
University of Huddersfield Repository

Alamina, Iyalla John

Deep Scattering and End-to-End Speech Models towards Low Resource Speech Recognition

Original Citation

Alamina, Iyalla John (2021) Deep Scattering and End-to-End Speech Models towards Low
Resource Speech Recognition. Doctoral thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/35472/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Deep Scattering and End-to-End Speech Models
towards Low Resource Speech Recognition

A thesis submitted to the University of
Huddersfield in partial fulfilment of the

requirements for the degree of Doctor of Philosophy

Iyalla John Alamina

January 8, 2021

Abstract

Automatic Speech Recognition (ASR) has made major leaps in its advancement
largely due to two different machine learning models: Hidden Markov Models (HMMs)
and Deep Neural Networks (DNNs). State-of-the art results have been achieved by
combining these two disparate methods to form a hybrid system. This also requires
that various components of the speech recognizer be trained independently based on
a probabilistic noisy channel model. Although this HMM-DNN hybrid ASR method
has been successful in recent studies, the independent development of the individual
components used in hybrid HMM-DNN models makes ASR development fragile and
expensive in terms of time-to-develop the various components and their associated
sub-systems. The resulting trade-off is that ASR systems are difficult to develop
and use especially for new applications and languages.

The alternative approach, known as the end-to-end paradigm, makes use of a
single deep neural-network architecture used to encapsulate as many as possible sub-
components of speech recognition as a single process. In the so-called end-to-end
paradigm, latent variables of sub-components are subsumed by the neural network
sub-architectures and the associated parameters. The end-to-end paradigm gains
of a simplified ASR-development process again are traded for higher internal model
complexity and computational resources needed to train the end-to-end models.

This research focuses on taking advantage of the end-to-end model ASR devel-
opment gains for new and low-resource languages. Using a specialised light weight
convolution-like neural network called the deep scattering network (DSN) to re-
place the input layer of the end-to-end model, our objective was to measure the
performance of the end-to-end model using these augmented speech features while
checking to see if the light-weight, wavelet-based architecture brought about any
improvements for low resource Speech recognition in particular.

The results showed that it is possible to use this compact strategy for speech
pattern recognition by deploying deep scattering network features with higher di-
mensional vectors when compared to traditional speech features. With Word Error
Rates of 26.8% and 76.7% for SVCSR and LVCSR respective tasks, the ASR system
metrics fell few WER points short of their respective baselines. In addition, training
times tended to be longer when compared to their respective baselines and therefore
had no significant improvement for low resource speech recognition training.

2

https://docs.google.com/document/d/1ne2ctaxjpOlilMDg88aTtzOdIyP-wI2_ST5mGDvAYMw/edit?usp=sharing

Dedication

To the praise and glory of our God and of His Christ.

3

Acknowledgements

I thank the members supervisory team including Dr David Wilson and Dr Simon

Parkinson for the invaluable guidance and keen interest throughout my research.

I also acknowledge my parents (Prof. Mrs. Jane Alamina and Dr. P. T. Alamina)

for immense support shown. My wife, Ibinabo Alamina, children (Topaz and Jade)

and family members have also stood by given and given all the encouragement I

could ever need. Thank you. Finally, to all who have said a prayer and have

contributed towards my studies or well being, I am grateful to you all.

4

Copyright statement

i. The author of this thesis (including any appendices and/or schedules to this

thesis) owns any copyright in it (the “Copyright”) and s/he has given The Uni-

versity of Huddersfield the right to use such copyright for any administrative,

promotional, educational and/or teaching purposes.

ii. Copies of this thesis, either in full or in extracts, may be made only in accor-

dance with the regulations of the University Library. Details of these regula-

tions may be obtained from the Librarian. This page must form part of any

such copies made.

iii. The ownership of any patents, designs, trademarks and any and all other

intellectual property rights except for the Copyright (the “Intellectual Property

Rights”) and any reproductions of copyright works, for example graphs and

tables (“Reproductions”), which may be described in this thesis, may not be

owned by the author and may be owned by third parties. Such Intellectual

Property Rights and Reproductions cannot and must not be made available

for use without the prior written permission of the owner(s) of the relevant

Intellectual Property Rights and/or Reproductions

5

Contents

Abstract . 2

Dedication . 2

Acknowledgements . 3

Copyright Statement . 4

List of Figures . 10

List of Tables . 13

List of Algorithms . 14

Acronyms . 15

List of Symbols . 19

1 Introduction 19

1.1 ASR As a Machine Learning problem 20

1.2 Generative-Discriminative Speech Models disambiguation 21

1.3 Low Resource Languages . 23

1.4 The Wakirike Language . 24

1.5 Research aim and objectives . 24

1.5.1 Research Question . 26

1.6 Main Contribution to knowledge . 26

1.7 Scope of the study . 27

1.8 Thesis outline . 28

1.9 Chapter Summary . 28

2 Literature Review 30

2.1 Speech Recognition Overview . 30

2.1.1 HMM-based Generative speech model 31

2.1.2 Challenges of Speech Recognition 32

6

https://docs.google.com/document/d/1h8ZEcfEUpjJM6wYkgYYH-ryuiBFYVGSQA-Sf1StQtiY/edit####heading=h.i9tlo6ovvcpr
https://docs.google.com/document/d/1h8ZEcfEUpjJM6wYkgYYH-ryuiBFYVGSQA-Sf1StQtiY/edit####heading=h.i9tlo6ovvcpr

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

2.1.3 Challenges of low speech recognition 33

2.2 Low Resource Speech Recognition . 34

2.2.1 Low Resource language modelling 35

2.2.2 Low Resource Acoustic and speech modelling 38

2.3 Groundwork for low resource end-to-end speech modelling 39

2.3.1 Deep speech . 39

2.3.2 Speech Recognition on a low budget 40

2.3.3 Adding a Scattering layer . 41

2.4 Chapter Summary . 42

3 Methods, Models and Systems 44

3.1 Assumptions . 45

3.2 Speech Processing software and tools 45

3.2.1 CMUSphinx . 47

3.2.2 Kaldi . 51

3.2.3 Mozilla DeepSpeech . 54

3.2.4 Matlab and ScatNet toolbox 57

3.2.5 TensorFlow . 64

3.2.6 Choregraphe . 70

3.2.7 Alisa . 70

3.3 Pilot Studies . 73

3.3.1 Auto-correlation Experiments 73

3.3.2 Experiments with Nao robot 77

3.3.3 Digit Speech Recognition and Alignment Experiments 77

3.4 Sequence-to-sequence Model Experiments 78

3.4.1 Procedure for designing sequence-to-sequence RNN models . . 80

3.4.2 Sequence-to-sequence character-to-diacritically-labelled-character

model . 81

3.4.3 Sequence-to-sequence Grapheme-to-Phoneme (G2P) model . . 82

3.4.4 GRU language model for Wakirike language based on Tensor-

Flow . 84

3.4.5 Bi-Directional LSTM-based end-to-end speech model 84

3.4.6 ESP-Net Experiments . 85

Chapter 0 I. J. Alamina 7

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

3.5 Method of evaluation . 85

3.6 Chapter Summary . 86

4 Background 1: Recurrent Neural Networks in Speech Recognition 88

4.1 Neural network architecture . 88

4.1.1 Multi-layer Perceptron (MLP) 89

4.1.2 Sigmoid and soft-max Activation Function 90

4.1.3 Back propagation algorithm (backprop) 91

4.1.4 Gradient Descent . 92

4.2 RNN, LSTM and GRU Networks . 93

4.2.1 Deep Neural Networks (DNNs) 93

4.2.2 Recurrent Neural Networks 95

4.2.3 Back propagation through time (BPTT) algorithm 96

4.2.4 LSTMs and GRUs . 100

4.3 Deep speech architecture . 102

4.3.1 Connectionist Temporal Classification (CTC) 104

4.3.2 Forward-backward algorithm 106

4.3.3 CTC Loss function . 109

4.4 Attention Mechanism . 110

4.5 Chapter Summary . 112

5 Background 2: Deep Scattering network 114

5.1 Fourier transform . 115

5.2 Wavelet transform . 116

5.3 Discrete and Fast wavelet transform 117

5.4 Mel filter banks . 119

5.5 Deep scattering spectrum . 122

5.6 Chapter Summary . 123

6 Empirical Analysis 1: Wakirike Language Model 125

6.1 General Considerations for Sequence-to-sequence modelling 125

6.1.1 Selection of Sequence Model 126

6.1.2 Selection of RNN-architectures for sequence modelling 127

6.1.3 Neural Network geometry . 128

8 Chapter 0 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

6.1.4 Network Saturation Parameters 128

6.1.5 Regularisation measure . 130

6.2 Data Preparation . 130

6.3 GRU RNN Architecture . 131

6.4 Language Model Training Experiments 133

6.5 Output Language Model and Language Generation 133

6.6 Discussion . 135

6.7 Chapter Summary . 137

7 Empirical Analysis 2: Deep Recurrent Speech Recognition models138

7.1 Deep Scattering Features . 139

7.2 CTC-BiRNN Architecture . 140

7.2.1 CTC Decoding . 142

7.2.2 Model Hyper parameters . 144

7.3 Summary of Bi-RNN Experiment Design 145

7.4 BiRNN with Attention Transducer end-to-end Architecture 146

7.5 Summary of birnn with Attention Transducer Experiment Design . . 147

7.6 Speech Model Baselines . 148

7.7 Speech Model Simulations . 148

7.7.1 Bi-RNN-only end-to-end model Experiments 148

7.7.2 Bi-RNN with Attention Transducer Experiments 149

7.8 Model Results Interpretation . 151

7.8.1 Bi-RNN-only experiment discussion 151

7.8.2 Bi-RNN with Transducer and attention mechanism experi-

ment discussion . 152

7.9 Chapter Summary . 153

8 Conclusion and Future Work 156

8.1 Discussion of Research Output models 157

8.1.1 Main contribution to knowledge 158

8.1.2 Summary of goals achieved in this work 158

8.2 Limitations of the study . 159

8.3 Directions for future study . 160

Chapter 0 I. J. Alamina 9

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

8.3.1 Generative adversarial networks (GAN) 160

8.3.2 Attention-based Models . 161

8.3.3 Model Pre-training . 161

8.4 Conclusion . 163

Appendix I - Haar wavelet 163

Appendix II - Gabor and Morlet wavelet filters 164

Appendix III - Scatter Transform implementation 168

Appendix IV - Sample TensorFlow Client code 171

Appendix V - Wakirike Phonetic dictionary 173

10 Chapter 0 I. J. Alamina

List of Figures

2.1 HMM Generative Model showing six states (1 to 6); state transition

probabilities, a12 to a56; and, emission probabilities, b2 to b5 for ob-

servations o1 to o6 (Young et al., 2002) 32

2.2 Automatic Speech Recognition Pipeline showing main components of

Feature Extraction, Acoustic Model, Language Model and Lexicon

Model (Besacier, Barnard, Karpov, & Schultz, 2014a). 34

3.1 CMU Sphinx4 recogniser system. The core modules: FrontEnd,

Decoder and Linguist coloured in grey. 47

3.2 The Kaldi Architecture(Povey, Ghoshal, et al., 2011) has four layers.

At the deepest layer are the external libraries, followed by the C++

back-end library. At the top: are the C++ executables called by shell

scripts . 52

3.3 Scatter transform wavelet filter plots of various dilations of J 60

3.4 Unnormalised scattergram . 62

3.5 Log normalised scattergram . 62

3.6 Sample TensorFlow computation graphs(Goldsborough, 2016) show-

ing a simple addition operation on the left and a more involved se-

quence on the right comprising a dot operation followed by an addi-

tion and then a sigmoid operation . 65

3.7 Tensorflow graph with backprop nodes (Goldsborough, 2016). The

forward propagation is on the left (a) and; the Forward propagation

with back propagation (b) is on the right 67

3.8 Alisa iterative architecture (Stan et al., 2016) involving acoustic model,

skip-network recognition and confidence level determination 72

11

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

3.9 Original waveform input from 3-second utterance for auto-correlation 75

3.10 (a) Positive values of original waveform (b) Filtered values (c) Peak

counter (d) Trough counter . 75

3.11 (a) Positive values of original waveform (b) Isolated Segment plot (c)

Correlation plot of (a) against (b) plot. counter 76

3.12 Relationship Types and their neural network interpretation. (Karpa-

thy, 2015) . 79

3.13 Diacritic symbol generator training data sequences 82

3.14 Diacritic symbol generator model training loss 83

4.1 Neuron cell (Landahl, McCulloch, & Pitts, 1943) where xi are inputs

and wi are input weights . 89

4.2 Perceptron algorithm having multiple neuron cells 89

4.3 An LSTM Cell showing Input, output and forget gates (Graves, Jaitly,

& Mohamed, 2013) . 101

4.4 Beam Search Lattice Structure showing forward (left) and backward

(right) paths (Graves, Fernández, Gomez, & Schmidhuber, 2006) . . . 108

4.5 Attention mechanism is centred around a time-distributed dense op-

eration that determines similarity measure between current decoding

sequence hidden input and all input sequence outputs. 111

5.1 Fourier Equation . 115

5.2 Sample Spectrogram from an arbitrary input signal showing frequency-

power content of the signal . 116

5.3 Time frequency tiling for (a) Fourier Transform (b) Short-time Fourier

Transform (STFT) (c) Wavelet transform 117

5.4 Mel filter plot showing overlapping frequency bins (Lyons, 2012) . . . 121

5.5 Scattering network - 2 layers deep . 124

6.1 Wakirike Language model training Loss curves for (a) 3-Layer GRU

and (b) Single-Layer RNN . 134

7.1 Deep scattering Speech Model architecture reveals the 5-hidden layer

Bi-RNN h
(1)
t to h(5)

t being trained by DSN features. 142

12 Chapter 0 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

7.2 Prefix beam search algorithm . 154

7.3 Bi-RNN-only Experiments Error curve, where w < x < y < z are

taken arbitrarily across the total number of epochs 155

7.4 birnn with Attention Transducer Training Loss: (a) and (d) with 250-

dimension scatter transform features; (b) and (c) with 83-dimension

Log-Mel features . 155

1 Haar wavelet . 165

2 Multi resolution analysis of Haar wavelets 165

3 Fourier transform of adjacent scale Gabor wavelet. τ has been set to

0.8 . 167

4 Fourier transform of adjacent scale Gabor wavelet. τ has been set to

0.8 . 169

Chapter 0 I. J. Alamina 13

List of Tables

6.1 Language Models comparison . 133

6.2 Language Models sample generation 136

7.1 Bi-RNN-only Experiments . 149

7.2 Bi-RNN-only Experiments Summary 149

7.3 Bi-RNN with attention and transducer Experiments 150

7.4 Bi-RNN with attention and transducer Experiments Summary 150

14

List of Algorithms

1 DNN training algorithm . 95

2 RNN training algorithm . 99

15

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

List of Abbreviations

AM Acoustic Model
ASR Automatic Speech Recognition
Bi-LSTM Bi-directional Long Short-Term Memory cell RNN
Bi-RNN Bi-directional Recurrent Neural Network
BLEU BiLingual Evaluation Understudy
BLSTM Bi-directional LSTM
CFG Context Free Grammar
CMU Carnegie Mellon University
CMVN acrlongcmvn
CMN Cepstral Mean Normalisation
CNN Convolutional Neural Network
CTC Connectionist Temporal Classification
CUDA Compute Unified Device Architecture
CV Common Voice speech corpus
DBN Deep Belief Network
DCT Discrete Cosine Transform
DNN Deep Neural Network
DNNs Deep Neural Networks
DSN Deep Scattering Network
DTW Dynamic Time Warping
FSG Finite-State Grammar
ESPNet End-to-End Speech Neural Network Toolkit
FSGs Finite-State Grammars
FST Finite-State Transducer
G2P Grapheme-to-Phoneme
GAN Generative Adversarial Network
GMM Gaussian Mixture Model
GPU Graphics Processing Unit
GRU Gated Recurrent Unit
HLDA Heteroscedastic Linear Discriminant Analysis
HMM Hidden Markov Model
IDFT Inverse Discrete Cosine Transform
LDA Linear Discriminant Analysis
LLC Language Learning Companion
LM Language Model
LPC Linear Predictive Coding
LSTM Long Short-Term Memory
MFCC Mel Frequency Cepstral Coefficients

16 Chapter 0 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Acronyms contd.

MIMO Multiple Input Multiple Output
MISO Multiple Input Single Output
ML Machine Learning
MLLT Maximum Likelihood Linear Transformation
MLP Multi Layer Perceptron
MLPs Multi Layer Perceptrons
OOV Out-Of-Vocabulary
PLP Perceptual Linear Prediction
RASTA RelAtive SpecTrAl
RBM Restricted Boltzmann Machine
RELU Rectified Linear Unit
RNN Recurrent Neural Network
RNNs Recurrent Neural Networks
RNN-LM Recurrent Neural Network Language Model
SGMM Sub-space Gaussian Mixture Model
SGD Stochastic Gradient Descent
SIMO Single Input Multiple Output
SISO Single Input Single Output
STC Semi-Tied Co-variance matrix
TTS Text-to-Speech
VAD Voice Activity Detection
VTLN Vocal Tract Length Normalisation
WER Word Error Rate
WFST Weighted Finite State Transducer

Chapter 0 I. J. Alamina 17

Symbols

Symbol Meaning
O vector sequence of natural observations
oi observation vector at time=i
w sequence of words recognised
wi word recognised at time=i
aij probability between state i and j
bj probability of output observation
M Hidden Markov Model
H Entropy of a language
PP Perplexity of a language
x observation vector in terms of input features
C output machine learning class prediction
W matrix of neural network weight parameters
E Error margin
∇w derivative with respect to weights
σ neural network non-linear function
h matrix of hidden state weights
l sequence of output class labels
y sequence of output classes
yt,p CTC output probabilities
π CTC output character sequence
α forward probability per time-step
β backward probability per time-step
L Cross entropy loss for a sequence of input data
z sequence of output characters
ak Fourier series coefficient
x continuous signal input
C Continuous wavelet transform
a continuous wavelet scaling factor
b continuous wavelet shifting factor
φ orthonormal bases (scaling) function
ψ shifting (translation) function
ψ̂ mother wavelet
h Haar coefficients
M Mel scale function
δm frequency range
dt delta-delta MFCCs
ψj Scatter transform wavelet
Sn n-th order Scatter transform

18

Chapter 1

Introduction

Automatic Speech Recognition (ASR) is a subset of Machine Translation that takes

a sequence of raw audio information and translates or matches it against the most

likely sequence of text as would be interpreted by a human language expert. In

this thesis, Automatic Speech Recognition will also be referred to as ASR or speech

recognition for short.

It can be argued that while ASR has achieved excellent performance in specific

applications, much is left to be desired for general purpose speech recognition (Yu

& Deng, 2016). While commercial applications like Google voice search and Apple

Siri give evidence that this gap is closing, there still are yet other areas within this

research space that speech recognition task is very much an unsolved problem.

It is estimated that there are close to 7,000 human languages in the world (Be-

sacier et al., 2014a) and yet for only a fraction of this number have there been

efforts made towards practical ASR systems. The level of ASR accuracy that has

been so far achieved are based on large quantities of speech data and other linguis-

tic resources used to train models for ASR. These models which depend largely on

pattern recognition techniques degrade tremendously when applied to different lan-

guages other than the languages that they were trained or designed for (Besacier,

Barnard, Karpov, & Schultz, 2014b; Rosenberg, Audhkhasi, Sethy, Ramabhadran,

& Picheny, 2017). More specifically, the collection of sufficient amounts of linguistic

resources required to create accurate models for ASR are particularly laborious and

time consuming sometimes extending to decades (Goldman, 2011; Stan et al., 2016).

Research, therefore, geared towards alternative approaches towards developing ASR

19

https://docs.google.com/document/d/1h8ZEcfEUpjJM6wYkgYYH-ryuiBFYVGSQA-Sf1StQtiY/edit##heading=h.i9tlo6ovvcpr

systems that are reproducible across languages lacking the resources required to

build robust systems is apt.

1.1 ASR As a Machine Learning problem

Automatic Speech Recognition can be put into a class of Machine Learning problems

described as sequence pattern recognition because an ASR attempts to discriminate

a pattern from the sequence of speech utterances.

One immediate problem realised with this definition leads us to discuss statistical

speech models that address how to handle the problem described in the following

paragraph.

Speech is a complex phenomena that begins as a cognitive process and ends

up as a physical process (C. Becchetti & Ricotti, 1998). The process of automatic

speech recognition attempts to reverse engineer steps back from the physical process

to the cognitive process giving rise to latent variables or mismatched data or loss

of information from interpreting speech information from one physiological layer to

the next.

It has been acknowledged in the research community (Deng & Li, 2013; S. . e. Watan-

abe & Chien, 2015) that work being done in Machine Learning has enhanced the

research of automatic speech recognition. Similarly any progress made in ASR

usually constitutes contributions to enhancements made in the Machine Learning

field. This also may be attributed to the fact that speech recognition in itself is

a sequence pattern recognition problem subclass of machine learning. Therefore

techniques within speech recognition could be applied generally to sequence pattern

recognition problems at large.

The two main approaches to Machine Learning problems historically involve two

methods rooted in statistical science. These approaches are generative and discrim-

inative models. From a computing science perspective, the generative approach is

a brute-force approach while the discriminative model uses a rather heuristic ap-

proach to Machine Learning. This chapter presents the introductory ideas behind

these two approaches and establishes the motivation for the proposed models used in

this research for low resource speech recognition, as well as introducing the Wakirike

20

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

language as the motivating language case study.

1.2 Generative-Discriminative Speech Models dis-

ambiguation

In chapter 2, the Hidden Markov Model (HMM) is examined as a powerful and

major driver behind generative modelling of sequential data like speech. Generative

models are data-sensitive models because they are derived from the data by accu-

mulating as many different features which can be seen and make generalisations

based on observed parameters. The discriminative model, on the other hand, has a

heuristic approach to form a classification. Rather than using features of the data

directly, the discriminative method attempts to parameterise the data based on ini-

tial constraints(Lasserre, Bishop, & Minka, 2006). It is therefore concluded that the

generative approach uses a bottom-to-top strategy starting with the fundamental

structures to determine the overall structure, while the discriminative method uses

a top-to-bottom approach starting with the big picture and then drilling down to

determine the fundamental structures.

Ultimately, generative models for Machine Learning learning can be interpreted

mathematically as a joint distribution that produces the highest likelihood of out-

puts and inputs based on a predefined decision function. The outputs for speech

recognition being the sequence of words and the inputs for speech being the audio

waveform or equivalent speech sequence. More specifically,

dy(x;λ) = p(x, y;λ) = p(x|y;λ)p(y;λ) (1.1)

where dy(x;λ) is the decision function of y for data labels x. This joint probabil-

ity expression given as p(x|y;λ) can also be expressed as the conditional probability

product in equation (1.1). In this equation, λ predefines the nature of the distribu-

tion referred to as model parameters (Deng & Li, 2013).

Similarly, Machine Learning discriminative models are described mathematically

as the conditional probability defined by the generic decision function below:

dy(x;λ) = p(y|x;λ) (1.2)

Chapter 1 I. J. Alamina 21

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

It is clearly seen that the discriminative paradigm follows a much more direct

approach to pattern recognition. Although this approach appears cumbersome to

model, this research leans towards this direct approach. However, what the discrim-

inative model gains in discriminative modularity, it loses in the model parameter

estimation of (λ) in equation (1.1) and (1.2) (M. J. F. Gales, Watanabe, & Fosler-

Lussier, 2012). As this research investigates, although the generative process is able

to generate arbitrary outputs from learned inputs, its major drawback is the di-

rect dependence on the training data from which the model parameters are learned.

Specific characteristics of various Machine Learning models are reserved for later

chapters, albeit the heuristic nature of the discriminative approach, which means

not directly dependent on the training data, gains over the generative approach as

discriminative models are able to better compensate for latent variables.

In the case of speech signals, the original signal is corrupt and the intended infor-

mation message attenuated when the signal undergoes physiologic transformations of

the speaking and hearing process and moves from one speech production mechanism

mentioned in section 1.1 to the next. The theme of pattern recognition through ar-

bitrary layers of complexity is reinforced in the notion of deep learning Deng, Yu, et

al. (2014) as an attempt to learn patterns from data at multiple levels of abstraction.

Thus while shallow Machine Learning models like Hidden Markov Models (HMMs)

define latent variables for fixed layers of abstraction, deep Machine Learning mod-

els handle hidden/latent information for arbitrary layers of abstraction determined

heuristically. As deep learning mechanisms are typically implemented using Deep

Neural Networks, this work applies deep Recurrent Neural Networks as an end-to-

end discriminative classifier for speech recognition. This is a so-called "end-to-end

model" because it adopts the top-to-bottom Machine Learning approaches. Unlike

the typical generative classifiers that require sub-word acoustic models, the end-to-

end models develop algorithms at higher levels of abstraction as well as the lower

levels of abstraction. In the case of the model utilised in this research, the levels of

abstraction include sentence/phrase, words and character discrimination. A second

advantage of the end-to-end model is that because the traditional generative mod-

els require various stages of modeling including an acoustic, language and lexicon,

the end-to-end discriminating multiple levels of abstractions simultaneously only

22 Chapter 1 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

requires a single stage process, greatly reducing the quantity of resources required

for speech recognition. From a low resource language perspective this is a desir-

able behaviour meaning that the model can be learned from an acoustic only source

without the need of an acoustic model or a phonetic dictionary. Thus techniques

involving deep learning and end-to-end modelling are proposed and have been found

to be self-sufficient (A. Hannun et al., 2014) with modest results without a language

model. However, applying a language model was observed to serve as a correction

factor further improving recognition results (A. Hannun et al., 2014).

1.3 Low Resource Languages

Another challenge observed in complex Machine Learning models for both genera-

tive as well as discriminative learning models is the data intensive nature of the work

required for robust classification models. Saon, Kuo, Rennie, and Picheny (2015)

recommends around 2000 hours of transcribed speech data for a robust speech recog-

nition system. As is covered in the next chapter, for new languages, which are low

in training data such as transcribed speech, there are various strategies devised for

low resource speech recognition. Besacier et al. (2014a) outlines various matrices for

bench-marking low resource languages. From the generative speech model interest

perspective, reference is made to languages having less than ideal data in tran-

scribed speech, phonetic dictionary and a text corpus for language modelling. For

end-to-end speech recognition models interests, the data relevant for low resource

evaluation is the transcribed speech and a text corpus for language modelling. It is

worth noting that it was observed in Besacier et al. (2014a) that speaker-base often

does not affect a language resource status of a language and was often observed that

large speaker bases could in fact lack language/speech recognition resources and

that some languages having small speaker bases did in fact have sufficient language/

speech recognition resources.

Speech recognition methods investigated in this work are motivated by the

Wakirike language discussed in the next section, which is a low resource language

by definition. Thus, this research looked at low research language modelling for the

Wakirike language from a corpus of Wakirike text available for analysis. However,

Chapter 1 I. J. Alamina 23

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

due to the insufficiency of transcribed speech for the Wakirike language, Italian and

English languages were substituted and used as control variables to study low re-

source effects of a language when exposed to speech models developed in this work.

Therefore, English and Italian languages simulated low resource constraint by pur-

posely limiting the number of hours of recorded speech data during ASR system

training.

1.4 The Wakirike Language

The Wakirike municipality is a fishing community comprising 13 districts in the

Niger Delta area of the country of Nigeria in the West African region of the conti-

nent of Africa. The first set of migrants to Wakirike settled at the mainland town

of Okrika between AD860 and AD1515 at the earliest. These early settlers had

migrated from Central and Western regions of the Niger Delta region of Nigeria.

As the next set of migrants also migrated from a similar region, when the second

set of migrants met with the first settlers they exclaimed “we are not different” or

“Wakirike” (S., 2008).

Although the population of the Wakirike community from a 1995 report (Simons

& Fennig, 2018) is about 248,000, the speaker base is significantly less than stipu-

lated. The language is classified as Niger-Congo and Ijoid languages. The writing

orthography is Latin and the language status is 5 (developing) (Simons & Fennig,

2018). This means that although the language is not yet an endangered language,

it still isn’t thriving and it is being passed on to the next generation at a limited

rate.

The Wakirike language was the focus for this research. An End-to-end deep

neural network language model was built for the Wakirike language based on the

availability of the new testament bible printed edition that was available for pro-

cessing. The corpus utilized for this thesis work is approximately 668,522 words.

1.5 Research aim and objectives

In this work, we develop speech processing and language models based on deep and

recurrent neural network implementations. These models use input features which

24 Chapter 1 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

are of interest to new and low resource languages. In particular, we develop a lan-

guage model based on Gated Recurrent Unit (GRU) for the Wakirike language and

a Bi-directional Recurrent Neural Network (Bi-RNN) speech model for the English

and Italian languages. The aim of this research is therefore to build competitive ASR

systems in a resource conservative manner, encompassing both system resources as

well as training data.

The research objectives were as follows:

• Discover fundamental tasks relating to Language learning. In particular,

speech recognition;

• Discover building blocks for creating ASR systems generally, and then, limi-

tations for new languages;

• Build robust ASR systems using methods that also address resource concerns;

and

• Build and evaluate resource-friendly, end-to-end ASR systems.

Within this framework, our focus on language learning tasks was on Automatic

Speech recognition while the intention was to achieve the last two objectives through

one or more of the following means:

i. Reduction of time to train speech models and/or ensure training completes

within few hours to few days;

ii. Optimisation of sub-tasks and training architecture within the ASR pipeline;

iii. Observe and recommend models which perform better or train faster than

others;

iv. Make efficient use of training parallelism;

v. Obtain better or close to state-of-the-art performance; and

vi. Induce model simplicity thereby reducing training and development time with-

out compromising performance.

Chapter 1 I. J. Alamina 25

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Furthermore, following the Interspeech 2015 Zero Resource Speech Challenge

(Versteegh et al., 2015), this research also fulfilled the objectives of modelling speech

at sub-word, word and syntax level. The Zero Resource Speech Challenge is inspired

from infants ability to construct acoustic and language models of speech in an end-to-

end manner. At the word and syntax level this research develops a character-based

language model that reinforces sub-word, word and syntax level speech model based

on Character-Temporal-Classification CTC.

1.5.1 Research Question

Considering the recent development of end-to-end systems facilitated by deep-learning

and sequence modelling, is it possible to combine the recent pattern recognition

strides in deep scattering transform with an end-to-end sequential model that re-

sults in a robust speech recognition system that new and low resource languages can

leverage? In addition, can supporting Speech recognition sub-systems be replaced

or enhanced or simplified by sequence-oriented end-to-end deep learning models?

1.6 Main Contribution to knowledge

This work uses a character-based neural language model for the low resourced lan-

guage of Wakirike. In addition, this work implements a unique combination of

end-to-end deep recurrent neural network models with a robust and state of the art

audio signal processing mechanism involving a hierarchical Deep Scattering Network

(DSN) to engineer high-dimensional features to compete with current acoustic and

deep architectures for speech recognition. While the language model had a better

perplexity score than a 5-gram language model baseline, the DSN-CTC end-to-end

sequence model performed competitively but not better than the baselines with a

Word Error Rate of 12.9% and 76.8%; for SVCSR and LVCSR tasks respectively.

The main contributions to knowledge of this research include:

• Rather than developing separate systems including Acoustic Model, Language

Model, phonetic dictionary, aligned text and speaker related data transforma-

tion, the systems developed in this research use a single end-to-end frame-work.

This framework, on the other hand, does not require separate sub-system train-

26 Chapter 1 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

ing, but rather, uses only input audio and output text sequences for training.

This is quite beneficial for low resource settings.

• Detailed alignment of text and speech is not required only rough alignment

comprising of segmented utterances and equivalent text

• The designed ASR system is enhanced with a robust character-based Recurrent

Neural Network Language Model which is trained integrally within the super

end-to-end model.

• Contribution to the Zero Resource challenge (Versteegh et al., 2015) in terms of

sub-word modelling of speech features using lightweight Deep Scattering Net-

work (DSN) and modelling of syntax-level speech with an end-to-end speech

model. Since the speech model is an RNN-sequence speech model, the output

speech text is modelled at the syntax-level as opposed to the word-level.

• This research also implemented hybrid model subsystems based on alternative

sequential models specifically for the wakirike language including

i. Wakirike Diacritic text converter from plain Wakirike text

ii. Phonetic Dictionary for Wakirike language

• This research, at the early stages, investigated the design of an unsupervised

syllable-phone recogniser using auto-correlation and Gaussian Mixture Model

(GMM)

1.7 Scope of the study

This study acknowledged from the onset that it may not be able to gather the data

required to build ASR systems for the Wakirike language as this is an initial problem

this work hopes to get a step closer to solving. As a result, the English and Italian

languages were substituted and simulated low resource constraints by reducing the

amount of hours of recorded speech data for training or reducing the vocabulary

size. This provides a rough estimate of how much of the target Wakirike language

speech data will be required to provide equivalent results based on this multilingual

approach.

Chapter 1 I. J. Alamina 27

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

1.8 Thesis outline

The engineered systems, methods and supporting literature contained in this thesis

report follows the following outline and describe the research outputs of an end-to-

end speech recogniser and develops the theory based on the building blocks of the

research outputs.

Chapter two introduces the speech recognition pipeline and the generative speech

model. Chapter two also outlines the weaknesses in the generative model and de-

scribes some of the Machine Learning techniques applied to improve speech recog-

nition performance. The methods and techniques and description of the various

tools and metrics for analysis of the research outputs are described and examined

in Chapter three.

Various Low speech recognition methods are reviewed and the relevance of this

study is also highlighted. Chapter four describes Recurrent Neural Networks (RNNs).

Starting with Multi Layer Perceptrons (MLPs), we go on to specialised recurrent

neural networks including Long Short-Term Memory (LSTM) networks and the

Gated Recurrent Unit (GRU) are detailed. These recurrent neural network units

form building blocks of the language model for Wakirike language implemented in

this work.

Chapter five explains the wavelet theorem as well as the deep scattering spec-

trum. The chapter develops the theory from Fourier transform and details the

significance of using the scattering transform as a feature selection mechanism for

low resource recognition.

Chapters six and seven give descriptions of the models developed by this thesis

and details the experimental setup along with the results obtained. Chapter eight

is the conclusion of the work and recommendations for further study.

1.9 Chapter Summary

Amidst seeming large success of speech-to-text technology referred to as Automatic

Speech Recognition (ASR), there are still areas in which ASR technology struggles

to perform up to the minimum acceptable level. Situations such as very noisy

28 Chapter 1 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

environments and far field speech recognition constitute common physical scenarios

where ASR performance degrades significantly. Another non-physical area in which

ASR falls short of acceptable performance and chosen as the focus of this research

is the area of low-resource speech recognition. This is the scenario where languages

not rich in linguistic resources are unable to use existing resources and algorithms

used in languages rich in linguistic and ASR resources, to perform automatic speech

recognition.

As this chapter identifies, the ASR problem is traditionally a Machine Learning

problem that models speech production, transmission and perception and speech

models are trained from language-specific data. While these ML speech models

may perform well for the languages the models were trained for, when introduced

to a different language, having a different set of learning features, these pre-trained

models fall short of expected performances for these new languages. Moreover, if

the new languages do not possess a rich set of linguistic features, including resources

such as aligned speech and an online text corpus amongst others (Besacier et al.,

2014b), it becomes time-consuming and extremely laborious to develop new ASR

models for speech recognition for these so-called ASR “low-resource” languages.

This chapter also introduces the Wakirike language as a low resource language

and the motivating language for this research. In addition, the various machine

learning architectures used in this research for low resource speech recognition for

the Wakirike and for English language are reviewed. In particular, Deep Neural

Networks (DNNs) are highlighted as choice algorithms in speech recognition, and

then, the Chapter goes on to describe the research contribution and the outline of

this thesis.

Chapter 1 I. J. Alamina 29

Chapter 2

Literature Review

This chapter describes the transition from generative speech models to discriminative

end-to-end recurrent neural network models. Low speech recognition strategies are

also discussed and their contribution to knowledge gained by using character-based

discrimination as well as introducing deep scattering features to the bi-RNN speech

model is brought to light.

2.1 Speech Recognition Overview

Computer speech recognition takes raw audio speech and converts it into a sequence

of symbols. This can be considered as an analog to digital conversion as a continuous

signal becomes discretised. The way this conversion is done is by breaking up

the audio sequence into very small packets referred to as frames and developing

discriminating parameters or features for each frame. Then, using the vector of

features as input to the speech recogniser.

A statistical formulation (Young et al., 2002) for the speech recogniser follows

given that each discretised output word in the audio speech signal is represented as

a vector sequence of frame observations defined in the set O such that

O = o1,o2, . . . ,oT . (2.1)

Equation 2.1 says that, at each discrete time t, we have an observation ot, which

is, in itself, a vector space in RD. From the conditional probability, it can be

formulated that certain word sequences from a finite dictionary are most probable

30

https://docs.google.com/document/d/1h8ZEcfEUpjJM6wYkgYYH-ryuiBFYVGSQA-Sf1StQtiY/edit##heading=h.i9tlo6ovvcpr

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

given a sequence of observations. That is:

argmax
t
{P (wi|O)} (2.2)

Section 2.1.2 outline some challenges of speech recognition which result in the

analysis of P (wi|O) being no trivial task. The divide and conquer strategy there-

fore employed uses Bayes formulation to simplify the problem. Accordingly, the

argument that maximises the probability of an audio sequence given a particular

word multiplied by the prior probability of that word is equivalent to the original

posterior probability required to solve the original speech recognition problem. This

is summarised by the following equation

P (wi|O) = P (O|wi)P (wi)
P (O) (2.3)

According to Bayes’ rule, the posterior probability is obtained by multiplying

a certain likelihood probability by a prior probability. The likelihood in this case,

P (O|wi), is obtained from a Hidden Markov Model (HMM) parametric model such

that rather than estimating the observation densities in the likelihood probability,

these are obtained by estimating the parameters of the HMM model. The HMM

model explained in the next section gives a statistical representation of the latent

variables of speech at a mostly acoustic level.

The second parameter in the speech model, interpreted from Bayes’ formula, is

the prior probability of a given word. This aspect of the model is the language

model which is reviewed in section 2.2.1.

2.1.1 HMM-based Generative speech model

A HMM represents a finite state machine where a process transits a sequence of

states from a set of fixed states (M. Gales, Young, et al., 2008; Young et al., 2002).

The overall sequence of transitions will have a start state, an end state and a finite

number of intermediate states all within the set of finite states. Each state transition

emits an output observation that represents the current internal state of the system.

In an HMM represented in Figure 2.1 there are two important probabilities. The

first is the state transition probability given by aij this is the probability to move

Chapter 2 I. J. Alamina 31

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Figure 2.1: HMM Generative Model showing six states (1 to 6); state transition
probabilities, a12 to a56; and, emission probabilities, b2 to b5 for observations o1 to
o6 (Young et al., 2002)

from state i to state j. The second probability bj is the probability that an output

observation is emitted when in a particular state.

Where O, are the output observations and M is the HMM. Given that X rep-

resents the sequence of states transitioned by a process, a HMM defines the joint

probability of X and the output probabilities given the HMM in the following rep-

resentation:

P (O|M) =
∑
X

ax(0)x(1)

T∏
t=1

bx(t)(ot)ax(t)x(t+1) (2.4)

Generally speaking, the HMM formulation presents 3 distinct challenges. The

first is the likelihood of a sequence of observations given in equation 2.4 above. The

next two, described later, is the inference and the learning problem. While the

inference problem determines the sequence of steps given the emission probabilities,

the learning problem determines the HMM parameters, that is the initial transition

and emission probabilities of the HMM model.

For the case of the inference problem, the sequence of states can be obtained

by determining the sequence of states that maximises the probability of the output

sequences.

2.1.2 Challenges of Speech Recognition

The realised symbol is assumed to have a one to one mapping with the segmented

raw audio speech. However, the difficulty in computer speech recognition is the

32 Chapter 2 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

fact that there is a significant amount of variation in speech that would make it

practically intractable to establish a direct mapping from segmented raw speech

audio to a sequence of static symbols. The phenomena known as co articulation has

it that there are several different symbols having a mapping to a single waveform

of speech in addition to several other varying factors including the speaker mood,

gender, age, the medium of speech transduction, the room acoustics, et cetera.

Another challenge faced by automated speech recognisers is the fact that the

boundaries of the words are not apparent from the raw speech waveform. A third

problem that immediately arises from the second is the fact that the words from

the speech may not strictly follow the words in the selected vocabulary database.

Such occurrence in speech recognition research is referred to as Out-Of-Vocabulary

(OOV) terms. It is reasonable to approach these challenges using a divide and

conquer strategy. In this case, the first step would be to make provision for word

boundaries. This first step in speech recognition is referred to as the isolated word

recognition case (Young et al., 2002).

2.1.3 Challenges of low speech recognition

Speech recognition for low resource languages poses another distinct set of chal-

lenges. In chapter one, low resource languages were described to be languages lacking

in resources required for adequate Machine Learning of models needed for genera-

tive speech models. These resources are described basically as a text corpus for

language modelling, a phonetic dictionary and transcribed audio speech for acous-

tic modelling. Figure 2.2, illustrates how resources required for speech recognition

are utilised. It is observed that in addition to the three resources identified other

processes are required for the speech decoder to function normally. For example,

aligned speech would also need to be segmented into speech utterances to ensure

that the computer resources are used conservatively.

In terms of data collection processing Besacier et al. (2014a) enumerate the chal-

lenges for developing low resource ASR systems to include the fact that phonologies

(or language sound systems) differ across languages, word segmentation problems,

fuzzy grammatical structures, unwritten languages, lack of native speakers having

technical skills and the multidisciplinary nature of ASR constitute impedance to

Chapter 2 I. J. Alamina 33

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Figure 2.2: Automatic Speech Recognition Pipeline showing main components of
Feature Extraction, Acoustic Model, Language Model and Lexicon Model (Besacier
et al., 2014a).

ASR system building.

2.2 Low Resource Speech Recognition

In this system building speech recognition research, the focus was on the develop-

ment of a language model and an end-to-end speech model comparable in perfor-

mance to state of the art speech recognition system consisting of an acoustic model

and a language model. Low resource language and acoustic modelling are now re-

viewed keeping in mind that little work has been done on low-resource end-to-end

speech modelling when compared to general end-to-end speech modelling and gen-

eral speech recognition as a whole.

From an engineering perspective, a practical means of achieving low resource

speech modelling from a language rich in resources is through various strategies of

the Machine Learning sub-field of transfer learning.

Transfer learning takes the inner representation of knowledge derived from train-

ing algorithm used from one domain and applies this knowledge in a similar domain

having different set of system parameters(Ramachandran, Liu, & Le, 2016). Early

work of this nature for speech recognition is demonstrated in (Vu & Schultz, 2013)

where multi-layer perceptrons were used to train multiple languages rich in linguistic

resources. In a later section entitled “speech recognition on a budget”, a transfer

34 Chapter 2 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

learning mechanism involving deep neural networks from (Kunze et al., 2017) is

described.

2.2.1 Low Resource language modelling

General language modelling is reviewed and then Low resource language modelling

is discussed in this section. In section 2.1, recall from equation 2.3, the general

speech model influenced by Bayes’ theorem.

P (wi|O) = P (O|wi)P (wi)
P (O) (2.5)

The speech recognition model is a product of an acoustic model (likelihood

probability),P (O|wi) and the language model (prior probability),P (wi). The devel-

opment of language models for speech recognition is discussed in Juang and Furui

(2000) and Young (1996).

Language modelling formulate rules that predict linguistic events and can be

modelled in terms of discrete density P (W), where W = (w1, w2, ..., wL) is a word

sequence. The density function P (W) assigns a probability to a particular word

sequenceW . This value determines how likely the word is to appear in an utterance.

A sentence with words appearing in a grammatically correct manner is more likely

to be spoken than a sentence with words mixed up in an ungrammatical manner,

and, therefore, is assigned a higher probability. The order of words therefore reflect

the language structure, rules, and conventions in a probabilistic way. Statistical

language modeling therefore, is an estimate for P (W) from a given set of sentences,

or corpus.

The prior probability of a word sequence w = w1, . . . , wk required in equation

(2.2) is given by:

P (w) =
K∏
k=1

P (wk|wk−1, . . . , w1) (2.6)

The N-gram model is formed by the conditioning of the word history in equation

2.6. This therefore becomes:

P (w) =
K∏
k=1

P (wk|wk−1, wk−2, . . . , wk−N+1) (2.7)

Chapter 2 I. J. Alamina 35

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

N is typically in the range of 2-4.

N-gram probabilities are estimated from training corpus by counting N-gram oc-

currences. This is plugged into maximum likelihood (ML) parameter estimate. For

example, Given that N=3 then the probability that three words occurred is assum-

ing C(wk−2wk−1wk) is the number of occurrences of the three words C(wk−2wk−1) is

the count for wk−2wk−1wk then

P (wk|wk−1, wk−2) ≈ C(wk−2wk−1wk)
C(wk−2wk−1) (2.8)

The major problem with maximum likelihood estimation schemes is data sparsity.

This can be tackled by a combination of smoothing techniques involving discounting

and backing-off. The alternative approach to robust language modelling is the so-

called class based models (Brown, Desouza, Mercer, Pietra, & Lai, 1992; Kuhn &

Mori, 1990) in which data sparsity is not so much an issue. Given that for every

word wk, there is a corresponding class ck, then,

P (w)
K∏
k=1

P (wk|ck)p(ck|ck−1, . . . , ck−N+1) (2.9)

In 2003, Bengio, Ducharme, Vincent, and Jauvin (2003) proposed a language

model based on neural Multi-Layer Perceptrons (MLPs). These MLP language

models resort to a distributed representation of all the words in the vocabulary such

that the probability function of the word sequences is expressed in terms of these

word-level vector representations. The performance of the MLP-based language

models was found to be, in cases for models with large parameters, better than the

traditional n-gram models.

Improvements over the MLPs still using neural networks over the next decade

include works of T. Luong, Socher, and Manning (2013); Mikolov, Deoras, Kom-

brink, Burget, and Černockỳ (2011); Sutskever, Vinyals, and Le (2014), involved

the utilisation of deep neural networks for estimating word probabilities in a lan-

guage model. While a Multi-Layer Perceptron consists of a single hidden layer, in

addition to the input and output layers, a deep network, in addition to having several

hidden layers, is characterised by complex structures that render the architecture

beyond the basic feed forward nature. Particularly, for Recurrent Neural Network

36 Chapter 2 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

(RNN) architectures, we also have some feedback neurons in addition to the forward

neurons where data flows in the reverse direction, from output to input.

Furthermore, the probability distributions in these deep neural networks were

either based upon word or sub-word models, this time having representations which

also conveyed some level of syntactic or morphological weights to aid in establishing

word relationships. These learned weights are referred to as token or unit embedding

(Pennington, Socher, & Manning, 2014).

For the neural network implementations so far seen, a large amount of data is

required due to the nature of the vocabularies to be large, even for medium-scale

speech recognition applications. Y. Kim, Jernite, Sontag, and Rush (2016) on the

other hand took a different approach to language modelling taking advantage of the

long-term sequence memory of long-short-term memory cell recurrent neural network

(LSTM-RNN) to model a language based on characters rather than on words. This

greatly reduced the number of parameters involved and therefore the complexity of

implementation. This method is forms the basis of the Wakirike language model

implementation in this work due to the low resource constraints gains made when

using a character-level language model.

Other low resource language modelling strategies employed for the purpose of

speech recognition was demonstrated by Xu and Fung (2013). The language model

developed in that work was based on phrase-level linguistic mapping from a high re-

source language to a low resource language using a probabilistic model implemented

using a Weighted Finite State Transducer (WFST). This method uses WFST rather

than a neural network due to scarcity of training data required to develop a neural

network. However, it did not gain from the high non linearity ability of a neural net-

work model to discover hidden patterns in data, being a shallower Machine Learning

architecture.

The language model implemented in this thesis report uses a character-based

Neural network language model that employs a recurrent neural network similar

to that of Y. Kim et al. (2016), however based on Gated Recurrent Unit (GRU)

RNNs (Cho et al., 2014), for the Wakirike language which is a low resource lan-

guage, bearing in mind that the character level network will reduce the number of

parameters required for training, just enough to develop a working language model

Chapter 2 I. J. Alamina 37

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

for the purpose of speech recognition.

2.2.2 Low Resource Acoustic and speech modelling

Two transfer learning techniques for acoustic modelling investigated by Povey, Bur-

get, et al. (2011) and Ghoshal, Swietojanski, and Renals (2013) respectively include

the Sub-space Gaussian Mixture Model (SGMM) and the use of pretrained hidden

layers of a deep neural network trained multilingually as a means to initialise weights

for an unknown language. This second method of low resource modelling has been

informally referred to as the hat-swap method.

Recall that one of the challenges associated with new languages is that phonetic

systems differ from one language to another. Transfer learning approaches attempt

however to recover patterns common to seemingly disparate systems and model

these patterns.

The physiologic speech production mechanism is based on the premise that

sounds are produced by approximate movements and positions of articulators that

comprise the human speech production system and that this mechanism is common

to all humans. It is possible to model dynamic movement from between various

phones as tied state mixture of Gaussians. These dynamic states modelled using

Gaussian Mixture Model (GMM) are also called senones. Povey, Burget, et al. (2011)

postulated a method to factorize these Gaussian mixtures into a globally shared set

of parameters that are non-dependent individual HMM states. These factorisations

model senones that are not represented in original data and thought to be a rep-

resentation of the overall acoustic space. While preserving individual HMM states,

the decoupling of the shared space and its reuse makes SGMMs a viable candidate

for transfer learning of acoustic models for new languages.

The transfer learning procedure proposed in Ghoshal et al. (2013) employed the

use of Deep Neural Networks, in particular Deep Belief Network (DBN)s (Bengio,

Lamblin, Popovici, & Larochelle, 2007). Deep Belief Networks are pretrained, layer-

wise stacked s (RBMs)(Smolensky, 1986). The output of this network trained on

senones correspond to HMM context dependent states. However, by decoupling

hidden layers from outer and output layers and fine-tuned to a new language, the

network is shown to be insensitive to the choice of languages analogous to global

38 Chapter 2 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

parameters of SGMMs. The 7-layer, 2000 neuron per layer network used did not

utilise a bottleneck layer corresponding to triphone states trained on MFCC features

(Grezl & Fousek, 2008).

2.3 Groundwork for low resource end-to-end speech

modelling

The underpinning notion of this work is firstly a departure from the extra processing

required for bottom-to-top that comes as a byproduct of the generative process spon-

sored by the HMM-based speech models. This has an advantage of simplifying the

speech pipeline from acoustic, language and phonetic model to just a speech model

that approximates the same process. Secondly, the model developed seeks to over-

come the data intensity barrier and was seen to achieve measurable results for GRU

RNN language models. Therefore adopting the same character-based strategy, this

research performed experiments using the character-based bi-directional recurrent

neural networks (BiRNN). However, BiRNNs researchers have found them like other

deep learning algorithms, too be quite data intensiveA. Hannun et al. (2014). The

next paragraphs introduce Deep-speech BiRNNs and the two strategies for tackling

the data intensity drawback as related with low resource speech recognition.

2.3.1 Deep speech

Up until recently, speech recognition research has been centred on improvements of

the HMM-based acoustic models. This has included a departure from generative

training of HMM to discriminative training (Woodland & Povey, 2000) and the use

of neural network precursors to initialise the HMM parameters (Mohamed, Dahl,

Hinton, et al., 2012). Although these discriminative models brought improvements

over generative models, being HMM dependent speech models they lacked the end-

to-end nature. This means that they were subject to training of acoustic, language

and phonetic models. With the introduction of the Connectionist Temporal Clas-

sification (CTC) loss function, Graves and Jaitly (2014) finally found a means to

end-to-end speech recognition departing from HMM-based speech recognition.

Chapter 2 I. J. Alamina 39

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

The architecture of the Deep-speech end-to-end speech recognition model (A. Y. Han-

nun, Maas, Jurafsky, & Ng, 2014) follows an end-to-end Bi-directional Recurrent

Neural Network (BiRNN) and CTC loss function (Graves et al., 2006). The CTC

loss function uses a modified beam search to sum over all viable sequences of the

input and output sequence space alignments so as to maximise the likelihood of the

output sequence characters.

2.3.2 Speech Recognition on a low budget

In this section, a recent transfer learning speech model (Kunze et al., 2017) that

has some characteristics similar to the speech model developed in this thesis is

reviewed. The end-to-end speech model described by Kunze et al. (2017) is based

on that developed by Collobert, Puhrsch, and Synnaeve (2016) and is based on deep

convolutional neural networks rather than the Bi-RNN structure proposed by this

work. In addition it uses a loss function based on the AutoSegCriterion which is

claimed to work competitively with raw audio waveform without any preprocessing.

The main strategy for low resource management in their system was the freezing of

some layers within the convolutional network layer. The low resource mechanisms

used in this work includes the use of a unique scattering network being used as input

features for the BiRNN model. The fascinating similarity between the end-to-end

BiRNN speech model developed in this work and the transfer learning model in

Kunze et al. (2017) is the fact that the scattering network input is equivalent to the

output of a light-weight convolutional neural network S. Mallat (2016). Therefore

the proposed system then approximates a combination of a recurrent neural network

as well as a convolution neural network without the overhead of actually training a

convolutional neural network (CNN)(Szegedy et al., 2015).

Introduction of the unique scattering network is discussed in the next section.

It is worthy to note however that Kunze et al. (2017) uses a CNN network only

while Amodei et al. (2016) uses both RNN and CNN networks. The speech model

in this thesis uses a BiRNN model and combines an RNN model with the scattering

layer which represents a light-weight low resource friendly pseudo enhanced CNN

backing. What is meant by pseudo enhanced CNN backing is reserved for the next

section. The proposed speech model therefore, in this thesis, stands to gain from an

40 Chapter 2 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

enhanced but lightweight CNN combined with RNN learning.

2.3.3 Adding a Scattering layer

In Machine Learning, training accuracy is greatly improved through a process de-

scribed as feature engineering. In feature engineering, discriminating characteristics

of the data are enhanced at the same time non-distinguishing features constituting

noise are removed or attenuated to a barest minimum. A lot of the components

signal speech signal are due to noise in the environment as well as signal channel

distortions such as losses due to conversion from audio signals to electrical signal in

the recording system.

In Figure 2.2, feature engineering is done at the feature extraction stage of the

ASR pipeline. It has been shown that a common technique using Mel Frequency

Cepstral Coefficients (MFCC) (Davis & Mermelstein, 1980) can represent speech in

a stable fashion that approximate how the working of the human auditory speech

processing and is able to filter useful components in the speech signal required for

human speech hearing. Similar feature processing schemes have been developed

include Perceptual Linear Prediction (PLP) (Hermansky, 1990) and RelAtive Spec-

TrAl (RASTA) (Hermansky & Morgan, 1994).

The scattering spectrum defines a locally translation invariant representation of a

signal resistant to signal deformation over extended periods of time spanning seconds

of the signal (Andén & Mallat, 2014). While Mel-frequency cepstral coefficients

(MFCCs) are cosine transforms of Mel-frequency spectral coefficients (MFSCs), the

scattering operator consists of a composite wavelet and modulus operation on input

signals.

Over a fixed time, MFSCs measure signal energy having constant Q bandwidth

Mel-frequency intervals. This procedure is susceptible to time-warping signal dis-

tortions since these information often reside in the high frequency regions discarded

by Mel-frequency intervals. As time-warping distortions is not explicit classifier ob-

jective when developing these filters, there is no way to recover such information

using current techniques.

In addition, short time windows of about 20 ms are used in these feature extrac-

tion techniques since at this resolution speech signal is mostly locally stationary.

Chapter 2 I. J. Alamina 41

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Again, this resolution adds to the loss of dynamic speech discriminating informa-

tion on signal structures that are non-stationary at this time interval. To minimize

this loss Delta-MFCC and Delta-Delta-MFCCs (Furui, 1986) are some of the means

developed to capture dynamic audio signal characterisation over larger time scales.

By computing multi-scale co-occurrence coefficients from a wavelet-modulus op-

eration, Andén and Mallat (2011) show that non-stationary attributes of a signal lost

by MFSC coefficients is regained in multi scale co-occurrence coefficients. The scat-

tering transform therefore, derives a scattering representation with an interpretation

similar to MFSC-like measurements. Together with higher-order co-occurrence co-

efficients, deep scattering spectrum coefficients represent audio signals similar to

models based on cascades of constant-Q filter banks and rectifiers. In particular,

second-order co-occurrence coefficients contain relevant signal information capable

of discriminating dynamic information lost to the MFCC analog over several sec-

onds and therefore a more efficient discriminant than the MFCC representation.

Second-order co-occurrence coefficients calculated by cascading wavelet filter banks

and rectified using modulus operations have been evaluated as equivalent to a light-

weight convolutional neural networks whose output posteriors are computed at each

layer instead of only at the output layer (S. Mallat, 2016).

The premise for this work is that low speech recognition can be achieved by

having higher resolution features for discrimination as well as using an end-to-end

framework to replace some of the cumbersome and time-consuming hand-engineered

domain knowledge required in the standard ASR pipeline. In addition, this research

work makes contributions to the requirements for the two tracks specified in the

Zero Resource challenge of 2015 (Versteegh et al., 2015). The first requirement is

sub-word modelling satisfied by using deep scattering network and the second that

of spoken term discovery criteria being satisfied by the end-to-end speech model

supplemented with a language model.

2.4 Chapter Summary

Chapter 1 introduces the key terms Discriminative and Generative classification. In

this Chapter, these two different classification mechanisms are compared and con-

42 Chapter 2 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

trasted as they relate to speech recognition. The Hidden Markov Model (HMM) is

considered as the key Generative algorithm used in speech recognition. This chap-

ter discusses the HMM algorithm and outlines its limitations in speech recognition.

Other challenges associated with speech recognition and low speech recognition are

discussed.

The method taken by this research towards low resource recognition is described

as well as current related research in speech recognition involving low resource dis-

criminative strategies. In addition, transfer learning approaches in low speech speech

recognition are previewed. This chapter also outlines the addition of a scattering

layer towards increasing discriminating feature tangibility for speech recognition.

Chapter 2 I. J. Alamina 43

Chapter 3

Methods, Models and Systems

This chapter describes the system building methodology (Nunamaker Jr, Chen, &

Purdin, 1990) as applied to deep recurrent architectures for speech recognition. As

this approach involves theory building, system development, experimentation and

observation, this chapter describes the procedures which were incorporated in order

to achieve the aims and objectives of this research.

In order to arrive at the initial research questions and hypothesis a literature

survey of speech processing advances was carried out.

The initial research topic was centred around a language learning companion.

Thus, a mini survey was conducted on recipients’ use of technology in general learn-

ing. After the literature survey, the research was narrowed down to core language

technology assistive features and speech recognition for low resource languages was

the chosen area of research focus.

This research develops several software systems based on knowledge acquired

from the literature survey in order to gain deeper understanding into the state of

the art research results as well as building upon baseline systems in order to achieve

the research aims and objectives. It was through this methodology that the final

systems developed in chapters six and seven were designed and developed as a unique

combination of existing research systems. While the system built in chapter seven

is a combination of systems in order to generate knowledge in the field of speech

recognition, the value added from the system built in chapter six relates to using

already successful methods in speech recognition on a new language having linguistic

data challenges.

44

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

3.1 Assumptions

This research makes the following assumptions.

i. The first assumption is that Software engineering systems are successfully

developed using an incremental and iterative manner of increasing complexity.

ii. End-to-end speech models are more conservative on actual software engineer-

ing complexity and in that respect are said to be utilised towards low resource

speech recognition.

iii. End-to-end speech recognition has been made possible using recurrent neural

networks (RNNs) and connectionist temporal classification (CTC) algorithms.

iv. By having a higher number of features, Deep scattering networks (DSNs) can

better detect speech than state of the art Mel Frequency Cepstral Coefficients

(MFCCs).

v. There is knowledge to be gained in the application of speech models to new

languages.

Based on the above assumptions this research proposes that there is much knowl-

edge to be gained from combining the use of Scatter transform features with RNNs

and application of current deep RNNs in the modelling of the Wakirike language.

This knowledge includes among others: How well does the DSN features train us-

ing an end-to-end approach? What range of features can be discovered using the

DSN approach? How fast can we train models using DSN features in end-to-end

ASR modelling? Are there benefits to be gained by applying sequence models to

low-resource ASR systems?

3.2 Speech Processing software and tools

This research set out to build and evaluate several speech processing systems. Some

of the systems were built by hand from scratch; however, the end products were

adaptations of already existing open source speech recognition research projects.

The systems and platforms adapted for this research include the following:

Chapter 3 I. J. Alamina 45

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

• CMUSphinx

• Kaldi

• Mozilla DeepSpeech

• Scatternet toolbox

• Matlab

• Tensorflow

• Choregraphe

• ESPNet

While the research sought to focus on speech models for the Wakirike language,

several other sub systems were required for but development of the baseline models

in addition to the final model the following system development steps were taken to

arrive at the final output models:

• Auto-correlation experiments

• Experiments with Nao robot

• CMUSphinx Digits speech recogniser

• Digit speech recogniser using Kaldi

• Python based speech alignment experiments

• Sequence-to-sequence grapheme-to-phoneme (G2P) model

• TensorFlow sequence-to-sequence character-to-diacritically-labelled-character

model

• GRU language model for Wakirike language based on TensorFlow

• Bi-Directional LSTM-based end-to-end speech model

• End-to-End Speech Network Toolkit (ESPNet) Experiments

In the following sections, the tools utilised for the systems developed and how

they were utilised is discussed. Subsequently, the actual systems developed incre-

mentally towards the final models are described.

46 Chapter 3 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Figure 3.1: CMU Sphinx4 recogniser system. The core modules: FrontEnd, Decoder
and Linguist coloured in grey.

3.2.1 CMUSphinx

The CMU Sphinx recogniser system is illustrated in Figure 3.1. In a speech appli-

cation or experiment, the recogniser is called within the user application and is fed

with input and other control parameters that determines the recogniser behaviour.

From the illustration, it is observed how the components of feature extraction, acous-

tic modelling, language modelling and decoding are linked within the CMU Sphinx

system. Note that for identification and clarity classes/modules are capitalised in

the following paragraphs.

In the CMU Sphinx realisation, the FrontEnd module implements feature ex-

traction. The Linguist module implements the acoustic modelling and the lan-

guage model component. Finally, the Decoder module implements a decoder. The

ConfigurationManager class is used to determine the behaviour of the recogniser

by specifying the parameters of the other modules.

From this implementation, the FrontEnd processor is the signal processing unit of

Sphinx-4 parameterising signals using various implementations into a final sequence

of Features. The Linguist is in charge of language and pronunciation modelling.

This includes phonetic information from the Dictionary and structural information

from one or more sets of LanguageModels and AcousticModels. The output of the

Linguist is a SearchGraph. The Feature’s output from the FrontEnd and the

Chapter 3 I. J. Alamina 47

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

SearchGraph output from the Linguist become the input for the SearchManager

in the Decoder. The output of the decoder are Results objects. At any time prior to

or during the recognition process, the researcher can via his application application

issue Controls through the ConfigurationManager to each of the modules, and

become a partner in the recognition process. The following subsections summarise

the submodules (Walker et al., 2004).

FrontEnd Module

Being consistent with having a “pluggable” framework, CMU Sphinx4 has the abil-

ity that most of its components can be replaced and at run-time. This flexibility

allows various implementations of the comprising components of the recogniser.

Accordingly, the front end supports but is not limited to Mel Frequency Cepstral

Coefficients (MFCC), Perceptual Linear Prediction (PLP) and Linear Predictive

Coding (LPC) implementations. In addition, comprising modules within the vari-

ous implementations include support for various signal processing utilities such as

Hamming Windows, Discrete Cosine Transform (DCT), Bark Frequency Warping,

Mel Frequency Filtering, Cepstral Mean Normalisation (CMN) etc. All the tasks

therefore required by the feature extraction process are implemented in this module.

Linguist

The job of the Linguist is to model the higher order and lower order grammar con-

tent of the audio input. This particular module caters for the acoustic model and

the language model. The various Linguist implementations allow CMU Sphinx-

4 to support different tasks such as traditional Context Free Grammar (CFG),

Finite-State Grammars (FSGs), finite-state transducers and small N-gram language

models. This module has three pluggable modules representing the Dictionary,

LanguageModel and AcousticModel. The Dictionary comprises the pronunciation

of all the words to be used in the Decoder. Sphinx-4 Linguist provides primary

support for the CMU Pronouncing Dictionary (Carnegie Mellon University, 2016).

The SearchGraph produced by the Linguist is capable of sharing parameters such

48 Chapter 3 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

as Gaussian mixtures, transition matrices and mixture weights and Sphinx-4 pro-

vides a single Acoustic model supporting acoustic models generated by the Sphinx-

3 trainer. Depending on the memory architecture various implementations of the

Linguist include the FlatLinguist, DynamicFlatLinguist and LexTreeLinguist.

These will either create the SearchGraph entirely in memory or on demand. Finally,

the LanguageModel supports a variety of formats such as SimpleWorldListGramar

which as the name implies supports a simple word list. The JSGFGramar is a BNF-

style platform-independent realisation of the Java Speech API Grammar format.

LMGrammar produces a bigram model. FSTGrammar supports finite-state transducer

ARPA FST grammar format. The SimpleNGramModel support N-gram model and

the LargeTriGramModel is suited to optimise memory storage.

Decoder

Provides a pluggable SearchManager to simplify decoding. Decoder tells SearchManager

to recognise a set of Feature frames. This creates a Result object that contains

all the paths that have reached a final non-emitting state(i.e. Word endings). Ap-

plications can modify the search space and Result object between steps, permitting

the application to become a partner in the recognition process. The SearchManager

is not restricted on any particular implementation, examples include Frame syn-

chronous Viterbi, Bushderby, A*, bi-directional and parallel searches.

Each SearchManager uses a token passing algorithm described by (Young, Rus-

sel Thornton, 1989). A sphinx-4 token is an object that is associated with a

SearchState and contains the overall acoustic and language scores of the path

at a given point, a reference to the SearchState, a reference to an input Feature

frame, and other relevant information.

The SearchManager sub-framework generates ActiveLists from currently ac-

tive tokens in the search trellis by pruning using a pluggable Pruner. These in turn

can be modified by the application to perform both relative and absolute beam

pruning.

The SearchManager sub-framework also communicates with the Scorer, a plug-

gable state probability estimation module that provides state output density values

Chapter 3 I. J. Alamina 49

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

on demand.

Other modules

ConfigurationManager allows various module implementations to be combined in

various ways. Finally, we illustrate how the ConfigurationManager creates Au-

tomatic Speech Recognition (ASR) experiments using the CMU-sphinx4 objects

described above in the sample program from Lamere et al. (2003)

package com . example ;

import java . i o . F i l e ;

import java . i o . Fi le InputStream ;

import java . i o . InputStream ;

import edu . cmu . sphinx . api . Con f igurat ion ;

import edu . cmu . sphinx . api . SpeechResult ;

import edu . cmu . sphinx . api . StreamSpeechRecognizer ;

public class TranscriberDemo {

public stat ic void main (St r ing [] a rgs) throws Exception {

Conf igurat ion c on f i gu r a t i on = new Conf igurat ion () ;

c on f i gu r a t i on

. setAcousticModelPath (" r e s ou r c e : en−us ") ;

c on f i gu r a t i on

. se tDict ionaryPath (" r e s ou r c e : cmudict−en−us . d i c t ") ;

c on f i gu r a t i on

. setLanguageModelPath (" r e s ou r c e : en−us . lm . bin ") ;

StreamSpeechRecognizer r e c o gn i z e r = new StreamSpeechRecognizer (

c on f i gu r a t i on) ;

InputStream stream = new Fi leInputStream (new F i l e (" t e s t . wav")) ;

r e c o gn i z e r . s t a r tRecogn i t i on (stream) ;

SpeechResult r e s u l t ;

50 Chapter 3 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

while ((r e s u l t = r e c ogn i z e r . ge tResu l t ()) != null) {

System . out . format (" Hypothes is : ␣%s \n" , r e s u l t . getHypothes i s ()) ;

}

r e c o gn i z e r . s topRecogn i t ion () ;

}

}

The above java code sample represents a user application. We see three classes be-

ing imported. The Configuration, SpeechResult, and StreamSpeechRecognizer

class. The Configuration object holds resources for the acoustic model, language

model and phonetic dictionary. The SpeechRecognizer object has different im-

plementations representing the source of the speech signal. In the above sam-

ple the StreamSpeechRecogniser class is used to load the speech signal from a

wave (.wav) file. However other speech signal sources are available such as the

LiveSpeechRecogniser which implements loading the speech sound signal from a

microphone device if available. In addition, Walker et al. (2004) 4 asserts that the

Sphinx-4 system provides additional tools and utilities that contain helper classes for

computing recognition statistics such as Word Error Rate (WER), phoneme error

rates (PER) etc.

3.2.2 Kaldi

CMU Sphinx provides an object-oriented approach to speech recognition. Kaldi

Povey, Ghoshal, et al. (2011) on the other hand is a highly modularised library writ-

ten in C++. Kaldi is based on weighted finite state transducers (WFSTs) used for

inference graphs and decoding. The Kaldi WFSTs utilises OpenFst, an open source

library, at its core. Together with a collection of configuration scripts for building

complete recognition systems, Kaldi supports modeling of a variety of speech model

variations with vast support for linear and affine transforms of speech features of ar-

bitrary phonetic-context sizes. Kaldi is specifically suited for acoustic modeling with

subspace Gaussian Mixture Models (SGMM) in addition to the standard Gaussian

Mixture Models (GMMs).

Chapter 3 I. J. Alamina 51

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Figure 3.2: The Kaldi Architecture(Povey, Ghoshal, et al., 2011) has four layers. At
the deepest layer are the external libraries, followed by the C++ back-end library.
At the top: are the C++ executables called by shell scripts

Architecture

The component architecture of Kaldi is illustrated in the figure below. Modules

can be divided into those that utilise the linear algebra libraries and those that use

OpenFST. The decodable class forms the link between these two scopes. The rest

of the modules lower down the hierarchy are based on modules higher up hierarchy

according to this divide.

Feature Extraction

Kaldi supports various speech feature outputs including the standard Mel Frequency

Cepstral Coefficients (MFCC), Perceptual Linear Prediction (PLP), Vocal Tract

Length Normalisation (VTLN), Cepstral Mean Variance Normalisation (CMVN),

Linear Discriminant Analysis (LDA), Semi-Tied Co-variance matrix (STC),Maximum

Likelihood Linear Transformation (MLLT), Heteroscedastic Linear Discriminant

Analysis (HLDA). These systems are made complete with various configuration

parameters for fine tuning their individual models.

52 Chapter 3 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Acoustic Modelling

Full co-variance as well as diagonal co-variance GMM modelling is implemented in

Kaldi. Efficient log-likelihoods are computed using simple dot products of mean

times in-variance and in-variance co-variance. The DiagGmm class is responsible for

storing co-variances of Gaussian densities. The Acoustic Modelling (AM) class rep-

resented by the AMDiagGmm class comprise a set of DiagGmm objects. These objects

which represent Gaussian Mixture Models (GMMs) are in turn represented Prob-

ability Density Function (PDF) indices which are then mapped to Hidden Markov

Model (HMM) states. There are classes to represent HMM topology as well as the

overarching topology representing transition modelling. These two sets of classes

provide information required for developing decoding graphs. Rather than using

the conventional approach for HMM modelling using hand-made decision tree for

left and right phones in a mono-phone model, tree-clustering algorithms automati-

cally generate the decision tree.

Language Modelling and Decoding Graphs

Using the Finite-State Transducer (FST) back in addition to third party language

modelling software, Kaldi is able infer sentence estimations using n-gram language

models. During decoding, transition-ids are created and attached to corresponding

pdf-IDs as a result of tied-state nature of phones where different phones are al-

lowed to have share the same distribution. The transition-id therefore encapsulates

the shared pdf-ID and the arc (transition) of phone-specific topology. This way

transitions are fine-grained without adding complexity to the decoding graph

Core decoding algorithms are implemented using C++ classes one per decoder.

Decoders implement an interface which accepts an acoustic model score for a partic-

ular input-symbol and frame. While single-pass decoding is achieved through C++

classes, multi-pass decoding is realised using the supporting configuration scripts.

Chapter 3 I. J. Alamina 53

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

3.2.3 Mozilla DeepSpeech

The DeepSpeech speech-to-text engine is an ASR speech model and model generator

built by Mozilla is based on Baidu’s Deep Speech research paper (A. Hannun et al.,

2014). The system comes in two forms; an installable speech-to-text engine based

on the English language and the model trainer. These components were created

and run effectively on Unix based systems and to a limited extent on Microsoft

Windows systems. Various options for installing the speech to text engine includes

either command line based or as an application programming interface (API) using

python or NodeJS. In addition, the speech-to-text (STT) engine API also supports

bindings for the Rust language, GoLang and GStreamer. This thesis however, did

not rely on the STT engine nor API, but rather on the model trainer which was

adapted in this research for scattering transform feature-based end-to-end speech

recognition.

Runtime library dependencies of both the STT engine and the model trainer in-

clude libsox, 2 for sound processing of audio; libstdc++6, libgomp1 and libpthread

are used to compile the Connectionist Temporal Classification (CTC) decoder im-

plementation which incorporates the KenLM trained language model (Heafield,

Pouzyrevsky, Clark, & Koehn, 2013).

Graphics Processor Unit (GPU)-Enabled Speech Model Training

The model trainer of the Mozilla DeepSpeech platform is facilitated by the ability

to train models on a highly parallel processing Graphics Processing Unit (GPU).

This enables model training-time speed-ups over traditional CPU machines. The

Mozilla DeepSpeech platform recommends Nvidia Graphics 10 series processor with

a system requirement of 8GB of Random Access Memory (RAM). In section 3.2.5

we introduce TensorFlow python library. Mozilla DeepSpeech platform is able to

utilise the GPU using the Nvidia GPU library, CUDA. This is achieved through the

python TensorFlow library created by Google as discussed in section 3.2.5.

54 Chapter 3 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Common Voice training

The speech corpus used for training in this research was obtained from the Mozilla

Common Voice Initiative speech corpora. This consists of over 250 hours of speech

data that is subdivided into test, development and training data sets. In addition,

the data was subdivided into clean data, that is, clean audio recording with accurate

translation and a small subset containing skewed data, that is, audio recording

which was either noisy or lacking accurate transcriptions. The skewed data subset

consisted 15-25% of the training corpus and was incorporated so that the neural

network speech model could simulate and learn real world noisy audio speech-to-

text translation. The Mozilla DeepSpeech model trainer provided bash scripts for

importing the Common Voice speech corpora as well as converting the files into the

appropriate formats and provision of mapping files for the model trainer.

Mozilla DeepSpeech model parameters

The model trainer consists of a root python script “DeepSpeech.py” with various

calls to other python scripts responsible for things like audio processing, distributed

training, GPU configuration, training coordination. Other accessory bash scripts

also present are responsible for downloading and training for different kinds of speech

corpora including Mozilla Common Voice(Ardila et al., 2019) and the Wall Street

Journal (WSJ)(Paul & Baker, 1992). These sets of scripts are referred to as speech

corpus importers.

In order to supply the model trainer with a set of hyper parameters for tun-

ing various aspects of the Mozilla DeepSpeech platform, the following categories

arguments passed to the root script ensue:

• Geometry - Defines the number of neurons in the hidden layers of the neural

network.

• Cluster configuration - Parameters responsible for distributed training of the

speech model across various nodes.

• Global constants - These include all other parameters to gain fine control

Chapter 3 I. J. Alamina 55

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

of the training process. These parameters include how much of the training

corpus will be used and which subset should be included; early stopping for

pre-trained models that have already been trained to saturation, that is to a

stopping condition; the dropout rate for neural network regularisation. This is

a strategy to overcome over-fitting where instead of learning inference features

the data, the neural network memorizes the training data.

• Global constants - These include all other parameters to gain fine control

of the training process. These parameters include how much of the training

corpus will be used and which subset should be included; early stopping for

pre-trained models that have already been trained to saturation, that is to a

stopping condition; the dropout rate for neural network regularisation. This is

a strategy to overcome over-fitting where instead of learning inference features

the data, the neural network memorizes the training data.

• Adam optimiser - parameters for the Adam optimiser

• Batching - set the number of batches during training.

• Weight Initialisation - standard deviation coefficients for initialising weights.

• Checkpointing - this includes the number of seconds before saving the current

model parameter values to the disk. This enables resumption of training in

instances where the training was interrupted. For training to resume success-

fully, the resuming training geometry parameter must be exactly the same as

the interrupted geometry training parameter.

• Exporting - Includes parameters for saving a saturated model for inference.

• Reporting - Includes options for setting the log-level however reports are only

sent to the standard console output.

• Decoder - These parameters include the path to the alphabet symbols and

that of the custom CTC decoder used during decoding of the neural network

output.

56 Chapter 3 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

• Inference - It is possible to use a model trainer to either perform a one-shot

inference or resume training from an already exported model. The parameters

used for inference are responsible for performing these stated tasks.

In addition to the above configuration there are other accessory scripts that can

be used for TensorFlow specific tasks such as conversion of the output model graph

to several exportable formats.

3.2.4 Matlab and ScatNet toolbox

In this research, feature processing of audio files to obtain their deep scattering

transforms was achieved using a MATLAB toolbox known as ScatNet (Andén et al.,

2014). The ScatNet toolbox in general analyses time-series sampled analog signals

and has been used successfully for music genre classification, texture and image

classification (Andén & Mallat, 2011; Sifre & Mallat, 2013, 2014). In particular,

the scattering transforms produced are signal processing layers of increasing width

where each layer constitutes the convolution of a linear filter bank wavelet operator

(Wop) with a non linear complex modulus.

||complex signal| ?Wop| ? (low-pass filter) (3.1)

It is the scattering transforms of the audio files that were fed into the DeepSpeech

model trainer discussed in Section 3.2.3. The architecture of a scattering networks

resembles a deep convolutional network in the sense that each subsequent layer is a

mapping of all possible paths from the previous layer.

ScatNet provides default options for most of the parameters that require tuning

in order to derive the scattering coefficients for an input signal. In particular, for

audio signals, the most important hyper-parameters set by the library is the number

of scattering layers that captures the entire audio spectrum which is set at 2. In

addition to this default, the only other parameter to set is the window period of

the signal to be analysed per time. A suitable value for the window can be derived

from the sampling rate of the input signal. The toolbox function S=scat(x,Wop)

takes a an input signal, x, and an array of linear wavelet operators, Wop, in order to

compute the scattering coefficients of the input signal. The resulting network, S is

Chapter 3 I. J. Alamina 57

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

a cell array whose length M + 1 is equivalent to that of the linear filter operator.

Wavelet Factories

By providing optimal defaults for linear operators, ScatNet provides wavelet factories

especially suited for efficient signal processing of images and sounds. Therefore,

linear wavelet operators are built in a single command function through built-in

“factories”, which perform wavelet analysis tasks.

Further, the maximum number of wavelets J is automatically derived from the

sampling from the sampling period T . The filter banks are formed by dilating

the mother wavelet (ψ) by the dyadic factor (21/Q). In the Fourier domain this is

expressed as

ψ̂j(ω) = ψ̂(2j/Qω) (3.2)

For audio application, to ensure optimized frequency coverage without frequency-

redundancy or overlapping, the mother wavelet (ψ) is chosen so that (Q1 = 8) and

(Q2 = 1) by default. This also means that the first order filter will be of a higher

frequency resolution when compared to the second order filter.

Filter banks

In order to visualise the filters being used by the wavelet operations and referring to

Sections (5.5 and 7.1) where it is shown that the first and second order scattering

coefficients are respectively defined by the following forms

S1x(t, j1) = |x ? ψj1| ? φ(t) (3.3)

S2x(t, j1, j2) = ||x ? ψj1| ? ψj2 | ? φ(t) (3.4)

where (ψj) are band-pass filters and (φ) is a low-pass filter.

Furthermore, the wavelet transform operators(Wop) created by the wavelet_factory_1d

function are only function handles and do not have any data in themselves. A sec-

ond return value may be retrieved from the wavelet factory which contains the set

58 Chapter 3 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

of filters returned as a cell array by the wavelet factory.

[Wop,filters] = wavelet_factory_1d(N, filt_opt);

The filters return argument has a similar structure to the scattering network

where each element in the cell array corresponds to the layer order in the scatter

network hierarchy. Moreover, similar to the the scatter network, the filters cell array

hierarchy hasM+1 elements, where onlyM elements are utilised and no filters exist

at M = 0. The non-zero coefficients of the band pass filters expressed in the Fourier

domain, are held in filtersm.psi.filter field. When plotting these filters, they

are first padded with zeros to the length of N which is the entire spectrum. Below is

the sample plot made against default filters obtained by the wavelet_factory_1d

filter.

The script below calculates filter banks at orders (M = 1) and (M = 2). The

resulting plot is displayed in Figure 3.3.

f igure ;

for m = 1:2

subplot (1 , 2 ,m) ;

hold on ;

for k = 1 : length (f i l t e r s {m} . p s i . f i l t e r)

plot (r e a l i z e _ f i l t e r (f i l t e r s {m} . p s i . f i l t e r {k} , N)) ;

end

hold o f f ;

yl im ([0 1 . 5]) ;

xl im ([1 5∗N/ 8]) ;

end

Using the Matlab API

In the previous sections it was seen how the ScatNet toolbox calculates scatter

coefficients based on wavelet theory. In this section, the scattering spectrum of an

audio signal is implemented using only three command calls to ScatNet library.

The three steps taken in this section are as follows. First load the audio file and

Chapter 3 I. J. Alamina 59

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Figure 3.3: Scatter transform wavelet filter plots of various dilations of J

set the properties of the audio file required for audio processing of the signal within

ScatNet. Note that to do this the sampling rate of the input signal is required. Here,

a clip of Handel’s Messiah, implemented in Matlab as a function is loaded into a

“y” variable by default with the “load handel” command.

Given that the sampling rate of the loaded clip is , the parameters set are

i. N - the number of samples in the signal, and

ii. T - the window size. Here, T is set to 4096 which corresponds to about half a

second.

load handel; % loads the signal into y

N = length(y);

T = 2^12; % length of the averaging window

The second step is to create the filter operators for which the type of filter signal

length, and the window length are passed in as parameters. It has been shown in

the preceding sections that two layers are sufficient to capture energy contained in

an audio signal and by default the quality factors of the two layers are (Q1 = 8)

and (Q2 = 1). These default_filter_options are automatically integrated with the

’audio’, filter type option.

filt_opt = default_filter_options(’audio’, T);

Wop = wavelet_factory_1d(N, filt_opt);

60 Chapter 3 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Note that the wavelet_factory_ functions is an intensive operations because many

filters are being built at once in batch processing of signals discussed in Section

3.2.4, we therefore only perform this as part of the initialisation and the returned

wavelet operators (Wop) can be reused without having to recreate them.

Having all the parameters required, in the third and final step , call the scattering

transform of y generic function scat, to derive the scatter coefficients.

S = scat(y, Wop);

Scatter Feature Enhancements and Batch Processing

Having obtained the scatter coefficients, further feature enhancement is achieved

by taking the log of the normalised coefficients. This can be visualised using the

built-in scattergram function which produces a translation-invariant, second-order,

spectrogram-like visualization of the scattering transform a one-dimensional audio

signal.

In the code snippet below, j1 is the second-order coefficients arbitrarily chosen

to equal 23. The first parameter to scattergram are the first-order coefficients and

the second wildcard [] parameters gathers all paths from the first order.

j1 = 23;

scattergram(S{2},[],S{3},j1);

The following functions in the code snippet below are applied to realise the log

of the normalised scattergram.

S = renorm_scat(S);

S = log_scat(S);

scattergram(S{2},[],S{3},j1);

With the corresponding scattergram illustrated in figure 3.5.

Finally, to utilise the scattering coefficients as features for classification tasks,

we extract the vector form using format_scat function.

[S_table, meta] = format_scat(S);

Chapter 3 I. J. Alamina 61

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Figure 3.4: Unnormalised scattergram

Figure 3.5: Log normalised scattergram

62 Chapter 3 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

The S_table is a P-by-N table, where P is the flattened total of all the scattering

combined coefficients within each layer of the Deep Scattering Network (DSN) and

N is the number of time points. The network is now feature ready for classification

tasks using an affine space classifier.

For batch processing ScatNet provides a database feature which can accept a

collection of input vectors rather than a single input signal. The following commands

show ScatNet commands for performing batch processing on the GTZAN dataset

used for musical genre classification

First, specify the path to the audio target.

src = gtzan_src(’/path/to/dataset’);

Next all the defaults for ScatNet analysis and processing are set as explained in

the previous Sections 3.2.4,3.2.4 and 3.2.4 above.

N = 5*2^17;

T = 8192;

filt_opt.Q = [8 1];

filt_opt.J = T_to_J(T, filt_opt);

scat_opt.M = 2;

Wop = wavelet_factory_1d(N, filt_opt, scat_opt);

feature_fun = @(x)(format_scat(...

log_scat(renorm_scat(scat(x, Wop)))));

It is possible to optimise the training by sub-sampling each signal. The fea-

ture_sampling option is used to specify sub-sampling.

database_options.feature_sampling = 8;

Finally, a call is made to prepare_database function to compute all the scatter

network features of the src database.

database = prepare_database(src, feature_fun, database_options);

In this research, further speed up was achieved by utilising Matlab’s parallel

processing on the for loop (see Appendix III) thus bypassing the batch processing

utility of ScatNet.

Chapter 3 I. J. Alamina 63

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

3.2.5 TensorFlow

TensorFlow is a state-of-the-art high performance library by Google for Deep learn-

ing. Deep learning is a branch of artificial intelligence which acquires learning from

deep neural network architectures. The paragraphs and subsections that follow

under this topic give an overview of the TensorFlow library as outlined by the fol-

lowing authors Abadi et al. (2016); Goldsborough (2016) and Abadi, Isard, and

Murray (2017).

Deep learning has significantly advanced in various application domains and

by far out-performed traditional approaches. TensorFlow offers researchers and

enthusiasts an open source software library for use in defining, training and deploying

deep learning models.

TensorFlow works by defining data flow graphs with mutable state. A data

flow graph represent complex functional node and edge architectures, where each

node represents an operator instance applied to input values which constitutes the

edges. The operators are implemented by abstract kernels for particular types of

interchangeable devices (such as CPUs and GPUs)(Abadi et al., 2017).

There are three main concepts at TensorFlow’s core. These concepts are ten-

sors, operations and mutability. Tensors are arrays of arbitrary dimensions where

the underlying data type is either specified or inferred at graph-construction time.

Operations process data and constitute nodes within the compute graph. Basic

operations invariably are mathematical functions such as vector dot products. How-

ever, some of the operations indeed may be associated with a read or state update.

Such tensor which permit run-time updates in TensorFlow are referred to as vari-

ables. Finally, there may be edges for communicating and constrain the order of

execution. These structures invariably affect the observable graph semantics and

may also affect the computation performance.

Once a TensorFlow program constructs a graph using a client interface such the

Python API, the TensorFlow program can send messages to the graph, by “feeding”

it inputs and “fetching” outputs from it. TensorFlow then propagates the input

values through the execution graph performing operations called by the client code,

until all nodes instructed to run returned with their outputs.

Data dependencies and control edges, dictate the order of execution. Often, a

64 Chapter 3 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Figure 3.6: Sample TensorFlow computation graphs(Goldsborough, 2016) showing
a simple addition operation on the left and a more involved sequence on the right
comprising a dot operation followed by an addition and then a sigmoid operation

graph is executed severally and tensors declared as placeholders or constants are

used once. However, variable tensors have mutable state which allow persistence

across multiple executions. The parameters of the model stored in variables are

usually updated as part of running the graph.

Programming Model

In this section examples of execution data flow graphs are given; and in the following

sections we highlight the other major special features of TensorFlow including auto-

matic differentiation and back-prop algorithm implementation, control flow, check

pointing, programming interface, sample implementation and graph visualisation.

In a TensorFlow computational data flow graph, vertices or nodes of the directed

graph represent operations, while edges signify flow of data between these vertices

or operations. Thus labels on nodes are representative of the actions taken at that

node. Similarly, labels representing values flow in the direction of the edges. The

inputs to a labeled operation are therefore the labels which have edges directed

towards the operation. A computation or data flow graph is illustrated in Figure

3.6.

The left graph displays a basic compute graph consisting of an addition operator

having two input variables x and y. The result, z is the output of the + operation.

Chapter 3 I. J. Alamina 65

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

The right graph gives an example logistic regression function. ŷ is the final output

of the function for some sample vector x, weight vector w and scalar bias b. As

shown in the graph, ŷ is the output of the sigmoid or logistic function σ

Backprop nodes

The Backprop algorithm I. Goodfellow, Bengio, and Courville (2016) is an efficient

method to compute error values for weights within a multilayer or deep neural

network. The algorithm is summarised as follows. Assuming a neural network with

two hidden layers. The two layers within the network respectively have output

functions f(x;w) and g(x;w) such that f(x;w) = fx(w) and g(x;w) = gx(w).

Where x is the input from the previous layer or from the input layer and are the

weights. The error function , is an implicit function of all the previous layers. In the

case of the 2-layer network e = (fx ◦ gx)(w) = fx(gx(w)). The back prop algorithm

uses the chain rule to correctly assign appropriate updates to each weight at every

layer within the network. The updates which are the gradient or the error function

with respect to the weights are dex/dw. The backprop algorithm therefore uses

the formula [fx(gx(w))]′ = f ′x(gx(w)) · g′x(w) as it traverses the graph in reverse to

compute the updates.

Figure 3.7 illustrates how tensor implements backprop by adding two extra nodes

at the appropriate layers within the network to satisfy the chain rule. For each

operation encountered, there is a corresponding gradient function that reverses the

output as a function of the inputs. The output of this gradient function can then

be propagated backwards to a previous operation which would represent a previous

layer within a neural network. The gradient function propagated to the previous

layer is then used to complete the parameters of the chain rule by multiplying

with that previous layer’s gradient. This output is ready to be propagated down

the network to the subsequent layer to perform a similar function. This process

continues until all the weights within the network have appropriate update values.

66 Chapter 3 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Figure 3.7: Tensorflow graph with backprop nodes (Goldsborough, 2016). The
forward propagation is on the left (a) and; the Forward propagation with back
propagation (b) is on the right

Control flow

TensorFlow also supports control-flow operations. For this reason TensorFlow is not

a directed acyclic graph (DAG) but can support cyclic structures. If the number

of loops required by the computation graph is known at graph construction. It is

easy to maintain a DAG structure simply by unrolling the number of loops speci-

fied. However, this is not always the case. There are instances in which a variable

number of loops is required at runtime. Hence, the computation graph becomes in-

creasingly complex. This is particularly the case for back gradient descent and back

propagation of errors (see section 3.2.5 for a walk through). The process of stepping

back through a loop in reverse to compute gradients is known as back-propagation

through time (Al-Rfou et al., 2016).

Checkpoints

One can add Save a node to a compute graph, connecting them to variables whose

tensors can then be serialized. At another instance one may connect the same

variable to a Restore operation. This operation deserializes the stored tensor at

Chapter 3 I. J. Alamina 67

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

another point within the execution graph. This is especially useful over long periods

of training to keep track of the model’s variable parameters. These elements form

part of distributed TensorFlow’s fault tolerance ecosystem.

Programming Interface

TensorFlow implementation provides two developer interfaces which include the

Python interface and the C++ interface. While the python interface offers a rich

feature set for creation and execution of computation graphs, the C++ interface is

primarily a back end implementation with a much more limited API primarily used

for executing graphs built with Python and serialised to Google’s protocol buffer.

It is worth noting that unlike PyTorch (Ketkar, 2017), the Python API hand-

shakes very well with NumPy(Oliphant, 2006–) numeric and scientific open source

programming library. As such, TensorFlow tensors can be naturally substituted with

NumPy ndarrays without any need for type-conversion seen in PyTorch tensors.

Tensorflow client model walk through

In this section, a sample client tensorflow model is examined. The model consists of a

simple multi-layer perceptron (MLP) with one input and one output layer to classify

hand-writtin digits in the MNIST(Krizhevsky, Sutskever, & Hinton, 2012) dataset.

In this dataset, the examples are small images 28× 28 pixels depicting handwritten

digits from 0 to 9. The examples form a matrix having the shape X ∈ Rn×784

where represents the number of images, and 784 represents the flattened 28 x 28

pixel image. The client code performs an affine transform operation, X ·W + b,

where W is the matrix of weights ∈ R784×10, and b is a vector of biases ∈ R10. The

result of the affine transform operator is the matrix Y ∈ Rn×10. The resulting non-

probabilistic logits gives an unnormalised distribution of digits.In order to obtain

the valid probability distribution Pr[x = i] where x-th example is classified as the

digit i, the soft-max method is utilised.

softmax(x)i = exp(xi)
Σj exp(xj)

(3.5)

68 Chapter 3 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Error loss values are then computed using an objective function and the model’s

current training parameters W and . This is obtained from the cross entropy cal-

culation given by

H(L,Y)i = ΣjLi,j · log(Yi,j) (3.6)

Where Y = softmax(x) and L are the correct one-hot-encoded labels. More

precisely, the batch-mean loss over all inputs x.

Next, the Stochastic Gradient Descent (SGD) is run to update the weights of

our model. A TensorFlow class is provided and will be initialised with a learning

rate. The minimise function of this class takes the loss tensor as parameter used for

minimisation.

The operations run repeatedly within a tf.Session context manager. Refer to

Appendix IV for the complete code listing.

Visualisation

TensorFlow interface offers the option of visualising computation graphs. Complex

topologies consisting of various sub-layers can be presented in a lucid form, offering

the user a congruent, organised picture of exactly how data is consumed in a compute

graph. Sub-graphs may be grouped into visual blocks and referred to in name

scopes. For example a single neural network layer may take up such a named scope.

The name scopes are then interactively expanded on to give the detailed group

visualisation.

Two types of metrics are obtainable from the TensorBoard. These are summary

operations, when attached as nodes in the graph, permit the user to monitor in-

dividual tensor values over time. The first is the scalar summaries which capture

tensor values and can be sampled at certain points within training epochs. One can

now, for example, observe the trend of the accuracy loss of the training model over

time.

The other summary operation offers the user the ability to track distributions,

such as final soft-max densities or the distribution of neural network weights.

Lastly, sample images can be visualised on the TensorBoard graph. This way

kernel filters of a convolutional neural network can also be visualised. In addition to

Chapter 3 I. J. Alamina 69

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

all of these, one can perform zooming and panning actions directly on TensorBoard’s

web interface including expansion and collapsing of individual name scopes

3.2.6 Choregraphe

The Choregraphe software tool is a high-level language used for programming of Nao

humanoid robots. This is built on top of the Naoqi/Gentoo Unix/Robot Operating

System(ROS) (Pot, Monceaux, Gelin, & Maisonnier, 2009). Speech recognition and

processing modules of the Choregraphe tool were explored and expanded at the

initial stages of the research. However the Choregraphe software tool for the Nao

robot was found to be unsuitable in speech recognition at the level of research that

aligned with the research objectives and therefore was not utilised in this work.

3.2.7 Alisa

Alisa tool is a lightly supervised sentence segmentation tool based on Voice Activity

Detection (VAD) algorithms (Stan et al., 2016). It is so-called "lightly supervised"

because it requires small amounts of training data. Generally the tool was asserted

to be optimised for sentence segmentation and offered assistance in the creation of

new speech corpora in a language-independent fashion.

The Alisa tool researchers deploy a two-step method for aligning speech, and

claim performance up to 70% imperfect transcriptions often found in online resources

can be successfully aligned with a word error rate of less than 0.5%. This tool

is therefore said to be suitable for development multilingual and under-resourced

language aligned speech-corpora.

The motivation behind Alisa was to reduce the time and effort used to gather

large amounts of quality data as well as actively eliminate the domain knowledge

required to phonetically transcribe speech data. In addition, and as a bonus to

achieving the first objective, is the ability to migrate speech technology fairly seam-

lessly from one language to another and therefore realise the rather tedious task of

automatic transcription of a new language.

70 Chapter 3 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Alisa Architecture

The goal of automatic transcription of new language with low resource constraint is

particularly valuable to this research and as such, it would be relevant to review the

enhancements introduced to Alisa. The two step-method consists of a GMM-based

sentence level segmenter and also an iterative grapheme acoustic model used for

alignment. The sentence level GMM-based speech segmenter is used to automati-

cally segment speech into utterances which as discussed earlier forms the basic unit

of processing within any ASR system. This attempts to relieve the researcher off

the manual process of segmenting the continuous audio file manually. This process

included a GMM-based voice activity detector trained from about 10 minutes of

manually labeled data. The second step grapheme based acoustic model is supple-

mented with a highly restricted word network they referred to as a skip network. To-

gether an iterative acoustic modelling training procedure is formulated. The method

described required the initial training data and a minimal labelling procedure that

involved simple letter to sound rules and inter-sentence silence segments to provide

an orthographic transcript of the initial 10 minute recording data. Therefore, this

process is resource-effective because non-experts can also provide this data. The

actual alignment process made use of a grapheme level Viterbi decoder to drive the

iteratively self-trained grapheme models. The model architecture is shown in the

figure below.

Figure 3.8 shows a block diagram of the steps involved in the alignment. The

method can be applied to any language with an alphabetic writing system, given

the availability of speech resource and its corresponding approximate script.

There is an option of using a grapheme based acoustic model. This however

increases the margin for error. Several steps were introduced in the Alisa tool to

minimise this error margin. The chief being the introduction of a tri-grapheme

acoustic model which is modeled after using context dependent triphones in tra-

ditional acoustic modelling. Other techniques deployed to crash the error margin

include the use of discriminative training with the Maximum Mutual Information

(MMI) criterion (Schluter & Ney, 2001) and methods described in (Novotney &

Schwartz, 2009). It was observed that Alisa provided good alignment but was not

Chapter 3 I. J. Alamina 71

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Figure 3.8: Alisa iterative architecture (Stan et al., 2016) involving acoustic model,
skip-network recognition and confidence level determination

72 Chapter 3 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

fully featured. For instance it had no way of adding insertions and substitutions

in the audio data not provided in the transcription. Finally, Alisa was found to be

restricted to only languages that can utilise the English alphabet.

3.3 Pilot Studies

The experiments in the following sections describe initial experiments based on the

initial study of a language learning companion before the research was narrowed

down to a low resource speech recognition. These preliminary experiments in addi-

tion to a preliminary Language Learning Survey helped to narrow down the Research

to the specific speech processing task of Low Resource Automatic Speech Recogni-

tion (LR-ASR).

The following sections describe analysis of raw wave-forms using auto-correlation

signal processing in Matlab and experiments made with the Nao robot speech pro-

cessing engine and experiments with speech recognition toolkit and speech processing

tasks. These tasks include digit recognition systems using CMUSphinx and Kaldi

speech recognition toolkits and speech alignment tasks using the Alisa tool.

3.3.1 Auto-correlation Experiments

Preliminary experiments were carried out on raw speech signals in an attempt to

quickly segment individual phonemes based on a basic threshold algorithm. Fur-

ther experiments designed an auto-correlation algorithm to attempt to discover a

phoneme alphabet in a particular data set in a semi-supervised fashion.

This method had the goal of simulating posterior distributions of phonemes

from auto-correlation estimates. This presents an unnormalised posterior distribu-

tion measurement of phoneme segments over the entire signal. Note that this was a

pilot study, and as such, the data used as a single 3-second audio recording made by

the researcher, as a demonstration of an alternative method to estimate phoneme

distribution. This experiment was designed for the purpose of exposure to Matlab

audio processing toolbox. Furthermore, apart from the fact that this research even-

tually utilises more advanced correlation techniques using wavelets, this method did

not fit the thesis objectives. The end-to-end method this work derives discriminates

Chapter 3 I. J. Alamina 73

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

between classes at the character level rather than the phonetic level. Therefore, only

Segmentation and auto-correlation steps were performed. Gaussian Mixture Model

(GMM) density estimation step was truncated as this aspect is a well understood

procedure and did not add to the underlying objective of exposure to Matlab audio

processing toolbox. The first two steps of segmentation and auto-correlation which

was done for the single audio file is specified in the paragraphs below.

The correlation theory is based on the idea that when a signals is superimposed

on itself in a time-shifted manner, the convolution over itself is highest when the

two signals have zero time lag that is, perfectly overlapped in sync and the better

the overlapping the higher the value of the correlation and the lesser the signals

are matched they tend to cancel out each other and hence a very low value of the

correlation. The normalised auto-correlation value is obtained in Picone (1996) from

a signal x(n) in the following equation:

Ψ(i) =
∑N−1
n=0 x(n)x(n− i)(∑N−1

n=0 x(n)2
) (∑N−1

n=0 x(n− i)2
) (3.7)

Based on experimental procedure, estimated locations of similar wave-forms rep-

resenting the segmented phonemes are calculated. Although the procedure is subject

to degrade due to signal channel distortion associated speech production, this ex-

ercise helped to further emphasise the need for robust signal distortion invariant

speech features and pre-processing highlighted in the section 2.3.3.

This two stage procedure performs segmentation of phonemes and then discovery

of phoneme clusters using a statistical auto-correlation algorithm. The process is

described in the following sections.

Segmentation

Generally, speech recognition preprocessing uses a fixed, overlapping window for

segmentation. The segmentation algorithm designed for this experiment rather at-

tempts to simulate and segment phoneme transitions using a natural phonetic tran-

sition process between vowel (periodic signals) and consonants (non-periodic-noisy

signals). Figure 3.10 describes the various steps of the segmentation phase while

74 Chapter 3 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Figure 3.9: Original waveform input from 3-second utterance for auto-correlation

Figure 3.10: (a) Positive values of original waveform (b) Filtered values (c) Peak
counter (d) Trough counter

Figure 3.9 shows the original audio file. At the segmentation phase, we first of all

adjust the scale of the original raw audio file to have only positive values rather than

having it centred about the zero value on the x-axis (Figure 3.10a). The pre-filtering

removed all the negative signal values and retained only all the positive values. At

the next step, a smoothing kernel is selected based on experimentation to perform

both smoothing as well as determining the peaks and trough (3.10b). The simple

moving-average filter had a range of 5000 points and was used to extend the vowel

regions so to make them more pronounced as well as smooth out the signal profile.

Then a threshold is applied to segment the waveform based on discovered inflection

points (Figure 3.10c and d). Segmentation can take place as the signal transitions

between peaks and troughs in Figure 3.10.

Chapter 3 I. J. Alamina 75

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Figure 3.11: (a) Positive values of original waveform (b) Isolated Segment plot (c)
Correlation plot of (a) against (b) plot. counter

Auto-correlation

At the auto-correlation stage estimated phoneme segment boundaries are stored

in an array and cross-correlated with the original signal. Even though at a top-

level view, the entire signal is auto-correlated, at the individual segment level, the

signals are cross correlated against one another. Furthermore, to achieve a ‘fair’

correlation estimate, individual segments representing estimated phonemes need to

be re-sampled to eliminate mismatching of contour representations of the individual

phonemes. This was achieved by the filtering done at the segmentation stage. Figure

3.11 below shows sample auto-correlation result for the first peak-to-trough segment.

Figure 3.11(a) is the smoothed signal from the segmentation procedure. Figure

3.11(b) is the first peak to trough indicating the first phoneme in the utterance, and

Figure 3.11(c) shows the auto correlation plot. From Figure 3.11(c), it can be seen

from the twin peaks in the cross-correlation plot indicate that the phoneme-pair in

the first peak-to-trough segment was discovered twice within the signal. This can

form the basis of the phoneme’s posterior distribution. Determining if there was a

way of improving the accuracy of phoneme detection was not within the scope of

this research.

The proposed auto-correlation algorithm performs both top-down and bottom-

top processing. In the first stage it does bottom-top segmentation, while in the sec-

76 Chapter 3 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

ond phase top-bottom auto-correlation. The major weakness of this auto-correlation

method is the lack of context between the phonemes. For example consonants, which

comprise non periodic noise signals, will be difficult to detect without the context

of surrounding preceding and succeeding phonemes. The longer the proximity con-

text, the higher the level of distinction between phoneme pairs. These contextual

relationships, therefore, can not be resolved in shallow systems such as this. The

Bayesian method of segmentation (Kamper, Jansen, & Goldwater, 2016), provides

an alternative method which seeks to improve on these weaknesses using ASR fea-

ture preprocessing. In this scheme, a combination of acoustic embedding and Dy-

namic Time Warping (DTW) for clustering is employed to replace auto-correlation.

In essence, it is more efficient to use clustering from extracted features with less

intrinsic noise than using a naive smoothed audio data pre-processing method.

3.3.2 Experiments with Nao robot

Nao is a humanoid robot developed mainly for deployment in environments for

robotics education and development purposes. Nao comes with a speech recogni-

tion software that offers features such as language settings and recognition sensi-

tivity. However it was understandably found to be limited because the Nao robot

itself does not possess the processing power to perform CPU intensive training of

acoustic models. The Nao robot did however offer a level of support for using the

pocketsphinx system. The pocketsphinx system is the C-language equivalent of

CMUSphinx speech recognizer system also by Carnegie Mellon University. Using

the pocketsphinx method, acoustic models trained high performance systems can

then be deployed to Nao for fast decoding within the Nao.

3.3.3 Digit Speech Recognition and Alignment Experiments

These experiments were performed using CMU Sphinx4 recognition system and

Kaldi speech recognition software. While CMU Sphinx and pocketsphinx deliv-

ered standard interface for speech recognition using generative hybrid models, Kaldi

speech in addition also offered advanced methods such as subspace Gaussian mix-

ture model used to develop cross-lingual acoustic models and deep architectures for

hybrid generative-discriminative models for speech recognition. The main challenge

Chapter 3 I. J. Alamina 77

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

with Kaldi was that it was CPU intensive and required a reasonable amount of

parallel processing to achieve good results within a reasonable time period.

Speech alignment experiments were performed using the Alisa Stan et al. (2016)

tool which is a python based tool with calls made to the HMM toolkit Young et

al. (2002). The Alisa tool alignment process undergoes a semi-supervised process

and requires an error prone time-intensive manual pre-alignment procedure. The

tool itself was found to be quite unstable and the output results were not very

easily reproducible for further tests to be carried out on different data sets. In

addition, the time-intensive pre-alignment procedure made the tool not very useful

for this research. Had the tool been more successful, the tool, which utilises Voice

Activity Detection (VAD) algorithms, would have been especially useful for sentence

segmentation of long sequences of transcribed audio speech. This tool however still

lacked in alignment at either a word-level or sub-word level of alignment required in

ASR pipelines.

3.4 Sequence-to-sequence Model Experiments

A significant issue arises when using HMM-based toolkits such as Kaldi in low

resource ASR applications. This is the requirement for aligned speech. In more

recent endeavours, there have been efforts towards automatic alignment of tran-

scribed audio speech recordings through successive Baum-Welch estimation tech-

niques (M. J. Gales, Knill, Ragni, & Rath, 2014; Ragni & Gales, 2018; Ragni, Knill,

Rath, & Gales, 2014). However, this technique is not particularly compatible with

end-to-end goals adopted for this research as it would require preprocessing and

successive pre-training of the data set.

The following section introduces RNN sequence-to-sequence modelling and some

of the pilot studies done using these models and in Chapters 7 and 8, how these

methods deal with the problem of automatic speech alignment in a fashion which is

compatible with end-to-end speech processing. The end-to-end requirements were

desirable for low-resource speech recognition as it introduces a simpler speech model

design. The downside however to the end-to-end approach is the dependency on

very deep recurrent neural network structures which require large volumes of data

78 Chapter 3 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Figure 3.12: Relationship Types and their neural network interpretation. (Karpa-
thy, 2015)

for successful training.

In the wild, three types of naturally occurring sequence relationships exist: the

one-to-many relationship also referred to here as Single Input Multiple Output

(SIMO); the many-to-one relationship also referred to here as Multiple Input Single

Output (MISO), and; the many-to-many also referred to here as Multiple Input

Multiple Output (MIMO). The one-to-one relationship also referred to as Single

Input Single Output (SISO) is excluded here. Although the SISO relationship is a

naturally existing relationship, this relationship is not a sequence-type relationship

and will not be modelled using a Recurrent Neural Network, but rather, can be mod-

elled using regular Deep Neural Networks. In addition, the MIMO relationship can

be further subdivided into synchronous and asynchronous MIMO. In synchronous

MIMO, the inputs and the outputs have equal lengths but in the asynchronous

MIMO, the input and the output lengths are not necessarily equal.

Figure 3.12 illustrates how the five relationship types are translated into neural

networks where (3.12a) refers to a regular DNN structure and (3.12b to d) are

different RNN structures. Examples of each type of relationship structure are given

in Karpathy (2015). In Figure 3.12, the red blocks at the bottom are input blocks,

the green blocks are neural network units and the blue blocks are output blocks.

For SIMO relationship (Figure 3.12b), A single input will generate a sequence as

output. An example of a SIMO is an image captioning task where a single image

input will generate a sentence or sequence of words. For the case of the MISO (Figure

3.12c), a sequence of inputs will generate a single output. As an example, consider

a fault detection task where a sequence of historical data can classify whether an

Chapter 3 I. J. Alamina 79

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

instrument is faulty or not. In this research, we only implement asynchronous

MIMO (Figure 3.12d) and synchronous MIMO (Figure 3.12e) which satisfied the

design requirement of the models implemented. In the asynchronous case (3.12d),

we see here that due to the misaligned or jagged alignment of inputs to outputs,

there is a degree of freedom between the inputs and outputs such that they do not

have to have equal number of inputs and outputs. Within the RNN model, this

is implemented using two different Recurrent Neural Networks. One RNN for the

inputs known as the encoder network and one RNN for the output known as the

decoder network. Together these encoder and decoder networks become a RNN-

Transducer network. For the synchronous MIMO in Figure (3.12e), however, only

one RNN is implemented constraining the number of inputs to be equal the number

of outputs. Note that both MISO and SIMO are also implemented with a single

RNN structure, the difference between MISO, SIMO and synchronous MIMO is that

for SIMO and MISO the corresponding inputs or outputs are ignored. For the SIMO,

we only input the first RNN sequence and ignore the rest. For the MISO sequence,

we only harvest the last output and ignore the preceding sequence of outputs.

3.4.1 Procedure for designing sequence-to-sequence RNN

models

In the next two sections (3.4.2 and 3.4.3), two pilot study experiment designs are

discussed. These experiments had two objectives; the first objective was to im-

plement regular speech-recognition tasks using sequence-to-sequence methods and

second objective was the exploration of sequence network designs described in the

previous Section (3.4). Since these experiments were mere pilot studies and not re-

quired in the final outputs, the results were not improved upon and were reserved for

further investigation in future publications and the emphasis of these experiments

was centred on sequence modelling design and implementation. A detailed discus-

sion of the final sequence models designed in this thesis is reserved for Chapters 6

and 7. Generally for the sequence-to-sequence model experiments designed in this

thesis we follow the following steps.

• Step 1: Select the sequence RNN model that satisfies the requirement for the

sequence relationship being modelled.

80 Chapter 3 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

• Step 2: Select an appropriate RNN (see Chapter 4 for discussion of RNN

types) for each RNN component.

• Step 3: Design neural network components including

i. Number of hidden layers

ii. Number of neurons in hidden layers

iii. Network saturation parameters

– Weight initialisation

– Non-linear function

– Number of epochs

– Learning rate

– Cost function

– Optimiser

• Step 4: Design Regularisation measures. These are measures to ensure your

network, which can be viewed as a high dimension function fitter does, not

over-generalise or under-generalise.

Note that in this research, parameters in steps 3 and 4 are either experimen-

tally determined or selected based on similar research which has yielded the desired

outcomes.

3.4.2 Sequence-to-sequence character-to-diacritically-labelled-

character model

Experiments performed in this and the next three sections are all based on sequence-

to-sequence modelling using recurrent neural networks. While this section and the

next section represent precursor experiments centred around sequence modelling for

speech recognition tasks, sections 3.4.4 and 3.4.5 introduce the major experiments

in this work later discussed in Chapters 6 and 7.

The character-to-diacritically labelled character model was a sequence-to-sequence

diacritically labeled experiment to automatically infer diacritic transcriptions of the

Wakirike language given the plain unmarked Wakirike language text as input. This

Chapter 3 I. J. Alamina 81

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Figure 3.13: Diacritic symbol generator training data sequences

is a task, when achieved successfully, then becomes a sub task towards developing a

phonetic dictionary for the Wakirike Language and the phonetic dictionary in turn

can be used in HMM speech recognition or as post-processing technique for an end-

to-end model output text. This experiment follows the design procedure outlined

in Section 3.4.1. Figure 3.13 gives example input and output sequences for this

experiment.

Although after training for 75 epochs (Figure 3.14) the accuracy of the Wakirike

diacritics sequence generator model was still unacceptable (6%), the model may have

been improved by changing the sequence-relationship model from an asynchronous

MIMO to a synchronous MIMO sequence model. Improvements from a synchronous

design stems from the insertion and deletion errors observed from the output tran-

scription. Ensuring the outputs and inputs had equal length would therefore con-

strain the model for better results. The main aim of the pilot experiment, however,

was to implement asynchronous transducer RNN design and therefore further ex-

periments for the diacritics sequence generator were not done.

3.4.3 Sequence-to-sequence Grapheme-to-Phoneme (G2P)

model

This follow up experiment to the previous experiment in section 3.4.2, attempts

to automatically generate a phonetic dictionary from graphemes in a text corpus.

Grapheme-to-phoneme experiments come in two flavours, the first being a continua-

tion of the previous experiment, that is, using diacritically marked symbols, and the

second flavour using non-marked graphemes as input. The experiments performed

82 Chapter 3 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Figure 3.14: Diacritic symbol generator model training loss

used the latter non-marked graphemes as input. For this experiment, a pre-trained

model having a 2-layer transducer RNN having 256 hidden units was fine-tuned

on the training data. Appendix V shows the output Wakirike phonetic dictionary

generated from this experiment.

What follows in the next three sections are sequence-to-sequence experiments

actively developed in this research and are detailed in chapters (6 and 7). A brief

summary of the experiments are highlighted in the following sections (3.4.4, 3.4.5

and 3.4.6). Note that these models all utilise TensorFlow deep learning library

including the Bi-directional speech model (section 3.4.5) which is built on top of

Mozilla DeepSpeech with the exception of section 3.4.6 which is based on PyTorch;

a python library having deep learning features identical to that of TensorFlow.

Chapter 3 I. J. Alamina 83

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

3.4.4 GRU language model for Wakirike language based on

TensorFlow

The language model developed in this research is a character-based sequence-to-

sequence deep recurrent neural network that maps a sequence of characters to a

sequence of words found in the training data set. This model met the objective of

reducing the vocabulary size required for language models as well as the text corpus

required as inferences could be made over the smaller-fixed character vocabulary

rather than orders or magnitude larger word corpus with the possibility of out of

vocabulary terms found in the training data. Though this may occur in the character

sequence-model at the inference stage, it would not normally happen during training.

The neural network model developed is described in Chapters 4 and 7, and consists

of Gated Recurrent Unit (GRU) Recurrent Neural Network (RNN). The GRU is

a specialised type of Long Short-Term Memory (LSTM) cell RNN. The emphasis

here is on the ability to model over particularly long sequences of the training data.

In this case, over long character sequences. Thus, the network is able to learn

long term dependencies as would be naturally required to construct grammatically

correct sentences. In essence, the RNN is able to learn grammar rules inherently

from the training data.

3.4.5 Bi-Directional LSTM-based end-to-end speech model

A similar LSTM sequence-to-sequence network based on Baidu Research’s original

research design (A. Hannun et al., 2014) is developed in this research for end-to-end

speech recognition. This model, as its name implies, attempts to establish long term

relationships by adding a reinforcing LSTM layer learning information but this time

from the opposite direction, hence the bi-directional architecture.

In addition, the model incorporates the Connectionist Temporal Classifier (CTC)

decoder. This enables the model to make run-time inferences on both the character

as well as estimate audio wave to character label alignment simultaneously. This

makes this design accommodate end-to-end goals and ultimately simplifies the over-

all design and completely eliminates the need for either manual or semi-supervised

alignments mentioned previously in sections (3.2.7, 3.3.3 and 3.4).

84 Chapter 3 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

3.4.6 ESP-Net Experiments

The ESP-Net (End-to-end Speech Network) toolkit (S. Watanabe et al., 2018), is

a speech processing toolkit that was of interest to this research because it offers

end-to-end capabilities not only in Automatic Speech Recognition (ASR) but also

in Text-to-Speech (TTS) or speech synthesis and other speech-sequence-processing

related tasks. In addition, the toolkit offers multi-modal training combining both

Attention networks (Vaswani et al., 2017) with CTC Transformer networks as well as

multi-channel feature representation that is, the fusing together of multiple feature

representations of an audio signal.

3.5 Method of evaluation

System building methodology (Nunamaker Jr et al., 1990) for speech recognition sys-

tems requires models to be evaluated against speech recognition Machine Learning

metrics. For language models, perplexity metric was used for evaluation. BiLingual

Evaluation Understudy (BLEU)(Papineni, Roukos, Ward, & Zhu, 2002) has also

been used as a metric for evaluating language models.

Perplexity measures the complexity of a language that the language model is

designed to represent (Jelinek, 1976). In practice, the entropy of a language with an

N-gram language model PN(W) is measured from a set of sentences and is defined

as

H =
∑

W∈Ω
PN(W) (3.8)

where Ω is a set of sentences of the language. The perplexity, which is interpreted

as the average word-branching factor, is defined as

PP (W) = 2H (3.9)

where H is the average entropy of the system or the average log probability defined

as

H = − 1
N

N∑
i=1

[log2P (w1, w2 . . . wN)] (3.10)

Chapter 3 I. J. Alamina 85

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

For a bi gram model therefore, equation (3.10) becomes

PP (W) = 2H = 2− 1
N

∑N

i=1[log2P (w1,w2...wN)] (3.11)

After simplifying we have

PP (W) = N

√√√√ N∏
i=1

1
P (wi|wi−1) (3.12)

Full speech recognition pipelines are usually evaluated against the Word Error

Rate (WER). WER is computed as follows:

WER = I +D +R

WC
× 100 (3.13)

Here I,D, and R are wrong insertions, deletions and replacements respectively and

WC is the word count.

Metrics used for low speech recognition in the zero speech challenge (Versteegh et

al., 2015) include the ABX metric. Other common speech recognition error metrics

following a similar definition as the Word Error Rate (WER) are Character Error

Rate (CER), Phoneme Error Rate (PER) and Syllabic Error Rate (SyER) and

sentence error rate (SER).

3.6 Chapter Summary

In this chapter we outline how this research set out to achieve its objectives. The

main claim of this research is that by building a speech model that combines knowl-

edge of end-to-end processing along with state of the art signal processing, the overall

training complexity and build time for new ASR systems can be improved. This re-

search aims to deliver this through by the unique combination of a CTC-based deep

recurrent bi-directional neural network with high performance feature processing of

Deep Scattering Networks (DSNs).

This chapter also reviews the technologies utilised by this research in order to ar-

rive at the research outputs and briefly describes the experiments performed. Within

this space we describe CMUSphinx, Kaldi, Mozilla DeepSpeech, TensorFlow, Mat-

86 Chapter 3 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

lab and ScatNet as major libraries used. The first two of these are Hidden Markov

Model (HMM)-based libraries and the rest are signal processing systems used to

build Deep Recurrent Neural Network (RNN) models. Finally, metrics for the eval-

uation of the models built in this research is discussed.

Chapter 3 I. J. Alamina 87

Chapter 4

Background 1: Recurrent Neural

Networks in Speech Recognition

The HMM model described in Chapter 2 uses a divide and conquer strategy which

has also been described as a generative Machine Learning algorithm in which we

use the smaller components’ representations as modelled by the HMM to learn the

entire speech process. In previous chapters, this was referred to as the bottom-top

strategy. The discriminative method however uses the opposite mechanism. Instead

of using the building blocks of speech to determine speech parameters of a HMM, the

discriminative strategy determines the posterior probability directly using the joint

probability distribution of the parameters involved in the discriminative process.

The discriminative approach, discussed in this chapter focuses on Neural network

architectures.

4.1 Neural network architecture

The building block of a neural network simulates a combination of two consecutive

linear and non-linear operations having many inputs interconnected with the linear

portion of the network. This rudimentary structure is described by McCullough and

Pitts (1942) and in Cowan (1990) as the Perceptron in Figure 4.1

The linear operation is the sum of the products of the input feature and a weight

vector set. This vector sum of products is referred to as an affine transformation or

operation. The non linear operation is given by any one of a selection of nonlinear

88

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Figure 4.1: Neuron cell (Landahl et al., 1943) where xi are inputs and wi are input
weights

Figure 4.2: Perceptron algorithm having multiple neuron cells

functions. In Figure 4.2 this is shown as a step function. The step function is

activated (becomes 1) whenever the output of the linear function is above a certain

threshold, otherwise remains at 0. A simple neural network of perceptrons is formed

by stacking the perceptrons into an interconnected layer as shown in the Figure 4.2.

From the preceding paragraph, each combination of linear operation followed by

a non linear operation is called a neuron and the total number of neurons in the

layer formed is termed as M -number of neurons in the layer.

4.1.1 Multi-layer Perceptron (MLP)

The multilayer Perceptron or MLP extends the basic Perceptron structure by adding

one or more hidden layers. These hidden layers comprise the outputs of one layer

becoming the input of the next layer. In the simplest case having one hidden layer,

the output of layer 1 becomes the input of the final output layer. In comparison, the

Perceptron is a one dimensional structure having one or more linear and non linear

combination outputs, while the multilayer Perceptron is a 2-dimensional structure

having one or more hidden layers of N linear and non-linear combination outputs.

Chapter 4 I. J. Alamina 89

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Mathematically speaking the output of each layer of an MLP having N inputs and

M . The nonlinear portion of this equation is given by

zj = h(bj) = 1
1 + e−bj

(4.1)

The other linear half of the equation is given by:

bj =
N∑
i=0

w
(1)
ji j = 1, 2, . . . ,M (4.2)

For each layer in the MLP, the zeroth input value x0 is 1 indicating a bias term.

This bias term is used in the neural network to ensure regularised and expected

behaviour of the neural network. In this example the non-linear step function is

given by a more complex exponential. In the next section the nonlinear functions

for a multilayer Perceptron is derived.

4.1.2 Sigmoid and soft-max Activation Function

The combination of the linear function and the non linear function in the neural

network could be said to be transformation of an algebraic problem to a probabilistic

function. In this case the "step" function is a squashing sigmoid-shaped function that

converts the inputs into a Naive Bayes function evaluating the probability that an

output belongs to any of the output classes (Cy) given the data (x).

p(C1|x) = f(a) = f(w>x + w0) (4.3)

In a two class problem with classes C1 and C2, the posterior probability of class C1

is expressed using Bayes’s theorem

p(C1|x) = p(x|C1)p(C1)
p(x|C1)p(C1) + p(x|C2)p(C2) (4.4)

Dividing through by p(x|C1)p(C1) gives us

p(C1|(x) = 1
1 + p(x|C1)p(C1)

p(x|C2)p(C2)

(4.5)

90 Chapter 4 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

If we define the ratio of the log posterior probabilities as

a = ln p(x|C1)p(C1)
p(x|C2)p(C2) (4.6)

If we substitute back into (4) we have:

p(C1|x) = f(a) = 1
1 + e−a

(4.7)

Here a = w>x = w0. Thus the activation for the non-linear function is driven

by the probability of the data to give the output class. The probabilistic function

here is called a sigmoid function due to the s-shaped graph that is plotted by the

function.

Rather than using the sigmoid function for multi-class classification a simi-

lar soft max function is derived by using the log probability of classes. If ak =

ln(p(x|Ck)p(Ck)) then:

yk = p(Ck|x) = eak

ΣK
`=1e

a`
(4.8)

ak =
d∑
i=0

wkixi (4.9)

Recall that in the generative classification method the problem is divided into sub

problems by using the conditional probability, while in the discriminative approach

the joint probability is determined by looking at the data directly. This is what

p(Ck|x) represents. However also, recall that we still need to determine the correct

probability distribution represented by the data. This is achieved by determining

the values of the weights of the linear operation. In the next section a method

known as back propagation is discussed. Back propagation is the training algorithm

used to determine the weight vector of all the layers in the neural network. Back

propagation is an extension of the Gradient descent algorithm.

4.1.3 Back propagation algorithm (backprop)

In the previous section, the neural network architecture has been described as having

N inputs M neurons and L layers. Each layer comprises M neurons of a maximum

of N inputs times M neurons interconnections which embodies the inner product

Chapter 4 I. J. Alamina 91

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

of the inputs and unknown set of weights. The output of this inner product is then

passed to a logistic squashing function that results in the output probabilities. The

discriminative process is used here to determine the correct combination of weight

vectors that accurately describe the training data. For neural networks, the weight

vectors at each layer are determined through propagating the errors back through

each preceding layer and adjusting the weights according to the errors propagated

each time a batch of the data is processed. This process of continuously adjusting

weights from back propagation continues until all the data is processed and a steady

state has been reached. The steady state refers to the fact that the error has reached

a steady and/or acceptable negligible value. This is often referred to in Machine

Learning as convergence or saturation (Boden, 2002).

4.1.4 Gradient Descent

The last section ended stating that the back-propagation algorithm is an extension

of the gradient descent algorithm. It has also been seen that back propagation works

by propagating the error and making adjustments on the weights. In this section,

the Gradient Descent algorithm is reviewed and how it is used in back propagation

is examined.

The concept behind the Gradient descent algorithm is the fact that a function

is optimized when the gradient of the function is equal to 0. Gradient descent

algorithm is significant in Machine Learning applications because a cost function is

easily defined for a particular Machine Learning application that is able to determine

the error between the predicted value and the actual value. Then, the parameters of

the problem can be adjusted until the derivative of the cost function using gradient

descent is zero. Thus the Machine Learning algorithm adjusts its parameters until

the error is minimised or removed.

A common error function or cost function for neural networks is the sum-of-

squares error cost function. This is obtained by summing the difference between the

actual value and the Machine Learning model value over the training set N .

En = 1
2

K∑
k=1

(lnk − ynk)2 (4.10)

92 Chapter 4 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

where l is the label value for the output value y.

In a neural network having a weight matrix W of M neurons times N inputs,

the resulting gradient is a vector of partial derivatives of E with respect to each

element.

∇WE =
(
∂E

∂w10
, . . . ,

∂E

∂wki
, . . . ,

∂E

∂wKd

)
(4.11)

The adjustment on each weight therefore on each iteration is:

wτ+1
kj = wτkj − η

∂E

∂wkj
(4.12)

Where τ is the iteration and η is a constant learning rate which is a factor to

speed up or slow down the rate of learning of the Machine Learning algorithm which

in this case is the neural network.

4.2 RNN, LSTM and GRU Networks

Neural networks have become increasingly popular due to their ability to model non-

linear system dynamics. Since their inception, there have been many modifications

made to the original design of having linear affine transformations terminated with

a nonlinear functions as the means to capture both linear and non-linear features of

the target system. In particular, one of such neural network modifications, namely

the recurrent neural network, has been shown to overcome the limitation of varying

lengths in the inputs and outputs of the classic feed-forward neural network. In

addition the RNN is not only able to learn non-linear features of a system but has

also been shown to be effective at capturing the patterns in sequential data. This

section develops RNNs from a specialised MLP or the DNN.

4.2.1 Deep Neural Networks (DNNs)

Deep neural networks have been accepted to be networks having multiple layers

and capable of hierarchical knowledge representation (Yu & Deng, 2016). This will

therefore include multi-layer Perceptrons (MLPs) having more than one hidden layer

(Dahl, Yu, Deng, & Acero, 2012) as well as deep belief networks (DBNs)(Mohamed,

Dahl, & Hinton, 2009; Yu, Deng, & Dahl, 2010) having a similar structure. There-

Chapter 4 I. J. Alamina 93

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

fore, following the MLP architecture, a DNN uses multiple hidden layers and gen-

erates distribution function, p(c|xt) on the output layer when an input vector xt is

applied. At the first hidden layer, activations are vectors evaluated using

h(1) = σ(W(1)Txt + b(1)) (4.13)

The matrix W(1) is the weight matrix and vector b(1), the bias vector for the layer.

The function σ(·) is the point-wise non-linear function. DNNs activations h(i) at

layer i, at arbitrarily many hidden layers after the first hidden layer, are subsequently

hidden activations are determined from

h(1) = σ(W(1)Th(i−1) + b(1)) (4.14)

The distribution over all the possible set of characters c is obtained in the final layer

of the network in the exact way of a multi-layer Perceptron, that is, using soft max

activation at the output layer of the form,

p(c = ck|xt) = exp(−(W(s)T
k h(i−1) + b

(1)
k))∑

j exp(−(W(s)T
k h(i−1) + b

(1)
k))

(4.15)

W
(s)
k and b

(k)
k respectively are the output weight matrix and the scalar bias term

of the k-th neuron. Accordingly, sub gradients for all parameters in the DNN are

utilised to back propagate errors in weights during training for gradient-based op-

timisation techniques. In DNN-HMM speech models, DNNs are trained to pre-

dict probability distributions over senones. However, in the model neural network

described in section 4.3.1, of this thesis, predicts per character conditional distri-

butions. Combining equations (4.12, 4.13, 4.14 and 4.15) the following simplified

94 Chapter 4 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

algorithm ensues
Result: Optimal weights

1 initialise weights randomly;

2 while error is significant or epochs less than maximum do

3 forward computation in equation (4.13 and 4.14);

4 determine layer wise error for weights and biases ∆WE and ∆bE ;

5 update weights and biases according to gradient descent. Equation (4.12);

6 end
Algorithm 1: DNN training algorithm

4.2.2 Recurrent Neural Networks

One of the two advantages RNNs have over regular DNNs is the ability to capture

varying lengths of outputs to inputs. That is for tasks such as language translation

where there is no one to one correspondence of number of words in a sentence for

example from the source language to the output destination language. At the same

time the sentence length appearing at the input and that appearing at the output

differ for different sentences. This is the first problem of varying lengths for input

and output sequences.

The second issue that RNNs effectively contain as opposed to DNNs is capturing

temporal relationships between the input sequences. As was realised for hidden

Markov models, it was seen that the HMM modeled not just observation likelihoods

but also transition state likelihoods which were latent or hidden variables. By tying

the output of previous neuron activations to present neuron activations, a DNN

inherits a cyclic architecture becoming a recurrent neural network (RNN). As a

result, an RNN is to able capture previous hidden states and in the process derive

memory-like capabilities (Yu & Deng, 2016).

In speech processing, it is observed that for a given utterance, there are vari-

ous temporal dependencies which may not be sufficiently captured by DNN-based

systems because DNN systems ignore previous hidden representations and output

distributions at each time step t. The DNN derives its output using only the fea-

ture inputs xt. The architecture of RNN to enable better modelling of temporal

dependencies present in a speech is given in (A. Y. Hannun et al., 2014; Yu & Deng,

Chapter 4 I. J. Alamina 95

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

2016).

h
(j)
t = σ(W(j)Th

(i−1)
t + W(j)T

k h
(j)
t−1 + b(j))) (4.16)

It can be seen in equation (4.16) above that given a selected RNN hidden layer j,

a temporally recurrent weight matrix W (f) is computed for output activations h(j)
t−1

for the hidden activation vector of layer j at time step t − 1 such that the output

contributes to the standard DNN output of W(j)Th
(i−1)
t . It can also be seen from

equation (4.16) that the temporal recurrent weight matrix computation is a modified

version of the standard DNN weight matrix computation and that the overall output

is a superposition of the two.

Since computations for a RNN are the same as those described in standard DNN

evaluations, it is possible to compute the sub gradient for RNN architecture using

the back propagation algorithm. The modified algorithm appropriately called back

propagation through time (BPTT) (Boden, 2002; Jaeger, 2002) is derived in section

4.2.3 below.

4.2.3 Back propagation through time (BPTT) algorithm

First we define an arbitrary but carefully chosen number of time steps t = 1, 2, . . . , T

such that at each time step the states of the neuron activations j = 1, 2, . . . , J are

captured. Using the sum-squared error as the cost function

E = c
T∑
t=1
||lt − yt||2 = c

T∑
t=1

L∑
j=1

(lt(j)− yt(j))2 (4.17)

Where c is a gradient descent convenience factor in Equation (4.17). ||lt − yt||

is the modulus of the difference between the actual output yt and the label vector

yt at time t. The two-step BPTT algorithm described in Yu and Deng (2016) is

involves the recursive computation of the cost function and updating of the network

weights.

For each of these steps recall from equation (4.16) the activation of a hidden

layer is a result of the composition of the regular DNN activation and an activation

generated from weights from the previous time step.

96 Chapter 4 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

The error term at final time t=T is

δyT (j) = − δE

δyT (j)
δyT (j)
δvT (j) = (lT (j)− yT (j))g′(vT (j)) for j = 1, 2, . . . , L (4.18)

or

δyT = (lT − yT) • g′(vT) (4.19)

The error at the hidden layer is given as

δhT (j) = −
(

L∑
i=1

∂E

∂vT (i)
∂vT (i)
∂hT (j)

∂hT (j)
∂ut(j)

)
=

L∑
i=1

δyT (i)why(i, j)f ′(uT (j)) for j = 1, 2, ..., N

(4.20)

or δhT = WT
hyδ

y
T • f ′(uT) where • is element-wise multiplication.

The recursive component for other time frames, t = T −1, T −2, . . . , 1, the error

term is determined as

δyt (j) = (lt(j)− yt(j))g′(vt(j)) for j = 1, 2, . . . , L (4.21)

or

δyt = (lt − yt) • g′(vt) (4.22)

Therefore the output units are

δht (j) = −
[
N∑
i=1

∂E

∂ut+1(i)
∂ut+1(i)
∂ht(j)

+
L∑
i=1

∂E

∂vt(i)
∂vt(i)
∂ht(j)

]
∂ht(j)
∂ut(j)

=
[
N∑
i=1

δht+1(i)whh(i, j) +
L∑
i=1

δyt (i)why(i, j)
]
f ′(ut(j)) for j = 1, . . . , N

or δht =
[
W>

hhδ
h
t+1 + W>

hyδ
y
t

]
• f ′(ut)

(4.23)

Note that the error terms are propagated back from hidden layer at time frame

t+ 1 to the output at time frame t.

Chapter 4 I. J. Alamina 97

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Update of RNN Weights

The weights are updated using the error terms determined in the previous section.

For the output weight matrices, we have

wnewhy (i, j) = why(i, j)− γ
T∑
t=1

∂E

∂vt(i)
∂vt(i)

∂why(i, j)
= why(i, j)− γ

T∑
i=1

δyt (i)ht(j)

or Wnew
hy = Why + γ

T∑
t=1

δtyh>t

(4.24)

For the input weight matrices, we get

wnewxh (i, j) = wxh(i, j)− γ
T∑
t=1

∂E

∂ut(i)
∂ut(i)

∂wxh(i, j)
= wxh(i, j)− γ

T∑
t=1

δht (i)xt(j) (4.25)

or

Wnew
xh = Wxh + γ

T∑
t=1

δthx>t (4.26)

For the recurrent weight matrices we have

wnewhh (i, j) = whh(i, j)− γ
T∑
t=1

∂E

∂ut(i)
∂ut(i)

∂whh(i, j)

= whh(i, j)− γ
T∑
t=1

δth(i)ht−1(j)

or = Wnew
hh = Whh + γ

T∑
t=1

δthh>t−1

(4.27)

In the BPTT algorithm the sub gradients are summed over all time frames. The

98 Chapter 4 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

algorithm is summarised below:

Data: {xt, It}1 ≤ t ≤ T

Result: Optimal weights

1 //xt is the input feature sequence //It is the label sequence;

2 initialise weights randomly;

3 for error is significant or epochs less than maximum do

4 for t← 1; t <= T ; t← t+ 1 do

5 //forward computation ;

6 ut ←Wxh + Whhht−1;

7 ht ← f(ut);

8 vt ←Whyht;

9 yt ← g(vt)

10 end

11 begin

12 //backprop through time ;

13 δyT = (lT − yT) • g′(vT);

14 δhT = W>
hhδ

h
t+1 + W>

hyδ
y
T • f ′(uT);

15 for t← T − t; t >= 1; t← t− 1 do

16 δyt = (lt − yt) • g′(vt);

17 δht =
[
W>

hhδ
h
t+1 + W>

hyδ
y
t

]
• f ′(ut);

18 end

19 end

20 update weights and biases according to gradient descent;

21 begin

22 Wnew
hy = Why + γ

∑T
t=1 δ

t
yh>t ;

23 Wnew
hh = Whh + γ

∑T
t=1 δ

t
hh>t−1;

24 end

25 end
Algorithm 2: RNN training algorithm

Chapter 4 I. J. Alamina 99

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

4.2.4 LSTMs and GRUs

A special implementation of the RNN called the Long Short Term Memory (LSTM)

has been designed to capture patterns over particularly long sequences of data and

thus is an ideal candidate for generating character sequences while preserving syn-

tactic language rules learned from the training data.

The internal structure and working of the LSTM cell is documented by its cre-

ators in Sak, Senior, and Beaufays (2014). The ability to recall information over

extended sequences results from the internal gated structure which performs a series

of element wise multiplications on the inputs and internal state of the LSTM cell

at each time step. In addition to the output neurons which in this text we refer

to as the write gate and denote as the current cell state, ct, three additional gates

(comprising a neural network sub-layer) located within the LSTM cell are the input

gate, the forget gate and the output gate. Together with the initial current state

cell, these gates along with the current-state cell itself enable the LSTM cell ar-

chitecture to store information, forward information, delete information and receive

information. Generally however, the LSTM cell looks like a regular feed-forward

network having a set of neurons capped with a nonlinear function. The recurrent

nature of the network arises, however due to the fact that the internal state of the

RNN cell is rerouted back as an input to the RNN cell or input to the next cell

in the time-series giving rise to sequence memory within the LSTM architecture.

Mathematically, these gates are formulated as follows:

it = σ(W(xi)xt + W(hi)ht−1 + W(ci)ct−1 + b(i)) (4.28)

ft = σ(W(xf)xt + W(hf)ht−1 + W(cf)ct−1 + b(f)) (4.29)

ct = ft • ct−1 + it • tanh(W(xc)xt + W(hc)ht−1 + b(c)) (4.30)

ot = σ(W(xo)xt + W(ho)ht−1 + W(co)ct−1 + b(o)) (4.31)

100 Chapter 4 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Figure 4.3: An LSTM Cell showing Input, output and forget gates (Graves et al.,
2013)

ht = ot • tanh (ct) (4.32)

The gates in the above formula are illustrated in Figure 4.3. it represents the

input gate, ft is the forget gate and ot represents the output gate. At each of these

gates therefore, the inputs consisting of hidden states in addition to the regular

inputs are multiplied by a set of weights and passed through a soft-max function.

These weights during training learn whether the gate will, during inference, open

or not. In summary, the input gate tells the LSTM whether or not to receive new

information, the forget gate determines whether the current information it already

has from the previous step should be kept or dropped and the output gate determines

what should be forwarded to the next LSTM cell. Note also that the LSTM has two

sigmoid (tanh) activation functions utilised at the input and output of the current

cell ct.

One particular variant of the original LSTM model is the GRU cell. Though

simpler than an LSTM cell the GRU cell performs equally efficiently. The GRU

cell is a subset implementation of the LSTM cell. Rather than using the output

gate of the LSTM, this gate is omitted in the GRU and the output result of the

other internal gates are always forwarded. The second simplification is a merge

of the internal gate state vectors into a single vector h(t). This merged gate here

referred to as z(t), controls both the forget gate an the input gate and acts as follows.

Whenever a value is retained by the cell the previous value is erased first. That is,

if the gate controller outputs a 1, in the LSTM this corresponds to the input gate

Chapter 4 I. J. Alamina 101

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

is open and the forget gate is closed. Therefore if z(t) it outputs a 0, the reverse

happens for the input gate and the forget gate in the LSTM. There is, however, a

new gate controller, r(t), which determines which portion of the previous state will

be shown at the output (Cho et al., 2014).

The architecture of a GRU is formulated as follows:

z(t) = σ(WT
xz · x(t) + WT

hz · x(t−1)) (4.33)

r(t) = σ(WT
xr · x(t) + WT

hr · x(t−1)) (4.34)

g(t) = tanh(WT
xg · x(t) + WT

hg · (r(t) ⊗ h(t−1))) (4.35)

h(t) = (1− z(t))⊗ (h(t−1)) + z(t) ⊗ gt (4.36)

Due to the light-weight nature of the GRU cell, it is common practice to use GRU

cells in place of LSTM cells. This precedence achieves the much desired lighter com-

putation load on the actual hardware performing the RNN training. As each of the

gates required in an LSTM cell comprises high density matrix multiplication opera-

tions in themselves, the condensation of two gates into one and the omission of the

output gate within GRU cells pushes towards halving the architectural complexity

and coupled with the equally efficient performance of the GRU when compared to

the LSTM cell ultimately serves as an overall improvement on the LSTM architec-

ture. For these reasons, GRUs have highly appealing features when compared to

LSTMs and was the RNN cell of choice used for the study in this report.

4.3 Deep speech architecture

This work makes use of an enhanced RNN architecture called the Bi-directional

Recurrent Neural Network (BiRNN). While A. Y. Hannun et al. (2014) assert that

forward recurrent connections does reflect the sequential relationships of an audio

waveform, perhaps the BiRNN model achieves a more robust sequence model.

102 Chapter 4 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

The BiRNN is a preferred end to end mechanism due to the length of sequence

over which temporal relationships can be captured. This implies that BiRNNs will

be suited for capturing temporal relationships over much longer sequences than a

forward only RNN, because hidden state information is preserved in both forwards

and backwards direction.

In addition, such a model has a notion of complete sentence or utterance inte-

gration, having information over the entire temporal extent of the input features

when making each prediction.

The formulation of the BiRNN is derived by starting off with the basic RNN

architecture which is referred to as the forward architecture. From the forward ar-

chitecture we derive the backward architecture. If we choose a temporally recurrent

layer j, the BiRNN forward and backward intermediate hidden representation h(f)
t

and h(b)
t is given as.

h
(f)
t = σ(W(j)Th

(i−1)
t + W(f)T

k h
(j)
t−1 + b(j))) (4.37)

h
(b)
t = σ(W(j)Th

(i−1)
t + W(b)T

k h
(b)
t+1 + b(j))) (4.38)

Temporal weight matrices W (f) and W (b) propagate h(f)
t and h

(b)
t forward and

backward in time respectively.

A. Y. Hannun et al. (2014) points out that the recurrent forward and backward

components are evaluated entirely independent of each other and for optimal train-

ing, a modified non linearity function σ(z) = min(max(z, 0), 20) is recommended.

The final BiRNN representation h(j)
t for the layer is now the superposition of the

two RNN components,

h
(j)
t = h

(f)
t + h

(b)
t (4.39)

Also note that back propagation through time (BPTT) sub gradient evaluations are

computed from the combined BiRNN structure directly during training.

Chapter 4 I. J. Alamina 103

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

4.3.1 Connectionist Temporal Classification (CTC)

The term CTC stands for Connectionist Temporal classification. This algorithm

was designed to solve the problem of fuzzy alignment between the source input

data and the output classification desired from the Machine Learning system. This

type of fuzzy alignment is observed in speech recognition systems since the same

speech in either the same individual or different individuals will have different signal

forms. This is a many to one relationship between the input signal and the output

classification that is also dependent on the style of speaking at the moment when the

utterance is said. Unlike hybrid DNN-HMM networks the CTC algorithm deploys

an end-to-end framework that models all aspects of the input sequence in a single

neural network, therefore discarding the need for an HMM interpretation of the input

sequence. In addition, the CTC method does not require pre-segmented training

data at the same time output classification is made independent of post-processing.

CTC works by making predictions at any point in the input sequence. For the

case of speech modelling, CTC makes a character prediction for every time step of

the raw audio input speech signal. Although this initially seems counter intuitive,

this method models the many to one relationship seen in the fuzzy audio speech to

text alignment.

For hybrid DNN-HMM systems, speech or more accurately, acoustic models, re-

quire separate training of targets for every time-slice in the input sequence. Secondly,

and as a consequence of this, it becomes necessary to segment the audio sequence, in

order to provide targets for every time-slice. A third consequence is the limitation of

DNNs previously discussed. As the DNN network only outputs local classifications,

global aspects such as the likelihood of two consecutive labels appearing together

cannot be directly modelled. Without an external model, usually in the form of a

language model, the hybrid speech model will significantly degrade performance.

In the CTC case, so long as the overall sequence of labels is correct the network

can be optimised to correct the temporal or fuzzy alignments. Since this many to one

fuzzy alignment is simultaneously modelled in CTC, then there is no need for pre-

segmented data. At the same time, CTC computes probabilities of complete label

sequences, hence external post-processing required by hybrid models is eliminated.

Similar to the HMM sequence model, the CTC algorithm is a sequence model

104 Chapter 4 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

that predicts the next label in a sequence as a cumulative of previous sequences. This

section develops the CTC loss function borrowing concepts used in HMM models

such as the forward backward algorithm as outlined in (Graves et al., 2006). In

the following paragraph we introduce terminology associated with the CTC loss

function.

Given two symbols A and B such that A has a many to one relationship with

B, signifying the temporal nature of the classification. The symbol A represents an

alphabet from which a sequence of the output classifications are drawn from. This

CTC output consists of a soft-max layer in a BiRNN (bidirectional recurrent neural

network).

This output models the probability distribution of a complete sequence of arbi-

trary length |A| over all possible labels in A from activations within |A|. An extra

activation is given to represent the probability of outputting a blank, or no label.

At each time-step leading up to the final step, the probability distribution estimated

as distribution over all possible label sequences of length leading up to that of the

input sequence.

It is now possible to define the extended alphabet A′ = A∪{blank}, also, yt,p as

the activation of network output p at time t. Therefore yt,p is the probability that

the network will output element p ∈ A′ at time t given that x is the input sequence

of length T . The distribution sought after Pr(π|x), is the conditionally-independent

distribution over the subset A′T where A′T denotes the set of length T sequences in

A′.

Pr(π |x) =
T∏
t=1

yt,πt (4.40)

From Equation (4.40), it is now possible to define the many-to-one mapping

B : A‘T → A≤T . This is the mapping of a set A′T , which indicates the paths, onto

another set A≤T , that of possible labels in x. B then becomes a sequence of symbols

with length less than or equal to T over A. Note that B is a set containing sequential

symbols belonging to the set A and not. A′ because there is no blank symbol in B.

This is achieved when first take out all repeated labels and then take out all the

Chapter 4 I. J. Alamina 105

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

blanks from the sequence A′T . For instance,

B(a− ab−) = aab

B(−aa−−abb) = aab.
(4.41)

The mapping obtained by B is equivalent to when the output switches from not

predicting a new symbol to predicting a symbol or from predicting one symbol to

another symbol assuming this was also possible. Intuitively, the probability of B

which is the labelling of l ∈ A≤T being a many to one of A‘T is determined by

summing over all the paths in A′T mapped onto it by B. Thus:

Pr(l |x) =
∑

π∈B−1(l)
Pr(π |x) (4.42)

This mapping makes CTC robust to unsegmented data as it predicts all the la-

bels where they occur and later the ‘collapsed’ sequence will be extended over the

approximate period where the previous extended sequence occurred thus aligning

labels to input sequences on-the-fly without knowing in advance where label to input

sequence alignments occur.

4.3.2 Forward-backward algorithm

The forward-backward algorithm is used to estimate the probability of a point in

the sequence as the product of all point leading up to that point from the initial

state, the forward variable (α), multiplied by the probability of all the points from

that state to the end of the sequence, the backward variable (β).

The difference between this estimation and that determined from equation (4.42)

is the fact that the forward-backward algorithm converts equation (4.42) into a

form that is both recursive as well as reduces the computational complexity from

an otherwise intractable computation to one that is readily computable.

With CTC, consider a modified “label sequence" l′, that caters for blank char-

acters in between regular ones l, as defined in A. Thus, if U is defined as the

length of l. Then U ′ is of length 2U + 1. CTC therefore integrates probability

distributions of transitions between blank and non-blank labels at the same time

CTC calculates those transition occurring between pairs of distinct non-blank la-

106 Chapter 4 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

bels. The forward variable, α(t, u) now becomes the summed probability of all

length t paths that are mapped by B onto the length bu/2c prefix of l. (Note,

bu/2c is the floor of u/2, the greatest integer less than or equal to u/2.) For some

sequence s, let sp:q denote the sub-sequence sp, sp+1, . . . , sq−1, sq, and define the set

V (t, u) ≡ {π ∈ A′t : B(π) = l1:bu/2c and πt = l′u}. α(t, u) then becomes

α(t, u) ≡
∑

π∈V (t,u)

t∏
i=1

yi,πi (4.43)

The forward variables at time t is calculated recursively from the preceding values

at time t − 1 and expressed as the sum of the forward variables with and without

the final blank at time T .

Pr(l |x) = α(T, U ′) + α(T, U ′ − 1) (4.44)

For the initial conditions, correct paths begin with a blank symbol (b) and the

first symbol l (l1):
α(1, 1) = y1,b

α(1, 2) = y1,l1

α(1, u) = 0, ∀u > 2

(4.45)

The forward variable then takes the following recursive form:

α(t, u) = yt,l′u

u∑
i=f(u)

α(t− 1, i) (4.46)

where

f(u) =


u− 1, if l′u = blank or l′u−2 = l′u

u− 2, otherwise
(4.47)

Figure 4.4 expresses the recurrence relation for α(t, u). While t is expressed

on the x axis, u is illustrated on the y axis. The CTC algorithm assumes that

outputs of the network potentially alternate between blank symbols indicated as

black circles and non-blank elements, the white circles, all in l′. The sequential

graph constructed from this 2-dimensional matrix show computational dependencies

between sequential pairs of the recurrence relation for α(t, u). Therefore, the value

Chapter 4 I. J. Alamina 107

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Figure 4.4: Beam Search Lattice Structure showing forward (left) and backward
(right) paths (Graves et al., 2006)

α(2, 3), formed from α(1, 2), corresponds to the blank symbol at t = 2 and u = 3,

is . Also, α(2, 2), equivalent to the symbol c at t = 2 and u = 2, is gotten from

α(1, 2) and α(1, 1). Note that there are not enough time steps when u < U ′2(Tt)1,

therefore, α(t, u) = 0.

Also note the boundary condition;

α(t, 0) = 0 ∀t (4.48)

The backward variable β(t, u) ais built similarly to the forward variable. Rather than

moving from the start of the sequence to we define the path starting at t + 1 that

completes the sequence at T when appended to any path π̂ that generates α(t, u).

Then, assuming W (t, u) ≡ {π ∈ A′T−t : B(π̂ + π) = l ∀π̂ ∈ V (t, u)}, therefore

β(t, u) ≡
∑

π∈W (t,u)

T−t∏
i=1

yt+i,πi (4.49)

The backward variable is therefore equivalently initialised as thus

β(T, U ′) = 1

β(T, U ′ − 1) = 1

β(T, u) = 0, ∀u < U ′ − 1

(4.50)

The recursion rule is defined as follows:

β(t, u) =
g(u)∑
i=u

β(t+ 1, i)yt+1,l′i (4.51)

108 Chapter 4 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

similarly,

g(u) =


u+ 1, if l′u = blank or l′u+2 = l′u

u+ 2, otherwise
(4.52)

4.3.3 CTC Loss function

The cross entropy error is a loss function used to measure accuracy of probabilistic

measures. It is calculated as the negative log probability of a likelihood measure.

The CTC loss function L(S) uses the cross entropy loss function of and is defined as

the cross entropy error of correctly labelling all the training samples in some training

set S:

L(S) = − ln
∏

(x,z)∈S
Pr(z |x) = −

∑
(x,z)∈S

ln Pr(z |x) (4.53)

where z is the output label and x is the input sequence. Since L(S) in equation 4.53

is differentiable, this loss function can be back propagated to the soft max layer in

the BiRNN configuration discussed in section 4.3.

L(x, z) ≡ − ln Pr(z |x) (4.54)

and therefore

L(S) =
∑

(x,z)∈S
L(x, z) (4.55)

From the definition of the forward and backward variables (α(t, u) and β(t, u)),

we also establish that X(t, u) ≡ {π ∈ A′T : B(π) = z, πt = z′u}, such that

α(t, u)β(t, u) =
∑

π∈X(t,u)

T∏
t=1

yt,πt (4.56)

then substituting Pr(π |x) from the expression in equation 4.40, we have

α(t, u)β(t, u) =
∑

π∈X(t,u)
Pr(π |x) (4.57)

Also observe that Pr(l |x) is equivalent to the total probability Pr(z |x). Paths

Chapter 4 I. J. Alamina 109

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

going through z′u at time t can be obtained as summed over all u to get

Pr(z |x) =
|z′|∑
u=1

α(t, u)β(t, u) (4.58)

Thus a sample loss is determined by

L(x, z) = − ln
|z′|∑
u=1

α(t, u)β(t, u) (4.59)

and therefore the overall loss is given by

L(S) = −
∑

(x,z)∈S
ln
|z′|∑
u=1

α(t, u)β(t, u) (4.60)

In the model described in this work, the gradient L(x, z)is computed using Ten-

sorFlow’s automatic differentiation capabilities. In practice, computations soon lead

to underflow. However, the log scale, being used in the above loss function calcula-

tions avoids this situation and another useful equation in this context is

ln(a+ b) = ln(a) + ln(1 + eln b−ln a) (4.61)

4.4 Attention Mechanism

This can be likened to how neural networks simulate how the human brain functions

in achieving tasks. Attention is a cognitive process of concentrating on one or a few

things and at the same time ignoring others. Therefore attention mechanism focuses

more on the informative data segment of a model that contributes more to the final

output. It creates an underlying relationship between the input and output of a

model producing improved transduction from input to output sequence.

Attention mechanism is an extension to the sequence-to-sequence asynchronous

MIMO RNN architecture discussed in Section 3.4. The objective of attention-based

networks highlighted by Vaswani et al. (2017) is to reduce sequential computation

while attaining hidden representation across arbitrary lengths of sequential input.

Some other strategies which have also attempted to achieve this includes a combi-

nation of convolutional and recurrent schemes (Gehring, Auli, Grangier, Yarats, &

110 Chapter 4 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Figure 4.5: Attention mechanism is centred around a time-distributed dense opera-
tion that determines similarity measure between current decoding sequence hidden
input and all input sequence outputs.

Dauphin, 2017; Kaiser & Bengio, 2016; Kalchbrenner et al., 2016).

Attention is achieved by joint training of an attention neuron that takes outputs

of the hidden layer of each input in the encoder along with the entire RNN as shown

in figure 4.5. In the original attention mechanism proposed by Bahdanau, Cho, and

Bengio (2014), the weighted sum of all encoder outputs will determine what segment

of the sequence receives more attention. The output of this attention neuron at each

time-step is then concatenated with the output of the RNN and fed to the decoder.

Since dot product is a fairly decent measure of similarity, and faster to com-

pute,M.-T. Luong, Pham, and Manning (2015) proposed a dot product between

encoder’s output and decoder’s previous hidden state as a basis for attention mech-

anism. For this to work however, both of these vectors must be of the same dimen-

sions. This type of attention mechanism is known as multiplicative attention. Just

like in Concatenative attention, the dot product gives a score and all the scores (at

a given decoder timestep) go through a softmax layer to give the final weights.

In equation 4.62 below, h̃(t), is the output of the attention neurons and α(t,i)

represents the weight of each output that is jointly learned where e(t,i) represents

variants of how the weights can be obtained. Here three variants are shown either

dot, general or concatenation. The dot and general are variants proposed by M.-

T. Luong et al. (2015). The general proposition represents e(t,i) as the dot product

Chapter 4 I. J. Alamina 111

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

of decoder hidden weights with the linear transposition of the encoder outputs (i.e.

time-distributed Dense layer with no bias term). Another modification proposed was

to use the decoder’s hidden state at the current time step rather than at the previous

time step (i.e., h(t) rather than, h(t−1)), then use the output from the attention

mechanism (h̃(t)) directly to compute the decoder’s predictions (rather than using

it to compute the decoder’s current hidden state). They also discovered that by

adding a re scaling parameter v, to the concatenative attention mechanism these

three dot product variants perform better than the simple concatenative attention.

h̃(t) =
∑
i

α(t,i)y(i)

with α(t,i) = exp(e(t,i))∑
i′ exp(e(t,i′))

and =



h>(t)y(i) dot

h>(t)Wy(i) general

v> tanh (W[h(t); y(i)]) concatenate

(4.62)

Vaswani et al. (2017) introduces a transduction model known as a Transformer

based on self attention network with the ability to compute long term dependencies

while eliminating sequence aligned RNN and convolutional architectures. Although

this study makes use of RNN transducers with attention, integration of the self-

attention architecture was left for a further study.

4.5 Chapter Summary

Deep Neural Networks (DNNs) are at the centre of the models developed within this

research. They are able to overcome the challenge of complex modelling of latent

information when discriminating directly from the data. To this extent, they tend

to be data intensive in nature. In this chapter, neural network architectures and

algorithms were considered. The Chapter begins with the rudimentary Perceptron

algorithm which is the precursor to the logistic regression algorithm. The Neural

Network and Multi Layer Perceptron (MLP), uses logistic regression concept and

adds an extra layer of neurons and back propagation algorithm to optimise classifi-

cations.

112 Chapter 4 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

The Deep Neural Networks used within this research are special DNNs which

are able to identify patterns in data having sequential patterns. These are the deep

Recurrent Neural Networks (RNNs). It is shown in this Chapter that RNNs are

able to learn the recurrent relationship information by modifying their architecture

such that the data paths among the neurons are modified so that hidden states are

also used as inputs. In addition the back propagation algorithm is also modified in

terms of datapaths of the algorithm output to reflect the sequential structure of the

neural network.

Special categories of RNNs used to build speech and language models developed

in this thesis are the Long Short-Term Memory (LSTM) and Gated Recurrent Unit

(GRU) RNN cells. In this research were utilised for development of a character-

based language model and the Bidirectional RNN (Bi-RNN) used for development

of the speech model.

A special algorithm, the Connectionist Temporal Classification (CTC) algorithm,

also employed by the BiRNN is described in this Chapter. The CTC algorithm over-

comes the challenge of a character-based speech model when considering misaligned

nature of audio data between specific points in the audio that correspond to equiv-

alent characters in the transcription. In addition, it is also discussed how the CTC

algorithm utilises the forward-backward algorithm to perform classification. In a

later Chapter 7, the prefix beam search algorithm is described, and, in combination

with output probabilities obtained from the CTC algorithm and a language model,

performs decoding of the output into the actual speech-to-text translations.

Chapter 4 I. J. Alamina 113

Chapter 5

Background 2: Deep Scattering

network

Curve fitting is a very common theme in pattern recognition. The concept of invari-

ant functions convey mapping functions that approximate a discriminating function

when a parent function is reduced from a high dimensional space to a low dimensional

space S. Mallat (2016). In this chapter an invariance function called a scattering

transform enables invariance of groups of deformations that could apply to speech

signals thereby preserving higher level characterisations useful for classifying speech

sounds. Works done by (Andén & Mallat, 2011; Peddinti et al., 2014; Sainath et

al., 2014; Zeghidour, Synnaeve, Versteegh, & Dupoux, 2016) have shown that when

the scattering spectrum are applied to speech signals and used as input to speech

systems have state of the art performance. In particular Sainath et al. (2014) shows

4-7% relative improvement in word error rates (WER) over Mel frequencies cepstral

coefficients (MFCCs) for 50 and 430 hours of English Broadcast News speech cor-

pus. While experiments have been performed with hybrid HMM-DNN systems in

the past, this thesis focuses on the use of scatter transforms in end-to-end RNN

speech models.

This chapter iterates the use of the Fourier transform as the starting analysis

function for building invariant functions and then discusses the Mel filter bank solu-

tion and then establishes why the scattering transform through the wavelet modulus

operator provides better invariance features over the Mel filters.

114

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Figure 5.1: Fourier Equation

5.1 Fourier transform

The Fourier transform often referred to as the power spectrum, allows us to dis-

cover frequencies contained within a signal. The Fourier transform is a convolution

between a signal and a complex sinusoid from −∞ to +∞ (Figure 5.1).

From the orthogonal property of complex exponential function, two functions are

orthogonal if
∫
f(x)g(x) = 0 where f(x) and g(x) are complementary functions, one

being referred to as the analysis equation and the other referred to as the synthesis

function.

If the discrete form of the Fourier transform analysis equation is given by

ak = 1
T

∫ T/2

−T/2
x(t)e(−j

2πkt
T) (5.1)

Then, the corresponding synthesis equation is given by

x(t) =
∞∑

k=−∞
ake

(j 2πkt
T) (5.2)

Recall that x(t) is the original signal while ak is the Fourier Series coefficient.

This coefficient indicates the amplitude and phase of the original signal’s higher

order harmonics indexed by k such that higher values of k correspond to higher

frequency components. In a typical spectrogram (Figure 5.2), it can be seen that

the energy of the signal is concentrated about a central region and then harmonic

spikes of energy content exponentially decrease and taper off. Therefore in Figure

5.2, the energies are concentrated at frequencies of about 100, 150 and 400 hertz.

The Fourier transform discussed in the preceding paragraph constitutes a valu-

able tool for the analysis of the frequency component of a signal. However is not

able to determine when in time a frequency occurs hence is not able to analyse time

Chapter 5 I. J. Alamina 115

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Figure 5.2: Sample Spectrogram from an arbitrary input signal showing frequency-
power content of the signal

Continuous Wavelet Transform (2015)

related signal deformations. The Short-time Fourier Transform (STFT) attempts to

salvage this by windowing the signal in time signal and performing Fourier trans-

forms over sliding windows sections of the original signal rather than the whole

signal. There is however, a resolution trade off that ensues from this operation such

that, the higher the resolution in time accuracy, the lower the frequency accuracy

and vice versa. In the next section on the continuous wavelet transform, how the

wavelet transform improves on the weaknesses of the Fourier Transform and the

STFT is reviewed.

5.2 Wavelet transform

The continuous wavelet transform can be defined as a signal multiplied by scaled

and shifted version of a wavelet function ψ(t) referred to as the mother wavelet.

The time-frequency tile-allocation of the three basic transforms examined in the

first part of this chapter is illustrated in Figure 5.3

It can be seen here that for the Fourier transform there is no time information

obtained. In the STFT, as there is no way of telling where in time the frequencies

are contained, the STFT makes a blanket range of the resolution of the window

and is therefore equally tiled potentially losing information based on this setup. For

the case of the wavelet, because it is a scaled and shifted convolution, it takes care

of the this problem providing a good resolution in both time and frequency. The

116 Chapter 5 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Figure 5.3: Time frequency tiling for (a) Fourier Transform (b) Short-time Fourier
Transform (STFT) (c) Wavelet transform

fundamental representation of the continuous wavelet function is:

C(a, b) =
∫
f(t) 1√

a
ψ

(
t− b
a

)
dt (5.3)

In this equation, a and b respectively represent the scaling and shifting resolution

variables of the wavelet function. This is referred to as a mother wavelet. A few

other mother wavelet functions discussed later in this chapter. Generally a mother

wavelet is identified as being energy spikes in an infinite signal whose accumulative

energy sums to zero.

5.3 Discrete and Fast wavelet transform

Synthesis and analysis equations (5.2 and 5.1) can be formulated as a linear com-

bination of the basis φk(t) such that the basis, φk(t) = ej2πkt, and it’s conjugate or

orthonormal basis, φ̃k(t) = e−j2πkt, equations (5.2 and 5.1) now become

x(t) =
∑
k

akφk (5.4)

ak =
∫
x(t)φ̃k(t) (5.5)

With respect to scaling and shifting variables of continuous wavelet transforms

in equation (5.3), a similar linear combination transformation can be applied by

constructing orthonormal bases parameters, referred to as scaling (φ) and translating

Chapter 5 I. J. Alamina 117

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

(ψ) functions. For example, a simple Haar mother wavelet transform associated with

a delta function, it is seen that:

φj,k(t) = 2j/2φ(2jt− k) (5.6)

ψj,k(t) = 2j/2ψ(2jt− k) (5.7)

where j is associated with the dilation (scaling) parameter and k is associated with

the position (shifting) parameter. If the Haar coefficients h(·)[n] = {1/
√

2, 1/
√

2}

are extracted we have the following dilation and position parameters.

φ(t) = hφ[n]
√

2φ(2t− n) (5.8)

ψ(t) = hφ[n]
√

2ψ(2t− n) (5.9)

For any signal, a discrete wavelet transform in l2(Z)1 can be approximated by

f [n] = 1√
M

∑
k

Wφ[j0, k]φj0,k[n] + 1√
M

∞∑
j=j0

∑
k

Wψ[j, k]ψj,k[n] (5.10)

Here f [n], φj0,k[n] and ψj,k[n] are discrete functions defined in [0,M - 1], having a

total of M points. Because the sets {φj0,k[n]}k∈Z and {ψ(j,k)∈Z2,j≥j0} are orthogonal to

each other. We can simply take the inner product to obtain the wavelet coefficients.

Wφ[j0, k] = 1√
M

∑
n

f [n]φj0,k[n] (5.11)

Wψ[j, k] = 1√
M

∑
n

f [n]ψj,k[n] j ≥ j0 (5.12)

Equation (5.11) is called approximation coefficient while (5.12) is called detailed

coefficients.

These two components show that the approximation coefficient,Wφ[j0, k], models

a low pass filter and the detailed coefficient,Wψ[j0, k], models a high pass filter. It

is possible to determine the approximation and detailed coefficients without the

118 Chapter 5 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

scaling and dilating parameters. The resulting coefficients, called the fast wavelet

transform, are a convolution between the wavelet coefficients and a down-sampled

version of the next order coefficients. The fast wavelet transform was first postulated

in (S. G. Mallat, 1989).

Wφ[j, k] = hφ[−n] ∗Wφ[j + 1, n]|n=2k,k≥0 (5.13)

Wψ[j0, k] = hψ[−n] ∗Wφ[j + 1, n]|n=2k,k≥0 (5.14)

For analysis of the Haar wavelet and the derivation of equations (5.13 and 5.14)

see Appendix I.

5.4 Mel filter banks

The Fourier and wavelet transform are general means of extracting information from

continuous signals using the frequency domain and in the case of the Wavelet trans-

form using both time and frequency domain. The objective in Machine Learning,

however, is to extract patterns from the derived information. In this chapter, in

particular, the Mel filter bank and the scatter transform are elaborated on as speech

feature extractors. They process high dimensional information obtained from the

Fourier and wavelet transform signal processing techniques and reducing the in-

formation obtained as lower dimension features. All this aimed towards loss-less

encoding of speech signals relevant for speech recognition.

The Mel filter banks form the basis of the Mel Frequency Cepstral Coeffi-

cients (MFCCs) described by (Davis & Mermelstein, 1980). MFCCs are state-

of-the-art speech feature engineering drivers behind automatic speech recognition

acoustic models. Other common speech features used in speech recognition in-

clude, Linear Prediction Coefficients (LPCs) and Linear Prediction Cepstral Coeffi-

cients (LPCCs),Perceptual Linear Prediction coefficients (PLP), (Dines, Yamagishi,

& King, 2010; McLoughlin, 2009). The following paragraphs describe how the Mel

filters are derived.

The Mel scale as described by Stevens, Volkmann, and Newman (1937) is a

Chapter 5 I. J. Alamina 119

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

perceptual scale which measures sound frequencies as perceived by human subjects

equidistant from a sound source as compared to the actual frequency. This scale is

non-linear as the human ear processes sound non-linearly both in frequency as well

as amplitude.

For the case of frequency, the human ear can discriminate lower frequencies

more accurately than the higher frequencies. The Mel scale model this behaviour

by utilising frequency bins. The frequency bin ranges are narrow at low frequencies

and become wide in higher frequencies. In the case of the speech signal amplitude,

a similar process is observed where the ear discriminates softer sounds better than

louder sounds. Generally, sound will be required to be 8 times as loud for significant

perception by the ear. While the Mel scales handle the frequency non-linearity

in the speech signal, the signal amplitude is linearised during feature extraction by

taking the log of the power spectrum of the signal, also known as the cepstral values.

Furthermore, using a log scale also allows for a channel normalisation technique that

employs cepstral mean subtraction. (L. Becchetti, 1999).

The minimum frequency number of bins used for the Mel scale is 26 bins. In

order to determine the frequency ranges we use the following formula to convert

between the Mel scale and the regular frequency scale:

M(f) = 1125 ln(1 + f/700) (5.15)

M1(m) = 700 exp(m/1125)1 (5.16)

A simple approximation for the Mel scale is obtained by applying linear scale for the

first ten filters and for the first 1kHz of the speech frequency range then applying

the following formula for the rest (Becchetti, 1999)(L. Becchetti, 1999):

∆m = 1.2×∆m−1 (5.17)

where m is the frequency bin index and ∆m is the frequency range between the

start and end frequencies for the m-th bin. The resulting filters are overlapping

filters shown in Figure 5.4. For speech recognition, we compute a statistical value or

coefficient for each Mel frequency bin from the Inverse Discrete Cosine Transform

120 Chapter 5 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Figure 5.4: Mel filter plot showing overlapping frequency bins (Lyons, 2012)

(IDFT) of the Mel filters. The coefficients are also concatenated with their delta

and delta-delta values. The delta and delta-delta values are determined from the

following equation:

dt =
∑N
n=1 n(ct+nctn)
2∑N

n=1 n
2 (5.18)

where cx is the x-th coefficient and 2n is the delta range which is usually 2 − 4.

The delta values are first order derived coefficients obtained from the original Mel

filter coefficients while the delta-delta values are second-order derived coefficients

obtained from the first-order derived delta coefficients.

There are two reasons for obtaining the IDFT from the filter banks. The first is

that since the bins use overlapping windows, the filter bin outputs tend to be corre-

lated and obtaining the IDFT helps to decorrelate the outputs. Secondly, decorre-

lated signals optimise algorithm computation efficiency involving matrix operations

such that rather than using full co variance matrix, it is much simpler to compute

the matrix operations from the matrix diagonal. Also note that for cepstral values

obtained from taking the log of the power power spectrum, the discrete cosine trans-

form (DCT) is used to obtain the IDFT. This is as a result of the cepstral values

being real and symmetric(M. Gales et al., 2008).

As an attempt for MFCCs to incorporate dynamic frequency changes of the sig-

Chapter 5 I. J. Alamina 121

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

nal, the deltas and the delta-deltas are obtained from the coefficient computation

in equation 5.18. However, it is worthy to note that only the first 13 of the co-

efficients and the resulting dynamic coefficients are used as speech features as it

is observed that higher frequency dynamic coefficients rather degrade ASR perfor-

mance (M. Gales et al., 2008).

5.5 Deep scattering spectrum

Scattering wavelets are interpreted from () which are the Mel filters without ap-

plying the IDFT or the DCT.In this section reference is made to (Andén & Mallat,

2011, 2014; Zeghidour et al., 2016) for the scattering wavelet derivation.

The Mel scale can be interpreted as dilations of a Wavelet. In the case of the

MFSC it lacks the ability to capture non-stationary structures when outside the

frame window. Such MFSC filters are constructed by dilating the wavelet by an

octave bandwidth of 1/Q as follows

ψj(t) = a−jψ(a−jt) | a = 21/Q and j ≤ J (5.19)

The transfer function of the constructed filter approximately ranges between

2Qπ − π and Qπ + π. For low frequencies below 2−J a simple low pass filter is

employed. Non-linear invariance is induced by applying a contracting modulus op-

eration. The resulting coefficients are similar to deriving extracting a contracted

envelope at different resolutions while filtering out the complex phase information.

Therefore, for a signal x we define the zeroth order Scattering transform as follows:

|W |x = (x ? φ(t), |x ? ψj1(t)|)t∈R,j1∈J1
(5.20)

However, the difference between the and the Deep Scattering Network (DSN) is

that the is a shallow architecture while the DSN is a deep architecture. Therefore, it

is observed that time-averaging of the low-pass filter loses information contained in

the high frequencies. Nevertheless, since the wavelet transform is invertible, the DSN

is able to go deeper by applying the next level scattering operation. The transform

is therefore reapplied over S0x = x ? φ(t) on the residue wavelet coefficients |x ? ψj1|

122 Chapter 5 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

and the process of time averaging to obtain invariant contracted envelopes reapplied.

The resulting first order scattering coefficient were obtained from

S1x(t, ψj1) = |x ? ψj1| ? φ(t)) (5.21)

It is shown in Andén and Mallat (2014) that if the wavelets ψj1 have the same fre-

quency resolution as the standard Mel-filters, then the S1x coefficients approximate

the Mel-filter coefficients. Unlike the Mel-filter banks however, there is a means

of regaining discriminating feature information, lost in high frequencies in a DSN.

This can be observed when first order wavelets ψj2 are applied to DSN coefficients

|x ? φj1|:

|W2||x ? φj1| = (|x ? ψj1| ? φ, ||x ? ψj1| ? ψj2|)j2∈J2
) (5.22)

The second order DSN coefficients also requires time averaging to derive local

invariance stability, hence the resulting coefficients are averaged again with a low-

pass filter φ and the final second order DSN scattering parameters are obtained.

S2x(t, j1, j2) = ||x ? ψj1| ? ψj2| ? φ(t) (5.23)

Figure 5.5 shows how the process of obtaining scatter coefficients can be succes-

sively made deeper computing higher-order invariance by retrieving the lost charac-

teristics and thus culminating a deep scattering spectrum. Andén and Mallat (2014)

shows that speech signals can be analysed using the first two DSN layers and the

coefficients obtained are generally stable to deformation and translation invariant

while possessing better discriminating features than MFCCs.

5.6 Chapter Summary

This chapter highlights the characteristics of the Deep Scattering Network that en-

able it as a candidate rich in pattern recognition discriminators for speech recogni-

tion. It is shown also that features required for speech feature invariance is recovered

through successive layers of the deep scattering network.

The development of this algorithm in this chapter introduces the Fourier trans-

form as a means of determining frequency contents in a speech wave. While the

Chapter 5 I. J. Alamina 123

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Figure 5.5: Scattering network - 2 layers deep
Andén and Mallat (2011)

Fourier transform has high resolution for frequency, it has no temporal resolution

and temporal frequencies or the instantaneous frequency within speech signals there-

fore cannot be resolved in the Fourier Transform. The Short-time Fourier Transform

(STFT) attempts to solve this but there is a trade-off to be made between the tem-

poral and frequency resolution. Better resolutions of time and frequencies however,

can be obtained using the Wavelet transform. This chapter also discussed the char-

acteristics of the Wavelet transform that enable better time and frequency filtering.

Finally, MFCCs and Deep Scattering Networks (DSNs) are discussed and com-

pared. It was shown here that through wavelet operations employed by the Deep

Scattering Networks frequency resolution lost in MFCC is gained by the DSN and

these frequencies contain information relevant for speech invariance. In turn, invari-

ance information is highly useful for better speech discrimination.

124 Chapter 5 I. J. Alamina

Chapter 6

Empirical Analysis 1: Wakirike

Language Model

The details of the language models developed for the Wakirike language is discussed

in this chapter. The language models developed draw upon the premise that the

grammar of a language is expressed in the character sequence pattern ultimately

rendered in word sequences. The two models developed in this chapter follow RNN

implementations discussed in chapter 4.

6.1 General Considerations for Sequence-to-sequence

modelling

The systems built in this work is centred around Deep Neural Networks (DNNs).

A DNN, is a function approximator of some function f∗. The sequence models

developed in this work are based on DNNs. The models can therefore be viewed

simply as the mapping of f∗ from its inputs to its outputs. While the inputs and

outputs may vary from one system to another along with that of the design of

the DNNs implemented, these models share common features that aim towards the

common goal of function approximation.

In Chapter 1, it is mentioned that the systems developed in this work fall under

the class of problems known as pattern recognition tasks, whether it be recognition

of speech patterns or that of language patterns for language models. They are

therefore also grouped into the branch of machine learning algorithms known as

125

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

classifiers. I. Goodfellow et al. (2016) formalises a classier as the function y = f(x),

which based on a set of learnable parameters, θ, maps an input x to a category y.

Therefore defines

y = f(x; θ) (6.1)

The General criteria considered in this section is a continuation of all the design

considerations for sequence models defined in Section 3.4 and Section 3.4.1. These

defined criteria represent the features of the network that vary from one sequence

design to another and ultimately have influence on the learnable parameters, θ of

our DNN-based RNN-sequence model. The following paragraphs therefore discuss

these hyper parameters and their selections for the three sequence models involved

in empirical analysis in this study.

6.1.1 Selection of Sequence Model

In Section 3.4, we establish five different sequence models types (see Figure 3.12),

and the rationale for only using MIMO for systems. Due to the fact that the inputs

and the outputs for speech and language modeled in this work, are time series data

and so therefore, the natural speech and language observations can be modelled

as MIMO sequences. Following this, the next thing to be decided would only be

whether the natural occurrence be modelled as synchronous or asynchronous MIMO.

For the design of the character-based language sequence model, the idea is that

since the language rules are expressed in the character sequence, then, for each input

in the training data the most accurate next character based on all the previous

characters leading to the current would be the next found in the training sequence.

Therefore, there is only one corresponding output and vice versa, hence, we use a

synchronous MIMO relationship to model the language model.

In this work, there are two speech models developed for low resource end-to-end

ASR. The first is based on the synchronous MIMO design and the second is based on

the asynchronous details of these designs are given in Sections 7.2 to 7.6. For both of

these regardless, the CTC algorithm ensures the asynchronous MIMO relationships

between inputs and outputs are restored.

126 Chapter 6 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

6.1.2 Selection of RNN-architectures for sequence modelling

In the previous section (6.1.1) and in Section 3.4, five RNN/DNN sequence-to-

sequence models were defined as

i. Single Input Single Output (SISO)

ii. Multiple Input Single Output (MISO)

iii. Single Input Multiple Output (SIMO)

iv. Synchronous Multiple Input Multiple Output (MIMO)

v. Asynchronous Multiple Input Multiple Output (MIMO)

Note that number 1 above can only apply to a regular DNN, while numbers 2 to

5 apply to RNNs. Apart from the super-structures, the second sequence-to-sequence

design criteria considers the sub-structures that comprise these super structures at

the cell level. There are five of RNN sub architecture considered in this work

i. Regular DNNs

ii. Long Short-Term Memory (LSTM)

iii. Gated Recurrent Unit (GRU)

iv. Bi-directional Recurrent Neural Network

v. Bi-directional LSTM

Chapter 4 presented an in-depth look at the above RNN sub-structures. For

the RNN-LM developed in this Chapter, the sub-structure selected was the GRU.

Similarly, the Bi-LSTM is used for first speech model experiments. Details of the

designs and selection criteria are given in this Chapter and Chapter 7. Note however,

that as the name implies, the Bi-directional LSTM (BLSTM) is a Bi-RNN where the

regular RNNs are replaced by LSTMs. Furthermore, the results in this Chapter show

that there was no need to use the heavier duty LSTMs or Bi-RNNs for the language

model development as the deep-GRUs proved to be quite sufficient. Speech models

however, required a more robust substructure where BLSTM have been shown to

perform better (S. Kim, Hori, & Watanabe, 2017).

Chapter 6 I. J. Alamina 127

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

6.1.3 Neural Network geometry

Neural network geometry refers to the number of layers and the number of neurons

per layer. This will give the total degrees of freedom of the neural network. In-

creasing the number of neurons per layer causes the neural network to extend the

dimensions for discrimination. However, increasing the number of layers enables

better generalisation of the dimensional data. These parameters have been selected

empirically based on pilot experiments and experiments on neural networks for sim-

ilar research. Generally for neural networks involving RNNs good practice should

have the number of layers start from 2-layers and the number of neurons per layer

from 64. Experiments for this research typically had 3-5 layers with the number of

neurons being between 128 and 2048.

6.1.4 Network Saturation Parameters

The succeeding paragraphs discuss parameters that are selected to either ensure

that the network trains in a stable manner that saturates or that tries to assist

the network to train faster. Most of these parameters have been selected based on

similar research or based on particular types of neural network architectures.

Weight initialisation

These are the values the neuron weights have at the start of training. If these are

widely ranging values, they tend to make the network unstable. However, having

values that are uniformly distributed around a stable value such as zero ensures that

the back propagation adjustments are also changing at a stable rate that favours the

gradient descent movement in the data space towards the global optimum. Weight

initialisation for models developed in this thesis followed this Gaussian initialisation

and that of common stable weight initialisation models such as Xavier initialisation

(Kumar, 2017) or Glorot initialisation (Glorot & Bengio, 2010) .

128 Chapter 6 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Non-Linear function selection

In Chapter 4, the following nonlinear functions sigmoid, tanh and RELU were in-

troduced. These functions enable neural networks to navigate nonlinear space as

function approximators. Out of these three nonlinear functions, only RELUs (He,

Zhang, Ren, & Sun, 2015) are immune to the “vanishing gradient problem”. As

identified in Glorot and Bengio (2010), the vanishing gradient problem seen in very

deep neural networks where gradients get smaller while back propagating through

the network and quickly become zero and stopping the network from saturating at

that point. Due to the hidden layers of the RNN, they constitute very deep networks

and therefore susceptible to the vanishing gradient problem. The three models main

models developed in this work use clipped RELUs for activation.

Number of epochs

An epoch is an event that occurs when the neural network has processed all the

training data available. Neural networks iteratively get trained until the network

saturates or has reached an optimal state where the performance cannot improve

further. Usually, it takes several epochs for the network to get to a global optimum

assuming all other parameters are configured optimally. In the models developed in

this thesis, the number of epochs were selected empirically from pilot experiments.

In some of the experiments performed, epochs were selected based on the Research

objectives not to train for more than a few hours for the language models or a few

days for speech models.

Learning rate

Learning rate has been introduced in Chapter 4. The rule of thumb for DNNs is

the larger the network the lower the learning rate should be. Learning rates applied

to sequence models developed in this work based on geometries used ranged from

0.0001 to 0.0005.

Chapter 6 I. J. Alamina 129

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Cost function selection

The root mean square error, cross entropy and the CTC loss cost functions have been

introduced in Chapter 4. This work made use of the cross entropy for the language

model and the CTC for the speech models. Comparing CTC to AutoSegCriterion

proposed by (Collobert et al., 2016) the differences for AutoSegCriterion are (1) no

blank labels are required (2)nodes and possibly edges have unnormalised scores and

(3) global normalisation is utilised instead of per-frame normalisation.

Optimiser

Gradient descent algorithm has been introduced in Chapter 4. Different algorithms

that improve upon the Gradient descent algorithm, such as ensuring a global minima

is determined, are explored in work. The adadelta and adam optimizer are examples

of such used in this thesis.

6.1.5 Regularisation measure

Rather than adjusting neural network geometry in order to find an optimal geometry

that neither over fits or under fits the data, a common way to avoid over fitting the

data is by a method known as dropout (Srivastava, Hinton, Krizhevsky, Sutskever,

& Salakhutdinov, 2014). Dropout was the regularisation strategy employed by this

research. Dropout will therefore determine which neurons will refrain from emitting

its output at each layer. Using similar research, dropout values were 20% for the

language model and 10% for Bi-RNN with attention transducer and 0% for Bi-RNN

only experiments.

6.2 Data Preparation

A published version of the Wakirike New Testament Bible was obtained and used

as the data source for RNN training of the language model. There was no readily

available soft or online copy of the Wakirike new testament bible. As such, the

Wakirike New Testament Bible text corpus text was entered into the ASR system

130 Chapter 6 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

from the physical copy using a text editor to form a text corpus. The complete

corpus had a word count of 668,522 words and a character count of 6,539,176 char-

acters. Following the k-fold cross validation process (Géron, 2019), the data set was

then divided into 11 parts. Two parts dedicated for testing and validation and the

remaining nine parts were used for training. As the validation set is not seen during

training it can be used to keep track of how well the training is going and that it is

not over-fitting the data by simply memorising it.

Preprocessing of the text corpus involved selecting a set of characters as the

input feature set and removing all other characters not found in the input feature set.

The Unicode representations of the character set consisted of letters and punctuation

marks. These are one-hot encoded and batched for sequential input. Neural network

parameters which are not automatically determined through back propagation are

called hyper-parameters. These are usually experimentally determined and manually

set while configuring the network. A hyper-parameter for the language model RNN

is the input sequence length. For the language model built a 30 characters-long

sequence length is chosen. This length is an average phrase sequence. In these

phrases, long-term character dependencies of words can be captured. At the same

time, keeping the sequence length at this value, and not longer, will pose less of a

burden on the computer system resources during parameter computations.

Another hyper-parameter for training used was the batch size. The batch size

parameter determined how many 30-character sequences will be trained in parallel

in order to speed up the training process. Increasing the batch size also meant an

increase in the size of the matrix multiplications being performed and therefore,

the computing power system resource being demanded by the language model. By

experimenting with various batch sizes it was determined a batch size of 200 was

suitable for training the language model with respect to the other training parame-

ters.

6.3 GRU RNN Architecture

The modified LSTM RNN known as the Gated Recurrent Unit (GRU) discussed in

Chapter 4 is employed for the neural network model built in this Chapter. In order

Chapter 6 I. J. Alamina 131

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

to optimise network performance while conserving computation resources, GRUs

have been shown to give similar performance to regular LSTMs; however, with a

lighter system resource footprint (Cho et al., 2014).

The architecture of the GRU RNN used to train the Wakirike text corpus had

an internal network size of 512 nodes for each layer and was 3 layers deep. In a

study by (I. J. Goodfellow, Bulatov, Ibarz, Arnoud, & Shet, 2013), it was shown

that increasing the number of nodes in a neural network will lead to over-fitting;

however, simultaneously increasing the network depth mitigates this effect. In other

words, in order to expand the degrees of freedom of a neural network and at the

same time constrain the network to generalise well on unseen data, it is necessary

to increase the number of neurons in both length and depth. Experiments carried

out in this chapter follow this recommendation. Initial experiments had an internal

node size of 128 and a single layer deep. While this showed promise of converging,

the error rate was still high, therefore the network was expanded to the final model

above. Externally, the network model is further sequenced 30 times, representing

the input sequence length hyper-parameter and the number of recurrent connections

where each connection represents a sequenced time step.

Another hyper-parameter sensitive to network size is the learning rate. The

learning rate is selected in such a manner that an increase in the network size

makes the learning rate more prone to overshooting. Therefore, increased degrees of

freedom in a neural network will require the learning rate to be made smaller so that

it does not overshoot the network saturation point. Small learning rates of between

0.001 and 0.005 were used. Furthermore, the language model neural network was

designed to overcome over-fitting using the dropout method (Srivastava et al., 2014)

which has been shown to be effective for regularising deep neural networks. The

hyper-parameter for dropout was kept at 20% such that only 80% of neural network

activations are propagated from one layer to the next, whereas the remaining 20%

were randomly zeroed out. Intuitively, dropout works by forcing the remaining

active neurons to infer what is missing in the activations that have been dropped

and ultimately leads to better generalisations as activations are based on inference

than on memory.

132 Chapter 6 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Table 6.1: Language Models comparison
Language Model Train time Perplexity Epochs
GRU RNN 3-layer model (CPU training) 2 days 30.920 75
5-gram with Keysner Soothing and interpolation 5 minutes 238.720 N/A
GRU RNN single-layer model (GPU training) 5 hours 641491.52 120
Plain RNN single-layer model (GPU training) 9 hours 27087.893 180
GRU RNN 3-layer model (cloud GPU training) 2 hours 30.920 75

6.4 Language Model Training Experiments

Two sets of character-based neural network RNN-based experiments are developed in

this chapter. A third word based statistically modelled language model is also devel-

oped based on Heafield et al. (2013) estimates as a baseline model. Character-based

perplexity measurements were used to compare the character-based models and a

conversion factor based on (Hwang & Sung, 2017) is used to compare character-based

models on the word-based counterparts. Experiments for the RNN language models

were majorly performed using tensorflow-MKL, which is a highly parallelised (44-

threads for one of the experiments) cpu-based experiments. The experiment with the

largest number of neurons was also performed on cloud-based GPUs (Nvida Tesla

T4). Details of the experiments carried out and resulting perplexity are shown in

Table 6.1.

6.5 Output Language Model and Language Gen-

eration

The 3-layer network experiments were trained on both CPU and GPU configura-

tions. Both were trained for 75 epochs, where an epoch indicates that the model

has processed all of the training data. Recall that the model is trained until it

is saturated. In other words, the model trains until the prediction accuracy is no

longer improving. This usually will take several epochs.

The loss plots for the three-layer and single layer GRU RNN are shown in Figure

6.1. The three-layer GRU-RNN achieved a prediction accuracy of 65% on held-

out data. When the created 3-layer GRU character-based RNN language model is

Chapter 6 I. J. Alamina 133

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Figure 6.1: Wakirike Language model training Loss curves for (a) 3-Layer GRU and
(b) Single-Layer RNN

seeded with an input character, one can force the network to select from the top-N

candidates thus causing the Neural network to generate its own sentences. In this

scenario, the network is said to perform language generation by constructing its own

sentences. The generated language output from the GRU language model was found

to be a reflection of the overall context of the training data.

The evaluation of the GRU language model of the Wakirike language was per-

formed using a perplexity measurement metric. The Perplexity metric applies the

language model to a test data-set and measures how probable the test data-set is.

Perplexity is a relative measure given by the formula:

PP (W) = P (w1, w2 . . . wN) 1
N (6.2)

PP (W) = N

√√√√ N∏
i=1

1
P (wi|wi−1) (6.3)

Where w1, . . . , wN are the sequence of words. The language model with the lower

relative perplexity score is therefore expected to yield better approximation of the

data when applied to unseen data generally.

Intuitively, the perplexity metric measures the ability of a language model to

predict held-out data. A character based perplexity metric is possible using the

negative log likelihood of the character sequence. A character based perplexity

134 Chapter 6 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

metric is possible using the negative log likelihood of the character sequence.

PP (X) = exp

{∑T
t=1 logP (xt|x1:t1)

T

}
(6.4)

However, our base-line language model is a 5-gram word-based language model.

Therefore, comparing a word based model to a character based model requires a

conversion step. In this work, the conversion step involved using the GRU language

model generated a corpus which was re-scored by re-estimating with a 5-gram word-

based language model

The result of the training of the GRU-Cell Recurrent Neural Network on low-

resourced Wakirike Language gave impressive and intelligible results and showed

better results when measured with standard n-gram language models. The results

showed that it is indeed possible to derive a language model using a GRU-cell RNN

on a low resource character sequence corpus for the Wakirike language.

Table 6.1 shows the Results of the Perplexity model of the LSTM Wakirike

Language model and an equivalent 5-gram Language model with interpolation and

Keysner smoothing (Chen & Goodman, 1996) for various lengths of the held-out

data.

6.6 Discussion

The result of the training of the 3-layer-deep GRU-Cell Recurrent Neural Network

on low-resourced Wakirike Language had decent results with an accuracy of 65%.

Even with this accuracy, the model had shown to have learned the vocabulary and

was able to construct phrases consistent with the Wakirike language structure. The

single-layer GRU cell however after 120 epochs did not learn the vocabulary and was

not able to learn any words. It can also be seen from the loss curves of the language

models that the models reach saturation fairly quickly after about 20 epochs for the

3-layer GRU RNN model and after about 40 epochs for the single-layer RNN.

The results also showed that the 3-layer GRU language model developed a better

language model than the 5-gram model in terms of the perplexity metric because

the perplexity of the 3-layer GRU RNN model was lower than that of the 5 gram

model. The single layer GRU model being a shallow model with a single-layer did

Chapter 6 I. J. Alamina 135

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Table 6.2: Language Models sample generation
a) Original Wakirike Text
mine-o anikanika boro sobie korobo enjelapu so, we duko o piri sa ibiok-
wein mi sikima be jinye dukobia bo, ya tamuno worinime sime inibo piri
wa tatari duko borosam, a piki mioku bari ani dukoabe na nemikase tomonibo

b) GRU RNN 3-layer model (75 epochs)
ani se mi be chinmgbolu mi ani se chua yee anisiki ini tamuno be bu s-
arame, se nwo beme, a kokomaye duko o piriabe, o bi se mi mieari ye mi
ori oria koki a kuro mi nyana yee. o bi bara mi o nwose o diebia ani

c) Plain RNN single-layer model (180 epochs)
min on o o bo oeuemin on o oniaia a bire nami bieee mani o onuo o be
bo oe berimini okuma ani mani o o onuaminiana bireme,eanaminianiania b-
i bo ono bo onia anaa beremanaa bi nao sike,einama nieiei mi niei ia

d) GRU RNN single-layer model (120 epochs)
ia iiiii o i ii i i iiii iii i oi oi o oiai oi ii ii ii iiiii i
iiii iiiiii iii iii iii ii iii o oi i i o ii iiii iiii iiiii i ii
i iii i o ii oi oia oi iiiiii o i o o o i oi o oi iiiii i iiiii ii

not however learn anything having a very high perplexity heading towards infinity.

Table 6.2 below demonstrates output generations from the single layer and 3-layer

GRU RNN language models based on the sampling procedure described in Section

6.5

Table 6.2(a) to (d) demonstrates how the language generated by various lan-

guage models resembles the original training data. The original Wakirike language

is given in part (a) then, the other language model generations (following the proce-

dure described in Section 6.5) are shown in order of decreasing similarity. It can be,

therefore, observed that the 3-layer GRU language model had the highest similarity

to the original Wakirike language, which has also been evidenced by its low per-

plexity score. The other single-layer models having higher perplexity scores showed

lesser degrees of similarity to the original Wakirike language.

Finally, it would be in the interest of this research to further consider increasing

the number of layers to achieve higher levels of accuracy or consider optimising

other parameters which may help the training results, such as the sequence length

of the model. However, this was not done as the time constraint of one day for

training the language model was already stretched and we are certain that these

136 Chapter 6 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

hyper-parameters have a direct influence on the size of the model. This in turn will

affect the computing resources required and hence a trade-off of the training time

required to saturate the models.

6.7 Chapter Summary

This chapter shows the application of a character-based Gated Recurrent Unit RNN

on the low resource language of Wakirike to generate a language model for the

Wakirike language. The data-set and preparation and the details of the network

were discussed. The output of this model was used to hallucinate the Wakirike

language which was then scored against word-based perplexity to obtain a metric

against the baseline language model.

It can be inferred that the GRU character-model developed has an improved

language model and because it is based on a character-model, which is fine-grained

when compared to a word model, it is likely to generalise data better when used in

practice and is less biased than a word-based model. This can be observed from the

fact that the output corpus produced a larger vocabulary size.

Chapter 6 I. J. Alamina 137

Chapter 7

Empirical Analysis 2: Deep

Recurrent Speech Recognition

models

Throughout the development of this thesis, the establishment of deep learning as a

strategy where computers learn through representation of patterns at varying de-

grees of complexity has been an underlying theme. It was also emphasised how this

is achieved by internal layer-wise encapsulations. Structures discussed in Chapter

2, such as layer-wise stacking of neural network type architectures such as the Re-

stricted Boltzmann Machine (RBM) and Deep Belief Network (DBN) were used to

implement such representations.

In this chapter, the end-to-end Bi-directional Recurrent Neural Network model

is described. Bi-RNN for speech recognition tasks is employed here as opposed to

regular RNNs or DBNs mentioned above in the preceding paragraph. Bi-RNNs are

used because of the contextual nature of speech. In Chapter 6 it was demonstrated

how deep stacking of GRUs outperform single-layer RNNs for extended sequences.

That is to say, words in a sentence or paragraph are contextual to the sentence/para-

graph over particularly long sequences and, these word contexts are better captured

by the GRU architecture. More importantly, Bi-RNN’s have a forward and back-

ward RNN and these give the neural network the ability to analyse (look-up) the

words from the backward RNN not currently seen by the forward RNN in the sen-

tence succinctly giving the BiRNN parameters a contextual feature (Graves et al.,

138

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

2006).

In addition to the procedure for designing sequence-to-sequence RNNs outlined in

Section 3.4.1, this Chapter describes the training data, data preprocessing, deriva-

tion of feature vectors and output decoding. First, speech features developed by

making use of the deep scattering convolution networks DSN is discussed. The DSNs

are used as inputs to the end-to-end model. Two end-to-end networks are then de-

scribed. The core Bi-RNN network and a second Bi-RNN network augmented with

an RNN-transducer and an attention mechanism. A formal presentation of the

speech neural network model parameters and architecture is given and the decoding

algorithm is also detailed in sections contained within this chapter. Finally, the

results are presented and the findings from the model results discussed.

7.1 Deep Scattering Features

In Chapter 4, we derived a fast wavelet transform from a low pass filter and a high

pass filter. The speech features used for the BiRNN is obtained from successive

wavelet-modulus operations of a deep scattering network 2 layers deep. This 2-layer

DSN comprises a first-order scatter transform. The wavelet modulus operator is

derived from the combination of a low pass filter and a band pass filter. Hyper

parameters of the system included the window period for each sampled sub section,

T ; The Q-band value for the band pass filter and the number of wavelets J at each

scattering layer for the total number of layers, M = 2.

The matlab scatnet toolbox (Andén et al., 2014), used to determine the scatter

coefficient features for this research, provides optimal values for hyper parameters

for audio signal processing into scatter features. In this regime the value for the

hyper parameter T = 512 samples per window. This corresponds to a window of

50 milliseconds for the audio signals sampled at 8000Hz. For the zeroth scattering

layer the Q-band parameter was Q = 8 and the first scattering layer took the value

Q = 1. Finally J is pre-calculated based on the value of T . These after Scat-Net

processing produce a feature-vector having 165 dimensions. These feature vectors in

turn are used as inputs to the bi-direction neural network model whose architecture

is described in succeeding sections.

Chapter 7 I. J. Alamina 139

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

For the second end-to-end architecture involving a transducer with attention

mechanism, a period of is used to capture a window of 4 seconds for audio signals

sampled at 16000Hz. The same Q-band parameters having Q=8 for the zeroth layer

and Q=1 for successive layers are used, In addition, the total number of layers deep

was M=3 giving rise to a 2nd-order Scatter Network. This produced a feature-vector

having 250 dimensions.

7.2 CTC-BiRNN Architecture

The CTC-Bi-RNN sequence model design follows the synchronous MIMO design

described in Section 3.4. As a result of the CTC-decoder implementation in Section

7.2.1, however, the decoder converts Bi-RNN model from a synchronous MIMO to

an asynchronous one.

The core of the system is a bidirectional recurrent neural network (BiRNN)

trained to ingest scatter coefficients described in the previous section, in order to

generate English text transcriptions. An end-to-end system therefore specifies that

utterances x and the corresponding label y be sampled from a training set such that

the sample S = (x(1), y(1)), (x(2), y(2)), In our end-to-end model, each utterance,

x(i) is a processed feature vector consisting of 165 dimensions. Recall, every window

passes through a scattering transform to yield an input of vector of p = 165 features;

consequently, x(i)
t,p denotes the p-th feature in a scatter transform at time t.

GPU training of the speech model architecture developed above was conducted

using Mozilla Deepspeech (Mozilla Deepspeech, 2019) CTC bi-directional RNN im-

plementation along with the accompanying Mozilla Common voice data set (Ardila

et al., 2019). The Common Voice Data set project consists of voice samples in

short recordings approximately 4 seconds each. The complete data set is about 250

hours of recording divided into training, test and development subsets. The BiRNN,

given the input sequence, x, outputs a sequence of probabilities yt = P (ct|x), where

ct ∈ a, b, c, . . . , z, space, apostrophe, blank.

The actual architecture of our core Bi-RNN is similar to the deepspeech system

described in A. Hannun et al. (2014). This structure constitutes 5 hidden layers and

one output layer. The first three layers are regular DNNs followed by a bi-directional

140 Chapter 7 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

recurrent layer. As such, the output of the first three layers are computed by:

h
(l)
t = g(W (l)h

(l1)
t + b(l)) (7.1)

g(·) = min{max{0, z}, 20} is the clipped rectified linear unit and W (l), b(l) are

weight matrix and bias parameters for layer as described in sections 4.2.1 and 4.3

respectively.

It was shown in chapter 4 the recurrent layer comprise a forward and backward

RNNs whose equations are repeated here for reference

h
(f)
t = g(W (4)h

(3)
t +W (f)

r h
(f)
t1 + b(4)) (7.2)

h
(b)
t = g(W (4)h

(3)
t +W (b)

r h
(b)
t+1 + b(4)) (7.3)

Consequently, h(f) is the sequential computation from t = 1 to t = T (i) for the i-

th utterance and h(b) is the reverse computation from t = T (i) to t = 1. In addition

the output from layer five is summarily given as the combined outputs from the

recurrent layer:

h(5) = g(W (5)h(4) + b(5)) (7.4)

where h(4) = h(f) +h(b). The output of the Bi-RNN on layer 6 is a standard soft-max

layer that outputs a predicted character over probabilities for each time slice t and

character k in the alphabet:

h
(6)
t,k = ŷt,k ≡ P (ct = k | x) =

exp
(
(W (6)h

(5)
t)k + b

(6)
k

)
∑
j exp

(
(W (6)h

(5)
t)j + b

(6)
j

)) (7.5)

b
(6)
k takes on the -th bias and (W (6)h

(5)
t)k is the matrix product of the k-th

element. The error of the outputs are then computed using the CTC loss function

Graves (2014) as described in chapter 4. A summary of our model is illustrated in

Figure 7.1.

Chapter 7 I. J. Alamina 141

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Figure 7.1: Deep scattering Speech Model architecture reveals the 5-hidden layer
Bi-RNN h

(1)
t to h(5)

t being trained by DSN features.

7.2.1 CTC Decoding

In chapter three the CTC loss function algorithm was established as being able

to maximise the probability of two cases. The first case of transiting to a blank

and the second case of transiting to a non blank. In this section, this concept is

used to enable decoding of the network output from posterior distribution output to

character sequences which can be measured against a reference transcription using

either character error rate (CER) or word error rate (WER).

Recall, all the output symbols are in the alphabet Σ and augmented with the

blank symbol. The posterior output of the CTC network is the probability of the

symbol given the speech feature input p(c|xt) at time t for t = 1, . . . , T and T is the

length of the input sequence. Also recall two further sets of probabilities also being

maintained by the model are the probability of a blank character pb and that of a

non blank character pnb.

Several strategies have been employed to obtain a translation string from the

output of the deep neural network. The prefix beam search employed by the CTC

decoder of this research is derived from an initial greedy approximation, where at

each time step determine the argument that maximises the probability p(c|xt) at

each time step. Let C = (c1, . . . , cT be the character string then, the greedy approach

has

ct = argmax
c∈Σ

p(c|xt) (7.6)

142 Chapter 7 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

However, this simple approximation is unable to collapse repeating sequences and

remove blank symbols. In addition, the approximation is unable to include the

constraint of a lexicon or language model.

The prefix beam search algorithm A. Y. Hannun et al. (2014) adopted in this

work incorporates a language model derived from a lexicon in addition to keeping

track of the various likelihoods used for decoding. For the language model constraint,

the transcription W is recovered from acoustic input X at time t by choosing the

word which maximising the posterior probability:

Wi = arg max
Wi∈ΣW

pnet(W ;X)plm(W) (7.7)

In equation 7.7, the Bayes product of language model prior plm and the network

output pnet are utilised to maximise the probability of a particular character-word

sequence in the lexicon given by ΣW . The overall calculation used to derive the final

posterior distribution includes word insertion factors (α and β) used to balance the

highly constrained n-gram language model.

The second strategy adopted by the prefix beam search which improves the

decoding algorithm is the beam search strategy. With this approach, the search

maintains all possible paths; however, it retains only k number paths which maximise

the output sequence probability. Improvements gained with this method are seen

when certain maximal paths are made obsolete owing to new information derived

from the multiple paths in being maintained in memory.

The recursive prefix beam search algorithm illustrated in Figure 7.2 attempts to

find the string formulated in equation 7.7. Two sets prefixes Aprev and Anxet are

initialised, such that at Anxet maintains the prefixes in the current time-step while

Aprev maintains only k-prefixes from the previous time-step. Note that at the end

of each time step Aprev is updated with only -most probable prefixes from Anxet.

Therefore while, Anxet contains all the possible new paths from based on Aprev as

a Cartesian product of Aprev × Σ ∈ Zk × Z |Σ| where |Σ| is the length of Σ. The

probabilities of each prefix obtained at each time step are the sum of the probability

of non-blank plus the probability of a blank symbol.

At every time step and for every prefix ` currently in Aprev, a character from

the alphabet Σ is presented to the prefix. The prefix is only extended only when

Chapter 7 I. J. Alamina 143

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

the presented symbol is not a blank or a space. Anxet and Aprev maintain a list of

active prefixes at the previous time step and proposed prefixes at the next time step

respectively, The prefix probability is given by multiplying the word insertion term

by the sum of the blank and non-blank symbol probabilities.

p(`|x1:t) = (pnb(`|x1:t) + pb(`|x1:t))|W (`)|β (7.8)

W (·) is obtained by segmenting all the characters in the sequence with the space-

character symbol and truncating any characters trailing the set of words in the

sequence. The prefix distribution however varies slightly depending on network

output character being presented.

`end is the variable representing the last symbol in the prefix sequence in Aprev.

If the symbol presented is the same as `end then the probability of a non-blank

symbol,pnb = 0 . If the symbol being presented is blank then we do not extend the

prefix. Finally, if the symbol being presented is a space then we invoke the language

model as follows

p(`+|x1:t) = p(W (`+)|W (`))α(pnb(`|x1:t) + pb(`|x1:t))|W (`)|β (7.9)

Note that p(W (`+)|W (`)) is set to 0 if the current word W (`+) is not in the

lexicon. This becomes a constraint to enforce all character strings to consist only

of words in the lexicon. Furthermore, p(W (`+)|W (`)) is extended to include all

the character sequences representing number of words considered by the n-gram

language model by constituting the last n− 1 words in character sequence W (`).

7.2.2 Model Hyper parameters

The hidden layer matrix for each layer comprised 1024 hidden units (6.6M free

parameters). The weights are initialised from a uniform random distribution having

a standard deviation of 0.046875. The Adam optimisation algorithm (Kingma & Ba,

2014) was used with initial learning rate of, and a momentum of 0.95 was deployed

to optimise the learning rate.

The network was trained for a total of five to fifty epochs over the training set

for experiments conducted. The training time for Python GPU implementation is

144 Chapter 7 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

shown in Table 7.1. For decoding with prefix search we use a beam size of 200 and

cross-validated with a held-out set to find optimal settings for the parameters α

and β. Figure 7.3 shows word error rates for various GPU configurations and audio

data-set sizes.

7.3 Summary of Bi-RNN Experiment Design

The details of the Bi-RNN model has been outlined in Sections 7.2 and 7.2.1. This

section now summarises the process of the Bi-RNN experiment from data collection

to output text transcriptions. Recall once again, as this is an end-to-end experiment

the input-end will comprise raw audio speech utterances and at the output-end will

be the character sequences which are resolved into words using a language model.

The design of this experiment therefore utilises the Bi-RNN to ingest raw audio

utterances as preprocessed scatter-transforms and outputs text transcription which

can be compared against the original audio transcriptions.

The audio clips and the corresponding transcriptions are downloaded with a

script and the subsequent locations are stored into a configuration file. Being an

end to end process, no further data pre-processing is required except conversion of

the audio file from a binary format to a numeric-text format. From this numeric text

format, the scatter-transforms are computed when loaded from the configuration file.

The CTC-algorithm discussed in Sections 4.3.3 and 7.2.1 is responsible for cor-

recting fuzzy alignments between audio input and output text. This relationship

according to Section 3.4.1 is an asynchronous MIMO, but the Bi-RNN represents

a synchronous MIMO. Hence a synchronous MIMO is combined with the CTC-

decoder such that while Bi-RNN takes care of the Multiple Input Multiple Output

relationship the CTC decoder takes care of collapsing output characters and, there-

fore, restoring the asynchronous relationship between outputs and inputs. For steps

1 and 2 of Section 3.4.1 we use a Bi-RNN. Details of the internal structure of the

Bi-RNN from Sections 7.2 and 7.2.1 are used for step 3. This includes 3 hidden reg-

ular DNN layers and two bi-directional LSTMs hidden-layers and a softmax output

layer. Neural network saturation parameters are selected based on desired training

time, similar research practice, and accuracy expectations in line with the research

Chapter 7 I. J. Alamina 145

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

objectives. They include weight initialization having a mean of 0 and standard devi-

ation of 0.046875; clipped RELU non-linear function (see Chapter 5); learning rate

of 0.001 with 0.95 momentum. Finally, the adam optimiser and CTC-loss function

(Section 4.3.3) are incorporated at the training output stages.

The CTC decoder described in Section 7.2.1 is then used to determine the char-

acters from the softmax output. The CTC decoder had a look ahead beam search

parameter of 200 characters.

7.4 BiRNN with Attention Transducer end-to-end

Architecture

The core of this model is a CTC-Transformer+Attention Transducer model. To-

gether these two architectures achieve joint speech training and decoding. The

CTC-Transformer model is based on a Bi-LSTM similar to what is obtainable in the

DeepSpeech model. There are up to 11 variants of Attention networks implemented

in ESPNet, however, the results of the experiments done this work experiment was

determined from the attention model described in Chorowski, Bahdanau, Serdyuk,

Cho, and Bengio (2015). Moreover, the multi-objective training was performed with

equal weights on both the CTC-transformer and the Attention-Transducer. Finally

the system was trained for 20-200 epochs depending on the design goals and accuracy

required.

This model uses the asynchronous MIMO model. Although this model would

require more neural network layers and about 2 times more RNN units than the

synchronous MIMO-RNN model, ultimately, addition of Attention-based models

ensures faster convergence and ultimately faster time to train. This can only be

achieved using asynchronous MIMO models which are the only models that support

attention-mechanism.

Using a weighting function, α, one can control how much bias either the CTC-

Transform or the Attention-Transducer will get during training. The joint training

helps to improve robustness as well as achieve fast convergence.

L = αLctc + (1− α)Latt (7.10)

146 Chapter 7 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

At the same time joint decoding of labels is integrated with the character based

RNN-language modelling. The log probability of the RNNLM-integrated decoding

of character labels is as follows

log p(yn|y1:n1,h1:T ‘) = log phyp(yn|y1:n1,h1:T ‘) + β log plm(yn|y1:n1) (7.11)

Where joint decoding, log phyp(yn|y1:n1,h1:T ‘) is given by

log phyp(yn|y1:n1,h1:T ‘) = α log pctc(yn|y1:n−1,h1:T ′) + (1− α) log patt(yn|y1:n−1,h1:T ′)

(7.12)

7.5 Summary of birnn with Attention Transducer

Experiment Design

According to the stepwise procedure of deriving RNN sequence-to-sequence models ,

the Bi-RNN with Attention Transducer model incorporates an asynchronous MIMO

design for Step 1 (Section 3.4.1). For steps 2 and 3 (Section 3.4.1), 6 layers similar to

the Bi-RNN-only design consisting 3 regular DNN layers, 2 BLSTM and the output

softmax layer. Neural network components The number of neurons for the hidden

layers were 2048 neurons. Network saturation parameters were similar to the Bi-

RNN-only experiment setup having the number of epochs between 20-200 epochs and

in line with research objectives. As the training was significantly faster in this setup,

more epochs could be incorporated into the experiments. The initial experiment had

only 20 epochs using baseline experiments and to determine how fast the training

would be. Subsequent experiments were between 100 and 200 epochs according to

desired accuracy and research objectives. Weights were initialized between 1 and -1

according to a normal distribution. Learning rate was 0.001; Non linear function

was a clipped RELU. Cost function and optimizer was ctc-loss and ada-grad variant.

Decoding was done according to the joint decoding function described in Section 7.4.

Finally, a drop out of 10% was used to avoid over fitting of the model.

Chapter 7 I. J. Alamina 147

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

7.6 Speech Model Baselines

The model baselines were trained alongside their scatter transform counterparts.

In addition, we adopted the model produced by the Mozilla DeepSpeech team.

This model had a similar architecture with 5 hidden units and 2048 hidden units.

This baseline was trained on Librespeech corpus and the common voice data cor-

pora (Ardila et al., 2019; Panayotov, Chen, Povey, & Khudanpur, 2015). Study by

A. Y. Hannun et al. (2014) reported successful character error rate (CER) using deep

neural network (DNN), recurrent deep neural network with only forward temporal

connections (RDNN), and also bi-directional recurrent neural networks (BRDNN).

The models used in their study had 5 hidden layers having either 1,824 or 2,048

hidden units in each hidden layer.

Word Error Rates obtained by this additional model were optimised after 75

epochs, learning rate of 0.0001 and a dropout rate of 15%. In addition, the language

model hyper parameters for alpha and beta were 0.75 and 1.85 respectively. This

achieved 8% WER. This model was developed using MFCC features of the training

corpora.

7.7 Speech Model Simulations

Speech model training experiments were carried out on the two different end-to-end

models as well as on different GPU configurations. The first set of experiments

was performed for the Bi-RNN-only model. The first GPU configuration for the

Bi-RNN-only model consisted of 2 GPUs having a total of 10 gigabytes of memory.

The second GPU configuration comprised 5 GPUs having a total of 15 gigabytes

of memory. Experiments for the BiRNN end-to-end model with transducer and

attention were also performed using a GPU configuration having 4 gigabytes of

memory.

7.7.1 Bi-RNN-only end-to-end model Experiments

For the Bi-RNN-only end-to-end experiments, GPU configuration experiments were

carried out on varying-size subsets of the common voice corpus. The various GPU

148 Chapter 7 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Table 7.1: Bi-RNN-only Experiments
Experiment Hours of speech Total training time Training status
1. 2xGPU 10GB RAM 1 7 days Complete
2. 2xGPU 10GB RAM 10 40 days Not complete
3. 5xGPU 15GB RAM 2 2 days Complete
4. 5xGPU 15GB RAM 40 40 days Not complete
5. 1xCPU 16GB RAM 20 20 days Not complete
6. 1xGPU 2GB RAM 20 20 days Not complete

Table 7.2: Bi-RNN-only Experiments Summary
Experiment Hours Corpus epochs Metric Score

of speech
1. 2xGPU 10GB RAM 1 CV LVCSR 40 WER(%) 100+
2. 2xGPU 10GB RAM 10 CV LVCSR 25 WER(%) 100+
3. 5xGPU 15GB RAM 2 CV LVCSR 40 WER(%) 100
4. 5xGPU 15GB RAM 40 CV LVCSR 40 WER(%) 87

configurations along with the training times are shown in Table 7.1.

It can be seen in Table 7.1, only two experiments had reached completion. The

others had to be stopped for exceeding reasonable training times of 20 and 40 days.

Out of the four experiments that did not complete, all the GPU-based experiments

had trained for up to 20 epochs and quantitative metrics were taken for these ex-

periments. Table 7.2 shows the details for the Word Error Rate (WER) accuracy

metrics for a total of four experiments. The number of hours of speech, corpus type

and total number of epochs are also shown. Accuracy curves are shown in figure

7.3.

7.7.2 Bi-RNN with Attention Transducer Experiments

The End-to-End Speech Neural Network Toolkit (ESPNet) (S. Watanabe et al.,

2018) provides building blocks for BLSTM transducer with attention mechanism

described in Section 7.4. Two experiments involving a much smaller audio corpus

guaranteed to converge quickly at training and a larger Italian language speech

corpus (Voxforge, 2019) used for these experiments. The AN4 (alphanumeric) corpus

by Carnegie Mellon University (Acero, 1990), is a small vocabulary speech corpus

having only 948 training utterances and 140 test utterances.

The speech corpora utterances are 16-bit linearly sampled at 16kHz, each record-

Chapter 7 I. J. Alamina 149

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Table 7.3: Bi-RNN with attention and transducer Experiments
Experiment Hours Training Epochs Training

of speech time status
1. 1xGPU 4GB (log mel.) 1 15 minutes 20 Complete
2. 1xCPU 16GB (scatter feat) 1 3 days 100 Complete
3. 1xGPU 4GB (log mel) 10 11 hours 200 Complete
4. 1xGPU 4GB (scatter feat) 10 38 hours 200 Complete

Table 7.4: Bi-RNN with attention and transducer Experiments Summary
Experiment Hours Corpus Metric Score

of speech
1. 1xGPU 4GB (log mel) 1 AN4 SVCSR WER(%) 12.9
2. 1xGPU 4GB (scatter feat.) 1 AN4 SVCSR WER(%) 26.8
3. 1xGPU 4GB (scatter feat) 10 Voxforge-italian (LVSCR) WER(%) 76.7
4. 1xGPU 4GB (log mel) 10 Voxforge-italian (LVSCR) WER(%) 72.4

ing made with near-field microphone quality. The compressed tar file comes with

a variety of audio formats including raw wav format, the NIST sphere format and

those already encoded as Mel cepstral coefficients.

The end-to-end architecture at the core of ESPNet is the CTC-Transformer+Attention

Transducer model. Together these two architectures achieve joint multi-objective

speech training and decoding. The CTC-Transformer model is based on a BLSTM

and is similar to what is obtainable in the DeepSpeech model. There are up to

11 variants of Attention networks implemented in ESPNet, however, the results of

the ESPNet experiment performed was determined from the model described in

Chorowski et al. (2015). Moreover, the multi-objective training was performed with

equal weights on both the CTC-transformer and the Attention-Transducer.

Experiments were carried out using ESPNet default parameters which included

those for character based-Recurrent Neural Network language model RNN-LM,

multi-channel feature input and multi-objective learning using both CTC-Transformer

and Attention-Transducer networks.

With this minimal default setting, the test set had a final recognition score of

9.5% character error rate (CER). The next Chapter discusses how the baseline can

be scaled and remodelled for integrating scattering features.

150 Chapter 7 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

7.8 Model Results Interpretation

Interpretation of Model Results Experiments carried out to train the end-to-end

ASR were performed on the following system configurations

i. GPU (GTX1050) with 2GB RAM

ii. GPU (GTX1050) with 4GB RAM

iii. GPU (GTX1060) with 6GB RAM

iv. GPU (GTX1070) with 3GB RAM

v. CPU with 16GB RAM

7.8.1 Bi-RNN-only experiment discussion

Configurations with CPU were used as control experiments to compare the GPU

efficiency with the CPU being compensated with more memory. The higher memory

allowed the CPU configurations to remain accessible during training unlike the GPU

systems that used up most of the system resources bringing the computer system

close to a grinding halt and making the GPU systems difficult to access while training

was in progress. In as much as a number of the experiments done exceeded 10

days, our goal was not to exceed more than 10 days training for speech models.

What the GPU lacked in memory resources was compensated for in computational

speed gained due to their capacity for parallel. By changing the batch size, memory

resource requirement and computational parallelism was simultaneously managed for

all experiments. Therefore for CPU training computational speedup was attempted

by increasing the batch size and for GPU training batch sizes were reduced so as not

to quickly deplete the small memories. For Bi-RNN-only experiments, regardless of

the batchsize allocations, only 2GPU configurations (1 and 3 in Table 7.1) completed

training for the given amounts of epochs and training data.

Table 7.2 shows four GPU-only configurations. These GPU training configu-

ration experiments had completed at least 20 epochs. Training metrics for these

configurations are plotted in Figure 7.3. A reduction in training loss is observed

once the data was increased to two hours of training. This gives an indication of

Chapter 7 I. J. Alamina 151

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

the model learning on the amount of data given. Even though the speech mod-

els were trained on English language only. We can simulate low resource settings

in the English language by limiting the amount of data available during training.

Moreover, word error rates (WER) only showed improvement on the 40 hours data

set. This also indicates that a threshold of about 40 hours is required for the model

to begin to converge for a Large Scale Vocabulary Continuous Speech Recognition

(LSVCSR) system

The results showed that the training of the model was moving towards a very slow

convergence as indicated by the slow decrements in training loss. Initial experiments

were performed on single GPU Units. Batch size settings for these experiments

were very small to fit into the limited RAM sizes on the GPUs. At a later stage,

multi-GPU units were utilised as a strategy to speed up training by increasing the

batch sizes to run on the combined memory. This however did not result in the

anticipated speed up. It is suspected that this outcome may have been as a result

of latency copying model parameters between GPU units and CPU multiple times

during training.

7.8.2 Bi-RNN with Transducer and attention mechanism

experiment discussion

Results from Bi-RNN with Transducer and attention experiments had shown greater

promise in terms of completion of training within the time constraints set. Results

shown in table 7.3 show that both CPU and GPU training completed training for

less than 20 hours of training and total number of epochs.

We used a Small Vocaluary Continusous Speech Recognition (SVCSR) corpus of

English language and a Large Vocaluary Continusous Speech Recognition (LVCSR)

of Italian and achieved a decent score of 26.8% for the SVCSR corpus and a high

error score of 76.7% for the LVCSR corpus. The high error score for the LVCSR

from the observed results was attributed to the fact that the amount of data given

10 hours is not sufficient for meaningful convergence. This is also evidenced by the

baseline result having a similar high error rate of 72.4%. A similar effect was also

observed in the Bi-RNN-only experiments such that after training of 40 hours of

data for 40 epochs the error was at 87%.

152 Chapter 7 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

From the training curves (Figures 7.4 and 7.3 however, we can see that at 40

epochs the Bi-RNN with transducer and attention mechanism experiments had a

faster rate of convergence and this led to experiments being completed within the

time limits set.

7.9 Chapter Summary

In this chapter the details of the combination of an end-to-end deep bi-RNN archi-

tecture and deep scattering features were elaborated on. The architecture described

follows a five-layer structure consisting of a feed-forward neural network in the first

three layers and the last two consisting of recurrent structures flowing in two differ-

ent directions. A 163-dimension 1st-order feature vector of deep-scattering encoding

derived from a sampled raw audio file is fed into this network.

A second set of experiments comprising a similar architecture containing a Bi-

LSTM this time with encoder and decoder architectures and a transducer is also

developed and tested.

The result showed the second set of experiments having the transducer archi-

tecture with attention mechanism are able to train faster but out of all the results,

although some models came close to their respective baselines none actually per-

formed better than the baseline models. In Chapter 8 we address ways that the

results may be improved.

Chapter 7 I. J. Alamina 153

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Figure
7.2:

Prefix
beam

search
algorithm

154 Chapter 7 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Figure 7.3: Bi-RNN-only Experiments Error curve, where w < x < y < z are taken
arbitrarily across the total number of epochs

Figure 7.4: birnn with Attention Transducer Training Loss: (a) and (d) with 250-
dimension scatter transform features; (b) and (c) with 83-dimension Log-Mel fea-
tures

Chapter 7 I. J. Alamina 155

Chapter 8

Conclusion and Future Work

This research has been inspired by the notion of a Language Learning Companion

(LLC). One of the artificial intelligence tasks for LLC is Automatic Speech Recogni-

tion (ASR). This research, therefore, explored the current advancements that have

been made in the field of ASR and discovered that one of the major challenges in

the field of ASR is that under the most robust and current methods, new and low

resourced languages are unable to integrate ASR systems without a great deal of

effort and rigorous techniques. In particular, considering ASR as a machine learning

pipeline, this research favours a discriminative approach to ASR over generative ap-

proaches. Although hybrid HMM-DNN, the hmm component which is considered a

generative model, does deliver robust results, the ASR pipeline involves training of

individual components of the pipeline in cumbersome and separate processes. The

alternative end-to-end approach, however, attempts to simplify this by offering a

solution that involves training of a single discriminative "end-to-end" model.

Since ASR is a machine learning pipeline, the advancement of Machine Learning

has had a direct impact on the development of more efficient speech recognition

algorithms and at the same time the advancement of speech recognition helps with

the improvement of Machine Learning algorithms, as in general, the methods used

in Machine Learning usually are directly transferable to speech processing and vice-

versa. This mutual relationship implies that speech recognition is a blossoming

research field because there is a tremendous amount of work being done in the

Machine Learning community. Particularly in the area of deep learning and neural

networks, there is quite a vast array of neural network solutions that have been

156

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

applied or are yet to be applied to speech recognition. This research examined

the effect of using a different set of input features from the state-of-the-art log-mel

features. Feeding these scatter transform features into end-to-end ASR DNN with

the objective of a comparable fast and efficient speech recognition for new and low

resource languages. The major advantage of our system is that in addition to robust

end-to-end models, the end-to-end system is trained with unique front-end scatter

transform features. Moreover, the intrinsic integration of a character-based language

model help to train low-resource languages for ASR in a resource efficient manner.

This Chapter discusses the outcome of the end-to-end and deep sequential models

engineered towards low-resource speech recognition developed by this research. In

addition, additional models being developed in the research community which are

closely related models are mentioned as areas of further research interest. These

include Generative Adversarial Networks (GANs) and Self-Attention-based models.

8.1 Discussion of Research Output models

Two well established key aspects of ASR from the ASR formulation in Equation

2.3 include an Acoustic Model (AM) and a Language Model (LM). The objective of

this research was to understand these key aspects of ASR systems and develop ASR

systems that can be accessible by new and or low resource languages.

The research objectives were met by developing speech models based on a neu-

ral network end-to-end approach. End-to-end discriminative neural network speech

models have now become a well established method in Automatic Speech Recog-

nition. The Bi-directional Recurrent Neural Network (Bi-RNN) end-to-end system

developed in this work,is augmented by features derived from a deep scattering

network as opposed to the standard Mel Frequency Cepstral Coefficients (MFCC)

features used frequently in current acoustic models. These specialised deep scatter-

ing features consumed by the Bi-RNN model represent a light-weight convolution

model.

On their own, the end-to-end models do achieve decent results. The results how-

ever, can be improved by the inclusion of a language model. This work implemented

a 5-gram n-gram language model and a character-based recurrent neural network

Chapter 8 I. J. Alamina 157

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

language model (RNNLM) for the Wakirike and English languages and the latter

was incorporated into some of the speech models developed in this research.

8.1.1 Main contribution to knowledge

This work shows that it is possible to build a speech model from a combination of

deep scattering features and a Bi-RNN. There has been no record of deep scattering

features being used in end-to-end Bi-RNN speech models as far as we are aware. This

thesis therefore demonstrates that Deep Scattering features derived from wavelet

filter operations on audio data can produce viable candidates for end-to-end training

of Automatic speech recognition models. Preliminary experiments showed word

error rates were not too far from the baselines having achieved 26.8% WER (14%

points from the baseline) for SVCSR and 76.7% for LVCSR which was 4% points

from the baseline.

8.1.2 Summary of goals achieved in this work

The aspects of the Zero-resource speech recognition challenge (Versteegh et al., 2015)

that mirror the Language Learning Companion motivation for this work seek ASR

systems that model sub-word language and word/super-word language constructs.

This research developed models that met these goals.

Initial pilot studies for this work involved feature engineering of speech signals

using correlation (Section 3.3.1). These could be viewed as a precursor to the scat-

tering transform since wavelet operations are related to correlation. Other pilot

experiments developed various sequence-to-sequence models for sub-word ASR sys-

tem modeling, including a grapheme-to-phoneme model trained in Section 3.4.3.

From this model, a phonetic dictionary for the Wakirike language was obtained. An

ASR system post-processor was also developed based on a sub-word sequence-to-

sequence RNN model (Section 3.4.2). This post-processor was to insert diacritic,

tonal symbols into an ASR system output text. Although the sub-word systems built

in this work brought insight to sequence modelling using Recurrent Neural Network

(RNN)s, in practice, only the diacritic post-processing tool theoretically had direct

application in the final research output. The Grapheme-to-Phoneme (G2P) tool did

not have a direct application to the research output because the research output

158 Chapter 8 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

end-to-end system removes the need of using G2P systems. The G2P tool would

however be valuable for hybrid GMM-HMM/DNN ASR systems.

Some aspects of ASR system development covered in this work not directly

related to Zero-speech challenge included that of speech segmentation and speech-

to-text alignment (Section 3.3.3). These are pre-input-feature processing tasks which

occur at the data preparation stage. Once again, although speech segmentation is

not directly integrated into our end-to-end system, one of the huge benefits of end-

to-end CTC-based systems implemented in our work for new/low-resource languages

is the time saved from the need for accurately aligned speech during training. CTC-

based end-to-end systems is able to achieve alignment based on roughly aligned

inputs. Roughly aligned here means chunks of segmented raw speech audio and

their text equivalent. Hence, alignment is only at the segmentation or utterance

stage and no need to align at the word or sub-word level.

Finally, in addition to the speech model built using DSN features, in Chapter

6, a word-level language model was developed using a character-based, GRU-RNN

language model. This model had an improved perplexity to the baseline language

model which was based on a statistical 5-gram language model.

Unlike some of the sub-word systems which did not have direct impact on the

final research outcome, the GRU-RNN language character based model developed

by this research was integrated into some of the final speech models built in this

work.

8.2 Limitations of the study

This research was able to develop ground-breaking end-to-end speech models for

speech recognition. However, only preliminary results have been obtained for deep

scattering features. A handful of ASR sequence models were developed for the

Wakirike language. The Wakirike language, however, which motivated this research,

did not have any end-to-end speech model built for it. It is the goal of this research,

therefore, in a future study, to develop a speech corpora for the Wakirike language.

A more immediate limitation, was the high system capacity requirements for

training Large Vocaluary Continusous Speech Recognition. The training of LVCSR

Chapter 8 I. J. Alamina 159

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

such as the full common voice data set requires high-end capacity systems and GPU

configurations that were not accessible for training. Notwithstanding, considering

the current configurations that were available, a number of improvements to the

present models are possible; one of which asks for further investigation of first and

second order scatter network features. Although first order and second order features

were explored in this research, the number of experiments carried out were not

sufficient to predict the significance of one over the other.

8.3 Directions for future study

Improvements in this work can be divided into immediate improvements and the

longer term extensions for this study. Immediate improvements for the DSN speech

features include the addition of Vocal Tract Length Normalisation (VTLN) and

noise-robust speech enhancement. These feature engineering could immediately im-

prove robustness of the ASR systems developed in this work. Other longer term

extensions of this work include data augmentation and model optimisation meth-

ods. The following sections mention one feature enhancement technique and two

model optimisation techniques that are possible extensions for this work.

8.3.1 Generative adversarial networks (GAN)

GANs consists of two Networks working as adversaries to one another. The first,

being a generative network, generates content. The second network is a discrimi-

native network intended to determine the accuracy of the first generative network.

Hence the generative network is generating output less distinguishable for the dis-

criminator while the discriminator uses output from the generator to improve the

ability to discriminate output from the generator with the original source data.

GAN networks can have applications where the generative network consists of

a speech synthesis network and the discriminating network is a speech recogniser.

However successive training of these two networks from a data-resource perspective

would require an immense amount of data resources for expected performances.

160 Chapter 8 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

8.3.2 Attention-based Models

The objective of attention-based networks highlighted by Vaswani et al. (2017) is

to reduce sequential computation while attaining hidden representation across arbi-

trary lengths of sequential input. Mechanisms which have been deployed to achieve

this includes a combination of convolutional and recurrent schemes (Gehring et al.,

2017; Kaiser & Bengio, 2016; Kalchbrenner et al., 2016). Vaswani et al. (2017)

introduces a transduction model known as a Transformer based on self attention

network with the ability to compute long term dependencies while eliminating se-

quence aligned RNN and convolutional architectures.

Self attention is a network that intrinsically reduces the need for intensive re-

source training. Vaswani et al. (2017) reports that state of the art BLEU score of

41.0 having used a small fraction of training resources. While GANs might not be

attractive for low resource speech recognition, they still remain an important tool

for verification of the output of other networks. At the same time self attention

networks can help to reduce the resource requirements of GANs when used within

the context of a GAN.

As a study to further this thesis, these networks are likely candidates for network

training using scatter features as input discriminatory functions. Attention based

networks as a means reduce training resources required, while GANs can be used as

a means to generate training data.

While we have used attention-based encoder-decoder networks for training of

features, considerable resource-saving may be gained by employing self-attention-

based networks. This has been explored by Salazar, Kirchhoff, and Huang (2019)

with satisfactory results.

8.3.3 Model Pre-training

The major setback this work suffered was from a reasonable time for training. This

work therefore recommends that speech models or indeed artificial intelligence mod-

els should be trainable within a maximum of 20 days and should not generally exceed

10 days training.

An area of neural network training optimisation not developed in this report

Chapter 8 I. J. Alamina 161

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

is that of layer-wise greedy pre-training. In this process, rather than train the

deep neural network structure all in one stage, the network layers are successively

added and trained layer by layer, one layer at a time (I. Goodfellow et al., 2016).

The intuition behind this is that this makes the layers saturate much faster as the

previous layer has already been saturated before the new layer is being added.

This layer-wise pretraining procedure is thought to speed up training, than train-

ing when done with the fully connected network and there have been a few different

approaches to pretraining in for deep neural network architectures for speech recog-

nition.

Hendrycks, Lee, and Mazeika (2019) introduces an advanced pretraining method

in which existing models are retrained in a Generative Adversarial Network (GAN)

fashion in order to optimise performance and model robustness. This is an instance

where GANs are being deployed in speech recognition. This method however is not

likely going to help improve model training convergence time.

Another method described in (Ramachandran et al., 2016) uses a knowledge

transfer mechanism where hidden layers in an already existing related network are

re-trained with new extended layers to complete training in the new domain. The

effectiveness of such a transfer method will be measured of the how the two domains

correlate with one another. It therefore, would be logical to conclude that the more

the domains correlate the faster the pretraining model is likely to converge faster.

Finally, Wang, Wu, Liu, Yang, and Zhou (2019) proposes a Tandem Connection-

ist Encoding Network (TCEN) for bridging the gap for fine tuning CTC-Transformer

networks along with pretraining of Attention-transducers.

As a further study, amongst other techniques, the most viable method for this

study is to investigate the knowledge transfer mechanism by approaching the feature

engineering problem as a latent space analysis problem. Given that during the

process of mapping acoustic speech sequences to the MFCC reduced the latent space

from a high dimension to a low dimension. It is reasonable therefore to hypothesize

that training from hidden layers of an MFCC deep RNN would converge faster than

weights initialised through generic means.

162 Chapter 8 I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

8.4 Conclusion

The outcome of this research is an ASR system which facilitates fast and effi-

cient speech recognition using the end-to-end speech recognition and deep scattering

speech features. Another advantage of our ASR system was the intrinsic integration

of a character-based language model. This enabled the developed ASR system sat-

isfy both criteria of the low-resource challenge. The first being the top level word

and sentence modelling seen in the character-based language model, and the sec-

ond being the sub-word and acoustic modelling of input features seen in the deep

scattering network features.

The word error rates obtained by our model with different data sizes and speech

corpora was not as good as the features using log-mel features. However, the re-

sults were competitive. One limitation in this study was that data augmentation

using Vocal Tract Length Normalisation was not done. This could be added as

a precursor to the scattering transform. Furthermore, despite the fact that end-

to-end models have been, until recently, dominated by RNN-sequence-models, the

self-attention (Vaswani et al., 2017) architecture has shown a lot of promise over

the machine learning landscape and a lucrative model for low-resource end-to-end

speech recognition.

This research demonstrates sequence-to-sequence and end-to-end models as flex-

ible and still relatively untapped effective tools in many aspects of ASR. By the

development of sequence models at the phonetic and syntactic levels of comprehen-

sion and by the development of an end-to-end sequence model speech system, we

provide examples for low-resource Wakirike and simulate low-resource languages by

constraining rich-resource English and Italian language. Finally, this research rec-

ommends the minimum requirements for low resource languages desiring to utilise

end-to-end sequential training in terms of computing resources and training data.

For training, data should consist of 5-10 second utterances with transcribed speech

and between 40-80 hours of speech data for bare minimum LVCSR languages and

applications. For training system requirements, this work recommends CUDA1 GPU

training having at least 8GB RAM.

1Compute Unified Device Architecture (CUDA) is a Parallel processing library and trademark
of Nvidia incorporated

Chapter 8 I. J. Alamina 163

Appendix I - Haar Wavelet
A fundamental purpose of analysing functions such as the Fourier and wavelet func-
tions are the reconstruction of signals from it’s decomposition. Certain criteria or
properties are therefore required for analysis functions.

In Chapter 5.1, the orthogonal properties of the Fourier transform equations
was introduced. In the case of wavelets the following properties ensue. In addition
to orthogonal properties, wavelets are required to perform localised analysis of a
function. Hence, unlike their Fourier counterparts, they need to be bounded in
time. It is also seen that when the energy contained within the wavelet bases sum
to zero (sometimes normalised to 1)i.e.

E =
∫ ∞
−∞
|x|2dt = ||x(t)||2 = 0 (1)

Then, such wavelet bases are orthonormal and the fundamental or scaling equa-
tion forms a recurrence relation which is a solution to the dilation equation as follows:

φ(t) =
∑
k

ckφ(2t− k) (2)

Where φ(2t − k) is a contracted version of φ(t) shifted along the time axis by
an integer step k and factored by an associated coefficient ck. At the same time
it is also observed that it is possible to setup this recurrence relation to becoming
dyadic such that the sum of coefficients, ck equals 2, i.e. Σkck = 2. Haar, wavelets
constitute the simplest of this family of wavelets.

The mother wavelet of the Haar wavelet has only two coefficients c0 = c1 = 1
and is given by:

ψ(t) = φ(2t) + φ(2t− 1) (3)
Observe here that c0 + c1 = 2, i.e. dyadic. The solution to this recurrence

equation and the resulting plot is given in Figure 1.
Through multi-resolution analysis, the following reconstruction of the Haar wavelet

is derived:

φj,k[n] = 2j/2φ[2jn− k] (4)
The parameter j, controls the resolution of the signal reconstruction and the

following wavelets and function representation are given in Figure 2

164

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Figure 1: Haar wavelet

Figure 2: Multi resolution analysis of Haar wavelets

Chapter I. J. Alamina 165

Appendix II - Gabor and Morlet Wavelets

Gabor Wavelet filter
The 1D-Gabor wavelet is defined spatially by

ψ(x) = exp

(
− x2

2σ2 + iξx

)
(5)

The Fourier-transform is

ψ̂(ω) = exp

(
−σ

2(ω − ξ)2

2

)
(6)

It’s value bounded at 0 is ˆψ(0) = exp(−σ2ξ2/2), so we have

ξσ =
√
−2 log(ψ̂(0)) (7)

The wavelets are therefore computed as

ψj = 1
ajσ

(
x

aj

)
(8)

Where a is the scale factor. if we call τ , the value of the two Gabor where the
plots intersect, we have, as in figure 3.

ξ

a
+ g−1(τ)

aσ
= ξ − g−1(τ)

σ
(9)

where g(x) = exp(−x2/2) i.e. g−1(τ) =
√
−2 log(τ) So we have

ξσ =
√
−2 log(τ)a+ 1

a− 1 (10)

The value of ξ is fixed by the fact that we need the frequency information so we
set

ξ = 3π/4 (11)

Equations (7 and 10) show that the choice of σ is trade off between two antagonist
requirement on the wavelet

i. a zero-mean: σ should be large.

ii. tau should be large therefore σ should be small

166

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Figure 3: Fourier transform of adjacent scale Gabor wavelet. τ has been set to 0.8

Chapter I. J. Alamina 167

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

With these requirements met we see that

ψ̂(0) = τ
(a+1)2

(a−1)2 (12)

So we can see that these two requirements are compatible as we take more and
more bands per octave.

In the implementation, the only parameter about the wavelet that the user can
set is τas = τ , where ’as’ stands for adjacent scales. The implementation of param-
eters is the following

i. The value of ξ is set to 3π/4.

ii. The user chooses values for τ, a and j.

iii. The value of σ is computed with

σ =

√
−2 log(τ)

ξ

a+ 1
a− 1 (13)

There is another parameter called τlc. ’lc’ stands for low-coarse. It controls the
value crossing between the low pass filters ψj (a Gaussian) and the coarsest scale
wavelet ψJ−1 and this parameter determines the value of the bandwidth of the low
pas filter.

Morlet wavelet filter
Morlet filters are modified Gabor filters that have zero-mean: The idea is to subtract
a Gabor, its envelop times a constant so that the results has zero mean:

φ(x) = exp
(
− x2

2σ2

)
(exp(iξx)− exp(−σ22/2)) (14)

It’s Fourier transform is

ψ̂(ω) = ω exp
(
−σ

2(ω − ξ)2

2

)
− exp

(
−σ

2(ω + ξ)2

2

))
(15)

And we can see it has zero ψ̂(0) = 0

168 Chapter I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Figure 4: Fourier transform of adjacent scale Gabor wavelet. τ has been set to 0.8

Chapter I. J. Alamina 169

Appendix III - Matlab listing for scattering net-
work

function s c a t t e r ()
%UNTITLED Summary o f t h i s f unc t i on goes here
% Deta i l ed exp l ana t i on goes here
T = readtab l e (’ data/cv−va l id−dev . x l sx ’ , ’ReadRowNames ’ , t rue) ;
F=t a b l e 2 c e l l (T(: , { ’ s c a t t e r c ’ , ’ wav_filename ’ })) ;
a l l _ f i l e s=s ize (F , 1) ;
ofm=’hh :mm: s s ’ ;
i fm=’dd−mmm−yy␣HH:MM: SS .FFF ’ ;
t ic ;
for i = 1 : a l l _ f i l e s

wav_fi le=s t r j o i n (F(i , 2)) ;
d s s_ f i l e=s t r j o i n (F(i , 1)) ;
i f exist (wav_fi le , ’ f i l e ’)>0

i f exist (d s s_ f i l e , ’ f i l e ’)==0
s t = transpose (scat ter_audio (wav_fi le)) ;
csvwrite (d s s_ f i l e , s t) ;

end
else

fpr intf (’ \nNot␣ found:%s ’ , wav_fi le) ;
end

pg=i / a l l _ f i l e s ∗100 ;
t s=da t e s t r (now , ifm) ;
tv=toc ;
d=durat ion (seconds (tv) , ’ Format ’ , ofm) ;
pc=(a l l _ f i l e s / i ∗ tv)−tv ;
eta=durat ion (seconds (pc) , ’ Format ’ , ofm) ;

i f mod(i ,500)==0 | | i==1 | | i==10 | | i==100
f i l e ID = fopen (’ l og / dss180625 . l og ’ , ’w+’) ;
s=sprintf (’ \n%s : ␣ p ro c e s s i ng ␣ f i l e ␣␣%s ’ , ts , wav_fi le) ;
fpr intf (f i l e ID , ’%s ’ , s) ;
fpr intf (’%s ’ , s) ;
s=sprintf (’ \n%s␣ : ␣ p ro c e s s i ng ␣%d␣ o f ␣%d␣ f i l e s ␣␣%3.2 f%%␣complete . . ␣ time␣ e lapsed ␣=␣%s , ␣ eta ␣=␣%s ’ , ts , i , a l l _ f i l e s , pg , d , eta) ;
fpr intf (f i l e ID , ’%s ’ , s) ;
fpr intf (’%s ’ , s) ;
fc lose (f i l e ID) ;

170

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

end
end

end

function s t= scatter_audio (inputArg1)
y=audioread (inputArg1) ;
N=length (y) ;
T=2^9;
f i l t_op t=de f au l t_ f i l t e r_op t i o n s (’ audio ’ ,T) ;
Wop=wavelet_factory_1d (N, f i l t_op t) ;
S=sca t (y ,Wop) ;
S=renorm_scat (S) ;
S=log_scat (S) ;
s t=format_scat (S) ;

end

Chapter I. J. Alamina 171

Appendix IV - Code listing for Section 3.2.5 - Sam-
ple TensorFlow client code

#!/ usr / b in /env python
−∗− coding : u t f−8 −∗−
" " " A one−hidden−l ayer−MLP MNIST−c l a s s i f i e r . " " "
from __future__ import absolute_import from __future__ import d i v i s i o n
from __future__ import pr int_funct ion
Import the t r a i n i n g data (MNIST)
from t en so r f l ow . examples . t u t o r i a l s . mnist import input_data
import t en so r f l ow as t f

Pos s i b l y download and e x t r a c t the MNIST data s e t .
Ret r i eve the l a b e l s as one−hot−encoded v e c t o r s .
mnist = input_data . read_data_sets (" /tmp/mnist " , one_hot=True)

Create a new graph
graph = t f . Graph ()

Set our graph as the one to add nodes to
with graph . as_defau l t () :

Placeho lder f o r input examples (None = va r i a b l e dimension)
examples = t f . p l a c eho ld e r (shape=[None , 784] , dtype=t f . f l o a t 3 2)
Placeho lder f o r l a b e l s
l a b e l s = t f . p l a c eho ld e r (shape=[None , 10] , dtype=t f . f l o a t 3 2)

weights = t f . Var iab le (t f . truncated_normal (shape=[784 , 10] ,
stddev =0.1))

b i a s = t f . Var iab le (t f . constant (0 . 1 , shape = [10]))

Apply an a f f i n e t rans format ion to the input f e a t u r e s
l o g i t s = t f . matmul (examples , weights)
+ b ia s e s t imate s = t f . nn . softmax (l o g i t s)

Compute the cross−entropy
cross_entropy = −t f . reduce_sum (l a b e l s ∗ t f . l og (e s t imate s) ,

r educ t i on_ind i c e s =[1])
And f i n a l l y the l o s s
l o s s = t f . reduce_mean (cross_entropy)

172

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Create a grad ient−descen t op t imi ze r t ha t minimizes the l o s s .
We choose a l e a rn ing ra t e o f 0.01
opt imize r = t f . t r a i n . GradientDescentOptimizer (0 . 5) . minimize (l o s s)

Find the i n d i c e s where the p r e d i c t i o n s were co r r e c t
c o r r e c t_pr ed i c t i on s = t f . equal (

t f . argmax (est imates , dimension=1) ,
t f . argmax (l ab e l s , dimension=1))

accuracy = t f . reduce_mean (
t f . c a s t (co r r e c t_pred i c t i on s , t f . f l o a t 3 2))

with t f . S e s s i on (graph=graph) as s e s s i o n :
t f . i n i t i a l i z e_ a l l _ v a r i a b l e s () . run ()
for s tep in range (1 001) :

example_batch , labe l_batch = mnist . t r a i n . next_batch (100)
f eed_dict = {examples : example_batch , l a b e l s : labe l_batch }
i f s tep % 100 == 0 :
_, loss_value , accuracy_value =

s e s s i o n . run ([opt imizer , l o s s , accuracy] , f eed_dict=feed_dict)
print (" Loss ␣ at ␣ time␣ {0} : ␣{1} " . format (step , l o s s_va lue))
print (" Accuracy␣ at ␣ time␣ {0}:{1} " . format (step , accuracy_value))

else :
opt imize r . run (f eed_dict)

Chapter I. J. Alamina 173

Appendix V - Wakirike Phoneme dictionary

dieme DD I E M EH
a A2
aba i j a A B A IH DZ A
abiud A B I U D
abu A2 BB UH
agbamieapu A GB A M IH EH A P UH
aizaya A IH Z A Y A
ak i l o s A K IH L OH S
akim A K IH M
akpaka A KP A K A
aku A K UH
ama A M A
amanyana A M A N Y A N A
amanyanabo A M A N Y A N A BB OH
amanyanakiri A M A N Y A N A K I R I
amaogbo A M A O GB O
aminadab A M IH N A D A B
amon A M OH N
anga A N G A
ani A0 N IH
anianga A N IH A N G A
an i a t i b i A N IH A T IH B IH
an i e r e c h i A N IH EH R EH TS IH
an i e so A N IH E S O
a n i s i k i A N IH S IH K IH
apala A P A L A
a r i A0 R I
a r i a A R IH A
asa A S A
a t e l i A T E L I
awo A W OH
awomeni A W OH M EH N IH
azo A Z OH
ba BB A
baasam BB A A S A M
babia BB A BB IH A
babi lon B A B I L OH N
bakama B A K A M A

174

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

ba l a f a BB A L A F A
balafame B A L A F A M EH
bara BB A R A
baras in BB A R A S I N
barasinsam BB A R A S I N S A M
bar i BB A R IH
be B EH
bebe BB EH BB EH
bebia BB EH BB IH A
bebo BB EH BB OH
bee BB E EH
beinmabia BB E I N M A BB IH A
beleme BB EH L EH M EH
beme BB EH M EH
bere BB EH R EH
berenime BB E R E N I M EH
ber i j i n eme BB E R I DZ I N E M EH
bet l ihem B EH T L I H EH M
bia BB IH A
b i a r i BB I A R IH
bie BB I EH
b i e b e l e BB I E BB EH L EH
bie judaboe BB I E DZ U DD A BB OH EH
bike BB I K EH
bin B I N
b ip i BB IH P IH
birikunme BB I R I K U N M EH
bi r ikunye BB I R I K U N Y E
bo BB OH
boaz B O A Z
boe BB O EH
boima BB OH IH M A
bokate inke BB O K A T EH IH N K EH
boko BB OH K OH
boloka BB OH L OH K A
bome BB O M EH
boro BB OH R OH
boroma BB OH R OH M A
bu BB UH
bubalabala BB UH BB A L A BB A L A
buchuaye BB UH TS UH A Y E
bugbeinke BB UH GB EH IH N K EH
bugererema BB UH G E R E R E M A
bukuroma BB UH K UH R OH M A
buo BB UH OH
buosome BB U O S OH M EH
buru BB U R U
ch i e TS IH EH

Chapter I. J. Alamina 175

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

chin TS IH N
ch inb ia TS IH N BB IH A
chingbolu TS IH N GB OH L UH
ch ing i TS IH N G IH
chinme TS IH N M EH
chinmgbolu TS IH N M GB OH L UH
chuabia TS UH A BB IH A
chuaka TS UH A K A
da D A
dabe D A BB EH
dachieme D A TS IH EH M EH
dad ik i DD A DD I K I
dad ik ib i a DD A DD I K I BB IH A
damabo D A M A BB O
damaboari D A M A BB O A R IH
damamunma D A M A M U N M A
datekeremabia D A T E K E R E M A BB IH A
dawo DD A W OH
dawoju DD A W OH DZ U
dawonemiapu DD A W OH N E M I A P UH
dawu DD A W U
de D E
deki D E K I
devid D E V I D
die DD I E
dieapu DD I E A P UH
diepakuma DD I E P A K UH M A
d i k i DD I K I
din DD I N
dina DD I N A
dinma D I N M A
doki DD OH K IH
dokiapu DD OH K IH A P UH
dok ib ia DD OH K IH BB IH A
dokibo DD OH K IH BB O
dokibosa DD OH K IH BB O S A
dokimabia D OH K IH M A BB IH A
dokime DD OH K IH M EH
duaboromabia DD UH A BB OH R OH M A BB IH A
duko DD U K O
dukoar i DD U K O A R IH
dukome DD U K O M EH
dukuke DD UH K UH K EH
dupari DD UH P A R IH
ebraham E B R A H A M
ehaz E H A Z
eka EH K A
e l e E L E

176 Chapter I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

e l i ak im E L IH A K IH M
e l i e z a E L I E Z A
e l i ud E L I U D
ene E N E
enekakaa E N E K A K A A
en j e l bo E N DZ EH L BB OH
epe l e E P E L E
e r e ch i EH R EH TS IH
eremenitoku E R E M E N I T OH K UH
f a r i s i a p u F A R I S I A P UH
f i F IH
f i a f i a F IH A F IH A
f i e a r i y e F I E A R IH Y E
fiema F I E M A
fime F IH M EH
f i n i F IH N IH
f i n j i F IH N DZ IH
f i n j i e F I N DZ I EH
fir imame F IH R IH M A M EH
fisam F IH S A M
f i y e F IH Y E
fura F U R A
furo F U R O
g a l i l i G A L I L I
gbe inyee GB EH IH N Y E EH
gbelame GB E L A M EH
gbin GB I N
gbinb ia GB I N BB IH A
gbolomake GB O L O M A K EH
gbor i GB OH R IH
gbor ibo GB OH R IH BB OH
g i e i n G IH EH IH N
gonogono G O N O G O N O
gose G O S E
goyegoye G O Y E G O Y E
herod H EH R OH D
hezikaya H EH Z IH K A Y A
hezron H EH Z R OH N
i IH0
i b i I BB I
ibu IH0 BB UH
ibubeleme IH BB UH BB EH L EH M EH
i d e r i I D E R I
ider ima igon iapu I D E R I M A I G O N I A P UH
igan i IH G A N IH
i g b i k i I GB I K I
igon iapu I G O N I A P UH
i j i p t I DZ I P T

Chapter I. J. Alamina 177

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

ikeasun I K E A S UH N
ikiankoroapu IH K IH A N K O R O A P UH
ik iankorobo IH K IH A N K O R O BB OH
imanuel I M A N UH EH L
ineda I N E D A
ine i na I N E I N A
i n i I N I
i n i a I N I A
inimgba I N I M GB A
iona I OH N A
ipiamgba IH P IH A M GB A
i r i IH2 R IH
i r i a y e e IH R IH A Y E EH
i rua IH R UH A
iruapakapaka IH R UH A P A K A P A K A
iwo I W O
iya IH0 Y A
i z r e l I Z R EH L
i z r e l a pu I Z R EH L A P UH
j e h o s i a f a t DZ E H O S IH A F A T
jekob DZ E K OH B
jekonaya DZ E K OH N A Y A
jerusa l em DZ E R U S A L EH M
j e s i DZ EH S I
j i n DZ I N
j i z o s DZ I Z OH S
jodan DZ OH D A N
jokuma DZ O K U M A
jon DZ OH N
joram DZ O R A M
josaya DZ O S A Y A
j o s e f DZ O S EH F
jotam DZ O T A M
juapu DZ U A P UH
juda DZ U D A
jud ia DZ U D I A
karakarama K A R A K A R A M A
karakaramasam K A R A K A R A M A S A M
karakaraye K A R A K A R A Y E
kienma K IH EH N M A
k i r i K I R I
k i r i k i r i K I R I K I R I
kobir ima K O BB I R I M A
koko K O K O
kokoma K OH K OH M A
kokomaye K OH K OH M A Y E
kon K OH N
konme K OH N M EH

178 Chapter I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

konsam K OH N S A M
koroma K O R O M A
koromari K O R O M A R IH
koruapu K O R U A P UH
kpeki KP E K I
kpekisam KP E K I S A M
kperek i KP EH R EH K IH
k r a i s t K R A IH S T
kubie K U BB I E
kubiekuroma K U BB I E K UH R OH M A
kun K U N
kunoma K U N O M A
kura K UH R A
kuro K UH R OH
la L A
lame L A M EH
la s a L A S A
l o l i a L O L I A
ma M A
maa M A A
mae M A EH
magbolu M A GB OH L UH
makubie M A K U BB I E
mama M A M A
mamgba M A M GB A
manasi M A N A S IH
mangi M A N G IH
mangiso M A N G IH S O
mangisobia M A N G IH S O BB IH A
matan M A T A N
mengi M E N G I
mengisara M E N G I S A R A
mengisarabo M E N G I S A R A BB OH
meri M E R I
mesaya M EH S A Y A
mesi M E S I
mgba M GB A
mi M I
mie M IH EH
mieme M IH EH M EH
miemieboe M IH EH M IH EH BB OH EH
miese M IH EH S E
mieyee M IH EH Y E EH
mimgba M IH M GB A
min M IH N
mine M I N E
minea M I N E A
mioku M IH OH K UH

Chapter I. J. Alamina 179

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

mono M OH N OH
muari M U A R IH
mume M U M EH
mun M U N
munyee M U N Y E EH
na N A
naa N A A
naame N A A M EH
nama N A M A
namaichuka N A M A I TS U K A
nason N A S OH N
nazaret N A Z A R EH T
nazaretbo N A Z A R EH T BB OH
nde N D E
nemi N E M I
nemime N E M I M EH
nengime N EH N G IH M EH
ng i s i N G IH S IH
nwo NW OH
nwose NW OH S E
nyanabo N Y A N A BB OH
nyaname N Y A N A M EH
nyengi N Y E N G I
nyo N Y OH
nyongoro N Y OH N G OH R OH
nyongoroe N Y OH N G OH R OH EH
o O0
obed O B E D
obu OH0 BB UH
obuduko OH BB UH DD U K O
obudukoapu OH BB UH DD U K O A P UH
obuju OH BB UH DZ UH
ogbo O GB O
ogboku O GB O K U
ogono OH G OH N OH
ogu O G U
ojuapura O DZ U A P UH R A
oki OH K IH
okibo OH K IH BB O
okimun O K IH M U N
oko OH K OH
oku OH K UH
oku?ku O K U2 K U2
okue OH K UH EH
okuma OH K UH M A
okwein OH K W EH IH N
oloko O L O K O
olokuabe O L O K U A BB EH

180 Chapter I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

olome OH L OH M EH
omie O M I EH
omine O M I N E
ominea O M I N E A
onwu O NW U
onwuele O NW U E L E
opu O P U
opuama O P U A M A
opuma O P U M A
opuso O P U S OH
o r i O R I
o r i a O R I A
orime OH R IH M EH
oru O R U
oruwu O R U W U
os i O S I
o s i r o s i r o b a O S I R O S I R O BB A
owu O W U
owuabe O W U A BB EH
owuapuawo O W U A P UH A W OH
owuapuminapu O W U A P UH M IH N A P UH
owubonemika O W U BB OH N E M I K A
owutib i O W U T IH BB IH
owutoku O W U T OH K UH
oyi O Y I
oy ighor iapu O Y I G H OH R IH A P UH
oy i i n e i n a O Y I I N E I N A
ozaya O Z A Y A
pa P A
paka P A K A
pakabo P A K A BB O
pakabobia P A K A BB O BB IH A
pakabome P A K A BB O M EH
pakapaka P A K A P A K A
pakasome P A K A S O M EH
pakumabome P A K UH M A BB O M EH
pakumame P A K UH M A M EH
pekere P EH K EH R EH
pekereme P EH K EH R EH M EH
pe l e P EH L EH
perez P EH R EH Z
p i k i P IH K IH
p i r i P IH R IH
p i r i a b e P IH R IH A BB EH
p i r i b e i n P IH R IH BB E I N
p i r i b i a P IH R IH BB IH A
p i r i e P IH R IH EH
pir ime P IH R IH M EH

Chapter I. J. Alamina 181

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

p i r i s a P IH R IH S A
puko P UH K OH
ra R A
ram R A M
re R E
r e ch e l R E TS EH L
rehab R E H A B
rehobuam R EH H O B U A M
rema R E M A
rufu R U F U
sadusiapu S A D U S I A P UH
sak i S A K IH
salmon S A L M OH N
sara S A R A
sarab i a S A R A BB IH A
sarame S A R A M EH
se S EH
s e l e b i a S EH L EH BB IH A
sen i S E N I
s h e a l t i e l S H E A L T I EH L
s i S I
s ibup ik i sam S I BB UH P IH K IH S A M
s i k i S IH K IH
sima S I M A
sime S I M E
simebia S I M E BB IH A
simekaogbo S I M E K A O GB O
simeme S I M E M EH
simeogbo S I M E O GB O
simeokue S I M E OH K UH EH
s i s e S IH S EH
so S O
sob ia S OH BB IH A
sob i e S O BB I E
solomon S O L O M OH N
son i S OH N IH
ta T A
tamuno T A M UH N OH
tamunobere T A M UH N OH BB EH R EH
t a r i T A R IH
tar ime T A R IH0 M EH
taro T A R OH
tekeme T EH K EH M EH
tema T E M A
teme T EH M EH
t i b i n i T IH BB IH N IH
tisam T I S A M
toku T OH K UH

182 Chapter I. J. Alamina

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

tomoni T O M O N I
ton T OH N
tonapu T OH N A P UH
tona r i T OH N A R IH
tonme T OH N M EH
toroko T OH R OH K OH
torokodabo T OH R OH K OH D A BB OH
toroko i sun T OH R OH K OH IH S UH N
torukweinma T OH R UH K W E I N M A
tubo T UH BB OH
v inp i k i V I N P IH K IH
wa W A
wasama W A S A M A
weri W EH R IH
ye Y E
yee Y E EH
ye la Y E L A
ye s e l e Y E S EH L EH
yi Y I
y i b i a Y I BB IH A
yime Y I M EH
yuraya Y U R A Y A
zadok Z A D OH K
zera Z EH R A
zerubabe l Z E R U B A B EH L

Chapter I. J. Alamina 183

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., . . . others
(2016). Tensorflow: Large-scale machine learning on heterogeneous distributed
systems. arXiv preprint arXiv:1603.04467 .

Abadi, M., Isard, M., & Murray, D. G. (2017). A computational model for ten-
sorflow: an introduction. In Proceedings of the 1st acm sigplan international
workshop on machine learning and programming languages (pp. 1–7).

Acero, A. (1990). Acoustical and environmental robustness in automatic speech
recognition. In Proc. of icassp.

Al-Rfou, R., Alain, G., Almahairi, A., Angermueller, C., Bahdanau, D., Ballas,
N., . . . others (2016). Theano: A python framework for fast computation of
mathematical expressions. arXiv preprint arXiv:1605.02688 .

Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J., Battenberg, E., Case, C.,
. . . others (2016). Deep speech 2: End-to-end speech recognition in english and
mandarin. In International conference on machine learning (pp. 173–182).

Andén, J., & Mallat, S. (2011). Multiscale scattering for audio classification. In
Ismir (pp. 657–662).

Andén, J., & Mallat, S. (2014). Deep scattering spectrum. IEEE Transactions on
Signal Processing, 62 (16), 4114–4128.

Andén, J., Sifre, L., Mallat, S., Kapoko, M., Lostanlen, V., & Oyal-
lon, E. (2014). Scatnet (v0. 2). Computer Software. Available:
http://www.di.ens.fr/data/software/scatnet/. [Accessed: December 10, 2013],
0.2 .

Ardila, R., Branson, M., Davis, K., Henretty, M., Kohler, M., Meyer, J., . . . Weber,
G. (2019). Common voice: A massively-multilingual speech corpus. arXiv
preprint arXiv:1912.06670 .

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473 .

Becchetti, C., & Ricotti, L. P. (1998). Speech recognition: theory and c++ imple-
mentation. New York: Wiley.

Becchetti, L. (1999). The behaviour of financial time series: stylised features, the-
oretical interpretations and proposals for hidden markov model applications.
Speech recognition. Theory and C++ implementation.

Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A neural probabilistic
language model. Journal of machine learning research, 3 (Feb), 1137–1155.

Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007). Greedy layer-
wise training of deep networks. In Advances in neural information processing
systems (pp. 153–160).

Besacier, L., Barnard, E., Karpov, A., & Schultz, T. (2014a). Automatic speech
recognition for under-resourced languages: A survey. Speech Communication,

184

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

56 , 85–100.
Besacier, L., Barnard, E., Karpov, A., & Schultz, T. (2014b). Introduction to the

special issue on processing under-resourced languages.
Boden, M. (2002). A guide to recurrent neural networks and backpropagation. the

Dallas project.
Brown, P. F., Desouza, P. V., Mercer, R. L., Pietra, V. J. D., & Lai, J. C. (1992).

Class-based n-gram models of natural language. Computational linguistics,
18 (4), 467-479. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.13.9919&rep=rep1&type=pdf

Chen, S. F., & Goodman, J. (1996). An empirical study of smoothing techniques for
language modeling. In Proceedings of the 34th annual meeting on association
for computational linguistics (pp. 310–318).

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., & Bengio, Y. (2014). Learning phrase representations using rnn encoder-
decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 .

Chorowski, J. K., Bahdanau, D., Serdyuk, D., Cho, K., & Bengio, Y. (2015).
Attention-based models for speech recognition. In Advances in neural infor-
mation processing systems (pp. 577–585).

Collobert, R., Puhrsch, C., & Synnaeve, G. (2016). Wav2letter: an end-to-end
convnet-based speech recognition system. arXiv preprint arXiv:1609.03193 .

(2015). Continuous wavelet transform.
Cowan, J. D. (1990). Discussion: Mcculloch-pitts and related neural nets from 1943

to 1989. Bulletin of mathematical biology, 52 (1-2), 73–97.
Dahl, G. E., Yu, D., Deng, L., & Acero, A. (2012). Context-dependent pre-trained

deep neural networks for large-vocabulary speech recognition. IEEE Transac-
tions on audio, speech, and language processing, 20 (1), 30–42.

Davis, S., & Mermelstein, P. (1980). Comparison of parametric representations
for monosyllabic word recognition in continuously spoken sentences. IEEE
transactions on acoustics, speech, and signal processing, 28 (4), 357–366.

Deng, L., & Li, X. (2013). Machine learning paradigms for speech recognition:
An overview. IEEE Transactions on Audio, Speech, and Language Processing,
21 (5), 1060–1089.

Deng, L., Yu, D., et al. (2014). Deep learning: methods and applications. Founda-
tions and Trends® in Signal Processing, 7 (3–4), 197–387.

Dines, J., Yamagishi, J., & King, S. (2010). Measuring the gap between hmm-
based asr and tts. IEEE Journal of Selected Topics in Signal Processing, 4 (6),
1046–1058.

Furui, S. (1986). Speaker-independent isolated word recognition using dynamic
features of speech spectrum. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 34 (1), 52–59.

Gales, M., Young, S., et al. (2008). The application of hidden markov models
in speech recognition. Foundations and Trends® in Signal Processing, 1 (3),
195–304.

Gales, M. J., Knill, K. M., Ragni, A., & Rath, S. P. (2014). Speech recognition and
keyword spotting for low-resource languages: Babel project research at cued.
In Spoken language technologies for under-resourced languages.

Gales, M. J. F., Watanabe, S., & Fosler-Lussier, E. (2012). Structured discrimi-
native models for speech recognition: An overview. IEEE Signal Processing

Chapter I. J. Alamina 185

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.13.9919&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.13.9919&rep=rep1&type=pdf

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Magazine, 29 (6), 70–81.
Gehring, J., Auli, M., Grangier, D., Yarats, D., & Dauphin, Y. N. (2017). Convolu-

tional sequence to sequence learning. In Proceedings of the 34th international
conference on machine learning-volume 70 (pp. 1243–1252).

Géron, A. (2019). Hands-on machine learning with scikit-learn, keras, and ten-
sorflow: Concepts, tools, and techniques to build intelligent systems. O’Reilly
Media.

Ghoshal, A., Swietojanski, P., & Renals, S. (2013). Multilingual training of deep
neural networks. In Acoustics, speech and signal processing (icassp), 2013 ieee
international conference on (pp. 7319–7323).

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics (pp. 249–256).

Goldman, J.-P. (2011). Easyalign: an automatic phonetic alignment tool under
praat.

Goldsborough, P. (2016). A tour of tensorflow. arXiv preprint arXiv:1610.01178 .
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

(http://www.deeplearningbook.org)
Goodfellow, I. J., Bulatov, Y., Ibarz, J., Arnoud, S., & Shet, V. (2013). Multi-digit

number recognition from street view imagery using deep convolutional neural
networks. arXiv preprint arXiv:1312.6082 .

Graves, A. (2014). Supervised sequence labelling with recurrent neural networks.
Springer.

Graves, A., Fernández, S., Gomez, F., & Schmidhuber, J. (2006). Connectionist
temporal classification: labelling unsegmented sequence data with recurrent
neural networks. In Proceedings of the 23rd international conference on ma-
chine learning (pp. 369–376).

Graves, A., & Jaitly, N. (2014). Towards end-to-end speech recognition with recur-
rent neural networks. In International conference on machine learning (pp.
1764–1772).

Graves, A., Jaitly, N., & Mohamed, A.-r. (2013). Hybrid speech recognition with
deep bidirectional lstm. In Automatic speech recognition and understanding
(asru), 2013 ieee workshop on (pp. 273–278).

Grezl, F., & Fousek, P. (2008). Optimizing bottle-neck features for lvcsr. In Icassp
(Vol. 8, pp. 4729–4732).

Hannun, A., Case, C., Casper, J., Catanzaro, B., Diamos, G., Elsen, E., . . . others
(2014). Deep speech: Scaling up end-to-end speech recognition. arXiv preprint
arXiv:1412.5567 .

Hannun, A. Y., Maas, A. L., Jurafsky, D., & Ng, A. Y. (2014). First-pass large
vocabulary continuous speech recognition using bi-directional recurrent dnns.
arXiv preprint arXiv:1408.2873 .

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the ieee
international conference on computer vision (pp. 1026–1034).

Heafield, K., Pouzyrevsky, I., Clark, J. H., & Koehn, P. (2013, August). Scal-
able modified Kneser-Ney language model estimation. In Proceedings of the
51st annual meeting of the association for computational linguistics (pp. 690–
696). Sofia, Bulgaria. Retrieved from https://kheafield.com/papers/

186 Chapter I. J. Alamina

http://www.deeplearningbook.org
https://kheafield.com/papers/edinburgh/estimate_paper.pdf
https://kheafield.com/papers/edinburgh/estimate_paper.pdf

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

edinburgh/estimate_paper.pdf
Hendrycks, D., Lee, K., & Mazeika, M. (2019). Using pre-training can improve

model robustness and uncertainty. arXiv preprint arXiv:1901.09960 .
Hermansky, H. (1990). Perceptual linear predictive (plp) analysis of speech. The

Journal of the Acoustical Society of America, 87 (4), 1738-1752.
Hermansky, H., & Morgan, N. (1994). Rasta processing of speech. IEEE transactions

on speech and audio processing, 2 (4), 578–589.
Hwang, K., & Sung, W. (2017). Character-level language modeling with hierarchical

recurrent neural networks. In 2017 ieee international conference on acoustics,
speech and signal processing (icassp) (pp. 5720–5724).

Jaeger, H. (2002). Tutorial on training recurrent neural networks, covering bppt, rtrl,
ekf and the" echo state network" approach (Vol. 5). GMD-Forschungszentrum
Informationstechnik Bonn.

Jelinek, F. (1976). Continuous speech recognition by statistical methods. Proceedings
of the IEEE , 64 (4), 532-556. doi: 10.1109/PROC.1976.10159

Juang, B.-H., & Furui, S. (2000). Automatic recognition and understanding of
spoken language - a first step toward natural human-machine communica-
tion. Proceedings of the IEEE , 88 (8), 1142-1165. Retrieved from http://
ieeexplore.ieee.org/document/880077 doi: 10.1109/5.880077

Kaiser, Ł., & Bengio, S. (2016). Can active memory replace attention? In Advances
in neural information processing systems (pp. 3781–3789).

Kalchbrenner, N., Espeholt, L., Simonyan, K., Oord, A. v. d., Graves, A., &
Kavukcuoglu, K. (2016). Neural machine translation in linear time. arXiv
preprint arXiv:1610.10099 .

Kamper, H., Jansen, A., & Goldwater, S. (2016). Unsupervised word segmentation
and lexicon discovery using acoustic word embeddings. IEEE/ACM Transac-
tions on Audio, Speech and Language Processing (TASLP), 24 (4), 669–679.

Karpathy, A. (2015). The unreasonable effectiveness of recurrent neural
network. Retrieved from http://karpathy.github.io/2015/05/21/rnn
-effectiveness/

Ketkar, N. (2017). Introduction to pytorch. In Deep learning with python (pp.
195–208). Springer.

Kim, S., Hori, T., & Watanabe, S. (2017). Joint ctc-attention based end-to-end
speech recognition using multi-task learning. In 2017 ieee international con-
ference on acoustics, speech and signal processing (icassp) (pp. 4835–4839).

Kim, Y., Jernite, Y., Sontag, D., & Rush, A. M. (2016). Character-aware neural
language models. In Aaai (pp. 2741–2749).

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 .

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems (pp. 1097–1105).

Kuhn, R., & Mori, R. D. (1990). A cache-based natural language model for speech
recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
12 (6), 570-583. doi: 10.1109/34.56193

Kumar, S. K. (2017). On weight initialization in deep neural networks. arXiv
preprint arXiv:1704.08863 .

Kunze, J., Kirsch, L., Kurenkov, I., Krug, A., Johannsmeier, J., & Stober, S.

Chapter I. J. Alamina 187

https://kheafield.com/papers/edinburgh/estimate_paper.pdf
https://kheafield.com/papers/edinburgh/estimate_paper.pdf
http://ieeexplore.ieee.org/document/880077
http://ieeexplore.ieee.org/document/880077
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

(2017). Transfer learning for speech recognition on a budget. arXiv preprint
arXiv:1706.00290 .

Lamere, P., Kwok, P., Gouvêa, E., Raj, B., Singh, R., Walker, W., . . . Wolf, P.
(2003). The cmu sphinx-4 speech recognition system.

Landahl, H., McCulloch, W. S., & Pitts, W. (1943). A statistical consequence of
the logical calculus of nervous nets. The bulletin of mathematical biophysics,
5 (4), 135–137.

Lasserre, J. A., Bishop, C. M., & Minka, T. P. (2006). Principled hybrids of
generative and discriminative models. In 2006 ieee computer society conference
on computer vision and pattern recognition (cvpr’06) (Vol. 1, pp. 87–94).

Luong, M.-T., Pham, H., & Manning, C. D. (2015). Effective approaches to
attention-based neural machine translation. arXiv preprint arXiv:1508.04025 .

Luong, T., Socher, R., & Manning, C. D. (2013). Better word representations with
recursive neural networks for morphology. In Conll (pp. 104–113).

Lyons, J. (2012). Mel frequency cepstral coefficient (mfcc) tutorial. Retrieved from
http://practicalcryptography.com/miscellaneous/machine-learning/
guide-mel-frequency-cepstral-coefficients-mfccs/

Mallat, S. (2016). Understanding deep convolutional networks. Phil. Trans. R. Soc.
A, 374 (2065), 20150203.

Mallat, S. G. (1989). A theory for multiresolution signal decomposition: the wavelet
representation. IEEE transactions on pattern analysis and machine intelli-
gence, 11 (7), 674–693.

McLoughlin, I. (2009). Applied speech and audio processing: with matlab examples.
Cambridge University Press.

Mikolov, T., Deoras, A., Kombrink, S., Burget, L., & Černockỳ, J. (2011). Empiri-
cal evaluation and combination of advanced language modeling techniques. In
Twelfth annual conference of the international speech communication associa-
tion.

Mohamed, A.-r., Dahl, G., & Hinton, G. (2009). Deep belief networks for phone
recognition. In Nips workshop on deep learning for speech recognition and
related applications (Vol. 1, p. 39).

Mohamed, A.-r., Dahl, G. E., Hinton, G., et al. (2012). Acoustic modeling using
deep belief networks. IEEE Trans. Audio, Speech & Language Processing,
20 (1), 14–22.

Mozilla deepspeech. (2019). Retrieved from https://voice.mozilla.org/en
Novotney, S., & Schwartz, R. (2009). Analysis of low-resource acoustic model

self-training. In Tenth annual conference of the international speech commu-
nication association.

Nunamaker Jr, J. F., Chen, M., & Purdin, T. D. (1990). Systems development in
information systems research. Journal of management information systems,
7 (3), 89–106.

Oliphant, T. (2006–). NumPy: A guide to NumPy. USA: Trelgol Publishing.
Retrieved from http://www.numpy.org/ ([Online; accessed <today>])

Panayotov, V., Chen, G., Povey, D., & Khudanpur, S. (2015). Librispeech: an
asr corpus based on public domain audio books. In 2015 ieee international
conference on acoustics, speech and signal processing (icassp) (pp. 5206–5210).

Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J. (2002). Bleu: a method for
automatic evaluation of machine translation. In Proceedings of the 40th annual

188 Chapter I. J. Alamina

http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/
http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/
https://voice.mozilla.org/en
http://www.numpy.org/

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

meeting on association for computational linguistics (pp. 311–318).
Paul, D. B., & Baker, J. M. (1992). The design for the wall street journal-based csr

corpus. In Proceedings of the workshop on speech and natural language (pp.
357–362).

Peddinti, V., Sainath, T., Maymon, S., Ramabhadran, B., Nahamoo, D., & Goel,
V. (2014). Deep scattering spectrum with deep neural networks. In Acoustics,
speech and signal processing (icassp), 2014 ieee international conference on
(pp. 210–214).

Pennington, J., Socher, R., & Manning, C. (2014, October). Glove: Global vectors
for word representation. In Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP) (pp. 1532–1543). Doha,
Qatar: Association for Computational Linguistics. doi: 10.3115/v1/D14-1162

Picone, J. (1996). Fundamentals of speech recognition: A short course. Institute
for Signal and Information Processing, Mississippi State University.

Pot, E., Monceaux, J., Gelin, R., & Maisonnier, B. (2009). Choregraphe: a graph-
ical tool for humanoid robot programming. In Ro-man 2009-the 18th ieee
international symposium on robot and human interactive communication (pp.
46–51).

Povey, D., Burget, L., Agarwal, M., Akyazi, P., Kai, F., Ghoshal, A., . . . others
(2011). The subspace gaussian mixture model—a structured model for speech
recognition. Computer Speech & Language, 25 (2), 404–439.

Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., . . .
others (2011). The kaldi speech recognition toolkit. In Ieee 2011 workshop on
automatic speech recognition and understanding.

Ragni, A., & Gales, M. J. (2018). Automatic speech recognition system development
in the" wild". In Interspeech (pp. 2217–2221).

Ragni, A., Knill, K. M., Rath, S. P., & Gales, M. J. (2014). Data augmentation for
low resource languages.

Ramachandran, P., Liu, P. J., & Le, Q. V. (2016). Unsupervised pretraining for
sequence to sequence learning. arXiv preprint arXiv:1611.02683 .

Rosenberg, A., Audhkhasi, K., Sethy, A., Ramabhadran, B., & Picheny, M. (2017,
March). End-to-end speech recognition and keyword search on low-resource
languages. In 2017 ieee international conference on acoustics, speech and signal
processing (icassp) (p. 5280-5284). doi: 10.1109/ICASSP.2017.7953164

S., C. O. D. (2008). Okrika: A kingdom of the niger delta (1st ed.). Port Harcourt,
Rivers State, Nigeria: Onyoma Research Publications.

Sainath, T. N., Peddinti, V., Kingsbury, B., Fousek, P., Ramabhadran, B., & Na-
hamoo, D. (2014). Deep scattering spectra with deep neural networks for lvcsr
tasks. In Fifteenth annual conference of the international speech communica-
tion association.

Sak, H., Senior, A. W., & Beaufays, F. (2014). Long short-term memory based
recurrent neural network architectures for large vocabulary speech recognition.
CoRR, abs/1402.1128 . Retrieved from http://arxiv.org/abs/1402.1128

Salazar, J., Kirchhoff, K., & Huang, Z. (2019). Self-attention networks for connec-
tionist temporal classification in speech recognition. In Icassp 2019-2019 ieee
international conference on acoustics, speech and signal processing (icassp)
(pp. 7115–7119).

Saon, G., Kuo, H.-K. J., Rennie, S., & Picheny, M. (2015). The ibm 2015

Chapter I. J. Alamina 189

http://arxiv.org/abs/1402.1128

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

english conversational telephone speech recognition system. arXiv preprint
arXiv:1505.05899 .

Schluter, R., & Ney, H. (2001). Model-based mce bound to the true bayes’ error.
IEEE Signal Processing Letters, 8 (5), 131–133.

Sifre, L., & Mallat, S. (2013). Rotation, scaling and deformation invariant scattering
for texture discrimination. In Proceedings of the ieee conference on computer
vision and pattern recognition (pp. 1233–1240).

Sifre, L., & Mallat, S. (2014). Rigid-motion scattering for image classification. Ph.
D. dissertation.

Simons, G. F., & Fennig, C. D. (2018). Ethnologue: Languages of the world,
twenty-first edition. (Vol. 2018) (No. 11/11/). Retrieved from http://www
.ethnologue.com.

Smolensky, P. (1986). Information processing in dynamical systems: Foundations
of harmony theory (Tech. Rep.). COLORADO UNIV AT BOULDER DEPT
OF COMPUTER SCIENCE.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R.
(2014). Dropout: a simple way to prevent neural networks from overfitting.
The journal of machine learning research, 15 (1), 1929–1958.

Stan, A., Mamiya, Y., Yamagishi, J., Bell, P., Watts, O., Clark, R. A., & King,
S. (2016). Alisa: An automatic lightly supervised speech segmentation and
alignment tool. Computer Speech & Language, 35 , 116–133.

Stevens, S. S., Volkmann, J., & Newman, E. B. (1937). A scale for the measurement
of the psychological magnitude pitch. The Journal of the Acoustical Society
of America, 8 (3), 185–190.

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with
neural networks. In Advances in neural information processing systems (pp.
3104–3112).

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., . . . Rabinovich,
A. (2015). Going deeper with convolutions. In Proceedings of the ieee confer-
ence on computer vision and pattern recognition (pp. 1–9).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . .
Polosukhin, I. (2017). Attention is all you need. In Advances in neural
information processing systems (pp. 5998–6008).

Versteegh, M., Thiolliere, R., Schatz, T., Cao, X. N., Anguera, X., Jansen, A., &
Dupoux, E. (2015). The zero resource speech challenge 2015. In Sixteenth
annual conference of the international speech communication association.

Voxforge. (2019). Retrieved from http://www.voxforge.org
Vu, N. T., & Schultz, T. (2013). Multilingual multilayer perceptron for rapid

language adaptation between and across language families. In Interspeech
(pp. 515–519).

Walker, W., Lamere, P., Kwok, P., Raj, B., Singh, R., Gouvea, E., . . . Woelfel, J.
(2004). Sphinx-4: A flexible open source framework for speech recognition.

Wang, C., Wu, Y., Liu, S., Yang, Z., & Zhou, M. (2019). Bridging the gap between
pre-training and fine-tuning for end-to-end speech translation. arXiv preprint
arXiv:1909.07575 .

Watanabe, S., Hori, T., Karita, S., Hayashi, T., Nishitoba, J., Unno, Y., . . .
Ochiai, T. (2018). Espnet: End-to-end speech processing toolkit. In In-
terspeech (pp. 2207–2211). Retrieved from http://dx.doi.org/10.21437/

190 Chapter I. J. Alamina

http://www.ethnologue.com.
http://www.ethnologue.com.
http://www.voxforge.org
http://dx.doi.org/10.21437/Interspeech.2018-1456
http://dx.doi.org/10.21437/Interspeech.2018-1456

Deep Scattering and End-to-End Speech Models towards Low Resource Speech
Recognition

Interspeech.2018-1456 doi: 10.21437/Interspeech.2018-1456
Watanabe, S. . e., & Chien, J.-T. (2015). Bayesian speech and language processing.

Cambridge: Cambridge University Press.
Woodland, P., & Povey, D. (2000). Large scale discriminative training for speech

recognition. In Asr2000-automatic speech recognition: Challenges for the new
millenium isca tutorial and research workshop (itrw).

Xu, P., & Fung, P. (2013). Cross-lingual language modeling for low-resource speech
recognition. IEEE Transactions on Audio, Speech, and Language Processing,
21 (6), 1134–1144.

Young, S. (1996). A review of large-vocabulary continuous-speech. IEEE Signal
Processing Magazine, 13 (5), 45. doi: 10.1109/79.536824

Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu, X., . . . others
(2002). The htk book. Cambridge university engineering department, 3 , 175.

Yu, D., & Deng, L. (2016). Automatic speech recognition. Springer.
Yu, D., Deng, L., & Dahl, G. (2010). Roles of pre-training and fine-tuning in

context-dependent dbn-hmms for real-world speech recognition. In Proc. nips
workshop on deep learning and unsupervised feature learning.

Zeghidour, N., Synnaeve, G., Versteegh, M., & Dupoux, E. (2016). A deep scattering
spectrum—deep siamese network pipeline for unsupervised acoustic modeling.
In Acoustics, speech and signal processing (icassp), 2016 ieee international
conference on (pp. 4965–4969).

Chapter I. J. Alamina 191

http://dx.doi.org/10.21437/Interspeech.2018-1456
http://dx.doi.org/10.21437/Interspeech.2018-1456

	Abstract
	Dedication
	Acknowledgements
	Copyright Statement
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	List of Symbols
	1 Introduction
	1.1 ASR As a Machine Learning problem
	1.2 Generative-Discriminative Speech Models disambiguation
	1.3 Low Resource Languages
	1.4 The Wakirike Language
	1.5 Research aim and objectives
	1.5.1 Research Question

	1.6 Main Contribution to knowledge
	1.7 Scope of the study
	1.8 Thesis outline
	1.9 Chapter Summary

	2 Literature Review
	2.1 Speech Recognition Overview
	2.1.1 HMM-based Generative speech model
	2.1.2 Challenges of Speech Recognition
	2.1.3 Challenges of low speech recognition

	2.2 Low Resource Speech Recognition
	2.2.1 Low Resource language modelling
	2.2.2 Low Resource Acoustic and speech modelling

	2.3 Groundwork for low resource end-to-end speech modelling
	2.3.1 Deep speech
	2.3.2 Speech Recognition on a low budget
	2.3.3 Adding a Scattering layer

	2.4 Chapter Summary

	3 Methods, Models and Systems
	3.1 Assumptions
	3.2 Speech Processing software and tools
	3.2.1 CMUSphinx
	3.2.2 Kaldi
	3.2.3 Mozilla DeepSpeech
	3.2.4 Matlab and ScatNet toolbox
	3.2.5 TensorFlow
	3.2.6 Choregraphe
	3.2.7 Alisa

	3.3 Pilot Studies
	3.3.1 Auto-correlation Experiments
	3.3.2 Experiments with Nao robot
	3.3.3 Digit Speech Recognition and Alignment Experiments

	3.4 Sequence-to-sequence Model Experiments
	3.4.1 Procedure for designing sequence-to-sequence rnn models
	3.4.2 Sequence-to-sequence character-to-diacritically-labelled-character model
	3.4.3 Sequence-to-sequence Grapheme-to-Phoneme (G2P) model
	3.4.4 GRU language model for Wakirike language based on TensorFlow
	3.4.5 Bi-Directional LSTM-based end-to-end speech model
	3.4.6 ESP-Net Experiments

	3.5 Method of evaluation
	3.6 Chapter Summary

	4 Background 1: Recurrent Neural Networks in Speech Recognition
	4.1 Neural network architecture
	4.1.1 Multi-layer Perceptron (MLP)
	4.1.2 Sigmoid and soft-max Activation Function
	4.1.3 Back propagation algorithm (backprop)
	4.1.4 Gradient Descent

	4.2 RNN, LSTM and GRU Networks
	4.2.1 Deep Neural Networks (DNNs)
	4.2.2 Recurrent Neural Networks
	4.2.3 Back propagation through time (BPTT) algorithm
	4.2.4 LSTMs and GRUs

	4.3 Deep speech architecture
	4.3.1 Connectionist Temporal Classification (CTC)
	4.3.2 Forward-backward algorithm
	4.3.3 CTC Loss function

	4.4 Attention Mechanism
	4.5 Chapter Summary

	5 Background 2: Deep Scattering network
	5.1 Fourier transform
	5.2 Wavelet transform
	5.3 Discrete and Fast wavelet transform
	5.4 Mel filter banks
	5.5 Deep scattering spectrum
	5.6 Chapter Summary

	6 Empirical Analysis 1: Wakirike Language Model
	6.1 General Considerations for Sequence-to-sequence modelling
	6.1.1 Selection of Sequence Model
	6.1.2 Selection of RNN-architectures for sequence modelling
	6.1.3 Neural Network geometry
	6.1.4 Network Saturation Parameters
	6.1.5 Regularisation measure

	6.2 Data Preparation
	6.3 GRU RNN Architecture
	6.4 Language Model Training Experiments
	6.5 Output Language Model and Language Generation
	6.6 Discussion
	6.7 Chapter Summary

	7 Empirical Analysis 2: Deep Recurrent Speech Recognition models
	7.1 Deep Scattering Features
	7.2 CTC-BiRNN Architecture
	7.2.1 CTC Decoding
	7.2.2 Model Hyper parameters

	7.3 Summary of birnn Experiment Design
	7.4 BiRNN with Attention Transducer end-to-end Architecture
	7.5 Summary of birnn with Attention Transducer Experiment Design
	7.6 Speech Model Baselines
	7.7 Speech Model Simulations
	7.7.1 birnn-only end-to-end model Experiments
	7.7.2 birnn with Attention Transducer Experiments

	7.8 Model Results Interpretation
	7.8.1 Bi-RNN-only experiment discussion
	7.8.2 Bi-RNN with Transducer and attention mechanism experiment discussion

	7.9 Chapter Summary

	8 Conclusion and Future Work
	8.1 Discussion of Research Output models
	8.1.1 Main contribution to knowledge
	8.1.2 Summary of goals achieved in this work

	8.2 Limitations of the study
	8.3 Directions for future study
	8.3.1 Generative adversarial networks (GAN)
	8.3.2 Attention-based Models
	8.3.3 Model Pre-training

	8.4 Conclusion

	Appendix I - Haar wavelet
	Appendix II - Gabor and Morlet wavelet filters
	Appendix III - Scatter Transform implementation
	Appendix IV - Sample TensorFlow Client code
	Appendix V - Wakirike Phonetic dictionary

