Features 73

Fig. 3.15 Bearicade Dashboard: Users List

User Details and Actions

Through the users lists, administrators are able to view and control different actions per user,

as shown in figure 3.16, details about the user are available such as (i) Identification number

(ii) Time since last active (iii) Groups (iv) Joining Date (v) Time-based one time password

secret (vi) futher details will be discussed in the following sections. In addition, actions

available are (i) Acivating/de-activating (Lock/Unlock) accounts (ii) Removing System User

from systems with or without the user’s system files (iii) Deleting Bearicade accounts.

74 Bearicade

Fig. 3.16 Bearicade Dashboard: Users Details

User Activity and Monitoring

Users activity is essential for continuously track and prevent potential security risk along

with diagnosing possible issues. Bearicade provides a range of data visualization elements.

As shown in figure 3.17, these elements are divided into 3 sections (i) Browser Records

(ii) Interaction Activities (iii) Login History. The data in each of these elements are described

in details in section Data Acquisition.

3.4 Dashboard Features 75

Fig. 3.17 Bearicade Dashboard: Users Monitoring

Subsequent to each successful login, Bearicade records information regarding the user’s

browser and device as shown in figure 3.22 such as: (i) IP address (ii) Timestamp (iii) Fre-

quency of the unique record. (iv) device fingerprint (v) cookies (vi) languages (vii) browser

and user-agent (viii) platform (ix) screen-size (x) referrer. Along with this information,

Bearicade logs the number of failed login attempts as shown in figure 3.20.

As shown in figure 3.19, the last element of the activity elements provides information about

the user’s interaction with the system, such as the use of the terminal and file-manager. This

information include the timestamp of the activity, type of the activity, action attempted,

system targeted, and the result of the activity.

76 Bearicade

Fig. 3.18 Bearicade Dashboard: Users Browser Records

Fig. 3.19 Bearicade Dashboard: Users Activity

3.4 Dashboard Features 77

Fig. 3.20 Bearicade Dashboard: User Login Attempts

3.4.4 Settings

The settings section provides the possibility of changing the system and Bearicade’s settings

from the browser; these settings are divided into six sections:

1. Site: availability to change site name, base URL, administrator email, and other basic

settings.

2. Security: settings provide the ability to quickly modifying security settings such as

attach mitigation time and attempts before ban.

3. SMTP: Secure Mail Transport Protocol (e-Mailing) settings.

4. Cookies: Modifying cookies parameters stored in users’ browsers.

5. Logs: logs path to be collected and visualised on Bearicade.

6. Server: Web server configuration settings.

78 Bearicade

Fig. 3.21 Bearicade Dashboard: Security Settings

Fig. 3.22 Bearicade Dashboard: Servers Settings

3.5 Summary

Bearicade is a users and security management gateway framework for distributed systems,

permitting users to remotely access multiple nodes on/off-premise, providing a web terminal

and file-manager implementation. Built on a restful API, Bearicade allows administrators

to visualise data. Most importantly, Bearicade enables machine learning implementation to

3.5 Summary 79

help to enhance security from the data collected.

In order to evaluate the performance of the Bearicade framework in typical scenarios relevant

to secure access to the HPC systems, a number of experiments were conducted on the QGG

grid HPC resources. They will be presented in the upcoming chapters.

Chapter 4

Deployment of Bearicade

4.1 HPC Grid

The University of Huddersfield’s HPC services campus grid is known as QueensGate Grid.

Students, researchers, and staff make up a diverse group of users on the grid. Users come

from various departments such as Sciences, Engineering, and Business, which means the

grid must be suitable for a wide range of use cases, including DL-Poly, OpenFoam, Ansys,

Matlab, Maxwell, Fluent, and COMSOL, to name a few.

4.1.1 Systems Distribution

At the time of writing, the University of Huddersfield’s QueensGate Grid HPC systems

consists of 4 Clusters, all of which are geographically apart.

At the University of Huddersfield, there are three main High-Performance Computing systems

distributed around the campus. As shown in figure 4.1, there are two central locations for

HPC systems. Data Centre is the first one, which holds:

• Cygnus, which is a cluster, consists of 9 nodes, each with 24 cores Intel Xeon X5690

CPU clocked at 3.47GHz, and 200 Gigabyte of memory.

82 Deployment of Bearicade

Fig. 4.1 HPC Systems Distribution at the University of Huddersfield

Fig. 4.2 HPC Systems Architecture in the University of Huddersfield QGG

• Bellatrix, which is the chief node for controlling and managing all the connections to

all clusters and nodes. It has a major part in the proposed framework.

• Orion is a cluster used for scientific research; it was not used to gather data for the

experiments.

The other location in the QGG campus grid - HPC centre houses:

4.1 HPC Grid 83

• Eridani, a 35 nodes cluster each node has 8 cores Intel i5 clocked at 3.2GHz, and 8

Gigabyte of memory.

• Condor, which is a high-throughput computing software framework for Windows and

it runs on over 300 windows computers distributed around campus. The head node,

however, is located in the HPC Centre.

Each one of the head nodes for each of the clusters is connected together via the University’s

network (HPC VLAN and DC1 VLAN). The clusters’ nodes are connected via a private

network without being accessible via the University’s VLAN.

4.1.2 Access Software at the University of Huddersfield

Predecessor Access Software

Like many of the HPC systems around the world, the previous access setup at the University

of Huddersfield in order to access the various systems of the grid was a Linux based node that

is setup with Secure Shell (SSH). The node was set up to be accessed externally by exposing

the SSH port externally. By logging in to SSH, the users could then access all head nodes

from the terminal. For a new user to be registered in the system, system administrators have

to create a local user and generate a Public Key Infrastructure (PKI) set of keys and the

local users along with the home folder is then synced with the rest of the nodes in the grid.

The newly registered user should then receive their private key via email.

Current Access Software

At the University of Huddersfield, and since 2018, Bearicade has been the main access

software for QueensGate Grid. Bearicade allows users to access all clusters at QueensGate

Grid described in Systems Distribution remotely.

84 Deployment of Bearicade

4.1.3 HPC User Access and Privileges

The predecessor access software (SSH) at the University of Huddersfield has only allowed

two types of users to access the system, a user and an administrator. This method did not

provide enough security metrics such as data about the users’ behaviour, data visualization,

and alerts.

Bearicade has introduced new and more customizable privileges. This section will introduce

three categories of users in Bearicade at the University of Huddersfield.

Researchers and Students Users

For every academic year, the University of Huddersfield’s researchers and students request

access to use QGG. Approved users will have access to the head node of each of the clusters

they are permitted to. From within the dashboard, the students have the ability to access the

basic functionality of Bearicade, such as (i) File-manager (ii) Terminal (iii) List of clusters

Enrolled masters and undergraduate students to the Parallel Computer Architectures Cluster,

Grids and Cloud Computing module are assigned weekly activities that they are required

to perform on the QueensGate Grid clusters. In order to achieve these tasks, the users are

required to login to Bearicade and interact with the systems from within the dashboard.

This means that the users will log in to Bearicade multiple times every week throughout the

academic year from unique devices, different times and perform different actions.

Other researchers such as Ph.D/Masters students and academic staff can have access to the

system to submit jobs and perform other tasks on the system.

These users are the main source for the data collected by Bearicade. The data could then be

used to train machine learning models in order to have an understanding of the patterns of

the users’ activities.

4.1 HPC Grid 85

Administrators

In order to manage the systems, support users, and monitor activities of the systems,

QueensGate Grid administrators are logging in to Bearicade as an administrative account to

be able to activate and deactivate user accounts, continuously monitor request and activity

logs, and diagnose problems and giving support to the users of the system.

Bearicade administrators have multiple functionalities and features from within the dashboard

as shown in table 4.1.

Table 4.1 Available Functionalities and Features to Administrator from Bearicade

Category Functionality

User Information

Geographical Location
Active Status
Non-Sensitive Information
2FA Token

User Management

Activate/Deactivate Account
Delete Account
Groups Assignment
Developer Assignment

User Monitoring
Device Records
Login History
Activities

System

SSH
File Manager
Request Logs
Settings
Health Check

Developers & Researchers

Bearicade gives researchers the ability to access the data generated by Bearicade from the

API, allowing them to investigate the data systematically research in order to establish novel

findings in multiple fields, especially security. Developers also benefit from this functionality

by developing various software and plugins such as visualisation application and machine

learning models, which could be implemented in the core of Bearicade or as a third-party

application for the users.

86 Deployment of Bearicade

4.2 Data Collection

In order to collect data, this system was ready to have most of the core usage functionality

and was set up to be used in the University of Huddersfield for final year undergraduate

students and master students for the two modules: Parallel Computer Architecture Clusters

and Grids, and Parallel Computer Architectures Cluster and Cloud Computing.

The students from both modules had to use the system as part of their module assignment;

in order for the students to have access to the system, these are the steps followed:

1. Register for an account via the system registration page.

2. Once approved by system administrators, students would log in to the system.

3. Create job files.

4. submits HPC jobs to Cygnus and Condor.

The students can submit different types of jobs. However they are provided with templates

for some parallel programs/jobs such as: (i) hello-world (ii) calculating PI (iii) matrix-matrix

product (iv) matrix-vector product. Code 4.1, shows example of an uncompiled hello-world

MPI C program. Code 4.2, shows the PBS job file used to run a compiled C code.

1 #include <stdio.h>

2 #include "mpi. h

3 int main(int argc , char ** argv) {

4 int rank , size;

5 MPI_Init(& argc , & argv);

6 MPI_Comm_size(MPI_COMM_WORLD , & size);

7 MPI_Comm_rank(MPI_COMM_WORLD , & rank);

8 printf("Hello world from process %d of %d\n", rank , size);

9 MPI_Finalize ();

10 return 0;

11 }

Code 4.1 Example of Hello-World MPI C program

4.3 Flexibility: Cloud Deployment 87

1 #!/ bin/bash

2 #PBS -N mpi_job

3 #PBS -l walltime=01:00:00

4 #PBS -q queue_name

5 #PBS -l select=2:ncpus=36:mpiprocs=36

6

7 mpirun ./hello -world

Code 4.2 Example of PBS job file

Steps 2-4 were repeated multiple time by the students throughout the year from different

devices, locations, and browsers. Students had experienced most functions within the system,

and data was logged from every activity.

4.3 Flexibility: Cloud Deployment

Bearicade includes Ansible playbooks that automates the deployment of a complete Bearicade

stack on a variable-sized cluster, as explained in the deployment section of the Bearicade

chapter. The following configuration allows Bearicade to be easily deployed in the cloud, such

as a virtual cluster or on a bare-metal cluster. This feature has come with many advantages,

as will be described below.

Deployment on the cloud has helped developers, researchers and students to work on projects

and assignments by running their own instance of the Bearicade stack on a cloud provider

such as Google cloud platform (GCP), Amazon Web Services (AWS), and Microsoft Azure.

4.4 Bearicade Performance Evaluation in The Pandemic

During the COVID-19 pandemic in 2020, nation-wide University campuses were shut; this

made it difficult to manage and maintain the traditional cluster and thus making the

preparation of the cluster for teaching a prolonged process. Research projects have also

been impacted by the pandemic. Adding to all that, during the same year, there were

88 Deployment of Bearicade

attacks that targeted HPC centres around the United Kingdom. All of the factors above has

brought a number of HPC clusters to a halt. Fortunately for the University of Huddersfield,

running Bearicade has enabled the users of the HPC clusters to be able to continue the work

remotely without an interruption through the web dashboard. Administrators were able to

continue monitoring and managing the systems through the equipped dashboard explained

in section Dashboard Features and in case of system malfunctions, Bearicade’s containerized

architecture allow administrators to redeploy and reconfigure the systems easily.

4.5 System Usability: SSH vs Bearicade

As explained in this chapter, some of the University of Huddersfield students have been

using Bearicade as their primary access gateway to QGG HPC resources. The students have

also used the traditional method (SSH) to access their hand-built system as part of their

coursework. This teaching delivery method gives the possibility for assessing the usability of

Bearicade compared to SSH to determine how simple the system is to use and satisfaction and

user attitudes toward the system. Therefore an assessment methodology is needed. System

Usability Scale (SUS) (Brooke, 1995) has been used in order to measure these aspects.

Table 4.2 System Usability Scale Score for SSH and Bearicade

SSH Bearicade
Number of Users 37 12
Average SUS Score 53.8 64.0

The SUS score is a value between 0 and 100, demonstrating the system’s usability; the

higher the value, the better the usability. The same users were given a survey containing ten

questions about each of the systems. Table 4.2 shows the average SUS score for each of the

surveys. Bearicade survey involved 12 users scoring an average SUS score of 64.0, and SSH

users involved 37 users with an average SUS score of 53.8.

It is evident from the result that students preferred Bearicade over SSH. In addition, the

Bearicade is a simpler access system for HPC compared to SSH and has a better user

satisfaction.

4.6 Summary 89

4.6 Summary

This chapter has provided detailed information on how Bearicade was deployed at the

University of Huddersfield QueensGate Grid. The deployment allowed the users to use

Bearicade as the only gateway for HPC resources, in addition, administrators managed the

systems and users from within Bearicade. This has allowed Bearicade to prove it’s usability

from the users’ perspective and ease the collection of data from different sources within

Bearicade to enable the expansion of the security systems via Artificial Intelligence.

The next chapter will explore different AI model implementations using Bearicade. In order

for these implementations to work, AI models require data to be trained and evaluated with.

Chapter 5

Artificial intelligence-based tools for

secure access to HPC resources

Bearicade is a novel data-driven framework designed, developed, and implemented as part

of this research. All of the users’ data that Bearicade collects are from web elements. The

gateway to access the distributed systems is through Bearicade’s web dashboard. In addition,

every interaction with these systems is authorized and recorded by Bearicade.

A secure artificial intelligent system would be able to use Bearicade’s capabilities in data

collection and existing data inventory. Thus, make decisions at any point of the users’

interactions with the systems to detect and deal with anomalies and enhance detection

accuracy.

This chapter will explore the possibilities of implementing Artificial Intelligent techniques

using the data gathered via Bearicade based on the system view and the user view. Each

of the sections below will discuss different implementations of Machine Learning models

developed over the past four years.

Section Initial Model Algorithm Design below will discuss some of the initial model designs

implemented that has were not very effective; their refinement led to the successful model

designs. Section Anomaly detection of user behaviour on Bearicade’s login page and Classi-

fication of Malicious Linux Terminal Commands are based on a paper published (Al-Jody

92 Artificial intelligence-based tools for secure access to HPC resources

et al., 2020) that uses the data generated from Bearicade to build two different models per

system that could identify anomalies in users’ behaviour. Finally, section Model Per User

For System will explain a different model design that could predict the users’ authenticity.

Different model will have different evaluation model. However, models should be evaluated

using an appropriate evaluation methodology using trained and untrained data, including

data generated from a real-world examples.

5.1 Using Bearicade

Over 26 months with the current deployment of Bearicade on the QueensGate Grid with

over 120 registered users, Bearicade has received over 4700 authorization attempts, 1400 of

which were granted. As explained in Chapter 3, Bearicade collects information about the

user from multiple sources; thus, the information collected over two years from 1400 sessions

is large enough to build Artificial Intelligence solutions to detect anomalies. Table 5.1 shows

aggregate information for QueensGate Grid users’ Behaviour on Bearicade, including the

Average, minimum and maximum for some of the parameters that will be used to identify

users in this section.

Table 5.1 Aggregate Information for QueensGate Grid users’ Behaviour on Bearicade

Screen
Size

Geo-
Location

Device Terminal
Interac-
tions

File
Man-
ager
Interac-
tions

Account
Life-
time

Total
Logins

Average 2 5 3 91 204 81 40
Minimum 1 1 1 2 1 3 2
Maximum 9 103 48 323 743 753 670

A typical work-flow of a user executing a command on the end systems via Bearicade would

consist of 3 steps: (i) Authorizing the user (ii) Logging the activity of the user (iii) Sending

the command to the end system to be executed. Figure 5.1 shows a possible AI integration

for this work-flow above on Bearicade. The figure broadly explains the users’ interaction

with Bearicade in order for them to execute commands on the end system, such as an

5.1 Using Bearicade 93

HPC cluster. Grey elements represent the core components of Bearicade, while the green

represents the suggested AI components to be implemented. Decision A would process the

users’ information and make a decision before authorizing the user to the system. Decision

B could process the command sent to the system and make a decision before executing it on

the end system. The figure does not represent the only possible integration of AI components.

On the contrary ,these components could implemented at any point of the system.

Authorize

Record

Decision B

Execute

Bearicade User

Core Component

AI ComponentDecision A

Fig. 5.1 Viable AI integration for Bearicade’s components

5.1.1 Data Preparation

Although every Machine Learning models is different from the other, the approach for

accessing and using the data will be remarkably similar. This section will focus on how

the data collected and generated by Bearicade will be accessed, prepared, structured, and

imported for use in the different Artificial Intelligent solutions.

All of the Artificial intelligence model implementations for Bearicade are developed with

94 Artificial intelligence-based tools for secure access to HPC resources

the real data from The University of Huddersfield QueensGate Grid (QGG) main Bearicade

instance. Some private instances of Bearicade were deployed to perform certain tests.

User Authentication

To have access to the data from Bearicade, developers can access such data from the pre-

defined Representational State Transfer Application Programming Interface (RESTful API)

actions. Developers could reach the RESTful API actions via the end-point address. In the

case of QGG, its RESTful API address would be https://qgg.hud.ac.uk/controller/api.php.

As discussed in section 3.2.6, with administrators’ ability to assign API access keys to every

developer wanting to access the RESTful API, developers were given access to specific actions

required through the end-point for development.

Information Collection and Anonymization

As a developer request an API, an API key with zero permission will be issued to the

developer. Administrators could then assign one or more actions permissions to the key as

described in section 3.2.6.

Although the actions described in section 3.2.6 cover most of the database’s information

collections, administrators could also set up their own actions as permission to the developers.

This is advantageous, as administrators could prevent users’ sensitive information from being

passed through the RESTful API. In other words, users’ personal sensitive information will

be anonymised, and only the required data will be passed.

Data Structuration and Importation

As explained in section 3.2.6, Bearicade uses JavaScript Object Notation (JSON) as its

default transporting format for the RESTful API output data. This allows cross-language

compatibility in gathering the data from Bearicade’s RESTful API. Below are snippets codes

demonstrating the ease in gathering the data from Bearicade’s RESTful API.

5.1 Using Bearicade 95

1 curl --request GET \

2 --url ’https :// qgg.hud.ac.uk/controller/api.php?a=listUsers ’ \

3 --header ’api_key: my_key ’ --header ’content -type: application/json’

Code 5.1 Sample API Request in Bash

1 import requests

2 url = "https ://qgg.hud.ac.uk/controller/api.php"

3 querystring = {"a":"listUsers"}

4 payload = ""

5 headers = {

6 ’api_key ’: "my_key",

7 ’content -type’: "application/json"

8 }

9 response = requests.request("GET", url , data=payload , headers=headers ,

params=querystring)

Code 5.2 Sample API Request in Python

1 fetch("https :// qgg.hud.ac.uk/controller/api.php?a=listUsers", {

2 "method": "GET",

3 "headers": {

4 "api_key": "my_key",

5 "content -type": "application/json"

6 },

7 "body": false

8 })

Code 5.3 Sample API Request in Javascript

1 CURL *hnd = curl_easy_init ();

2 curl_easy_setopt(hnd , CURLOPT_CUSTOMREQUEST , "GET");

3 curl_easy_setopt(hnd , CURLOPT_URL , "https :// qgg.hud.ac.uk/controller/api.

php?a=listUsers");

4 struct curl_slist *headers = NULL;

5 headers = curl_slist_append(headers , "api_key: my_key");

6 headers = curl_slist_append(headers , "content -type: application/json");

7 curl_easy_setopt(hnd , CURLOPT_HTTPHEADER , headers);

96 Artificial intelligence-based tools for secure access to HPC resources

8 CURLcode ret = curl_easy_perform(hnd);

Code 5.4 Sample API Request in C

5.1.2 Models Perquisites

The next chapter will explore Artificial Intelligence implementations using Bearicade’s

data. These implementations will require perquisites such as Artificial Intelligence libraries.

Two main Artificial Intelligence libraries were used in these experiments. Undoubtedly,

each implementation will have more unique perquisites; however, that will depend on the

experiment.

Brain.js

Brain.js is an open-source Neural Network Library written in Javascript. Brain.js is highly

customisable, meaning Neural Network could be tweaked to match desired accuracy (BrainJS,

2016). A great benefit of using brain.js is that all prediction could be calculated and run

from the browser once the model has been trained.

Brain.js could also run server-sided through node js (Teixeira, 2012). Brain.js provides different

types of Neural Networks, such as Feedforward Neural Network with backpropagation (w/o

GPU), Time Step Recurrent Neural Network (RNN), Time Step Long Short Term Memory

Neural Network (LSTM), and Time Step Gated Recurrent Unit (GRU).

TensorFlow.js

TensorFlow.js is another open-source Web Graphics Library (WebGL) accelerated Javascript

library for building Machine Learning models. Being part of the TensorFlow ecosystem,

models built are cross-compatible between languages such as Javascript and Python.

Like Brain.js, TensorFlow.js allows models to run through any Javascript runtime engine

(Browser, NodeJS, Deno).

5.2 Initial Model Algorithm Design 97

5.2 Initial Model Algorithm Design

Over the past four years and throughout the development of Bearicade and its Machine

learning model, there have been many attempts to build a generation of models that could

help identify anomalies in the system. Most of these attempts were unsuccessful or required

improvements. However, the lessons learned from these designs led to building the current

working model algorithms.

This section will briefly cover some of these attempts, going over the methods used to build

the models and the results of these models.

5.2.1 Model Per System For Users

The Idea of a Model per System for Users algorithm is to have a model that could be trained

with all users’ data and able to identify which user is accessing the system depending on the

login data passed. If a user not within the organization tries to access Bearicade, the model

should be able to identify such an anomaly.

Data

Over four months, from the first release of the system, on January 19 with 50 student users

of the system, a considerably large amount of data has been generated.

During the system’s operation, the server has received 2030 login attempts, 536 of which are

granted.

User’s Login data are formatted as such:

Table 5.2 Users Login Example Row

User ID Timestamp fails IP Fingerprint Reason
1 2017-11-07 07:00:26 1 0.0.0.0 859de64fe9... Invalid Authentication Code

98 Artificial intelligence-based tools for secure access to HPC resources

As previously declared in the Data Acquisition section, more data are gathered about the

user from different sources. This data would be used later to improve the AI-based tools in

Bearicade.

Another vital table to be used in the AI tools is the Users Activity. There has been a total of

16672 activity executed on the system, with an average of 340 activity per user. An activity

would look like the table below.

Table 5.3 Users Activity Example Row

Activity User Type Attempt Flag Success
1 1 Terminal Command:"cd /home/root/; ls" Path Manipulation false

Data Preparation

Many of the Machine Learning algorithms do not accept categorical data as it is an efficiency

limitation rather than the difficulty of implementation within the algorithms themselves.

Categorical data are data with labels such as the key: Operating system, and its values:

Windows, or Mac. These values are usually called nominal data.

Nominal Data should be converted into numerical data before feeding it to the ML algorithm.

There are various ways to form the data gathered to the Machine learning algorithm to train

it. Two of the most popular ways to convert the data are:

1. Label Encoding.

2. One-Hot Encoding.

Label encoding, also known as Integer Encoding, is a process of converting values into

numerical values. For example, Windows becomes 1, Mac becomes 2, and Linux becomes 3.

This encoding method has a natural ordered relationship between its values, and ML might

be trained to understand this relationship.

5.2 Initial Model Algorithm Design 99

One-Hot encoding is used when there is no natural order relationship between values, and

different values might be shared with different labels. An example of using this type of

encoding would be when we have different users using multiple operating systems, then a

matrix-like table could be generated:

Table 5.4 One-hot encoding

User ID / OS Windows Mac Linux Encoded Output
1 0 1 1 0, 1, 1
2 1 0 0 1, 0, 0
3 0 0 1 0, 0, 1

Model

The current implementation of ML has only been using the following data keys:

1. User ID.

2. IP.

3. Fingerprint.

4. Login Timestamp.

Upon initialisation of the model, the system request up to data from the database. A JSON

of the data is formed, grouping it by the users’ ID.

1 {

2 1: {

3 "ip":["1.1.1.1","1.1.1.0", ...],

4 "fingerprint": "bdd8d1aea7db15f2ec","4d35856e31c95dc9cc4", ...],

5 "timestamp":["2019-03-27 15:41:56","2019-03-28 14:41:01", ...]

6 },

7 2: {...}

8 }

Code 5.5 raw training data

100 Artificial intelligence-based tools for secure access to HPC resources

To develop the one-hot encoding method, index dictionaries for the IP, fingerprint, and

timestamp were created. These dictionaries are just arrays with a unique value in every

index.

Brain JS requires a special format for the data to be trained; this format should be an object

with two more objects inside (input, being the inputted data, and output, being the expected

output). The system, therefore, generates a formed training data that is still unserialized,

meaning that it requires encoding. This data would look as such:

1 {

2 1: {

3 input: {

4 ip: ["1.1.1.1", "1.0.0.1", ...],

5 fingerprint: ...

6 },

7 output: [1]

8 }

9 }

Code 5.6 unserialized training data

As it is not acceptable to have an object in the input field, therefore as a final step, the

system uses the dictionaries made formerly to encode the data and separate IP, fingerprint,

and timestamp from each other for every user. The encoded concatenated data in the input

array and the output array consists of the user id inside an array as shown in code 5.7.

1 {

2 1: {

3 input: [1, 0, 0, 1, 1, 1, 0, ...],

4 output: [1]

5 }

6 }

Code 5.7 serialized training data for user 1 to predict only IP

Three identical neural networks have been set up in figure 5.2 for the three values (IP,

fingerprint, time). The neural networks were all configured using the following parameters:

5.2 Initial Model Algorithm Design 101

Fig. 5.2 Neural Network

Learning rate controls the speed of training the higher, the faster (0 to 1). Faster training

might cause constraints on training results, causing new training to overfit. Similar to the

learning rate, momentum is only multiplied by the next level’s change value.

The network training might stop if the training error has gone below the threshold or the

maximum number of iteration has been reached.

Training

After formatting the prepared data, the data was fed to the network to be used in training.

However, feeding 150 data sets (3 variables x 50 students) would not be enough to increase

the accuracy of the network.

The network had to be trained with random data from the training data set. Therefore, a

function was created to generate genuine login data (IP, fingerprint, and time).

The network was then trained with one million genuine data records; after every 100 record

was training, the accuracy of the model was calculated.

102 Artificial intelligence-based tools for secure access to HPC resources

Fig. 5.3 Training ML with a Million Records

Results

Representing the accuracy as percentage in the y-axis and training records number in the

x-axis, figure 5.3 shows the result from the training. The result has shown that the average

accuracy of the network over 1 million records trained was 53.8%, with a peak accuracy of

86.2%.

Conclusion

The network was only trained with three variable with no relationship between the variable.

Also, the records did not include disingenuous data. Moreover, Neural Networks configurations

were not altered. These factors play a significant role in lowering the accuracy as the system

cannot identify rogue records. Based on the outcomes of this approach, it was decided to

develop a "Model per User" AI-based tool.

5.3 Classification of Malicious Linux Terminal Commands 103

5.2.2 Precursory Model Per User Algorithm

There have been different approaches developed to get to the successful model discussed in

section Model Per User For System. These approaches were not efficient nor successful in

building an accurate model. Below are some of the algorithms that were attempted:

1. One-hot encoding: the successor model has used label encoding to encode the raw

data before training the model by converting each value to a unique integer. One-hot

encoding has been used; however, the training error was high due to the noise caused

by the large binary values.

2. Model Per Information Per User: the successor model has encoded all the information

shown in table 5.7 into a single object before training the model. Model Per Information

Per User Algorithm has used an independent model per information. The idea was to

multiply the results from each model by an independent weight then sum the results in

order to get an accurate value. Although such implementation has provided the ability

to control the importance of an information factor over the other, there was not much

variety in the data in order to form a reliable prediction.

5.3 Classification of Malicious Linux Terminal Commands

5.3.1 Introduction

In any distributed systems, terminal languages such as bash are usually the link between the

users and the local systems. Once a malicious user has managed to get access to Bearicade’s

dashboard or any shell access gateway by impersonating a user, the attacker would be able

to communicate to the local systems and may cause harm to the local systems or other users.

This experiment aims to build an effective artificial intelligent method for analysing users’

commands sent to the local systems and detect malicious commands. As shown in figure

104 Artificial intelligence-based tools for secure access to HPC resources

5.1, this implementation would be part of decision B. The commands sent are analysed and

given a score of suspicion before getting executed in the local systems.

5.3.2 Data

As explained in section 3.2.5, activities of the users’ interaction with the local system are

recorded before getting sent to the server. The information collected shown in table 3.3

includes the following:

1. User ID: Identification number for the user executing a command.

2. Date: Date and time of the activity recorded.

3. Component: Which component the user is interacting with, i.e. (File Manager,

Terminal, System).

4. Local System: The local system the user is interacting with.

5. Command: The command or activity the user has attempted.

In a typical HPC environment, user commands are often limited to (i) interaction with the

user’s file system located at the user’s home directory, e.g. (editing, creating, or removing

files) (ii) interacting with the user’s Jobs, e.g. (submitting, removing, querying status).

(iii) interacting with certain applications. The following limitation makes it possible to detect

and block commands that do not fit within these HPC environment limitations.

Data Preperation

At the time of doing the following experiment, Bearicade has recorded over 30,000 activities

from the users. The data were filtered to exclude commands that are out of the HPC

environment scope discussed above.

In order to create the dataset used for training, the filtered data were used to generate a

5.3 Classification of Malicious Linux Terminal Commands 105

dataset containing the commands ran and their occurrences (an).

Where

an =

(
Command Occurrence

Total Commands Count

)
(5.1)

Using the calculation above, the occurrences of a complete command (c) sent to the server

would be calculated word by word. The probability of suspicion (P (c)) for the complete

command consisting of a number of words (n) would be calculated using the following

equation:

P (c) =

(
a0 + a1 + a2 + ...+ an

n

)
(5.2)

5.3.3 Training & Evaluation

Using TensorFlow, a Convolutional Neural Network model was configured with an input

layer size that would match the training dataset’s input dimensions and an output layer size

of 2 to match the Neutral and Suspicious predictions. Several hyperparameters varieties were

tested to reach an optimal accuracy with a large number of different commands.

Subsequent to training the model, test commands were produced to test the accuracy of

the model. As shown in table 5.5, the commands tested included typical ordinary HPC

user actions such as interactions with personal files or job submission (C, D, E, F); other

commands included modifying file systems (A, B).

Table 5.5 Classification results of Linux commands (Al-Jody et al., 2020)

Command Expected Neutral Suspicious

A sudo rm -rf / Suspicious 6.76% 93.24%

B apt install python3 Suspicious 1.68% 98.32%

C qsub helloworld.job Neutral 99.99% 0.01%

D cd .. Neutral 97.56% 2.44%

E rm ./hello Neutral 96.52% 3.48%

F rm -rf ./hello Neutral 76.95% 23.05%

106 Artificial intelligence-based tools for secure access to HPC resources

The results from the table 5.5 demonstrate the model’s success from the high accuracy of

this model. The model successfully identified different commands with different expected

outcomes. This model is efficient for use in a real-world scenario where the users’ commands

are tested before being passed to the designated server. This approach, however, does

not analyse commands that run from a script file or any executable example. To mitigate

this issue, a number of different approaches could be done, such as (i) Enforce a policy to

disable script execution (ii) Examine script files step by step before executing them.. At

the University of Huddersfield QGG, script file executions are disabled by default. However,

analysing script files would be considered a more viable approach.

5.4 Anomaly detection of user behaviour on Bearicade’s login

page

5.4.1 Introduction

The number of impersonation attacks on authentication systems has been increasing. The

authentication layer of any system is the most crucial layer of all the system. Once an

impersonation attack has been executed, the impersonated individual has lost all their privacy

on the targeted system at that moment. In order to prevent such impersonation attacks,

a profile regarding the legitimate user’s behaviour should be collected and analysed and

collected.

The idea of this experiment is to collect users’ behaviour when accessing the system. By

training a Machine Learning model to detect such behaviour, the model would be able to

detect automated types of impersonation.

5.4 Anomaly detection of user behaviour on Bearicade’s login page 107

5.4.2 Data

Bearicade database contains a large collection of information regarding each of its user’s

behavioural data as explained in section 3.2.5. The data collection that represents unique

behavioural characteristics for each user will be the following information:

1. Browser User Information: Details about the browser, such as the user agent.

2. Time: time spent on the page.

3. Mouse Clicks: click count along with the click details such as the timestamp of the

click and X and Y coordinates for each click.

4. Mouse Movements: Includes the timestamp and the X and Y of the movement destina-

tion.

In order to analyse the data, some visualisation had to be setup. A heatmap of Bearicade’s

login page with the clicks and movements of a user was the best option to visualise such

information. As shown in figure 5.4, the heatmap represent a random legitimate user accessing

QueensGate Grid system via Bearicade’s login page.

Fig. 5.4 Mouse events heatmap of a random user accessing Bearicade’s login page

108 Artificial intelligence-based tools for secure access to HPC resources

A number of random user’s heatmap were analysed visually and found that the majority of

users mouse movement were very similar, noting that the minimum, maximum, and average

were within close proximity. This could reduce the accuracy of the Neural Network’s model

if no more features were added to the model.

5.4.3 Training & Evaluation

The dataset that was pulled from Bearicade was treated as a neutral dataset for training.

Emulated suspicious data were generated to match logins from bots and additional irregular-

ities. The size of both sources matched to keep a fair bias in training.

Feed-forward Neural Network using Brain.js were configured with an input layer to match the

input size, along with an output layer that matches the normal and suspicious predictions.

A number of hyperparameters were tested until an optimal output was reached.

Table 5.6 Classification Results of User Behaviour (Al-Jody et al., 2020)

Test Case Expected Output Normal % suspicious %

A Neutral 99.72% 0.28%

B Suspicious 2.74% 97.26%

C Neutral 91.34% 8.66%

D Neutral 99.79% 0.21%

E Suspicious 1.81% 98.19%

The trained model was tested with different test cases from both outsides and within the

training dataset. As shown in table 5.6, test case (A and B) were from within the training

dataset, while test case (C) was through a generated random input, (D) through Neutral

human input, (E) programmable suspicious input. The accuracy of the model was high for

all 5 test cases.

5.5 Model Per User For System 109

5.5 Model Per User For System

5.5.1 Introduction

There are many features that could be analysed from the user’s behaviour that would allow

a system to estimate the probability of the user’s authenticity. The purpose of this work is

to build a Neural Network model for each user of the system to calculate the probability of

the users’ authenticity from different parameters passed. Such implementation would fall in

Decision A as shown in figure 5.1.

5.5.2 Data

As discussed in the section above, the different parameters that would be passed to the model

would include the following information shown in table 5.7.

Table 5.7 Users Login Example Row

Information Examples Details
Timestamp 2021-02-02 15:14:11 Time and date of attempt
Geographical Location United Kingdom Geographical Location from IP Address
Operating System Mac OS Operating System of current Attempt
Platform MacIntel Device Platform used in Attempt
Screen Size 1920x1080 Screen Resolution of the Device
Browser Chrome Browser used in attempt

Each set of this information represents unique features that could identify a particular

user on a Bearicade. Each of the users on QueensGate Grid Bearicade logs into Bearicade

using different parameters shown in 5.7, graph 5.5 illustrate the data distribution between

Bearicade users showing device used (Version), Geographical Location (via IP), and screen

size. The graph shows a more consistent parameter distribution when compared to the other

parameters.

Table 5.1 shows that on average, a Bearicade user authenticates to Bearicade 40 times, and

the account is used on average over 81 days per user. Also, users use two unique screen sizes,

five different IP addresses, and three different devices used to login to Bearicade.

110 Artificial intelligence-based tools for secure access to HPC resources

Fig. 5.5 Unique data distribution between users

Data Preparation

As the data gets requested from the Application Programmable Interface (API), a JSON

array of objects gets parsed, forming the raw data for a particular user, which is required to

train the NN model.

A sample of one of the objects in the array is shown in 5.8. However, this model will only

use four keys in the object, which will be (i) timestamp (ii) browser version (User Agent)

(iii) browser IP (iv) screen size.

1 {

2 "id": "1",

3 "timestamp": "2021-02-02 04:14:11",

4 "browserCookies": "authID=e8f7dc63331e43151c1d379ba343052737728b01",

5 "browserLanguage": "en -US",

6 "browserName": "Netscape",

7 "browserPlatform": "MacIntel",

8 "browserVersion": "Mozilla/5.0 (Macintosh; Intel Mac OS X 11_1_0)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.67 Safari/537.36

",

9 "browserIP": "92.xx.xx.xx",

5.5 Model Per User For System 111

10 "historyLength": "3",

11 "javaEnabled": "0",

12 "referrer": "https://qgg.hud.ac.uk/access /",

13 "screenSize": "1920x1080",

14 "fingerprint": "c919bb27503f12dbd6528891c464383c",

15 "loginCount": "1"

16 }

Code 5.8 Raw User Browser Data

Such data shown in 5.8 will require to be encoded before training the Neural network. The

process of information encoding will be explained in the following sections.

Time-Stamp (Date and Time)

The timestamp is the date and time a user has logged in, and the information has been

recorded. Time and the day of login could form unique identifiable information to help

recognise user’s habit of using the system throughout the days and time of the week. Since

date and time is a piece of historical information, only the time (Hour) and the day of the

week will be extracted from the timestamp.

The data will then be used to form a matrix with 24 columns to represent the time of the day

and seven rows to represent the day of the week. An encoding function would be passed the

timestamp and return the location of the time and date in the matrix. Figure 5.6, shows a

heat-map visualized matrix for a random user. By visually analysing the heat-map, multiple

features could be extracted. For example, the user does not have the same frequency of login

during Saturday and Sunday compared to the rest of the weekdays. Also, the user has a

certain time range during weekday where the user logs in.

Geographical Location

Over 95% of QueensGate Grid users have used Bearicade from within Great Britain only.

However, some users tend to access Bearicade from outside Great Britain. Thus, the country

112 Artificial intelligence-based tools for secure access to HPC resources

Fig. 5.6 Timestamp Matrix Heat-map visualization

a user trying to authenticate from should be considered in determining the user’s legitimacy.

The only way Bearicade could determine the geographical location of the location is through

the IP address of the user. Bearicade uses an IP lookup database that is used to determine

the country of origin of the IP address. As shown in 5.9 Bearicade also uses an object

containing a list of all 240 countries with IP address allocations sorted by distance from

Great Britain. The list would then be used to translate the country into a number.

1 {

2 "gb": 1,

3 "ie": 2,

4 "be": 3,

5 "nl": 4,

6 ...

7 "nc": 238,

8 "nf": 239,

9 "nz": 240

10 }

Code 5.9 Countries List with IP addresses allocations sorted by distance from GB

Screen Size, Operating System, Platform, and Browser

5.5 Model Per User For System 113

When a user logs in to Bearicade, the Screen Size, Operating System, Platform, and Browser

are often linked together, representing the devices a user is logging in from. This could have

a substantial positive influence on the accuracy of the model.

The Screen size and platform are gathered directly from the user’s browser along with the

user agent, which might look something like 5.10, the user agent is parsed to give details

about the operating system and the browser the user is using.

1 Mozilla /5.0 (Macintosh; Intel Mac OS X 11_1_0) AppleWebKit /537.36 (KHTML

, like Gecko) Chrome /87.0.4280.67 Safari /537.36

Code 5.10 User Agent Example

All of this information is encoded similarly. Using a label encoding method, a dictionary is

created with the possible information varieties turning the information into a unique number

representing the information. In case a new variety is not presented in the dictionary, it gets

added to the dictionary then encoded through the same method.

Anomaly Data

All the methods above are used to prepare genuine data for model training; the model

requires anomaly data in order to be able to differentiate between what is considered to be

safe or not. Since the system does not have enough unsafe data, a method of generating

anomaly data is required for the training process.

Generating such data is done using the dictionaries generated as explained in Data Preparation.

However, anomaly data should not consist of elements a user has used before, which would

be considered safe. Thus while preparing the genuine data, an array of safe elements would

be recorded; elements in this array would then be eliminated from the main dictionary to

create a new dictionary for generating anomaly data.

114 Artificial intelligence-based tools for secure access to HPC resources

5.5.3 Training the Model

As the dataset has been compiled from the steps explained above, the next process is to

train the model with datasets generated.

Model Validation

A model validation techniques need to be used in order to evaluate the effectiveness of the

model, especially on new data that the model has not been trained with before.

Fig. 5.7 5-fold cross validation sets

Cross-Validation is a statistical method that was used to test the accuracy of this model.

Cross-Validation takes a k-fold parameter which is the number of groups that the dataset

will be split into. Figure 5.7 shows 5-fold cross-validation, which duplicates the dataset into

five different sets; each will split the data into five folds. 20% of the total dataset one of the

5.5 Model Per User For System 115

fold will represent the testing data, and the rest of the 80% will be the training data from

different sections of the original dataset.

After forming the k-fold sets, a number (k) of Neural network models will be created, each

being trained then tested with the different sets generated from the folds.

To summarize the training process, the original dataset processing will go through the

following steps:

1. Generate the dataset from Bearicade data and the anomaly data.

2. Randomly shuffles the dataset.

3. Generate k number of sets each with k number of folds.

4. Hold one of the k folds as a testing data.

5. Train the remaining folds from each set into a different model.

6. Evaluate the testing fold on the trained model.

7. Measure the k models performance from the training and testing data.

Model Configuration

Artificial Neural Network has a number of parameters that must be set when configuring

the neural network for training. Such parameters are called hyperparameters. These

parameters affect the network’s architecture and thus have an impact on the effectiveness

and performance of the Neural Network. Table 5.8 shows the different hyperparameters used

in the configuration of the final most optimal neural network build for this model.

As shown in table 5.7, the model has six main inputs, and thus the input size was set to 6.

As for the output layer, the prediction should include a percentage of safe and a percentage

of unsafe and thus, the output size was set to 2. Multiple configuration for the hidden

layer were tested and found that a 3 hidden layer first layer with 6 nodes to match the

116 Artificial intelligence-based tools for secure access to HPC resources

Table 5.8 Model Configuration Parameters and Values

Parameter Value
Input Size 6
Output Size 2
Hidden Layers 3
Nodes per Hidden Layer 6, 4, 2
Activation Sigmoid
Binary Threshold 0.5
Error Threshold 0.005
Learning Rate 0.01
Cross Validation Folds 5

input layer, second was 4 nodes, and the third layer was set to 2 nodes to match the output

layer. Such configuration visualized in figure 5.8 were found to be the most optimal. The

Fig. 5.8 Neural Network model layers visualized

output values should be a value between 0 and 1 to represent a percentage; thus, one of the

most suitable activation functions to choose from would be the sigmoid/logistic function or

softmax function. Due to the limitation of Brain.js, the library used to build this model, and

only sigmoid could be used to build this network. The Binary Threshold is a value set in

order to help with the testing of the model. A 0.5 value indicate the midpoint between safe

and unsafe data. For this example, 0.5 indicated that any value larger than 50% would be

considered a 1 (100%) and any value lower or equal would be considered a 0 (0%).

As for the Error Threshold, which indicated the optimal low value of the error, iteration

would be stopped if reached. Although a 0.005 error was not reached in this model, a

0.006 value was reached; it allows the model to be further trained and may lower the error

percentage.

5.5 Model Per User For System 117

The learning rate indicates the frequency of the weights getting updated while training. The

learning rate had the most significant impact on this model’s accuracy; different values for

the learning rate have tested these values were between 0.5 and 0.0001. The test was done

by building the neural network model using the same dataset and the same order using these

different learning rate values (0.5, 0.1, 0.01, 0.005, 0.001, 0.0005, 0.0001). Graph 5.9, shows

the different learning rate values plotted to show the error values and the same number of

iteration.

Fig. 5.9 Different Learning Rate tested with error

As shown in table 5.9, the different learning rate along with the error values was ranked

from the most efficient and accurate to the least. The test showed that a learning rate value

between 0.01 and 0.0005 was the most optimal. Since the 0.01 learning rate value scored the

best regarding the error value, it was chosen for this model as an optimal value.

Finally, as for the cross-validation folds explained in Model Validation, five-folds were used

the most as it gives a good split between the training data and the testing data. However,

some users with lower datasets required higher folds as explained in Model Validation.

Table 5.9 Different Learning Rate tested ranks

Learning Rate Error Rank
0.5 0.2412088 5th
0.1 0.2502621 7th
0.01 0.006876066 1st
0.005 0.006898225 2nd
0.001 0.007095933 3rd
0.0005 0.007620678 4th
0.0001 0.2493396 6th

118 Artificial intelligence-based tools for secure access to HPC resources

5.5.4 Evaluation

For every user, a unique model has to be created hence the model per user name. To evaluate

this neural network model, multiple models need to be trained with datasets from different

users.

Table 5.10 Users’ data summary used to evaluate the model

User Screens IP addresses Devices Days of Usage Total Logins
A 9 105 49 782 275
B 4 20 14 276 63
C 1 2 1 7 4

Table 5.10 shows the different users and count of their data that will be used in order to

evaluate the neural network model. The data represent 5 different values

1. Screens and IP addresses: the count of different screen resolutions and IP addresses

used to access Bearicade, respectively.

2. Devices: count of unique Operating systems, Platforms, and Browsers used to access

Bearicade.

3. Days of Usage: the number of days between first and last login.

4. Total Logins: the total number of successful authentication requests made to Bearicade.

The users chosen represent different use cases of the users. User A is the most active user

on Bearicade, with over 782 days of usage and 275 logins. User C is one of the least active

users; this user still has data that could be used to build a model. User B is a midpoint

and represent the users that have a short usage period on Bearicade with only seven days of

usage and four logins. The purpose of choosing these different users is to evaluate how the

model performs on these different usages and different dataset sizes.

All of the users’ models were trained using the same network hyperparameters explained

in the section above with 9600 iterations. The size of the genuine dataset is equal to the

number of total logins. Anomalies data were then appended to the dataset, the size of the

5.5 Model Per User For System 119

anomalies data made equal to the number of total logins. For example, user A has 275 total

logins (genuine data); thus, another 275 anomalies data would be added to the data forming

dataset with 550 elements.

User A Model

User A dataset contained 550 data to be trained in the model. However, since the cross-

validation method was used with 5-folds, only 80% of the data (440) were trained in 5

different sets, and the other 20% (110) were used in testing the model. As User A has by far

the largest number of logins, the size of the dataset was adequate in training the model and

resulted in low error percentages for all five sets compared to the other users, as shown in

figure 5.11. As shown in figure 5.10, the average training error across the 5 different sets

was 0.009916 (0.99%). Some of the sets had misclassified some of the test data, but this is

acceptable as the anomalies test data may be completely new for the model.

Fig. 5.10 Cross Validation for User A model

User B Model

Using the same number of the fold as the User A model, this model was cross-validated.

User B dataset contained 126 elements split into 63 genuine and 63 anomalies. With only

23% the size of the dataset compared to the User A dataset, the model performed in an

acceptable manner with 0.017806 (1.78%) training error with some misclassified test data in

120 Artificial intelligence-based tools for secure access to HPC resources

Fig. 5.11 Evaluation for User A model

some sets. Figure 5.12 shows the cross-validation training error along with the iteration for

the five sets, figure 5.13 shows the error percentages along with the misclassified test counts

and train time for all five sets.

Fig. 5.12 Cross Validation for User B model

User C Model

Model for User C has the least training data with a size of 8. Thus, cross validation would

not work on such a small data set. However, the model was still trained without folds to

evaluate the training error for such a small dataset. As expected and shown in figure 5.14,

the model had a high training error percentage of 0.222 (22.2%).

5.5 Model Per User For System 121

Fig. 5.13 Evaluation for User B model

Fig. 5.14 Training error for User C model

5.5.5 Conclusion

To illustrate the accuracy of trained models, three different types of users were chosen, each

with different dataset sizes. The model-per-user algorithm seems to give much better results

compared to the initial algorithm designs. However, since the algorithm depends on the

individual users’ data, it requires a large number of data to have a valid model.

It is expected that a typical Bearicade user would be required to use the system for at least

six months or have more than 60 successful logins to have enough data gathered about the

user in order for the model to learn the user’s behaviour and preferences.

To evaluate how these models perform in a real-world scenario, users A and B were asked to

log in to Bearicade after their independent model was trained. In addition to these logins, a

slight modification of the recent login data was modified to see how the model prediction

122 Artificial intelligence-based tools for secure access to HPC resources

works compared to the original login. Moreover, anomaly data were generated to evaluate

the model’s prediction.

Table 5.11 Real-world test for User A and User B models

User Test Expected Safe Prediction Unsafe Prediction
A Genuine Login Safe 99.181% 0.817%
A Genuine Login with modi-

fied Geo-Location
Unsafe 1.407% 98.592%

A Genuine Login with modi-
fied Device

Unsafe 1.406% 98.593%

A Anomaly Login Data Unsafe 1.407% 98.592%
B Genuine Login Safe 99.086% 0.915%
B Genuine Login with modi-

fied Geo-Location
Unsafe 2.956% 97.043%

B Genuine Login with modi-
fied Device

Unsafe 3.124% 96.876%

B Anomaly Login Data Unsafe 2.956% 97.043%

Table 5.11 above shows how both User A and User B models have matched the new test

data with the expected outcomes. With a high percentage of accuracy, the model could be

an optimal solution to predict the authenticity of the user attempting to login to Bearicade,

all from the data collected over time from the user.

5.6 Summary

This chapter presented a number of Machine Learning techniques developed to integrate into

the Bearicade framework. The Machine Learning models and data used to train and validate

the models applied for HPC security were presented. Three case studies were considered

addressing the security from the point of users’ behaviour such as the mouse movements and

the interactivity with the portal and more comprehensive model that includes not only the

user behaviour but also the environment variables based on the time, location and equipments

used by the users.

The results obtained are encouraging demonstrating high accuracy in detecting anomalies

and verifying users’ integrity.

Chapter 6

Conclusion

For most information technologies and computing networks, cyber protection is paramount.

High-performance computing is used in science studies, academia, and industry. HPC

technologies are designed to take advantage of HPC systems’ parallel architecture. Present

research into High-Performance Computing systems is focused on improvements in application

development, parallel algorithms, and computer system architecture. However, no significant

attempts have been made to establish universal security requirements for High-Performance

Computing. Security of High-Performance Computing infrastructure is often an afterthought

of various administrative strategies that do not satisfy additional High-Performance Comput-

ing security requirements.

In the past, security breaches affecting HPC centres were relatively rare. However, recently

the HPC system components’ vulnerabilities are on the rise. Furthermore, the incentives

for attacking HPC resources are increasing in value due to the substantial computational

power, high bandwidth networks, and massive storage. For example, in the past, four years

ago at the University of Huddersfield QueensGate Grid, there were, on average, 50,000

malicious login attempts that occur on a daily basis. As a result, increasing the protection

of HPC systems is a necessity. According to a recent presentations by the experts from the

UK Hight-Performance Computing Community, during the meeting of the HPC-SIG group,

124 Conclusion

there is no widely agreed security mechanism for the HPC systems of the HPC-SIG Group.

The new security architectures for High-Performance Computing systems are proprietary,

unreleased institutional solutions.

A comprehensive literature review of the existing access solutions for HPC systems revealed

that although advancements are made towards HPC portal solutions, such solutions lack

required basic security requirement implementations. Furthermore, the limited published

security solutions for HPC have not been integrated into existing access solutions. Moreover,

the current non-portal primitive access solutions use insufficient security practices in many

HPC centres, causing attacks similar to the summer 2020 attack that targeted HPC centres

in the United Kingdom.

The majority of cyber-attacks have a life span. Every stage of its growth can produce

indicators that are difficult to detect by security professionals and system administrators

using the conventional HPC solutions. As a result, it was essential to improve SIEM/SOAR

systems. SIEM/SOAR systems provide a way to visualise and capture data and incidents

in most system components, providing system administrators with a large volume of data

to analyse. Because of the advancements in these systems, security administrators are

inundated with data, much of which is noise, making attackers’ mission easier. There is

a need for SIEM/SOAR systems to be developed specifically for the HPC environment.

Integrating artificial intelligent technologies in the SIEM/SOAR systems could vastly help

system administrators in monitoring HPC systems activities. Data generated from HPC

centres and their users is unique and differs from typical computer systems infrastructures.

Therefore, the data generated from the HPC security system can be used to train artificial

intelligence models for autonomous detection.

The aim of this research was to create a novel data-driven secure access framework for

HPC systems that combines the capabilities of the Security Orchestration Automation and

125

Response System (SOAR) and Security Information and Event Management System (SIEM).

The framework will allow further development of Artificial intelligent algorithms designed for

anomaly detection in access and usage of HPC systems. To achieve the aim, (i) thorough

research needed to be conducted to investigate the current challenges and solutions within

HPC. (ii) it was necessary to design, develop and deploy the framework in the University of

Huddersfield Campus Grid for management of HPC resources and users. (iii) analyse the

data collected and accelerate the framework’s security by building machine learning models

for autonomous anomaly detection. (iv) evaluate the effectiveness of the framework.

As a result of the efforts outlined above, Bearicade was introduced. Bearicade is an HPC

users and security management gateway; it is built based on an architecture that allows users

to access several nodes on/off-premise remotely and includes a web terminal and file manager

implementation. Bearicade is built on well-known browser features, and it allows for safe

operation and access to HPC systems without requiring specialised user training. System

security is accomplished by continuously tracking, analysing, and interpreting data, such as

user interaction, server requests, access devices, and geographic locations, among other things.

Anomalies in users’ actions would be noticeable to server administrators, allowing them to

take quick action to mitigate risks. In addition, the system does not use SSH as its primary

remote access portal. Instead, the online dashboard serves as a portal. Bearicade, which is

based on a RESTful API, helps administrators and developers visualise and analyse activities

over the systems, allowing machine learning deployment to aid in enhancing systems security

based on the data gathered.

Bearicade was deployed at the QueensGate Grid at the University of Huddersfield. Users

used Bearicade as their only access to HPC services, and administrators monitored their

systems and users from within Bearicade. This has helped Bearicade to demonstrate its

versatility and make data collection from various sources easier inside Bearicade, allowing for

the extension of security systems by Artificial Intelligence.

126 Conclusion

As part of this study, Bearicade is a data-driven architecture that was designed, developed,

and implemented. Bearicade captures all of its users’ data from dashboard components

through the users’ interactions. Bearicade’s dashboard serves as a portal to the HPC systems.

Furthermore, Bearicade authorises and records any interaction with these systems. An

artificial intelligence system could be used with Bearicade in data analysis and internal data

inventory. It can help to make decisions at any point during a user’s interactions with a

device to identify and respond to irregularities and improve detection accuracy.

Since the creation of Bearicade and the development of Machine learning algorithms, many

efforts have been made over the last four years to create a generation of models that detect

anomalies in the system. Many iterations of these models have contributed to the novel

successful working models.

Various Machine Learning models were developed, each of the models serves as a use-case

study. Three Machine Learning models were built. The first model was trained based on

the perspective of user behaviour, such as mouse movements and dashboard interactivity.

Second model identified malicious user commands before being sent to the target system.

Finally, a detailed model used user behaviour and environmental variables dependent on

time, place, and equipment used by users to train Artificial Neural Network models to detect

anomalies in users’ access to the HPC systems. Various tests were run on the QGG grid

HPC tools to test the Bearicade framework’s success in standard scenarios related to safe

access to HPC systems. The findings are promising, showing high precision in identifying

irregularities and checking the credibility of users, also opening up potential development for

other Artificial Intelligent algorithms.

The novelty of the Bearicade framework is demonstrated in the framework’s architecture

and Machine Learning models developed through Bearicade. This ability that has not been

previously available for conventional access methods in HPC and the uniqueness of the

work discussed in this study. Bearicade is not just a prototype; it is a production system

and effective solutions for authentication authorisation. This claim is proven by its four

127

years of active duty as the exclusive access software for the QueensGate Grid’s users and

administrators at the University of Huddersfield.

Addressing Research Questions

Following the extensive literature review conducted, there were some research questions

identified. It is necessary to confirm the efficacy of the proposed framework (Bearicade) and

the complementary Artificial Intelligent Machine Learning models developed. This section

will address each of the research questions.

How can the technologies and data provided by this research contribute to the

development and implementation of automated security access system in HPC?

The development and four-year deployment of Bearicade at QGG have allowed this system’s

usage as the primary access system for QGG users. The system’s architecture has enabled

the system to gather various information from its users forming a large dataset that was then

used to build and implement multiple Machine Learning models serving as an automated

anomaly detection over different components of the system.

To what extent such an implementation can protect HPC systems and authorised

access?

Bearicade follows the OWASP Application Security Verification Standard and contains

multiple security features that many other competitive systems lack; this is essential for a

secure authentication and authorisation system access mechanism. In addition, the evaluation

of the developed Machine Learning models has proven the models’ capabilities in identifying

anomalies in users’ physical behaviour actions throughout the users’ interaction with the

system.

128 Conclusion

Will such implementation help in the Management and the usability of HPC

systems?

Bearicade is currently used as the primary access gateway for QGG users, and the system has

demonstrated that it can provide a smooth and automated operation in regards to the users’

registration, authentication and user and job management. Also, the system has eliminated

the need for users to have knowledge in Bash, that the SSH access method required. Finally,

according to a conducted System Usability Score survey, Bearicade has a better usability

and user satisfaction compared to traditional SSH.

Limitation

Bearicade has provided an efficient solution to a current problem and has contributed to the

gap of knowledge. However, some limitations should be noted:

1. Bearicade’s codebase is very large and requires continuous testing for any vulnerabilities

that may be caused by one the component of the framework.

2. Since Bearicade’s front-end is based on web technologies which is currently evolv-

ing rapidly, the system will require to be updated regularly to achieve cross-device

compatibility and secure state.

3. Bearicade works well with Red-hat Enterprise based Linux operating systems. However,

Bearicade was not tested on other operating systems such as Debian.

4. Although Bearicade has the basic functional features as a HPC system, it will require

further development of add-ons to be able to replace the more advanced HPC-focused

portals and improve the users’ experience.

5. As with most Machine Learning models, some of Bearicade’s models require a large

dataset in order to achieve a reliable anomaly detection accuracy. In addition, Machine

Learning models may introduce false positives/negatives.

129

Future Work

The work presented in this thesis, including Bearicade codebase and some of the Machine

Learning models, has been published and is freely available to the community as open-source

projects. Continuous monitoring of the system components will be carried and the project will

be update accordingly to keep the system at a reliable and secure state. Bearicade has been

implemented and tested extensively at tier 3 HPC systems (QGG). Additional efforts will be

made to ensure the framework’s compatibility with a wider range of HPC systems configu-

rations and environments. This will allow the framework to be deployed at other HPC centres.

Further Bearicade add-ons will be developed to guarantee the framework’s adequacy in

replacing more advanced HPC-focused portals and better user’s usability of the dashboard.

Moreover, additional Artificial Intelligent tools and Machine Learning models will be explored

to enable better anomaly detection accuracy and cover more system components to be tested

for anomalies.

Future publications, currently in preparation, will further expand some of the work presented

in this thesis. Our published journal article is exploring some of the work done in this

thesis, and journal article is currently under review, with two more publications in progress

extending the work presented in the PhD thesis.

References

Abramson, M. (2014a). Active authentication from web browsing behavior. In Smart card
alliance conference, pages 1–16.

Abramson, M. (2014b). Learning temporal user profiles of web browsing behavior. In 6th
ASE International Conference on Social Computing (SocialCom’14).

Abramson, M. and Aha, D. (2013). User authentication from web browsing behavior. In The
Twenty-Sixth International FLAIRS Conference.

Abunadi, I. and Alenezi, M. (2016). An empirical investigation of security vulnerabilities
within web applications. 22(4):537–551.

Activeeon (2014). ProActive from Activeeon.

Adaptive (2006). Products – Adaptive Computing.

Al-Garadi, M. A., Mohamed, A., Al-Ali, A., Du, X., and Guizani, M. (2018). A Survey of
Machine and Deep Learning Methods for Internet of Things (IoT) Security.

Al-Janabi, S. T. F. and Saeed, H. A. (2011). A neural network based anomaly intrusion
detection system. In 2011 Developments in E-systems Engineering, pages 221–226. IEEE.

Al-Jody, T. (2017). Bearicade. https://github.com/TA3/bearicade.

Al-Jody, T. (2018).

Al-Jody, T. (2019). web-user-behaviour.

Al-Jody, T. and Holmes, V. (2019). Security orchestration, automation and response (soar)
in hpc. page 78. Emerging Technology Conference.

Al-Jody, T., Holmes, V., Antoniades, A., and Kazkouzeh, Y. (2020). Bearicade: secure
access gateway to high performance computing systems. In 2020 IEEE 19th International
Conference on Trust, Security and Privacy in Computing and Communications (TrustCom),
pages 1420–1427.

Alam, D., Zaman, M., Farah, T., Rahman, R., and Hosain, M. S. (2017). Study of the Dirty
Copy on Write, a Linux Kernel memory allocation vulnerability. In 2017 International
Conference on Consumer Electronics and Devices, ICCED 2017, pages 40–45. Institute of
Electrical and Electronics Engineers Inc.

Alpar, O. (2014). Keystroke recognition in user authentication using ANN based RGB
histogram technique. Engineering Applications of Artificial Intelligence, 32:213–217.

https://github.com/TA3/bearicade

132 References

Altair (2019). HPC Administrator’s Control Center for Managing, Optimizing, and Forecast-
ing Resources | Altair Control.

Altair Korea Enterprise Computing Division (2018). PBS Access & PBS Control.

Apache (2016). Apache Airavata.

Apostal, D., Foerster, K., Chatterjee, A., and Desell, T. (2012). Password recovery using
MPI and CUDA. In 2012 19th International Conference on High Performance Computing,
HiPC 2012.

Apruzzese, G.; Colajanni, M.; Ferretti, L.; Guido, A.; Marchetti, M. (2018). 2018 10 th
InternatIonal ConferenCe on Cyber ConflICt CyCon X: MaXIMISInG effeCtS CopyrIGht
and reprInt perMISSIonS.

Arbaugh, B. (2002). Security: Technical, social, and legal challenges. Computer, 35(2):109–
111.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., and Zaharia, M. (2010). A view of cloud computing.

Atos (2010). Bull Extreme Factory.

Bace, R. and Mell, P. (2001). Intrusion detection systems. Technical report, National
Institute of Standards and Technology, Gaithersburg, MD.

Barika, F., Hadjar, K., and El-Kadhi, N. (2009). Artificial neural network for mobile ids
solution. Security and Management, pages 271–277.

Barman, D. K. and Khataniar, G. (2012). Design of intrusion detection system based on
artificial neural network and application of rough set. International Journal of Computer
Science and Communication Networks, 2(4):548–552.

Bergadano, F., Gunetti, D., and Picardi, C. (2003). Identity verification through dynamic
keystroke analysis. Intell. Data Anal., 7(5):469–496.

Berman, D., Buczak, A., Chavis, J., Corbett, C., Berman, D. S., Buczak, A. L., Chavis,
J. S., and Corbett, C. L. (2019). A Survey of Deep Learning Methods for Cyber Security.
Information, 10(4):122.

BrainJS (2016). brain.js.

Bridges, S. M., Vaughn, R. B., and Siraj, A. (2002). Ai techniques applied to high performance
computing intrusion detection. In Proceeding of the Tenth International Conference on
Telecommunication Systems, Modeling and Analysis, Monterey CA, volume 2, pages 100–
114.

Bright Computing (2019). Bright Cluster Manager v9.

Brooke, J. (1995). Sus: A quick and dirty usability scale. Usability Eval. Ind., 189.

Buczak, A. L. and Guven, E. (2016). A Survey of Data Mining and Machine Learning
Methods for Cyber Security Intrusion Detection. IEEE Communications Surveys &
Tutorials, 18(2):1153–1176.

Bulusu, R., Jain, P., Pawar, P., Afzal, M., and Wandhekar, S. (2018). Addressing security
aspects for HPC infrastructure. In 2018 International Conference on Information and
Computer Technologies, ICICT 2018, pages 27–30. Institute of Electrical and Electronics
Engineers Inc.

References 133

by Harald Welte (2000). The netfilter framework in Linux 2.4. Technical report.

Cadariu, M., Bouwers, E., Visser, J., and van Deursen, A. (2015). Tracking known security
vulnerabilities in proprietary software systems. In 2015 IEEE 22nd International Conference
on Software Analysis, Evolution, and Reengineering (SANER), pages 516–519. IEEE.

Caddy (2020). Caddy Web Server.

Calegari, P., Levrier, M., and Atos, F. (2019). Web Portals for High-performance Computing:
A Survey. ACM Trans. Web, 13(5).

Campbell, S. and Mellander, J. (2011). Experiences with Intrusion Detection in High
Performance Computing. Technical Report 9.

Center, O. S. (2020). ondemand. https://github.com/OSC/ondemand.

Chang, V., Li, C.-S., De Roure, D., Wills, G., Walters, R. J., and Chee, C. (2011). The
Financial Clouds Review. International Journal of Cloud Applications and Computing,
1(2):41–63.

Chen, Y., Zheng, Q., and Yang, H. (2017). A kind of university HPC platform security
balance method based on the barrel theory. In Proceedings of the 29th Chinese Control and
Decision Conference, CCDC 2017, pages 3708–3713. Institute of Electrical and Electronics
Engineers Inc.

Chugh, U. and Chugh, A. (2010). Security in high performance computing. In Information
Processing and Management, pages 552–556, Berlin, Heidelberg. Springer Berlin Heidelberg.

Clough, J. (2015). Principles of Cybercrime. Cambridge University Press, Cambridge.

Clusterworks (2018). Clusterworks - Inception.

Cobb, C., Sudar, S., Reiter, N., Anderson, R., Roesner, F., and Kohno, T. (2018). Computer
security for data collection technologies. Development Engineering, 3:1–11.

Corp Pei Symantec J Rydell, D. M. (2011). Internet Engineering Task Force (IETF) TOTP:
Time-Based One-Time Password Algorithm.

Cuppens, M. (2016). Implementation and Analysis of a ChaCha Hardware Accelerator for
the Caddy Secure Webserver Mathijs Cuppens. Technical report.

CyVerse (2020). Science APIs | CyVerse.

Daniel J. Barrett, Richard E. Silverman, R. G. B. (2005). SSH, The Secure Shell: The
Definitive Guide: The Definitive Guide.

Dasgupta, D. (2006). Computational intelligence in cyber security. In 2006 IEEE International
Conference on Computational Intelligence for Homeland Security and Personal Safety,
pages 2–3.

Despa, M. L. (2014). Comparative study on software development methodologies. Database
Systems Journal, 5(3):37–56.

Dewayne Adams (2011). Six security risks in High Performance Computing (HPC).

Dheshmukh, A. T. and Mahalle, P. N. (2014). Survey on Linux Security and Vulnerabilities.
Technical report.

https://github.com/OSC/ondemand

134 References

Dilek, S., Cakır, H., and Aydın, M. (2015). Applications of artificial intelligence techniques
to combating cyber crimes: A review. International Journal of Artificial Intelligence &
Applications, 6(1):21–39.

Donevski, M. and Zia, T. (2018). A Survey of Anomaly and Automation from a Cybersecurity
Perspective. In 2018 IEEE Globecom Workshops (GC Wkshps), pages 1–6. IEEE.

Durumeric, Z., Ma, Z., Springall, D., Barnes, R., Sullivan, N., Bursztein, E., Bailey, M.,
Halderman, J. A., and Paxson, V. (2017). The Security Impact of HTTPS Interception.

EGI CSIRT (2020). Academic data centers abused for crypto currency mining . Technical
report.

Eldred, M., Adams, C., and Good, A. (2015). Impact of EU data protection laws on
cloud computing: Capturing cloud-computing challenges and fault lines. In Delivery and
Adoption of Cloud Computing Services in Contemporary Organizations, pages 56–79. IGI
Global.

Eldred, M., Good, A., and Adams, C. (2016). A case study on data protection and security
decisions in cloud HPC. In Proceedings - IEEE 7th International Conference on Cloud
Computing Technology and Science, CloudCom 2015, pages 564–568. Institute of Electrical
and Electronics Engineers Inc.

Ertaul, L., Kaur, M., and Gudise, V. A. K. R. (2016). Implementation and performance
analysis of pbkdf2, bcrypt, scrypt algorithms. In Proceedings of the International Conference
on Wireless Networks (ICWN), page 66. The Steering Committee of The World Congress
in Computer Science, Computer

EshghiShargh, A. (2009). Using artificial immune system on implementation of intrusion
detection systems. In 2009 Third UKSim European Symposium on Computer Modeling
and Simulation, pages 164–168. IEEE.

Fenton, N. (2014). Software metrics : a rigorous and practical approach. CRC Press, Boca
Raton, FL.

Fenzi, K. and Wreski, D. (2000). Linux Security HOWTO. Technical report.

Ferreira, E. W. T., Carrijo, G. A., de Oliveira, R., and de Souza Araujo, N. V. (2011).
Intrusion detection system with wavelet and neural artifical network approach for networks
computers. IEEE Latin America Transactions, 9(5):832–837.

Foster, I., Karonis, N., Kesselman, C., and Tuecke, S. (1998). Managing security in high-
performance distributed computations. Cluster Computing, 1(0):95–107.

Fridman, A., Stolerman, A., Acharya, S., Brennan, P., Juola, P., Greenstadt, R., and Kam, M.
(2013). Decision fusion for multimodal active authentication. IT Professional, 15(4):29–33.

Fridman, L., Weber, S., Greenstadt, R., and Kam, M. (2017). Active authentication on
mobile devices via stylometry, application usage, web browsing, and gps location. IEEE
Systems Journal, 11(2):513–521.

Fujitsu (2010). SynfiniWay V4.

Fujitsu (2015). HPC Workload-optimized Solutions : FTS : HPC - HPC Workload-optimized
Solutions : Fujitsu Global.

References 135

Gantikow, H., Reich, C., Knahl, M., and Clarke, N. (2016). Providing security in container-
based HPC runtime environments. In Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
volume 9945 LNCS, pages 685–695. Springer Verlag.

García-Teodoro, P., Díaz-Verdejo, J., Maciá-Fernández, G., and Vázquez, E. (2009). Anomaly-
based network intrusion detection: Techniques, systems and challenges. Computers &
Security, 28(1-2):18–28.

Greenberg, J. P., Mock, S., Bhatia, K., Katz, M., Bruno, G., Sacerdoti, F., Papadopoulos, P.,
and Baldridge, K. K. (2005). Incorporation of middleware and grid technologies to enhance
usability in computational chemistry applications. volume 21, pages 3–10. North-Holland.

Hassan, M., Ali, M., Bhuiyan, T., Sharif, M., and Biswas, S. (2018). Quantitative assessment
on broken access control vulnerability in web applications.

Hassan, M. M. M. (2013). Network intrusion detection system using genetic algorithm and
fuzzy logic.

Herrero, Á., Corchado, E., Pellicer, M. A., and Abraham, A. (2007). Hybrid multi agent-
neural network intrusion detection with mobile visualization. In Innovations in Hybrid
Intelligent Systems, pages 320–328. Springer.

Higgins, J., Al-Jody, T., and Holmes, V. (2018). Rapid Deployment of Bare-Metal and
In-Container HPC clusters using OpenHPC playbooks. Technical report.

Higgins, J., Holmes, V., and Venters, C. (2016). Securing user defined containers for scientific
computing. In 2016 International Conference on High Performance Computing and
Simulation, HPCS 2016, pages 449–453. Institute of Electrical and Electronics Engineers
Inc.

Hoffman, D., Prabhakar, D., and Strooper, P. (2003). Testing iptables. In Proceedings of the
2003 Conference of the Centre for Advanced Studies on Collaborative Research, CASCON
’03, page 80–91. IBM Press.

HPCsec (2019). Do Traditional Cyber Security Rules Apply to HPC Environments? -
HPCSec.

Hudak, D., Johnson, D., Chalker, A., Nicklas, J., Franz, E., Dockendorf, T., and L. McMichael,
B. (2018). Open OnDemand: A web-based client portal for HPC centers. Journal of Open
Source Software, 3(25):622.

Hudak, D. E., Johnson, D., Nicklas, J., Franz, E., McMichael, B., and Gohar, B. (2016).
Open OnDemand: Transforming computational science through omnidisciplinary software
cyberinfrastructure. In ACM International Conference Proceeding Series, volume 17-21-
July-2016. Association for Computing Machinery.

Hudak, D. E., Johnson, D., Nicklas, J., Franz, E., McMichael, B., and Gohar, B. (2017).
OSC/Open-OnDemand: Supercomputing. Seamlessly. Open, Interactive HPC Via the
Web.

Inside HPC (2015). Fujitsu Launches HPC Gateway Web Software .

James D. Ballew, Shannon V. Davidson, and Anthony N. Richoux (2015). System and
method for cluster management based on HPC architecture.

Jankowicz, A. (2000). Business Research Projects. Thomson Learning.

136 References

Janssen, R. (2020). Twofactorauth. https://github.com/RobThree/TwoFactorAuth.

Jon Oltsik (2018). The evolution of security operations, automation and orchestration | CSO
Online.

Jongsuebsuk, P., Wattanapongsakorn, N., and Charnsripinyo, C. (2013). Real-time intrusion
detection with fuzzy genetic algorithm. In 2013 10th International Conference on Electrical
Engineering/Electronics, Computer, Telecommunications and Information Technology,
pages 1–6. IEEE.

Kadlecsik, J., Rmki, K., Pásztor, G., and Ek, S. (2004). Netfilter Performance Testing.
Technical report.

Kanclirz, J. and Baskin, B. (2008). Netcat power tools. Syngress Pub.

Kesteren, M. (2019). A New Dawn for Security Vulnerabilities in HPC.

Khajeh-Hosseini, A., Sommerville, I., and Sriram, I. (2010). Research challenges for enterprise
cloud computing.

Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W., Hamburg, M., Lipp, M.,
Mangard, S., Prescher, T., Schwarz, M., and Yarom, Y. (2018). Spectre Attacks: Exploiting
Speculative Execution. Technical report.

Kogos, K. G., Finoshin, M. A., and Gentyuk, V. A. (2019). Internet users authentication
via artificial intelligence. In Biologically Inspired Cognitive Architectures Meeting, pages
219–224. Springer.

Köhler, J., Simon, M., Nussbaumer, M., and Hartenstein, H. (2013). Federating HPC
access via SAML: Towards a plug-and-play solution. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), volume 7905 LNCS, pages 462–473. Springer, Berlin, Heidelberg.

Kruegel, C. (2004). Network security and secure applications.

Kuhn, M. (2005). UTF-8 and Unicode FAQ for Unix/Linux. Technical report.

Liao, H.-J., Lin, C.-H. R., Lin, Y.-C., and Tung, K.-Y. (2013). Intrusion detection system:
A comprehensive review. Journal of Network and Computer Applications, 36(1):16–24.

Linda, O., Vollmer, T., and Manic, M. (2009). Neural network based intrusion detection
system for critical infrastructures. In 2009 international joint conference on neural networks,
pages 1827–1834. IEEE.

Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh, A., Horn, J., Mangard, S.,
Kocher, P., Genkin, D., Yarom, Y., and Hamburg, M. (2018). Meltdown: Reading Kernel
Memory from User Space. Technical report.

Luo, Z., Qu, Z., Nguyen, T. T., Zeng, H., and Lu, Z. (2019). Security of HPC Systems: From
a Log-analyzing Perspective.

Malin, A. and Van Heule, G. (2013). Continuous monitoring and cyber security for high
performance computing. In CLHS 2013 - Proceedings of the ACM Workshop on Changing
Landscapes in HPC Security, pages 9–14, New York, New York, USA. ACM Press.

Marquardson, J. (2012). Password Policy Effects on Entropy and Recall: Research in Progress.
AMCIS 2012 Proceedings.

https://github.com/RobThree/TwoFactorAuth

References 137

Marru, S., Gunathilake, L., Herath, C., Tangchaisin, P., Pierce, M., Mattmann, C., Singh,
R., Gunarathne, T., Chinthaka, E., Gardler, R., Slominski, A., Douma, A., Perera, S.,
and Weerawarana, S. (2011). Apache Airavata: A framework for distributed applications
and computational workflows. In GCE’11 - Proceedings of the 2011 ACM Workshop on
Gateway Computing Environments, Co-located with SC’11, pages 21–28, New York, New
York, USA. ACM Press.

McCormack, R. P., Koontz, J. E., and Devaney, J. (1999). Seamless computing with
WebSubmit. Concurrency: Practice and Experience, 11(15):949–963.

McCormick, M. (2012). Waterfall vs. agile methodology. MPCS, N/A.

McGraw, G. (2006). Software security : building security in. Addison-Wesley, Upper Saddle
River, NJ.

Meister, B. (2007). PuTTY/Cygwin Tutorial. Technical report.

Mendes, N., Neto, A. A., Duräes, J., Vieira, M., and Madeira, H. (2008). Assessing
and comparing security of web servers. In Proceedings of the 14th IEEE Pacific Rim
International Symposium on Dependable Computing, PRDC 2008, pages 313–322.

Metla, H., Vinay Reddy, M., Sai Kiran, C., and Madhu Viswanatham, V. (2018). Crypt-
analysis of secure hash password technique (cshpt) in linux. In 2018 IADS International
Conference on Computing, Communications & Data Engineering (CCODE), pages 7–8.

MITRE (2019). CVE - CVE-2019-14287.

Morris, R. and Thompson, K. (1979). Password security: A case history. Commun. ACM,
22(11):594–597.

Newham, C. (2005). Learning the bash Shell: Unix Shell Programming. "O’Reilly Media,
Inc.".

Nguyen, T. T. and Armitage, G. (2008). A survey of techniques for internet traffic classification
using machine learning. IEEE Communications Surveys & Tutorials, 10(4):56–76.

Nicolett, M. and Kavanagh, K. M. (2011). Magic Quadrant for Security Information and
Event Management Evaluation Criteria Definitions.

Nimbix (2012). JARVICE is the Cloud Platform for Big Compute.

NIST (1998). WebSubmit Home Page; remote access via the web; WebSubmit; websubmit.

Nogueira, J. (2006). Mobile intelligent agents to fight cyber intrusions. The International
Journal of Forensic Computer Science, pages 28–32.

OpenHPC Community (2018). OpenHPC.

Ou, C.-M., Wang, Y.-T., and Ou, C.-R. (2011). Intrusion detection systems adapted from
agent-based artificial immune systems. In 2011 IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE 2011), pages 115–122. IEEE.

OWASP (2017). A6:2017-Security Misconfiguration | OWASP.

OWASP.org (2017). OWASP Top Ten 2017.

Patel, A., Taghavi, M., Bakhtiyari, K., and Júnior, J. C. (2012). Taxonomy and proposed
architecture of intrusion detection and prevention systems for cloud computing. In
International Symposium on Cyberspace Safety and Security, pages 441–458. Springer.

138 References

Peisert, S. (2017). Security in high-performance computing environments.

Peisert, S. (2018). Cybersecurity for hpc systems: State of the art and looking to the future.
Technical report.

Peisert-Lawrence Berkeley National Lab, S. (2016). HPC Workshop Presentation - Cyberse-
curity for HPC Systems: Challenges and Opportunities.

Pellerin David, Ballantyne Dougal, and Boeglin Adam (2015). An Introduction to High
Performance Computing on AWS. Technical report.

Petersen, K., Wohlin, C., and Baca, D. (2009). The waterfall model in large-scale develop-
ment. Lecture Notes in Business Information Processing Product-Focused Software Process
Improvement, page 386–400.

PHPAuth (2020). Phpauth. https://github.com/PHPAuth/PHPAuth.

Pierce, M. E., Marru, S., Gunathilake, L., Kanewala, T. A., Singh, R., Wijeratne, S.,
Wimalasena, C., Herath, C., Chinthaka, E., Mattmann, C., Slominski, A., and Tangchaisin,
P. (2014). Apache Airavata: Design and directions of a science gateway framework. In
Proceedings - 6th International Workshop on Science Gateways, IWSG 2014, pages 48–54.
IEEE Computer Society.

Platform Computing (2009). Platform Application Center introduced by Platform Computing.
- Free Online Library.

Ponemon (2013). The Post Breach Boom Sponsored by Solera Networks. Technical report.

Ponemon Institute (2017). 2017 Cost of Data Breach Study Global Overview. Technical
report.

Priedhorsky, R. and Randles, T. (2017). Charliecloud: Unprivileged containers for user-
defined sofware stacks in HPC. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC 2017, pages 1–10, New
York, New York, USA. Association for Computing Machinery, Inc.

Prout, A., Arcand, W., Bestor, D., Bergeron, B., Byun, C., Gadepally, V., Hubbell, M., Houle,
M., Jones, M., Michaleas, P., Milechin, L., Mullen, J., Rosa, A., Samsi, S., Reuther, A.,
and Kepner, J. (2016). Enhancing HPC security with a user-based firewall. In 2016 IEEE
High Performance Extreme Computing Conference, HPEC 2016. Institute of Electrical
and Electronics Engineers Inc.

Provos, N. and Mazieres, D. (1999). Bcrypt algorithm. In USENIX.

Purdy, G. N. (2004). Linux iptables : pocket reference. O’Reilly Media.

Purgason, B. and Hibler, D. (2012). Security through behavioral biometrics and artificial
intelligence. Procedia Computer Science, 12:398–403.

Quintero, D. and International Business Machines Corporation. International Technical Sup-
port Organization. (2012). IBM Platform Computing solutions. IBM Corp., International
Technical Support Organization.

Rasheed, H. (2014). Data and infrastructure security auditing in cloud computing environ-
ments. International Journal of Information Management, 34(3):364–368.

Red Hat (2016). Dirty Copy-On-Write.

https://github.com/PHPAuth/PHPAuth

References 139

Red Hat (2017). Speculative Execution Exploit Performance Impacts - Describing the
performance impacts to security patches for CVE-2017-5754 CVE-2017-5753 and CVE-
2017-5715 - Red Hat Customer Portal.

Red Hat (2019). Ansible is Simple IT Automation.

Reese, K., Smith, T., Dutson, J., Armknecht, J., Cameron, J., and Seamons, K. (2019). A
usability study of five two-factor authentication methods. In Fifteenth Symposium on
Usable Privacy and Security (SOUPS 2019), Santa Clara, CA. USENIX Association.

Rescale (2012). ScaleX .

Richardson, T., Stafford-Fraser, Q., Wood, K. R., and Hopper, A. (1998). Virtual network
computing.

Rocksclusters (2018). ROCKS OS.

Sadowski, C. and Shewmaker, A. (2010). The last mile: Parallel programming and usability.
In Proceedings of the FSE/SDP Workshop on the Future of Software Engineering Research,
FoSER 2010, pages 309–313, New York, New York, USA. ACM Press.

Sampedro, Z., Hauser, T., and Sood, S. (2017). Sandstone HPC-A domain-general gateway
for new HPC users. In ACM International Conference Proceeding Series, volume Part
F128771, pages 1–7, New York, New York, USA. Association for Computing Machinery.

Serwadda, A., Phoha, V. V., and Kiremire, A. (2011). Using global knowledge of users’
typing traits to attack keystroke biometrics templates. In Proceedings of the Thirteenth
ACM Multimedia Workshop on Multimedia and Security, page 51–60, New York, NY, USA.
Association for Computing Machinery.

Shannon, C. E. (1956). Automata Studies. Princeton University Press.

Shao-jing, Z., Wen-li, S., Hui, R., Zhen-ting, C., and Yu, Y. (2011). Research of intelligent
immune intrusion detection system about combating virus with “virus”. In 2011 IEEE
2nd International Conference on Software Engineering and Service Science, pages 753–756.
IEEE.

Shosha, A. F., Gladyshev, P., Wu, S.-S., and Liu, C.-C. (2011). Detecting cyber intrusions
in scada networks using multi-agent collaboration. In 2011 16th International conference
on intelligent system applications to power systems, pages 1–7. IEEE.

Simakov, N. A., Innus, M. D., Jones, M. D., White, J. P., Gallo, S. M., DeLeon, R. L., and
Furlani, T. R. (2018). Effect of Meltdown and Spectre Patches on the Performance of
HPC Applications.

Sims, J. S., Hagedorn, J. G., Ketcham, P. M., Satterfield, S. G., Griffin, T. J., George, W. L.,
Fowler, H. A., Am Ende, B. A., Hung, H. K., Bohn, R. B., Koontz, J. E., Martys, N. S.,
Bouldin, C. E., Warren, J. A., Feder, D. L., Clark, C. W., Filla, B. J., and Devaney,
J. E. (2001). Accelerating Scientific Discovery through Computation and Visualization.
Technical report.

Sperotto, A., Schaffrath, G., Sadre, R., Morariu, C., Pras, A., and Stiller, B. (2010).
An Overview of IP Flow-Based Intrusion Detection. IEEE Communications Surveys &
Tutorials, 12(3):343–356.

Stan Engelbrecht (2018). The Evolution of SOAR Platforms | SecurityWeek.Com.

140 References

Swift, D. (2006). A Practical Application of SIM/SEM/SIEM Automating Threat Identifica-
tion.

SysFera (2014). SysFera-DS Version 5.0 Introduced.

Teixeira, P. (2012). Professional Node.js : building Javascript based scalable software. Wiley.

The Agave Platform (2013). The Agave Platform.

Tyugu, E. (2011). Artificial intelligence in cyber defense. In 2011 3rd International Conference
on Cyber Conflict, pages 1–11.

UNICORE (1997). UNICORE | Distributed computing and data resources.

Univa (2019). Grid Engine.

Vaarandi, R. and Pihelgas, M. (2014). Using security logs for collecting and reporting
technical security metrics. In Proceedings - IEEE Military Communications Conference
MILCOM, pages 294–299. Institute of Electrical and Electronics Engineers Inc.

Vacca, J. R. (2004). Public key infrastructure : building trusted applications and Web services.
Auerbach Publications.

Verizon (2019). 2019 Data Breach Investigations Report | Verizon Enterprise Solutions.

Verizon (2020). Verizon: Data breach investigations report 2020. Computer Fraud and
Security, 2020(6):4.

Viega, J. (2002). Building secure software : how to avoid security problems the right way.
Addison-Wesley, Boston.

Vue.js (2020). Vue.js.

We Are Social (2020). Digital 2020 - We Are Social.

Wheeler, D. L. (2016). zxcvbn: Low-budget password strength estimation. In 25th USENIX
Security Symposium (USENIX Security 16), pages 157–173, Austin, TX. USENIX Associa-
tion.

Wickramasinghe, C., Marino, D., Amarasinghe, K., and Manic, M. (2018). Generalization of
Deep Learning for Cyber-Physical System Security: A Survey. pages 745–751.

Wu, S. X. and Banzhaf, W. (2010). The use of computational intelligence in intrusion
detection systems: A review. Applied Soft Computing, 10(1):1–35.

Xavier, M. G., Neves, M. V., Rossi, F. D., Ferreto, T. C., Lange, T., and De Rose, C. A. (2013).
Performance evaluation of container-based virtualization for high performance computing
environments. In Proceedings of the 2013 21st Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing, PDP 2013, pages 233–240.

XCAT (2018). xCAT | Extreme Cloud Administration Toolkit.

Xiao-bin Wang, Guang-yuan Yang, Yi-chao Li, and Dan Liu (2008). Review on the application
of artificial intelligence in antivirus detection systemi. In 2008 IEEE Conference on
Cybernetics and Intelligent Systems, pages 506–509.

Xin, Y., Kong, L., Liu, Z., Chen, Y., Li, Y., Zhu, H., Gao, M., Hou, H., and Wang, C.
(2018). Machine Learning and Deep Learning Methods for Cybersecurity. IEEE Access,
6:35365–35381.

References 141

Zhang, Y., Monrose, F., and Reiter, M. K. (2010). The security of modern password
expiration: An algorithmic framework and empirical analysis. In Proceedings of the ACM
Conference on Computer and Communications Security, pages 176–186, New York, New
York, USA. ACM Press.

Zhang, Y., Wang, L., Sun, W., Green, R. C., and Alam, M. (2011). Artificial immune system
based intrusion detection in a distributed hierarchical network architecture of smart grid.
In 2011 IEEE Power and Energy Society General Meeting, pages 1–8. IEEE.

Appendix A

Engagement with The Research

Community

Publications

Al-Jody, T., Holmes, V., Antoniades, A., & Kazkouzeh, Y.: Bearicade: secure access gateway

to High Performance Computing systems. In The 19th IEEE International Conference on

Trust, Security and Privacy in Computing and Communications 2020.

Abstract: “Cyber security is becoming a vital part of many information technologies and

computing systems. Increasingly, High-Performance Computing systems are used in scientific

research, academia and industry. High-Performance Computing applications are specifically

designed to take advantage of the parallel nature of High-Performance Computing systems.

Current research into High-Performance Computing systems focuses on the improvements

in software development, parallel algorithms and computer systems architecture. However,

there are no significant efforts in developing common High-Performance Computing security

standards. Security of the High-Performance Computing resources is often an add-on to

existing varied institutional policies that do not take into account additional requirements

144 Engagement with The Research Community

for High-Performance Computing security. Also, the users’ terminals or portals used to

access the High-Performance Computing resources are frequently insecure or they are being

used in unprotected networks. In this paper we present Bearicade - a Data-driven Security

Orchestration Automation and Response system. Bearicade collects data from the HPC

systems and its users, enabling the use of Machine Learning based solutions to address current

security issues in the High-Performance Computing systems. The system security is achieved

through monitoring, analysis and interpretation of data such as users’ activity, server requests,

devices used and geographic locations. Any anomaly in users’ behaviour is detected using

machine learning algorithms, and would be visible to system administrators to help mediate

the threats. The system was tested on a university campus grid system by administrators

and users. Two case studies, Anomaly detection of user behaviour and Classification of

Malicious Linux Terminal Command, have demonstrated machine learning approaches in

identifying potential security threats. Bearicade’s data was used in the experiments. The

results demonstrated that detailed information is provided to the HPC administrators to detect

possible security attacks and to act promptly.”

Higgins, J, Al-Jody, T, Aagela, H., Holmes, V.: “Inspiring the Next Generation of HPC

Engineers with Re-configurable, Multi-Tenant Resources for Teaching and Research”, Under

Review.

Abstract: “There is a tradition at our university for teaching and research in High Perfor-

mance Computing (HPC) systems engineering. With exascale computing on the horizon, and

a shortage of HPC talent, there is a need for new research computing specialists to secure the

future of research computing. Whilst many institutions provide research computing training

for users within their particular domain, few offer HPC engineering and infrastructure related

courses, making it difficult for students to acquire these skills. This paper outlines how and

why we are training students in HPC systems engineering skills, including technologies used

in delivering this goal. We demonstrate a potential for a multi-tenant system for education

and research which can be supported by other institutions, using novel container and cloud

145

based architecture. An evaluation of our activities over the last 2 years is given in terms of

recruitment metrics, skills audit feedback from students, and research outputs enabled by the

multi-tenant usage of the resource.”.

Higgins, J., Al-Jody, T. & Holmes, V.: “Rapid Deployment of Bare-Metal and In-Container

HPC clusters using OpenHPC playbooks”, HPC Systems Professionals Workshop, held in

conjunction with SuperComputing 2018.

Abstract: “In this paper, we present a toolbox of reusable Ansible roles and playbooks in

order to configure a cluster software environment described by the freely available OpenHPC

recipes. They can be composed in order to deploy a robust and reliable cluster environment,

instilled with the best practise offered by the OpenHPC packaging, and the repeatability and

integrity guarantees of the configuration managed approach. With container virtualization

setting a new trend in scientific software management, we focus this effort on supporting the

deployment of such environments on both bare-metal and container-based targets using the

Virtual Container Cluster framework.“

Aagela, H., Al-Jody, T., Holmes, V.: “Web-based Wireless Wake-on-LAN approach for

Robots.”, IEEE, ICAC 2018.

Abstract: “The ability to remotely wake-up robots over a wireless LAN can improve the

performance and the power consumption of remote robots or cloud robotics system. This

paper presents a solution for power management of a mobile robot, using web-based wireless

Wake-on-LAN (WWoL). The focus in on power management of a mobile robot, but this

approach is also suitable for most of the IoT mobile devices, and other systems that are

designed to be used remotely. The proposed solution allows the targeted device to be powered

ON and OFF remotely via a web-based dashboard. This approach is validated in a case study

with an AR. Drone 2.0. and demonstrated substantial power optimisation for the drone. In

addition, security issues are explored when WWoL is deployed in remote control of mobile

146 Engagement with The Research Community

devices. It was established that a power consumption is reduced when the drone is in a

standby mode waiting for an operator to send a wake-on request message wirelessly, without

compromising security posed by wireless remote access to the devices”.

Matani, A., Al-Jody, T. & Benson, D.: “Pilot Investigating the Correlation between At-

tainment and Attendance using Statistics, Neural Networking and Artificial Intelligence”,

JALTIE Journal 2019.

Abstract: “This paper describes a new approach in quantitatively predicting students’

performance using Artificial Intelligence and Neural Networks (AI&NN) systems. The

purpose of the study is to investigate the suitability of these systems to accurately predict

students’ attainment, from us- ing factors of attendance and pre-entry English scores. One-

year’s worth of anonymous data of yearly attendance percentages, past pre-entry English

scores, and actual attainment was used from 2017-18 published annual evaluation reports

data-set and attendance records for Hudders- field International Study Centre, UK. The study

used this data to train the AI&NN system, and the latter, in turn, learnt to predict attainment

of similar arbitrary data. The AI&NN system also succeeded in quantitatively predicting, after

it learnt from the real data, the significant influence of attendance on attainment compared to

the influence of the other factors used. This method is chosen over other methods (Costa et

al., 2017; Kumar et al., 2017) because it is powerful; its outcome is fast and scalable. The

study’s encouraging results show that, if trained with the right amount of data and used in the

right context, similar systems will have the potential to be used to predict many other desired

outcomes that will have a great impact on improving the quality of education.“

Al-Jody, T., Holmes, V.: “Security Orchestration Automation and Response (SOAR) in High

Performance Computing Systems”, Emerging Technology Conference 2019.

Abstract: “Cybersecurity is becoming critical for many information and computing systems.

In addition to standard security issues, there are additional requirements for secure access

147

to High-Performance Computing (HPC) systems. The user management of HPC systems

is often an add-on to existing institutional policies that do not take into account the need

to access many different HPC systems. There are no common HPC security standards in

research and education communities. Every institution has its own policy, often certified by the

e-science certificate authority (CA). Because the HPC systems are often behind institutional

firewalls, most registered users use Simply Secure Shell (SSH) to access given HPC resource.

The institutions often hold training events to educate the users on how to access their HPC

resources. This is sometimes perceived as a barrier to entry to HPC. However, the systems

used to access HPC clusters are frequently insecure, such as Putty, or they are being used in

unprotected networks. Currently, many HPC centres make use of Private Key Infrastructure

(PKI) as a basic method of authentication. This method has proven reliability. However,

even with the PKI authentication in place, there are potentially security issues for users

who have minimal security awareness. In this paper we present a Security Orchestration

Automation and Response (SOAR) system which will address current security issues in HPC

systems. It is based on familiar browser elements and supports secure operation and access

to HPC systems without a need for specialist user training. The architecture of the systems

is shown in figure 1. The user registration and authorisation is based on the two-factor

authentication, via either the time-based one-time password or universal second factor (U2F).

The system security is achieved through monitoring, analysis and interpretation of data

such as continuous supervision of users’ activity, server requests, devices and geographic

locations, etc. Any anomaly in users’ behavior would be visible to system administrators

and will facilitate prompt actions in order to mediate the threats. The system was tested on

Queens Gate Grid (QGG) system by administrators and student users at the University of

Huddersfield. Initial administrator and user feedback is encouraging. From an administrative

perspective, detailed information is available to detect possible security threats and to act

promptly. From the users’ perspective, the system is easy to learn and use. It provides

repeatedly reliable access to resources, submitting and running jobs, and managing files.“

148 Engagement with The Research Community

Open Source Projects

Bearicade: “Bearicade is an MIT-licensed open-source data-driven secure gateway for

distributed system, build on a REST API, containerized via Docker and deployable with

Ansible.“

Github Repository | Website

Web-User-Behaviour: “Configurable and Lightweight JS Library for user behaviour tracking

from the browser, using mouse movements, clicks, scroll, and time on page.“

Github Repository

Inception: “Inception is a toolkit that brings together the best modern technologies in order

to create fast and flexible turn-key HPC environments, deployable on bare-metal infrastructure

or in the cloud.“

Github Repository

https://github.com/TA3/bearicade
https://bearicade.ta3.dev
https://github.com/TA3/web-user-behaviour
https://github.com/clusterworks/inception

Appendix B

Surveys Template

The System Usability Scale (SUS) surveys issued to the students as explained in 4.5 are

shown in figures B.1 and B.2 respectively.

150 Surveys Template

Please enter your student number: U_____

System Usability Scale (SUS)

This is a standard questionnaire that measures the overall usability of a system that you have
built in term 1. Please select the answer that best expresses how you feel about each statement
after using your cluster.

Strongly
Disagree

Somewhat
Disagree

Neutral Somewhat
Agree

Strongly
Agree

1. I think I would like to use
this tool frequently.

2. I found the tool
unnecessarily complex.

3. I thought the tool was
easy to use.

4. I think that I would need
the support of a technical
person to be able to use
this system.

5. I found the various
functions in this tool were
well integrated.

6. I thought there was too
much inconsistency in this
tool.

7. I would imagine that most
people would learn to use
this tool very quickly.

8. I found the tool very
cumbersome to use.

9. I felt very confident using
the tool.

10. I needed to learn a lot of
things before I could get
going with this tool.

How likely are you to recommend this cluster to others? (please circle your answer)

Not at all likely 0 1 2 3 4 5 6 7 8 9 10 Extremely likely

Fig. B.1 In-class SUS Survey for SSH access method

151

Ques!on 1 (Mandatory)

I think that I would like to use this website frequently.

Ques!on 2 (Mandatory)
I found this website unnecessarily complex.

Ques!on 3 (Mandatory)

I thought this website was easy to use

Ques!on 4 (Mandatory)

I think that I would need assistance to be able to use this website.

Ques!on 5 (Mandatory)

I found the various func!ons in this website were well integrated.

Ques!on 6 (Mandatory)

I thought there was too much inconsistency in this website.

Ques!on 7 (Mandatory)

I would imagine that most people would learn to use this website very quickly.

Ques!on 8 (Mandatory)

I found this website very cumbersome/awkward to use.

Ques!on 9 (Mandatory)

I felt very confident using this website

Ques!on 10 (Mandatory)

I needed to learn a lot of things before I could get going with this website.

Ques!on 11

Feedback or comments (op!onal)

Compared to the first survey you have done about your experience in building the cluster, this survey is about the new Dashboard that
you have used.

Strongly Agree Agree Neutral Disagree Strongly Disagree

Strongly Agree Agree Neutral Disagree Strongly Disagree

Strongly Agree Agree Neutral Disagree Strongly Disagree

Strongly Agree Agree Neutral Disagree Strongly Disagree

Strongly Agree Agree Neutral Disagree Strongly Disagree

Strongly Agree Agree Neutral Disagree Strongly Disagree

Strongly Agree Agree Neutral Disagree Strongly Disagree

Strongly Agree Agree Neutral Disagree Strongly Disagree

Strongly Agree Agree Neutral Disagree Strongly Disagree

Strongly Agree Agree Neutral Disagree Strongly Disagree

Fig. B.2 Online SUS Survey for SSH access method

Appendix C

System Usability Scale (SUS) Results

The System Usability Scale (SUS) results explained in 4.5 are shown in Tables C.1 and C.2

for the SSH and Bearicade access method respectively.

154 System Usability Scale (SUS) Results

Table C.1 System Usability Scale Results for SSH

Participant q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 SUS Score
1 4 3 4 4 4 4 3 2 4 2 60.0
2 4 3 4 5 5 2 4 3 5 2 67.5
3 3 1 3 5 3 2 4 3 5 3 60.0
4 3 2 4 4 3 3 4 4 2 4 47.5
5 4 3 2 5 4 2 2 3 3 4 45.0
6 5 2 5 4 3 3 5 3 5 4 67.5
7 3 3 3 3 3 3 3 3 3 3 50.0
8 2 3 4 4 4 2 3 1 3 2 60.0
9 2 3 3 4 3 3 2 3 3 5 37.5
10 4 4 2 3 3 2 2 4 3 5 40.0
11 4 4 3 5 5 5 3 4 3 3 42.5
12 3 4 2 4 4 3 2 3 2 4 37.5
13 3 3 2 3 3 3 3 3 4 5 45.0
14 3 3 3 3 3 3 3 3 3 5 45.0
15 3 3 3 4 4 2 4 3 2 4 50.0
16 2 3 2 2 2 4 2 1 3 3 45.0
17 3 2 4 1 4 1 5 4 4 1 77.5
18 4 2 5 2 4 2 5 5 5 3 72.5
19 5 2 5 2 5 1 5 2 5 3 87.5
20 5 1 3 2 5 3 5 5 5 2 75.0
21 3 2 4 3 5 2 5 3 4 3 70.0
22 1 5 1 5 4 4 2 3 2 5 20.0
23 3 2 3 3 3 3 3 3 3 3 52.5
24 3 3 3 3 3 3 3 3 3 3 50.0
25 5 4 4 4 5 1 2 1 4 4 65.0
26 3 2 3 2 4 4 3 3 3 4 52.5
27 4 3 3 2 4 4 2 2 3 2 57.5
28 4 3 4 2 4 4 4 3 4 2 65.0
29 4 2 3 4 4 3 4 2 4 4 60.0
30 2 2 4 3 5 4 2 2 3 2 57.5
31 4 5 3 3 3 3 3 3 3 3 47.5
32 1 2 5 4 4 2 4 3 3 3 57.5
33 4 3 3 2 2 3 4 3 4 4 55.0
34 5 4 4 4 5 4 4 5 4 5 50.0
35 3 1 4 3 4 2 4 2 3 5 62.5
36 2 4 3 5 3 3 2 3 1 5 27.5
37 2 3 2 5 3 4 1 1 1 5 27.5

155

Table C.2 System Usability Scale Results for Bearicade

Participant q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 SUS Score
1 4 3 3 4 4 3 3 4 3 4 47.5
2 5 2 5 2 5 1 4 2 5 3 85.0
3 4 4 4 4 4 4 4 3 3 3 52.5
4 5 2 2 4 3 3 4 3 4 4 55.0
5 5 2 5 2 5 1 5 1 5 2 92.5
6 5 5 5 5 5 2 3 2 4 4 60.0
7 4 3 3 4 5 2 5 3 4 4 62.5
8 3 4 3 2 2 3 4 3 3 4 47.5
9 5 5 5 5 5 5 5 5 5 5 50.0
10 4 2 4 1 3 1 3 1 3 3 72.5
11 4 2 3 2 4 2 5 1 5 2 80.0
12 5 3 5 4 4 3 3 2 3 3 62.5

Appendix D

Bearicade: Summary and Source

Code

Information about the source code and list of features for Bearicade could be found on the

Website or the Github repository page:

Website https://bearicade.ta3.dev
Source Code https://github.com/TA3/bearicade

158 Bearicade: Summary and Source Code

Fig. D.1 Some Features of Bearicade - Bearicade Website (Al-Jody, 2018)

159

Fig. D.2 Summary of Bearicade - Bearicade Github Repository (Al-Jody, 2017)

160 Bearicade: Summary and Source Code

Fig. D.3 Prerequisite and Deployment Procedure - Bearicade Github Repository (Al-Jody,
2017)

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 HPC Security
	1.2 Motivation
	1.3 Aims and Objectives
	1.4 Methodology
	1.4.1 Software Design Models
	1.4.2 Adopted Software Design Model
	1.4.3 Research Methods

	1.5 Summary

	2 Literature Review
	2.1 Access to HPC Systems
	2.1.1 Secure Shell (SSH)
	2.1.2 Virtual Network Computing (VNC)
	2.1.3 HPC Access Portal

	2.2 HPC Portal Requirements
	2.2.1 Functional Requirements
	2.2.2 Non-Functional Requirements

	2.3 HPC Portal Solutions
	2.3.1 Open OnDemand
	2.3.2 Bright Cluster Manager

	2.4 Security in HPC and Distributed Systems
	2.4.1 Security Challenges
	2.4.2 HPC Systems Performance and Security

	2.5 Security Solutions for HPC and Distributed Systems
	2.5.1 Elemental Technologies
	2.5.2 Security Information and Event Management System
	2.5.3 Security Orchestration Automation and Response

	2.6 Artificial Intelligence Implementations in Security
	2.6.1 Artificial Intelligent Intrusion Detection Systems
	2.6.2 Artificial Intelligence in Access Control

	2.7 Shortcoming of existing HPC Security Practices
	2.8 Shortcomings of the Existing Security Implementation for HPC
	2.9 Research Questions

	3 Bearicade
	3.1 Introduction
	3.2 Software Architecture
	3.2.1 Physical Layer
	3.2.2 System Layer
	3.2.3 Middleware
	3.2.4 Bearicade Stack
	3.2.5 Data Acquisition
	3.2.6 Application Programming Interface (API)
	3.2.7 Web-based Terminal and File Manager

	3.3 Security Implementations
	3.3.1 The Open Web Application Security Project
	3.3.2 User Authentication

	3.4 Dashboard Features
	3.4.1 Terminal and File manager
	3.4.2 Account Information and Customization
	3.4.3 Users Management
	3.4.4 Settings

	3.5 Summary

	4 Deployment of Bearicade
	4.1 HPC Grid
	4.1.1 Systems Distribution
	4.1.2 Access Software at the University of Huddersfield
	4.1.3 HPC User Access and Privileges

	4.2 Data Collection
	4.3 Flexibility: Cloud Deployment
	4.4 Bearicade Performance Evaluation in The Pandemic
	4.5 System Usability: SSH vs Bearicade
	4.6 Summary

	5 Artificial intelligence-based tools for secure access to HPC resources
	5.1 Using Bearicade
	5.1.1 Data Preparation
	5.1.2 Models Perquisites

	5.2 Initial Model Algorithm Design
	5.2.1 Model Per System For Users
	5.2.2 Precursory Model Per User Algorithm

	5.3 Classification of Malicious Linux Terminal Commands
	5.3.1 Introduction
	5.3.2 Data
	5.3.3 Training & Evaluation

	5.4 Anomaly detection of user behaviour on Bearicade's login page
	5.4.1 Introduction
	5.4.2 Data
	5.4.3 Training & Evaluation

	5.5 Model Per User For System
	5.5.1 Introduction
	5.5.2 Data
	5.5.3 Training the Model
	5.5.4 Evaluation
	5.5.5 Conclusion

	5.6 Summary

	6 Conclusion
	References
	Appendix A Engagement with The Research Community
	Appendix B Surveys Template
	Appendix C System Usability Scale (SUS) Results
	Appendix D Bearicade: Summary and Source Code

