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Abstract 

 

Laser powder bed fusion is one of the key and most widely used additive manufacturing process-

es. The use of this process to build a part includes a set of continuous activities, where process 

planning is an indispensable one. This activity refers to a systematic planning of the build orien-

tation, supports, slices, laser scanning path and process parameters to build a part using a laser 

powder bed fusion machine. It includes four successive steps, where build orientation determina-

tion is the first step. At present, most of the determination tasks in real workshops are manually 

completed by process planners according to their production knowledge and experience. Differ-

ent process planners could determine different build orientations for an identical part under the 

same conditions. This would increase the build time and build cost and have a negative influence 

on the quality and production stability of the built part.  

 

To this end, a study on automatic determination of part build orientation for laser powder bed fu-

sion additive manufacturing is carried out in this thesis. This study divides build orientation de-

termination into alternative orientation generation and optimal orientation selection. Firstly, an 

automatic alternative orientation generation method based on facet clustering for laser powder 

bed fusion is presented. A set of fuzzy aggregation operators for evaluating the values of attrib-

utes of alternative orientations are then constructed. Using the constructed operators, an automat-

ic optimal orientation selection method based on multi-attribute decision making for laser pow-

der bed fusion is proposed. Finally, an automatic part build orientation determination method for 

laser powder bed fusion is developed via combining and implementing the alternative orientation 

generation method and optimal orientation selection method. Case studies are presented to illus-

trate the application of the developed method. The effectiveness, efficiency and advantages of 

the method are evaluated via theoretical analysis, experimental analysis and comparisons.  

 

The completed research work in the thesis is expected to realise a transformation of part orienta-

tion for laser powder bed fusion from a manual mode to a computer-aided mode. It can easily be 

extended to other additive manufacturing processes and can provide effective ideas and method-

ology for study of computer-aided process planning for additive manufacturing.  
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1 Introduction  

1.1 Background  

Additive manufacturing (AM), which in the past was called as additive fabrication, additive 

processes, additive techniques, additive layer manufacturing, layer manufacturing, solid freeform 

fabrication, freeform fabrication or three-dimensional (3D) printing, refers to the processes used 

to manufacture 3D objects, in which materials are accumulated layer by layer via specific tech-

niques such as extrusion, sintering, melting, photopolymerisation, jetting, lamination and deposi-

tion (ISO/ASTM 52900, 2015). Modern AM processes first emerged with stereolithography in 

the 1980s and have been used for prototype production since then (Gibson et al., 2015). Recent-

ly, the development of computer-aided design (CAD), material unit control, material processing 

and forming, equipment recoating and efficient manufacturing technologies made AM processes 

applicable to fabricate end-use products. AM processes have a set of advantages such as provid-

ing high design flexibility, achieving geometric complexity without additional cost, generating 

fewer waste material and avoiding non-essential assembly over traditional subtractive manufac-

turing technologies (Bourell et al., 2009; Attaran, 2017). Further, AM processes make it possible 

to manufacture products with heterogeneous materials and customisable functions. Convinced by 

such advantages and potential, some have anticipated that AM processes would bring revolution-

ary changes to the manufacturing industry (Gao et al., 2015).  

Existing AM processes were divided into seven categories, where powder bed fusion is one 

of them (ISO 17296-2, 2015). In this process, either laser beam, electron beam or heat is used to 

fuse the material together to construct a 3D object. According to the energy source, powder bed 

fusion can be further classified into selective laser sintering, selective heat sintering, direct metal 

laser melting, selective laser melting and electron beam melting, where direct metal laser melting 

and selective laser melting are collectively referred to as laser powder bed fusion (LPBF) (King 

et al., 2014; Gibson et al., 2015). LPBF is one of the key AM processes which can be applied to 

produce fully dense products with high accuracy, strength and stiffness. This process is suitable 

for high-value industries such as aerospace, defence, automotive industry and medical prosthet-

ics (King et al., 2015; Yap et al., 2015).  

The application of the LPBF process to build a part includes a set of continuous activities, 

where process planning is an indispensable one (Kim et al., 2015). Process planning for LPBF 

AM is the planning of the build orientation, supports, slices, laser scanning path and process pa-

rameters to build a part using an LPBF machine on the basis of the 3D model data of the part 
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(Kulkarni et al., 2000; Ahsan et al., 2015). This activity consists of four successive preparation 

steps before building the part, in which build orientation determination is the first step. This step 

has a direct influence on its three subsequent steps, namely support generation, 3D model slicing 

and path planning (Liang, 2018).  

In the context of LPBF AM, the build orientation of a part is a critical process variable for 

building the part, because it directly affects the time and cost to build the part and the property, 

accuracy and surface quality of the built part (Edwards and Ramulu, 2014; Snyder et al., 2015; 

Wauthle et al., 2015; Calignano, 2018; Zhou and Ning, 2020; Di Angelo et al., 2020). Build ori-

entation determination for LPBF AM is the determination of a desirable build orientation of an 

LPBF part according to the 3D model of the part and specific production requirements and pref-

erences on the part. It can be addressed by using a two-step approach. The first step is to gener-

ate a certain number of alternative build orientations (ABOs) from an infinite number of possible 

orientations. The second step is to select the optimal build orientation (OBO) from the generated 

ABOs (Kulkarni et al., 2000). In real workshops, most build orientation determination tasks for 

LPBF AM are manually completed by process planners according to their production knowledge 

and experience. Different process planners could possibly determine different build orientations 

for an identical part under the same conditions. This would increase the build time and build cost 

and have a negative effect on the quality and production stability of the built part.  

To this end, a study on automatic determination of part build orientation for LPBF AM is ca-

rried out in this thesis. An accelerated HDBSCAN* (hierarchical density-based spatial clustering 

of applications with noise*) algorithm (Campello et al., 2015; McInnes and Healy, 2017) is in-

troduced to develop an automatic ABO generation method, and a multi-attribute decision making 

(MADM) method based on fuzzy aggregation operators (AOs) (Greco et al., 2016; Mardani et 

al., 2018) is presented to develop an automatic OBO selection method. An automatic determina-

tion method is obtained by combining the developed methods. It is envisaged that the automatic 

determination method will free LPBF AM process planners from manual determination of part 

build orientation to automatic determination aided by computers, and will provide effective ideas 

and methodology for research and implementation of computer-aided process planning for AM 

within the academia and the industry.  

1.2 Aim and objectives  

The aim of the thesis is to develop a methodology for automatic generation and evaluation of 

ABOs to determine the OBO in LPBF AM. The objectives of the thesis are outlined as follows:  
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• To provide a brief overview of AM, AM processes, LPBF and LPBF product realisation pro-

cess activities and a comprehensive review of the existing research work on build orientation 

determination for AM. 

• To present an automatic ABO generation method based on facet clustering for LPBF AM. 

This involves clustering planar triangular facets, generating the ABOs of each facet cluster 

and combining the ABOs of all facet clusters.  

• To construct a set of fuzzy AOs for comprehensively evaluating the values of attributes of 

ABOs. This involves establishing a general expression for each AO, exploring the mathemat-

ical property of each AO and deriving the specific expressions for each AO.  

• To propose an automatic OBO selection method based on fuzzy MADM for LPBF AM. This 

would involve identifying the attributes of ABOs, estimating and fuzzifying of the values of 

attributes, determining the relationships among attributes and the weights of attributes, gen-

erating a ranking of ABOs and selecting the OBO.  

• To develop an automatic build orientation determination method for LPBF AM and demon-

strate its application, effectiveness, efficiency and advantages.  

1.3 Thesis structure  

The remainder of the thesis is organised as follows:  

• Chapter 2 provides a brief overview of AM, AM processes, LPBF and LPBF product realisa-

tion process activities and a comprehensive review of the existing build orientation determi-

nation methods for AM with an analysis of the research gaps.  

• Chapter 3 describes the details of an automatic ABO generation method based on facet clus-

tering for LPBF AM.  

• Chapter 4 states the details of a set of fuzzy AOs for comprehensively evaluating the values 

of attributes of ABOs.  

• Chapter 5 explains the details of an automatic OBO selection method based on fuzzy MADM 

for LPBF AM.  

• Chapter 6 documents the development of an automatic build orientation determination meth-

od for LPBF AM and the demonstration of this method.  

• Chapter 7 summarises the research work and major contributions of the thesis and suggests 

some future research directions based on the limitations of the developed methodology.  
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2 Literature review  

The research topics involved in build orientation determination for LPBF AM are AM, AM 

processes, LPBF, LPBF product realisation process and build orientation determination. In this 

chapter, a brief overview of AM, categorised AM processes, LPBF and LPBF product realisation 

process activities is first provided. Then a comprehensive review of the existing build orientation 

determination methods for AM is presented. Based on the review, the research gaps of the thesis 

are identified.  

2.1 Additive manufacturing (AM) 

In this section, the definition of the term AM is first introduced. Then the history of AM is 

reviewed. Finally, the distinguishing characteristics of AM are noted.  

2.1.1 Definition of AM 

While the terms freeform fabrication, solid freeform fabrication, layer manufacturing, addi-

tive layer manufacturing, additive processes, additive techniques, 3D printing and additive man-

ufacturing all describe a similar set of processes, their usage has evolved with the field (Weber et 

al., 2013). Today, 3D printing and additive manufacturing are two prevailing terms. According 

to the latest international standard of AM related terms ISO/ASTM 52900 (2015), the two terms 

are respectively defined as follows: 

• 3D printing: “Fabrication of objects through the deposition of a material using a print head, 

nozzle or another printer technology”.  

• Additive manufacturing: “Process of joining materials to make objects from 3D model data, 

usually layer upon layer, as opposed to subtractive manufacturing and formative manufactur-

ing methodologies”.  

It is difficult to distinguish the two terms from such definitions. The standard appends a note 

after the definition of 3D printing. The note shows that the term 3D printing is generally used in 

a non-technical context synonymously with the term additive manufacturing. But until recently 

the term 3D printing has in particular been associated with machines which are low end in price 

or overall capability. As most relevant international standards tend to use the term additive man-

ufacturing, the present thesis also uses this term. In the thesis, additive manufacturing, or AM, 

refers to the processes used to manufacture 3D objects, in which materials are accumulated layer 

upon layer through certain techniques such as extrusion, sintering, melting, photopolymerisation, 

jetting, lamination and deposition.  
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2.1.2 History of AM 

With the advent of photography in 1800s, scientists began to contemplate how to extend the 

technique to replicate 3D physical objects. Contemporary additive techniques were photo sculp-

ture (in the 1860s) and topography (in the 1890s). These early techniques led to the invention of 

photo-glyph recording technology (patented in 1956), which exposed layers of a transparent pho-

to emulsion selectively when scanning cross-sections of the object to be replicated (Weber et al., 

2013). In 1981, Hideo Kodama in Nagoya Municipal Industrial Research Institute invented two 

additive techniques to fabricate 3D plastic models using photo-hardening thermoset polymer, in 

which the ultraviolet exposure field was under the control of a scanning fibre transmitter. On Ju-

ly 16, 1984, Alain Le Mehaute, Olivier de Witte and Jean Claude Andre applied their patent for a 

stereolithography process. Three weeks later, Charles Hull in 3D Systems Corporation filed his 

patent for a stereolithography system, in which layers were stacked via selectively curing photo-

polymer with ultraviolet light and a 3D object was generated by creating a cross-sectional pattern 

of the object. The major contributions of this patent were the STL (Stereolithography or Standard 

Tessellation Language) file format (Roscoe, 1988) and the slicing and infill strategies, which are 

still used in almost all AM processes today.  

Since the development of the stereolithography system in 1984, many processes that pave the 

way for what is today known as AM have been developed. Some representative ones are chrono-

logically listed as follows:  

• Selective laser sintering. In 1986, Carl Deckard and Joe Beaman at the University of Texas at 

Austin developed a selective laser sintering process to build 3D objects using a laser beam as 

the energy source to sinter powder material.  

• Laminated object manufacturing. In 1987, Michael Feygin and his team in Helisys (now Cu-

bic Technologies) patented a laminated object manufacturing technique which forms integral 

objects from sheet laminations.  

• Fused deposition modelling. In 1988, Scott Crump in Stratasys Ltd developed a fused deposi-

tion modelling process which builds layers via mechanically extruding molten thermoplastic 

material onto a substrate. 

• 3D printing. In 1989, Emanuel Sachs and his team at the Massachusetts Institute of Technol-

ogy developed a 3D printing technology which injects the binding agent and coloured ink on 

a powder bed using the injectors of a traditional ink-jet printer.  

• Binder jetting. In 1993, Ely Sachs and Mike Cima at the Massachusetts Institute of Technol-
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ogy developed a binder jetting process in which 3D objects are fabricated by selectively de-

positing liquid binder.  

• Electron beam melting. In 1993, Arcam AB patented an electron beam melting technology in 

which the material is placed in a vacuum and melted and fused together by an electron beam.  

• Direct metal laser sintering (melting). In 1994, EOS developed a direct metal laser sintering 

process that leverages a laser beam to melt and fuse metallic powders together. The name of 

this process is misleading, as the powder is being melted when building a part. The name di-

rect metal laser melting is more appropriate for the process.  

• Selective laser melting. In 1995, the Fraunhofer Institute introduced a selective laser melting 

process whose working principle is very similar to direct metal laser melting.  

• Laser engineered net shaping. In 1995, the Sandia National Laboratories developed a laser 

engineered net shaping technique in which 3D objects are built via using focused thermal en-

ergy to melt material as it is being deposited.  

• Material jetting. In 1999, the Objet Geometries Ltd (merged with Stratasys in 2012) patented 

a material jetting process in which 3D objects are built via selectively depositing the droplets 

of material.  

• Paper 3D printing. In 2003, Conor MacCormack and Fintan MacCormack at MCor Technol-

ogies developed a paper 3D printing technique which is based on sheet lamination.  

• Contour crafting. In 2010, Behrokh Khoshnevis at the University of Southern California pa-

tented a contour crafting technique which uses a computer-controlled crane or gantry to con-

struct edifices rapidly and efficiently.  

• Selective heat sintering. In 2011, Blueprinter launched a selective heat sintering technology 

at Euromold which uses thermal energy to replace laser beam in selective laser sintering.  

• 3D concrete printing. In 2014, Richard Buswell and his team at the Loughborough University 

succeeded in licensing a 3D concrete printing technology to Skanska which can manufacture 

full-scale construction and architectural components.  

In 2015, the International Organisation for Standardisation (ISO) and the American Society 

for Testing Material (ASTM) officially defined the set of processes which join materials layer 

upon layer to make 3D objects from 3D model data as AM in their issued standard ISO/ASTM 

52900 (2015). Nowadays, the volume of AM technologies is so huge that it is very difficult to 

provide an exhaustive review. For a more detailed history of AM, please refer to the reports of 

Weber et al. (2013) and Wohlers and Gornet (2016).  
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2.1.3 Characteristics of AM 

Distinguishing characteristics of AM processes are usually presented via a comparison with 

conventional subtractive manufacturing technologies. On the basis of the surveys of Bourell et al. 

(2009), Gao et al. (2015) and Attaran (2017), the unique capabilities of AM processes are noted 

as follows:  

• Provide high design flexibility. A common characteristic of AM processes is their layer upon 

layer building manner, which theoretically enables the creation of arbitrary geometric shapes. 

This is different from subtractive processes, which limit the freedom of design because of the 

need for various fixtures and machining tools and the difficulty of the cutter in reaching deep 

and invisible areas.  

• Achieve geometric complexity without additional cost. For AM processes, the complexity of 

geometric shapes comes at no additional cost, as they do not require additional tooling or re-

fixturing. In subtractive manufacturing processes, geometric complexity can be achieved via 

injection molding. However, the more complex the geometric shapes, the higher the cost of 

injection molding.  

• Generate fewer waste material. On average, manufacturing parts using AM processes gener-

ates considerably less waste material than using subtractive manufacturing processes.  

• Avoid non-essential assembly. AM technologies enable production of products which would 

need assembly of a set of components if manufactured conventionally.  

• Produce products with multiple materials and customisable functions. An intriguing charac-

teristic of AM processes is that they enable the direct production of products with heteroge-

neous materials, multiple colours and customisable functions, while it is impossible for sub-

tractive manufacturing processes.  

2.2 Categorised AM processes 

In 1991, Kruth (1991) classified AM processes into liquid-based process, powder-based pro-

cess and solid-based process from the perspective of fabrication material. A complete family tree 

of AM processes was constructed in German manufacturing process standard DIN 8580 in 2003. 

After that, Williams et al. (2011) presented a functional classification schema of AM techniques. 

Most recently, ISO has categorised AM processes into vat photopolymerisation, material jetting, 

binder jetting, powder bed fusion, material extrusion, directed energy deposition and sheet lami-

nation (ISO 17296-2, 2015). In this section, a brief introduction of the development and charac-

teristics of each of the seven processes is provided.   
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2.2.1 Vat photopolymerisation 

Vat photopolymerisation is an AM process in which 3D objects are built by selectively cur-

ing the liquid photopolymer in a vat through targeted light-activated polymerisation (ISO/ASTM 

52900, 2015). The earliest vat photopolymerisation technology is stereolithography, which was 

discovered by Japanese and French researchers in the early 1980s and used to develop the first 

commercial AM machine by Charles Hull in 3D Systems Corporation in 1984. Since the advent 

of stereolithography, vat photopolymerisation has grown to include digital light processing, con-

tinuous liquid interface production and daylight polymer printing. So far, over 440 industrial AM 

machines using vat photopolymerisation have been developed (Senvol LLC, 2020).  

Vat photopolymerisation is known as a fast and accurate AM process that can be leveraged to 

build rather large objects. However, this process is inherently limited to polymer because of its 

dependence on photopolymerisation. By suspending nanoparticles in the liquid photocurable res-

in, the process has been extended to support ceramic, wax and composite (Gao et al., 2015). Fur-

ther, the parts built using vat photopolymerisation are inherently more prone to degradation and 

deformation over time, as the liquid photocurable resin generally does not have robust structural 

characteristics. In addition, the built parts may require special handling or tooling, which makes 

the process extremely expensive for some applications (AMRG, 2020).  

2.2.2 Material jetting  

Material jetting is an AM process in which 3D objects are built by selectively depositing the 

droplets of material (ISO/ASTM 52900, 2015). It was developed and patented by Objet Geome-

tries Ltd (merged with Stratasys in 2012) in 1999 under the name of Polyjet. The development of 

the Polyjet process mainly derived from the standard Inkjet technology used by traditional two-

dimensional (2D) printers on papers, as this process directly deposits droplets of build material 

onto a substrate by drop-on-demand inkjetting (Calvert, 2001; De Gans, 2004). To date, over 160 

industrial AM machines using material jetting have been developed (Senvol LLC, 2020).  

Material jetting is a great choice for realistic prototypes. It can provide an excellent level of 

details, high accuracy and smooth surface finish and supports the build of an object with multiple 

colours and materials. However, support material is usually required and the activated photopol-

ymers may lose mechanical properties over time in this process (AMRG, 2020). In addition, the 

build material is limited to polymer and wax. Although researchers have tried direct inkjetting of 

nanoink suspensions of ceramic (Blazdell, 2003), metal (Ko et al., 2010) and semiconductor (El-

liott et al., 2013), the suspensions have a low concentration of solid particles.  
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2.2.3 Binder jetting  

Binder jetting is an AM process in which 3D objects are built by joining material through se-

lectively depositing liquid binder (ISO/ASTM 52900, 2015). This process was first studied by 

Ely Sachs and Mike Cima at the Massachusetts Institute of Technology in 1993 and commercial-

ised by Z Corporation (which was acquired by 3D Systems in 2012) in 1995. So far, a number of 

AM machine manufacturers, such as 3D Systems, ExOne, Voxeljet and EnvisionTEC, have de-

veloped over 40 industrial binder jetting AM machines (Senvol LLC, 2020).  

The binder jetting process can work with a variety of materials, which include polymer, met-

al, ceramic, sand and composite. Using this process, 3D objects can be built with a range of dif-

ferent colours. However, the binder jetting process is not always suitable for functional parts be-

cause of the use of liquid binder. In addition, infiltration is usually required for the built parts to 

achieve sufficient strength. This can add significant time to the entire product realisation process 

(AMRG, 2020).  

2.2.4 Powder bed fusion  

Powder bed fusion is an AM process in which 3D objects are built by using laser beam, elec-

tron beam or thermal energy to selectively fuse the regions of a powder bed (ISO/ASTM 52900, 

2015). The earliest powder bed fusion technology is selective laser sintering, which was devel-

oped and patented by Carl Deckard and Joe Beaman at the University of Texas at Austin in the 

mid-1980s. Another similar powder bed fusion technology is selective heat sintering, which uses 

thermal energy to replace laser beam. The idea for this technology came from Frederik Tjellesen 

and Anders Hartmann, the founders of Blueprinter. The technology was developed and patented 

by Blueprinter and was launched at Euromold in 2011. Both selective laser sintering and selec-

tive heat sintering mainly use polymer as build material. Metal is not commonly used in the two 

processes since there are three important and popular metal powder bed fusion techniques. They 

are electron beam melting, direct metal laser sintering (melting) and selective laser melting.  

Electron beam melting was developed and patented by Arcam AB in 1993. Direct metal laser 

sintering was developed by EOS in 1994, while in 1995 the Fraunhofer Institute introduced se-

lective laser melting. Direct metal laser sintering uses the word sintering but actually it works by 

melting. This is an acknowledged misnomer. A correct name of this technique is direct metal la-

ser melting. The direct metal laser melting and selective laser melting techniques are essentially 

identical. Both of them can be called as LPBF to avoid confusion (King et al., 2014; Gibson et 

al., 2015). The electron beam melting and LPBF techniques were commercialised since 2005 by 
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Arcam AB and EOS GmbH, respectively. At the moment, over 390 industrial powder bed fusion 

AM machines have been developed.  

The selective laser sintering and selective heat sintering processes benefit from requiring no 

additional supports, since the powder material can act as supports throughout the build process. 

But they need relatively long build time. Compared to these two processes, electron beam melt-

ing and LPBF are usually faster and can fabricate fully dense parts with high accuracy, strength 

and stiffness, which make them suitable in high-value industries such as aerospace, defence, au-

tomotive industry and medical prosthetics (Gao et al., 2015; Yap et al., 2015). However, electron 

beam melting and LPBF always need additional supports to compensate for high residual stress 

and limit the occurrence of distortion and higher power cost. They generally have relatively low 

efficiency of energy usage (AMRG, 2020).  

2.2.5 Material extrusion  

Material extrusion is an AM process in which 3D objects are built by selectively dispensing 

material through a nozzle or an orifice (ISO/ASTM 52900, 2015). A common material extrusion 

technique is fused deposition modelling, which builds layers through mechanically extruding the 

molten thermoplastic material onto a substrate (Gao et al., 2015). This technique was developed 

by Scott Crump in Stratasys Ltd in 1988 and was trademarked by this company in 1990. At pre-

sent, over 240 industrial AM machines based on the material extrusion process have been manu-

factured (Senvol LLC, 2020).  

Material extrusion is well-known as an inexpensive AM process which has been widely used 

in many domestic and hobby AM machines. It supports a wide variety of materials, such as pol-

ymer, composite, metal and ceramic. However, the 3D objects built by this process usually have 

lower dimensional accuracy and poorer surface finish compared to other AM processes (AMRG, 

2020), which limits its application in the industry.  

2.2.6 Directed energy deposition 

Directed energy deposition is an AM process in which 3D objects are built by using focused 

thermal energy to melt material as it is being deposited (ISO/ASTM 52900, 2015). An important 

directed energy deposition technique is laser engineered net shaping, which was developed at the 

Sandia National Laboratories in 1995 and commercialised by Optomec in 1998. Other important 

techniques include laser deposition welding, 3D laser cladding, direct metal deposition, directed 

light fabrication and Aerosol Jet. Using these techniques, over 70 industrial AM machines have 

been developed and identified in the market (Senvol LLC, 2020).  
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The directed energy deposition process can be used with metal, ceramic and composite. It has 

the capability to control the grain structure to a high degree, which makes it uniquely suitable for 

repairing complex damaged parts (AMRG, 2020). The major drawback of the process is the poor 

surface finish caused by the melt pools cooling in low accuracy bands. For this reason, most di-

rected energy deposition parts require secondary machining.  

2.2.7 Sheet lamination  

Sheet lamination is an AM process in which 3D objects are built by bonding sheets of mate-

rial (ISO/ASTM 52900, 2015). A representative sheet lamination technique is laminated object 

manufacturing, which was developed by Helisys (now Cubic Technologies) in 1986 and patented 

by the same company in 1987. In 2000, Helisys ended operations and other companies have used 

proprietary version of laminated object manufacturing since then. Another important sheet lami-

nation technique is paper 3D printing, which was developed by Conor MacCormack and Fintan 

MacCormack at MCor Technologies in 2003 and was commercialised by them later. So far, over 

10 industrial AM machines using certain sheet lamination techniques have been manufactured by 

a few companies, such as EnvisionTEC, Fabrisonic, Impossible Objects and MCor Technologies 

(Senvol LLC, 2020).  

The sheet lamination process has the advantages of ease of material handling, smooth surface 

finish and low material, machine and process costs (Mueller and Kochan, 1999). However, it can 

be used with limited types of materials. In addition, as a partially subtractive process, sheet lami-

nation cannot obtain the same geometric complexity as other AM processes, since it may not be 

possible to access the internal portions of an object and remove excess material from the inside 

of an object (Molitch-Hou, 2018).  

2.3 Laser powder bed fusion (LPBF) 

LPBF, also known as direct metal laser melting or selective laser melting, is one of the pow-

der bed fusion processes which utilises a high power-density laser beam to selectively melt and 

fuse metallic powders together to build near net-shape parts. The schematic of the LPBF process 

is illustrated in Figure 2.1 (ISO 17296-2, 2015). As can be seen from the figure, an LPBF system 

mainly consists of a build platform, a powder bed, a powder feeding apparatus, a recoater blade, 

a laser beam source and a moving mirror. The use of an LPBF system to build a 3D part mainly 

includes the following steps: 

• A layer of powder material from the powder feeding apparatus is spread on the build plat-

form by the recoater blade. 
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• A moving laser beam generated by the laser beam source and the moving mirror is applied to 

selectively melt and fuse the powder material to create a layer of the part. 

• The build platform is moved down by one layer thickness and a new layer of powder materi-

al from the powder feeding apparatus is spread over its previous layer by the recoater blade.  

• The second and third steps are repeated until the entire part is completely formed. 

 

Powder feeding 
apparatus Powder bed

Platform

Laser beam source

Mirror

Blade

3D part

Supports

 

Figure 2.1 Schematic diagram of laser powder bed fusion 

 

The LPBF process has characteristics in providing high degree of freedom for design and ob-

taining complex geometric shapes without additional cost, which are the common advantages of 

AM processes over traditional manufacturing technologies. More importantly, the LPBF process 

enables rapid fabrication of metal parts with near full density and high strength and stiffness di-

rectly from metallic powders without a time-consuming mould design process. This makes it an 

attractive technique for producing functional components in aerospace, defence, automotive and 

biomedical industries (Yap et al., 2015).  

However, there are still many challenges for the LPBF process to be deemed mature and reli-

able for broader industrial applications. Representative challenges are listed as follows:  

• Difficult to address the critical repeatability and reproducibility issues. At present, ensuring 

the repeatability of the LPBF process and the reproducibility of LPBF parts is still considered 

as one of the biggest challenges for facilitating a broader application of the process in the re-

al-world industry (Dowling et al., 2020). 
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• Relatively limited metal materials for the process. The widely known metal materials for the 

LPBF process are stainless steel, tool steel, Ti6Al4V and AlSi10Mg (Yap et al., 2015). Re-

cently, there have been developments for tungsten, zinc alloys, magnesium alloys and metal 

matrix composites. Even so, the metal materials that can be used in the process are still rela-

tively limited. There are challenges faced in developing new metal materials for the process 

because of the difficulty to overcome the metallurgical defects like pores, lack of fusion and 

intermetallic formations (Sing and Yeong, 2020).  

• Uncertainty and unpredictability of the process. Many applications of the LPBF process are 

faced with the uncertainty and unpredictability of the process due to the lack of effective pro-

cess control solutions (Sing and Yeong, 2020).  

• Need tedious post-processing operations. A set of tedious post-processing operations, such as 

heat treatment, support removal, machining, drilling, shot peening and polishing, are usually 

needed to be carried out on a part built by the LPBF process to achieve desired quality.  

• High cost to acquire and use the process. The affordability of the LPBF process is also a crit-

ical issue for its industrial application because of the high machine, material and processing 

costs. For example, according to the results of a study of Baumers et al. (2013), the purchase 

cost of the LPBF machine EOSINT M270 is £364,406.80 and the maintenance, consumable 

and wire erosion costs for this machine are respectively £22,033.90 per year, £2,542.37 per 

year and £8,165.00 per year. The cost of using this machine and stainless steel powder (grade 

17-4 PH) with a purchase cost of £78.81 per kilogram to build a part with a volume of only 

96,645 mm3 can reach £625.76.  

To tackle the repeatability and reproducibility issues, new methods or techniques which can 

improve the design, process planning, part build and post-processing are needed to be developed 

(Dowling et al., 2020). An in-depth understanding of the LPBF process is essential for overcom-

ing the metallurgical defects in the development of new metal materials. To solve the uncertainty 

and unpredictability issues, effective in-process and post-process monitoring systems are needed 

(Sing and Yeong, 2020). Optimising the design and process planning would be helpful to reduce 

the time and cost of processing and post-processing. The price of machines would drop drastical-

ly when they are produced in larger volumes and their related patents expire (Yap et al., 2015).  

2.4 LPBF product realisation process activities 

In general, the process of realising a product using the LPBF process, as shown in Figure 2.2, 

includes five successive activities, which are design for LPBF AM, process planning for LPBF 
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AM, LPBF AM part build, post-processing for LPBF AM and verification for LPBF AM (Kim et 

al., 2015). In this section, a brief introduction of each activity is provided. 
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Figure 2.2 An overview of LPBF product realisation process 

 

2.4.1 Design for LPBF AM  

Design for LPBF AM refers to an activity of designing an LPBF product, in which the func-

tional performance and other key lifecycle considerations such as manufacturability, reliability 

and cost of the product are optimised subjected to the capabilities of the LPBF process (Tang and 

Zhao, 2016; Thompson et al., 2016). The design mainly includes two tasks, which are conceptual 

design and detailed design. Conceptual design is the very first stage of LPBF product realisation 

process, in which the outline of function and the form of an LPBF product are articulated. It in-

volves the design of interactions, experiences, processes and strategies and serves to provide a 

description of the proposed LPBF product in terms of concept sketches (Williams et al., 2011).  

Detailed design is the stage where the design is refined and the plans, specifications and es-

timates are created. The most important task in this stage is geometry design (Gao et al., 2015). 

In general, geometry design is carried out through either CAD modelling or reverse engineering. 

An illustration of these two ways is shown in Figure 2.3 (ISO 17296-4, 2014). CAD modelling is 
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performed in a CAD system based on the results of conceptual design and outputs a tessellated 

3D model of the product, which is generally encoded in the STL, OBJ (Wavefront Object), 3MF 

(3D Manufacturing Format) or AMF (Additive Manufacturing File) format. Reverse engineering 

generates a tessellated 3D model of a 3D part from its 2D image or physical model. The tessel-

lated 3D model is also encoded in a specific format like STL, OBJ, 3MF or AMF.  
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Figure 2.3 An illustration of two ways of geometry design 

 

Apart from geometry design, detailed design also involves the design of specifications of an 

LPBF product and the selection of an LPBF machine to manufacture the product. Generally, the 

specifications to be designed can be classified from macro, micro and production levels. Macro 

level specifications mainly include tolerance, topology, material, colour and properties. Surface 

texture, material composition and porosity are micro level specifications. An important produc-

tion level specification is cost model for production of the product. The details regarding the de-

sign of the specifications of an LPBF product can be found from the studies of Thompson et al. 

(2016) and Vaneker et al. (2020).  
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2.4.2 Process planning for LPBF AM  

In traditional subtractive manufacturing, process planning generally involves determination 

of machining processes and corresponding parameters for converting a workpiece from an engi-

neering drawing to its final form. In LPBF AM, the engineering drawing and machining process-

es are respectively replaced by the tessellated 3D model and LPBF processes. The aim of process 

planning remains the same, namely to determine specific LPBF process variables to enable effi-

cient and accurate manufacture of a part (Kulkarni et al., 2000; Newman et al., 2015; Ahsan et 

al., 2015). Process planning for LPBF AM includes four successive tasks, which are build orien-

tation determination, support generation, 3D model slicing and path planning. An illustration of 

these four tasks is provided in Figure 2.4. In real workshops, these tasks are generally completed 

in the software tools supplied by the LPBF machine manufacturers. However, the four tasks are 

common for all LPBF machines. Effective methods can be developed to carry out them in an in-

tegrated process planning system outside LPBF machines.  
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Path planning

 

Figure 2.4 An illustration of the four tasks in process planning 

 

Build orientation determination aims to determine a proper orientation to build an LPBF part 

via carrying out a comprehensive analysis of a tessellated 3D model of the part and specific pro-

duction requirements and preferences on the part. Theoretically, a 3D model has infinite possible 

orientations in 3D space. One of the feasible approaches for build orientation determination is to 

generate a certain number of alternatives from the infinite possible orientations first and then se-

lect an optimal alternative from the generated alternatives (Kulkarni et al., 2000). Based on this, 

build orientation determination can be divided into ABO generation and OBO selection.  
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In build orientation determination, the tessellated 3D model is the output from the design ac-

tivity. The production requirements and preferences for ABO generation and OBO selection are 

specified by designers or process planners on the basis of certain build orientation attributes (i.e. 

the factors influenced by build orientation). According to the international standard ISO 17296-3 

(2014) and the survey of Di Angelo et al. (2020), the main build orientation attributes include:  

• Support structure. In the LPBF process, supports are needed to sustain the overhanging areas 

to resist deformation or collapse or to reduce part distortion caused by thermal gradients. It is 

intuitive that different build orientations require different amount of supports. An ideal build 

orientation should need as few supports as possible under the premise of ensuring successful 

build, as the use of supports leads to an increase of the build time, build cost, post-processing 

time and post-processing cost and the removal of supports could be detrimental to the surface 

quality of the support contact areas. 

• Part property. The mechanical properties of an LPBF part, such as strength, elongation, hard-

ness, and the physical properties of an LPBF part, such as residual stress, flexural modulus 

and fatigue performance, are generally influenced by the build orientation of the part. For ex-

ample, the strength of a part built by the LPBF process is always anisotropic. In general, the 

tensile strength and yield strength in horizontal orientation are respectively greater than the 

tensile strength and yield strength in vertical orientation.  

• Part accuracy. Part accuracy generally includes dimensional error, geometric error and volu-

metric error. The build orientation of an LPBF part directly affects the shrinkage, curling and 

distortion of the part, which are the major factors influencing part accuracy.  

• Surface quality. Build orientation has an important influence on surface quality for the LPBF 

process due to its layer upon layer building manner and the use of supports. As an example, 

planes or surfaces that are parallel or perpendicular to build orientation would have smaller 

surface roughness than those that have an angle with build orientation. Declining faces would 

be more seriously influenced by the staircase effect.  

• Build time. Build time mainly consists of layer scanning time, layer preparation time and re-

coating time. For the LPBF process, build orientation directly influences build time because 

of the layer by layer nature of the process and the use of supports.  

• Build cost. Build cost calculates all resources required in building an LPBF part, such as ma-

chine, material, energy and labour. It is also affected by the build orientation of the part, be-

cause different build orientations may cause different support volume, material consumption, 

energy consumption and build time.  
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• Post-processing time: Post-processing time mainly contains property enhancement time, sup-

port removal time, accuracy improvement time and surface quality improvement time. Build 

orientation also affects the post-processing time, since it influences the support structure, part 

property, part accuracy and surface quality. 

• Post-processing cost: Post-processing cost calculates all resources needed in post-processing 

operations on a part built by the LPBF process. It is also affected by build orientation, as dif-

ferent build orientations may result in different support structure, part accuracy, surface qual-

ity, part property and post-processing time.  

From the overall value chain, part property, part accuracy and surface quality should be con-

sidered emphatically in build orientation determination, since they directly reflect the quality of a 

built part and satisfying the quality requirements is the most basic condition for practical applica-

tion of the LPBF process. It is also of necessity to consider support structure as this attribute has 

an influence on the processing time and material and processing costs. The main purpose of tak-

ing into account the remaining attributes is to improve production efficiency and reduce produc-

tion cost under the premise of ensuring product quality. In the existing build orientation determi-

nation methods, all of the eight attributes above have been covered. This will be described in de-

tail in Section 2.5.  

The second task in process planning for LPBF AM is support generation, which aims to de-

termine the minimum supports needed to successfully build an LPBF part via performing a geo-

metric analysis of a tessellated 3D model of the part in a specified orientation. In support genera-

tion, the tessellated 3D model in a specified orientation is the output of the build orientation de-

termination task.  

Supports can be classified into external supports and internal supports according to the areas 

to be supported. As depicted in Figure 2.5, external supports are used to sustain overhangs and 

internal supports are used to sustain the top areas of a hollow 3D model. Theoretically, areas of 

the tessellated 3D model requiring external supports are the areas whose surface normal is point-

ing downwards with respect to the build platform. However, as illustrated in Figure 2.6, some 

overhangs can be built without supports in the LPBF processes since the width of the accumulat-

ed material can withstand them (Kulkarni et al., 2000). According to the geometric shape, sup-

ports for the LPBF process can be classified into lattice supports, cellular supports, unit cell sup-

ports, pin supports and tree supports (Jiang et al., 2018; Zhu et al., 2020). Each shape of supports 

has its characteristics and best conditions of use. In practice, the shape of supports can be select-

ed according to the geometry of the 3D model and the used LPBF machine. 
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External 

supports

Internal 

supports
 

Figure 2.5 An illustration of two types of supports 

 

Platform

Supports

 

Figure 2.6 An illustration of two types of overhangs 

 

Supports can be generated either from a tessellated 3D model or an original 3D model (Jiang 

et al., 2018). Using a tessellated 3D model, it is easy to determine facets that need supports. For 

example, facets whose normal vectors are pointing downwards with respect to the build platform 

may require external supports. For the generation of supports based on the original 3D model, a 

Gaussian map of surfaces of the model can indicate areas requiring supports, but computation of 

the Gaussian map of a freeform surface model is extremely complicated (Kulkarni et al., 2000).  

The third task in process planning for LPBF AM is 3D model slicing, which transforms pro-

cess planning from the 3D model domain to a 2.5D (two-point-five-dimensional) layer domain. 

The 3D model slicing task involves intersecting a 3D model with a horizontal plane. Its input is a 

tessellated 3D model of a part with supports in a specified orientation, and its output, as depicted 

in Figure 2.7, includes the thickness of individual layers and the geometry of the contour to be 

accumulated. Each individual layer is called a slice. The output slice information is usually en-

coded in a proprietary file format, such as the SLC (Stereo Lithography Contour), CLI (Common 

Layer Interface) or HPGL (Hewlett-Packard Graphics Language) format. Apart from tessellated 

3D model, 3D model slicing can also be carried out on an original CAD model or a reverse engi-

neering model (Zhao and Guo, 2020).  

A trivial strategy for 3D model slicing is uniform planar slicing in single direction (see Fig-

ure 2.8(a)), in which the thickness is identical for all layers and the 3D model is truncated in a 
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single direction. Historically, this is the first slicing strategy adopted in AM and continues to be 

the norm in the industry. Even though the strategy is simple, efficient and robust, it will result in 

a loss of control over the accuracy of the built part, because it neglects the actual geometry of the 

3D model (Kulkarni et al., 2000). A modified strategy is to truncate the 3D model in a single di-

rection with variable layer thickness (see Figure 2.8(b)). This strategy is helpful to improve the 

accuracy of the built part, but it generally requires some complex and inefficient algorithms that 

are sometimes not robust. 

 

Thickness

Contour

2.5D layer  

Figure 2.7 An illustration of two elements of 3D model slicing 

 

 

Figure 2.8 An illustration of two common slicing strategies 

 

In the literature, many more complicated slicing strategies which consider the actual geome-

try of the 3D model are available. Representative ones are uniform planar slicing in multiple di-

rections, variable planar slicing in multiple directions, uniform curved slicing in single direction, 

variable curved slicing in single direction, uniform curved slicing in multiple directions and vari-

able curved slicing in multiple directions. Compared with the two strategies in Figure 2.8, these 

strategies are generally not very efficient. A detailed introduction and analysis of these strategies 

can be found from the survey of Zhao and Guo (2020).  

The last task in process planning for LPBF AM is path planning. It belongs to a pure layer 

domain task. Path planning aims to determine the laser scanning path and process parameters for 

building each layer from slices of a tessellated 3D model of a part with supports.  

A very important step in path planning is to determine a proper 2D path pattern. The deter-

mination mainly depends on the used slicing strategy. If a planar slicing strategy is used, alterna-
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tive path patterns mainly include raster path, zigzag path, grid path, spiral path, contour path and 

hybrid path, as illustrated in Figure 2.9 (Zhao and Guo, 2020). The raster path is simple, efficient 

and robust for any boundaries, but the build accuracy of each layer is poor. The zigzag path can 

link separate parallel lines into a single continuous pass and therefore reduces the build time, but 

it will result in poor surface quality of the built part. The grid path is capable of improving the 

bonding strength between adjacent layers and thus improve the mechanical properties of the built 

part. However, there are lots of path passes. The spiral path is generally used in numerical con-

trol machining. It is only suitable for certain slices. The contour path is used via offsetting the 

contours of a slice. The hybrid path combines two or more single paths to achieve multiple ad-

vantages concurrently. Among the six path patterns, the most used ones are contour path and ras-

ter path due to their simplicity and robustness. If a curved slicing strategy is adopted, path plan-

ning will become more complicated. The available path patterns include directional parallel path, 

contour parallel path and space-filling curve path. A detailed analysis of these path patterns can 

be found from the survey of Zhao and Guo (2020).  

 

(a) Raster path (b) Zigzag path (c) Grid path

(d) Spiral path (e) Contour path (f) Hybrid path
 

Figure 2.9 An illustration of six common path patterns 

 

Another very important step in path planning is to determine a group of optimal process pa-

rameters. Among all process parameters that need to be determined, layer thickness, hatch spac-

ing, laser power and laser scanning velocity are four critical process parameters. The volumetric 

energy density calculated by them is an important indicator to measure the influence of process 

parameters on part quality. For optimisation design of process parameters, many existing meth-

ods first achieve different combinations of process parameters according to the technical data of 

the used LPBF machine, then carry out certain experiments to study the effect of each combina-
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tion on part quality, and finally determine the optimal process parameters according to the results 

of the experiments (Shipley et al., 2018).  

2.4.3 LPBF AM part build  

LPBF AM part build is an activity of using a specific LPBF machine to build an LPBF part. 

This activity consists of three stages, which are preparation, build and teardown. In the prepara-

tion stage, the designed geometry and specifications and determined process variables are im-

ported into the used LPBF machine and converted into machine-interpretable information. Then 

the material is prepared, and the machine is set up. When all the preparations are completed, the 

machine starts to build the part. The build stage is generally associated with monitoring and con-

trolling the build environment. In the teardown stage, the built part is removed from the machine 

and cleanup is carried out.  

2.4.4 Post-processing for LPBF AM  

A part built by the LPBF process usually needs post-processing to satisfy the designed speci-

fications. For an LPBF part, post-processes may include property enhancement, support removal, 

accuracy improvement, surface finish improvement and esthetic improvement (Kim et al., 2015). 

Property enhancement using heat treatment techniques (e.g. hot isostatic pressing, annealing) is 

helpful to improve the mechanical and physical properties of the parts (Wauthle et al., 2015). In 

general, property enhancement is carried out before support removal to relieve residual stresses. 

Support removal can be carried out using certain instruments or tools, such as wire-electrical dis-

charge machining instrument and bandsaw. The geometric accuracy of a part built by the LPBF 

process is generally poorer than that manufactured by conventional machining processes and the 

dimensional variability is also common. To reduce such variability, accuracy improvement using 

adaptive raster milling, sharp edge contour machining and drilling is usually required. In post-

processing for LPBF AM, surface finish improvement is also often needed, because poor surface 

finish may be induced from the staircase effect of the process and the use of supports. Methods 

for this improvement generally include shot peening, painting and hardening. Esthetic improve-

ment is sometimes carried out to improve the appearance of the built part. Common esthetic im-

provement techniques are painting, priming and polishing.  

2.4.5 Verification for LPBF AM  

Verification for LPBF AM is the last activity in LPBF product realisation process. This activ-

ity aims to qualify the finished LPBF part and determine whether the design requirements have 
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been satisfied via measurement of errors, surface texture, defects and part properties. Common 

measuring and inspection instruments for errors are industrial computed tomography scanner, 3D 

optical scanner and coordinate measuring machine. Surface texture inspection mainly includes 

the measurement of profile topography and areal topography. Profile topography inspection is 

commonly carried out using contact stylus. Technologies or tools for areal topography measure-

ment are more diverse, which include confocal microscopy, atomic force microscopy, focus var-

iation microscopy, coherence scanning interferometry, conoscopic holography and elastomeric 

sensor (Townsend et al., 2016). Inspection of defects is usually conducted using non-destructive 

evaluation techniques, such as remote visual inspection, thermographic inspection, stereomicro-

scope inspection, ultrasonic inspection and acoustic emission inspection. Part properties can be 

categorised into mechanical properties (e.g. strength, elongation, hardness), physical properties 

(e.g. residual stress, flexural modulus, fatigue performance), chemical properties (e.g. flammabil-

ity, toxicity, corrosion) and thermal properties (e.g. softening temperature, melting point, thermal 

conductivity). The methods for testing part properties are documented in the international stand-

ards ISO 17296-3 (2014) and ISO/ASTM 52904 (2019).  

2.5 Build orientation determination methods 

An ideal method for build orientation determination is preferably a standardised method for 

practical applications. The latest international standards related to AM design and process plan-

ning ISO/ASTM 52911-1 (2019) and ISO/ASTM 52911-2 (2019) respectively provides design 

guidelines for LPBF of metals and LPBF of polymers, and do not yet contain a practical method 

for determination of build orientation. To provide an effective tool for build orientation determi-

nation, many methods have been presented during the past three decades. As depicted in Figure 

2.10, the methods can be categorised into ABO generation methods and OBO selection methods 

based on their focuses. In this section, a review of each category of methods is provided.  

 

OBO selection methods 

ABO generation methods Build orientation determination methods

Exhaustive computation methods

Feature recognition methods

Facet clustering method

Multi-objective optimisation methods 

Multi-attribute decision making methods
 

Figure 2.10 Two categories of build orientation determination methods 
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2.5.1 Alternative orientation generation methods 

To achieve generation of the ABOs for an AM part, there are a number of methods available. 

These methods can be classified into exhaustive computation methods, feature recognition meth-

ods and facet clustering method on the basis of their fundamental principles.  

The exhaustive computation methods firstly rotate the 3D model in 3D space with a specific 

step size. Specific algorithms are then leveraged to compute the quality degree of the orientation 

corresponding to each step, and a certain number of ABOs are obtained according to the results 

of computation. Representative exhaustive computation methods are the methods presented by 

Xu et al. (1997), Hur and Lee (1998), McClurkin and Rosen (1998), Masood et al. (2000; 2003), 

Rattanawong et al. (2001), Paul and Anand (2011; 2015), Ezair et al. (2015), Delfs et al. (2016), 

Chowdhury et al. (2018), Galicia and Benes (2018), Griffiths et al. (2019), Jiang et al. (2019), 

Fritz and Kim (2020), Nguyen and Choi (2020), Ulu et al. (2020) and Wang and Qian (2020).  

The exhaustive computation methods generally need to consume a lot of time in the calcula-

tion of meaningless orientations, since there is a contradictory issue in them: How to set a suita-

ble rotation step size? If the rotation step size is set too large, the number of computations for the 

entire generation process can be reduced, but it is very likely that the true OBO will be missed; if 

it is set too small, the chance of missing the true OBO is greatly reduced, but it will greatly in-

crease the number of computations in the entire generation process; If it is set randomly, an OBO 

could be generated in a short time. But it is more likely to take a very long time. For this reason, 

most of the exhaustive computation methods are difficult to apply in practical build orientation 

determination due to their high computational cost.  

The feature recognition methods firstly decompose the STL model into a certain number of 

surface fragments which consist of adjoining planar triangular facets. They then recognise which 

predefined shape feature each surface fragment belongs to. According to the feature type of each 

surface fragment, the ABOs of the surface fragment are generated. The ABOs of the part are ob-

tained through combining the ABOs of all surface fragments of its STL model. From this princi-

ple, it is not difficult to observe that the feature recognition methods focus on a finite set of ori-

entations. They will not spend time on computation of meaningless orientations like the exhaus-

tive computation methods. However, how to decompose an STL model to form predefined shape 

features is difficult due to the lack of topological information in the model. In addition, automat-

ic recognition of shape features from a complex 3D model with multiple overlapping shape fea-

tures is a challenging task. Last but not the least, the methods are not applicable for freeform sur-

face models, as it is difficult to define the shape features for such models.  
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Representative feature recognition methods include the methods presented by Cheng et al. 

(1995), Frank and Fadel (1995), Lan et al. (1997), Alexander et al. (1998), Pham et al. (1999), 

Xu et al. (1999), West et al. (2001), Byun and Lee (2006), Zhang et al. (2016) and Al-Ahmari et 

al. (2018). The methods of Alexander et al. (1998), Xu et al. (1999) and Byun and Lee (2006) 

generate the ABOs of an AM part based on the convex hull of the STL model. They are simple, 

intuitive and easy to implement. However, all of these methods have an accuracy issue since the 

convex hull is not the accurate STL model. In the method of Lan et al. (1997), ABOs are gener-

ated as the orientations of the base planes of the STL model, which is simpler and more intuitive. 

However, this method is difficult to achieve desired results for the STL models with curved sur-

face features, as the base planes of such STL models are generally difficult to find. To solve this 

issue, the methods of Cheng et al. (1995), Frank and Fadel (1995), Pham et al. (1999) and West 

et al. (2001) introduce the concept of AM feature. They firstly determine the correspondence be-

tween each type of AM features and build orientations based on production experience. Accord-

ing to the determined correspondence, the rules for generation of ABOs are then designed. Final-

ly, the AM features in the STL model are recognised manually and the ABOs of the part are ob-

tained via rule-based reasoning. These methods provide a viable idea for computer-aided build 

orientation determination, but they do not provide a clear definition and specific classification of 

AM features. Aiming at this issue, the method of Zhang et al. (2016) presents a definition of AM 

features and classifies AM features into cylinders, planes, cones and structural units. The genera-

tion methods based on AM features then become more reliable. However, this classification is 

rather simple. Many STL models cannot be represented using the classified AM features. Based 

on the method of Zhang et al. (2016), the method of Al-Ahmari et al. (2018) implements auto-

matic generation of ABOs for AM parts, but this method has not yet addressed automatic recog-

nition of AM features from an STL model with multiple overlapping AM features.  

The facet clustering method presented by Zhang et al. (2019) applies the k-means clustering 

algorithm (Hartigan and Wong, 1979) and the Davies-Bouldin index (Davies and Bouldin, 1979) 

to automatically divide the STL model of an AM part into a certain finite number of clusters of 

meaningful discrete planar triangular facets and directly generates the ABOs of each cluster. The 

ABOs of the part are achieved via combining and refining the ABOs of all clusters of its STL 

model. Compared to the feature recognition methods, this method does not need topological in-

formation and avoids shape feature recognition. Most importantly, it is applicable for both regu-

lar and freeform surface models. However, it is found from practical applications that the method 

suffers from the following issues:  
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• The ABO generation results of the method are unstable, because the initial k planar triangular 

facets in it need to be randomly selected and different k initial facets would obtain different 

clustering results.  

• The efficiency of the method is still an issue for an STL model with a large number of facets, 

since it will take a lot of time to determine the value of k and to calculate the angles between 

each normal vector cluster and the remaining normal vectors.  

• The method could generate unreasonable facet clustering results with facet clusters of vary-

ing probability density, because the probability density function in it is assumed to obey the k 

Gaussian distributions.  

2.5.2 Optimal orientation selection methods 

According to the techniques applied in OBO determination, existing methods for selection of 

the OBO for an AM part can be grouped into multi-objective optimisation (MOO) methods and 

MADM methods.  

An MOO method generally uses certain optimisation techniques to search a build orientation 

enabling one or more specific attributes to be optimal from an infinite number of possible orien-

tations or a certain number of ABOs. The research of MOO methods for build orientation deter-

mination has gained importance and popularity within the academia during the past few decades. 

A large number of MOO methods have been presented in this period. A brief summarisation of a 

set of representative methods is provided in Table 2.1.  

As can be seen from Table 2.1, the main difference of MOO methods lies in the targeted AM 

processes, the optimisation techniques and the optimised attributes:  

• Targeted processes. Some MOO methods are theoretically applicable for all processes, while 

each of the remaining methods is proposed for one or more specific processes, including ste-

reolithography, selective laser sintering, fused deposition modelling and LPBF.  

• Optimisation techniques. Most MOO methods are based on exhaustive search or applied the 

genetic algorithm. Other optimisation techniques include the non-dominated sorting genetic 

algorithm II, trust region method, particle swarm algorithm, extreme learning machine, prin-

cipal component analysis-based algorithm, surrogate model, Taguchi method, bacterial forag-

ing algorithm and electromagnetism-like mechanism algorithm.  

• Optimised attributes. Most MOO methods aim to optimise one or two attributes. Some meth-

ods can optimise three or four attributes simultaneously. Only a few methods considered the 

optimisation of more than four attributes.  
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Table 2.1 A brief summarisation of representative MOO methods 

MOO method 
Targeted 

processes 

Optimisation 

techniques 

Optimised build orientation attributes 

SS PP PA SQ BT BC PT PC 

Xu et al. (1997) SLA Exhaustive search ●  ●  ●    

Hur and Lee (1998) SLA Exhaustive search ●  ●  ●    

McClurkin (1998) SLA Exhaustive search   ● ● ●    

Masood et al. (2000) FDM Exhaustive search   ●      

Hur et al. (2001) SLS Genetic algorithm     ●    

Rattanawong et al. (2001) FDM Exhaustive search   ●      

Masood et al. (2003) FDM Exhaustive search   ●      

Pandey et al. (2004) FDM NSGA-II    ● ●    

Thrimurthulu et al. (2004) FDM Genetic algorithm    ● ●    

Byun and Lee (2005) 3 processes Genetic algorithm    ● ●    

Kim and Lee (2005) SLA Genetic algorithm     ●  ● ● 

Singhal et al. (2005) SLA Trust region method    ●     

Ahn et al. (2007) 3 processes Genetic algorithm    ●     

Canellidis et al. (2009) SLA Genetic algorithm    ● ●    

Singhal et al. (2009) SLA, SLS Trust region method ●   ● ●    

Nezhad et al. (2010) SLA Genetic algorithm ●   ● ●    

Padhye and Deb (2011) SLS NSGA-II, PSA    ● ●    

Paul and Anand (2011) SLA, SLS Exhaustive search   ●      

Strano et al. (2011) SLS Genetic algorithm    ●  ●   

Phatak and Pande (2012) 3 processes Genetic algorithm    ● ● ●   

Li and Zhang (2013) Not specified Genetic algorithm   ●  ●    

Zhang and Li (2013) Not specified Genetic algorithm   ●      

Ezair et al. (2015) Not specified Exhaustive search ●        

Paul and Anand (2015) Not specified Exhaustive search ●  ●      

Zhang et al. (2015) SLA, FDM ELM ●        

Ahsan and Khoda (2016) Not specified Genetic algorithm     ●    

Delfs et al. (2016) SLS Exhaustive search    ●     

Luo and Wang (2016) Not specified PCABA   ●      

Brika et al. (2017) LPBF Genetic algorithm ● ●  ● ● ●   

Zhang et al. (2017) Not specified Genetic algorithm     ● ●   

Chowdhury et al. (2018) Not specified Exhaustive search ●  ●  ●    

Galicia and Benes (2018) FDM Exhaustive search     ●    

Huang et al. (2018) FDM NSGA-II    ● ●    

Jaiswal et al. (2018) FDM Surrogate model   ●      

Pereira et al. (2018) Not specified PSA ●  ●      

Cheng and To (2019) LPBF PSA ● ●       

Golmohammadi (2019) FDM Taguchi method ●   ●     

Griffiths et al. (2019) LPBF Exhaustive search      ●   

Jiang et al. (2019) FDM Exhaustive search ●        

Raju et al. (2019) FDM PSA, BFA  ●  ●     

Fritz and Kim (2020) LPBF Exhaustive search     ● ●   

Matos et al. (2020) FDM ELMA ●  ● ● ●    

Nguyen and Choi (2020) FDM Exhaustive search  ●       

Shen et al. (2020) FDM PSA ●        

Ulu et al. (2020) Not specified Exhaustive search   ●      

Wang et al. (2020) FDM Genetic algorithm ●    ●    

Wang and Qian (2020) Not specified Exhaustive search ●        

Notes: SS: Support structure; PP: Part property; PA: Part accuracy; SQ: Surface quality; BT: Build time; BC: Build 

cost; PT: Post-processing time; PC: Post-processing cost; SLA: Stereolithography; FDM: Fused deposition model-

ling; SLS: Selective laser sintering; NSGA-II: Non-dominated sorting genetic algorithm II; 3 processes: Stereolitho-

graphy, selective laser sintering, fused deposition modelling; PSA: Particle swarm algorithm; ELM: Extreme learn-

ing machine; PCABA: Principal component analysis-based algorithm; BFA: Bacterial foraging algorithm; ELMA: 

Electromagnetism-like mechanism algorithm 



28 

  

 

An ideal MOO method for OBO selection should be an effective, stable and efficient method 

that is applicable for as many different AM processes as possible and can simultaneously opti-

mise as many different attributes as possible. However, optimising multiple attributes at the same 

time may need a large number of iterations, which is likely to produce a large number of Pareto-

optimal build orientations and would greatly extend the convergence time of the used optimisa-

tion algorithm (Ancau and Caizar, 2010). These are unbearable for build orientation determina-

tion in engineering practice (Zhang et al., 2019). For this reason, most of the software tools sup-

plied by AM machine manufacturers recommend or only support the optimisation of one or two 

attributes in determination of a desirable build orientation.  

In an MADM method, certain decision making techniques are used to estimate the overall 

score of each ABO in the case of concurrently considering its multiple attributes. All ABOs are 

ranked according to the overall scores and the OBO is selected based on the ranking. Representa-

tive MADM methods are the methods proposed by Pham et al. (1999), West et al. (2001), Byun 

and Lee (2006), Chen et al. (2008), Zhang et al. (2016), Ransikarbum and Kim (2017), Qie et al. 

(2018) and Yu et al. (2019).  

The method of Pham et al. (1999) offers a decision support tool based on the weighted arith-

metic average operator to help stereolithography users in part orientation. In this tool, orientated 

features, problematic features, overhanging area, support volume, build time and build cost are 

considered concurrently to recommend a desirable orientation. The method of West et al. (2001) 

was presented to aid stereolithography users in selecting proper values of part orientation, layer 

thicknesses and recoating variables. In this method, a deviation function is used to obtain a bal-

ance of objectives specified by geometric error, surface roughness and build time. In the method 

of Byun and Lee (2006), the best orientation for the stereolithography, selective laser sintering, 

fused deposition modelling and laminated object manufacturing processes is selected via MADM 

based on the weighted arithmetic average operator. The attributes considered in the selection are 

surface roughness, build time and part cost. In the method of Chen et al. (2008), seven attributes 

affected by build orientation in automated layer-based machining, i.e. inaccessible volume, base 

plane size, skewness of centre of gravity, height of centre of gravity, support contact area, num-

ber of layers and material waste, are formulated on the basis of the STL model of a part and rep-

resented as fuzzy variables. A fuzzy MADM method is applied to rank alternative orientations 

and the optimal orientation is determined according to the ranking. The method of Zhang et al. 

(2016) adopts an integrated MADM model (Zhang and Bernard, 2014) to select the best orienta-

tion from ABOs for AM. In this method, favourableness of features, support volume, mechanical 
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properties, part accuracy, surface quality, build time, build cost and post-processing are consid-

ered at the same time. The method of Ransikarbum and Kim (2017) provides an analytic hierar-

chy process framework for selection of the part orientation in fused deposition modelling. In this 

framework, a trade-off among the support volume, mechanical properties, part accuracy, surface 

quality, build time and build cost is analysed and compared to achieve the OBO. In the method 

of Qie et al. (2018), a feedback MADM model is established to assist build orientation determi-

nation in the stereolithography process. This model considers support volume, surface roughness 

and build time and uses the ordered weighted average operator for aggregation. In the method of 

Yu et al. (2019), a feedback decision-making model is constructed to realise personalised design 

of build orientation for stereolithography and fused deposition modelling. Support volume, geo-

metric error, surface roughness, build time and part cost are considered in the model.  

Based on the description above, a brief summarisation of representative MADM methods is 

provided in Table 2.2.  

 

Table 2.2 A brief summarisation of representative MADM methods 

MADM method 
Targeted  

processes 

Decision making  

technique 

Considered build orientation attributes 

SS PP PA SQ BT BC PT PC 

Pham et al. (1999) SLA WAA operator ●    ● ●   

West et al. (2001) SLA Deviation function   ● ● ●    

Byun and Lee (2006) 4 processes WAA operator    ● ● ●  ● 

Chen et al. (2008) Not specified Fuzzy method  ●    ● ●   

Zhang et al. (2016) Not specified Integrated model ● ● ● ● ● ● ● ● 

Ransikarbum (2017) FDM Hierarchical analysis ● ● ● ● ● ●   

Qie et al. (2018) SLA Feedback model ●   ● ●    

Yu et al. (2019) SLA, FDM Feedback model ●  ● ● ● ●  ● 

Notes: SS: Support structure; PP: Part property; PA: Part accuracy; SQ: Surface quality; BT: Build time; BC: Build 

cost; PT: Post-processing time; PC: Post-processing cost; SLA: Stereolithography; WAA: Weighted arithmetic aver-

age; 4 processes: Stereolithography, selective laser sintering, fused deposition modelling, laminated object manufac-

turing; FDM: Fused deposition modelling; OWA: Ordered weighted average 

 

It can be seen from the table that different decision making techniques are used and various 

sets of attributes are considered in these methods. Like the MOO methods, the MADM methods 

also determine the OBO by considering certain build orientation attributes. The two categories of 

methods involve roughly the same types of attributes, but they are essentially different. The core 

of the MOO methods is optimisation. That is, the OBO is obtained through optimising the values 

of attributes. The core of the MADM methods is aggregation. That is, the OBO is determined via 

aggregating the values of attributes. Aggregation has the following two advantages over optimi-

sation (Zhang et al., 2016):  
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• The number of the optimal solutions obtained through aggregation is generally one or many 

when the number of attributes increases. If several solutions have the same highest score, any 

one of them can be selected as the optimal solution.  

• The time required for aggregation generally increases in a linear relationship with the number 

of attributes and ABOs.  

From the advantages above, it is not difficult to conclude that an MADM method is generally 

better suited than an MOO method in practical application. However, the existing MADM meth-

ods still have two main issues:  

• The complex relationships among the attributes of ABOs have not been captured. The differ-

ent attributes used for OBO selection are usually not independent of each other, but are inter-

related. But all of the methods in Table 2.2 assume that the attributes are independent of each 

other when aggregating their values (Zhang et al., 2019).  

• Negative influence from the deviation of values of attributes has not been reduced. The val-

ues of attributes are generally obtained through theoretical calculation, simulation estimation 

or expert evaluation. It is usually impossible to ensure the absolute objectivity of these ways, 

which means that there would be deviation in one or several values of attributes. To deter-

mine reasonable OBO under such circumstance, it is of necessity to reduce the effect of devi-

ation on the aggregation result. But none of the methods in Table 2.2 can achieve this.  

2.6 Research gaps 

As can be concluded from the review and analysis of the existing ABO generation methods 

in Section 2.5.1, the existing exhaustive computation methods are difficult to apply in engineer-

ing practice because of their high computational cost. The existing feature recognition methods 

can address this limitation, but how to decompose an STL model to construct predefined shape 

features is difficult for these methods due to the lack of topological information in the model. In 

addition, the methods only work for regular surface models and are not applicable for freeform 

surface models. The existing facet clustering method does not need topological information and 

can be applied to both regular and freeform surface models. From this point of view, a facet clus-

tering method could be more advantageous for the generation of ABOs than an exhaustive com-

putation method and a feature recognition method.  

From the review and analysis of the existing OBO selections methods in Section 2.5.2, it can 

be concluded that using an MOO method to optimise multiple build orientation attributes at the 

same time is impractical for engineering practice, as it is likely to generate a large number of Pa-
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reto-optimal build orientations and will greatly extend the convergence time of the used optimi-

sation algorithm. Compared to an MOO method, an MADM method always outputs one or many 

OBOs when the number of attributes increases. Further, the time required for an MADM method 

generally increases in a linear relation with the number of attributes and ABOs. Thus an MADM 

method could be better suited than an MOO method in engineering practice.  

Based on the conclusions above, a combination of a facet clustering method and an MADM 

method could be a relatively ideal approach for build orientation determination for AM. Howev-

er, the existing facet clustering method and MADM methods still have the following limitations:  

• The existing facet clustering method may produce unstable results, would not be efficient for 

an STL model with a large number of facets and could generate unreasonable results for clus-

ters of varying probability density.  

• The existing MADM methods have not captured the complex relationships among the attrib-

utes of build orientation and have not reduced the negative effect of the deviation of values of 

attributes on the aggregation result.  

In this thesis, LPBF is chosen as the focused AM process and the automatic determination of 

part build orientation for LPBF AM is studied based on the combination above. The reason for 

choosing the LPBF process is that LPBF is one of the most suitable AM processes for producing 

mechanical components. Mechanical products are usually made of metal materials. Users gener-

ally have high quality and functional requirements for them. Although there are a number of AM 

processes supporting metal materials, the components built by most of these processes are diffi-

cult to satisfy the high quality and functional requirements. Conversely, the LPBF process allows 

rapid fabrication of fully dense metal components with high accuracy, strength and stiffness di-

rectly from metallic powders without the time-consuming mould design process. It is an attrac-

tive technology for producing high quality functional components in industrial applications (Sing 

and Yeong, 2020). The motivations of the study of automatic determination of part build orienta-

tion for LPBF AM are described as follows:  

• In response to the limitations of the existing facet clustering method, the accelerated HDB-

SCAN* algorithm (McInnes and Healy, 2017) is introduced to develop a novel facet cluster-

ing method for automatic generation of the ABOs of an LPBF part. This algorithm is an un-

supervised learning algorithm to produce clusters of a dataset and is an accelerated version of 

the original HDBSCAN* algorithm (Campello et al., 2015). It is capable of improving the 

classic k-means clustering algorithm (Hartigan and Wong, 1979) at the aspects of requiring 

assignment of the number of clusters, producing unstable locally optimal clustering results, 
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sensitive to noise and implicit assumption that clusters have Gaussian distributions. The algo-

rithm can also make the computational scalability of the original algorithm comparable in ef-

ficiency to mainstream clustering algorithms. Because of such characteristics, the developed 

novel facet clustering method can always produce stable results, provide satisfying efficiency 

for an STL model with a large number of facets and work well with facet clusters of varying 

probability density. The details of this method will be explained in Chapter 3. Illustration and 

evaluation of the method will be reported in Chapter 6.  

• Aiming at the limitations of the existing MADM methods, the fuzzy number (Zadeh, 1965), 

Muirhead mean (MM) and geometric Muirhead mean (GMM) operators (Muirhead, 1902), 

power average (PA) operator (Yager, 2001) and Archimedean t-norm and t-conorm (Klement 

et al., 2000) are introduced to construct a set of fuzzy AOs for aggregating the values of at-

tributes of ABOs. Based on the constructed fuzzy AOs, a novel MADM method for automat-

ic selection of the OBO of an LPBF part is proposed. The fuzzy number is a mathematical 

tool that can normalise the values of attributes into the numbers in [0, 1] to make them easy 

to process. The MM and GMM operators are two all-in one AOs for capturing the interrela-

tionships of aggregated arguments, since they are applicable whenever all aggregated argu-

ments are independent of each other, or there are interrelationships between two aggregated 

arguments, or three or more aggregated arguments. The PA operator is an AO that can reduce 

the negative influence of unreasonable argument values on the aggregation result. The Ar-

chimedean t-norm and t-conorm are a set of mathematical operations that can be used to de-

velop general and flexible operational laws for fuzzy numbers. Benefiting from a combina-

tion of the fuzzy number, MM and GMM operators, PA operator and operational laws based 

on Archimedean t-norm and t-conorm, the proposed novel MADM method can capture the 

interrelationships among the attributes of ABOs in the aggregation of the values of attributes, 

while it can also reduce the negative influence of the deviation of attribute values on the ag-

gregation result. The details of the constructed fuzzy AOs and the proposed method will be 

respectively explained in Chapter 4 and Chapter 5. Illustration and evaluation of the method 

will be reported in Chapter 6.  

2.7 Summary 

This chapter has reviewed the research topics related to part build orientation determination 

for LPBF AM. Firstly, an overview of AM has been provided. This overview involves the defini-

tion, history and distinguishing characteristics of AM. Then, a brief introduction of the catego-
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rised AM processes, including vat photopolymerisation, material jetting, binder jetting, powder 

bed fusion, material extrusion, directed energy deposition and sheet lamination, the LPBF pro-

cess, and the AM product realisation process activities, including design, process planning, part 

build, post-processing and verification, has been made. After that, a review of the existing alter-

native orientation generation methods, including the exhaustive computation, feature recognition 

and facet clustering methods, and the existing optimal orientation selection methods, including 

the MOO and MADM methods, have been presented. The characteristics and limitations of each 

type of methods have been analysed in this review. Finally, the research gaps of the thesis have 

been identified.  
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3 The proposed automatic generation method 

In this chapter, a novel facet clustering method for automatic generation of the ABOs of an 

LPBF part is presented. The schematic diagram of the presented method is shown in Figure 3.1. 

The method includes clustering of facets and generation of ABOs. In the clustering of facets, the 

STL model of an LPBF part, which is represented by a finite number of planar triangular facets, 

is used as the input of the accelerated HDBSCAN* algorithm (Campello et al., 2015; McInnes 

and Healy, 2017). A certain number of meaningful clusters of facets are produced via a specific 

clustering rule, the algorithm and the k-cluster lifetime partition criterion (Fred and Jain, 2005). 

In the generation of ABOs, whether the obtained facet clusters need to be further refined is first 

judged. If a refinement is no longer required, the ABOs of each cluster will be generated accord-

ing to a specific generation rule and the ABOs of the part are obtained via combining the ABOs 

of all clusters. Otherwise, a refinement of clusters will be carried out according to a specific re-

finement rule and a smaller number of clusters will be achieved to generate the ABOs of the part.  

 

Generation of ABOsClustering of facets OutputInput

Yes

STL model 

of an 

LPBF part

Clusters

of facets

Aaccelerated 

HDBSCAN* 

algorithm

Clustering rule;

K-cluster lifetime 

partition criterion 
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Refined 

clusters

Generation rule
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Figure 3.1 Schematic diagram of the automatic generation method 

 

The chapter is organised as follows. Section 3.1 describes the specific process of the cluster-

ing of facets. The details of the generation of ABOs are explained in Section 3.2. Section 3.3 

ends the chapter with a summary.  

3.1 Clustering of planar triangular facets 

There are many formats available for 3D model data representation in AM, such as the STL 

format, OBJ format, 3MF format and AMF format. Among the available formats, STL (Roscoe, 

1988) is the most used one and has been the actual standard 3D model data format in AM. Al-

most all CAD systems can import and export STL files, and almost all AM machines include the 
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support of the STL format. Without loss of generality, the presented automatic generation meth-

od takes as input a 3D model encoded by the STL format.  

The STL format represents a 3D model via a technique called tessellation. It firstly uses the 

standard surface triangulation algorithm to triangulate the model. Then the surface of the model 

is covered by a set of adjoining planar triangular facets, where each facet is described by three 

vertices and one normal vector. Through encoding the vertices and normal vectors of all facets, 

an STL file of the 3D model is obtained. The STL format provides two ways to encode the verti-

ces and normal vectors. One is ASCII (American Standard Code for Information Interchange) 

and the other is binary code. An ASCII STL file is both human readable and machine readable. It 

is mostly used for testing. An example is shown in Figure 3.2. As can be seen from Figure 3.2, 

the content of the ASCII STL file is very intuitive for reading. Compared to an ASCII STL file, a 

binary STL file is only machine readable and is mainly used for storage, as it needs less storage 

space than its ASCII version. As an example, the ASCII STL file of the prism in Figure 3.2 takes 

up 2.13 KB of storage space, while the size of its binary version is only 484 B. To ensure com-

pleteness, the presented method supports the input of both versions of STL files.  

Taking an ASCII or a binary STL file as input, the presented method leverages the accelerat-

ed HDBSCAN* algorithm in (McInnes and Healy, 2017), which was developed by accelerating 

the original HDBSCAN* algorithm in (Campello et al., 2015), to automatically divide all planar 

triangular facets included in the STL file into a set of meaningful clusters. HDBSCAN* is an un-

supervised learning algorithm for generating clusters of a given dataset. It starts with an assump-

tion that there are some unknown probability density functions that can be used to draw the ob-

served data objects. From a probability density function f defined on a metric space (X, d) (where 

X is a set of observed data objects and d is a distance metric), a hierarchical cluster structure in 

which a cluster is a connected subset of {x | x(X, d) ˄ f(x) ≤ λ} can be constructed. This struc-

ture is called a dendrogram. Each cluster is one of its branches, which extends over the range of 

λ. The goal of the HDBSCAN* algorithm is to construct a dendrogram that can suitably approx-

imate f in a hierarchical and nested way.  

For the clustering of facets, the observed data objects are all planar triangular facets of an in-

put STL model. The distance metric for facets can be customised according to specific AM pro-

cesses, build materials and production requirements. From the studies of Wauthle et al. (2015), 

Brika et al. (2017), Cheng and To (2019) and Griffiths et al. (2019), the build orientation of an 

LPBF part could influence the support volume, volumetric error, surface roughness, build time, 

build cost, strength, elongation, hardness, residual stress, flexural modulus and fatigue perfor-
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mance of the part. From this point of view, the distance metric can be selected to benefit some of 

these attributes. According to the study of Zhang et al. (2019), theoretically any two planar trian-

gular facets that have similar normal vectors would have similar production results if they are 

built in the same orientation. Such similarity is measured via the angle between the normal vec-

tors. The smaller the angle of two normal vectors, the more similar they are. Based on this theo-

retical conclusion, the presented method uses the following rule to perform facet clustering:  

Rule 3.1 (Clustering rule). The observed data objects for the clustering of all planar triangu-

lar facets of an input STL model are the normal vectors of the facets and the distance metric is a 

metric of angle between the normal vectors of the facets in 3D space.  

 

solid Prism

   facet normal -5.651917e-01 8.249596e-01 0.000000e+00

      outer loop

         vertex 0.000000e+00 0.000000e+00 4.000000e+01

         vertex 6.775755e+01 4.642168e+01 4.000000e+01

         vertex 0.000000e+00 0.000000e+00 0.000000e+00

      endloop

   endfacet

   facet normal -5.651917e-01 8.249596e-01 0.000000e+00

      outer loop

         vertex 6.775755e+01 4.642168e+01 4.000000e+01

         vertex 6.775755e+01 4.642168e+01 0.000000e+00

         vertex 0.000000e+00 0.000000e+00 0.000000e+00

      endloop

   endfacet

   facet normal 0.000000e+00 -1.000000e+00 0.000000e+00

      outer loop

         vertex 1.197395e+02 0.000000e+00 0.000000e+00

         vertex 0.000000e+00 0.000000e+00 4.000000e+01

         vertex 0.000000e+00 0.000000e+00 0.000000e+00

      endloop

   endfacet

   facet normal 0.000000e+00 -0.000000e+00 -1.000000e+00

      outer loop

         vertex 6.775755e+01 4.642168e+01 0.000000e+00

         vertex 1.197395e+02 0.000000e+00 0.000000e+00

         vertex 0.000000e+00 0.000000e+00 0.000000e+00

      endloop

   endfacet

   facet normal 6.660895e-01 7.458718e-01 0.000000e+00

      outer loop

         vertex 6.775755e+01 4.642168e+01 0.000000e+00

         vertex 1.197395e+02 0.000000e+00 4.000000e+01

         vertex 1.197395e+02 0.000000e+00 0.000000e+00

      endloop

   endfacet

   facet normal -0.000000e+00 -1.000000e+00 -0.000000e+00

      outer loop

         vertex 1.197395e+02 0.000000e+00 4.000000e+01

         vertex 0.000000e+00 0.000000e+00 4.000000e+01

         vertex 1.197395e+02 0.000000e+00 0.000000e+00

      endloop

   endfacet

   facet normal 0.000000e+00 0.000000e+00 1.000000e+00

      outer loop

         vertex 1.197395e+02 0.000000e+00 4.000000e+01

         vertex 6.775755e+01 4.642168e+01 4.000000e+01

         vertex 0.000000e+00 0.000000e+00 4.000000e+01

      endloop

   endfacet

   facet normal 6.660895e-01 7.458718e-01 -0.000000e+00

      outer loop

         vertex 6.775755e+01 4.642168e+01 0.000000e+00

         vertex 6.775755e+01 4.642168e+01 4.000000e+01

         vertex 1.197395e+02 0.000000e+00 4.000000e+01

      endloop

   endfacet

endsolid

0
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6

7

 

Figure 3.2 The content of the ASCII STL file of a prism 
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Formally, suppose an STL model consists of n planar triangular facets and n0 = (x0, y0, z0), n1 

= (x1, y1, z1), …, nn−1 = (xn−1, yn−1, zn−1) are their normal vectors. Then the observed data objects 

are n0, n1, …, nn−1 and the distance metric is a metric of angle between ni = (xi, yi, zi) and nj = (xj, 

yj, zj) (i, j = 0, 1, …, n−1 and i ≠ j):  

θ(ni, nj)
2 2 2 2 2 2

arccos
i j i j i j

i i i j j j

x x y y z z

x y z x y z

+ +
=

+ + + +
 (3.1) 

It is found that using this metric can output clustering results in an acceptable time for regular 

surface models and is inefficient for freeform surface models, while using a metric of Euclidean 

distance between (xi, yi, zi) and (xj, yj, zj) can greatly improve the efficiency:  

d(ni, nj)
2 2 2( ) ( ) ( )i j i j i jx x y y z z= − + − + −  (3.2) 

The reason is that the amount of computation needed for Equation (3.1) is larger than the amount 

required for Equation (3.2). To ensure the efficiency of the presented method, d(ni, nj) is used as 

the distance metric of the accelerated HDBSCAN* algorithm. This is also effective for the gen-

eration of ABOs, because d(ni, nj) and θ(ni, nj) are approximately linear when the angle is small:  

θ(ni, nj) = arccos(1 – 0.5d2(ni, nj)) (3.3) 

This relationship is depicted in Figure 3.3. Based on this, the similarity between two normal vec-

tors can also be measured by the Euclidean distance between their ends. When defining the dis-

tance metric of the accelerated HDBSCAN* algorithm, the distance can be set to 0.0001 for reg-

ular surface models (It should be set to 0, but the algorithm does not allow it to be 0) and trans-

formed from angle according to Equation (3.3) for freeform surface models.  

 

 

Figure 3.3 The relationship between angle and Euclidean distance 
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To suitably approximate the unknown probability density function of the normal vectors of n 

facets n0, n1, …, nn−1 in a hierarchical and nested way, the HDBSCAN* algorithm needs to per-

form six steps. Before describing these six steps, the following related concepts are first defined, 

which are derived from (McInnes and Healy, 2017).  

Definition 3.1 (Core normal vector). A normal vector nN (where N = {n0, n1, …, nn−1}) is 

a core normal vector with respect to a distance scale ε and the minimum number of normal vec-

tors in a neighbourhood for a normal vector to be considered as a core normal vector m if the ε-

neighbourhood of n contains at least m normal vectors, i.e. |{n'N | d(n', n) ≤ ε}| ≥ m (where | · | 

denotes the cardinality of a set).  

Definition 3.2 (ε-reachable). Let ni and nj be two core normal vectors. They are ε-reachable 

with respect to ε and m if ni{n'N | d(n', nj) ≤ ε} and nj{n'N | d(n', ni) ≤ ε}.  

Definition 3.3 (Density-connected). Let ni and nj be two core normal vectors. They are den-

sity-connected with respect to ε and m if they are ε-reachable.  

Definition 3.4 (Cluster of normal vectors). Let C be a non-empty maximal subset of N. Then 

C is a cluster of normal vectors with respect to ε and m if each pair of normal vectors in C is den-

sity-connected.  

Definition 3.5 (Core distance). Let n be a normal vector in N. The core distance of n with re-

spect to m, denoted as dc(n), is the distance between the end of n and the end of its m-th nearest 

neighbour (including n itself).  

Definition 3.6 (Mutual reachability distance). Let ni and nj be two normal vectors in N. The 

mutual reachability distance between them with respect to m is dmr(v) = max{dc(ni), dc(nj), d(ni, 

nj)} if ni ≠ nj and dmr(n) = 0 if ni = nj.  

Definition 3.7 (Mutual reachability graph). The mutual reachability graph of N is a complete 

graph Gmr, where the normal vectors in N are vertices and the mutual reachability distance of its 

two vertices is the weight of each edge.  

Definition 3.8 (Minimum spanning tree). Let G be a connected weighted undirected graph. 

The minimum spanning tree of G is a subset of the edges of G that connects all vertices without 

any cycles and with the minimum total edge weight.  

Based on the definitions above, the six steps performed in the HDBSCAN* algorithm are de-

scribed as follows:  

• Calculate the core distances of n0, n1, …, nn−1 with respect to m. The minimum number of 

normal vectors in a neighbourhood for a normal vector to be considered a core normal vector 

for clustering of facets is one, thus m is assigned 1.  
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• Compute the mutual reachability distance of each pair of ni and nj in N with respect to m. 

• Construct a mutual reachability graph of n. 

• Produce a minimum spanning tree of the constructed graph. 

• Extend the minimum spanning tree via adding a self edge for each vertex. The weight of the 

added edge is set as the core distance of the corresponding normal vector. 

• Construct a dendrogram according to the extended minimum spanning tree. All normal vec-

tors are assigned the same label for the root of the extended minimum spanning tree. All edg-

es from the extended minimum spanning tree are iteratively removed in descending order of 

the weights. The weight of the edge to be removed is assigned to ε before each removal. The 

connected components which contain the end vertex of the removed edge are assigned labels 

to achieve the next hierarchical level after each removal. If a connected component still has 

at least one edge, then a new label is assigned to it. Otherwise, a null label is assigned to the 

connected component.  

As can be obtained from (McInnes and Healy, 2017), the HDBSCAN* algorithm on n planar 

triangular facets (i.e. n normal vectors) has O(n2) run-time. This complexity is slightly high for 

the clustering of facets, since the number of facets for complex STL models, especially freeform 

surface STL models, is usually very large (e.g. 500,000, 1,000,000). To improve the efficiency 

of the HDBSCAN* algorithm, space tree algorithms (Ram et al., 2009) and Boruvka’s algorithm 

(Nesetril et al., 2001) were respectively leveraged to accelerate the calculation of distances and 

the production of a minimum spanning tree in (Campello et al., 2015). These accelerations de-

rived an accelerated HDBSCAN* algorithm, which reduces the time complexity to O(nlogn). To 

this end, the presented method also uses these algorithms to improve the efficiency of the clus-

tering of planar triangular facets.  

The output of the accelerated HDBSCAN* algorithm for a specific STL model is a dendro-

gram that depicts the clustering process of the normal vectors of all its planar triangular facets. 

On the basis of this dendrogram, the presented method uses the k-cluster lifetime partition crite-

rion (Fred and Jain, 2005) to identify k meaningful clusters of facets. The identification process 

includes the following steps:  

• Convert the metric of the ordinate of the dendrogram from Euclidean distance to angle using 

Equation (3.3) to establish a new dendrogram whose abscissa denotes normal vectors and or-

dinate denotes angle. Though the Euclidean distance between two normal vectors and the an-

gle between them have the same monotonicity, they are not completely linear, which means 

that the dendrogram constructed by the accelerated HDBSCAN* algorithm cannot be directly 
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used in the later computation. Before the computation, Euclidean distance is converted to an-

gle using Equation (3.3). As an example, a dendrogram constructed by the algorithm for the 

prism in Figure 3.2 is shown in Figure 3.4(a). It is reconstructed in Figure 3.4(b) via convert-

ing Euclidean distance to angle.  
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(a) The constructed dendrogram for the prism in Figure 3.2 (b) The constructed new dendrogram after conversion  

Figure 3.4 The dendrogram for the prism and its converted dendrogram 

 

• Compute k-cluster lifetimes for k = 1, 2, …, n. Lifetime is originally defined as the distance 

between that a cluster is created and that it merges with other clusters during clustering. For 

instance, the k-cluster lifetimes (k = 1, 2, …, 8) for the dendrogram in Figure 3.4(b) are com-

puted as follows:  

1-cluster lifetime = 00.00° − 00.00° = 00.00° 

2-cluster lifetime = 00.00° − 00.00° = 00.00° 

3-cluster lifetime = 00.00° − 00.00° = 00.00° 

4-cluster lifetime = 90.00° − 76.18° = 13.82° 

5-cluster lifetime = 76.18° − 00.00° = 76.18° 

6-cluster lifetime = 00.00° − 00.00° = 00.00° 

7-cluster lifetime = 00.00° − 00.00° = 00.00° 

8-cluster lifetime = 00.00° − 00.00° = 00.00° 

• Find the largest lifetime from all k-cluster lifetimes and output its corresponding clusters. For 

example, the largest lifetime in the dendrogram in Figure 3.4(b) is 5-cluster lifetime. The five 

clusters are C1 = {n5, n2}, C2 = {n6}, C3 = {n3}, C4 = {n1, n0} and C5 = {n7, n4}. If the planar 

triangular facets in the same cluster are painted the same colour, then the clustering result de-

picted in Figure 3.5 will be obtained.  
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Figure 3.5 The clustering result of the facets of the prism 

 

3.2 Generation of alternative orientations 

The generation of ABOs starts from judging whether the identified clusters require further re-

finement. This is because the number of the produced clusters is usually very large for an STL 

model with complex shape or freeform surfaces; and a large number of clusters will bring a lot of 

meaningless computations to further OBO selection. The basis for the judgment is the number of 

the output clusters together with the type of the input STL model. In general, the number of the 

output clusters should be within 6 (12) when the STL model is a regular (freeform) surface mod-

el consisting of less than 120,000 facets. A further refinement is required if such conditions are 

not satisfied. In some cases, the judgment can also be carried out according to the production ex-

perience of a user. For example, the produced clusters in Figure 3.5 no longer require further re-

finement, because the STL model of the prism is a regular surface model and the number of the 

output clusters is 5. However, a further refinement is required for the output clusters of a regular 

surface model consisting of 276 facets in Figure 3.6 and is also required for the output clusters of 

a freeform surface model consisting of 13,240 facets in Figure 3.7, as the number of the output 

clusters for the former STL model (95) has exceeded 6 and this number for the latter STL model 

(6,670) has exceeded 12.  

 

 

Figure 3.6 The clustering result of the facets of a regular surface model 

 

The produced facet clusters will be leveraged directly to generate meaningful ABOs if a fur-

ther refinement is not required. To generate meaningful ABOs for each facet cluster, a computa-
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tional method or a rule-based method can be applied, which is similar to the feature recognition 

methods for generation of ABOs (Cheng et al., 1995; Frank and Fadel, 1995; Lan et al., 1997; 

Alexander et al., 1998; Pham et al., 1999; Xu et al., 1999; West et al., 2001; Byun and Lee, 2006; 

Zhang et al., 2016; Al-Ahmari et al., 2018). The presented method adopts a central normal vec-

tor-based generation rule developed in the facet clustering method of Zhang et al. (2019):  

Rule 3.2 (Generation rule). The unitised central vector of all normal vectors in a cluster and 

its opposite vector directly serve as the ABOs of this cluster.  

 

 

Figure 3.7 The clustering result of the facets of a freeform surface model 

 

Using this rule, the ABOs of each cluster of facets of the STL model of an LPBF part can be 

computed. The ABOs of the part are obtained via combining the computed ABOs of all clusters 

and removing duplicated ABOs among them.  

Formally, let Ci = {ni,0, ni,1, …, ni,ni−1} (where ni,0 = (xi,0, yi,0, zi,0), ni,1 = (xi,1, yi,1, zi,1), …, 

ni,ni−1 = (xi,ni−1, yi,ni−1, zi,ni−1)) be an arbitrary cluster of normal vectors of facets. Then the unitised 

central vector of all normal vectors in this cluster is as follow:  
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The opposite vector of this unit vector is −nc,i. The unit vectors ±nc,i are taken as the ABOs of the 

cluster Ci based on Rule 3.2. Suppose the facets of the STL model of an LPBF part are parti-

tioned into N clusters C1, C2, …, CN and ±nc,1, ±nc,2, …, ±nc,N are respectively the ABOs of the N 

clusters, the ABOs of the part are generated as ±nc,1, ±nc,2, …, ±nc,N, in which the same vectors 
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are removed. For instance, the ABOs of the five clusters C1 = {n5, n2}, C2 = {n6}, C3 = {n3}, C4 

= {n1, n0} and C5 = {n7, n4} depicted in Figure 3.5 are respectively as follows:  

+nc,1 = (00.0000, −1.0000, 00.0000) 

−nc,1 = (00.0000, +1.0000, 00.0000) 

+nc,2 = (−0.5652, +0.8250, 00.0000) 

−nc,2 = (+0.5652, −0.8250, 00.0000) 

+nc,3 = (+0.6661, +0.7459, 00.0000) 

−nc,3 = (−0.6661, −0.7459, 00.0000) 

+nc,4 = (00.0000, 00.0000, +1.0000) 

−nc,4 = (00.0000, 00.0000, −1.0000) 

+nc,5 = (00.0000, 00.0000, −1.0000) 

−nc,5 = (00.0000, 00.0000, +1.0000) 

The unit vectors +nc,5 and −nc,5 are removed, because they are respectively the same as the unit 

vectors −nc,4 and +nc,4. Therefore, the ABOs of the prism in Figure 3.2 are generated as follows: 

O1 = (00.0000, −1.0000, 00.0000) 

O2 = (00.0000, +1.0000, 00.0000) 

O3 = (−0.5652, +0.8250, 00.0000) 

O4 = (+0.5652, −0.8250, 00.0000) 

O5 = (+0.6661, +0.7459, 00.0000) 

O6 = (−0.6661, −0.7459, 00.0000) 

O7 = (00.0000, 00.0000, +1.0000) 

O8 = (00.0000, 00.0000, −1.0000) 

The schematic diagram of these ABOs is shown in Figure 3.8.   

The produced facet clusters will be refined to screen out a smaller number of facet clusters to 

generate meaningful ABOs if a further refinement is needed. To carry out the refinement, cus-

tomised rules can be applied. A refinement rule aiming to select a certain number of facet clus-

ters with relatively large areas can be used. This is equivalent to find the base planes of an STL 

model (Lan et al., 1997). The refinement rule is described as follow:  

Rule 3.3 (Refinement rule). The top 6 (12) facet clusters in area are used to generate ABOs if 

the input STL model is a regular (freeform) surface model consisting of less than 120,000 facets.  

Using this rule, 6 or 12 facet clusters are screened out, which can be used to generate ABOs. 

It is worth noting that 6 and 12 in Rule 3.3 are two experimental numbers. They are respectively 

obtained through carrying out orientation experiments on thirty regular surface models and thirty 
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freeform surface models, each of which consists of less than 120,000 facets. If a model contains 

more than 120,000 facets, users can adjust the two numbers if the OBO of the model is not in-

cluded in the generated ABOs. It should be noted that the smaller the number of the facet clus-

ters used to generate ABOs, the less computation required in selection of the OBO.  

 

O1 O2 O3

O5 O6 O7

O4

O8

 

Figure 3.8 Schematic diagram of the ABOs of the prism 

 

Formally, let Ci = {ni,0, ni,1, …, ni,ni−1} be an arbitrary cluster of normal vectors of facets and 

Fi,0 = (vi,0,1, vi,0,2, vi,0,3), Fi,1 = (vi,1,1, vi,1,2, vi,1,3), …, Fi,ni−1 = (vi,ni−1,1, vi,ni−1,2, vi,ni−1,3) be respective-

ly the planar triangular facets corresponding to ni,0, ni,1, …, ni,ni−1. The area of Ci can be comput-

ed using the following equation:  

( )( )( )
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where d(vi,j,1, vi,j,2), d(vi,j,1, vi,j,3) and d(vi,j,2, vi,j,3) are respectively the lengths of the three edges of 

the planar triangular facet Fi,j that can be computed using Equation (3.2), and  

( ), , ,1 , ,2 , ,1 , ,3 , ,2 , ,3

1
( , ) ( , ) ( , )

2
i j i j i j i j i j i j i jp d v v d v v d v v= + +  (3.6) 

Assume the facets of the STL model of an LPBF part are divided into N clusters C1, C2, …, 

CN. Then the area of Ci (i = 1, 2, …, N) is calculated using Equation (3.5) and the top 6 (12) clus-

ters in area are screened out. The ABOs of the screened out clusters are calculated according to 

Rule 3.2. The ABOs of the part are obtained via gathering the calculated ABOs of all screened 

out clusters and removing duplicated ABOs among them.  
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As an example, the produced clusters in Figure 3.6 are refined using Rule 3.3 and the top 6 

clusters in area, as depicted in Figure 3.9 (Please note that the remaining facets are displayed in 

white), are screened out. According to Rule 3.2, eight ABOs are generated as the ABOs of the 

corresponding LPBF part. The OBO of the part can be selected from these ABOs. Table 3.1 pro-

vides the unitised vectors of the generated ABOs. The schematic diagram of the ABOs is shown 

in Figure 3.10.  

 

 

Figure 3.9 The top six clusters in area of the regular surface model 

 
Table 3.1 The unitised vectors of the ABOs of the regular surface model 

ABO Unitised vector ABO Unitised vector 

O1 (00.0000, −1.0000, 00.0000) O5 (−0.6508, +0.7593, 00.0000) 

O2 (00.0000, +1.0000, 00.0000) O6 (+0.6508, −0.7593, 00.0000) 

O3 (00.0000, 00.0000, −1.0000) O7 (+0.8321, +0.5547, 00.0000) 

O4 (00.0000, 00.0000, +1.0000) O8 (−0.8321, −0.5547, 00.0000) 

 

O1 O2 O3

O5 O6 O7

O4

O8

 

Figure 3.10 Schematic diagram of the ABOs of the regular surface model 

 

Similarly, the produced clusters in Figure 3.7 are refined using Rule 3.3 and the top 12 clus-

ters in area, as depicted in Figure 3.11 (Please note that the remaining facets are also displayed in 
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white), are screened out. According to Rule 3.2, twenty-four ABOs are generated as the ABOs of 

the corresponding LPBF part. The OBO of the part can be selected from these ABOs. Table 3.2 

lists the unitised vectors of the generated ABOs. The schematic diagram of the ABOs is provided 

in Figure 3.12.  

 

 

Figure 3.11 The top twelve clusters in area of the freeform surface model 
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Figure 3.12 Schematic diagram of the ABOs of the freeform surface model 
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Table 3.2 The unitised vectors of the ABOs of the freeform surface model 

ABO Unitised vector ABO Unitised vector ABO Unitised vector 

O1 (−0.6801, +0.6591, −0.3210) O9 (−0.6713, +0.4947, −0.5520) O17 (+0.1963, +0.9805, −0.0015) 

O2 (+0.6801, −0.6591, +0.3210) O10 (+0.6713, −0.4947, +0.5520) O18 (−0.1963, −0.9805, +0.0015) 

O3 (+0.0007, −0.0001, −0.9999) O11 (+0.4607, −0.5408, +0.7038) O19 (+0.8314, +0.5557, 00.0000) 

O4 (−0.0007, +0.0001, +0.9999) O12 (−0.4607, +0.5408, −0.7038) O20 (−0.8314, −0.5557, 00.0000) 

O5 (−0.7549, +0.6460, −0.1133) O13 (−0.8315, +0.5555, +0.0046) O21 (+0.5589, −0.8293, −0.0001) 

O6 (+0.7549, −0.6460, +0.1133) O14 (+0.8315, −0.5555, −0.0046) O22 (−0.5589, +0.8293, +0.0001) 

O7 (−0.4238, +0.4943, −0.7590) O15 (+0.5592, +0.8290, −0.0052) O23 (+0.9807, +0.1955, 00.0000) 

O8 (−0.4238, +0.4943, −0.7590) O16 (−0.5592, −0.8290, +0.0052) O24 (−0.9807, −0.1955, 00.0000) 

 

3.3 Summary 

This chapter has presented a facet clustering based method for automatic generation of ABOs 

for LPBF AM. This method includes clustering of facets and generation of ABOs. The clustering 

of facets takes the STL model of an LPBF part as input and adopts the accelerated HDBSCAN* 

algorithm and the k-cluster lifetime partition criterion to divide all facets of the STL model into a 

certain number of meaningful clusters, each of which shares a similar normal vector. The genera-

tion of ABOs directly generates the ABOs of the part using a generation rule if the produced fac-

et clusters are not needed to be refined, or firstly refines the facet clusters using a refinement rule 

and then generates the ABOs via the generation rule when a further refinement is required. The 

presented facet clustering method will be demonstrated in Chapter 6.  

 

   



48 

  

 

4 The constructed fuzzy aggregation operators  

MADM refers to the process of finding desirable alternatives via synthetically evaluating the 

values of multiple attributes of all alternatives. There are two critical tasks in this process. One is 

to quantify the values of different attributes; and the other is to synthetically assess the quantified 

attributes to determine desirable alternatives (Greco et al., 2016). For the quantification of values 

of attributes, an important mathematical tool is the fuzzy number (Zadeh, 1965). Fuzzy number 

is the core component of a fuzzy set. The value of a fuzzy number is restricted to [0, 1] and can 

be used to quantify the degree of membership of an element to the fuzzy set. This can provide a 

normalisation of the attribute values in MADM to make them easy to process. Because of such 

capability, fuzzy number and its derived research topics have received extensive attention in the 

field of MADM. A large number of fuzzy MADM methods have been presented during the past 

few decades (Kahraman, 2008).  

For the assessment of the quantified attributes, there are generally two approaches. One is to 

apply conventional MADM methods and the other is to use AOs. An AO is a mathematical func-

tion in which multiple values are grouped together to obtain a single summary value (Grabisch et 

al., 2009). AOs-based approaches are significantly more convincing and suitable than traditional 

MADM methods, because they can provide summary values of attributes and rankings of alter-

natives while traditional MADM methods only produce rankings (Liu and Wang, 2019). So far, 

there have been a number of AOs for MADM (Mardani et al., 2018). The MM and GMM opera-

tors (Muirhead, 1902) and the PA operator (Yager, 2001) are three of them. The MM and GMM 

operators can capture the interrelationships of the aggregated arguments. They are found to gen-

erate opposite aggregation expectations in MADM. An average combination of their aggregation 

results can balance the opposite aggregation expectations. The PA operator is capable of reduc-

ing the negative influence of biased argument values on the aggregation result.  

In practical OBO selection, the considered attributes of ABOs are generally not independent 

of each other, but are interrelated. An ideal MADM method for OBO selection should be general 

and flexible enough to capture the interrelationships of the considered attributes to obtain more 

reasonable results. In addition, the values of attributes are generally obtained through theoretical 

calculation, simulation estimation or expert evaluation. It is usually difficult to ensure the abso-

lute objectivity of these ways, which means that there would be some biased attribute values. To 

obtain reasonable selection results in this situation, it is of great necessity to reduce the negative 

effect of unreasonable attribute values.  
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On the basis of the considerations above, the objectives of the present chapter are outlined as 

follows:  

• To make the values of attributes of ABOs easier to process, fuzzy numbers are introduced to 

normalise these values.  

• To develop an AOs-based MADM method for OBO selection which can capture the complex 

relationships of attributes of ABOs, the MM and GMM operators of fuzzy numbers are used 

as the core AOs of the method.  

• To make the method capable to reduce the negative impact of extreme attribute values on the 

aggregation result, the PA operator of fuzzy numbers is combined with the MM and GMM 

operators of fuzzy numbers.  

• To express the relative importance of attributes of ABOs, weights are combined with the PA, 

MM and GMM operators of fuzzy numbers.  

• To perform the operations in the combined operators, a set of operational laws of fuzzy num-

bers based on the Archimedean t-norm and t-conorm are applied.  

To sum up, the present chapter aims to construct a set of fuzzy Archimedean weighted power 

MM and GMM operators for aggregating the values of attributes of ABOs. This aim is achieved 

through combining the MM and GMM operators of fuzzy numbers with the PA operator of fuzzy 

numbers, weights and the operational laws of fuzzy numbers based on the Archimedean t-norm 

and t-conorm. Because of such combination, the constructed fuzzy AOs will combine all of their 

capabilities. In Chapter 5, the constructed fuzzy AOs will be applied to develop a novel MADM 

method for automatic selection of the OBO of an LPBF part.  

The remainder of this chapter is organised as follows. Section 4.1 introduces some prerequi-

sites. A fuzzy Archimedean weighted power Muirhead mean (FAWPMM) operator and a fuzzy 

Archimedean weighted power geometric Muirhead mean (FAWPGMM) operator are constructed 

in Section 4.2 and Section 4.3, respectively. Section 4.4 ends the chapter with a summary.  

4.1 Preliminaries 

In this section, some prerequisites related to the fuzzy set theory, MM operator, GMM opera-

tor, PA operator, Archimedean t-norm and t-conorm and operational laws of fuzzy numbers are 

briefly introduced.  

4.1.1 Fuzzy set theory  

The concept of fuzzy set was introduced by Zadeh (1965) as an extension of the classical set. Its for-

mal definition is as follow:  
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Definition 4.1 (Fuzzy set). A fuzzy set A in a finite universe of discourse X is {<x, µA(x)> | xX}, 

where µA : X → [0, 1] denotes the degree of membership of the element xX to the set A, with the condi-

tion that 0 ≤ µA(x) ≤ 1.  

Generally, the values of the membership function µA(x) are called as fuzzy numbers. The definition of 

a fuzzy number can be naturally obtained as follow (Zadeh, 1965): 

Definition 4.2 (Fuzzy number). A fuzzy number α on a fuzzy set A = {<x, µA(x)> | xX} is <µA(x)>. 

For the sake of simplicity, the fuzzy number α is always denoted as <µ>.  

To compare two fuzzy numbers, their score values are required. The following is the formal defini-

tion of the score value of a fuzzy number (Klir and Yuan, 1995): 

Definition 4.3 (Score value). Let α = <µ> be a fuzzy number. Its score value can be calculat-

ed using the following equation:  

( ) 2 1S  = −  (4.1) 

Any two fuzzy numbers can be compared via comparing their score values. The following is 

the formal definition of the rule for such comparison (Klir and Yuan, 1995):  

Definition 4.4 (Comparison rule). Let α1 = <µ1> and α2 = <µ2> be two fuzzy numbers and 

S(α1) and S(α2) be respectively their score values. Then: If S(α1) < S(α2), then α1 < α2; If S(α1) = 

S(α2), then α1 = α2; If S(α1) > S(α2), then α1 > α2.  

To compute the distance between two fuzzy numbers, a distance measure of fuzzy numbers 

is required. The following is the formal definition of the Euclidean distance between two fuzzy 

numbers: 

Definition 4.5 (Euclidean distance). Let α1 = <µ1> and α2 = <µ2> be two fuzzy numbers. The 

Euclidean distance between them can be computed using the following equation:  

1 2 1 2( ,  )d    = −  (4.2) 

4.1.2 Muirhead mean (MM) operator 

The MM operator was introduced by Muirhead (1902). This operator is capable of capturing the in-

terrelationships of multiple aggregated arguments and can provide a general form of the arithmetic aver-

age (AA) operator, Bonferroni mean (BM) operator, Maclaurin symmetric mean (MSM) operator and 

geometric average (GA) operator. Its formal definition is as follow:  

Definition 4.6 (MM operator). Let a1, a2, …, an be n positive numbers, Q = (q1, q2, …, qn) be a col-

lection of n real numbers such that q1, q2, …, qn ≥ 0 but not at the same time q1 = q2 = … = qn = 0, p(i) be 

a permutation of (1, 2,…, n) and Pn be the set of all permutations of (1, 2,…, n). Then the aggregation 

function  
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is called the MM operator.  

In the MM operator, whether the interrelationships of a1, a2, …, an are captured relies on the 

values of q1, q2, …, qn: If q1 > 0 and q2 = q3 = … = qn = 0, then the interrelationships are not cap-

tured; If q1, q2 > 0 and q3 = q4 = … = qn = 0, then the interrelationships between two of a1, a2, …, 

an are captured; If q1, q2, …, qk > 0 (k = 3, 4, …, n) and qk+1 = qk+2 = … = qn = 0, then the interre-

lationships among k of a1, a2, …, an are captured.  

In addition, the MM operator will reduce to the AA, BM, MSM and GA operators when q1, 

q2, …, qn take some special values:  

• The MM operator will reduce to the AA operator when q1 = 1 and q2 = q3 = … = qn = 0:  

1 2

1

1
( , ,..., )

n

n i

i

AA a a a a
n =

=   (4.4) 

• The MM operator will reduce to the BM operator when q1, q2 > 0 and q3 = q4 = … = qn = 0:  
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• The MM operator will reduce to the MSM operator when q1 = q2 = … = qk = 1 and qk+1 = qk+2 

= … = qn = 0:  
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• The MM operator will reduce to the GA operator when q1 = q2 = … = qn = 1:  

1/
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4.1.3 Geometric MM (GMM) operator 

The GMM operator is the dual form of the MM operator. This operator is also capable of capturing 

the interrelationships of multiple aggregated arguments and can provide a general form of the GA opera-

tor, geometric Bonferroni mean (GBM) operator, geometric Maclaurin symmetric mean (GMSM) opera-

tor and AA operator. Its formal definition is as follow:  

Definition 4.7 (GMM operator). Let a1, a2, …, an be n positive numbers, Q = (q1, q2, …, qn) be a col-

lection of n real numbers such that q1, q2, …, qn ≥ 0 but not at the same time q1 = q2 = … = qn = 0, p(i) be 
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a permutation of (1, 2,…, n) and Pn be the set of all permutations of (1, 2,…, n). Then the aggregation 

function 
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is called the GMM operator.  

In the GMM operator, whether the interrelationships of a1, a2, …, an are captured also relies 

on the values of q1, q2, …, qn with the same cases as these values are in the MM operator.  

In addition, the GMM operator will reduce to the GA, GBM, GMSM and AA operators when 

q1, q2, …, qn take some special values:  

• The GMM operator will reduce to the GA operator in Equation (4.7) when q1 = 1 and q2 = q3 

= … = qn = 0.  

• The GMM operator will reduce to the GBM operator when q1, q2 > 0 and q3 = q4 = … = qn = 

0:  
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• The GMM operator will reduce to the GMSM operator when q1 = q2 = … = qk = 1 and qk+1 = 

qk+2 = … = qn = 0:  
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• The GMM operator will reduce to the AA operator in Equation (4.4) when q1 = q2 = … = qn 

= 1.  

4.1.4 Power average operator 

The PA operator was introduced by Yager (2001). It can assign weights to the aggregated arguments 

dynamically via calculating the degrees of support between them. This enables the operator to reduce the 

effect of extreme argument values on the aggregation result. The formal definition of the PA operator is 

as follow:  

Definition 4.8 (PA operator). Let a1, a2, …, an be n positive numbers, s(ai, aj) = 1 − d(ai, aj) (where i, 

j = 1, 2, …, n and j ≠ i and d(ai, aj) is the distance between ai and aj) be the degree of support for ai from aj 

such that 0 ≤ s(ai, aj) ≤ 1, s(ai, aj) = s(aj, ai) and s(ai, aj) ≥ s(ai', aj') if and only if |ai, aj| ≤ |ai', aj'| (where i', j' 

= 1, 2, …, n and j' ≠ i'), and  
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Then the aggregation function 
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is called the PA operator.  

4.1.5 Archimedean t-norm and t-conorm 

A t-norm is a binary operation on [0, 1] which satisfies the conditions of commutativity, associativity, 

monotonicity and boundary (Klement et al., 2000). The dual notion of a t-norm is its conorm. A t-norm 

and its conorm can be formally defined as follows:  

Definition 4.9 (T-norm). A t-norm is a function T : [0, 1]2 → [0, 1] such that for all x, y, z[0, 1]: T(x, 

y) = T(y, x); T(x, T(y, z)) = T(T(x, y), z); If y ≤ z, then T(x, y) ≤ T(x, z); T(x, 1) = x.  

Definition 4.10 (T-conorm). If T is a t-norm, then its conorm TC : [0, 1]2 → [0, 1] is TC(x, y) = 1 − 

T(1−x, 1−y).  

A t-norm T is called Archimedean if every sequence xn (where n = 1, 2, … and x1 < 1 and xn+1 = T(xn, 

xn)) converges to 0. The conorm of an Archimedean t-norm is called an Archimedean t-conorm. For an 

Archimedean t-norm T and its conorm TC:  

• If a function f(t) (tR) is monotonically decreasing and satisfies the conditions that f(t) : (0, 

1] → R+; f−1(t) : R+ → (0, 1]; limt→∞f−1(t) = 0; and f−1(0) = 1, then f(t) can be used to generate 

T: T(x, y) = f−1(f(x) + f(y)) and is called as an additive generator (AG) of T.  

• If a function g(t) (tR) is monotonically increasing and satisfies the conditions that g(t) : (0, 

1] → R+; g−1(t) : R+ → (0, 1]; limt→∞g−1(t) = 1; and g−1(0) = 0, then g(t) can be used to gener-

ate TC: TC(x, y) = g−1(g(x) + g(y)) and is called as an AG of TC.  

According to the definition of the conorm of a t-norm, it can be derived that f(t) = g(1−t).  

During the past few decades, study on Archimedean t-norm and t-conorm and their AGs has 

received extensive attention. Various families of Archimedean t-norms and t-conorms have been 

presented within the academia. Four well-known families are the Algebraic t-norm and t-conorm 

(ATT), Einstein t-norm and t-conorm (ETT), Hamacher t-norm and t-conorm (HTT) and Frank t-

norm and t-conorm (FTT) (Xia et al., 2012; Liu and Wang, 2019). The AGs and expressions of 

these Archimedean t-norms and t-conorms are listed in Table 4.1 and Table 4.2, respectively.  
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Table 4.1 AGs and expressions of four Archimedean t-norms 

Archimedean 

t-norm 
AG of the t-norm Inverse function Expression of the t-norm 

Algebraic f(t) Int= −   f−1(t) e t−=  A ( , )T x y xy=  

Einstein f(t)
2

In
t

t

−
=  f−1(t)

2

e 1t
=

+
 E ( , )

1 (1 )(1 )

xy
T x y

x y
=

+ − −
 

Hamacher f(t)
(1 )

In
t

t

 + −
= , (δ > 0) f−1(t)

e 1t




=

+ −
 H ( , )

(1 )( )

xy
T x y

x y xy 
=

+ − + −
 

Frank f(t)
1

In
1t





−
= −

−
, (ε > 1) f−1(t)

e 1
log

e

t

t

+ −
=  F

( 1)( 1)
( , ) log 1

1

x y

T x y 

 



 − −
= + 

− 
 

 

Table 4.2 AGs and expressions of four Archimedean t-conorms 

Archimedean 

t-conorm 
AG of the t-conorm Inverse function  Expression of the t-conorm 

Algebraic  g(t) In(1 )t= − −  g−1(t) 1 e t−= −  
C

A ( , )T x y x y xy= + −  

Einstein  g(t)
1

In
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+
=

−
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+
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−
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x y xy xy
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− −
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1
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1t
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−
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−
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e 1
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t

+ −
= −  

1 1
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( 1)( 1)
( , ) 1 log 1

1

x y

T x y 

 



− − − −
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4.1.6 Operational laws of fuzzy numbers 

Based on Archimedean t-norm and t-conorm, a set of general and flexible operational laws of fuzzy 

numbers can be developed. Formally, let α = <μ>, α1 = <μ1> and α2 = <μ2> be three fuzzy numbers and λ 

be a positive number. Then the sum and product operations between α1 and α2 based on the Archimedean 

t-norm T(x, y) = f−1(f(x) + f(y)) and its t-conorm TC(x, y) = g−1(g(x) + g(y)) and the multiplication and pow-

er operations between λ and α based on T(x, y) and TC(x, y) can be respectively performed using the fol-

lowing laws:  

α1α2 = <TC(μ1, μ2)> = <g−1(g(μ1) + g(μ2))> (4.13) 

α1α2 = <T(μ1, μ2)> = <f−1(f(μ1) + f(μ2))> (4.14) 

λα = <g−1(λg(μ))> (4.15) 

αλ = <f−1(λf(μ))> (4.16) 

The operational laws above can be regarded as the special cases of the operational laws of intuition-

istic fuzzy numbers based on Archimedean t-norm and t-conorm developed by Xia et al. (2012) and the 

operational laws of generalised orthopair fuzzy numbers (commonly known as q-rung orthopair fuzzy 

numbers) based on Archimedean t-norm and t-conorm developed by Liu and Wang (2019). It is easy to 

prove that these operational laws have the following algebraic properties:  
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α1α2 = α2α1 (4.17) 

α1α2 = α2α1 (4.18) 

λ(α1α2) = λα1λα2 (4.19) 

(α1α2)
λ = α1

λ
α2

λ (4.20) 

λ1αλ2α = (λ1+λ2)α (4.21) 

αλ1αλ2 = αλ1+λ2 (4.22) 

where λ1 and λ2 are two positive numbers.  

4.2 Fuzzy Archimedean weighted power MM operator 

In this section, an FAWPMM operator is presented on the basis of the MM and PA operators 

of fuzzy numbers, weights and the operational laws of fuzzy numbers based on Archimedean t-

norm and t-conorm. The formal definition of the FAWPMM operator is provided. Its general ex-

pression is established, property is explored, special cases are discussed and specific expressions 

are established.  

The FAWPMM operator is a weighted power MM operator of fuzzy numbers, in which the 

operations are performed using the operational laws of fuzzy numbers based on Archimedean t-

norm and t-conorm. The formal definition of this operator is as follow: 

Definition 4.11 (FAWPMM operator). Let α1=<µ1>, α2=<µ2>, …, αn=<µn> be n fuzzy numbers, Q = 

(q1, q2, …, qn) be a collection of n real numbers such that q1, q2, …, qn ≥ 0 but not at the same time q1 = q2 

= … = qn = 0, p(i) be a permutation of (1, 2,…, n), Pn be the set of all permutations of (1, 2,…, n), w1, w2, 

…, wn be respectively the weights of α1, α2, …, αn such that 0 ≤ w1, w2, …, wn ≤ 1 and w1 + w2 +…+ wn = 

1, s(αi, αj) = 1 − d(αi, αj) (where i, j = 1, 2, …, n and j ≠ i and d(αi, αj) is the distance between αi and αj) be 

the degree of support for αi from αj such that 0 ≤ s(αi, αj) ≤ 1, s(αi, αj) = s(αj, αi) and s(αi, αj) ≥ s(αi', αj') if 

and only if |αi, αj| ≤ |αi', αj'| (where i', j' = 1, 2, …, n and j' ≠ i'), and  
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is called the FAWPMM operator.  
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In the FAWPMM operator, whether the interrelationships of α1, α2, …, αn are captured relies 

on the values of q1, q2, …, qn: If q1 > 0 and q2 = q3 = … = qn = 0, then the interrelationships are 

not captured; If q1, q2 > 0 and q3 = q4 = … = qn = 0, then the interrelationships between two of 

α1, α2, …, αn are captured; If q1, q2, …, qk > 0 (k = 3, 4, …, n) and qk+1 = qk+2 = … = qn = 0, then 

the interrelationships among k of α1, α2, …, αn are captured. In the following theorem, the gen-

eral expression of the FAWPMM operator is established:  

Theorem 4.1 (General expression). According to the expression in Equation (4.24) and the 

operational laws in Equation (4.13), Equation (4.14), Equation (4.15) and Equation (4.16), the 

FAWPMM operator can be further expressed as: 
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where 
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(4.26) 

and FAWPMMQ(α1, α2, …, αn) is still a fuzzy number. 

The proof of this theorem is given in Appendix A. The following theorem states the bound-

edness of the FAWPMM operator:  

Theorem 4.2 (Boundedness). Let α1=<µ1>, α2=<µ2>, …, αn=<µn> be n fuzzy numbers and Q 

= (q1, q2, …, qn) be a collection of n real numbers such that q1, q2, …, qn ≥ 0 but not at the same 

time q1 = q2 = … = qn = 0. If α– = <min(μi)> and α+ = <max(μi)> for all i = 1, 2, …, n, then α– ≤ 

FAWPMMQ(α1, α2, …, αn) ≤ α+.  

The proof of this theorem is given in Appendix B. It is worth noting that the FAPWMM op-

erator does not have the properties of idempotency and commutativity because of the combina-

tion of weights of the aggregated fuzzy numbers. The FAWPMM operator will reduce to several 

other AOs when q1, q2, …, qn take some special values:  

• If q1 = 1 and q2 = q3 = … = qn = 0, the FAWPMM operator will reduce to a fuzzy Archime-

dean weighted power arithmetic average (FAWPAA) operator:  
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=
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  (4.27) 

• If q1, q2 > 0 and q3 = q4 = … = qn = 0, the FAWPMM operator will reduce to a fuzzy Archi-



57 

  

 

medean weighted power Bonferroni mean (FAWPBM) operator:  
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• If q1 = q2 = … = qk = 1 and qk+1 = qk+2 = … = qn = 0, the FAWPMM operator will reduce to a 

fuzzy Archimedean weighted power Maclaurin symmetric mean (FAWPMSM) operator:  
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 (4.29) 

• If q1 = q2 = … = qn = 1, the FAWPMM operator will reduce to a fuzzy Archimedean weigh-

ted power geometric average (FAWPGA) operator:  
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Equation (4.25) is a general form of the FAWPMM operator and cannot be directly used to 

aggregate fuzzy numbers. If the AGs of specific families of Archimedean t-norm and t-conorm 

are applied to the equation, then specific expressions of the FAWPMM operator, which can be 

directly used to aggregate fuzzy numbers, can be constructed. Four examples of specific expres-

sions are as follows:  

• If the AGs of ATT in Table 4.1 and Table 4.2 are applied to Equation (4.25), an FAWPMM 

operator based on ATT is established as follow:  
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• If the AGs of ETT in Table 4.1 and Table 4.2 are applied to Equation (4.25), an FAWPMM 

operator based on ETT is established as follow:  
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where  
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• If the AGs of HTT in Table 4.1 and Table 4.2 are applied to Equation (4.25), an FAWPMM 

operator based on HTT is established as follow:  
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• If the AGs of FTT in Table 4.1 and Table 4.2 are applied to Equation (4.25), an FAWPMM 

operator based on FTT is established as follow:  
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4.3 Fuzzy Archimedean weighted power GMM operator 

In this section, an FAWPGMM operator is presented on the basis of the GMM and PA opera-

tors of fuzzy numbers, weights and the operational laws of fuzzy numbers based on Archimede-

an t-norm and t-conorm. The formal definition of the FAWPGMM operator is provided. Its gen-

eral expression is established, properties are explored, special cases are discussed and specific 

expressions are established.  

The FAWPGMM operator is a weighted power GMM operator of fuzzy numbers, in which 

the operations are performed using the operational laws of fuzzy numbers based on Archimedean 

t-norm and t-conorm. The formal definition of this operator is as follow: 

Definition 4.12 (FAWPGMM operator). Based on Definition 4.11, the aggregation function  
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is called the FAWPGMM operator. 

In the FAWPGMM operator, whether the interrelationships of α1, α2, …, αn are captured also 

relies on the values of q1, q2, …, qn: If q1 > 0 and q2 = q3 = … = qn = 0, then the interrelationships 

are not captured; If q1, q2 > 0 and q3 = q4 = … = qn = 0, then the interrelationships between two 

of α1, α2, …, αn are captured; If q1, q2, …, qk > 0 (k = 3, 4, …, n) and qk+1 = qk+2 = … = qn = 0, 

then the interrelationships among k of α1, α2, …, αn are captured. In the following theorem, the 

general expression of the FAWPGMM operator is established:  

Theorem 4.3 (General expression). According to the expression in Equation (4.40) and the 

operational laws in Equation (4.13), Equation (4.14), Equation (4.15) and Equation (4.16), the 

FAWPGMM operator can be further expressed as: 
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where φp(i) is given in Equation (4.26) and FAWPGMMQ(α1, α2, …, αn) is still a fuzzy number.  

The proof of this theorem is given in Appendix C. The following theorem states the bound-

edness of the FAWPGMM operator:  

Theorem 4.4 (Boundedness). Let α1=<µ1>, α2=<µ2>, …, αn=<µn> be n fuzzy numbers and Q 

= (q1, q2, …, qn) be a collection of n real numbers such that q1, q2, …, qn ≥ 0 but not at the same 

time q1 = q2 = … = qn = 0. If α– = <min(μi)> and α+ = <max(μi)> for all i = 1, 2, …, n, then α– ≤ 

FAWPGMMQ(α1, α2, …, αn) ≤ α+.  
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The proof of this theorem is given in Appendix D. It is worth noting that the FAWPGMM 

operator does not have the properties of idempotency and commutativity due to the combination 

of weights of the aggregated fuzzy numbers. The FAWPGMM operator will reduce to several 

other AOs when q1, q2, …, qn take some special values:  

• If q1 = 1 and q2 = q3 = … = qn = 0, then the FAWPGMM operator will reduce to the FAWP-

GA operator in Equation (4.30).  

• If q1, q2 > 0 and q3 = q4 = … = qn = 0, then the FAWPGMM operator will reduce to a fuzzy 

Archimedean weighted power geometric Bonferroni mean (FAWPGBM) operator:  
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• If q1 = q2 = … = qk = 1 and qk+1 = qk+2 = … = qn = 0, then the FAWPGMM operator will re-

duce to a fuzzy Archimedean weighted power geometric Maclaurin symmetric mean (FAW-

PGMSM) operator:  
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• If q1 = q2 = … = qn = 1, then the FAWPGMM operator will reduce to the FAWPAA operator 

in Equation (4.27).  

Equation (4.41) is a general form of the FAWPGMM operator and cannot be directly used to 

aggregate fuzzy numbers. If the AGs of specific families of Archimedean t-norm and t-conorm 

are applied to the equation, then specific expressions of the FAWPGMM operator, which can be 

directly used to aggregate fuzzy numbers, can be constructed. Four examples of specific expres-

sions are as follows:  

• If the AGs of ATT in Table 4.1 and Table 4.2 are applied to Equation (4.41), an FAWPGMM 

operator based on ATT is established as follow:  
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• If the AGs of ETT in Table 4.1 and Table 4.2 are applied to Equation (4.41), an FAWPGMM 
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operator based on ETT is established as follow:  
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• If the AGs of HTT in Table 4.1 and Table 4.2 are applied to Equation (4.41), an FAWPGMM 

operator based on HTT is established as follow:  
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• If the AGs of FTT in Table 4.1 and Table 4.2 are applied to Equation (4.41), an FAWPGMM 

operator based on FTT is established as follow:  
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4.4 Summary  

This chapter has constructed an FAWPMM operator and an FAWPGMM operator. The for-

mal definitions of these operators have been presented. Their general expressions have been es-

tablished via the operational laws of fuzzy numbers based on Archimedean t-norm and t-conorm. 

The properties of the two operators have been explored. Their special cases have been discussed. 

The specific expressions of the two operators have been established through applying the AGs of 

ATT, ETT, HTT and FTT. The constructed operators will be applied in development of a novel 

MADM method for automatic selection of the OBO of an LPBF part in Chapter 5.  

 

  



63 

  

 

5 The proposed automatic selection method  

In this chapter, a novel MADM method for automatic selection of the OBO of an LPBF part 

is presented. The schematic diagram of the presented method is shown in Figure 5.1. The method 

mainly includes estimation of attribute values, normalisation of attribute values and selection of 

the OBO. In the estimation of attribute values, the STL model and ABOs of an LPBF part, the 

material and process parameters used to build the part and the attributes of ABOs are used as the 

input of certain estimation models of attribute values. The values of the attributes of ABOs are 

calculated by the estimation models. In the normalisation of attribute values, a ratio model is in-

troduced to fuzzify the estimated attribute values and a fuzzy decision matrix is established and 

then normalised. In the selection of the OBO, the relationships and weights of the attributes of 

ABOs are determined. Based on them, the constructed fuzzy AOs in Chapter 4 are used to ag-

gregate the fuzzy information in the normalised fuzzy decision matrix. A ranking of the generat-

ed ABOs is obtained via comparing the aggregation result and then the OBO of the part can be 

selected according to the ranking.  

 

Normalisation of

attribute values

STL model 

and ABOs
Ratio model

Attributes

of ABOs

Constructed

fuzzy AOs

Values of 

attributes

Fuzzy decision matrix

Fuzzify

Normalised fuzzy

decision matrix

Aggregation result 

of attribute values
OBO Rank

Relationships

and weights
Determine

Selection of the OBO through fuzzy AOs based MADM

Estimation 

models

Attributes

of ABOs

Material and 

parameters

Estimate Normalise

Estimation of attribute values

 

Figure 5.1 Schematic diagram of the automatic selection method 

 

The chapter is organised as follows. Section 5.1 describes the specific process of the estima-

tion of attribute values. The details of the normalisation of attribute values and the selection of 

the OBO are explained in Section 5.2 and Section 5.3, respectively. Section 5.4 ends the chapter 

with a summary.  
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5.1 Estimation of attribute values 

According to the studies of Edwards and Ramulu (2014), Wauthle et al. (2015), Brika et al. 

(2017), Cheng and To (2019) and Griffiths et al. (2019), the attributes of an LPBF part affected 

by the build orientation of the part are support volume, volumetric error, surface roughness, build 

time, build cost, strength, elongation, hardness, residual stress, flexural modulus and fatigue per-

formance. Among them, the support volume, volumetric error, surface roughness, build time and 

build cost in a given build orientation can be estimated via analysing the geometry of the STL 

model of the part:  

• Support volume. When the angle between the normal vector of a planar triangular facet of the 

STL model of an LPBF part and the build orientation is greater than a threshold (commonly 

135°), this facet is considered as an overhang and additional supports are required to sustain 

the overhang to avoid collapse or build failure during the fabrication of the part. Apart from 

overhangs, supports are also needed for the top areas of a hollow 3D model. In process plan-

ning for LPBF AM, the total volume of the supports required for a part is an important factor, 

as it will affect the build time and build cost of the part. To estimate the total support volume 

of an LPBF part, Autodesk Meshmixer, a free software tool for working with triangle mesh-

es, is applied in the proposed method. Firstly, the STL model of an LPBF part is imported in-

to the software tool. Then the model is rotated around the x axis by an angle of θx and rotated 

around the y axis by an angle of θy, so that the build orientation O given by a unitised vector 

(x, y, z) is vertically upward. After the rotations, supports can be generated and their volume 

(mm3) can be estimated by the software tool. In this process, the angles (deg) θx and θy can 

be obtained via the following equation (Zhang et al., 2019):  

( )

( )
x

2 2

y

arctan   if 0 or 0

arctan

y z y z

x y z





 =  



= − +

 (5.1) 

It is worth noting that θx = 0 deg when y = z = 0. In theory, the greater the total support vol-

ume, the longer the build time, and the higher the build cost. The objective is to minimise the 

total support volume if it is one of the attributes considered in selection of the OBO.  

• Volumetric error. There are two types of surface errors in LPBF AM. The first type appears 

in the tessellation of CAD models. It is caused by approximating a surface with a set of pla-

nar triangles and can be reduced via controlling the chordal error. The second type is the so-

called volumetric error, which is caused by fabricating each facet with staircases in a layer by 

layer manner and may have significant influence on the shape accuracy of the built part. Vol-
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umetric error cannot be eliminated, but its effect can be reduced through specifying appropri-

ate build orientation and layer thickness. To date, a number of models for estimating the total 

volumetric error of an AM part based on the STL model, build orientation and layer thick-

ness of the part have been presented (Masood et al., 2000; 2003; Li and Zhang, 2013; Zhang 

and Li, 2013; Luo and Wang, 2016; Matos et al., 2020). The model of Luo and Wang (2016) 

is used to estimate the total volumetric error of an LPBF part in a given build orientation O. 

Firstly, the volumetric error of each facet in the STL model of an LPBF part in O is estimated 

via geometric analysis. The total volumetric error of the part in O is then obtained by calcu-

lating the sum of the volumetric error of all facets. Suppose the STL model of an LPBF part 

includes n facets F0 = (v0,1, v0,2, v0,3), F1 = (v1,1, v1,2, v1,3), …, Fn−1 = (vn−1,1, vn−1,2, vn−1,3). Then 

the total volumetric error (mm3) of this part in O, as illustrated in Figure 5.2, can be estimat-

ed using the following equation:  

1 1
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Volumetric
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cos
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n n
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i i i

i i

t
E E A

− −

= =

 
= =  

 
   (5.2) 

where Ei is the volumetric error (mm3) of Fi, tLayer is the layer thickness (mm) under the uni-

form planar slicing in O, θi is the angle (deg) between the normal vector of Fi and O, and Ai 

is the area (mm2) of Fi that can be calculated using the following equation:  

( )( )( ),1 ,2 ,1 ,3 ,2 ,3( , ) ( , ) ( , )i i i i i i i i i i iA p p d v v p d v v p d v v= − − −  (5.3) 

where d(vi,1, vi,2), d(vi,1, vi,3) and d(vi,2, vi,3) are respectively the lengths (mm) of the three edg-

es of Fi that can be computed using Equation (3.2), and  

( ),1 ,2 ,1 ,3 ,2 ,3

1
( , ) ( , ) ( , )

2
i i i i i i ip d v v d v v d v v= + +  (5.4) 

Generally, the greater the total volumetric error of an LPBF part, the greater the impact on 

the shape accuracy of the part. Thus, the objective is to minimise the total volumetric error if 

it is one of the attributes considered in selection of the OBO.  
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Figure 5.2 An illustration of the volumetric error of a facet 
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• Surface roughness. Surface roughness reflects the unevenness of a real surface. It is generally 

quantified by the deviations in the normal vector direction of the real surface from its ideal 

form. Small deviations indicate that the real surface is smooth. There are a number of differ-

ent parameters available for describing surface roughness (ISO 4287, 1997), where Ra is the 

most common by far. In the field of AM, Ra is also the most commonly used parameter for 

measuring the surface roughness of an AM part (Strano et al., 2013; Calignano, 2018). With-

out loss of generality, this parameter will also be used to quantify the surface roughness of an 

LPBF part in this chapter and the next chapter. That is, all surface roughness values appear-

ing in these two chapters are Ra values. In the literature, many estimation models of the aver-

age surface roughness of an AM part are established based on the staircase effect caused by 

the layer upon layer building manner of AM processes. However, according to the research 

findings of Strano et al. (2013) and Calignano (2018), the estimation models based on stair-

case effect cannot accurately predict the average surface roughness of an LPBF part, since it 

is mainly affected by build orientation and process parameters. In the MOO method of Brika 

et al. (2017), a model for estimating the average surface roughness of an LPBF part was es-

tablished on the basis of a study of the average surface roughness of LPBF Ti6Al4V samples 

in different build orientations and with a constant layer thickness of 0.03 mm. This model is 

used to predict the average surface roughness of an LPBF part in a given build orientation O 

in the proposed method. Firstly, the surface roughness of each facet in the STL model of an 

LPBF part in O is estimated by a linear regression function. Then the roughness per unit area 

is calculated and used as the average surface roughness of the part in O. Suppose the STL 

model of an LPBF part includes n facets F0 = (v0,1, v0,2, v0,3), F1 = (v1,1, v1,2, v1,3), …, Fn−1 = 

(vn−1,1, vn−1,2, vn−1,3). The average surface roughness (mm) of this part in O can be estimated 

using the following equation:  

( ) ( )
1 1 1 1

0 0 0 0

(0.0094148 0.0000389 90 )
n n n n

O

i i i i i i

i i i i

Ra Ra A A A A
− − − −

= = = =

= = + −     (5.5) 

where Rai is the surface roughness (mm) of Fi in O, Ai is the area (mm2) of Fi that can be cal-

culated using Equation (5.3), and θi is value of the angle (deg) between the normal vector of 

Fi and O. For a built LPBF part, the greater the average surface roughness, the worse the sur-

face quality. Therefore, the objective is to minimise the average surface roughness if it is one 

of the attributes considered in selection of the OBO.  

• Build time. Build time and build cost are two important indicators for nearly all AM process-

es. Many of the existing OBO selection methods consider these factors and establish their es-
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timation models with respect to build orientation and process parameters under specific AM 

processes. To estimate the build time of an LPBF part in a given build orientation O, an esti-

mation model for the LPBF process presented by Brika et al. (2017) is introduced. According 

to the model, the total build time (s) of an LPBF part in O can be estimated using the follow-

ing equation:  

( ) ( )Build Model Layer Recoating Model Support Build

O O OT h t T V V R= + +  (5.6) 

where RBuild is the build rate (mm3/s), i.e. the volume deposited per unit time, and other sym-

bols are explained in Table 5.1. The build rate can be calculated using the following equation 

(Tang et al., 2017):  

Build Layer Hatch ScanningR t s v=  (5.7) 

where all symbols are also defined in Table 5.1. Obviously, the objective is to minimise the 

total build time if it is one of the attributes considered in selection of the OBO.  

 
Table 5.1 An explanation of the symbols in the estimation model of build time 

Symbol Meaning Unit Value 

Model

Oh  STL model height in O mm Calculate according to the geometry of the STL model and O 

Layert  Layer thickness mm Specify according to the technical data of the used LPBF machine 

RecoatingT  Recoating time s Specify according to the technical data of the used LPBF machine 

ModelV  STL model volume mm3 Calculate according to the geometry of the STL model 

Support

OV  Support volume in O mm3 Estimate by the analysis module of Autodesk Meshmixer 

Hatchs  Hatch spacing mm Specify according to the technical data of the used LPBF machine 

Scanningv  Laser scanning velocity mm/s Specify according to the technical data of the used LPBF machine 

 

• Build cost. To estimate the build cost of an LPBF part in a given build orientation, a generic 

estimation model presented by Baumers et al. (2013; 2016) is used. According to the model, 

build cost consists of direct cost and indirect cost, where the direct cost includes material cost 

and energy cost. That is, the total build cost (£) of an LPBF part in a given build orientation 

O is the sum of the material cost, energy cost and indirect cost of the part in O. This can be 

described by the following equation:  

Build Material Energy Indirect

O O O OC C C C= + +  (5.8) 

According to an estimation model of build cost for the LPBF process proposed by Brika et al. 

(2017), the material cost (£), energy cost (£) and indirect cost (£) in O can be calculated us-

ing the following equations:  



68 

  

 

( )Material Model Support Waste Material Material Material(1 )O OC V V r P p= + +  (5.9) 

( )Energy Model Support Material Material kWh/kg Energy

O OC V V P R p= +  (5.10) 

Indirect £/h Build

O OC R T=  (5.11) 

where all symbols are explained in Table 5.2. Obviously, the objective is to minimise the to-

tal build cost if it is one of the attributes considered in selection of the OBO.  

 
Table 5.2 An explanation of the symbols in the estimation model of build cost 

Symbol Meaning Unit Value 

ModelV  STL model volume m3 Calculate according to the geometry of the STL model 

Support

OV  Support volume in O m3 Estimate by the analysis module of Autodesk Meshmixer 

Waster  Material waste ratio —— 0.1, found from the data used in (Ruffo et al., 2006) 

Material  Density of material  kg/m3 Find from the technical data of the used material 

MaterialP  Porosity of material —— Find from the technical data of the used material 

Materialp  Price of material £/kg Find from the material supplier’s website 

kWh/kgR  Energy consumption rate kWh/kg 162.13, found from the data used in (Brika et al., 2017)  

Energyp  Price of energy £/kWh Find from the energy supplier’s website 

£/hR  Indirect cost rate £/h 44.08, converted from 53.35 $/h in (Brika et al., 2017) 

Build

OT  Build time in O h Calculate using the estimation model in Equation (5.6) 

 

To illustrate the estimation of the support volume, volumetric error, surface roughness, build 

time and build cost under a given build orientation, a classic part for demonstrating a build orien-

tation determination method is introduced. This part was developed in the method of Cheng et al. 

(1995) and has been applied to illustrate the methods of Pham et al. (1999), Pandey et al. (2004), 

Byun and Lee (2006), Canellidis et al. (2009), Zhang et al. (2016), Ransikarbum and Kim (2017) 

and Qie et al. (2018). The STL model of the part is shown in Figure 5.3. Suppose the part will be 

built using Ti6Al4V and the LPBF machine EOSINT M270. The ABOs of the part are generated 

by the proposed automatic generation method in Chapter 3 and are listed in Table 3.1 and shown 

in Figure 3.10. The values of layer thickness, recoating time, hatch spacing, laser scanning veloc-

ity, material density, material porosity and material price are cited from (Brika et al., 2017) and 

listed in Table 5.3. The value of energy price is obtained from the energy supplier’s website and 

also provided in Table 5.3. Based on these conditions, the total support volume, total volumetric 

error, average surface roughness, total build time and total build cost of the LPBF Ti6Al4V part 

under each ABO can be estimated using the estimation models above. The estimation results are 

listed in Table 5.4.  
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Vertices: 

Facets: 

Surface:  

Length: 

Width: 

Height: 

Area: 

Volume: 

134 

276 

Regular 

75.00 mm 

20.00 mm 

30.00 mm 

7,616.44 mm2 

16,496.50 mm3 

Figure 5.3 The STL model of an LPBF part 

 
Table 5.3 The values of some variables for estimating attributes values 

Variable Layer
t  Recoating

T  
Hatchs  Scanning

v  Material  MaterialP  Material
p  Energy

p  

Value  0.03   20   0.07   1,250   4,430   99.5%  247.86   0.16  

Unit  mm  s  mm  mm/s  kg/m3  ——  £/kg  £/kWh 

 

Table 5.4 The estimated attribute values in the generated ABOs 

The generated ABO in unit vector 

Support  

volume  

(unit: mm3) 

Volumetric  

error  

(unit: mm3) 

Surface  

roughness  

(unit: µm) 

Build time 

(unit: h) 

Build cost 

(unit: £) 

O1 = (00.0000, −1.0000, 00.0000) 5,712.6000 69.4984 11.1420 7.9057 377.7143 

O2 = (00.0000, +1.0000, 00.0000) 2,722.6000 73.2059 11.1420 7.5893 359.8321 

O3 = (00.0000, 00.0000, −1.0000) 1,714.3000 66.5848 10.7888 5.6308 272.1722 

O4 = (00.0000, 00.0000, +1.0000) 1,897.5000 68.1690 10.7888 5.6502 273.2678 

O5 = (−0.6508, +0.7593, 00.0000) 2,256.8000 69.4838 10.6408 11.0232 510.5843 

O6 = (+0.6508, −0.7593, 00.0000) 2,095.1000 70.4126 10.6408 11.0061 509.6172 

O7 = (+0.8321, +0.5547, 00.0000) 1,362.8000 66.8424 10.3246 13.4461 616.2106 

O8 = (−0.8321, −0.5547, 00.0000) 953.4000 67.8157 10.3246 13.4028 613.7621 

 

Compared to support volume, volumetric error, surface roughness, build time and build cost, 

the strength, elongation, hardness, residual stress, flexural modulus and fatigue performance of 

an LPBF part in a given build orientation are more difficult to estimate. Although several exist-

ing OBO selection methods, such as the methods of Zhang et al. (2016), Brika et al. (2017), Ran-

sikarbum and Kim (2017), Cheng and To (2019) and Raju et al. (2019), have considered some of 

these attributes, the estimation models in them are either not for the LPBF process or incomplete. 

From other existing literature, e.g. the research papers of Bartolomeu et al. (2016), Miranda et al. 

(2016), Mukherjee et al. (2017), Williams et al. (2018), Li et al. (2018; 2019) and Ganeriwala et 

al. (2019), some related prediction models can be found. However, these prediction models can-

not be used in the proposed method since the build orientation of an LPBF part is not a variable 

in them. To this end, the estimation of the strength, elongation, hardness, residual stress, flexural 

modulus and fatigue performance of an LPBF part in a given build orientation is not considered 

in the proposed method for the time being.  
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5.2 Normalisation of attribute values 

For the transformation of the estimated attribute values into fuzzy numbers, a specific mem-

bership function is required since the values are generally in crisp numbers. Brauers et al. (2008) 

tested a set of ratio models and found that the best ratio model for converting crisp numbers into 

fuzzy numbers in MADM is the square root of the sum of squares of each option per attribute for 

such denominator. This model is used as the membership function to convert attribute values into 

fuzzy numbers to establish a fuzzy decision matrix in the proposed automatic selection method.  

In general, there are two different types of attributes in an MADM problem, i.e. benefit and 

cost attributes. Benefit attributes have positive effect on the decision making result, while cost 

attributes affect the result adversely (Greco et al., 2016). For example, tensile strength and sur-

face roughness respectively belong to benefit and cost attributes in selection of the OBO of an 

LPBF part, since they respectively have positive and negative influences on the selection result. 

To unify the effect of different types of attributes on the decision making result in fuzzy MADM 

problems, a complement rule is usually adopted to normalise the fuzzy numbers quantifying the 

values of cost attributes. In the proposed method, this rule is also used to normalise the estab-

lished fuzzy decision matrix.  

The basic components of an MADM problem include a set of options O = {O1, O2, …, Om}, 

a set of attributes A = {A1, A2, …, An}, a vector of weights of attributes w = [w1, w2, …, wn]
T and 

a decision matrix M = [vi,j]m×n (i = 1, 2, …, m; j = 1, 2, …, n), where O1, O2, …, Om are m differ-

ent options, A1, A2, …, An are n different attributes, vi,j is the value of the j-th attribute of the i-th 

option, and w1, w2, …, wn are respectively the weights of A1, A2, …, An such that 0 ≤ w1, w2, …, 

wn ≤ 1 and w1 + w2 +…+ wn = 1. For an OBO selection problem, the generated ABOs, the attrib-

utes of ABOs, the relative importance of attributes and the estimated attribute values can be re-

spectively regarded as the options, attributes, attribute weights and attribute values of an MADM 

problem. Based on this, the normalisation of attribute values is formally described as follows:  

• Fuzzify the estimated attribute values. The estimated attribute values are converted into fuzzy 

numbers using the following ratio model:  

2

, , ,

1

m

i j i j i j

i

r v v
=

=   (5.12) 

where ri,j is the ratio of vi,j. It is not difficult to prove that 0 ≤ ri,j ≤ 1. Therefore, the crisp val-

ue vi,j can be fuzzified as the fuzzy number <ri,j>. For example, the estimated attribute values 

in Table 5.4 are fuzzified as the fuzzy numbers listed in Table 5.5 using the ratio model.  
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Table 5.5 The fuzzified attribute values of the generated ABOs 

ABO A1  A2  A3  A4  A5  

O1  <0.7448> <0.3559> <0.3672> <0.2818> <0.2899> 

O2  <0.3550> <0.3749> <0.3672> <0.2706> <0.2762> 

O3  <0.2235> <0.3410> <0.3556> <0.2007> <0.2089> 

O4  <0.2474> <0.3491> <0.3556> <0.2014> <0.2097> 

O5  <0.2942> <0.3559> <0.3507> <0.3930> <0.3919> 

O6  <0.2731> <0.3606> <0.3507> <0.3924> <0.3911> 

O7  <0.1777> <0.3423> <0.3403> <0.4794> <0.4729> 

O8  <0.1243> <0.3473> <0.3403> <0.4778> <0.4710> 

Notes: A1: Support volume; A2: Volumetric error; A3: Surface roughness; A4: Build time; A5: Build cost 

 

• Established a fuzzy decision matrix. According to the transformation result, a fuzzy decision 

matrix is established as: 
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M  (5.13) 

For instance, a fuzzy decision matrix for the estimated attribute values in Table 5.4 is estab-

lished as M = [<ri,j>]8×5, where the values of <ri,j> (i = 1, 2, …, 8; j = 1, 2, …, 5) are listed in 

Table 5.5.  

• Normalise the fuzzy decision matrix. Using the complement rule, the fuzzy decision matrix 

M is normalised as:  

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

n

n

m m m n

  

  

  

 
 
 =
 
 
 

N  (5.14) 

where αi,j = <ri,j> if Aj is a benefit attribute and αi,j = <1 − ri,j> if Aj is a cost attribute. As an 

example, for each of the attributes support volume, volumetric error, surface roughness, build 

time and build cost, the objective is to minimise the value of the attribute. Thus, each of them 

is a cost attribute. The fuzzy decision matrix M = [<ri,j>]8×5 can be normalised as N = [αi,j]8×5, 

where the values of αi,j are listed in Table 5.6.  

5.3 Selection of the optimal orientation 

The attributes of ABOs may be independent, but more often they are interrelated. The rela-

tionships of attributes can be determined according to the estimation models used or the research 

findings in the existing literature. For example, it can be determined that build cost and support 



72 

  

 

volume are interrelated for LPBF AM, since from the estimation model of build cost in Equation 

(5.8), material cost is a part of build cost and the larger the support volume, the higher the mate-

rial cost. According to the used estimation models of the attributes support volume, volumetric 

error, surface roughness, build time and build cost, the relationships among them can be deter-

mined as listed in Table 5.7.  

 
Table 5.6 The normalised attribute values of the generated ABOs 

ABO A1  A2  A3  A4  A5  

O1  <0.2552> <0.6441> <0.6328> <0.7182> <0.7101> 

O2  <0.6450> <0.6251> <0.6328> <0.7294> <0.7238> 

O3  <0.7765> <0.6590> <0.6444> <0.7993> <0.7911> 

O4  <0.7526> <0.6509> <0.6444> <0.7986> <0.7903> 

O5  <0.7058> <0.6441> <0.6493> <0.6070> <0.6081> 

O6  <0.7269> <0.6394> <0.6493> <0.6076> <0.6089> 

O7  <0.8223> <0.6577> <0.6597> <0.5206> <0.5271> 

O8  <0.8757> <0.6527> <0.6597> <0.5222> <0.5290> 

Notes: A1: Support volume; A2: Volumetric error; A3: Surface roughness; A4: Build time; A5: Build cost 

 
Table 5.7 The relationships among the five considered attributes 

ABO Support volume Volumetric error Surface roughness Build time Build cost 

Support volume ———— Independent  Independent Interrelated Interrelated 

Volumetric error Independent ———— Independent Independent Independent 

Surface roughness Independent Independent ———— Independent Independent 

Build time Interrelated Independent Independent ———— Interrelated 

Build cost Interrelated Independent Independent Interrelated ———— 

 

In the proposed method, the weights of the considered attributes of ABOs are used to meas-

ure their relative importance for selection of the OBO. The values of attribute weights are either 

directly assigned by users or determined through pairwise comparison (Saaty, 1977) in the ana-

lytic hierarchy process.  

Once the relationships and weights of the attributes of ABOs are determined, the normalised 

attribute values of each ABO can be aggregated into a single fuzzy number using the constructed 

fuzzy AOs. The aggregation mainly includes calculation of the power weight of each normalised 

attribute value and calculation of the aggregated attribute value of each ABO. According to the 

aggregation result, the ABOs can be ranked and then the OBO can be selected.  

Formally, suppose O1, O2, …, Om are m generated ABOs of an LPBF part, A1, A2, …, An are 

n considered attributes of ABOs and the fuzzy numbers αi,j (i = 1, 2, …, m; j = 1, 2, …, n) in the 

matrix N in Equation (5.14) are the normalised attribute values of Oi with respect to Aj. Then the 

selection of the OBO for the part includes the following steps:  
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• Compute the values of the weights of Aj. If a user directly provides the values of the weights 

of attributes, this step will be skipped. If a user explicitly specifies the relative importance of 

each pair of attributes for selection of the OBO, the weight values will be calculated using a 

scaling approach based on pairwise comparison (Saaty, 1977) in the analytic hierarchy pro-

cess. This approach determines the weight vector w = [w1, w2, …, wn]
T from a positive recip-

rocal pairwise comparison matrix:  

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

      

n

n

n n n n

c c c

c c c

c c c

 
 
 =
 
 
 

C

A1 A2 An
...

A1

A2

An

..

.

 

(5.15) 

where ci,j is the scale value which stands for the degree of importance of the attribute Ai over 

the attribute Aj for selection of the OBO and are defined in Figure 5.4.  

 

Scale (ci,j) Meaning of the scale value for selection of the optimal orientation

1

3

5

7

9

2, 4, 6, 8

1/ci,j

The attribute Ai and the attribute Aj are equally important

The attribute Ai is slightly more important than the attribute Aj 

The attribute Ai is moderately more important than the attribute Aj

The attribute Ai is strongly more important than the attribute Aj

The attribute Ai is extremely more important than the attribute Aj

Intermediate values for compromise of two degrees of importance

Degree of importance of the attribute Aj over the attribute Ai
 

Figure 5.4 Definition of the elements of a pairwise comparison matrix 

 

According to the positive reciprocity, all ci,j must satisfy the conditions that ci,j > 0 and ci,j = 

1/cj,i. The matrix C is consistent if and only if ci,kck,j = ci,j for all i, j, k = 1, 2, …, n. In practi-

cal applications, the matrix is not necessarily consistent. But the inconsistencies must be con-

trolled within a certain range. To define the range of inconsistencies, three indicators named 

consistency index (CI), random index (RI) and consistency ratio (CR) were introduced. The 

value of CI can be calculated via the following equation:  

( )max ( 1)CI n n= − −  (5.16) 

where λmax is the maximum eigenvalue of the matrix C. RI is the average consistency rate of 
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500 randomly constructed n-order pairwise comparison matrices C1, C2, …, C500, whose val-

ue can be computed using the following equation: 

( )1 2 500 500RI CI CI CI= + + +  (5.17) 

where CI1, CI2, …, CI500 are the CI values of the matrices C1, C2, …, C500, respectively. The 

values of RI from n = 1 to n = 15 are listed in Table 5.8.  

 
Table 5.8 The random index values when the matrix order is within fifteen 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.54 1.56 1.57 1.59 

 

CR is defined as the ratio of CI and RI, whose value can be calculated through the following 

equation: 

CR CI RI=  (5.18) 

If the CR value of a pairwise comparison matrix C is negative, then C is not a positive recip-

rocal matrix and the elements of C need to be adjusted until all ci,j satisfy the conditions that 

ci,j > 0 and ci,j = 1/cj,i. If CR = 0, then C is a consistent matrix. If 0 < CR < 0.10, then the in-

consistencies in C are acceptable. When C is consistent or its inconsistencies are acceptable, 

the normalised principal eigenvector is used as the weight vector w. That is, the normalised 

w' (Cw' = λmaxw') is used as w. Otherwise, the inconsistent scale values in the matrix C need 

to be adjusted until 0 ≤ CR < 0.10. To sum up, the determination of attribute weights using 

the scaling approach based on pairwise comparison includes three steps. The first step is to 

construct a positive reciprocal pairwise comparison matrix C according to Equation (5.15). 

The second step is to calculate the CR value of the matrix C using Equation (5.18). In the last 

step, the attribute weights are determined as the elements of the normalised principal eigen-

vector of the matrix C if 0 ≤ CR < 0.10. Otherwise, the inconsistent scale values in the matrix 

C are adjusted and the second step is repeated until 0 ≤ CR < 0.10. For example, suppose the 

degrees of importance of the attributes support volume, volumetric error, surface roughness, 

build time and build cost for selection of the OBO are expressed in the following positive re-

ciprocal pairwise comparison matrix:  

1 3 3 1/2 1/2

1/3 1 1 1/4 1/4

            1/3 1 1 1/2 1/2

2 4 2 1 1/5

2 4 2 5 1

 
 
 
 =
 
 
  

C  
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The maximum eigenvalue of this matrix is λmax = 5.4899. According to Equation (5.18), the 

CR value of the matrix C is 0.1094. Since CR > 0.10, the inconsistencies in C are unaccepta-

ble. If the scale values c4,5 and c5,4 in C are respectively adjusted to 1/2 and 2, that is, the de-

grees of importance of the five attributes are expressed by the following matrix:  

1 3 3 1/2 1/2

1/3 1 1 1/4 1/4

            1/3 1 1 1/2 1/2

2 4 2 1 1/2

2 4 2 2 1

 
 
 
 =
 
 
  

C  

then λmax = 5.2097 and CR = 0.0468. Since 0 < CR < 0.10, the inconsistencies are acceptable. 

The principal eigenvector of C is w' = [0.4095, 0.1561, 0.2147, 0.5275, 0.6954]T. By normal-

ising w', the attribute weight vector is w = [0.2044, 0.0779, 0.1072, 0.2633, 0.3472]T.  

• Compute the values of the power weights of αi,j. Based on Equation (4.26), the power weight 

values of the normalised attribute values can be calculated using the following equation:  
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 (5.19) 

where w1, w2, …, wn are respectively the assigned or determined weights of the attributes A1, 

A2, …, An, d(αi,j, αi,j') is the distance between αi,j and αi,j', and d(αi,k, αi,k') is the distance be-

tween αi,k and αi,k'. In this step, the Euclidean distance measure in Equation (4.2) is used to 

calculate the values of d(αi,j, αi,j') and d(αi,k, αi,k'). For example, if the weights of support vol-

ume, volumetric error, surface roughness, build time and build cost are respectively 0.2044, 

0.0779, 0.1072, 0.2633 and 0.3472, then using Equation (5.19), the power weight values of 

αi,j (i = 1, 2, …, 8; j = 1, 2, …, 5) in Table 5.6 are calculated as follow:  

, 8 5

0.1622 0.2068 0.2062 0.2066 0.1995 0.1970

0.0832 0.0782 0.0766 0.0770 0.0789 0.0790

0.1141 0.1082 0.1045 0.1056 0.1084 0.1086

0.2754 0.2611 0.2635 0.2626 0.2644 0.2653

0.3651 0.3457 0.3492 0.3482 0.3488 0.35

          i j


  = 

T
0.1902 0.1835

0.0812 0.0818

0.1117 0.1124

0.2654 0.2677

01 0.351

 

5 0.

  

3546

 

 
 
 
 
 
 
  

 

• Compute the aggregated attribute values of Oi. The aggregated attribute values of ABOs are 

calculated using the following equations: 
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mm, ,1 ,2 ,( , ,..., )Q

i i i i nFAWPMM   =  (5.20) 

gmm, ,1 ,2 ,( , ,..., )Q

i i i i nFAWPGMM   =  (5.21) 

where FAWPMM is a specific FAWPMM operator, such as the operators in Equation (4.31), 

Equation (4.32), Equation (4.34) and Equation (4.36) and FAWPGMM is a specific FAWP-

GMM operator, such as the operators in Equation (4.44), Equation (4.45), Equation (4.47) 

and Equation (4.49), and Q = (q1, q2, …, qn) is used to capture the interrelationships among 

the considered attributes of ABOs in selection of the OBO: If the considered attributes are 

independent of each other, it can be assigned that q1 > 0 and q2 = q3 = … = qn = 0; If there are 

interrelationships between two considered attributes, it can be assigned that q1, q2 > 0 and q3 

= q4 = … = qn = 0; If there are interrelationships among k (k = 3, 4, …, n) considered attrib-

utes, it can be assigned that q1, q2, …, qk > 0 and qk+1 = qk+2 = … = qn = 0. For instance, be-

cause there are interrelationships among support volume, build time and build cost according 

to Table 5.7, Q = (q1, q2, q3, q4, q5) for aggregating αi,j (i = 1, 2, …, 8; j = 1, 2, …, 5) in Table 

5.6 can be assigned as Q = (1, 1, 1, 0, 0). The aggregated attribute values of the ABOs O1, 

O2, …, O8 are calculated using the specific FAWPMM operator in Equation (4.34) and the 

specific FAWPGMM operator in Equation (4.47) with δ = 3. The calculated results are listed 

in Table 5.9.  

 
Table 5.9 The aggregated attribute values of the generated ABOs 

O1 O2 O3 O4 O5 O6 O7 O8 

αmm,1 αmm,2 αmm,3 αmm,4 αmm,5 αmm,6 αmm,7 αmm,8 

<0.5528> <0.6303> <0.6804> <0.6750> <0.6038> <0.6076> <0.5981> <0.6110> 

αgmm,1 αgmm,2 αgmm,3 αgmm,4 αgmm,5 αgmm,6 αgmm,7 αgmm,8 

<0.6207> <0.6960> <0.7681> <0.7615> <0.6489> <0.6536> <0.6369> <0.6494> 

 

• Compute the combined score values of the aggregated attribute values of Oi. The score val-

ues of the aggregated attribute values of Equation (5.20) and Equation (5.21) are calculated 

using Equation (4.1). Let S(αmm,i) and S(αgmm,i) be the calculated score values. To balance the 

opposite aggregation expectations generated by the FAWPMM and FAWPGMM operators, 

an average combination of their score values 

( )mm, gmm,( ) ( ) ( ) 2i i iS S S  = +  (5.22) 

will be applied to rank the ABOs. As an example, the score values of the aggregated attrib-

utes in Table 5.9 are calculated by Equation (4.1). Then the combined score values are calcu-

lated using Equation (5.22). The calculated results are listed in Table 5.10.  



77 

  

 

Table 5.10 The calculated score values of the generated ABOs 

ABO O1 O2 O3 O4 O5 O6 O7 O8 

S(αmm,i) +0.1055 +0.2607 +0.3609 +0.3500 +0.2076 +0.2153 +0.1962 +0.2219 

S(αgmm,i) +0.2414 +0.3920 +0.5361 +0.5231 +0.2979 +0.3072 +0.2738 +0.2989 

S(αi) +0.1735 +0.3264 +0.4485 +0.4366 +0.2527 +0.2613 +0.2350 +0.2604 

 

• Generate a ranking of Oi. On the basis of the calculated combined score values, the generated 

ABOs are ranked according to the comparison rule in Definition 4.4. For example, according 

to the combined score values in Table 5.10, a ranking of the generated ABOs is obtained as 

follow:  

O3 ≻ O4 ≻ O2 ≻ O6 ≻ O8 ≻ O5 ≻ O7 ≻ O1 

• Select the OBO from Oi. Each of the ABOs ranked first can be selected as the OBO of the 

part. For instance, according to the ranking, O3 is the only ABO ranked first, it is selected as 

the OBO of the part in Figure 5.3. A brief summarisation of the build orientation determina-

tion results for the part is depicted in Figure 5.5.  

 

O3 = (00.0000, 00.0000, −1.0000) 

 

Used LBPF machine: 

Used build material: 

Specified layer thickness:  

Specified recoating time: 

Specified hatch spacing: 

Specified scanning velocity: 

Eosint M270 

Ti6Al4V 

0.03 mm 

20 s 

0.07 mm 

1,250 mm/s 

Estimated support volume: 

Estimated volumetric error: 

Estimated surface roughness: 

Estimated build time: 

Estimated build cost: 

1,714.30 mm3 

66.58 mm3 

10.79 µm 

5.63 h 

272.17 £ 

Figure 5.5 Build orientation determination results of an LPBF part 

 

5.4 Summary 

This chapter has presented an MADM-based method for automatic selection of the OBO for 

LPBF AM. This method includes estimation of attribute values, normalisation of attribute values 

and selection of the OBO. The estimation of attribute values takes: the STL model and ABOs of 

an LPBF part and the material, layer thickness, recoating time, hatch spacing and laser scanning 

velocity to build the part as input, and outputs the estimated values of the support volume, volu-

metric error, surface roughness, build time and build cost of the part in each ABO. In the normal-

isation of attribute values, a ratio model is used to fuzzify the estimated values and a fuzzy deci-

sion matrix is established and normalised. The selection of the OBO firstly determines the rela-
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tionships among support volume, volumetric error, surface roughness, build time and build cost. 

Then a scaling approach based on pairwise comparison is applied to calculate the weight values 

of these attributes. Based on the determined relationships and calculated weight values, the con-

structed FAWPMM and FAWPGMM operators in Chapter 4 are used to aggregate the normal-

ised attribute values of each ABO. All ABOs are ranked according to the aggregation results and 

the OBO of the part can be selected based on the ranking. The presented MADM method will be 

demonstrated in Chapter 6.  
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6 Implementation and demonstration 

In this chapter, a method for automatic determination of part build orientation for LPBF AM 

is first developed via combining and implementing the proposed automatic generation method in 

Chapter 3 and the proposed automatic selection method in Chapter 5. Then a set of build orienta-

tion determination cases are presented to illustrate the application of the developed method. Fi-

nally, the effectiveness, efficiency and advantages of the method are evaluated through theoreti-

cal analysis, experimental analysis and comparisons.  

The chapter is organised as follows. Section 6.1 describes the development of the automatic 

determination method. Illustrations of the application of the method are reported in Section 6.2. 

The evaluation of the method is documented in Section 6.3. Section 6.4 ends the chapter with a 

summary.  

6.1 Automatic determination method 

Based on the presented ABO generation method in Chapter 3 and the presented OBO selec-

tion method in Chapter 5, an automatic determination method of part build orientation for LPBF 

AM is developed. The availability of the source code of the developed automatic determination 

method is stated in Appendix E. The framework of the method is depicted in Figure 6.1.  

 

Generation of ABOs Selection of the OBO

Automatic generation 

method of ABOs

Automatic selection

method of the OBO

Facet clustering Fuzzy MADM

Input/Output

Module

Method

Principle

HDBSCAN* algorithm Constructed fuzzy AOsTechnique

Used build material

Specified layer thickness

Specified recoating time

Specified hatch spacing

Attribute importance degrees

STL model of 

an LPBF part

Estimated support volume

Estimated volumetric error

Estimated surface roughness

Estimated build time

Estimated build cost

Optimal orientation

to build the part

Specified scanning velocity

 

Figure 6.1 Framework of the automatic determination method 
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As can be seen from Figure 6.1, the developed method takes the STL model of an LPBF part, 

the material, layer thickness, recoating time, hatch spacing and scanning velocity for building the 

part and the degrees of importance of the attributes considered in build orientation determination 

as input, and outputs the optimal orientation to build the part and the estimated support volume, 

volumetric error, surface roughness, build time and build cost of the part in this orientation. It 

consists of an ABO generation module and an OBO selection module, which are developed via 

implementing the proposed novel facet clustering method for automatic generation of ABOs and 

the proposed novel MADM method for automatic selection of the OBO, respectively. Determi-

nation of the build orientation of an LPBF part using the developed method mainly includes the 

following steps:  

• Import the STL model of the part, the material, layer thickness, recoating time, hatch spacing 

and scanning velocity to build the part and the degrees of importance of the attributes support 

volume, volumetric error, surface roughness, build time and build cost.  

• Produce clusters of facets of the STL model. Using Rule 3.1, the accelerated HDBSCAN* 

algorithm and the k-cluster lifetime partition criterion, a certain number of meaningful clus-

ters of facets are produced.  

• Determine whether the produced clusters of facets need to be further refined and refine them 

when the answer is yes. If the number of the produced facet clusters for a regular (freeform) 

surface model exceeds 6 (12), these facet clusters will be refined using Rule 3.3. Otherwise, a 

further refinement is not required.  

• Generate the ABOs of the part. According to Rule 3.2, the ABOs of each (refined) facet clus-

ter are generated. The ABOs of the part are obtained by combining the generated ABOs of all 

facet clusters and removing the duplicated ABOs among them.  

• Estimate the values of the attributes in each generated ABO. Using the estimation models in 

Section 5.1, the values of the support volume, volumetric error, surface roughness, build time 

and build cost in each generated ABO are estimated.  

• Fuzzify the estimated attribute values. The estimated values of the support volume, volumet-

ric error, surface roughness, build time and build cost in each generated ABO are converted 

into fuzzy numbers using the ratio model in Equation (5.12).  

• Established a fuzzy decision matrix. According to the fuzzified result and Equation (5.13), a 

fuzzy decision matrix is established.  

• Normalise the fuzzy decision matrix. According to Equation (5.14), the established fuzzy de-

cision matrix is normalised.  
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• Calculate the weight values of attributes. If the input degrees of importance of support vol-

ume, volumetric error, surface roughness, build time and build cost are explicit weight val-

ues, this step is skipped. If the input degrees of importance of these attributes are in the form 

of the pairwise comparison matrix in Equation (5.15), the weight values of the considered at-

tributes will be calculated using the scaling approach described in Section 5.3.  

• Calculate the power weight value of each normalised attribute value. Using Equation (5.19), 

the value of the power weight of each normalised attribute value is calculated.  

• Calculate the aggregated attribute value of each generated ABO. Using Equation (5.20) and 

Equation (5.21), the aggregated value of the attributes of each generated ABO is calculated.  

• Calculate the combined score value of each generated ABO. Using Equation (4.1) and Equa-

tion (5.22), the combined score value of each generated ABO is calculated.  

• Obtain a ranking of all generated ABOs. According to the calculated combined score values 

and the comparison rule in Definition 4.4, a ranking of all generated ABOs is generated.  

• Select the OBO for the part. Each of the first ranked ABOs can be selected as the OBO for 

the part.  

6.2 Case studies 

Twelve parts are used as cases to illustrate the application of the developed automatic deter-

mination method. The STL models of these parts are shown in Figure 6.2. The basic information 

of the parts is listed in Table 6.1. Among all STL models in Figure 6.2, the STL model of Part 5 

was provided by Zhang et al. (2016). The STL models of the remaining parts were downloaded 

from Thingiverse, a free and open-source online community for sharing 3D models. The availa-

bility of these STL models is stated in Appendix E. Based on the surface types, the twelve STL 

models can be divided into two groups. The first group includes the STL models from Part 1 to 

Part 8, which are all regular surface models. The STL models from Part 9 to Part 12 constitute 

the second group, as all of them belong to freeform surface models.  

Assume the twelve parts will be built using Ti6Al4V and the LPBF machine EOSINT M270 

with the layer thickness, recoating time, hatch spacing and laser scanning velocity listed in Table 

5.3. The material density, material porosity, material price and energy price have also been pro-

vided in Table 5.3. Before building the parts, the four preparation steps, build orientation deter-

mination, support generation, 3D model slicing and path planning, are needed to be completed in 

sequence. The present section focuses on the completion of build orientation determination using 

the developed automatic determination method. It is further assumed that support volume, volu-
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metric error, surface roughness, build time and build cost are the attributes considered in the de-

termination of the build orientation of each part and the degrees of importance of these attributes 

are specified in the following positive reciprocal pairwise comparison matrix:  

1 2 2 1 1

1/2 1 2 1/2 1/2

            1/2 1/2 1 1/3 1/3

1 2 3 1 1

1 2 3 1 1

 
 
 
 =
 
 
  

C  

 

Part 1 Part 2 Part 3

Part 5 Part 6 Part 7

Part 4

Part 8

Part 9 Part 10 Part 11 Part 12
 

Figure 6.2 The STL models of twelve LPBF parts 

 

Based on the conditions above, the build orientation for each of the twelve parts can be au-

tomatically determined using the developed method. For example, the build orientation of Part 1 

is determined via the following steps:  
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• Import the STL model of Part 1 (Part 1.stl) and the material (Ti6Al4V), layer thickness (0.03 

mm), recoating time (20 s), hatch spacing (0.07 mm) and scanning velocity (1,250 mm/s) to 

build Part 1 into the developed method.  

 
Table 6.1 The basic information of the twelve LPBF parts 

Part Vertices  Facets Surface 
Length  

(unit: mm) 

Width  

(unit: mm) 

Height  

(unit: mm) 

Area 

(unit: mm2) 

Volume 

(unit: mm3) 

Part 1 140 284 Regular 38.31 10.00 25.40 2,629.50 2,864.45 

Part 2 410 828 Regular 27.00 16.00 23.00 2,535.94 4,593.24 

Part 3 798 1,592 Regular 120.00 80.00 167.89 60,941.50 404,405.00 

Part 4 1,005 2,022 Regular 138.00 82.00 70.00 46,114.40 239,056.00 

Part 5 1,181 2,426 Regular 74.09 33.75 34.34 9,137.33 9,603.15 

Part 6 1,876 3,776 Regular 125.00 75.00 80.00 46,576.40 228,889.00 

Part 7 3,160 6,324 Regular 160.00 122.00 162.00 96,711.40 639,850.00 

Part 8 3,167 6,598 Regular 110.00 78.23 90.00 30,577.60 67,915.80 

Part 9 6,610 13,240 Freeform 35.89 26.48 22.04 2,408.50 7,354.99 

Part 10 33,863 67,722 Freeform 119.81 88.13 94.90 36,451.00 535,216.00 

Part 11 44,368 88,724 Freeform 86.06 56.88 68.00 17,165.80 88,637.20 

Part 12 54,314 108,888 Freeform 132.16 58.46 125.00 23,930.60 120,669.00 

 

• Produce clusters of facets of the STL model. Using Rule 3.1, the accelerated HDBSCAN* 

algorithm and the k-cluster lifetime partition criterion, thirty-seven clusters of facets are pro-

duced for Part 1. The produced facet clusters are depicted in Figure 6.3(a).  

• Determine whether the produced clusters of facets need to be further refined and refine them 

when the answer is yes. Since the STL model of Part 1 is a regular surface model consisting 

of less than 120,000 facets and the number of the produced facet clusters exceeds 6, the pro-

duced facet clusters are refined using Rule 3.3. The refined facet clusters are depicted in Fig-

ure 6.3(b) (Please note that the remaining facets are displayed in white). 

 

(a) Produced facet clusters (b) Refined facet clusters

 

Figure 6.3 The produced and refined facet clusters for Part 1 

 

• Generate the ABOs of the part. According to Rule 3.2, the ABOs of each refined facet cluster 

are generated. Through combining the generated ABOs of all facet clusters and removing the 

duplicated ABOs among them, the ABOs of Part 1 are obtained as follows: 
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O1 = (00.0000, 00.0000, −1.0000) 

O2 = (00.0000, 00.0000, +1.0000) 

O3 = (−0.3420, −0.9397, 00.0000) 

O4 = (+0.3420, +0.9397, 00.0000) 

O5 = (00.0000, +1.0000, 00.0000) 

O6 = (00.0000, −1.0000, 00.0000) 

The schematic diagram of these ABOs is shown in Figure 6.4. 

 

O1 O2 O3 O4 O5 O6
 

Figure 6.4 Schematic diagram of the generated ABOs of Part 1 

 

• Estimate the values of the attributes in each generated ABO. Using the estimation models in 

Section 5.1, the values of the support volume, volumetric error, surface roughness, build time 

and build cost in each generated ABO of Part 1 are estimated. The estimated results are listed 

in Table 6.2.  

 
Table 6.2 The estimated attribute values in the generated ABOs of Part 1 

The generated ABO in unit vector 

Support  

volume  

(unit: mm3) 

Volumetric  

error  

(unit: mm3) 

Surface  

roughness  

(unit: µm) 

Build time 

(unit: h) 

Build cost 

(unit: £) 

O1 = (00.0000, 00.0000, −1.0000) 218.6600 22.1375 10.4642 2.1781 100.0687 

O2 = (00.0000, 00.0000, +1.0000) 145.9500 22.1375 10.4642 2.1704 99.6339 

O3 = (−0.3420, −0.9397, 00.0000) 1,880.5100 24.8010 10.9248 5.6166 253.8252 

O4 = (+0.3420, +0.9397, 00.0000) 2,610.2700 23.8270 10.9248 5.6938 258.1897 

O5 = (00.0000, +1.0000, 00.0000) 2,408.1200 25.0293 10.9584 5.0262 228.4960 

O6 = (00.0000, −1.0000, 00.0000) 1,731.7600 25.2946 10.9584 4.9547 224.4509 

 

• Fuzzify the estimated attribute values. The estimated values of the support volume, volumet-

ric error, surface roughness, build time and build cost in each generated ABO of Part 1 are 

converted into fuzzy numbers using the ratio model in Equation (5.12). The converted results 

are listed in Table 6.3.  

• Established a fuzzy decision matrix. According to the fuzzified result in Table 6.3 and Equa-

tion (5.13), a fuzzy decision matrix is established as M = [<ri,j>]6×5, where the values of <ri,j> 

(i = 1, 2, …, 6; j = 1, 2, …, 5) are listed in Table 6.3.  
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Table 6.3 The fuzzified attribute values of the generated ABOs of Part 1 

ABO A1  A2  A3  A4  A5  

O1  <0.0499> <0.3780> <0.3961> <0.1962> <0.1987> 

O2  <0.0333> <0.3780> <0.3961> <0.1955> <0.1978> 

O3  <0.4290> <0.4235> <0.4135> <0.5060> <0.5040> 

O4  <0.5954> <0.4069> <0.4135> <0.5129> <0.5127> 

O5  <0.5493> <0.4274> <0.4148> <0.4528> <0.4537> 

O6  <0.3950> <0.4319> <0.4148> <0.4463> <0.4457> 

Notes: A1: Support volume; A2: Volumetric error; A3: Surface roughness; A4: Build time; A5: Build cost 

 

• Normalise the fuzzy decision matrix. According to Equation (5.14), the established fuzzy de-

cision matrix M is normalised as N = [αi,j]6×5, where the values of αi,j (i = 1, 2, …, 6; j = 1, 2, 

…, 5) are listed in Table 6.4.  

 

Table 6.4 The normalised attribute values of the generated ABOs of Part 1 

ABO A1  A2  A3  A4  A5  

O1  <0.9501> <0.6220> <0.6039> <0.8038> <0.8013> 

O2  <0.9667> <0.6220> <0.6039> <0.8045> <0.8022> 

O3  <0.5710> <0.5765> <0.5865> <0.4940> <0.4960> 

O4  <0.4046> <0.5931> <0.5865> <0.4871> <0.4873> 

O5  <0.4507> <0.5726> <0.5852> <0.5472> <0.5463> 

O6  <0.6050> <0.5681> <0.5852> <0.5537> <0.5543> 

Notes: A1: Support volume; A2: Volumetric error; A3: Surface roughness; A4: Build time; A5: Build cost 

 

• Calculate the weight values of attributes. The weight values of the considered attributes are 

calculated by the scaling approach in Section 5.3: The maximum eigenvalue of the pairwise 

comparison matrix C is λmax = 5.0394. According to Equation (5.18), the CR value of C is CR 

= 0.0088. Since 0 < CR < 0.10, the inconsistencies in C are acceptable. The principal eigen-

vector of C is w' = [0.5148, 0.2954, 0.1915, 0.5528, 0.5528]T. By normalising w', the attrib-

ute weight vector is w = [0.2443, 0.1402, 0.0909, 0.2623, 0.2623]T.  

• Calculate the power weight value of each normalised attribute value. Using Equation (5.19), 

the power weight values of the normalised attribute values of the generated ABOs of Part 1 

in Table 6.4 are calculated as follow:  

, 6 5

0.2281 0.2259 0.2466 0.2358 0.2336 0.2419

0.1394 0.1398 0.1414 0.1392 0.1418 0.1410

0.0892 0.0895 0.0911 0.0906 0.0912 0.0911

0.2716 0.2724 0.2603 0.2672 0.2667 0.2630

0.2717 0.2724 0.2606 0.2672 0.2667 0.26

          i j


  = 

T

30
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• Calculate the aggregated attribute value of each generated ABO. Using Equation (5.20) and 

Equation (5.21), the aggregated attribute value of each generated ABO of Part 1 is calculated. 

The calculated results are listed in Table 6.5.  

 
Table 6.5 The aggregated attribute values of the generated ABOs of Part 1 

O1 O2 O3 O4 O5 O6 

αmm,1 αmm,2 αmm,3 αmm,4 αmm,5 αmm,6 

<0.7350> <0.7389> <0.5272> <0.4881> <0.5231> <0.5597> 

αgmm,1 αgmm,2 αgmm,3 αgmm,4 αgmm,5 αgmm,6 

<0.7980> <0.8028> <0.5421> <0.5031> <0.5387> <0.5768> 

 

• Calculate the combined score value of each generated ABO. Using Equation (4.1) and Equa-

tion (5.22), the combined score value of each generated ABO of Part 1 is calculated. The cal-

culated results are listed in Table 6.6. 

 
Table 6.6 The calculated score values of the generated ABOs of Part 1 

ABO O1 O2 O3 O4 O5 O6 

S(αmm,i) +0.4701 +0.4778 +0.0543 −0.0238 +0.0462 +0.1193 

S(αgmm,i) +0.5959 +0.6056 +0.0841 +0.0063 +0.0774 +0.1536 

S(αi) +0.5330 +0.5417 +0.0692 −0.0088 +0.0618 +0.1364 

 

• Obtain a ranking of all generated ABOs. According to the comparison rule in Definition 4.4, 

a ranking of all generated ABOs of Part 1 is obtained as follow: 

O2 ≻ O1 ≻ O6 ≻ O3 ≻ O5 ≻ O4 

• Select the OBO for the part. The ABOs ranked first are selected as the OBO for the part. As 

O2 is the only ABO ranked first, it is selected as the OBO of Part 1. A brief summarisation of 

the build orientation determination results for Part 1 is depicted in Figure 6.5.  

 

O2 = (00.0000, 00.0000, +1.0000) 

 

Used LBPF machine: 

Used build material: 

Specified layer thickness:  

Specified recoating time: 

Specified hatch spacing: 

Specified scanning velocity: 

Eosint M270 

Ti6Al4V 

0.03 mm 

20 s 

0.07 mm 

1,250 mm/s 

Estimated support volume: 

Estimated volumetric error: 

Estimated surface roughness: 

Estimated build time: 

Estimated build cost: 

145.95 mm3 

22.14 mm3 

10.46 µm 

2.17 h 

99.63 £ 

Figure 6.5 Build orientation determination results of Part 1 
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For each of the remaining eleven parts, the build orientation can be determined via the same 

steps. The results of facet clustering, ABO generation and OBO selection for these parts are di-

rectly provided in Figure 6.6 to Figure 6.27. It should be mentioned that the twenty-two figures 

does not include the results of facet clustering and ABO generation for Part 9, as they have been 

provided in Figure 3.7, Figure 3.11 and Figure 3.12. For the acquisition of the intermediate data 

in the process of build orientation determination of the eleven parts, please refer to Appendix E.  

 

Produced clusters of Part 2 Refined clusters of Part 2 Produced clusters of Part 3 Refined clusters of Part 3

Produced clusters of Part 4 Refined clusters of Part 4 Produced clusters of Part 5 Refined clusters of Part 5

Produced clusters of Part 6 Refined clusters of Part 6 Produced clusters of Part 7 Refined clusters of Part 7

Produced clusters of Part 8 Refined clusters of Part 8 Produced clusters of Part 10 Refined clusters of Part 10

Produced clusters of Part 11 Refined clusters of Part 11 Produced clusters of Part 12 Refined clusters of Part 12

 

Figure 6.6 The produced and refined facet clusters of the remaining parts 
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O1 O2 O3

O4 O5 O6
 

Figure 6.7 Schematic diagram of the generated ABOs of Part 2 

 

O2 ≻ O4 ≻ O1 ≻ O3 ≻ O6 ≻ O5 

 

O2 = (+1.0000, 00.0000, 00.0000) 

 

Used LBPF machine: 

Used build material: 

Specified layer thickness:  

Specified recoating time: 

Specified hatch spacing: 

Specified scanning velocity: 

Eosint M270 

Ti6Al4V 

0.03 mm 

20 s 

0.07 mm 

1,250 mm/s 

Estimated support volume: 

Estimated volumetric error: 

Estimated surface roughness: 

Estimated build time: 

Estimated build cost: 

167.41 mm3 

21.41 mm3 

10.56 µm 

3.47 h 

159.08 £ 

Figure 6.8 Build orientation determination results of Part 2 

 

O1 O2 O3 O4 O5 O6
 

Figure 6.9 Schematic diagram of the generated ABOs of Part 3 

 

O2 ≻ O4 ≻ O3 ≻ O5 ≻ O6 ≻ O1 

 

O2 = (00.0000, 00.0000, +1.0000) 

 

Used LBPF machine: 

Used build material: 

Specified layer thickness:  

Specified recoating time: 

Specified hatch spacing: 

Specified scanning velocity: 

Eosint M270 

Ti6Al4V 

0.03 mm 

20 s 

0.07 mm 

1,250 mm/s 

Estimated support volume: 

Estimated volumetric error: 

Estimated surface roughness: 

Estimated build time: 

Estimated build cost: 

13,377.00 mm3 

551.77 mm3 

10.80 µm 

75.30 h 

3,869.09 £ 

Figure 6.10 Build orientation determination results of Part 3 
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O1 O2 O3 O4 O5 O6
 

Figure 6.11 Schematic diagram of the generated ABOs of Part 4 

 

O6 ≻ O5 ≻ O3 ≻ O2 ≻ O1 ≻ O4 

 

O6 = (00.0000, +1.0000, 00.0000) 

 

Used LBPF machine: 

Used build material: 

Specified layer thickness:  

Specified recoating time: 

Specified hatch spacing: 

Specified scanning velocity: 

Eosint M270 

Ti6Al4V 

0.03 mm 

20 s 

0.07 mm 

1,250 mm/s 

Estimated support volume: 

Estimated volumetric error: 

Estimated surface roughness: 

Estimated build time: 

Estimated build cost: 

6,114.00 mm3 

360.61 mm3 

10.13 µm 

41.13 h 

2,135.65 £ 

Figure 6.12 Build orientation determination results of Part 4 

 

O1 O2 O3

O5 O6 O7

O4

O8
 

Figure 6.13 Schematic diagram of the generated ABOs of Part 5 

 

O1 ≻ O2 ≻ O5 ≻ O7 ≻ O3 ≻ O8 ≻ O6 ≻ O4 

 

O1 = (00.0000, +1.0000, 00.0000) 

 

Used LBPF machine: 

Used build material: 

Specified layer thickness:  

Specified recoating time: 

Specified hatch spacing: 

Specified scanning velocity: 

Eosint M270 

Ti6Al4V 

0.03 mm 

20 s 

0.07 mm 

1,250 mm/s 

Estimated support volume: 

Estimated volumetric error: 

Estimated surface roughness: 

Estimated build time: 

Estimated build cost: 

4,587.15 mm3 

78.85 mm3 

10.61 µm 

7.75 h 

360.37 £ 

Figure 6.14 Build orientation determination results of Part 5 
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O1 O2 O3 O5 O6 O7O4 O8
 

Figure 6.15 Schematic diagram of the generated ABOs of Part 6 

 

O1 ≻ O2 ≻ O7 ≻ O8 ≻ O4 ≻ O5 ≻ O6 ≻ O3 

 

O1 = (00.0000, 00.0000, −1.0000) 

 

Used LBPF machine: 

Used build material: 

Specified layer thickness:  

Specified recoating time: 

Specified hatch spacing: 

Specified scanning velocity: 

Eosint M270 

Ti6Al4V 

0.03 mm 

20 s 

0.07 mm 

1,250 mm/s 

Estimated support volume: 

Estimated volumetric error: 

Estimated surface roughness: 

Estimated build time: 

Estimated build cost: 

13,022.00 mm3 

375.12 mm3 

10.29 µm 

40.41 h 

2,099.83 £ 

Figure 6.16 Build orientation determination results of Part 6 

 

O1 O2 O3

O5 O6 O7

O4

O8
 

Figure 6.17 Schematic diagram of the generated ABOs of Part 7 

 

O2 ≻ O1 ≻ O4 ≻ O5 ≻ O8 ≻ O3 ≻ O6 ≻ O7 

 

O2 = (00.0000, 00.0000, −1.0000) 

 

Used LBPF machine: 

Used build material: 

Specified layer thickness:  

Specified recoating time: 

Specified hatch spacing: 

Specified scanning velocity: 

Eosint M270 

Ti6Al4V 

0.03 mm 

20 s 

0.07 mm 

1,250 mm/s 

Estimated support volume: 

Estimated volumetric error: 

Estimated surface roughness: 

Estimated build time: 

Estimated build cost: 

39,032.00 mm3 

840.03 mm3 

10.66 µm 

101.84 h 

5,382.57 £ 

Figure 6.18 Build orientation determination results of Part 7 
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O1 O2 O3 O4 O5 O6
 

Figure 6.19 Schematic diagram of the generated ABOs of Part 8 

 

O4 ≻ O3 ≻ O2 ≻ O1 ≻ O6 ≻ O5 

 

O4 = (00.0000, 00.0000, −1.0000) 

 

Used LBPF machine: 

Used build material: 

Specified layer thickness:  

Specified recoating time: 

Specified hatch spacing: 

Specified scanning velocity: 

Eosint M270 

Ti6Al4V 

0.03 mm 

20 s 

0.07 mm 

1,250 mm/s 

Estimated support volume: 

Estimated volumetric error: 

Estimated surface roughness: 

Estimated build time: 

Estimated build cost: 

3,060.60 mm3 

273.39 mm3 

10.46 µm 

24.18 h 

1,159.14 £ 

Figure 6.20 Build orientation determination results of Part 8 

 

O4 ≻ O16 ≻ O21 ≻ O15 ≻ O18 ≻ O7 ≻ 
O8 ≻ O12 ≻ O11 ≻ O3 ≻ O17 ≻ O6 ≻ 
O22 ≻ O14 ≻ O2 ≻ O20 ≻ O5 ≻ O10 ≻ 
O9 ≻ O19 ≻ O1 ≻ O13 ≻ O23 ≻ O24  

 

O4 = (−0.0007, +0.0001, +0.9999) 

 

Used LBPF machine: 

Used build material: 

Specified layer thickness:  

Specified recoating time: 

Specified hatch spacing: 

Specified scanning velocity: 

Eosint M270 

Ti6Al4V 

0.03 mm 

20 s 

0.07 mm 

1,250 mm/s 

Estimated support volume: 

Estimated volumetric error: 

Estimated surface roughness: 

Estimated build time: 

Estimated build cost: 

1,183.37 mm3 

22.87 mm3 

10.70 µm 

4.98 h 

230.95 £ 

Figure 6.21 Build orientation determination results of Part 9 

 

It is worth noting that the determined OBO of each of the twelve parts above is the result un-

der the attribute weight vector w = [0.2443, 0.1402, 0.0909, 0.2623, 0.2623]T. When the weight 

values of attributes change, the determined OBO could change accordingly. To illustrate the in-

fluence of weight values of attributes on the determined OBO, a sensitivity analysis experiment 

was carried out. In this experiment, the attribute weight vector w for each of the twelve parts was 

replaced by the following attribute weight vectors in turn:  

w1 = [0.8000, 0.0500, 0.0500, 0.0500, 0.0500]T 

w2 = [0.0500, 0.8000, 0.0500, 0.0500, 0.0500]T 

w3 = [0.0500, 0.0500, 0.8000, 0.0500, 0.0500]T 
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w4 = [0.0500, 0.0500, 0.0500, 0.8000, 0.0500]T 

w5 = [0.0500, 0.0500, 0.0500, 0.0500, 0.8000]T 

w6 = [0.3000, 0.0500, 0.0500, 0.3000, 0.3000]T 

w7 = [0.2375, 0.2375, 0.0500, 0.2375, 0.2375]T 

w8 = [0.2375, 0.0500, 0.2375, 0.2375, 0.2375]T 

w9 = [0.0500, 0.4250, 0.4250, 0.0500, 0.0500]T 

w10 = [0.2000, 0.2000, 0.2000, 0.2000, 0.2000]T 

where: Each of the five attributes (i.e. support volume, volumetric error, surface roughness, build 

time and build cost) is the most important attribute in turn from w1 to w5; From w6 to w9, the five 

attributes are divided into three groups of {support volume, build time, build cost}, {volumetric 

error} and {surface roughness} according to the determined relationships among them (see Table 

5.7); In w6, w2, and w3, the attributes (attribute) in each group are (is) the most important attrib-

utes (attribute) in turn. The attributes in any two groups are the most important attributes from w7 

to w9; In w10, the five attributes are equally important. The results of the experiment are the de-

termined OBOs of the twelve parts under each attribute weight vector, which are listed in Table 

6.7. It can be seen from the table that the determined OBOs of most parts (except Part 3 and Part 

11) remain unchanged under all attribute weight vectors. This indicates that the attribute weights 

lose their due role for these parts.  

 
Table 6.7 The determined OBOs of the twelve LPBF parts under each weight vector 

Part w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 

Part 1 O2 O2 O2 O2 O2 O2 O2 O2 O2 O2 

Part 2 O2 O2 O2 O2 O2 O2 O2 O2 O2 O2 

Part 3 O2 O2 O4 O2 O2 O2 O4 O2 O4 O4 

Part 4 O6 O6 O6 O6 O6 O6 O6 O6 O6 O6 

Part 5 O1 O1 O1 O1 O1 O1 O1 O1 O1 O1 

Part 6 O1 O1 O1 O1 O1 O1 O1 O1 O1 O1 

Part 7 O2 O2 O2 O2 O2 O2 O2 O2 O2 O2 

Part 8 O4 O4 O4 O4 O4 O4 O4 O4 O4 O4 

Part 9 O4 O4 O4 O4 O4 O4 O4 O4 O4 O4 

Part 10 O9 O9 O9 O9 O9 O9 O9 O9 O9 O9 

Part 11 O21 O17 O17 O17 O17 O17 O17 O17 O17 O17 

Part 12 O1 O1 O1 O1 O1 O1 O1 O1 O1 O1 

 

The reasons for such abnormal results can be explained from two aspects. On the one hand, 

the estimated support volume, build time and build cost are positively correlated on the basis of 

their estimation models. They tend to achieve the minimum in the same ABO. For example, the 

estimated support volume, build time and build cost in the six generated ABOs of Part 1 obtain 
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the minimum in O2 (see Table 6.2). In this case, the changes in the weight values of the three at-

tributes will not have any influence on the determined OBO. In other words, the three attributes 

could be reduced to one attribute, i.e. build cost. On the other hand, the influence of build orien-

tation on the volumetric error and surface roughness of an LPBF part will be very slight or even 

negligible if the part is built by thin layers (Calignano, 2018). For instance, the difference among 

the estimated volumetric error or surface roughness in the six generated ABOs of Part 1 is quite 

small (see Table 6.2) because the layer thickness is only 0.03 mm. In this situation, the effect of 

volumetric error and surface roughness on the determined OBO is insignificant and what affect 

the determined OBO significantly are the remaining three attributes (i.e. support volume, build 

time and build cost).  

The abnormal results of the sensitivity analysis experiment above reflect an obvious limita-

tion of the developed method: The attributes considered in the method are not conflicting and are 

not diverse enough, so that the attribute weights lose their due role. To this end, other important 

conflicting attributes should be considered to improve the method once suitable estimation mod-

els are available in the future.  

 

O1 O2 O3

O7 O8 O9

O4

O10

O13 O14 O15

O19 O20 O21

O16

O22

O5 O6

O11 O12

O17 O18

O23 O24
 

Figure 6.22 Schematic diagram of the generated ABOs of Part 10 
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O9 ≻ O3 ≻ O15 ≻ O13 ≻ O7 ≻ O1 ≻ 
O2 ≻ O22 ≻ O18 ≻ O10 ≻ O8 ≻ O23 ≻ 
O5 ≻ O11 ≻ O16 ≻ O17 ≻ O21 ≻ O12 ≻ 
O20 ≻ O6 ≻ O19 ≻ O24 ≻ O14 ≻ O4  

 

O9 = (−0.9746, +0.1419, +0.1731) 

 

Used LBPF machine: 

Used build material: 

Specified layer thickness:  

Specified recoating time: 

Specified hatch spacing: 

Specified scanning velocity: 

Eosint M270 

Ti6Al4V 

0.03 mm 

20 s 

0.07 mm 

1,250 mm/s 

Estimated support volume: 

Estimated volumetric error: 

Estimated surface roughness: 

Estimated build time: 

Estimated build cost: 

15,849.00 mm3 

347.59 mm3 

10.82 µm 

79.26 h 

4,219.07 £ 

Figure 6.23 Build orientation determination results of Part 10 

 

O1 O2 O3

O7 O8 O9

O4

O10

O13 O14 O15

O19 O20 O21

O16

O22

O5 O6

O11 O12

O17 O18

O23 O24
 

Figure 6.24 Schematic diagram of the generated ABOs of Part 11 

 

6.3 Performance evaluation 

In general, the main indicators used to evaluate the performance of a build orientation deter-

mination method include effectiveness, efficiency and advantages. In this section, the effective-

ness and efficiency of the developed method are respectively assessed by theoretical analysis and 

experimental analysis. Then the advantages of the method over the existing methods are demon-

strated via qualitative and quantitative comparisons.  
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O17 ≻ O5 ≻ O23 ≻ O6 ≻ O24 ≻ O21 ≻ 
O18 ≻ O8 ≻ O9 ≻ O22 ≻ O14 ≻ O7 ≻ 
O10 ≻ O12 ≻ O11 ≻ O16 ≻ O19 ≻ O15 ≻ 
O13 ≻ O20 ≻ O4 ≻ O3 ≻ O2 ≻ O1  

 

O17 = (+0.0884, +0.1803, +0.9796) 

 

Used LBPF machine: 

Used build material: 

Specified layer thickness:  

Specified recoating time: 

Specified hatch spacing: 

Specified scanning velocity: 

Eosint M270 

Ti6Al4V 

0.03 mm 

20 s 

0.07 mm 

1,250 mm/s 

Estimated support volume: 

Estimated volumetric error: 

Estimated surface roughness: 

Estimated build time: 

Estimated build cost: 

10,913.80 mm3 

164.34 mm3 

10.70 µm 

23.22 h 

1,154.69 £ 

Figure 6.25 Build orientation determination results of Part 11 

 

O1 O2 O3

O7 O8 O9

O4

O10

O13 O14 O15

O19 O20 O21

O16

O22

O5 O6

O11 O12

O17 O18

O23 O24
 

Figure 6.26 Schematic diagram of the generated ABOs of Part 12 

 

6.3.1 Evaluation of the effectiveness 

The main components of the developed automatic determination method in this chapter are 

the proposed facet clustering method in Chapter 3 and the proposed MADM method in Chapter 

5. An evaluation of the effectiveness of the developed method is carried out via respectively as-

sessing the effectiveness of the two proposed methods.  
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O1 ≻ O2 ≻ O8 ≻ O10 ≻ O7 ≻ O16 ≻ 
O9 ≻ O6 ≻ O15 ≻ O22 ≻ O12 ≻ O24 ≻ 
O21 ≻ O11 ≻ O23 ≻ O14 ≻ O18 ≻ O20 ≻ 
O4 ≻ O5 ≻ O17 ≻ O13 ≻ O3 ≻ O19  

 

O1 = (+0.9802, −0.1916, −0.0503) 

 

Used LBPF machine: 

Used build material: 

Specified layer thickness:  

Specified recoating time: 

Specified hatch spacing: 

Specified scanning velocity: 

Eosint M270 

Ti6Al4V 

0.03 mm 

20 s 

0.07 mm 

1,250 mm/s 

Estimated support volume: 

Estimated volumetric error: 

Estimated surface roughness: 

Estimated build time: 

Estimated build cost: 

24,248.00 mm3 

228.90 mm3 

10.91 µm 

26.92 h 

1,377.25 £ 

Figure 6.27 Build orientation determination results of Part 12 

 

In general, whether a build orientation determination method is effective depends on whether 

the build orientation determined by it can meet the pre-set objective. The objective of the devel-

oped method is to concurrently optimise the total support volume, total volumetric error, average 

surface roughness, total build time and total build cost. It is found that the proposed facet cluster-

ing method can theoretically benefit the simultaneous optimisation of the total support volume, 

total build time and total build cost of an LPBF part. The reason is explained below.  

The facet clustering rule (i.e. Rule 3.1), cluster refinement rule (i.e. Rule 3.3) and ABO gen-

eration rule (i.e. Rule 3.2) used in the proposed facet clustering method tend to generate the AB-

Os that allow as many facets as possible (or approximately) on the build platform. These facets 

will usually not become overhangs. Even if they become overhangs, the facets will require very 

few supports, because the distance between them and the build platform is very short. Based on 

this, the rules used are helpful for minimising the total support volume of an LPBF part. They are 

thus beneficial for optimisation of the total build time and total build cost of the part according to 

the estimation models in Equation (5.6) and Equation (5.8).  

The proposed MADM method applies fuzzy AOs to determine a build orientation which can 

simultaneously optimise the total support volume, total volumetric error, average surface rough-

ness, total build time and total build cost from the ABOs generated by the proposed facet cluster-

ing method. From this principle, it is not difficult to conclude that the proposed MADM method 

is theoretically effective.  

6.3.2 Evaluation of the efficiency 

In theory, the time complexity of the proposed facet clustering method is O(nlogn) (where n 

is the number of facets), which is lower than the time complexity of the facet clustering method 

of Zhang et al. (2019), i.e. O(n2).  
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The used estimation models of volumetric error, surface roughness, build time and build cost 

on m ABOs and n facets have O(mn) run-time. The constructed fuzzy AOs on m ABOs and n' 

attributes have O(mn'!n') run-time. The algorithm for ranking m ABOs has O(m2) run-time. Con-

sequently, the time complexity of the proposed MADM method is O(mn+mn'!n'+m2). This com-

plexity looks a bit scary, but actually it is not high for the method, since the value of n' is 5 and 

the maximum value of m is 24 in the method.  

From the theoretical analysis above, it is difficult to imagine how efficient the proposed facet 

clustering method and MADM method are. To this end, four efficiency evaluation experiments 

were carried out on a machine with Intel(R) Core(TM) i9-7900X CPU, 8 GB RAM and NVIDIA 

GeForce GTX 1080 Ti GPU.  

Experiment 6.1. The purpose of this experiment is to compare the facet clustering time tak-

en by the facet clustering method of Zhang et al. (2019) and the proposed facet clustering meth-

od with respect to the number of facets. The method of Zhang et al. (2019) is the only ABO gen-

eration method based on facet clustering found in the literature. This method naturally becomes a 

comparison object of the proposed method. It was implemented and the availability of the source 

code is stated in Appendix E. Since the difference between the two methods is in facet clustering 

and both methods adopt the same rule to generated ABOs from facet clusters, only the time re-

quired in producing facet clusters is considered in the experiment for the sake of simplicity. Sup-

pose the minimum Davies Bouldin value is always obtained from k = 2 to k = 40 for Zhang et 

al.’s method and a refinement is always needed for the proposed method. The time spent on facet 

clustering of the two methods from n = 1 to n = 1,000 is shown in Figure 6.28(a). It is obvious 

that the efficiency of the proposed method is higher than that of Zhang et al.’s method. The main 

reasons are as follows:  

• The time complexity of the proposed method (O(nlogn)) is lower than that of Zhang et al.’s 

method (O(n2));  

• The computation of Davies Bouldin values to find a proper value of k in Zhang et al.’s meth-

od is more time consuming than the computation on refinement of the produced facet clusters 

in the proposed method.  

• The computation of the angles between normal vectors in Zhang et al.’s method also takes a 

lot of time. It is transformed to the more efficient computation of Euclidean distances in the 

proposed method.  

Since the first two points cannot be changed, it is further assumed that the calculation of an-

gles is converted to the calculation of Euclidean distances in Zhang et al.’s method. The compar-
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ison result under such assumption is shown in Figure 6.28(b). It is found that the proposed meth-

od still outperforms Zhang et al.’s method. To further test the efficiency of the proposed method, 

n was assigned from 1 to 1,000,000 and the facet clustering time is depicted in Figure 6.29. As 

can been seen from the figure, the proposed method can provide acceptable efficiency when the 

number of facets is within 1,000,000.  

 

(a) Angle metric is used in Zhang et al. s method (b) Euclidean distance metric is used in Zhang et al. s method  

Figure 6.28 Comparisons of the efficiency of the two facet clustering methods 

 

 

Figure 6.29 The efficiency of the proposed facet clustering method 

 

Experiment 6.2. The purpose of this experiment is to compare the facet clustering time tak-

en by the facet clustering method of Zhang et al. (2019) and the proposed facet clustering meth-

od with respect to specific STL models. In the experiment, the STL models of Part 1 to Part 12 in 

Figure 6.2 were respectively taken as the input of Zhang et al.’s method and the proposed meth-

od. Each of these methods was executed ten times for each STL model. The value of k in Zhang 

et al.’s method was assigned 6 for Part 1 to Part 8 and assigned 12 for Part 9 to Part 12 to make 

the output conditions of the two methods the same. The result of the experiment is the average 
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time spent on facet clustering of the two methods, which is listed in Table 6.8 and depicted in 

Figure 6.30. It can be seen from Table 6.8 and Figure 6.30 that the proposed method spends sig-

nificantly less time on facet clustering than Zhang et al.’s method spends for the STL models of 

every part. This indicates that the proposed method is more efficient than Zhang et al.’s method 

in facet clustering.  

 

Table 6.8 The facet clustering time taken by the two facet clustering methods 

The input STL model (.stl) Part 1  Part 2  Part 3  Part 4  Part 5  Part 6  

Number of facets in the model 284 828 1,592 2,022 2,426 3,776 

Time of Zhang et al.’s method (s) 0.3966  1.6378  3.2433  4.8869  6.4640  8.3093  

Time of the proposed method (s) 0.0156 0.0625 0.1106 0.1457 0.1597 0.2895 

The input STL model (.stl) Part 7  Part 8  Part 9  Part 10  Part 11  Part 12  

Number of facets in the model 6,324 6,598 13,240 67,722 88,724 108,888 

Time of Zhang et al.’s method (s) 18.2422  24.7010  105.3338 425.3723 529.9664 575.2050 

Time of the proposed method (s) 0.4538 0.4745 0.9607 5.9256 9.6683 10.6240 

 

 

Figure 6.30 The facet clustering time of the two facet clustering methods 

 

Experiment 6.3. The purpose of this experiment is to test the time spent on determination of 

the build orientations of specific LPBF parts for the developed automatic determination method. 

In the experiment, the STL models of the twelve parts in Figure 6.2 were taken as input of the 

developed method. For each STL model, the method was executed ten times. The results of the 

experiment are the average time spent on ABO generation, attribute value estimation and ranking 

generation for the method, which are listed in Table 6.9. It is worth noting that the time of ABO 

generation is the same as the time of facet clustering for the developed method, since the ABOs 

are generated in the process of facet clustering in the method. Further, the time of attribute value 

estimation does not include the time spent on estimation of support volume, because this estima-

tion was completed by Autodesk Meshmixer and it is very difficult to count the exact time spent 
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on the estimation of the software tool. The average time of the entire build orientation determina-

tion process of the developed method is the sum of the average time of ABO generation, attribute 

value estimation and ranking generation, which is also listed in Table 6.9. As can be concluded 

from the table, the developed method can generate the OBO of a regular surface model within 

several seconds. It is also efficient for a freeform surface model.  

 
Table 6.9 The actual build orientation determination time of the developed method 

The input STL model (.stl) Part 1  Part 2  Part 3  Part 4  Part 5  Part 6  

Number of facets in the model 284 828 1,592 2,022 2,426 3,776 

Number of the generated ABOs 6 6 6 6 8 8 

Time of ABO generation (s) 0.0156 0.0625 0.1106 0.1457 0.1597 0.2895 

Time of attribute estimation (s) 0.0984 0.2681 0.5140 0.6457 1.0292 1.5887 

Time of ranking generation (s) 0.0601 0.0605 0.0593 0.0599 0.0622 0.0623 

Time of the entire process (s) 0.1741 0.3911 0.6839 0.8513 1.2511 1.9405 

The input STL model (.stl) Part 7  Part 8 Part 9  Part 10  Part 11  Part 12  

Number of facets in the model 6,324 6,598 13,240 67,722 88,724 108,888 

Number of the generated ABOs 8 6 24 24 24 24 

Time of ABO generation (s) 0.4538 0.4745 0.9607 5.9256 9.6683 10.6240 

Time of attribute estimation (s) 2.6461 2.0775 16.5983 84.8202 110.7432 135.5582 

Time of ranking generation (s) 0.0621 0.0599 0.0799 0.0793 0.0792 0.0800 

Time of the entire process (s) 3.1620 2.6119 17.6389 90.8251 120.4907 146.2622 

 

Experiment 6.4. The purpose of this experiment is to compare the build orientation determi-

nation time taken by an existing determination method and the developed automatic determina-

tion method with respect to specific STL models. As reviewed in Section 2.5, there are a large 

number of build orientation determination methods in the literature. It is not realistic to imple-

ment each method and compare its execution time with that of the developed method on specific 

STL models. However, it is still possible to compare the build orientation determination time of 

an existing method and the developed method with respect to specific STL models, because at-

tribute value estimation is an indispensable task for each method and most of the build orienta-

tion determination time is spent on this task (see Table 6.9). The time of attribute value estima-

tion is determined by the number of iterations (ABOs) for an exhaustive computation method or 

an MOO method (a feature recognition method, a facet clustering method or an MADM method) 

and the number of attributes. It is found from experiments that the effect of the number of itera-

tions (ABOs) on the time of attribute value estimation is roughly uniform. If it is assumed that 

the effect of the number of ABOs on the time of ABO generation and the time of ranking genera-

tion in Table 6.9 is also roughly uniform, the time of the entire process per ABO calculated from 

the data in the table can be used to estimate the time of the entire build orientation determination 

process of an existing method. For example, as the time of the entire process for the STL model 
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of Part 1 is 0.1741 s and the number of the generated ABOs for Part 1 is 6, the time of the entire 

process per ABO for the STL model of Part 1 is 0.1741/6 s. Suppose an existing method needs to 

perform computation on 20 iterations (ABOs). The time of the entire process of this method for 

the STL model of Part 1 is 20 × 0.1741/6 s = 0.5803 s. By this way, the time of the entire process 

of an existing method for the STL models of the twelve parts in Figure 6.2 when the number of 

iterations (ABOs) m = 20, 40, 60, 80, 100 is estimated. The estimated results are listed in Table 

6.10. Based on these results, a comparison of the build orientation determination time of an ex-

isting method and the developed method with respect to the twelve STL models is depicted in 

Figure 6.31. It can be concluded from Table 6.10 and Figure 6.31 that an existing method could 

outperform the developed method when m is smaller than the number of the generated ABOs for 

the STL model of each part in Table 6.10. This is possible for a feature recognition method or a 

facet clustering method, but most exhaustive computation methods and MOO methods are diffi-

cult to generate optimal solutions in such few iterations. For example, a particle swarm algorithm 

or a bacterial foraging algorithm for optimising AM process variables generally needs 100 itera-

tions to obtain the optimal solutions according to the study of Raju et al. (2019). From this point 

of view, the developed method has obvious advantage in efficiency over an exhaustive computa-

tion method or an MOO method.  

 
Table 6.10 The estimated build orientation determination time of an existing method 

The input STL model (.stl) Part 1  Part 2  Part 3  Part 4  Part 5  Part 6  

Number of facets in the model 284 828 1,592 2,022 2,426 3,776 

Number of the generated ABOs 6 6 6 6 8 8 

Estimated time when m = 20 (s) 0.5803 1.3037 2.2797 2.8377 3.1278 4.8512 

Estimated time when m = 40 (s) 1.1607 2.6073 4.5593 5.6753 6.2555 9.7025 

Estimated time when m = 60 (s) 1.7410 3.9110 6.8390 8.5130 9.3833 14.5537 

Estimated time when m = 80 (s) 2.3213 5.2147 9.1187 11.3507 12.5110 19.4050 

Estimated time when m = 100 (s) 2.9017 6.5183 11.3983 14.1883 15.6388 24.2562 

The input STL model (.stl) Part 7  Part 8 Part 9  Part 10  Part 11  Part 12  

Number of facets in the model 6,324 6,598 13,240 67,722 88,724 108,888 

Number of the generated ABOs 8 6 24 24 24 24 

Estimated time when m = 20 (s) 7.9050 8.7063 14.6991 75.6876 100.4089 121.8852 

Estimated time when m = 40 (s) 15.8100 17.4127 29.3982 151.3752 200.8178 243.7703 

Estimated time when m = 60 (s) 23.7150 26.1190 44.0973 227.0628 301.2268 365.6555 

Estimated time when m = 80 (s) 31.6200 34.8253 58.7963 302.7503 401.6357 487.5407 

Estimated time when m = 100 (s) 39.5250 43.5317 73.4954 378.4379 502.0446 609.4258 

 

6.3.3 Evaluation of the advantages 

Section 2.5 divided the existing ABO generation methods into exhaustive computation meth-

ods, feature recognition methods and facet clustering method and described their main strengths 
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and limitations. Briefly, the existing exhaustive computation methods can be applied to both reg-

ular and freeform surface models, but they generally need a large amount of computation to ob-

tain desired results. The existing feature recognition methods can greatly reduce the amount of 

computation, but they are not applicable for freeform surface models. The existing facet cluster-

ing method can address the limitation of the existing feature recognition methods and maintain 

the advantage of the existing exhaustive computation methods, but it suffers from the issues of 

having relatively low efficiency, producing unstable results and working normally under specific 

distribution.  

 

 

Figure 6.31 The efficiency of the developed method and an existing method 

 

Compared with the existing exhaustive computation methods, the proposed ABO generation 

method in Chapter 3 does not need to spend time on the computation of a large number of mean-

ingless orientations. This has been demonstrated in Experiment 6.4. Compared with the existing 

feature recognition methods, the proposed ABO generation method is applicable for both regular 

and freeform surface models. This has been explained in the specific process of the method in 

Section 3.1 and Section 3.2 and illustrated in Section 6.2. Compared with the existing facet clus-

tering method (i.e. the method of Zhang et al. (2019)), the proposed ABO generation method has 

three advantages: providing higher efficiency; generating stable results; working normally under 

unknown probability distributions. The first advantage has been demonstrated in Experiment 6.1 

and Experiment 6.2. The second and third advantages are respectively illustrated in the two ex-

periments below.  

Experiment 6.5. The purpose of this experiment is to illustrate that the proposed ABO gen-

eration method has advantage in generating stable results over the existing facet clustering meth-
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od. In the experiment, the STL models depicted in Figure 6.32 were respectively input into the 

two methods. Each method was executed ten times for each STL model. The facet clustering re-

sults of the existing method and the proposed method are shown in Figure 6.33 and Figure 6.34, 

respectively. It should be noted that the facet clustering results of the proposed method obtained 

in each execution are identical for the same STL model. From Figure 6.33 and Figure 6.34, it can 

be seen that the facet clustering results of the existing method could vary in different executions 

and some of them are unreasonable results. This would result in different ABOs generated in dif-

ferent executions. Therefore, the results of the existing method are not stable. Unlike the existing 

method, the proposed method generates the same clusters and ABOs no matter how many times 

it is executed.  

 

Model 1 Model 2 Model 3

 

Figure 6.32 STL models for testing the stability of the two ABO generation methods 

 

 

Figure 6.33 The clustering results of the existing facet clustering method 
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Figure 6.34 The clustering results of the proposed ABO generation method 

 

Experiment 6.6. The purpose of this experiment is to illustrate that the proposed ABO gen-

eration method has advantage in working normally under unknown distributions over the exist-

ing facet clustering method. In the experiment, the STL models depicted in Figure 6.32 were re-

spectively taken as the input of the two methods. The result of the experiment is shown in Figure 

6.35. As can be seen from the figure, the existing method generate unreasonable results for Mod-

el 1 and Model 2 due to its random initialisation and distribution assumption. To be more specif-

ic, the Gaussian distribution assumption in the method could make the ends of all normal vectors 

in each cluster roughly spherical. The proposed method can always generate reasonable results 

for these models because there is no random initialisation and distribution assumption.  

 

Facet clustering results of the existing method Facet clustering results of the proposed method

 

Figure 6.35 Comparison of the clustering results of the two ABO generation methods 

 

Section 2.5 categorised the existing OBO selection methods into MOO methods and MADM 

methods and respectively described their main characteristics. In a nutshell, the computation cost 

of most MOO methods would be expensive when the number of ABOs or objectives increases. 

In addition, MOO algorithms could encounter difficulty in forming the Pareto front when dealing 
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with the selection cases with over three objectives and large number of optimal solutions on the 

Pareto front would bring difficulty to further selection. The MADM methods avoid these issues 

to some extent. In an MADM method, the computation time generally increases in a linear rela-

tionship with the number of ABOs or attributes. The number of the optimal solutions is usually 

one or many when the number of ABOs or attributes increases. However, the existing MADM 

methods have not captured the interrelationships of the considered attributes and have not low-

ered the negative influence of biased attribute values on the aggregation result.  

Compared to the existing MOO methods, the proposed OBO selection method in Chapter 5 

does not require expensive computation cost and will not generate those Pareto-optimal solutions 

that make selection difficult when the number of attributes is more than three. These can be re-

spectively seen from the case studies in Section 6.2 and Experiment 6.4. Compared to the exist-

ing MADM methods, the proposed OBO selection method can capture the interrelationships of 

the considered attributes and reduce the negative effect of unreasonable estimated attribute val-

ues. These capabilities are illustrated in the experiment below.  

Experiment 6.7. The purpose of this experiment is to illustrate that the proposed OBO selec-

tion method has advantages in capturing the interrelationships among the considered attributes 

and reducing the negative effect of unreasonable estimated attribute values. In this experiment, 

the method of Byun and Lee (2006), one of the most highly cited OBO selection methods, was 

used as an example of the OBO selection methods which assume all attributes are independent of 

each other and neglect the negative influence of biased attribute values on the aggregation result. 

To show the difference between the aggregation results of Byun and Lee’s method and the pro-

posed method intuitively, the STL models of Part 9 to Part 12 in Figure 6.2 were used as bench-

marks. Assume the normalised build cost values of O4 of Part 9, O9 of Part 10, O17 of Part 11 and 

O1 of Part 12 are biased attribute values. These values were constantly adjusted according to Ta-

ble 6.11. It is easy to guess that such adjustments will respectively influence the ranking of O4 of 

Part 9, O9 of Part 10, O17 of Part 11 and O1 of Part 12, each of which may probably be changed 

from the best ABO to the worst one. To confirm this conjecture, the score value of each of these 

four ABOs is respectively calculated using Byun and Lee’s method and the proposed method. It 

should be mentioned that the score function in Equation (4.1) was used in both methods to facili-

tate the comparison. According to the calculated score values, the changes of the places of each 

of the four ABOs in the rankings generated by Byun and Lee’s method and the proposed method 

are depicted in Figure 6.36. Please note that the scale values of each abscissa in Figure 6.36 are 

defined in Table 6.11.  
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Figure 6.36 Comparison of the aggregation results of the two OBO selection methods 
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Table 6.11 The specific adjusted normalised build cost values 

No. 

Normalised build cost  

value of O4 of Part 9 

Normalised build cost  

value of O9 of Part 10 

Normalised build cost  

value of O17 of Part 11 

Normalised build cost  

value of O1 of Part 12 

BLM TPM BLM TPM BLM TPM BLM TPM 

0 0.8360 <0.8360> 0.7941 <0.7941> 0.8039 <0.8039> 0.8390 <0.8390> 

1 0.8160 <0.8160> 0.7841 <0.7841> 0.7989 <0.7989> 0.8340 <0.8340> 

2 0.7960 <0.7960> 0.7741 <0.7741> 0.7939 <0.7939> 0.8290 <0.8290> 

3 0.7760 <0.7760> 0.7641 <0.7641> 0.7889 <0.7889> 0.8240 <0.8240> 

4 0.7560 <0.7560> 0.7541 <0.7541> 0.7839 <0.7839> 0.8190 <0.8190> 

5 0.7360 <0.7360> 0.7441 <0.7441> 0.7789 <0.7789> 0.8140 <0.8140> 

6 0.7160 <0.7160> 0.7341 <0.7341> 0.7739 <0.7739> 0.8090 <0.8090> 

7 0.6960 <0.6960> 0.7241 <0.7241> 0.7689 <0.7689> 0.8040 <0.8040> 

8 0.6760 <0.6760> 0.7141 <0.7141> 0.7639 <0.7639> 0.7990 <0.7990> 

9 0.6560 <0.6560> 0.7041 <0.7041> 0.7589 <0.7589> 0.7940 <0.7940> 

10 0.6360 <0.6360> 0.6941 <0.6941> 0.7539 <0.7539> 0.7890 <0.7890> 

11 0.6160 <0.6160> 0.6841 <0.6841> 0.7489 <0.7489> 0.7840 <0.7840> 

12 0.5960 <0.5960> 0.6741 <0.6741> 0.7439 <0.7439> 0.7790 <0.7790> 

13 0.5760 <0.5760> 0.6641 <0.6641> 0.7389 <0.7389> 0.7740 <0.7740> 

14 0.5560 <0.5560> ——— ——— 0.7339 <0.7339> 0.7690 <0.7690> 

15 0.5360 <0.5360> ——— ——— 0.7289 <0.7289> 0.7640 <0.7640> 

16 0.5160 <0.5160> ——— ——— 0.7239 <0.7239> 0.7590 <0.7590> 

17 ——— ——— ——— ——— 0.7189 <0.7189> 0.7540 <0.7540> 

18 ——— ——— ——— ——— 0.7139 <0.7139> 0.7490 <0.7490> 

19 ——— ——— ——— ——— 0.7089 <0.7089> 0.7440 <0.7440> 

20 ——— ——— ——— ——— ——— ——— 0.7390 <0.7390> 

21 ——— ——— ——— ——— ——— ——— 0.7340 <0.7340> 

22 ——— ——— ——— ——— ——— ——— 0.7290 <0.7290> 

Notes: BLM: Byun and Lee’s method; TPM: The proposed method 
 

It can be seen from Figure 6.36 that the results of both methods are consistent with the con-

jecture. In addition, the ranking of each of the four ABOs generated by Byun and Lee’s method 

drops to the last place faster than that generated by the proposed method under the same input: 

The ranking of O4 of Part 9 generated by Byun and Lee’s method drops to the last place at 14, 

while that generated by the proposed method drops to the last place at 16; The ranking of O9 of 

Part 10 generated by Byun and Lee’s method descends to the last place at 11, while that generat-

ed by the proposed method descends to the last place at 13; The ranking of O17 of Part 11 gener-

ated by Byun and Lee’s method drops to the last place at 17, while that generated by the pro-

posed method drops to the last place at 19; The ranking of O1 of Part 12 generated by Byun and 

Lee’s method descends to the last place at 21, while that generated by the proposed method de-

scends to the last place at 22.  

The reason for the results above is that the proposed method can adjust the weight values of 

the five attributes of each ABO dynamically as its normalised build cost value decreases, while 

Byun and Lee’s method does not have such capability. To better explain this reason, Figure 6.37 
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visually displays the dynamic changes of the weight values of the five attributes of each ABO in 

the proposed method. Please note that the specific meanings of the scale values of each abscissa 

in this figure are also listed in Table 6.11. As can be seen from Figure 6.37, the weight value of 

the build cost of each ABO eventually drops and the weight values of the remaining four attrib-

utes of each ABO eventually rise. Due to such dynamic changes of the weights values, the nega-

tive influence of the adjustments of the normalised build cost value on the aggregation result is 

reduced. Compared to the proposed method, the weight values of the five attributes of each ABO 

are always 0.2443, 0.1402, 0.0909, 0.2623 and 0.2623 no matter how its normalised build cost 

value changes in Byun and Lee’s method. Because of this, Byun and Lee’s method does not have 

the capability to reduce the negative effect of the adjustments of the normalised build cost value. 

To sum up, the difference of the aggregation results in Figure 6.36 and the dynamic changes 

of the weights values in Figure 6.37 are caused by the advantages of the proposed method in cap-

turing the interrelationships among the considered attributes and reducing the negative influence 

of biased attribute values.  

 

 

Figure 6.37 Dynamic changes of the weight values in the proposed method 
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6.4 Summary 

This chapter has developed a method for automatic determination of part build orientation for 

LPBF AM. Twelve build orientation determination cases have been presented to demonstrate the 

developed automatic determination method. The effectiveness, efficiency and advantages of the 

developed method has been evaluated by theoretical analysis, experimental analysis and compar-

isons. The evaluation results suggest that the developed method is effective and efficient and can 

be applied to both regular and freeform surface models. In addition, the method has advantages 

in generating stable results, working normally under unknown probability distributions of facets, 

capturing the interrelationships among the considered attributes and lowering the negative effect 

of biased estimated attribute values over the existing build orientation determination methods.  
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7 Conclusion and future work  

7.1 Conclusion  

In response to the issue that the manually determined build orientation of an LPBF part could 

negatively affect the build time, build cost, quality and production stability of the part, this thesis 

studies the development of a method to automatically determine the build orientation of an LPBF 

part. The major contribution of the thesis lies in developing a methodology for automatic genera-

tion and evaluation of the ABOs of an LPBF part to determine the OBO of the part. The research 

work and specific contributions of the thesis are summarised as follows:  

• A novel facet clustering method for automatically generating the ABOs of an LPBF part has 

been proposed. This method consists of a clustering of facets step and a generation of ABOs 

step. In the facet clustering step, the STL model of an LPBF part is imported. A facet cluster-

ing rule, the accelerated HDBSCAN* algorithm and the k-cluster lifetime partition criterion 

are applied to divide all facets of the imported STL model into a set of meaningful clusters. 

In the ABO generation step, an ABO generation rule is used to produce the ABOs of the part 

if a further refinement is not required for the obtained facet clusters. Otherwise, a cluster re-

finement rule is designed to refine the obtained facet clusters and the ABOs of the part are 

generated via the refined facet clusters and the ABO generation rule. From a theoretical per-

spective, the innovation of the proposed facet clustering method is reflected in the following 

three aspects: designing an effective rule to refine the generated facet clusters; finding a dis-

tance metric for the normal vectors of facets that can greatly accelerate the process of facet 

clustering; providing a feasible approach to identify clusters of facets from the output of a hi-

erarchical clustering algorithm.  

• An FAWPMM operator and an FAWPGMM operator for aggregating the values of attributes 

of ABOs have been constructed. The construction process of each AO consists of establish-

ment of a general expression and derivation of specific expressions. In the establishment of a 

general expression, the formal definition of each AO is first presented. Its general expression 

is then established applying the operational laws of fuzzy numbers based on Archimedean t-

norm and t-conorm. Based on the established general expression, the property and special 

cases of the AO are explored and discussed, respectively. In the derivation of specific expres-

sions, the specific expressions of each AO are established through applying the AGs of ATT, 

ETT, HTT and FTT. The constructed AOs have good flexibility in the aggregation of fuzzy 

numbers and can be used to balance the opposite aggregation expectations. Most importantly, 
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they can capture the interrelationships of the aggregated fuzzy numbers and concurrently re-

duce the negative effect of biased fuzzy numbers on the aggregation result.  

• A novel MADM method for automatically selecting the OBO of an LPBF part has been pro-

posed. This method consists of an estimation of attribute values step, a normalisation of at-

tribute values step and a selection of the OBO step. In the attribute value estimation step, the 

STL model and ABOs of an LPBF part, as well as the material, layer thickness, recoating 

time, hatch spacing and scanning velocity to build the part are first input into a set of estima-

tion models. The total support volume, total volumetric error, average surface roughness, to-

tal build time and total build cost of the part in each ABO are then estimated. In the attribute 

value normalisation step, a ratio model is introduced to fuzzify the estimated attribute values. 

Based on this, a fuzzy decision matrix for selection of the OBO is established and normal-

ised. In the OBO selection step, the relationships among support volume, volumetric error, 

surface roughness, build time and build cost are first identified. A scaling approach based on 

pairwise comparison is then used to determine the weights of these attributes. With the iden-

tified relationships and determined weights, the presented FAWPMM and FAWPGMM op-

erators are leveraged to aggregate the normalised attribute values of each ABO. A ranking of 

all ABOs is generated based on the aggregation results. The OBO of the part is selected ac-

cording to the generated ranking. From a theoretical perspective, the significance of the pro-

posed MADM method is reflected in offering a fuzzy AOs-based framework for solving the 

MADM problems in manufacturing domain.  

• A method for automatically determining the build orientation of an LPBF part has been de-

veloped and demonstrated. This method is composed of a module of generation of ABOs and 

a module of selection of the OBO, which are developed by implementing the proposed facet 

clustering method and the proposed MADM method, respectively. From a practical perspec-

tive, the significance of the developed method is reflected in providing a practical framework 

for determining the part build orientation in AM processes. Compared with the existing ex-

haustive computation methods, the developed method does not need to spend time on a large 

number of meaningless orientations. Compared to the existing feature recognition methods, 

the developed method is applicable for both regular and freeform surface models. Compared 

with the existing facet clustering method, the developed method can provide higher efficien-

cy, produce more stable results and work normally with facet clusters of different probability 

distributions. Compared to the existing MOO methods, the developed method has a competi-

tive efficiency and will not output the Pareto-optimal solutions that make selection difficult. 
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Compared to the existing MADM methods, the developed method can capture the interrela-

tionships among attributes and lower the negative influence of extreme attribute values.  

7.2 Future work  

Several limitations of the developed automatic determination method of the build orientation 

of an LPBF part in the thesis revealed corresponding important research issues, which need to be 

addressed in further work. The research issues are outlined as follows:  

• Consideration of the attributes related to LPBF part property. From the overall value chain, 

the property, accuracy and surface quality of an LPBF part are usually more important than 

the amount of supports, time and cost to build the part. The developed automatic determina-

tion method considers an attribute related to part accuracy (i.e. volumetric error), an attribute 

related to surface quality (i.e. surface roughness), support volume, build time and build cost. 

It neglects serval more important attributes that are related to part property, such as strength, 

elongation, hardness, residual stress, flexural modulus and fatigue performance. This directly 

causes the attribute weights in the proposed MADM method to lose its due role, since the ef-

fect of build orientation on the volumetric error and surface roughness of an LPBF part built 

by thin layers is quite slight and the estimated support volume, build time and build cost are 

positively correlated. Further, this is unacceptable for practical applications, because meeting 

the quality requirements is the most basic condition for practical applications and the attrib-

utes related to part property are critical part quality indicators. In the next research work, the 

developed method will be extended to consider part property attributes once suitable estima-

tion models are available. New rules for facet clustering, ABO generation and cluster refine-

ment which are beneficial to optimisation of the considered part property attributes would be 

developed. The five attributes considered in the method would be reduced to two or three at-

tributes to add the part property attributes.  

• Build orientation determination for multi-part production in LPBF AM. An important charac-

teristic of the LPBF process is the support of multi-part production. The developed automatic 

determination method focuses on build orientation determination for production of one single 

part, it is not applicable for the situation where a group of parts in the same build need to be 

orientated simultaneously. It is of necessity and importance to improve the developed method 

to deal with this situation.  

• Concurrent determination of all process variables to build an LPBF part. In LPBF AM, the 

influence of process variables (i.e. build orientation, supports, slices, laser scanning path and 
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process parameters) on part quality and production stability is comprehensive and contradic-

tory. In the developed automatic determination method, the build orientation determination 

issue is addressed separately through fixing other process variables. This is sometimes insuf-

ficient, because the determination of build orientation could affect the determination of other 

process variables. An ideal approach is to simultaneously determine all process variables via 

taking into account certain part quality attributes. To this end, it would be desirable to extend 

the developed method to implement the concurrent determination of the process variables to 

build an LPBF part.  

• Demonstration of effectiveness via actual part build experiments. Effectiveness is undoubted-

ly the most critical criterion for evaluating a build orientation determination method. The ef-

fectiveness of the developed automatic determination method is assessed through theoretical 

analysis. This would be insufficient, since there is a certain degree of uncertainty in the actu-

al part build and a build orientation determination method that is effective in theory may not 

mean that it is also effective in practice. It is of necessity to carry out actual part build exper-

iments to validate the developed method.  

• Support of more 3D model data formats. The developed automatic determination method can 

only import the 3D models encoded by the STL format. Although this format is currently the 

most used and actual standard 3D model data format in LPBF AM, other alternative formats, 

such as the OBJ format, 3MF format and AMF format, also have certain applications because 

of their distinctive characteristics. It would be interesting to extend the developed method to 

make it applicable for more 3D model data formats. 

• Realisation of industrial application. The ultimate goal of the research work in process plan-

ning for LPBF AM is to realise the application of novel methods in the industry. The devel-

oped automatic determination method is still at the stage of theoretical research and is still a 

long way from industrial application. It is believed that at least the five research issues above 

should be addressed and a software tool for process planning for LPBF AM should be devel-

oped and tested before applying the developed method to the industry.  
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Appendixes 

Appendix A. Proof of Theorem 4.1 
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Using the operational law in Equation (4.15), it can be obtained that  
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It is equivalent to the following equation  
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It follows from the definition of a fuzzy number in Definition 4.2 that 0 ≤ μp(i) ≤ 1. Because 

g(t) is a monotonically increasing function, it is can be obtained that 
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Because f−1(t) is a monotonically decreasing function, it can be obtained that 
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Because g(t) is a monotonically increasing function, it can be obtained that 
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for the left and right sides of the inequality above, the inequality can be simplified as  
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Because g−1(t) is a monotonically increasing function, it can be obtained that 
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Because f(t) is a monotonically decreasing function, it can be obtained that 
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That is, 0 ≤ FAWPMMQ(α1, α2, …, αn) ≤ 1. Therefore, FAWPMMQ(α1, α2, …, αn) is still a fuzzy 

number.                                                                                                                                            □ 

Appendix B. Proof of Theorem 4.2 

Proof:  

It follows from Theorem 4.1 that  
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Since min(μi) ≤ μp(i) ≤ max(μi) and g(t) is a monotonically increasing function, it can be obtained 

that 
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Because f−1(t) is a monotonically decreasing function, it can be obtained that 
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Because g(t) is a monotonically increasing function, it can be obtained that 
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for the left and right sides of the inequality above, the inequality can be simplified as 
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Because g−1(t) is a monotonically increasing function, it can be obtained that 
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Because f(t) is a monotonically decreasing function, it can be obtained that 
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Because f−1(t) is a monotonically decreasing function, it can be obtained that 

( )( )( )1 1 1 1

( )

1

(

1

)

1
min( ) 1 ( ) ( )

!

max( )

n

n n

i i i p i

i p i

p i

i

f q f g g f q f g n g
n

  



− − − −

=  =

       
                  

  
P  

Using Equation (4.1), the score values of α– = <min(μi)>, α+ = <max(μi)> and FAWPMMQ(α1, α2, 

…, αn) are respectively calculated as follows:  

min( ) 1( ) 2 iS  − = −  
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Based on the inequality and equations above, it can be obtained that S(α–) ≤ S(FAWPMMQ(α1, α2, 

…, αn)) ≤ S(α+). From the comparison rule in Definition 4.4, it can be further obtained that α– ≤ 

FAWPMMQ(α1, α2, …, αn) ≤ α+.                                                                                                      □ 

Appendix C. Proof of Theorem 4.3 

Proof:  
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Using the operational law in Equation (4.14), it can be obtained that 
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Using the operational law in Equation (4.16), it can be obtained that 
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Using the operational law in Equation (4.15), it can be obtained that 
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It is equivalent to the following equation  



119 

  

 

( )( )( )

2

1 1 1 1

( ) ( )

1

1

1

1
1 ( ) ( )

.

!

( , ,. ., )

n

n n

i i p

n

i

i

p i

i

Q

p

F

g q g f f g q g f f

AWPGMM

n
n







 

− − − −

=  =

       
               

=

 
  

P

 

It follows from the definition of a fuzzy number in Definition 4.2 that 0 ≤ μp(i) ≤ 1. Because 

f(t) is a monotonically decreasing function, it is can be obtained that 
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Because g−1(t) is a monotonically increasing function, it can be obtained that 
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Because f(t) is a monotonically decreasing function, it can be obtained that 
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for the left and right sides of the inequality above, the inequality can be simplified as  
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Because f−1(t) is a monotonically decreasing function, it can be obtained that 
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Because g(t) is a monotonically increasing function, it can be obtained that 
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That is, 0 ≤ FAWPGMMQ(α1, α2, …, αn) ≤ 1. Therefore, FAWPGMMQ(α1, α2, …, αn) is still a 

fuzzy number.                                                                                                                                  □ 

Appendix D. Proof of Theorem 4.4 
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Since min(μi) ≤ μp(i) ≤ max(μi) and f(t) is a monotonically decreasing function, it can be obtained 
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Because f(t) is a monotonically decreasing function, it can be obtained that 
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for the left and right sides of the inequality above, the inequality can be simplified as  
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Because g(t) is a monotonically increasing function, it can be obtained that 
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Because g−1(t) is a monotonically increasing function, it can be obtained that 
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Using Equation (4.1), the score values of α– = <min(μi)>, α+ = <max(μi)> and FAWPGMMQ(α1, 

α2, …, αn) are respectively calculated as follows:  
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Based on the inequality and equations above, it can be obtained that S(α–) ≤ S(FAWPGMMQ(α1, 

α2, …, αn)) ≤ S(α+). From the comparison rule in Definition 4.4, it can be further obtained that α– 

≤ FAWPGMMQ(α1, α2, …, αn) ≤ α+.                                                                                                □ 

Appendix E. Availability of code and data 

The source code of the proposed methods and the compared methods, the STL files and the 

estimated attribute values used to support the research findings of this thesis have been deposited 

in the GitHub repository (https://github.com/YuchuChingQin/PartOrientationForLPBF).  
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