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Abstract 

In situ gel forming drug delivery systems utilize the concept of undergoing sol-gel 

transitions on exposure to physiological fluids in response to changes in temperature, pH 

and/or ionic environment. Gelation in response to the changes in pH/ionic contents are 

particularly difficult to measure in a biorelevant manner as gelation is often too rapid for 

adequate mixing of physiological fluids with the polysaccharides prior to loading on to a 

rheometer. Although, several modifications have been applied to conventional rheometers 

to facilitate changing environmental conditions, modifications that can change the chemical 

environment of a sample and simultaneously measure release of active ingredients from in 

situ gelling formulations has yet to be developed. To address this problem a novel method 

has been demonstrated using a 3D printed rheo-dissolution cell to simultaneously measure 

the rheological behaviour and dissolution of drug from the in situ gelling systems on 

exposure to physiological fluids. The technique was validated and then used to understand 

the behaviour of a range of in situ gelling formulations.  

An in situ gel forming ophthalmic formulation of low acyl gellan gum (gellan) (0.4%) and 

timolol maleate (TM) (6.8 mg/ml) was prepared based on commercial Timoptol LA®. 

Rheological evaluation and a drug release study were performed separately using the rheo-

dissolution device. This study also highlighted the importance of drug-polymer interaction 

by indicating electrostatic interactions between the positively charged TM and negatively 

charged gellan. The concept of rheo-dissolution was further explored with the full 

experimental set up of the rheo-dissolution cell integrated with a rheometer. An in situ 

gelling ophthalmic (gellan-TM) and an oral formulation (alginate- metronidazole) were 

prepared to evaluate the novel technique. The ophthalmic formulations of gellan-TM 
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showed rapid onset of gelation on exposure to simulated lacrimal fluid (SLF) (pH 7.5) and 

release slowed down with increased gellan concentrations (0.6% to 0.8% w/v). Rheo-

dissolution experiments performed on the oral formulation of revealed the formation of a 

strong gel with rapid gelation on exposure to simulated gastric fluid (pH 1.2). Rapid release 

was observed while the gel was structuring, which then slowed down (~53% in 7h) once 

gelation was complete. The pH of the media was increased to 8.0, which resulted in a 

dramatic increase of MNZ release (~96% in 7h) and degradation of the alginate gel. Finally, 

an in situ gelling ophthalmic formulation of gellan was prepared using flurbiprofen (FBP) 

(a poorly soluble drug) and 2-hydroxypropyl-β-cyclodextrin (HβCD) inclusion complex. 

This work highlighted the difficulties of incorporating the sodium salt form FBP in in situ 

gelling systems prepared using gellan because of the tendency of gellan to cross link with 

salts. Besides the rheo-dissolution study, ex-vivo permeation study was performed which 

showed higher percentage of FBP permeation (~55% in 6h) in the inclusion complex 

formulation compared with FBP sodium in the commercial product Ocufen® (~37% in 6h).  

 

 

 

 

 

 

 

 

 

 



5 

 

Acknowledgements 

I would like to express my gratitude to my supervisor Professor Alan M. Smith for his 

continuous support throughout my PhD. I appreciate all his guidance, encouragement and 

constant feedback during the research work. I would like to thank my co supervisor 

Professor Barbara R. Conway for supporting me with her immense knowledge during the 

course of my research. I greatly appreciate them for spending their time to respond to my 

queries so promptly. 

I would like to extend my appreciation to Dr Muhammad Ghori for his support for 

developing and modifying the rheo-dissolution cell. Additionally, I would like to thank the 

technicians particularly James Rooney, Ibrahim George and Hayley Markham for all their 

technical support and assistance in the lab. Many thanks to the biopolymer research group 

for making the biopolymer lab an enjoyable place to work.  

Also, I would like to thank each member of my family for their on-going support specially 

my parents for their irreplaceable encouragement and blessings over all these years. A great 

appreciation for Barsan who stood by my side during the whole period of the research no 

matter how hard the time was. It would not been possible to do my PhD without the 

inspirations from all of them. Thanks to Arisha and Areeb for their long distance love and 

cheering.  

  



6 

 

  Table of Contents 

 

Copyright Statement .............................................................................................................. 2 

Abstract .................................................................................................................................. 3 

Acknowledgements ............................................................................................................... 5 

Table of Contents .................................................................................................................. 6 

List of Figures ...................................................................................................................... 12 

List of Tables ....................................................................................................................... 18 

List of Abbreviations ........................................................................................................... 19 

Chapter 1: Rheology .......................................................................................................... 20 

 Introduction ................................................................................................................ 20 

 Stress and Strain ......................................................................................................... 21 

 Young’s Modulus ....................................................................................................... 23 

 Shear Modulus ........................................................................................................... 24 

 Bulk Relaxation Modulus .......................................................................................... 25 

 Rheological Analysis ................................................................................................. 25 

 Rheometer .................................................................................................................. 26 

 Viscosity ..................................................................................................................... 28 

 Newtonian and Non-Newtonian Systems .................................................................. 28 

 Shear Thinning and Shear Thickening Fluids ......................................................... 29 

 Plasticity and Yield stress ........................................................................................ 30 

 Intrinsic Viscosity ...................................................................................................... 30 

 Rheological Measurements of Biopolymer Gels ....................................................... 31 

 Viscoelasticity and Oscillation ................................................................................... 32 

 Linear Viscoelastic Region ...................................................................................... 34 

 Frequency Sweeps ................................................................................................... 35 

 Temperature Sweeps................................................................................................ 38 

 Adaptations and Limitations of Commercial Rheometers ......................................... 39 

Chapter 2: General Introduction of In Situ Gel Forming Drug Delivery Systems ..... 42 

 Introduction to In Situ Gel Forming Drug Delivery Systems .................................... 42 

 General Mechanism of In Situ Gelation ..................................................................... 43 



7 

 

 Current Techniques to Investigate In situ Gelation ................................................... 48 

Chapter 3: Polysaccharides .............................................................................................. 53 

 Introduction to Polysaccharides ................................................................................. 53 

 Structure of Polysaccharides ...................................................................................... 55 

 The Conformation of Polysaccharides ....................................................................... 57 

 Application of Polysaccharides in Drug Delivery ..................................................... 58 

 Polysaccharide Gels ................................................................................................... 60 

 Gelation of Polysaccharides ....................................................................................... 62 

 Gel Forming Polysaccharides .................................................................................... 64 

 Gellan Gum ................................................................................................................ 64 

 Gelation of Gellan Gum .......................................................................................... 65 

 Alginate ...................................................................................................................... 67 

 Gelation of Alginate ................................................................................................ 68 

 Agarose ...................................................................................................................... 69 

 In situ Gelation of Polysaccharides ............................................................................ 71 

 Mechanisms of In Situ Gelation ................................................................................. 71 

 Temperature Induced In Situ Gelation..................................................................... 71 

 pH Triggered In Situ Gelation ................................................................................. 72 

 Ion Induced In Situ Gelation .................................................................................... 73 

 Aim and Objectives .................................................................................................... 75 

 Thesis Structure .......................................................................................................... 77 

 Publications and Presentations ................................................................................... 79 

Chapter 4: Development and Rheological Evaluation of an In situ Gel Forming 

Ophthalmic Formulation ......................................................................................... 80 

 Introduction ................................................................................................................ 80 

 Anatomy of the Ocular System .................................................................................. 81 

 Lacrimal Fluid ............................................................................................................ 84 

 Rheo-Dissolution Cell ................................................................................................ 86 

 Timolol Maleate ......................................................................................................... 87 

 Materials and Methods ............................................................................................... 88 

 Materials ..................................................................................................................... 88 

 Preparation of Simulated Lacrimal Fluid ................................................................... 88 

 Preparation of In situ Gel Forming Ophthalmic Formulations .................................. 89 



8 

 

 Formulation Development ......................................................................................... 90 

 Preparation of Gellan Solutions and Gellan-TM formulations for Rheological 

Evaluation .................................................................................................................. 91 

 Rheological Analysis ................................................................................................. 92 

 Strain Sweeps .......................................................................................................... 92 

 Frequency Sweeps ................................................................................................... 92 

 Temperature Sweeps................................................................................................ 92 

 Gellan -TM Interaction ............................................................................................ 93 

 In Vitro Release Studies ............................................................................................. 93 

 Determination of TM Using HPLC ......................................................................... 94 

 Chromatographic Conditions and Optimization of Experimental Parameters ........ 94 

 Calibration Curve Preparation ................................................................................. 95 

 Fourier Transform Infrared Spectroscopy (FTIR) ..................................................... 96 

 Replacing Gellan with Non Ionic Polysaccharide ..................................................... 97 

 Preparation of the Formulation ................................................................................ 98 

 In Vitro Release Studies .......................................................................................... 98 

 Statistical Analysis .................................................................................................... 98 

 Results ........................................................................................................................ 99 

 Comparison of Gelation ............................................................................................. 99 

 Oscillatory Rheological Analysis ............................................................................. 102 

 Strain Sweeps ........................................................................................................ 102 

 Frequency Sweeps ................................................................................................. 103 

 Temperature Sweeps.............................................................................................. 104 

 Effect of pH ........................................................................................................... 106 

 Development of HPLC Method for the Determination of TM ................................ 107 

 Drug Release ............................................................................................................ 108 

 FTIR ......................................................................................................................... 109 

 Release of TM from Agarose ................................................................................... 112 

 Discussion ................................................................................................................ 113 

 Conclusion ............................................................................................................... 118 

Chapter 5: Development of a Model for Simultaneous Measurement of Rheology and 

Dissolution for In situ Gel Forming Drug Delivery Systems .............................. 119 

 Introduction .............................................................................................................. 119 



9 

 

 In Situ Gel Forming Oral Drug Delivery Systems ................................................... 120 

 Gastrointestinal Anatomy and Physiology ............................................................... 121 

 Oesophagus ............................................................................................................ 122 

 Stomach ................................................................................................................. 123 

 Small Intestine ....................................................................................................... 124 

 Large Intestine ....................................................................................................... 125 

 Metronidazole .......................................................................................................... 126 

 Materials and Methods ............................................................................................. 127 

 Materials ................................................................................................................... 127 

 Preparation of In situ Gel Forming Ophthalmic Formulation .................................. 127 

 Preparation of In situ Gel Forming Oral Formulation ............................................. 128 

 Preparation of Simulated Physiological Fluids ........................................................ 128 

 Comparison of Rheological Measurements Using a Standard Parallel Plate Geometry 

and the Rheo-Dissolution Cell ................................................................................. 128 

 Rheo-Dissolution Measurements for In situ Gel Forming Ophthalmic Formulation

 .................................................................................................................................. 130 

 Effect of Gellan Concentrations on Rheology and Drug Release ............................ 133 

 Preparation of the Formulations ............................................................................ 133 

 Rheo-Dissolution Measurements ........................................................................... 133 

 Rheo-Dissolution Measurements for In situ Gel Forming Oral Formulation .......... 134 

 Determination of MNZ by UV Spectroscopy .......................................................... 135 

 Solubility Profile of MNZ at pH 1.2 and 8 ............................................................. 136 

 Statistical Analysis .................................................................................................. 137 

 Results ...................................................................................................................... 137 

 Comparison of Rheological Measurements Using a Standard Parallel Plate Geometry 

and the Rheo-Dissolution Cell ................................................................................. 137 

 Rheo-Dissolution Measurements for In Situ Gel Forming Ophthalmic Formulation

 .................................................................................................................................. 140 

 Effect of Gellan Concentrations on Rheology and Dissolution of the Drug ............ 141 

 Development of UV-Vis Spectrophotometric Method for the Estimation of MNZ 144 

 Rheo-Dissolution Measurements of In Situ Gel Forming Oral Formulations ......... 145 

 Solubility Profile of MNZ at pH 1.2 and 8.0 ........................................................... 150 

 Discussion ................................................................................................................ 151 



10 

 

 Conclusion ............................................................................................................... 155 

Chapter 6: Formulating an In Situ Gelling System of Poorly Soluble Drug for 

Optimizing Ophthalmic Delivery ......................................................................... 157 

 Introduction .............................................................................................................. 157 

 Cyclodextrins ........................................................................................................... 159 

 Drug-CD Complex Formation ................................................................................. 161 

 CDs in Ophthalmic Drug Delivery .......................................................................... 164 

 Mechanism of Permeation of Drug into the Cornea .............................................. 165 

 Toxicological Considerations .................................................................................. 167 

 Flurbiprofen ............................................................................................................. 168 

 Martials and Methods ............................................................................................... 169 

 Materials ................................................................................................................... 169 

 Determination of FBP Content by UV Spectroscopy .............................................. 169 

 Phase Solubility Studies ........................................................................................... 170 

 Interaction Studies between HβCD and Gellan ....................................................... 172 

 Preparation of In Situ Gel Forming Ophthalmic Formulation of FBP with HβCD and 

Gellan ....................................................................................................................... 173 

 Confirmation of Complexation ................................................................................ 173 

 Simultaneous Determination of Rheology and Dissolution of the Drug (Rheo-

Dissolution Study) .................................................................................................... 174 

 Carbohydrate Analysis by Phenol-Sulphuric Acid Method ..................................... 174 

 Preparation of 5% Phenol Solution ....................................................................... 175 

 Determination of Sugar Content by UV Spectroscopy ......................................... 175 

 HβCD Dissolution Studies .................................................................................... 176 

 Gellan Dissolution Studies .................................................................................... 176 

 Ex-vivo Permeation Studies Using Porcine Cornea ................................................. 177 

 Preparation of Cornea for Permeation Study ......................................................... 177 

 Ex-vivo Permeation Studies ................................................................................... 178 

 Statistical Analysis .................................................................................................. 179 

 Results ...................................................................................................................... 179 

 Development of UV-Vis Spectrophotometric Method for the Estimation of FBP .. 179 

 Phase Solubility Studies ........................................................................................... 181 

 Interaction Studies between HβCD and Gellan ....................................................... 182 



11 

 

 Confirmation of Complexation by DSC .................................................................. 184 

 Simultaneous Determination of Rheology and Dissolution of the Drug (Rheo-

Dissolution Study) .................................................................................................... 185 

 Development of Phenol-Sulphuric Acid (PSA) Method for Carbohydrate Analysis

 .................................................................................................................................. 187 

 HβCD Dissolution Studies ....................................................................................... 188 

 Gellan Dissolution Studies ....................................................................................... 190 

 Ex-vivo Permeation Studies Using Porcine Cornea ................................................. 191 

 Discussion ................................................................................................................ 191 

 Conclusion ............................................................................................................... 196 

Chapter 7: Conclusions and Future Recommendations .............................................. 197 

 Development and Rheological Evaluation of an In situ Gel Forming Ophthalmic 

Formulation .............................................................................................................. 197 

 Development of a Model for Simultaneous Measurement of Rheology and Dissolution 

for In situ Gel Forming Drug Delivery Systems ...................................................... 199 

 Formulating an In Situ Gelling System of a Poorly Soluble Drug for Optimizing 

Ophthalmic Delivery ................................................................................................ 200 

 Future Work ............................................................................................................. 201 

References......................................................................................................................... 204 

 

  



12 

 

List of Figures 

Figure 2.1: Schematic diagram of deformation when a solid material is subjected to forces 

applied in longitudinal, lateral and isotopic direction (Mahdi, 2016) ................................. 23 

Figure 2.2: Schematic diagram of a typical controlled stress rheometer............................. 26 

Figure 2.3: Schematic illustration of different types of geometry (A) parallel plate (B) cone-

plate (C) serrated plate ......................................................................................................... 27 

Figure 2.4: Different types of flow behaviour of Newtonian and Non-Newtonian Systems 

(Tagha, 2011)....................................................................................................................... 29 

Figure 2.5: Illustration of relationship between stress and strain during a sinusoidal 

oscillating strain for elastic material where the phase difference between stress and strain (δ) 

is 0°, viscoelastic material where 90°>δ< 0°, and viscous material where δ=90° (Tanaka et 

al., 2003) .............................................................................................................................. 33 

Figure 2.6: An example of amplitude sweep test for the assessment of viscoelastic region of 

a sample at 1 Hz (6.28 rad/s) frequency (Krishnaiah et al., 2014) ...................................... 35 

Figure 2.7: Schematic representation of frequency sweeps of four different polysaccharide 

samples (A) dilute polymer solution (B) concentrated polymer solution (C) weak gel (D) 

true gel (Morris et al., 2012). ............................................................................................... 37 

Figure 2.8: Example of temperature sweep of gellan gum showing changes in Gʹ and G" 

upon cooling (gelation temperature is around 40°C) (Ana et al., 2016) ............................. 39 

Figure 2.1: Schematic representation of in situ gelation in physiological environment ..... 43 

Figure 2.2: Conventional rheometer showing the sample between upper and lower geometry

 ............................................................................................................................................. 49 

Figure 2.3: Gelation of sodium alginate in the dialysis tubing by immersing into the 

crosslinking ion solution  (Bajpai et al., 2016) .................................................................... 50 

Figure 2.4: Schematic representation of the method of investigating gelation by using filter 

papers ................................................................................................................................... 51 

Figure 2.5: In situ rheological measurement of external gelation of alginate (Mahdi et al., 

2016b) .................................................................................................................................. 52 

Figure 3.1: Condensation reactions (removal of water) to form glycosidic bonds between α-

D-glucose to form maltose (Pelley, 2012) ........................................................................... 55 

Figure 3.2: Classification of polysaccharides into homopolysaccharides and 

heteropolysaccharides; different colour indicates different monosaccharide units ( adopted 

from Xie et al., 2016)........................................................................................................... 56 



13 

 

Figure 3.3: Secondary structures of polysaccharides (a) ribbon-like (b) hollow helix (Wang 

and Cui, 2005) ..................................................................................................................... 57 

Figure 3.4: Schematic illustration of formation of (A) entanglement in viscous polymer 

solution (B) ordered network in gel ..................................................................................... 61 

Figure 3.5: Generalised schematic representation of polysaccharide gel network formation 

(Posocco et al., 2015) .......................................................................................................... 62 

Figure 3.6: Different types of junction zones (A) crosslinked double helix in к-carrageenan 

(crosslinked with K+) or ι-carrageenan (crosslinked with Ca2+) (B) ribbon-ribbon association 

of egg box in alginate crosslinked with Ca2+ (C) bundle of double helices in agarose (adapted 

from (Posocco et al., 2015)) ................................................................................................ 63 

Figure 3.7: Representation of tetrasaccharide repeating sequence of gellan gum in deacylated 

form. Acetyl and glyceryl substituents indicates the native polymer (high acyl) (Morris et 

al., 2012) .............................................................................................................................. 64 

Figure 3.8: Schematic representation of gelation of gellan (A) formation of weak gel upon 

cooling (B) formation of strong gel in presence of divalent cations (such as Ca2+, Mg2+) (C) 

Formation of strong gel in presence of monovalent cations (such as H+, Na+) (D) formation 

strong gel in presence of acid .............................................................................................. 66 

Figure 3.9: Chemical structure of sodium alginate with arrangements of G and M blocks 

(Moxon, 2016) ..................................................................................................................... 67 

Figure 3.10: Schematic representation of ion induced gelation of alginate and formation of 

egg box network in presence of Ca2+ ion ............................................................................ 68 

Figure 3.11: Chemical structure of agarose (Watase and Arakawa, 1968) ......................... 70 

Figure 3.12: A schematic overview of the gelation process in agarose solutions ............... 70 

Figure 4.1: Schematic diagram of the human eye (Hickson, 1998) .................................... 82 

Figure 4.2: Schematic representation of the corneal barriers to the diffusion of the drugs. 83 

Figure 4.3: (A) Dimensions of rheo-dissolution cell (B) CAD model (C) Stl file model and 

(D) 3D printed rheo-dissolution cell showing removable mesh. ......................................... 86 

Figure 4.4: Chemical structure of timolol maleate (Joshi et al., 2009) ............................... 87 

Figure 4.5: Experimental set up using rheo-dissolution cell to perform the viscoelastic 

measurements for comparing gelation behaviour of in situ gelling ophthalmic formulations 

and Timpotol LA® on exposure to SLF ............................................................................... 90 

Figure 4.6: In vitro release study of gellan -TM formulation using the rheo-dissolution cell 

performed at a temperature of 37°C and 100 RPM ............................................................. 94 

Figure 4.7: Measurement of elastic modulus (Gʹ) and viscous modulus (Gʺ) (Pa) of Timoptol 

LA® on exposure to SLF performed in the rheo-dissolution cell at room temperature 



14 

 

(22±1ºC). Low values of the moduli over first few seconds are represented in the zoomed in 

section on the left side ......................................................................................................... 99 

Figure 4.8: Measurements of G' and G" of formulation containing (A) 0.2% (B) 0.3% (C) 

0.4% (D) 0.5% gellan and 6.8 mg/ml TM on exposure to SLF, performed in rheo-dissolution 

cell at room temperature (22±1ºC). ................................................................................... 100 

Figure 4.9: Strain sweeps of (A) gellan in DI (B) gellan-TM in DI (C) gellan in SLF (D) 

gellan-TM in SLF, performed within 0.001 to 100 strain, at 10 rad/s frequency and at 25ºC. 

The lines indicate critical strain to breakdown the gel. ..................................................... 102 

Figure 4.10: frequency sweeps (A) gellan in DI (B) gellam-TM in DI (C) gellan in SLF (D) 

gellan-TM in SLF at angular frequency increased from 1 to 628 rad/s with constant strain of 

0.5%, performed at 25ºC. .................................................................................................. 103 

Figure 4.11: Oscillatory cooling scan at 2°C/min from 90°C to 20°C showing Gʹ and G" of 

(A) gellan in DI  (B) gellan in SLF (C) gellan-TM in SLF performed at an angular frequency 

of 1 rad/s and 0.5% strain, performed at 25ºC. .................................................................. 105 

Figure 4.12: Oscillatory cooling scan at 2°C/min from 90°C to 20°C showing Gʹ and G" of 

the formulation containing 0.4% gellan and 6.8 mg/ml TM at (A) pH 4.5 (B) pH 10 in SLF 

performed at an angular frequency of 1 rad/s and 0.5% strain, performed at 25ºC .......... 106 

Figure 4.13: Chromatogram of TM detected at 295 .......................................................... 107 

Figure 4.14: Calibration curve of TM at 295 nm by RP-HPLC Method; Values represent 

mean ± SD (n=3). .............................................................................................................. 108 

Figure 4.15: Release profile of TM from in situ gel forming ophthalmic formulation of gellan 

-TM at pH 4.5 and pH 10, performed in the rheo-dissolution cell contained SLF stirred at 

100 RPM at a temperature of 37ºC .................................................................................... 109 

Figure 4.16: FTIR spectra of (A) gellan (B) TM (C) dry mix of gellan-TM (D) gel at 0 hour 

pH 4.5 (E) gel at 5 hour pH 4.5 (F) gel at 0 hour pH 10 (G) gel at 5 hour pH 10 ............. 111 

Figure 4.17: Release profile of TM from in situ gel forming ophthalmic formulation of 

agarose (0.4%) and TM (6.8 mg/ml) performed in the rheo-dissolution cell contained SLF 

(pH 7.5) stirred at 100 RPM at a temperature of 37ºC. Values represent mean ± SD (n=3)

 ........................................................................................................................................... 112 

Figure 4.18: Structure of TM showing pH dependent ionization at (A) pH 4.5 (B) pH 10

 ........................................................................................................................................... 115 

Figure 5.1: Schematic diagram of anatomy of human GIT with varying pH .................... 122 

Figure 5.2: Chemical structure of metronidazole (Diós, 2015) ......................................... 126 

Figure 5.3: Rheological measurements using rheo-dissolution cell replacing the lower plate 

of the rheometer ................................................................................................................. 129 

Figure 5.4: Cartoon representation showing the experimental set up for the measurement 



15 

 

rheo-dissolution ................................................................................................................. 131 

Figure 5.5: (A) Schematic demonstrating of the experimental set up of rheo-dissolution cell 

with the conventional rheometer in the laboratory (B) rheo-dissolution cell attached to the 

lower plate of rheometer prior to loading sample and (C) rheo-dissolution experiments in 

process ............................................................................................................................... 132 

Figure 5.6: Viscoelastic measurements of Gʹ and Gʺ (Pa) against time for in situ gelling 

ophthalmic formulation of gellan-TM performed with (A) serrated parallel plate (B) rheo-

dissolution cell replacing the lower plate .......................................................................... 138 

Figure 5.7: Viscoelastic measurements of Gʹ and Gʺ (Pa) against time for in situ gelling oral 

formulation of alginate-MNZ performed with (A) serrated parallel plate (B) rheo-dissolution 

cell replacing the lower plate ............................................................................................. 139 

Figure 5.8: Rheo-dissolution experiments showing the progression of the moduli (G' and 

G") and comparison between the TM release performed in rheo-dissolution cell (0.5% strain 

1 rad/s frequency); and in dissolution bath at 37ºC (100 RPM) ........................................ 141 

Figure 5.9: Rheo-dissolution experiments of in situ gel forming ophthalmic formulations 

containing 6.8mg/ml TM and (A) 0.3% (B) 0.6% (C) 0.8% gellan .................................. 143 

Figure 5.10: Mean calibration curve of MNZ measured at 277 nm. All data represent mean 

± SD (n=3) ......................................................................................................................... 144 

Figure 5.11: Rheo-dissolution experiment of in situ gel forming oral formulation containing 

MNZ (200mg/5ml) and 0.2 % sodium alginate at (A) pH 1.2 (B) pH 1.2 and 8.0 (0.5% strain  

and 1 rad/s frequency) ....................................................................................................... 146 

Figure 5.12: Progression of the modulus (G' and G") and release of MNZ at the earlier time 

points (0 to 10 min) before exposure to the acidic media ................................................. 147 

Figure 5.13: Comparison of Gʹ and release of MNZ following 120 min when maintaining 

pH 1.2 or adjusting pH 8.0 ................................................................................................ 147 

Figure 5.14: Zero order kinetic modelling of the release data obtained from rheo-dissolution 

experiments performed at (A) pH 1.2 (B) pH 1.2 and 8 (C) pH 1.2 (up to 120 min) (D) pH 

1.2 and 8 (up to 120 min; before changing the media to pH 8) (E) pH 1.2 (150 to 420 min) 

(F) pH 1.2 and 8 (150 to 420 min; after changing the media to pH 8). Release curves in 

figure B, C and D fitted well to the zero order kinetic model (R2 = 0.98); release curve in 

figure F deviated from zero order kinetic model (R2 = 0.92). ........................................... 149 

Figure 5.15: pH solubility of MNZ at pH 1.2 and 8.0 (n=3) ............................................. 151 

Figure 5.16: Release of TM at 180 min with increasing gellan concentrations from 0.3% to 

0.8% ................................................................................................................................... 153 

Figure 6.1: (A) Chemical structure of CD (B) Doughnut structure of CD molecule showing 

lipophilic inner cavity and hydrophilic outer surface (adapted from Loftsson & Stefánsson, 

2017) .................................................................................................................................. 159 



16 

 

Figure 6.2: Schematic representation of formation of drug-CD complex in aqueous solution, 

here the water molecules are replaced by the drug inside the cavity ................................ 162 

Figure 6.3 Schematic diagram representing the proposed mechanism of permeation of drug 

to the cornea from drug-CD complex by Loftssona & Järvinen, 1999. ............................ 166 

Figure 6.4 Chemical structure of FBP (Duarte et al., 2004) .............................................. 169 

Figure 6.5: Types of phase solubility diagrams according to Higuchi and Connors, 1965 

where concentrations of CDs are plotted against the concentrations of dissolved drug. The 

resultant diagrams are AL: linear, AP: positive deviation from linearity; AN: negative 

deviation from linearity; BS: limited solubility of complex or BI: insoluble (Brewster and 

Loftsson, 2007; Saokham et al., 2018) .............................................................................. 170 

Figure 6.6: (A) Pig eyeball before dissecting (B) Back view of anterior half of the pig eye 

(C) removed cornea ........................................................................................................... 177 

Figure 6.7 Schematic diagram of a Franz diffusion cell.................................................... 178 

Figure 6.8: Calibration curve of FBP prepared in SLF (pH 7.5) and measured at 247 nm. 

Values represent mean ± SD (n=3) ................................................................................... 180 

Figure 6.9: FBP solubility as a function of HβCD ............................................................ 182 

Figure 6.10: In situ gelation of 0.4% gellan showing Gʹ and G" on exposure to SLF (A) 0.4% 

gellan only and in presence of (B) 0.5% (C) 1% (D) 2 % (E) 5% and (F) 10% HβCD 

performed at 0.5% strain, 1 rad/s frequency and 25ºC ...................................................... 183 

Figure 6.11: DSC thermogram of (A) FBP (B) HßCD (C) gellan (D) physical mix of FBP 

and HßCD (E) physical mix of FBP, HßCD and gellan (F) freeze dried formulation of FBP 

and HßCD (G) freeze fried formulation of FBP, HßCD and gellan .................................. 185 

Figure 6.12: Simultaneous determination of rheological changes (Gʹ and G") and drug 

release study of the formulations containing 0.029% FBP, 0.4% gellan and (A) 10% HβCD 

(B) 20% HβCD performed at 0.5% strain, 1 rad/s frequency and 25ºC ............................ 186 

Figure 6.13: Calibration curve of D-glucose measured at 490 nm. All data represent mean ± 

SD (n=3) ............................................................................................................................ 187 

Figure 6.14: Simultaneous determination of rheological changes (Gʹ and G") and HβCD 

release study of the formulations containing 0.029% FBP, 0.4% gellan and (A) 10% HβCD 

(B) 20% HβCD performed at 0.5% strain, 1 rad/s frequency and 25ºC ............................ 189 

Figure 6.15: Simultaneous determination of rheological changes (Gʹ and G") and gellan 

release from the formulation containing 0.4% gellan performed at 0.5% strain, 1 rad/s 

frequency and 25ºC ........................................................................................................... 190 

Figure 6.16: Percentage of FBP permeated from the formulations containing 0.029% FBP 

with 10% HβCD and 0.4% gellan compared with the commercial product Ocufen® 

containing 0.03% FBP sodium (n=3) ................................................................................ 191 



17 

 

Figure 6.17: Schematic representation of diffusion of FBP- HβCD complex through the gel 

and dissociation of FBP from the complex ....................................................................... 193 

Figure 6.18: Schematic presentation of self-assembling of CD molecules to form small 

clusters that associate to create larger aggregates ............................................................. 194 

 

  



18 

 

List of Tables 

Table 2.1: Physiological conditions (pH, temperature and ionic content) of different 

physiological sites ............................................................................................................... 44 

Table 1.2: Examples of commercialised in situ gelling formulations (Jain et al., 2016; Wu et 

al., 2018) .............................................................................................................................. 47 

Table 3.1: Examples of polysaccharides from different origin (Ross-murphy et al., 1998; 

Aravamudhan et al., 2014) .................................................................................................. 54 

Table 4.1: Composition of SLF (Marques et al., 2011) ....................................................... 89 

Table 4.2: List of the formulations of gellan used in the oscillatory rheological measurements 

in terms of strain sweep, frequency sweep and temperature sweep .................................... 91 

Table 4.3: List of samples and their preparation for FTIR analysis .................................... 97 

Table 4.4: Comparison of the final values of moduli (Gʹ and Gʺ) among Timpotol LA® and 

other formulations containing 0.2%, 0.3%, 0.4%, 0.5% gellan and 6.8 mg/ml TM. Values 

represent mean ± SD (n=3) ................................................................................................ 101 

Table 4.5: HPLC method validation for the determination of TM .................................... 108 

Table 5.1: Comparison of viscoelastic measurements (Gʹ and Gʺ) for in situ gelling 

ophthalmic (gellan-TM) and oral formulation (alginate-MNZ) performed with serrated 

parallel plate and rheo-dissolution cell replacing the lower plate (0.5% strain and a frequency 

of 1 rad/s). Values represent mean ± SD (n=3) ................................................................. 140 

Table 5.2: Evaluation data of UV spectroscopic method of MNZ .................................... 145 

Table 5.3: Summary of zero order drug release kinetic parameters .................................. 150 

Table 6.1 General properties of commonly used CDs (Valle, 2004) ................................ 161 

Table 6.2: Examples of reports of using CDs in ophthalmic drug delivery systems ........ 165 

Table 6.3: Marketed eye drop solution containing CDs (Loftsson and Brewster, 2010) .. 168 

Table 6.4: Evaluation and method validation data of UV spectroscopic method of FBP . 180 

Table 6.5: Evaluation data of UV spectroscopic method for PSA assay .......................... 188 

 

  



19 

 

List of Abbreviations 

Å                          Angstrom 

ABS 

ANOVA  

Acrylonitrile Butadiene Styrene 

Analysis of Variance, 

AUC                   Area Under the Curve 

CaCl2                 Calcium Chloride 

CAD                  Computer Aided Design 

DSC 

ERD               

Differential Scanning Calorimetry 

Electro-Rheological Devices  

FBP  Flurbiprofen 

FTIR                 Fourier-Transform Infrared Spectroscopy 

GIT  Gastrointestinal Tract 

Gʹ                      Elastic Modulus 

Gʺ                    Viscous Modulus 

HβCD  Hydroxypropyl-β-Cyclodextrin 

HPMC Hydroxypropyl Methylcellulose 

H2SO4 Sulfuric Acid 

HCl Hydrochloric Acid 

H. Pylori Helicobacter Pylori 

LOD Limit of Detection 

LOQ Limit of Quantification 

LVR Linear Viscoelastic Region 

LC Liquid Chromatography 

M Molar 

mM Millimolar 

MC Methyl Cellulose 

MNZ Metronidazole 

MWCO Molecular Weight Cut-Off 

NaHCO3 Sodium Bicarbonate 

NaCl Sodium Chloride 

NaOH Sodium Hydroxide 

NSAID Nonsteroidal Anti-Inflammatory Drug 

Pa Pascal 

PSA Phenol-Sulfuric Acid 

R2 Correlation coefficient 

RPM Revolutions Per Minute 

RSD Relative Standard Deviation 

RP-HPLC Reversed Phase High Performance Liquid Chromatography 

SAXS  Small Angle X-Ray Scattering 

SGF Simulated Gastric Fluid 

SLF Simulated Lacrimal Fluid 

Stl Stereolithography 

TM Timolol Maleate 

UCST   Upper Critical Solution Temperature 

UV/VIS Ultraviolet–Visible  



20 

 

1 Chapter 1: Rheology 

 Introduction 

Controlled drug delivery systems often use synthetic polymers as carriers for the drugs 

which have been extensively exploited over many decades (Liechty et al., 2010). Among 

several polymeric drug delivery platforms, in situ gel forming drug delivery systems are 

particularly attractive with increasing demands for the development of easy to use drug 

delivery platforms (Kang and Majd, 2016). These systems are formulated as free flowing 

liquids which then undergo sol-gel transition upon administration and convert to gel in 

contact with the target sites of the body. To effectively design such delivery systems, a 

thorough understanding of the rheology of the gelation system (gelation kinetics and gel 

strength) and drug release kinetics are required. An important part of the work in this thesis 

therefore, involves rheological characterisation of in situ gelling formulations using 

rheological techniques. This chapter outlines fundamental principles of the rheological 

methods used in this thesis. 

The term 'Rheology' was invented by Professor Bingham of Lafayette College, Easton, 

Pennsylvania; which means the study of the deformation and flow of matter. This definition 

was accepted in 1929 when the American Society of Rheology was founded. The word 

‘rheology’ is derived from the Greek words “rheo” (to flow) and “logos” (science). 

Rheology describes the deformation of material under the influence of stress (Barnes et al., 

1989; Schramm, 1994). The stress applied to a material is defined as the force per unit of 

area and strain is the deformation as a result of the applied stress.  

When stress is applied to a material, two extreme behaviours may result which is either solid 

or liquid. These extremes are basis for two broad categories into which the materials can be 
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divided and these are ‘liquid-like’ and ‘solid-like’ corresponding to a perfect (Newtonian) 

liquid or and a perfect (Hookean) solid. From the rheological point of view, ‘solid-like’ 

behaviour is described as elastic and ‘liquid-like’ behaviour is described as viscous. There 

are some materials, such as polysaccharides, that have both elastic and viscous behaviour 

and are referred as ‘viscoelastic’, (Ibarz et al., 2002; Mezger, 2006; Marriott, 2007). 

The rheological measurement of a product during the development stage often serves as a 

control of quality for the product. However more detailed information about the 

microstructure of a product can be revealed from rheological measurements. Rheological 

techniques and methods have been employed for many decades for the characterization of 

polymers which plays a significant role in designing polymer based products (Ibarz et al., 

2002). Most of the experimental work in this thesis is based on the rheological measurement 

of in situ gelling polymers on exposure to the crosslinking ions. So the basic concepts of 

rheology are discussed in this chapter. To understand the basic concept of rheology, it is 

necessary to understand the principle of rheology and some basic terms that are used for 

rheological analysis.  

 Stress and Strain 

A force has to act on a material for a deformation to occur. Stress is the intensity factor of 

force, expressed as force (F) per unit area (A) and can be determined by using Equation 2.1. 

𝑆𝑡𝑟𝑒𝑠𝑠 (𝑃𝑎) = 𝐹
𝐴⁄      Equation 2.1 

Stress can be categorized in three ways according to the way it is applied. These are 

compressive/tensile stress, shear stress and bulk stress. Compressive stress acts towards the 

plane in which it is acting and resulting in shortening an object. Tensile stress acts away 

from the plane in which it is acting resulting in lengthening an object. Shear stress acts 
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tangentially to the plane and in bulk stress; and force is applied from all areas. Figure 2.1 

illustrates the forces applied in longitudinal, lateral and isotopic direction on a solid material. 

When the material is stressed, a deformation occurs which is expressed as strain (unit less). 

Strain can be calculated using Equation 2.2. 

𝑆𝑡𝑟𝑎𝑖𝑛 =  ∆𝐿 𝐿⁄      Equation 2.2 

Where L is the length of the material which is subjected to stress and ∆L is the change in 

length.  

The mechanical properties of a material can be determined by the relationship between stress 

and strain which is also called modulus. In case of liquid material, the change in strain is 

another important parameter which is expressed as strain rate or shear rate (s-1) and can be 

determined by Equation 2.3. 

𝛾̇ =  
𝑑𝛾̇

𝑑𝑡⁄      Equation 2.3 

Where γ̇ is the strain rate and dγ/dt is the change in strain with time (Harnett, 1989). 
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Figure 1.1: Schematic diagram of deformation when a solid material is subjected to 

forces applied in longitudinal, lateral and isotopic direction (Mahdi, 2016) 

 Young’s Modulus 

Hooke’s law by Hooke (Hooke, 1678) states that in deformation of solids, stress is 

proportional to strain and independent of strain rate. A material exhibiting Hookean 

behaviour is defined as; when stress is applied to the material it deforms and the material 

returns to its original shape and size instantly upon removal of the stress, for example, a 

spring. In case of Hookean solids, stress and strain maintain an instantaneous relationship 

which means if the stress component is doubled, its contribution to each of the strain 

components will also be doubled. There will be no time lag between stress and strain change 

(Barnes et al., 1989). 

The coefficient of proportionality of Hooke’s law is called Young’s modulus. It is useful to 

analyse the relative strength of a solid material which has defined size and shape and having 
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self-supporting capabilities. When a perpendicular force is applied to that solid material, 

energy is stored and the material returns to the original form upon releasing the force. 

Young’s modulus (Pa) is calculated by dividing the extensional (tensile) stress by the 

corresponding extensional strain of the solid material and expressed in Equation 2.4. 

𝐸 = 𝜏
𝜀⁄      Equation 1.4 

Where, E is the Young’s modulus, τ is stress and ε is strain. (Barnes, 2000). 

 Shear Modulus 

The shear modulus is used for the deformation which takes place when a material is 

subjected to parallel force (shear stress) and it deforms through a specific angle. Shear 

modulus is useful for the materials which are not self-supporting, for example viscoelastic 

materials. It is used to determine the rigidity of a material. Shear modulus (Pa) can be 

expressed as a ratio of shear stress and shear strain.  The shear stress can be expressed by 

the equation 2.5. 

𝜎 = 𝐹
𝐴⁄      Equation 1.5 

Where σ is the shear stress (Pa), F is parallel force and A is the area. The resulting shear 

strain can be expressed by equation 2.6. 

𝛾̇ =  ∆𝑙 𝑙⁄ = 𝑡𝑎𝑛(𝜃) =  𝜃     Equation 1.6 

Where γ is the shear strain, Δl is the tangential displacement; l is the material thickness and 

θ is the angle of deformation. 

So the shear modulus (G) can be defined by the equation 2.7. 
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𝐺 (𝑃𝑎) =  𝜎 𝛾̇ ⁄ =  
𝐹

𝐴

∆𝑙

𝑙
⁄ =  𝐹𝑙 𝐴∆𝑙⁄       Equation 1.7 

Larger shear moduli represent more rigidity because more shear stress is required for the 

same tangential deformation (shear strain). This is why the shear modulus is also called the 

modulus of rigidity (Mahdi, 2016; Moxon, 2016).  

 Bulk Relaxation Modulus 

Bulk relaxation modulus is the modulus of volume expansion. It is defined as the ratio of 

the isotropic stress to the relative strain in volume. When a solid material is subjected to 

isotropic stress, relative change of volume is observed and it can be expressed by the 

Equation 2.8. 

𝐾 (𝑃𝑎) =  
𝜎𝑣

𝜀𝑣⁄       Equation 1.8 

Where K is the bulk relaxation modulus, 𝜎𝑣 is the bulk stress and 𝜀𝑣 is the volumetric strain. 

Bulk relaxation modulus is rarely used for the characterization of viscoelastic materials such 

as biopolymer gels. It is used in operating hydraulic systems at high pressure to measure the 

resistance of the substance to compression.  

 Rheological Analysis  

To understand the flow behaviour of a material, it is necessary to understand the basic 

rheological measurements; for example, viscosity and oscillation. The basic measurement 

techniques provide an idea whether the material is ‘elastic’, ‘viscous’ or ‘viscoelastic’. 

Rheology is extremely important for polymers because to process and fabricate the 

polymers, it is necessary to understand their flow behaviour (Al-Fariss and Al-Zahranl, 

1993). However, it is necessary to understand the basic principle of a commercial rheometer 

before explaining the common rheological analysis. 



26 

 

 Rheometer 

An oscillatory controlled stress rheometer is used for rheological analysis. The essential 

features of this type of rheometer consists of a vertically mounted motor, geometry and 

Peltier plate (Figure 2.2). The motor is usually attached to the upper fixture. A top surface 

is attached to the motor which is called the geometry. The geometry can be of several types 

depending on the type of samples; for example, parallel plate, cone/plate and serrated plate 

geometry. 

 

Figure 1.2: Schematic diagram of a typical controlled stress rheometer  

In the controlled stress rheometer, the lower surface is fixed and is capable of controlling 

the temperature. The test material is placed between the upper and lower surface. A 

computer-generated voltage is applied to the motor to produce stress. The induced strain can 

be measured using an optical encoder or radial positions transducers which are connected to 

a control computer. 

The chosen geometry directly impacts upon the rheological analysis because stress is 

transmitted to the sample in different way through different geometries. Parallel plate 

(Figure 2.3A) and cone-plate (Figure 2.3B) are the most common types of geometries. 



27 

 

Parallel plate geometry offers the advantage of adjusting the gap size and can be used to test 

a wide range of materials especially when there are small particles in the samples. It is also 

useful when there is need to change the shear rate range. Larger strain can be applied when 

using parallel plate geometry and it is widely used in industry due to its flexibility. However, 

the shear stress is much greater at the outer radius than the inner radius, which results in the 

generation of non-uniform strain field. When using a cone-plate geometry, the gap is fixed 

during the experiments which limits the range of shear rates. It is suitable for small sample 

size (0.5-2.0 ml) which ensures rapid temperature equilibration. The shear rate and shear 

stress are constant through the gap which results in uniform strain field (Song et al., 2017). 

It is used in the rheological measurements of single phase liquids. 

When rheological measurements are carried out on structured liquids (e.g. suspensions, 

foams, or emulsions), a phenomenon can occur which is called ‘slippage’. This happens due 

to local depletion of the dispersed phase near the geometry surface which causes formation 

of a lubrication layer at the surface. To avoid this, serrated or roughened plates (Figure 2.3C) 

are used for rheological measurements. 

 

Figure 1.3: Schematic illustration of different types of geometry (A) parallel plate (B) 

cone-plate (C) serrated plate  
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Geometry diameter is another factor by which the measurements can vary. To analyse stiffer 

materials, small diameter geometries are more suitable whereas large geometries (having 

large surface contact) are better suited for weak or low viscosity materials because these 

materials can spread over a large surface area upon applying stress. 

 Viscosity 

The term viscosity came from the Latin viscum, the mistletoe, which exudes a gelatinous 

juice when squeezed (Barnes, 2000). It can be defined as resistance to flow which is a result 

of internal friction of the molecules within a fluid. This is an important property in 

controlling the quality of products that are expected to be of particular consistency, such as 

paste, cream (Lewis, 1996). Viscosity can be expressed by the Equation 2.9 which is based 

on Isaac Newton’s principle stating the flow of liquid is directly proportional to the applied 

stress. 

𝜂 =  𝜎 𝛾̇ ⁄       Equation 2.9 

Where η is the viscosity (Pa), σ is shear stress and γ̇ is rate of shear. 

 Newtonian and Non-Newtonian Systems 

A Newtonian fluid's viscosity is independent of shear rate. The viscosity of Newtonian fluid 

remains constant, no matter the amount of shear stress applied. Some materials, such as oil 

and water can behave as Newtonian fluids under certain environmental conditions. In the 

case of Newtonian fluids, shear stress is linearly proportional to the shear strain rate. Non 

Newtonian fluids are opposite of Newtonian fluids and viscosity changes when shear is 

applied to these fluids (Steffe, 1996; Marriott, 2007). 
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 Shear Thinning and Shear Thickening Fluids 

There are several classes of non-Newtonian fluids which can be characterised by flow curves 

as a plot of shear stress and shear rate (Figure 2.4). Shear thinning fluids are most widely 

encountered type of non-Newtonian fluid behaviour. Shear thinning fluids exhibit the 

viscosity which gradually decreases with increasing shear rate. These are also called 

pseudoplastic fluids; for example paint. There is another class of non-Newtonian fluids 

where viscosity increases with increasing shear rate, these are called shear thickening or 

dilatant fluids; such as wet sand, corn starch suspensions or ceramic suspensions. 

Newtonian, shear thinning and shear thickening behaviour of fluids can be expressed by a 

single mathematical equation (Equation 2.10).  

𝜎 (𝑃𝑎) = 𝐾 𝛾̇ 𝑛     Equation 2.10 

Where K is the consistency index and n is the flow index. n = 1 in Newtonian fluids, n > 1 

in shear thinning (pseudoplastic) fluids and n < 1 in shear thickening (dilatant) fluid (Barnes 

et al., 1989).  

 

Figure 1.4: Different types of flow behaviour of Newtonian and Non-Newtonian 

Systems (Tagha, 2011) 
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 Plasticity and Yield stress 

Yield stress is defined as minimum shear stress to be exceeded for flow of a fluid to begin. 

Materials that begin to flow in a Newtonian manner once the yield stress is exceeded are 

termed Bingham plastic materials. This behaviour can be expressed by Equation 2.11. 

𝜎 (𝑃𝑎) =  𝜎0+ ηγ̇      Equation 2.11 

Where σ0 is the yield stress.  

If a material reaches its yield stress and the system then starts to flow in a shear thinning 

manner, it is classified as a Herschel Bulkley fluid. Materials that have Herschel Bulkley 

flow behaviour therefore, have shear thinning and yield stress properties (Barnes et al., 1989; 

Mahdi, 2016). This type of flow behaviour can be expressed by Equation 2.12. 

𝜎 (𝑃𝑎) =  𝜎0 + 𝐾 𝛾̇ 𝑛      Equation 2.12 

Biopolymer solutions generally show shear thinning behaviour. There are some factors 

which directly influence the shear thinning behaviour, such as molecular weight, charge and 

concentration. Biopolymer solutions follow a Newtonian behaviour when dis-entanglement 

and re-entanglement occurs at the same rate. When there is a disruption of entanglements 

with shear rate and the rate of dis-entanglement is greater than the rate of re-entanglement, 

the viscosity of the solutions start to decrease as a result of reduced entanglement density 

(Koliandris et al., 2008). 

 Intrinsic Viscosity 

Intrinsic viscosity is one of the most essential properties of polymer and is extensively used 

to determine the size, structure and molecular weight of polymers. It can be defined as a 

measure of a solute's contribution to the viscosity of a solution in which it is dispersed. It 
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provides an insight to the interaction between the molecular weight of the polymeric 

molecule and the solution (Lee and Tripathi, 2005; Lu et al., 2013). Because molecular 

weight has a direct impact on molecular entanglement, viscosity and degree of crosslinking 

between polymer molecules. 

 Rheological Measurements of Biopolymer Gels 

The conventional industry approach for characterising the rheological properties of liquid 

products is mainly through the use of destructive rheological techniques using viscometer 

or a rheometer. Using this technique can irreversibly alter the flow behaviour and structure 

of the sample, which may not represent the actual quality of the product (Seman et al., 2009). 

Using destructive rheological techniques, the system is under the shear stress until the 

elasticity (G') breaks which is inappropriate for biopolymer gel samples. However, non-

destructive rheological techniques allow assessment of the processes that take place at the 

molecular level of the sample, which is necessary to understand for developing polymeric 

gelling formulations. In these tests, the elasticity (G') is independent of shear stress and 

measurements are performed using fixed or increased oscillatory frequency (Mendoza, 

1998). The non-destructive technique is also called an oscillatory dynamic test (Ozer et al., 

1997) and it does not irreversibly deform or alter the structure of the sample. Therefore, 

viscoelastic behaviours of biopolymer gels are widely performed using non-destructive 

rheological techniques. All rheological measurements in this work have been conducted 

using non-destructive techniques. 
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 Viscoelasticity and Oscillation 

The word 'viscoelastic' refers to the simultaneous existence of viscous and elastic properties 

in a material. Viscoelasticity is the property of materials that exhibit both viscous and elastic 

characteristics when undergoing deformation. (Barnes et al., 1989; Papanicolaou and 

Zaoutsos, 2011). It is one of the most important properties of biopolymer materials. To 

characterize both ‘solid like’ and ‘liquid like’ behaviour of viscoelastic materials, oscillatory 

measurements are generally used which allow simultaneous analysis of both responses on 

applied stress (Picout and Ross-Murphy, 2003)  

During oscillatory measurements, the viscoelastic samples are subjected to oscillating stress 

or oscillating strain instead of constant stress. The stress (or strain) is usually applied as a 

sinusoidal time function to a sample immobilised on a geometry of a rheometer and the 

rheometer then measures the result as a strain (Schramm, 1994).  

If the material is perfectly elastic and the stress is proportional to strain, the stress wave will 

be exactly in phase with the strain wave where the phase angle (δ) will be 0º. In contrast, the 

resultant stress wave will be exactly 90º out of phase for purely viscous systems. For a 

viscoelastic material, the stress wave will have a phase difference and δ will be between 0º 

and 90º (Picout and Ross-Murphy, 2003). Figure 2.5 represents the stress wave resulting 

from the applied strain for elastic, viscoelastic and viscous material. 

The viscoelastic behaviour of the system is characterised by the modulus, which is defined 

as the ratio of stress and strain. The solid-like (elastic) and the liquid-like contributions 

(viscous) of a viscoelastic material are represented by the elastic modulus (Gʹ) and viscous 

modulus (G") respectively (Weitz et al., 2007). 
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Figure 1.5: Illustration of relationship between stress and strain during a sinusoidal 

oscillating strain for elastic material where the phase difference between stress and 

strain (δ) is 0°, viscoelastic material where 90°>δ< 0°, and viscous material where δ=90° 

(Tanaka et al., 2003) 

The elastic modulus (Gʹ) is defined as the ratio of in phase stress and strain under sinusoidal 

conditions. It is also known as the storage modulus. It indicates the elastic (solid) 

characteristic of the material under deformation. It can be calculated using Equation 2.13. 

𝐺′ (𝑃𝑎) = (𝜎
°

𝛾̇°⁄ ) 𝑐𝑜𝑠 𝛿      Equation 2.13 

The viscous modulus (G") is defined as the ratio of out of phase stress and strain under 

sinusoidal conditions. It is also known as the loss modulus. It indicates the viscous (liquid) 

characteristic of the material under deformation. It can be calculated using Equation 2.14. 

𝐺" (𝑃𝑎) = ( 𝜎
°

𝛾̇°⁄ ) 𝑠𝑖𝑛 𝛿      Equation 2.14 

Complex modulus (G*) is another parameter of viscoelastic system which is defined as 

overall stress response to the strain regardless of whether the response is elastic or viscous. 
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It can be calculated using Equation 2.15. 

𝐺∗ = √(𝐺′)2 + (𝐺")2      Equation 2.15 

Complex dynamic viscosity (η*) is derived from complex modulus. This is defined as the 

ratio between complex modulus (G*) and frequency of oscillation (ω) and it can be 

calculated using Equation 2.16. 

𝜂∗ = 𝐺
∗

𝜔⁄       Equation 2.16 

This is an important parameter of the Cox-Merz rule which is based on the relationship 

between the rheological response of destructive and non-destructive deformation of 

biopolymer solutions. If the biopolymer solutions are free from physical interaction and 

aggregation (only simple entanglement), the solutions follow the Cox-Merz rule according 

to which, η* should be almost similar to the shear viscosity (as a function of γ̇) (Picout and 

Ross-Murphy, 2003). 

 Linear Viscoelastic Region 

Identification of the linear viscoelastic region (LVR) is necessary to determine the 

rheological properties of a viscoelastic material. An applied stress produces a proportional 

stress response within the LVR; as a result, for example, doubling the stress will double the 

strain response. The amplitude of stress is increased gradually at a constant temperature until 

the deformation occurs and the modulus start to decline. Gʹ and G" are the parameters that 

are used to determine this region.  
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Figure 1.6: An example of amplitude sweep test for the assessment of viscoelastic region 

of a sample at 1 Hz (6.28 rad/s) frequency (Krishnaiah et al., 2014) 

When the deformation occurs as a result of excessive stress, the testing enters the non-linear 

range. The determined LVR is used for other rheological analysis, for example; 

measurements of the elastic and viscus modulus on changing oscillatory frequency to 

determine the characteristic of polymer solutions with constant stress. The simple and 

convenient method of determining the LVR is by performing amplitude sweep 

measurements. Figure 2.6 illustrates a typical example of the identification of viscoelastic 

region of a sample at a frequency of 1 Hz (6.28 rad/s). 

 Frequency Sweeps 

The variation of Gʹ and G" with the frequency is known as a frequency sweep or the 

mechanical spectrum of a viscoelastic material (Morris et al. 2012). Frequency sweeps are 

determined by changing the oscillatory frequency at a constant stress or strain. The 
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temperature is kept constant during the test. Complex dynamic viscosity (η*) is also included 

in the determination of frequency sweeps and normally plotted on logarithmic axes against 

a range of oscillation frequencies. Frequency dependence of a material is an important 

parameter that can help determine the characteristic of polysaccharide samples. 

The frequency sweep of dilute polymer solution is characterised by predominance of viscous 

modulus (G") over elastic modulus (Gʹ). The moduli increases with increased frequency of 

oscillation (ω) but the complex dynamic viscosity (η*) is independent of frequency (Figure 

2.7A). Because, polymer molecules are free to move and do not entangle with each other in 

dilute solutions, so there is no resistance to deformation which mainly derives from flow of 

molecules (Morris et al., 2012).  

At high polymer concentration, polymer molecules form an entangled network by 

interpenetrating with each other (Graessley, 1974). At low frequency, the concentrated 

polymer solutions behave like liquid (dominancy of G" over Gʹ) and η* is independent of ω; 

because there is sufficient time for disentanglements of the polymer molecules within the 

period of oscillation. At high frequency, the polymer samples exhibit solid like behaviour 

(dominancy of Gʹ over G") and η* decreases as the frequency increases (Figure 2.7B). 

Because, there is less time for disentanglement within the period of oscillation and the elastic 

behaviour become predominance for the entangled network (Morris et al., 2012).  

The term ‘weak gel’ or structured fluid refers to the free-flowing polymer solutions which 

exhibit predominant elastic behaviour (Gʹ is higher than G") and can be stirred, poured like 

other normal solutions. These polymer solutions show elastic response to small deformation 

and are unable to self- support. 
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Figure 1.7: Schematic representation of frequency sweeps of four different 

polysaccharide samples (A) dilute polymer solution (B) concentrated polymer solution 

(C) weak gel (D) true gel (Morris et al., 2012). 

The common feature of a structured fluid is having rigid and ordered structure of polymer 

molecules which are tenuously associated. The frequency sweep of weak gel is characterised 

by frequency dependent moduli and linear relationship between η* and ω (Figure 2.7C). The 

conventional ‘true’ gel fractures in response to high stress where a structured fluid would 

flow.  The other terms which are used to describe weak gels are ‘pourable gel’, ‘fluid gel’ 

or ‘structured liquid’ (Morris et al., 2012). Typical examples of structured fluids are 

solutions of xanthan and schizophyllan.  
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Frequency sweeps of true gels are characterised by higher Gʹ than G". The difference 

between two moduli is much higher than weak gel and η* decreases as ω increases (Figure 

2.7D). Sometimes Gʹ is 5 to 10 times greater than G" (Picout and Ross-Murphy, 2003). True 

gels are also described as ‘self-supporting’ or ‘demouldable’ (Morris et al., 2012) and they 

cannot be stirred or poured.  

 Temperature Sweeps 

Temperature sweeps are vital rheological experiments as many polymers undergo sol-gel 

(or gel-sol) transitions upon changing temperature. Samples are loaded onto a temperature 

controlled lower plate of a rheometer and measurements of Gʹ and G" are taken as a function 

of temperature. Analysis is performed within the LVR of the polymer and the strain and 

frequency are usually kept constant throughout the test. Any gelation (or melting) events are 

observed with changes in Gʹ and G" (Figure 2.8).  

The examples of biopolymers that undergo sol-gel transitions upon cooling are gellan, 

gelatin, and к-carrageenan (Clark and Ross-Murphy, 2009). There are some biopolymers 

whose gelation is triggered by heating; for example; collagen and methylcellulose.  
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Figure 1.8: Example of temperature sweep of gellan gum showing changes in Gʹ and 

G" upon cooling (gelation temperature is around 40°C) (Ana et al., 2016) 

 Adaptations and Limitations of Commercial Rheometers 

The gel forming polysaccharides undergo physical and chemical changes due to changes in 

the physiological environment. Many polysaccharides show sol-gel transition in response to 

changes in temperature or pH. Sometimes they undergo sol-gel transition via a cross linking 

reaction between polymer chains due to presence of ions in physiological fluid. Rapid 

gelation behaviour of a polysaccharide due to changes in temperature can easily be analysed 

using commercially available rheometers. However, monitoring the sol-gel transitions in 

real-time due to changes in pH or presence of cross linking ions is still not possible using 

commercially available rheometers. To understand polymer behaviour during gelation, 

various modifications to commercial rheometers have been developed either to stimulate an 

application/industrial process or from characterisation perspective.  

In some of these modifications, rheological equipment is added to a spectroscopic technique 

such as rheo-Raman. In this technique, rheometer is combined with a quartz outer cylinder 
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to a Raman spectrophotometer. In situ monitoring of free-radical polymerization of acrylic 

acid has been reported using the rheo-Raman (Chevrel et al., 2012). Somani et al., (2002) 

investigated the nature of shear induced precursor structures of isotactic polypropylene by 

using the in situ rheo- small angle X-ray scattering or rheo-SAXS. During the experiment, 

isotactic polypropylene was melted at 165°C by rheo-SAXS and SAXS pattern showed the 

oriented structures upon the termination of shear. Recently, a new technique has been 

reported which couples an optical microscope and Raman spectrometer to a rotational 

rheometer (Kotula et al., 2016). This combined technique is advantageous where the 

rheological behaviour is influenced by conformational or chemical changes in molecular 

structure, such as gelation, crystallization or melting. A light curing lower plate is another 

adaptation where the lower glass plate is fitted with UV and visible light source and are 

particularly useful for studying light curable polymers. The gelation of chemically modified 

polysaccharides upon UV irradiation can also be analysed using this type of adapted 

rheometer (Higham et al., 2014).  Some fluids change their rheological properties upon 

application of magnetic fields which are known as magneto rheological fluids (MRF), such 

as magnetisable particles (cobalt or iron) dispersed in silicone or mineral oils (Hao, 2005). 

To apply magnetic fields on MRF and analyse the influence of the magnetic fields, a 

Magneto-Rheological Device (MRD) has been developed where more than 1 Tesla of 

magnetic field strengths can be applied to observe the rheological changes. Electro-

rheological Devices (ERD) have also been developed which allow the application of 

electrical fields to measure the rheological changes of materials when subjected to electric 

fields (Läuger, 2009).  Immobilization cell is another accessory which can be coupled to a 

controlled stress rheometer to analyse the rheological changes of some materials (such as 

paints, sludge) during the process of dewatering (Ayol et al., 2010). 

Although some of these modifications can measure rheological changes in situ (i.e light 
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curing cell, ERD and MRD), none of these however, can monitor changes when crosslinking 

is initiated by changes in pH or ionic concentration, as occurs when an in situ gelling drug 

delivery system is administered. Moreover, release of active ingredients from gel forming 

drug delivery systems can be influenced by rheological changes, which need to be analysed 

for successful formulation development. It would therefore, be a great advantage to the 

pharmaceutical industry and formulation scientists if the release of drugs could also be 

monitored during the process.  Here, a novel method has been demonstrated which could 

address these current limitations by replacing the lower plate of the conventional rheometer 

with a 3D printed cell capable of measuring the rheological changes and drug release 

simultaneously.  

This thesis consists of two further introductory chapters before proceeding to the result 

chapters. Chapter 2 demonstrates the basic concepts of in situ gel forming drug delivery 

systems. Besides showing the general mechanisms of in situ gelation, this chapter presents 

a few examples of reported in situ gelling systems. Current techniques used to investigate in 

situ gelation are also discussed in this chapter. 

Chapter 3 provides the general background of the gel forming polysaccharides along with 

structure and conformation. It presents the in depth concepts of gelation of polysaccharides 

and different stimuli to induce gelation. Profiles of the polysaccharides used in the 

experiments presented in this thesis are described in detail.  
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2 Chapter 2: General Introduction of In Situ Gel 

Forming Drug Delivery Systems 

 Introduction to In Situ Gel Forming Drug Delivery Systems 

Controlled drug delivery systems are one of the most progressing areas of drug delivery 

technology with numerous advantages compared to the conventional drug delivery systems. 

They can offer improved efficacy of drugs by controlling the release over an extended 

duration (Uhrich et al., 1999). Reduced toxicity, improved patient compliance and 

convenience are other advantages of these delivery systems. In particular, these systems are 

beneficial for the drugs that are rapidly metabolized and have a tendency to eliminate from 

the body after administration (Uhrich et al., 1999). Polymers have played an essential role 

in the advancement of controlled drug delivery technology by providing controlled release 

of both hydrophilic and hydrophobic drugs in consistent doses over a long period (Liechty 

et al., 2010). Polymeric controlled drug delivery systems can effectively be delivered to a 

target site which enhance the therapeutic effects of the drugs (Soppimath et al., 2001). 

Among several polymeric drug delivery platforms, in situ gel forming drug delivery systems 

are particularly attractive and they can be formulated to be administered via oral, ocular, 

nasal, vaginal and rectal routes (Madan et al., 2009).These systems are formulated as liquid 

and convert to gel upon exposure to the physiological environment of the body.  
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 General Mechanism of In Situ Gelation 

Mucous membranes line the tracts and structures of the body which include the nose, mouth, 

eyelids, trachea, lung, stomach, intestine, urethra, uterus, urinary bladder, vagina and anus. 

Although types of cells in a mucosa vary from organ to organ, generally mucosa consists of 

layers of epithelial cells which are responsible for secreting mucus. Mucus is responsible 

primarily for protection and lubrication. It is composed primarily of water (̴ 95%), lipids 

(phospholipids, cholesterol and fatty acids), proteins and mucin (Bansil and Turner, 2006). 

Under the epithelial cells, there are deep layers of connective tissues. The epithelium  layer 

of mucosa consists of either simple columnar epithelium cell or stratified squamas epithelial 

cells (Guyton and Hall, 2005; Augustyn et al., 2018).  

 

Figure 2.1: Schematic representation of in situ gelation in physiological environment 

When an in situ gel forming formulation comes in contact with the mucosal layer of the 

body, the formulation starts to undergo gelation in response to the physiological conditions 

of the mucosa (Table 2.1). Gelation can be triggered in situ by changes in temperature, pH 

or ionic strength of the physiological fluid present on mucosa of different site of actions 

(Figure 2.1) (Ruel-Gariépy and Leroux, 2004). 
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Table 2.1: Physiological conditions (pH, temperature and ionic content) of different 

physiological sites 

In situ 

Gelling 

Drug 

Delivery 

Systems 

Physiological 

Site of Actions 

Physiological Conditions 

pH Temperature 

°C 

Ions 

Oral Gastric fluid in 

GI tract 

1.5 to 3.5 (fasted 

condition) (Marieb and 

Hoehn, 2010) 

3 to 7 (fed condition) 

(Ashford, 2007) 

37 H+ 

Saliva in oral 

cavity 

5.3 to 7.8 (Gittings et al., 

2015) 

37 Na+. K+, 

Ca2+, Mg2+ 

(Marques 

et al., 

2011) 

Nasal Nasal mucosa 5.5 to 6.5 (England et al., 

1999) 

29 to 34 

(Bhandwalkar 

and Avachat, 

2012) 

Na+. K+, 

Ca2+ (Cao 

et al., 

2009) 

Vaginal Vaginal fluid 4.2 (Chang et al., 2002) 37.2 (Chang et 

al., 2002) 

Na+. K+, 

Ca2+ 

(Rashad et 

al., 1992) 

Ophthalmic Lacrimal fluid 7.4 (Marques et al., 2011) 35 (Wei et al., 

2002) 

Na+. K+, 

Ca2+ 

(Marques 

et al., 

2011) 

 

In situ gelling systems are usually formulated with thermosensitive, pH sensitive or ion-

activated polymers which are responsible for the activation of the stimuli present in the 

mucosa. For example, pH sensitive polymers undergo gelation in high or low pH depending 

on the ionisable groups present in the polymer. Such as, poly (N,Nʹ -diethylaminoethyl meth 

acrylate) is a cationic polymer and poly(acrylic acid) is anionic polymer (Qiu and Park, 

2001). Most of the anionic pH sensitive in situ gelling polymers used in in situ gelling 



45 

 

formulations are based on poly(acrylic acid) (carbomer, Carbopol®) or its derivatives 

(Nirmal et al., 2010).  

Srividya et al. (2001) developed a pH triggered in situ gelling ophthalmic formulation of 

fluoroquinolone, which is used in the external infections of the eye, such as 

keratoconjunctivitis and bacterial keratitis. Carbopol® was used as an in situ gelling polymer 

and hydroxypropylmethylcellulose (HPMC) was used as viscosity enhancing agent in the 

formulation. The formulation was in the liquid state at formulated pH (6.0) and underwent 

sol-gel transition at physiological pH (7.4). The formulation was able to provide sustained 

release of drug over an 8-hour period.  

Thermoreversible polymers undergo sol-gel transition in response to the changes in 

temperature and the formed gel can change back to the solution state if the temperature 

change is reversed (Borchard, 1998). Pluronics®, Tetronics® (Qiu and Park, 2001), 

poloxomer (Nirmal et al., 2010) are the most commonly used thermoreversible polymers.  

Qian et al. (2010) developed thermosensitive in situ gelling ophthalmic drug delivery system 

of methazolamide to minimize intra ocular pressure using poloxamers (P407 and P188). The 

formulation was in free flowing liquid state at 25 ± 0.1°C and underwent sol-gel transition 

in the cul-de-sac in response to the physiological temperature (35 ± 0.1°C) upon 

administration into the eye. Methazolamide was then released in a controlled manner   for 

over 10 hours from the in situ gel of poloxomer formulation. 

Besides synthetic/semi-synthetic polymers, polysaccharides have been extensively used to 

formulate the in situ gelling systems. They are widely used to formulate ion induced in situ 

gelling formulations because of their ability to form gels in response to the physiological ion 

concentrations. Also, they have the ability to undergo sol-gel transition in response to the 
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changes in pH and/or temperature. Physical crosslinking methods and nontoxic nature are 

other advantages of using polysaccharides to formulate such delivery systems (Bae and Park, 

2016). Gellan gum (Rajinikanth and Mishra, 2008; Diryak et al., 2018), pectin (Kubo et al., 

2004), carrageenan (Endo et al., 2000) and alginate (Flink and Johansen, 1985) are all 

examples of polysaccharides that can undergo gelation by ionic crosslinking and/or change 

in pH and therefore of have been of interest to researchers as in situ gelling materials for use 

at various physiological target sites.  

Cao et al., (2009) developed an in situ gel forming nasal formation of mometasone furoate 

which is used for the treatment of allergic rhinitis. Gellan gum was used as an in situ gelling 

polymer in the formulation. The formulation was sprayed as liquid and underwent rapid sol-

gel transition on exposure to the ions (Na+. K+. Ca2+) of artificial nasal fluid (gelation 

mechanisms of in situ gelling polysaccharides will be discussed in greater detail in chapter 

3). When tested in vivo, this formulation was shown to be more effective in the treatment 

allergic rhinitis compared with a nasal suspension. However, gellan gum can also undergo 

gelation in response to changes in pH and/or temperature. Miyazaki et al., (1999) reported 

development of gellan gum based in situ gelling oral formulation of theophylline. The 

formulation turned into gel in acidic environment of the stomach (pH 1.2) and in vitro release 

of theophylline from the gel occurred over a 6-hour period.  

Alginate is another example of polysaccharide which turns into a gel in response to the 

change in pH and has been used in pH induced in situ gelling drug delivery systems 

(Miyazaki et al., 2000; Kubo et al., 2003). Also, it crosslinks with Ca2+ to form gel. Liu et 

al., (2006) developed an in situ gelling ophthalmic formulation of gatifloxacin which is a 

broad spectrum antibacterial agent and used in the treatment of ocular infections. Alginate 

was used as an ion inducing in situ gelling polymer in this formulation. The liquid 
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formulation underwent gelation in response to the Ca2+ ions of lacrimal fluid upon 

instillation. The release of drug was sustained for a period of 8-hours. Gellan gum and 

alginate along with other polysaccharides have also been used in commercialized in situ 

gelling products (Table 2.2).  

Table 2.2: Examples of commercialised in situ gelling formulations (Jain et al., 2016; 

Wu et al., 2018)  

Name of the 

Product 

Active Ingredient Polymer Route of 

Administration 

Type of In 

Situ Gelling 

System 

Timpotol LA® 

(Merck Sharp & 

Dohme, USA) 

Timolol maleate Gellan 

gum 

Ocular Ion induced 

AzaSite® (inSite 

Vision, USA) 

Azithromycin Poloxamer Ocular Temperature 

triggered 

Pecfent® 

(Archimedes 

Pharma, UK) 

Fentanyl Pectin Nasal Ion induced 

Gaviscon® (Reckitt 

Benckiser, UK) 

Sodium alginate Sodium 

alginate 

Oral pH triggered 

Virgan® 

(Laboratoires Théa, 

France) 

Ganciclovir Carbopol Ocular pH triggered 

 

Mucin, which is responsible for gel-like properties and viscosity of mucus, plays a 

significant role in in situ gelation. Mucin is a large, extracellular glycoprotein and has 

tendency to form gel depending on concentrations, temperature and pH. For example, human 

tracheobronchial mucin undergoes gelation at temperatures below 30ºC and at a 

concentration above 14 mg/ml (Bromberg and Barr, 2000; Taylor et al., 2003). However, in 

developing in situ gelling formulations, mucoadhesive polymers are often used which 

interact with mucin and improve the residence time as well as bioavailability of the drugs 

by facilitating the dosage forms to adhere to the mucosal tissues. The non-covalent 

interactions that are formed between the polymer and the glycoprotein components of mucin 
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are mainly chain entanglements, hydrogen bonding and electrostatic interactions (Bansil and 

Turner, 2006). Gellan gum (Shastri et al., 2010), chitosan, guar gum, sodium alginate, 

xanthan gum,  poly (acrylic acid), poly (vinyl pyrrolidone) are widely used as mucoadhesive 

polymers (Mythri et al., 2011) in different formulations.  

In situ gel forming drug delivery systems offer numerous advantages such as ease and 

convenience of administration, improved patient compliance, deliverance of accurate dose, 

reduced frequency of administration, prolonged residence time in contact with mucosa 

(Nirmal et al., 2010) and improved bioavailability (Almeida et al., 2014). Despite having 

several advantages, formulating the in situ gelling systems with poorly soluble drugs is 

challenging. The salt forms of poorly soluble drugs can be used to increase the solubility, 

but may result in gelation of the formulation before administration when formulated with a 

gelling agent that has the tendency to crosslink with salts, such as gellan gum. To overcome 

this challenge, poorly soluble drugs can be added to a formulation as an inclusion complex, 

which will be discussed in detail in chapter 6.  

 Current Techniques to Investigate In situ Gelation  

Evaluating the in situ gelation of an in situ gelling formulation is an important consideration 

to design a successful system. The simplest method is to shake a test tube or vial containing 

the in situ gelling formulation and observe the flow of the system. If the formulation turns 

into a gel, it will not flow and remain in place when inverted.  This method however, does 

not provide any meaningful quantitative data. The most useful technique of measuring 

gelation properties in response to a changing environment such as a change in temperature, 

is to use a rheometer which consists of an upper and lower plate which can be temperature 

controlled. The sample is placed between the upper and lower plates and the upper plate is 

rotated at a controlled rate applying a shear force to the sample (Figure 2.2) allowing 
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viscosity and viscoelasticity to be measured.  

 

Figure 2.2: Conventional rheometer showing the sample between upper and lower 

geometry 

By using a temperature controlled rheometer, thermal transitions of in situ gelling systems 

can be accurately measured, but when the sol-gel transitions are the result of a change in pH 

or ionic strength/species, measurements are considerably more challenging. When the sol-

gel transition is induced by a change in pH change or ionic strength, the systems can undergo 

rapid gelation reactions. This is a problem, because if the pH or ionic strength of the sample 

is changed before loading onto a rheometer, the sol-gel transition may well have occurred 

(within 2/3 minutes (Mahdi et al., 2016)) before the sample can be loaded and therefore 

cannot be measured. Moreover, there is currently no mechanism on commercially available 

rheometers that can induce change of pH or ionic strength in situ despite many other 

modifications that have been applied to the conventional rheometers which have been 

discussed in previous chapter (chapter 01). 

 



50 

 

There are bespoke methods reported in the literature that investigate the gelation of in situ 

gelling polymers. These include loading the gelling material into dialysis tubing and then 

immersing it into a solution containing the required crosslinking ions/pH for various periods 

of time before removing and cutting the gel to an appropriate size for mechanical testing 

using a rheometer (Figure 2.3).  

 

Figure 2.3: Gelation of sodium alginate in the dialysis tubing by immersing into the 

crosslinking ion solution  (Bajpai et al., 2016) 

Another method has been used where two filter papers are impregnated with soluble 

crosslinking ions. The in situ gelling polymer is poured into tissue culture plates and the 

filter papers are placed above and below the polymer (Figure 2.4). Then the polymer is 

allowed to gel for a specific time before the mechanical properties are measured (Mahdi et 

al., 2016). 
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Figure 2.4: Schematic representation of the method of investigating gelation by using 

filter papers 

To explore the real time gelation of such materials, Mahdi et al., (2016) proposed a method 

of using a rheometer where petri dish containing a filter paper soaked with CaCl2 solution 

was securely attached to the lower plate of the rheometer (Figure 2.5). A hydrated dialysis 

membrane was placed on top of the filter paper to prevent the imbibition of the sample by 

the filter paper and samples of the gelling biopolymer (alginate) were loaded on the surface 

of the dialysis membrane. This investigation showed gel formation in alginate occurred over 

the first 3 min of exposure to CaCl2. The increase of gel strength was proportional to the 

concentration of CaCl2. 
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Figure 2.5: In situ rheological measurement of external gelation of alginate (Mahdi et 

al., 2016b) 

Although this method showed that it was possible to monitor the rapid gelation of alginate 

on contact with Ca2+, it does not allow ionic strength or pH to be easily changed, as a fixed 

filter paper is used as the crosslinking reservoir. Also, release of drugs from such systems 

cannot be performed during the rheological analysis. Drug release from such systems is 

usually measured separately following gelation using a Franz diffusion cell which does not 

realistically represent the real life scenario.   

None of the modifications to rheometers or the external gelation methods allow the 

monitoring of gelation and drug release in situ, which is scientifically important, as the 

molecular interplay between the polymer molecules during gelation and the impact that has 

on drug diffusion and subsequent bioavailability are poorly understood. Developing an in 

vitro model (on which the thesis is based) can provide real time correlation between the 

rheological behaviour and drug release following administration which would facilitate 

designing reliable formulations of these innovative dosage forms during the early 

development process.   
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3 Chapter 3: Polysaccharides 

 Introduction to Polysaccharides 

Biopolymers are polymers that are produced by nature. They are composed of repeating 

units of nucleic acids, saccharides or amino acids derived directly from living organisms. 

Also, they can be chemically synthesized from biological materials or engineered from 

microbial sources (Beneke et al., 2009). Because of having numerous functional and 

physicochemical properties, biopolymers are particularly useful in the development of 

pharmaceutical products. Besides, biopolymers exhibit several functional, economic and 

environmental benefits; for example; availability, low cost, ease of fabrication, relatively 

low toxicity, biocompatibility and biodegradability. This versatility has made biopolymers 

suitable for designing conventional and modified release drug delivery systems. They are 

included as excipients in drug formulations to fulfil multifunctional roles to ensure quality, 

safety and efficacy of pharmaceutical formulations (Beneke et al., 2009; Koo, 2011). They 

are frequently used to formulate nanoparticles, microparticles, matrix systems, films, 

implants, inhalable systems and injectables (Beneke et al., 2009; Builders and Attama, 

2011). Biopolymers can be classified into polysaccharides, proteins or peptides and 

polynucleotides (Builders and Attama, 2011). Polysaccharides are the most abundant and 

diverse family of biopolymers (Perez and Kouwijzer, 1999). They are widely used as 

excipients to formulate pharmaceutical dosage forms.  

Polysaccharides are polymeric carbohydrate composed of monosaccharides which are 

covalently linked to each other by a glycosidic linkage. In living organisms, polysaccharides 

exist as a source of energy such as starch and glycogen, and as structural polysaccharides 

that provide support such as cellulose and chitin (Builders and Attama, 2011). Agar, 
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carrageenan, alginate play key role in maintaining the plasticity of the cell wall in marine 

species. In animals, glycosaminoglycans play significant role in building extracellular 

matrix and also maintain the solution properties of physiological fluids. The examples of 

glycosaminoglycans are chondroitin sulphate, hyaluronate, and dermatan sulphate (Perez 

and Kouwijzer, 1999). Table 3.1 shows some common examples of polysaccharides from 

different origins.  

Table 3.1: Examples of polysaccharides from different origin (Ross-murphy et al., 

1998; Aravamudhan et al., 2014) 

Sources of Polysaccharides Examples 

Plant polysaccharides starch, cellulose, pectin, guar 

Marine polysaccharides carrageenan, agarose, alginate 

Animal polysaccharides hyaluronic acid, glycosaminoglycans, 

chitin, chitosan 

Microbial polysaccharides gellan gum, xanthan gum, bacterial 

cellulose 

 

The different properties of polysaccharides allow a wide variety of uses in the food industry, 

tissue engineering and pharmaceutical manufacturing. In food industry, polysaccharides are 

frequently used as thickeners or stabilizers. They are included in a product to create 

reproducible flow properties during manufacturing and throughout the shelf life 

(Kontogiorgos, 2014; Mahdi, 2016). Native polysaccharides and their semi synthetic 

derivatives are widely used in drug delivery applications to regulate the drug release or as a 

carrier in controlled release devices (Jain et al., 2007; Builders and Attama, 2011). Tissue 

engineering and cell delivery are other promising fields where polysaccharides are used to 

make scaffolds and matrices whose structural integrity and mechanical stability closely 

resembles that of tissues and organs (Malafaya et al., 2007).  
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 Structure of Polysaccharides 

Polysaccharide chains are composed of monosaccharide units linked by O-glycosidic 

linkages. Differences in composition of monosaccharides, chain shapes, types and patterns 

of linkage and degree of polymerization cause great versatility of structural features of 

polysaccharides. This structural diversity plays key role in dictating the physical properties 

such as gelling potential, flow behaviour and solubility (Izydorczyk et al., 2005). The 

linkage of repeating units of polymer backbone involves condensation reaction between the 

OH group at C-1 of on one unit and one of the -OH groups of the adjacent unit at C-2, C-3, 

C-4 or C-6 position, with the removal of water (Mahdi, 2016). Figure 3.1 shows an example 

of glycosidic bonds between two glucose molecules to form a disaccharide (maltose).  

 

Figure 3.1: Condensation reactions to form glycosidic bonds between α-D-glucose to 

form maltose (Pelley, 2012) 

There are many monosaccharides in nature, but the polysaccharide chains are not composed 

of all the monosaccharides. Common monosaccharides that are included to form the 

backbone of some most important polysaccharides are glucose and mannose. There are some 

other common sugar units which can be found in some commercially relevant 

polysaccharides, such as, xylose, galactose, guluronic acid, arabinose and mannuronic acid 

(Kontogiorgos, 2014).  

Polysaccharides can be classified into homopolysaccharides and heteropolysaccharides 



56 

 

based on the number of sugar units on the backbone of polysaccharides. Polysaccharides 

that consist of single monosaccharide unit are called homopolysaccharides. 

Homopolysaccharides can be distinguished according to the constituent monosaccharide in 

the backbone. For example, homopolysaccharides that are derived from glucose are 

classified as glucans; such as, amylopectin, cellulose, amylose, glycogen and dextran. 

Polysaccharides consisting of more than one sugar units are called heteropolysaccharides. 

They are abundant in both animals and plants. Heteropolysaccharides usually contain a 

regular repeating sequence and these can be linear or branched. The examples of repeating 

pattern of polysaccharides that are commercially used are carrageenan, gellan, alginate, 

agarose (Voet et al., 2006; Mcnaught, 2008; Kontogiorgos, 2014). In both classes of 

polysaccharides, the monosaccharide units can be linear or branched out into complex 

formation (Figure 3.2) (Xie et al., 2016).  

 

Figure 3.2: Classification of polysaccharides into homopolysaccharides and 

heteropolysaccharides; different colour indicates different monosaccharide units ( 

adopted from Xie et al., 2016)  
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 The Conformation of Polysaccharides 

The sequence of monosaccharide units in a polysaccharide chain form a primary structure 

which is a prerequisite for further structural diversion. The conformation of an individual 

sugar unit is relatively fixed in a polysaccharide backbone. The monosaccharides linked 

through the glyosidic linkage have the ability to rotate around the bond with two or three 

torsion angels. As a result, geometrical shapes are formed which are classified as secondary 

structures; such as, ribbon-like, crumbled hollow-helix and loosely jointed. Ribbon-like and 

hollow helix types are most common types of conformation (Figure 3.3). 

Ordered structure and disordered structures are two classes of conformation of 

polysaccharides. The values of torsion angles between the monosaccharides are fixed in 

ordered conformation. The disordered conformation is characterized by continuous 

fluctuation of local and overall chain conformation.  

 

Figure 3.3: Secondary structures of polysaccharides (a) ribbon-like (b) hollow helix 

(Wang and Cui, 2005) 

The interactions between the polysaccharide chains with well-defined secondary structures 

cause the formation of ordered organizations which are classified as tertiary structures. The 
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quaternary structures are another higher level of organizations which involve associations 

of ordered entities (Perez and Kouwijzer, 1999; Cui, 2005). 

 Application of Polysaccharides in Drug Delivery 

Polysaccharides have been widely used for the development of drug delivery systems 

because of their functional versatility. Due to the biochemical similarity with human 

extracellular matrix components, polysaccharides are readily accepted by the body (Shelke 

et al., 2014). The non-toxic, biocompatible nature and physicochemical properties of 

polysaccharides have made them suitable for applications in drug delivery systems (Coviello 

et al., 2007). Many polysaccharides are used in the development of conventional and 

modified release drug delivery systems. Polysaccharides are generally used in immediate 

release formulations as binders, diluents, disintegrants and compaction enhancers. For 

example, starch derivatives (sodium starch glycolate) are used as disintegrants, diluents and 

binders; cellulose derivatives (ethyl cellulose, microcrystalline cellulose, 

hydroxymethylpropyl cellulose) are used as binders in rapid release tablets (Builders and 

Attama, 2011); guar gum is used as thickener, emulsion stabiliser and tablet binder (Beneke 

et al., 2009). 

Polysaccharides are used in modified release drug delivery systems because of their ability 

to improve drug bioavailability by regulating the release of the drugs in the body. 

Polysaccharides have also shown superiority in terms of reducing dosing frequency, 

minimizing the side effects, maintaining continuous therapeutic levels of drug at specific 

target site or in the systemic circulation while used in modified release systems (Tao and 

Desai, 2003). Modified release drug delivery systems can be classified into four categories 

which are delayed release, sustained release, site specific targeting and receptor targeting.  

Delayed release drug delivery systems are designed to delay the release of the drugs at a 
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time other than promptly after administration. Delaying the release of a drug can be 

controlled by time or in vivo environmental conditions such as pH. In oral drug delivery, 

this system is used to release the drugs to the specific sites within the gastrointestinal tract 

(GIT), for example, targeting of drug to the colon. Delayed release of drugs followed by 

immediate release or extended release may be beneficial to delivery of drugs to the target 

sites. The examples of polysaccharides that are widely used in the formulation of delayed 

release delivery systems are chitosan, carrageenan, dextrin, karaya gum, gellan gum, and 

locust bean gum (Builders and Attama, 2011).  

Sustained release drug delivery systems are designed to release the drugs for extended period 

of time after administration. There are several advantages of this system including reducing 

side effects, better patient compliance, improved efficacy, and reduced dosing. Also, there 

is less fluctuation of plasma drug levels in sustained release delivery systems due to reduced 

dosing frequency. Because of having versatile functional and physiochemical properties, 

polysaccharides are extensively used in design and development of sustained release drug 

delivery systems to act locally or systemically for extended period of time (Builders and 

Attama, 2011). For example, cellulose derivatives have been used to formulate monothilic 

matrix systems, pectin has been used in matrix type transdermal patch, alginate has been 

used in preparation of matrices, microparticles, pellets, beads, films, nanoparticles (Beneke 

et al., 2009); gellan gum and alginate have been used to formulate in situ gelling sustained 

release systems because of their physical crosslinking mechanism (Nirmal et al., 2010).  

Site specific targeting systems provide improved overall drug delivery to the target sites. 

These systems offer reduced accumulation of drugs at the non-target sites which causes less 

toxicity. Other advantages include increased efficacy and optimal bioavailability. Site 

specific drug targeting systems are used in cancer chemo-therapy. Polysaccharides are 
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widely used for preparation of carrier systems for cancer drugs to improve permeability and 

retention of the drugs at the target sites (Reubi, 2003; Kaparissides et al., 2006; Builders and 

Attama, 2011). 

Receptor targeting systems are designed to specify the ligand-receptor interactions for 

diagnosis and management of drugs for certain diseases. For example, specific agents are 

injected to bind with receptors located on tumour cells to diagnose the tumours. Functional 

peptides from natural origin are usually used for receptor targeting systems (Builders and 

Attama, 2011). 

However, intrinsic physicochemical properties of polysaccharides such as having numerous 

hydrogen bonding functional groups, viscoelastic properties and hydrophilicity, facilitate 

the mucoadhesion characteristics which have been widely utilized in the development of 

mucoadhesive formulations (Sworn et al., 1995; Gibson and Sanderson, 1997). The great 

versatility of polysaccharides and physically crosslinked gels are of great interest in drug 

delivery systems due to their gelation under mild conditions and without any presence of 

organic solvents (Coviello et al., 2007). The in situ gelation properties of polysaccharides 

have been utilized to formulate in situ gel forming drug delivery systems on which this thesis 

is based.   

 Polysaccharide Gels 

A range of polysaccharides have the ability to self-assemble to form gels which is one of the 

most useful properties of polysaccharides. They can form firm gels at relatively low 

concentrations typically between 0.5 – 2.0 % w/w (Wüstenberg, 2014). These 

polysaccharides are widely used as gelling agents in food, pharmaceutical, cosmetic, 

photographic, paint, petroleum and chemical industries. Gels can be defined as solid, jelly-
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like materials formed from polysaccharides, synthetic polymers and proteins (Clark and 

Ross-Murphy, 2009; Tako, 2015). There is a widely cited definition of gel by Lloyd, (Lloyd, 

1926) which is ‘the colloidal condition, the gel, is one which is easier to recognize than to 

define’. From rheological point of view, the gel can be defined as a swollen polymeric 

system with no steady-state flow and will  rupture in response to steady shear deformation 

(Clark and Ross-Murphy, 2009).  

 

Figure 3.4: Schematic illustration of formation of (A) entanglement in viscous polymer 

solution (B) ordered network in gel 

Commercial products, such as, shower gels and topical gels do not follow the rheological 

definition of gel. These commercial gel products can be described as highly viscous polymer 

solutions formed by entanglement of polymeric micelles (Clark, 2010). Figure 3.4 represents 

differences between viscous polymer solutions and ordered gel network. 

Polysaccharide gels are often termed as hydrogels because of the ability to absorb and hold 

large amount of water (up to 500 times their weight (Gooch, 2010)) which facilitates the 

formation of a three dimensional network (Peppas et al., 2000). Attention has been directed 

towards the research on hydrogels with respect to drug delivery and tissue engineering over 
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the last few decades. Hydrogels can swell to high water content (>80%) which has made 

them attractive candidate to make 3D cell scaffolds to replace natural soft tissues (Waters et 

al., 2011). 

 Gelation of Polysaccharides 

Gelation can be defined as a general way to convert a fluid into solid. Gelation involves 

formation of a network structure through association of polysaccharide chains (Hill et al., 

1998; Linden and Foegeding, 2009). The gel structures formed either in vivo or in vitro are 

normally crosslinked by extended intermolecular ‘junction zones’ of conformationally 

ordered chains (Figure 3.5) (Morris, 1986). The structure of junction zones are different for 

different polysaccharides, for example, ionically crosslinked double helices in carrageenan 

and gellan, ribbon-ribbon association of egg box type in alginate and pectin stabilised by 

divalent cations, bundles of double helices in agarose (Figure 3.6) (Cui, 2005).  

 

Figure 3.5: Generalised schematic representation of polysaccharide gel network 

formation (Posocco et al., 2015) 

Large quantities of water are trapped within the gel network which causes the prevention of 

collapsing into a compact mass (Solari, 1994). Most polysaccharides undergo gelation as a 
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result of physical crosslinking in response to changes in temperature, pH or ionic strength 

(Hoare and Kohane, 2008). For example, in thermally driven gelation process, increasing or 

decreasing the solution temperature can cause changes in polysaccharide conformational 

state. This is often followed by an association process of polysaccharide chains which results 

in gelation. Such as agarose, which forms a thermo-reversible gel upon cooling a hot, 

aqueous solution (Ross-murphy et al., 1998; Nordqvist and Vilgis, 2011). 

 

Figure 3.6: Different types of junction zones (A) crosslinked double helix in к-

carrageenan (crosslinked with K+) or ι-carrageenan (crosslinked with Ca2+) (B) 

ribbon-ribbon association of egg box in alginate crosslinked with Ca2+ (C) bundle of 

double helices in agarose (adapted from (Posocco et al., 2015)) 

The chains of charged polysaccharides can be held together by addition of appropriate 

concentrations of salts to the polymer solution. For example, gelation of gellan gum  can be 

induced by adding Na+, K+ and Ca2+ (Morris et al., 2012). Gelation can also be initiated by 

adding acid, alkali or changing the pH of the polymer solution. Such as, alginate which 

undergoes gelation at acidic pH (Haug, 1961). 
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 Gel Forming Polysaccharides  

The gel forming polysaccharides that are used to prepare the formulations in this work are 

mainly gellan gum, alginate and agarose.  

 Gellan Gum 

Gellan gum is an extracellular bacterial polysaccharide and it is produced by aerobic 

fermentation from Sphingomonas elodea. Gellan gum is an anionic polymer with a linear 

structure consisting of repeating tetrasaccharide units. The tertrasaccharide unit comprises 

of two β-D-glucose residues, one β-D-glucoronate and one α-L-rhamnose residue (Smith et 

al., 2007; Morris et al., 2012). Gellan gum is marketed in two forms which are high acyl and 

low acyl. The native polymer is high acyl gellan gum which contains O-5-acetyl and O-2-

glyceryl groups on the 1-3 linked glucose residue. Low acyl gellan gum is obtained from 

high acyl gellan by complete deacetylation using hot alkaline solution. Both forms of gellan 

gum produce gels that are different, both physically and mechanically. Soft and elastic gels 

are produced by high acyl gellan gum whereas low acyl gellan gum forms hard and brittle 

gels. (Mahdi et al., 2015). Figure 3.7 represented tetrasaccharide repeating sequence of 

gellan gum. 

 

Figure 3.7: Representation of tetrasaccharide repeating sequence of gellan gum in 

deacylated form. Acetyl and glyceryl substituents indicates the native polymer (high 

acyl) (Morris et al., 2012) 
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 Gelation of Gellan Gum 

Gelation of gellan gum involves conversion of random coil to double helix state. Gellan gum 

exists as disordered coils at elevated temperature (above 80°C) and converts to helical 

structures upon cooling. The formation of these helical structures exhibit weak gel 

characteristics because of tenuous association of ridged order structure (Robinson et al., 

1991). Helical structures need to be associated into stable aggregates to form true gel. 

Aggregation is formed by suppression of electrostatic repulsion between the gellan helices. 

Suppression can be initiated by either reducing the pH or adding salt to the aqueous media.  

By reducing the pH, glucoronate carboxyl groups lose their charges and negatively charged 

COO¯ converts to uncharged COOH resulting in a gel (Morris et al., 2012). Direct addition 

of acid to gellan gum solutions results immediate ordering and aggregation of the gellan 

helices. This phenomena has been utilized to produce self-structuring formulations such as, 

delayed release oral formulation which takes the advantage of natural digestive process 

(Miyazaki et al., 1999; Bradbeer et al., 2014; Mahdi et al., 2014).  

Introduction of cations in the solution of gellan gum causes further suppression of the 

repulsion between the helices (Figure 3.8). Monovalent cations reduce the effective negative 

charges of the helices by clustering around the negatively charged carboxylates of the 

glucuronic acid residues.  The electrostatic interaction between cations and the carboxylate 

groups act as a trigger for the clustering. The affinity of different monovalent ions to promote 

aggregation and gel formation lies in order of Li+ < Na+ < K+ < Cs+ < H+ (Grasdalen and 

Smidsrød, 1987). The mechanism of gelation is different for divalent cations such as Ca2+ 

and Mg2+, which suppress the repulsion by forming direct bridges between the carboxylate 

groups on adjacent pairs of helices. 
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Figure 3.8: Schematic representation of gelation of gellan (A) formation of weak gel 

upon cooling (B) formation of strong gel in presence of divalent cations (such as Ca2+, 

Mg2+) (C) Formation of strong gel in presence of monovalent cations (such as H+, Na+) 

(D) formation strong gel in presence of acid 

Therefore, it facilitates the aggregation to form strong gels. Gel strength, clarity, rate of gel 

formation and texture depend on concentration of gellan gum and ions. The concentration 

require to crosslink gellan gum is typically ≈5 mM for Ca2+ and Mg2+ whereas it is ≈100 

mM for Na+ and K+ (Smith et al., 2007). The ion induced gelation of high acyl gellan gum 

is restricted because of the presence of acyl groups which causes steric hindrance and blocks 

the aggregation. As a result, more soft and elastic gels are formed. Absence of acyl groups 

in low acyl gellan gum allows cation mediated aggregation and forms hard gel (Morris et 

al., 1996). Thus low acyl gellan gum is widely used in in situ gel forming formulations 
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because of the ability to form strong gels in contact with physiological ions.  

A successful commercial gellan gum based ophthalmic formulation is Timpotol LA® which 

is an in situ gel forming ophthalmic formulation and is used to reduce elevated intra ocular 

pressure that occurs in glaucoma. The active ingredient is timolol maleate and low acyl 

gellan gum is used as the gel forming agent. Once the formulation is instilled into the eye, 

gels are formed via rapid sol-gel transition because of the presence of Ca2+, K+ and Na+ 

(Rismondo et al., 1989) ions in the lacrimal fluid. Following gelation, timolol maleate is 

released in a sustained manner (Kumar and Himmelstein, 1995; Gupta et al., 2009) from the 

in situ gel. 

 Alginate 

Alginate is a natural polymer which is extracted from brown algae such as Ascophyllum 

nodosum, Macro cystis pyrifera and Laminaria hyperborean. It is a linear polysaccharide 

consisting of the residues of homopolymeric blocks of β-D-mannuronic acid (M) and α-L-

guluronic acid (G). The blocks can be arranged G-G or M-M with M-G or G-M sequence 

(Figure 3.9). (Cohen et al., 1997; Park et al., 2009). 

 

Figure 3.9: Chemical structure of sodium alginate with arrangements of G and M 

blocks (Moxon, 2016) 
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  Gelation of Alginate 

Alginate undergoes gelation in presence of ionic crosslinking agents. It has affinity for 

divalent cations, such as Ca2+ and can physically crosslinks to form gel in presence of this 

ion. The G blocks of alginate chains offers a high degree of coordination to the divalent 

cations compared to the M blocks. Therefore, the divalent cations attach to the G blocks and 

form junction with the G blocks of adjacent alginate chain to create an ordered gel network. 

This type of gel network is called egg box cross linking (Figure 3.10) (Grant et al., 1973) 

This type of crosslinking is mediated by interactions between the carboxylic acid groups of 

the G blocks and the cations. The subsequent gel strength is directly influenced by the ratios 

of G and M blocks in alginate. Alginate with ‘high G’ produces stronger gels whereas less 

stronger gels are produced by alginates with ‘low G’ (Park et al., 2009). Grasdalen et al., 

(1981) reported using NMR spectroscopy to determine the frequency of G and M blocks in 

alginate polymer chains, such as monad (G or M), diad (MM, GG, MG, GM) and triad 

(GGG, MMM. GMG, MGM, GMM, MMG). The average G block length can be determined 

using this frequency which directly influence the strength of alginate gel.  

 

Figure 3.10: Schematic representation of ion induced gelation of alginate and 

formation of egg box network in presence of Ca2+ ion 
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Alginate also forms alginic acid gels at acidic pH when alginate is protonated. The 

mannuronic acid and the guluronic acid have the pKa of 3.38 and 3.65 respectively (Haug, 

1961). So when the pH of the alginate is below the pKa of the alginate monomers, alginic 

acid gel is formed (Draget et al., 1994). This property of alginate has been widely used in 

formulation of pharmaceutical dosage forms. Successful commercial product Gaviscon® is 

an in situ gelling oral formulation which is used to treat heartburn, acid indigestion and upset 

stomach. The active ingredient of Gaviscon® is sodium alginate and is marketed as oral 

liquid and tablet. When the oral liquid formulation is swallowed, the formulation comes in 

contact with the stomach acid. The sodium alginate undergoes rapid so-gel transition on 

contact with H+ of the stomach acid and prevent the acid reflux by forming a protective 

barrier (gel raft) on the surface of gastric fluid (Grover and Smith, 2009; Mahdi, 2016). 

 Agarose  

Agarose is a neutral linear polysaccharide consisting of β-1,3-linked D-galactose and α-1,4-

linked 3,6-anhydro-α- L-galactose (Figure 4.7). It is hydrophilic and does not have any 

significant net charge. It is extracted from red algae/seaweed and the main sources are 

Gelidium and Gracilaria genera. Agarose is used in separation techniques to characterise 

biomolecules such as electrophoresis or affinity chromatography, in the biotechnology 

applications (e.g. encapsulation medium, growth medium for microorganisms) and as a 

constituent in the food industry (Nordqvist and Vilgis, 2011; Le Goff et al., 2015) 
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Figure 3.11: Chemical structure of agarose (Watase and Arakawa, 1968) 

After being dissolved in water above the melting temperature (95ºC), agarose molecules are 

in disordered state. At higher temperature, the agarose chains (in solution) exhibit a random 

coil which changes to a helical conformation with decreasing temperature. The gelation of 

agarose follows the following scheme; coil → double helix → aggregates of helices (gel) 

(Piculell and Nilsson, 1989; Nordqvist and Vilgis, 2011) (Figure 4.8).  

 

Figure 3.12: A schematic overview of the gelation process in agarose solutions  

The gelling temperature of agarose is 32°C (Jessop et al., 2018) . The helices aggregate 

without the need of an ionic crosslinker. Agarose has a capability to undergo sol-gel 

transitions into ordered polymer networks at a concentration of <1% w/w which is similar 

to gellan  (Moxon, 2016).  
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 In situ Gelation of Polysaccharides 

Many investigations using polysaccharides to form in situ gel forming drug delivery systems 

have been reported for their in situ gelation properties (Coviello et al., 2007), some examples 

of the different mechanisms are described in the following section.  

 Mechanisms of In Situ Gelation 

In situ gels are usually formed through a crosslinking reaction between  polymeric chains 

which can be triggered by one or more of the following three stimuli; changes in 

temperature, pH or the presence of ions (Xiong et al., 2011). These environmental triggers 

influence polymer-polymer and polymer-solvent interactions. There are many synthetic and 

natural polymers which undergo sol-gel transition in response to  physiological stimuli and 

could potentially be used for drug delivery via multiple administration routes (Diryak et al., 

2018).  

 Temperature Induced In situ Gelation 

Thermally induced gelation is the most extensively studied stimuli responsive gel system 

because there is no physicochemical conditions or toxic chemical products involved in this 

crosslinking strategy (Delair, 2012). Thermosensitive polysaccharides which undergo a sol-

gel transition as a result of a change in temperature are used to formulate thermally triggered 

in situ gelling systems. Thermosensitive polysaccharides feature an upper critical solution 

temperature (UCST) above which the polysaccharides are soluble and undergoes gelation 

on cooling. For example gellan gum, κ- and ι-carrageenan exist as random coil at high 

temperature and transform into a 3D gel network gel on cooling (Yuguchi et al., 2002; 

Delair, 2012). Some cellulose derivatives such as methylcellulose (MC) and hydroxypropyl 

methylcellulose (HPMC) exhibit the opposite characteristics. They exist as liquid at low 

temperature (1-10% concentrations) and transform into opaque gels upon heating (40 to 
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50°C for MC and 75 to 90°C for HPMC). Physical or chemical modifications can alter the 

phase transition temperatures of these cellulose derivatives (Ruel-Gariépy and Leroux, 

2004). Several developments of thermally induced in situ gel forming drug delivery systems 

have been reported where thermosensitive polysaccharides were used to activate the 

systems. For example, Bain et al., (2009) reported an in situ gel forming ophthalmic 

formulation of keteorolac tromethamine where MC was used as an in situ gelling polymer. 

Fructose and sodium citrate tribasic dehydrate were added to reduce the gelation temperature 

of MC (1%) from 59°C to the physiological temperature (37°C). The developed formulation 

stayed liquid at room temperature and underwent gelation in contact with lacrimal fluid at 

37°C. The in vitro release of drug was sustained for 9 hours from the in situ gel of MC. 

Dhaval et al., (2020) developed a microemulsion based in situ gelling ophthalmic 

formulation of sparfloxacin where poloxamer 407 was used as the in situ gelling agent. The 

formulation stayed as a liquid at 20ºC and converted to a gel at physiological temperature 

(37ºC). In vitro drug release study of the formulation showed sustained release of 

sparfloxacin for more than 10 hours from the in situ gel.  

  pH Triggered In Situ Gelation 

In pH triggered in situ gelling systems, the gelation is induced by pH alterations. They are 

formulated with pH sensitive polysaccharides that contain acidic or basic groups and they 

accept or release protons as a result of changing pH. For example, chitosan is a cationic 

polysaccharide (Delair, 2012) whereas alginate and gellan are anionic (Rajinikanth and 

Mishra, 2007; Delair, 2012) polysaccharides. These polysaccharides are also termed as 

polyelectrolytes. pH triggered in situ gelling systems stay as liquid at formulated pH and 

undergo sol-gel transitions in response to the physiological pH, which can vary depending 

on the sites of action (for example pH 7.4 in the eye, pH 1 – pH 4.5 in the stomach) opening 
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up potential for different materials to be used depending on their pH sensitivity.  

Several research investigations on pH triggered in situ gelation have been reported. For 

example, an in situ gelling system consisting of gellan gum and clarithromycin has been 

investigated to treat stomach ulcer which is caused by Helicobacter pylori (H. Pylori). Upon 

contact with simulated stomach acid, the formulation formed strong gel and increased the 

residence time by becoming buoyant in gastric fluid. The release of drug was sustained for 

over the period of 8 hours. The in situ gelling formulation showed better effect than 

conventional formulations along with reduced dosing frequency (Rajinikanth and Mishra, 

2008). Patel et al., (2011) also developed oral in situ gelling formulation based on floating, 

formulated with amoxicillin and sodium alginate to treat H. pylori. The aqueous formulation 

underwent gelation in presence of simulated gastric fluid (pH 1.2) and started to float within 

30 seconds. The release of drug was sustained for 10 to 12 hours. Nief et al., (2019) 

developed a pH triggered oral in situ gelling formulation of itraconazole with carbopol 934 

in combination with HPMC, hyaluronic acid and xyloglucan. The formulation was in the 

liquid state at pH range 4.2-5.1 and converted to the gel state at the pH  of the oral cavity 

(pH 6.2-7.6). It showed prolonged residence time in the oral cavity compared with the 

conventional oral gel and provided 80% release of drug over 8 hour period.  

  Ion Induced In situ Gelation 

Charged polysaccharides may undergo in situ gelation in presence of ions. This phenomenon 

has been utilized in designing ion induced in situ gel forming formulations. Monovalent and 

divalent ionic species, such as; H+, Ca2+, K+, Na+, Mg2+ are abundant in physiological fluids 

which attract the oppositely charged polymer molecules. Addition of oppositely charged 

ions suppress the repulsive charges of the polysaccharides resulting in three dimensional 

structure by formation of conformationally ordered junction zones. Thus, the solution turns 
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into gel in contact with physiological fluid upon administration into the body. For example, 

alginate undergoes gelation in presence of Ca2+ (Lee and Mooney, 2012), gellan gum 

transforms into gel in presence of Na+, K+, Ca2+ and Mg2+, к-carrageenan transforms into 

rigid, brittle gel in presence of K+ and ι-carrageenan forms elastic gel when Ca2+ is present. 

The gel strength depends on the polymer concentration and concentrations of the cations 

used as the crosslinker (Kara et al., 2006).  

Balasubramaniam et al., (2003) reported development of an in situ gelling ophthalmic 

formulation of gellan gum and indomethacin. The formulation underwent sol-gel transition 

upon contact with the cations of lacrimal fluid and provided in vitro sustained release for 

over 8 hours period. The formulation showed better therapeutic efficacy compared to the 

standard suspension. Furthermore, Cohen et al., (1997) formulated in situ gel forming 

ophthalmic formulation of pilocarpine where sodium alginate was used as an in situ gelling 

agent. The formulation was made without any external ions and it was found that the release 

of pilocarpine was dependent on guluronic acid percentage of the alginate. The formulation 

formed a gel instantly on exposure to the simulated lacrimal fluid when the alginates had G 

contents of more than 65%. A relatively weak gel was formed at a slow rate when there was 

low G content in alginate. The release study suggested slow release of drug from the alginate 

gel for over 24 hours. Mahajan et al., (2019) reported an ion induced in situ gel forming 

nasal formulation of opioid analgesic tapentadol hydrochloride for nasal delivery where 

gellan was used as an in situ gelling polymer. The formulation showed sol-gel transition on 

exposure to the ions of nasal fluid and the formulation showed sustained release of drug. 

In situ gelling formulations are also developed as multi-responsive stimuli systems. They 

can be formulated with one polysaccharide which is themosensitive and pH triggered /ion 

induced or multiple polysaccharides activated by dual physiological mechanisms of in situ 
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gelation (for example, pH and temperature). Gupta et al., (2010), developed an ion and pH 

activated in situ gel forming ophthalmic formulation of timolol maleate. In this formulation, 

gellan was used as an ion activated polymer and chitosan was used as a pH sensitive 

polymer. The in vitro parameters such as in situ gelation, gel strength, transcorneal 

permeation profile and retention time showed that the system can be a feasible alternative to 

conventional eye drops of timolol maleate. The developed formulation was also reported to 

be well tolerated and non-irritant.  

The following chapters in this thesis will highlight the rheological evaluation and drug 

release studies of in situ gel forming ophthalmic formulations based on gellan gum. The 

work will also focus on exploring alginate to develop in situ gel forming oral formulation 

because of its variation in rheological behaviour in different pH environments, which also 

affect the release of drugs. 

 Aim and Objectives 

The overall aim of this work was to develop a novel technique to simultaneously analyse the 

rheological behaviour and drug release from in situ gelling systems on exposure to 

physiological fluids. The main objectives were to: 

• develop a suitable design and construct a cell to replace the lower plate of 

conventional rheometer that allows exposure of physiological fluid to a sample while 

rheological measurements are in process. 

• develop in situ gelling formulations using different polysaccharides and then to 

evaluate the developed cell by simultaneously measuring the rheological changes 

and release of drugs from the in situ gelling formulations in context of different 

physiological fluids. 
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• develop an in situ gelling formulation using a poorly soluble drug-cyclodextrin 

inclusion complex and evaluation of the rheology and drug release from the 

formulation on exposure to physiological fluid. 

Initially, an in situ gel forming ophthalmic formulation was prepared where low acyl gellan 

gum was added as an in situ gelling polymer. Rheological evaluation of the formulation was 

performed using the conventional rheometer and the release of the drug was evaluated 

separately. The effect of potential interaction between the anionic gellan gum and oppositely 

charged drug was also evaluated.  

Then the lower plate of the rheometer was replaced with a 3D printed cell with the capacity 

to expose samples to different fluids and simultaneously measure drug release (This device 

will be referred to as the rheo-dissolution cell from this point forward). Changes in 

rheological behaviour as well as drug release from the in situ gel forming formulations were 

performed using the rheo-dissolution cell which replaced the lower plate of rheometer, 

loaded with physiological fluid and connected to a circulatory peristaltic pump for 

facilitating sampling during the experiment. This technique was explored for an ophthalmic 

and oral formulations on exposure to the simulated lacrimal fluid and simulated gastric fluid 

respectively.  

Finally, the permeability of a poorly soluble drug was increased by formulating an in situ 

gelling ophthalmic formulation using drug-cyclodextrin inclusion complex. The novel 

method of concurrently measuring rheology and drug release was also performed to evaluate 

the formulation. 
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 Thesis Structure  

This thesis consists of three results chapter and a concluding chapter. 

Chapter 4 is the first of the results chapters which describes the development and rheological 

evaluation of an in situ gel forming ophthalmic formulation. The chapter begins with the 

background of in situ gel forming ophthalmic formulations and the anatomy of the ocular 

system. It demonstrates the methodology of formulating in situ gelling formulations based 

on a commercial product and performing oscillatory rheological analysis to evaluate the 

formulations. Furthermore, interactions between the anionic polysaccharide gellan gum and 

the positively charged drug timolol maleate are investigated and the importance of 

considering drug-polymer interactions when designing drug delivery systems with two 

oppositely charged molecules are discussed. In addition, the design, development and 

validation of the 3D printed rheo-dissolution cell is described in this chapter. 

Chapter 5 builds on the development of the rheo-dissolution cell to simultaneously measure 

rheological changes and drug release of in situ gelling systems on exposure to the 

physiological fluids. The experimental set up of the rheo-dissolution technique is described 

in depth along with the methodology of simultaneous measurement of rheological changes 

and drug release of in situ gelling systems on contact with simulated lacrimal fluid and 

simulated gastric fluid. It also highlights the ability of the rheo-dissolution cell to change the 

chemical environment (pH change) while the experiment is in progress.  

As the formulations in chapter 5 use water soluble drugs, in Chapter 6 a poorly soluble drug 

(flurbiprofen) was investigated. Here, an in situ gelling ophthalmic formulation using 

flurbiprofen-cyclodextrin inclusion complex was developed. This chapter begins with 

addressing the problem of formulating an in situ gelling system of poorly soluble drug as a 
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salt form and offers a method to overcome the problem by formulating as drug-cyclodextrin 

inclusion complex. This chapter presents a background to cyclodextrin and discusses the 

detailed methodology used in developing the formulation. Besides rheo-dissolution studies, 

ex-vivo permeation studies of the formulation using porcine cornea are also discussed.  

Chapter 7 provides a final conclusion with summary based on chapter 4 to 6. It also 

highlights the recommendations for future work.  
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4 Chapter 4: Development and Rheological Evaluation 

of an In Situ Gel Forming Ophthalmic Formulation 

 Introduction 

Ophthalmic drug delivery is one of the most challenging areas to develop drug delivery 

systems because of the unique anatomy and physiology of eye (Lang, 1995). Most ocular 

diseases are treated with topical eye drop formulations which are convenient and relatively 

easy to self-administer for the patient. But the precorneal, dynamic and static barriers restrict 

the delivery of drugs to the targeted ocular tissues. Nasolacrimal drainage, tear turnover and 

reflex blinking also significantly restricts drug permeation (Bourlais et al., 1998; Patel et al., 

2013). Therefore, less than 5% of the applied drug reaches the target sites (Gaudana et al., 

2010). Also, the therapeutic drug levels are not maintained in the target sites for a prolonged 

duration (Patel et al., 2013; Wu et al., 2018). Different approaches have been investigated 

during the past decades to improve bioavailability at the target sites without increasing the 

risk of systemic side effects or damaging the ocular tissues (Gaudana et al., 2010; Rupenthal 

et al., 2011). Polymers have played a vital role in the advancement of ophthalmic drug 

delivery technology by providing controlled release of therapeutic agents in consistent doses 

over prolonged periods for both hydrophilic and hydrophobic drugs (Liechty et al., 2010). 

Poor bioavailability of ophthalmic solutions caused by dilution and drainage from the eye 

can be overcome by using in situ gel forming ophthalmic drug delivery systems prepared 

from polymers that exhibit reversible liquid-gel phase transition (Cohen et al., 1997).  

In situ gel forming ophthalmic systems are formulated as liquid dosage forms (2.5 to 10 ml 

in volume) which can conveniently instil as a solution into the eye. Upon administration, the 

liquid dosage form undergoes transition into a gel phase due to changes in temperature, pH 
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or ions which are abundant in the lacrimal fluid as discussed in the previous chapter. The 

gel then controls the release by providing a diffusional barrier for the drug, which is 

subsequently released more gradually than immediate release ophthalmic formulations. By 

transforming into the gel phase, in situ gel forming ophthalmic drug delivery systems not 

only prolong the pre-corneal residence time of drugs but also enhances ocular 

bioavailability. As a result, patient compliance is also improved (Cohen et al., 1997; Edsman 

et al., 1998; Liu et al., 2006).  

To design potential in situ gel forming ophthalmic drug delivery systems, anatomy of the 

ocular system should be considered. 

 Anatomy of the Ocular System 

The adult human eye ball is spherical in shape and is divided into two segments; the anterior 

segment and the posterior segment. The largest diameter of the eye ball is 24 mm antero-

posteriorly. The anterior segment includes cornea, conjunctiva, iris, pupil, ciliary body, 

aqueous humour and crystalline lens. The posterior portion consists of sclera, retina, choroid, 

vitreous humour and optic nerve (Davson, 1984; Born et al., 1997; Addo et al., 2016) (Figure 

4.1).  

The pupil is a part of anterior segment of the eye and acts as an aperture. It is adjusted by 

the surrounding iris which acts as diaphragm. The pupil and iris are both covered by the 

cornea (Warwick and Williams, 1973). 

Cornea is the clear avascular part of the eye and consists of five major layers which are 

corneal epithelium, Bowman’s membrane, stroma, Descemet’s membrane and epithelium 

layer. Therapeutic drug concentration at the aqueous humour depends on the corneal 

permeability of the drug. The five layers of the cornea play significant role in the corneal 
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permeability. The exterior layer is the corneal epithelium and it is a rate limiting barrier for 

most hydrophilic drugs.  

 

Figure 4.1: Schematic diagram of the human eye (Hickson, 1998) 

The Bowman’s membrane is the next layer which acts as a barrier between corneal 

epithelium and stroma. Stroma is hydrophilic in nature and consists of highly organized 

charged hydrophilic collagen. It acts as barrier for diffusion of hydrophobic drug molecules 

(Almeida et al., 2014; Malavade, 2016; Weng et al., 2017). Figure 4.2 shows the corneal 

barrier for diffusion of drugs. 

Conjunctiva consists of goblet cells and stratified epithelium. It is a thin film membrane and 

it covers the inner eyelid surface and the sclera. It secrets mucus to protect the eyes from 
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microorganisms and also plays a role in lubricating the eyes. Systemic circulation of the 

drugs used in ophthalmic formulations are inhibited because of conjunctival blood 

capillaries and lymphatics. As a result, ocular bioavailability of the drug is decreased. (Addo 

et al., 2016; Huang et al., 2017).   

The crystalline lens together with cornea, is responsible for the creation of image on the 

retina. Suspensory ligaments attached to the ciliary muscle hold the crystalline lens in place. 

The anterior chamber between the cornea and iris and the posterior chamber between iris 

and crystalline lens, are filled with aqueous humour. The vitreous humour is loose gel like 

substance and fills the cavity between crystalline lens and retina. Both aqueous and vitreous 

humour maintains the intraocular pressure and helps the eyeball to maintain its shape. The 

aqueous humour provides nutrients to the cornea. It also removes the waste from the non-

vascular tissues and nourishes the lens and the cornea (Born et al., 1997; Achouri et al., 

2013). 

 

Figure 4.2: Schematic representation of the corneal barriers to the diffusion of the 

drugs  

The retina is the multi-layered sensory tissue of the posterior segment and consists of 
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vascular, glial cells and nerve fibres. When light enters into the eye, it is focused onto retina 

to form reversed and inverted image. The retina is the major barrier of high molecular weight 

drug molecules (e.g. peptides, oligonucleotides). The external layer of the retina is the 

choroid which consists of a dense capillary plexus, small arteries, veins and blood vessels. 

Nutrients and necessary oxygen is supplied by the choroid to the posterior part of the eye. 

The sclera is the protective outer layer of the eye which is visible. It acts as the attachment 

part for the extraocular muscle and also maintains the intraocular pressure (Warwick and 

Williams, 1973; Almeida et al., 2014; Malavade, 2016; Huang et al., 2017). 

 Lacrimal Fluid 

Lacrimal fluid is an aqueous solution and exists as a film on the surface of the eye. It plays 

a significant role to maintain a healthy eye environment by providing nutrients, removing 

waste and particulates, keeping the eye lubricated and protecting the eye from infection and 

injury. It also creates a smooth and transparent surface on the eye for light to pass through. 

It contains proteins, metabolites, electrolytes and lipids. The tear film consists of three layers 

which are the lower mucous layer, the middle aqueous layer and the upper oil layer. The 

mucous layer is hydrophilic in nature and is secreted by the goblet cells of conjunctiva. It 

maintains the stability of the aqueous layer of the tear film. The aqueous layer protects the 

eye from infection by carrying defensive proteins and antibodies. The fluid of this layer is 

mainly produced by the lacrimal gland. The oil layer is the thin top layer of the tear film and 

is spread over the aqueous layer. It maintains the stability of the tear film and prevents the 

evaporation. The oil of this layer is secreted from the Meibomian glands of the eyelids 

(Milder, 1987; Filik and Stone, 2008). The pH of lacrimal fluid is approximately 7.4 (Fischer 

and Wiederholt, 1982).  
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To effectively design an in situ gelling system, it is important to monitor the rheological 

behaviour of the gel former and release of the active molecule from the in situ gel. Besides 

rheological properties of the polymer, drug-polymer especially drug-polyelectrolyte 

interactions also play important roles in controlling drug release behaviour from polymeric 

drug delivery systems. Many drug molecules can have strong interactions with polymers 

used as in situ gel formers. Hydrophobic and electrostatic are the most common types of 

drug-polymer interactions although electrostatic interactions are more likely when the 

polymer is a polyanion or polycation. The arrangement of hydrophobic and polar segments 

in the chemical structures of the charged molecules plays an important role in drug-polymer 

interaction. Also, the surrounding medium plays a key role as it can regulate the degree of 

dissociation of ionisable groups depending on the pKa of the polymer and/or drug. 

Therefore, electrostatic interactions between two oppositely charged substituents are highly 

dependent on the pH of the surrounding medium which define the extent of ionisation of the 

charged molecules (Caram-Lelham and Sundelöf, 1996). 

In the present study, an in situ gel forming ophthalmic formulation was prepared based on a 

currently marketed formulation Timoptol LA®. The formulation contained low acyl gellan 

gum (gellan) as the gel former and 6.8 mg/ml timolol maleate (TM) as the drug. Gellan is 

an anionic polyelectrolyte (Morris et al., 2012) and TM contains amino group capable of pH 

dependent ionization and is positively charged at pHs below its pKa (9.21) (McKinney, 

2004). So, there is a possibility that gellan and TM may undergo electrostatic interaction. 

Taking this into account, the present study also investigated the potential interaction between 

gellan and TM and their impact on drug release and rheological behaviour. The ‘rheo-

dissolution’ cell was used as a modified dissolution apparatus to analyse the release of TM 

from the in situ gel and to validate the device as a suitable vessel to measure drug release.   
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 Rheo-Dissolution Cell 

The computer-aided design (CAD) of the rheo-dissolution cell was developed using 

Solidworks® (version 25, 2017). The cell was constructed from acrylonitrile butadiene 

styrene (ABS) using a Makerbot Replicator™ 2 3D printer (New York, USA). ABS was 

chosen for manufacturing due to its robust physical properties and low cost. It is considered 

as non-toxic and biologically inert. ABS is one of the most successful engineering 

thermoplastics and it is biocompatible as well as recyclable. (Adams et al., 1993; Chiang 

and Tzeng, 1997).  

 

Figure 4.3: (A) Dimensions of rheo-dissolution cell (B) CAD model (C) Stl file model 

and (D) 3D printed rheo-dissolution cell showing removable mesh. 

The cell was constructed as a circular reservoir with an opening on the top which was 

covered with a stainless steel mesh designed to act as a replacement for the lower plate of a 

rheometer. There were inlet and outlet ports (2 mm in diameter each) on the two sides of the 
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cell which facilitated loading and sampling the reservoir. The diameter of the reservoir was 

60 mm and 19.5 mm height, enabling the cell capable of holding a 55 ml volume. 

Illustrations of specific dimensions of the rheo-dissolution cell with CAD and stl file models 

are represented in Figure 4.3A-C. A removable and interchangeable stainless steel woven 

wire mesh was placed on top of the reservoir where samples were loaded (Figure 4.3D). 

There were 80 openings per inch of the mesh (80 mesh count) with an area of 0.18 mm for 

each opening. For samples with low viscosity, a semipermeable membrane can be placed on 

the surface of the mesh to prevent sample flowing into the reservoir. By replacing the lower 

plate of the conventional rheometer with the rheo-dissolution cell, rheological measurements 

can be performed while being exposed to the physiological fluids loaded in to the reservoir. 

Moreover, the reservoir can be sampled in process to measure the release of active molecules 

from the sample while rheological measurements are being taken. These simultaneous 

measurements of rheology and drug release will be discussed in detail in chapter 5. In this 

chapter, the viscoelastic measurements (in terms of G′ and G″) and the release studies were 

performed separately using the rheo-dissolution cell as lower plate of rheometer and 

modified dissolution apparatus respectively. 

 Timolol Maleate 

 

Figure 4.4: Chemical structure of timolol maleate (Joshi et al., 2009) 
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Timolol maleate (TM) was used as the active molecule to formulate the in situ gel forming 

ophthalmic formulation. It is a non-selective beta adrenergic antagonist. Its chemical name 

is (-)-1-(tert-Butylamino)-3-[(4-morpholino-1,2,5-thiadiazol-3-yl)oxy]-2-propanol maleate 

(1:1) (salt) (Figure 4.4). The molecular weight of TM is 432.50. It is a white, odourless, 

crystalline powder with a melting point 202 ± 0.5 ºC. It is soluble in methanol, water, and 

alcohol (Grunwald, 1986). TM is extensively used in the management of glaucoma which 

is a major cause of blindness in the elderly. Also, it is indicated for the management of 

hypertension as well as in reduction risk of reinfarction in patients who have survived the 

acute phase of myocardial infarction. In tonography and fluorophotometry, it was found that 

this adrenergic receptor blocking agent lowers the intraocular pressure through a reduction 

in the quantity of aqueous humour formation. In addition, it was also shown to increase the 

drainage of aqueous humour from the anterior chamber into the ciliary muscle, further 

reducing intra ocular pressure (Grunwald, 1986; Rathore et al., 2010). 

 Materials and Methods 

 Materials 

Low acyl gellan gum (Gelrite®) (molecular weight 1,000 kg/mol) was purchased from 

Sigma-Aldrich (Poole, UK). TM was purchased from Tokyo Chemical Industry (Oxford, 

UK). Sodium bicarbonate was purchased from Fisher Scientific (Loughborough, UK). 

Calcium chloride dihydrate and sodium chloride were purchased from Sigma-Aldrich 

(Poole, UK). All chemicals were used without further purification.  

 Preparation of Simulated Lacrimal Fluid 

Simulated lacrimal fluid (SLF) was used as a model physiological fluid. Table 4.1 shows 

the composition of SLF which was used to evaluate the in situ gel forming ophthalmic 

formulation of gellan-TM. The solution was prepared by dissolving the correct amount of 
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NaHCO3, CaCl2 and NaCl in 500 ml DI water with continuous stirring for 30 minutes. The 

pH of the simulated lacrimal fluid was 7.5. The use of this formulation has been previously 

reported by Anumolu et al., (2009) and Lin et al., (2010) to evaluate the in vitro  release of 

pilocarpine from hydrogels and nanoparticles respectively. Pandit et al., (2007) reported the 

use of SLF formulated with same recipe to evaluate the in vitro release of indomethacin 

from a sodium alginate gel. 

Table 4.1: Composition of SLF (Marques et al., 2011) 

Ingredients mM 

NaHCO3 23 

CaCl2 1 (as CaCl2⋅2H2O) 

NaCl 114 

 

 Preparation of In situ Gel Forming Ophthalmic Formulations 

Gel forming eye drop solutions were prepared based on Timpotol LA® 0.5% w/v containing 

low acyl gellan as the gel former and 6.8 mg/ml TM as the drug. Four different formulations 

were prepared containing 0.2%, 0.3%, 0.4% and 0.5% w/v gellan and 6.8 mg/ml TM. TM 

was dissolved in DI water at room temperature. The solutions were heated up to 85°C while 

stirring with a magnetic hot plate stirrer (Starlab, Blakelands, UK) and the required amount 

of gellan was then added to the solutions. Once the gellan was completely hydrated, the 

stirring was stopped and the solutions were re-weighed. Any water lost was replaced and the 

formulations were transferred to airtight containers. All samples were allowed to cool to 

room temperature prior to further analysis.   
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 Formulation Development 

To analyse the gelation behaviour of the formulations prepared in section 4.5.3 on exposure 

to the SLF, viscoelastic measurements in terms of elastic (Gʹ) and viscous (Gʺ) modulus 

were performed. These measurements were taken to analyse and identify the similarities in 

gelation behaviour between the prepared formulations and Timpotol LA®. The developed 

rheo-dissolution cell was used to monitor the viscoelastic measurements by replacing the 

conventional lower plate of Kinexus rotational rheometer (controlled stress and strain) 

(Malvern, UK) (Figure 4.5). The cell was filled with 55 ml SLF and covered with a stainless 

steel mesh (mesh count 80). The mesh was securely attached to the cell to avoid any 

disturbance of the sample during the experiment. Inlet and outlet ports were closed using 10 

ml syringes to prevent leaking. A serrated 40 mm parallel plate (pp) geometry was used and 

the gap was zeroed before samples were loaded.  

 

Figure 4.5: Experimental set up using rheo-dissolution cell to perform the viscoelastic 

measurements comparing gelation behaviour of in situ gelling ophthalmic 

formulations and Timpotol LA® on exposure to SLF 

The gap was fixed at 0.8 mm and sample was loaded onto the mesh. The volume of the 

sample was determined according to the fixed gap. Measurement of Gʹ and Gʺ was 

performed at 0.5% strain (within LVR of gellan) and frequency of 1 rad/s. The tests for all 
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the samples were run for 30 min. The moduli (Gʹ and Gʺ) of the Timpotol LA® were 

compared with the moduli of the formulations to select a concentration of gellan for the final 

formulation. All experiments were performed at 25ºC. 

 Preparation of Gellan Solutions and Gellan-TM formulations for Rheological 

Evaluation  

Four different formulations of gellan and TM were prepared to evaluate the rheological 

analysis of gellan (Table 4.2). To prepare gellan alone, required amount of gellan (selected 

based on 4.5.4) was added into DI water while heated up to 85°C with continuous stirring. 

The stirring was stopped once gellan was fully dissolved and re-weighed. Any water loss 

through evaporation was replaced.  

Table 4.2: List of the formulations of gellan used in the oscillatory rheological 

measurements (strain sweep, frequency sweep and temperature sweep) 

Formulations Preparation  

Gellan alone gellan in DI water 

Gellan in SLF gellan in freshly prepared SLF 

Gellan-TM in DI gellan and 6.8 mg/ml TM in DI 

Gellan-TM in SLF gellan and 6.8 mg/ml TM in freshly 

prepared SLF 

 

In the preparation of gellan in SLF, DI water was replaced with freshly prepared SLF. 

Besides, gellan-TM in DI was prepared according to the method described in 4.5.3 with 

selected concentration of gellan and 6.8 mg/ml TM. The pH of the formulation was 4.5. 

Gellan -TM in SLF was prepared using the same methods.  
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 Rheological Analysis 

Rheological measurements of gellan alone and gellan in SLF were investigated to determine 

the impact of ions on the gelation behaviour of gellan. In addition, gellan-TM in DI and 

gellan-TM in SLF were also analysed to observe the effect of TM on gelation of gellan. 

Rheological measurements as a function of strain, frequency and temperature were 

performed using a Bohlin Gemini HR Nano Rheometer (Malvern Panalytical, UK) using 

serrated PP 25 geometry with the gap fixed at 1 mm. Silicone oil was added on the periphery 

of the samples to prevent evaporation during the measurement. All rheological experiments 

were performed at 25ºC. 

 Strain Sweeps 

Strain sweeps measurements were conducted to determine the maximum LVR of the sample. 

The measurements were performed within 0.001 to 100 strain and the frequency was 10 

rad/s.  

 Frequency Sweeps 

The moduli of all the formulations were measured in response to increasing oscillatory 

frequency. The angular frequency increased from 1 to 628 rad/s with constant strain of 0.5% 

(0.005). The chosen strain was within the linear viscoelastic region.  

 Temperature Sweeps 

Temperature sweeps of the formulations were conducted to determine the gelation point of 

gellan in presence and absence of ions and TM. Freshly prepared formulations (heated up to 

90ºC) were loaded onto the similarly heated (90°C) lower plate of the rheometer and 

temperature sweeps were performed by cooling at a rate of 2 °C/min from 90°C to 20 °C at 

an angular frequency of 1 rad/s and 0.5% strain. No strain sweeps were required at 90ºC as 
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the gellan is in the disordered form as a solution, and the linear viscoelastic strain of 

biopolymer solutions extends out to approximately 100% strain (Clark and Ross-Murphy 

2009). 

 Gellan -TM Interaction 

TM contains an amino group which has a capability of pH dependent ionization. Therefore, 

to observe the potential interaction between positively charged TM and negatively charged 

gellan, pH of gellan-TM formulation was increased to 10, (which is above the pKa (9.21) of 

the amino group) using 0.1M NaOH and oscillatory rheological analysis as a function of 

temperature was performed using the same method described in 4.5.6.3.   

 In Vitro Release Studies 

In vitro drug release studies of TM from the in situ gel forming formulations were performed 

using the rheo-dissolution apparatus containing 55 ml of freshly prepared SLF. The cell was 

covered with a stainless steel mesh (mesh count 80) and the release media (SLF) was 

magnetically stirred at a speed of 100 RPM. The mesh was securely attached to the cell to 

avoid any disturbance of the sample during the experiments. Two 10 ml syringes were 

attached to the inlet and outlet of the cell to prevent the SLF leaking. The release media was 

maintained at a temperature of 37°C throughout the experiment (Figure 4.6). The 

formulation (1 ml) was placed on the top of the mesh and covered with a solvent trap to 

avoid any evaporation. The release medium in the reservoir was filled until it came in contact 

with the mesh which facilitated the gelation of the formulation when applied to the surface 

of the mesh.  
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Figure 4.6: In vitro release study of gellan -TM formulation using the rheo-dissolution 

cell performed at a temperature of 37°C and 100 RPM 

Samples of SLF (0.5 ml) were withdrawn at 2, 4, 6, 8, 10, 30, 60, 90, 120, 150, 180, 240 and 

300 min from outlet port and replaced with same volume of freshly prepared SLF via the 

inlet port. The collected samples were diluted 10 fold and were analysed using reverse phase 

high performance liquid chromatography (HPLC). Drug release studies were performed for 

formulations prepared at both pH 4.5 and pH 10. All the experiments were done in triplicate. 

 Determination of TM Using HPLC 

Reversed-phase high performance liquid chromatography (HPLC) method was used for the 

determination of TM in the collected samples. The experiments were performed on a 

Shimadzu System equipped with a SPD-20 AV Prominence UV/VIS detector, a LC 20 AT 

pump, and SIL-20A Prominence auto sampler. 

 Chromatographic Conditions and Optimization of Experimental Parameters 

The mobile phase composition for the analysis of TM was optimized using various organic 

solvents including triethylamine, methanol, acetonitrile and water in different compositions. 

The mobile phase composition that resulted in the best resolution and shorter analysis time 
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of the studied compound was selected as the mobile phase for the drug release analysis. The 

selected mobile phase comprised of methanol: 0.2% triethylamine dissolved in HPLC grade 

water (60:40 v/v), pH 2.75 adjusted with 85% phosphoric acid. A flow rate of 1 ml/min was 

used throughout the experiments and the run time was 5 min. C18 HPLC column 

(Phenomenex) was used in the analysis and UV detector sat at a wavelength of 295 nm was 

used to detect TM (Nasir et al., 2011).  The sample (20 µl) was injected onto the column and 

the data was acquired using LC Solution software (Shimadzu system). All the solvents used 

in the experiments were HPLC grade and the reagents were analytical grade. Methanol was 

purchased from Fisher Scientific, Loughborough, UK; triethylamine and phosphoric acid 

were purchased from Sigma-Aldrich, Poole, UK.  

 Calibration Curve Preparation 

The linearity of the proposed method was determined from the calibration curves 

constructed at five concentration levels. Stock solutions of TM were prepared by dissolving 

100 mg in 100 ml of SLF.  The concentrations of the standard solutions were between 10 

µg/ml and 50µg/ml and were analysed by HPLC using the experimental parameters 

described above. All the solutions were analysed in triplicate. Calibration curves were 

constructed by plotting the area under the curve (AUC) with respect to their respective 

concentrations using linear regression analysis. The slope (m), intercept (b), and correlation 

coefficient (r) were calculated from the regression equation.  The linearity was assessed by 

linear regression (R2 of 0.999). The limit of detection (LOD) and limit of quantification 

(LOQ) for the analytes were also quantified. LOD and LOQ are important parameters which 

are used to describe the smallest concentrations of a sample that can be reliably measured 

by an analytical procedure. LOD is defined as minimal concentration of analyte that can be 

detected with a certain degree of confidence and LOQ is defined as the minimal 
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concentration that can be measured with acceptable accuracy (Mahdi, 2016). LOD and LOQ 

are quantified by using Equations 4.1 and 4.2 respectively: 

LOD=3.3 σ/S     Equation. 4.1 

LOQ=10 σ/S     Equation. 4.2 

Where σ is the standard deviation of Y-intercept and S is the slope of the calibration curve. 

 Fourier Transform Infrared Spectroscopy (FTIR) 

Fourier transform infrared spectroscopy (FTIR) is one of the widely used spectroscopic 

techniques which analyses the sample by measuring the absorption of different infrared (IR) 

frequencies by that sample. In traditional FTIR analyses, the sample is positioned in the path 

of an IR beam and a spectrum is generated depending on the absorbance of the radiation at 

different wavenumbers (Bertrand, 1997). This spectrum represents the molecular fingerprint 

of a sample. In this work, FTIR analysis was performed in transmittance mode for samples 

using a Thermo Nicolet 380 FTIR across a wavelength range of 4000 to 400 cm-1 at 2 cm-1 

resolution averaging 100 scans. FTIR spectra were taken for seven different samples (Table 

4.3). 
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Table 4.3: List of samples and their preparation for FTIR analysis 

Samples Sample Preparation 

Gellan dry powder Gellan dry powder without further 

purification 

TM dry powder TM dry powder without further 

purification 

Dry mix Mixture of gellan and TM dry powder 

Gel at 0 hour (pH 4.5) In situ gel of gellan-TM formulation of pH 

4.5  collected prior to the release study 

Gel at 5 hour (pH 4.5) In situ gel of gellan-TM formulation of pH 

4.5 collected after 5 hours of release study 

Gel at 0 hour (pH 10) In situ gel of gellan-TM formulation of pH 

10  collected prior to the release study 

Gel at 5 hour (pH 10) In situ gel of gellan-TM formulation of pH 

10  collected after 5 hours of release study 

 

The collected gel samples placed in 5 ml vials and stored in a freezer at -20ºC for 12 h. The 

frozen samples were then dried using a (Christ Alpha 2-4 L Dplus) freeze drier. The drying 

procedure was performed for 24 hours at -84.6ºC with the vacuum set at 0.001 mbar. The 

collected freeze dried samples along with powder standards (gellan, TM and dry mix) were 

then analysed using FTIR. 

 Replacing Gellan with Non Ionic Polysaccharide 

To investigate the hypothesis that electrostatic interactions between gellan and TM could 

potentially impact on release of TM, gellan was substituted with a non-ionic polysaccharide 

and in vitro release studies were performed. Agarose was chosen as a non-ionic 

polysaccharide because it is experimentally well studied and undergoes a rapid sol-gel 
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transition upon cooling, following a similar gelation mechanism to gellan producing gels 

that are relatively stable (Nordqvist and Vilgis, 2011). 

 Preparation of the Formulation 

To prepare the formulation, TM (6.8 mg/ml) was dissolved in DI water at room temperature. 

0.4% w/v agarose was added to the solution under mechanical stirring at a temperature at 

95ºC. The stirring was stopped once agarose was fully dissolved and the solutions were 

allowed to cool to room temperature to form gel. 

 In Vitro Release Studies 

In vitro release studies were conducted according to the experimental set up described in 

4.5.7 using the rheo-dissolution cell. The reservoir filled with 55 ml of SLF allowing contact 

with the mesh and 1 g of the gel was loaded on the top surface of the mesh and covered to 

avoid evaporation. Samples of SLF (0.5 ml) were withdrawn at 4, 6, 8, 10, 60, 120, 180, 

240, 300 min and replaced with same volume of fresh SLF. The experiments were performed 

in triplicate. The collected samples were analysed using HPLC according to 4.5.7.2.  

 Statistical Analysis 

Student’s t test was applied to compare the data obtained from the in vitro release studies 

and p < 0.05 was considered as statistical significant level. IBM® SPSS Statistics software, 

version 24 was used for statistical analysis.  
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 Results 

 Comparison of Gelation 

To analyse the gelation behaviour of gellan, viscoelastic measurements of the prepared 

formulations (gellan and 6.8 mg/ml TM) and Timpotol LA® were performed in presence of 

SLF using the rheo-dissolution cell. The moduli (G' and G") showed low and similar values 

(̴ 0.6 pa) for first few seconds which indicated an entangled polymer solution. Rapid increase 

of the moduli was observed over first 2 min on exposure to SLF and gelation continued for 

the remainder of the test.  

  

Figure 4.7: Measurement of elastic modulus (Gʹ) and viscous modulus (Gʺ) (Pa) of 

Timoptol LA® on exposure to SLF performed in the rheo-dissolution cell at 25ºC. 

Moduli values over first few seconds are shown in the zoomed in section on the left side 

The Gʹ value reached at 48.85 Pa at the end of 30 min and G′ was higher than G″ throughout 

(Figure 4.9). Low gel strength was observed for the formulations containing 0.2% (Figure 

4.10A) and 0.3% (Figure 4.10B) gellan. Onset of gelation was rapid for all the formulations 

but gels were stronger as the concentration was increased to 0.4% (Figure 4.10C) and 0.5% 

(Figure 4.10D). Table 4.4 shows comparison among the values of the moduli of the 

formulations and Timoptol LA®. 
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Figure 4.8: Measurements of Gʹ and Gʺ of formulation containing (A) 0.2% (B) 0.3% 

(C) 0.4% (D) 0.5% gellan and 6.8 mg/ml TM on exposure to SLF, performed in rheo-

dissolution cell at 25ºC.  
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Table 4.4: Comparison of the final values of moduli (Gʹ and Gʺ) among Timpotol LA® 

and other formulations containing 0.2%, 0.3%, 0.4%, 0.5% gellan and 6.8 mg/ml TM. 

Values represent mean ± SD (n=3) 

Formulation Gʹ (Pa) Gʺ (Pa) 

Timoptol LA® 48.82 ± 2.47 2.70 ± 0.51 

0.2% gellan and TM (6.8mg/ml) 6.35 ± 0.24 0.25 ± 0.02 

0.3% gellan and TM (6.8mg/ml) 9.53 ± 0.69 0.35 ± 0.07 

0.4% gellan and TM (6.8mg/ml) 46.27 ± 2.75 2.01 ± 0.38 

0.5% gellan and TM (6.8mg/ml) 132.30 ± 2.11 9.67 ± 0.58 

 

It is clear from the data that the values of the moduli of the formulation containing 0.4% 

were similar to the values of Timoptol LA®. Z score was used to compare the data obtained 

from viscoelastic measurements of Timoptol LA® and formulation containing 0.4% gellan 

and 6.8 mg/ml TM. 95% was considered as confidence level and was calculated using the 

following equation. 

𝑀 ± 𝑍(𝑠𝑀)      Equation 4.3 

Where M is mean, Z is the chosen Z value (1.96 for 95% confidence level) and sM was 

calculated from the following equation. 

√
𝑠2

𝑛
          Equation 4.4 

Where S is the standard deviation and n is sample size. 

The calculation showed that it is 95% confident that mean of G' (of both formulations) falls 

between 45.35 and 49.71; and the mean of G" falls between 2.08 and 2.68. So, 0.4% 

concentration of gellan was selected as a concentration for the final formulation. 
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 Oscillatory Rheological Analysis 

 Strain Sweeps 

Strain sweeps were performed to determine the critical strain required to break down the 

gellan networks. All gellan samples were composed of 0.4% w/w. Gellan in DI suggested 

larger linear region and displayed a higher critical strain (1.6) (Figure 4.11A). Addition of 

TM to gellan (gellan-TM in DI) showed increased moduli (Figure 4.11B) which required 

0.2 strain to break. Gellan in SLF showed increased moduli (Gʹ ~20000 Pa and Gʺ ~2000 

Pa) and it required less strain (0.08) to break the gel (Figure 4.11C). Formulation of gellan 

-TM in SLF did not change the values of the moduli but reduced the strain further (0.06) for 

the deformation of gel network (Figure 4.11D). 

 

Figure 4.9: Strain sweeps of (A) gellan in DI (B) gellan-TM in DI (C) gellan in SLF (D) 

gellan-TM in SLF, performed within 0.001 to 100 strain, at 10 rad/s frequency and at 

25ºC. The lines indicate critical strain to breakdown the gel 
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 Frequency Sweeps 

Frequency sweeps of gellan in DI exhibited an increase in Gʹ in response to increased 

oscillatory frequencies. At an angular frequency of 1 rad/s, the sample had a Gʹ of 0.50 Pa 

which increased to 7630 at 620 rad/s (Figure 4.12A) and indicated an entangled system. 

Addition of TM (gellan-TM in DI) showed increased Gʹ (266.3 Pa) at 1 rad/s and maintained 

a similar trend of gel strength until the end of the experiment (Figure 4.12B). In presence of 

SLF (Figure 4.12C) and in case of the formulation of gellan-TM in SLF (Figure 4.12D); Gʹ 

increased to the values of 16120 and 20420 Pa respectively. Lack of frequency dependence 

indicated the formation of a strong gel.  

 

Figure 4.10: frequency sweeps (A) gellan in DI (B) gellam-TM in DI (C) gellan in SLF 

(D) gellan-TM in SLF at angular frequency increased from 1 to 628 rad/s with constant 

strain of 0.5%, performed at 25ºC. 
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 Temperature Sweeps 

To evaluate the gelation properties of 0.4% gellan in presence of SLF and TM, 

viscoelasticity measurements were carried out on cooling from 90°C to 20°C. The gelation 

of gellan (in DI) occurred at ~30°C however this produced a relatively weak gel with an 

average Gʹ value of ~10 Pa at 20°C (Figure 4.13A). When prepared in SLF, the onset of 

gelation occurred at ~55°C resulting in a dramatic increase in Gʹ and Gʺ values as the gel 

was cooled further, plateauing at ~45 °C with a large difference between the values of Gʹ 

and Gʺ (Gʹ > Gʺ) which represented the behaviour of a strong gel (Figure 4.13B). The effect 

of adding TM to gellan in the presence of SLF resulted in a gel of similar strength (Figure 

4.13C) with Gʹ and Gʺ plateauing at a similar temperature as occurred without the TM. 
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Figure 4.11: Oscillatory cooling scan at 2°C/min from 90°C to 20°C showing Gʹ and 

G" of (A) gellan in DI  (B) gellan in SLF (C) gellan-TM in SLF performed at an angular 

frequency of 1 rad/s, 0.5% strain and at 25ºC. 
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 Effect of pH 

To investigate the potential interaction between two oppositely charged molecules of TM 

and gellan, formulations of two different pH (4.5 and 10) were analysed rhelogically. The 

positively charged amino group of TM was fully ionized at pH 4.5 whereas it was partially 

ionized at pH 10.  

 

Figure 4.12: Oscillatory cooling scan at 2°C/min from 90°C to 20°C showing Gʹ and 

G" of the formulation containing 0.4% gellan and 6.8 mg/ml TM at (A) pH 4.5 (B) pH 

10 in SLF performed at an angular frequency of 1 rad/s, 0.5% strain and at 25ºC 
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The formulation of gellan-TM showed an increase in moduli at ~40°C (Figure 4.14A and 

B) at both pH (4.5 and 10). However, there was a distinct difference in the resultant gel 

strength. The gelation of gellan -TM at pH 4.5 produced a strong gel with an average Gʹ 

value of ~1000 pa. At pH 10, a relatively weak gel was produced with an average Gʹ value 

of ~100 pa.  

 Development of HPLC Method for the Determination of TM  

For the determination of TM in in situ gel forming ophthalmic formulation of gellan -TM, a 

reversed phase HPLC method was developed using UV detection at 295 nm. Sample 

chromatogram of TM at 295 nm with retention time 3.1 min is shown in Figure 4.15.  

 

Figure 4.13: Chromatogram of TM detected at 295  

The linearity of the proposed method was established by the least square regression analysis 

of the calibration curve (Figure 4.16). The constructed calibration curve was linear over the 

concentration range of 10-50 μg/ml (R2 = 0.998). HPLC method validation is presented in 

Table 4.5.  
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Figure 4.14: Calibration curve of TM at 295 nm by RP-HPLC Method; Values 

represent mean ± SD (n=3).  

Table 4.5: HPLC method validation for the determination of TM 

Range (µg/ml) 0 to 50 

Regression equation y = 46857x+52937 

Correlation Coefficient 0.998 

Retention time (min) 3.10 

LOD(µg/ml) 3.22 

LOQ(µg/ml) 10.73 

 

 Drug Release 

The drug release profile of the formulation at pH 4.5 showed an initial average release of 

4.45 (± 2.64) % of the drug at 2 minutes following which release continued to rise gradually 

(Figure 4.17). Average drug release was 47.56 % (± 5.51) at the end of 150 min and remained 

plateaued until the end of the test. A drug release study was also performed for the 

formulation at pH 10 (Figure 4.17) which showed initial burst release of 10.33 % (± 1.08) 

and showed significantly higher release (p < 0.05) than the formulation of pH 4.5. Moreover, 
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the plateau was reached at 180 min (30 min later that at pH 4.5) and drug release was 57 % 

(± 2.71) at the end of the test.  

 

Figure 4.15: Release profile of TM from in situ gel forming ophthalmic formulation of 

gellan -TM at pH 4.5 and pH 10, performed in the rheo-dissolution cell containing SLF 

stirred at 100 RPM at a temperature of 37ºC. Values represent mean ± SD (n=3) 

 FTIR  

To investigate the possible chemical interaction between gellan and TM, freeze dried 

samples of the gel at 0 and 5 hours (pH 4.5 and 10), dry powder of gellan and TM, dry mix 

of gellan and TM were analysed using FTIR. In the gellan dry powder (Figure 4.18A), a 

broad peak appeared at 3329 cm-1 due to O-H stretching. The bands at 2914 cm-1, 1610 cm-

1, 1406 cm-1 and 1020 cm-1 were due to C-H, asymmetric COO- stretching, symmetric COO- 

stretching and C-O stretching respectively. In case of TM dry powder (Figure 4.18B), a 

broad band appeared at 3273 cm-1 due to O–H/N–H stretching vibrations. The band at 2964 

cm-1 was due to aliphatic C–H stretching vibrations. A band at 1695 cm−1 was due to the 

acid carbonyl group of maleic acid. The band at 862 cm-1 and 1119 cm-1 was due to C-O 

stretching and  C-N stretching respectively (Agnihotri et al., 2006; Joshi et al., 2009). The 
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dry mix of gellan and TM (Figure 4.18C) was not different from the individual FTIR spectra 

of gellan (Figure 4.18A) and TM (Figure 4.18B) dry powder.  The bands of O-H stretching, 

C-H, asymmetric COO- stretching, symmetric COO- stretching and C-O stretching of gellan 

remained same for all gel samples. The band at 1695 cm−1 due to acid carbonyl group of 

maleic acid disappeared at gel at 5 hours (pH 4.5) (Figure 4.18E) and pH 10 (Figure 4.18G). 

But the samples of pH 10 showed an intense peak at 833 cm-1 which was present in the gel 

at both 0 and 5 hours (Figure 4.18F and G). The peak at 833 cm-1 however, is assigned to 

NH wagging which increased in intensity at pH 10 when the amino group was protonated 

and would not occur in the deprotonated state. 
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Figure 4.16: FTIR spectra of (A) gellan (B) TM (C) dry mix of gellan-TM (D) gel at 0 

hour pH 4.5 (E) gel at 5 hour pH 4.5 (F) gel at 0 hour pH 10 (G) gel at 5 hour pH 10 
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 Release of TM from Agarose 

To observe the potential impact of gellan -TM interaction on TM release, gellan was 

replaced with 0.4% agarose and drug release study was performed (Figure 4.19). Initial burst 

release was observed at 5 min (9.30 ± 6.38 %) which increased gradually to 35.87 % (± 

8.25) after 1 hour.  

 

Figure 4.17: Release profile of TM from in situ gel forming ophthalmic formulation of 

agarose (0.4%) and TM (6.8 mg/ml) performed in the rheo-dissolution cell containing 

SLF (pH 7.5) stirred at 100 RPM at a temperature of 37ºC. Values represent mean ± 

SD (n=3) 

The drug continued to be released from the gel until the end of the test when 67.02 % (± 

4.03) of the drug was released at 5 hours (300 min). In comparison to the release from the 

gellan formulation (pH 4.5) (Figure 4.17), release of TM from the agarose formulation was 

significantly higher (p < 0.05) and no plateau was observed in the data. 
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 Discussion 

Rheological properties of the formulation directly influence the ocular residence time of in 

situ gel forming ophthalmic drug delivery systems. The rate of in situ gelation is important 

because a solution or a weak gel can be easily eroded by the fluid mechanics of the eye 

before a strong gel is formed (Carlfors et al., 1998). Sufficient gel strength not only inhibits 

the gel draining away but also preserves the integrity to facilitate sustained release of drug. 

Here we have shown rheological behaviour of gellan as a gel former in an in situ gel forming 

ophthalmic drug delivery systems. Different concentration of gellan (0.2%, 0.3%, 0.4%, and 

0.5%) were used to make the formulations with 6.8 mg/ml of TM. A rheo-dissolution cell 

was used to evaluate the gelation of these formulations by facilitating their exposure to the 

ions in SLF. Timoptol LA® showed rapid in situ gelation in presence of SLF and elastic 

modulus (Gʹ) was dominant over viscous modulus (Gʺ) across the test (Figure 4.9). The 

gelation behaviour of the formulations (Figure 4.10) showed increased gel strength with 

increased concentrations. The formulation containing 0.4% gellan showed a similarity in gel 

strength when compared to Timoptol LA® (Figure 4.9). The resemblance of the values of 

moduli between two formulations confirmed (95% confidence level) the concentration of 

gellan in the marketed product (0.4% w/v) based on which the final formulation was 

prepared. So the in situ gelling ophthalmic formulation taken forward for the release studies 

contained 0.4% w/v gellan and 6.8 mg/ml TM.  

The gelation of 0.4% gellan was investigated in presence and absence of electrolytes for 

better understanding regarding the rate of the sol/gel transition occurring in the eye. Strain 

sweeps provide an indication of gel stiffness (Farrés and Norton, 2015) and can quantify the 

deformation of polymeric gel networks. The strain sweep of gellan in DI presented low 

moduli values indicative of a weak gel (Figure 4.11A) which was more elastic within 
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relatively longer LVR. It was interesting to observe that addition of TM (in DI) produced 

relatively firm gel which required less strain to break the gel (Figure 4.11B). This behaviour 

was considered as an indication of gellan -TM interaction. In presence of cations (gellan in 

SLF), gellan became a firmer gel (Gʹ > Gʺ) because of the aggregation of helical domains 

and the critical deformation occurred at lower strain than in the weaker gels (Figure 4.11C) 

which could be due to the brittleness of the gel. Addition of TM (gellan-TM in SLF) did not 

change the firm but brittle gel behaviour (Figure 4.11D) when compared to the strain sweep 

of gellan in presence of cations (Figure 4.11C).  

Frequency sweeps were conducted to assess the changes in modulus with increased angular 

frequency. According to the frequency sweep of gellan  (Figure 4.12A), Gʹ was slightly 

greater then G" which is a characteristic of weak gel (Ikeda and Nishinari, 2001). With the 

addition of TM, the gel strength increased with Gʹ > Gʺ across the frequency range tested 

(Figure 4.12B). The predominance of elastic behaviour of gellan over its viscous behaviour 

and the mechanical rigidity indicated the formation of stronger gel in SLF (Figure 4.12C). 

Again, the presence of TM strengthened the gel and Gʹ became more dominant over G" with 

increased angular frequency. It was also considered as an indication of gellan -TM 

interaction which was further confirmed by the cooling scan performed in elevated pH (pH 

10).  

The temperature sweeps perfumed on cooling, illustrated that the addition of ions caused 

early onset of gelation and strong gel formation (Figure 4.13B). Addition of TM increased 

the gel strength further (Figure 4.13C). Even the cooling scan of TM and gellan (pH 4.5) 

without any ions indicated higher gel strength with increased onset of gelation temperature 

(Figure 4.14A). The presence of the amino group in the structure of TM is likely to be 

responsible for the changes of the rheological behaviour of gellan. To investigate this, pH 
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of the gellan -TM solutions were elevated from 4.5 to 10 to protonate the amino group of 

the TM, thus removing its charge. The amino group of TM is capable of ionizing depending 

upon the environmental pH. At the pH below its pKa (9.21), the amino group is positively 

charged however at pH above the pKa the charge is removed (Figure 4.21) (McKinney, 

2004). At pH 10, the onset of gelation (Figure 4.14B) was similar to the solution at pH 4.5 

(Figure 4.14A) but the values of the moduli were significantly reduced and indicated the 

formation of a much weaker gel when the amino group of TM was positively charged. 

 

Figure 4.18: Structure of TM showing pH dependent ionization at (A) pH 4.5 (B) pH 

10 

It is thought that strong gels were formed at pH 4.5 due to suppression of the repulsion of 

negatively charged gellan by the positively charged amino groups of the TM. At pH 10, 

amino group was almost unionized (98%) (Aronson, 1983). It is predicted from the 

Henderson–Hasselbalch equation (Equation 4.3) that a weakly acidic drug is almost 

completely unionized when the pH is two units away from the pKa (Aulton, 2007). But in 

the current scenario, pH was not completely two units away which helps to assume that there 

was still some charges left at pH 10. So, it was found that the ratio of ionized and unionized 
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drug at pH 10 was 6.165:1 whereas it was 1.95x10-5:1 at pH 4.5. Therefore, the electrostatic 

repulsion of the gellan was not fully suppressed by the TM resulting in the formation of 

relatively weak gel at pH 10.  

    𝒑𝑯 = 𝒑𝑲𝒂 + 𝒍𝒐𝒈𝟏𝟎
[𝑯−]

[𝑯𝑨]
          Equation 4.4 

In the release study, the maximum release of TM from the in situ gel was approximately 

48% after 5 hours at pH 4.5 (Figure 4.17). The release increased at pH 10 to approximately 

57%. This was also probably due to electrostatic interaction between anionic gellan and 

positively charged TM for which significant amount drug was retained in the formulation. 

This was further supported by FTIR (Figure 4.18). The presence of band at 833 cm-1 was 

assigned to NH wagging; which indicated the existence of TM in the gel at 5 hours even at 

pH 10 (Figure 4.18G). Therefore, the presence of TM in unionized state and the incomplete 

release of TM shown in Figure 4.17, indicated that interactions other than electrostatic may 

occurring between gellan and TM. 

Logarithm of partition coefficient (P) or log P of a drug plays role in the hydrophilicity or 

hydrophobicity of that drug. Negative Log P value indicates high hydrophilicity of the 

compound whereas value of 0 indicates equal ratios hydrophilicity and hydrophobicity. The 

compounds having log P value of 1 show hydrophilicity and hydrophobicity at a ratio of 

10:1 (Bhal, 2007) and as hydrophobicity increases, the log P value also increases. The log P 

value of TM according to the literature is 1.83 (Hansch et al., 1995) and therefore, indicates 

the presence of hydrophobicity in the compound which increases the possibility of occurring 

hydrophobic interactions between gellan and TM. Indeed, Li et al., (1995) investigated the 

interaction between polyelectrolytes and oppositely charged surfactants and revealed that 

hydrophobic interactions also played a role besides electrostatic interactions between the 

two oppositely charged molecules. Moreover, there are also possibilities for hydrogen 
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bonding between the TM and the gellan. The many hydroxyl groups on the gellan chains are 

potential hydrogen bond donors which could interact with the hydrogen bond acceptors on 

the TM (Andrews et al., 2009; Marsac et al., 2009). Duxfield et al., (2016), developed 

polymeric nanoparticles of gatifloxacin where cationic Eudragit was used as the polymer. 

Slow release of gatifloxacin was observed, which was thought to be due to hydrophobic 

interactions between drug and polymer. Also, electrostatic interactions between the 

quarternary ammonium groups of Eudragit and the carboxyl group of gatifloxacin further 

prevented the release of drug. 

However, the electrostatic interactions between the protonated amino group of TM and 

anionic materials have been previously reported. Joshi et al., (2009) reported incomplete 

release of TM from a formulation where montmorillonite was used as a drug delivery 

system. Electrostatic interactions between the protonated amino groups of the TM and the 

anionic charges at surface of montmorillonite led to partial drug release (43-48%). Bonferoni 

et al., (2004) utilized the interaction between anionic polymer carrageenan and cationic drug 

TM to control the drug release. Rozier et al., (1989) reported incomplete release of TM 

following 6 hours submerged 650 ml of SLF from an ophthalmic vehicle of gellan. When 

gellan was replaced with non-ionic polysaccharide agarose, increased release of TM was 

observed (Figure 4.20). This is thought to be due to the absence of interaction between 

agarose and TM. As agarose is a non-ionic polysaccharide, no electrostatic interaction 

occurred between the positively charged amino group of TM and uncharged agarose, 

however, as the release was slow and also incomplete following 5 hours further supports 

potential hydrophobic interactions occurring between the TM and the polymer. 

The drug-polymer interactions therefore, can directly influence the characteristics of drug 

delivery systems including the release behaviour. So, the drug-polymer interactions are of 
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great importance in designing a drug delivery system in particular when using charged 

polysaccharides and oppositely charged drugs.  

  Conclusion  

This study has demonstrated the gelation behaviour of gellan (as the gel former) on contact 

with SLF which is a key to the successful formulation of in situ gel forming ophthalmic drug 

delivery systems. This study has shown the development of rheo-dissolution cell which can 

replace the conventional lower plate of a rheometer to perform rheological measurement of 

in situ gelling systems on exposure to physiological fluid. Also, this can be used as a 

modified dissolution apparatus to study drug release. However, the impact of TM on gelation 

behaviour of gellan has been demonstrated here which showed the existence of interactions 

between TM and gellan. The release data supported the finding by showing incomplete 

release of TM from the in situ gel which is thought to have occurred as a result of 

electrostatic interactions between the negatively charged gellan and positively charged TM. 

Therefore, drug polymer interactions should be an important consideration when designing 

in situ gelling formulations especially when using charged polymers with oppositely charged 

drugs. 
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5 Chapter 5: Development of a Model for Simultaneous 

Measurement of Rheology and Dissolution for In situ 

Gel Forming Drug Delivery Systems  

 Introduction  

In the previous chapter, a 3D printed rheo-dissolution cell was developed and tested for the 

ability to work as a lower plate of a conventional rheometer. Also, it was tested separately 

as a reservoir to perform drug release measurements. In this chapter, the methods of 

measuring rheological changes and release of drug have been tested simultaneously (rheo-

dissolution) with an in situ gel forming ophthalmic formulation of gellan-TM that was 

developed in chapter 4. Also, to highlight the versatility of the rheo-dissolution method, an 

in situ gelling oral formulation was tested. Sol-gel transitions triggered by changes in pH or 

ionic strength tend to occur rapidly and are therefore considerably more challenging to 

measure as discussed in chapter 1 to 3. Besides, the conventional methods of measuring drug 

release from in situ gelling systems are always performed without observing the impact of 

gelation on drug release. This is despite the fact that release of drugs from in situ gelling 

systems is generally governed by drug diffusion through the polymeric material and/or by 

erosion/dissolution of the gel. The rate of drug release therefore, is strongly related to the 

gel properties such as, gelation kinetics, gel strength and gel dissolution (Sako et al., 1996; 

Roshdy et al., 2001). So, by designing a method of analysing rheological changes while 

measuring the release of active molecules in situ can be beneficial when designing in situ 

gelling systems.  

In this work, rheo-dissolution experiments of in situ gelling formulations were conducted 

on exposure to two different physiological fluids.  Experiments using the ophthalmic 
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formulation of gellan-TM (developed in chapter 4) were conducted on exposure to simulated 

lacrimal fluid whereas studies on the oral formulation were performed on exposure to 

simulated gastric fluid. It is important to understand the concept of anatomy of the 

physiological system on which the drug delivery is based. The concepts of in situ gel forming 

ophthalmic formulations and anatomy of the ocular system have been discussed in chapter 

4. The concepts of in situ gel forming oral formulation and anatomy of the gastrointestinal 

system will be discussed in this chapter before proceeding to the experimental parts.  

 In Situ Gel Forming Oral Drug Delivery Systems 

Oral drug delivery is the most convenient and preferred route of drug administration due to 

flexibility in the dosage form design, ease of production, cost effectiveness, high patient 

compliance and flexible dosing schedule. Orally administered drugs are exposed to variable 

pH of the gastrointestinal tract (GIT) where the pH varies from highly acidic in stomach (pH 

1 to 3) to neutral or slightly alkaline in the small intestine (pH 6 to 7.5) (Liu et al., 2017). 

Exposure of drugs to these pHs may result in oxidation, hydrolysis or deamidation of drugs 

(for example protein drugs). To achieve adequate bioavailability is another challenge of 

orally administered drugs (Sood and Panchagnula, 2001; Choonara et al., 2014). To 

overcome these barriers, pH responsive polymeric systems are widely used and have been 

proven to increase the stability of drugs in the stomach along with release of drugs in a 

sustained manner (Liu et al., 2017). pH triggered in situ gelling oral drug delivery systems 

have been major research focus which use pH responsive polymer as in situ gelling agents. 

Alginate has been considered as an attractive material to formulate such delivery systems 

because of its ability to undergo gelation at acidic pH and break into a soluble viscous layer 

at intestinal pH (Kulkarni et al., 2001).  
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In this work, the oral in situ gelling formulation was formulated using metronidazole (200 

mg/5 ml) and 2% alginate as an in situ gelling polymer. It was apparent on visual observation 

that 2% alginate had sufficient viscosity and was easily pourable. Also, the use of the same 

concentration of alginate has been reported in several published papers (Patel et al., 2011; 

El Maghraby et al., 2012; Szekalska et al., 2018). Rheo-dissolution study of this formulation 

was investigated over two different pHs (acidic and alkaline) to evaluate the impact of 

variations in gastric pH on rheology and drug release behaviour. However, to design an in 

situ gel forming oral drug delivery system successfully, it is important to consider 

gastrointestinal anatomy.  

 Gastrointestinal Anatomy and Physiology 

GIT, also called the alimentary canal, consists of the digestive system structures and the 

accessory organs. The system is approximately 10 meters long and can be divided into two 

parts; the upper GIT and the lower GIT (Peate, 2018). The contents of GIT vary widely in 

volume, viscosity, composition and pH (Schanker, 1960) which affect the absorption of 

drugs from the GIT. 

The upper GIT is composed of oral cavity, salivary glands, oesophagus, stomach and small 

intestine (duodenum, jejunum and ileum) (Figure 5.1). The key functions of upper GIT are 

to transport the swallowed food, enzymatic digestion of the food and absorption of nutrients. 

The upper GIT also plays a role in protective barrier function against the external 

environment. The oral cavity is the first portion of upper GIT and the process of digestion 

begins here. Salivary glands produce saliva from the clusters of cells and it flows from the 

salivary glands into the collecting ducts. Saliva contains approximately 99% water and a 

variety of electrolytes which are potassium (19.5 mmol/L), calcium (1.32 mmol/L), sodium 
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(5.76 mmol/L), magnesium (0.2 mmol/L), phosphate (5.7 mmol/L), bicarbonate (5.5 

mmol/L) and chloride (16.40 mmol/L) (Whelton, 1996). It also contains enzymes, mucosal 

glycoproteins, polypeptides, oligopeptides and traces of albumin (De Almeida et al., 2008). 

The normal pH of saliva is 6 to 7 (Humphrey and Williamson, 2001).  

 

Figure 5.1: Schematic diagram of anatomy of human GIT with varying pH 

 Oesophagus 

Oesophagus extends from laryngopharynx to the stomach and is approximately 25 cm in 

length and 2 cm in diameter. It is a thick-walled structure composed of multiple layers and 

organized as a muscular tube surrounding a hollow central lumen. It transports the 

masticated and swallowed material (also called bolus) from the pharynx to the stomach. The 

pH of oesophagus lumen ranges from 5 to 6 (Patti et al., 1997; Ashford, 2007). 
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 Stomach 

The stomach is the dilated portion of the GIT and is located on the left side of the upper 

abdomen. The main responsibility of stomach is to store and process the food into chime 

and deliver to the duodenum (Treuting et al., 2017; Peate, 2018). It is approximately 0.2 m 

in length with a surface area of 0.2 m2 (Minami and Mccallum, 1984). The stomach is 

divided into four anatomic regions which are cardia, fundus, body and antrum.  The fundus 

and the body of the stomach cause compaction of the stomach contents by contracting the 

muscle walls (Hoichman et al., 2004). Gastric acid is a digestive fluid that is formed in 

stomach and plays significant role in digestion. The main constituent of the gastric fluid is 

hydrochloric acid (~ 0.1M) which is produced by the parietal cells of the gastric glands. 

Other constituents are pepsin (secreted in the form of pepsinogen), gastrin, mucus and 

gastric lipase. The pH of the gastric fluids ranges from 1 to 3 (Ashford, 2007; Liu et al., 

2017) Approximately 1.5 Litres of gastric acid is secreted daily by a typical adult human 

(Dworken, 2016). The pH of the stomach depends on the amount of HCl secreted and on the 

fed or fasted state of the person. The pH is usually between 1 and 3 under fasted conditions. 

Under fed conditions, the gastric fluid is less acidic with the pH ranging between 3 and 7. It 

takes approximately 2 to 3 hours to return the fed state gastric fluid pH to fasted state pH 

(Ashford, 2007; Bowles et al., 2010; Batchelor et al., 2013).  

The pyloric sphincter plays a key role in releasing the stomach contents into the small 

intestine through relaxation. Migrating motor complex (MMC) and digestive motility 

pattern control the gastric transition. MMC is cyclic waves of electrical activity which 

triggers the recurring motility pattern of peristalsis occurring in stomach and small intestine. 

MMC can be divided into 4 phases starting from phase I which is also called basal phase. It 

lasts for 45 min to an hour and phase II lasts for 40 to 60 min (Minami and Mccallum, 1984). 
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Low mechanical activity of stomach is observed in these two phases whereas phase III (burst 

phase) consists of intense regular contraction but it lasts for only 4 to 6 min. Phase III helps 

to empty the stomach contents into the small intestine. Phase IV lasts for maximum 5 min 

due to declining the stomach activity between phase III and I. It takes approximately 90 to 

120 min to complete a cycle (Soppimath et al., 2001; Pawar et al., 2011). 

Gastric emptying of pharmaceutical dosage forms depends on the active cycle of the 

stomach at the time of administration with emptying times ranging from 5 to 120 min 

(Ashford, 2007). Delayed gastric emptying is useful for the drugs that are absorbed mainly 

from the stomach. Solids and larger particles are emptied from the stomach more slowly 

whereas liquids and small particles are easily transferred into the small intestine (Conway, 

2005). When in situ gelling formulations are administered orally, they undergo acid gelation 

in the stomach and are transformed into solid gel which is emptied from the stomach more 

slowly. Therefore, in situ gelling in the stomach can be a useful strategy to increase retention 

time and therapeutic effects of the drugs. 

 Small Intestine  

The small intestine starts from the pyloric sphincter of the stomach and ends at the ileocecal 

junction where it attaches to the large intestine. The length of small intestine is 

approximately 4 to 5 m (Ashford, 2007). The duodenum is the first section of small intestine 

and is about 25 cm long. It is responsible for the breakdown of food with the use of enzymes. 

The duodenum controls the rate of emptying of stomach and proceeds to the jejunum and 

ileum. The jejunum has a thicker wall and is about 0.9 meters long. It runs from duodenum 

to ileum (Young et al., 2013). The duodenum and jejunum are responsible for the absorption 

of most carbohydrates and proteins. The longest segment of the small intestine is ileum and 



125 

 

is about 1.8 meters long. It has more mucosal folds than the jejunum. It is responsible for 

the absorption of bile salts, fat soluble vitamins and vitamin B12. The absorption of most 

fluids and electrolytes take place in the ileum and the large intestine. (Jeejeebhoy, 2002; 

Young et al., 2013). The intragastric pH rapidly changes from highly acidic to approximately 

pH 6 in the duodenum (Fallingborg, 1999) and it continues to rise gradually to about 7 to 8 

in the terminal ileum. The small intestine is the main site of drug uptake from orally 

administered dosage forms and the transit time of small intestine has an impact on drug 

bioavailability especially in controlled release systems (Ashford, 2007). The intestinal 

transit time is usually quite consistent and unaffected by the presence of food in stomach, 

gastric emptying and size or physical states of the dosage forms. The transit time is usually 

3-4 hours in most of the people (Davis et al., 1986).  

 Large Intestine 

The lower GIT consist of large intestine (caecum, colon, rectum and anus). The large 

intestine is approximately 1.5 meters in length and has a smooth inner wall. The food residue 

containing very low nutrients enters to the caecum. The large intestine turns the food residue 

into semi solid faeces by absorbing water (Peate, 2018). Mucus is secreted from the large 

intestinal mucosa to ease the passages of faeces and protects the colonic walls. The transit 

time of drugs depend on the type of dosage forms, disease state, frequency of defecation and 

eating habits; it usually varies between 2 to 48 hours (Ashford, 2007). The pH drops to 5.7 

in the caecum and increases to 6.7 in the rectum (Fallingborg, 1999).  
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 Metronidazole 

 

Figure 5.2: Chemical structure of metronidazole (Diós, 2015)  

Metronidazole (MNZ) was used as the drug in this work to formulate an in situ gel forming 

oral drug delivery system. It is a synthetic derivative of nitroimidazole with antibacterial and 

antiprotozoal activities. The chemical name is 2-(2-methyl-5-nitroimidazol-1-yl) ethanol 

(Figure 5.2). The molecular weight is 171.156 g/mol. It is a crystalline powder that is white 

to pale yellow in colour. The pKa of metronidazole is 2.38. Obligate anaerobic organisms 

take the unionized MNZ which is then reduced by specific proteins and turns into an active, 

intermediate product. Reduced MNZ inhibit the bacterial cell growth by breaking the DNA 

strand. It is primarily used in the treatment of H. pylori infection (Salcedo and Al-Kawas, 

1998). Besides, it is used to treat trichomonas infection and vaginitis. It is also highly 

effective in the treatment of periodontal disease (Slots and Rams, 1990) and intestinal 

amoebiasis (Krishnaiah et al., 2002).  

MNZ is usually absorbed 80-90% by oral route and the oral bioavailability is above 90% 

(Turgut and Özyazici, 2004). It reaches a plasma concentration of approximately 10 µg/ml 

in about 1 hour after administration of a single dose of 500 mg (Lau et al., 1992). For oral 

administration, MNZ is usually marketed as tablets with a potency of 250, 400 and 500 mg 
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or capsule of 375 mg. It is also available as of 200 mg/5 ml oral suspension.  But low 

therapeutic activity due to short gastric residence time and poor accessibility of MNZ at the 

site of actions are the obstacles to treat the disease (for example; H. pylori infection). Several 

sustained release formulations such as, beads (Ishak et al., 2007; Adebisi and Conway, 

2014), in situ gelling raft systems (Youssef et al., 2015), in situ gelling floating formulations  

(Thomas, 2014) of MNZ have been reported in combination with alginate to improve the 

efficacy with sustained release of MNZ in the stomach in the treatment of H. pylori infection. 

So, in this study, MNZ was selected as a drug because of its ability to eradicate H. pylori in 

the stomach while using a formulation that contained alginate. Also, an in situ gel of alginate 

formed in the stomach could potentially increase the residence time of MNZ in the stomach 

enhancing therapeutic activity.  

 Materials and Methods 

 Materials  

Sodium alginate and was purchased from Sigma-Aldrich, (Poole, UK). The M:G ratio of 

sodium alginate was 0.39:0.61 and molecular weight was 120,000-190,000 g/mol. Sodium 

bicarbonate was purchased from Fisher Scientific (Loughborough, UK). Low acyl gellan 

(Gelrite®), calcium chloride, sodium chloride, sodium hydroxide, hydrochloric acid (37.5%) 

and metronidazole were purchased from Sigma-Aldrich (Poole, UK). Timolol Maleate was 

purchased from Tokyo Chemical Industry (Oxford, UK). All chemicals and drugs were used 

without further purification.    

 Preparation of In situ Gel Forming Ophthalmic Formulation 

A 0.5% gel forming eye drop solution was prepared based on marketed formulation 

(Timoptol LA®) which contained 6.8 mg/ml TM and 0.4% gellan. TM was dissolved in the 
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DI water at room temperature and heated up to 85°C while stirring in hot plate stirrer. 0.4% 

gellan was added to the solution and stirring was continued until the gellan was fully 

dissolved. The solutions were allowed to cool to room temperature prior to further analysis 

and the pH of the formulation was 4.5.     

 Preparation of In situ Gel Forming Oral Formulation 

In situ gelling oral formulation was prepared containing metronidazole (MNZ) (200 mg/5 

ml) and 2% sodium alginate. Sodium alginate (2%) was dissolved in DI water at room 

temperature and stirred until it was fully dissolved. MNZ (200 mg/5 ml) was then added to 

the alginate solution and stirring was continued for an hour until a uniform dispersion was 

formed. The prepared suspension was then stored at room temperature for 2 hours prior to 

further analysis.  

 Preparation of Simulated Physiological Fluids  

Simulated lacrimal fluid (SLF) (pH 7.5) was prepared according to the formulation 

described in section 4.5.2. 0.1 M HCl was used as simulated gastric fluid (SGF) without any 

pepsin as it does not have any effects on polysaccharides. To prepare 0.1M HCl, 8.17 ml of 

37.5% HCl was added to 1 L of DI water. The pH of SGF was 1.2. 

 Comparison of Rheological Measurements Using a Standard Parallel Plate 

Geometry and the Rheo-Dissolution Cell 

Rheological measurements of in situ gelling ophthalmic and oral formulations were 

performed using Kinexus rotational rheometer (Malvern Panalytical, UK). A 40 mm serrated 

parallel plate geometry was used to measure elastic modulus (Gʹ) and viscous modulus (Gʺ) 

and the gap was fixed at 0.3 mm. Freshly prepared sample solutions were loaded onto the 

rheometer at 25ºC and measurements performed within the LVR (0.5% strain and a 
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frequency of 1 rad/s). All the experiments were performed at 25ºC. Silicone oil was added 

on the periphery of the samples to prevent evaporation during the measurements.  

 

Figure 5.3: Rheological measurements using rheo-dissolution cell replacing the lower 

plate of rheometer performed at 0.5% strain, 1 rad/s frequency and 25ºC 

Rheological measurements were also conducted replacing the lower plate of the rheometer 

with the rheo-dissolution cell to compare the performance of the system with the standard 

geometry. A stainless steel woven wire mesh (mesh count 80) was placed on top of the 

reservoir and attached securely to the surface of the cell (Figure 5.3). After attaching 40 mm 

parallel plate geometry, the samples were loaded on to the mesh. The gap was fixed at 0.8 

mm and the volume of the sample was determined by the set gap. The gap size was relatively 

high in this experimental setting to compensate for slight undulations in the stainless steel 

mesh. The parameters used during the rheological measurements were adjusted according 

to the set gap. Oscillatory measurements of the moduli (Gʹ and Gʺ) were measured using 

0.5% strain 1 rad/s frequency. As the viscosity of the alginate formulation was very low, a 

dialysis membrane of 14000 mwco was used during the measurement of the in situ gelling 

oral formulation to prevent the passing of the formulation through the mesh. The membrane 
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had been soaked in DI water and was placed on the surface of the mash where samples were 

loaded.  

 Rheo-Dissolution Measurements for In situ Gel Forming Ophthalmic 

Formulation 

Rheo-dissolution experiments were performed using Kinexus rotational rheometer where 

the rheo-dissolution cell replaced the lower plate of the rheometer. Two pieces of silicone 

tubing was attached to the inlet and outlet of the rheo-dissolution cell and was connected to 

a circulating peristaltic pump with a flow rate of 1ml/min. The pump was used to enable 

continuous flow of SLF in the reservoir and the flow rate was sufficient to maintain sink 

conditions (presence of sufficient dissolution media in the reservoir to ensure unimpaired 

dissolution of drug). It also facilitated sampling during the experiments. A 3-way sampling 

port was used to collect and replace the samples and was attached to the tubes. The 

circulatory system consisted of the cylindrical reservoir (55 ml) and the silicone tubing (45 

ml) was capable of holding 100 ml volume. A stainless steel woven wire mesh (mesh count 

80) with an aperture of 180 µm was securely attached to the top of the reservoir. The selected 

aperture was sufficient to prevent any sample passing through the mesh. The secure 

attachment of the mesh to the cell prevented any disturbance of the sample during the 

experiments. Figure 5.4 shows the cartoon representation of the experimental set up of the 

rheo-dissolution cell with the circulating pump and sampling port.  

To begin the experiment, 90 ml of SLF was added to the circulatory system. The level of 

fluid was below the mesh and allowed space to accumulate a further 10 ml more fluid before 

it would come in contact with the mesh. Once the circulatory system had settled, a 40 mm 

serrated parallel plate geometry was attached to the rheometer.  
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Figure 5.4: Cartoon representation showing the experimental set up for the 

measurement rheo-dissolution 

The gap was fixed at 0.8 mm and sample of in situ gelling ophthalmic formulation of gellan-

TM was placed on the top of the mesh. The volume of the sample was determined by the set 

gap. The test was started immediately to measure Gʹ and Gʺ as a function of time at 0.5% 

strain 1 rad/s frequency. After the test had started, 10 ml of SLF was injected through the 

sampling port immediately to initiate the gelling process by enabling the contact of SLF with 

the formulation on the mesh. A solvent trap was used to prevent any evaporation of the 

sample during the experiment. Figure 5.5 shows the experimental setup for the rheo-

dissolution. 
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Figure 5.5: (A) Schematic demonstrating of the experimental set up of rheo-dissolution 

cell with the conventional rheometer in the laboratory (B) rheo-dissolution cell 

attached to the lower plate of rheometer prior to loading sample and (C) rheo-

dissolution experiments in process 

0.5 ml of samples were collected through the sampling port at regular time intervals (2, 4, 

6, 8, 10, 30, 60, 90, 120, 150, 180 min) and were replaced with same volume of fresh SLF. 

To ensure the continuous contact of SLF with the sample, the volume of SLF was maintained 

100 ml throughout the system. All the experiments were performed in room temperature and 

were done in triplicate. Collected samples were then analysed for the drug released from the 

gels using HPLC according to the method described in 4.5.7.2.  

To validate the rheo-dissolution method against the conventional dissolution testing, release 

studies were performed using a dissolution bath containing 100 ml of SLF. The solution was 



133 

 

magnetically stirred at a speed of 100 RPM and a temperature of 37°C was maintained 

throughout the experiment. The same sampling regime was applied as used in the rheo-

dissolution experiments.   

 Effect of Gellan Concentrations on Rheology and Drug Release 

Rheological properties of a gel depends on the polymer concentration (Farahnaky et al., 

2010) which also plays significant role in drug diffusion. An investigation was performed to 

analyse the effect of concentration of gellan on the rheological behaviour and diffusion of 

TM from the gel. Rheo-dissolution experiments were conducted for three formulations 

containing three different concentrations of gellan and 6.8 mg/ml TM. 

 Preparation of the Formulations            

Three in situ gelling formulations of gellan-TM were prepared using three different 

concentrations of gellan (0.3%, 0.6% and 0.8%). TM (6.8 mg/ml) was dissolved in the DI 

water at room temperature. Required amounts of gellan was added at 85°C while stirring the 

solution in magnetic hot plate stirrer. The stirring was stopped when gellan was completely 

dissolved. The formulations were allowed to cool to room temperature prior to further 

analysis.  

 Rheo-Dissolution Measurements 

Rheo-dissolution experiments of three formulations were performed using the experimental 

setup described in 5.3.6. The experiments were performed in triplicate for each formulation 

and the collected samples were analysed using HPLC according to the method described in 

4.5.7.2. 
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 Rheo-Dissolution Measurements for In situ Gel Forming Oral Formulation   

Rheo-dissolution experiments were performed to monitor release of drug during gelation 

and subsequent dissolution of the alginate gel that occurs at acidic and alkaline pH 

respectively. The experimental setup described in 5.3.6 was used to perform the tests which 

was adapted by the addition of a dialysis membrane (14000 mwco) on the surface of the 

mesh. The membrane had been soaked in DI water prior to the experiments. This adaptation 

facilitated pre-gelation state measurements due to the extremely rapid gelation kinetics of 

alginate that occur on contact with acid. Moreover, this adaptation prevented the flow of 

alginate solution through the mesh prior to the rheological measurements.   

At the beginning of the test, the flow through system contained 90 ml of SGF (pH 1.2) and 

the liquid level was below the mesh to prevent any contact with sample. The geometry was 

zeroed and the gap was fixed at 0.8 mm. The required volume of in situ gelling oral 

formulation of alginate-MNZ was placed on the top of the dialysis membrane. Oscillatory 

measurements of Gʹ and Gʹʹ was started immediately as a function of time (0.5% strain, 1 

rad/s frequency). Before inducing gelation, measurements of the moduli in the pre-gel state 

was performed for 10 min. Addition of 10 ml SGF (pH 1.2) to the circulatory system (that 

already contained 90 ml of SGF) allowed the formulation to come in contact with SGF and 

enabled the system to capture measurements for the whole gelation event. The experiment 

was continued for 7 hours and the samples of SGF (0.5ml) were withdrawn at 4, 8, 12, 16, 

20, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330, 360, 390 and 420 min. The same 

volume of fresh SGF (pH 1.2) was used to replace the volume at each time point.  

As discussed in chapter 3 (3.4.2.1 Gelation of alginate) alginate gels are stable in acidic pH 

in stomach because of the lower pH value than the pKa of the uronic acids which causes the 
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removal of the negative charge and formation of gel by intermolecular hydrogen bonding. 

At alkaline pH of the intestine, the acidic groups become charged which causes electrostatic 

repulsion and breaks down the alginate gels (Pawar and Edgar, 2012; Rasel and Hasan, 2012; 

Francis et al., 2013). So, a further rheo-dissolution experiment was conducted to monitor 

MNZ release during the dissolution of alginate gel at alkaline pH. Here, the experiment 

performed at pH 1.2 was allowed to proceed for 120 min. Then the pH of the gastric media 

was converted to alkaline media (pH 8.0) by replacing 9 ml of SGF with same volume of 

1M NaOH. The rheo-dissolution study was continued at pH 8.0 until the in situ gel was 

broken down. The dissolution of the gel was identified by the reduction in moduli. The 

samples (0.5 ml) were withdrawn every 30 min and replaced with same volume of fresh 

media (pH 8.0). All experiments were performed in room temperature. UV 

spectrophotometry (Agilent technology, Cary 60) was used to analyse the collected samples. 

The percentage of MNZ released from the in situ gel was determined from the linear 

regression equation obtained from the UV standard calibration curve (Figure 5.11). All 

experiments were done in triplicate. The MNZ release data during the rheo-dissolution 

experiments were curve fitted to the zero order model using equation 5.1. 

𝑸 = 𝑸𝒐 + 𝑲𝒐 𝒕      Equation 5.1 

Where Q is the amount of drug released at time t, Qo is the initial amount of drug and K0 is 

the zero order release constant. 

 Determination of MNZ by UV Spectroscopy 

A stock solution of MNZ was prepared by dissolving 2.5 mg of MNZ in 25 ml of 0.1 M HCl 

(pH 1.2). The final concentration of the stock solution was 100 µg/ml. The stock solution 

was diluted and scanned (400 nm to 200 nm) using Cary 60 (Agilent technology) UV 
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spectroscopy to obtain the maximum wavelength (λmax) of MNZ. The maximum absorbance 

was found at a wavelength of 277 nm. Five different standards (2 to 10 µg/ml) were prepared 

from the stock solution of MNZ. All the standard solutions of MNZ were measured at 277 

nm and the absorbance was plotted against the respective concentration to obtain a 

calibration curve. All the measurements were done in triplicate and the linear regression 

equation was calculated from the calibration curve. LOD and LOQ was calculated using the 

Equation 4.1 and 4.2. Accuracy and precision studies were performed for this method. 

Accuracy is one of the important aspects of the validation a method and it shows the extent 

of agreement between the reference and experimental values. Precision demonstrates the 

reproducibility and repeatability of the method (Moosavi and Ghassabian, 2018).  Accuracy 

studies were performed at three concentration levels (50%, 100% and 150%). Precision 

studies were evaluated through analysis of the sample on three different days with intra-day 

and inter-day repeatability. Accuracy and precision studies were done in triplicate.  

 Solubility Profile of MNZ at pH 1.2 and 8 

To determine the solubility of MNZ, saturated solutions were prepared by adding excess 

amounts of MNZ to 0.1M HCl of pH 1.2 and 8 at room temperature (22 ± 1°C).  The 

solutions were stirred overnight to attain equilibrium. The solutions were then filtered and 

diluted as necessary to analyse the MNZ content spectrophotometrically at 277 nm (Wu and 

Fassihi, 2005; Adebisi, 2014). The experiments were done in triplicate.  
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 Statistical Analysis 

Student’s t test was applied to compare the data obtained from the dissolution experiments 

of both (ophthalmic and oral) formulations. One-way Analysis of Variance (ANOVA) was 

applied for comparing the dissolution data from the formulations containing four different 

concentrations of gellan. Statistical significant level was considered as p < 0.05. IBM® SPSS 

Statistics software version 24, was used for the statistical analysis. 

 Results 

 Comparison of Rheological Measurements Using a Standard Parallel Plate 

Geometry and the Rheo-Dissolution Cell 

Measurements of viscoelastic properties (Gʹ and Gʺ) of in situ gel forming ophthalmic and 

oral formulations were performed using Kinexus rheometer fitted with serrated parallel plate 

geometry. The experiments were also conducted with the rheo-dissolution cell (covered with 

mesh) which replaced the lower serrated parallel plate. In the case of the ophthalmic 

formulation, the modulus (Gʹ and Gʺ) were in steady state and maintained almost similar 

values throughout the tests in both experimental settings (Figure 5.6). Gʹ was dominant over 

Gʺ across the tests.  
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Figure 5.6: Viscoelastic measurements of Gʹ and Gʺ (Pa) against time for in situ gelling 

ophthalmic formulation of gellan-TM performed with (A) serrated parallel plate (B) 

rheo-dissolution cell replacing the lower plate (0.5% strain, 1 rad/s frequency and 

25ºC). All data represent mean ± SD (n=3) 

Similarly, viscoelastic measurements were performed for in situ gelling oral formulation of 

alginate-MNZ (Figure 5.7). Again the moduli maintained almost similar values for both 

experimental settings over the period of the test. Comparison of initial and final values of Gʹ 

and Gʺ (Pa) for both formulations in the two experimental settings are listed in Table 5.1. 
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No significant difference (p > 0.05) was observed while compared the values of moduli of 

both experimental settings. 

 

Figure 5.7: Viscoelastic measurements of Gʹ and Gʺ (Pa) against time for in situ gelling 

oral formulation of alginate-MNZ performed with (A) serrated parallel plate (B) rheo-

dissolution cell replacing the lower plate (0.5% strain, 1 rad/s frequency and 25ºC). All 

data represent mean ± SD (n=3) 
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Table 5.1: Comparison of viscoelastic measurements (Gʹ and Gʺ) for in situ gelling 

ophthalmic (gellan-TM) and oral formulation (alginate-MNZ) performed with 

serrated parallel plate and rheo-dissolution cell replacing the lower plate (0.5% strain 

and a frequency of 1 rad/s). Values represent mean ± SD (n=3) 

Formulation Conventional rheometer with 

serrated lower plate 

Rheo-dissolution cell replacing the 

lower plate of rheometer 

 Gʹ (Pa) Gʺ (Pa) Gʹ (Pa) Gʺ (Pa) 

Initial Final Initial Final Initial Final Initial Final 

Gellan-TM 0.56 ± 

0.04 

0.56 ± 

0.04 

0.26 ± 

0.04 

0.27 ± 

0.02 

0.68 ± 

0.06 

0.68 ± 

0.08 

0.26 ± 

0.06 

0.27 ± 

0.04 

Alginate-

MNZ 

0.61 ± 

0.04 

0.61 ± 

0.03 

0.55 ± 

0.02 

0.57 ± 

0.03 

0.49 ± 

0.06 

0.49 ± 

0.08 

0.43 ± 

0.06 

0.43 ± 

0.09 

 

 Rheo-Dissolution Measurements for In Situ Gel Forming Ophthalmic 

Formulation  

The simultaneous measurements of rheological changes and drug release were performed 

for an in situ gelling ophthalmic formulation containing 0.4% gellan and 6.8 mg/ml TM 

(Figure 5.8). A rapid increase in moduli was observed over the first 20 min of exposure to 

the SLF. After the formulation gelled, Gʹ and Gʺ reached values of 1248 Pa and 134.6 Pa 

respectively. The modulus plateaued for the rest of the test. The gelation reaction was 

allowed to proceed for 180 min while sampling the SLF from the reservoir and analysing 

for release of TM. The release curve showed an initial burst release of 12.54 (± 2.97) % TM 

in the first 10 min as the formulation began to gel. This was followed by a period of sustained 

TM release until 120 min (42.91 ± 1.82%). After this time point, the release slowed and by 

180 minutes 45.97 (± 1.52) % of drug was released while approximately 54% of drug 

remained in the formulation. 
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Figure 5.8: Rheo-dissolution experiments showing the progression of the moduli (G' 

and G") and comparison between the TM release performed in rheo-dissolution cell 

(0.5% strain, 1 rad/s frequency); and in dissolution bath at 37ºC (100 RPM)    

To validate the rheo-dissolution method against conventional dissolution testing, release 

studies were performed using a dissolution bath using the same sampling regime (Figure 

5.8).Initial release of 12.07 (± 2.85) % TM was observed in 10 min which increased 

gradually to 44.39 ± 2.72 % at 120 min after which the release slowed and 47.42 (± 2.96) % 

TM was released at 180 min. Release of TM from dissolution bath showed no significance 

difference (p > 0.05) when compared to the release data obtained from rheo-dissolution 

experiment (Figure 5.8). 

 Effect of Gellan Concentrations on Rheology and Dissolution of the Drug 

The simultaneous measurements of rheological changes and drug release were also 

performed for 3 other different concentrations of gellan to investigate the impact of 

increasing gel strength on drug release. The formulation containing 0.3% gellan (Figure 



142 

 

5.9A) showed rapid increase of the modulus over first 30 min of the exposure to the SLF as 

gelation occurred. Gʹ reached to 313.8 Pa and Gʹʹ to 47.5 Pa once the formulation was fully 

gelled. The moduli reached a plateau after the gelation and maintained the same trend for 

remainder of the test. Initial burst release (23.22 ± 3.27) % was observed in the first 10 min 

of the test while the gel was undergoing gelation. The release slowed for the remainder of 

the test with the total release of 48.67 (± 3.55) % at 180 min with little change in Gʹ and Gʹʹ 

over this period. The onset of gelation became more rapid as the concentration of gellan 

increased to 0.6% (Figure 5.9B). Gʹ and Gʺ reached to the values of 2275 Pa and 346.3 Pa 

after complete gelation of the formulation. Here, there was no evidence of an initial burst 

release as TM was released steadily until 60 min reaching 21.29 (± 5.13) % TM at this time 

point and only 36.59 (± 3.68) % of TM was released at the end of the test (180 min). Further 

increase to the gellan concentration (0.8%) caused the formation of strong gel (Gʹ>>Gʺ) at 

the onset of the test which continued throughout the experiment (Figure 5.9C). The release 

of TM from this formulation was only 23.63 (± 2.1) % at the end of the experiment which 

was less than half of the release achieved from the 0.3% gellan formulation (Figure 5.9A). 
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Figure 5.9: Rheo-dissolution experiments of in situ gel forming ophthalmic 

formulations containing 6.8mg/ml TM and (A) 0.3% (B) 0.6% (C) 0.8% gellan 
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 Development of UV-Vis Spectrophotometric Method for the Estimation of 

MNZ 

The absorbance of MNZ standards were measured at a wavelength of 277 nm to generate a 

calibration curve (Figure 5.10) which was used to determine the concentration of MNZ in 

the collected samples. The linearity of this analytical procedure was determined by the 

correlation coefficient (R2). It is the ability of the analytical procedure within a given range 

to attain the test results which are directly proportional to the amount of analyte used for the 

test (Mahdi, 2016). The constructed calibration curve was linear over the concentration 

range of 2-10 µg/ml (R2 = 0.999). For accuracy and precision, the RSD for all samples were 

within the satisfactory range. The method validation data of the MNZ assay are presented in 

Table 5.2. 

 

Figure 5.10: Mean calibration curve of MNZ measured at 277 nm. All data represent 

mean ± SD (n=3) 
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Table 5.2: Evaluation data of UV spectroscopic method of MNZ 

Range (µg/ml) 2 to 10 

Regression equation y= 0.0411x+0.0004 

Correlation Coefficient 0.9995 

LOD (µg/ml) 0.23 

LOQ (µg/ml) 0.59 

Accuracy RSD < 2% 

Precision RSD < 3% 

 

 Rheo-Dissolution Measurements of In Situ Gel Forming Oral Formulations  

Rheo-dissolution experiment of an in situ gelling oral formulation consisting of MNZ (200 

mg/ 5 ml) and alginate (2%) was performed at pH 1.2 and 8.0. Oscillatory rheological 

measurements of the sample were performed prior to the exposure to the gastric fluid to 

ascertain the behaviour of the formulation that would be apparent prior to administration. 

Low values of the modulus (~0.6 Pa) at this stage indicated an entangled polymer solution 

(figure 5.12). Upon exposure to the acidic media (pH 1.2), Gʹ increased rapidly to almost 3 

orders of magnitude and both moduli continued to increase steadily after the initial rapid 

gelation. At the end of the test, Gʹ and Gʺ reached to the values of 1286 and 210 Pa 

respectively (Figure 5.11A). During the first 30 min of the test while the gelation process 

was occurring, 11.95 (±1.84) % MNZ was released. In the following 3.5 hours, when the 

alginate had formed a strong gel, 49.54 ± 1.71 % MNZ was released (at 210 min) and 

plateaued for the remainder of the experiment with a release of 53.34 ± 2.84 % at 420 min. 

The pH of the gastric media was raised to from 1.2 to 8 at 120 min in a second experiment 

with same experimental setup to demonstrate the feasibility of changing dissolution media 

during the experiment (Figure 5.11B). 
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Figure 5.11: Rheo-dissolution experiment of in situ gel forming oral formulation 

containing MNZ (200mg/5ml) and 0.2 % sodium alginate at (A) pH 1.2 (B) pH 1.2 and 

8.0 (0.5% strain, 1 rad/s frequency and 25ºC) 
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Figure 5.12: Progression of the modulus (G' and G") and release of MNZ at the earlier 

time points (0 to 10 min) before exposure to the acidic media (pH 1.2) 

 

Figure 5.13: Comparison of Gʹ and release of MNZ following 120 min when 

maintaining pH 1.2 or adjusting pH 8.0 
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Also, this was performed to examine the release behaviour of MNZ when the sol-gel reaction 

was reversed. Similar release behaviour as Figure 5.11A was observed over the first 2 hours 

of the experiment when the formulation was exposed to the acidic media (pH 1.2) with 33.6 

%  (± 2.7) MNZ released at 120 min before changing the dissolution media to pH 8.0. 

Upon changing the pH, however, no significant difference (p > 0.05) was observed in release 

data compared to the rheo-dissolution experiment performed at pH 1.2 (Figure 5.11A) until 

120 min which is clearly detectable in Figure 5.13. At pH 8.0, a rapid reduction of gel 

strength was observed by a fall in Gʹ at 190 min from ~801 Pa to ~28.64 Pa at 370 min. The 

reduction in the modulus indicated breakdown of gel and rheological measurements were 

stopped at this point. Rapid reduction of gel strength in alkaline media coincided with rapid 

increase in MNZ release with ~50% MNZ was released in 180 min. The release curve 

continued to show zero order release and ~96% of MNZ was released at the end of the test 

while the alginate gel was broken down (Figure 5.11B).  

When the media was changed to pH 8.0, negligible variations of release constant (K0)
 was 

maintained across the entire profile, which was revealed by zero order kinetic modelling of 

the release data (Figure 5.14). The release curve did not follow zero order kinetic model 

when the experiment was performed in pH 1.2 (Figure 5.14A). But, the release curve fitted 

well to the zero order model while the experiment was performed in both pH (1.2 and 8.0) 

(Figure 5.14B). When pH 1.2 was maintained in first 120 min in both experiments (Figure 

5.14C and D), the release curves followed the model, but upon changing the dissolution 

media to pH 8.0, the release curve sharply deviated from the zero order model (Figure 

5.14D). Zero order release kinetic parameters are summarized in Table 5.3. 
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Figure 5.14: Zero order kinetic modelling of the release data obtained from rheo-

dissolution experiments performed at (A) pH 1.2 (B) pH 1.2 and 8 (C) pH 1.2 (up to 

120 min) (D) pH 1.2 and 8 (up to 120 min; before changing the media to pH 8) (E) pH 

1.2 (150 to 420 min) (F) pH 1.2 and 8 (150 to 420 min; after changing the media to pH 

8).  
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Table 5.3: Summary of zero order drug release kinetic parameters 

 

 Solubility Profile of MNZ at pH 1.2 and 8.0 

Weakly basic drugs show decreased solubility as pH increases along the gastrointestinal 

tract, which also has an impact on the dissolution of the drug (Streubel et al., 2000). 

Decreased release of drug is observed with increased pH (Chen and Rodríguez-Hornedo, 

2018). MNZ is weak base (pKa 2.62), which is highly soluble at pH ≤ 2.0 and solubility of 

MNZ decreases as pH increases. Solubility test of MNZ was performed at pH 1.2 and 8.0 

and it was found that the solubility of MNZ was 65.31 mg/ml at pH 1.2 and 16.24 mg/ml at 

pH 8.0 (Figure 5.15). However, in the rheo-dissolution experiment, high release of MNZ 

(~96%) was observed at high pH (pH 8.0) when the alginate gel was broken down (Figure 

5.11B) which contradicts the above statement regarding pH dependent drug release and 

therefore highlights the influence of gel degradation on the release behaviour of MNZ. 

Therefore, lower solubility at pH 8.0 indicates that the increased release of MNZ at pH 8.0 

was more likely a result of degradation of the gel rather than increased solubility.   

Media Maintained at 

pH 1.2 
K0 R2 

Media changed to pH 

8.0 
K0 R2 

Full release profile 0.169 0.79 Full release profile 0.261 0.98 

0-120 min (pH 1.2) 0.295 0.98 0-120 min (pH 1.2) 0.273 0.98 

120-420 min (pH 1.2) 0.165 0.77 120-420 min (pH 8.0) 0.260 0.92 
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Figure 5.15: pH solubility of MNZ at pH 1.2 and 8.0 (n=3) 

 Discussion 

The gelation behaviour of the gel former is an important consideration in designing an in 

situ gel forming drug delivery system. Besides measuring gelation behaviour, sampling of 

drug from the system to analyse release could be beneficial for successful in situ gelling 

formulation development. Here, a novel method has been demonstrated using a rheo-

dissolution cell replacing the lower plate of a conventional rheometer to analyse gelation 

and drug release simultaneously (rheo-dissolution) of in situ gelling formulations. In situ gel 

forming ophthalmic (gellan-TM) and oral (alginate-MNZ) formulations were used to 

demonstrate this method. Before conducting rheo-dissolution experiments, viscoelastic 

measurements in terms of Gʹ and Gʺ were performed with conventional lower plate and 

rheo-dissolution cell to compare the performances (Figure 5.6 and 5.7). No significant 

differences (p > 0.05) were observed between the moduli of both formulations for both 

experimental settings (Table 5.1) which ensured the feasibility of using the cell as the lower 

plate of rheometer to perform rheo-dissolution analysis.  
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In situ gel forming ophthalmic formulations were prepared according to the marketed 

formulation Timoptol LA® where 0.4% gellan was used as an in situ gelling polymer. 

Besides, three other concentrations (0.3%, 0.6% and 0.8%) of gellan were used to prepare 

the formulation and rheo-dissolution experiments were conducted to observe the effect of 

concentration on rheo-dissolution. Rapid increase of the moduli (Gʹ and Gʺ) were observed 

when the formulations containing 0.3% (Figure 5.10A) and 0.4% (Figure 5.8) were exposed 

to the crosslinking ion solution as gelation occurred. But as concentration increased to 0.6% 

(Figure 5.10B) gelation occurred much more rapidly and a strong gel (Gʹ >> Gʺ) was already 

formed before the first measurements were taken when 0.8% gellan was used (Figure 

5.10C).  It was interesting to observe in real time that when gel strength was weak (during 

first 10 min of exposed to SLF) TM was released more rapidly from the samples. Initial 

burst release disappeared with increasing the concentration of gellan and final release also 

slowed down to 23.63 ± 2.1 % at 180 min for the formulation containing 0.8% gellan when 

Gʹ>>Gʺ was observed throughout the experiment (Figure 5.10C). Linear reduction in TM 

release was observed with increased concentration when the releases of 180 min were 

plotted against the concentrations of gellan (0.3%, 0.4%, 0.6% and 0.8%) (Figure 5.16).  
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Figure 5.16: Release of TM at 180 min with increasing gellan concentrations from 0.3% 

to 0.8% 

Although the gel strength significantly (p < 0.05) affect the release of TM from the in situ 

gelling formulations of gellan-TM, but it may not be a critical factor to control TM release 

as potential electrostatic interaction could occur between positively charged TM and 

negatively charged gellan which has been described previously in 4.7. The release study of 

TM from the formulation containing 0.4% gellan performed in dissolution bath (Figure 5.9) 

also showed incomplete release and was comparable with Figure 5.8. The molecular 

interplay between the polymer molecules during sol-gel transition has an impact on the 

release of drug and subsequent bioavailability. It is poorly understood especially in 

ophthalmic formulations. However, utilizing this in vitro technique can provide real time 

correlation between rheological behaviour and release of drug from in situ gelling 

ophthalmic formulation upon exposure to SLF.  
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In situ gelling oral formulations were investigated to demonstrate a similar approach where 

alginate was used as the in situ gelling polymer because of the rapid gelation behaviour on 

exposure to the stomach acid. This attractive and well-known property of alginate has been 

utilized in oral liquid formulations previously to control drug release and to enhance the 

gastric retention time (Miyazaki et al., 2000, 2001; Kubo et al., 2003). The fasted and fed 

state of stomach also plays a role on the gelation behaviour of alginate. The low pH (1-3) in 

the fasted state initiates the gelation of alginate. But if the formulation is administered in fed 

state (pH 3-7), pH triggered gelation of alginate is less likely to happen. Therefore, the 

development of alginate solutions have been reported where free calcium ions are prepared 

as complex with sodium citrate in the solutions which delay the gelation of alginate solutions 

until the solutions reaches to the acidic environment of the stomach and calcium ions are 

released. The presence of optimum quantities of sodium citrate and calcium chloride 

maintain the fluidity of the solutions before administration.(Miyazaki et al., 2000, 2001). 

There are also some reports of development of alginate solutions without calcium ions where 

in situ gelation is induced by oral administration of calcium salt solutions immediately 

following the alginate solution (Zatz and Woodford, 1987; Katayama et al., 1999). However, 

in this experiment the alginate-MNZ formulation was prepared without any calcium ions 

and the rheo-dissolution experiments of alginate-MNZ were conducted in two different pH 

(1.2 and 8.0) to observe the rheological behaviour in varying pH and its impact on drug 

release.  

Low modulus (Gʹ) was observed (Figure 5.12A and B) before the exposure of the 

formulation to acidic media which turned into almost instantaneous increase upon exposure, 

which has been previously reported by Diryak et al., (2018). The alginate continued to 

develop its gel structure and both moduli continued to increase steadily following the initial 
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rapid gelation. The formulation was exposed to the acidic media for 420 min and gradually 

increased in strength (Figure 5.12A) as the gel stiffness of an alginic acid gel depends on the 

duration of the exposure to acidic pH (Bradbeer et al., 2014). It is clear from the graph that 

the moduli maintained steady state when the formulation was in acidic media and the release 

followed zero order kinetic model over the 120 min test (Figure 5.14C). The pH of the media 

was then increased to 8.0 at 120 min which demonstrated that it was feasible to change the 

dissolution media during the course of an experiment. Reduction in Gʹ was witnessed from 

190 min which indicated the initiation gel dissolution. An apparent lag time was observed 

between the time of changing pH and observing the reduction (Figure 5.13) in the moduli 

which can be explained by the time required for diffusion of release media into the gel. 

Besides, the lower surface of the sample which was in contact with the media began to 

dissolve first resulting in an anisotropic gel for the diffusion of the media. It allowed 

continuous release of drug from the gel, at the surface in contact with the release media. The 

diffusion of the media into the gel progressed resulting in significantly (p < 0.05) higher 

release (~96%) and Gʹ value of ~28.64 pa at the end of the test. The high solubility of MNZ 

(65.31 mg/ml) at pH 1.2 and low solubility (16.24 mg/ml) at pH 8.0 (Figure 5.15) confirmed 

that continuous release of MNZ at pH 8.0 was a result of degradation of the gel and not a 

solubility effect. Similar solubility (64.80 mg/ml) of MNZ at pH 1.2 has been reported by 

Wu and Fassihi, (2005).  

 Conclusion 

A novel method was demonstrated in this study which has the potential to analyse real time 

in situ gelation on exposure to the cross linking medium, with a facility of sampling to 

analyse the release of drugs at the same time. Also, this method allows the operator to change 

the pH during the experiment, which could be used to correlate the changes in gelation 
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behaviour in various physiological environments and assess the subsequent impact on drug 

release. This technique could be utilised in early stages of the development process to design 

more efficient in situ gelling formulations and can be modified to target to different 

physiological sites on exposure to different physiological fluids (such as saliva, lung fluid, 

nasal fluid). Moreover, this technique could be utilised in any systems, beyond that of 

pharmaceutical formulations, where polymers undergo rapid or slow gelation in presence of 

metal ions, changes in pH or by small molecule cross linkers and release an entrapped 

compound.  
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6 Chapter 6: Formulating an In Situ Gelling System of 

Poorly Soluble Drug for Optimizing Ophthalmic 

Delivery 

 Introduction 

Poor bioavailability is an obstacle for drugs to reach a therapeutic concentration level at the 

target site. When the target site is intra ocular, the challenge is greater because of the 

distinctive anatomy and physiology of the eye (Lang, 1995). Pre corneal clearance via 

blinking and nasolacrimal drainage can cause poor bioavailability of ophthalmic solutions 

in the eye (Cohen et al., 1997). Over the past few decades, in situ gel forming ophthalmic 

drug delivery systems have been a major research focus for offering improved 

bioavailability of the active ingredients at the surface of the eye. These formulations undergo 

sol-gel transition in response to the changes in pH, temperature or ions present in lacrimal 

fluid which has been described in the previous chapters.  

Poor water solubility of drugs and subsequent low bioavailability, has been attributed to the 

majority of the failures in new drug development. Approximately 90% of current pipeline 

drugs and 40% drugs with market approval are poorly water-soluble (Kalepu and Nekkanti, 

2015). However, poorly soluble drugs, despite of potential useful therapeutic effects, are not 

suitable to incorporate in in situ gelling systems because of the aqueous based gelling 

formulations and low volumes administered. The administered drugs must exhibit sufficient 

solubility to diffuse into the eye in order to make such formulation successful (Loftsson and 

Stefánsson, 2017). The salt form of poorly soluble drugs can improve the solubility but can 

subsequently interact with the ionotropic gel formers such as gellan resulting in gelation 

before administration or increasing the viscosity of the formulation. For example, 
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Flurbiprofen (FBP) is an arylpropionic nonsteroidal anti-inflammatory drug (NSAID) and 

considered as Class II drug with low water solubility and high permeability according to 

Biopharmaceutic Classification System (BCS) (Cirri et al., 2005). In commercialized anti-

inflammatory eye drop Ocufen®, sodium salt of FBP is used to enhance the solubility of FBP 

which is difficult to formulate as an in situ gelling formulation using gellan because of the 

tendency of gellan to undergo gelation by crosslinking with sodium ions.  

To increase the solubility of poorly soluble drugs, a number of other strategies have been 

employed such as, formulating as nanogels to increase the residence time of drug on the 

target site, using solubilizing systems such as microemulsions and liposomes to enhance the 

solubility (Loftsson and Stefánsson, 1997) and using drug-cyclodextrin complexes to 

increase the bioavailability, stability and solubility of the ophthalmic drugs (Loftssona and 

Järvinen, 1999; Felton et al., 2014). In recent years, cyclodextrin (CD) complexes have been 

employed successfully to improve solubility and rate of dissolution (Cirri et al., 2005). CDs 

are cyclic oligosaccharides having hydrophilic outer surface and hydrophobic/lipophilic 

internal cavity. The hydrophobic inner cavity forms inclusion complex with poorly soluble 

drugs by allowing the drug molecules to enter into the cavity (Loftsson and Brewster, 2010; 

Felton et al., 2014).  

In the present study, FBP was investigated as a poorly soluble drug and CD was used to 

create a drug-CD inclusion complex to increase the solubility of FBP. Gellan was added as 

a gel former in the solution of the complex to formulate an in situ gelling ophthalmic 

formulation. Simultaneous measurements of rheology and drug release were performed 

using the rheo-dissolution method described in chapter 5 and an ex-vivo permeation study 

was performed using a porcine corneal model.  
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 Cyclodextrins 

Cyclodextrins (CDs) are natural cyclic oligosaccharides consisting of (α-1, 4)-linked D-

glucopyranose units (Jansook et al., 2018) (Figure 6.1A). They are formed by bacterial 

digestion of starch. The most common CDs which are used in pharmaceutical products are 

αCD, βCD and γCD. They consist of different numbers of D-glucopyranose units, for 

example, αCDs have 6, βCDs have 7 and γCDs consist of 8 D-glucopyranose units. CD 

molecules are described as doughnut shaped molecules and exhibit a lipophilic central cavity 

with a hydrophilic outer surface. In CDs molecules, the secondary hydroxyl groups extend 

from the wider edge of doughnut shape and primary groups extend from the narrow edge 

causing the outer surface to be hydrophilic (Figure 6.1B).  

 

Figure 6.1: (A) Chemical structure of CD (B) Doughnut structure of CD molecule 

showing lipophilic inner cavity and hydrophilic outer surface (adapted from Loftsson 

& Stefánsson, 2017) 

CDs have the ability to form water soluble inclusion complexes by taking poorly soluble 

lipophilic drugs into their central cavity. Even though having hydrophilic nature, CDs 

exhibit limited aqueous solubility because of the orientation of hydroxyl groups in CD 
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molecules. β CDs are less soluble in water compared with α and γ CDs (table 6.1). In β CD, 

the orientation of the hydroxyl groups of the adjacent glucopyranosyl units causes maximum 

interaction with each other resulting in less availability to be hydrated. In α CDs, the 

hydroxyl groups are further apart and are able to interact more with water. In γ CD, the 

hydroxyl groups interact more with water and less with each other resulting greater water 

solubility (Hedges, 2009). Random hydroxyl group substitution with hydroxypropyl groups 

increases the solubility of CDs and their complexes, for example hydroxypropyl β CD. 

Natural CDs convert from crystalline solid to physically stable, amorphous mixtures of 

isomer upon random substitutions. The complexation capabilities and aqueous solubility of 

CD molecules depend on the structure, location and number of appended substituents per 

CD molecule (Loftsson and Brewster, 2010; Jansook et al., 2018). The height of the CD 

cavity is same for three commonly used CD (α, β and γ) but the internal diameter and volume 

vary depending on the number of the glucose units. Based on the dimensions, α-CDs form 

inclusion complexes with compounds having aliphatic side chains or low molecular weight, 

β-CDs form complexes with aromatic and heterocyclic compounds, and larger molecules 

(such as steroids) form inclusion complexes with γ CDs (Valle, 2004). Besides enhancing 

the solubility of highly insoluble molecules, inclusion formation exerts some other 

beneficial modification to the temporarily locked guest molecule such as, stabilisation 

against degradative effects of oxidation, controlling the sublimation and volatility, taste 

modification, chromatographic separation.  Table 6.1 represents general properties of three 

commonly used CDs. 
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Table 6.1 General properties of commonly used CDs (Valle, 2004) 

Property α-CD β-CD γ-CD 

Number of glucopyranose units 6 7 8 

Molecular weight (g/mol) 972 1135 1297 

Outer diameter (Å) 14.6 15.4 17.5 

Cavity diameter (Å) 4.7-5.3 6.0-6.5 7.5-8.3 

Cavity volume (Å3) 174 262 417 

Solubility in water at 25°C (%, w/v) 14.5 1.85 23.2 

 

 Drug-CD Complex Formation  

The hydrophobic central cavity of CD molecule allows hydrophobic drug molecules to enter 

and form water-soluble inclusion complexes. During the formation of drug-CD inclusion 

complexes, no covalent bonds are formed or broken (Loftsson and Brewster, 2010). Water 

is typically the solvent of choice for complex formation. The complexes can be formed in 

the crystalline state or in solution (Valle, 2004). To form the inclusion complexes in the 

crystalline state, CDs are dissolved in DI water at room temperature and the guest molecules 

are added to the aqueous solutions of CDs while the solutions are continuously stirred. The 

solutions become turbid and white precipitates are formed. The resulting white suspensions 

are stirred at room temperature for 24 h and filtered. The collected precipitates are dried for 

24 h in oven and formation of inclusion crystals are confirmed by X-ray diffraction (Uyar et 

al., 2006). 

Inclusion complex formation of CD with a drug molecule depends on certain functional 

groups within the drug and relative size of the CD to the size of the drug molecule. 

Thermodynamic interactions between the components of the system (CD, solvent and drug 

molecule) is another key factor for the inclusion complex formation. A favourable net 

energetic driving force must be present for the drug molecule to enter into the CD cavity. 
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The slightly nonpolar CD cavity is occupied by water molecules in an aqueous solution and 

are replaced by the guest drug molecule to form the complex (Figure 6.2). Here, the release 

of enthalpy-rich water molecules from the hydrophobic central cavity acts as the driving 

force for the formation of the inclusion complex.  

 

Figure 6.2: Schematic representation of formation of drug-CD complex in aqueous 

solution, here the water molecules are replaced by the drug inside the cavity 

In the most simple and frequent cases, 1:1 of CD:drug ratio exist however, 2:1, 2:2 or 1:2 or 

higher associations can also exist (Szejtli, 1998; Valle, 2004). An equilibrium is established 

between the dissociated and associated species upon dissolving the complexes and this is 

expressed by complex stability constant (K).  

𝐶𝐷 + 𝐷 ⇌ 𝐶𝐷. 𝐷      Equation 6.1 

𝐾1:1 = 
[𝐶𝐷.𝐷]

[𝐶𝐷][𝐷]
       Equation 6.2 

The stability constant determines the affinity of a drug for the given CD and can be 

calculated from the method of titrating changes of the drug molecule within the CD before 
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analysing the concentration dependencies (Loftsson and Brewster, 2010). Complexation of 

CD and drug is a dynamic process and drug molecules continuously associate and dissociate 

from the CD. Values of association and dissociation rate constants range from 107 to 108 M-

1 s-1 and 105 s-1 respectively (Stella et al., 1999). The initial equilibrium to form the complex 

is very rapid and takes place within minutes. The shifting of the initial equilibrium to the 

completed formation of the inclusion complex takes longer time to attain because it involves 

energetically favourable interactions such as displacement of the polar water molecules from 

the CD cavity, increased hydrogen bonds as a result of returning back of the water molecules 

to the aqueous environment, reduction of repulsive interactions between the water molecules 

and drug, and an increase in the hydrophobic interactions due to the drug entering into the 

nonpolar CD cavity. Once inside the CD, the drug molecule makes conformational 

adjustments utilizing existing weak van der Walls forces within the cavity to optimise 

inclusion complexation  (Valle, 2004).  

A variety of techniques can be used to form the inclusion complex. The techniques depend 

on several factors such as, properties of the active ingredient and other formulation 

ingredients, the equilibrium kinetics, formulation process and desired final dosage forms. 

The common techniques include mixing in solutions and suspensions followed by suitable 

separation, simple dry mixing, preparation of pastes and other thermo-mechanical 

techniques (Valle, 2004). Simple dilution is the major driving force to release the drug from 

drug-CD complexes. There are some other mechanisms which also contribute to release the 

drug rapidly from the complexes such as, drug-protein binding, competitive binding and 

direct drug partition from the complex to the tissues (Loftsson and Brewster, 2010)  
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 CDs in Ophthalmic Drug Delivery 

Incorporation of CDs into ophthalmic preparations has gained considerable attention 

recently and has been shown to be useful additives in ophthalmic formulations to increase 

the aqueous solubility and stability of poorly soluble drugs. Besides, addition of CDs 

improves drug absorption and reduces local irritation inside the eye. Complexation of CDs 

with poorly soluble drugs have also been shown to enhance the bioavailability of drugs 

(Loftssona and Järvinen, 1999). Several reports of using CDs in ophthalmic formulations 

have been published which showed increased solubility, bioavailability, permeability and 

reduced irritation of lipophilic drugs. Davies et al., (1997) reported the development of a 

formulation of poorly soluble steroidal drug hydrocortisone with 2-hydroxypropyl-β-

cyclodextrin (HβCD) to increase the solubility of the drug. The solubility of the drug was 

increased approximately two-fold with the addition of CD in the solution. Chemical stability 

of the drug was also increased and the decomposition was reduced as a result of 

complexation formation. Kristinsson et al., (1996) reported development of dexamethasone-

HβCD complex as an aqueous eye drop solution which showed enhanced permeability and 

higher concentration of dexamethasone in aqueous humour compared to the conventional 

formulation. Moreover, HβCD has been reported to significantly increase the aqueous 

solubility and chemical stability of poorly soluble anandamides in the preparation of eye 

drop formulations (Pate et al., 1995, 1996, 1997). The antihistamine drug cetirizine showed 

strong irritation upon ocular administration but it has been reported that addition of CDs (α, 

β and γ) to a solution of cetirizine eliminated the irritation. Although slight decrease in the 

efficacy of the applied dose was reported (Ikejiri et al., 1995). Some of the other reports of 

using CDs in ophthalmic formulations are summarized in Table 6.2. 
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Table 6.2: Examples of reports of using CDs in ophthalmic drug delivery systems  

Cyclodextrin Drug Reference 

HβCD, Randomly 

methylated-β-CD 

Diclofenac sodium Reer et al., 1994 

HβCD Enalapril Maleate Loftsson et al., 2010 

HβCD Ketoconazole Zhang et al., 2008 

αCD, βCD Riboflavin Morrison et al., 2013 

HβCD Rufloxacin Cappello et al., 2002 

HβCD Enoxacin Liu et al., 2005 

γCD Amphotericin B Serrano et al., 2012 

 

 Mechanism of Permeation of Drug into the Cornea 

The ocular bioavailability of ophthalmic formulations is less than 5% in general (Loftssona 

and Järvinen, 1999). Lipophilic (hydrophobic) membranes (Cornea, conjunctiva and sclera) 

are the main barriers for drug permeation into the eye. There is aqueous tear fluid and a 

hydrophilic mucin layer at the outside of the lipophilic membranes. To permeate this exterior 

eye surface and penetrate the ocular barrier, the drug molecule must be hydrophobic (i.e. 

lipophilic) and hydrophilic at the same time (Loftsson and Stefánsson, 1997). High drug 

concentration at the membrane surface acts as a driving force for passive drug permeation 

through the ocular barrier. Through drug-CD complexation, solubility of poorly soluble 

drugs (lipophilic) can be enhanced without altering the molecular structure and permeation 

abilities of the drug molecules. The process of releasing drug from drug-CD complex into 

the cornea can be explained by the mechanism proposed by Loftssona and Järvinen, (1999) 

(Figure 6.3). 
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Figure 6.3 Schematic diagram representing the proposed mechanism of permeation of 

drug to the cornea from drug-CD complex by Loftssona & Järvinen, 1999.  

According to this mechanism, CDs act as carriers by keeping the hydrophobic poorly soluble 

drug inside the cavity. CD delivers the drug molecule through the hydrophilic mucin layer 

to the surface of the ocular barrier consisting of hydrophobic membranes (i.e. Cornea). 

Delivery of the drug through the hydrophilic mucin layer is controlled by diffusion, and 

delivery through the hydrophobic membranes is membrane controlled. As the drug-CD 

complex continuously associate and dissociate, they diffuse through the hydrophilic mucin 

layer to the hydrophobic membrane both as a complex and free CD. The complex delivers 

the drug to the surface of hydrophobic membrane and the poorly soluble drug easily passes 

the barrier while the free CD remains in the surface. When there are excess drug molecules 

and low CD concentrations, the donor phase is saturated with the drugs and thermodynamic 

activity of the drugs is at its maximum. The permeability co-efficient increases with 
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increasing CD concentrations which results in an increasing amount of dissolved drugs. 

Therefore, more drugs (as drug-CD complexes) diffuse to the surface of the barrier. When 

there is excess CD present, drug activity at the donor phase decreases which results 

decreased permeability coefficient.  

 Toxicological Considerations 

According to toxicity studies, CDs are practically non-toxic when administered orally due 

to lack of absorption from the gastrointestinal tract (GIT) (Irie and Uekama, 1997). When 

CD containing eye drop solutions are administered topically, CD is washed away rapidly 

from the eye surface to the GIT via nasolacrimal drainage. If pure isotonic CD solution (20 

to 25% w/v) is administered to each eye (two drops three times a day), total CD would be 

1.7 mg/kg/day which is less than 1/10th of normal daily usage. So the local or systemic 

toxicity in the GIT can be excluded (Loftssona and Järvinen, 1999). There are some concerns 

that methylated β-CD can cause some irritation in the eye after administration (Jansen et al., 

1990) although these are based on limited experimental data. In vivo studies have shown that 

CDs can damage the ocular membrane only at relatively high concentration (isotonic drops 

contains >25% w/v CD) (Loftssona and Järvinen, 1999).  

Several studies however, have shown that HβCD in ocular formulations is well tolerated in 

animals and humans even when the concentration is as high as 45% w/v. It is therefore, the 

most commonly used CD in eye drop formulations (Loftsson and Stefánsson, 2017). It also 

can be used for oral, dermal, rectal and formulation (Stella et al., 1999; Malanga et al., 2016). 

Table 6.3 represents commercialized ophthalmic formulations containing CDs. 
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Table 6.3: Marketed eye drop solution containing CDs (Loftsson and Brewster, 2010) 

Drug Cyclodextrin Trade name Company 

Indomethacin 2-Hydroxypropyl-β-

cyclodextrin 

Indocid Chauvin (France) 

Chloramphenicol Randomly methylated β-

cyclodextrin 

Clorocil Oftalder 

(Portugal) 

Diclofenac sodium 

salt 

2-Hydroxypropyl-γ-

cyclodextrin 

Voltaren 

Optha 

Novartis  (France) 

 

In the present study, 2-hydroxypropyl-beta-cyclodextrin (HβCD) has been used to make the 

drug-CD inclusion complex.  

 Flurbiprofen  

Flurbiprofen (FBP) is a poorly soluble NSAID. It exhibits analgesic, anti-inflammatory and 

antipyretic properties. It is a weak acid (pKa 4.22) and contains a biphenyl group with a 

fluorine atom in the ortho position (Xu and Madden, 2010) (Figure 6.4). It is cyclooxygenase 

(COX) inhibitor which converts arachidonic acid to prostaglandins. Prostaglandins regulate 

pain, fever and inflammation. So by inhibiting the activity of COX, prostaglandin synthesis 

is inhibited, therefore, pain and inflammation are also inhibited. FBP reduces the production 

of aqueous humour by decreasing bicarbonate ion concentrations which causes lowering 

intraocular pressure. Currently FBP sodium is marketed as Ocufen® (0.03% FBP sodium). 

Ocufen® is used to inhibit intraoperative miosis and treat postoperative ocular inflammation. 
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Figure 6.4 Chemical structure of FBP (Duarte et al., 2004) 

 Martials and Methods 

 Materials 

FBP, low acyl gellan gum (Gelrite®), HβCD, hydrochloric acid, phenol, sulphuric acid, 

calcium chloride dehydrate and sodium chloride were purchased from Sigma Aldrich 

(Poole, UK). Sodium bicarbonate was purchased from Fisher Scientific (Loughborough, 

UK). All materials were used as received. Fresh porcine cornea was purchased from a local 

abattoir.  

 Determination of FBP Content by UV Spectroscopy 

A stock solution of FBP was prepared by dissolving 5 mg of FBP in 25 ml of SLF (pH 7.5) 

containing 10% HβCD to get a final concentration of 200 µg/ml. The stock was diluted and 

scanned (400 nm to 200 nm) using UV spectroscopy (Agilent Cary 60 UV-Vis) to obtain 

the maximum absorbance wavelength (λmax). The maximum absorbance was found at a 

wavelength of 247 nm. Five different FBP standards were prepared from the stock solution 

at a concentration ranging from 0.05 to 0.5 µg/ml. SLF with 10% HβCD was used as a blank. 

The standards were measured at 247 nm to produce a calibration curve. All the experiments 

were done in triplicate. The absorbances were plotted against the concentrations of standards 

and a linear regression equation was obtained. LOD and LOQ were determined using 
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equation 4.1 and 4.2. Three different concentration levels (50%, 100% and 150%) were used 

to perform accuracy studies. Precision studies were performed by analysing the samples 

with inter-day and intra-day repeatability.  

 Phase Solubility Studies 

Stoichiometry is an important characteristic of drug-CD complex and a phase-solubility 

diagram is used to obtain the stoichiometry of drug-CD complexes. In this diagram, drug 

solubility is monitored as a function of total CD added to the complexation medium. Here 

the concentrations of dissolved drugs are plotted against the concentrations of CD. This 

technique shows how CD influences the solubility of a drug (Loftsson and Brewster, 2010).  

 

Figure 6.5: Types of phase solubility diagrams according to Higuchi and Connors, 

(1965) where concentrations of CDs are plotted against the concentrations of dissolved 

drug. The resultant diagrams are AL: linear, AP: positive deviation from linearity; AN: 

negative deviation from linearity; BS: limited solubility of complex or BI: insoluble 

(Brewster and Loftsson, 2007; Saokham et al., 2018) 
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Several types of behaviours can be identified based on the shapes obtained from the phase 

solubility relationships. Higuchi and Connors, (1965) have classified the phase solubility 

diagrams into two different plots based on their shapes, which are type A and B (Figure 6.5). 

In system A, the solubility of drug increases as a function of CD concentration and this 

system can be classified into three subtypes which are AL, AP and AN. AL diagram indicates 

linear increase in solubility of drug as a function of CD. AP diagram indicates that the curve 

is deviated from linearity in a positive direction, i.e. when CD is more effective at higher 

concentrations. AN shows negative deviation from linearity and it can happen when CD is 

less effective at higher concentrations. These diagrams are observed in complexation media 

containing water soluble CDs. B type solubility profiles indicates limited water solubility of 

drug-CD complex which are usually associated with natural CDs with limited solubility, 

such as β CD. B type diagrams can be further classified into BS and BI subtypes. When 

concentration of CD is increased in a system, a soluble drug-CD complex is formed which 

enhances total solubility of poorly soluble drugs and can be identified by the ascending 

portion of BS type isotherm (Figure 6.5). Maximum solubility of the drug is attained at a 

particular point of the solubilisation process (plateau segment of Bs type diagram in Figure 

6.5). Additional complexes are formed by additional CDs which precipitate and all solid 

drugs are consumed at some point. Further addition of CDs causes formation of additional 

insoluble complexes which precipitate and can be identified by the descending portion of 

the BS type solubility profile. BI type profile indicates similar system to the BS type except 

that the formed complexes are insoluble and therefore no ascending portion is observed at 

the beginning of the isotherm (Brewster and Loftsson, 2007). 

Phase solubility studies are performed by saturating the drug in aqueous media to form high 

order complex aggregates (Loftsson and Brewster, 2010; Saokham et al., 2018). To perform 
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phase solubility studies, excess amount of FBP were added to 10 ml SLF (pH 7.5) in sealed 

glass containers to obtain 0.5, 1, 2, 5, 10 and 20% (3.4, 6.8, 13.7, 34.2, 68.5 and 137 mM) 

of HβCD. A constant temperature (25°C) was used for mixing the solutions for 24 hours 

using electromagnetic stirrer (200 rpm). 0.45 µm pore sized filter paper was used to filter 

the solutions. After dilution, the solutions were analysed spectrophotometrically (λmax 247 

nm) to determine the drug concentrations. The concentrations of total dissolved drugs were 

plotted against the concentration of HβCD to create the phase solubility diagram. 

 Interaction Studies between HβCD and Gellan  

Oscillatory rheological analysis was performed on the solutions containing HβCD and gellan 

to observe any interference in gelation of gellan caused by HβCD. HβCD solutions were 

prepared by adding precise amounts of HβCD in DI water at room temperature to prepare 

0.5%, 1%, 2%, 5% and 10% w/v final concentration. The solutions containing HβCD were 

heated up to 85°C with continuous stirring and 0.4% gellan was added to the solutions. The 

concentration of gellan was selected according to the commercial Timoptol LA® eye drop 

formulation (discussed in chapter 4). Once gellan was completely dissolved, stirring was 

stopped and the solutions were allowed to cool to room temperature prior to further analysis. 

Oscillatory measurements Gʹ and Gʺ (Pa) were measured as a function of time (0.5% strain 

and 1 rad/s frequency) according to the experimental set up described in 5.3.6. All 

experiments were performed at 25ºC. 
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 Preparation of In Situ Gel Forming Ophthalmic Formulation of FBP with 

HβCD and Gellan  

In the present study, the concentration of HβCD was selected based on the results of phase 

solubility studies which was 10%. To prepare the formulation, required amount of HβCD 

was added to the DI water at room temperature to obtain the concentration 10% w/v and 

precise amount of FBP was added to the solution to obtain final concentration of 0.029% 

w/v (without salt form). The concentration of FBP was selected based on the marketed 

product Ocufen® which contains 0.03% w/v FBP sodium. The solution of FBP-HβCD was 

heated up to 85°C and 0.4% gellan was added. The solution was stirred until the gellan was 

completely dissolved. The prepared formulation was cooled down to room temperature and 

pH was measured using Jenway 3510 pH meter. A formulation was also prepared using 20% 

HβCD according to the same procedure to compare the rheo-dissolution properties with the 

formulation containing 10% HβCD. The pH of the formulations ranged between 4.30 to 

4.32.  

 Confirmation of Complexation 

Differential Scanning Calorimetry (DSC) was performed to confirm the complexation 

between drug and HβCD (Mettler Toledo, DSC 1, STARe system). DSC is a thermal 

analysis technique to measure the heat energy uptake within a controlled increase or 

decrease in temperature. Energy is introduced and raised similarly over time to the sample 

of known mass and reference. The difference in heat input between the sample and the 

reference is measured as detection of transition such as melting and glass transition. The 

heat flux (∆H/dt) is plotted against the average sample temperature or time (Adebisi, 2014).  

To perform thermal analysis, formulations containing FBP-HβCD and FBP-HβCD with 

gellan were prepared for freeze drying. The formulations were stored in a freezer at -20ºC 
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overnight. The frozen samples were then dried using a (Christ Alpha 2-4 L Dplus) freeze 

drier. The drying procedure was performed for 24 hours at -84.6ºC with the vacuum set at 

0.001 mbar. All the samples (FBP, gellan, HβCD, physical mix and freeze dried samples) 

were accurately weighed (Mettler AT201) and heated in crimp sealed aluminium pans at 

10°C per min between 50 to 150°C. The nitrogen gas flow was 200 ml/min. Thermograms 

of FBP, HβCD, gellan, alone and as physical mixtures of all components were compared 

with the freeze dried samples. 

 Simultaneous Determination of Rheology and Dissolution of the Drug (Rheo-

Dissolution Study) 

Rheo-dissolution experiments were conducted according to the experimental set up 

described previously (5.3.6). The samples were allowed to form gels in situ in the presence 

of SLF and measurements of Gʹ and Gʹʹ were performed to determine gelation behaviour. 

Aliquots of SLF were withdrawn (0.5 ml) at pre-determined time intervals (60, 120, 180, 

240 and 300 min) from the circulatory system while measuring the rheological changes. An 

equal amount of fresh SLF was replaced at each time point. All samples were diluted and 

analysed using a UV spectrophotometer at 247 nm. The contents of FBP in the withdrawn 

samples were determined from the linear regression equation of the calibration curve. Rheo-

dissolution experiments were performed on the formulations containing 10% and 20% 

HβCD at room temperature and in triplicate. 

 Carbohydrate Analysis by Phenol-Sulphuric Acid Method 

Phenol-sulphuric acid (PSA)  method is the most reliable, easiest and rapid colorimetric 

method to measure the total carbohydrates present in a sample (Masuko et al., 2005).  This 

method is widely used to determine the concentrations of sugars and their methyl 

derivatives, polysaccharides and oligosaccharides (Dubois et al., 1956). The method 
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requires 5% phenol solution and concentrated sulphuric acid. Addition of concentrated 

H2SO4 breaks down any polysaccharides to monosaccharides and the 6 carbon compounds 

(hexoses) dehydrate to hydroxymethyl furfural while 5 carbon compounds (pentoses) 

dehydrate to furfural. Addition of phenol to these solutions causes a reaction which produces 

yellow-gold colour.  The amount of carbohydrates present in the sample can be determined 

from linear regression equation obtained from standard calibration curve. D-glucose is 

commonly used to prepare the calibration curve at 490 nm (Nielsen, 2010). In this 

experiment, amount of dissolved HβCD and gellan were determined in the withdrawn 

samples using PSA method.  

 Preparation of 5% Phenol Solution 

5g of phenol was dissolved in 100 ml of DI water to produce 5% phenol solution. This 

mixture formed a clear liquid and was ready to use (Dubois et al., 1956).  

 Determination of Sugar Content by UV Spectroscopy 

A stock solution of D-glucose was prepared by adding 25 mg of D-glucose in 25 ml of SLF 

to produce concentration of 1 mg/ml. Six different standard solutions were prepared from 

the stock solution ranging from 10 to 100 µg/ml (10, 20, 40, 60, 80 and 100 µg/ml). 1 ml of 

0.5% phenol solution was added to the filtered standards (1 ml) followed by adding 5 ml of 

concentrated H2SO4. The solutions were mixed for 10 min and placed in a water bath for 20 

min. The temperature of the water bath was maintained between 25-30 °C. The absorbance 

of the resultant yellow-gold coloured solutions were measured using a UV 

spectrophotometer at wavelength of 490 nm (Ghori et al., 2014). The absorbance was then 

plotted against concentration of the standards and a linear regression equation was obtained.  
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 HβCD Dissolution Studies  

Rheo-dissolution experiments were performed for the formulations containing 10% and 

20% HβCD and same sample regime was applied as used in 6.4.7. Content of HβCD in the 

withdrawn samples were measured using PSA method. 1 ml of 5% phenol was added to the 

filtered samples (1 ml) followed by 5 ml of concentrated H2SO4. After mixing vigorously 

for 10 min the resultant solutions were placed in a water bath (25-30 °C for 20 min). The 

solutions were analysed at 490 using UV spectrophotometer and HβCD concentration in the 

samples was determined from the prepared calibration curve.  

 Gellan Dissolution Studies 

Rheo-dissolution experiments were conducted for a control sample consisting of 0.4% 

gellan solution without HβCD and FBP. To prepare the solution, precise amounts of gellan 

(0.4%) was dissolved in DI water at 85°C while stirring the solution. Stirring was stopped 

once gellan was dissolved completely. The solution was allowed to cool before performing 

the rheo-dissolution experiment according to 5.3.6. While analysing rheological changes, 

samples (0.5 ml) were collected at 60, 120. 180, 240 and 300 min. The same volume of 

freshly prepared SLF was used to replace the withdrawn sample. The collected samples were 

subjected to PSA assay according to the procedure described in 6.4.7.3 and gellan 

concentration in the samples were calculated from the prepared calibration curve.  
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 Ex-vivo Permeation Studies Using Porcine Cornea 

Permeation studies were performed for the formulation containing 10% HβCD and marketed 

Ocufen® eye drop (pH 6.68).  

 Preparation of Cornea for Permeation Study 

Porcine corneas used in permeation studies were obtained from fresh porcine eye balls which 

were purchased from a local abattoir. The collected eye balls were used within few hours of 

enucleation. The fat and muscles around the eye balls were trimmed and an incision was 

performed between optic nerve and cornea. The sclera was cut all the way round and vitreous 

humour, lens and ciliary body were removed (Figure 6.6). The cornea was removed and care 

was taken to avoid any distortion (method adopted from Fathalla et al., 2016).  

 

Figure 6.6: (A) Pig eyeball before dissecting (B) Back view of anterior half of the pig 

eye (C) removed cornea 
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 Ex vivo Permeation Studies 

Permeability of FBP through the porcine cornea was performed using a Franz diffusion cell. 

A Franz diffusion cell is constructed with two compartments, the upper part is the donor 

compartment where test samples are loaded and the lower part is receptor compartment, 

which contains receptor fluid that is analysed for permeated drugs. The two compartments 

are held in place by a horseshoe clamp and the tissue is placed in between the compartments. 

The receptor compartment can be jacketed and connected to water source to control the 

temperature throughout the experiment (Pineau et al., 2012). The receptor compartment 

contains a sampling port to collect and replace the sample.  

 

Figure 6.7 Schematic diagram of a Franz diffusion cell  
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In this study, permeation studies were performed using a Franz diffusion cell (Figure 6.7) 

with a 4 ml fixed volume receptor compartment with a sampling port. The diffusion surface 

of the cell was 1.76 cm2. The cornea was placed between the donor and receiver 

compartments and horseshoe clamp was used to hold the two compartments. The endothelial 

side of the cornea faced the receptor compartment. The surface of the cornea was placed on 

the diffusion surface area. The receptor compartment was filled with SLF (pH 7.5) and 35°C 

was maintained throughout the experiment with a magnetic stirrer bar used to ensure an 

isothermal temperature was maintained throughout the receiver fluid. Test samples were 

placed directly on the cornea in the donor compartment and the compartment was under 

occlusion with Parafilm® to avoid any evaporation (Pineau et al., 2012). Samples (0.5 ml) 

of the receiver fluids were withdrawn at different time intervals (60, 120, 180, 240 and 300 

min) from the sampling port and were replaced with same volume of fresh SLF. The amount 

of FBP and FBP sodium permeated across the cornea was determined by the UV 

spectroscopy. Three corneas (n=3) were used for each of the formulations.  

 Statistical Analysis 

Student’s t test was applied to compare the data obtained from the dissolution experiments, 

PSA assays and permeation studies. ANOVA was applied for comparing the dissolution data 

of HβCD and gellan obtained from PSA assays. Statistical significant level was considered 

as p < 0.05. IBM® SPSS Statistics software, version 24 was used for the statistical analysis. 

 Results  

 Development of UV-Vis Spectrophotometric Method for the Estimation of FBP 

Scanning a diluted stock solution of FBP showed maximum absorbance at 247 nm. The 

absorbance of FBP standards were therefore measured at 247 nm and were plotted against 

the correspondent concentrations to produce a calibration curve (Figure 6.8). Correlation 
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coefficient (R2) was used to determine the linearity of the analytical procedure. The method 

validation and represented data are presented in Table 6.4. 

 

Figure 6.8: Calibration curve of FBP prepared in SLF (pH 7.5) and measured at 247 

nm. Values represent mean ± SD (n=3) 

Table 6.4: Evaluation and method validation data of UV spectroscopic method of FBP  

Range(µg/ml) 0.05 to 0.5 

Regression equation y= 0.0746x+0.0025 

Correlation Coefficient 0.9896 

LOD (µg/ml) 0.027 

LOQ (µg/ml) 0.08 

Accuracy RSD < 8% 

Precision RSD < 9% 

 



181 

 

 Phase Solubility Studies 

To initially determine how HβCD influenced the solubility of FBP, phase solubility studies 

were performed. These experiments revealed that the solubility of FBP increased linearly 

with increased amount of HβCD (Figure 6.9). The solubility of FBP was 48.53 mM at 

maximum concentration of HβCD (137 mM or 20%) which was in good agreement with the 

reported solubility of FBP in phosphate buffer system (pH 7.4) by Felton et al., (2014). 

According to Higuchi and Connors, (1965), the graph was type A which indicated the 

formation of a soluble complex. The linear portion of the graph (R2=0.993) indicated AL 

type and allowed the assumption that a 1:1 inclusion complex of FBP-HβCD was present in 

the media. Based on Ocufen® (0.03% FBP sodium), 0.029% FBP was selected as the 

concentration used in the test formulations. Although it was apparent that any concentration 

of HβCD ranging from 3.4 (0.5%) to 137 mM (20%) was able to solubilize 1.23 mM of FBP, 

the time taken for this to occur varied considerably. At concentrations above 34.2 mM (5%) 

HβCD, solubilisation took approximately 30 minutes whereas at concentrations less than 

34.2 mM required stirring overnight to fully solubilise the FBP. Therefore, further 

experiments were performed using 68.5 mM (10%) and 137 mM (20%) of HβCD. 
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Figure 6.9: FBP solubility as a function of HβCD 

 Interaction Studies between HβCD and Gellan  

Oscillatory rheological analysis was performed to evaluate the in situ gelling behaviour of 

gellan in contact with SLF and in presence of different concentration (0.5%, 1%, 2%, 5% 

and 10%) of HβCD (Figure 6.9). A sample of 0.4% gellan (w/v) was used as a control and 

Gʹ and Gʺ was measured as a function of time using the rheo-dissolution cell according to 

the experimental setup in 5.3.6. On exposure to SLF, 0.4% gellan showed rapid onset of 

gelation within first 2 min (Figure 6.10A). The Gʹ value at the end of the test (after 30 min) 

was ̴ 320 Pa and Gʹ was significantly dominant over Gʺ throughout the test. Addition of 

increasing concentration of HβCD (0.5, 1, 2, 5 and 10%) to the gellan solution did not alter 

the rheological characteristics of gellan in terms of onset of gelation and average final gel 

strength of 312 Pa ± 56.89 indicated an absence of physical interactions between gellan and 

HβCD. 
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Figure 6.10: In situ gelation of 0.4% gellan showing Gʹ and G" on exposure to SLF (A) 

0.4% gellan only and in presence of (B) 0.5% (C) 1% (D) 2 % (E) 5% and (F) 10% 

HβCD performed at 0.5% strain, 1 rad/s frequency and 25ºC 
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 Confirmation of Complexation by DSC 

Thermal analysis was conducted to confirm the complexation of FBP- HβCD with gellan 

(Figure 6.11). Pure FBP showed a single and sharp endothermic peak at 117.28°C (figure 

6.11A) (enthalpy 48.21j/g) and no melting transitions were observed for gellan (Figure 

6.11C) and HβCD (Figure 6.11B) as expected. The well recognized melting transition of 

FBP appeared in the physical blends of FBP- HβCD (Figure 6.11D) and FBP- HβCD with 

gellan (Figure 6.11E).  

Melting endotherms were absent in the freeze-dried samples (Figure 6.11F and G). It has 

been reported that pure FBP is crystalline in nature (Abdel-Aziz et al., 2012) as shown in 

figure 6.11A and there is no evidence of any crystallisable material in the complex. 

However, absence of any glass transition exothermic peaks in the freeze dried samples 

(Figure 6.11F and G) confirms that the absence of melting transition of FBP is due to the 

formation of an inclusion complex and not due to transforming into the amorphous solid 

after freeze drying.  



185 

 

 

Figure 6.11: DSC thermogram of (A) FBP (B) HßCD (C) gellan (D) physical mix of 

FBP and HßCD (E) physical mix of FBP, HßCD and gellan (F) freeze dried formulation 

of FBP and HßCD (G) freeze fried formulation of FBP, HßCD and gellan 

 Simultaneous Determination of Rheology and Dissolution of the Drug (Rheo-

Dissolution Study) 

Once the formulations of FBP-HβCD and gellan were exposed to SLF, gelation occurred. A 

rapid increase of Gʹ and Gʺ was observed over first 10 min of the exposure. The modulus 

reached a steady state once gelation was complete and Gʹ remained higher than Gʺ 

throughout the remainder of test in both formulations (Figure 6.12A and B). The release data 

for FBP indicated initial release with 26% (± 5.64) FBP released over the first 60 min for 

the formulation containing 10% HβCD.  
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Figure 6.12: Simultaneous determination of rheological changes (Gʹ and G") and drug 

release study of the formulations containing 0.029% FBP, 0.4% gellan and (A) 10% 

HβCD (B) 20% HβCD performed at 0.5% strain, 1 rad/s frequency and 25ºC 

The release of FBP followed a similar trend even after complete gelation and 97 % (± 4.52) 

FBP was released at 300 min (Figure 6.12A). In comparison, the release from the 20% 

HβCD formulation released much less at 300 min (79.11 ± 15.75%) (Figure 6.12B) although 

the initial release was almost similar (29.51 ± 7.22%) to the formulation containing 10% 

HβCD (26.00 ± 5.64%) (Figure 6.12A). 
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 Development of Phenol-Sulphuric Acid (PSA) Method for Carbohydrate 

Analysis 

A calibration curve was generated for the PSA assay to determine total carbohydrate in the 

sample. Five different standards were prepared from the stock solution ranging from 10 to 

100 µg/ml and were measure spectrophotometrically at 490 nm wavelength. The required 

amount of 5% phenol solution and concentrated sulphuric acid were added to the standards 

before the measurement.  

 

Figure 6.13: Calibration curve of D-glucose measured at 490 nm. All data represent 

mean ± SD (n=3)  

All the absorbance measurements were taken in triplicate. The mean absorbances of the 

standards were then plotted against the respective concentration to generate a calibration 

curve (Figure 6.13). Table 6.5 shows the evaluation data of UV spectroscopic method for 

the determination of carbohydrate measured at a wavelength of 490 nm.  
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Table 6.5: Evaluation data of UV spectroscopic method for PSA assay 

Range(µg/ml) 10 to 100 

Regression equation y= 0.0098x+0.0164 

Correlation Coefficient 0.99 

LOD (µg/ml) 1.05 

LOQ (µg/ml) 3.29 

Accuracy and Precision RSD < 2% 

 

 HβCD Dissolution Studies  

Release of HβCD from the in situ gel forming formulation containing varying concentration 

of HβCD (10% and 20%) was quantified using PSA assay method (Figure 6.14). 

Rheological analysis showed a sharp increase of the moduli values on exposure to SLF. 

After complete gelation, both moduli reached a steady state and remained same until the end 

of the experiments. Gʹ was visibly dominant over Gʺ for both formulations throughout the 

experiments (Figure 6.14A and B). The initial release of HβCD from the formulation 

containing 10% HβCD was 430.32 mg/ml (± 27.38) which increased gradually and reached 

859.04 (± 27.19) mg/ml by the end of the test (300 min) (Figure 6.14A). 
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Figure 6.14: Simultaneous determination of rheological changes (Gʹ and G") and 

HβCD release study of the formulations containing 0.029% FBP, 0.4% gellan and (A) 

10% HβCD (B) 20% HβCD performed at 0.5% strain, 1 rad/s frequency and 25ºC 

The release of HβCD from the formulation containing 20% HβCD (Figure 6.14B) showed 

initial burst release (322.73 mg/ml ± 44.90) at 60 min which increased to 603.18 mg/ml (± 

166.63) HβCD release at the end of the test (300 min). 
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 Gellan Dissolution Studies 

A blank rheo-dissolution analysis was also performed with 0.4% gellan. The samples were 

analysed using PSA assay to examine the presence of gellan in the withdrawn sample (Figure 

6.15). This experiment was conducted to evaluate potential interference of gellan in the 

HβCD release data.   

 

Figure 6.15: Simultaneous determination of rheological changes (Gʹ and G") and 

gellan release from the formulation containing 0.4% gellan performed at 0.5% strain, 

1 rad/s frequency and 25ºC 

The modulus raised rapidly upon exposure to SLF as expected and maintained a steady state 

after complete gelation. The release of gellan from the formulation was low throughout the 

experiment. Only 3.64 mg/ml (±0.88) of gellan was detected at 60 min which increased to 

only 41.61 ± 7.73 mg/ml at 300 min.  
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 Ex-vivo Permeation Studies Using Porcine Cornea 

The ex-vivo permeation studies of the formulation containing 10% HβCD and Ocufen® 

highlighted significantly (p < 0.05) higher percentage of permeation of FBP from the 

formulation containing 10% HβCD and 0.4% gellan compared to FBP sodium of Ocufen®. 

Permeation of FBP was 17.57% (± 4.93) at 60 min while 11.60% (± 1.17) of FBP sodium 

permeated through the porcine cornea in the same time. Permeation of FBP and FBP sodium 

increased gradually and at 300 min, 55.94 ± 7.85 % of FBP permeated whereas permeation 

of FBP sodium was only 37.35 ± 4.15 %.  

 

Figure 6.16: Percentage of FBP permeated from the formulations containing 0.029% 

FBP with 10% HβCD and 0.4% gellan compared with the commercial product 

Ocufen® containing 0.03% FBP sodium (n=3) 

 Discussion 

The concentration of CD used is 10% to 30% in the majority of CD based commercialized 

eye drops and eye drop formulations which have been used for clinical evaluation (Kearse 

et al., 2001; Okamoto et al., 2010; Tanito et al., 2011; Loftsson et al., 2012; Mohamed-

Ahmed et al., 2017). In the present study, 10% and 20% HβCD were selected as 
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concentrations to be used in the in situ gelling formulations of FBP and gellan.  Although 

the phase solubility studies confirmed the solubilisation of 0.029% w/v of FBP by the 

addition of 0.5% to 20% HβCD (Figure 6.9), 10% and 20% were selected based on the time 

required for the solubilisation to take place.  

Rheological behaviour of in situ gelling polymers is an important factor when designing a 

successful in situ gel forming drug delivery systems. Gellan was chosen as an in situ gelling 

polymer because of its ability to form strong and clear gels on exposure to physiological ion 

concentrations. (Robinson et al., 1991; Hägerström, 2003). Rheological analysis of 0.4% 

gellan alone and with HβCD was performed to observe any changes in gelation behaviour 

of gellan influenced by HβCD. It was clear from the data that addition of increasing 

concentration of HβCD (0.5, 1, 2, 5 and 10%) did not alter the rheological characteristics of 

gellan in terms of onset of gelation and final gel strength (Figure 6.10).  

When the formulations were subjected to thermal analysis, the well-recognized melting 

transition of FBP in the physical blends (without freeze drying) indicated incomplete 

complexation by HβCD (Figure 6.11). Melting endotherms however, were completely 

absent from the freeze dried samples and it has been discussed previously (6.5.4) that FBP 

is crystalline in nature, so there was less possibility that melting transitions were absent due 

to the state of the drug (amorphous). However, the absence of these peaks indicated complete 

inclusion complexation of FBP-HβCD (Felton et al., 2014). The appearance of the melting 

endotherm of FBP in the physical mix with HβCD and gellan; and the absence of the melting 

endotherm in the freeze dried complex containing gellan indicated that gellan did not 

interfere with the complex formation. 

Simultaneous determination of rheology and drug dissolution was conducted for the 

formulations containing 10% and 20% HβCD (Figure 6.12). Both formulations exhibited 
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similar rheological behaviour upon exposure to SLF. Release of FBP from the in situ gel is 

thought to be controlled by two parallel mechanisms. FBP- HβCD complex diffused through 

the gellan gel and then FBP dissociated from the complex to dissolve into the medium 

(Figure 6.17). The amount of drug dissolved depends on the concentration of HβCD. The 

percentage of dissolved FBP was greater on the terminal point when there was 10% HβCD, 

which was due to increased amount of free drug in the formulation. 

 

Figure 6.17: Schematic representation of diffusion of FBP- HβCD complex through the 

gel and dissociation of FBP from the complex 

It is thought that the surface of the gel was saturated with drug and there was an equilibrium 

between free drug and bound drug. The unbound FBP diffused through the gel along with 

the complex. So the free FBP and the dissociated FBP resulted in 97% release in 300 min. 

The release of FBP from the formulations containing 10% and 20% HβCD was not 

significantly different (p > 0.05). However, the lower release (~79%) observed at 300 min 

for the formulation containing 20% HβCD compared with the formulation containing 10% 

HβCD (~97%) was probably due to saturation of excess HβCD at the surface of the gel and 

absence of unbound FBP.  
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The PSA analysis showed significantly (p < 0.05) higher release of HβCD from the 

formulation containing 10% (Figure 6.14A) compared to the formulation containing 20% 

HβCD (Figure 6.14B). This can be explained by the tendency of CDs and their complexes 

to self-associate and form aggregates in aqueous solutions. CDs self-assemble and form 

small clusters that aggregate again and form larger clusters (Figure 6.18). The aggregates 

usually have a diameters between 20 to 200 nm and the size of the aggregates increase with 

increasing the concentrations of CDs (Loftsson et al., 2004). It has been reported that 

formation of the largest aggregates can reach up to several micrometres in diameter and are 

observed in βCDs (Messner et al., 2010). Intermolecular hydrogen bonding between the OH 

groups of CDs and surrounding water molecules is the driving force for assembly and further 

aggregation of the molecules. However, there is a possibility that larger CD aggregates 

formed at high concentration of HβCD (20%) obstructed diffusion through the gellan and 

resulted in reduced HβCD release into the medium. A blank rheo-dissolution analysis 

performed with 0.4% gellan (Figure 6.15) suggested a negligible amount of gellan release 

(41.61 ± 7.73 mg/ml) into the medium which can be an indication of gellan not interfering 

the HβCD release data.  

 

Figure 6.18: Schematic presentation of self-assembling of CD molecules to form small 

clusters that associate to create larger aggregates 
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The permeation study (Figure 6.16) highlighted that the percentage of FBP permeated 

through the porcine cornea was significantly (p < 0.05) higher in the case of the formulation 

containing HβCD and gellan compared with that of Ocufen®. This can be explained by the 

unique ability of CDs’ to enhance drug permeability through biological membranes. They 

act as true carriers by keeping the poorly soluble hydrophobic drug molecule inside their 

cavity and delivering them to the surface of biological membranes (Loftsson, 1998). The 

FBP- HβCD inclusion complex diffused through the in situ gel to the surface of the cornea 

and FBP dissociated from the complex to permeate through the cornea.  

It is well known that free acid drug can permeate faster than the equivalent salt forms 

(Minghetti et al., 2007) which can be explained by changing the degree of ionization. When 

drug and solution has the same pKa, 50% of the drug exists ionized. The state of ionization 

changes as the pH of the solution changes. As the pH of the solution containing FBP sodium 

(Ocufen®) was 6.68, which was higher than pKa of FBP (4.22), more than 99% FBP was 

expected to be ionized as it is an acidic drug. Therefore, the compounds became less able to 

pass through the membrane due to being less lipophilic compared with the unionized 

compounds when the pH was close to the pKa (Hale and Abbey, 2017). Furthermore, the 

buffering action of lacrimal fluid in vivo depends on its chemical buffering capacity which 

is 16.61 mEq/pH/L. So it can be assumed that 25-30 µl (approximate instillation into the 

eye) formulation of pH 4.32 will not interfere with the physiological pH of 30 µl (maximum 

volume of tear fluid in cul-de-sac) lacrimal fluid and the in situ gelling formulation of FBP-

HβCD inclusion complex will not cause any irritation in the eye surface due to any pH 

disturbance. 
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 Conclusion 

This study has demonstrated a method of developing an in situ gel forming ophthalmic 

formulation of a poorly soluble drug (FBP) by forming inclusion complex with HβCD. 

Formation of the inclusion complex enhanced the solubility of FBP and allowed addition of 

gellan in order to form in situ gelling delivery system. Data obtained using rheo-dissolution 

revealed that the formulation containing 10% HβCD released 97% FBP in 5 hours. 

Comparative permeation studies indicated improved permeation of FBP as a complex 

compared with the sodium salt of FBP. All the data obtained indicated that gellan did not 

interfere with the complex formation and the complex diffused successfully through the in 

situ gel. Thus, this particular poorly soluble drug can be included without the salt form in 

the in situ gelling system by forming an inclusion complex with HβCD whilst also increasing 

corneal permeation. 
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7 Chapter 7: Conclusions and Future 

Recommendations 

The purpose of this research was to develop a novel technique to simultaneously analyse the 

rheological changes and dissolution of drug from in situ gelling formulations on exposure 

to the physiological fluids and gain a better understanding of in situ gelling drug delivery 

systems. A rheo-dissolution cell was developed to replace the lower plate of conventional 

rheometer that would enable in situ gelling formulations to be exposed to physiological 

fluids during rheological measurements. This cell was connected to a peristaltic pump to 

allow the physiological fluid to flow beneath the gelling sample and contained a sampling 

port so that samples of the fluid could be analysed during rheological measurements. 

An in situ gel forming ophthalmic formulation of gellan and TM was used to evaluate the 

rheo-dissolution cell where SLF was used as crosslinking ion solution. The technique was 

also investigated for an oral formulation of alginate and MNZ to assess the ability of the cell 

to perform rheo-dissolution when changing the chemical environment (changed pH). 

Finally, an in situ gelling ophthalmic formulation of a poorly soluble drug was prepared by 

CD complex formation with a focus on permeability enhancement following assessment 

using rheo-dissolution.  

The following sections provide a summary of each experimental study. 

 Development and Rheological Evaluation of an In Situ Gel Forming Ophthalmic 

Formulation 

Chapter 4 highlighted the development and rheological analysis of an in situ gelling 

ophthalmic formulation which was prepared based on the marketed product Timoptol LA®. 

Oscillatory rheological analysis of gellan (0.4%) alone and gellan in SLF (pH 7.5) were 
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performed to evaluate the impact of ions on the gelation property (in terms of Gʹ and Gʺ) of 

gellan. Strain sweeps, frequency sweeps and temperature sweeps showed the evidence of 

strong gel (Gʹ > Gʺ) formation. Oscillatory rheological analysis was also performed for the 

formulation of gellan-TM (pH 4.5) which highlighted an interaction between gellan and TM 

by increasing the firmness of gel even without the presence of ions. This could be explained 

by the positively charged amino group of TM which interacted electrostatically with anionic 

gellan to form strong gel. In addition, a drug release study was performed using the rheo-

dissolution cell which acted as a modified dissolution apparatus. The release study revealed 

that only 48 % TM was released from the formulation after 5 hours and the release curve 

had reached a plateau. This further supported the explanation of electrostatic interactions 

between the gellan and the TM at pH (4.5). Rheological measurements and a release study 

was also performed at pH 10 (when the amino group was unionized) which confirmed the 

interaction further by forming a relatively weak gel and releasing increased amount of TM 

(57 % at 5 hour). In this case, there was some evidence of gelation occurring, probably due 

to the fact that at pH 10 the TM still retains a small amount of charge. Replacing gellan with 

non-ionic polysaccharide agarose provided additional support to the results by releasing 67 

% TM in 5 hours. Previous reports on incomplete release of charged drugs in presence of 

oppositely charged molecules also supported the finding of the existence of electrostatic 

interaction. However, there are also potential hydrophobic interactions and hydrogen 

bonding between gellan and TM which could play further roles in the incomplete release of 

TM. So, besides revealing the rheological behaviour of gellan in presence of ions and release 

of drug from the in situ gelling formulation of gellan, the study also showed the importance 

of considering drug-polymer interaction when designing a formulation with charged 

polysaccharides and oppositely charged drug.  
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 Development of a Model for Simultaneous Measurement of Rheology and 

Dissolution for In Situ Gel Forming Drug Delivery Systems 

Chapter 5 focussed on developing an in vitro model using the rheo-dissolution cell which 

allowed rheological measurements during gelation and sampling of release media at the 

same time to enable the analysis of drug release. The in vitro model was developed using an 

experimental setup where the rheo-dissolution cell filled with crosslinking ion solutions 

acted as the lower plate of a rheometer and was attached to a circulating peristaltic pump to 

facilitate sampling. Ophthalmic (gellan and TM) and oral (sodium alginate and MNZ) in situ 

gelling formulations were used to demonstrate the power of this novel technique. Rheo-

dissolution experiments of in situ gel forming ophthalmic formulations on exposure to the 

SLF (pH 7.5) showed rapid release of TM at early structuring phase of gelation and release 

slowed down when gel was completely structured. This phenomenon was observed in the 

formulations containing low concentrations (0.3% and 0.4%) of gellan, whereas in the 

formulations containing higher gellan concentrations (0.6% and 0.8%), the release was slow 

even at the beginning of the test especially when 0.8% gellan was used in the formulation. 

This can be explained by formation of strong gel at the onset of test because of high gellan 

concentration. However, beside gel strength, the electrostatic interaction between gellan and 

TM was thought to be another factor to control the release of TM from in situ gel.  

Rheo-dissolution studies were also performed for in situ gelling oral formulations of sodium 

alginate and MNZ where the dissolution media was SGF. The alginate formed a strong gel 

once exposed to SGF (pH 1.2) and slow release (53 % in 7 hour) of MNZ was observed 

when the moduli plateaued. To demonstrate the feasibility of changing the chemical 

environment during the course of an experiment, the pH of the media was raised to 8 which 

caused the dissolution of the alginate gel indicated by falling moduli which interestingly 

coincided with a dramatic increase of MNZ release (96 % released in 7 hour). Solubility 
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tests of MNZ performed at pH 1.2 and 8 confirmed that the rapid release of MNZ was a 

result of gel degradation rather than a solubility effect.  

 Formulating an In Situ Gelling System of a Poorly Soluble Drug for Optimizing 

Ophthalmic Delivery 

This chapter focused on increasing the permeability of a poorly soluble drug by preparing a 

drug-CD inclusion complex and incorporating it into an in situ gelling polymer solution. 

This work highlighted the difficulties of adding a salt form of a poorly soluble drug in an in 

situ gelling formulation when ionotropically gelling polymers such as gellan are used. FBP 

was used as a poorly soluble drug in this work, which is commercially available as the 

sodium salt form in Ocufen® eye drops (0.03% FBP sodium). To avoid gelation in the 

presence of salt before administration and to increase the solubility of the FBP (0.029%), 

FBP-HβCD inclusion complex was prepared by adding the drug to 10% and 20% HβCD 

solutions. These solutions were then added to a gellan (0.4%) solution to formulate an in 

situ gelling ophthalmic formulations (pH 4.30-4.32). Thermal analysis confirmed the FBP-

HβCD complexation formation by showing the disappearance of melting transition of FBP 

in freeze-dried formulations. Rheo-dissolution experiments showed rapid onset of gelation 

followed by strong gel formation when exposed to SLF. The release of FBP was higher (97 

% at 300 min) for the formulation containing 10% HBCD compared to the formulation 

containing 20% HBCD (79 % at 300 min). Diffusion of the FBP-HβCD complex through 

the in situ gel and dissociation of FBP from the complex to release into the medium were 

thought to be the parallel mechanisms of FBP release. Reduced release of FBP from the 

formulation containing 20% HβCD could be a result of absence of any unbound FBP and 

saturation caused by excess HβCD concentration. The PSA assay revealed a decreased 

release of HβCD from the formulation containing 20% HβCD (603 mg/ml) compared with 
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the amount released from the formulation containing 10% HβCD (859 mg/ml) which can be 

explained by the tendency of HβCD to aggregate at high concentration (20%) disrupting 

HβCD release. The permeation study showed the ability of CDs’ to increase the permeability 

through a corneal model, with 56 % of FBP permeated at 300 min when the formulation 

contained CD, while only 37 % of FBP sodium permeated in the same amount of time. This 

can be explained by the salt form of FBP having less ability to pass through a lipophilic 

membrane compared with the free acid (Hale and Abbey, 2017). The pH (6.68) of the 

solution containing FBP sodium was higher than the pKa of FBP (4.22) which caused more 

than 99% of FBP to become ionized and ionized compounds are less lipophilic to pass 

through the membrane.  

 Future Work  

This work has demonstrated a novel technique to simultaneously measure rheology and drug 

release of polymeric in situ gelling systems on exposure to different physiological fluids. 

There are several potential areas in this work where future works could be extended. An 

interesting area of this thesis is the electrostatic interaction between negatively charged 

gellan and positively charged TM which had impact on release of TM. However, there could 

be also presence of hydrogen bonding and hydrophobic interactions, which further 

influenced the incomplete release behaviour of TM. To explore this further, future work 

could be performed on analysing the interaction in depth by using calorimetric studies, 

which will show the melting transition of gellan in presence and absence of TM in both the 

ionized and unionized states of the amino group of TM. The gellan and TM interactions 

could also be explored using pulsed-gradient spin-echo NMR where a stimulated echo 

sequence is used to analyse the self-diffusion of TM in presence and absence of gellan 

(Pygall et al., 2011). Furthermore, different charged polysaccharides (for example, sodium 
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alginate, к and ι-carrageenan) could be investigated with TM to evaluate how the drug 

polymer interaction influences the rheological behaviour and release performance. 

This work also showed the potential of the novel technique to measure gelation and drug 

release simultaneously on exposure to different physiological fluids. This technique allows 

the user to change the chemical environment during the course of an experiment and has the 

ability to perform rheo-dissolution in the changed environment. Changing of the chemical 

environment during experiments will no doubt add a new dimension for many industrial 

applications where there is a need to understand or develop gels that form or degrade in 

response to changing chemical environments. For future work, it would be interesting to 

investigate other physiological fluids as crosslinking media (for example; lung fluid, saliva) 

to perform rheo-dissolution studies with a range of in situ gelling formulations. Also, the 

design of the rheo-dissolution cell could be modified in a few ways, such as attaching the 

mesh with a magnetic wire to the surface of the cell to make the mesh more secure, 

connecting to a water jacket heater to control the temperature during the experiment. This 

system could be developed further by connecting to a UV spectrophotometer in a similar 

manner to commercially available semi-automated dissolution testing apparatus. 

This work has also demonstrated a method of increasing the corneal permeability of a poorly 

soluble drug by formulating an in situ gelling ophthalmic formulation of drug-CD complex. 

This work could be expanded to investigate other poorly soluble drug-CD complexes (such 

as, ketoprofen, naproxen and ibuprofen) to develop other in situ gelling ophthalmic 

formulations. Additionally, another challenging and interesting work could be done by 

attaching the porcine cornea to the surface of the mesh of the rheo-dissolution cell so that 

the formulation could be added on the top of cornea before starting the rheological 

measurement. This would allow monitoring real time gelation of the formulations on contact 

with a cornea and sampling of the permeated drug into the media during rheological analysis. 
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This would give a more realistic insight into the behaviour of in situ gelling ophthalmic 

formulations and provide an additional tool for utilization in the development of new in situ 

gelling delivery systems. Furthermore, this technique could be used beyond pharmaceutical 

industries, wherever there is a need for understanding permeability through biological 

tissues, for example in biomedical sciences and diagnostics.  
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