4

University of Huddersfield

University of Huddersfield Repository

Mengheres, Gabriel

Novel Analogues of Isoflavones as Potential Anti-Inflammatory Drugs for the Treatment of Neurodegenerative Disorders

Original Citation

Mengheres, Gabriel (2019) Novel Analogues of Isoflavones as Potential Anti-Inflammatory Drugs for the Treatment of Neurodegenerative Disorders. Doctoral thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/35345/
The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

NOVEL ANALOGUES OF ISOFLAVONES AS POTENTIAL ANTI-INFLAMMATORY DRUGS FOR THE TREATMENT OF NEURODEGENERATIVE DISORDERS

GABRIEL MENGHEREȘ

A thesis submitted to the University of Huddersfield in partial fulfilment of the requirements for the degree of Doctor of Philosophy

The University of Huddersfield

Copyright statement

i. The author of this thesis (including any appendices and/or schedules to this thesis) owns any copyright in it (the "Copyright") and s/he has given The University of Huddersfield the right to use such copyright for any administrative, promotional, educational and/or teaching purposes.
ii. Copies of this thesis, either in full or in extracts, may be made only in accordance with the regulations of the University Library. Details of these regulations may be obtained from the Librarian. This page must form part of any such copies made.
iii. The ownership of any patents, designs, trademarks and any and all other intellectual property rights except for the Copyright (the "Intellectual Property Rights") and any reproductions of copyright works, for example graphs and tables ("Reproductions"), which may be described in this thesis, may not be owned by the author and may be owned by third parties. Such Intellectual Property Rights and Reproductions cannot and must not be made available for use without the prior written permission of the owner(s) of the relevant Intellectual Property Rights and/or Reproductions

In loving memory of my father

Table of Contents

Abstract 6
Acknowledgements 7
List of abbreviations 8
Chapter 1 Introduction 11
1.1 General aspects about isoflavones 12
1.2 Occurrence of the isoflavones in nature 13
1.3 Biosynthesis of the isoflavones 16
1.4 Synthesis of the isoflavones 17
1.5 Isoflavones as intermediates for organic chemistry 23
1.6 Pharmacological properties of the isoflavones 26
1.7 Isoflavones in materials 32
1.8 General aspects of pharmacophores employed 34
1.8.1 1,2,4-Oxadiazole 34
1.8.2 Benzodiazepine 35
1.8.3 1,2,3-Triazole 36
1.8.4 β-Sultam 37
1.8.5 Benzosultam 38
1.9 Project goals 39
Chapter 2 Results and discussion 40
2.1 Chemistry 40
2.1.1 Synthesis of simple isoflavones 40
2.1.1.1 Synthesis of simple isoflavones using the deoxybenzoin route 40
2.1.1.2 Synthesis of simple isoflavones using the Suzuki-Miyaura cross-coupling reaction 49
2.1.1.3 Synthesis of other simple isoflavones or derivatives 57
2.1.2 Synthesis of isoflavone/1,2,4-oxadiazole hybrids 62
2.1.3 Synthesis of isoflavone/1,2,3-triazole and of isoflavone/1,2,3-triazole/benzodiazepine hybrids 67
2.1.4 Synthesis of isoflavone/ β-sultam hybrids 71
2.1.5 Synthesis of isoflavone/benzo-ס-sultam hybrids 76
2.1.6 Synthesis of ester and carbamate ester derivatives of some isoflavones 80
2.1.7 Synthesis of some other hybrid derivatives of isoflavones 82
2.1.8 Conclusion 83
2.2 Pharmacology 84
2.2.1 Pharmacological studies 84
2.2.1.1 Cell viability 86
2.2.1.2 NO production 86
2.2.1.3 TNF- α production 88
2.2.1.4 In silico prediction of some pharmacokinetic properties for synthesised compounds 88
2.2.2 Conclusion 99
2.2.3 Materials and methods 99
2.2.3.1 Materials 99
2.2.3.2 Cell culture 100
2.2.3.3 Determination of cell viability by XTT Assay 100
2.2.3.4 Determination of NO production by Griess Assay 102
2.2.3.5 Determination of TNF- α by ELISA 102
2.3 Future work. 104
Chapter 3 Experimental 105
3.1 General chemistry methods 105
3.2 Synthesis of compounds and experimental data. 105
3.2.1 Synthesis of simple isoflavones 105
3.2.1.1 Synthesis of simple isoflavones using the deoxybenzoin route 105
3.2.1.2 Synthesis of simple isoflavones using the Suzuki-Miyaura cross-coupling reaction 119
3.2.1.3 Synthesis of other simple isoflavones or derivatives 133
3.2.2 Synthesis of isoflavone/1,2,4-oxadiazole hybrids 148
3.2.3 Synthesis of isoflavone/1,2,3-triazole and of isoflavone/1,2,3-triazole/ benzodiazepine hybrids 163
3.2.4 Synthesis of isoflavone/ β-sultam hybrids 184
3.2.5 Synthesis of isoflavone/benzo- δ-sultam hybrids 208
3.2.6 Synthesis of ester and carbamate ester derivatives of some isoflavones 220
3.2.7 Synthesis of some other hybrid derivatives of isoflavones 224
Chapter 4 References 226

Screening of the compounds on LPS-activated BV2 microglia cells showed a decrease in nitrite production and good cell viability for most of the compounds. Subsequent TNF- α inhibitory activity for the most active compounds with cell viability $\geq 80 \%$, and NO production $\leq 40 \%$ revealed a triazole derivative as the most active compound with a TNF- α production of 18% at $20 \mu \mathrm{M}$. The structure-activity relationship suggests that the presence of a hydroxyl and/or chloroalkyl group is beneficial for the anti-inflammatory activity.

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Dr Karl Hemming, for entrusting me this project and being a great mentor. With his kindness, patience and guidance, he helped me grow and become a better chemist and person. I am grateful for his valuable support and encouragement during my PhD, and for always finding time to answer my questions and to talk about this project.
A very special gratitude goes to my co-supervisor, Dr Olumayokun Olajide, for his support, guidance and constructive discussions. Under his excellent supervision I tested the synthesised compounds, which helped me develop new skills and become a versatile scientist.
I am deeply grateful to my fellow colleagues in the Hemming group and the Olajide group, and all the people working in JPW2/61, JPW2/73, JPW2/68, JPW1/68 and JPS2/31, for all the amazing talks, laughs and helpful advices. It was awesome sharing the labs and offices with all of you. A special thanks goes to: Dr Muslih Hamasharif, for jokes and guidance; Dr Heidi Joao, for support and encouragement; Umair Tariq, for support and kindness; Mohammad Alyassin, for encouragement and helpful advices; Orlando De Azevedo, for chess games and scientific discussions; and Izabela Lepiarz, for sharing her knowledge and teaching me how to cell culture.

I am thankful to Dr Neil McLay, Dr Jack Blackburn and Dr Sean Ward for NMR and MS data collection. I would like to thank Urfan Sabir, Hayley Markham, chemistry, biology and pharmacology technicians for the technical support, and the SAS Research Admins and the Student Support Office for their administrative help and advices. Also, I would like to thank the School of Applied Sciences staff and all the people I met throughout my PhD at the university for guiding me and for the warm and pleasant atmosphere created. I am deeply grateful to the University of Huddersfield for the scholarship I was awarded to do my PhD research and the facilities I used.

Most sincere thanks are expressed to my amazing wife and family, for their love, support, encouragement and prayers. To my wife, Alexandra, for being my light and power. To my mother, for always inspiring me and loving me unconditionally. To my father, for his jokes and showing me how to be a better person. To my brothers and sisters, for caring me and pushing me in the right direction. You will always be in my heart. A very special thanks goes to my friends, for being there for me and contributing to my happiness through talks, jokes and trips.

Many thanks to all of you for making me a better person and making this journey an awesome one.

List of abbreviations

Abbreviation	Meaning
${ }^{13} \mathrm{C}$-NMR	Carbon-13 Nuclear Magnetic Resonance
${ }^{1} \mathrm{H}-\mathrm{NMR}$	Proton Nuclear Magnetic Resonance
A β	amyloid beta
Ac	acetyl
AD	Alzheimer's disease
AChE	acetylcholinesterase
BACE1	β-secretase, memapsin 2, Asp2, beta-site amyloid precursor protein cleaving enzyme 1
BBB	blood-brain barrier
$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$	boron trifluoride diethyl etherate
brs	broad singlet
BuChE	butyrylcholinesterase
COX-2	cyclooxygenase 2
CNS	central nervous system
CSA	D-camphor-10-sulfonic acid
d	doublet
DCM	dichloromethane
dd	doublet of doublets
$\mathrm{ddH}_{2} \mathrm{O}$	double-distilled water
DHP	3,4-dihydro-2H-pyran
DME	1,2-dimethoxyethane
DMF	N, N-dimethylformamide
DMF-DMA	N, N-dimethylformamide dimethyl acetal
DMSO	dimethyl sulfoxide
DPBS	Dulbecco's phosphate-buffered saline
dppf	1,1'-bis(diphenylphosphino)ferrocene
dt	doublet of triplets
EC50	half maximal effective concentration
EDG	electron donating group
EDTA	ethylenediaminetetraacetic acid
ELISA	enzyme-linked immunosorbent assay
ESI	electrospray ionisation
Et	ethyl
$\mathrm{Et}_{3} \mathrm{~N}$	triethylamine
EtOAc	ethyl acetate
EtOH	ethanol
ER	estrogen receptor
EWG	electron withdrawing group
FBS	fetal bovine serum
FC	flash chromatography
FT-IR	Fourier Transform Infrared Spectroscopy
HRMS	high resolution mass spectrometry
Hz	hertz

IC_{50}	half-maximal inhibitory concentration
IFA	isoflavone aglycone
IFG	isoflavone glucoside
IR	infrared
J	coupling constant
lit. mp	literature melting point
LPS	lipopolysaccharide
m	multiplet
m/z	mass to charge ratio
Me	methyl
MeCN	acetonitrile
MeOH	methanol
mg	milligram
MOM	methoxymethyl ether
mp	melting point
MS	mass spectrometry
MsCl	methanesulfonyl chloride (mesyl chloride)
NF-кB	nuclear factor kappa light chain enhancer of activated B cells
p38MAPK	P38 mitogen-activated protein kinase
PD	Parkinson's disease
$\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$	[1,1'-Bis(diphenylphosphino)ferrocene]dichloropalladium(II)
PE	petroleum ether $40-60^{\circ} \mathrm{C}$
PE/EtOAc	petroleum ether $40-60^{\circ} \mathrm{C} /$ ethyl acetate
Ph	phenyl
PGE2	prostaglandin E2
PMS	N-methyl dibenzopyrazine methyl sulfate
ppm	parts per milion
PPTS	pyridinium- p-toluenesulfonate
p-TsCl	p-toluenesulfonyl chloride
Py	pyridine
q	quartet
Rf	retention factor
ROS	reactive oxygen species
RPMI	Gibco ${ }^{\text {TM }}$ Roswell Park Memorial Institute
RT	room temperature
s	singlet
t	triplet
T75 flask	tissue culture flask with vent and a growth area of $75 \mathrm{~cm}^{2}$
TBAB	tetrabutylammonium bromide
TBAF	tetra- n-butylammonium fluoride
td	triplet of doublets
TEBAC	benzyltriethylammonium chloride
TFA	trifluoroacetic acid
THF	tetrahydrofuran
THP	tetrahydropyranyl
TLC	thin layer chromatography

TLR4	toll like receptor 4
TNF- α	tumor necrosis factor α
TrypleX	TrypLE $^{\text {TM }}$ Express Enzyme
XTT	2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide
δ	chemical shift (in ppm)

Chapter 1 Introduction

Neurodegenerative disorders are characterised by the progressive degeneration of the nervous system. The most common disorders are Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. Despite the continuous research in this area, currently, due to the complexity of neurodegenerative diseases, the drugs used in the treatment of these types of diseases do not stop or modify the course of any of them, only alleviate the symptoms. ${ }^{1-3}$ This same complexity leads to a large number of potential targets to treat these diseases, targets for which the underlying mechanism is still largely unknown. ${ }^{4}$ Thus, the development of new compounds able to treat the underlying disease and to stop or delay the progression of disease is needed. In this direction, isoflavones garnered a considerable interest due to their estrogen-like effects and the potential anti-inflammatory effects for inhibiting neuroinflammation in neurodegenerative disorders. ${ }^{5-8}$

Isoflavones are naturally occurring phytoestrogens and have been reported to exhibit antioxidant, ${ }^{9}$ anticancer, ${ }^{10}$ antibacterial, ${ }^{11}$ antimicrobial, ${ }^{12}$ anti-inflammatory, ${ }^{13}$ estrogenic, ${ }^{14}$ neuroprotective and many other activities. ${ }^{8,15}$ This multitude of beneficial effects is due the fact that isoflavones can mimic the effects of estrogen in the human body, and due to the intrinsic biological properties of isoflavones. ${ }^{14,16}$
An important role in neurodegenerative disease pathogenesis is occupied by neuroinflammation, considered to be caused to some extent by activated microglia. Microglia are activated by various noxious agents and release pro-inflammatory cytokines and other mediators, causing inflammation. Synthetic and naturally occurring isoflavones have been shown by several studies to exhibit anti-inflammatory activity and neuroprotective effects by inhibiting neuroinflammation in BV2 microglia, but there was no clear relationship between the chemical structure of the compounds and neuroprotective activity. ${ }^{7,8,17}$ Due to the complexity of the neurodegenerative diseases, the mechanism by which isoflavones gain their neuroprotective effects is not yet fully understood. Another factor that leads to the lack of information on the mechanism and effects of isoflavones in neurodegenerative diseases is that many studies were performed with plant extracts containing isoflavones or were performed using a low diversity of known natural and synthetic isoflavone derivatives. ${ }^{18,19}$
This project seeks to synthesise a variety of isoflavone analogues with potential anti-inflammatory and neuroprotective activity, to test the synthesised compounds on BV2 microglia, and to shed some light on structure-activity relationship of isoflavones to their neuroprotective activity. The isoflavones will be synthesised using some straightforward methods, the isoflavone core being decorated with a variety of functional groups or having attached/incorporated some known anti-inflammatory and neuroprotective N heterocycles such as 1,2,4-oxadiazoles, 1,2,3-triazoles, benzodiazepines and sultams. It is envisaged that the incorporation of N-heterocycles onto the isoflavone core will lead to more potent and specific drugs, with an increased permeability through the blood brain barrier and a favorable bioavailability and interaction with microglia.

1.1 General aspects about isoflavones

The isoflavones are part of the isoflavonoid subclass of the flavonoid class. Structurally, the isoflavones core contains fifteen carbon atoms, divided into two benzene rings (A and B) and a 4-pyrone ring (C). (B) ring is at position 3 of the 4-pyrone ring (C), this structurally differentiating isoflavones from flavones (Figure 1.1).

Figure 1.1. Chemical structure of isoflavone

The isoflavones are phytoestrogens, non-steroidal compounds similar to mammalian estrogens, able to bind to human estrogen receptor (ER). Due to the affinity in binding towards the ERa and ER β, two estrogen receptor subtypes, isoflavones exert both estrogenic and antiestrogenic effect, depending on tissue. ${ }^{20}$ Because phytoestrogens can mimic the action of estrogens in human body, they can exert many health benefits when used in some hormone-dependent diseases. Isoflavones, by mimicking the effects of estrogen in the brain, may improve cognitive functions and prevent cognitive decline. ${ }^{5}$ Not all the beneficial effects are necessarily due their estrogenic activity. The beneficial effects of this class of compounds depends also on their pharmacokinetic properties, such as absorption and distribution in the target tissue. ${ }^{14}$ The bioavailability, and, therefore, the biological activity is influenced by the form in which isoflavones occur. In nature the greatest dietary source of isoflavones is soy in which the isoflavones are present in four different forms: aglycone (IFA), isoflavone glucoside (IFG), acetylglucosides and malonylglucosides (Table 1.1). Due to the fact that they are highly polar, the absorption of glycosylated isoflavones in the human body is slower and in smaller amounts, which makes them have a lower biological activity compared to that of aglycones. ${ }^{21}$ In the gut mucosa and inner tissues, isoflavones are metabolized and converted to their corresponding sulfate, glucuronide and O-methyl conjugates via phase II metabolism. ${ }^{22}$ Because a lot of studies are made with isoflavones from soy extracts, in which there are present many other components (the activity could be due to the other components present in the extract), the results obtained in these studies are mixed and suggest a range of effects, including benefit, no effect and possible harm. ${ }^{23-25}$

Table 1.1. Isoflavones; glycosylated isoflavones and aglycones.

	Isoflavones	\mathbf{R}^{1}	\mathbf{R}^{2}	\mathbf{R}^{3}	R^{4}
Aglycones	Genistein Biochanin A Daidzein Formononetin Glicitein	$\begin{gathered} \mathrm{OH} \\ \mathrm{OCH}_{3} \\ \mathrm{OH} \\ \mathrm{OCH}_{3} \\ \mathrm{OH} \end{gathered}$	$\begin{gathered} \mathrm{OH} \\ \mathrm{OH} \\ \mathrm{H} \\ \mathrm{H} \\ \mathrm{H} \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \mathrm{H} \\ \mathrm{H} \\ \mathrm{H} \\ \mathrm{OCH}_{3} \end{gathered}$	
	Genistin	OH	OH	H	H
	Sissotrin	OCH_{3}	OH	H	H
	Daidzin	OH	H	H	H
	Ononin	OCH_{3}	H	H	H
	Glicitin	OH	H	OCH_{3}	H
	Malonil-genistin	OH	OH	H	$\mathrm{COCH}_{2} \mathrm{COOH}$
	Malonil-daidzin	OH	H	H	$\mathrm{COCH}_{2} \mathrm{COOH}$
	Malonil-glicitin	OH	H	OCH_{3}	$\mathrm{COCH}_{2} \mathrm{COOH}$
	Acetyl- genistin	OH	OH	H	COCH_{3}
	Acetyl- daidzin	OH	H	H	COCH_{3}
	Acetyl- glicitin	OH	H	OCH_{3}	COCH_{3}

1.2 Occurrence of the isoflavones in nature

Isoflavones are found in different plants, especially Leguminosae, either in the root, stem, fruit or flower. In nature, isoflavones are present as aglycones and glycosides. ${ }^{26,}{ }^{27}$ Most isoflavones are highly functionalised, and are O-substituted and/or have attached on ring (A) and/or (B) a prenyl group and/or a derivate.

One of the first isoflavones, isolated from dried rhizomes of Iris Florentina in 1893, was iridin (l.1, Figure 1.2). 2^{88} When hydrolysed using dilute alcoholic sulfuric acid at $80-100^{\circ} \mathrm{C}$, iridin decomposed to glucose and irigenin.

I. 1 Iridin

l. 2 Irigenin

Figure 1.2. Chemical structure of iridin and irigenin

Two interesting isoflavones containing fused bicyclic oxygen-heterocycles, Retamasin F and Retamasin G , were isolated from the chloroform extract of the aerial parts of Retama raetam (Leguminosae), next to four other isoflavones I.5-8 and four flavones (Figure 1.3). ${ }^{29}$ The isoflavones are 6 -prenylated derivatives, oxidised and cyclised to form different furano- and/or pyranoisoflavones. The isolated compounds were tested for their antidiabetic activity by isolated murine pancreatic islets (endocrine cells with an important role in glucose metabolism). Erysubin A ($200 \mu \mathrm{M}$) increased the secretion of insulin ca. 5-fold compared to control negative, and ca. 2-fold compared to Tolbutamide ($200 \mu \mathrm{M}$, drug used in type-2 diabetes).

I. 3 Retamasin F

I. 5 Retamasin H

1.7 Erysubin B

I. 4 Retamasin G

I. 6 Retamasin I

1.8 Erysubin A

Figure 1.3. Chemical structure of isoflavones isolated from Retama raetam.

Recently the first sulfonic acid-containing isoflavone 1.9 (Figure 1.4) was isolated next to some other flavonoids from the roots of Phyllanthus acidus, a deciduous tree used in folk medicine with a variety of beneficial properties in the human body, including anti-inflammatory and neuroprotective. ${ }^{30}$

1.9

Figure 1.4. Chemical structure of the sulfonic acid-containing isoflavone

Besides plants, bacteria and fungi are also a source of new and interesting isoflavones. It is believed that isoflavones extracted from bacteria and fungi originate in the nutrients used for their growth, such as
soybean flour or malt extract. ${ }^{31,32}$ Isoflavones may undergo changes in the host organism, thereby obtaining novel compounds with interesting properties. ${ }^{33}$

Eleven simple isoflavones l.10-20, mainly glycosides of daidzein and genistein (Figure 1.5), were isolated from MeOH extract of termite-associated Streptomyces sp. RB1 grown in ISP-2 agar plates (contains malt extract). ${ }^{34}$

I.10: $R^{1}=\mathrm{OH}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{CH}_{3}$
I.11: $\mathrm{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}=\mathrm{CH}_{3}, \mathrm{R}^{3}=\mathrm{CH}_{3}$
l.12: $R^{1}=H, R^{2}=\mathrm{CH}_{3}, R^{3}=\mathrm{CH}_{3}$

I.14: $R^{1}=O H, R^{2}=H$
I.15: $R^{1}=H, \quad R^{2}=H$
l.16: $R^{1}=H, \quad R^{2}=O C H_{3}$

I. 13 Daidzein

I.17: $\mathrm{R}=\mathrm{OH}$
I.18: $\mathrm{R}=\mathrm{H}$

l.19: $\mathrm{R}=\mathrm{OH}$
I.20: $\mathrm{R}=\mathrm{H}$

Figure 1.5. Chemical structure of isoflavones isolated from termite-associated Streptomyces sp. RB1

An example of isoflavones possibly modified by the host organism are three nitro derivatives of daidzein and genistein I.21-23 isolated from an ethyl acetate extract of the Arctic ice bacterium Salegentibacter sp. isolate T436 grown in a medium that contained soy meal (Figure 1.6). ${ }^{32}$ The possible pathways for the biosynthesis of these natural nitro-isoflavones are the oxidation of amines or nitroso precursors, or the direct nitration of phenols with reactive nitrogen species.

1.21: $R^{1}=R^{2}=H$
1.22: $R^{1}=O H, R^{2}=H$
l.23: $\mathrm{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}=\mathrm{NO}_{2}$

Figure 1.6. Isoflavones isolated from the Arctic ice bacterium Salegentibacter sp. isolate T436

1.3 Biosynthesis of the isoflavones

Isoflavones are biosynthesised via a branch of the phenylpropanoid pathway, a pathway that generates a wide variety of phenylpropanoid-based compounds, such as flavonoids, lignin, and coumarins. ${ }^{35}$ It is believed that isoflavone biosynthesis is similar in almost all plants where these metabolites are found, with small variations depending on the starting molecule. ${ }^{36}$

2-Hydroxyisoflavanone

Scheme 1.1. Biosynthesis of the isoflavones in Medicago truncatula. PAL, phenylalanine ammonia-lyase; C 4 H , cinnamate 4-hydroxylase; 4CL, 4-coumarate: CoA ligase; CHS, chalcone synthase; CHI, chalcone isomerase; CHR, chalcone reductase; IFS, isoflavone synthase; 2HID, 2-hydroxyisoflavanone dehydratase. ${ }^{36}$

In Medicago truncatula (Scheme 1.1) the process starts with the non-oxidative deamination of phenylalanine (biosynthesised through the shikimate pathway) to cinnamic acid by phenylalanine ammonialyase (PAL). The cinnamate 4-hydroxylase (C 4 H) converts the cinnamic acid to p-coumaric acid, which in the presence of 4-coumarate:CoA ligase (4CL) reacts with malonyl-CoA (obtained from acetyl-CoA by acetyl-CoA carboxylase, ACC) to form p-coumaroyl-CoA. Subsequent condensation of p-coumaroyl-CoA with three malonyl-CoA molecules in the presence of chalcone synthase (CHS) generates naringenin chalcone. When the condensation takes place in the presence of chalcone reductase (CHR), the hydroxyl from the second malonyl-CoA is removed and isoliquiritigenin is obtained. Chalcone isomerase (CHI) catalyses the ring closure to form the two flavanones, naringenin and liquiritigenin, which in turn suffer an oxidative aryl migration from $\mathrm{C}-2$ to $\mathrm{C}-3$ in the presence of isoflavone synthase (IFS). 2Hydroxyisoflavanone dehydratase (2HID) dehydrates the obtained 2-hydroxy-isoflavanone intermediates to generate genistein and daidzein. 2-Hydroxy-isoflavanone intermediates, genistein and daidzein serve as substrates for different enzymes to biosynthesise more complex isoflavones (Table 1.2).

Table 1.2. Isoflavones isolated from Medicago truncatula

Isoflavone	\mathbf{R}^{1}	\mathbf{R}^{2}	\mathbf{R}^{3}	\mathbf{R}^{4}	\mathbf{R}^{5}
Daidzein	H	H	H	H	H
Genistein	OH	H	H	H	H
Formononetin	H	H	H	CH_{3}	H
Biochanin A	OH	H	H	CH_{3}	H
Calycosin	H	H	H	CH_{3}	OH
Pratensein	OH	H	H	CH_{3}	OH
Alfalone	H	H	CH_{3}	CH_{3}	H
Irisolidone	OH	OCH_{3}	H	CH_{3}	H
Afrormosin	H	OCH_{3}	H	CH_{3}	H
Irilone	OH	$-\mathrm{OCH}_{2}-$			CH_{3}

1.4 Synthesis of the isoflavones

The first synthesis of isoflavones was reported in 1925 by Baker and Robinson starting from 2,4dihydroxydeoxybenzoin I .24 and acetic anhydride I. 25 (Scheme 1.2). ${ }^{37}$

Scheme 1.2. Synthesis of 7-hydroxy-2-methylisoflavone I.26. Reagents and conditions: (a) $\mathrm{NaOAc}, 170-180{ }^{\circ} \mathrm{C}, 12$ h; (b) $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{O}$, reflux, $2 \mathrm{~h}, 90 \%$.

Since then a series of synthetic procedures have been developed to discover new and more potent isoflavones. ${ }^{38}$ The three most popular methods involve the deoxybenzoin route, ${ }^{39}$ the chalcone route, ${ }^{40}$ and
the Suzuki-Miyaura cross-coupling reactions. ${ }^{19}$ Besides these, a number of other methods have been used either to functionalise the isoflavone core or to create some heteroanalogues of isoflavone. ${ }^{41-43}$

The deoxybenzoin route involves the synthesis of a deoxybenzoin intermediate $\mathbf{I} .30$ by an electrophilic substitution of an appropriate phenol I .27 with either a substituted phenylacetic acid $\mathrm{I} .28\left(\mathrm{R}^{2}=\mathrm{COOH}\right.$, Friedel-Crafts acylation) ${ }^{39}$ or benzyl cyanide $\mathbf{I . 2 8}\left(\mathrm{R}^{2}=\mathrm{CN}\right.$, Houben-Hoesch reaction). Subsequent formylation and cyclisation of the deoxybenzoin with a one-carbon electrophile gives the desired isoflavone I. 31 (Scheme 1.3). ${ }^{44,45}$

Scheme 1.3. Isoflavone synthesis via deoxybenzoin route. Reagents and conditions: Houben-Hoesch: (a) ($\left.R^{2}=C N\right)$ $\mathrm{ZnCl}_{2}, \mathrm{Et}_{2} \mathrm{O}, \mathrm{HCl}_{(\mathrm{g})}, 85 \%$; (b) $\mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}, 95 \%$. Friedel-Crafts: (c) $\left(\mathrm{R}^{2}=\mathrm{COOH}\right) \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, 23-92 \%$. (d) $\mathrm{DMF}, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$, $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{Cl}, 15-98 \%$; or $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$, $\mathrm{DMF} / \mathrm{PCl}_{5}, 65-94 \%$.

For the chalcone route, the chalcone intermediate is synthesised by an aldol condensation of an appropriate protected acetophenone $\mathbf{I} .32$ with a benzaldehyde $\mathbf{I} .33$ under basic conditions. Oxidative rearrangement of the formed chalcone $\mathbf{I} .34$ with thallium(III)trinitrate in methanol, followed by deprotection and base- or acid-mediated ring closure, leads to isoflavone l. 36 formation (Scheme 1.4).46-48

Scheme 1.4. Isoflavone synthesis via chalcone route. Reagents and conditions: (a) $\mathrm{KOH}, \mathrm{MeOH} / \mathrm{THF}$, reflux, 94 \%; (b) $\mathrm{Tl}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}, \mathrm{HC}\left(\mathrm{OCH}_{3}\right)_{3}, \mathrm{MeOH}, \mathrm{RT}, 97 \%$; (c) deprotection; (d) MeOH , conc HCl , reflux, 95%.

The Suzuki-Miyaura cross-coupling route involves the synthesis of a 3-halochromone I.39, a key intermediate in the synthesis of isoflavones through this method. The synthesis starts with the formation of an enamino ketone $\mathbf{I} .38$ from its corresponding acetophenone $\mathbf{I} .37$ using N, N-dimethylformamide dimethylacetal. The enamino ketone $\mathbf{I} .38$ is cyclized to 3 -halochromone $\mathbf{I} .39$ in the presence of the halogen $/ \mathrm{CHCl}_{3}$. Suzuki-Miyaura coupling of the 3 -halochromone I .39 with substituted phenylboronic acid leads to formation of the isoflavones $\mathbf{I} 40$ (Scheme 1.5). ${ }^{19,49}$

Scheme 1.5. Synthesis of isoflavone via Suzuki cross-coupling reaction. Reagents and conditions: (a)
(MeO) ${ }_{2} \mathrm{CHNMe}_{2}, 90-100^{\circ} \mathrm{C}, 3 \mathrm{~h}, 90-93 \%$; (b) l_{2}, pyridine, $\mathrm{CHCl}_{3}, \mathrm{RT}, 12 \mathrm{~h}, 86 \%$; or $\mathrm{Br}_{2}, \mathrm{CHCl}_{3}, \mathrm{RT}, 5 \mathrm{~min}, 85 \%$; (c) $\mathrm{X}=\mathrm{I}, \mathrm{PhB}(\mathrm{OH})_{2}, 10 \% \mathrm{Pd} / \mathrm{C}(5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{DME} / \mathrm{H}_{2} \mathrm{O}(1: 1), 4{ }^{\circ} \mathrm{C}, 1-4 \mathrm{~h}, 74-95 \%$; or $\mathrm{X}=\mathrm{I},\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right](2 \mathrm{~mol}$ \%), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (2 M, 3 equiv), toluene/ethanol ($1: 1$), $100^{\circ} \mathrm{C}, 5 \mathrm{~h} .{ }^{50}$

Suzuki-Miyaura cross-coupling reaction was used as a key step in the total synthesis of various isoflavones and derivatives. The total synthesis of Hirtellanine A, a B and T lymphocyte suppressor, was achieved by a mild Suzuki cross-coupling of the 3-iodochromone $\mathbf{I} .41$ with the boron ester I.42, followed by a regioselective Claisen rearrangement (Scheme 1.6). ${ }^{51}$

Scheme 1.6. Synthesis of Hirtellanine A. Reagents and conditions: (a) 1. $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{DMF}, 50 \mathrm{~min} ; 2 . \mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{CI} / \mathrm{DMF}$, $90^{\circ} \mathrm{C}, 3 \mathrm{~h}, 90 \%$; (b) $\mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{MeOH}, \mathrm{RT}, 72 \mathrm{~h}, 40 \%$; (c) $1 . \mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, $0^{\circ} \mathrm{C}, 10 \mathrm{~min} ; 2 . \mathrm{Me}_{2} \mathrm{SO}_{4}$, reflux, 3 h , argon, 95%; (d) piperidine, MeOH , reflux, 2 h ; (e) pyridine, $\mathrm{I}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}$, overnight, 89%; (f) 1. NaH (60% in oil), PMBBr, DMF, $0^{\circ} \mathrm{C}, 2 \mathrm{~h}$; 2. RT, $16 \mathrm{~h}, 97 \%$; (g) NBS, DMF, $0^{\circ} \mathrm{C}, 1.5 \mathrm{~h}, 95 \%$; (h) pinacolborane, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl} 2, \mathrm{TEA}$, THF, argon, $80^{\circ} \mathrm{C}, 20 \mathrm{~h}$; (i) Pd (dppf) $\mathrm{Cl}_{2}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{O}$, argon, RT, overnight, 89%; (j) $1 . \mathrm{DDQ}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 30$ min; 2. RT, $2 \mathrm{~h}, 91 \%$; (k) $\mathrm{MeSO}_{3} \mathrm{H}, \mathrm{AcOH}, 9{ }^{\circ} \mathrm{C}, 3.5 \mathrm{~h}, 54 \%$.

Isoflavone quinones of type I. 44 can also be obtained directly by cross-coupling chromones with quinones in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{AgOAc}$ and pivalic acid. ${ }^{52}$

Various other methods developed and used to synthesise simple and complex isoflavones are presented below.
Treating a number of enamino ketones I .47 with I_{2} in different benzene derivatives (benzene, p-xylene, mesitylene, 1,4-difluorobenzene and 4-chlorotoluene; used as solvents and reagents) under a mercury lamp (500 W) led to photochemical synthesis of isoflavones I .48 (Scheme 1.7). ${ }^{53}$ The optimum concentration of the enamino ketone $\mathbf{I} .47$ in solvent for the maximum yield was $1.25 \times 10^{-2} \mathrm{~mol} / \mathrm{L}$. The presence of substituents on the solvent/reagent led to a smaller yield due to steric hindrance and to a longer reaction time due to deactivation of the aromatic ring by the EWG. The mechanism involves the cyclisation of enamino ketone $\mathbf{I} .47$ to 3 -halochromone, photocleavage of C-I bond and the formation of a chromone radical. Subsequent coupling with benzene analogues gives an isoflavone radical that after dehydrogenation furnishes the corresponding isoflavone I.48.

I.46-48: $\mathrm{R}^{1}=\mathrm{H}, 7-\mathrm{OMe}, 7-\mathrm{OCH}(\mathrm{Me})_{2}, 6-\mathrm{F}, 6-\mathrm{Cl}, 6-\mathrm{Br}$;
I.48: R $^{2}=\mathrm{H}, 2^{\prime}, 5^{\prime}-\mathrm{Me}, 2^{\prime}, 4^{\prime}, 6^{\prime}-\mathrm{Me}, 2^{\prime}, 5^{\prime}-\mathrm{F}, 5^{\prime}-\mathrm{Cl}-2^{\prime}-\mathrm{Me}, 2^{\prime}-\mathrm{Cl}-5 '-M e$

Scheme 1.7. Synthesis of isoflavones via a photochemical reaction. Reagents and conditions: (a) (MeO) ${ }_{2} \mathrm{CHNMe}_{2}$, DMF, $80^{\circ} \mathrm{C}, 1 \mathrm{~h}, 91-95 \%$; (b) I_{2} (2 equiv.), mercury lamp (500 W), $20^{\circ} \mathrm{C}$, 1. benzene, $10 \mathrm{~h}, 80-95 \%$; 2. p-xylene, 8 h , $53-70 \%$; 3. mesitylene, $6 \mathrm{~h}, 34-50 \%$; 4. 1,4-difluorobenzene, $20 \mathrm{~h}, 42-55 \%$; 5.4 -chlorotoluene, $20 \mathrm{~h}, 29-32 \%$ for 5 '-
$\mathrm{Cl}-2^{\prime}-\mathrm{Me}$, and $30-33 \%$ for $2^{\prime}-\mathrm{Cl}-5^{\prime}-\mathrm{Me}$.

A one-pot synthesis of isoflavones was achieved via a domino Friedel-Crafts acylation/Allan-Robinson reaction. ${ }^{54}$ Reacting the corresponding phenol $\mathbf{I} .49$ with a phenylacetic acid $\mathbf{I} .50-52$ in the presence of a

Lewis acid (TiCl_{4}) led to formation of two $\mathrm{C}-\mathrm{C}$ and one $\mathrm{C}-\mathrm{O}$ bonds in one step, giving the corresponding isoflavone I.53-55 (Scheme 1.8).

Scheme 1.8. Synthesis of isoflavones via a domino Friedel-Crafts/Allan-Robinson reaction. Reagents and conditions: $\mathrm{TiCl}_{4}, \mathrm{Ar}_{2}, 100^{\circ} \mathrm{C}, 6-10 \mathrm{~h}, 72-84 \%$.

Using the Stille cross-coupling, 3-(trimethylstannyl)chromone 1.56 was coupled with various aryl halides I. 57 to give the corresponding isoflavones I. 58 (Scheme 1.9). 55

Scheme 1.9. Synthesis of isoflavones via Stille coupling. Reagents and conditions: $\mathrm{Pd}_{2}(\mathrm{dba})_{3}, \mathrm{Cul}, \mathrm{LiCl}, \mathrm{Ph}_{3} \mathrm{As}, \mathrm{NMP}$, $\mathrm{N}_{2}, 80^{\circ} \mathrm{C}, 48 \mathrm{~h}, 23-68 \%$.

Isoflavones were also synthesised using Negishi cross-coupling by reacting 3-halochromones 1.59 with arylzinc bromides $\mathbf{I} .60$ in the presence of $\mathrm{NiCl}_{2} / \mathrm{PPh}_{3}$ or $\mathrm{NiCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ as catalysts (Scheme 1.10). ${ }^{56}$ The reaction proceeded smoothly at room temperature in one hour.

Scheme 1.10. Synthesis of isoflavones via Negishi cross-coupling. Reagents and conditions: LiCl, THF, RT, $1 \mathrm{~h} ; \mathrm{X}=$ $\mathrm{I}, \mathrm{NiCl}_{2}, \mathrm{PPh}_{3}, 30-96 \% ; \mathrm{X}=\mathrm{Br}, \mathrm{NiCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, 62-92 \%$.

Another method to synthesise isoflavones is via a gold-catalysed annulation of o-hydroxyaldehydes I. 62 with aryl alkynes I.63, followed by an IBX/DMSO oxidation of the obtained isoflavanones I.64-66 (Scheme 1.11). ${ }^{57,58}$ It can be noted that while in the first step the presence of electron-donating group led to a slight decrease in yield, for the second step their presence is beneficial.

Scheme 1.11. Synthesis of isoflavones via gold-catalysis annulation. Reagents and conditions: (a) AuCN (1 mol\%), РВиз (25 mol\%), toluene, $150^{\circ} \mathrm{C}$, 36 h ; (b) IBX (3 equiv.), DMSO-d6, $85^{\circ} \mathrm{C}, 48 \mathrm{~h}$.

Isoflavone synthesis was also achieved using organocatalysts. Using a N-heterocyclic carbene I.73 obtained from thiamine $\mathbf{I .} 72$ as catalyst, Mishra et al. synthesised a series of fourteen isoflavones $\mathbf{I} .74$ via a domino catalysis (scheme 1.12). ${ }^{59}$ Functional groups were well tolerated, with EWG giving better yields than the EDG.

Scheme 1.12. Synthesis of isoflavones using N-heterocyclic carbene as organocatalyst. Reagents and conditions:
EtOH, RT, 30-120 min, 65-92\%.

Conclusions

The isoflavone core can be synthesised and further transformed using a variety of methods, each method having its advantages and disadvantages. Using the deoxybenzoin route, the isoflavones are obtained in a two step, high-yielding process, without resorting to any hydroxy group protection-deprotection sequences. Howerver, the deoxybenzoin route requires laborious and careful working conditions due to dangerous reagents used (such as $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{HClgas}^{\text {s }}$). The chalcone route can lead to a wide range of isoflavones, but it requires a hydroxy group protection-deprotection sequence (more steps) and careful working conditions $\left(\mathrm{TI}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}\right)$. The Suzuki-Miyaura cross-coupling route is widely used due to many
types of comercially available boronic acid (and derivates) and the easiness to couple different complex intermediates, but it is low-yielding sometimes and time consuming. The photochemical reaction of isoflavones, even if it requires a limited number of readily available reagents and it is straightforward, its scope is quite limited at the moment as it needs to be extended to other benzene derivatives in order to obtain a wide variety of isoflavones. The same thing happens in the case of the other presented reactions, they are quite staightforward but require further development to obtain a wider range of isoflavones.

1.5 Isoflavones as intermediates for organic chemistry

The versatility and reactivity of isoflavone derivatives has allowed this class of compounds to be used widely in the synthesis of new heterocycles and ring-opening products.

Treating formononetin 1.75 with Lawesson's reagent readily converted the ketone to corresponding thioketone I. 76 (Scheme 1.13, a). ${ }^{60}$ Under nucleophilic attack of hydrazine hydrate or hydroxylamine on the isoflavone pyrone ring, the pyrone ring opened and recyclised to corresponding pyrazole $\mathbf{I} 77$ or isoxazole I. 78 (Scheme 1.13, b and c). ${ }^{60}$

1.75

Scheme 1.13. Synthesis of various compounds from formononetin. Reagents and conditions: (a) 1. Lawesson's reagent, toluene, $110^{\circ} \mathrm{C}, 1 \mathrm{~h}$; 2. DMF, reflux, $10 \mathrm{~h}, 18 \%$; (b) $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, EtOH, $60-80^{\circ} \mathrm{C}, 4 \mathrm{~h}, 66 \%$; (c) $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}$, N -methylmorpholine, EtOH, $80^{\circ} \mathrm{C}, 8 \mathrm{~h}, 41 \%$.

In the presence of a strong base, the isoflavone 4-pyrone ring may open and form a 1,3-diketone, which can participate in cyclocondensation reactions. In the presence of sodium methoxide, isoflavones readily reacted with 3-aminopyrazole $\mathbf{I} .81$ to form 6,7-diphenylpyrazolo[1,5-a]pyrimidines $\mathbf{I} .82$ (Scheme 1.14). ${ }^{61-63}$ A slightly smaller yield was obtained when a free hydroxyl group was present on the isoflavone due to formation of oxyanions, but this aspect was counteracted by using an excess of NaOMe (3 equiv. per OH).

$\mathrm{R}^{1}=\mathrm{H}, \mathrm{Br} ; \mathrm{R}^{2}=\mathrm{H}, \mathrm{OH}, \mathrm{OMe}, \mathrm{OEt}, i-\mathrm{OPr}, \mathrm{OBn} ; \mathrm{R}^{3}=\mathrm{H}, \mathrm{OMe}, \mathrm{F}, \mathrm{Br} ; \mathrm{R}^{4}=\mathrm{H}, \mathrm{Me}, \mathrm{OH}, \mathrm{OMe} ;$
$\mathrm{R}^{5}=\mathrm{H}, \mathrm{Br}, i-\mathrm{Pr} ; \mathrm{R}^{6}=\mathrm{H}, \mathrm{OH}, \mathrm{OMe}, \mathrm{OBn}, \mathrm{Me}, \mathrm{F} ; \mathrm{R}^{7}=\mathrm{H}, \mathrm{Br}, i-\mathrm{Pr} ; \mathrm{R}^{8}=\mathrm{H}, \mathrm{CN} ; \mathrm{R}^{9}=\mathrm{H}, \mathrm{Me}$
Scheme 1.14. Synthesis of 6,7-diphenylpyrazolo[1,5-a]pyrimidines from isoflavones. Reagents and conditions: NaOMe (3 equiv. per OH), MeOH or $\mathrm{EtOH}, 70^{\circ} \mathrm{C}, 12-72 \mathrm{~h}, 42-88 \%$.

When isoflavones I .83 were treated with cyanothioacetamide I .84 in the presence of NaOH in DMF, some 3-cyano-5,6-diaryl pyridine-2(1H)-thiones 1.85 were obtained via a ring opening, Knoevenagel condensation, ring closure and dehydration (Scheme 1.15). ${ }^{64}$ The presence of EWG on ring A led to a higher yield, while the EDG, especially HO^{-}(probably due to oxyanions formation), led to a lower yield.

Scheme 1.15. Synthesis of 3-cyano-5,6-diaryl pyridine-2(1H)-thiones from isoflavones. Reagents and conditions: NaOH (3.5 equiv.), DMF, $90^{\circ} \mathrm{C}, 5-7 \mathrm{~h}, 39-81 \%$.

In a multicomponent Mannich reaction, isoflavones 1.86 were reacted with different amino alcohols and formaldehyde to obtain two tautomeric isomers $I .87$ and $I .88$ (Scheme 1.16). ${ }^{65}$ The ratio of the tautomers was dependent on solvent polarity, aryl substituents in the isoflavone, and the amino alcohol.

Scheme 1.16. Isoflavones Mannich reaction with amino alcohols and formaldehyde. Reagents and conditions: $\mathrm{HOCH}_{2}\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{NH}_{2}(\mathrm{n}=1$ to 4$), \mathrm{CH}_{2} \mathrm{O}$, EtOH or $i-\mathrm{PrOH}, \mathrm{DMAP}, 8{ }^{\circ} \mathrm{C}, 4-6 \mathrm{~h}, 36-93 \%$.

Isoflavones were used as ligands to synthesise some interesting complexes and metal-organic coordination polymers with various properties, including biological properties.

In search of a potential inhibitor for cancer cell growth with antimetastatic properties, Spoerlein et al. synthesised the $\mathrm{Cu}(\mathrm{II})$ complex of genistein I .90 (Scheme 1.17). ${ }^{66}$ When tested on 518A2 melanoma, HCT116 colon, KB-V1/Vbl cervix, and MCF-7/Topo breast carcinoma cells, the complex proved to be three to five times more potent than genistein itself, having enhanced antitumoral properties.

Scheme 1.17. Synthesis of Cu^{2+} complex with genistein. Reagents and conditions: $\mathrm{NaOH}, \mathrm{EtOH}, \mathrm{RT}, 8 \mathrm{~h}, 65 \%$.

When treated with SeO_{2} in pyridine, biochanin A 1.91 acted as a bidentate ligand and formed a SeIsoflavone complex 1.92 (ratio 1:2, Scheme 1.18). ${ }^{67}$ I.92 interacted spontaneously with bovine serum albumin (BSA, as a target protein molecule) through hydrogen bonds and van der Waals forces, suggesting that it can be transported in blood systems, without affecting the protein's structure.

Scheme 1.18. Synthesis of Se^{2+} complex with biochanin A. Reagents and conditions: pyridine, $\mathrm{N}_{2}, 60^{\circ} \mathrm{C}, 12 \mathrm{~h}, 16 \%$.

As can be seen some isoflavones can act as ligands and interact with metals and non-metals ions, a useful property in metal induced $A \beta$ aggregation or other degenerative pathways and could be useful in developing new neuroprotective compounds.

1.6 Pharmacological properties of the isoflavones

Several synthetic and naturally occurring isoflavones have been shown to exhibit a wealth of properties, including anti-inflammatory and neuroprotective properties. There are multiple ways through which the isoflavones express their anti-inflammatory and neuroprotective activities, some of them involving the inhibition of pro-inflammatory cytokines and mediators such as TNF- α and NO, inhibition of enzymes such as AChE (acetylcholinesterase) and BuChE (butyrylcholinesterase), inhibition of β-amyloid aggregation and antioxidant activity. ${ }^{68,69}$ A common mechanism is the inhibition of pro-inflammatory mediators which takes place through various signaling pathways such as NF-кB and MAPKs.
Using CoMFA (comparative molecular field analysis) and CoMSIA (comparative molecular similarity indices analysis) to measure NF-кB inhibitory activity of some isoflavones, Lee et al. reported that the key substituted positions of an active isoflavone are C-7 and C-4'. ${ }^{70}$ Also, the 5-hydroxy group from isoflavones was found to be less accessible for interaction with other molecules since it is involved in strong intramolecular hydrogen bonding, but has an important role in the antioxidant properties of the isoflavone. ${ }^{71}$ A wealth of studies on isoflavone neuroprotective properties were performed using isoflavone-containing plant extracts, and the neuroprotective activity was attributed to those isoflavone-constituents that were in the majority. ${ }^{72}$ However, when the majority constituents were tested separately, they were not as active as the extracts, suggesting that there might be synergism in the activity of the extracts or that there are some minor constituents responsible for the activity. ${ }^{73}$
One of the most potent isoflavones is genistein, an isoflavone similar in structure to 17β-estradiol (Figure 1.7). The distance between the two hydroxyl groups from position 4 ' and 7 of genistein is similar to those of 17β-estradiol from position 3 and 17 , at $12.1 \AA$ compared to $10.8 \AA$. This fact allows genistein to mimic 17β-estradiol and to form hydrogen bonds with the side chains of Glu353-Arg394 and His524 in ERa, and with Glu305-Arg346 and His475 in ERß. ${ }^{74}$ Genistein is known to have various potential beneficial effects in a broad range of clinical areas, such as in brain, breast and prostate cancer, menopausal symptoms, and cardiovascular conditions. ${ }^{47,48}$ In the brain, genistein showed neuroprotection of the neurons affected by radical damage via an antioxidant effect. ${ }^{75}$ Also, genistein prevented $A \beta$-induced neuroinflammation in BV2 and C9 cells by inhibiting the generation of pro-inflammatory cytokines and mediators via the TLR4 and

NF-кB signaling pathway. ${ }^{76}$ In LPS-stimulated BV2 microglia, genistein suppressed the production of proinflammatory cytokines by inhibiting the binding of LPS to toll-like receptor 4 (TLR4) and subsequent activation of NF-кB. ${ }^{77}$

Genistein

17β-estradiol

Figure 1.7. Chemical structures of genistein and 17β-estradiol

Talosin A (genistein 7-O-a-L-6-deoxy-talopyranoside, Figure 1.8), a genistein glycoside isolated from Kitasatospora kifunensis MJM341, exhibited antifungal and anti-inflammatory activities. ${ }^{78,79}$ In LPSstimulated macrophage RAW 264.7 cells, talosin A significantly suppressed the activation of NF-кB, NO production, and pro-inflammatory cytokines.

Figure 1.8. Chemical structures of talosin A

Daidzein (Figure 1.9) was found to be neuroprotective in LPS-activated BV2 microglial cells by inhibiting the activation of p38MAPK/NF-кB pathway, and therefore blocking microglial activation. ${ }^{6}$

Figure 1.9. Chemical structure of daidzein

Genistein and daidzein, when tested in LPS-activated rat microglial cell line (HAPI), were found to possess anti-inflammatory activity by inhibiting iNOS expression through inhibition of IRF-1 and p-STAT1 (decrease NO production)..80
Another simple isoflavone that possesses anti-inflammatory and neuroprotective activity is formononetin (Figure 1.10). In LPS-stimulated BV2 microglia, formononetin suppressed the pro-inflammatory mediators by inhibiting the NF-кB signalling pathway. ${ }^{81}$ Formononetin's anti-inflammatory activity might be due to its estrogenic properties because when ER β was knocked down, the compound showed no activity.

Figure 1.10. Chemical structure of formononetin

Orobol (Figure 1.11) was recently reported to exhibit AChE inhibitory activity ($\mathrm{IC}_{50}=123 \mathrm{nM}$), metal chelation, amyloid- β interaction, and free radical scavenging activity (TEAC value of 3.39, TEAC = Trolox equivalent antioxidant capacity assay), four important attributes in developing drugs for neurodegenerative diseases. ${ }^{82}$

Figure 1.11. Chemical structure of orobol

When tested against cell death in human neuroblastoma SH-SY5Y treated with 6-hydroxydopamine, six isoflavones extracted from fruits of Cudrania tricuspidata were found to exhibit neuroprotective activity, with EC_{50} values of $0.5-9.2 \mu \mathrm{M}$. Compounds I .93 and I .94 (Figure 1.12) were found to be the most potent with EC_{50} values of $0.5 \mu \mathrm{M} .{ }^{8}$ Other isoflavones and extracts from Cudrania tricuspidata were found to exhibit anti-inflammatory and neuroprotective activity by decreasing the production of pro-inflammatory cytokines and mediators. ${ }^{83}$

Figure 1.12. Chemical structure of cudraisoflavone J (I.93) and gancaonin B (1.94)

Neocorylin 1.95 (Figure 1.13), an isoflavone isolated from the seeds of Psoralea corylifolia L. (Fabaceae), was found to inhibit in vitro the baculovirus-expressed BACE-1 with an IC_{50} value of $0.7 \mu \mathrm{M} .{ }^{84} \mathrm{BACE}-1$, an enzyme that cleaves the amyloid precursor protein to create amyloid- β peptide, is a key target in the treatment of Alzheimer's disease.

Figure 1.13. Chemical structure of neocorylin

A series of isoflavones and isoflavanones, extracted from the roots of Pongamia pinnata (L.) Pierre, were found to decrease the NO production in LPS-stimulated BV2 microglial cells, with I. 96 being the most active, with an IC_{50} value of $9.0 \mu \mathrm{~g} / \mathrm{mL} .{ }^{85}$

Figure 1.14. Chemical structure of the potent isoflavone $\mathbf{I} .96$ extracted from the roots of Pongamia pinnata (L.) Pierre

Screening seventy-seven molecules including a variety of flavonoids for peroxisome proliferator-activated receptor α and γ (PPARa and γ) dual agonists in human embryonic kidney (HEK) 293 cell line, Matin et al. found the isoflavones I.97-100 (Figure 1.15) as the most potent compounds with an EC50 for PPARa $=$ 24.55, 8.90, 33.13, and $23.10 \mu \mathrm{M}$, respectively, and an $E C_{50}$ for $\operatorname{PPARy}=18.86,26.94,15.38$, and 22.29 $\mu \mathrm{M}$, respectively. ${ }^{86}$ PPARa and γ have a significant role in regulation of inflammatory responses in the human body and in the pathology of various diseases including neurodegenerative diseases. As can be seen, all four isoflavones have a hydroxyl at C-7, allowing hydrogen bond formation. Introduction of an alkoxy/alkyl group at C-7 led to a potency decrease. Hydrogen acceptors on (B) ring at C-3', 4', and 5' were found to be important, influencing the potency of the isoflavones the most.

I.97: $\mathrm{R}^{1}=\mathrm{OCH}_{3}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{OCH}_{3}$
l.98: R^{1} and $R^{2}=O-\mathrm{CH}_{2}-\mathrm{O}, \mathrm{R}^{3}=\mathrm{H}$
I.99: $R^{1}=H, R^{2}=F, R^{3}=H$
I.100: $R^{1}=\mathrm{OCH}_{3}, R^{2}=H, R^{3}=H$

Figure 1.15. Chemical structures of potent PPARa and y dual agonists

In search for potent acetylcholinesterase (AChE) inhibitors, Shen et al. synthesised and tested twenty flavonoid hybrids. ${ }^{87}$ Isoflavone $\mathbf{I} 101$ (Figure 1.16), proved to be the most active in inhibiting the AChE with $\mathrm{IC}_{50}=0.093 \mu \mathrm{M}$ (Ellman's method, measured from rat cortex homogenate and rat serum), a value similar to donepezil, which has $\mathrm{IC}_{50}=0.025 \mu \mathrm{M}$. Changing the 4 '-O-substituent to a pyrrolidine-1-yl, Sheng et al. got isoflavone I. 102 that showed an enhanced inhibitory activity with an $\mathrm{IC}_{50}=0.004 \mu \mathrm{M} .{ }^{88}$ Both isoflavone derivatives were more potent than the flavone, flavanone and chalcone derivatives included in the studies, suggesting the importance of the isoflavone intrinsic properties. Isoflavone analogues were also reported to be more potent than flavones in inhibiting AChE. ${ }^{89}$

I. 101

Figure 1.16. Chemical structure of two potent AChE inhibitors

From a series of 28 derivatives of genistein linked to alkylbenzylamines, compound $\mathbf{I} .103$ (Figure 1.17) was the most potent in inhibiting the $\mathrm{AChE}\left(\mathrm{IC}_{50}=0.09 \mu \mathrm{M}\right.$, Ellman's method, measured from rat cortex homogenate and rat serum), the self-induced $A \beta_{1-42}$ aggregation ($25 \mu \mathrm{M}, 35 \%$, thioflavin T fluorescence method), $C u^{2+-i n d u c e d ~} A \beta_{1-42}$ aggregation ($25 \mu \mathrm{M}, 77 \%$), and human $A C h E$-induced $A \beta_{1-40}$ aggregation (25 $\mu \mathrm{M}, 36 \%) .{ }^{90}$ Compound I .103 was more potent than genistein, showing that the introduction of some O alkylbenzylamines may enhance the activity of the parent compound. The trend of activity of the substituted compounds was: 7,4'-O>7-O>4'-O-genistein derivatives.

Figure 1.17. Chemical structure of a potent genistein derivative

The 2-piperidineethoxyl-substituted daidzein hybrid I. 104 (Figure 1.18) inhibited totally the AChE/BuChE activity at $50 \mu \mathrm{M}$, being more active than donepezil (64% for AChE), I .104 having an $\mathrm{IC}_{50}=4.6 \mu \mathrm{M}$ for AChE, and $5.9 \mu \mathrm{M}$ for BuChE. ${ }^{91}$

Figure 1.18. Chemical structure of daidzein hybrid I. 104

A similar compound to $\mathbf{I} .104$ (Figure 1.19), but more potent, was reported by Wang et al. ${ }^{92}$ In vitro studies on SH-SY5Y neuroblastoma cells showed that I .105 inhibited $\mathrm{AChE}\left(\mathrm{IC}_{50}=0.081 \mu \mathrm{M}\right.$, Ellman's assay) and BuChE ($\mathrm{IC}_{50}=2.89 \mu \mathrm{M}$), and blocked H3R (histamine 3 receptor, $\mathrm{IC}_{50}=0.27 \mu \mathrm{M}$), three important neurotransmitters. It also suppressed copper-induced neuronal damage in SH-SY5Y-APPsw cells, and proinflammatory factors in BV2 cells. In vivo studies on mouse showed that I. 105 has good BBB permeability ($\log B B=1.24 \pm 0.07$), does not cause toxicity up to $1000 \mathrm{mg} / \mathrm{kg}$, and improves cognitive dysfunction in scopolamine-induced AD mice.

Figure 1.19. Chemical structure of I. 105

The azaisoflavone I.106, synthesised by Jin et al., was found to be a potent compound for inhibiting nitric oxide production (it is considered to be an important factor in neurodegeneration), with an IC 50 value of 7.83 $\mu \mathrm{M}$ by suppressing the expression of inducible nitric oxide synthase (iNOS). ${ }^{93}$ A potent aromatase inhibitor (aromatase are attractive targets in the treatment of breast cancer) was synthesised by Hackett et al. by attaching at position 2 of the isoflavone an imidazole ring (I.107). This compound exhibited an IC_{50} value of $0.52 \mu \mathrm{M}$, a value 48 times greater than the IC_{50} value of biochanin $\mathrm{A}\left(\mathrm{IC}_{50}=34 \mu \mathrm{M}\right)$.

I. 106

Figure 1.20. Chemical structure of isoflavones I.106 and I.107

From a series of thirteen hybrids of arylpyrazoline-coumarins, isoflavone containing compound $\mathbf{I} .108$ was found to be the most potent to inhibit the IL-6, TNF-a, and NO in LPS-activated RAW264.7 cells via NFкB/MAPK signalling pathway. ${ }^{94}$

Figure 1.21. Chemical structure or hybrid I. $\mathbf{1 0 8}$

Compound I. 109 (Figure 1.22) was reported to be a potent cell growth inhibitor in the MDA-MB-231 breast cancer cell line. ${ }^{95}$ This isoflavone dimer binds to antiapoptotic proteins Bcl-2 and Mcl-1 and induces apoptosis with an $\mathrm{IC}_{50}=110 \mathrm{nM}$. This compound was inspired from Gossypol, a natural compound with potent anticancer properties, but which causes infertility in men. ${ }^{96,97}$ This highly functionalised isoflavone dimer is similar to a new isoflavone synthesised in this project.

Figure 1.22. Chemical structure of isoflavone dimer I. 109 and Gossypol.

1.7 Isoflavones in materials

In addition to possible medical applications, isoflavones have also been used for the design of liquid crystal materials. Chan et al. reported the synthesis of four isoflavone-based non-symmetric liquid crystal dimers l.110-113 which exhibit an enantiotropic nematic phase. ${ }^{98}$ The isoflavone moiety linked to 4-cyanobiphenyl, 4-methoxyazobenzene, 4-nitroazobenzene or cholesterol scaffolds with alkyl chains led to a lower melting point compared to the symmetrical dimers formed from the same scaffolds.

Figure 1.23. Chemical structure of isoflavone-based non-symmetric liquid crystal dimers

Liquid crystals were also obtained only by synthesising some isoflavone-based esters. 99,100 The derivatives with $R=O M e$ (I.116 and I.122) showed nematic phase, those with $R=M e(I .115$ and $I .121)$ showed both nematic and smectic A phases, and the other derivatives (I.117, I.118, I.119, I.120, I.123, I.124, and I.125) showed smectic A phase. I. 114 was the only non-mesogenic compound.

Figure 1.24. Chemical structure of isoflavone-based esters liquid crystals

1.8 General aspects of pharmacophores employed

1.8.1 1,2,4-Oxadiazole

1,2,4-Oxadiazoles are five-membered heterocyclic rings that are well-known as bioisosteres for amides and esters, as they can mimic the ester and amide bonds present in the natural products, and they are associated with a large range of applications. ${ }^{101-103}$ They are present in a large number of biologically active molecules and they are known to be antiasthmatics, antidiabetics, immunosuppressors, nonsense mutation readthrough promoters, anti-inflammatory, antimicrobial, antitumoral and neuroprotective agents. ${ }^{104-106}$
Compound $\mathbf{I} .126$ (Figure 1.25) showed good anti-inflammatory activity in Carrageenan-induced rat paw edema, with an activity similar to diclofenac sodium. ${ }^{107}$ Indole/1,2,4-oxadiazole I.127 (Figure 1.25), tested on SHSY5Y neuroblastoma cells, exhibited good neuroprotective activity by protecting the cells in $A \beta_{25-35}$, $\mathrm{H}_{2} \mathrm{O}_{2}$ and oxygen-glucose deprivation-induced neurotoxicity with a cell viability of $115 \%, 99 \%$, and 84%, respectively, at $10 \mu \mathrm{M} .{ }^{108}$ The SAR indicated that the neuroprotective activity is favored by a longer linear alkoxy group, and disfavored by the presence of bulky groups.

I. 126

I. 127

Figure 1.25. Chemical structure of neuroprotective 1,2,4-oxadiazole derivatives

Since the first synthesis in 1884 by Tiemann and Krüger, ${ }^{109}$ a variety of procedures have been developed to synthesise 1,2,4-oxadiazole, among which the most used are the 1,3-dipolar cycloaddition of nitriles to nitrile oxides and the cyclization of amidoxime derivatives, both starting from nitriles (Scheme 1.19). ${ }^{105}$

Scheme 1.19. Synthesis of $1,2,4$-oxadiazoles ${ }^{105}$

Through these two methods, due to commercial availability of a wide variety of precursors, one can get a wide range of 1,2,4-oxadiazoles.

1.8.2 Benzodiazepine

Benzodiazepines (e.g. diazepam I.128) are well known drugs used for CNS disorders due to the beneficial effects of these compounds in psychiatric disorders, anticonvulsant therapies, anxiety and insomnia etc. 110, 111 In the brain, benzodiazepines bind to the so-called GABAA-benzodiazepine receptor (GABAA - Y amino butyric acid-A receptor), where they modulate the action of the receptor toward GABA via an allosteric site, producing different effects depending on the receptor subunit composition. ${ }^{112}$ In addition to positive effects, these compounds also have some undesirable effects such as memory loss and physical dependence. In order to minimize the side effects, to create more potent compounds and to diversify their biological activity, a large number of synthetic procedures have been developed and used to synthesise a wide range of benzodiazepines with anti-inflammatory, antibacterial, anticancer activities and many other functions. ${ }^{113}$ Also, by creating some hybrid molecules, an enhancement in the activity of the biologically active compounds used was observed. By combining two or more core pharmacophores, one of which was benzodiazepine, an enhancement in the efficacy and activity was obtained. For example, compound I.129, a hybrid compound containing a chalcone (a precursor for flavones and isoflavones) with a pyrrolo[2,1c][1,4]benzodiazepine linked by a 1,2,3-triazole, exhibited an enhanced antiproliferative activity in a number of cancer cell lines compared to the starting naturally occurring pyrrolobenzodiazepine. ${ }^{114}$ Also, compound I.130, a pyrrolo[2,1-c] [1,4]benzodiazepine linked by an ether to a flavone scaffold showed a significant in vitro cytotoxicity and DNA binding affinity compared to benzodiazepine alone. ${ }^{115}$ Ghosh and Tewari managed to synthesise a fused benzodiazepine $\mathbf{I} .131$ that integrated a part of the isoflavone structure by reacting 4-oxo-4H-chromene-3-carbonitrile with o-phenylenediamine, but they did not test the compound for its biological activity. ${ }^{116}$

Diazepam I. 128

1.130

I. 131

Figure 1.26. The chemical structure of diazepam and some hybrid compounds that contain benzodiazepines

With respect to the neuroprotective effects of benzodiazepines, there are studies that show quite interesting effects, but further research is required. ${ }^{117,118}$ Also, there are some studies that suggest that this class of
compounds might present some neurodegenerative activity, but currently there is no evidence that the rational use of benzodiazepines could increase the risk of dementia disorders. ${ }^{119}$

1.8.3 1,2,3-Triazole

Triazoles are five-membered aromatic heterocycle rings containing three nitrogen atoms. This heterocycle is present in many compounds, including various drugs, and is used as a building block for more complex molecules, such as supramolecular ligands. ${ }^{120-122}$ There are two types, 1,2,3-triazoles $\operatorname{I.} 132$ and 1,2,4triazoles I.133, and both are well-known pharmacophores present in compounds with anti-inflammatory, anticancer, antimicrobial, anticonvulsant, antiviral and many other activities. ${ }^{120,123}$ Triazoles are also wellknown as important bioisosteres for the amide moiety, and they are stable to reductive and oxidative conditions, and basic and acid hydrolysis.

1H-1,2,3-triazole I. 132

1H-1,2,4-triazole I. 133

Figure 1.27. Chemical structure of triazoles

Triazole compound $\mathbf{I} .134$ is widely used as an antiepileptic drug, and $\mathbf{I} .135$ is used as a tranquiliser. ${ }^{124,125}$ The substitution of the carboxyl group in ibuprofen with a highly functionalised triazole ring resulted in a compound (I.136) with higher anti-inflammatory activity than ibuprofen and diclofenac. ${ }^{126}$ Compound I.137 inhibited TNF- α production in LPS-activated THP-1 human monocytic cells with an $\mathrm{IC}_{50}=8 \mathrm{nM}$. Hybrid I.138, when tested on LPS-stimulated U937 cells and RAW 264.7 cells, inhibited the TNF- α production by 62% at $10 \mu \mathrm{~L}$. 1,2,3-Triazol-coumarin-lipoic acid hybrid I. 139 was developed as a multi-target-directed ligand for Alzheimer's disease treatment and was reported to inhibit the $A C h E\left(I C_{50}=16.4 \mu \mathrm{M}\right)$, $A \beta$ selfaggregation $(51.2 \%$ at $100 \mu \mathrm{M})$, and to protect the SH-SY5Y cells against $\mathrm{H}_{2} \mathrm{O}_{2}(64 \%$ cell viability at $10 \mu \mathrm{M})$

I. 134

1.135

I. 136

I. 137

Figure 1.28. The chemical structure of some bioactive triazole derivatives

Since the introduction of click chemistry in 2001, ${ }^{128}$ the use of 1,2,3-triazoles in medicinal chemistry has increased considerably. ${ }^{123,129}$ The simplicity, specificity, biocompatibility, the wide scope and the high yields of this reaction has made it very useful in the synthesis and design of new drugs. The synthesis of 1,2,3triazoles I. 142 using a copper(I)-catalysed 1,3-dipolar cycloaddition between azides I.141 and alkynes I.140 can be done under mild conditions in different solvents, including water, using various azide and alkyl derivatives, resulting in a single regioisomer, the 1,4 regioisomer. For the 1,5 regioisomer, one can use ruthenium-catalysed azide-alkyne cycloaddition. ${ }^{130}$

Scheme 1.20. 1,2,3-Triazole synthesis via a 1,3-dipolar cycloaddition

The versatility of this class of compounds and the ease in synthesis through different methods, especially click chemistry, make these scaffolds very good candidates for design and synthesis of new potent antiinflammatory drugs

1.8.4 β-Sultam

β-Sultams are the sulfonyl analogues of β-lactams and are known to display a range of biological activities such as anti-inflammatory, neuroprotective and antibacterial. ${ }^{131,132}$ Due to an increased distortion in the ring, the β-sultam is less stable and more reactive compared to β-lactam. Ethane β-sultam I. 143 is a taurine prodrug and can penetrate the cells prior to its hydrolysis (S-N fission) to taurine, leading to an increased quantity of cellular taurine, and showing enhanced biological activities. β-sultam $\mathbf{l} .143$ showed neuroprotective properties in vitro by inhibiting the NO production in LPS-stimulated alveolar macrophages (isolated from control rats) and N9 microglial cells, and reducing the glutamate release in LPS-stimulated N9 microglial cells. In vivo, β-sultam $\mathbf{I} .143$ inhibited the NO expression in LPS-stimulated alveolar
macrophages isolated from control rats which had received β-sultam, and showed neuroprotection for binge drinking control rats by inhibiting the NF-KB activation in LPS-activated alveolar macrophages. ${ }^{131}$

I. 143β-Sultam

Figure 1.29. The chemical structure of ethane β-sultam
β-Sultam analogues are good elastase inhibitors expressing antibacterial activity, forming stable complexes with the enzyme by sulfonylating the active site serine of serine proteases enzymes (Scheme 1.21). ${ }^{133}$

Scheme 1.21. Sulfonation of serine protease enzymes

The β-sultam is usually synthesised via intramolecular cyclisation from derivatives of 2aminoethanesulfonic acid or 2-hydroxyethanesulfonamides, or via cycloaddition of imines with sulfonyl chlorides or sulfenes. ${ }^{134-136}$ Through these methods, N or C-substituted and bicyclic β-sultams were obtained, which can be subsequently N or C -acylated.

1.8.5 Benzosultam

Benzosultams display a variety of biological activities such as anticancer, antimicrobial, and are well known nonsteroidal anti-inflammatory agents (e.g. piroxicam). ${ }^{137-139}$ Piroxicam, was reported to be neuroprotective in rotenone (used to induce experimental Parkinsonism in rats) and L-dopa-treated rats by protecting the nigral neurons and enhancing the motor function. ${ }^{140}$ Also, it was reported that piroxicam may reduce the AD risk if it is used for >5 years. ${ }^{141}$ Meloxicam, another benzosultam NSAID, was reported to inhibit the fipronil-induced apoptosis in human neuroblastoma SH-SY5Y cells by suppressing the pro-inflammatory cytokines and ROS generation, ${ }^{142}$ and to be neuroprotective in an LPS model of PD by reducing microglial activation and dopaminergic neurons degeneration. ${ }^{143}$

I. 144 piroxicam

I. 145 meloxicam

Figure 1.30. The chemical structures of some bioactive benzosultam derivatives

The synthesis of benzosultams is usually achieved though cascade cross-coupling and regioselective cyclisation, C-H activation, cycloaddition, etc. ${ }^{137}$

1.9 Project goals

The aim of this project was to synthesise a variety of isoflavone analogues and to test the obtained compounds as anti-inflammatory agents in BV2 mouse brain microglial cells. Previous studies have shown that isoflavone analogues inhibit pro-inflammatory cytokines and mediators in BV2 microglia and other macrophages. Preliminary SAR from the literature revealed that the C-7 position of isoflavone is important for activity, substituted with either hydroxy or alkoxy groups. Also, the substitution of the isoflavone (B) ring with various functional groups at $\mathrm{C}-4^{\prime}$ and/or $\mathrm{C}-3^{\prime}$ appears to generate good anti-inflammatory activity. Substitution of $\mathrm{C}-7 / \mathrm{C}-4$ ' positions and of the (B) ring of isoflavone with amines/ N-heterocycles and other functional groups was chosen as it may generate potent compounds with anti-inflammatory and neuroprotective activities, with good BBB permeability.
The isoflavone synthesis was achieved via some straightforward methods and the isoflavone core was decorated with a variety of functional groups and known anti-inflammatory/neuroprotective nitrogen heterocycles. Some simple but previously unreported isoflavones and hybrids were obtained. The compounds were tested for neuroinflammation inhibitory activity in LPS-activated BV2 microglia, and promising results were obtained, as detailed in the Results and Discussion, below.

Chapter 2 Results and discussion

2.1 Chemistry

In an effort to synthesise novel isoflavones with potential anti-inflammatory and neuroprotective activity and to understand the structure-activity relationship, the core isoflavone nucleus was modified by attaching to it and/or incorporating it with nitrogen heterocycles, such as oxadiazole, triazole, benzodiazepines, β-sultam and benzo- δ-sultam. Incorporation of these pharmacophores might lead to more potent and specific drugs, with fewer side effects and an increase in the permeability through the blood brain barrier. ${ }^{144}$ Also, attaching a known pharmacophore and/or an active compound to the isoflavone might lead to a multi-target-directed ligand, compounds that can act at distinct targets depending on the parent compound, which may be an important factor considering the multifactorial nature of neurodegenerative diseases. ${ }^{145-148}$

2.1.1 Synthesis of simple isoflavones

Isoflavones with different functional groups were synthesised and were further functionalised to get some new and interesting isoflavone analogues. To synthesise the isoflavone skeleton (Figure 2.1) two popular synthesis pathways were used, the deoxybenzoin route and the cross-coupling reaction route. The general synthetic route towards the deoxybenzoin involved condensation of an appropriate phenol with either a substituted phenylacetic acid or a benzyl nitrile to give a deoxybenzoin which then underwent formylation and cyclisation to give the isoflavone. The cross-coupling route involved the synthesis of 3 -halo- 4 H -chromen-4-one, followed by a Suzuki-Miyaura cross-coupling reaction of the halide with the appropriate substituted boronic acid to afford the isoflavone. To functionalise the obtained isoflavones, some nitro derivatives were reduced to amines, and further converted to azides. Also, a hydroxymethyl derivative was oxidised to an aldehyde, or substituted to give chloromethyl which in turn was substituted to give the azidomethyl. Some chromones were also synthesized from 2',4'-dihydroxyacetophenone through a short sequence of reactions and were also used to synthesise some isoflavones.

Figure 2.1. Chemical structure of isoflavones

2.1.1.1 Synthesis of simple isoflavones using the deoxybenzoin route

For the deoxybenzoin route (Scheme 2.1), the deoxybenzoin intermediate 4 was synthesised either by a Friedel-Crafts acylation (step c) or by a Houben-Hoesch reaction (steps a/b) using the corresponding substrates 1 and 2. The subsequent formylation and cyclization (step d) of the deoxybenzoin gave the desired isoflavone 5.

Scheme 2.1. Isoflavone synthesis via deoxybenzoin route. Reagents and conditions: Houben-Hoesch: (a) ($\mathrm{R}^{1}=\mathrm{OH}$, $\left.\mathrm{R}^{2}=\mathrm{CN}\right) \mathrm{ZnCl}_{2}, \mathrm{Et}_{2} \mathrm{O}, \mathrm{HCl}\left(2 \mathrm{~N}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$; (b) $\mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}(10 \%), 23-51 \%$ over 2 steps. Friedel-Crafts: $(\mathbf{c})\left(\mathrm{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}=\right.$ $\mathrm{COOH}) \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, 50-96 \%$. (d) DMF, $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{MsCl}, 3-84 \%$.

For the beginning, the less laborious method was used. The Friedel-Crafts acylation proved to be facile and straightforward in the synthesis of deoxybenzoin when resorcinol 6 (Scheme 2.2) was used as phenol in reaction with different phenylacetic acids 7-15. In this type of reaction, the phenol does not need protection. If phenolic esters are formed, they will undergo a Fries rearrangement in the presence of the Lewis acid present in the reaction, in our case BF_{3}, leading to the desired o - and p-acylphenols. The synthesis was accomplished either as a one-pot, two-step reaction or as a two-step reaction. The general procedure (Scheme 2.2) involved the reaction of resorcinol 6 with the corresponding phenylacetic acid 715 in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ as catalyst and solvent to form the corresponding deoxybenzoin $16-25$ (step a). Subsequent formylation and cyclization using N, N-dimethylformamide and methanesulfonyl chloride (step b) provided the desired isoflavones $\mathbf{2 6 - 3 5} .{ }^{39}, 45$ Isoflavones $\mathbf{2 6 - 2 8}$ were synthesised using the twostep reaction, and isoflavones 29-35 were synthesised using the one-pot, two-step reaction. The two-step reaction was performed to confirm the synthesis of the deoxybenzoin intermediates 16-18, and 24. Isoflavone $\mathbf{3 5}$ was obtained probably due to esterification of the carboxylic acid $\mathbf{1 5}$ before or after monoacylation in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ being known as a good reagent in the esterification of carboxylic acids. ${ }^{149,}{ }^{150}$ Apart from 34 and $\mathbf{3 5}$, the isoflavones 29-33 (Table 2.1) are known compounds and were made to provide substrate scope.

6

7-15

7, 16: $\mathrm{R}=4-\mathrm{OH}$
8, 17: $\mathrm{R}=4-\mathrm{OCH}_{3}$
9, 18: $\mathrm{R}=3-\mathrm{OCH}_{3}$
10, 19: $\mathrm{R}=2-\mathrm{OCH}_{3}$
11, 20: $\mathrm{R}=4-\mathrm{H}$
12, 21: $\mathrm{R}=4-\mathrm{CH}_{3}$
13, 22: $\mathrm{R}=4-\mathrm{Cl}$
14, 23: $\mathrm{R}=4-\mathrm{NO}_{2}$
15: $\mathrm{R}=4-\mathrm{CH}_{2}-\mathrm{COOH}$
25: $\mathrm{R}=4-\mathrm{CH}_{2}-\mathrm{COOCH}_{2} \mathrm{CH}_{3}$

24: $R=4$

26: $\mathrm{R}=4{ }^{\prime}-\mathrm{OH}$
27: $\mathrm{R}=\mathrm{4}^{\prime}-\mathrm{OCH}_{3}$
28: $\mathrm{R}=3 \mathrm{~B}^{-} \mathrm{OCH}_{3}$
29: $\mathrm{R}=2^{\prime}-\mathrm{OCH}_{3}$
30: $\mathrm{R}=4^{\prime}-\mathrm{H}$
31: $\mathrm{R}=4^{\prime}-\mathrm{CH}_{3}$
32: $\mathrm{R}=4^{\prime}-\mathrm{Cl}$
33: $\mathrm{R}=4 \mathrm{'}^{\prime} \mathrm{NO}_{2}$
35: $\mathrm{R}=4^{\prime}-\mathrm{CH}_{2}-\mathrm{COOCH}_{2} \mathrm{CH}_{3}$

Scheme 2.2. Synthesis of isoflavone analogues. Reagents and conditions: (a) $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, 85-100^{\circ} \mathrm{C}, 2-3 \mathrm{~h}, \mathrm{~N}_{2}, 50-$ 96% (b) 1. RT, DMF; $2.50^{\circ} \mathrm{C}, \mathrm{MeSO}_{2} \mathrm{CI} / \mathrm{DMF} ; 3.85-100^{\circ} \mathrm{C}, 2-3 \mathrm{~h}, 3-84 \%$.

Table 2.1. Isoflavones obtained through deoxybenzoin route using Friedel-Crafts acylation

Phenylacetic acid	Step a: temp., time; Deoxybenzoin (yield, \%)	Step \mathbf{b} : temp., time	Isoflavones (yield, \%)
7: $\mathrm{R}=4-\mathrm{OH}$	$\begin{gathered} 85^{\circ} \mathrm{C}, 2 \mathrm{~h} ; \\ 16 \text { (87\%) } \end{gathered}$	$85^{\circ} \mathrm{C}, 2 \mathrm{~h}$	
8: $\mathrm{R}=4-\mathrm{OCH}_{3}$	$\begin{gathered} 85^{\circ} \mathrm{C}, 2 \mathrm{~h} ; \\ 17 \text { (94\%) } \end{gathered}$	$85^{\circ} \mathrm{C}, 2 \mathrm{~h}$	
9: $\mathrm{R}=3-\mathrm{OCH}_{3}$	$\begin{gathered} 85^{\circ} \mathrm{C}, 2 \mathrm{~h} ; \\ 18 \text { (96\%) } \end{gathered}$	$85^{\circ} \mathrm{C}, 2 \mathrm{~h}$	
10: $\mathrm{R}=2-\mathrm{OCH}_{3}$	$\begin{gathered} 85^{\circ} \mathrm{C}, 2 \mathrm{~h} ; \\ 19 \end{gathered}$	$85^{\circ} \mathrm{C}, 2 \mathrm{~h}$	

11: $\mathrm{R}=4-\mathrm{H}$
[a] Two-step reaction; ${ }^{[b]}$ One-pot, two-step reaction, yield over 2 steps; ${ }^{[c]}$ New compound.

It can be noted that the reactivity of the mild Friedel-Crafts acylation system formed from boron trifluoride and the corresponding carboxylic acid is influenced by the substituents on the phenyl ring. When the benzene ring of phenylacetic acid was substituted with electron donating groups (EDG; ring activating groups, 7-12), the acylation and cyclization reactions proceeded smoothly at $85^{\circ} \mathrm{C}$ and were complete in about 2 hours each, giving the desired isoflavones 26-31 in fair to good yields. On the other hand, when the benzene ring of phenylacetic acid was substituted with electron withdrawing groups (EWG; ring deactivating groups, 13-15), the reactions required a slightly higher temperature of $90-100{ }^{\circ} \mathrm{C}$ and a longer time of 2.5-3 hours, giving the desired isoflavones 32-35 in poor to fair yield. This effect may be due to the
stabilization (by EDG) or destabilization (by EWG) of acylium ion 38 formed in the reaction as electrophile (Scheme 2.3).

Scheme 2.3. Acylium ion formation

The possible mechanism for the synthesis of deoxybenzoins starts with the in situ formation of acylium ion 38 , followed by an attack of resorcinol 6 on 38 to give intermediate 40 (Scheme 2.4), which in the presence of Lewis acid forms the complex 41. In the two-step reaction, aqueous work-up of 41 gave the desired deoxybenzoins 16-18, and 24. It should be taken into account that 38 can also be attacked by $\mathrm{Et}_{2} \mathrm{O}$, resulting in esters (see later).

Scheme 2.4. Possible mechanism for the synthesis of deoxybenzoin

Treating deoxybenzoins 16-25 with BF_{3} leads to complex $42,{ }^{151}$ which activates the α-proton and generates 43. Subsequent formylation with the Vilsmeier reagent (iminium cation, generated in situ from N, N dimethylformamide and methanesulfonyl chloride) gives the proposed α-chloro amine 44. Electron movement from the nitrogen lone pair generates the iminium cation 45 and the removal of chloride ion. Elimination of the proton α to the carbonyl, and the subsequent conjugation (enolization might occur) leads to 46, which is a common yellow intermediate in the isoflavone formation process. ${ }^{151}$ When the reactions were analyzed by TLC, almost all of them contained a yellow spot, which may be the complex 46. Under acidic conditions, the intermediate 46 cyclises to isoflavones $26-35$ via a nucleophilic attack and a deamination.

Scheme 2.5. Possible mechanism for the synthesis of isoflavone 26-35; ${ }^{151}$ formation of Vilsmeier reagent from N, N dimethylformamide and methanesulfonyl chloride.

It should be noted that 5-hydroxyisoflavones 51 (Figure 2.2) were obtained as byproducts in the synthesis of isoflavones $\mathbf{2 6 - 3 2}$, but the quantity of the isoflavones obtained was small, and the compounds could not be isolated in good purity. In the case of isoflavones 33-35 the formation of 5-hydroxyisoflavones was not observed. Obtaining small quantities or no 5-hydroxyisoflavones may be due to steric effects

A small quantity of the starting $2,2^{\prime}-(1,4-$ phenylene) diacetic acid 15 and more than 30% of the starting 2-(4-nitrophenyl)acetic acid 14 were transformed into the corresponding ethyl esters 53 and 52 . Small quantities of the ethyl ester were observed in almost all the reactions.

51

52

53

Figure 2.2. Chemical structure of 5-hydroxyisoflavones 51, and ethyl esters 52 and 53

When resorcinol 6 was reacted with 1,4-phenylenediacetic acid 15, only the bis-acylated product 24 and the ester 53 were isolated. The mono-acylated compound 54 or its ethyl ester $\mathbf{2 5}$ were not observed. Even when the number of equivalents of resorcinol $\mathbf{6}$ / phenylacetic acid $\mathbf{1 5}$ was changed from 2:1 to 1:1 or 1:2, the result was the same. In an attempt to obtain isoflavone 55 , the one-pot reaction was used, but without success. Isoflavones 34 and 35 were obtained even when the number of equivalents of resorcinol $\mathbf{6 /}$ phenylacetic acid 15 was also changed from 2:1 to 1:1 or 1:2.

54

55

Figure 3. Chemical structure of deoxybenzoins 24, 25 and 54 and isoflavone 55

Next, resorcinol 6 was replaced with phloroglucinol 56 in order to obtain 5,7-dihydroxyisoflavone 58. Unfortunately, the corresponding deoxybenzoin 57 could not be obtained using the Friedel-Crafts acylation. The failure to obtain deoxybenzoins by using phloroglucinol 56 through Friedel-Crafts acylation was reported previously. ${ }^{45}$ A possible explanation for the failure of this reaction may be the steric effects of the hydroxy groups. Similar effects may also be observed in obtaining 5 -hydroxyisoflavones 51 from resorcinol.

56

7, 9, 11, 15
7: $\mathrm{R}=4-\mathrm{OH}$
9: $\mathrm{R}=3-\mathrm{OCH}_{3}$
11: $\mathrm{R}=4-\mathrm{H}$
15: $\mathrm{R}=4-\mathrm{CH}_{2}-\mathrm{COOH}$
Scheme 2.6. Synthesis of 5,7-dihydroxyisoflavone. Reagents and conditions: (a) $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, 80^{\circ} \mathrm{C}, 1.5 \mathrm{~h}, \mathrm{~N}_{2}$; (b) 1 . RT, DMF; 2. $50^{\circ} \mathrm{C}, \mathrm{MeSO}_{2} \mathrm{Cl} / \mathrm{DMF} ; 3.80^{\circ} \mathrm{C}, 1 \mathrm{~h}$.

To overcome this issue, the Houben-Hoesch acylation was used. Phloroglucinol 56 was reacted with the corresponding acetonitrile 59-62 in the presence of ZnCl_{2} and HCl to yield the imines 63-66 (Scheme 2.7, step a). ${ }^{44}$ To avoid the use of HCl gas, a solution of 2 N HCl in $\mathrm{Et}_{2} \mathrm{O}$ was used. This modification of the classical method may be the reason for obtaining the imines and deoxybenzoins, respectively, in lower yield. Subsequent hydrolysis (step b) with $10 \% \mathrm{HCl}$ afforded the deoxybenzoins 67-70, which were later formylated and cyclised using the Vilsmeier reagent in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ (step \mathbf{c}) to provide the desired isoflavones 71-74.

Scheme 2.7. Synthesis of isoflavone analogues using Houben-Hoesch reaction. Reagents and conditions: (a) 1. $\mathrm{ZnCl}_{2}, \mathrm{Et}_{2} \mathrm{O}, \mathrm{RT} ; 2.0^{\circ} \mathrm{C}, \mathrm{HCl}\left(2 \mathrm{~N}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right) ; 3.0^{\circ} \mathrm{C}, 10 \mathrm{~min}-2 \mathrm{~h} ; 4 . \mathrm{RT}, 16-18 \mathrm{~h} ;\left(\right.$ b) $10 \% \mathrm{HCl}, 8{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}, 23-51 \%$; (c)

1. $\mathrm{DMF}, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{N}_{2}, \mathrm{RT}, 10 \mathrm{~min} ; 2 . \mathrm{RT}-50^{\circ} \mathrm{C}, \mathrm{MeSO}_{2} \mathrm{Cl} / \mathrm{DMF} ; 3.85-100^{\circ} \mathrm{C}, 2.5-3 \mathrm{~h}, 50-72 \%$.

Table 2.2. Isoflavones obtained through deoxybenzoin route using Houben-Hoesch reaction

Phenylacetonitrile	Step \mathbf{a} and \mathbf{b} : temp., time; Deoxybenzoin (yield, \%)	Step c: temp. time	Isoflavones (yield, \%)
59: $\mathrm{R}=4-\mathrm{OCH}_{3}$	(a) $3.0^{\circ} \mathrm{C}, 2 \mathrm{~h}$ 4. $R T, 16-18 \mathrm{~h}$ (b) $85^{\circ} \mathrm{C}, 3 \mathrm{~h}$; 63, 67 (51\%)	1. RT, 10 min 2. RT 3. $85^{\circ} \mathrm{C}, 2.5 \mathrm{~h}$	
60: $\mathrm{R}=3-\mathrm{OCH}_{3}$	(a) $3.0^{\circ} \mathrm{C}, 2 \mathrm{~h}$ 4. $\mathrm{RT}, 16-18 \mathrm{~h}$ (b) $85^{\circ} \mathrm{C}, 3 \mathrm{~h}$; 64, 68 (51\%)	1. RT, 10 min 2. RT 3. $85^{\circ} \mathrm{C}, 2.5 \mathrm{~h}$	
61: $\mathrm{R}=2-\mathrm{OCH}_{3}$	(a) $3.0^{\circ} \mathrm{C}, 10 \mathrm{~min}$ 4. RT, 16-18 h (b) $85^{\circ} \mathrm{C}, 3 \mathrm{~h}$; 65, 69 (23\%)	1. $\mathrm{RT}, 10 \mathrm{~min}$ 2. $50^{\circ} \mathrm{C}$ 3. $100^{\circ} \mathrm{C}, 3 \mathrm{~h}$	
62: $\mathrm{R}=4-\mathrm{NO}_{2}$	(a) $3.0^{\circ} \mathrm{C}, 10 \mathrm{~min}$ 4. RT, 16-18 h (b) $85^{\circ} \mathrm{C}, 3 \mathrm{~h}$; 66, 70 (28\%)	1. $\mathrm{RT}, 10 \mathrm{~min}$ $\text { 2. } 50^{\circ} \mathrm{C}$ $\text { 3. } 100^{\circ} \mathrm{C}, 3 \mathrm{~h}$	

The isoflavones 71-74 (Table 2.2) are known compounds and were made to provide substrate scope in the synthesis of some esters, carbamates or other new derivatives.

The proposed Houben-Hoesch mechanism is presented in Scheme 2.8. It involves the formation of imines 63-66 via a nucleophilic attack of phloroglucinol 56 onto the nitrile activated by ZnCl_{2}. Subsequent acid hydrolysis yields the desired deoxybenzoins 67-70.

59-62

Scheme 2.8. Proposed mechanism of the Houben-Hoesch reaction.

2.1.1.2 Synthesis of simple isoflavones using the Suzuki-Miyaura cross-coupling reaction

To synthesise some isoflavone derivatives using the Suzuki-Miyaura cross-coupling reaction, first four 3-halo-4H-chromen-4-one derivatives $80-83$ were produced (Scheme 2.9). The synthesis began with the selective protection of 2,4 -dihydroxyacetophenone 75 at the 4 -hydroxy group using 3,4 -dihydro- 2 H -pyran (DHP) for 76,86 and iodomethane for $78 .{ }^{152}$ The protected compounds were treated with N, N dimethylformamide dimethyl acetal (DMF-DMA) to furnish the bright yellow enamino ketones 77 and 79, which were subsequently cyclised to get the desired 3 -halo- 4 H -chromen-4-one $80-83$. For the 3 -iodo- 4 H -chromen-4-ones 80 and 82 , pyridine and iodine were used for cyclization. For the 3 -bromo- 4 H -chromen-4ones 81 and $83-86$, a solution of bromine in chloroform was used. To cyclize 77 to 81 a single equivalent of bromine was used, and the desired compound was obtained in 60% yield with a small amount of starting material (<10\%). Based on this fact and with the hope of getting the complete conversion of 79 to 83, two equivalents of bromine were used. Complete conversion was obtained but, in addition to the desired compound 83 , three other compounds were obtained via an electrophilic substitution, these being the 6,8 (84), 6- (85), and 8- (86) bromo substituted derivatives of the desired compound 83. The obtained bromo derivatives $84-86$ were identified by mass spectrometry and NMR. These derivatives could be useful in a cross-coupling reaction to see which bromo substituent is more reactive, and if the coupling partner reacts selectively at one of the substituted bromo positions. When one equivalent of bromine was used, only the desired compound 83 was obtained in 43% yield, with 15% of starting material, the other derivatives not being observed.

77

Scheme 2.9. Synthesis of 3-halo-4H-chromen-4-one derivatives 80-86. Reagents and conditions: (a) DHP (3 equiv.), PPTS (0.04 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}, 4 \mathrm{~h}$; (b) $\mathrm{CH}_{3} \mathrm{I}$ (1 equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2 equiv.), acetone, RT, overnight; (c)
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCH}\left(\mathrm{OCH}_{3}\right)_{2}\left(1.5\right.$ equiv.), $95^{\circ} \mathrm{C}, 3 \mathrm{~h}$; (d) I_{2} (2 equiv.), pyridine (1.1 equiv.), $\mathrm{CHCl}_{3}, \mathrm{RT}, 12 \mathrm{~h}, 86-89 \%$ (over 3 steps); (e) Br_{2} (1 equiv.), $\mathrm{CHCl}_{3}, 0^{\circ} \mathrm{C}, 60 \%$ (over 3 steps); (f) Br_{2} (2 equiv.), $\mathrm{CHCl}_{3}, 0^{\circ} \mathrm{C}, 6-30 \%$ (over 3 steps).

Scheme 2.10 presents the proposed mechanism for the condensation of 76 and 78 with N, N dimethylformamide dimethyl acetal to furnish the enamines 77 and 79 , followed by a cyclisation with iodine or bromine to yield the 3-halo-4H-chromen-4-one derivatives 80-83.

76, 78

77, 79

Scheme 2.10. Proposed mechanism for the 3-halo-4H-chromen-4-one derivatives 80-83

To diversify the isoflavone derivatives and to obtain isoflavones which may subsequently be functionalized, a selection of twelve boronic acids 87-98 was chosen and used (Table 2.3), organoboronic acids being very good substrates in Suzuki-Miyaura cross-coupling. ${ }^{153}$ In order to see the influence of heteroatoms in the (B) phenyl ring of isoflavone, four N-containing boronic acids were included, 88-91. The amine group and nitrogen heterocycles are present in a variety CNS drugs, amines (due to their basicity) having a favourably interaction with BBB (due to their negative charge). ${ }^{154}$ The phenylboronic acids $92-98$ were also selected to see the influence of nitrogen or oxygen on the activity of isoflavones and for subsequent functionalization and creation of some nitrogen/oxygen heterocycles on the ring. Esterification of 4-carboxyphenylboronic acid 97 with methanol, provided (4-(methoxycarbonyl)phenyl)boronic acid $98 .{ }^{155}$ To increase the BBB permeation, studies have shown that it is necessary to eliminate acidic groups. ${ }^{156}$

Table 2.3. Selected boronic acids

87

91

88

92

89

93

90

94

95

96

97

98

Considering that some of the boronic acids and the halides are N -heterocycles, very polar, or chelating substrates, the choice of catalyst, base, solvents, and reaction conditions was laborious, and various procedures from literature were used (See Scheme 2.11, and Table 2.4). Many of the Suzuki coupling reactions for the synthesis of isoflavones are carried out between 3 -halochromones and various boronic acids that contain electron-donating groups, such as methoxy. ${ }^{19,86,157}$ Since many of the selected boronic acids contained electron-withdrawing groups, those procedures that have worked for them as well were chosen. ${ }^{19,50}$
If the coupling partner was to be reversed, it has been reported that the Pd-catalysed borylation of 3iodochromone does not work. ${ }^{55}$

For the catalyst, the metal of choice was palladium, and the best results were obtained with $\left[\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}\right]$ (Method \mathbf{h}), followed by $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right) 4\right]$ (Method \mathbf{g}). It can be noted that the use of bulky ligands, such as $1,1^{\prime}$ bis(diphenylphosphino)ferrocene (dppf) facilitates the cross-coupling by accelerating the oxidative addition and reductive elimination processes as electron density increases around the metal. ${ }^{158}$ Using the $\left[\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}\right]$, the reaction occurred at a relatively low temperature of $70^{\circ} \mathrm{C}$.

Regarding the solvents, the reactions revealed that the most appropriate mixture was toluene/ ethanol/ water, in different ratios (Methods \mathbf{g} and \mathbf{h}). A key role is played by the alcohol, ethanol in our case, as its presence led to higher yields. This may be due to the solubility of the reactants and intermediates. Also, while the presence of an alcohol in the solvent mixture helps to dissolve better the polar reagents, it was reported that they also increase the protodeboronation. ${ }^{153}$ Protodeboronation, the hydrolysis and loss of boronic acids, was observed in some reactions, some of them having low yields, or in other cases the reactions may have failed because of this. To overcome this situation, the use of less harsh reaction conditions, such as lower temperature and/or weaker bases, different solvent systems and more stable boronate derivatives is recommended. Also, homocoupling can occur in the case of boronic acids and was observed in some reactions. To reduce the homocoupling, considered to be promoted by the oxygen dissolved in the solvent, a better degassing method could be used instead of purging N_{2} through the solvent, such as Freeze-Pump-Thaw method. Another problem was dehalogenation, a common issue when the iodo-derivatives are used. Even if the iodides are ideal substrates for palladium catalysed Suzuki reactions, the bromo and chloro derivatives were reported to be superior by having a reduced dehalogenation tendency. ${ }^{159}$ A weak base $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ was used to reduce the protodeboronation and dehalogenation reactions, and to avoid any side reaction to functional groups.

Scheme 2.11. Synthesis of isoflavones using the Suzuki-Miyaura cross-coupling reaction. Reagents and conditions: (a) $\mathrm{X}=\mathrm{I}, 10 \% \mathrm{Pd} / \mathrm{C}(5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}$ (3 equiv.), DME/ $\mathrm{H}_{2} \mathrm{O}(1: 1), 45-100{ }^{\circ} \mathrm{C}, 4-120 \mathrm{~h} ; 8^{86,157}$ (b) $\mathrm{X}=\mathrm{I},\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ (5 $\mathrm{mol} \%$), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (3 equiv.), DME/ $\mathrm{H}_{2} \mathrm{O}(1: 1), 45^{\circ} \mathrm{C}, 24 \mathrm{~h} ;(\mathbf{c}) \mathrm{X}=\mathrm{I},\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}\right](5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(2 \mathrm{M} \mathrm{in} \mathrm{H} 2 \mathrm{O}, 2$ equiv.), DME, $\mathrm{N}_{2}, 100^{\circ} \mathrm{C}, 1 \mathrm{~h} ;{ }^{160}$ (d) $\mathrm{X}=\mathrm{I},\left[\mathrm{Pd}^{(}\left(\mathrm{PPh}_{3}\right)_{4}\right](5 \mathrm{~mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}$ (3 equiv.), 1,4 -dioxane, $\mathrm{N}_{2}, 90{ }^{\circ} \mathrm{C}, 16 \mathrm{~h} ;{ }^{;} 61$
(e) $\mathrm{X}=\mathrm{Br},\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right) 4\right](5 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}$ (3 equiv.), toluene/water (2.6:1), $\mathrm{N}_{2}, 70-80^{\circ} \mathrm{C}, 16-18 \mathrm{~h}$; ${ }^{162}$ (f) $\mathrm{X}=\mathrm{Br}$, $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}\right](5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}\left(1 \mathrm{M}, 2\right.$ equiv.), 1,4 -dioxane, $\mathrm{N}_{2}, 110^{\circ} \mathrm{C}, 16 \mathrm{~h} ;{ }^{163}(\mathrm{~g}) \mathrm{X}=\mathrm{I},\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right](2 \mathrm{~mol} \%)$, $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (2 M in $\mathrm{H}_{2} \mathrm{O}$, 3 equiv.), toluene/ethanol (1:1), $\mathrm{N}_{2}, 100^{\circ} \mathrm{C}, 5 \mathrm{~h}$; ${ }^{50}$ (h) $\mathrm{X}=\mathrm{I},\left[\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}\right]$ ($5 \mathrm{~mol} \%$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(4$ equiv.), toluene/ $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(10: 5: 1), 70^{\circ} \mathrm{C}, 19 \mathrm{~h}$.

 99		 102: $\mathrm{R}^{1}=\mathrm{THP}$ 103: $\mathrm{R}^{1}=\mathrm{CH}_{3}$
		 107: $\mathrm{R}^{1}=\mathrm{THP}$ 108: $\mathrm{R}^{1}=\mathrm{CH}_{3}$
 113: $\mathrm{R}^{1}=\mathrm{THP}$ 114: $\mathrm{R}^{1}=\mathrm{CH}_{3}$	 115: $\mathrm{R}^{1}=\mathrm{THP}$ 116: $\mathrm{R}^{1}=\mathrm{CH}_{3}$	

Table 2.4. Synthesis of isoflavones using the Suzuki-Miyaura cross-coupling reaction

Catalytic system	Solvent	Base	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	Halide	Boronic acid	Isoflavone	Yield (\%)	Notes	Method
10% Pd/C (5 mol\%)	$\begin{gathered} \text { DME/ } \mathrm{H}_{2} \mathrm{O} \\ (1: 1) \end{gathered}$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$ (3 equiv.)	45	4	80	87	99	47	-	$\mathbf{a}^{86,157}$
						97	115	-	[c]	
				5.5		89	102	-	[b]	
						91	105	-	[b]	
						92	107	-	[b]	
						93	109	-	[a, b]	
				120		88	100	-	[a, b]	
			100	20				-	[a, b]	
			45	16	82	93	110	-	[a, b]	
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($5 \mathrm{~mol} \%$)	$\begin{gathered} \mathrm{DME} / \mathrm{H}_{2} \mathrm{O} \\ (1: 1) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Na}_{2} \mathrm{CO}_{3} \\ \text { (3 equiv.) } \\ \hline \end{gathered}$	45	24	80	88	100	-	[a]	b
	1,4-dioxane	$\begin{gathered} \mathrm{Cs}_{2} \mathrm{CO}_{3} \\ \text { (3 equiv.) } \end{gathered}$	90	16	80	88	100	-	[a]	d^{161}
						92	107	-	[a]	
						93	109	70	[a, d]	
						96	113	-	[a, c]	
						97	115	-	[a, c]	
	$\begin{gathered} \text { Toluene/ } \mathrm{H}_{2} \mathrm{O} \\ (2.6: 1) \end{gathered}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$ (3 equiv.)	70	18	83	88	101	-	[a, b]	e^{162}
						89	103	-	[a]	
						90	104	-	[a]	
						91	106	-	[a, b]	
						92	108	-	[a, b, f]	
						93	110	42	[a]	
						94	111	-	[a, b, f]	
						95	112	-	[a, b]	
						96	114	-	[a]	
					81	97	115	-	[a]	
			80	16		98	117	52	[a]	
$\begin{gathered} \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(2 \\ \mathrm{mol} \%) \end{gathered}$	Toluene/ EtOH (1:1)	$\mathrm{Na}_{2} \mathrm{CO}_{3}(2 \mathrm{M}$ in $\mathrm{H}_{2} \mathrm{O}, 3$ equiv.)	100	5	82	88	101	10	[a, e]	g^{50}
						91	106	31	[a]	
						92	108	52	[a]	
						93	110	67	[a]	
						94	111	52	[a]	
						95	112	72	[a]	
						96	114	81	[a]	
						98	118	69	[a]	

$\begin{gathered} \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2} \\ (5 \mathrm{~mol} \%) \end{gathered}$	DME	$\begin{aligned} & \hline \mathrm{Na}_{2} \mathrm{CO}_{3}(2 \mathrm{M} \text { in } \\ & \mathrm{H}_{2} \mathrm{O}, 2 \text { equiv.) } \end{aligned}$	100	1	80	88 97	100	-	[c]	c^{160}
	1,4-dioxane	$\mathrm{Na}_{2} \mathrm{CO}_{3}(1 \mathrm{M}$ in $\mathrm{H}_{2} \mathrm{O}$, 2 equiv.)	110	16	83	88	101	-	[a]	f^{163}
						89	103	-	[a]	
						90	104	-	[a]	
						91	106	62	[a]	
$\begin{gathered} \mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \\ (5 \mathrm{~mol} \%) \end{gathered}$	Toluene/ $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ (10:5:1)	$\begin{gathered} \mathrm{Na}_{2} \mathrm{CO}_{3} \\ \text { (4 equiv.) } \end{gathered}$	70	19	82	88	101	-	[a, e]	h
						89	103	-	[a, e]	
						90	104	-	[a, e]	
						91	106	75	[a]	
						92	108	80	[a]	
						93	110	88	[a, e, f]	
						94	111	18	[a, e, f]	
						95	112	82	[a]	
						96	114	93	[a, e, f]	
						97	116	-	[a]	
						98	118	88	[a, e, f]	

[a] the reaction was carried out under nitrogen, and the solvents were degassed by sonicating and bubbling N_{2} through the solvent for 20 min prior to addition into the reaction mixture; ${ }^{[b]}$ starting 3-iodo or 3-bromo derivative was separated from the reaction mixture; ${ }^{[c]} 7$-hydroxy-3-iodo-4H-chromen-4-one 122 was separated from the reaction mixture; ${ }^{[d]}$ a mixture of protected and deprotected desired product was observed; ${ }^{[e] ~ 7-m e t h o x y-4 H-c h r o m e n-4-o n e ~} 119$ was separated from the reaction mixture; ${ }^{[f]}$ homocoupling or protodeboronation product of the starting boronic acid was separated from the reaction mixture;

As shown above, method (h) gave the best results for the synthesis of almost all the isoflavones, apart from isoflavone 111 which was obtained in a better yield by method (\mathbf{g}), the second-best method. Obtaining 111 in a lower yield may be a problem of steric hindrance, since the starting boronic acid 94 is substituted at position 2 by NO_{2}, or some electronic effects caused by the same NO_{2}. 101 could not be obtained by method (h), being obtained only by method (\mathbf{g}) in low yield. For 101 it may be a problem of solubility, since less ethanol was used in (h) compared to (\mathbf{g}) to reduce protodeboronation, or a chelating problem, since it is an N-heterocycle. In the case of 101, the dehalogenated product 119 of the halide 82 was also obtained using method (g), which may explain the low yield. 7-Methoxy-4H-chromen-4-one 119 was also observed on the TLC in the other reactions, but the quantity was too small to separate. When method (g) was used for the synthesis of 112 , but with a longer time of $18 \mathrm{~h}\left(\right.$ at $100^{\circ} \mathrm{C}$) instead of 5 h , a degradation compound 120 was obtained. The isoflavone ring is opened in presence of base, $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in our case, and a molecule of formic acid is eliminated to form the deoxybenzoin 120.

119

120

Figure 2.4. Byproducts of the Suzuki-Miyaura cross-coupling reaction

The obtained THP-protected isoflavones 99 and 117 were further deprotected to furnish the corresponding isoflavones 30 and 121 (Scheme 2.12). ${ }^{86}$ lodo-derivative 80 was also deprotected to get 7-hydroxy-3-iodo4 H -chromen-4-one 122, a side product observed in many of the Suzuki reactions performed.

Scheme 2.12. Deprotection reaction. Reagents and conditions: (a) $\mathrm{p}-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}\left(0.1\right.$ equiv), $\mathrm{MeOH} / \mathrm{THF}, 60^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (b) $\mathrm{Et}_{3} \mathrm{~N}, 90-93 \%$.

The synthesis of all desired isoflavones was not achieved using the methods described above (isoflavones $102 / 103,104$ and $115 / 116$ were not formed). A reason could be the solubility of boronic acid (97) or stability of compound (90). To increase the solubility, it may be useful in the future to use DMF or Cyrene ${ }^{\text {TM }}$ instead of toluene and ethanol, these solvents being capable of solubilizing many reactants. ${ }^{164}$ For better stability of boronic acids, use of more stable boronate derivatives is recommended. Of the ten isoflavones synthesized by Suzuki cross-coupling, four are new (101, 106, 111, and 117).

2.1.1.3 Synthesis of other simple isoflavones or derivatives

Several isoflavones, many of them novel, were synthesized either by the functionalization of previously obtained isoflavones or by various other methods.
Six novel azido-isoflavones were obtained using two different methods. In the first, the nitro-isoflavones 33, 74, 108, 110 and 111 were reduced to amines (123-127) in the presence of iron powder and $\mathrm{NH}_{4} \mathrm{Cl}$ in ethanol (Scheme 2.13). ${ }^{165}$ Subsequent treatment of the amines $\mathbf{1 2 3 - 1 2 7}$ with t-BuONO and TMSN 3 gave the new azides 128-132 (Table 2.5). ${ }^{166}$

33: 4' $-\mathrm{NO}_{2}$; 123: 4'-NH2; 128: $4{ }^{\prime}-\mathrm{N}_{3}, \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{H}$
74: 4' $-\mathrm{NO}_{2}$; 124: $4^{\prime}-\mathrm{NH}_{2}$; 129: $4^{\prime}-\mathrm{N}_{3}, \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{OH}$
108: 4' $-\mathrm{NO}_{2}$; 125: 4'- NH_{2}; 130: $4^{\prime}-\mathrm{N}_{3}, \mathrm{R}^{1}=\mathrm{CH}_{3}, \mathrm{R}^{2}=\mathrm{H}$
110: $3^{\prime}-\mathrm{NO}_{2}$; 126: $3^{\prime}-\mathrm{NH}_{2}$; 131: $3^{\prime}-\mathrm{N}_{3}, \mathrm{R}^{1}=\mathrm{CH}_{3}, \mathrm{R}^{2}=\mathrm{H}$
111: 2' $-\mathrm{NO}_{2}$; 127: 2'- NH_{2}; 132: 2'- $\mathrm{N}_{3}, \mathrm{R}^{1}=\mathrm{CH}_{3}, \mathrm{R}^{2}=\mathrm{H}$

128-132

Scheme 2.13. Synthesis of azido-isoflavones. Reagents and conditions: (a) Fe powder, $\mathrm{NH}_{4} \mathrm{Cl}$ (in $\mathrm{H}_{2} \mathrm{O}$), $\mathrm{EtOH}, 90^{\circ} \mathrm{C}$, 4 h, 30-95\%; (b) 1. t-BuONO, $\mathrm{TMSN}_{3}, \mathrm{MeCN}, 0^{\circ} \mathrm{C}, \mathrm{N}_{2} ; 2$. RT, $1.5 \mathrm{~h}, 75-94 \%$.

Table 2.5. Amino and azido-isoflavones

(92\%)

Amine 124 was obtained in a lower yield probably due to the complexation of the isoflavone with the iron. However, its synthesis was reported in 70% yield when isopropanol was used instead of ethanol and $\mathrm{H}_{2} \mathrm{O} .{ }^{167}$

When nitro-isoflavone 111 was reduced to amine 127, 3-salicyloylindole 133 (12% yield) was also obtained (Scheme 2.14) via a ring transformation. This transformation has been reported before when Pd / C (10\%)/EtOH/cyclohexene or $\mathrm{Zn} / \mathrm{AcOH}$ reducing systems were used. ${ }^{168}$

Scheme 2.14. Synthesis of 3-salicyloylindole 133. (a) 2'- NO_{2} reduction; (b) ring closure via a Michael-type reaction; (c) ring opening.

In the second method, 114 was converted to chloro-derivative 134 via a tosylate or mesylate ester by treatment with tosyl chloride/pyridine or mesyl chloride/Et ${ }_{3} \mathrm{~N}$ (Scheme 2.15). ${ }^{169-171}$ Subsequent treatment with NaN_{3} in DMF gave the desired azide 135. ${ }^{169,170}$

Scheme 2.15. Synthesis of azido-isoflavone 135. Reagents and conditions: (a) 1. p-TsCl, pyridine, $\mathrm{CHCl}_{3}, \mathrm{~N}_{2}, 0^{\circ} \mathrm{C} ; 2$. RT, $18 \mathrm{~h}, 28 \%$; (b) $1 . \mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~N}_{2}, 0^{\circ} \mathrm{C}$; 2 . RT, $18 \mathrm{~h}, 66 \%$; (c) $\mathrm{NaN}_{3}, \mathrm{DMF}, 65^{\circ} \mathrm{C}, 18 \mathrm{~h}, 91 \%$.

Isoflavone 114 was also used to get the aldehyde 136 via a Dess-Martin oxidation (Scheme 2.16). ${ }^{172}$ Further, the synthesis of alkyne 137 was attempted from aldehyde 136 using the Seyferth-Gilbert homologation and the Bestmann-Ohira reagent. When aldehyde 136 was treated with dimethyl 1-diazo-2-oxo-propylphosphonate 141 or dimethyl (diazomethyl)phosphonate 142, and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in $\mathrm{MeOH},{ }^{172}$ the alkyne 137 could not be observed. Instead, some degradation compounds were obtained. Compound 138 was separated next to a mixture of two byproducts which could not be identified entirely. From the ${ }^{1} \mathrm{H}$-NMR spectrum it appears that the secondary compounds are $\mathbf{1 3 9}$ and $\mathbf{1 4 0}$. The formation of $\mathbf{1 4 0}$ confirms that the transformation from aldehyde to alkyne works, but the degradation reaction occurs faster. The isoflavone ring is opened in presence of base, and a molecule of formic acid or a derivative is eliminated with formation of a deoxybenzoin, which is further hydrolysed and oxidised to compounds 138-140. When THF was used as solvent instead of $\mathrm{MeOH}, \mathbf{1 3 8}$ was not observed. There are some examples in the literature where different isoflavones are degraded, and the corresponding carboxylic acids or other degradation compounds are obtained, but the degradation reaction occurs in the presence of $\mathrm{NaOH} .{ }^{173} \mathrm{To}$ synthesise the desired alkyne 137, a Corey-Fuchs reaction on aldehyde 136 could be attempted, ${ }^{174}$ or a Suzuki-Miyaura cross-coupling of 3-halo-4H-chromen-4-ones 80-83 with 4-ethynylbenzeneboronic acid. ${ }^{175}$ Synthesis of Bestmann-Ohira (141), and Seyferth-Gilbert (142) reagents was performed as previously reported. ${ }^{176,177}$

141

142

137
b or c

136
b or c

138 (73\%)

Scheme 2.16. Attempted synthesis of 137. Reagents and conditions: (a) 1. Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C} ; 2$. RT, $3 \mathrm{~h}, 95 \%$; (b) $1.141, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}, 5 \mathrm{~min} ; 2$. RT, 1 h ; (c) $1.142, \mathrm{MeOH}, 0^{\circ} \mathrm{C}, 10 \mathrm{~min} ; 2 . \mathrm{K}_{2} \mathrm{CO}_{3}, 0^{\circ} \mathrm{C}, 2 \mathrm{~h}$; 3. RT, overnight.

The (B) phenyl ring of isoflavone was substituted with an alkyne or formyl groups to see what effect these groups have on the biological activity of the molecule.

Sonogashira coupling of (trimethylsilyl)acetylene 143 or (triethylsilyl)acetylene 144 with 3-iodo-7-methoxy$4 H$-chromen-4-one 82 using $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ and Cul as catalysts, triethylamine as base in THF afforded the protected derivatives 145 and 146 (Scheme 2.17). Subsequent deprotection of 145 and 146 by using TBAF and D-camphor-10-sulfonic acid (CSA) in THF provided a high yield of the desired 3-ethynyl-7-methoxy$4 H$-chromen-4-one 147. ${ }^{178}$ When TBAF was used without CSA, and a mixture of methanol and THF (1:1) was used as solvent, the desired product was not obtained. It was reported in the literature that the deprotected derivative 147 undergoes hydrolysis and acetal formation in the presence of alcohols. ${ }^{179}$ Also when only TBAF in THF was used, literature shows that the deprotected alkyne was obtained in 27% yield. ${ }^{180}$ D-camphor-10-sulfonic acid (CSA) was synthesised as previously reported. ${ }^{181}$

Scheme 2.17. Synthesis of 3-ethynyl-7-methoxy-4H-chromen-4-one 147. Reagents and conditions: (a) 1. $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}\right](3 \mathrm{~mol} \%)$, $\mathrm{Cul}(20 \mathrm{~mol} \%)$, THF, TEA, $\mathrm{N}_{2}, 0^{\circ} \mathrm{C} ; 2.3 \mathrm{~h}, \mathrm{RT}, \mathrm{N}_{2}, 82-88 \%$; (b) 1. TBAF, CSA, THF, $0{ }^{\circ} \mathrm{C}$; 2. RT, $3 \mathrm{~h}, 85-94 \%$.

The 3-formylchromone derivatives 150-152 were synthesised by Vilsmeier-Haack reaction (Scheme 2.18). 2',4'-Dihydroxyacetophenone 75, protected or not, was treated with POCl_{3} in DMF to afford the desired 3formylchromones $\mathbf{1 5 0 - 1 5 2 .}{ }^{182}$ To obtain the derivatives 151 and 152 , the synthesis began with the selective protection of $2^{\prime}, 4^{\prime}$-dihydroxyacetophenone $\mathbf{7 5}$ at the 4 -hydroxy group using 2-bromopropane for $\mathbf{1 4 8}$ (step b), ${ }^{183}$ and acetic anhydride for 149 (step c, the diacetate derivative was also obtained). ${ }^{182}$ When the protection of the $\mathbf{7}$-hydroxy group of $\mathbf{1 5 0}$ with isopropyl or acetyl groups was tried, the reaction did not work, probably due to the formyl group. Also, when the conversion of aldehyde (150) to alkyne was tried using dimethyl (diazomethyl)phosphonate 142 and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH , the desired compound could not be observed.

Scheme 2.18. Synthesis of 3-formylchromones 150-152. Reagents and conditions: (a) 1. POCl3, DMF, $-78{ }^{\circ} \mathrm{C}, \mathrm{N}_{2} ; 2$. RT, $24 \mathrm{~h}, 70-73 \%$ (for 150 and 152); (b) 1. ($\left.\mathrm{CH}_{3}\right)_{2} \mathrm{CHBr}, \mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, RT, $45 \mathrm{~min} ; 2.80^{\circ} \mathrm{C}, 4 \mathrm{~h}, 78 \%$; (c) $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$, pyridine, RT, $4 \mathrm{~h}, 62 \%$; (d) $1 . \mathrm{POCl}_{3}, \mathrm{DMF}, 50^{\circ} \mathrm{C}, 2 \mathrm{~h}, \mathrm{~N}_{2} ; 2.148, \mathrm{DMF}, 50^{\circ} \mathrm{C}, 2 \mathrm{~h} ; 3$. allowed to stand overnight; 4. $\mathrm{H}_{2} \mathrm{O}, 6 \mathrm{~h}, 25 \%$ (for 151). ${ }^{184}$

Further, reacting 152 with ethyl glycinate 153 led to the synthesis of pyrido-isoflavone 154 and pyrrole 155 (Scheme 2.19). ${ }^{185}$ Isoflavone 154 was synthesized from the desire to have the (B) phenyl ring of isoflavone substituted with a 2 -pyridyl.

Scheme 2.19. Synthesis of isoflavone 154 and pyrrole 155. Reagents and conditions: p - TsOH , toluene, reflux, 2 h , 9% for 154, and 5\% for 155.

2.1.2 Synthesis of isoflavone/1,2,4-oxadiazole hybrids

In order to assess the effects of the 1,2,4-oxadiazole scaffold on the isoflavone nucleus regarding antiinflammatory and neuroprotective activity, some isoflavone/1,2,4-oxadiazole hybrids were synthesised. These compounds were targeted because they contain the isoflavone, which have interesting neuroprotective effects and 1,2,4-oxadiazole moieties, which are well known for presenting various beneficial effects in the human body. Some ether derivatives of isoflavones with $1,2,4$-oxadiazoles were claimed to be potent and selective inhibitors of human mitochondrial aldehyde dehydrogenase (ALDH-2), an enzyme involved in the major enzymatic pathway responsible for ethanol metabolism in humans, and therefore useful in treating ethanol dependency. ${ }^{160,186-188}$ Also, oxadiazoles have attracted interest in their own right for their anti-inflammatory action, ${ }^{105,189,190}$ and having various beneficial effects, one of them being a masked neuroprotective effect. ${ }^{106,191}$ Oxadiazoles are well-known as bioisosteres for amides and esters and they can mimic the ester and amide bonds present in natural products. 101, 102

To synthesise the isoflavone $/ 1,2,4$-oxadiazole hybrids, the synthesis of a nitrile was envisaged, followed by an amidoxime and the final conversion to 1,2,4-oxadiazoles using the appropriate acyl chloride. Nitrile 156 was synthesised via a Williamson ether synthesis by reacting the isoflavone 27 with bromoacetonitrile in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ (Scheme 2.20). ${ }^{192}$ However, the amidoxime derivative 157 could not be formed by reacting nitrile isoflavone 156 with hydroxylamine hydrochloride in the presence of sodium carbonate in water. ${ }^{193}$ Instead, the amide $\mathbf{1 5 8}$ of the nitrile was obtained and its formation was confirmed by MS, IR and ${ }^{1} \mathrm{H}$-NMR. Clearly, the nitrile is hydrolysing rather than reacting with the hydroxylamine.

27

Scheme 2.20.Synthesis of amide 158. Reagents and conditions: (a) $\mathrm{BrCH}_{2} \mathrm{CN}^{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}$, acetone, N_{2}, reflux, $6 \mathrm{~h}, 76 \%$; (b) $1 . \mathrm{HONH}_{2} \cdot \mathrm{HCl}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{O} ; 2.156$, EtOH, reflux, $24 \mathrm{~h}, 42 \%$.

Another procedure was proposed for an effective method to synthesize the target 1,2,4-oxadiazole compounds (Scheme 2.21). The amidoxime 160 was obtained by reacting 2-chloroacetonitrile 159 with hydroxylamine hydrochloride in the presence of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in water. ${ }^{194}$ Subsequently, the amidoxime 160 was treated with the corresponding benzoyl chloride (161 or 162), in DCM, using $\mathrm{Et}_{3} \mathrm{~N}$ as a base, to obtain the intermediates 163 and 164, respectively. The intermediates were suspended in toluene and heated to reflux to afford the desired 1,2,4-oxadiazole derivatives 165 (35% yield) and 166 (27% yield), respectively. ${ }^{195}$ Also, two new derivatives, 167 (20% yield) and 168 (11% yield), in which the amidoxime scaffold is substituted both at the OH and the NH_{2} groups were obtained. When the pure intermediate 163 was heated at reflux in toluene, only the 1,2,4-oxadiazole 165 (37% yield) was obtained.

Scheme 2.21. Synthesis of 1,2,4-oxadiazoles. Reagents and conditions: (a) 1. $\mathrm{HONH}_{2} \cdot \mathrm{HCl}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{O}, 10-15^{\circ} \mathrm{C}$; 2. $30^{\circ} \mathrm{C}, 1 \mathrm{~h}, 56 \%$; (b) 1.161 or 162 , DCM, RT, 30 min ; 2. Et 3 N , RT, 30 min ; (c) toluene, reflux, 6-8 h.

After, by using a Williamson ether synthesis, ${ }^{186}$ the isoflavones 26-33, 71 and 123 were mixed with the corresponding 1,2,4-oxadiazoles (165 or 166) to give the desired ether derivatives 169-182 (Scheme 2.22). The higher acidity of $7-\mathrm{OH}$ compared to the 4 ' -OH (even if the $4^{\prime}-\mathrm{OH}$ is a better nucleophile) allows the synthesis of mono-O-alkylated isoflavones. ${ }^{196}$ Also, in the case of biochanin A 71, the 5-OH is involved in an intramolecular H -bonding, which makes the $5-\mathrm{OH}$ group less nucleophilic. A total of fourteen compounds (thirteen new) were prepared in poor to excellent yields (Table 2.6).

Scheme 2.22. Synthesis of isoflavone/1,2,4-oxadiazole hybrids. Reagents and conditions: $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, \mathrm{N}_{2}, 80^{\circ} \mathrm{C}$, $4.5 \mathrm{~h}, 12-94 \%$.

Table 2.6. Synthesised isoflavone/1,2,4-oxadiazole hybrids

[a] New compound

Using nitrile 112, the synthesis of an isoflavone with an 1,2,4-oxadiazole moiety built on the (B) phenyl ring via an amidoxime was envisaged. Treating isoflavone 112 with hydroxylamine in ethanol at $90^{\circ} \mathrm{C}$ led to amidoxime synthesis, ${ }^{197}$ but also to 4-pyrone ring opening under the nucleophilic attack of hydroxylamine at the C-2, and recyclization to corresponding isoxazole 183 intermediate (Scheme 2.23). ${ }^{198,199}$ Subsequent treatment of 183 with benzoyl chloride 161 furnished the 1,2,4-oxadiazole/isoxazole hybrid 184 in 26% yield over 2 steps. The $1-\mathrm{OH}$ appears at 6.53 ppm in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of 184 in CDCl_{3}, which indicates that there is no hydrogen bond between $1-\mathrm{OH}$ and the isoxazole nitrogen, confirming the synthesis of presented isoxazole isomer.

Scheme 2.23. Synthesis of 184. Reagents and conditions: (a) $\mathrm{NH}_{2} \mathrm{OH}\left(50 \mathrm{wt} . \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right), \mathrm{EtOH}, \mathrm{N}_{2}, 90^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (b) 161, pyridine, toluene, $120^{\circ} \mathrm{C}, 24 \mathrm{~h}, 26 \%$.

2.1.3 Synthesis of isoflavone/1,2,3-triazole and of isoflavone/1,2,3triazole/benzodiazepine hybrids

A series of hybrid compounds containing an isoflavone and a 1,2,3-triazole was synthesised by click chemistry. Different alkynes, four of which are linked to a series of benzodiazepines, were used. By attaching benzodiazepines and/or triazoles to the isoflavone nucleus it is hoped to enhance the biological activity and hence enhance the anti-inflammatory action. The novel isoflavone-1,2,3-triazolebenzodiazepine type of hybrid compound were not reported previously.

Benzodiazepines 190, 193, 198, and 202, which were subsequently attached to the isoflavone, were synthesised from isatoic anhydride 185 and the corresponding amino acid 203 or 204 through a sequence of reactions (Scheme 2.24). Condensation of 185 with 203 or 204 in DMSO and subsequent bromination of the obtained intermediates 186 and 194 at position 7 with bromine in glacial acetic acid in the presence of sodium acetate furnished the brominated derivatives 187 and 195. 200, 201 Condensation of 187 and 195 with ethyl isocyanoacetate 206 in THF in presence of diethyl chlorophosphate 205 and t-BuOK provided the imidazobenzodiazepines 191 and 199.202 Sonogashira coupling of 187, 191, 195, and 199 with (trimethylsilyl)acetylene 143 or (triethylsilyl)acetylene 144 using $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ as catalyst, triethylamine as base, in THF gave the protected derivatives 188, 189, 192, 196, 197, 200 and 201. Subsequent deprotection of these derivatives by using TBAF in a mixture of THF and methanol provided the desired alkyne benzodiazepines 190, 193, 198, and 202. ${ }^{203}$
Benzodiazepine 202 is similar to flumazenil, a potent benzodiazepine with high affinity binding towards $G A B A_{A} / B z$ receptors, which acts as an antagonist and is used as an antidote for benzodiazepine overdoses. ${ }^{204} 193$ is similar in structure to flumazenil, and bretazenil, a partial agonist with high affinity to benzodiazepine receptors. ${ }^{205}$ Pyrrolo[1,4]benzodiazepines are naturally occurring benzodiazepines that can interact and bind to DNA, being used as antitumor antibiotics. ${ }^{206}$ By changing the substituents at position 7- of these benzodiazepines and attaching an isoflavone, is was hoped that an increase in the biological activity will be observed, with potential anti-inflammatory effects being present. ${ }^{203}$

Scheme 2.24. Synthesis of benzodiazepine derivatives. Reagents and conditions: (a) $\mathbf{2 0 3}$ or 204, DMSO, $120^{\circ} \mathrm{C}, 4$ h; (b) $\mathrm{Br}_{2}, \mathrm{AcONa}, \mathrm{AcOH}, \mathrm{RT}, 16 \mathrm{~h}$; (c) $1 . \mathrm{TEA}, \mathrm{CH}_{3} \mathrm{CN}, 70^{\circ} \mathrm{C}, \mathrm{N}_{2}$; 2. [Pd($\left.\left.\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}\right], 143$ or 144, $80-85^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20 \mathrm{~h}$; (d) TBAF (1 M in THF), THF, RT, $10-15 \mathrm{~min}$; (e) $1 . \mathrm{t}$-BuOK, dry THF, $\mathrm{N}_{2}, 0^{\circ} \mathrm{C}, 20 \mathrm{~min} ; 2.205,-35^{\circ} \mathrm{C} ; 3.0^{\circ} \mathrm{C}, 30 \mathrm{~min}$; 4. 206, t-BuOK, $-35^{\circ} \mathrm{C} ; 5$. RT, 4 h .

The triazole derivatives 209-219 (See Table 2.7) were synthesised via a modified Huisgen 1,3-dipolar cycloaddition procedure reported by Sharpless et al. ${ }^{207}$ The copper(I) catalyst was generated in situ using the copper(II)/ascorbate system, sodium ascorbate reducing the $\mathrm{Cu}(\mathrm{II})$ from $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ to $\mathrm{Cu}(\mathrm{I})$. To avoid the generation of oxidative coupling products, a small excess of sodium ascorbate was used. Using this procedure, only the 1,4 regioisomer was obtained. To obtain the 1,5 -regioisomer it would be necessary to use the pentamethylcyclopentadienyl ruthenium chloride [$\mathrm{Cp} * \mathrm{RuCl}$] complexes. ${ }^{208}$
To obtain hybrids 209-215, azido-isoflavone 128 was reacted with alkyne 144, 190, 193, 198, 202, 207, or 208 in the presence of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O} /$ sodium ascorbate catalytic system, in a $\mathrm{H}_{2} \mathrm{O} /$ tert-butanol mixture ($2: 1$ ratio) and at $100^{\circ} \mathrm{C}$ (Scheme 2.25). The reaction was first performed with the alkynes 144, 207, and 208 at room temperature for 2 days, but the starting compounds were still present in the reaction mixture. When the temperature was raised to $50^{\circ} \mathrm{C}$ for 24 hours, the results were the same. The temperature was raised to $80^{\circ} \mathrm{C}$ and after 24 hours, using TLC analysis, a new weak spot was observed on the TLC plate, different from the starting compounds. The temperature was raised to $100{ }^{\circ} \mathrm{C}$ and next day the reaction was complete. For 211 the reaction was also carried out at room temperature with 0.8 equiv. of sodium ascorbate and 0.5 equiv. of copper sulfate pentahydrate and the desired product was obtained in 40% yield. The obtained hybrids 212-215 are poorly soluble even in DMSO. With the hope of obtaining derivatives of 212-215 more soluble in DMSO, the hydroxy group of isoflavone 128 was acetylated to get $220 .{ }^{182}$ Reacting the new acetylated isoflavone 220 with benzodiazepines 190, 193, 198, and 202, the hybrids 216-219 were obtained. However, they have an even lower solubility in DMSO than 212-215.

The synthesis of 209 and 210 was also accomplished by two other methods. Using 144 as alkyne, and only $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ as catalyst in DMF at $100^{\circ} \mathrm{C}$ for $20 \mathrm{~h},{ }^{209}$ led to $\mathbf{2 0 9}$. Using 207 as alkyne, and Cul as catalyst in the presence of TEA in DMF for 20 h at room temperature, ${ }^{210}$ led to $\mathbf{2 1 0}$. For both reactions the yield is fair $(51 \%$ and 38%, respectively), but slightly better that the previous reaction for these compounds. This is probably due to the solubility of the starting compounds in the solvent used, DMF in this case.

Scheme 2.25. Synthesis of novel 1,4-disubstituted 1,2,3-triazoles. Reagents and conditions: (a) $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(0.05$ equiv), sodium ascorbate (0.2 equiv), $\mathrm{H}_{2} \mathrm{O} /$ tert-butanol ($2: 1$ ratio), $100^{\circ} \mathrm{C}, 16 \mathrm{~h}, 30-91 \%$; (b) $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (0.2 equiv), DMF, $100^{\circ} \mathrm{C}, 20 \mathrm{~h}, 51 \%$; (c) Cul (0.2 equiv), TEA (3 equiv), RT, $20 \mathrm{~h}, 38 \%$.

Table 2.7.Synthesis of 1,4-disubstituted 1,2,3-triazoles.
Alkyne Isoflavone Isoflavone/1,2,3-triazole hybrid (conditions, yield)

The desired triazoles 209-219 were obtained in moderate to excellent yields (see Table 2.7). The yield for some compounds is lower due to the loss of a small amount of compound into the glass-frit of the funnel after filtering the reaction mixture. The compounds after filtration and washing with dichloromethane and methanol contained a small impurity, which proved to be the nitro derivative 33 . Compound 33 has the same R_{f} as 128 and was present in the starting material.

The compounds are poorly soluble even in DMSO, especially 212-219, which has posed a problem for obtaining good ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra. For 214 one quaternary carbon is missing in the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum, probably overlaid with another carbon due to the large number of carbons. Also, the CH carbon from position 3 of the benzodiazepine is missing. The same carbon is missing from compound 215 as well, but not from compounds 212 and 213. In the carbon spectra of compounds 212-215 there are also two small peaks at 130.4 and 123.6 corresponding to nitro-isoflavone 33. For 216-219, due to solubility issues, only ${ }^{1} \mathrm{H}$-NMR spectra were obtained.
Deprotection of 209 using TBAF in THF provided the new triazole derivative 221 (Scheme 2.26). ${ }^{211}$ After 4 hours at room temperature, TLC analysis showed that the starting material 209 was still in the reaction mixture. Increasing the temperature to $50^{\circ} \mathrm{C}$ furnished the desired product 221 in 60% yield after 2 h . This compound will be useful to see the difference between benzodiazepine hybrid compounds and the simple triazole derivative.

Scheme 2.26. Deprotection of 4-(triethylsilyl)-1H-1,2,3-triazole 209. Reagents and conditions: (a) TBAF, THF, RT, 4 h; (b) $50^{\circ} \mathrm{C}, 2 \mathrm{~h}, 60 \%$.

2.1.4 Synthesis of isoflavone/ β-sultam hybrids

A series of isoflavone/ β-sultam hybrids was synthesised by Williamson ether synthesis and phase-transfer alkylation. This combination of a β-sultam with an isoflavone was not reported previously and may have some very interesting anti-inflammatory and neuroprotective properties. The unsubstituted β-sultam has a potent anti-inflammatory activity based on its ability to function as taurine precursor. ${ }^{131}$
First, the synthesis of β-sultam 224 was performed (Scheme 2.27). The synthesis began with the oxidative chlorination of cystamine dihydrochloride 222 to taurine sulfonyl chloride 223, a reaction that occurs through a largely unknown mechanism. ${ }^{136}$ Taurine sulfonyl chloride 223 was then cyclised in the presence of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in ethyl acetate to give the β-sultam nucleus 224.

Scheme 2.27. Synthesis of β-sultam nucleus 224. Reagents and conditions: (a) 1. Cl_{2} (g), dry CHCl_{3}, dry $\mathrm{EtOH}, \mathrm{N}_{2},-$ $10^{\circ} \mathrm{C}, 2 \mathrm{~h}$; 2. N_{2} purging, dry $\mathrm{Et} 2 \mathrm{O}, \mathrm{RT}, 1 \mathrm{~h}$; 3 . Stored overnight at $4^{\circ} \mathrm{C}, 97 \%$; (b) $\mathrm{Na}_{2} \mathrm{CO}_{3}$, dry $\mathrm{EtOAc}, \mathrm{RT}, 48 \mathrm{~h}, 65 \%$.

Next, using benzyltriethylammonium chloride (TEBAC) as phase-transfer catalyst and $\mathrm{K}_{2} \mathrm{CO}_{3}$ as base in acetonitrile, ${ }^{212}$ the β-sultam 224 was linked to the chloro-isoflavone 134 to furnish 225 (Scheme 2.28). The same procedure was used to link the β-sultam 224 with the oxadiazole 165 to get the previously unreported β-sultam/1,2,4-oxadiazole hybrid 226 (Scheme 2.29).

Scheme 2.28. Synthesis of isoflavone/ β-sultam hybrid 225. Reagents and conditions: 1. $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{TEBAC}, \mathrm{MeCN}, \mathrm{N}_{2}$, RT, $10 \mathrm{~min} ; 2.134, R T, 20 \mathrm{~h}, 67 \%$.

Scheme 2.29. Synthesis of β-sultam $/ 1,2,4$-oxadiazole hybrid 226. Reagents and conditions: 1. $\mathrm{K}_{2} \mathrm{CO}_{3}$, TEBAC, MeCN, N_{2}, RT, $10 \mathrm{~min} ; 2.165, \mathrm{RT}, 24 \mathrm{~h}, 66 \%$.

In order to attach the β-sultam 224 motif to the 7 -hydroxy group of isoflavone, the synthesis of a haloderivative was envisaged. Also, the introduction of an acyl group on nitrogen was desirable, since the electron-withdrawing substituents delay the β-sultam hydrolysis. ${ }^{213} N$-acylation of β-sultam 224 with chloroacetyl chloride 227 or acetyl chloride 228 in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ as base, and N, N dimethylaminopyridine (DMAP) as catalyst, ${ }^{136}$ led to 229 and 230, respectively (Scheme 2.30). N-acyl- β sultam 230 will be useful in comparing its biological activities with the acyl-linked β-sultam to isoflavones.

Scheme 2.30. N -acylation of β-sultam. Reagents and conditions: 1. DMAP, DCM, $\mathrm{N}_{2},-78{ }^{\circ} \mathrm{C}, 30 \mathrm{~min} ; 2 . \mathrm{Et}_{3} \mathrm{~N},-78{ }^{\circ} \mathrm{C}$, 5-10 min; 3. RT, $27 \mathrm{~h}, 30-46 \%$.

Both compounds decomposed when left in open air at room temperature for a long time, with 230 being more stable than 229. Probably β-sultam ring-opening is occurring, faster for 229 than 230, with the chloroacyl group being a stronger electron-withdrawing group than the acyl group alone. However, they
were quite stable at $-20^{\circ} \mathrm{C}$ under nitrogen. A similar issue was reported previously. ${ }^{214}$ When dissolved in deuterated chloroform for NMR, 230 was stable, but 229 gradually decomposed in the presence of water and hydrochloric acid present in the solvent via an acid hydrolysis, possibly giving rise to a mixture of sulfonic acid 231 and sulfonyl chloride 232 derivatives (Scheme 2.31). Due to the solubility of the mixture in CDCl_{3}, only $\mathbf{2 3 2}$ could be observed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ in the mixture along with the starting compound $\mathbf{2 2 9}$.

Scheme 2.31. Ring opening of 229 via an S-N fission. Reagents and conditions: $\mathrm{CDCl}_{3}, \mathrm{RT}$.

The formation of 231 and 232 was confirmed by the fact that when the mixture of 229 , 232, and possibly 231 was reacted with isoflavone 30 , using $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeCN at $80^{\circ} \mathrm{C}$ for 4 h , a mixture of novel compounds 233 and 234 was obtained (Scheme 2.32).

30

Scheme 2.32. Synthesis of novel compounds 233 and 234. Reagents and conditions: $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeCN}, \mathrm{N}_{2}, 80^{\circ} \mathrm{C}, 4 \mathrm{~h}$

Due to the stability issues of 229, two new approaches to isoflavone $/ \beta$-sultam hybrids were proposed. First, synthesis of some halo-alkoxy-isoflavones, which will then be coupled with β-sultam 224. The second, synthesis of an N-alkyl derivative of β-sultam 224 and its subsequent reaction with isoflavones. For the linker between the isoflavone and the amino group, it was reported that the optimum length would be two (seen in the case of some acetylcholinesterase and butyrylcholinesterase inhibitors). ${ }^{91}$
Treatment of isoflavones 26-33, 35, 71, and 128 with 1,2-dibromoethane 235 via a Williamson ether synthesis, ${ }^{215}$ easily afforded 236-251 (Scheme 2.33). Besides 7-(2-bromoethoxy)-isoflavones, some dimers were obtained, 240, 242 and 245, compounds potentially useful in biological testing.

236: $R^{1}=H, R^{2}=4^{\prime}-O H, R^{3}=\operatorname{Br}(64 \%)$
26: $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=4^{\prime}-\mathrm{OH}$
237: $R^{1}=H, R^{2}=4{ }^{\prime}-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Br}, \mathrm{R}^{3}=\mathrm{Br}(10 \%)$
27: $R^{1}=H, R^{2}=4^{\prime}-\mathrm{OCH}_{3}$
238: $R^{1}=H, R^{2}=4{ }^{\prime}-\mathrm{OCH}_{3}, R^{3}=\operatorname{Br}(71 \%)$
28: $R^{1}=H, R^{2}=3^{\prime}-\mathrm{OCH}_{3}$
239: $R^{1}=H, R^{2}=3{ }^{\prime}-\mathrm{OCH}_{3}, R^{3}=\mathrm{Br}(72 \%)$
29: $R^{1}=H, R^{2}=2^{\prime}-\mathrm{OCH}_{3}$
241: $R^{1}=H, R^{2}=2^{\prime}-\mathrm{OCH}_{3}, R^{3}=\operatorname{Br}(62 \%)$
30: $R^{1}=H, R^{2}=4^{\prime}-H$
243: $R^{1}=H, R^{2}=4^{\prime}-H, R^{3}=\operatorname{Br}(88 \%)$
31: $R^{1}=H, R^{2}=4^{\prime}-\mathrm{CH}_{3}$
244: $R^{1}=H, R^{2}=4^{\prime}-\mathrm{CH}_{3}, R^{3}=\operatorname{Br}(66 \%)$
32: $R^{1}=H, R^{2}=4^{\prime}-C I$
246: $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=4^{\prime}-\mathrm{CI}, \mathrm{R}^{3}=\mathrm{Br}(75 \%)$
33: $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=4{ }^{\prime}-\mathrm{NO}_{2}$
247: $R^{1}=H, R^{2}=4^{\prime}-\mathrm{NO}_{2}, \mathrm{R}^{3}=\mathrm{Br}(61 \%)$
35: $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=4^{\prime}-\mathrm{CH}_{2}-\mathrm{COOCH}_{2} \mathrm{CH}_{3}$
248: $R^{1}=H, R^{2}=4^{\prime}-\mathrm{CH}_{2}-\mathrm{COOCH}_{2} \mathrm{CH}_{3}, \mathrm{R}^{3}=\mathrm{Br}(78 \%)$
71: $\mathrm{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}=4^{\prime}-\mathrm{OH}$
249: $R^{1}=O H, R^{2}=4 '-\mathrm{OCH}_{3}, R^{3}=\mathrm{Br}(34 \%)$
128: $R^{1}=H, R^{2}=4 '-N_{3}$
250: $\mathrm{R}^{1}=\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Br}, \mathrm{R}^{2}=4^{\prime}-\mathrm{OCH}_{3}, \mathrm{R}^{3}=\mathrm{Br}(25 \%)$
251: $R^{1}=H, R^{2}=4^{\prime}-N_{3}, R^{3}=\operatorname{Br}(74 \%)$

$$
\begin{aligned}
& \text { 240, } \mathrm{R}^{2}=3 '-\mathrm{OCH}_{3}(11 \%) \\
& \text { 242, } \mathrm{R}^{2}=2^{\prime}-\mathrm{OCH}_{3}(4 \%) \\
& \text { 245, } \mathrm{R}^{2}=4^{\prime}-\mathrm{CH}_{3}(12 \%)
\end{aligned}
$$

Scheme 2.33. Synthesis of isoflavone derivatives 236-251. Reagents and conditions: $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, \mathrm{N}_{2}, 8{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}$.

Treating 238, 243 and 244 with β-sultam 224 in presence of KOH and TBAB, ${ }^{216} \mathrm{~N}$-alkylation occurred and the corresponding isoflavone/ β-sultam hybrids 252-254 were obtained, but in low yield (Scheme 2.34). Also, the elimination byproducts 255-257 were observed in the reaction mixture, but the quantity was small $(<3 \%)$, and the compounds could not be isolated in good purity. The elimination was reported before with a 7-(2-chloroethoxy)-isoflavone in the presence of $\mathrm{NaH} .{ }^{217}$ Given these issues, further versions of the first approach were not pursued, and the second approach was tried.

252: $\mathrm{R}=\mathrm{OCH}_{3}(\mathrm{a}, 24 \%)$
253: $\mathrm{R}=\mathrm{H}(\mathbf{a}, 25 \% ; \mathbf{b}, 21 \%)$
254: $\mathrm{R}=\mathrm{CH}_{3}(\mathrm{a}, 38 \%)$
$+$
-257

Scheme 2.34. Synthesis of isoflavone/ β-sultam hybrids 252-254. Reagents and conditions: (a) 1. KOH, TBAB, DMF, $0^{\circ} \mathrm{C}$; 2. RT, $15 \mathrm{~h} ; 3.80^{\circ} \mathrm{C}, 20 \mathrm{~h}, 24-38 \%$; (b) for 253: 1. KOH, TBAB, THF, $0^{\circ} \mathrm{C} ; 2 . \mathrm{RT}, 2 \mathrm{~h} ; 3.45^{\circ} \mathrm{C}$, overnight, 21\%.

Using the second approach and treating β-sultam 224 with 1,2-dibromoethane 235, the N-alkyl derivative 258 was obtained, next to the elimination product 259 (Scheme 2.35). The compounds, 258 and 259, were stable at $-20^{\circ} \mathrm{C}$ under nitrogen. When 258 was left in open air at room temperature it decomposed after a few days.

Scheme 2.35. Synthesis of N-alkyl derivatives 258-259. Reagents and conditions: 1. KOH, TBAB, THF, $\mathrm{N}_{2}, 0^{\circ} \mathrm{C}, 5$ $\min ; 2$ RT, 5 h .

Reacting 258 with isoflavones $26-33,35,71,123$, and 128 via a Williamson ether synthesis afforded the desired isoflavone/ β-sultam hybrids 252-254, 260-268 (Scheme 2.36). Twelve new compounds were obtained in low to fair yields, with slightly better yields than the previous approach. Also, using this approach it was possible to synthesize amine 267.

26: $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=4^{\prime}-\mathrm{OH}$
260: $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=4^{\prime}-\mathrm{OH}(\mathrm{a}, 26 \%)$
27: $R^{1}=H, R^{2}=4^{\prime}-\mathrm{OCH}_{3}$
252: $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=4 \mathrm{H}^{\prime}-\mathrm{OCH}_{3}(b, 50 \%)$
28: $R^{1}=H, R^{2}=3^{\prime}-\mathrm{OCH}_{3}$
261: $R^{1}=H, R^{2}=3^{\prime}-\mathrm{OCH}_{3}(b, 50 \%)$
29: $R^{1}=H, R^{2}=2^{\prime}-\mathrm{OCH}_{3}$
262: $R^{1}=H, R^{2}=2{ }^{\prime}-\mathrm{OCH}_{3}(b, 57 \%)$
30: $R^{1}=H, R^{2}=4^{\prime}-H$
253: $R^{1}=H, R^{2}=4$ '-H (a, 59\%)
31: $R^{1}=H, R^{2}=4 '-\mathrm{CH}_{3}$
32: $R^{1}=H, R^{2}=4^{\prime}-C l$
254: $R^{1}=H, R^{2}=4{ }^{\prime}-\mathrm{CH}_{3}(\mathbf{c}, 56 \%)$

33: $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=4{ }^{\prime}-\mathrm{NO}_{2}$
263: $R^{1}=H, R^{2}=4 '-C l(b, 64 \%)$

35: $R^{1}=H, R^{2}=4{ }^{\prime}-\mathrm{CH}_{2}-\mathrm{COOCH}_{2} \mathrm{CH}_{3}$
264: $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=4 \mathrm{C}^{\prime}-\mathrm{NO}_{2}(\mathrm{~b}, 25 \%)$
71: $\mathrm{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}=4{ }^{\prime}-\mathrm{OH}$
265: $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=4{ }^{\prime}-\mathrm{CH}_{2}-\mathrm{COOCH}_{2} \mathrm{CH}_{3}(b, 42 \%)$
123. $R^{1}=H, R^{2}=4 '-\mathrm{NH}_{2}$

266: $\mathrm{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}=4{ }^{\prime}-\mathrm{OCH}_{3}(b, 60 \%)$
267: $R^{1}=H, R^{2}=4 '-\mathrm{NH}_{2}(b, 26 \%)$
128: $R^{1}=H, R^{2}=4 '-N_{3}$
268: $R^{1}=H, R^{2}=4{ }^{\prime}-N_{3}(b, 41 \%)$
Scheme 2.36. Synthesis of isoflavone/ β-sultam hybrids $\mathbf{2 5 2 - 2 5 4}$, 260-268. Reagents and conditions: (a) $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, $\mathrm{N}_{2}, 80^{\circ} \mathrm{C}, 24 \mathrm{~h}, 26-59 \%$; (b) $\mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, $70{ }^{\circ} \mathrm{C}, 17-19 \mathrm{~h}, 25-64 \%$; (c) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMSO}, 8{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}, 56 \%$.

2.1.5 Synthesis of isoflavone/benzo-ס-sultam hybrids

A small series of novel isoflavone/benzo- δ-sultam hybrids was synthesised as potential anti-inflammatory and neuroprotective drugs by adapting previously reported methods. ${ }^{218,219}$ Benzo- δ-sultams are known to be nonsteroidal anti-inflammatory drugs, ${ }^{220}$ and their attachment to the isoflavone core may lead to the synthesis of some very potent compounds. The benzo- δ-sultam core was constructed in a one-pot, two step reaction by coupling 2-halobenzenesulfonamide derivatives with terminal alkynes, followed by a 6-endo-dig cyclisation. ${ }^{218}$ The 6-endo-dig ring closure was confirmed by 2D NOESY and HMBC, the endodig cyclisation being favoured possibly due to less geometric constraint. ${ }^{221}$

First, the benzo- δ-sultam was built on the (B) ring of the isoflavone (Scheme 2.37). Reacting amine 125 with 2-bromobenzenesulfonyl chloride 269 in pyridine gave the benzenesulfonamide 270. One-pot Sonogashira coupling of 270 with phenylacetylene 271 and subsequent 6-endo-dig cyclization through hydroamination, ${ }^{218}$ led to the synthesis of isoflavone/benzo- δ-sultam hybrid 273 next to its precursor 272, the Sonogashira coupling product. The slow addition of the alkyne 271 (to avoid potential homocoupling of the alkyne), and a better degassing of the solvent and reaction mixture (to avoid potential oxidation of the catalysts) led to 273 being obtained in greater yield (54%, method (c)). It can be noted that the coupling step is the one that determines the course of the reaction, thus improving the coupling reaction may lead to better yield. Also, an important factor is the solubility because when THF was used instead of DMF, 273 was obtained only in trace amount. As an alternative to DMF, it would be interesting to test dihydrolevoglucosenone (Cyrene ${ }^{\text {TM }}$), a bio-available solvent used in Green Chemistry. ${ }^{164}$ This reaction could, in future, be extended to the other two amines, 126 and 127, to get the corresponding hybrids. Using (trimethylsilyl)acetylene 143 instead of phenylacetylene 271, and method (b), the corresponding
benzosultam was obtained in trace amount next to starting sulfonamide 270 (70%). Using method (c), the compound may be obtained in higher yield, but limited time prevented a study of this.

Scheme 2.37, Synthesis of isoflavone/benzo- δ-sultam hybrid 273. Reagents and conditions: (a) 1. pyridine, $0^{\circ} \mathrm{C} ; 2$. $80^{\circ} \mathrm{C}, 2 \mathrm{~h}, 78 \%$; (b) 1. $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(5 \mathrm{~mol} \%)$, $\mathrm{Cul}(12 \mathrm{~mol} \%), \mathrm{Et}_{3} \mathrm{~N}: \mathrm{DMF}(1: 2), \mathrm{N}_{2}, \mathrm{RT}, 15 \mathrm{~min} ; 2.271,70{ }^{\circ} \mathrm{C}$, overnight (273, 10\%; 272, 20\%); (c) 1. Pd($\left.\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(5 \mathrm{~mol} \%)$, Cul ($12 \mathrm{~mol} \%$), Et ${ }_{3} \mathrm{~N}: \mathrm{DMF}(1: 2), \mathrm{N} 2, \mathrm{RT}, 30 \mathrm{~min} ; 2$. 271 (over 1 h , in DMF), $70^{\circ} \mathrm{C}$, overnight (273, 54\%; 272, traces).

Next, this process was used to synthesise further hybrids of isoflavone with benzo- δ-sultam. For this, the alkyne 147 was cross-coupled with various 2 -halobenzenesulfonamide derivatives 279-284, and subsequently cyclised in the presence of $\mathrm{Cu}(\mathrm{I})$ or $\mathrm{Ag}(\mathrm{I})$ to obtain the isoflavone/benzo- δ-sultam hybrids 289-292 (See Table 2.8). The required sulfonamides 279-284 were readily obtained from 2halobenzenesulfonyl chloride $\mathbf{2 6 9}$ or $\mathbf{2 7 4}$ and the corresponding amines $\mathbf{2 7 5 - 2 7 8}$ (Scheme 2.38). With the hope of obtaining a benzo- δ-sultam with an NH , two sulfonamides with protecting groups (281 and 284) were synthesised.

Scheme 2.38. Synthesis of 2-bromo or 2-iodobenzenesulfonamide derivatives. Reagents and conditions: (a) 279: $\mathrm{X}=$ $\mathrm{Br}, \mathrm{R}=\mathrm{Ph}$; pyridine, $80^{\circ} \mathrm{C}, 1 \mathrm{~h}, 96 \%$; (b) 280: $\mathrm{X}=\mathrm{Br}, \mathrm{R}=\mathrm{Me}$; $1 . \mathrm{MeNH}_{2}\left(40 \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$, $\mathrm{THF}, 0^{\circ} \mathrm{C}, 10 \mathrm{~min} ; 2$. RT, 3 h, 90%; (c) 281: $\mathrm{X}=\mathrm{Br}, \mathrm{R}=\mathrm{Boc}$; 1. $\mathrm{NH}_{3}\left(35 \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$, THF, $0^{\circ} \mathrm{C}, 20 \mathrm{~min}$; 2. RT, $10 \mathrm{~h} ; 3$. Work-up; 4. Boc $2 \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}$, DMAP, DCM, RT, $1 \mathrm{~h}, 92 \%$; (d) 282: $\mathrm{X}=\mathrm{I}, \mathrm{R}=\mathrm{Ph}$; 1. pyridine, $\mathrm{DCM}, 0^{\circ} \mathrm{C}$; 2. RT , overnight, 97%; (e) 283: $\mathrm{X}=\mathrm{I}, \mathrm{R}=$ Me ; $1 . \mathrm{MeNH}_{2}\left(40 \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$, THF, $0^{\circ} \mathrm{C}, 5 \mathrm{~min}$; 2. RT, $3 \mathrm{~h}, 95 \%$; (f) 284: $\mathrm{X}=\mathrm{I}, \mathrm{R}=\mathrm{PMB}$; $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}, 0^{\circ} \mathrm{C} ; 2 . \mathrm{RT}$, overnight, 97\%.

Synthesis of intermediates 285-288, and hybrids 289-292, as noted previously and as can be seen in Table 2.8, was influenced by a number of factors such as solvents, catalysts, halide, the degassing process and the addition of alkyne 147. The optimization reaction between 147 and 279 to obtain 289 was initially attempted (method a-d). As catalyst, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ worked best, and as solvent, DMF. Also, a slow addition of 147 (dissolved in DMF) facilitated the cross-coupling. However, when method (c) was applied for 280 and 281, the desired hybrids 290 and 291 were not observed. Method (e), similar to (c), gave only the intermediate 285 when the iodo derivative 282 was used. When the solvent was changed to THF, and the halide to 283, method (f) furnished 290 in 27% yield. Changing the catalyst to $10 \% \mathrm{Pd} / \mathrm{C}$, adding PPh_{3} as ligand, and the halides to 2-iodobenzenesulfonamide derivatives 282-284 (method \mathbf{g}), ${ }^{221}$ led to the synthesis of both intermediates 285, 286, 288, and hybrids 289, 290, 292 in different ratios. The separation of the intermediates from hybrids was possible for 285 and 289, but not for 286/290, and 288/292, these being obtained as mixtures. Treating the intermediate 285 and the mixtures 286/290, 288/292 with AgNO_{3} and $\mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{EtOH},{ }^{219}$ afforded the cyclised compounds 289, 290, 292 in excellent yields (for the $\mathrm{C}-\mathrm{N}$ bond forming reaction). Compound 291 could not be obtained.

		 289-292	 285, 286. 287, 288,	$\begin{aligned} & 39: R=P h \\ & 30: R=M e \\ & 3: R=B o c \\ & \text { 1: } R=P M B \end{aligned}$
Step i, reagents and conditions	Sulfonamide	Compounds (yield, \%)	Step ii, reagents and conditions	Compounds (yield, \%)
(a) 1. $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(5 \mathrm{~mol} \%)$, Cul ($12 \mathrm{~mol} \%$), vacuum $/ \mathrm{N}_{2}$ (x 3); 2. DMF, $\mathrm{N}_{2}, 10 \mathrm{~min} ; 3.279,147, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{~N}_{2}, 70^{\circ} \mathrm{C}, 7 \mathrm{~h}$	279: $\mathrm{X}=\mathrm{Br}, \mathrm{R}=\mathrm{Ph}$	$\begin{aligned} & 289 \text { (18\%) } \\ & 279 \text { (72\%) } \end{aligned}$	-	-
(b) 1. $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(5 \mathrm{~mol} \%)$, $\mathrm{Cul}(12 \mathrm{~mol} \%)$, vacuum $/ \mathrm{N}_{2}(x 3), \mathrm{THF}$, $\mathrm{N}_{2}, 5 \mathrm{~min}$; 2. 279, 147, RT; 3. Et $3 \mathrm{~N}, 0^{\circ} \mathrm{C}$; 4. $\mathrm{N}_{2}, 70^{\circ} \mathrm{C}, 7 \mathrm{~h}$	279: $\mathrm{X}=\mathrm{Br}, \mathrm{R}=\mathrm{Ph}$	$\begin{gathered} 289(5 \%) \\ 279(64 \%) \\ \hline \end{gathered}$	-	-
(c) 1. 279-281, vacuum/ $\mathrm{N}_{2}(x 3)$; 2. $\mathrm{DMF} / \mathrm{Et}_{3} \mathrm{~N}(2: 1), \mathrm{N}_{2}, 10 \mathrm{~min} ; 3$. $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(5 \mathrm{~mol} \%)$, Cul ($12 \mathrm{~mol} \%$), 20 min ; 4.147 (in DMF, over $2 \mathrm{~h}), 70^{\circ} \mathrm{C} ; 5.70{ }^{\circ} \mathrm{C}, 15 \mathrm{~h}$	279: $\mathrm{X}=\mathrm{Br}, \mathrm{R}=\mathrm{Ph}$	$\begin{aligned} & \hline 289 \text { (44\%) } \\ & 279 \text { (51\%) } \end{aligned}$	-	-
	280: $\mathrm{X}=\mathrm{Br}, \mathrm{R}=\mathrm{Me}$	280 (86\%)		-
	281: $\mathrm{X}=\mathrm{Br}, \mathrm{R}=\mathrm{Boc}$	281 (82\%)	-	-
(d) 1. 279, vacuum $/ \mathrm{N}_{2}(x 3)$; 2. $\mathrm{DMF} / \mathrm{Et}_{3} \mathrm{~N}(2: 1), \mathrm{N}_{2}, 10 \mathrm{~min} ; 3$. $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(5 \mathrm{~mol} \%)$, Cul (12 mol \%), 20 min ; 4.147 (in DMF, over 1 h), $70^{\circ} \mathrm{C} ; 5.70^{\circ} \mathrm{C}, 15 \mathrm{~h}$	279: $\mathrm{X}=\mathrm{Br}, \mathrm{R}=\mathrm{Ph}$	$\begin{gathered} 285(18 \%) \\ 279 \text { (67\%) } \\ 147(6 \%) \\ \hline \end{gathered}$	-	-
(e) 1. 282, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(5 \mathrm{~mol} \%)$, Cul ($12 \mathrm{~mol} \%$), vacuum $/ \mathrm{N}_{2}(x 3)$; 2. $\mathrm{DMF} / \mathrm{Et}_{3} \mathrm{~N}(2: 1), \mathrm{N}_{2}, 30 \mathrm{~min} ; 3.147$ (in DMF, over 1 h), $70^{\circ} \mathrm{C}$; 4.70 ${ }^{\circ} \mathrm{C}, 14 \mathrm{~h}$	282: $\mathrm{X}=\mathrm{I}, \mathrm{R}=\mathrm{Ph}$	$\begin{aligned} & 285 \text { (23\%) } \\ & 282 \text { (50\%) } \end{aligned}$	-	-
(f) 1. 283, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ (2 mol \%), Cul (3 mol \%), vacuum/ $\mathrm{N}_{2}(x 3) ; 2$. THF/Et ${ }_{3} \mathrm{~N}$ (5:1), $\mathrm{N}_{2}, 15 \mathrm{~min}$; 3.147 (in THF, over 15 min), RT, $1 \mathrm{~h} ; 4$. $60^{\circ} \mathrm{C}, 40 \mathrm{~h}$	283: $X=I, R=M e$	290 (27\%)	-	-
(g) 1. 282-284, 10\% Pd/C (3 mol \%), PPh_{3} ($12 \mathrm{~mol} \%$), $\mathrm{Cul}(5 \mathrm{~mol} \%)$, 147, vacuum $/ \mathrm{N}_{2}(x 3)$; 2. $\mathrm{MeCN}, 10 \mathrm{~min}, \mathrm{~N}_{2}, 0^{\circ} \mathrm{C} ; 3$. $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{~N}_{2}, 0^{\circ} \mathrm{C}, 5$ min; $4.80^{\circ} \mathrm{C}$, overnight	282: $\mathrm{X}=\mathrm{l}, \mathrm{R}=\mathrm{Ph}$	$\begin{aligned} & 289 \text { (32\%) } \\ & 285(17 \%) \\ & 282 \text { (32\%) } \\ & \hline \end{aligned}$	(h) $\mathrm{AgNO}_{3}(20 \mathrm{~mol}$ \%), $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{EtOH}$, $\mathrm{N}_{2}, 80^{\circ} \mathrm{C}, 10 \mathrm{~min}$	$\begin{aligned} & 289 \text { (92\%, from } \\ & \text { 285) } \end{aligned}$
	283: $\mathrm{X}=\mathrm{I}, \mathrm{R}=\mathrm{Me}$	$\begin{gathered} \text { 286/290(1:1) } \\ 283(36 \%) \\ \hline \end{gathered}$		$\begin{gathered} 290 \text { (} 41 \% \text {, over } \\ 2 \text { steps) } \\ \hline \end{gathered}$
	284: $\mathrm{X}=\mathrm{I}, \mathrm{R}=\mathrm{PMB}$	$\begin{gathered} \text { 288/292(10:1) } \\ 284(11 \%) \\ \hline \end{gathered}$		$\begin{gathered} 292 \text { (31\%, over } \\ 2 \text { steps) } \end{gathered}$

Scheme 2.39. Proposed mechanism for the formation of benzo- δ-sultam. ${ }^{221}$

The mechanism of the Cu- or Ag-mediated cyclization of the alkynes 272, and 285-288 to benzo- δ-sultam 273, and 289-292 starts with the coordination of the alkyne to $M(I)$ and formation of a π-complex A-1 (Scheme 2.39). The base, $\mathrm{Et}_{3} \mathrm{~N}$, activates the N atom of the sulfonamide group, resulting in a regioselective 6-endo-dig nucleophilic attack onto the π-complex $\mathbf{A - 1}$, and the formation of a $\mathrm{M}(\mathrm{I})$-vinyl species $\mathbf{A - 2}$. Subsequent in situ protonation furnishes the desired benzo- δ-sultams 273, 289-292. It has been reported that the $M(I)$-vinyl species may undergo allylation instead of protonation if some allyl halides are present in the reaction mixture. ${ }^{221}$

The yields here may be further improved in future if the addition of the alkyne would be slower and/or a better degassing method would be used, such as Freeze-Pump-Thaw method. Among the solvents, more polar ones such as N, N-dimethylformamide and acetonitrile were the most appropriate. For the catalyst, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ worked best for the 2-bromobenzenesulfonamide derivative 279, while $10 \% \mathrm{Pd} / \mathrm{C}$ with PPh_{3} as ligand worked best for the 2 -iodobenzenesulfonamide derivatives 282-284. Further optimization is required.
The obtained PMB-protected hybrid 292 was further deprotected using trifluoroacetic acid to furnish 293 in fair yield (53\%, Scheme 2.40). ${ }^{222}$

Scheme 2.40. Deprotection of PMB. Reagents and conditions: $\mathrm{CF}_{3} \mathrm{COOH}, \mathrm{N}, \mathrm{RT}, 6 \mathrm{~h}, 53 \%$.

2.1.6 Synthesis of ester and carbamate ester derivatives of some isoflavones

The synthesis of some esters and carbamates of Biochanin A and its isomers was accomplished, this strategy being known in drug design for improving the stability and solubility of compounds. These type of compounds are reported to have estrogenic and antiproliferative properties better than Biochanin $A,{ }^{223}$ and are expected to have better anti-inflammatory and neuroprotective activity.
Selective esterification at the more acidic 7-OH group of the isoflavones 71-73 with lauroyl chloride 294 in the presence of pyridine (a) or $E t_{3} \mathrm{~N}$ (b) furnished the desired esters 295-297 in good to very good yields
(Scheme 2.41). Treatment of BCA 71 with a small excess of 294 (1.2 equiv.) and pyridine in $\mathrm{Et}_{2} \mathrm{O}$ easily afforded the desired ester $295 .{ }^{223}$ However, when the same procedure was applied to $\mathbf{7 2}$, a mixture of mono and diester was obtained. Using one equivalent of 294, and changing the base to $\mathrm{Et}_{3} \mathrm{~N}$, and the solvent to THF, afforded 296 and 297 in better yields and shorter time.

Scheme 2.41. Synthesis of isoflavone esters 295-297. Reagents and conditions: (a) 1. pyridine, $\mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C} ; 2.45^{\circ} \mathrm{C}$, overnight, 68%; (b) Et 3 N, THF, $50{ }^{\circ} \mathrm{C}, 4-6 \mathrm{~h}, 79-85 \%$.

Using the same method as for esterification, the reaction of undecyl isocyanate 298 with isoflavones 71-73 produced the carbamates 299-301 in good yields via a Curtius rearrangement (Scheme 2.42).

298

71, 299: $\mathrm{R}=4-\mathrm{OMe}(299,69 \%)$
72, 300: $\mathrm{R}=3-\mathrm{OMe}(300,72 \%)$
73, 301: $\mathrm{R}=2-\mathrm{OMe}(302,77 \%)$

Scheme 2.42. Synthesis of isoflavone carbamates 299-301. Reagents and conditions: Et ${ }_{3} \mathrm{~N}, \mathrm{THF}, 50^{\circ} \mathrm{C}, 4-6 \mathrm{~h}, 79-$ 85\%.

Lauroyl chloride 294 was readily available by treating lauric acid 302 with SOCl_{2} (Scheme 2.43). Subsequent treatment of 294 with NaN_{3} afforded the corresponding carboxylic azide 303, which via a Curtius rearrangement produced the desired isocyanate 298.224

Scheme 2.43. Synthesis of lauroyl chloride and undecyl isocyanate. Reagents and conditions: (a) SOCl_{2} (4 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 65^{\circ} \mathrm{C}, 4 \mathrm{~h}, 99 \%$; (b) $\mathrm{NaN}_{3}, \mathrm{H}_{2} \mathrm{O}$, acetone, $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (c) toluene, $65^{\circ} \mathrm{C}, 1 \mathrm{~h}, 99 \%$.

2.1.7 Synthesis of some other hybrid derivatives of isoflavones

From the desire to synthesize an even more complex molecule, an isoflavoane/1,2,4-oxadiazole/1,2,3triazole hybrid 305 was synthesised using derivate 174 via a 1,3-dipolar cycloaddition reaction with dimethyl acetylenedicarboxylate 304. ${ }^{225}$ This hybrid, even if it has a large molecular weight ($M W=609.55$), is an interesting molecule to be tested since it may act as a multi-target ligand and express different activities, making it a good molecule for treating a complex disease such as Alzheimer's disease. ${ }^{226}$

304
Scheme 2.44. Synthesis of isoflavone/1,2,4-oxadiazole/1,2,3-triazole hybrid 305. Reagents and conditions: toluene, $\mathrm{N}_{2}, 100^{\circ} \mathrm{C}$, overnight, 73%.

In an attempt to synthesise quinazolindione 306, from isoflavone 123 and isatoic anhydride 185 in presence of N, N-diisopropylethylamine, 7 -substituted-acyloxy isoflavone derivative 307 was obtained. Quinazolines are a class of naturally occurring alkaloids with a wide range of beneficial effects, including antiinflammatory activity, and an isoflavone linked to a quinazolindione could have presented some interesting properties. ${ }^{227}$ The new isoflavone derivative $\mathbf{3 0 7}$ may also show some interesting properties, with compounds similar to it presenting some good antiproliferative properties. ${ }^{228}$ Reaction of $\mathbf{1 8 5}$ with 4'-amino-7-methoxy-isoflavone $\mathbf{1 2 5}$ may lead to the MeO derivative of phenol $\mathbf{3 0 6}$. It would also be interesting to extend this reaction to the other synthesized isoflavones or similar compounds, and explore their biological activities.

Scheme 2.45. Synthesis of a 7-substituted-acyloxy isoflavone derivative 138. Reagents and conditions: DIPEA, 1,4dioxane, $100^{\circ} \mathrm{C}, 24 \mathrm{~h}, 54 \%$.

2.1.8 Conclusion

The synthesis of a variety of simple isoflavones and hybrids was accomplished after using different procedures. The isoflavone core was mainly synthesised using the deoxybenzoin route and the SuzukiMiyaura cross-coupling. For the deoxybenzoin route, it was found that the Friedel-Crafts acylation worked for resorcinol, but not for phloroglucinol. For phloroglucinol a slightly modified Houben-Hoesch reaction was applied and gave the desired compounds. The Suzuki-Miyaura cross-coupling furnished ten isoflavones, of which four are new. As catalyst, $\left[\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}\right]$ worked best, and as solvents a mixture of toluene/ ethanol/ water. The functionalisation of some nitro-isoflavones produced five new azido-isoflavones.
The synthesis of fourteen ether derivatives of isoflavone analogues with a 1,2,4-oxadiazole substituent was accomplished using the Williamson ether synthesis, of which thirteen are new. Also, twelve novel 1,2,3triazole derivatives of isoflavone were synthesised using click chemistry, eight of which are with benzodiazepine scaffolds, this type of compounds not being reported previously. Thirteen novel isoflavone/ β-sultam hybrids were generated by Williamson ether synthesis and phase-transfer alkylation. Using a two-step reaction by coupling 2 -halobenzenesulfonamide derivatives with terminal alkynes, and followed by a 6 -endo-dig cyclisation, four isoflavone/benzo- δ-sultam hybrids were synthesised. Some simple esters and carbamate esters of Biochanin A and its isomers were also obtained.
It might be useful to use DMF as solvent in the Suzuki-Miyaura cross-coupling, click reaction, and Sonogashira reaction to improve the yield. Or it would be interesting to use dihydrolevoglucosenone (Cyrene ${ }^{\text {TM }}$), a bio-available solvent used in Green Chemistry. ${ }^{164}$ Also, a better degassing method might lead to higher yields.
We envisage that the obtained compounds will present enhanced anti-inflammatory and neuroprotective activity. Most of the obtained compounds were tested as anti-inflammatory and neuroprotective agents in LPS-activated BV2 microglia cells and the results, as discussed in the next Section, were promising.

2.2 Pharmacology

A total of 152 compounds (Table 2.9) were tested in vitro on LPS-stimulated BV2 mouse brain microglial cells as potential anti-inflammatory drugs, of which 113 were simple isoflavones or isoflavone hybrids. Cell viability and NO inhibitory activity were evaluated at $20 \mu \mathrm{M}$ compound concentration, followed by TNF- α inhibitory activity for the most active compounds with $\geq 80 \%$ cell viability, and $\leq 40 \%$ NO production. The results are presented in Table 2.10, next to some pharmacokinetic properties predicted in silico. The screening results revealed that most of the compounds may have anti-inflammatory activity, and therefore be neuroprotective by inhibiting the pro-inflammatory mediators that damage neurons. This way, it is expected that the synthesised compounds may be able to inhibit the microglia activation or shift the potential neurodegenerative role of activated microglia back to its neuroprotective role.

2.2.1 Pharmacological studies

A rapid screening of the compounds was performed on LPS-activated BV2 mouse brain microglial cells. BV2 microglia cells are immortalised murine microglial cells and are commonly used as a substitute for primary microglia. ${ }^{229}$ Microglia are the resident macrophage cells of the CNS, with an important role in mediating neuroinflammation (Figure 2.5). Microglia adopt a ramified morphology in resting state, while under inflammatory stimuli are activated and turn into an amoeboid morphology that allows microglia to move easily. ${ }^{230}$ Under trauma, infection or any other neurodegenerative stimuli (IL-4, IL-10 - see Figure 2.5), the microglia are activated (M2 microglia phenotype) and start producing anti-inflammatory mediators and phagocytosis removes the noxious agents. ${ }^{231,232}$ Overactivation of microglia or its stimulation with LPS (or IFN- γ, TNF- α, etc) via TLR receptors results in generation of M1 microglia phenotype, which produces pro-inflammatory cytokines and mediators (e.g. TNF- α, IL-1 β, IL-6, NO) that initially have a prominent phagocytic capacity, but which become neurotoxic and lead to chronic inflammation under continuous activation. The exaggerated generation of pro-inflammatory cytokines, especially TNF-a, modify the phagocytic role of microglia, leading to a dysfunctional microglia that can cause neurotoxicity. ${ }^{233}$ High levels of pro-inflammatory cytokines, activated microglia and other components have been reported to be present next to $A \beta$ deposits in Alzheimer's disease, ${ }^{234,235}$ and in the substantia nigra and striatum in Parkinson's disease. ${ }^{236}$ These pro-inflammatory cytokines and mediators could amplify and sustain neuroinflammation, and may have an important role in neurodegeneration. A 2019 study reported that if at the beginning microglia contribute to $A \beta$ plaque phagocytosis and clearance, continuous activation makes microglia surround the $A \beta$ plaques and contribute to $A \beta$ plaque formation and subsequent neuronal damage. ${ }^{235}$ Upon $>95 \%$ microglia depletion for >6 months in $5 x F A D$ mouse model of $A D, A \beta$ plaque formation was prevented. Thus, removing the activated and dysfunctional microglia may prevent $A \beta$ plaque formation. Therefore, anti-inflammatory drugs that prevent microglia activation and subsequent production of pro-inflammatory cytokines and mediators may have a beneficial effect in reducing the inflammation and neurodegeneration, and be a potential treatment for neurodegenerative diseases as the healthy microglia cells would be able to do the phagocytosis and remove the harmful agents.

Figure 2.5. Microglia-mediated neuroprotection and neurodegeneration. DAMPs, damage-associated molecular pattern molecules; PAMPs, pathogen-associated molecular pattern molecules; LPS, lipopolysaccharide; TNF- α, tumor necrosis factor α; IFN- γ, interferon γ; TLR, toll-like receptor; IL, interleukin; TGF- β, transforming growth factor β; NO, nitric oxide; RNS, reactive nitrogen species; ROS, reactive oxygen species; PGE2, prostaglandin E_{2}; BDNF, brain-derived neurotrophic factor; NGF, nerve growth factor.

LPS (lipopolysaccharide) is a component of the gram-negative bacteria cell wall and is commonly used to induce inflammation in macrophages in vitro. ${ }^{237}$ LPS activates the microglia by interacting with the macrophage surface (via the TLR4 receptor, it activates the NF-кB pathway) and promotes the generation
of pro-inflammatory cytokines, mediators and oxygen species such as TNF- α, IL-6, IL-1 β, COX-2, NO, ROS and PGE_{2}.

2.2.1.1 Cell viability

Cell viability was evaluated using the XTT assay to show that the tested compounds ($20 \mu \mathrm{M}$ compound concentration) are not cytotoxic to the BV2 cells, and to demonstrate that anti-inflammatory activity is not due to cytotoxicity of the compounds. More than 70% of compounds were non-toxic (cell viability $\geq 80 \%$; see Table 2.10). Some compounds (24, 129, 151, 167, 168, and 307) have shown high cytotoxicity, but no structure-cytotoxicity relationship could be established. Nonetheless, the cytotoxic compounds could, as part of future work, be tested at a lower concentration to determine if they are still cytotoxic and/or biologically active.

2.2.1.2 NO production

Nitric oxide ($\cdot \mathrm{N}=\mathrm{O}$) production was measured indirectly through $\mathrm{NO}_{2} \cdot$ production, a stable NO breakdown product, by using the Griess Assay. NO is a multifunctional mediator found in most cells of the body. ${ }^{238}$ NO is generated from L-arginine by NO synthase, and is a powerful neurotransmitter, an immune defence molecule, and endothelium-derived relaxing factor. In inflammation, NO is produced in higher quantities and acts as a cytotoxic effector molecule to remove noxious agents. However, overproduction damages the healthy tissues and NO becomes an inflammatory mediator leading sometimes to cell death. It can be seen in Table 2.10 that NO is produced in small amounts in normal cells (20% NO production), but when the cells are LPS-activated, NO production increases significantly (100\% NO production). Therefore, there is a great interest in compounds that inhibit NO production, since they may have beneficial effects in various diseases including neurodegenerative diseases.
Synthesised compounds ($20 \mu \mathrm{M}$) were tested for their ability to inhibit NO production in LPS-stimulated BV2 microglial cells (Table 2.10). For simple isoflavones, the results revealed that most of the compounds inhibited the NO production. The substitution of meta position of the (B) ring (substituted with $\mathrm{OMe}, \mathrm{NO}_{2}$, $\mathrm{NH}_{2}, \mathrm{~N}_{3}$) had a positive effect on NO inhibition activity. Also, if the para position was substituted with electron withdrawing groups such as $\mathrm{Cl}(\mathbf{3 2}, 35 \%), \mathrm{NO}_{2}(\mathbf{3 3}, 41 \%)$, but not $\mathrm{COOMe}(\mathbf{1 2 1}, \mathbf{8 6 \%})$, the inhibitory effect on NO production was positively influenced. Isoflavones $35(26 \%)$ and $134(21 \%)$ were shown to be very active, both molecules having on the (B) ring, at the benzylic position, an EWG substituent (COOEt and CI). Among tested compounds are daidzein $\mathbf{2 6},{ }^{6}$ formononetin 27, ${ }^{81}$ and biochanin A 71, ${ }^{239}$ compounds known to have anti-inflammatory and neuroprotective activity, but their activity was slightly lower than the activity of the new isoflavones 35 and 134 .
Among the chromones, 3 -iodochromones $\mathbf{8 0}(21 \%), 82(21 \%)$ and 122 (24%) were the most active, inhibiting significantly the NO production ($21-25 \%$ NO production compared to 100% for LPS). Also, $3-$ bromo- $\mathbf{8 3}(25 \%)$ and 3 -formylchromone $150(22 \%)$ had increased activity.

The 1,2,4-oxadiazoles $\mathbf{1 6 5}$ (21\%), $\mathbf{1 6 6}$ (20\%) showed high inhibitory activity. In 1,2,4-oxadiazole/isoflavone hybrids, the activity was enhanced by the $1,2,4$-oxadiazole scaffold for those isoflavones substituted with electron donating groups on the (B) ring (169-177), while for those with EWG (179, 180), the activity was decreased. The most active hybrid was 169 , the hybrid of daidzein 26 with 165 , reducing NO production to
22%. However, the activity of the hybrids 169-182 was similar or lower compared to the activity of 1,2,4oxadiazoles scaffolds 165 and 166 at this concentration ($20 \mu \mathrm{M}$).

The benzodiazepines did not inhibit LPS-induced NO production in BV2 microglia at $20 \mu \mathrm{M}$. Their hybrids 212-219 reduced the NO, but the cell viability was low, so the low NO production may have been due to cytotoxicity of the compounds. Simple 1,2,3-triazole/isoflavone hybrids were good inhibitors of NO, with the silyl-protected triazole 209 (36\%) and chloroalkyl-triazole 210 (36\%) being the best. Also, the 1,2,3-triazole/1,2,4-oxadiazole/isoflavone 305 exhibited good activity reducing the NO to 54% at $20 \mu \mathrm{M}$.

The simple β-sultams 224, 230, 258, and 259 were not active in reducing LPS-induced NO production in BV2 microglia. The ring-opened derivative 234, with an α-chloroamide, reduced the NO completely (17\%). It would be interesting in the future to synthesise more derivatives of this compound and test them. 7-(2-Bromoethoxy)-isoflavones and dimers 236-251 were active. The substitution of simple isoflavone with 2bromoethoxy enhanced the activity for isoflavones substituted with EDG on the (B) ring, and decreased it for those with EWG. Daidzein hybrid 236 (19\%) was the most active, inhibiting NO production completely. The second most active compound in this series was dimer 242 (26\%) with an activity similar to 176 (25\%), both being 2'-OMe-substituted isoflavones. The β-sultam/isoflavone hybrids 260-268 were active, the addition of β-sultam scaffold having a positive effect on the inhibition of NO production of the compounds, with two exceptions (265, 267). β-Sultam addition increased the activity of formononetin 27, its hybrid 252 inhibiting the NO production from 72% to 26%. The most active hybrid in this class was 254 , the β-sultam derivative of 31 (39%) reducing the NO to 24%. The substitution of Cl from 134 with β-sultam to get hybrid 225 led to a small decrease in activity, from 21\% to 38\%.
The benzo- δ-sultam/isoflavone hybrids 273, 289, 292, and 293 and their precursors were active, with 292 (41%) being the most active considering the cell viability/NO production balance.

From the esters and carbamates derivatives 295-297, and 299-301, carbamate 299 was the most potent with a NO production of 24%. The esters 295-297 were less active compared to parent isoflavones 71-73, while the carbamates 299-301 were more active.
As can be seen, compounds having a chloroalkyl $(\mathbf{1 3 4}, \mathbf{2 1 0})$ or α-haloketone/amide $(\mathbf{8 0}, \mathbf{8 3}, 234)$ group in their structure exhibit a high NO inhibitory activity in LPS-stimulated BV2 microglia. It would be interesting to replace the halogen with isosteres such as CF_{3} and CN , and the $\mathrm{C}=\mathrm{O}$ with $\mathrm{C}=\mathrm{NH}, \mathrm{C}=\mathrm{S}$ or oxetane. There was no clear evidence that a smaller molecule would express a better activity than a bigger one, as both small molecules such as the chromones (80, 82 etc) and 1,2,4-oxadiazole (165, 166), and larger molecules such as 171, 234, 242 performed really well.

In selecting the most active compounds, a balance between activity and cell viability had to be found, since some of the compounds were active, but also cytotoxic. The compounds that had a cell viability $\geq 80 \%$, and an NO production $\leq 40 \%$ (with occasional exception) were selected and further tested for their TNF-a inhibitory activity. However, it would be interesting in the future to test the compounds that had a relative low cytotoxicity (250% cell viability) and led to a low NO production (20-30\%) at a lower concentration (<20 $\mu \mathrm{M}$) to see how they behave.

2.2.1.3 TNF- α production

One of the most important pro-inflammatory cytokines is tumour necrosis factor α (TNF- α). TNF- α, in low concentrations, may protect the brain and act as a defence mechanism. ${ }^{240}$ However, in higher concentrations TNF- α may promote neuronal degeneration. ${ }^{241}$ Activated microglia release TNF- α 2-3 h after stimulation. After, TNF- α induces the production of chemokines and regulates the other proinflammatory cytokines. In chronic systemic inflammation, TNF- α is produced in high quantities in activated microglia, which leads to an increase in pro-inflammatory cytokines. ${ }^{242}$
TNF- α was assessed using the enzyme-linked immunosorbent assay (ELISA) on LPS-activated BV2 microglia cells, and the results are presented in Table 2.10. The negative control presented a small TNF- α production of 12%. Simple isoflavones $35(30 \%)$ and 72 (30\%) showed good inhibitory activity of TNF-a, being consistent with the results obtained for NO. However, the other simple isoflavones did not exhibit the same potent activity. The chromones showed a similar activity to isoflavones 35 and 72 in TNF- α production, with $\mathbf{8 0}, \mathbf{8 2}, \mathbf{8 3}, 122$, and 150 exhibiting activities ranging from 25% to 30%. The $1,2,4-$ oxadiazoles 165 and 166 were slightly more potent with 26% (165) and 21% (166) TNF-a production. The 1,2,4-oxadiazole/isoflavone hybrid 171 had an activity similar to its simple 1,2,4-oxadiazole 166 scaffold, reducing the TNF- α production to 21%. 171 in this class was followed by daidzein hybrid 169 with 40%. The 1,2,3-triazole hybrid 210 was even more potent, inhibiting the TNF- α production to 18%. The other tested 1,2,3-triazole 209, had a potency similar to simple isoflavones, of 31%. 7-(2-Bromoethoxy)-derivative of daidzein 236 reduced TNF- α to 36%, while the dimer 242 reduced it to 43%. The β-sultam ring-opened derivative 234, with an α-chloroamide, reduced the TNF- α to 24%, while the β-sultam/isoflavone hybrids 252, 254, and 266 inhibited the TNF- α to $41 \%, 41 \%$, and 44%, respectively. The only benzosultam tested, 292, showed good inhibitory activity, with a TNF- α production of 34%.
The most potent compound was 1,2,3-triazole/isoflavone 210 (18%), the hybrid of isoflavone 128 with 5-chloro-1-pentyne. It was followed by the 1,2,4-oxadiazole/isoflavone hybrid 171 and its 1,2,4-oxadiazole scaffold 166, with 21% TNF-a production. All three compounds contain nitrogen heterocycles. The isoflavone nucleus in 210 is $7-\mathrm{OH}$ substituted, while in 171 is $4^{\prime}-\mathrm{OH}$, functional groups that form hydrogen bonds and might have a potential antioxidant activity. 210 and 166 both have a chloroalkyl group in their structure. It would be interesting in the future to replace the 1,2,3-triazole from 210 with an 1,2,4-oxadiazole, to see if an improvement in activity is obtained.

2.2.1.4 In silico prediction of some pharmacokinetic properties for synthesised compounds

The predicted pharmacokinetic properties presented in Table 2.10 show that most of the compounds will permeate the blood-brain barrier (BBB), an important factor for CNS drugs. Also, most of the compounds present good predicted human intestinal absorption, and low to good aqueous solubility. These factors indicate that the compound can be administered orally, in relatively small concentrations, and will be in solution at the place of absorption, where it will have a good absorption. ${ }^{243}$

26: $\mathrm{R}^{1}=4$ ' $-\mathrm{OH} ; \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H} ; \mathrm{X}=\mathrm{C}$
27: $R^{1}=4{ }^{\prime}-\mathrm{OCH}_{3} ; \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H} ; \mathrm{X}=\mathrm{C}$
28: $R^{1}=3^{\prime}-\mathrm{OCH}_{3} ; R^{2}=R^{3}=H ; X=C$
29: $R^{1}=2{ }^{\prime}-\mathrm{OCH}_{3} ; \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H} ; \mathrm{X}=\mathrm{C}$
30: $R^{1}=4^{\prime}-H ; R^{2}=R^{3}=H ; X=C$
31: $R^{1}=4^{\prime}-\mathrm{CH}_{3} ; \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H} ; X=\mathrm{C}$
32: $R^{1}=4^{\prime}-C l ; R^{2}=R^{3}=H ; X=C$
33: $\mathrm{R}^{1}=4^{\prime}-\mathrm{NO}_{2} ; \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H} ; \mathrm{X}=\mathrm{C}$
35: $\mathrm{R}^{1}=4{ }^{\prime}-\mathrm{CH}_{2}-\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} ; \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H} ; \mathrm{X}=\mathrm{C}$
71: $\mathrm{R}^{1}=4{ }^{\prime}-\mathrm{OCH}_{3} ; \mathrm{R}^{2}=\mathrm{OH} ; \mathrm{R}^{3}=\mathrm{H} ; \mathrm{X}=\mathrm{C}$
72: $R^{1}=3{ }^{\prime}-\mathrm{OCH}_{3} ; \mathrm{R}^{2}=\mathrm{OH} ; \mathrm{R}^{3}=\mathrm{H} ; \mathrm{X}=\mathrm{C}$
73: $R^{1}=2^{\prime}-\mathrm{OCH}_{3} ; \mathrm{R}^{2}=\mathrm{OH} ; \mathrm{R}^{3}=\mathrm{H} ; \mathrm{X}=\mathrm{C}$
74: $\mathrm{R}^{1}=4^{\prime}-\mathrm{NO}_{2} ; \mathrm{R}^{2}=\mathrm{OH} ; \mathrm{R}^{3}=\mathrm{H} ; \mathrm{X}=\mathrm{C}$
101: $R^{1}=R^{2}=H ; R^{3}=\mathrm{CH}_{3} ; X=4{ }^{\prime}-\mathrm{N}$
106: $R^{1}=4^{\prime}-\mathrm{NH}_{2} ; \mathrm{R}^{2}=\mathrm{H} ; \mathrm{R}^{3}=\mathrm{CH}_{3} ; \mathrm{X}=3^{\prime}, 5^{\prime}-\mathrm{N}$
108: $R^{1}=4{ }^{\prime}-\mathrm{NO}_{2} ; \mathrm{R}^{2}=\mathrm{H} ; \mathrm{R}^{3}=\mathrm{CH}_{3} ; \mathrm{X}=\mathrm{C}$
110: $\mathrm{R}^{1}=3^{\prime}-\mathrm{NO}_{2} ; \mathrm{R}^{2}=\mathrm{H} ; \mathrm{R}^{3}=\mathrm{CH}_{3} ; \mathrm{X}=\mathrm{C}$
111: $\mathrm{R}^{1}=2^{\prime}-\mathrm{NO}_{2} ; \mathrm{R}^{2}=\mathrm{H} ; \mathrm{R}^{3}=\mathrm{CH}_{3} ; \mathrm{X}=\mathrm{C}$
112: $\mathrm{R}^{1}=4 \mathrm{CN} ; \mathrm{R}^{2}=\mathrm{H} ; \mathrm{R}^{3}=\mathrm{CH}_{3} ; \mathrm{X}=\mathrm{C}$
114: $\mathrm{R}^{1}=4{ }^{\prime}-\mathrm{CH}_{2} \mathrm{OH} ; \mathrm{R}^{2}=\mathrm{H} ; \mathrm{R}^{3}=\mathrm{CH}_{3} ; \mathrm{X}=\mathrm{C}$
118: $R^{1}=4{ }^{\prime}-\mathrm{CO}_{2} \mathrm{CH}_{3} ; \mathrm{R}^{2}=\mathrm{H} ; \mathrm{R}^{3}=\mathrm{CH}_{3} ; \mathrm{X}=\mathrm{C}$
121: $R^{1}=4{ }^{\prime}-\mathrm{CO}_{2} \mathrm{CH}_{3} ; \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H} ; \mathrm{X}=\mathrm{C}$
123: $R^{1}=4{ }^{\prime}-\mathrm{NH}_{2} ; R^{2}=R^{3}=H ; X=C$
125: $\mathrm{R}^{1}=4{ }^{\prime}-\mathrm{NH}_{2} ; \mathrm{R}^{2}=\mathrm{H} ; \mathrm{R}^{3}=\mathrm{CH}_{3} ; \mathrm{X}=\mathrm{C}$
126: $\mathrm{R}^{1}=3^{\prime}-\mathrm{NH}_{2} ; \mathrm{R}^{2}=\mathrm{H} ; \mathrm{R}^{3}=\mathrm{CH}_{3} ; \mathrm{X}=\mathrm{C}$
127: $\mathrm{R}^{1}=2^{\prime}-\mathrm{NH}_{2} ; \mathrm{R}^{2}=\mathrm{H} ; \mathrm{R}^{3}=\mathrm{CH}_{3} ; \mathrm{X}=\mathrm{C}$
128: $R^{1}=4^{\prime}-N_{3} ; R^{2}=R^{3}=H ; X=C$
129: $R^{1}=4{ }^{\prime}-N_{3} ; R^{2}=O H ; R^{3}=H ; X=C$
130: $R^{1}=4^{\prime}-\mathrm{N}_{3} ; \mathrm{R}^{2}=\mathrm{H} ; \mathrm{R}^{3}=\mathrm{CH}_{3} ; X=\mathrm{C}$
131: $R^{1}=3^{\prime}-N_{3} ; R^{2}=H ; R^{3}=\mathrm{CH}_{3} ; X=C$
132: $R^{1}=2^{\prime}-\mathrm{N}_{3} ; \mathrm{R}^{2}=\mathrm{H} ; \mathrm{R}^{3}=\mathrm{CH}_{3} ; \mathrm{X}=\mathrm{C}$
134: $\mathrm{R}^{1}=4^{\prime}-\mathrm{CH}_{2} \mathrm{Cl} ; \mathrm{R}^{2}=\mathrm{H} ; \mathrm{R}^{3}=\mathrm{CH}_{3} ; \mathrm{X}=\mathrm{C}$
135: $\mathrm{R}^{1}=4{ }^{\prime}-\mathrm{CH}_{2} \mathrm{~N}_{3} ; \mathrm{R}^{2}=\mathrm{H} ; \mathrm{R}^{3}=\mathrm{CH}_{3} ; \mathrm{X}=\mathrm{C}$
136: $\mathrm{R}^{1}=4^{\prime}-\mathrm{CHO} ; \mathrm{R}^{2}=\mathrm{H} ; \mathrm{R}^{3}=\mathrm{CH}_{3} ; \mathrm{X}=\mathrm{C}$
156: $\mathrm{R}^{1}=$ 4' $^{\prime}-\mathrm{OCH}_{3} ; \mathrm{R}^{2}=\mathrm{H} ; \mathrm{R}^{3}=\mathrm{CH}_{2} \mathrm{CN} ; \mathrm{X}=\mathrm{C}$
158: $R^{1}=4{ }^{\prime}-\mathrm{OCH}_{3} ; \mathrm{R}^{2}=\mathrm{H} ; \mathrm{R}^{3}=\mathrm{CH}_{2} \mathrm{CONH}_{2} ; \mathrm{X}=\mathrm{C}$
220: $R^{1}=4 '-\mathrm{N}_{3} ; \mathrm{R}^{2}=\mathrm{H} ; \mathrm{R}^{3}=\mathrm{COCH}_{3} ; \mathrm{X}=\mathrm{C}$

34

80: $\mathrm{R}^{1}=\mathrm{I} ; \mathrm{R}^{2}=\mathrm{THP}$
82: $R^{1}=I ; R^{2}=\mathrm{CH}_{3}$
83: $\mathrm{R}^{1}=\mathrm{Br} ; \mathrm{R}^{2}=\mathrm{CH}_{3}$
119: $R^{1}=H ; R^{2}=\mathrm{CH}_{3}$
122: $R^{1}=I ; R^{2}=H$
145: $\mathrm{R}^{1}=\mathrm{C} \equiv \mathrm{C}-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3} ; \mathrm{R}^{2}=\mathrm{CH}_{3}$
147: $\mathrm{R}^{1}=\mathrm{C} \equiv \mathrm{CH} ; \mathrm{R}^{2}=\mathrm{CH}_{3}$
150: $\mathrm{R}^{1}=\mathrm{CHO} ; \mathrm{R}^{2}=\mathrm{H}$
151: $\mathrm{R}^{1}=\mathrm{CHO} ; \mathrm{R}^{2}=\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
152: $\mathrm{R}^{1}=\mathrm{CHO} ; \mathrm{R}^{2}=\mathrm{Ac}$

133

155

186: $R=H$
187: $R=B r$
190: $\mathrm{R}=\mathrm{C} \equiv \mathrm{CH}$

191: $R=B r$
193: $\mathrm{R}=\mathrm{C} \equiv \mathrm{CH}$

194: $R=H$
195: $R=B r$
198: $\mathrm{R}=\mathrm{C} \equiv \mathrm{CH}$

199: $\mathrm{R}=\mathrm{Br}$
202: $\mathrm{R}=\mathrm{C} \equiv \mathrm{CH}$

212: $R^{1}=H ; R^{2}=R^{3}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$
216: $R^{1}=\mathrm{Ac} ; \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$
213: $R^{1}=H ; R^{2}=\mathrm{CH}_{3} ; \mathrm{R}^{3}=\mathrm{H}$
217: $R^{1}=A c ; R^{2}=\mathrm{CH}_{3} ; R^{3}=H$
214: $\mathrm{R}^{1}=\mathrm{H} ; \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$
218: $R^{1}=\mathrm{Ac} ; \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$
215: $R^{1}=H ; R^{2}=\mathrm{CH}_{3} ; \mathrm{R}^{3}=\mathrm{H}$
219: $R^{1}=A c ; R^{2}=\mathrm{CH}_{3} ; R^{3}=H$

236: $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=4^{\prime}-\mathrm{OH}$
237: $R^{1}=H, R^{2}=4^{\prime}-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Br}$
238: $R^{1}=H, R^{2}=4{ }^{\prime}-\mathrm{OCH}_{3}$
239: $R^{1}=H, R^{2}=3^{\prime}-\mathrm{OCH}_{3}$
241: $R^{1}=H, R^{2}=2^{\prime}-O C H_{3}$
243: $R^{1}=H, R^{2}=4^{\prime}-H$
244: $R^{1}=H, R^{2}=4^{\prime}-\mathrm{CH}_{3}$
246: $R^{1}=H, R^{2}=4^{\prime}-C I$
247: $R^{1}=H, R^{2}=4^{\prime}-\mathrm{NO}_{2}$
248: $R^{1}=H, R^{2}=4{ }^{\prime}-\mathrm{CH}_{2}-\mathrm{COOCH}_{2} \mathrm{CH}_{3}$
249: $\mathrm{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}=4^{\prime}-\mathrm{OCH}_{3}$
250: $\mathrm{R}^{1}=\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Br}, \mathrm{R}^{2}=4{ }^{\prime}-\mathrm{OCH}_{3}$
251: $R^{1}=H, R^{2}=4 '-N_{3}$

260: $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=$ 4' $^{\prime}-\mathrm{OH}$
252: $R^{1}=H, R^{2}=4{ }^{\prime}-\mathrm{OCH}_{3}$
261: $R^{1}=H, R^{2}=3^{\prime}-\mathrm{OCH}_{3}$
262: $R^{1}=H, R^{2}=2^{\prime}-O_{3}$
253: $R^{1}=H, R^{2}=4^{\prime}-H$
254: $R^{1}=H, R^{2}=4{ }^{\prime}-\mathrm{CH}_{3}$
263: $R^{1}=H, R^{2}=4^{\prime}-C I$
264: $R^{1}=H, R^{2}=4{ }^{\prime}-\mathrm{NO}_{2}$
265: $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=4{ }^{\prime}-\mathrm{CH}_{2}-\mathrm{COOCH}_{2} \mathrm{CH}_{3}$
266: $\mathrm{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}=4{ }^{\prime}-\mathrm{OCH}_{3}$
267: $R^{1}=H, R^{2}=4{ }^{\prime}-\mathrm{NH}_{2}$
268: $R^{1}=H, R^{2}=4^{\prime}-N_{3}$

240, $\mathrm{R}^{2}=3^{\prime}-\mathrm{OCH}_{3}$
242, $\mathrm{R}^{2}=2 \mathrm{R}^{-}-\mathrm{OCH}_{3}$
245, $\mathrm{R}^{2}=\mathbf{4}^{\prime}-\mathrm{CH}_{3}$

295: $\mathrm{R}=4$-OMe
296: $R=3-\mathrm{OMe}$

299: $R=4-\mathrm{OMe}$
297: $\mathrm{R}=2-\mathrm{OMe}$
300: $R=3-\mathrm{OMe}$
301: $\mathrm{R}=2-\mathrm{OMe}$

Table 2.10. In vitro cell viability, NO production and TNF-a production, and in silico prediction of some pharmacokinetic properties for synthesised compounds

| Compound |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| No |

131	93.35 ± 5.01	39.36 ± 3.78	61.04 ± 8.68	293.28	0	5	3	3.12	69.42	2	2	0
132	86.10 ± 4.44	49.98 ± 4.25	ND	293.28	0	5	3	3.12	69.42	2	2	0
134	77.52 ± 9.20	21.46 ± 1.36	53.75 ± 7.59	300.74	0	3	3	3.45	35.16	1	2	0
135	81.08 ± 5.97	38.23 ± 2.78	70.41 ± 8.34	307.30	0	5	4	3.13	69.42	2	2	0
136	99.51 ± 6.97	73.78 ± 7.45	ND	280.28	0	4	3	2.61	52.46	2	3	0
156	101.64 ± 1.23	83.78 ± 2.42	ND	307.30	0	5	4	2.56	67.03	2	3	0
158	102.59 ± 3.25	27.56 ± 2.25	76.93 ± 4.59	325.32	1	5	5	1.69	87.93	3	3	0
220	52.87 ± 7.80	31.40 ± 4.26	ND	321.29	0	6	4	2.90	86.72	3	2	0
154	65.58 ± 8.39	19.05 ± 1.01	ND	531.47	1	11	10	3.47	154.30	4	2	3
80	122.23 ± 17.15	21.85 ± 2.16	27.26 ± 7.12	372.16	0	4	2	2.38	44.09	2	3	0
82	113.27 ± 11.16	21.15 ± 2.19	26.09 ± 7.07	302.07	0	3	1	1.65	35.16	2	3	0
83	103.08 ± 6.09	25.88 ± 2.46	26.79 ± 7.83	255.07	0	3	1	1.82	35.16	2	3	0
119	89.62 ± 5.97	42.47 ± 0.48	79.44 ± 9.17	176.17	0	3	1	1.37	35.16	2	3	0
122	100.35 ± 5.69	24.32 ± 0.99	29.86 ± 6.72	288.04	1	3	0	1.43	47.05	2	3	0
145	73.72 ± 3.91	20.86 ± 1.64	ND	272.37	0	3	3	3.30	35.16	1	2	0
147	49.17 ± 5.94	21.31 ± 2.29	ND	200.19	0	3	1	2.46	35.16	1	3	0
150	94.32 ± 8.33	22.03 ± 1.44	25.85 ± 7.55	190.15	1	4	1	0.76	64.35	3	4	0
151	11.79 ± 0.77	19.07 ± 0.86	ND	232.23	0	4	3	1.71	52.46	2	3	0
152	66.04 ± 5.14	18.74 ± 0.97	ND	232.19	0	5	3	0.77	69.76	3	4	0
133	44.91 ± 8.67	20.73 ± 1.25	ND	267.28	2	3	3	3.27	62.10	2	2	0
155	99.67 ± 1.70	36.01 ± 8.39	92.48 ± 13.2	317.29	2	6	7	2.35	105.63	3	3	0
163	101.22 ± 3.97	22.09 ± 1.57	40.71 ± 4.79	212.63	1	4	4	1.44	64.09	3	3	0
165	103.38 ± 5.85	21.14 ± 2.02	26.16 ± 3.01	194.62	0	2	2	2.01	35.08	2	3	0
166	89.82 ± 12.32	20.05 ± 1.79	21.9 ± 3.09	235.63	0	4	3	2.28	69.33	3	3	0
167	12.60 ± 0.36	19.84 ± 1.76	ND	316.74	1	4	6	3.10	67.67	2	3	0
168	11.70 ± 0.66	19.84 ± 1.82	ND	398.76	1	8	8	3.64	136.18	4	2	2
169	82.86 ± 3.88	22.68 ± 1.35	40.28 ± 6.89	412.39	1	6	5	3.78	91.05	2	2	0
170	83.59 ± 10.43	46.53 ± 3.67	ND	570.55	0	8	9	5.17	114.24	4	2	2
171	84.88 ± 3.41	22.76 ± 2.00	21.51 ± 3.69	453.41	1	8	6	4.04	125.31	4	2	2
172	89.09 ± 13.22	35.08 ± 3.53	43.63 ± 9.36	652.58	0	12	11	5.71	182.76	4	3	3
173	104.27 ± 5.10	39.44 ± 2.32	50.15 ± 12.87	426.42	0	6	6	4.00	79.17	2	2	0
174	106.39 ± 1.83	53.17 ± 1.04	ND	467.43	0	8	7	4.27	113.43	4	2	1
175	112.79 ± 6.88	45.97 ± 1.40	ND	426.42	0	6	6	4.00	79.17	2	2	0
176	80.96 ± 8.98	25.40 ± 1.97	43.34 ± 7.64	426.42	0	6	6	4.00	79.17	2	2	0
177	104.41 ± 8.02	34.03 ± 1.63	44.29 ± 7.57	396.40	0	5	5	4.02	70.24	2	2	0
178	96.11 ± 1.24	86.31 ± 2.89	ND	410.42	0	5	5	4.50	70.24	1	2	0
179	72.55 ± 7.06	86.12 ± 1.00	ND	430.84	0	5	5	4.68	70.24	1	2	0
180	71.11 ± 5.77	100.69 ± 0.98	ND	441.39	0	7	6	3.91	113.06	4	2	1

181	80.54 ± 3.54	92.05 ± 4.01	ND	442.42	1	7	6	3.76	99.98	4	2	0
182	106.06 ± 5.04	39.50 ± 2.28	47.04 ± 6.17	411.41	1	6	5	3.27	96.78	3	2	0
184	40.42 ± 5.66	22.91 ± 1.85	ND	396.40	0	5	4	4.17	70.24	1	2	0
305	94.55 ± 7.68	54.14 ± 4.95	ND	609.54	0	12	11	4.19	159.50	4	3	3
186	92.00 ± 1.30	101.05 ± 10.50	ND	216.24	1	2	0	0.65	50.76	3	3	0
187	84.84 ± 2.51	92.28 ± 10.82	ND	295.13	1	2	0	1.40	50.76	3	3	0
190	89.26 ± 4.64	96.70 ± 9.22	ND	240.26	1	2	0	1.77	50.76	2	3	0
191	100.25 ± 3.29	87.23 ± 9.56	ND	390.23	0	4	3	2.72	63.49	2	2	0
193	115.97 ± 1.73	90.06 ± 8.49	ND	335.36	0	4	3	3.10	63.49	2	2	0
194	116.76 ± 5.41	102.30 ± 10.05	ND	190.20	1	2	0	0.05	50.76	3	4	0
195	118.9 ± 0.88	106.08 ± 10.74	ND	269.10	1	2	0	0.80	50.76	3	3	0
198	100.21 ± 3.89	95.73 ± 10.00	ND	214.22	1	2	0	1.18	50.76	3	3	0
199	104.16 ± 6.26	99.72 ± 9.80	ND	364.19	0	4	3	2.13	63.49	2	3	0
202	87.03 ± 2.30	82.87 ± 8.90	ND	309.32	0	4	3	2.51	63.49	2	3	0
209	102.73 ± 4.57	36.47 ± 3.32	31.6 ± 4.07	419.55	1	5	6	5.64	74.92	4	1	1
210	112.81 ± 0.87	36.99 ± 4.10	18.39 ± 2.75	381.81	1	5	5	3.77	74.92	2	2	0
211	108.58 ± 5.06	62.65 ± 4.96	ND	381.38	1	5	3	4.33	74.92	2	2	0
221	107.88 ± 4.28	48.33 ± 3.25	ND	305.29	1	5	2	2.38	74.92	3	3	0
212	39.34 ± 8.65	29.45 ± 2.75	ND	519.51	2	7	3	3.15	125.68	4	2	1
213	67.74 ± 5.13	51.6 ± 23.67	ND	493.47	2	7	3	2.55	125.68	4	2	1
214	42.85 ± 6.51	18.06 ± 1.00	ND	614.61	1	9	6	4.48	138.41	4	2	2
215	66.35 ± 9.97	19.99 ± 1.07	ND	588.57	1	9	6	3.88	138.41	4	2	2
216	97.73 ± 13.76	64.28 ± 1.02	ND	561.54	1	8	5	3.16	131.10	4	2	1
217	45.68 ± 3.20	18.15 ± 0.96	ND	535.51	1	8	5	2.56	131.10	4	3	1
218	44.62 ± 7.50	17.76 ± 0.94	ND	656.64	0	10	8	4.48	143.83	4	2	2
219	60.24 ± 5.79	19.88 ± 1.23	ND	630.61	0	10	8	3.89	143.83	4	3	2
224	74.82 ± 2.20	99.95 ± 1.95	ND	107.13	1	2	0	-1.02	47.41	4	5	1
230	85.93 ± 0.91	78.54 ± 3.71	ND	149.17	0	3	0	-1.03	55.25	4	5	1
258	87.54 ± 4.95	82.35 ± 2.46	ND	214.08	0	2	2	0.00	37.95	3	4	0
259	74.60 ± 5.69	98.10 ± 1.28	ND	133.17	0	2	1	-0.73	37.95	4	4	1
226	83.24 ± 10.08	93.87 ± 4.60	ND	265.29	0	4	3	0.36	73.03	3	4	0
225	94.92 ± 4.38	38.41 ± 1.66	69.29 ± 5.69	371.41	0	5	4	1.79	73.12	3	3	0
233	91.93 ± 8.62	85.20 ± 2.04	ND	403.41	2	7	7	1.31	120.69	4	3	0
234	100.54 ± 3.37	17.27 ± 0.48	24.29 ± 5.51	421.85	1	6	7	2.15	99.87	3	3	0
236	89.91 ± 7.15	19.35 ± 0.22	36.12 ± 8.99	361.19	1	4	4	3.42	55.98	1	2	0
237	73.58 ± 6.19	49.96 ± 3.86	ND	468.14	0	4	7	4.45	44.09	1	2	0
238	84.88 ± 7.23	63.28 ± 1.39	ND	375.21	0	4	5	3.64	44.09	1	2	0
239	72.64 ± 2.33	45.06 ± 2.12	ND	375.21	0	4	5	3.64	44.09	1	2	0

240	89.19 ± 5.78	62.00 ± 3.77	ND	562.57	0	8	9	5.49	88.18	4	2	1
241	78.53 ± 3.50	44.77 ± 2.32	ND	375.21	0	4	5	3.64	44.09	1	2	0
242	99.65 ± 2.65	26.73 ± 0.58	42.99 ± 13.84	562.57	0	8	9	5.49	88.18	4	2	1
243	89.58 ± 7.67	69.90 ± 4.37	ND	345.19	0	3	4	3.66	35.16	1	2	0
244	88.14 ± 9.47	80.08 ± 3.63	ND	359.21	0	3	4	4.15	35.16	1	2	0
245	89.45 ± 8.92	46.49 ± 5.63	ND	530.57	0	6	7	6.49	70.32	4	1	2
246	90.36 ± 11.75	64.79 ± 7.48	ND	379.63	0	3	4	4.32	35.16	1	2	0
247	87.80 ± 5.36	75.66 ± 6.77	ND	390.19	0	5	5	3.55	77.98	2	2	0
248	89.12 ± 4.91	45.08 ± 1.91	ND	431.28	0	5	8	3.90	61.39	1	2	0
249	85.60 ± 6.57	67.76 ± 1.91	ND	391.21	1	5	5	3.40	64.91	2	2	0
250	61.99 ± 2.82	22.11 ± 1.39	ND	498.16	0	5	8	4.44	53.02	1	2	0
251	85.68 ± 4.97	59.64 ± 2.36	ND	386.20	0	5	5	3.93	69.42	2	2	0
252	86.69 ± 3.72	26.13 ± 0.47	41.13 ± 9.86	401.43	0	6	6	1.84	82.05	3	3	0
253	104.41 ± 17.32	65.98 ± 6.59	ND	371.41	0	5	5	1.86	73.12	3	3	0
254	82.46 ± 4.50	24.46 ± 1.38	41.56 ± 12.39	385.43	0	5	5	2.34	73.12	3	3	0
260	34.85 ± 3.18	25.10 ± 1.29	ND	387.41	1	6	5	1.62	93.93	3	3	0
261	94.56 ± 5.32	49.51 ± 1.61	ND	401.43	0	6	6	1.84	82.05	3	3	0
262	98.50 ± 8.00	47.46 ± 3.45	ND	401.43	0	6	6	1.84	82.05	3	3	0
263	72.22 ± 5.65	41.54 ± 2.16	ND	405.85	0	5	5	2.52	73.12	3	3	0
264	77.11 ± 1.84	33.79 ± 3.31	ND	416.41	0	7	6	1.75	115.94	4	3	0
265	64.89 ± 4.81	34.02 ± 3.33	ND	457.50	0	7	9	2.10	99.35	3	3	0
266	96.29 ± 9.34	39.27 ± 2.62	44.65 ± 14.13	417.43	1	7	6	1.60	102.86	3	3	0
267	89.55 ± 0.67	59.46 ± 1.43	ND	386.42	1	6	5	1.11	99.66	3	3	0
268	60.12 ± 2.49	23.25 ± 2.32	ND	412.42	0	7	6	2.13	107.37	3	3	0
270	74.79 ± 3.43	26.02 ± 3.04	ND	486.34	1	5	5	4.09	82.57	2	2	0
272	65.36 ± 2.35	44.71 ± 6.21	ND	507.56	1	5	7	5.45	82.57	4	1	1
273	67.94 ± 5.03	32.43 ± 4.71	ND	507.56	0	5	4	4.98	73.12	1	1	0
285	71.59 ± 1.11	34.40 ± 1.32	ND	431.46	1	5	6	3.93	82.57	2	2	0
289	101.57 ± 9.77	49.56 ± 3.52	ND	431.46	0	5	3	3.46	73.12	2	2	0
290	83.09 ± 3.42	70.45 ± 4.76	ND	369.39	0	5	2	1.89	73.12	3	3	0
292	94.88 ± 4.31	41.20 ± 3.03	34.89 ± 7.59	475.51	0	6	5	3.45	82.05	2	2	0
293	70.68 ± 3.47	24.37 ± 2.20	ND	355.37	1	5	2	1.68	82.57	3	3	0
279	96.72 ± 9.38	63.99 ± 5.60	ND	312.18	1	2	3	3.07	47.41	1	2	0
280	76.77 ± 4.49	103.01 ± 13.77	ND	250.11	1	2	2	1.49	47.41	2	3	0
281	88.46 ± 4.91	76.22 ± 12.81	ND	336.20	1	4	4	2.85	73.64	2	3	0
282	103.42 ± 19.15	43.34 ± 1.64	ND	359.18	1	2	3	2.90	47.41	2	3	0
283	105.23 ± 15.62	82.05 ± 4.46	ND	297.11	1	2	2	1.32	47.41	2	3	0
284	92.22 ± 11.21	39.35 ± 3.80	ND	403.24	1	3	5	2.89	56.34	2	3	0

$\mathbf{2 9 5}$	87.39 ± 4.97	71.38 ± 5.87	ND	466.57	1	6	14	7.15	82.21	4	1
$\mathbf{2 9 6}$	79.67 ± 11.33	42.68 ± 7.91	ND	3							
$\mathbf{2 9 7}$	104.82 ± 5.45	65.10 ± 5.72	ND	466.57	1	6	14	7.15	82.21	4	1
$\mathbf{2 9 9}$	80.83 ± 16.17	24.90 ± 4.35	ND	466.57	1	6	14	7.15	82.21	4	1
$\mathbf{3 0 0}$	58.25 ± 16.86	23.51 ± 3.66	ND	481.58	2	6	14	6.89	95.02	4	2
$\mathbf{3 0 1}$	74.50 ± 17.05	28.44 ± 9.94	ND	481.58	2	6	14	6.89	95.02	4	2
$\mathbf{3 0 7}$	21.28 ± 1.15	18.14 ± 0.92	ND	481.58	2	6	14	6.89	95.02	4	2

For cell viability, the \% values are reported relative to negative control cells DMSO (- DMSO, 100\%), that contained the amount of DMSO used to add the compound solutions in the cell medium; For NO and TNF-a production, the \% values are reported relative to LPS-stimulated BV2 cells (+, 100\%). Negative control, -: BV2 cells were incubated for 24 h only with serum free medium RPMI; LPS-stimulated cells, + : BV2 cells were incubated for 24 h with $100 \mathrm{ng} / \mathrm{mL}$ LPS in the medium; Compounds: BV2 cells were incubated with the compounds at a concentration of $20 \mu \mathrm{M}$ (final concentration in well) and stimulated with $100 \mathrm{ng} / \mathrm{mL}$ LPS; Values are expressed as mean \pm SEM (\%) of minimum three experiments; SEM: standard error of mean; ND: not determined; MW: molecular weight; HBD: H-bond donors; HBA: H-bond acceptors; RB: rotatable bonds; AlogP98: lipophilicity (logarithm of the partition coefficient between octanol and water, atom-type value); PSA-2D: two-dimensional polar surface area; BBB level: blood-brain barrier permeation level ($0=$ very high; $1=$ high; $2=$ medium; $3=$ low; $4=$ undefined); SL: solubility level, predicted level of aqueous solubility in water at $25^{\circ} \mathrm{C}(1=$ very low; $2=$ low; $3=$ good; $4=$ optimal; $5=$ very soluble $)$; AL: absorption level, predicted level of human intestinal absorption (0 = good; 1 = moderate; 2 = low; $3=$ very low).

After incubating the BV2 microglia cells for 24 h with or without the compounds, the cells were observed with the microscope and some images are presented in Table 2.11 (cell density differs due to cells distribution in the well). It can be seen that the morphology of the cells differs depending on whether they are treated or not, and the compound they are treated with. Most of the cells are in the activated amoeboid morphology, apart from the cells treated with 171 and 292 which looks like it is a mix of morphologies, ramified and amoeboid. Further research is needed to investigate this phenomenon.

Table 11. BV2 cells before removing the cells medium for ELISA TNF- α

2.2.2 Conclusion

The anti-inflammatory activity of synthesised compounds was assessed using LPS-stimulated BV2 cells. Preliminary cell viability and NO inhibition assays results showed that most compounds are active. The most active compounds were further evaluated for TNF- α inhibitory activity, revealing the 1,2,3triazole/isoflavone hybrid $\mathbf{2 1 0}$ (18\%) as the most active. This fact points out that putting together two active molecules can lead to potent compounds with an enhanced activity and interesting properties. The isoflavone nucleus in $\mathbf{2 1 0}$ is $\mathbf{7 - O H}$ substituted, allowing H -bond formation and a potential radical scavenging activity. Also, $\mathbf{2 1 0}$ has a chloroalkyl group in the structure, a group that led to improved anti-inflammatory activity in the tested compounds.
Overall, the presence of an OH in the molecule led to more potent compounds, as it might be important for the antioxidant property of the molecule or hydrogen bond formation and interaction with different receptors. Also, the presence of an chloroalkyl or α-haloketone/amide in the structure of the compounds (isoflavone, $1,2,4$-oxadiazole and chromones), appear to be beneficial for the NO and TNF- α inhibitory activity.

2.2.3 Materials and methods

2.2.3.1 Materials

The BV2 mouse brain microglial cells, cell line ICLCATL03001, was purchased from Interlab Cell Line Collection - Banca Biologica e Cell Factory, Italy. The cells were cultured in Gibco ${ }^{\text {TM }}$ Roswell Park Memorial Institute (RPMI) 1640 Medium (Life Technologies). The RPMI medium was supplemented with 10% (v/v) Fetal Bovine Serum (FBS, Sigma), 1 mM sodium pyruvate (Sigma), and streptomycin (100 units $/ \mathrm{mL}$) penicillin $G(100 \mathrm{mg} / \mathrm{mL})$ (Sigma) to obtain the complete RPMI medium. The cells were stimulated with LPS from Salmonella typhimurium, S-form TLRpure ${ }^{\text {TM }}$ Sterile Solution (Innaxon Biosciences). The cells were maintained at $37{ }^{\circ} \mathrm{C}$ in $5 \% \mathrm{CO}_{2}$ humidified atmosphere (autoclaved ddH2O with 1% AQUAGUARD-1) in NuAire CO_{2} incubator (TripleRed). The cell culture procedures were carried out in a NuAire Class II Biological Safety Cabinet (TripleRed). Cell confluency was assessed using an EVOS phase contrast microscope (Life Technologies). Cells were washed with DPBS (Life Technologies) and detached from the T75 flask using TrypLE ${ }^{\text {TM }}$ Express Enzyme (TrypleX, Life Technologies) or a 0.05% trypsin/ 0.02% EDTA solution. Cells were counted using a haemocytometer with a Neubauer chamber. For the 96 -well plates, to add the LPS solution into the well, an Eppendorf Repeater Xstream Pipette with an 0.2 mL Eppendorf Combitip was used. The T75 tissue culture flask with vent $\left(75 \mathrm{~cm}^{2}\right.$), cell culture plates ($24-, 48$ - and 96 -well plates), serological pipettes ($2,5,10$ and 25 mL), centrifuge tubes (5,15 and 50 mL), Eppendorf tubes (0.5 and 1.5 mL), pipette tips (10,200 and $1000 \mu \mathrm{~L}$), and pipetting reservoirs were purchased from Sarstedt. For pipetting, Eppendorf Research® Plus adjustable-volume pipettes (0.1-2.5 $\mu \mathrm{L}, 0.5-10 \mu \mathrm{~L}, 2-20 \mu \mathrm{~L}, 10$ $100 \mu \mathrm{~L}, 20-200 \mu \mathrm{~L}, 100-1000 \mu \mathrm{~L})$, Gilson PIPETMAN L multi 8 channel ($20-200 \mu \mathrm{~L}$) and HTL Discovery Comfort pipettes ($0.5-10 \mu \mathrm{~L}, 2-20 \mu \mathrm{~L}, 20-200 \mu \mathrm{~L}, 100-1000 \mu \mathrm{~L}$, multi 8 channel pipette $20-200 \mu \mathrm{~L}$) were used. The equipment was sanitised using $70 \%(\mathrm{v} / \mathrm{v})$ ethanol in $\mathrm{ddH}_{2} \mathrm{O}$. Before disposal, cells were treated with 1% Virkon solution. Cell viability assay was performed using 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)$2 H$-tetrazolium-5-carboxanilide (XTT, Invitrogen) and N -methyl dibenzopyrazine methyl sulfate (PMS, Sigma), and the absorbance was read using a microplate reader (Infinite® F50, Tecan) at 450 nm . The NO
production was determined using the Griess Reagent System purchased from Promega or prepared (0.1 g of sulfanilamide in 10 mL of $5 \% \mathrm{H}_{3} \mathrm{PO}_{4}$, and 10 mg of N -1-napthylethylenediamine dihydrochloride in 10 mL of water). The absorbance for Griess Assay was read at 540 nm in the microplate reader.
The values for in silico prediction of some pharmacokinetic properties were obtained using the ADMET Descriptors in BIOVIA Discovery Studio 2016 (BIOVIA, San Diego, USA).
Each assay was performed at least three times and with each sample in duplicate.

2.2.3.2 Cell culture

The appropriate vial with BV2 cells (in DMSO) was removed from the liquid N_{2} tank and was quickly thawed in a $37^{\circ} \mathrm{C}$ water bath until sides were melted and the centre still frozen. The BV2 cells were quickly transferred into pre-warmed complete RPMI medium $\left(37^{\circ} \mathrm{C}, 10 \mathrm{~mL}\right)$ in a centrifuge tube (50 mL). The tube was centrifuged at 1200 rpm for 5 min . The supernatant was aspirated, and the cell pellet was dissolved in another 10 mL of complete RPMI medium and transferred in a T75 flask. The flask was incubated at $37^{\circ} \mathrm{C}$ in $5 \% \mathrm{CO}_{2}$ humidified atmosphere. After 48 h the supernatant from the flask was aspirated, 10 mL of prewarmed complete RPMI medium was added, and the cells incubated again. When the cells reached 80% confluency ($\sim 24 \mathrm{~h}$), they were subcultured. Since BV2 microglia are semi-adherent cells, both attached and suspended cells must be subcultured.
The medium from the T 75 flask ($\sim 10 \mathrm{~mL}$) was transferred into a 50 mL centrifuge tube and the attached cells were washed with PBS (5 mL). The PBS was aspirated, and 2.5 mL of 0.05% trypsin/ 0.02% EDTA solution or TrypleX was added to detach the cells. After incubating the mixture for $1-2 \mathrm{~min}$ at $37^{\circ} \mathrm{C}$ in 5% CO_{2}, the flask was gently tapped, the cells were checked under a microscope, and 8 mL of complete RPMI medium were added to inactivate trypsin or TrypleX. The mixture was transferred into the same centrifuge tube as the suspended cells, and the tube was centrifuged at 1200 rpm for 5 min . The supernatant was aspirated, the tube was flicked to break the cell pellet, and 10 mL of complete RPMI was added to dissolve the cell pellet. To create a new passage, 1 mL of cell solution was transferred into a new T75 flask, and 9 mL of complete RPMI medium was added. The cells were grown and maintained at $37^{\circ} \mathrm{C}$ in $5 \% \mathrm{CO}_{2}$ humidified atmosphere until they reached 80% confluency, then, as needed, the medium was changed or the cells subcultured again.
To seed out the cells in the required well plates, cells were first counted using the haemocytometer, then diluted to the required concentration of 2×10^{5} cells $/ \mathrm{mL}$ with complete RPMI medium and seeded. The cells were grown at $37^{\circ} \mathrm{C}$ in $5 \% \mathrm{CO}_{2}$ humidified atmosphere until 80% confluency, and then used in different experiments.

2.2.3.3 Determination of cell viability by XTT Assay

The BV2 cells were seeded out in a 96-well plate ($200 \mu \mathrm{~L}$ in each well) at a concentration of $2 \times 10^{5} \mathrm{cells} / \mathrm{mL}$ and were grown at $37^{\circ} \mathrm{C}$ in $5 \% \mathrm{CO}_{2}$ humidified atmosphere until 80% confluency ($\sim 20 \mathrm{~h}$). The medium was changed to serum free RPMI, and the cells were incubated for at least 2 hours. Subsequently the BV2 cells were treated with the synthesised compounds ($20 \mu \mathrm{M}$ final concentration, $0.4 \mu \mathrm{~L}$ of a 10 mM solution in 100% DMSO) in duplicates and maintained for 30 min at $37^{\circ} \mathrm{C}$ in $5 \% \mathrm{CO}_{2}$. Cells were stimulated with LPS ($100 \mathrm{ng} / \mathrm{mL}$ final concentration into the well, $2 \mu \mathrm{~L}$ of a $10 \mu \mathrm{~g} / \mathrm{mL}$ or $0.2 \mu \mathrm{~L}$ of a $100 \mu \mathrm{~g} / \mathrm{mL}$ solution in sterile

PBS) and incubated for 24 h . Each 96 -well plate had a negative control well (NC), a negative control well with $0.4 \mu \mathrm{~L}$ DMSO, and an LPS-stimulated control well. $100 \mu \mathrm{~L}$ of cell culture medium was carefully removed from each well, centrifuged at 2500 rpm for 5 min at $4{ }^{\circ} \mathrm{C}$ and used for determination of NO production.
XTT Assay was conducted according to XTT Cell Viability Assay Protocol by Thermo Fisher Scientific. 5 mg of XTT were dissolved in 5 mL of warm serum free RPMI. 3 mg of PMS were dissolved in 1 mL of PBS to prepare a 10 mM PMS solution. Right before labelling the cells, to the 5 mL XTT solution, $12.5 \mu \mathrm{~L}$ of PMS solution were added to obtain an XTT/PMS solution. $25 \mu \mathrm{~L}$ of XTT/PMS solution were added to each well (96 -well plate, $100 \mu \mathrm{~L}$ cell culture medium), and the mixture was incubated for 2 h at $37{ }^{\circ} \mathrm{C}$ in $5 \% \mathrm{CO}_{2}$. After, the absorbance was read using the microplate reader at 450 nm .

XTT, 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide, is a tetrazolium salt that is reduced to an orange coloured formazan derivative under the action of cellular enzymes of a living cell (Scheme 2.46). ${ }^{244}$ The reaction takes place at cell surface, and the sensitivity is enhanced when an electron carrier such as PMS (5-methylphenazin-5-ium methyl sulfate) is used. Formation of the bright orange soluble formazan product allows the absorbance reading and direct determination of cell viability (Figure 2.6).

Scheme 2.46. Formation of orange coloured formazan derivative from XTT by reduction

Figure 2.6. BV2 cells in a 96 -well plate incubated for 2 h with XTT , before reading the absorbance at 450 nm

2.2.3.4 Determination of NO production by Griess Assay

The $100 \mu \mathrm{~L}$ of BV2 microglia cells culture medium collected from the 96 -well plates before performing the XTT Assay were centrifuged and used to determine the NO production by Griess Assay. If no cell culture medium was available, the BV2 cells were seeded out, grown and treated as reported for the XTT Assay. After, the collected cell supernatant was centrifuged at 2500 rpm for 5 min at $4^{\circ} \mathrm{C}$.

Griess Assay was conducted according to the supplier's protocol Griess Assay System by Promega. $50 \mu \mathrm{~L}$ of the corresponding centrifuged cell culture medium were dispensed into each well of a 96-well plate. Each well was treated with $50 \mu \mathrm{~L}$ of sulfanilamide solution (1% sulfanilamide in 5% phosphoric acid) and the plate was incubated in the dark at room temperature for 10 min . Subsequently, $50 \mu \mathrm{~L}$ of NED solution ($0.1 \% \mathrm{~N}-$ 1-napthylethylenediamine dihydrochloride in water) was added, and the plate was incubated again in the dark for 10 min . After, the absorbance was read at 540 nm .
Nitric oxide (NO) was indirectly measured through nitrite $\mathrm{NO}_{2}{ }^{-}$, a stable product of NO oxidation in aqueous media. The Griess assay detects $\mathrm{NO}_{2}{ }^{-}$via a diazotization reaction that gives a purple coloured compound quantified spectrophotometrically (Scheme 2.47, Figure 2.7). ${ }^{245}$

Scheme 2.47. Formation of azo compound using Griess reagent system to measure $\mathrm{NO}_{2}{ }^{-}$

Figure 2.7. BV2 cells culture medium in a 96 -well plate treated with Griess reagent

2.2.3.5 Determination of TNF- α by ELISA

The BV2 cells were seeded out in a 48-well plate, grown and treated as reported for the XTT Assay. After, the BV2 cells culture medium was collected and centrifuged at 2500 rpm for 5 min at $4{ }^{\circ} \mathrm{C}$. ELISA (enzymelinked immunosorbent assay) was carried out with fresh collected and centrifuged cells culture medium.

The cells culture medium was diluted 1:10 with 1X Assay Diluent A due to high concentration of TNF- α in the medium.
The assay was conducted according to the manufacturer's protocol for Mouse TNF- α ELISA MAXTM Deluxe Set (BioLegend) and was performed on Nunc ${ }^{\text {TM }}$ MaxiSorp ${ }^{\text {TM }}$ ELISA 96-well plates (BioLegend). By using an 8 -channel pipette, $100 \mu \mathrm{~L}$ of 1 X Capture Antibody solution (2.4 mL 5 X Coating Buffer A, 9.6 mL deionised water, $60 \mu \mathrm{~L}$ 200X Capture Antibody) were dispensed to each well. The 96 -well plate was sealed and incubated at $4^{\circ} \mathrm{C}$ for $16-18 \mathrm{~h}$. The plate was washed four times with $200 \mu \mathrm{~L}$ Wash Buffer (PBS with 0.05% Tween-20) per well and dried by tapping firmly the plate face down on paper towels. $200 \mu \mathrm{~L}$ of 1X Assay Diluent A (12 mL 5 X Assay Diluent A, 48 mL PBS) were added to each well and the plate was sealed and incubated at room temperature for 1 h with shaking at 100 rpm . The plate was washed four times with Wash Buffer and dried. The TNF- α standards of $500,250,125,62.5,31.3,15.6$, and $7.8 \mathrm{pg} / \mathrm{mL}$ were prepared from the $500 \mathrm{pg} / \mathrm{mL}$ stock solution by doing six two-fold serial dilutions with Assay Diluent A (1X). As zero standard, the Assay Diluent A (1X) was used. As samples, the diluted cells culture medium was used. 100 $\mu \mathrm{L}$ of the standards or samples were put in the corresponding well in duplicates and the 96 -well plate was sealed and incubated at room temperature for 2 h with shaking at 100 rpm . The plate was washed four times. By using the 8 -channel pipette, $100 \mu \mathrm{~L}$ of Detection Antibody ($60 \mu \mathrm{~L}$ 200X Detection Antibody, 12 mL 1X Assay Diluent) were added to each well, and the plate was sealed and incubated at room temperature for 1 h with shaking at 100 rpm . The plate was washed four times. $100 \mu \mathrm{~L}$ of Avidin-HRP (12 $\mu \mathrm{L}$ 1000X Avidin-HRP, 12 mL 1X Assay Diluent A) were added to each well and the plate was sealed and incubated at room temperature for 30 min with shaking at 100 rpm . After washing five times the plate, 100 $\mu \mathrm{L}$ of TMB Substrate Solution were added to each well, and the plate was sealed and incubated in the dark at RT for 15 min . $100 \mu \mathrm{~L}$ of Stop Solution ($2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$) were added to each well and the solution turned blue. The absorbance was read using the microplate reader at 450 nm and was converted to concentration of TNF- α based on the standard reference curve.

2.3 Future work

After screening the obtained compounds for NO and TNF- α activity in LPS-activated BV2 microglia and identifying the most active ones, further investigation onto the neuroinflammatory biomarkers will be made to establish the molecular targets of activity. The levels of neuroinflammatory mediators (e.g. prostaglandin E2, pro-inflammatory cytokines, inducible nitric oxide synthase, and cyclooxygenase 2) will be further determined using protein and gene expression methods such as enzyme immunoassays, immunoblotting, immunocytochemistry and qPCR. For active compounds, an understanding of the structure-activity relationship will be attempted through a mechanism involving TRAF-6-mediated activation of nuclear factorkappa B (NF-кB) and mitogen activated protein kinases (p38 MAPK) signalling pathways, a method established at Huddersfield. ${ }^{17}$

Some analogues of the most active compounds will be synthesised, and the molecules will be tested and optimised. The 1,2,3-triazole ring in 210 will be moved to the 2' and 3'-position, and subsequently replaced with other bioisosteres such as oxadiazole and tetrazole. Also the length of the alkyl chain will be varied, and the chloro-group will be substituted with other halogens and functional groups. New derivatives of 1,2,4oxadiazole 165, and of isoflavones $35,134,234$ and 292 will be synthesised, and the haloalkyl group will be further explored. For the synthesis of compounds, more environmentally friendly methods will be pursued such as using green solvents (water, Cyrene ${ }^{\text {TM }}$) and transition metal catalysts. A selection of these reactions is shown below:

Chapter 3 Experimental

3.1 General chemistry methods

All synthetic reagents and anhydrous solvents were purchased from Fischer Scientific, Acros Organics, Sigma-Aldrich, VWR, Manchester Organics, Fluorochem and Alfa-Aesar, and were used as supplied, unless otherwise indicated. Reactions were magnetically stirred, heated on a paraffin oil bath, and monitored on Merck TLC silica gel $60 \mathrm{~F}_{254}$ aluminium sheets. Visualisation of spots was accomplished using a UV lamp (254 or 365 nm) and/or staining with potassium permanganate solution. Column chromatography was performed on silica gel (Aldrich, technical grade, pore size $60 \AA, 40-63 \mu \mathrm{~m}$ particle size) and solvent mixtures employed in chromatography are reported as volume to volume ratios.
Nuclear magnetic resonance (NMR) spectra were recorded on Bruker Ascend $400\left(400 \mathrm{MHz}-{ }^{1} \mathrm{H}\right.$, and 100 $\mathrm{MHz}-{ }^{13} \mathrm{C}$), Bruker Fourier $300\left(300 \mathrm{MHz}-{ }^{1} \mathrm{H}\right.$, and $\left.75 \mathrm{MHz}-{ }^{13} \mathrm{C}\right)$, Bruker Avance $500\left(500 \mathrm{MHz}-{ }^{1} \mathrm{H}\right.$, and $125 \mathrm{MHz}-{ }^{13} \mathrm{C}$) or Bruker Avance $600\left(600 \mathrm{MHz}-{ }^{1} \mathrm{H}\right.$, and $\left.150 \mathrm{MHz}-{ }^{13} \mathrm{C}\right)$ spectrometers using CDCl_{3}, $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, \mathrm{CD}_{3} \mathrm{OD}$ or $\mathrm{D}_{2} \mathrm{O}$ as solvent and as internal standard. The chemical shifts (δ) are expressed in parts per million (ppm). The multiplicities were reported as $s=\operatorname{singlet}, \mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{br}=$ broad signal, combinations of aforementioned multiplicities, and $\mathrm{m}=$ multiplet. Mass spectral experiments were performed on Agilent 6210 TOF MS (Dual ESI source), Agilent 6530 Q-TOF MS (Jet Stream ESI source), Agilent 1290 HPLC +6530 Q-TOF (Dual AJSESI source + ve) or Agilent 7890A5975C (EI-GCMS) and spectra were recorded in positive mode. FT-IR spectra were recorded on a Thermo Nicolet 380 FT-IR Spectrometer with Diamond ATR (neat sample). Melting points were recorded using a Stuart SMP10 melting point apparatus.

3.2 Synthesis of compounds and experimental data

3.2.1 Synthesis of simple isoflavones

3.2.1.1 Synthesis of simple isoflavones using the deoxybenzoin route

General procedure A: A solution of resorcinol 6 (1.0 equiv.) and the corresponding phenylacetic acid 7-9 or $\mathbf{1 5}$ (1.0 equiv.) in $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ (5.1 equiv.) under nitrogen, was heated at $85-100^{\circ} \mathrm{C}$ for $2-2.5 \mathrm{~h}$. The reaction mixture was poured into an aq. NaOAc solution ($100 \mathrm{~mL}, 10 \%$) on an ice-bath and allowed to stand for 4 h. ${ }^{45}$ Workup (1): the precipitate was filtered, washed with water ($3 \times 75 \mathrm{~mL}$), and air-dried to give the product; workup (2): the aqueous phase was extracted with ethyl acetate ($3 \times 150 \mathrm{~mL}$), and the organic phase was washed with brine $(3 \times 100 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under vacuum to obtain the desired deoxybenzoin, unless otherwise stated.

2-(4-Hydroxyphenyl)-1-(2,4-dihydroxyphenyl)ethan-1-one (16)

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4}$ Molecular Weight: 244.25

Prepared according to General procedure A using $6(3 \mathrm{mmol}, 330 \mathrm{mg}), 7(3 \mathrm{mmol}, 450 \mathrm{mg})$ and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ ($15.3 \mathrm{mmol}, 1.9 \mathrm{~mL}$), $85^{\circ} \mathrm{C}$ for 2 h ; workup (1) to obtain 16 ($640 \mathrm{mg}, 87 \%$) as a pale brown solid; $\mathrm{mp}=175-$ $178{ }^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=190-192{ }^{\circ} \mathrm{C} ; 45 R_{f}=0.6$ (petroleum ether/ethyl acetate, $1: 3$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=7.86(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6$ '- H), 7.11 ($\mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 ", 6 "-\underline{H}), 6.74$ (d, $\left.J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime \prime}, 5^{\prime \prime}-\underline{\mathrm{H}}\right), 6.37$ (dd, J = 2.4, $8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\underline{H}$), $6.26\left(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-\underline{H}\right), 4.12(\mathrm{~s}, 2 \mathrm{H}$, $\left.2-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=202.9$ (C=O, 1-C-C), 165.5 (qC, 2' or 4'- \underline{C}), 165.0 (qC, 2' or 4'- \underline{C}), 156.0
 C $)$, $107.7\left(\mathrm{CH}, 5^{\prime}-\underline{\mathrm{C}}\right), 102.3\left(\mathrm{CH}, 3^{\prime}-\underline{\mathrm{C}}\right), 43.3\left(\mathrm{CH}_{2}, 2-\underline{\mathrm{C}}\right)$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3311,3255,3161,3074,3027,2924,2852,1630,1606,1590,1513,1503,1441,1346$, 1325, 1300, 1207, 1138, 996, 855, 764, 703.
Known compound, modified method. ${ }^{45}$

2-(4-Methoxyphenyl)-1-(2,4-dihydroxyphenyl)ethan-1-one (17)

Prepared according to General procedure A using $6(3 \mathrm{mmol}, 330 \mathrm{mg}), 8(3 \mathrm{mmol}, 500 \mathrm{mg})$ and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ ($15.3 \mathrm{mmol}, 1.9 \mathrm{~mL}$), $85^{\circ} \mathrm{C}$ for 2 h ; workup (1) to obtain 17 ($730 \mathrm{mg}, 94 \%$) as a pale brown solid; $\mathrm{mp}=149$ $152{ }^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=158-160^{\circ} \mathrm{C} ; 45 R_{f}=0.6$ (petroleum ether/ethyl acetate, $1: 2$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=7.86(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6$ '- $\underline{\mathrm{H}}$), $7.21(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 ", 6 "-\underline{\mathrm{H}}), 6.88$ (d, $\left.J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime \prime}, 5^{\prime \prime}-\underline{\mathrm{H}}\right), 6.37\left(\mathrm{dd}, \mathrm{J}=2.4,8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\underline{H}\right), 6.26\left(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-\underline{H}\right), 4.16(\mathrm{~s}, 2 \mathrm{H}$, 2-CH2 \underline{H}_{2}, 3.78 (s, $3 \mathrm{H}, 7$ "- CH_{3}).

FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3352,3153,3076,3040,2996,2966,2835,1613,1607,1588,1539,1510,1435,1350$, 1239, 1173, 1045, 965, 861, 790, 722.
Known compound, modified method. ${ }^{45}$

2-(3-Methoxyphenyl)-1-(2,4-dihydroxyphenyl)ethan-1-one (18)

Prepared according to General procedure A using 6 ($3 \mathrm{mmol}, 330 \mathrm{mg}$), 9 ($3 \mathrm{mmol}, 500 \mathrm{mg}$) and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ (15.3 mmol, 1.9 mL), $85^{\circ} \mathrm{C}$ for 2 h ; workup (2) to obtain 18 ($750 \mathrm{mg}, 96 \%$) as a brown solid; $\mathrm{mp}=91-93$ ${ }^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=128-129{ }^{\circ} \mathrm{C} ;{ }^{246} R_{f}=0.7$ (PE/EtOAc, $1: 2$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=7.86\left(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6\right.$ '- H), $7.22\left(\operatorname{app} \mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 5{ }^{\prime \prime}-\underline{H}\right.$), $6.88-$ 6.80 (m, $3 \mathrm{H}, 2^{\prime \prime}, 4^{\prime \prime}, 6$ "- $-\underline{H}$), 6.37 ($\mathrm{dd}, \mathrm{J}=2.3,8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\underline{H}$), $6.27\left(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-\underline{H}\right), 4.20(\mathrm{~s}, 2 \mathrm{H}$, 2-CH2 \underline{H}_{2}, 3.78 (s, $3 \mathrm{H}, 7$ "- $\underline{C H}_{3}$).
FT-IR $\left(\mathrm{cm}^{-1}\right): v=3139,3081,3055,3010,2967,2939,2839,1620,1603,1574,1509,1488,1444,1323$, 1253, 1190, 1133, 1051, 973, 883, 791, 746, 690.

Known compound, modified method. ${ }^{246}$

2,2'-(1,4-Phenylene)bis(1-(2,4-dihydroxyphenyl)ethan-1-one) (24)

Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{6}$ Molecular Weight: 378.38

Prepared according to General procedure A using 6 ($5 \mathrm{mmol}, 550 \mathrm{mg}$), $15(2.5 \mathrm{mmol}, 485 \mathrm{mg})$ and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ ($25.5 \mathrm{mmol}, 3.15 \mathrm{~mL}$), $100^{\circ} \mathrm{C}$ for 2.5 h ; workup (2), purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}\right.$, $95: 5$) to give 24 ($480 \mathrm{mg}, 50 \%$) as a pale orange solid; $\mathrm{mp}=274-275{ }^{\circ} \mathrm{C}$ (decomp.); $R_{f}=0.33$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 95: 5\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz, DMSO): $\delta=12.51$ (s, $2 \mathrm{H}, 2$ "-OH), 10.69 (s, $2 \mathrm{H}, 4$ "-OH), 7.95 (d, J = $8.9 \mathrm{~Hz}, 2 \mathrm{H}, 6$ "H), 7.23 (s, $4 \mathrm{H}, 2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}-\underline{H}$), 6.39 (dd, J = 2.3, $\left.8.9 \mathrm{~Hz}, 2 \mathrm{H}, 5^{\prime \prime}-\underline{H}\right), 6.25\left(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime \prime}-\underline{\mathrm{H}}\right), 4.26$ (s, $4 \mathrm{H}, 2-\mathrm{CH}_{2}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, \mathrm{DMSO}): \delta=202.5(2 \mathrm{C}=\mathrm{O}, 1-\mathrm{C})$, 165.4 ($2 \mathrm{qC}, 2$ " or 4 "- C), 165.0 ($2 \mathrm{qC}, 2$ " or 4 "- $-\underline{\mathrm{C}}$), 134.0 (2 CH, 6"-므), 133.9 (2 qC, 1', $4^{\prime}-\underline{\mathrm{C}}$), 130.0 ($\left.4 \mathrm{CH}, 2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}-\underline{\mathrm{C}}\right)$, 112.6 (2 qC, $1^{\prime \prime}-\underline{\mathrm{C}}$), 108.7 (2 CH, 5"-C- $), 102.9\left(2 \mathrm{CH}, 3\right.$ "-ㅡㅡ), $44.1\left(2 \mathrm{CH}_{2}, 2-\mathrm{CH}_{2}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{6}$: 378.1103 [M], 379.1176 [M+H]+; found: 378.1097 [M], 379.1169 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3255,3161,3091,3029,2979,2955,2884,1624,1593,1503,1444,1349,1316,1230$, 1200, 1131, 1023, 998, 802, 751, 690.

Previously unreported.

General procedure B: To a solution of deoxybenzoin 16-18 (1.0 equiv.) in DMF (3 mL) in an ice-bath under nitrogen, $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ (4.0 equiv.) was gradually added and the mixture was stirred for 30 min at room temperature. The mixture was heated to $50^{\circ} \mathrm{C}$ and mesyl chloride (3.0 equiv.) was added dropwise. After reaction at $85^{\circ} \mathrm{C}$ for 2 h , the resulting mixture was cooled to room temperature and poured into aq. sodium acetate $(10 \%, 100 \mathrm{~mL})$ on an ice-bath. The aqueous phase was extracted with ethyl acetate $(3 \times 150 \mathrm{~mL})$, and the organic phase was washed with brine $(3 \times 100 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under vacuum. ${ }^{223,} 247$ The crude was purified by column chromatography to give the desired isoflavone.

7-Hydroxy-3-(4-hydroxyphenyl)-4H-chromen-4-one (Daidzein, 26)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{4}$ Molecular Weight: 254.24

Prepared according to General procedure B using 16 ($2.05 \mathrm{mmol}, 500 \mathrm{mg}$), DMF (3 mL), $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(8.2$ $\mathrm{mmol}, 1 \mathrm{~mL}$) and mesyl chloride ($6.15 \mathrm{mmol}, 0.475 \mathrm{ml}$), $85^{\circ} \mathrm{C}$ for 2 h ; purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 95: 5\right)$ to give $26(260 \mathrm{mg}, 50 \%)$ as a pale yellow solid; $\mathrm{mp}=>300{ }^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=320^{\circ} \mathrm{C}$ (decomp.); ${ }^{45} R_{f}=0.2\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 95: 5\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{DMSO}): \delta=10.81$ (s, $1 \mathrm{H}, 7-\mathrm{OH}$), 9.55 ($\mathrm{s}, 1 \mathrm{H}, 4$ '- OH), $8.30(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{H}), 7.96$ ($\mathrm{d}, \mathrm{J}=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{H}$), $7.38\left(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6{ }^{\prime}-\underline{H}\right), 6.94(\mathrm{dd}, \mathrm{J}=2.2,8.8 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 6.87$ (d, J = 2.2 Hz , $1 \mathrm{H}, 8-\underline{H}), 6.81\left(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{H}}\right)$.

HRMS (Dual ESI): calculated m / z for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{4}$: 254.0579 [M], 255.0652 [M+H]+; found: 254.0577 [M], $255.0650[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): v=3165,3151,3020,2919,2848,1629,1605,1593,1516,1455,1278,1235,1191,1095$, 898, 841, 789, 775, 690.

Known compound, modified method. ${ }^{39,45}$

7-Hydroxy-3-(4-methoxyphenyl)-4H-chromen-4-one (Formononetin, 27)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{4}$ Molecular Weight: 268.27

Prepared according to General procedure B using 17 ($2.0 \mathrm{mmol}, 516 \mathrm{mg}$), DMF (3 mL), $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(8 \mathrm{mmol}$, 1 mL) and mesyl chloride ($6 \mathrm{mmol}, 0.465 \mathrm{ml}$), $85{ }^{\circ} \mathrm{C}$ for 2 h ; purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 95: 5\right)$ to give $27(280 \mathrm{mg}, 52 \%)$ as a yellow solid; $\mathrm{mp}=256-257^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=257-258{ }^{\circ} \mathrm{C} ; 45$ $R_{f}=0.4\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 95: 5\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{DMSO}): \delta=10.82(\mathrm{~s}, 1 \mathrm{H}, 7-\mathrm{OH}), 8.35(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 7.97(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}})$, 7.51 (d, J = $\left.8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{\mathrm{H}}\right), 6.99\left(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{H}}\right), 6.94$ (dd, J = 2.2, $8.8 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}$), 6.87 (d, J = 2.2 Hz, $1 \mathrm{H}, 8-\underline{H}$), $3.79\left(\mathrm{~s}, 3 \mathrm{H}, 7{ }^{\prime}-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, \mathrm{DMSO}): ~ \delta=175.1$ (C=O, 4-C-C), 163.0 (qC, 7-C-C), 159.4 (qC, 4' or 8a-C-C), 157.9 (qC, 4' or 8a-C-C), 153.6 (CH, 2- \underline{C}), 130.5 (2 CH, 2', $6^{\prime}-\underline{C}$), $127.8(\mathrm{CH}, 5-\underline{C}), 124.7$ (qC, 1' or 3-C-C), 123.6 (qC, 1' or 3-C-C), $\left.117.1(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 115.6(\mathrm{CH}, 6-\underline{\mathrm{C}}), 114.1\left(2 \mathrm{CH}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{C}}\right), 102.6(\mathrm{CH}, 8-\underline{\mathrm{C}}), 55.6\left(\mathrm{CH}_{3}, 7^{\prime}-\underline{\mathrm{C}_{3}}\right)_{3}\right)$.

HRMS (Dual ESI): calculated m / z for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{4}$: 268.0736 [M], 269.0808 [$\left.\mathrm{M}+\mathrm{H}\right]^{+}$; found: 268.0735 [M], $269.0808[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): v=3165,3118,3075,3031,2991,2943,2834,1633,1621,1604,1594,1567,1531,1511$, 1451, 1382, 1272, 1194, 1114, 1051, 886, 820, 691.
Known compound, modified method. ${ }^{39,45}$

7-Hydroxy-3-(3-methoxyphenyl)-4H-chromen-4-one (28)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{4}$ Molecular Weight: 268.27

Prepared according to General procedure B using 18 ($2.0 \mathrm{mmol}, 516 \mathrm{mg}$), DMF (3 mL), $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(8 \mathrm{mmol}$, 1 mL) and mesyl chloride ($6 \mathrm{mmol}, 0.465 \mathrm{~mL}$), $85{ }^{\circ} \mathrm{C}$ for 2 h ; purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 95: 5\right)$ to give 28 ($280 \mathrm{mg}, 52 \%$) as a pale orange solid; $\mathrm{mp}=213-214{ }^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=218$ ${ }^{\circ} \mathrm{C} ;{ }^{39} R_{f}=0.4\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 95: 5\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{DMSO}): \delta=10.85(\mathrm{~s}, 1 \mathrm{H}, 7-\mathrm{OH}), 8.41(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{H}), 7.98(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{H})$, 7.34 (app t, J = $7.9 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\underline{\mathrm{H}}$), $7.16-7.13$ (m, $\left.3 \mathrm{H}, 2^{\prime}, 4^{\prime}, 6^{\prime}-\underline{\mathrm{H}}\right), 6.96$ (dd, J = 2.1, $8.8 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}$), 6.89 (d, J = 2.1 Hz, 1 H, 8-Hㅡ), 3.79 (s, $\left.3 \mathrm{H}, 7{ }^{\prime}-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($100 \mathrm{MHz}, \mathrm{DMSO}$): $\delta=174.8$ (C=O, 4-C-C), 163.1 (qC, 7-C-C), 159.4 (qC, 3' or 8a-C-C), 157.8 (qC, 3' or 8a-ㅡㅡ), 154.4 (CH, 2-ㅡㅡ), 133.9 (qC, 1'- \underline{C}), $129.6\left(\mathrm{CH}, 5{ }^{\prime}-\underline{\mathrm{C}}\right), 127.8(\mathrm{CH}, 5-\underline{\mathrm{C}}), 123.8(\mathrm{qC}, 3-\underline{\mathrm{C}}), 121.6(\mathrm{CH}$, 6 '- $-\underline{C}$), $117.1(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 115.7(\mathrm{CH}, 6-\underline{\mathrm{C}}), 115.0\left(\mathrm{CH}, 4{ }^{\prime}-\underline{\mathrm{C}}\right), 113.7\left(\mathrm{CH}, 2^{\prime}-\underline{\mathrm{C}}\right), 102.6(\mathrm{CH}, 8-\underline{\mathrm{C}}), 55.5\left(\mathrm{CH}_{3}\right.$, 7 '- CH_{3}).

HRMS (Dual ESI): calc m / z for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{4}$: 268.0736 [M], 269.0808 [M+H]+; found: 268.0733 [M], 269.0806 $[\mathrm{M}+\mathrm{H}]^{+}$.

FT-IR $\left(\mathrm{cm}^{-1}\right): v=3214,3158,3077,3039,2994,2920,2831,1633,1619,1599,1588,1567,1516,1492$, 1465, 1380, 1264, 1226, 1174, 1035, 834, 787, 691.

Known compound, modified method. ${ }^{39}$

General procedure C: (a) A solution of resorcinol 6 (1.0 equiv.) and the corresponding phenylacetic acid 10-15 (1.0 equiv.) in $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ (5.1 equiv.) and under nitrogen, was stirred and heated at $85-100{ }^{\circ} \mathrm{C}$ for $2-3$ h. (b) The reaction mixture was allowed to cool down to room temperature and dry DMF (20.0 equiv.) was gradually added. The mixture was heated to $50^{\circ} \mathrm{C}$ and a solution of mesyl chloride (3.0 equiv.) in dry DMF (4.0 equiv.) was added dropwise. After reaction at $85-100^{\circ} \mathrm{C}$ for $2-3 \mathrm{~h}$, the resulting mixture was cooled to room temperature and quenched with aq. sodium acetate ($10 \%, 50 \mathrm{~mL}$). Workup (1): the aqueous phase was extracted with ethyl acetate $(3 \times 50 \mathrm{~mL})$, and the organic phase was washed with brine $(3 \times 100 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under vacuum; workup (2): the precipitate was filtered, washed with water $(3 \times 75 \mathrm{~mL})$ and dried in air. ${ }^{39}$ The crude was purified by column chromatography to give the desired isoflavone, unless otherwise stated.

7-Hydroxy-3-(2-methoxyphenyl)-4H-chromen-4-one (29)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{4}$
Molecular Weight: 268.27
Prepared according to General procedure C using: (a) $6(3 \mathrm{mmol}, 330 \mathrm{mg}), 10(3 \mathrm{mmol}, 500 \mathrm{mg})$ and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(15.3 \mathrm{mmol}, 1.89 \mathrm{~mL}), 85^{\circ} \mathrm{C}$ for 2 h ; (b) DMF ($60 \mathrm{mmol}, 4.65 \mathrm{~mL}$) and mesyl chloride (9 mmol , 0.7 mL)/ DMF ($12 \mathrm{mmol}, 0.88 \mathrm{~mL}$), $85{ }^{\circ} \mathrm{C}$ for 2 h ; workup (1), purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 99: 1\right)$ to give $29(620 \mathrm{mg}, 77 \%)$ as a pale yellow solid; $\mathrm{mp}=235-236{ }^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=222-224$ ${ }^{\circ} \mathrm{C} ;{ }^{247} R_{f}=0.3(\mathrm{PE} / \mathrm{EtOAc}, 1: 1)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=8.06(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{H}), 8.05(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 7.40(\mathrm{t}, \mathrm{J}=1.7,8.3 \mathrm{~Hz}$,
 $1 \mathrm{H}, 5$ '- \underline{H}), 6.96 (dd, J = 2.1, $8.8 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{\mathrm{H}}), 6.89(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{\mathrm{H}}), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, 7{ }^{\prime}-\underline{C H}_{3}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=176.4\left(\mathrm{C}=\mathrm{O}, 4-\underline{\mathrm{C}}\right.$), 163.2 ($\mathrm{qC}, 7-\underline{\mathrm{C}}$), 158.5 ($\mathrm{qC}, 2$ ' or $8 \mathrm{a}-\underline{\mathrm{C}}$), 157.9 ($\mathrm{qC}, 2{ }^{\prime}$ or $8 \mathrm{a}-\underline{\mathrm{C}})$, $154.5(\mathrm{CH}, 2-\underline{\mathrm{C}}), 131.2\left(\mathrm{CH}, 6{ }^{\prime}-\underline{\mathrm{C}}\right), 129.6\left(\mathrm{CH}, 4^{\prime}-\underline{\mathrm{C}}\right), 127.0(\mathrm{CH}, 5-\underline{\mathrm{C}}), 122.5\left(\mathrm{qC}, 1^{\prime}\right.$ or $\left.3-\underline{\mathrm{C}}\right), 120.9$ (qC, 1^{\prime} or $3-\underline{C}$), $120.0\left(\mathrm{CH}, 5^{\prime}-\underline{C}\right), 116.6(q C, 4 \mathrm{a}-\underline{\mathrm{C}}), 115.0(\mathrm{CH}, 6-\underline{\mathrm{C}}), 110.8\left(\mathrm{CH}, 3{ }^{\prime}-\underline{\mathrm{C}}\right), 101.9(\mathrm{CH}, 8-\underline{\mathrm{C}})$, $54.6\left(\mathrm{CH}_{3}, 7\right.$ '- $\left.\mathrm{CH}_{3}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{4}$: 268.0736 [M], 269.0808 [M+H]+; found: 268.0736 [M], 269.0809 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): v=3165,3073,3013,2938,2832,1924,1589,1569,1490,1448,1381,1281,1238,1191$, 1115, 1027, 890, 787, 752, 697.
Known compound, modified method. ${ }^{247}$

7-Hydroxy-3-phenyl-4H-chromen-4-one (30)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{3}$ Molecular Weight: 238.24

Prepared according to General procedure C using: (a) 6 ($3 \mathrm{mmol}, 330 \mathrm{mg}$), 11 ($3 \mathrm{mmol}, 410 \mathrm{mg}$) and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(15.3 \mathrm{mmol}, 1.89 \mathrm{~mL}), 85^{\circ} \mathrm{C}$ for 2 h ; (b) DMF ($60 \mathrm{mmol}, 4.65 \mathrm{~mL}$) and mesyl chloride (9 mmol , 0.7 mL)/ DMF ($12 \mathrm{mmol}, 0.88 \mathrm{~mL}$), $85{ }^{\circ} \mathrm{C}$ for 2 h ; workup (1), purified by column chromatography ($\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}, 99: 1$) to give $30(520 \mathrm{mg}, 72 \%)$ as a pale yellow solid; $\mathrm{mp}=209-210{ }^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=210-212$ ${ }^{\circ} \mathrm{C} ;{ }^{45} R_{f}=0.15\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 98: 2\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{DMSO}): \delta=10.85(\mathrm{~s}, 1 \mathrm{H}, 7-\mathrm{OH}), 8.41(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 7.99(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H})$, 7.57 (d, J = 7.2 Hz, $2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{H}$), 7.44 (app t, J = $7.4 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{H}$), 7.38 (app t, J = $7.2 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\underline{H}$), 6.96 (dd, J = 2.1, $8.7 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 6.89(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H})$.
 $132.6\left(\mathrm{qC}, 1^{\prime}-\underline{\mathrm{C}}\right), 129.4\left(2 \mathrm{CH}, 2^{\prime}, 6^{\prime}-\underline{\mathrm{C}}\right), 128.6\left(2 \mathrm{CH}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{C}}\right), 128.2\left(\mathrm{CH}, 4^{\prime}-\underline{\mathrm{C}}\right), 127.8(\mathrm{CH}, 5-\underline{\mathrm{C}}), 124.0(\mathrm{qC}$, $3-\underline{C}), 117.1$ (qC, 4a-Cㅡ), $115.7(\mathrm{CH}, 6-\underline{C}), 102.6(\mathrm{CH}, 8-\underline{\mathrm{C}})$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{3}$: 238.0630 [M], 239.0703 [M+H]+; found: 238.0632 [M], 239.0705 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3182,3061,2980,2847,1620,1572,1507,1470,1383,1265,1234,1100,1051,886$, 788, 702.
Known compound, modified method. ${ }^{45}$

7-Hydroxy-3-(p-tolyl)-4H-chromen-4-one (31)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{3}$ Molecular Weight: 252.27

Prepared according to General procedure C using: (a) $6(3 \mathrm{mmol}, 330 \mathrm{mg}), 12(3 \mathrm{mmol}, 450 \mathrm{mg})$ and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ ($15.3 \mathrm{mmol}, 1.89 \mathrm{~mL}$), $85^{\circ} \mathrm{C}$ for 2 h ; (b) DMF ($60 \mathrm{mmol}, 4.65 \mathrm{~mL}$) and mesyl chloride (9 mmol , 0.7 mL)/ DMF ($12 \mathrm{mmol}, 0.88 \mathrm{~mL}$), $85^{\circ} \mathrm{C}$ for 2 h ; workup (1), purified by column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}, 99: 1\right)$ to give 31 ($640 \mathrm{mg}, 84 \%$) as a yellow solid; $\mathrm{mp}=247-248{ }^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=254-255^{\circ} \mathrm{C}$;99 $R_{f}=0.17\left(\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}, 98: 2\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{DMSO}): \delta=10.83(\mathrm{~s}, 1 \mathrm{H}, 7-\mathrm{OH}), 8.37(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 7.98(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H})$, 7.46 (d, J = $\left.8.0 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{H}\right), 7.24\left(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{H}\right), 6.95(\mathrm{dd}, \mathrm{J}=2.1,8.8 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 6.88$ (d, J = $2.1 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H}$), $2.34\left(\mathrm{~s}, 3 \mathrm{H}, 7 \mathrm{~T}^{\prime}-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, \mathrm{DMSO}): ~ \delta=174.9$ ($\mathrm{C}=\mathrm{O}, 4-\underline{\mathrm{C}}$), 163.0 (qC, 7- $\underline{\mathrm{C}}$), 157.9 (qC, 8a- C$), 153.9$ (CH, 2- $\underline{\mathrm{C}}$), 137.5 (qC, $\left.4^{\prime}-\underline{C}\right)$, $129.6\left(\mathrm{qC}, 1^{\prime}-\underline{C}\right), 129.2\left(2 \mathrm{CH}, 2^{\prime}, 6^{\prime}-\underline{C}\right), 129.1\left(2 \mathrm{CH}, 3^{\prime}, 5^{\prime}-\underline{C}\right), 127.8(\mathrm{CH}, 5-\underline{\mathrm{C}}), 123.9(\mathrm{qC}$, $3-\underline{C}), 117.1(q C, 4 \mathrm{a}-\underline{\mathrm{C}}), 115.7(\mathrm{CH}, 6-\underline{\mathrm{C}}), 102.6(\mathrm{CH}, 8-\underline{\mathrm{C}}), 21.3\left(\mathrm{CH}_{3}, 7{ }^{\prime}-\underline{\mathrm{C}} \mathrm{H}_{3}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{3}$: 252.0786 [M], 253.0859 [M+H]+; found: 252.0786 [M], 253.0859 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): v=3165,3074,3027,2920,2850,1620,1597,1572,1512,1451,1381,1307,1264,1191$, 1097, 1043, 887, 804, 691.

Known compound, modified method. ${ }^{99}$

3-(4-Chlorophenyl)-7-hydroxy-4H-chromen-4-one (32)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{ClO}_{3}$ Molecular Weight: 272.68

Prepared according to General procedure C using: (a) $6(3 \mathrm{mmol}, 330 \mathrm{mg}), 13(3 \mathrm{mmol}, 512 \mathrm{mg})$ and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(15.3 \mathrm{mmol}, 1.89 \mathrm{~mL}), 9{ }^{\circ} \mathrm{C}$ for 2.5 h ; (b) DMF ($60 \mathrm{mmol}, 4.65 \mathrm{~mL}$) and mesyl chloride (9 mmol , 0.7 mL)/ DMF ($12 \mathrm{mmol}, 0.88 \mathrm{~mL}$), $90{ }^{\circ} \mathrm{C}$ for 2.5 h ; workup (2), purified by column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}, 100: 0\right.$ to $\left.100: 2\right)$ to give $32(540 \mathrm{mg}, 66 \%)$ as a pale pink solid; $\mathrm{mp}=262-263{ }^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=$ $229-230{ }^{\circ} \mathrm{C} ;{ }^{99} R_{f}=0.35\left(\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}, 95: 5\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{DMSO}): \delta=10.87(\mathrm{~s}, 1 \mathrm{H}, 7-\mathrm{OH}), 8.46(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{H}), 7.99(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{H})$, 7.62 (d, J = $\left.8.5 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{H}\right), 7.50\left(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{\mathrm{H}}\right), 6.96(\mathrm{dd}, \mathrm{J}=2.1,8.8 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{\mathrm{H}}), 6.90$ (d, J = $2.1 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H}$).
 132.9 (qC, 1' or $4^{\prime}-\underline{C}$), 131.5 (qC, 1^{\prime} or $4^{\prime}-\underline{C}$), $131.1\left(2 \mathrm{CH}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{C}}\right), 128.6\left(2 \mathrm{CH}, 2^{\prime}, 6^{\prime}-\underline{-}\right), 127.8(\mathrm{CH}, 5-\underline{\mathrm{C}})$, 122.8 (qC, 3-C), 116.9 (qC, 4a-C), 115.8 ($\mathrm{CH}, 6-\underline{C}$), $102.7(\mathrm{CH}, 8-\underline{\mathrm{C}})$.

HRMS (Dual ESI): calc m / z for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{ClO}_{3}$: 272.0240 [M], 273.0313 [M+H]+; found: 272.0239 [M], 273.0312 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): v=3333,3161,3068,2980,1639,1621,1592,1496,1464,1370,1258,1193,1093,1016$, 888, 827, 774, 694.
Known compound, modified method. 99

7-Hydroxy-3-(4-nitrophenyl)-4H-chromen-4-one (33)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{NO}_{5}$
Molecular Weight: 283.24

Prepared according to General procedure C using: (a) 6 ($20 \mathrm{mmol}, 2.2 \mathrm{~g}$), 14 ($20 \mathrm{mmol}, 3.62 \mathrm{~g}$) and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(102 \mathrm{mmol}, 12.6 \mathrm{~mL}), 100^{\circ} \mathrm{C}$ for 3 h ; (b) DMF (30 mL) and methanesulfonyl chloride (60 mmol , 4.64 mL)/ DMF ($75 \mathrm{mmol}, 5.8 \mathrm{~mL}$), $100{ }^{\circ} \mathrm{C}$ for 3 h ; workup (2), purified by flash chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}, 100: 1\right)$ to give $33(2 \mathrm{~g}, 35 \%)$ as a pale brown solid; $\mathrm{mp}=295-296{ }^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=292-293$ ${ }^{\circ} \mathrm{C} ;{ }^{248} R_{f}=0.2\left(\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}, 97: 3\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{DMSO}): ~ \delta=10.94$ (s, $1 \mathrm{H}, 7-\mathrm{OH}$), 8.62 ($\mathrm{s}, 1 \mathrm{H}, 2-\underline{H}$), 8.30 (d, J = $8.6 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{H}}$), 8.01 (d, J = $8.7 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{H}$), 7.91 (d, J = $8.6 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6$ '- $-\underline{H}$), 6.99 ($\mathrm{dd}, \mathrm{J}=1.8,8.7 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}$), 6.93 (d, J = $1.8 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H}$).
 147.2 (qC, $\left.4^{\prime}-\underline{C}\right), 139.8\left(q C, 1^{\prime}-\underline{C}\right), 130.4\left(2 \mathrm{CH}, 2^{\prime}, 6^{\prime}-\underline{-}\right), 127.8(\mathrm{CH}, 5-\underline{C}), 123.7\left(2 \mathrm{CH}, 3^{\prime}, 5^{\prime}-\underline{C}\right), 122.1$ (qC, 3-Cㅡ), 116.9 (qC, 4a-ㅡㅡ), $116.0(\mathrm{CH}, 6-\underline{\mathrm{C}}), 102.8(\mathrm{CH}, 8-\underline{\mathrm{C}})$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{NO}_{5}$: 283.0481 [M], 284.0553 [M+H]+; found: 283.0480 [M], 284.0552 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3361,3078,2999,2933,1624,1597,1513,1451,1340,1269,1229,1188,1098,1042$, 850, 797, 688.

Known compound, modified method. ${ }^{248,249}$

3,3'-(1,4-Phenylene)bis(7-hydroxy-4H-chromen-4-one) (34), and ethyl 2-(4-(7-hydroxy-4-oxo-4H-chromen-3-yl)phenyl)acetate (35)

Title compounds were prepared according to General procedure C using: (a) 6 ($2.2 \mathrm{mmol}, 240 \mathrm{mg}$), 15 (1 $\mathrm{mmol}, 195 \mathrm{mg}$) and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(11 \mathrm{mmol}, 1.36 \mathrm{~mL}), 100^{\circ} \mathrm{C}$ for 2.5 h ; (b) DMF ($40 \mathrm{mmol}, 8 \mathrm{~mL}$) and mesyl chloride ($6 \mathrm{mmol}, 0.46 \mathrm{~mL}$)/ DMF ($8 \mathrm{mmol}, 0.62 \mathrm{~mL}$), $100^{\circ} \mathrm{C}$ for 3 h ; workup (2) to obtain a red solid. The red solid was washed with hexane, dichloromethane, ethyl acetate, acetone and methanol, and dried to furnish $34\left(200 \mathrm{mg}, 50 \%\right.$ yield) as a pale pink solid; $\mathrm{mp}=>300^{\circ} \mathrm{C}$. The filtrate was concentrated and purified by column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}, 99: 1\right)$ to give a second product, 35 ($10 \mathrm{mg}, 3 \%$), as a pale brown solid; $\mathrm{mp}=159-161^{\circ} \mathrm{C} ; R_{f}=0.35\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 95: 5\right)$.

- 3,3'-(1,4-phenylene)bis(7-hydroxy-4H-chromen-4-one) (34)

${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{DMSO}): ~ \delta=10.86$ (s, $2 \mathrm{H}, 7-\mathrm{OH}$), 8.46 (s, $2 \mathrm{H}, 2-\underline{\mathrm{H}}$), 8.00 (d, J = $8.7 \mathrm{~Hz}, 2 \mathrm{H}, 5-\underline{H}$), 7.64 (s, $\left.4 \mathrm{H}, 2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}-\underline{H}\right), 6.97(\mathrm{dd}, \mathrm{J}=2.2,8.7 \mathrm{~Hz}, 2 \mathrm{H}, 6-\underline{H}), 6.90(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 2 \mathrm{H}, 8-\underline{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, \mathrm{DMSO}): ~ \delta=174.8$ (2 C=O, 4-C-C), 165.1 (2 qC, 7-C-C), 157.9 ($2 \mathrm{qC}, 8 \mathrm{a}-\underline{\mathrm{C}}$), 154.3 (2 CH, $2-\underline{C}), 132.0\left(2 \mathrm{qC}, 1^{\prime}, 4^{\prime}-\underline{-}\right)$, $129.0\left(4 \mathrm{CH}, 2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}-\underline{C}\right), 127.8(2 \mathrm{CH}, 5-\underline{C}), 123.6(2 \mathrm{qC}, 3-\underline{\mathrm{C}}), 117.1$ (2 qC, $4 \mathrm{a}-\underline{\mathrm{C}}), 115.7$ (2 CH, 6-ㅡㅡ), 102.6 (2 CH, 8-ㅡㅡ).

HRMS (Dual ESI): calc m/z for $\mathrm{C}_{24} \mathrm{H}_{14} \mathrm{O}_{6}$: 398.0790 [M], 399.0863 [M+H]+; found: 398.0782 [M], 399.0855 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR ($\left(\mathrm{cm}^{-1}\right): ~ v=3231,3161,3088,2919,2840,1619,1593,1572,1512,1453,1371,1252,1195,1098$, 1053, 880, 825, 775, 694.
Previously unreported.

- ethyl 2-(4-(7-hydroxy-4-oxo-4H-chromen-3-yl)phenyl)acetate (35)

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{5}$ Molecular Weight: 324.33
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{DMSO}): \delta=10.84$ (s, $1 \mathrm{H}, 7-\mathrm{OH}$), 8.41 (s, $1 \mathrm{H}, 2-\underline{\mathrm{H}}$), 7.97 (d, J=8.8 Hz, $1 \mathrm{H}, 5-\underline{\mathrm{H}}$), $7.52\left(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{H}\right), 7.32\left(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime} 6^{\prime}-\underline{H}\right), 6.96(\mathrm{dd}, \mathrm{J}=2.0,8.8 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 6.89$ (d, J = $2.0 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}$), $4.09\left(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, 9^{\prime}-\mathrm{CH}_{2}\right), 3.70\left(\mathrm{~s}, 2 \mathrm{H}, 7^{\prime}-\mathrm{CH}_{2}\right), 1.20(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, 10 '- CH_{3}).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=8.21(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 8.08(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 7.52(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}$, $3^{\prime}, 5^{\prime}-\underline{H}$), $7.37\left(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\mathrm{H}\right), 6.96(\mathrm{dd}, \mathrm{J}=2.2,8.8 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 6.88(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-$ \underline{H}), $4.16\left(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, 9^{\prime}-\mathrm{CH}_{2}\right), 3.69\left(\mathrm{~s}, 2 \mathrm{H}, 7^{\prime}-\mathrm{CH}_{2}\right), 1.26\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, 10^{\prime}-\mathrm{CH}_{3}\right)^{2}$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 176.3$ ($\mathrm{C}=\mathrm{O}, 4-\underline{\mathrm{C}}$), 171.9 ($\mathrm{C}=\mathrm{O}, 8^{\prime}-\underline{\mathrm{C}}$), 163.3 ($\mathrm{qC}, 7-\underline{\mathrm{C}}$), 158.3 (qC, 8a- $\underline{\mathrm{C}}$), 153.9 (CH, 2-C్), 134.2 (qC, 4'- $-\underline{C}$), 130.7 (qC, $1^{\prime}-\underline{C}$), $128.97\left(2 \mathrm{CH}, 2^{\prime}, 6^{\prime}\right.$ or $\left.3^{\prime}, 5^{\prime}-\underline{C}\right), 128.93\left(2 \mathrm{CH}, 2^{\prime}, 6^{\prime}\right.$ or $\left.3^{\prime}, 5^{\prime}-\underline{C}\right), 127.1(\mathrm{CH}, 5-\underline{\mathrm{C}}), 124.2(\mathrm{qC}, 3-\underline{\mathrm{C}}), 116.7(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 115.1(\mathrm{CH}, 6-\underline{\mathrm{C}}), 101.8(\mathrm{CH}, 8-\underline{\mathrm{C}}), 60.6\left(\mathrm{CH}_{2}\right.$, $\left.9^{\prime}-\mathrm{CH}_{2}\right), 44.3\left(\mathrm{CH}_{2}, 7 \mathrm{7}^{\prime}-\mathrm{CH}_{2}\right), 13.0\left(\mathrm{CH}_{3}, 10^{\prime}-\mathrm{CH}_{3}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{5}$: 324.0998 [M], 325.1071 [M+H] ${ }^{+}$; found: 324.0993 [M], 325.1067 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3178,3166,3094,2979,2918,2850,1731,1634,1588,1573,1514,1453,1371,1264$, 1193, 1164, 1100, 1035, 888, 807, 778, 691.
Previously unreported.

General procedure D: (a) To a solution of phloroglucinol 56 (1.0 equiv.) and the corresponding phenylacetonitrile 59-62 (1.1 equiv.) in anhydrous $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL}), \mathrm{ZnCl}_{2}$ (1.0 equiv.) was added. The mixture was cooled to $0^{\circ} \mathrm{C}$ and a solution of $\mathrm{HCl}\left(2 \mathrm{~N}\right.$ in $\mathrm{Et} 2 \mathrm{O}^{2}, 10.0$ equiv.) was added dropwise. After stirring the mixture for $10-120 \mathrm{~min}$ at $0^{\circ} \mathrm{C}$, the reaction was allowed to warm to RT and stirred overnight. The reaction mixture was decanted, the supernatant was removed, and the orange oil left in the flask was washed with cold $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ and dissolved in ethyl acetate (50 mL). The organic phase was washed with sat aq. $\mathrm{NaHCO}_{3}(2 \times 150 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to obtain the crude compound. (b) The obtained crude was suspended in $10 \% \mathrm{HCl}(3-15 \mathrm{~mL})$ and heated to $85^{\circ} \mathrm{C}$ for 3 h . After allowing the reaction to cool to RT , sat aq. $\mathrm{NaHCO}_{3}(15-25 \mathrm{~mL})$ was added and the mixture extracted with ethyl acetate $(3 \times 50 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. Flash chromatography of the crude product on silica gel afforded the desired deoxybenzoin.

2-(4-Methoxyphenyl)-1-(2,4,6-trihydroxyphenyl)ethan-1-one (67)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5}$ Molecular Weight: 274.27

Prepared according to General procedure D using: (a) $56(5 \mathrm{mmol}, 630 \mathrm{mg}), 59(5.5 \mathrm{mmol}, 810 \mathrm{mg}, 0.75$ $\mathrm{mL}), \mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL}), \mathrm{ZnCl}_{2}(5 \mathrm{mmol}, 682 \mathrm{mg})$ and $\mathrm{HCl}\left(2 \mathrm{~N} \mathrm{in} \mathrm{Et}_{2} \mathrm{O}, 50 \mathrm{mmol}, 25 \mathrm{~mL}\right), 2 \mathrm{~h}$ at $0{ }^{\circ} \mathrm{C}$, then overnight at RT; (b) $10 \% \mathrm{HCl}(15 \mathrm{~mL}), 8{ }^{\circ} \mathrm{C}$ for 3 h ; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 100: 4\right)$ to furnish 67 ($700 \mathrm{mg}, 51 \%$) as a white solid; $\mathrm{mp}=200-201^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=198^{\circ} \mathrm{C} ;{ }^{250} R_{f}=0.3\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH} 3 \mathrm{OH}\right.$, 95:5).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, acetone-d6): $\delta=11.75$ (br s, $2 \mathrm{H}, 2$ ', 6'-OH), 9.28 (br s, $1 \mathrm{H}, 4{ }^{\prime}-\mathrm{OH}$), 7.19 (d, J = 8.6 Hz ,
 CH_{3}).

 $\left.\underline{\mathrm{C}}_{3}\right), 48.6\left(\mathrm{CH}_{2}, 2-\underline{\mathrm{C}} \mathrm{H}_{2}\right)$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3415,3306,3013,2951,1634,1596,1560,1510,1458,1344,1230,1154,1075,1033$, 988, 788, 740, 662, 518.

Known compound, modified method. ${ }^{250}$

2-(3-Methoxyphenyl)-1-(2,4,6-trihydroxyphenyl)ethan-1-one (68)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5}$
Molecular Weight: 274.27
Prepared according to General procedure D using: (a) $56(1 \mathrm{mmol}, 126 \mathrm{mg}), 60(1.1 \mathrm{mmol}, 162 \mathrm{mg}, 154$ $\mu \mathrm{L}), \mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL}), \mathrm{ZnCl}_{2}(1 \mathrm{mmol}, 136 \mathrm{mg})$ and $\mathrm{HCl}\left(2 \mathrm{~N}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}, 20 \mathrm{mmol}, 10 \mathrm{~mL}\right), 2 \mathrm{~h}$ at $0{ }^{\circ} \mathrm{C}$, then overnight at RT; (b) $10 \% \mathrm{HCl}(3 \mathrm{~mL}), 85^{\circ} \mathrm{C}$ for 3 h ; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 100: 4\right)$ to afford $68(140 \mathrm{mg}, 51 \%)$ as an orange oily solid; $R_{f}=0.3\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 3: 1\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, acetone-d6): $\delta=11.78$ (br s, $2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\mathrm{OH}$), 9.34 (br s, $1 \mathrm{H}, 4^{\prime}-\mathrm{OH}$), 7.18 (t, J = 7.9 Hz , $\left.1 \mathrm{H}, 5^{\prime \prime}-\underline{\mathrm{H}}\right), 6.93-6.73\left(\mathrm{~m}, 3 \mathrm{H}, 2^{\prime \prime}, 4^{\prime \prime}, 6 "-\underline{H}\right), 5.93\left(\mathrm{~s}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{H}}\right), 4.37\left(\mathrm{~s}, 2 \mathrm{H}, 2-\mathrm{CH}_{2}\right), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, 7^{\prime \prime}-\mathrm{CH}_{3}\right)$. Known compound, modified method. ${ }^{44}$

2-(2-Methoxyphenyl)-1-(2,4,6-trihydroxyphenyl)ethan-1-one (69)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5}$ Molecular Weight: 274.27

Prepared according to General procedure D using: (a) 56 ($1 \mathrm{mmol}, 126 \mathrm{mg}$), $\mathbf{6 1}(1.1 \mathrm{mmol}, 162 \mathrm{mg}), \mathrm{Et}_{2} \mathrm{O}$ $(1 \mathrm{~mL}), \mathrm{ZnCl}_{2}(1 \mathrm{mmol}, 136 \mathrm{mg})$ and $\mathrm{HCl}\left(2 \mathrm{~N}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}, 10 \mathrm{mmol}, 5 \mathrm{~mL}\right), 10 \mathrm{~min}$ at $0{ }^{\circ} \mathrm{C}$, then overnight at RT; (b) $10 \% \mathrm{HCl}(3 \mathrm{~mL}), 8{ }^{\circ} \mathrm{C}$ for 3 h ; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 100: 4\right)$ to afford $69(65 \mathrm{mg}, 23 \%)$ as a brown oily solid; $R_{f}=0.4\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 10: 1\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, acetone-d6): $\delta=11.73$ (br s, $2 \mathrm{H}, 2^{\prime}, 6{ }^{\prime}-\mathrm{OH}$), 9.35 (br s, $\left.1 \mathrm{H}, 4 \mathrm{t}^{\prime}-\mathrm{OH}\right), 7.20(\mathrm{td}, \mathrm{J}=1.6$, $\left.8.0 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime \prime}-\underline{H}\right), 7.12\left(\mathrm{dd}, \mathrm{J}=1.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime \prime}-\underline{H}\right), 6.92\left(\operatorname{app~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime \prime}-\underline{\mathrm{H}}\right), 6.87(\mathrm{td}, \mathrm{J}=$ $\left.0.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime \prime}-\underline{H}\right), 5.97\left(\mathrm{~s}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{H}}\right), 4.39\left(\mathrm{~s}, 2 \mathrm{H}, 2-\mathrm{CH}_{2}\right), 3.73\left(\mathrm{~s}, 3 \mathrm{H}, 7^{\prime \prime}-\mathrm{CH}_{3}\right)$.

 $\left.1^{\prime}-\underline{C}\right)$, $94.9\left(2 \mathrm{CH}, 3^{\prime}, 5^{\prime}-\underline{C}\right), 54.8\left(\mathrm{CH}_{3}, 7\right.$ " $\left.-\underline{\mathrm{CH}_{3}}\right)$, $44.9\left(\mathrm{CH}_{2}, 2-\underline{-} \mathrm{CH}_{2}\right)$.
Known compound, modified method. ${ }^{251}$

2-(4-Nitrophenyl)-1-(2,4,6-trihydroxyphenyl)ethan-1-one (70)

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{6}$
Molecular Weight: 289.24
Prepared according to General procedure D using: (a) $\mathbf{5 6}(1 \mathrm{mmol}, 126 \mathrm{mg}), \mathbf{6 2}(1.1 \mathrm{mmol}, 178 \mathrm{mg}), \mathrm{Et}_{2} \mathrm{O}$ $(1 \mathrm{~mL}), \mathrm{ZnCl}_{2}(1 \mathrm{mmol}, 136 \mathrm{mg})$ and $\mathrm{HCl}\left(2 \mathrm{~N}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}, 10 \mathrm{mmol}, 5 \mathrm{~mL}\right), 10 \mathrm{~min}$ at $0^{\circ} \mathrm{C}$, then overnight at RT; (b) $10 \% \mathrm{HCl}(3 \mathrm{~mL}), 8{ }^{\circ} \mathrm{C}$ for 3 h ; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 4: 1\right)$ to afford 70 ($82 \mathrm{mg}, 28 \%$) as a yellow solid; $R_{f}=0.2\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 95: 5\right.$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, acetone-d6): $\delta=11.69$ (br s, $2 \mathrm{H}, 2$ 2', $\mathrm{C}^{\prime}-\mathrm{OH}$), 9.38 (br s, $1 \mathrm{H}, 4$ '-OH), 8.16 (d, J = 8.6, 2 $\mathrm{H}, 3^{\prime \prime}, 5^{\prime \prime}-\underline{\mathrm{H}}$), 7.55 (d, J = $\left.8.6 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime \prime}, 6^{\prime \prime}-\underline{H}\right), 5.95$ (s, $2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{H}$), 4.57 ($\mathrm{s}, 2 \mathrm{H}, 2-\mathrm{CH}_{2}$).

 $49.2\left(\mathrm{CH}_{2}, 2-\mathrm{CH}_{2}\right)$.
Known compound, modified method. ${ }^{252}$

General procedure E: To a solution of deoxybenzoin intermediate 67-70 (1.0 equiv.) in dry DMF and under $\mathrm{N}_{2}, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ (4.0 equiv.) was added dropwise. The mixture was stirred for 10 min at room temperature, and after $\mathrm{MeSO}_{2} \mathrm{Cl}$ (3.0 equiv.) was added dropwise. After stirring the reaction at $85-100^{\circ} \mathrm{C}$ for $2.5-3 \mathrm{~h}$, the mixture was allowed to cool to room temperature and quenched with aq. sodium acetate solution ($10 \%, 50$
$\mathrm{mL}) .{ }^{44}$ The mixture was extracted with ethyl acetate $(3 \times 50 \mathrm{~mL})$, and the organic phase was washed with water $(3 \times 50 \mathrm{~mL})$, brine $(50 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The crude product was purified by flash chromatography to give the desired isoflavone, unless otherwise stated.

5,7-Dihydroxy-3-(4-methoxyphenyl)-4H-chromen-4-one (71)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{5}$ Molecular Weight: 284.27

Prepared according to General procedure E using 67 ($2.55 \mathrm{mmol}, 0.7 \mathrm{~g}$), DMF (8 mL), $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(10.21$ mmol, $1.45 \mathrm{~g}, 1.26 \mathrm{~mL}$) and $\mathrm{MeSO}_{2} \mathrm{Cl}(7.66 \mathrm{mmol}, 0.88 \mathrm{~g}, 0.59 \mathrm{~mL}), 8{ }^{\circ} \mathrm{C}$ for 2.5 h ; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 100: 1\right)$ to give 71 ($525 \mathrm{mg}, 72 \%$) as a yellow solid; $\mathrm{mp}=213-215^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=214-215^{\circ} \mathrm{C} ;{ }^{253} R_{f}=0.17\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 100: 1\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, acetone-d6): $\delta=13.00(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{OH}), 9.74(\mathrm{~s}, 1 \mathrm{H}, 7-\mathrm{OH}), 8.20(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{H}), 7.54(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{H}$), $6.99\left(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{H}\right), 6.42(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H}), 6.28$ (d, J = 2.0 $\mathrm{Hz}, 1 \mathrm{H}, 6-\underline{\mathrm{H}}), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, 7{ }^{\prime}-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, acetone-d6): $\delta=180.6$ (C=O, 4-C), 164.1 (qC, 5 or $7-\mathrm{C}$), 163.0 (qC, 5 or $7-\mathrm{C}$), 159.7
 (qC, 1' or $3-\underline{C}$), $113.6\left(2 \mathrm{CH}, 3^{\prime}, 5^{\prime}-\underline{-}\right)$, $105.2(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 98.9(\mathrm{CH}, 6-\underline{\mathrm{C}}), 93.5(\mathrm{CH}, 8-\underline{\mathrm{C}}), 54.7\left(\mathrm{CH}_{3}, 77^{\prime}-\underline{\mathrm{C}} \mathrm{H}_{3}\right)$. HRMS (Dual ESI): calc m / z for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{5}$: 284.0685 [M], 285.0757 [M+H]+; found: 284.0689 [M], 285.0762 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): v=3380,3300,3075,2981,1650,1609,1563,1511,1435,1356,1290,1241,1179,1142$, 1020, 804, 721, 644, 533.
Known compound, modified method. ${ }^{44,} 253$

5,7-Dihydroxy-3-(3-methoxyphenyl)-4H-chromen-4-one (72)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{5}$ Molecular Weight: 284.27

Prepared according to General procedure E using $68(1.08 \mathrm{mmol}, 295 \mathrm{mg})$, DMF (3.5 mL), $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(4.3$ mmol, $610 \mathrm{mg}, 0.53 \mathrm{~mL}$) and $\mathrm{MeSO}_{2} \mathrm{Cl}(3.23 \mathrm{mmol}, 370 \mathrm{mg}, 0.25 \mathrm{~mL}), 85^{\circ} \mathrm{C}$ for 2.5 h ; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 100: 1\right)$ to give 72 ($222 \mathrm{mg}, 72 \%$) as a pale yellow solid; $\mathrm{mp}=$ 197-198 ${ }^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=204{ }^{\circ} \mathrm{C} ;{ }^{254} R_{f}=0.4\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 100: 2\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, acetone-d6): $\delta=12.97(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{OH}), 9.76(\mathrm{~s}, 1 \mathrm{H}, 7-\mathrm{OH}), 8.25(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 7.34(\mathrm{t}$, $\left.J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\underline{H}\right), 7.22-7.12\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{H}\right), 6.95\left(\mathrm{dd}, \mathrm{J}=2.5,8.3 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\underline{H}\right), 6.42(\mathrm{~d}, \mathrm{~J}=2.1$ $\mathrm{Hz}, 1 \mathrm{H}, 8-\underline{H}), 6.29(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{\mathrm{H}}), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, 7\right.$ '- $\left.\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, acetone-d6): $\delta=180.4$ (C=O, 4-C), 164.2 (qC, 5 or $7-\underline{\mathrm{C}}$), 163.0 (qC, 5 or 7-C-C), 159.6
 $\underline{\mathrm{C}})$, $121.2\left(\mathrm{CH}, 6^{\prime}-\underline{\mathrm{C}}\right)$, $114.7\left(\mathrm{CH}, 2^{\prime}\right.$ or $\left.4^{\prime}-\underline{\mathrm{C}}\right)$, $113.5\left(\mathrm{CH}, 2^{\prime}\right.$ or $\left.4^{\prime}-\underline{\mathrm{C}}\right), 105.2(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 99.0(\mathrm{CH}, 6-\underline{\mathrm{C}}), 93.6$ $(\mathrm{CH}, 8-\underline{\mathrm{C}}), 54.6\left(\mathrm{CH}_{3}, 7\right.$ '- $\left.-\underline{\mathrm{C}} \mathrm{H}_{3}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{5}$: 284.0685 [M], 285.0757 [M+H]+; found: 284.0689 [M], 285.0761 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): v=3191,3075,2981,1650,1600,1551,1494,1428,1361,1309,1266,1150,1031,795$, 774, 696, 570.
Known compound, modified method. ${ }^{44,254}$

5,7-Dihydroxy-3-(2-methoxyphenyl)-4H-chromen-4-one (73)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{5}$ Molecular Weight: 284.27

Prepared according to General procedure E using $69(0.21 \mathrm{mmol}, 58 \mathrm{mg})$, DMF (0.65 mL), $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.84$ $\mathrm{mmol}, 120 \mathrm{mg}, 0.11 \mathrm{~mL}$) and $\mathrm{MeSO}_{2} \mathrm{Cl}(0.63 \mathrm{mmol}, 72 \mathrm{mg}, 0.05 \mathrm{~mL}), 100^{\circ} \mathrm{C}$ for 3 h ; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 100: 1\right)$ to give $73(30 \mathrm{mg}, 50 \%)$ as a pale yellow solid; $\mathrm{mp}=197-198{ }^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=200-201^{\circ} \mathrm{C} ;{ }^{255} R_{f}=0.5\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 95: 5\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, acetone-d6): $\delta=12.97$ (s, $1 \mathrm{H}, 5-\mathrm{OH}$), 9.71 (s, $1 \mathrm{H}, 7-\mathrm{OH}$), 8.07 ($\mathrm{s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}$), 7.37 (td, $J=1.7,8.1 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\underline{H}$), $7.30\left(\mathrm{dd}, \mathrm{J}=1.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\underline{H}\right), 7.08\left(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-\underline{H}\right), 6.99$ (dd, J $\left.=0.9,7.4 \mathrm{~Hz}, 1 \mathrm{H}, 5{ }^{\prime}-\underline{H}\right), 6.42(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H}), 6.28(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, 7{ }^{\prime}-\mathrm{CH}_{3}\right)$. ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, acetone-d6): $\delta=180.3$ (C=O, 4-C-C), 164.0 (qC, 5 or $7-\underline{\mathrm{C}}$), 162.9 (qC, 5 or 7-C), 158.1 (qC, 2' or $8 \mathrm{a}-\underline{\mathrm{C}})$, $157.8\left(\mathrm{qC}, 2^{\prime}\right.$ or $\left.8 \mathrm{a}-\underline{\mathrm{C}}\right), 154.8(\mathrm{CH}, 2-\underline{\mathrm{C}}), 131.6\left(\mathrm{CH}, 6^{\prime}-\underline{\mathrm{C}}\right), 129.8\left(\mathrm{CH}, 4^{\prime}-\underline{\mathrm{C}}\right), 121.0\left(\mathrm{qC}, 1^{\prime}\right.$ or $3-\underline{C}$), $120.1\left(\mathrm{CH}, 5^{\prime}-\underline{-}\right)$, 120.1 ($\mathrm{qC}, 1^{\prime}$ or $3-\underline{\mathrm{C}}$), $111.1\left(\mathrm{CH}, 3^{\prime}-\underline{\mathrm{C}}\right), 105.2(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 98.9(\mathrm{CH}, 6-\underline{\mathrm{C}})$, 93.6 $(\mathrm{CH}, 8-\underline{\mathrm{C}}), 54.1\left(\mathrm{CH}_{3}, 7\right.$ '- $\left.-\underline{\mathrm{C}} \mathrm{H}_{3}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{5}$: 284.0685 [M], 285.0757 [M+H]+; found: 284.0688 [M], 285.0758 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3295,3085,2978,2923,2842,1640,1619,1582,1493,1455,1362,1290,1230,1145$, 1022, 819, 748, 665, 498.

Known compound, modified method. ${ }^{255}$

Prepared according to General procedure E using $70(0.28 \mathrm{mmol}, 81 \mathrm{mg}), \mathrm{DMF}(0.9 \mathrm{~mL}), \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(1.12$ mmol, $160 \mathrm{mg}, 0.14 \mathrm{~mL}$) and $\mathrm{MeSO}_{2} \mathrm{Cl}(0.84 \mathrm{mmol}, 96 \mathrm{mg}, 0.065 \mathrm{~mL}), 100{ }^{\circ} \mathrm{C}$ for 3 h ; purified by flash chromatography ($\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 4: 1$) to give $74(57 \mathrm{mg}, 68 \%)$ as a pale yellow solid; $\mathrm{mp}=295-297^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=288-290^{\circ} \mathrm{C} ;{ }^{252} R_{f}=0.5\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 4: 1\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, acetone-d6): $\delta=12.77$ (s, $1 \mathrm{H}, 5-\mathrm{OH}$), 9.91 (s, $1 \mathrm{H}, 7-\mathrm{OH}$), 8.50 (s, $1 \mathrm{H}, 2-\underline{\mathrm{H}}$), 8.33 (d, $\left.J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{H}\right), 7.96\left(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{H}\right), 6.49(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H}), 6.34(\mathrm{~d}, \mathrm{~J}=2.0$ $\mathrm{Hz}, 1 \mathrm{H}, 6-\underline{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, acetone-d6): $\delta=179.7$ (C=O, 4-C-C), 164.5 (qC, 5 or $7-\underline{\mathrm{C}}$), 163.0 (qC, 5 or $7-\underline{\mathrm{C}}$), 158.0
 C $)$, 121.3 ($\mathrm{qC}, 3-\underline{\mathrm{C}}$), 105.1 (qC, $4 \mathrm{a}-\underline{\mathrm{C}}), 99.4(\mathrm{CH}, 6-\underline{\mathrm{C}}), 94.0(\mathrm{CH}, 8-\mathrm{C})$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{NO}_{6}$: 299.0430 [M], 300.0503 [M+H]+; found: 299.0417 [M], 300.0490 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): v=3413,3087,2980,2922,1654,1620,1577,1502,1451,1349,1302,1241,1192,1146$, 1038, 844, 816, 749, 505.
Known compound, modified method. ${ }^{252}$

3.2.1.2 Synthesis of simple isoflavones using the Suzuki-Miyaura cross-coupling reaction

General procedure F:

(a) Protection with THP: to a stirred solution of 2,4-dihydroxyacetophenone 75 (1.0 equiv.) and PPTS (pyridinium-p-toluenesulfonate, 0.04 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at room temperature, a solution of DHP (3,4-dihydro-2H-pyran, 3.0 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added dropwise and the resulting mixture was stirred for 4 h at room temperature. Saturated aq. NaHCO_{3} solution (50 mL) was added to the reaction mixture and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure to give a yellow oil.
(b) Protection with Methyl: to a stirred solution of 2,4-dihydroxyacetophenone 75 (1.0 equiv.) in acetone (50 mL) at room temperature, $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.0 equiv.) was added, followed by dropwise addition of iodomethane (1.0 equiv.) and the resulting mixture was stirred overnight at room temperature. ${ }^{152}$ Acetone was removed under reduced pressure, water $(50 \mathrm{~mL})$ was added to the reaction mixture and the aqueous phase was extracted with ethyl acetate $(3 \times 50 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure to give a colourless oil.
(c) Enamino ketone synthesis: DMF-DMA (N, N-dimethylformamide dimethyl acetal, 1.5 equiv.) was added to the crude product and the mixture was stirred for 3 h at $95^{\circ} \mathrm{C}$. The reaction mixture was concentrated under reduced pressure, and the obtained yellow solid was dissolved in CHCl_{3} (10 mL).
(d) Iodination and cyclisation: pyridine (1.1 equiv.) and I_{2} (2.0 equiv.) were added to the solution, and the reaction mixture was stirred for 12 h at room temperature. ${ }^{86}$
(e) Bromination and cyclisation: the solution was cooled to $0^{\circ} \mathrm{C}$ using an ice bath and a chloroform solution $(10 \mathrm{~mL})$ of bromine (1.0-2.0 equiv.) was added dropwise over several minutes, followed by the workup. ${ }^{49}$ Workup: saturated aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution $(50 \mathrm{~mL})$ was added and the reaction was stirred for another 30 min at room temperature. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$ and the organic phase was dried (MgSO_{4}), filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography to give the desired 3-halo-4H-chromen-4-one derivatives.

3-lodo-7-((tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one (80)

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{IO}_{4}$ Molecular Weight: 372.16

Prepared according to General procedure F using: (a) 75 ($6.57 \mathrm{mmol}, 1 \mathrm{~g}$), PPTS ($0.236 \mathrm{mmol}, 60 \mathrm{mg}$) and DHP ($19.72 \mathrm{mmol}, 1.8 \mathrm{~mL}$), 4 h at RT; (c) DMF-DMA ($9.84 \mathrm{mmol}, 1.31 \mathrm{~mL}$), 3 h at $95^{\circ} \mathrm{C}$; (d) pyridine (7.21 $\mathrm{mmol}, 0.584 \mathrm{~mL})$ and $\mathrm{I}_{2}(13.11 \mathrm{mmol}, 3.33 \mathrm{~g})$, 12 h at RT; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$, $500: 1$) to give 80 ($2.1 \mathrm{~g}, 86 \%$ over 3 steps) as a white solid; $\mathrm{mp}=118-120^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=115-118{ }^{\circ} \mathrm{C} ;{ }^{60} R_{f}=$ 0.43 (PE/EtOAc, 2:1).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.25$ (s, $1 \mathrm{H}, 2-\underline{H}$), 8.17 (d, J = $\left.9.3 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{H}\right), 7.16$ - 7.10 (m, $2 \mathrm{H}, 6,8-$ H), $5.58-5.53\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-\underline{H}\right), 3.88-3.82\left(\mathrm{~m}, 1 \mathrm{H}, 6^{\prime}-\underline{H}\right), 3.70-3.60\left(\mathrm{~m}, 1 \mathrm{H}, 6^{\prime}-\underline{H}\right), 2.05-1.90(\mathrm{~m}, 3 \mathrm{H}$, $\left.3^{\prime}, 4^{\prime}-\underline{H}\right), 1.78-1.60\left(\mathrm{~m}, 3 \mathrm{H}, 4^{\prime}, 5^{\prime}-\underline{H}\right)$.
 $127.8(\mathrm{CH}, 5-\underline{\mathrm{C}}), 116.5(\mathrm{CH}, 6-\underline{\mathrm{C}}), 116.0(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 103.1(\mathrm{CH}, 8-\underline{\mathrm{C}}), 96.5(\mathrm{CH}, 2 \mathrm{-}-\underline{\mathrm{C}}), 86.9(\mathrm{qC}, 3-\underline{\mathrm{C}}), 62.0$ $\left(\mathrm{CH}_{2}, 6{ }^{\prime}-\underline{\mathrm{C}}_{2}\right)$, $29.9\left(\mathrm{CH}_{2}, 3^{\prime}-\underline{\mathrm{CH}_{2}}\right), 24.9\left(\mathrm{CH}_{2}, 5^{\prime}-\mathrm{CH}_{2}\right), 18.2\left(\mathrm{CH}_{2}, 4{ }^{\prime}-\underline{\mathrm{CH}}_{2}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{IO}_{4}$: 371.9859 [M], 372.9931 [M+H]+; found: 371.9858 [M], 372.9931 $[\mathrm{M}+\mathrm{H}]^{+}$.

FT-IR (cmr$): ~ ט=3058,2929,2861,1646,1610,1590,1438,1361,1256,1111,951,887,775,555$.
Known compound. ${ }^{60,86,157}$

3-Bromo-7-((tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one (81)

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrO}_{4}$ Molecular Weight: 325.16

Prepared according to General procedure F using: (a) 75 ($6.57 \mathrm{mmol}, 1 \mathrm{~g}$), PPTS ($0.236 \mathrm{mmol}, 60 \mathrm{mg}$) and DHP (19.72 mmol, 1.8 mL), 4 h at RT; (c) DMF-DMA ($9.84 \mathrm{mmol}, 1.31 \mathrm{~mL}$), 3 h at $95{ }^{\circ} \mathrm{C}$; (e) $\mathrm{Br}_{2}(6.56$
mmol, 0.34 mL , 1 equiv.); purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 500: 1\right)$ to give $81(1.28 \mathrm{~g}, 60 \%$ over 3 steps) as a white solid; $\mathrm{mp}=131-133^{\circ} \mathrm{C}$, lit. mp not reported; $R_{f}=0.4$ (PE/EtOAc, 2:1).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.21-8.14(\mathrm{~m}, 2 \mathrm{H}, 2,5-\underline{\mathrm{H}}), 7.17-7.10(\mathrm{~m}, 2 \mathrm{H}, 6,8-\underline{\mathrm{H}}), 5.60-5.53(\mathrm{~m}, 1$ $\left.\mathrm{H}, 2^{\prime}-\underline{H}\right), 3.90-3.80\left(\mathrm{~m}, 1 \mathrm{H}, 6^{\prime}-\underline{H}\right), 3.72-3.63\left(\mathrm{~m}, 1 \mathrm{H}, 6^{\prime}-\underline{H}\right), 2.10-1.87\left(\mathrm{~m}, 3 \mathrm{H}, 3^{\prime}, 4^{\prime}-\underline{H}\right), 1.81-1.57(\mathrm{~m}$, $3 \mathrm{H}, 4^{\prime}, 5^{\prime}-\underline{H}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{DMSO}): \delta=8.82(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 8.02(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}$, $8-\underline{H}), 7.20(\mathrm{dd}, \mathrm{J}=2.2,8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{\mathrm{H}}), 5.76-5.72\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-\underline{\mathrm{H}}\right), 3.76-3.67\left(\mathrm{~m}, 1 \mathrm{H}, 6^{\prime}-\underline{H}\right), 3.65-3.58$ (m, $1 \mathrm{H}, 6^{\prime}-\underline{H}$), $1.94-1.75$ (m, $\left.3 \mathrm{H}, 3^{\prime}, 4^{\prime}-\underline{H}\right), 1.68-1.50\left(\mathrm{~m}, 3 \mathrm{H}, 4^{\prime}, 5^{\prime}-\underline{H}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.7(\mathrm{C}=\mathrm{O}, 4-\underline{\mathrm{C}}), 161.8(\mathrm{qC}, 7-\underline{\mathrm{C}}), 157.6(\mathrm{qC}, 8 \mathrm{a}-\underline{\mathrm{C}}), 153.4(\mathrm{CH}, 2-\underline{\mathrm{C}})$, $127.6(\mathrm{CH}, 5-\underline{\mathrm{C}}), 117.5(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 116.5(\mathrm{CH}, 6-\underline{\mathrm{C}}), 110.6(\mathrm{qC}, 3-\underline{\mathrm{C}}), 103.3(\mathrm{CH}, 8-\underline{\mathrm{C}}), 96.5\left(\mathrm{CH}, 2^{\prime}-\underline{\mathrm{C}}\right), 62.0$ $\left(\mathrm{CH}_{2}, 6{ }^{\prime}-\underline{\mathrm{C}}_{2}\right)$, $29.9\left(\mathrm{CH}_{2}, 3^{\prime}-\underline{\mathrm{CH}_{2}}\right), 24.9\left(\mathrm{CH}_{2}, 5^{\prime}-\underline{\mathrm{C}}_{2}\right), 18.2\left(\mathrm{CH}_{2}, 4{ }^{\prime}-\underline{\mathrm{CH}}_{2}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{14} \mathrm{H}_{13}{ }^{79} \mathrm{BrO}_{4}$: 323.9997 [M], $325.0070[\mathrm{M}+\mathrm{H}]^{+}$; found: 324.0000 [M], $325.0072[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): v=3066,2943,2846,1646,1613,1597,1439,1300,1230,1114,952,867,784,633$.
Known compound. ${ }^{256}$

3-Iodo-7-methoxy-4H-chromen-4-one (82)

Chemical Formula: $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{IO}_{3}$
Molecular Weight: 302.07
Prepared according to General procedure F using: (b) 75 ($5 \mathrm{mmol}, 0.76 \mathrm{~g}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(10 \mathrm{mmol}, 1.38 \mathrm{~g})$ and $\mathrm{CH}_{3} \mathrm{I}\left(5 \mathrm{mmol}, 0.32 \mathrm{~mL}\right.$), overnight at RT; (c) DMF-DMA ($7.5 \mathrm{mmol}, 1 \mathrm{~mL}$), 3 h at $95^{\circ} \mathrm{C}$; (d) pyridine (5.5 mmol, 0.45 mL) and $\mathrm{I}_{2}(10 \mathrm{mmol}, 2.55 \mathrm{~g}), 12 \mathrm{~h}$ at RT; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$, $500: 1$) to give $82\left(1.35 \mathrm{~g}, 89 \%\right.$ over 3 steps) as a white solid; $\mathrm{mp}=160-162{ }^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=160-162{ }^{\circ} \mathrm{C} ;{ }^{49} R_{f}$ $=0.4\left(100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.23(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 8.16(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 7.02$ (dd, J = 2.3, 9.0 Hz , $1 \mathrm{H}, 6-\underline{\mathrm{H}}), 6.85(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{\mathrm{H}}), 3.92\left(\mathrm{~s}, 3 \mathrm{H}, 9-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.6$ ($\mathrm{C}=\mathrm{O}, 4-\underline{\mathrm{C}}$), 164.3 ($\mathrm{qC}, 7-\underline{\mathrm{C}}$), 157.9 (qC, 8a-C), $157.2(\mathrm{CH}, 2-\underline{\mathrm{C}})$, $128.1(\mathrm{CH}, 5-\underline{\mathrm{C}}), 115.7(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 115.3(\mathrm{CH}, 6-\underline{\mathrm{C}}), 100.0(\mathrm{CH}, 8-\underline{\mathrm{C}}), 87.1(\mathrm{qC}, 3-\underline{\mathrm{C}}), 55.9\left(\mathrm{CH}_{3}, 9-\underline{\mathrm{C}} \mathrm{H}_{3}\right)$. HRMS (Dual ESI): calc m / z for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{IO}_{3}: 301.9440[\mathrm{M}], 302.9513[\mathrm{M}+\mathrm{H}]^{+}$; found: 301.9440 [M], 302.9513 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR (cm ${ }^{-1}$): $v=3062,2970,2884,1638,1607,1592,1429,1356,1266,1065,935,827,713,554$.
Known compound. ${ }^{49}$

3-Bromo-7-methoxy-4H-chromen-4-one (83), 3,6,8-tribromo-7-methoxy-4H-chromen-4-one (84), 3,6-dibromo-7-methoxy-4H-chromen-4-one (85), and 3,8-dibromo-7-methoxy-4H-chromen-4-one (86)

Title compounds were prepared according to General procedure F using: (b) 75 ($5 \mathrm{mmol}, 0.76 \mathrm{~g}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(10 \mathrm{mmol}, 1.38 \mathrm{~g})$ and $\mathrm{CH}_{3} \mathrm{I}(5 \mathrm{mmol}, 0.32 \mathrm{~mL})$, overnight at RT ; (c) DMF-DMA ($7.5 \mathrm{mmol}, 1 \mathrm{~mL}$), 3 h at 95 ${ }^{\circ} \mathrm{C}$; (e) Br_{2} ($10 \mathrm{mmol}, 0.51 \mathrm{~mL}$, 2 equiv.); purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 500: 1\right.$) to give:

- 3-bromo-7-methoxy-4H-chromen-4-one (83), white solid ($0.4 \mathrm{~g}, 30 \%$ over 3 steps); $\mathrm{mp}=178-180$ ${ }^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=174-175.5^{\circ} \mathrm{C} ; 4^{49} R_{f}=0.35\left(100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Chemical Formula: $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{BrO}_{3}$
Molecular Weight: 255.07
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.19-8.12$ (m, $\left.2 \mathrm{H}, 2,5-\underline{\mathrm{H}}\right), 7.01$ (dd, J=2.2, $8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{\mathrm{H}}$), 6.84 (d, J $=2.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{\mathrm{H}}), 3.91\left(\mathrm{~s}, 3 \mathrm{H}, 9-\mathrm{CH}_{3}\right)$.
 $127.8(\mathrm{CH}, 5-\underline{\mathrm{C}}), 117.0(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 115.3(\mathrm{CH}, 6-\underline{\mathrm{C}}), 110.7(\mathrm{qC}, 3-\underline{\mathrm{C}}), 100.1(\mathrm{CH}, 8-\underline{\mathrm{C}}), 55.9\left(\mathrm{CH}_{3}, 9-\underline{\mathrm{C}} \mathrm{H}_{3}\right)$. HRMS (Dual ESI): calc m / z for $\mathrm{C}_{10} \mathrm{H}_{7}{ }^{79} \mathrm{BrO3}$: 253.9579 [M], $254.9651[\mathrm{M}+\mathrm{H}]^{+}$; found: 253.9580 [M], $254.9653[\mathrm{M}+\mathrm{H}]^{+}$.

FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3071,2974,2887,1635,1614,1588,1433,1355,1269,1016,913,829,763,682,562$.
Known compound. 49

- 3,6,8-tribromo-7-methoxy-4H-chromen-4-one (84), white solid ($0.43 \mathrm{~g}, 21 \%$ over 3 steps); $\mathrm{mp}=$ $204-205{ }^{\circ} \mathrm{C} ; R_{f}=0.6\left(100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Chemical Formula: $\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{Br}_{3} \mathrm{O}_{3}$
Molecular Weight: 412.86
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.47(\mathrm{~s}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 8.31(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 4.02\left(\mathrm{~s}, 3 \mathrm{H}, 9-\mathrm{CH}_{3}\right)$
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.3(\mathrm{C}=\mathrm{O}, 4-\underline{\mathrm{C}}), 159.2$ ($\mathrm{qC}, 7-\underline{\mathrm{C}}$), 154.0 ($\left.\mathrm{CH}, 2-\underline{\mathrm{C}}\right), 153.1$ ($\mathrm{qC}, 8 \mathrm{a}-\underline{\mathrm{C}}$),
 $\left.9-\mathrm{CH}_{3}\right)$.

HRMS (Dual ESI): calc m / z for $\mathrm{C}_{10} \mathrm{H}_{5}{ }^{79} \mathrm{Br}_{3} \mathrm{O}_{3}: 409.7789$ [M], 410.7862 [M+H]+; found: 409.7784 [M], $410.7860[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3071,2981,1668,1603,1585,1407,1279,1083,892,771,645,584$.
Previously unreported

- 3,6-dibromo-7-methoxy-4H-chromen-4-one (85), pale yellow solid ($0.1 \mathrm{~g}, 6 \%$ over 3 steps); $\mathrm{mp}=$ $265-267{ }^{\circ} \mathrm{C} ; R_{f}=0.47\left(100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Chemical Formula: $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{O}_{3}$
Molecular Weight: 333.96
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.45(\mathrm{~s}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 8.19(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 6.89(\mathrm{~s}, 1 \mathrm{H}, 8-\underline{\mathrm{H}}), 4.02(\mathrm{~s}, 3 \mathrm{H}, 9-$ CH_{3}).
 $130.5(\mathrm{CH}, 5-\underline{\mathrm{C}}), 117.6\left(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}\right.$), $111.0(\mathrm{qC}, 3$ or $6-\underline{\mathrm{C}}), 110.8(\mathrm{qC}, 3$ or $6-\underline{-}), 99.8(\mathrm{CH}, 8-\underline{\mathrm{C}}), 56.9\left(\mathrm{CH}_{3}\right.$, $9-\mathrm{CH}_{3}$).
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{10} \mathrm{H}_{6}{ }^{79} \mathrm{Br}_{2} \mathrm{O}_{3}$: 331.8684 [M], $332.8756[\mathrm{M}+\mathrm{H}]^{+}$; found: 331.8684 [M], $332.8758[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR (cm^{-1}): $\mathrm{v}=3076,2980,1644,1613,1591,1437,1259,1076,1028,884,766,622,356$.
Previously unreported.

- 3,8-dibromo-7-methoxy-4H-chromen-4-one (86), white solid ($0.1 \mathrm{~g}, 6 \%$ over 3 steps); $\mathrm{mp}=247$ $249^{\circ} \mathrm{C} ; R_{f}=0.42\left(100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Chemical Formula: $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{O}_{3}$
Molecular Weight: 333.96
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta=8.27(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 8.25(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}$), $7.09(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}$, $6-\underline{H}) 4.07\left(\mathrm{~s}, 3 \mathrm{H}, 9-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta=171.4$ (C=O, 4-C-C), 160.8 (qC, 7-ㅡㅇ), 154.1 (qC, 8a-C-C), 153.6 (CH, 2- $\underline{\mathrm{C}}$), $126.9(\mathrm{CH}, 5-\underline{\mathrm{C}}), 117.9(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 110.7$ (qC, 3 or $8-\underline{\mathrm{C}})$, $110.1(\mathrm{CH}, 6-\underline{\mathrm{C}})$, $99.5(\mathrm{qC}, 3$ or $8-\underline{\mathrm{C}}), 57.0\left(\mathrm{CH}_{3}\right.$, $9-\mathrm{CH}_{3}$).
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{10} \mathrm{H}_{6}{ }^{79} \mathrm{Br}_{2} \mathrm{O}_{3}$: 331.8684 [M], 332.8756 [M+H] ; found: 331.8685 [M], $332.8763[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR (cm^{-1}): $\mathrm{v}=3072,2946,2844,1647,1604,1590,1417,1272,1087,1048,873,767,603$.
Previously unreported.

3-Phenyl-7-((tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one (99)

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{4}$ Molecular Weight: 322.36
$\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($2 \mathrm{mmol}, 215 \mathrm{mg}, 3.0$ equiv.), phenylboronic acid 87 ($0.81 \mathrm{mmol}, 100 \mathrm{mg}, 1.2$ equiv.), and 10% $\mathrm{Pd} / \mathrm{C}(34 \mu \mathrm{~mol}, 36 \mathrm{mg}, 5 \mathrm{~mol} \%)$ were added to a solution of 3-iodo-7-(tetrahydropyran-2-yloxy)-benzopyran-4-one 80 ($0.67 \mathrm{mmol}, 250 \mathrm{mg}, 1.0$ equiv.) in DME (3 mL) and $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$, and the mixture was stirred for 5 h at $45^{\circ} \mathrm{C}$. The reaction mixture was filtered, the catalyst was washed with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL}) .{ }^{86}$ The organic phase was dried (MgSO_{4}), filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 500: 1\right)$ to give the desired product ($100 \mathrm{mg}, 47 \%$) as a white solid; $R_{f}=$ 0.44 (PE/EtOAc, 2:1).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.24(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 7.97(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 7.57(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.2^{\prime}, 6^{\prime}-\underline{H}\right), 7.48-7.35\left(\mathrm{~m}, 3 \mathrm{H}, 3^{\prime}, 4^{\prime}, 5^{\prime}-\underline{H}\right), 7.15-7.09(\mathrm{~m}, 2 \mathrm{H}, 6,8-\underline{H}), 5.57\left(\mathrm{app} \mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime \prime}-\underline{H}\right), 3.94$
 H).

Known compound. ${ }^{256}$

General procedure G: To a degassed solution of 3-iodo-7-methoxy-4H-chromen-4-one 82 (1.0 equiv.), in toluene/ethanol (1:1), and under nitrogen, the corresponding phenylboronic acid (1.2 equiv.), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (2 M in $\mathrm{H}_{2} \mathrm{O}$, 3 equiv.) and $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ ($2 \mathrm{~mol} \%$) were added and the resulting mixture was stirred and heated at $100^{\circ} \mathrm{C}$ for $5 \mathrm{~h} .{ }^{50}$ Water (15 mL) was added and the aqueous phase was extracted with ethyl acetate (3 $\times 20 \mathrm{~mL})$. The organic phase was washed with brine (30 mL), dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography to give the corresponding product.

General procedure \mathbf{H} : To a mixture of 3-iodo-7-methoxy-4H-chromen-4-one 82 (1.0 equiv.), the corresponding phenylboronic acid (1.5 equiv.), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (4 equiv.) and $\left[\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}\right]$ ($5 \mathrm{~mol} \%$) under nitrogen, degassed toluene/ethanol/water (10:5:1) were added, and the resulting mixture was stirred at 70 ${ }^{\circ} \mathrm{C}$ for 19 h . The reaction mixture was filtered over Celite ${ }^{\text {TM }} 545$, the solid on Celite ${ }^{\text {TM }} 545$ washed with DCM, acetone and methanol, and the filtrate concentrated to dryness. The crude product was purified by flash chromatography to give the corresponding isoflavone.

7-Methoxy-3-(pyridin-4-yl)-4H-chromen-4-one (101), and 7-methoxy-4H-chromen-4-one (119)

Title compounds were prepared according to General procedure G using $82(0.2 \mathrm{mmol}, 61 \mathrm{mg})$, toluene $(2.5 \mathrm{~mL})$, ethanol (2.5 mL), $88(0.24 \mathrm{mmol}, 30 \mathrm{mg}), \mathrm{Na}_{2} \mathrm{CO}_{3}(0.6 \mathrm{mmol}, 64 \mathrm{mg}, 2 \mathrm{M}, 0.3 \mathrm{~mL})$ and $\left[\mathrm{Pd}^{2}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ $\left(4 \mu \mathrm{~mol}, 5 \mathrm{mg}, 2 \mathrm{~mol} \%\right.$), $100^{\circ} \mathrm{C}$ for 5 h ; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 100: 3\right)$ to give:

- 7-methoxy-3-(pyridin-4-yl)-4H-chromen-4-one (101), white solid (5 mg, 10\%); mp = 165-167 ${ }^{\circ} \mathrm{C} ; R_{f}$ $=0.28\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5\right)$.

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}_{3}$ Molecular Weight: 253.26
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.70\left(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6\right.$ '- -H$), 8.24(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{C}}), 8.10(\mathrm{~s}, 1$ $\mathrm{H}, 2-\underline{H}$), 7.65 (d, J = $6.0 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{H}$), 7.06 (dd, J = 2.2, $8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}$), 6.92 (d, J = $2.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-$ H), $3.96\left(\mathrm{~s}, 3 \mathrm{H}, 9-\mathrm{CH}_{3}\right)$.
 $148.9\left(2 \mathrm{CH}, 2^{\prime}, 6^{\prime}-\underline{\mathrm{C}}\right), 141.2\left(\mathrm{qC}, 4^{\prime}-\underline{\mathrm{C}}\right), 127.8(\mathrm{CH}, 5-\underline{\mathrm{C}}), 123.5\left(2 \mathrm{CH}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{C}}\right), 122.5(\mathrm{qC}, 3-\underline{\mathrm{C}}), 118.2$ (qC, $4 \mathrm{a}-\underline{\mathrm{C}}), 115.1(\mathrm{CH}, 6-\underline{\mathrm{C}}), 100.3(\mathrm{CH}, 8-\underline{\mathrm{C}}), 55.9\left(\mathrm{CH}_{3}, 9-\underline{\mathrm{C}} \mathrm{H}_{3}\right)$.

HRMS (Dual ESI): calc m / z for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}_{3}$: 253.0739 [M], 254.0812 [$\mathrm{M}+\mathrm{H}$]+; found: 253.0739 [M], 254.0812 $[\mathrm{M}+\mathrm{H}]^{+}$.

FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3220,3053,2922,2851,1635,1597,1504,1439,1260,1051,941,833,549$.
Previously unreported.

- 7-methoxy-4H-chromen-4-one (119), white solid ($23 \mathrm{mg}, 60 \%$); $\mathrm{mp}=92-94^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=110{ }^{\circ} \mathrm{C} ;{ }^{257}$ $R_{f}=0.47\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5\right)$.

Chemical Formula: $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{3}$
Molecular Weight: 176.17
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.11(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{H}), 7.78$ (d, J=6.0 Hz, $1 \mathrm{H}, 2-\underline{\mathrm{H}}$), 6.97 (dd, J= $2.4,8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 6.83(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H}), 6.28(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}, 3-\underline{\mathrm{H}}), 3.90\left(\mathrm{~s}, 3 \mathrm{H}, 9-\underline{C H}_{3}\right)$.
 $127.2(\mathrm{CH}, 5-\underline{\mathrm{C}}), 118.7(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 114.5(\mathrm{CH}, 6-\underline{\mathrm{C}}), 112.9(\mathrm{CH}, 3-\underline{\mathrm{C}}), 100.3(\mathrm{CH}, 8-\underline{\mathrm{C}}), 55.8\left(\mathrm{CH}_{3}, 9-\underline{\mathrm{CH}} 3\right)$. FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3064,2925,2847,1631,1618,1589,1435,1306,1268,1104,929,824,541$.
Known compound, modified method. ${ }^{257,258}$

3-(2-Aminopyrimidin-5-yl)-7-methoxy-4H-chromen-4-one (106)

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$
Molecular Weight: 269.26

Method A: To a mixture of $83(0.15 \mathrm{mmol}, 38 \mathrm{mg}), 91(0.165 \mathrm{mmol}, 23 \mathrm{mg})$ and $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{Cl}_{2}\right](7.5 \mu \mathrm{~mol}$, $5 \mathrm{mg}, 5 \mathrm{~mol} \%$) in degassed 1,4-dioxane (2.5 mL) and under nitrogen, $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.45 \mathrm{mmol}, 48 \mathrm{mg}, 1 \mathrm{M}$, 0.45 mL) was added and the resulting mixture was stirred at $110^{\circ} \mathrm{C}$ for $16 \mathrm{~h} .{ }^{163}$ Water (15 mL) was added and the obtained suspension was filtered. The solid was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$, $100: 3$) to give 106 ($25 \mathrm{mg}, 62 \%$) as a white solid; $\mathrm{mp}=288-290^{\circ} \mathrm{C} ; R_{f}=0.15\left(\mathrm{CH}_{2} \mathrm{Cl} / \mathrm{MeOH}, 95: 5\right)$.
Method B: Prepared according to General procedure H using 82 ($0.25 \mathrm{mmol}, 76 \mathrm{mg}$), 91 ($0.375 \mathrm{mmol}, 52$ $\mathrm{mg}), \mathrm{Na}_{2} \mathrm{CO}_{3}(1.0 \mathrm{mmol}, 106 \mathrm{mg}),\left[\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}\right](12.5 \mu \mathrm{~mol}, 9 \mathrm{mg}, 5 \mathrm{~mol} \%)$, toluene $(2.5 \mathrm{~mL})$, ethanol (1.25 mL) and water (0.25 mL), $70^{\circ} \mathrm{C}$ for 19 h ; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 100: 5\right)$ to give 106 ($51 \mathrm{mg}, 75 \%$) as a white solid.
 (d, J = $2.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H}$), 7.10 (dd, J = 2.3, $8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{\mathrm{H}}$), $6.80\left(\mathrm{~s}, 2 \mathrm{H}, 2{ }^{\prime}-\mathrm{NH}_{2}\right), 3.91\left(\mathrm{~s}, 3 \mathrm{H}, 9-\underline{C H}_{3}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, \mathrm{DMSO}): ~ \delta=175.0$ (C=O, 4-C-C), 164.3 ($\mathrm{qC}, 7-\underline{\mathrm{C}}$), 163.4 ($\mathrm{qC}, 2 \mathrm{C}-\underline{\mathrm{C}}$), 158.07 ($\mathrm{qC}, 8 \mathrm{a}-\underline{\mathrm{C}}$), $158.04\left(2 \mathrm{CH}, 4^{\prime}, 6^{\prime}-\underline{\mathrm{C}}\right), 153.3(\mathrm{CH}, 2-\underline{\mathrm{C}}), 127.3(\mathrm{CH}, 5-\underline{C}), 119.7(\mathrm{qC}, 3-\underline{C}), 117.6(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 115.4(\mathrm{CH}, 6-$ $\underline{C}), 114.5\left(\mathrm{qC}, 5{ }^{\prime}-\underline{\mathrm{C}}\right)$, $101.1(\mathrm{CH}, 8-\underline{\mathrm{C}}), 56.6\left(\mathrm{CH}_{3}, 9-\underline{\mathrm{CH}_{3}}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$: 269.0800 [M], 270.0873 [M+H]+; found: 269.0801 [M], 270.0873 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3286,3148,3059,2981,2741,1672,1626,1606,1508,1441,1270,1203,1070,888$, 661.

Previously unreported.

7-Methoxy-3-(4-nitrophenyl)-4H-chromen-4-one (108)

Method A: Prepared according to General procedure G using $82(0.2 \mathrm{mmol}, 61 \mathrm{mg})$, toluene (2.5 mL), ethanol (2.5 mL), $92(0.24 \mathrm{mmol}, 40 \mathrm{mg}), \mathrm{Na}_{2} \mathrm{CO}_{3}(0.6 \mathrm{mmol}, 64 \mathrm{mg}, 2 \mathrm{M}, 0.3 \mathrm{~mL})$ and $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right](4 \mu \mathrm{~mol}$, $5 \mathrm{mg}, 2 \mathrm{~mol} \%), 100{ }^{\circ} \mathrm{C}$ for 5 h ; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, 200:1) to give 108 (31 $\mathrm{mg}, 52 \%$) as a pale orange solid; $\mathrm{mp}=242-244{ }^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=241-243^{\circ} \mathrm{C} ; 55 R_{f}=0.4\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.98: 2\right)$. Method B: Prepared according to General procedure H using $82(0.5 \mathrm{mmol}, 151 \mathrm{mg}), 92(0.75 \mathrm{mmol}, 125$ mg), $\mathrm{Na}_{2} \mathrm{CO}_{3}(2.0 \mathrm{mmol}, 212 \mathrm{mg}),\left[\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}\right](25 \mu \mathrm{~mol}, 18 \mathrm{mg}, 5 \mathrm{~mol} \%)$, toluene (5 mL), ethanol (2.5 mL) and water (0.5 mL), $70^{\circ} \mathrm{C}$ for 19 h ; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, 200:1) to give $108(120 \mathrm{mg}, 80 \%)$ as a pale orange solid; $\mathrm{mp}=242-244^{\circ} \mathrm{C} ; R_{f}=0.4\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.98: 2\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.29(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}, 3$ ', 5 '- -H), $8.22(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 8.05(\mathrm{~s}, 1$ $\mathrm{H}, 2-\underline{H}), 7.78\left(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{\mathrm{H}}\right), 7.04(\mathrm{dd}, \mathrm{J}=2.4,8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 6.90(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}, 8-$ H), $3.94\left(\mathrm{~s}, 3 \mathrm{H}, 9-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=174.8(\mathrm{C}=\mathrm{O}, 4-\underline{\mathrm{C}}), 164.4(\mathrm{qC}, 7-\underline{\mathrm{C}}), 157.9(\mathrm{qC}, 8 \mathrm{a}-\underline{\mathrm{C}}), 153.4(\mathrm{CH}, 2-\underline{\mathrm{C}})$, $147.5\left(\mathrm{qC}, 4^{\prime}-\underline{\mathrm{C}}\right), 138.9\left(\mathrm{qC}, 1^{\prime}-\underline{\mathrm{C}}\right), 129.7\left(2 \mathrm{CH}, 2^{\prime}, 6^{\prime}-\underline{\mathrm{C}}\right), 127.8(\mathrm{CH}, 5-\underline{\mathrm{C}}), 123.7\left(\mathrm{CH}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{C}}\right), 123.5(\mathrm{qC}$, $3-\underline{C}), 118.2(q C, 4 a-\underline{C}), 115.1(\mathrm{CH}, 6-\underline{C}), 100.3(\mathrm{CH}, 8-\underline{\mathrm{C}}), 55.9\left(\mathrm{CH}_{3}, 9-\underline{\mathrm{CH}_{3}}\right)$.

HRMS (Dual ESI): calc m / z for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{NO}_{5}$: 297.0637 [M], $298.0710[\mathrm{M}+\mathrm{H}]+$; found: 297.0638 [M], 298.0711 $[\mathrm{M}+\mathrm{H}]^{+}$.

FT-IR (cmn): $\mathbf{v}=3056,2954,2847,1632,1595,1525,1440,1346,1264,1046,851,699$.
Known compound, modified method. ${ }^{55}$

7-Methoxy-3-(3-nitrophenyl)-4H-chromen-4-one (110)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{NO}_{5}$ Molecular Weight: 297.27

Method A: To a degassed mixture of $83(0.2 \mathrm{mmol}, 51 \mathrm{mg}), 93(0.4 \mathrm{mmol}, 67 \mathrm{mg})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.6 \mathrm{mmol}$, $83 \mathrm{mg})$ in toluene $(2.5 \mathrm{~mL})$ and water (1 mL), and under nitrogen, $\left[\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right](10 \mu \mathrm{~mol}, 11 \mathrm{mg}, 5 \mathrm{~mol} \%)$ was added and the resulting mixture was stirred at $70{ }^{\circ} \mathrm{C}$ for $16 \mathrm{~h} .{ }^{162}$ Water (15 mL) was added and the aqueous phase was extracted with ethyl acetate $(3 \times 20 \mathrm{~mL})$. The organic phase was washed with brine $(30 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $200: 1$) to give $110(25 \mathrm{mg}, 42 \%)$ as a white solid; $\mathrm{mp}=178-180$ ${ }^{\circ} \mathrm{C}$, lit. mp not available; $R_{f}=0.4\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, 98:2).
Method B: Prepared according to General procedure G using $82(0.2 \mathrm{mmol}, 61 \mathrm{mg})$, toluene (2.5 mL), ethanol (2.5 mL), $93(0.24 \mathrm{mmol}, 40 \mathrm{mg}), \mathrm{Na}_{2} \mathrm{CO}_{3}(0.6 \mathrm{mmol}, 64 \mathrm{mg}, 2 \mathrm{M}, 0.3 \mathrm{~mL})$ and $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right](4 \mu \mathrm{~mol}$, $5 \mathrm{mg}, 2 \mathrm{~mol} \%$), $100{ }^{\circ} \mathrm{C}$ for 5 h ; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, 200:1) to give 110 (40 $\mathrm{mg}, 67 \%)$ as a white solid; $\mathrm{mp}=181-182^{\circ} \mathrm{C}$, lit. mp not available; $R_{f}=0.4\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, 98:2).
Method C: Prepared according to General procedure H using $82(0.25 \mathrm{mmol}, 76 \mathrm{mg}), 93$ ($0.375 \mathrm{mmol}, 63$ $\mathrm{mg}), \mathrm{Na}_{2} \mathrm{CO}_{3}(1.0 \mathrm{mmol}, 106 \mathrm{mg}),\left[\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}\right](12.5 \mu \mathrm{~mol}, 9 \mathrm{mg}, 5 \mathrm{~mol} \%)$, toluene (2.5 mL), ethanol (1.25 $\mathrm{mL})$ and water (0.25 mL), $70^{\circ} \mathrm{C}$ for 19 h ; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, 200:1) to give 110 ($65 \mathrm{mg}, 88 \%$) as a white solid; $R_{f}=0.4\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, 98:2).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.43\left(\mathrm{t}, \mathrm{J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, 2{ }^{\prime}-\underline{\mathrm{H}}\right.$), $8.27-8.20(\mathrm{~m}, 2 \mathrm{H}, 4,5-\underline{\mathrm{H}}), 8.06(\mathrm{~s}, 1 \mathrm{H}, 2-$ H), 7.98 ($\mathrm{dt}, \mathrm{J}=1.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\underline{H}$), $7.62\left(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\underline{H}\right.$), 7.04 ($\mathrm{dd}, \mathrm{J}=2.4,8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}$), 6.90 (d, J = $2.4 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{\mathrm{H}}$), 3.94 (s, $3 \mathrm{H}, 9-\mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=175.0(\mathrm{C}=\mathrm{O}, 4-\underline{\mathrm{C}})$, 164.4 ($\mathrm{qC}, 7-\underline{\mathrm{C}}$), 158.0 ($\left.\mathrm{qC}, 8 \mathrm{a}-\underline{\mathrm{C}}\right), 153.2(\mathrm{CH}, 2-\underline{\mathrm{C}})$,

 HRMS (Dual ESI): calc m / z for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{NO}_{5}$: 297.0637 [M], 298.0710 [M+H]+; found: 297.0640 [M], 298.0712 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3067,2955,2846,1648,1622,1599,1510,1435,1361,1251,1051,832,679$.
Known compound, modified method, no data. ${ }^{259}$

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{NO}_{5}$ Molecular Weight: 297.27

Prepared according to General procedure G using $82(0.2 \mathrm{mmol}, 61 \mathrm{mg})$, toluene (2.5 mL), ethanol (2.5 $\mathrm{mL}), 94(0.24 \mathrm{mmol}, 40 \mathrm{mg}), \mathrm{Na}_{2} \mathrm{CO}_{3}(0.6 \mathrm{mmol}, 64 \mathrm{mg}, 2 \mathrm{M}, 0.3 \mathrm{~mL})$ and $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right) 4\right](4 \mu \mathrm{~mol}, 5 \mathrm{mg}, 2 \mathrm{~mol}$ $\%$), $100^{\circ} \mathrm{C}$ for 5 h ; purified by flash chromatography ($\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ acetone, 200:1) to give $111(31 \mathrm{mg}, 52 \%)$ as a white solid; $\mathrm{mp}=160-161^{\circ} \mathrm{C} ; R_{f}=0.38\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.98: 2\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.13(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 8.08\left(\mathrm{dd}, \mathrm{J}=1.2,8.1 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-\underline{\mathrm{H}}\right), 7.98(\mathrm{~s}$, $1 \mathrm{H}, 2-\underline{H}$), 7.64 (td, J = 1.2, $7.5 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\underline{H}$), 7.55 (td, $\mathrm{J}=1.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\underline{\mathrm{H}}$), 7.36 (dd, J=1.4, 7.5 Hz , $1 \mathrm{H}, 6^{\prime}-\underline{H}$), 6.98 (dd, J = 2.4, $8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}$), $6.87\left(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{\mathrm{H}}\right.$), 3.91 ($\mathrm{s}, 3 \mathrm{H}, 9-\mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=174.3(\mathrm{C}=\mathrm{O}, 4-\underline{\mathrm{C}}), 164.3(\mathrm{qC}, 7-\underline{\mathrm{C}}), 158.2(\mathrm{qC}, 8 \mathrm{a}-\underline{\mathrm{C}}), 151.7(\mathrm{CH}, 2-\mathrm{C})$,
 C), $124.7\left(\mathrm{CH}, 3^{\prime}-\underline{\mathrm{C}}\right), 124.4(\mathrm{qC}, 1$ or $3-\underline{\mathrm{C}}), 117.5(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 114.8(\mathrm{CH}, 6-\underline{\mathrm{C}}), 100.2(\mathrm{CH}, 8-\underline{\mathrm{C}}), 55.9\left(\mathrm{CH}_{3}\right.$, $9-\mathrm{CH}_{3}$).
HRMS (Dual ESI): calc m/z for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{NO}_{5}$: 297.0637 [M], 298.0710 [M+H]+; found: 297.0635 [M], 298.0707 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR (cm^{-1}): $\mathrm{v}=3057,2921,2843,1637,1606,1520,1437,1352,1247,1037,830,789,622$.
Previously unreported.

4-(7-Methoxy-4-oxo-4H-chromen-3-yl)benzonitrile (112)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{NO}_{3}$ Molecular Weight: 277.28

Method A: Prepared according to General procedure G using $82(0.2 \mathrm{mmol}, 61 \mathrm{mg})$, toluene (2.5 mL), ethanol (2.5 mL), $95(0.24 \mathrm{mmol}, 35 \mathrm{mg}), \mathrm{Na}_{2} \mathrm{CO}_{3}(0.6 \mathrm{mmol}, 64 \mathrm{mg}, 2 \mathrm{M}, 0.3 \mathrm{~mL})$ and $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right](4 \mu \mathrm{~mol}$, $5 \mathrm{mg}, 2 \mathrm{~mol} \%), 10{ }^{\circ} \mathrm{C}$ for 5 h ; purified by flash chromatography ($\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ acetone, 200:1) to give $\mathbf{1 1 2}$ (40 $\mathrm{mg}, 72 \%)$ as a white solid; $\mathrm{mp}=202-203^{\circ} \mathrm{C}$, lit. mp not available; $R_{f}=0.37\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.98: 2\right)$.
Method B: Prepared according to General procedure H using $82(0.25 \mathrm{mmol}, 76 \mathrm{mg}), 95(0.375 \mathrm{mmol}, 55$ $\mathrm{mg}), \mathrm{Na}_{2} \mathrm{CO}_{3}(1.0 \mathrm{mmol}, 106 \mathrm{mg}),\left[\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}\right](12.5 \mu \mathrm{~mol}, 9 \mathrm{mg}, 5 \mathrm{~mol} \%)$, toluene $(2.5 \mathrm{~mL})$, ethanol (1.25 mL) and water (0.25 mL), $70^{\circ} \mathrm{C}$ for 19 h ; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $100: 1$) to give 112 ($57 \mathrm{mg}, 82 \%$) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.19(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 8.00(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 7.70\left(\mathrm{~s}, 4 \mathrm{H}, 2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}-\underline{\mathrm{H}}\right.$), 7.02 (dd, J= 2.3, 8.9 Hz, $1 \mathrm{H}, 6-\underline{H}$), 6.87 (d, J=2.3 Hz, $1 \mathrm{H}, 8-\underline{H}$), 3.92 ($\mathrm{s}, 3 \mathrm{H}, 9-\mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=174.9(\mathrm{C}=\mathrm{O}, 4-\underline{\mathrm{C}}), 164.4(\mathrm{qC}, 7-\underline{\mathrm{C}}), 157.9(\mathrm{qC}, 8 \mathrm{a}-\underline{\mathrm{C}}), 153.3(\mathrm{CH}, 2-\underline{\mathrm{C}})$,
 4a or 7'- \underline{C}), 118.1 (qC, 4a or 7'- \underline{C}), $115.0(\mathrm{CH}, 6-\underline{\mathrm{C}}), 111.7$ (qC, 4'- $\underline{\mathrm{C}}), 100.2(\mathrm{CH}, 8-\underline{\mathrm{C}}), 55.9\left(\mathrm{CH}_{3}, 9-\underline{\mathrm{CH}_{3}}\right)$. HRMS (Dual ESI): calc m / z for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{NO}_{3}$: 277.0739 [M], 278.0812 [$\left.\mathrm{M}+\mathrm{H}\right]^{+}$; found: 277.0744 [M], 278.0813 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR (cm^{-1}): $\mathrm{v}=3059,2924,2850,2225,1628,1596,1432,1371,1259,1044,826,553$.
Known compound, modified method. ${ }^{56}$

4-(2-(2-Hydroxy-4-methoxyphenyl)-2-oxoethyl)benzonitrile (120)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{3}$
Molecular Weight: 267.28
Prepared according to General procedure G using 82 ($0.7 \mathrm{mmol}, 211 \mathrm{mg}$), toluene (2.5 mL), ethanol (2.5 $\mathrm{mL}), 95(0.84 \mathrm{mmol}, 123 \mathrm{mg}), \mathrm{Na}_{2} \mathrm{CO}_{3}(2.1 \mathrm{mmol}, 222 \mathrm{mg}, 2 \mathrm{M}, 1.05 \mathrm{~mL})$ and $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right](14 \mu \mathrm{~mol}, 16 \mathrm{mg}$, $2 \mathrm{~mol} \%), 100{ }^{\circ} \mathrm{C}$ for 18 h ; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, 200:1) to give 120 (80 mg , $42 \%)$ as a white solid; $\mathrm{mp}=155-156{ }^{\circ} \mathrm{C} ; R_{f}=0.47\left(100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.52(\mathrm{~s}, 1 \mathrm{H}, 2$ ' OH), 7.72 (d, J = $8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6$ '- $\underline{\mathrm{H}}$), $7.66(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2$ $\left.\mathrm{H}, 3^{\prime \prime}, 5^{\prime \prime}-\underline{H}\right), 7.40\left(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime \prime}, 6 "-\underline{H}\right), 6.49\left(\mathrm{dd}, \mathrm{J}=2.4,8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\underline{H}\right), 6.46(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}$, 3'- $-\underline{H}$), 4.31 (s, $2 \mathrm{H}, 2-\mathrm{CH}_{2}$), $3.87\left(\mathrm{~s}, 3 \mathrm{H}, 7\right.$ '- $\left.\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=200.1$ (C=O, 1-C-C), 166.5 (qC, 2' or 4'- C), 165.9 ($\mathrm{qC}, 2$ ' or 4'- C), 139.7 (qC,
 $\underline{\mathrm{C}}), 111.1\left(\mathrm{qC}, 1^{\prime}\right.$ or $\left.4^{\prime \prime}-\underline{\mathrm{C}}\right), 108.2\left(\mathrm{CH}, 5^{\prime}-\underline{\mathrm{C}}\right), 101.1\left(\mathrm{CH}, 3{ }^{\prime}-\underline{\mathrm{C}}\right), 55.7\left(\mathrm{CH}_{3}, 77^{\prime}-\underline{\mathrm{C}} \mathrm{H}_{3}\right), 44.5\left(\mathrm{CH}_{2}, 2-\underline{\mathrm{CH}_{3}}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{3}$: 267.0895 [M], 268.0968 [$\left.\mathrm{M}+\mathrm{H}\right]^{+}$; found: 267.0896 [M], 268.0968 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3046,2974,2846,2228,1617,1565,1504,1438,1353,1227,1127,951,797,553$
Previously unreported.

3-(4-(Hydroxymethyl)phenyl)-7-methoxy-4H-chromen-4-one (114)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{4}$ Molecular Weight: 282.30

Method A: Prepared according to General procedure G using 82 ($1.33 \mathrm{mmol}, 402 \mathrm{mg}$), toluene (10 mL), ethanol (10 mL), $96(1.33 \mathrm{mmol}, 202 \mathrm{mg}), \mathrm{Na}_{2} \mathrm{CO}_{3}(3.99 \mathrm{mmol}, 423 \mathrm{mg}, 2 \mathrm{M}, 2 \mathrm{~mL})$ and $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right](27$
$\mu \mathrm{mol}, 31 \mathrm{mg}, 2 \mathrm{~mol} \%), 100^{\circ} \mathrm{C}$ for 5 h ; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, 9:1) to give 114 ($303 \mathrm{mg}, 81 \%$) as a white solid; $\mathrm{mp}=155-156{ }^{\circ} \mathrm{C}$, lit. mp not available; $R_{f}=0.16\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $9: 1$).

Method B: Prepared according to General procedure H using $82(0.25 \mathrm{mmol}, 76 \mathrm{mg}), 96(0.375 \mathrm{mmol}, 57$ $\mathrm{mg}), \mathrm{Na}_{2} \mathrm{CO}_{3}(1.0 \mathrm{mmol}, 106 \mathrm{mg}),\left[\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}\right](12.5 \mu \mathrm{~mol}, 9 \mathrm{mg}, 5 \mathrm{~mol} \%)$, toluene (2.5 mL), ethanol (1.25 $\mathrm{mL})$ and water (0.25 mL), $70^{\circ} \mathrm{C}$ for 19 h ; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.100: 5\right)$ to give 114 ($66 \mathrm{mg}, 93 \%$) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.23(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 7.98(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 7.57(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.2^{\prime} 6 '-\underline{H}\right), 7.45\left(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{H}\right), 7.02(\mathrm{dd}, \mathrm{J}=2.4,8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 6.88(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H})$, 4.75 (s, $2 \mathrm{H}, 7 \mathrm{7}^{\prime}-\mathrm{CH}_{2}$), 3.94 (s, $3 \mathrm{H}, 9-\mathrm{CH}_{3}$), 1.86 ($\mathrm{s}, 1 \mathrm{H}, 7$ '- OH).

 $3-\underline{C}), 118.4(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 114.6(\mathrm{CH}, 6-\underline{\mathrm{C}}), 100.1(\mathrm{CH}, 8-\underline{\mathrm{C}}), 65.0\left(\mathrm{CH}_{2}, 7{ }^{\prime}-\underline{\mathrm{CH}_{2}}\right), 55.8\left(\mathrm{CH}_{3}, 9-\underline{\mathrm{CH}_{3}}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{4}$: 282.0892 [M], 283.0965 [M+H]+; found: 282.0890 [M], 283.0963 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3305,3014,2922,2844,1638,1625,1609,1575,1446,1370,1240,1046,937,781,634$. Known compound, modified method, no data. ${ }^{260}$

Methyl 4-(7-methoxy-4-oxo-4H-chromen-3-yl)benzoate (118)

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{5}$ Molecular Weight: 310.31

Method A: Prepared according to General procedure G using 82 ($0.2 \mathrm{mmol}, 61 \mathrm{mg}$), toluene (2.5 mL), ethanol (2.5 mL), $98(0.24 \mathrm{mmol}, 43 \mathrm{mg}), \mathrm{Na}_{2} \mathrm{CO}_{3}(0.6 \mathrm{mmol}, 64 \mathrm{mg}, 2 \mathrm{M}, 0.3 \mathrm{~mL})$ and $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right](4 \mu \mathrm{~mol}$, $5 \mathrm{mg}, 2 \mathrm{~mol} \%), 100{ }^{\circ} \mathrm{C}$ for 5 h ; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, 100:0.5) to give 118 (43 $\mathrm{mg}, 69 \%)$ as a white solid; $\mathrm{mp}=234-235^{\circ} \mathrm{C}$, lit. mp not available; $R_{f}=0.35\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, 98:2).
Method B: Prepared according to General procedure H using $82(0.25 \mathrm{mmol}, 76 \mathrm{mg}), 98(0.375 \mathrm{mmol}, 67$ $\mathrm{mg}), \mathrm{Na}_{2} \mathrm{CO}_{3}(1.0 \mathrm{mmol}, 106 \mathrm{mg}),\left[\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}\right](12.5 \mu \mathrm{~mol}, 9 \mathrm{mg}, 5 \mathrm{~mol} \%)$, toluene $(2.5 \mathrm{~mL})$, ethanol (1.25 $\mathrm{mL})$ and water $(0.25 \mathrm{~mL}), 70^{\circ} \mathrm{C}$ for 19 h ; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone $\left.100: 1\right)$ to give 118 ($68 \mathrm{mg}, 88 \%$) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.23(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 8.12\left(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{H}}\right), 8.02(\mathrm{~s}, 1$ $\mathrm{H}, 2-\underline{H}), 7.68\left(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{H}\right), 7.03(\mathrm{dd}, \mathrm{J}=1.9,8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 6.89(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, 8-$ H), 3.95 (s, $3 \mathrm{H}, 8{ }^{\prime}-\mathrm{CH}_{3}$), 3.94 (s, $3 \mathrm{H}, 9-\mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=175.2$ (C=O, 4-C-C), 166.9 (qC, 7 or 7 '- C), 164.2 (qC, 7 or 7 '- C), 157.9 (qC,
 $127.8(\mathrm{CH}, 5-\underline{\mathrm{C}}), 124.4(\mathrm{qC}, 3-\underline{\mathrm{C}}), 118.3(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 114.9(\mathrm{CH}, 6-\underline{\mathrm{C}}), 100.2(\mathrm{CH}, 8-\underline{\mathrm{C}}), 55.9\left(\mathrm{CH}_{3}, 9-\underline{\mathrm{C}} \mathrm{H}_{3}\right)$, $52.2\left(\mathrm{CH}_{3}, 8\right.$ ' $\left.-\underline{\mathrm{C}} \mathrm{H}_{3}\right)$.

HRMS (Dual ESI): calc m / z for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{5}: 310.0841$ [M], 311.0914 [M+H]+; found: 310.0840 [M], 311.0912 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR (cm-1): v = 3070, 2956, 1712, 1639, 1629, 1605, 1430, 1257, 1111, 973, 824, 703.
Known compound. ${ }^{161}$

Methyl 4-(4-oxo-7-((tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-3-yl)benzoate (117)

To a degassed mixture of $81(0.15 \mathrm{mmol}, 49 \mathrm{mg})$, $98(0.3 \mathrm{mmol}, 54 \mathrm{mg})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.45 \mathrm{mmol}, 62 \mathrm{mg})$ in
 the resulting mixture was stirred and heated at $80^{\circ} \mathrm{C}$ for $16 \mathrm{~h} .{ }^{162}$ Water $(15 \mathrm{~mL})$ was added and the aqueous phase was extracted with ethyl acetate $(3 \times 20 \mathrm{~mL})$. The organic phase was washed with brine (30 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography (EtOAc/PE, 5:1) to give 117 ($80 \mathrm{mg}, 52 \%$) as a white solid; $\mathrm{mp}=281-283{ }^{\circ} \mathrm{C} ; R_{f}=0.2$ (EtOAc/PE, 4:1).
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{DMSO}): \delta=8.61(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{H}), 8.08(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{H}), 8.02(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.3^{\prime}, 5^{\prime}-\underline{H}\right), 7.78\left(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{H}\right), 7.27(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H}), 7.20(\mathrm{dd}, \mathrm{J}=2.0,8.8 \mathrm{~Hz}, 1 \mathrm{H}, 6-$
 H).
${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, \mathrm{DMSO}): \delta=174.6$ (C=O, 4- $\underline{\mathrm{C}}$), 166.5 (C=O, 7'-C), 161.4 ($\mathrm{qC}, 7-\underline{\mathrm{C}}$), 157.5 ($\mathrm{qC}, 8 \mathrm{a}-\underline{\mathrm{C}}$), $155.6(\mathrm{CH}, 2-\underline{\mathrm{C}}), 137.4\left(\mathrm{qC}, 1^{\prime}-\underline{-}\right)$, $129.5\left(2 \mathrm{CH}, 2^{\prime}, 6^{\prime}\right.$ or $\left.3^{\prime}, 5^{\prime}-\underline{-}\right)$, $129.4\left(2 \mathrm{CH}, 2^{\prime}, 6^{\prime}\right.$ or $\left.3^{\prime}, 5^{\prime}-\underline{-}\right), 129.2(q C$,

HRMS (Dual ESI): calc m / z for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{6}$: 380.1260 [M], 381.1333 [$\left.\mathrm{M}+\mathrm{H}\right]^{+}$; found: 380.1258 [M], 381.1331 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3057,2934,2846,1709,1636,1621,1598,1442,1370,1241,1105,954,864,800,691$. Previously unreported.

General procedure I: (a) p-TsOH $\cdot \mathrm{H}_{2} \mathrm{O}$ (0.1 equiv.) was added to a solution of the THP-protected compound (1.0 equiv.) in $\mathrm{MeOH}(5 \mathrm{~mL})$ and THF (5 mL) at RT , and the resulting mixture was heated to $60^{\circ} \mathrm{C}$ and stirred for 1 h . (b) $\mathrm{Et}_{3} \mathrm{~N}$ (1.0 equiv.) was added and the reaction mixture was concentrated to dryness under reduced pressure. The crude product was purified by flash chromatography to give the deprotected product.

7-Hydroxy-3-phenyl-4H-chromen-4-one (30)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{3}$ Molecular Weight: 238.24

Prepared according to General procedure I using: (a) $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(28 \mu \mathrm{~mol}, 6 \mathrm{mg}), 99(0.28 \mathrm{mmol}, 90$ $\mathrm{mg}), \mathrm{MeOH}(5 \mathrm{~mL})$ and THF (5 mL), $60^{\circ} \mathrm{C}$ for 1 h ; (b) $\mathrm{Et}_{3} \mathrm{~N}(0.28 \mathrm{mmol}, 0.04 \mathrm{~mL})$; purified by flash chromatography ($\mathrm{CHCl}_{3} / \mathrm{MeOH}, 100: 1$) to give $\mathbf{3 0}(60 \mathrm{mg}, 90 \%)$ as a white solid; $\mathrm{mp}=209-210^{\circ} \mathrm{C}$, lit. mp $=203-204{ }^{\circ} \mathrm{C} ;{ }^{261} R_{f}=0.15\left(\mathrm{CH}_{2} \mathrm{Cl} / \mathrm{MeOH}, 98: 2\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CH}_{3} \mathrm{OD}\right): \delta=8.22(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 8.09(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.56(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}$, $2^{\prime}, 6^{\prime}-\underline{H}$), 7.44 (app t, J = 7.4 Hz, $2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{H}$), 7.39 (app t, J = $7.1 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\underline{H}$), $6.97(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 6-$ H), $6.89(\mathrm{~s}, 1 \mathrm{H}, 8-\underline{\mathrm{H}})$.

FT-IR (cm-1): v = 3182, 3061, 2980, 2847, 1620, 1572, 1507, 1470, 1383, 1265, 1234, 1100, 1051, 886, 788, 702.
Known compound. ${ }^{261}$

Methyl 4-(7-hydroxy-4-oxo-4H-chromen-3-yl)benzoate (121)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}_{5}$
Molecular Weight: 296.28
Prepared according to General procedure I using: (a) p - $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ ($13 \mu \mathrm{~mol}, 2.5 \mathrm{mg}$), $\mathbf{1 1 7}$ ($0.13 \mathrm{mmol}, 50$ $\mathrm{mg}), \mathrm{MeOH}(5 \mathrm{~mL})$ and THF (5 mL), 1 h at $60^{\circ} \mathrm{C}$; (b) $\mathrm{Et}_{3} \mathrm{~N}(0.28 \mathrm{mmol}, 0.04 \mathrm{~mL})$; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 100: 2\right)$ to give $121(36 \mathrm{mg}, 90 \%)$ as a white solid; $\mathrm{mp}=280-281{ }^{\circ} \mathrm{C}$, lit. mp not available; $R_{f}=0.16\left(\mathrm{CH}_{2} \mathrm{Cl} / \mathrm{MeOH}, 98: 2\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{DMSO}): \delta=10.87$ (s, $1 \mathrm{H}, 7-\mathrm{OH}$), 8.51 (s, $1 \mathrm{H}, 2-\underline{\mathrm{H}}$), $8.03-7.95$ (m, $3 \mathrm{H}, 5,3^{\prime}, 55^{\prime}-\underline{\mathrm{H}}$), 7.74 (d, J = $8.2 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{H}$), 6.95 (dd, J = 1.7, $8.7 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}$), $6.89(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H}), 3.86(\mathrm{~s}$, $3 \mathrm{H}, 8^{\prime}-\mathrm{CH}_{3}$).

 $\left.4^{\prime}-\underline{C}\right), 127.8(\mathrm{CH}, 5-\underline{\mathrm{C}}), 122.9(\mathrm{qC}, 3-\underline{\mathrm{C}}), 117.0(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 115.9(\mathrm{CH}, 6-\underline{\mathrm{C}}), 102.7(\mathrm{CH}, 8-\underline{\mathrm{C}}), 52.6\left(\mathrm{CH}_{3}, 8{ }^{\prime}-\right.$ $\underline{C H}_{3}$).
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}_{5}$: 296.0685 [M], 297.0757 [M+H]+; found: 296.0686 [M], 297.0759 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR (cm^{-1}): $\mathrm{v}=3323,3152,3065,2954,1716,1619,1592,1467,1373,1259,1103,856,778$.

7-Hydroxy-iodo-4H-chromen-4-one (122)

Chemical Formula: $\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{IO}_{3}$ Molecular Weight: 288.04

Prepared according to General procedure I using: (a) $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(27 \mu \mathrm{~mol}, 5 \mathrm{mg}), 80(0.27 \mathrm{mmol}, 100$ mg), $\mathrm{MeOH}(5 \mathrm{~mL})$ and THF (5 mL), $60{ }^{\circ} \mathrm{C}$ for 1 h ; (b) $\mathrm{Et}_{3} \mathrm{~N}(0.27 \mathrm{mmol}, 0.04 \mathrm{~mL})$; purified by flash chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}, 100: 1\right)$ to give $122(72 \mathrm{mg}, 93 \%)$ as a white solid; $\mathrm{mp}=248-249{ }^{\circ} \mathrm{C}$, lit. mp $=192.2-193.5^{\circ} \mathrm{C} ;{ }^{262} R_{f}=0.36\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 98: 2\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{DMSO}): \delta=10.94$ (s, $1 \mathrm{H}, 7-\mathrm{OH}$), 8.69 ($\mathrm{s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}$), 7.90 (d, J = $8.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}$), 6.95 (dd, J = 2.2, $8.8 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}$), $6.86(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H})$.

FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3257,3064,1634,1608,1581,1470,1350,1234,1082,864,774,687,555$.
Known compound. ${ }^{19,262}$

3.2.1.3 Synthesis of other simple isoflavones or derivatives

General procedure J : To a solution of corresponding nitroisoflavone (1.0 equiv.) in ethanol, iron powder (10.0 equiv.) and $\mathrm{NH}_{4} \mathrm{Cl}$ (2.0 equiv., dissolved in $\mathrm{H}_{2} \mathrm{O}$) were added and the mixture was stirred and heated to $90{ }^{\circ} \mathrm{C}$ for $4 \mathrm{~h} .{ }^{165}$ The resulting solution was filtered hot, and the filtrate concentrated under vacuum. The crude was purified by flash chromatography to give the corresponding aminoisoflavone.

3-(4-Aminophenyl)-7-hydroxy-4H-chromen-4-one (123)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}_{3}$ Molecular Weight: 253.26

Prepared according to General procedure J using $33(4.94 \mathrm{mmol}, 1.4 \mathrm{~g})$, ethanol (20 mL), iron powder ($49.43 \mathrm{mmol}, 2.76 \mathrm{~g}$) and $\mathrm{NH}_{4} \mathrm{Cl}\left(9.89 \mathrm{mmol}, 0.53 \mathrm{~g}\right.$ in 2 mL water), $90{ }^{\circ} \mathrm{C}$ for 4 h ; purified by flash chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}, 100: 5\right)$ to give $123(0.83 \mathrm{~g}, 66 \%)$ as a white solid; $\mathrm{mp}=253{ }^{\circ} \mathrm{C}$ (decomp.), lit. $\mathrm{mp}=250^{\circ} \mathrm{C}$ (decomp.); ${ }^{249} R_{f}=0.16\left(\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}, 95: 5\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{DMSO}): \delta=10.76$ (s, $1 \mathrm{H}, 7-\mathrm{OH}$), 8.24 ($\mathrm{s}, 1 \mathrm{H}, 2-\underline{H}$), $7.96(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{H})$, $7.24\left(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{H}\right), 6.92(\mathrm{dd}, \mathrm{J}=2.2,8.7 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 6.85(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H}), 6.59$ (d, J = $8.5 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{H}$), 5.21 (br s, $2 \mathrm{H}, 4{ }^{\prime}-\mathrm{NH}_{2}$).
 148.9 ($q \mathrm{C}, 4^{\prime}-\underline{\mathrm{C}}$), 129.9 ($2 \mathrm{CH}, 2^{\prime}, 6^{\prime}-\underline{\mathrm{C}}$), $127.7\left(\mathrm{CH}, 5-\underline{\mathrm{C}}\right.$), 124.3 ($\mathrm{qC}, 3-\underline{\mathrm{C}}$), 119.4 ($\mathrm{qC}, 1^{\prime}$ or $4 \mathrm{a}-\underline{\mathrm{C}}$), 117.1 (qC, 1' or $4 \mathrm{a}-\underline{\mathrm{C}})$, $115.4(\mathrm{CH}, 6-\underline{\mathrm{C}}), 113.8\left(2 \mathrm{CH}, 3\right.$ ', $\left.5^{\prime}-\underline{\mathrm{C}}\right), 102.5(\mathrm{CH}, 8-\underline{\mathrm{C}})$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}_{3}$: 253.0739 [M], $254.0812[\mathrm{M}+\mathrm{H}]^{+}$; found: 253.0741 [M], 254.0814 $[\mathrm{M}+\mathrm{H}]^{+}$.

FT-IR $\left(\mathrm{cm}^{-1}\right): v=3337,3247,3156,3056,2918,2848,1626,1608,1590,1514,1462,1376,1246,1191$, 1097, 888, 840, 683.

Known compound. ${ }^{165,249}$

3-(4-Aminophenyl)-7-methoxy-4H-chromen-4-one (125)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{3}$ Molecular Weight: 267.28

Prepared according to General procedure J using 108 ($0.4 \mathrm{mmol}, 119 \mathrm{mg}$), ethanol (3 mL), iron powder (4 mmol, 223 mg) and $\mathrm{NH}_{4} \mathrm{Cl}\left(0.8 \mathrm{mmol}, 43 \mathrm{mg}\right.$ in 0.5 mL water), $90{ }^{\circ} \mathrm{C}$ for 4 h ; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $100: 5$) to give 125 ($102 \mathrm{mg}, 95 \%$) as a white solid; $\mathrm{mp}=205-206{ }^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=201-202{ }^{\circ} \mathrm{C} ;{ }^{263} R_{f}=0.14\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.95: 5\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.20(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 7.90(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 7.37(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.2^{\prime}, 6^{\prime}-\underline{H}\right), 6.98(\mathrm{dd}, \mathrm{J}=2.4,8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 6.84(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H}), 6.74\left(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\right.$ H), 3.91 (s, $3 \mathrm{H}, 9-\underline{C H}_{3}$), 3.75 (br s, $2 \mathrm{H}, 4 \mathrm{H}^{\prime}-\mathrm{NH}_{2}$).
 146.5 (qC, $4^{\prime}-\underline{C}$), 130.0 (2 CH, 2', $6^{\prime}-\underline{C}$), 127.9 ($\mathrm{CH}, 5-\underline{\mathrm{C}}$), 125.2 ($\mathrm{qC}, 1^{\prime}$ or $3-\underline{\mathrm{C}}$), 122.0 (qC, 1^{\prime} or $3-\underline{\mathrm{C}}$), 118.5 (qC, 4a-C-C), $115.1\left(2 \mathrm{CH}, 3^{\prime}, 5^{\prime}-\underline{-}\right), 114.5(\mathrm{CH}, 6-\underline{C}), 100.1(\mathrm{CH}, 8-\underline{C}), 55.9\left(\mathrm{CH}_{3}, 9-\mathrm{CH}_{3}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{3}$: 267.0895 [M], 268.0968 [M+H]+; found: 267.0897 [M], 268.0968 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): v=3418,3336,3241,2980,2888,1620,1592,1514,1440,1377,1250,1177,1098,942$, 883, 825, 781, 694, 615, 541.
Known compound, modified method. ${ }^{263}$

3-(3-Aminophenyl)-7-methoxy-4H-chromen-4-one (126)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{3}$
Molecular Weight: 267.28

Prepared according to General procedure J using 110 ($0.35 \mathrm{mmol}, 104 \mathrm{mg}$), ethanol (2 mL), iron powder $(3.5 \mathrm{mmol}, 195 \mathrm{mg})$ and $\mathrm{NH}_{4} \mathrm{Cl}\left(0.7 \mathrm{mmol}, 38 \mathrm{mg}\right.$ in 0.4 mL water), $90^{\circ} \mathrm{C}$ for 4 h ; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.100: 5\right)$ to give 126 ($86 \mathrm{mg}, 92 \%$) as a pale brown solid; $\mathrm{mp}=133-134$ ${ }^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=198-199{ }^{\circ} \mathrm{C} ;{ }^{263} \mathrm{R}_{\mathrm{f}}=0.16\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.95: 5\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.18(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 7.90(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 7.18(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, 5'-브), 6.96 (dd, J = 2.4, $8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}$), $6.93\left(\mathrm{t}, \mathrm{J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\underline{H}\right.$), 6.86 (dt, J = 1.1, $7.6 \mathrm{~Hz}, 1 \mathrm{H}, 6$ 'H), $6.82(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{\mathrm{H}}), 6.74$ (ddd, J = $0.8,2.3,8.0 \mathrm{~Hz}, 1 \mathrm{H}, 4$ '- -H), 3.88 (s, $3 \mathrm{H}, 9-\mathrm{CH}_{3}$), 3.73 (br s, $2 \mathrm{H}, 3^{\prime}-\mathrm{NH}_{2}$).

 118.4 (qC, 4a-ㅡㅡ), 115.9 (CH, 2'- $-\underline{C}), 115.0\left(\mathrm{CH}, 4{ }^{\prime}-\underline{\mathrm{C}}\right), 114.6(\mathrm{CH}, 6-\underline{\mathrm{C}}), 100.1(\mathrm{CH}, 8-\underline{\mathrm{C}}), 55.8\left(\mathrm{CH}_{3}, 9-\underline{\mathrm{C}} \mathrm{H}_{3}\right)$. HRMS (Dual ESI): calc m / z for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{3}$: 267.0895 [M], 268.0968 [M+H]+; found: 267.0901 [M], 268.0973 $[\mathrm{M}+\mathrm{H}]^{+}$.

FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3445,3364,3058,3000,2980,2844,1614,1595,1563,1492,1435,1382,1299,1238$, 1187, 1097, 1050, 941, 851, 784, 700, 630, 553.

Known compound, modified method. ${ }^{263}$

3-(2-Aminophenyl)-7-methoxy-4H-chromen-4-one (127), and (2-hydroxy-4-methoxyphenyl)(1 H-indol-3-yl)methanone (133)

Title compounds were prepared according to General procedure J using 111 ($0.35 \mathrm{mmol}, 104 \mathrm{mg}$), ethanol $(2 \mathrm{~mL})$, iron powder ($3.5 \mathrm{mmol}, 195 \mathrm{mg}$) and $\mathrm{NH}_{4} \mathrm{Cl}\left(0.7 \mathrm{mmol}, 38 \mathrm{mg}\right.$ in 0.4 mL water), $90{ }^{\circ} \mathrm{C}$ for 4 h ; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.100: 4\right)$ to give:

- 3-(2-aminophenyl)-7-methoxy-4H-chromen-4-one (127), pale brown solid ($55 \mathrm{mg}, 59 \%$); $\mathrm{mp}=160$ $162{ }^{\circ} \mathrm{C}$; $R_{f}=0.28\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.95: 5\right)$.

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{3}$ Molecular Weight: 267.28
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.21(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 7.94(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 7.21(\mathrm{td}, \mathrm{J}=1.5,11.5 \mathrm{~Hz}$, $1 \mathrm{H}, 4$ '- \underline{H}), 7.08 (dd, J = 1.4, $7.5 \mathrm{~Hz}, 1 \mathrm{H}, 6$ '- $-\underline{\text { H }}$), 7.01 (dd, J = 2.3, $8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}$), 6.88 (d, J = $2.3 \mathrm{~Hz}, 1$ H, 8-브), $6.85-6.77\left(\mathrm{~m}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{H}\right), 3.92\left(\mathrm{~s}, 3 \mathrm{H}, 9-\mathrm{CH}_{3}\right), 3.86$ (br s, $2 \mathrm{H}, 2^{\prime}-\mathrm{NH}_{2}$).
 146.5 (qC, 2'- $-\underline{C}$), $131.2\left(\mathrm{CH}, 6^{\prime}-\underline{-}\right)$, $129.8\left(\mathrm{CH}, 4^{\prime}-\underline{C}\right), 127.8(\mathrm{CH}, 5-\underline{C}), 125.3(q \mathrm{C}, 3-\underline{C}), 119.3$ (qC, 1' or 4a-C- $), 119.0\left(\mathrm{CH}, 5^{\prime}-\underline{\mathrm{C}}\right), 117.9\left(\mathrm{qC}, 1^{\prime}\right.$ or $\left.4 \mathrm{a}-\underline{\mathrm{C}}\right), 117.2\left(\mathrm{CH}, 3{ }^{\prime}-\underline{\mathrm{C}}\right), 115.0(\mathrm{CH}, 6-\underline{\mathrm{C}}), 100.1(\mathrm{CH}, 8-\underline{\mathrm{C}}), 55.9\left(\mathrm{CH}_{3}\right.$, $\left.9-\mathrm{CH}_{3}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{3}$: 267.0895 [M], 268.0968 [M+H]+; found: 267.0898 [M], 268.0971 $[\mathrm{M}+\mathrm{H}]^{+}$.

FT-IR $\left(\mathrm{cm}^{-1}\right): v=3422,3324,3217,3071,2980,2839,1621,1603,1563,1492,1444,1375,1238,1142$, 1029, 937, 888, 827, 781, 747, 609, 517.

Previously unreported.

- (2-hydroxy-4-methoxyphenyl)(1H-indol-3-yl)methanone (133), brown solid (12 mg, 12\%); mp = $159-161^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=175-177{ }^{\circ} \mathrm{C} ;{ }^{264} R_{f}=0.5\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.95: 5\right)$.

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{3}$ Molecular Weight: 267.28
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.88$ (s, $1 \mathrm{H}, 2$ '- OH), 8.95 (br s, $1 \mathrm{H}, 1 "$ "NH), $8.25-8.15$ ($\mathrm{m}, 1 \mathrm{H}, 4$ "- $\underline{\mathrm{H}}$), 7.78 (d, J = $8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6$ '- -H), 7.65 (app d, J = $2.9 \mathrm{~Hz}, 1 \mathrm{H}, 2$ "-H्H), $7.45-7.38(\mathrm{~m}, 1 \mathrm{H}, 7$ "- $\underline{\mathrm{H}}$), $7.34-7.27$ ($\mathrm{m}, 2 \mathrm{H}, 5^{\prime \prime}, 6^{\prime \prime}-\underline{H}$), $6.53\left(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-\underline{H}\right), 6.45\left(\mathrm{dd}, \mathrm{J}=2.5,8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\underline{\mathrm{H}}\right), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, 7^{\prime}-\mathrm{CH}_{3}\right)$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=193.3$ (C=O, 1-C-C), 165.3 (qC, 2' or 4'- C), 165.2 ($\mathrm{qC}, 2^{\prime}$ or $4^{\prime}-\mathrm{C}$), 136.1 (qC,

 $107.0\left(\mathrm{CH}, 5^{\prime}\right.$ - $\left.-\underline{H}\right), 101.2\left(\mathrm{CH}, 3^{\prime}-\underline{\mathrm{C}}\right), 55.5\left(\mathrm{CH}_{3}, 7{ }^{\prime}-\mathrm{CH}_{3}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{3}$: 267.0895 [M], 268.0968 [$\left.\mathrm{M}+\mathrm{H}\right]^{+}$; found: 267.0901 [M], 268.0973 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): v=3243,3117,2971,2927,2847,1613,1567,1510,1428,1356,1276,1194,1110,1022$, 962, 873, 836, 741, 607.

Known compound, modified method. ${ }^{264}$

General procedure K: To a suspension of aminoisoflavone (1.0 equiv.) in anhydrous acetonitrile under N_{2} at $0{ }^{\circ} \mathrm{C}, t$-BuONO (1.5 equiv.) and TMSN_{3} (1.5 equiv.) were added dropwise, and the resulting mixture was stirred at room temperature for 1.5 h . ${ }^{166,172}$ The volatiles were removed and the crude was purified by flash chromatography to give the desired azidoisoflavone, unless otherwise stated.

3-(4-Azidophenyl)-7-hydroxy-4H-chromen-4-one (128)

Prepared according to General procedure K using 123 ($2.96 \mathrm{mmol}, 750 \mathrm{mg}$), acetonitrile (6 ml), t-BuONO $(4.44 \mathrm{mmol}, 458 \mathrm{mg}, 0.59 \mathrm{~mL})$ and $\mathrm{TMSN}_{3}(4.44 \mathrm{mmol}, 512 \mathrm{mg}, 0.62 \mathrm{~mL}), 1.5 \mathrm{~h}$ at RT; the crude was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ to give $128(725 \mathrm{mg}, 75 \%)$ as a white solid; $\mathrm{mp}=198{ }^{\circ} \mathrm{C}$ (decomp.); $R_{f}=0.4$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 95: 5\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{DMSO}): \delta=10.84(\mathrm{~s}, 1 \mathrm{H}, 7-\mathrm{OH}), 8.41(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 7.96(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}})$, $7.61\left(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{H}\right), 7.17\left(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{H}\right), 6.93(\mathrm{dd}, \mathrm{J}=2.2,8.8 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 6.87$ (d, J = 2.2 Hz, $1 \mathrm{H}, 8-\underline{H}$).
 139.3 (qC, 4'$\left.3^{\prime}, 5^{\prime}-\underline{C}\right), 117.0(q C, 4 a-\underline{C}), 115.8(\mathrm{CH}, 6-\underline{\mathrm{C}}), 102.6(\mathrm{CH}, 8-\underline{\mathrm{C}})$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{3}$: $279.0644[\mathrm{M}], 280.0717[\mathrm{M}+\mathrm{H}]^{+}, 252.0661$ [M-N $\left.{ }_{2}\right]^{+}$; found: $279.0648[\mathrm{M}], 280.0720[\mathrm{M}+\mathrm{H}]^{+}, 252.0665\left[\mathrm{M}-\mathrm{N}_{2}\right]^{+}$.

FT-IR (cm^{-1}): $\mathbf{v}=3232,3050,2099,1619,1575,1565,1506,1376,1264,1093,829$.
Previously unreported.

3-(4-Azidophenyl)-5,7-dihydroxy-4H-chromen-4-one (129)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{4}$
Molecular Weight: 295.25
Prepared according to General procedure K using $124(75 \mu \mathrm{~mol}, 20 \mathrm{mg}$), acetonitrile (2 ml), t-BuONO (111 $\mu \mathrm{mol}, 11.5 \mathrm{mg}, 15 \mu \mathrm{~L})$ and $\mathrm{TMSN}_{3}(111 \mu \mathrm{~mol}, 13 \mathrm{mg}, 16 \mu \mathrm{~L}), 1.5 \mathrm{~h}$ at RT; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $100: 5$) to give 129 ($18 \mathrm{mg}, 82 \%$) as a pale brown solid; $\mathrm{mp}=162-163{ }^{\circ} \mathrm{C}$ (decomp.); $R_{f}=$ $0.5\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.9: 1\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, acetone- d_{6}): $\delta=12.91(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{OH}), 9.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 7-\mathrm{OH}), 8.27(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{H}), 7.67$ (d, J = 8.7 Hz, $2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{H}$), 7.16 (d, J = $8.7 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{H}$), $6.43(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H}), 6.30$ ($\mathrm{d}, \mathrm{J}=2.1$ $\mathrm{Hz}, 1 \mathrm{H}, 6-\underline{H})$.
 ($q \mathrm{C}, 8 \mathrm{a}-\underline{\mathrm{C}}$), 154.2 ($\mathrm{CH}, 2-\underline{\mathrm{C}}$), 139.7 ($\mathrm{qC}, 4^{\prime}-\underline{\mathrm{C}}$), $130.5\left(2 \mathrm{CH}, 2^{\prime}, 6^{\prime}-\underline{\mathrm{C}}\right.$), 128.0 ($\mathrm{qC}, 1^{\prime}-\underline{\mathrm{C}}$), 122.3 ($\mathrm{qC}, 3-\underline{\mathrm{C}}$), 118.8 (2 CH, 3', 5'-C-C), 105.2 (qC, 4a-C-C), 99.1 ($\mathrm{CH}, 6-\underline{C}$), $93.7(\mathrm{CH}, 8-\underline{\mathrm{C}})$.

HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{4}$: $295.0593[\mathrm{M}], 296.0666[\mathrm{M}+\mathrm{H}]^{+}, 268.0604\left[\mathrm{M}-\mathrm{N}_{2}+\mathrm{H}\right]^{+}$; found: $295.0598[\mathrm{M}], 296.0669[\mathrm{M}+\mathrm{H}]^{+}, 268.0603\left[\mathrm{M}-\mathrm{N}_{2}+\mathrm{H}\right]^{+}$.

FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3388,3064,2916,2115,1650,1619,1573,1501,1291,1250,1170,1042,780,516$.
Previously unreported.

3-(4-Azidophenyl)-7-methoxy-4H-chromen-4-one (130)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$ Molecular Weight: 293.28

Prepared according to General procedure K using 125 (112 $\mu \mathrm{mol}, 30 \mathrm{mg}$), acetonitrile (2 ml), t-BuONO $(168 \mu \mathrm{~mol}, 17.3 \mathrm{mg}, 22 \mu \mathrm{~L})$ and $\mathrm{TMSN}_{3}(168 \mu \mathrm{~mol}, 19.4 \mathrm{mg}, 23.5 \mu \mathrm{~L}), 1.5 \mathrm{~h}$ at RT; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $100: 2$) to give 130 ($31 \mathrm{mg}, 94 \%$) as a white solid; $\mathrm{mp}=179-180{ }^{\circ} \mathrm{C}$; R_{f} $=0.5\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, 98:2).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.20(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 7.94(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 7.56(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}$, $2^{\prime}, 6^{\prime}-\underline{H}$), 7.09 (d, J = $8.5 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{H}$), $7.00(\mathrm{dd}, \mathrm{J}=2.3,8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 6.86(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-$ H), 3.92 (s, $\left.3 \mathrm{H}, 9-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=175.5$ (C=O, 4-C-C), 164.2 ($\mathrm{qC}, 7-\underline{\mathrm{C}}$), 158.0 ($\left.\mathrm{qC}, 8 \mathrm{a}-\underline{\mathrm{C}}\right), 152.5(\mathrm{CH}, 2-\underline{\mathrm{C}})$, 139.9 (qC, 4'- \underline{C}), 130.4 (2 CH, 2', $6^{\prime}-\underline{C}$), 128.7 (qC, $1^{\prime}-\underline{C}$), $127.9(\mathrm{CH}, 5-\underline{C}), 124.5(q C, 3-\underline{C}), 119.2(2 \mathrm{CH}$, $\left.3^{\prime}, 5^{\prime}-\underline{C}\right), 118.4(q C, 4 a-\underline{C}), 114.8(\mathrm{CH}, 6-\underline{\mathrm{C}}), 100.2(\mathrm{CH}, 8-\underline{\mathrm{C}}), 55.9\left(\mathrm{CH}_{3}, 9-\underline{\mathrm{C}} \mathrm{H}_{3}\right)$.

HRMS (Dual ESI): calc m / z for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$: 293.0800 [M], $294.0873[\mathrm{M}+\mathrm{H}]^{+}, 266.0812\left[\mathrm{M}-\mathrm{N}_{2}+\mathrm{H}\right]^{+}$; found: $293.0800[\mathrm{M}], 294.0872[\mathrm{M}+\mathrm{H}]^{+}, 266.0820\left[\mathrm{M}-\mathrm{N}_{2}+\mathrm{H}\right]^{+}$.
FT-IR (cm^{-1}): $u=3089,2980,2888,2841,2125,2098,1627,1600,1567,1502,1441,1369,1254,1183$, 1105, 1017, 941, 886, 818, 773, 692, 616, 537.

Previously unreported.

3-(3-Azidophenyl)-7-methoxy-4H-chromen-4-one (131)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$ Molecular Weight: 293.28

Prepared according to General procedure K using 126 (112 $\mu \mathrm{mol}, 30 \mathrm{mg}$), acetonitrile (2 ml), t-BuONO ($168 \mu \mathrm{~mol}, 17.3 \mathrm{mg}, 22 \mu \mathrm{~L}$) and $\mathrm{TMSN}_{3}(168 \mu \mathrm{~mol}, 19.4 \mathrm{mg}, 23.5 \mu \mathrm{~L}), 1.5 \mathrm{~h}$ at RT; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $100: 2$) to give 131 ($27 \mathrm{mg}, 82 \%$) as a white solid; $\mathrm{mp}=156-157{ }^{\circ} \mathrm{C}$; R_{f} $=0.6\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, 98:2).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.21(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 7.95(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 7.40(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, $5^{\prime}-\underline{H}$), 7.31 (dt, J = 1.1, $7.7 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\underline{\mathrm{H}}$), $7.28-7.24\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-\underline{H}\right.$), 7.03 (ddd, J = 1.0, 2.2, 8.0 Hz, 1 H , 4 '- $-\underline{H}$), 7.00 (dd, J = 2.3, $8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{\mathrm{H}}), 6.86(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{\mathrm{H}}), 3.92\left(\mathrm{~s}, 3 \mathrm{H}, 9-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=175.4$ ($\mathrm{C}=\mathrm{O}, 4-\underline{\mathrm{C}}$), 164.3 ($\mathrm{qC}, 7-\underline{\mathrm{C}}$), 158.0 ($\mathrm{qC}, 8 \mathrm{a}-\underline{\mathrm{C}}$), 152.9 ($\mathrm{CH}, 2-\underline{\mathrm{C}}$),
 $119.7\left(\mathrm{CH}, 2^{\prime}\right.$ or $\left.4^{\prime}-\underline{\mathrm{C}}\right)$, $118.8\left(\mathrm{CH}, 2^{\prime}\right.$ or $\left.4^{\prime}-\underline{\mathrm{C}}\right), 118.4(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 114.9(\mathrm{CH}, 6-\underline{\mathrm{C}}), 100.3(\mathrm{CH}, 8-\underline{\mathrm{C}}), 56.0$ $\left(\mathrm{CH}_{3}, 9-\mathrm{CH}_{3}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$: $293.0800[\mathrm{M}]$, $294.0873[\mathrm{M}+\mathrm{H}]^{+}, 266.0812\left[\mathrm{M}-\mathrm{N}_{2}+\mathrm{H}\right]^{+}$; found: $293.0798[\mathrm{M}], 294.0870[\mathrm{M}+\mathrm{H}]^{+}, 266.0816\left[\mathrm{M}-\mathrm{N}_{2}+\mathrm{H}\right]^{+}$.

FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3077,2980,2888,2946,2119,2101,1645,1624,1601,1503,1437,1380,1272,1196$, 1109, 1053, 944, 834, 782, 690.

Previously unreported.

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$ Molecular Weight: 293.28

Prepared according to General procedure K using 127 (112 $\mu \mathrm{mol}, 30 \mathrm{mg}$), acetonitrile (2 ml), t-BuONO ($168 \mu \mathrm{~mol}, 17.3 \mathrm{mg}, 22 \mu \mathrm{~L}$) and $\mathrm{TMSN}_{3}(168 \mu \mathrm{~mol}, 19.4 \mathrm{mg}, 23.5 \mu \mathrm{~L}$), 1.5 h at RT; purified by flash chromatography ($\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ acetone, $100: 2$) to give 132 ($31 \mathrm{mg}, 94 \%$) as a white solid; $\mathrm{mp}=191-192{ }^{\circ} \mathrm{C}$ (decomp.); $R_{f}=0.6\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, 98:2).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.19(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}$), $7.85(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 7.42$ (app td, J = 1.5, 7.7 $\mathrm{Hz}, 1 \mathrm{H}, 5^{\prime}-\underline{H}$), 7.33 (dd, J=1.3, $7.6 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\underline{H}$), $7.28-7.16$ (m, $2 \mathrm{H}, 3^{\prime}, 4^{\prime}-\underline{H}$), 7.00 ($\mathrm{dd}, \mathrm{J}=2.3,8.9 \mathrm{~Hz}$, $1 \mathrm{H}, 6-\underline{H}), 6.87(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{\mathrm{H}}), 3.92\left(\mathrm{~s}, 3 \mathrm{H}, 9-\underline{C H}_{3}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=175.2$ (C=O, 4-C-C), 164.2 (qC, 7-C-C), 158.1 (qC, 8a-C), 153.9 (CH, 2-ㅡ) , 139.1 (qC2'- $-\underline{C}$), $132.3\left(\mathrm{CH}, 4^{\prime}\right.$ or 5^{\prime} or $\left.6^{\prime}-\underline{\mathrm{C}}\right), 129.9\left(\mathrm{CH}, 4^{\prime}\right.$ or 5^{\prime} or $\left.6^{\prime}-\underline{-}\right), 127.9(\mathrm{CH}, 5-\underline{\mathrm{C}}), 124.8\left(\mathrm{CH}, 4^{\prime}\right.$ or 5 ' or 6 '- $-\underline{C}$), 123.9 (qC, 1' or $3-\underline{C}$), 122.7 (qC, 1' or $3-\underline{C}$), 118.7 (CH, 3'- \underline{C}), 118.3 (qC, 4a- \underline{C}), 114.7 (CH, 6C $), 100.3(\mathrm{CH}, 8-\underline{\mathrm{C}}), 55.9\left(\mathrm{CH}_{3}, 9-\underline{\mathrm{C}_{3}}\right)$.

HRMS (Dual ESI): calc m / z for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$: $293.0800[\mathrm{M}]$, $294.0873[\mathrm{M}+\mathrm{H}]^{+}, 266.0812\left[\mathrm{M}-\mathrm{N}_{2}+\mathrm{H}\right]^{+}$; found: $293.0801[\mathrm{M}], 294.0873[\mathrm{M}+\mathrm{H}]^{+}, 266.0819\left[\mathrm{M}-\mathrm{N}_{2}+\mathrm{H}\right]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3054,2999,2955,2848,2122,2094,1642,1602,1569,1494,1440,1370,1322,1281$, 1251, 1101, 1036, 939, 838, 781, 679, 555.

Previously unreported.

3-(4-(Chloromethyl)phenyl)-7-methoxy-4H-chromen-4-one (134)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{ClO}_{3}$ Molecular Weight: 300.74

Method A: To a solution of $114(177 \mu \mathrm{~mol}, 50 \mathrm{mg})$ in $\mathrm{CHCl}_{3}(1 \mathrm{~mL})$ under N_{2} at $0^{\circ} \mathrm{C}$, pyridine $(354 \mu \mathrm{~mol}$, $29 \mu \mathrm{~L}$) was added, followed by a dropwise addition of tosyl chloride ($266 \mu \mathrm{~mol}, 51 \mathrm{mg}$) in $\mathrm{CHCl}_{3}(1 \mathrm{~mL})$. The resulting mixture was stirred overnight at RT. ${ }^{169}$ The reaction mixture was concentrated and the crude was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 100: 1\right.$ to $\left.100: 2\right)$ to give 134 ($15 \mathrm{mg}, 28 \%$) as a white solid; $R_{f}=0.54\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 100: 1\right)$. The starting isoflavone $114(17 \mathrm{mg}, 34 \%)$ was also separated.

Method B: To a solution of $114(177 \mu \mathrm{~mol}, 50 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ under N_{2} at $0^{\circ} \mathrm{C}$, $\mathrm{Et}_{3} \mathrm{~N}(354 \mu \mathrm{~mol}, 50$ $\mu \mathrm{L}$) and mesyl chloride ($266 \mu \mathrm{~mol}, 21 \mu \mathrm{~L}$) were added dropwise. The resulting mixture was stirred overnight at RT. ${ }^{170}$ The reaction mixture was concentrated and the crude was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 100: 1\right)$ to give $134(35 \mathrm{mg}, 66 \%)$ as a white solid; $\mathrm{mp}=134-135{ }^{\circ} \mathrm{C} ; R_{f}=0.54$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 100: 1\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.20(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 7.94(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 7.56(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.2^{\prime}, 6^{\prime}-\underline{H}\right), 7.45\left(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{H}\right), 6.99(\mathrm{dd}, \mathrm{J}=2.4,8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 6.85(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, 8-$ H), 4.62 (s, $2 \mathrm{H}, 7$ '- CH_{2}), 3.91 ($\mathrm{s}, 3 \mathrm{H}, 9-\mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=175.5(\mathrm{C}=\mathrm{O}, 4-\underline{\mathrm{C}})$, 164.2 ($\mathrm{qC}, 7-\underline{\mathrm{C}}$), 158.0 ($\mathrm{qC}, 8 \mathrm{a}-\underline{\mathrm{C}}$), 152.8 ($\mathrm{CH}, 2-\underline{\mathrm{C}}$), 137.3 (qC, $\left.4^{\prime}-\underline{C}\right), 132.2\left(q C, 1^{\prime}-\underline{C}\right), 129.4\left(2 \mathrm{CH}, 2^{\prime}, 6^{\prime}-\underline{\mathrm{C}}\right), 128.8\left(2 \mathrm{CH}, 3^{\prime}, 5^{\prime}-\underline{-}\right), 127.9(\mathrm{CH}, 5-\underline{\mathrm{C}}), 124.8(\mathrm{qC}$, $3-\underline{C}), 118.4(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 114.8(\mathrm{CH}, 6-\underline{\mathrm{C}}), 100.2(\mathrm{CH}, 8-\underline{\mathrm{C}}), 55.9\left(\mathrm{CH}_{3}, 9-\underline{\mathrm{CH}_{3}}\right), 46.1\left(\mathrm{CH}_{2}, 7{ }^{\prime}-\underline{\mathrm{CH}_{2}}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{ClO}_{3}: 300.0553$ [M], $301.0626[\mathrm{M}+\mathrm{H}]^{+}$; found: 300.0558 [M], 301.0631 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): v=3074,2980,2928,2843,1638,1623,1574,1496,1445,1370,1322,1238,1180,1045$, 1022, 937, 897, 824, 779, 674, 552.

Previously unreported.

3-(4-(Azidomethyl)phenyl)-7-methoxy-4H-chromen-4-one (135)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}$ Molecular Weight: 307.31

To a solution of $134(50 \mu \mathrm{~mol}, 15 \mathrm{mg})$ in DMF $(1 \mathrm{~mL}), \mathrm{NaN}_{3}(150 \mu \mathrm{~mol}, 10 \mathrm{mg})$ was added and the reaction mixture was stirred overnight at $65{ }^{\circ} \mathrm{C}$. ${ }^{169,170}$ Water (5 mL) was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The organic phase was washed with water $(3 \times 10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 100: 1\right)$ to give $135(14 \mathrm{mg}, 91 \%)$ as a white solid; $\mathrm{mp}=125-126{ }^{\circ} \mathrm{C} ; R_{f}=0.6$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 100: 1\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.21(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 7.96(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 7.59(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.2^{\prime}, 6^{\prime}-\underline{H}\right), 7.39\left(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{H}\right), 7.00(\mathrm{dd}, \mathrm{J}=2.4,8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 6.86(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, 8-$ H), 4.38 ($\mathrm{s}, 2 \mathrm{H}, 7 \mathrm{7}^{\prime}-\mathrm{CH}_{2}$), 3.92 (s, $3 \mathrm{H}, 9-\mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=175.6$ ($\mathrm{C}=\mathrm{O}, 4-\underline{\mathrm{C}}$), 164.2 ($\mathrm{qC}, 7-\underline{\mathrm{C}}$), 158.0 ($\left.\mathrm{qC}, 8 \mathrm{a}-\underline{\mathrm{C}}\right), 152.8(\mathrm{CH}, 2-\underline{\mathrm{C}})$, 135.3 (qC, $4^{\prime}-\underline{C}$), 132.1 (qC, $1^{\prime}-\underline{C}$), $129.5\left(2 \mathrm{CH}, 2^{\prime}, 6^{\prime}-\underline{-}\right), 128.4\left(2 \mathrm{CH}, 3^{\prime}, 5^{\prime}-\underline{-}\right), 127.9(\mathrm{CH}, 5-\underline{\mathrm{C}}), 124.8(\mathrm{qC}$, $3-\underline{C}), 118.5(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 114.8(\mathrm{CH}, 6-\underline{\mathrm{C}}), 100.2(\mathrm{CH}, 8-\underline{\mathrm{C}}), 55.9\left(\mathrm{CH}_{3}, 9-\underline{\mathrm{CH}_{3}}\right), 54.6\left(\mathrm{CH}_{2}, 7{ }^{\prime}-\underline{\mathrm{CH}_{2}}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}$: 307.0957 [M], $308.1030[\mathrm{M}+\mathrm{H}]^{+}$; found: 307.0960 [M], 308.1031 $[\mathrm{M}+\mathrm{H}]^{+}$.

FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3078,2980,2923,2849,2086,1620,1594,1561,1499,1437,1326,1254,1203,1095$, 1045, 1021, 937, 822, 777, 617, 536.
Previously unreported.

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}_{4}$ Molecular Weight: 280.28

Dess-Martin periodinane (DMP, $85 \mu \mathrm{~mol}, 36 \mathrm{mg}$) was added to a solution of $114(71 \mu \mathrm{~mol}, 20 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 3 hours at room temperature. The reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(79 \mathrm{mg}, 0.5 \mathrm{mmol})$ and stirred for $1 \mathrm{~h} .{ }^{172}$ The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$ and the organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography ($\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ acetone, 100:2) to give 136 ($19 \mathrm{mg}, 95 \%$) as a white solid; $\mathrm{mp}=239-241^{\circ} \mathrm{C} ; R_{f}=0.3\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.100: 2\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=10.04$ ($\mathrm{s}, 1 \mathrm{H}, 7{ }^{\prime}-\mathrm{CHO}$), 8.21 ($\mathrm{d}, \mathrm{J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}$), 8.03 ($\mathrm{s}, 1 \mathrm{H}, 2-\underline{H}$), $7.94\left(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{H}\right), 7.76\left(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{H}\right), 7.02(\mathrm{dd}, \mathrm{J}=2.4,8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 6.88$ (d, J = $2.4 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{\mathrm{H}}$), 3.92 (s, $3 \mathrm{H}, 9-\mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta=191.9$ (CHO, 7'- $-\underline{\mathrm{C}}$), 175.1 ($\mathrm{C}=\mathrm{O}, 4-\underline{\mathrm{C}}$), 164.3 ($\mathrm{qC}, 7-\underline{\mathrm{C}}$), 157.9 (qC, $8 \mathrm{a}-\underline{\mathrm{C}}$),
 $5-\underline{C}), 124.2(\mathrm{qC}, 3-\underline{\mathrm{C}})$, 118.3 (qC, 4a-C), $114.9(\mathrm{CH}, 6-\underline{\mathrm{C}}), 100.2(\mathrm{CH}, 8-\underline{\mathrm{C}}), 55.9\left(\mathrm{CH}_{3}, 9-\underline{\mathrm{C}} \mathrm{H}_{3}\right)$.
HRMS (Dual ESI): calc m/z for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}_{4}$: 280.0736 [M], $281.0808[\mathrm{M}+\mathrm{H}]^{+}$; found: $280.0730[\mathrm{M}], 281.0803$ $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR (cm-1): $0=3062,2991,2899,2830,1695,1633,1600,1565,1437,1331,1261,1047,942,823,786$, 532.

Previously unreported.

Methyl 2-hydroxy-4-methoxybenzoate (138)

Chemical Formula: $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4}$ Molecular Weight: 182.18

To a suspension of $\mathbf{1 3 6}(71 \mu \mathrm{~mol}, 20 \mathrm{mg})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(214 \mu \mathrm{~mol}, 30 \mathrm{mg})$, followed by dimethyl 1-diazo-2-oxopropylphosphonate $141(141 \mu \mathrm{~mol}, 22 \mu \mathrm{~L})$ and the mixture was stirred for 5 min at $0^{\circ} \mathrm{C}$ and after at RT for $1 \mathrm{~h} .{ }^{172}$ The reaction was quenched with aqueous NaHCO_{3} solution (10 $\mathrm{mL}, 5 \%)$ and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$. The organic phase was washed with brine $(25 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography ($\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ acetone, $100: 0.5$) to give 138 ($9 \mathrm{mg}, 73 \%$) as a colourless oil; $R_{f}=0.7$ ($\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ acetone, 100:2).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=11.00\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{2}^{\prime}-\mathrm{OH}\right.$) $, 7.84\left(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, 6{ }^{\prime}-\underline{\mathrm{H}}\right), 6.48-6.43(\mathrm{~m}, 2 \mathrm{H}$, $\left.3^{\prime}, 5^{\prime}-\underline{H}\right), 3.93\left(\mathrm{~s}, 3 \mathrm{H}, 2-\mathrm{CH}_{3}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, 7 \mathrm{7}^{\prime}-\underline{\mathrm{CH}}_{3}\right)$.
 $107.5(\mathrm{CH}, 5$ '- $-\underline{C}), 105.4\left(\mathrm{qC}, 1^{\prime}-\underline{-}\right), 100.6\left(\mathrm{CH}, 3{ }^{\prime}-\underline{C}\right), 55.5\left(\mathrm{CH}_{3}, 7\right.$ '- $\left.\mathrm{CH}_{3}\right), 52.0\left(\mathrm{CH}_{3}, 2-\underline{\mathrm{CH}_{3}}\right)$.
Known compound, modified method. ${ }^{265}$

7-Methoxy-3-((trimethylsilyl)ethynyl)-4H-chromen-4-one (145)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Si}$ Molecular Weight: 272.38

To a degassed solution of $82(1.65 \mathrm{mmol}, 500 \mathrm{mg})$ in dry THF $(30 \mathrm{~mL})$ and under $\mathrm{N}_{2}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(50$ $\mu \mathrm{mol}, 35 \mathrm{mg})$, $\mathrm{Cul}(0.33 \mathrm{mmol}, 63 \mathrm{mg})$, and $143(1.98 \mathrm{mmol}, 275 \mu \mathrm{~L})$ were added. The mixture was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{Et}_{3} \mathrm{~N}(16 \mathrm{~mL})$ was added dropwise. The resulting mixture was stirred at RT for 3 h under $\mathrm{N}_{2} .{ }^{161}$ The reaction mixture was filtered over Celite ${ }^{T M}$, and the solid on Celite ${ }^{T M}$ washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$. Water (30 mL) was added to the filtrate, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The organic layer was washed with brine (50 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure. The crude was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 100: 1\right)$ to give $145(400 \mathrm{mg}, 88 \%)$ as a white solid; $\mathrm{mp}=104-106{ }^{\circ} \mathrm{C}$, lit. mp not available; $R_{f}=0.46\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 100: 1\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=.8 .14(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 6.97$ (dd, J = 2.3, 8.9 Hz, $1 \mathrm{H}, 6-\underline{H}), 6.82$ (d, J = $2.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H}$), $3.90\left(\mathrm{~s}, 3 \mathrm{H}, 9-\mathrm{CH}_{3}\right), 0.26\left(\mathrm{~s}, 9 \mathrm{H}, 12,13,14-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=174.7(\mathrm{C}=\mathrm{O}, 4-\underline{\mathrm{C}}), 164.3(\mathrm{qC}, 7-\underline{\mathrm{C}}), 158.5(\mathrm{CH}, 2-\underline{\mathrm{C}}), 157.7$ (qC, 8a-G$)$,
 $(\mathrm{CH}, 8-\underline{\mathrm{C}}), 94.9(\mathrm{qC}, 10-\underline{\mathrm{C}}), 56.0\left(\mathrm{CH}_{3}, 9-\underline{\mathrm{C}} \mathrm{H}_{3}\right), 0.0\left(3 \mathrm{CH}_{3}, 12,13,14-\underline{\mathrm{C}} \mathrm{H}_{3}\right)$.
HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Si}$: 272.0869 [M], 295.0761 [M+Na] ${ }^{+}$; found: 272.0876 [M], $295.0768[\mathrm{M}+\mathrm{Na}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3075,3009,2956,2898,2842,2164,1641,1622,1499,1440,1312,1242,1186,1092$, 1024, 952, 833, 757, 690, 544.

Known compound, modified method. ${ }^{179}$

7-Methoxy-3-((triethylsilyl)ethynyl)-4H-chromen-4-one (146)

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Si}$ Molecular Weight: 314.46

To a degassed solution of $82(0.33 \mathrm{mmol}, 100 \mathrm{mg})$ in dry THF $(5 \mathrm{~mL})$ and under $\mathrm{N}_{2}, \mathrm{PdCl}_{2}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}(10 \mu \mathrm{~mol}$, $7 \mathrm{mg})$, $\mathrm{Cul}(66 \mu \mathrm{~mol}, 13 \mathrm{mg})$, and $144(0.4 \mathrm{mmol}, 71 \mu \mathrm{~L})$ were added. The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and
$\mathrm{Et}_{3} \mathrm{~N}(3.3 \mathrm{~mL})$ was added dropwise. The resulting mixture was allowed to warm to RT and stirred for 3 h under $\mathrm{N}_{2} .{ }^{161}$ Water was added and the reaction was stirred for 10 minutes. The mixture was filtered, the solid washed with ethyl acetate and the resulting filtrate was extracted with ethyl acetate ($3 \times 15 \mathrm{~mL}$). The organic layer was washed with water (25 mL) and brine (25 mL), dried (MgSO_{4}), filtered, and concentrated under reduced pressure. The crude was purified by flash chromatography ($\mathrm{CH}_{2} \mathrm{Cl}_{2}, 100 \%$) to give 146 (85 $\mathrm{mg}, 82 \%$) as a white solid; $\mathrm{mp}=129-130^{\circ} \mathrm{C} ; R_{f}=0.67$ (EtOAc/PE, 1:2).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta=8.16$ (d, J = $8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}$), $8.12(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{H}), 6.99(\mathrm{dd}, \mathrm{J}=2.3,8.9 \mathrm{~Hz}$, $1 \mathrm{H}, 6-\underline{H}$), $6.84\left(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{\mathrm{H}}\right.$), $3.92\left(\mathrm{~s}, 3 \mathrm{H}, 9-\underline{C H}_{3}\right), 1.07\left(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 9 \mathrm{H}, 13,15,17-\mathrm{CH}_{3}\right), 0.71$ ($q, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}, 12,14,16-\mathrm{CH}_{2}$).

 C), 96.0 (qC, 10 or $11-\mathrm{C}$), $55.9\left(\mathrm{CH}_{3}, 9-\underline{\mathrm{C}} \mathrm{H}_{3}\right), 7.5\left(3 \mathrm{CH}_{3}, 13,15,17-\underline{-} \mathrm{CH}_{3}\right), 4.3\left(3 \mathrm{CH}_{2}, 12,14,16-\underline{\mathrm{C}}_{2}\right)$.

HRMS (Dual ESI): calc m / z for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Si}: 314.1338$ [M], 315.1411 [M+H] ${ }^{+}$; found: 314.1338 [M], 315.1410 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): \mathrm{v}=3065,2952,2872,2162,1650,1622,1600,1440,1311,1243,1182,1003,835,723,543$. Previously unreported.

3-Ethynyl-7-methoxy-4H-chromen-4-one (147)

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{O}_{3}$
Molecular Weight: 200.19
Method A: 145 ($1.38 \mathrm{mmol}, 375 \mathrm{mg}$) and D-camphor-10-sulfonic acid ${ }^{181}$ (CSA, $1.38 \mathrm{mmol}, 320 \mathrm{mg}$, dry) were dissolved in THF (1 mL). The mixture was cooled to $0^{\circ} \mathrm{C}$ and TBAF ($1.51 \mathrm{mmol}, 1.51 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF, 5% water) was added dropwise. The resulting mixture was allowed to warm to RT and stirred for 3 hours. ${ }^{178}$ Water was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The organic layer was washed with brine (25 mL), dried (MgSO_{4}), filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography ($\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 100: 5$) to give $\mathbf{1 4 7}(235 \mathrm{mg}, 85 \%)$ as a white solid; $\mathrm{mp}=162-163^{\circ} \mathrm{C} ; R_{f}=0.45\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 100: 5\right)$.
Method B: $146(64 \mu \mathrm{~mol}, 20 \mathrm{mg})$ and CSA ($64 \mu \mathrm{~mol}, 15 \mathrm{mg}$, dry) were dissolved in THF (1 mL). The mixture was cooled to $0^{\circ} \mathrm{C}$ and TBAF ($70 \mu \mathrm{~mol}, 18.3 \mathrm{mg}, 70 \mu \mathrm{~L}, 1.0 \mathrm{M}$ in THF, 5% water) was added dropwise. The resulting mixture was allowed to warm to RT and stirred for 3 hours. ${ }^{178}$ Water was added and the mixture was extracted with ethyl acetate ($3 \times 15 \mathrm{~mL}$). The organic layer was washed with brine (25 mL), dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography ($\mathrm{CH}_{2} \mathrm{Cl}_{2}, 100 \%$) to give $147(12 \mathrm{mg}, 94 \%)$ as a white solid; $\mathrm{mp}=163-164{ }^{\circ} \mathrm{C}$; $R_{f}=$ 0.27 (ethyl acetate/petroleum ether, 1:2).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.15(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 8.12(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 6.99(\mathrm{dd}, \mathrm{J}=2.3,8.9 \mathrm{~Hz}$, $1 \mathrm{H}, 6-\underline{H}), 6.84(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{\mathrm{H}}), 3.91\left(\mathrm{~s}, 3 \mathrm{H}, 9-\mathrm{CH}_{3}\right), 3.27(\mathrm{~s}, 1 \mathrm{H}, 11-\underline{\mathrm{H}})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=174.6(\mathrm{C}=\mathrm{O}, 4-\underline{\mathrm{C}}), 164.4(\mathrm{qC}, 7-\underline{\mathrm{C}}), 158.6(\mathrm{CH}, 2-\underline{\mathrm{C}}), 157.7$ (qC, 8a-C$)$, $127.6(\mathrm{CH}, 5-\underline{\mathrm{C}}), 117.3(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 115.1(\mathrm{CH}, 6-\underline{\mathrm{C}}), 110.1(\mathrm{qC}, 3-\underline{\mathrm{C}}), 100.4(\mathrm{CH}, 8-\underline{\mathrm{C}}), 83.1(\mathrm{qC}, 10-\underline{\mathrm{C}})$, $74.2(\mathrm{CH}, 11-\underline{\mathrm{C}}), 55.9\left(\mathrm{CH}_{3}, 9-\underline{\mathrm{C}} \mathrm{H}_{3}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{O}_{3}$: 200.0473 [M], 201.0546 [M+H]+; found: 200.0478 [M], 201.0550 $[\mathrm{M}+\mathrm{H}]^{+}$.

FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3219,3075,2922,2839,1616,1593,1498,1436,1312,1276,1237,1171,1092,924$, 832, 685, 532.

Known compound, modified method, no data reported. ${ }^{266}$

7-Hydroxy-4-oxo-4H-chromene-3-carbaldehyde (150)

Chemical Formula: $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}_{4}$
Molecular Weight: 190.15
To a solution of 2', 4'-dihydroxyacetophenone $75(15 \mathrm{mmol}, 2.28 \mathrm{~g})$ in DMF (23 mL) at $-78{ }^{\circ} \mathrm{C}$ and under N_{2}, $\mathrm{POCl}_{3}(45 \mathrm{mmol}, 4.2 \mathrm{~mL})$ was added dropwise. The resulting mixture was allowed to warm to RT and stirred for $24 \mathrm{~h} .{ }^{182}$ Water (50 mL) was added to the mixture, and the formed suspension was filtered to obtain 150 $(2.09 \mathrm{~g}, 73 \%)$ as a red solid; $\mathrm{mp}=265{ }^{\circ} \mathrm{C}$ (decomp.), lit. $\mathrm{mp}=268-271^{\circ} \mathrm{C} ;{ }^{267} R_{f}=0.25\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}\right.$, 98:2).
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{DMSO}): \delta=11.08$ (s, $1 \mathrm{H}, 7-\mathrm{OH}$), 10.08 (s, $1 \mathrm{H}, 9-\underline{\mathrm{H}}$), 8.77 (s, $1 \mathrm{H}, 2-\underline{H}$), 7.97 (d, J = $8.7 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 6.98$ (dd, J = 2.2, $8.7 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{\mathrm{H}}$), 6.93 (d, J = $2.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{\mathrm{H}}$).
 157.9 (qC, 8a- \underline{C}), 127.6 ($\mathrm{CH}, 5-\underline{\mathrm{C}}$), 120.1 (qC, 3 or $4 \mathrm{a}-\underline{\mathrm{C}}$), 117.4 (qC, 3 or $4 \mathrm{a}-\underline{\mathrm{C}}$), 116.5 ($\mathrm{CH}, 6-\underline{\mathrm{C}}$), 103.5 ($\mathrm{CH}, 8-\mathrm{C}$).

FT-IR (cm-1): 3264, 3050, 1696, 1619, 1565, 1510, 1455, 1398, 1304, 1225, 1103, 946, 838, 775, 690, 497. Known compound, modified method. ${ }^{267}$

1-(2-Hydroxy-4-isopropoxyphenyl)ethan-1-one (148)

Chemical Formula: $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3}$ Molecular Weight: 194.23

To a mixture of $75(6.57 \mathrm{mmol}, 1 \mathrm{~g})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(6.57 \mathrm{mmol}, 0.91 \mathrm{~g})$ in dry DMF (10 mL), 2-bromopropane $(6.57 \mathrm{mmol}, 0.62 \mathrm{~mL})$ in dry DMF (10 mL) was added over a 15 minute period. The mixture was stirred at RT for 30 min and after at $80^{\circ} \mathrm{C}$ for $4 \mathrm{~h} .{ }^{183}$ After allowing the reaction to cool to RT, ice water (25 mL) was added and the mixture extracted with $\mathrm{CHCl}_{3}(3 \times 25 \mathrm{~mL})$. The organic phase was washed with $5 \% \mathrm{NaOH}$
$(2 \times 50 \mathrm{~mL})$ and water $(2 \times 50 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated. Flash chromatography of the crude $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 200: 1\right)$ afforded $148(1 \mathrm{~g}, 78 \%)$ as a colorless oil; $R_{f}=0.7\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 98: 2\right)$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.73(\mathrm{~s}, 1 \mathrm{H}, 2 \mathrm{O}-\mathrm{OH}), 7.61$ ($\mathrm{d}, \mathrm{J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6$ '- -H), $6.44-6.35(\mathrm{~m}, 2 \mathrm{H}$, $3^{\prime}, 5^{\prime}-\underline{H}$), 4.60 (septet, J = $6.0 \mathrm{~Hz}, 1 \mathrm{H}, 7$ '- \underline{H}), 2.54 (s, $3 \mathrm{H}, 2-\mathrm{CH}_{3}$), 1.35 (d, J = 6.0, $6 \mathrm{H}, 8^{\prime}, 9^{\prime}-\mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=202.5(\mathrm{C}=\mathrm{O}, 1-\underline{\mathrm{C}})$, 165.3 (qC, 2' or 4'- C), 164.7 (qC, 2' or 4'- C), $132.4(\mathrm{CH}$, $\left.6^{\prime}-\underline{\mathrm{C}}\right), 113.7$ (qC, 1'- $\underline{\mathrm{C}}$), $108.8\left(\mathrm{CH}, 5^{\prime}-\underline{\mathrm{C}}\right), 102.1\left(\mathrm{CH}, 3^{\prime}-\underline{\mathrm{C}}\right), 70.4\left(\mathrm{CH}, 7{ }^{\prime}-\underline{\mathrm{C}}\right), 26.3\left(\mathrm{CH}_{3}, 2-\underline{\mathrm{C}} \mathrm{H}_{3}\right), 21.9\left(2 \mathrm{CH}_{3}\right.$, 8 8,9'- CH_{3}).
Known compound, modified method. ${ }^{268}$

7-Isopropoxy-4-oxo-4H-chromene-3-carbaldehyde (151)

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{4}$ Molecular Weight: 232.24
$\mathrm{POCl}_{3}(14.52 \mathrm{mmol}, 1.36 \mathrm{~mL})$ was added dropwise to dry DMF ($38.72 \mathrm{mmol}, 3 \mathrm{~mL}$) under nitrogen, and the mixture was stirred for 2 h at $50^{\circ} \mathrm{C}$. A solution of $148(4.84 \mathrm{mmol}, 0.94 \mathrm{~g})$ in DMF (1 mL) was then added dropwise and the resulting mixture was stirred for another 2 h at $50^{\circ} \mathrm{C}$. Stirring was stopped and the mixture was allowed to stand overnight. Ice cold water (20 mL) was added and the mixture was stirred for 6 h . ${ }^{184}$ The obtained mixture was extracted with $\mathrm{CHCl}_{3}(3 \times 25 \mathrm{~mL})$. The organic phase was washed with water (3 $\times 50 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated. Flash chromatography of the crude $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, 100:2) afforded 151 ($0.28 \mathrm{~g}, 25 \%$) as a red solid; $\mathrm{mp}=84-86^{\circ} \mathrm{C} ; R_{f}=0.4\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, 100:2).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=10.38(\mathrm{~s}, 1 \mathrm{H}, 12-\underline{H}), 8.46(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{H}), 8.18(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{H}), 7.00$ (dd, J = 2.3, 8.9 Hz, 1 H, 6-Hㅡ), 6.88 (d, J = $2.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H}$), 4.67 (septet, J = $6.0 \mathrm{~Hz}, 1 \mathrm{H}, 9-\underline{H}$), 1.41 (d, J $\left.=6.0 \mathrm{~Hz}, 6 \mathrm{H}, 10,11-\mathrm{CH}_{3}\right)$.
 158.1 (qC, 8a- \underline{C}), 127.6 ($\mathrm{CH}, 5-\underline{\mathrm{C}}$), 120.3 (qC, 3 or $4 \mathrm{a}-\underline{\mathrm{C}}$), 118.5 (qC, 3 or $4 \mathrm{a}-\underline{\mathrm{C}}$), 116.5 ($\mathrm{CH}, 6-\underline{\mathrm{C}}$), 102.5 $(\mathrm{CH}, 8-\underline{\mathrm{C}}), 71.2(\mathrm{CH}, 9-\underline{\mathrm{C}}), 21.8\left(2 \mathrm{CH}_{3}, 10,11-\mathrm{CH}_{3}\right)$.

HRMS (Dual ESI): calc m / z for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{4}$: 232.0736 [M], 233.0808 [$\left.\mathrm{M}+\mathrm{H}\right]^{+}$; found: 232.0742 [M], 233.0814 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3084,3058,2984,2935,2872,1692,1651,1613,1555,1494,1438,1358,1275,1235$, 1189, 1107, 979, 859, 766, 689, 626, 541
Known compound, modified method. ${ }^{269}$

4-Acetyl-3-hydroxyphenyl acetate (149), and 4-acetyl-1,3-phenylene diacetate

To a solution of $75(6.57 \mathrm{mmol}, 1 \mathrm{~g})$ in pyridine (5 mL), acetic anhydride ($7.89 \mathrm{mmol}, 0.75 \mathrm{~mL}$) was added dropwise, and the resulting mixture was stirred at RT for 4 h . Water (20 mL) was added and the reaction mixture was extracted with $\mathrm{CHCl}_{3}(3 \times 25 \mathrm{~mL}) .{ }^{182}$ The organic phase was washed with water $(50 \mathrm{~mL}), 2 \%$ $\mathrm{HCl}(2 \times 50 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 200: 1\right)$ to give:

- 4-acetyl-3-hydroxyphenyl acetate (149), white solid (0.8 g, 62\%); $R_{f}=0.7\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 100: 2\right)$.

Chemical Formula: $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4}$ Molecular Weight: 194.19
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.44(\mathrm{~s}, 1 \mathrm{H}, 3 \mathrm{O}-\mathrm{OH}), 7.75\left(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}, 5{ }^{\prime}-\underline{\mathrm{H}}\right), 6.73(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1$ H, 2'- \underline{H}), 6.68 (dd, J = 2.1, $\left.8.7 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\underline{\mathrm{H}}\right), 2.61\left(\mathrm{~s}, 3 \mathrm{H}, 8\right.$ '- $\underline{C H}_{3}$), $2.31\left(\mathrm{~s}, 3 \mathrm{H}, 2-\underline{C H}_{3}\right)$.

 CH_{3}).
Known compound, modified method. ${ }^{270}$

- 4-acetyl-1,3-phenylene diacetate, white solid ($0.4 \mathrm{~g}, 25 \%$); $R_{f}=0.56\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 98: 2\right)$.

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{5}$ Molecular Weight: 236.22
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.85(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, 5$ "-H$), 7.10(\mathrm{dd}, \mathrm{J}=2.2,8.6 \mathrm{~Hz}, 1 \mathrm{H}, 6 "-\underline{\mathrm{H}}), 6.96$ ($\mathrm{d}, \mathrm{J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, 2$ "- $\underline{\mathrm{H}}$), $2.55\left(\mathrm{~s}, 3 \mathrm{H}, 8\right.$ "- $\left.\underline{\mathrm{H}}_{3}\right), 2.34\left(\mathrm{~s}, 3 \mathrm{H}, 2\right.$ or $2^{\prime}-\mathrm{CH}_{3}$), 2.31 ($\mathrm{s}, 3 \mathrm{H}, 2$ or 2'- CH_{3}).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=196.4$ (C=O, 7"- C), 169.2 (C=O, 1 or 1'- C), 168.5 ($\mathrm{qC}, 1$ or $1^{\prime}-\underline{\mathrm{C}}$), 154.1
 $\left(\mathrm{CH}_{3}, 8\right.$ "- $\left.\underline{\mathrm{C}}_{3}\right)$, $21.2\left(2 \mathrm{CH}_{3}, 2,2^{\prime}-\underline{\mathrm{C}}_{3}\right)$.
Known compound, modified method. ${ }^{270}$

3-Formyl-4-oxo-4H-chromen-7-yl acetate (152)

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{O}_{5}$
Molecular Weight: 232.19
To a solution of $149(4.12 \mathrm{mmol}, 0.8 \mathrm{~g})$ in DMF $(6 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and under $\mathrm{N}_{2}, \mathrm{POCl}_{3}(12.36 \mathrm{mmol}, 1.16$ mL) was added dropwise. The resulting mixture was allowed to warm to RT and stirred for 24 h . ${ }^{182}$ Water $(30 \mathrm{~mL})$ was added to the mixture, and the formed suspension was filtered to obtain $152(0.67 \mathrm{~g}, 70 \%)$ as a pink solid; $\mathrm{mp}=152-153{ }^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=155-156{ }^{\circ} \mathrm{C} ;{ }^{271} R_{f}=0.23\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.100: 2\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=10.38(\mathrm{~s}, 1 \mathrm{H}, 11-\underline{\mathrm{H}}), 8.52(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 8.32(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 7.38$ (d, J = 2.1 Hz, 1 H, 8-H्H), 7.25 (dd, J = 2.1, $8.7 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 2.37\left(\mathrm{~s}, 3 \mathrm{H}, 10-\mathrm{CH}_{3}\right)$.
 $\underline{\mathrm{C}})$, 156.7 ($\mathrm{qC}, 7$ or $8 \mathrm{a}-\underline{\mathrm{C}}$), 155.4 ($\mathrm{qC}, 7$ or $8 \mathrm{a}-\underline{\mathrm{C}}$), 127.7 (CH, $5-\underline{\mathrm{C}}$), 123.0 (qC, $3-\underline{\mathrm{C}}$), 120.9 (CH, 6- $\underline{\mathrm{C}}$), 120.5 (qC, 4a-ㅡㅡ), $111.8(\mathrm{CH}, 8-\underline{\mathrm{C}}), 21.2\left(\mathrm{CH}_{3}, 10-\mathrm{CH}_{3}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{O}_{5}$: $232.0372[\mathrm{M}]$, 233.0444 [$\left.\mathrm{M}+\mathrm{H}\right]^{+}$; found: 232.0378 [M], 233.0449 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR (cm-1): $\mathrm{v}=3061,3979,2844,2760,1756,1693,1650,1609,1557,1438,1360,13003,1195,1094$, 1009, 907, 845, 764, 689, 584.
Known compound, modified method. ${ }^{271}$

Ethyl 4-(4-acetoxy-2-hydroxybenzoyl)-6-(7-acetoxy-4-oxo-4H-chromen-3-yl)picolinate (154), and ethyl 4-(4-acetoxy-2-hydroxybenzoyl)-1 H-pyrrole-2-carboxylate (155)

A solution of $152(1 \mathrm{mmol}, 232 \mathrm{mg})$ and ethyl glycinate $153(1 \mathrm{mmol}, 103 \mathrm{mg})$ in dry toluene (5 mL) containing p-toluenesulfonic acid ($10 \mu \mathrm{~mol}, 2 \mathrm{mg}$) was refluxed for 2 h using a Dean-Stark water trap. ${ }^{185}$ The reaction mixture was concentrated and the crude product was purified by flash chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}, 100: 1\right.$) to give:

- ethyl 4-(4-acetoxy-2-hydroxybenzoyl)-6-(7-acetoxy-4-oxo-4H-chromen-3-yl)picolinate (154), yellow solid ($50 \mathrm{mg}, 9 \%$); $\mathrm{mp}=192-194{ }^{\circ} \mathrm{C} ; R_{f}=0.34\left(\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}, 99: 1\right)$.

Chemical Formula: $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{NO}_{10}$ Molecular Weight: 531.47
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.04$ (s, $1 \mathrm{H}, 2$ '- OH), 9.08 (s, $1 \mathrm{H}, 2 "-\underline{\mathrm{H}}$), 8.86 (d, J = $1.3 \mathrm{~Hz}, 1 \mathrm{H}, 3-\underline{\mathrm{H}}$), 8.32 ($\mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}, 5$ "-H$), 8.23(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{H}), 7.61(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 6$ '- \underline{H}), 7.39 ($\mathrm{d}, \mathrm{J}=$
 $\left.8.8 \mathrm{~Hz}, 1 \mathrm{H}, 5{ }^{\prime}-\underline{H}\right), 4.51\left(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, 8-\mathrm{CH}_{2}\right), 2.37\left(\mathrm{~s}, 3 \mathrm{H}, 9\right.$ or $\left.10 "-\underline{C H}_{3}\right), 2.33\left(\mathrm{~s}, 3 \mathrm{H}, 9\right.$ or 10 "- $\left.\underline{\mathrm{H}}_{3}\right)$, $1.46\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, 9-\mathrm{CH}_{3}\right)$.

 $\underline{\mathrm{C}}), 113.6\left(\mathrm{CH}, 5^{\prime}-\underline{\mathrm{C}}\right), 111.6\left(\mathrm{CH}, 3^{\prime}-\underline{\mathrm{C}}\right), 111.3(\mathrm{CH}, 8$ " $-\underline{\mathrm{C}}), 62.4\left(\mathrm{CH}_{2}, 8-\underline{\mathrm{C}} \mathrm{H}_{2}\right), 21.36\left(\mathrm{CH}_{3}, 9\right.$ or 10 " $\left.-\underline{\mathrm{C}} \mathrm{H}_{3}\right)$, $21.32\left(\mathrm{CH}_{3}, 9^{\prime}\right.$ or $\left.10 "-\mathrm{C}_{3}\right), 14.4\left(\mathrm{CH}_{3}, 9-\underline{\mathrm{C}}_{3}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{NO}_{10}$: 531.1165 [M], 532.1238 [M+H]+; found: 531.1164 [M], 532.1237 $[\mathrm{M}+\mathrm{H}]^{+}$.

FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3081,2983,2938,1755,1717,1620,1547,1497,1444,1367,1188,1130,1012,961$, 896, 785, 682.
Previously unreported.

- ethyl 4-(4-acetoxy-2-hydroxybenzoyl)-1 H -pyrrole-2-carboxylate (155), yellow solid ($17 \mathrm{mg}, 5 \%$); $\mathrm{mp}=162-164{ }^{\circ} \mathrm{C} ; R_{f}=0.18\left(\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}, 99: 1\right)$.

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{6}$
Molecular Weight: 317.30
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.30(\mathrm{~s}, 1 \mathrm{H}, 2 \mathrm{O}-\mathrm{OH}), 9.68(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 1-\mathrm{NH}), 7.92$ (d, J=8.7, $1 \mathrm{H}, 6$ '- $\underline{\mathrm{H}}$), 7.58 (dd, J = 1.6, 3.2 Hz, $1 \mathrm{H}, 5-\underline{H}$), 7.35 (dd, J = 1.6, 2.2 Hz, $1 \mathrm{H}, 3-\underline{H}$), 6.79 (d, J = $2.2 \mathrm{~Hz}, 1 \mathrm{H}, 3$ '(dd, J = 2.2, 8.7 Hz, $1 \mathrm{H}, 5^{\prime}-\underline{H}$), $4.37\left(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, 7-\mathrm{CH}_{2}\right), 2.33\left(\mathrm{~s}, 3 \mathrm{H}, 9{ }^{\prime}-\mathrm{CH}_{3}\right), 1.39(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3$ $\left.\mathrm{H}, 8-\mathrm{CH}_{3}\right)$.
 156.1 (qC, 4'- $-\underline{C}$), 133.0 ($\mathrm{CH}, 6^{\prime}-\underline{\mathrm{C}}$), $127.5(\mathrm{CH}, 5-\underline{\mathrm{C}})$, 125.0 (qC, 2 or $4-\underline{\mathrm{C}}$), 124.4 (qC, 2 or $4-\underline{\mathrm{C}}$), 118.0 (qC, $\left.1^{\prime}-\underline{C}\right), 116.3(\mathrm{CH}, 3-\underline{\mathrm{C}}), 112.8\left(\mathrm{CH}, 5^{\prime}-\underline{\mathrm{C}}\right), 111.2(\mathrm{CH}, 3$ '- $-\mathbf{C}), 61.3\left(\mathrm{CH}_{2}, 7-\underline{\mathrm{C}} \mathrm{H}_{2}\right), 21.3\left(\mathrm{CH}_{3}, 9^{\prime}-\underline{\mathrm{CH}_{3}}\right), 14.5$ $\left(\mathrm{CH}_{3}, 8-\mathrm{CH}_{3}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{6}$: 317.0899 [M], 318.0972 [$\left.\mathrm{M}+\mathrm{H}\right]^{+}$; found: 317.0903 [M], 318.0973 $[\mathrm{M}+\mathrm{H}]^{+}$.

FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3282,3124,2990,2915,1759,1694,1613,1596,1556,1494,1420,1358,1300,1265$, 1190, 1133, 1012, 980, 898, 843, 761, 686.

Previously unreported.

3.2.2 Synthesis of isoflavone/1,2,4-oxadiazole hybrids

2-((3-(4-Methoxyphenyl)-4-oxo-4H-chromen-7-yl)oxy)acetonitrile (156)

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{NO}_{4}$ Molecular Weight: 307.31

To a solution of 27 ($0.3 \mathrm{mmol}, 80 \mathrm{mg}$) and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(0.9 \mathrm{mmol}, 125 \mathrm{mg})$ in dry acetone (5 mL) and under N_{2}, bromoacetonitrile ($0.33 \mathrm{mmol}, 40 \mathrm{mg}, 23 \mu \mathrm{~L}$) was added dropwise. The mixture was refluxed for 6 h , and after evaporated under vacuum to give a solid residue. ${ }^{192} \mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ was added and the formed precipitate was filtered off and purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 98: 2\right)$ to give 156 (70 $\mathrm{mg}, 76 \%$) as a pale yellow solid; $\mathrm{mp}=200-201{ }^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=203-204{ }^{\circ} \mathrm{C} ;{ }^{-192} R_{f}=0.7\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 95: 5\right)$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=8.27$ (s, $1 \mathrm{H}, 2-\underline{\mathrm{H}}$), 8.21 (d, J = $8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}$), 7.50 ($\mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}$, 2',6'-브), 7.27 (d, J = $2.4 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H}$), 7.19 (dd, J = 2.4, 8.9 Hz, $1 \mathrm{H}, 6-\underline{H}$), 6.99 (d, J = $8.8 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-$ H), 5.18 (s, $\left.2 \mathrm{H}, 9-\mathrm{CH}_{2}\right), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, 7{ }^{\prime}-\mathrm{CH}_{3}\right)$.

HRMS (Dual ESI): calc m / z for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{NO}_{4}$: 307.0845 [M], 308.0917 [M+H]+; found: 307.0839 [M], 308.0911 $[\mathrm{M}+\mathrm{H}]^{+}$.

FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3075,2962,2918,2842,2325,1635,1622,1598,1573,1513,1437,1370,1247,1177$, 1035, 882, 832, 787, 690.

Known compound. ${ }^{192}$

2-((3-(4-Methoxyphenyl)-4-oxo-4H-chromen-7-yl)oxy)acetamide (158)

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{5}$
Molecular Weight: 325.32
Sodium carbonate ($0.18 \mathrm{mmol}, 19 \mathrm{mg}$) was gradually added to a solution of hydroxylamine hydrochloride $(0.18 \mathrm{mmol}, 12.5 \mathrm{mg})$ in water $(0.65 \mathrm{ml})$. To the resulting mixture, $156(0.16 \mathrm{mmol}, 50 \mathrm{mg})$ in ethanol (1 ml) was added and then the mixture was refluxed for 24 hours. ${ }^{193}$ The reaction mixture was concentrated under vacuum to give a solid residue, to which $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ was added. The formed precipitate was filtered off and purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 99: 1\right)$ to give 158 ($22 \mathrm{mg}, 42 \%$) as a white solid; $\mathrm{mp}=219-220^{\circ} \mathrm{C} ; R_{f}=0.3\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 95: 5\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=8.26$ ($\mathrm{s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}$), 8.18 (d, J=8.9 Hz, $1 \mathrm{H}, 5-\underline{H}$), $7.50(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.2^{\prime}, 6^{\prime}-\underline{H}\right), 7.22(\mathrm{dd}, \mathrm{J}=2.4,8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 7.15(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H}), 7.01\left(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\right.$ H), $4.70\left(\mathrm{~s}, 2 \mathrm{H}, 9-\mathrm{CH}_{2}\right), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, 7{ }^{\prime}-\mathrm{CH}_{3}\right)$.

HRMS (Dual ESI): calc m / z for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{5}$: $325.0950[\mathrm{M}], 326.1028[\mathrm{M}+\mathrm{H}]^{+}$; found: 325.0945 [M], 326.1017 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): v=3417,3200,3100,3068,2920,2838,1727,1669,1636,1610,1571,1515,1451,1373$, 1243, 1180, 1058, 1030, 887, 819, 781, 694.
Previously unreported.

2-Chloro- N-hydroxyacetimidamide (160)

Chemical Formula: $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CIN}_{2} \mathrm{O}$
Molecular Weight: 108.53
2-Chloroacetonitrile 159 ($26.5 \mathrm{mmol}, 2 \mathrm{~g}, 1.7 \mathrm{~mL}$) was added to a solution of $\mathrm{HONH}_{2} \cdot \mathrm{HCl}(26.5 \mathrm{mmol}, 1.84$ $\mathrm{g})$ in water $(6.6 \mathrm{~mL})$, and the colourless mixture was cooled to $10-15^{\circ} \mathrm{C}$ with an ice-bath. To this, $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($13.25 \mathrm{mmol}, 1.4 \mathrm{~g}$) was added in small portions, maintaining the temperature below $30^{\circ} \mathrm{C}$. The resulting mixture was stirred and heated at $30{ }^{\circ} \mathrm{C}$ for 1 hour. ${ }^{272}$ Solid $\mathrm{NaCl}(2 \mathrm{~g})$ was added, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 30 \mathrm{~mL})$. The organic phases were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under vacuum. The crude was purified by flash chromatography ($\mathrm{Et}_{2} \mathrm{O} / \mathrm{acetone}, 99: 1$) to give $160(1.63 \mathrm{~g}, 56 \%)$ as a white solid; $\mathrm{mp}=108-110^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=110-112^{\circ} \mathrm{C} ;{ }^{273} R_{f}=0.5$ (Et $2 \mathrm{O} /$ Acetone, $99: 1$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.79$ (br s, $\left.2 \mathrm{H}, 1-\mathrm{NH}_{2}\right), 4.07\left(\mathrm{~s}, 2 \mathrm{H}, 2-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=150.2(\mathrm{qC}, 1-\underline{\mathrm{C}}), 41.0\left(\mathrm{CH}_{2}, 2-\underline{\mathrm{C}} \mathrm{H}_{2}\right)$.

HRMS (Jet Stream ESI): calc m / z for $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CIN}_{2} \mathrm{O}$: 108.0090 [M], 109.0163 [M+H]+; found: 108.0088 [M], $109.0161[\mathrm{M}+\mathrm{H}]^{+}$.

FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3463,3334,3252,3160,3075,3035,2859,2801,1668,1594,1429,1382,1258,1160$, 975, 891, 828, 733, 664, 597.
Known compound. ${ }^{272-274}$

\boldsymbol{N}-(Benzoyloxy)-2-chloroacetimidamide (163), 3-(chloromethyl)-5-phenyl-1,2,4-oxadiazole (165), and \boldsymbol{N}-(1-((benzoyloxy)imino)-2-chloroethyl)benzamide (167)

To a suspension of $160(4.61 \mathrm{mmol}, 0.5 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$, benzoyl chloride 161 ($6.91 \mathrm{mmol}, 0.8 \mathrm{~mL}$) was added and the mixture was stirred for 30 min at RT . $\mathrm{Et}_{3} \mathrm{~N}(5.07 \mathrm{mmol}, 0.71 \mathrm{~mL})$ was added and the reaction mixture was stirred for another 30 min . The resulting mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and after water (15 ml) was added. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$ and the organic phases were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under vacuum to give a brown solid. The solid was suspended in toluene (10 mL) and the mixture was refluxed for $6 \mathrm{~h} .{ }^{195}$ The resulting solution was concentrated and the crude was purified by column chromatography (PE/EtOAc, 95:5) to give:

- $\quad N$-(benzoyloxy)-2-chloroacetimidamide (163), white solid (200 mg, 20\%); mp = $130-132{ }^{\circ} \mathrm{C} ; R_{f}=$ 0.04 (PE/EtOAc, 4:1).

Chemical Formula: $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClN}_{2} \mathrm{O}_{2}$ Molecular Weight: 212.63
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.04$ (app d, J = $7.2 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{\mathrm{H}}$), 7.59 (app t, J = $7.5 \mathrm{~Hz}, 1 \mathrm{H}, 4$ '- $\underline{\mathrm{H}}$), 7.46 (app t, J = $7.7 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{H}}$), 5.30 (br s, $2 \mathrm{H}, 1-\mathrm{NH}_{2}$), 4.25 ($\mathrm{s}, 2 \mathrm{H}, 2-\mathrm{CH}_{2}$).
 $\underline{\mathrm{C}}), 129.0\left(\mathrm{qC}, 1^{\prime}-\underline{\mathrm{C}}\right), 128.6\left(2 \mathrm{CH}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{C}}\right), 40.4\left(\mathrm{CH}_{2}, 2-\underline{\mathrm{CH}_{2}}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{CIN}_{2} \mathrm{O}_{2}$: 212.0353 [M], $213.0425[\mathrm{M}+\mathrm{H}]^{+}$; found: 212.0352 [M], $213.0425[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3498,3279,3218,3145,3066,2986,1732,1635,1582,1450,1263,1064,838,697$.
Previously unreported.

- 3-(chloromethyl)-5-phenyl-1,2,4-oxadiazole (165), white solid ($315 \mathrm{mg}, 35 \%$); $\mathrm{mp}=63-64{ }^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=58^{\circ} \mathrm{C} ;{ }^{275} R_{f}=0.6(\mathrm{PE} / \mathrm{EtOAc}, 4: 1)$.

Chemical Formula: $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{CIN}_{2} \mathrm{O}$
Molecular Weight: 194.62
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.17$ (app d, J = $7.3 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6$ '- -H), $7.64\left(\operatorname{appt} \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\underline{\mathrm{H}}\right.$), 7.56 (app t, J = $7.6 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{H}$), $4.70\left(\mathrm{~s}, 2 \mathrm{H}, 6-\underline{C H}_{2}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=176.7$ (qC, 5- $\left.\underline{\mathrm{C}}\right)$, 167.7 (qC, 3- $\left.\underline{\mathrm{C}}\right), 133.2\left(\mathrm{CH}, 4^{\prime}-\underline{\mathrm{C}}\right), 129.2\left(2 \mathrm{CH}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{C}}\right)$, $128.2\left(2 \mathrm{CH}, 2^{\prime}, 6^{\prime}-\underline{\mathrm{C}}\right)$, $123.7\left(\mathrm{qC}, 1^{\prime}-\underline{\mathrm{C}}\right), 34.6\left(\mathrm{CH}_{2}, 6-\underline{\mathrm{CH}_{2}}\right)$.

HRMS (Jet Stream ESI): calc m / z for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{ClN}_{2} \mathrm{O}$: 194.0247 [M], 195.032 [M+H]+; found: 194.0245 [M], $195.0316[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3028,2923,2856,1787,1725,1692,1604,1560,1450,1370,1275,1152,1070,743$, 708, 688, 638.
Known compound. 275

- $\quad N$-(1-((benzoyloxy)imino)-2-chloroethyl)benzamide (167), pale yellow solid (300 $\mathrm{mg}, 20 \%$); $R_{f}=0.3$ (PE/EtOAc, 4:1).

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{CIN}_{2} \mathrm{O}_{3}$
Molecular Weight: 316.74
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 1-\mathrm{NH}), 8.05$ (app d, J=8.1 Hz, $2 \mathrm{H}, 2 ", 6 "-\mathrm{H}$), 7.91 (app d, $\left.J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{H}\right), 7.69-7.64$ (m, $\left.2 \mathrm{H}, 4^{\prime}, 4^{\prime \prime}-\underline{H}\right), 7.58-7.50\left(\mathrm{~m}, 4 \mathrm{H}, 3^{\prime}, 5^{\prime}, 3^{\prime \prime}, 5^{\prime \prime}-\underline{H}\right), 4.94$ (s, $2 \mathrm{H}, 2-$ CH_{2}).

 or $\left.3^{\prime \prime}, 5^{\prime \prime-}-\underline{C}\right), 128.1$ (qC, $\left.1^{\prime \prime}-\underline{C}\right)$, $127.6\left(2 \mathrm{CH}, 2^{\prime}, 6^{\prime}-\underline{\mathrm{C}}\right), 39.7\left(\mathrm{CH}_{2}, 2-\underline{\mathrm{C}} \mathrm{H}_{2}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{CIN}_{2} \mathrm{O}_{3}$: 316.0615 [M], 317.0687 [M+H]+; found: 316.0616 [M], $317.0686[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): v=3246,3040,2988,1757,1673,1629,1600,1508,1484,1449,1343,1234,1053,1021$, 696, 665

Previously unreported.

2-Azidobenzoyl chloride (162)

Chemical Formula: $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{CIN}_{3} \mathrm{O}$
Molecular Weight: 181.58
2-Azidobenzoic acid ($1.7 \mathrm{mmol}, 280 \mathrm{mg}$) was refluxed in $\mathrm{SOCl}_{2}(2.5 \mathrm{~mL})$ under nitrogen at $85{ }^{\circ} \mathrm{C}$ for 3 hours. The resulting mixture was concentrated under vacuum to remove excess SOCl_{2}. The brown/black liquid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, and the solution was concentrated to remove completely the $\mathrm{SOCl}_{2} .{ }^{193} 162$ (black oil, $308 \mathrm{mg}, 99 \%$) was used in the next step without any further purification.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.14$ (dd, J = $1.1,7.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}$), 7.65 (app t, J=7.7 Hz, $1 \mathrm{H}, 4-\underline{H}$), 7.30 -7.25 (m, 2 H, 3,5-H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=164.1(\mathrm{C}=\mathrm{O}, 7-\underline{\mathrm{C}})$, 140.7 (qC, 1 or $\left.2-\underline{\mathrm{C}}\right), 135.4(\mathrm{CH}, 4$ or $6-\underline{\mathrm{C}}), 134.4(\mathrm{CH}$, 4 or $6-\underline{C}), 124.8(q C, 1$ or $2-\underline{C}), 124.7(\mathrm{CH}, 5-\underline{\mathrm{C}}), 119.8(\mathrm{CH}, 3-\underline{\mathrm{C}})$.

FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3071,3029,2929,2850,2121,1774,1736,1592,1570,1473,1445,1289,1188,860$, 759, 669, 636.

Known compound. ${ }^{193}$

5-(2-Azidophenyl)-3-(chloromethyl)-1,2,4-oxadiazole (166), and 2-azido- N -(1-(()2-azidobenzoyl)oxy)imino)-2-chloroethyl)benzamide (168)

To a suspension of $160(1 \mathrm{mmol}, 110 \mathrm{mg})$ in DCM $(10 \mathrm{~mL}), 162(1.5 \mathrm{mmol}, 275 \mathrm{mg})$ was added, and the mixture was stirred for 30 min at RT . $\mathrm{Et}_{3} \mathrm{~N}(1.1 \mathrm{mmol}, 0.15 \mathrm{~mL})$ was added, and the reaction mixture was stirred for another 30 min . The resulting mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and water (15 mL) was added. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$ and the organic phases were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under vacuum to give a brown solid. The solid was suspended in toluene $(10 \mathrm{~mL})$ and the mixture was refluxed at $115{ }^{\circ} \mathrm{C}$ for $8 \mathrm{~h} .{ }^{195}$ The resulting mixture was evaporated and the crude was purified by column chromatography (PE/EtOAc, 95:5) to give:

- 5-(2-azidophenyl)-3-(chloromethyl)-1,2,4-oxadiazole (166), pale yellow solid ($65 \mathrm{mg}, 27 \%$); $\mathrm{mp}=$ $64-65{ }^{\circ} \mathrm{C} ; R_{f}=0.6(\mathrm{PE} / \mathrm{EtOAc}, 4: 1)$.

Chemical Formula: $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{CIN}_{5} \mathrm{O}$ Molecular Weight: 235.63
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.12$ ($\mathrm{dd}, \mathrm{J}=1.1,7.9 \mathrm{~Hz}, 1 \mathrm{H}, 6$ '- -H), 7.66 ($\mathrm{dt}, \mathrm{J}=1.3,8.2 \mathrm{~Hz}, 1 \mathrm{H}, 4{ }^{\prime}-\underline{\mathrm{H}}$), 7.38 (app d, J = $8.2 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-\underline{H}$), 7.31 (app t, J = $7.9 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\underline{\mathrm{H}}$), 4.73 (s, $2 \mathrm{H}, 6-\mathrm{CH}_{2}$).
 $131.8\left(\mathrm{CH}, 6^{\prime}-\underline{\mathrm{C}}\right), 125.0\left(\mathrm{CH}, 5^{\prime}-\underline{\mathrm{C}}\right), 119.7\left(\mathrm{CH}, 3{ }^{\prime}-\underline{\mathrm{C}}\right)$, $115.2\left(\mathrm{qC}, 1^{\prime}\right.$ or $\left.2^{\prime}-\underline{\mathrm{C}}\right)$, $34.6\left(\mathrm{CH}_{2}, 6-\mathrm{CH}_{2}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{CIN}_{5} \mathrm{O}$: 207.0199 [$\mathrm{M}-\mathrm{N}_{2}$], 208.0272 [$\left.\mathrm{M}-\mathrm{N}_{2}+\mathrm{H}\right]^{+}, 235.0261$ [M], 236.0334 $[\mathrm{M}+\mathrm{H}]^{+}$; found: $207.0208\left[\mathrm{M}-\mathrm{N}_{2}\right], 208.0273\left[\mathrm{M}-\mathrm{N}_{2}+\mathrm{H}\right]^{+}, 235.0268[\mathrm{M}], 236.0332[\mathrm{M}+\mathrm{H}]^{+}$.

FT-IR (cm-1): $u=3075,3028,2978,2924,2850,2124,1769,1694,1599,1543,1470,1444,1373,1283$, 1164, 738, 699.

Previously unreported.

- 2-azido- N-(1-(((2-azidobenzoyl)oxy)imino)-2-chloroethyl)benzamide (168), pale brown solid (40 $\mathrm{mg}, 11 \%) ; \mathrm{mp}=134-135^{\circ} \mathrm{C} ; R_{f}=0.24$ (PE/EtOAc, 4:1).

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{CIN}_{8} \mathrm{O}_{3}$ Molecular Weight: 398.77
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=10.60$ (br s, $1 \mathrm{H}, 1-\mathrm{NH}$), 8.21 (dd, J = 1.6, $7.9 \mathrm{~Hz}, 1 \mathrm{H}, 6$ '- H), 7.96 (dd, J = $1.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime \prime}-\underline{H}$), 7.63 (app t, J = $7.8 \mathrm{~Hz}, 2 \mathrm{H}, 4^{\prime}, 4^{\prime \prime}-\underline{H}$), $7.35-7.22\left(\mathrm{~m}, 4 \mathrm{H}, 3^{\prime}, 5^{\prime}, 3^{\prime \prime}, 5^{\prime \prime}-\underline{H}\right), 4.93$ (s, 2 $\left.\mathrm{H}, 2-\mathrm{CH}_{2}\right)$.
 137.6 (qC, 2'-C-C), $134.3\left(\mathrm{CH}, 4^{\prime}\right.$ or $\left.4 "-\underline{C}\right), 134.0\left(\mathrm{CH}, 4^{\prime}\right.$ or $\left.4 "-\mathrm{C}\right), 132.9\left(\mathrm{CH}, 6^{\prime}-\underline{-}\right), 131.5(\mathrm{CH}, 6 "-\underline{C}), 125.7$
 ($\mathrm{CH}, 3$ ' or 3 "- $-\underline{C}$), $40.0\left(\mathrm{CH}_{2}, 2-\underline{\mathrm{CH}_{2}}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{CIN}_{8} \mathrm{O}_{3}$: $398.0643[\mathrm{M}]$, $399.0715[\mathrm{M}+\mathrm{H}]^{+}, 421.0535[\mathrm{M}+\mathrm{Na}]^{+}$; found: $398.0642[\mathrm{M}], 399.0716[\mathrm{M}+\mathrm{H}]^{+}, 421.0539[\mathrm{M}+\mathrm{Na}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): v=3289,3078,1969,2929,2883,2125,1767,1693,1623,1595,1479,1364,1292,1230$, 1127, 1030, 950, 738, 669.

Previously unreported.

General procedure L: The corresponding isoflavone (1.0 equiv.), 1,2,4-oxadiazole (1.05 equiv.) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.1 equiv.) were dissolved in anhydrous DMF under N_{2}, and the mixture was stirred and heated at $80^{\circ} \mathrm{C}$ for 4.5 hours. The resulting mixture was cooled to room temperature, quenched with water (15 mL), and stirred for another 30 minutes. ${ }^{186}$ The precipitate was filtered, washed with water ($3 \times 30 \mathrm{~mL}$), and dried in air, unless otherwise stated. The crude was purified by flash chromatography to give the corresponding compound.

3-(4-Hydroxyphenyl)-7-((5-phenyl-1,2,4-oxadiazol-3-yl)methoxy)-4H-chromen-4-one (169), and 7-((5-

 phenyl-1,2,4-oxadiazol-3-yl)methoxy)-3-(4-((5-phenyl-1,2,4-oxadiazol-3-yl)methoxy)phenyl)-4H-chromen-4-one (170)Title compounds were prepared according to General procedure L using 26 ($0.2 \mathrm{mmol}, 51 \mathrm{mg}$), 165 (0.21 mmol, 41 mg), $\mathrm{K}_{2} \mathrm{CO}_{3}\left(0.22 \mathrm{mmol}, 31 \mathrm{mg}\right.$) and DMF (2 mL), $80{ }^{\circ} \mathrm{C}$ for 4.5 hours; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 100: 1\right)$ to give:

- 3-(4-hydroxyphenyl)-7-((5-phenyl-1,2,4-oxadiazol-3-yl)methoxy)-4H-chromen-4-one (169), white solid ($55 \mathrm{mg}, 66 \%$); $\mathrm{mp}=240-241^{\circ} \mathrm{C}$, lit. mp unreported; $R_{f}=0.24\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 98: 2\right.$).

Chemical Formula: $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5}$ Molecular Weight: 412.40
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{DMSO}): \delta=9.57$ (br s, $1 \mathrm{H}, 4$ '- OH), 8.41 (s, $1 \mathrm{H}, 2-\underline{\mathrm{H}}$), 8.15 (app d, J = $7.2 \mathrm{~Hz}, 2 \mathrm{H}$, $8 ", 12 "-\underline{H}$), 8.08 (d, J = $8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{H}$), 7.75 (app t, J = $7.4 \mathrm{~Hz}, 1 \mathrm{H}, 10$ "-Hㅡ) , 7.66 (app t, J = $7.6 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.9 ", 11^{\prime \prime}-\underline{H}\right), 7.42-7.39\left(\mathrm{~m}, 3 \mathrm{H}, 2^{\prime}, 6\right.$ ', $\left.8-\underline{H}\right), 7.22$ (dd, J = 2.4, 8.9 Hz, $1 \mathrm{H}, 6-\underline{H}$), $6.82\left(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\right.$ H), $5.58\left(\mathrm{~s}, 2 \mathrm{H}, 6\right.$ " $-\mathrm{CH}_{2}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, \mathrm{DMSO}): ~ \delta=176.2$ (qC, 5 " or $4-\mathrm{C}$), 175.1 (qC, 5 " or $4-\mathrm{C}$), 167.4 (qC), 162.2 (qC), 157.7

 $4 \mathrm{a}-\underline{\mathrm{C}}), 115.4\left(3 \mathrm{CH}, 3^{\prime}, 5^{\prime}, 6-\underline{\mathrm{C}}\right), 102.3(\mathrm{CH}, 8-\underline{\mathrm{C}}), 61.8\left(\mathrm{CH}_{2}, 6\right.$ " $\left.-\underline{\mathrm{C}} \mathrm{H}_{2}\right)$.

HRMS (Dual ESI): calc m / z for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5}$: 412.1059 [M], $413.1132[\mathrm{M}+\mathrm{H}]+$; found: 412.1061 [M], 413.1134 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3330,3065,2980,2889,1625,1594,1559,1516,1442,1349,1249,1204,1097,1015$, 988, 886, 722, 687.
Known compound. ${ }^{186}$

- 7-((5-phenyl-1,2,4-oxadiazol-3-yl)methoxy)-3-(4-((5-phenyl-1,2,4-oxadiazol-3-yl)methoxy)phenyl)$4 H$-chromen-4-one (170), white solid (14 $\mathrm{mg}, 12 \%$); $\mathrm{mp}=211-212^{\circ} \mathrm{C} ; R_{f}=0.3\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, 98:2).

 (d, J = $2.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{\mathrm{H}}), 5.36\left(\mathrm{~s}, 2 \mathrm{H}, 6\right.$ " $\left.-\mathrm{CH}_{2}\right), 5.29\left(\mathrm{~s}, 2 \mathrm{H}, 6\right.$ '" $\left.-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=176.8$ (qC), 176.5 (qC), 175.7 (qC), 167.3 (qC), 166.6 (qC), 162.0 (qC), $157.9(q C), 157.6(q C), 152.3(\mathrm{CH}, 2-\underline{\mathrm{C}}), 133.2\left(\mathrm{CH}, 10\right.$ " or $\left.10^{\prime \prime \prime}-\underline{\mathrm{C}}\right), 133.0\left(\mathrm{CH}, 10\right.$ " or $\left.10^{\prime \prime \prime}-\underline{\mathrm{C}}\right), 130.2(2 \mathrm{CH}$,
 $\underline{C}), 128.1(\mathrm{CH}, 5-\underline{\mathrm{C}}), 125.3(\mathrm{qC}), 124.8(\mathrm{qC}), 123.8(\mathrm{qC})$, $123.6(\mathrm{qC}), 119.2(\mathrm{qC}), 115.0\left(2 \mathrm{CH}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{C}}\right)$, $114.8(\mathrm{CH}, 6-\underline{\mathrm{C}}), 101.5(\mathrm{CH}, 8-\underline{\mathrm{C}}), 61.5\left(\mathrm{CH}_{2}, 6\right.$ " $\left.-\underline{\mathrm{CH}} \mathrm{H}_{2}\right), 61.3\left(\mathrm{CH}_{2}, 6\right.$ "' $\left.-\underline{\mathrm{CH}_{2}}\right)$.
HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{33} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{6}$: 570.1539 [M], 571.1612 [$\left.\mathrm{M}+\mathrm{H}\right]+$; found: 570.1544 [M], $571.1614[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): v=3081,3064,2981,1623,1606,1563,1510,1441,1350,1246,1183,1100,1020,829$, 720, 686, 537.
Previously unreported.

7-((5-(2-Azidophenyl)-1,2,4-oxadiazol-3-yl)methoxy)-3-(4-hydroxyphenyl)-4H-chromen-4-one (171), and 7-((5-(2-azidophenyl)-1,2,4-oxadiazol-3-yl)methoxy)-3-(4-((5-(2-azidophenyl)-1,2,4-oxadiazol-3-yl)methoxy)phenyl)-4H-chromen-4-one (172)
Title compounds were prepared according to General procedure L using 26 ($0.2 \mathrm{mmol}, 51 \mathrm{mg}$), 166 (0.21 $\mathrm{mmol}, 50 \mathrm{mg}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.22 \mathrm{mmol}, 31 \mathrm{mg})$ and DMF (2 mL), $80^{\circ} \mathrm{C}$ for 4.5 hours; The precipitate was filtered, washed with water, and dried in air to provide 20 mg of crude product. After filtration, the aqueous solution was acidified with $\mathrm{HCl}(\mathrm{pH}=4-5)$, and another 50 mg of the crude product was extracted from the filtrate with ethyl acetate $(3 \times 50 \mathrm{~mL})$. The organic layer was washed with brine $(3 \times 50 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under vacuum. The crude was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 100: 1\right)$ to give:

- 7-((5-(2-azidophenyl)-1,2,4-oxadiazol-3-yl)methoxy)-3-(4-hydroxyphenyl)-4H-chromen-4-one (171), white solid ($40 \mathrm{mg}, 44 \%$); $\mathrm{mp}=200-201^{\circ} \mathrm{C}$ (decomp.); $R_{f}=0.1\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 100: 4\right)$.

Chemical Formula: $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{5}$ Molecular Weight: 453.41
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{DMSO}): \delta=9.56$ (br s, $1 \mathrm{H}, 4{ }^{\prime}-\mathrm{OH}$), 8.41 ($\mathrm{s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}$), $8.06-8.09$ (m, $2 \mathrm{H}, 5,12^{\prime \prime}-\underline{\mathrm{H}}$), 7.78 (app t, J = $8.5 \mathrm{~Hz}, 1 \mathrm{H}, 10^{\prime \prime}-\underline{H}$), 7.62 ($\mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 9$ "-H्H), $7.39-7.44$ (m, $4 \mathrm{H}, 2^{\prime}, 6^{\prime}, 8,11^{\prime \prime}-\underline{H}$), 7.22 (dd, J = 2.4, 8.9 Hz, $1 \mathrm{H}, 6-\underline{H}$), 6.82 ($\left.\mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{H}}\right), 5.59\left(\mathrm{~s}, 2 \mathrm{H}, 6{ }^{\prime \prime}-\mathrm{CH}_{2}\right.$).

 $131.8\left(\mathrm{CH}, 12{ }^{\prime \prime}-\underline{\mathrm{C}}\right)$, $130.5\left(2 \mathrm{CH}, 2^{\prime}, 6^{\prime}-\underline{\mathrm{C}}\right), 127.6(\mathrm{CH}, 5-\underline{\mathrm{C}}), 125.9\left(\mathrm{CH}, 11^{\prime \prime}-\underline{\mathrm{C}}\right), 124.2$ (qC, 1^{\prime} or $\left.3-\underline{\mathrm{C}}\right), 122.7$ (qC, 1^{\prime} or $3-\underline{C}$), $121.3\left(\mathrm{CH}, 9^{\prime \prime}-\underline{C}\right), 118.7(q C, 4 \mathrm{a}-\underline{\mathrm{C}}), 115.48(\mathrm{CH}, 6-\underline{C}), 115.45\left(2 \mathrm{CH}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{C}}\right), 114.9\left(\mathrm{qC}, 7^{\prime \prime}\right.$ or 8 "-드) , $102.3(\mathrm{CH}, 8-\underline{\mathrm{C}}), 61.8\left(\mathrm{CH}_{2}, 6\right.$ " $\left.-\underline{\mathrm{CH}} \mathrm{H}_{2}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{5}$: 453.1073 [M], $454.1146[\mathrm{M}+\mathrm{H}]^{+}$; found: 453.1069 [M], 454.1141 $[\mathrm{M}+\mathrm{H}]^{+}$.

FT-IR $\left(\mathrm{cm}^{-1}\right): v=3376,3077,2980,2914,2122,1621,1607,1585,1513,1440,1250,1198,1058,833$, 748.

Previously unreported.

- 7-((5-(2-azidophenyl)-1,2,4-oxadiazol-3-yl)methoxy)-3-(4-((5-(2-azidophenyl)-1,2,4-oxadiazol-3-yl)methoxy)phenyl)-4H-chromen-4-one (172), white solid (20 mg, 15%); $\mathrm{mp}=161-162{ }^{\circ} \mathrm{C}$ (decomp.); $R_{f}=0.5\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 100: 4\right)$.

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.23(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 8.10(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}, 12$ ", 12"'- -H$), 7.92$ (s, $1 \mathrm{H}, 2-\underline{H}$), 7.67 - 7.57 (m, $2 \mathrm{H}, 10$ ", 10 '"'- $-\underline{H}$), 7.51 (d, J = $8.6 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{H}$), 7.35 (dd, J = 3.7, 8.1 Hz, 2 H , $9^{\prime \prime}, 9^{\prime \prime \prime}-\underline{H}$), 7.27 (td, J = 3.3, $7.7 \mathrm{~Hz}, 2 \mathrm{H}, 11^{\prime \prime}, 11^{\prime \prime \prime}-\underline{H}$), $7.18-7.08$ (m, $3 \mathrm{H}, 3^{\prime}, 5$ ', $6-\underline{H}$), 7.05 (d, J = $2.2 \mathrm{~Hz}, 1 \mathrm{H}$, $8-\underline{H}), 5.37$ (s, $2 \mathrm{H}, 6$ "-CH2 \underline{H}_{2}, $5.30\left(\mathrm{~s}, 2 \mathrm{H}, 6\right.$ "' CH_{2}).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=175.6$ (qC, 4-C$), 174.8(\mathrm{qC}), 174.5$ (qC), 167.0 (qC), 166.3 (qC), 162.0 (qC), 157.9 (qC), 157.6 (qC), $152.3(\mathrm{CH}, 2-\underline{C}), 139.8(q C), 139.7(q C), 134.0(\mathrm{CH}, 10$ " or 10 "'- $-\underline{C}), 133.9$
(CH, 10" or $\left.10^{\prime \prime \prime}-\underline{C}\right), 131.9(\mathrm{CH}, 12$ " or 12 '"- $-\underline{C}), 131.8\left(\mathrm{CH}, 12\right.$ " or $\left.12{ }^{\prime \prime \prime}-\mathrm{C}\right), 130.2\left(2 \mathrm{CH}, 2^{\prime}, 6^{\prime}-\underline{C}\right), 128.1(\mathrm{CH}$, $5-\underline{C}), 125.2(\mathrm{qC}), 125.1\left(\mathrm{CH}, 11\right.$ " or $\left.11^{\prime \prime \prime}-\mathrm{C}\right)$, $125.0\left(\mathrm{CH}, 11\right.$ " or $\left.11^{\prime \prime \prime}-\mathrm{C}\right), 124.8(\mathrm{qC}), 119.8(\mathrm{CH}, 9$ " or 9 '"'- -), 119.7 (CH, 9" or 9'"'- $-\underline{C}$), 119.2 (qC), 115.4 (qC), 115.2 (qC), $115.0\left(2 \mathrm{CH}, 3^{\prime}, 5{ }^{\prime}-\underline{C}\right), 114.8(\mathrm{CH}, 6-\underline{C}), 101.5$ ($\mathrm{CH}, 8-\underline{\mathrm{C}}$), $61.5\left(\mathrm{CH}_{2}, 6\right.$ "- $\left.\mathrm{CH}_{2}\right), 61.3\left(\mathrm{CH}_{2}, 6\right.$ '" $\left.{ }^{-} \underline{\mathrm{C}}_{2}\right)$.
HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{33} \mathrm{H}_{20} \mathrm{~N}_{10} \mathrm{O}_{6}$: 652.1567 [M], $653.1640[\mathrm{M}+\mathrm{H}]^{+}$; found: 652.1563 [M], $653.1640[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR (cm^{-1}): $v=3079,2980,2126,1621,1601,1510,1441,1247,1183,1019,830,747,534$.
Previously unreported.

3-(4-Methoxyphenyl)-7-((5-phenyl-1,2,4-oxadiazol-3-yl)methoxy)-4H-chromen-4-one (173)

Prepared according to General procedure L using $27(0.2 \mathrm{mmol}, 54 \mathrm{mg}), 165(0.21 \mathrm{mmol}, 41 \mathrm{mg}), \mathrm{K}_{2} \mathrm{CO}_{3}$ ($0.22 \mathrm{mmol}, 31 \mathrm{mg}$) and DMF (2 ml), $80^{\circ} \mathrm{C}$ for 4.5 hours; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}\right.$, 100:1) to give 173 ($80 \mathrm{mg}, 92 \%$) as a white solid; $\mathrm{mp}=184^{\circ} \mathrm{C} ; R_{f}=0.45$ (PE/EtOAc, 3:2).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.27(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 8.19(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}, 8$ ", 12"-H$), 7.95(\mathrm{~s}$, $1 \mathrm{H}, 2-\underline{H}), 7.65(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, 10 "-\underline{H}), 7.57\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, 9\right.$ ", 11 "- \underline{H}), $7.51\left(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\right.$ 브), 7.17 (dd, J = 1.9, $8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}$), $7.08(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H}), 6.99\left(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{H}\right)$, 5.38 (s, $2 \mathrm{H}, 6$ "- CH_{2}), 3.86 (s, $3 \mathrm{H}, 7$ ' $-\mathrm{CH}_{3}$).

 (qC, 1^{\prime} or 3 or $7^{\prime \prime}-\underline{C}$), $119.2(q C, 4 \mathrm{a}-\underline{\mathrm{C}}), 114.7(\mathrm{CH}, 6-\underline{\mathrm{C}}), 113.9\left(2 \mathrm{CH}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{C}}\right), 101.5(\mathrm{CH}, 8-\underline{\mathrm{C}}), 61.5\left(\mathrm{CH}_{2}\right.$, 6 "- CH_{2}), $55.3\left(\mathrm{CH}_{3}, 7\right.$ '- $\left.\mathrm{CH}_{3}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$: $426.1216[\mathrm{M}], 427.1288[\mathrm{M}+\mathrm{H}]+$; found: 426.1215 [M], 427.1288 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3083,3016,2983,2918,2839,1634,1620,1604,1558,1513,1442,1364,1257,1196$, 1115, 1040, 854, 791, 718, 688.
Previously unreported.

Prepared according to General procedure L using 27 ($0.2 \mathrm{mmol}, 54 \mathrm{mg}$), $166(0.21 \mathrm{mmol}, 50 \mathrm{mg}), \mathrm{K}_{2} \mathrm{CO}_{3}$ ($0.22 \mathrm{mmol}, 31 \mathrm{mg}$) and DMF (2 mL), $80^{\circ} \mathrm{C}$ for 4.5 hours; The precipitate was filtered, washed with water $(3 \times 30 \mathrm{~mL})$, and dried in air to provide 35 mg of crude product. The filtrate was extracted with ethyl acetate $(3 \times 50 \mathrm{~mL})$, and the organic layer was washed with brine $(3 \times 30 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under vacuum to provide another 50 mg of the crude product. The combined crude products were purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 100: 1\right)$ to give $174(70 \mathrm{mg}, 75 \%)$ as a pale yellow solid; $\mathrm{mp}=$ $159-160{ }^{\circ} \mathrm{C}$ (decomp.); $R_{f}=0.4$ (PE/EtOAc, 3:2).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.27(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 8.13$ (dd, J=1.1,7.9Hz,1H,12"-H),7.95 (s, $1 \mathrm{H}, 2-\underline{H}$), 7.66 (app t, J = $8.5 \mathrm{~Hz}, 1 \mathrm{H}, 10^{\prime \prime}-\underline{H}$), $7.51\left(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{H}\right), 7.39(\mathrm{app} \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}$, $1 \mathrm{H}, 9 "-\underline{H}$), 7.32 (app t, J = $7.4 \mathrm{~Hz}, 1 \mathrm{H}, 11$ "-H), 7.15 (dd, J = 2.3, $8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}$), 7.08 (d, J = $2.3 \mathrm{~Hz}, 1$ $\mathrm{H}, 8-\underline{H}), 6.99\left(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{H}}\right), 5.40\left(\mathrm{~s}, 2 \mathrm{H}, 6{ }^{\prime \prime}-\mathrm{CH}_{2}\right), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, 7{ }^{\prime}-\mathrm{CH}_{3}\right)$.

 C $)$, $130.1\left(2 \mathrm{CH}, 2^{\prime}, 6^{\prime}-\underline{\mathrm{C}}\right), 128.1(\mathrm{CH}, 5-\underline{\mathrm{C}})$, $125.0\left(\mathrm{CH}, 11^{\prime \prime}-\underline{\mathrm{C}}\right)$, $125.0\left(\mathrm{qC}, 1^{\prime}\right.$ or $3-\underline{\mathrm{C}}$), $124.0\left(\mathrm{qC}, 1^{\prime}\right.$ or $3-\underline{\mathrm{C}}$),
 $(\mathrm{CH}, 8-\underline{\mathrm{C}}), 61.5\left(\mathrm{CH}_{2}, 6\right.$ "- $\left.\underline{\mathrm{C}}_{2}\right), 55.3\left(\mathrm{CH}_{3}, 7\right.$ '- $\left.\mathrm{CH}_{3}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{5}$: $467.1230[\mathrm{M}], 468.1302$ [M+H]+; found: 467.1228 [M], 468.1300 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): v=3075,2980,2912,2845,2137,1643,1619,1598,1511,1442,1353,1250,1120,883$, 807, 744, 692.

Previously unreported.

3-(3-Methoxyphenyl)-7-((5-phenyl-1,2,4-oxadiazol-3-yl)methoxy)-4H-chromen-4-one (175)

Prepared according to General procedure L using 28 ($0.2 \mathrm{mmol}, 54 \mathrm{mg}$), $165(0.21 \mathrm{mmol}, 41 \mathrm{mg}), \mathrm{K}_{2} \mathrm{CO}_{3}$ ($0.22 \mathrm{mmol}, 31 \mathrm{mg}$) and DMF (2 mL), $80^{\circ} \mathrm{C}$ for 4.5 hours; The precipitate was filtered, washed with water $(3 \times 30 \mathrm{~mL})$, and dried in air to provide 50 mg of crude product. The filtrate was extracted with ethyl acetate
$(3 \times 50 \mathrm{~mL})$, and the organic layer was washed with brine $(3 \times 50 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under vacuum to provide another 35 mg of the crude product. The combined crude products were purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 100: 1\right)$ to give 175 ($78 \mathrm{mg}, 91 \%$) as a white solid; $\mathrm{mp}=148-149$ ${ }^{\circ} \mathrm{C} ; R_{f}=0.65\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 98: 2\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.28(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 8.19$ (app d, J=7.1 Hz, $2 \mathrm{H}, 8$ ", 12 " $-\underline{\mathrm{H}}$), 7.99
 $\left.1 \mathrm{H}, 5^{\prime}-\underline{H}\right), 7.19-7.16\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{H}\right), 7.12\left(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\underline{H}\right), 7.09(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H}), 6.95$ (dd, J = 2.5, 8.3 Hz, $1 \mathrm{H}, 6-\underline{H}$), 5.39 (s, $2 \mathrm{H}, 6$ " $-\mathrm{CH}_{2}$), $3.86\left(\mathrm{~s}, 3 \mathrm{H}, 7\right.$ '- $\underline{\mathrm{H}}_{3}$).

 $\left.6^{\prime}-\underline{C}\right), 119.3(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 114.9(\mathrm{CH}, 6-\underline{\mathrm{C}}), 114.5\left(\mathrm{CH}, 4{ }^{\prime}-\underline{\mathrm{C}}\right), 114.1\left(\mathrm{CH}, 2^{\prime}-\underline{\mathrm{C}}\right), 101.6(\mathrm{CH}, 8-\underline{\mathrm{C}}), 61.5\left(\mathrm{CH}_{2}\right.$, 6 "- $\underline{\mathrm{C}}_{2}$), $55.3\left(\mathrm{CH}_{3}, 7\right.$ '- $\left.\mathrm{CH}_{3}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$: 426.1216 [M], 427.1288 [M+H]+; found: 426.1218 [M], 427.1291 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR (cm^{-1}): $v=3088,2993,2937,2831,1621,1595,1577,1562,1487,1440,1350,1246,1195,1072$, 1040, 984, 830, 767, 694.
Previously unreported.

3-(2-Methoxyphenyl)-7-((5-phenyl-1,2,4-oxadiazol-3-yl)methoxy)-4H-chromen-4-one (176)

Chemical Formula: $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$
Molecular Weight: 426.43
Prepared according to General procedure L using $29(0.2 \mathrm{mmol}, 54 \mathrm{mg}), 165(0.21 \mathrm{mmol}, 41 \mathrm{mg}), \mathrm{K}_{2} \mathrm{CO}_{3}$ ($0.22 \mathrm{mmol}, 31 \mathrm{mg}$) and DMF (2 mL), $80^{\circ} \mathrm{C}$ for 4.5 hours; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}\right.$, 100:1) to give 176 ($73 \mathrm{mg}, 85 \%$) as a white solid; $\mathrm{mp}=153^{\circ} \mathrm{C} ; R_{f}=0.5\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 98: 2\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.25(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{H}), 8.17$ (app d, J=8.6 Hz, $2 \mathrm{H}, 8$ ", 12 "- -H), 7.93 (s, $1 \mathrm{H}, 2-\underline{H}$), 7.63 (app t, J = $7.4 \mathrm{~Hz}, 1 \mathrm{H}, 10$ "- \underline{H}), 7.55 (app t, J = $7.5 \mathrm{~Hz}, 2 \mathrm{H}, 9 ", 11^{\prime \prime}-\underline{H}$), $7.40-7.32$ (m, 2 $\mathrm{H}, 4^{\prime}, 6^{\prime}-\underline{H}$), 7.14 (dd, J = 2.3, $8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}$), 7.08 (d, J = $2.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H}$), 7.03 (dt, J = $0.9,7.7 \mathrm{~Hz}, 1 \mathrm{H}$,

 (qC, 2' or $8 \mathrm{a}-\underline{-}$), $157.5\left(\mathrm{qC}, 2^{\prime}\right.$ or $\left.8 \mathrm{a}-\underline{\mathrm{C}}\right)$, $152.9(\mathrm{CH}, 2-\underline{\mathrm{C}}), 133.2(\mathrm{CH}, 10 "-\underline{\mathrm{C}}), 131.7\left(\mathrm{CH}, 6^{\prime}-\underline{\mathrm{C}}\right), 129.8(\mathrm{CH}$,
 $3-\underline{C}), 120.8(\mathrm{qC}, 1$ ' or $3-\underline{\mathrm{C}}), 120.5\left(\mathrm{CH}, 5^{\prime}-\underline{\mathrm{C}}\right), 119.3(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 114.6(\mathrm{CH}, 6-\underline{\mathrm{C}}), 111.2(\mathrm{CH}, 3 \mathrm{l}-\underline{\mathrm{C}}), 101.6$ $(\mathrm{CH}, 8-\underline{\mathrm{C}}), 61.5\left(\mathrm{CH}_{2}, 6\right.$ "- $\left.-\underline{H_{2}}\right), 55.7\left(\mathrm{CH}_{3}, 7\right.$ '- $\left.\mathrm{C}_{3}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$: 426.1216 [M], 427.1288 [M+H]+; found: 426.1217 [M], 427.1289 $[\mathrm{M}+\mathrm{H}]^{+}$.

FT-IR (cm ${ }^{-1}$): $v=3077,3005,2970,2936,2838,1642,1625,1606,1561,1494,1437,1368,1235,1194$, 1093, 1017, 960, 886, 760, 720, 687.

Previously unreported.

3-Phenyl-7-((5-phenyl-1,2,4-oxadiazol-3-yl)methoxy)-4H-chromen-4-one (177)

Chemical Formula: $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$
Molecular Weight: 396.40
Prepared according to General procedure L using $\mathbf{3 0}(0.2 \mathrm{mmol}, 48 \mathrm{mg}), 165(0.21 \mathrm{mmol}, 41 \mathrm{mg}), \mathrm{K}_{2} \mathrm{CO}_{3}$ ($0.22 \mathrm{mmol}, 31 \mathrm{mg}$) and DMF (2 mL), $80^{\circ} \mathrm{C}$ for 4.5 hours; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}\right.$, 100:1) to give 177 ($75 \mathrm{mg}, 94 \%$) as a white solid; $\mathrm{mp}=176-177^{\circ} \mathrm{C} ; R_{f}=0.55\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 99: 1\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.28(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{H}), 8.18$ (app d, J=7.3Hz,2 H, 8",12"-브), 7.97 (s, $1 \mathrm{H}, 2-\underline{H}$), 7.64 (app t, J = $7.4 \mathrm{~Hz}, 1 \mathrm{H}, 10$ "-H), $7.59-7.54$ (m, $4 \mathrm{H}, 2^{\prime}, 6^{\prime}, 9^{\prime \prime}, 11^{\prime \prime}-\underline{H}$), 7.45 (app t, J = 7.3 $\left.\mathrm{Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{H}\right), 7.40\left(\mathrm{app} \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\underline{H}\right), 7.17(\mathrm{dd}, \mathrm{J}=2.3,8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 7.09(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}$, $1 \mathrm{H}, 8-\underline{\mathrm{H}}), 5.38\left(\mathrm{~s}, 2 \mathrm{H}, 6\right.$ "- $\left.\mathrm{CH}_{2}\right)$.

 $\left.2^{\prime}, 6^{\prime}-\underline{C}\right)$, 128.5 ($2 \mathrm{CH}, 3^{\prime}, 5^{\prime}-\underline{-}$), 128.2 ($2 \mathrm{CH}, 8$ ", 12 " $-\underline{-}$), 128.1 ($2 \mathrm{CH}, 4^{\prime}, 5-\underline{\mathrm{C}}$), 125.4 (qC, 3 or $7^{\prime \prime}-\underline{-}$), 123.6 (qC, 3 or 7 "--ㅡ) , $119.3(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 114.8(\mathrm{CH}, 6-\underline{\mathrm{C}}), 101.6(\mathrm{CH}, 8-\underline{\mathrm{C}}), 61.5\left(\mathrm{CH}_{2}, 6\right.$ "- $\left.\mathrm{CH}_{2}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$: 396.1110 [M], 397.1183 [M+H]+; found: 396.1109 [M], 397.1181 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3066,2980,2938,2888,1622,1595,1562,1497,1441,1337,1255,1201,1098,1056$, 834, 814, 720, 689.
Previously unreported.

7-((5-phenyl-1,2,4-oxadiazol-3-yl)methoxy)-3-(p-tolyl)-4H-chromen-4-one (178)

Prepared according to General procedure L using 31 ($0.2 \mathrm{mmol}, 51 \mathrm{mg}$), 165 ($0.21 \mathrm{mmol}, 41 \mathrm{mg}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($0.22 \mathrm{mmol}, 31 \mathrm{mg}$) and DMF (2 mL), $80^{\circ} \mathrm{C}$ for 4.5 hours; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}\right.$, 100:1) to give 178 ($70 \mathrm{mg}, 85 \%$) as a white solid; $\mathrm{mp}=192-193^{\circ} \mathrm{C} ; R_{f}=0.5\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 99: 1\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.27$ (d, J = $8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{H}$), 8.19 (app d, J = $7.2 \mathrm{~Hz}, 2 \mathrm{H}, 8$ ", 12"- $\underline{\text { H }}$), 7.96
 $\left.\mathrm{Hz}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{\mathrm{H}}\right), 7.26\left(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{H}}\right), 7.16$ (dd, J = 2.5, $8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}$), $7.08(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}$, $1 \mathrm{H}, 8-\underline{\mathrm{H}}$), 5.38 (s, $2 \mathrm{H}, 6$ "- $\underline{\mathrm{H}}_{2}$), $2.40\left(\mathrm{~s}, 3 \mathrm{H}, 7{ }^{\prime}-\mathrm{CH}_{3}\right)$.

 $3^{\prime}, 5^{\prime}-\underline{-}$), 128.8 (q C, $1^{\prime}-\underline{C}$), 128.8 ($2 \mathrm{CH}, 2^{\prime}, 6^{\prime}-\underline{\mathrm{C}}$), 128.2 ($2 \mathrm{CH}, 8$ ", $12^{\prime \prime}-\underline{\mathrm{C}}$), 128.1 ($\mathrm{CH}, 5-\underline{\mathrm{C}}$), 125.3 (qC, 3 or
 $\left(\mathrm{CH}_{3}, 7{ }^{\prime}-\underline{\mathrm{C}} \mathrm{H}_{3}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}: 410.1267$ [M], $411.1339[\mathrm{M}+\mathrm{H}]^{+}$; found: 410.1264 [M], 411.1337 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): v=3089,3063,3030,2980,2917,1641,1621,1606,1585,1480,1443,1362,1261,1190$, 1119, 1055, 852, 786, 720, 693.

Previously unreported.

3-(4-Chlorophenyl)-7-((5-phenyl-1,2,4-oxadiazol-3-yl)methoxy)-4H-chromen-4-one (179)

Prepared according to General procedure L using 32 ($0.2 \mathrm{mmol}, 55 \mathrm{mg}$), $165(0.21 \mathrm{mmol}, 41 \mathrm{mg}), \mathrm{K}_{2} \mathrm{CO}_{3}$ ($0.22 \mathrm{mmol}, 31 \mathrm{mg}$) and DMF (2 mL), $80^{\circ} \mathrm{C}$ for 4.5 hours; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}\right.$, 100:1) to give 179 ($80 \mathrm{mg}, 92 \%$) as a white solid; $\mathrm{mp}=213-214{ }^{\circ} \mathrm{C} ; R_{f}=0.5\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 99: 1\right)$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.27$ (d, J = $8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{H}$), 8.19 (app d, J = $7.2 \mathrm{~Hz}, 2 \mathrm{H}, 8$ ", 12"- $\underline{\text { H }}$), 7.98
 $\left.\mathrm{Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{H}}\right), 7.43\left(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{\mathrm{H}}\right), 7.18(\mathrm{dd}, \mathrm{J}=2.4,8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 7.10(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}$, $1 \mathrm{H}, 8-\underline{\mathrm{H}}$), 5.39 (s, $2 \mathrm{H}, 6$ "- CH_{2}).

 3 or 7 "- $-\underline{C}$), 123.6 (qC, 3 or 7 "- $-\underline{C}$), 119.1 (qC, $4 \mathrm{a}-\underline{\mathrm{C}}), 115.0(\mathrm{CH}, 6-\underline{\mathrm{C}}), 101.6(\mathrm{CH}, 8-\underline{\mathrm{C}}), 61.5\left(\mathrm{CH}_{2}, 6\right.$ "- $\left.-\mathrm{CH}_{2}\right)$. HRMS (Dual ESI): calc m / z for $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{CIN}_{2} \mathrm{O}_{4}$: 430.0720 [M], 431.0793 [M+H]+; found: 430.0714 [M], $431.0786[\mathrm{M}+\mathrm{H}]^{+}$.

FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3096,3062,2979,2923,2882,1644,1630,1608,1573,1504,1446,1375,1269,1227$, 1118, 1087, 1019, 845, 716, 688.

Previously unreported.

3-(4-nitrophenyl)-7-((5-phenyl-1,2,4-oxadiazol-3-yl)methoxy)-4H-chromen-4-one (180)

Chemical Formula: $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{6}$ Molecular Weight: 441.40

Prepared according to General procedure L using $33(0.2 \mathrm{mmol}, 57 \mathrm{mg}), 165(0.21 \mathrm{mmol}, 41 \mathrm{mg}), \mathrm{K}_{2} \mathrm{CO}_{3}$ ($0.22 \mathrm{mmol}, 31 \mathrm{mg}$) and DMF (2 mL), $80^{\circ} \mathrm{C}$ for 4.5 hours; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}\right.$, $500: 1$) to give $180(60 \mathrm{mg}, 68 \%)$ as a white solid; $\mathrm{mp}=265-266^{\circ} \mathrm{C} ; R_{f}=0.59\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 99: 1\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}, \mathrm{DMSO}): ~ \delta=8.65(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{H}), 8.29\left(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 3\right.$ ', $5^{\prime}-\underline{\mathrm{H}}$), $8.17-8.12$ (m, 3 H , $5,8 ", 12 "-\underline{H}$), 7.94 (d, J = $8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{H}$), 7.74 (app t, J = $7.5 \mathrm{~Hz}, 1 \mathrm{H}, 10$ "-H), 7.66 (app t, J = $7.6 \mathrm{~Hz}, 2$ $\mathrm{H}, 9 ", 11$ "- \underline{H}), 7.42 ($\mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{\mathrm{H}}$), 7.28 ($\mathrm{dd}, \mathrm{J}=2.4,8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}$), 5.59 ($\mathrm{s}, 2 \mathrm{H}, 6$ "- CH_{2}).

 C $)$, $61.8\left(\mathrm{CH}_{2}, 6\right.$ " $\left.-\mathrm{CH}_{2}\right)$; (low solubility in DMSO, qC not visible).
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{6}$: 441.0961 [M], 442.1034 [M+H]+; found: 441.0955 [M], 442.1028 $[\mathrm{M}+\mathrm{H}]^{+}$.

FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3087,3045,2980,2886,1644,1630,1603,1560,1519,1446,1377,1268,1199,119$, 851, 804, 717, 695.

Previously unreported.

5-Hydroxy-3-(4-methoxyphenyl)-7-((5-phenyl-1,2,4-oxadiazol-3-yl)methoxy)-4H-chromen-4-one (181)

Prepared according to General procedure L using 71 ($0.1 \mathrm{mmol}, 28.4 \mathrm{mg}$), 165 ($0.105 \mathrm{mmol}, 20.4 \mathrm{mg}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.11 \mathrm{mmol}, 15 \mathrm{mg})$ and DMF (2 mL), $80{ }^{\circ} \mathrm{C}$ for 4.5 hours; purified by flash chromatography
$\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.100: 2\right)$ to give $181(30 \mathrm{mg}, 68 \%)$ as a white solid; $\mathrm{mp}=204-205{ }^{\circ} \mathrm{C} ; R_{f}=0.6$ ($\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ acetone, 95:5).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.89$ ($\mathrm{s}, 1 \mathrm{H}, 5-\mathrm{OH}$), 8.17 (d, J = $7.3 \mathrm{~Hz}, 2 \mathrm{H}, 8$ ", 12"- $\underline{\mathrm{H}}$), 7.88 (s, $1 \mathrm{H}, 2-\underline{\mathrm{H}}$),
 H) , $6.98\left(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{H}\right), 6.58(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{\mathrm{H}}), 6.53(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{\mathrm{H}}), 5.32(\mathrm{~s}$, $2 \mathrm{H}, 6$ " $-\mathrm{CH}_{2}$), 3.84 (s, $3 \mathrm{H}, 7$ '- CH_{3}).

 C- $)$, $114.1\left(2 \mathrm{CH}, 3\right.$ ' $\left.5^{\prime}-\underline{-}\right)$, $106.9(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 98.9(\mathrm{CH}, 6-\underline{\mathrm{C}}), 93.3(\mathrm{CH}, 8-\underline{\mathrm{C}}), 61.4\left(\mathrm{CH}_{2}, 6\right.$ " $\left.-\underline{\mathrm{CH}} \mathrm{H}_{2}\right), 55.4\left(\mathrm{CH}_{3}\right.$, 7 '- CH_{3}).
HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6}$: 442.1165 [M], 443.1238 [$\left.\mathrm{M}+\mathrm{H}\right]^{+}$; found: 442.1167 [M], $443.1240[\mathrm{M}+\mathrm{H}]^{+}$.

FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3053,2921,1644,1607,1563,1503,1422,1364,1283,1237,1174,1043,830,782,718$, 529.

Previously unreported.

3-(4-Aminophenyl)-7-((5-phenyl-1,2,4-oxadiazol-3-yl)methoxy)-4H-chromen-4-one (182)

Chemical Formula: $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4}$ Molecular Weight: 411.42

Prepared according to General procedure L using $123(0.1 \mathrm{mmol}, 26 \mathrm{mg}), 165(0.105 \mathrm{mmol}, 21 \mathrm{mg}), \mathrm{K}_{2} \mathrm{CO}_{3}$ ($0.11 \mathrm{mmol}, 16 \mathrm{mg}$) and DMF (1.5 mL), $80{ }^{\circ} \mathrm{C}$ for 4.5 hours; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 100: 1\right)$ to give $182(29 \mathrm{mg}, 70 \%)$ as a white solid; $\mathrm{mp}=188-189{ }^{\circ} \mathrm{C} ; R_{f}=0.1$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 99: 1\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.25(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 8.18$ (app d, J=7.6 Hz, $2 \mathrm{H}, 8$ ", 12"- $\underline{\text { H }}$), 7.92
 $\mathrm{Hz}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{H}$), 7.13 (dd, J = 2.1, $8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}$), 7.06 (d, J = $2.1 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H}$), $6.75(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2$ H, $3^{\prime}, 5^{\prime}-\underline{H}$), 5.37 (s, $2 \mathrm{H}, 6$ " $-\mathrm{CH}_{2}$), 3.80 (br s, $2 \mathrm{H}, 4^{\prime}-\mathrm{NH}_{2}$).
 (qC, 8a-C-C), $151.8(\mathrm{CH}, 5-\underline{C}), 146.5\left(q C, 4^{\prime}-\underline{C}\right), 133.2(\mathrm{CH}, 10 "-\underline{C}), 129.9\left(2 \mathrm{CH}, 2^{\prime}, 6^{\prime}-\underline{C}\right), 129.2\left(2 \mathrm{CH}, 9^{\prime \prime}, 11\right.$ "-
 $4 \mathrm{a}-\underline{\mathrm{C}}), 115.0$ ($\left.2 \mathrm{CH}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{C}}\right)$, $114.6(\mathrm{CH}, 6-\underline{\mathrm{C}}), 101.5(\mathrm{CH}, 8-\underline{\mathrm{C}}), 61.5\left(\mathrm{CH}_{2}, 6\right.$ " $\left.-\underline{\mathrm{CH}}{ }_{2}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4}$: 411.1219 [M], $412.1292[\mathrm{M}+\mathrm{H}]^{+}$; found: 411.1218 [M], 412.1290 $[\mathrm{M}+\mathrm{H}]^{+}$.

FT-IR (cm ${ }^{-1}$): $v=3352,3220,3075,3032,2990,2925,1621,1605,1563,1515,1440,1350,1245,1196$, 1118, 1044, 825, 720, 684.

Previously unreported.

5-Methoxy-2-(4-(4-(5-phenyl-1,2,4-oxadiazol-3-yl)phenyl)isoxazol-5-yl)phenol (184)

Aqueous hydroxylamine solution ($160 \mu \mathrm{~mol}, 5.72 \mathrm{mg}, 11 \mu \mathrm{~L}, 50 \mathrm{wt} . \%$ in $\mathrm{H}_{2} \mathrm{O}$) was added slowly to a solution of $112(144 \mu \mathrm{~mol}, 40 \mathrm{mg})$ in ethanol $(1.5 \mathrm{~mL})$ under N_{2}, and the resulting solution was stirred for 2 h at $90^{\circ} \mathrm{C}$ under $\mathrm{N}_{2} .{ }^{197}$ The volatiles were removed under reduced pressure and the obtained solid was dissolved in toluene (1 mL). Benzoyl chloride ($160 \mu \mathrm{~mol}, 19 \mu \mathrm{~L}$) and pyridine ($160 \mu \mathrm{~mol}, 13 \mu \mathrm{~L}$) were added and the reaction mixture was stirred for 24 h at $120^{\circ} \mathrm{C} .{ }^{276}$ The reaction mixture was concentrated under reduced pressure and the crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.100: 2\right)$ to give 184 ($15 \mathrm{mg}, 25 \%$) as a white solid; $\mathrm{mp}=214-216{ }^{\circ} \mathrm{C} ; R_{f}=0.21\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, 100:2).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.50\left(\mathrm{~s}, 1 \mathrm{H}, 3\right.$ '- -H), $8.22\left(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, 7\right.$ ", $\left.11^{\prime \prime}-\underline{H}\right), 8.19(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}$, $2 \mathrm{H}, 8^{\prime}, 10^{\prime}-\underline{H}$), 7.63 (app t, J = $7.3 \mathrm{~Hz}, 1 \mathrm{H}, 9 "-\underline{H}$), 7.57 (app t, J = $7.3 \mathrm{~Hz}, 2 \mathrm{H}, 8 ", 10 "-\underline{H}$), 7.52 (d, J = 8.3 $\left.\mathrm{Hz}, 2 \mathrm{H}, 7^{\prime}, 11^{\prime}-\underline{H}\right), 7.23(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}, 3-\underline{H}), 6.58(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 6.53(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 1-\mathrm{OH}), 6.47$ (dd, J = 2.4, 8.7 Hz, $1 \mathrm{H}, 4-\underline{H}$), 3.83 (s, $3 \mathrm{H}, 7-\mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=175.9$ (qC), 168.4 (qC), 163.1 (qC), 155.7 (CH, 3'- C), 132.9 ($\left.\mathrm{CH}, 9 "-\underline{\mathrm{C}}\right)$, 132.5 (qC), 130.2 ($\mathrm{CH}, 3-\underline{\mathrm{C}}$), 129.4 (qC), 129.2 ($2 \mathrm{CH}, 8$ ", 10 "- $-\underline{C}$), $128.5\left(2 \mathrm{CH}, 7^{\prime}, 11^{\prime}-\underline{\mathrm{C}}\right), 128.22$ (2 CH, 8',10' or $7^{\prime \prime}, 11^{\prime \prime}-\underline{C}$), 128.20 (2 CH, $8^{\prime}, 10^{\prime}$ or $7^{\prime \prime}, 11^{\prime \prime}-\underline{C}$), 126.6 (qC), 124.5 (qC), 124.1 (qC), 121.3 (qC), 107.9 $(\mathrm{CH}, 4-\underline{\mathrm{C}}), 106.1(\mathrm{qC}), 102.4(\mathrm{CH}, 6-\underline{\mathrm{C}}), 55.5\left(\mathrm{CH}_{3}, 7-\underline{\mathrm{C}} \mathrm{H}_{3}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4}$: 411.1219 [M], 412.1292 [M+H]+; found: 411.1209 [M], 412.1283 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR (cm ${ }^{-1}$): $v=3177,3050,2950,1619,1556,1464,1355,1277,1208,1050,971,853,754,545$.
Previously unreported.

3.2.3 Synthesis of isoflavone/1,2,3-triazole and of isoflavone/1,2,3-triazole/ benzodiazepine hybrids

1,2,3,11a-Tetrahydro-5H-benzo[e]pyrrolo[1,2-a][1,4]diazepine-5,11(10H)-dione (186)

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$ Molecular Weight: 216.24

A solution of $185(10 \mathrm{mmol}, 1.63 \mathrm{~g})$ and L-proline $203(11 \mathrm{mmol}, 1.26 \mathrm{~g})$ in DMSO (10 mL) was stirred and heated at $120^{\circ} \mathrm{C}$ for 4 h . The resulting mixture was allowed to cool to RT and water (20 mL) was added. 200 The precipitate that appeared was allowed to fully form in the freezer overnight, was filtered off, washed with cold water, and dried under vacuum suction to give 186 ($2.15 \mathrm{~g}, 99 \%$) as a pale brown solid;. $\mathrm{mp}=$ $219-220^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=220-222{ }^{\circ} \mathrm{C} ;{ }^{277} R_{f}=0.61\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 96: 4\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{DMSO}): ~ \delta=10.48$ (s, $1 \mathrm{H}, 10-\mathrm{NH}$), 7.76 (dd, J = 1.6, $7.8 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}$), 7.48 (app dt, J $=1.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H}$), 7.19 (app td, J = $1.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}, 7-\underline{H}$), 7.11 (dd, J = $0.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}, 9-\underline{H}$), $4.14-$ $4.04(\mathrm{~m}, 1 \mathrm{H}, 11 \mathrm{a}-\underline{\mathrm{H}}), 3.63-3.51(\mathrm{~m}, 1 \mathrm{H}, 3-\underline{H}), 3.48-3.38(\mathrm{~m}, 1 \mathrm{H}, 3-\underline{H}), 2.49-2.43(\mathrm{~m}, 1 \mathrm{H}, 1-\underline{\mathrm{H}}) 2.00$ - 1.70 (m, $3 \mathrm{H}, 1,2-\mathrm{H}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, \mathrm{DMSO}): ~ \delta=171.2$ (qC, 5 or $11-\mathrm{C}$), 165.0 ($\mathrm{qC}, 5$ or $11-\mathrm{C}$), 136.8 ($\mathrm{qC}, 9 \mathrm{a}-\mathrm{C}$), 132.5 $(\mathrm{CH}, 8-\underline{\mathrm{C}}), 130.7(\mathrm{CH}, 6-\underline{\mathrm{C}}), 127.0(\mathrm{qC}, 5 \mathrm{a}-\underline{\mathrm{C}}), 124.3(\mathrm{CH}, 7-\underline{\mathrm{C}}), 121.7(\mathrm{CH}, 9-\underline{\mathrm{C}}), 56.6(\mathrm{CH}, 11 \mathrm{a}-\underline{\mathrm{C}}), 47.3$ $\left(\mathrm{CH}_{2}, 3-\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}, 1-\underline{\mathrm{CH}_{2}}\right), 23.5\left(\mathrm{CH}_{2}, 2-\mathrm{CH}_{2}\right)$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3418,3202,3050,2940,2869,1693,1673,1601,1575,1443,1395,1289,755,657,522$.
Known compound. ${ }^{200,} 277$

7-Bromo-1,2,3,11a-tetrahydro-5H-benzo[e]pyrrolo[1,2-a][1,4]diazepine-5,11(10H)-dione (187)

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{O}_{2}$
Molecular Weight: 295.14
To a solution of $186(10 \mathrm{mmol}, 2.16 \mathrm{~g})$ in glacial acetic acid (20 mL), sodium acetate ($10 \mathrm{mmol}, 0.82 \mathrm{~g}$) was added, followed by a dropwise addition of a solution of bromine ($12 \mathrm{mmol}, 1.92 \mathrm{~g}, 0.62 \mathrm{~mL}$) in 20 mL of glacial acetic acid. After stirring the resulting solution at room temperature for 16 h , water (50 mL) was added. ${ }^{201}$ The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$ and the organic phase was washed with water $(2 \times 100 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ Acetone, $\left.20: 1\right)$ to give $187(2.06 \mathrm{~g}, 70 \%)$ as a white solid; $\mathrm{mp}=213-215^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=218-220^{\circ} \mathrm{C} ; 201 R_{f}=0.43$ (ethyl acetate/petroleum ether, $4: 1$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.87(\mathrm{~s}, 1 \mathrm{H}, 10-\mathrm{NH}), 8.11$ (d, J=2.3 Hz, $1 \mathrm{H}, 6-\underline{\mathrm{H}}$), 7.56 ($\mathrm{dd}, \mathrm{J}=2.3,8.5$ $\mathrm{Hz}, 1 \mathrm{H}, 8-\underline{H}), 6.92(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 9-\underline{H}), 4.06(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, 11 \mathrm{a}-\underline{\mathrm{H}}), 3.86-3.75(\mathrm{~m}, 1 \mathrm{H}, 3-\underline{H})$, $3.65-3.54$ (m, $1 \mathrm{H}, 3-\underline{H}$), $2.82-2.69$ (m, $1 \mathrm{H}, 1-\underline{H}), 2.12-1.94$ (m, $3 \mathrm{H}, 1,2-\underline{H}$).
 $9 \mathrm{a}-\mathrm{C}), 133.8(\mathrm{CH}, 6-\underline{\mathrm{C}}), 128.6(\mathrm{qC}, 5 \mathrm{a}-\underline{\mathrm{C}}), 122.7(\mathrm{CH}, 9-\underline{\mathrm{C}}), 118.2(\mathrm{qC}, 7-\underline{\mathrm{C}}), 56.7(\mathrm{CH}, 11 \mathrm{a}-\underline{\mathrm{C}}), 47.5\left(\mathrm{CH}_{2}\right.$, $\left.3-\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2}, 1-\mathrm{CH}_{2}\right), 23.5\left(\mathrm{CH}_{2}, 2-\mathrm{CH}_{2}\right)$.
FT-IR (cm^{-1}): $\mathrm{v}=3219,3154,3050,2938,2872,1698,1613,1475,1445,1366,1253,838,752,524$.
Known compound. ${ }^{201}$

General procedure M: To a degassed solution of 7-bromobenzodiazepine (1.0 equiv.) in $\mathrm{Et}_{3} \mathrm{~N}$ and $\mathrm{CH}_{3} \mathrm{CN}$, under N_{2} and heated at $70{ }^{\circ} \mathrm{C}, \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(5-10 \mathrm{~mol} \%)$ and (trialkylsilyl)acetylene (2.0 equiv.) were added. After stirring the resulting mixture for 20 h at $80-85^{\circ} \mathrm{C}$ under N_{2}, the solution was concentrated. ${ }^{203}$ Saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ was added and the crude was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography to give the 7 -((trialkylsilyl)ethynyl)benzodiazepine product.

General procedure N: TBAF (1.4 equiv., 1.0 M in THF, 5% water) was added dropwise to a solution of trialkylsilyl protected compound (1.0 equiv.) in THF and the mixture was stirred at RT for $10-15 \mathrm{~min}$. Water $(20 \mathrm{~mL})$ was added to the reaction mixture and the crude was extracted with ethyl acetate $(3 \times 30 \mathrm{~mL})$. The organic phase was washed with brine (25 mL), dried (MgSO_{4}), filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography to give the deprotected product.

7-((Trimethylsilyl)ethynyl)-1,2,3,11a-tetrahydro-5H-benzo[e]pyrrolo[1,2-a][1,4]diazepine-5,11(10H)dione (188)

Prepared according to General procedure M using 187 ($1.7 \mathrm{mmol}, 502 \mathrm{mg}$), $\mathrm{Et}_{3} \mathrm{~N}(25 \mathrm{~mL}), \mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL})$, $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.17 \mathrm{mmol}, 120 \mathrm{mg}, 10 \mathrm{~mol} \%)$ and (trimethylsily) acetylene $143(3.4 \mathrm{mmol}, 334 \mathrm{mg}, 0.47$ $\mathrm{mL}), 20 \mathrm{~h}$ at $85^{\circ} \mathrm{C}$; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 100: 1\right)$ to give $\mathbf{1 8 8}(467 \mathrm{mg}, 88 \%)$ as a pale white solid; $\mathrm{mp}=223-224^{\circ} \mathrm{C} ; R_{f}=0.37\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 100: 2\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.45(\mathrm{~s}, 1 \mathrm{H}, 10-\mathrm{NH}), 8.07(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 7.49(\mathrm{dd}, \mathrm{J}=1.8,8.3$ $\mathrm{Hz}, 1 \mathrm{H}, 8-\underline{-}$), $7.00(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}), 4.04$ (app d, $\mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}, 11 \mathrm{a}-\underline{\mathrm{H}}$), $3.85-3.70(\mathrm{~m}, 1 \mathrm{H}, 3-$ \underline{H}), $3.65-3.50(\mathrm{~m}, 1 \mathrm{H}, 3-\underline{H}), 2.83-2.66(\mathrm{~m}, 1 \mathrm{H}, 1-\underline{H}), 2.10-1.90(\mathrm{~m}, 3 \mathrm{H}, 1,2-\underline{H}), 0.22\left(\mathrm{~s}, 9 \mathrm{H}, 14-\mathrm{CH}_{3}\right)$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.3$ (qC, C=O, 5 or $11-\underline{\mathrm{C}}$), 164.7 ($\mathrm{qC}, \mathrm{C}=\mathrm{O}, 5$ or $11-\underline{\mathrm{C}}$), 135.4 (CH, $8-\underline{\mathrm{C}}$), 135.3 (qC, $9 \mathrm{a}-\underline{\mathrm{C}}$), 135.0 ($\mathrm{CH}, 6-\underline{\mathrm{C}}$), 126.9 ($\mathrm{qC}, 5 \mathrm{a}-\underline{\mathrm{C}}$), 121.2 (CH, $9-\underline{\mathrm{C}})$, 120.1 ($\mathrm{qC}, 7-\underline{\mathrm{C}}$), 103.4 ($\mathrm{qC}, 12-\underline{\mathrm{C}}$), $95.5(\mathrm{qC}, 13-\underline{\mathrm{C}}), 56.8(\mathrm{CH}, 11 \mathrm{a}-\underline{\mathrm{C}}), 47.5\left(\mathrm{CH}_{2}, 3-\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2}, 1-\mathrm{CH}_{2}\right), 23.5\left(\mathrm{CH}_{2}, 2-\mathrm{CH}_{2}\right), 0.0\left(3 \mathrm{CH}_{3}\right.$, $\left.14-\mathrm{CH}_{3}\right)$.
HRMS (Dual ESI): calc m/z for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}: 312.1294$ [M], 313.1367 [$\left.\mathrm{M}+\mathrm{H}\right]^{+}$; found: 312.1292 [M], $313.1365[\mathrm{M}+\mathrm{H}]^{+}$.

FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3229,3139,2952,2897,2154,1692,1632,1604,1491,1436,1374,1247,967,835,756$, 637, 559.

Previously unreported.

7-((Triethylsilyl)ethynyl)-1,2,3,11a-tetrahydro-5H-benzo[e]pyrrolo[1,2-a][1,4]diazepine-5,11(10H)dione (189)

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}$ Molecular Weight: 354.53

Prepared according to General procedure M using $187(0.68 \mathrm{mmol}, 200 \mathrm{mg}), \mathrm{Et}_{3} \mathrm{~N}(15 \mathrm{~mL}), \mathrm{CH}_{3} \mathrm{CN}(12$ $\mathrm{mL}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(34 \mu \mathrm{~mol}, 24 \mathrm{mg}, 5 \mathrm{~mol} \%$) and (triethylsilyl)acetylene 144 ($1.36 \mathrm{mmol}, 190 \mathrm{mg}, 0.27$ $\mathrm{mL}), 20 \mathrm{~h}$ at $80^{\circ} \mathrm{C}$; purified by flash chromatography (EtOAc/PE, 2:3) to give $189(205 \mathrm{mg}, 85 \%)$ as a pale brown oily solid; $R_{f}=0.24$ (EtOAc/PE, 1:1).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.13(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{\mathrm{H}}), 7.97(\mathrm{~s}, 1 \mathrm{H}, 10-\mathrm{NH}), 7.56$ (dd, J=1.9, 8.3 $\mathrm{Hz}, 1 \mathrm{H}, 8-\underline{H}), 7.31(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, 9-\underline{H}), 4.07(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, 11 \mathrm{a}-\underline{\mathrm{H}}), 3.88-3.79(\mathrm{~m}, 1 \mathrm{H}, 3-\underline{H})$, $3.68-3.57$ ($\mathrm{m}, 1 \mathrm{H}, 3-\underline{\mathrm{H}}$), $2.83-2.74$ (m, $1 \mathrm{H}, 1-\underline{\mathrm{H}}$), $2.12-2.00(\mathrm{~m}, 3 \mathrm{H}, 1,2-\underline{H}), 1.06(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 9 \mathrm{H}$, $15-\underline{H}), 0.69(q, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}, 14-\underline{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.6$ (qC, C=O, 5 or $11-\underline{\mathrm{C}}$), 164.5 (qC, $\mathrm{C}=\mathrm{O}, 5$ or $11-\underline{\mathrm{C}}$), 135.5 (CH, 8- $\underline{\mathrm{C}}$), $135.1(\mathrm{CH}, 6-\underline{\mathrm{C}}), 134.5(\mathrm{qC}, 9 \mathrm{a}-\underline{\mathrm{C}}), 127.1$ (qC, $5 \mathrm{a}-\underline{\mathrm{C}}$), $120.8(\mathrm{CH}, 9-\underline{\mathrm{C}}), 120.6$ (qC, $7-\underline{\mathrm{C}}$), 104.4 (qC, 12 or $13-\underline{C})$, $93.3(\mathrm{qC}, 12$ or $13-\underline{\mathrm{C}}), 56.7(\mathrm{CH}, 11 \mathrm{a}-\underline{\mathrm{C}}), 47.4\left(\mathrm{CH}_{2}, 3-\underline{\mathrm{CH}} \mathrm{H}_{2}\right), 26.3\left(\mathrm{CH}_{2}, 1-\underline{\mathrm{CH}}_{2}\right), 23.4\left(\mathrm{CH}_{2}, 2-\underline{\mathrm{C}} \mathrm{H}_{2}\right)$, $7.5\left(3 \mathrm{CH}_{3}, 15-\underline{\mathrm{C}}_{3}\right), 4.3\left(3 \mathrm{CH}_{2}, 14-\mathrm{C}_{2}\right)$.

Previously unreported.

7-Ethynyl-1,2,3,11a-tetrahydro-5H-benzo[e]pyrrolo[1,2-a][1,4]diazepine-5,11(10H)-dione (190)

Method A: Prepared according to General procedure N using TBAF ($1.68 \mathrm{mmol}, 438 \mathrm{mg}, 1.68 \mathrm{~mL}$), 188 ($1.2 \mathrm{mmol}, 374 \mathrm{mg}$) and THF (10 mL), RT for 15 min ; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, 9:1) to give 190 ($273 \mathrm{mg}, 95 \%$) as a white solid; $\mathrm{mp}=236-237^{\circ} \mathrm{C} ; R_{f}=0.2\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.9: 1\right)$.

Method B: Prepared according to General procedure N using TBAF ($0.81 \mathrm{mmol}, 212 \mathrm{mg}, 0.81 \mathrm{~mL}$), 189 ($0.58 \mathrm{mmol}, 205 \mathrm{mg}$) and THF (7 mL), RT for 10 min ; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $9: 1$) to give 190 ($125 \mathrm{mg}, 90 \%$) as a white solid; $\mathrm{mp}=236-237^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.91(\mathrm{~s}, 1 \mathrm{H}, 10-\mathrm{NH}), 8.19(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{\mathrm{H}}), 7.55(\mathrm{dd}, \mathrm{J}=1.9,8.3$ $\mathrm{Hz}, 1 \mathrm{H}, 8-\underline{\mathrm{H}}), 6.99(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, 9-\underline{\mathrm{H}}), 4.07(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, 11 \mathrm{a}-\underline{\mathrm{H}}), 3.88-3.74(\mathrm{~m}, 1 \mathrm{H}, 3-\underline{\mathrm{H}})$, $3.66-3.55(\mathrm{~m}, 1 \mathrm{H}, 3-\underline{H}), 3.10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 2.84-2.70(\mathrm{~m}, 1 \mathrm{H}, 1-\underline{\mathrm{H}}$), $2.13-1.95(\mathrm{~m}, 3 \mathrm{H}, 1,2-\underline{\mathrm{H}})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.1$ (qC, 5 or $11-\underline{\mathrm{C}}$), 164.5 (qC, 5 or $11-\underline{\mathrm{C}}$), $135.7(\mathrm{CH}, 8-\underline{\mathrm{C}}), 135.4$ (qC, $9 \mathrm{a}-\underline{\mathrm{C}}), 135.2(\mathrm{CH}, 6-\underline{\mathrm{C}}), 127.1(\mathrm{qC}, 5 \mathrm{a}-\underline{\mathrm{C}}), 121.3(\mathrm{CH}, 9-\underline{\mathrm{C}}), 119.2(\mathrm{qC}, 7-\underline{\mathrm{C}}), 82.1(\mathrm{qC}, \underline{\mathrm{C}} \equiv \mathrm{CH}), 78.3(\mathrm{CH}$, $\mathrm{C} \equiv \underline{C} H), 56.8(\mathrm{CH}, 11 \mathrm{a}-\underline{\mathrm{C}})$, $47.5\left(\mathrm{CH}_{2}, 3-\underline{\mathrm{C}} \mathrm{H}_{2}\right), 26.4\left(\mathrm{CH}_{2}, 1-\underline{\mathrm{C}} \mathrm{H}_{2}\right), 23.5\left(\mathrm{CH}_{2}, 2-\underline{\mathrm{C}} \mathrm{H}_{2}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$: 240.0899 [M], 241.0972 [M+H]+; found: 240.0899 [M], 241.0971 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR (cm-1): $v=3232,3159,3050,2941,1700,1620,1596,1475,1438,1266,830,777,633$.
Previously unreported.

Ethyl 7-bromo-9-oxo-11,12,13,13a-tetrahydro-9H-benzo[e]imidazo[5,1-c]pyrrolo[1,2-a][1,4]diazepine-1-carboxylate (191)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{BrN}_{3} \mathrm{O}_{3}$
Molecular Weight: 390.24
To a solution of $187(1.69 \mathrm{mmol}, 210 \mathrm{mg})$ in anhydrous THF $(30 \mathrm{~mL})$, cooled to $0{ }^{\circ} \mathrm{C}$ and under N_{2}, t-BuOK $(1.86 \mathrm{mmol}, 210 \mathrm{mg})$ was added and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 20 min . After cooling the reaction mixture to $-35^{\circ} \mathrm{C}$, diethyl chlorophosphate $205(2.2 \mathrm{mmol}, 0.32 \mathrm{~mL})$ was added dropwise. The resulting mixture was brought to $0^{\circ} \mathrm{C}$ and stirred for 30 min . The mixture was again cooled to $-35{ }^{\circ} \mathrm{C}$ and ethyl isocyanoacetate $206(1.86 \mathrm{mmol}, 0.2 \mathrm{~mL})$, followed by t-BuOK ($1.86 \mathrm{mmol}, 210 \mathrm{mg}$) were added. The reaction was allowed to warm to RT and stirred for 4 h . Saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL}$) was added and the aqueous layer was extracted with ethyl acetate $(3 \times 50 \mathrm{~mL})$. The organic phase was dried (MgSO_{4}), filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography (EtOAc/PE, 1:1) to give $191(0.35 \mathrm{~g}, 53 \%)$ as a white solid; $\mathrm{mp}=237-238{ }^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=$ $248.5-249{ }^{\circ} \mathrm{C} ;{ }^{202} R_{f}=0.1$ (EtOAc/PE, 3:1). 70 mg of starting 187 were recovered.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.26(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{\mathrm{H}}), 7.83(\mathrm{~s}, 1 \mathrm{H}, 3-\underline{\mathrm{H}}), 7.78(\mathrm{dd}, \mathrm{J}=2.3,8.5 \mathrm{~Hz}$, $1 \mathrm{H}, 6-\underline{H}), 7.28(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{H}), 4.75(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, 13 \mathrm{a}-\underline{\mathrm{H}}), 4.41\left(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, 15-\mathrm{CH}_{2}\right)$, $3.82-3.74$ (m, $1 \mathrm{H}, 11-\underline{H}$), $3.61-3.48$ (m, $2 \mathrm{H}, 11,13-\underline{H}$), $2.39-2.13(\mathrm{~m}, 3 \mathrm{H}, 12,13-\underline{H}), 1.44(\mathrm{t}, \mathrm{J}=7.1$ $\left.\mathrm{Hz}, 3 \mathrm{H}, 16-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=162.4$ (qC, 9 or $14-\mathrm{C}$), 162.3 (qC, 9 or $14-\mathrm{C}$), 137.5 (qC, $4 \mathrm{a}-\mathrm{C}$), 135.9 (CH, $3-\underline{C}), 135.7(\mathrm{CH}, 6-\underline{\mathrm{C}}), 134.6(\mathrm{CH}, 8-\underline{\mathrm{C}}), 131.6(\mathrm{qC}, 1$ or 13 b or $8 \mathrm{a}-\underline{\mathrm{C}}), 130.9$ ($\mathrm{qC}, 1$ or 13 b or $8 \mathrm{a}-\underline{\mathrm{C}}$), 127.7 (qC, 1 or 13 b or $8 \mathrm{a}-\underline{\mathrm{C}}), 124.8(\mathrm{CH}, 5-\underline{\mathrm{C}}), 122.9(\mathrm{qC}, 7-\underline{\mathrm{C}}), 61.5\left(\mathrm{CH}_{2}, 15-\underline{\mathrm{CH}_{2}}\right), 53.3(\mathrm{CH}, 13 \mathrm{a}-\underline{\mathrm{C}}), 46.7\left(\mathrm{CH}_{2}\right.$, $\left.11-\underline{\mathrm{C}_{2}}\right), 28.4\left(\mathrm{CH}_{2}, 13-\underline{\mathrm{C}} \mathrm{H}_{2}\right), 24.4\left(\mathrm{CH}_{2}, 12-\underline{\mathrm{C}}_{2}\right), 14.3\left(\mathrm{CH}_{3}, 16-\underline{\mathrm{C}}_{3}\right)$.

FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3059,2978,2877,1711,1626,1592,1546,1441,1251,1119,1061,958,836,708,653$, 523.

Known compound. ${ }^{202}$

Ethyl 9-oxo-7-((trimethylsilyl)ethynyl)-11,12,13,13a-tetrahydro-9H-benzo[e]imidazo[5,1-c]pyrrolo[1,2-a][1,4]diazepine-1-carboxylate (192)

Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Si}$
Molecular Weight: 407.55
Prepared according to General procedure M using 191 ($1.7 \mathrm{mmol}, 663 \mathrm{mg}$), $\mathrm{Et}_{3} \mathrm{~N}(25 \mathrm{~mL}), \mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL})$, $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.17 \mathrm{mmol}, 120 \mathrm{mg}, 10 \mathrm{~mol} \%)$ and $143(3.4 \mathrm{mmol}, 334 \mathrm{mg}, 0.47 \mathrm{~mL}), 20 \mathrm{~h}$ at $85^{\circ} \mathrm{C}$; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 100: 1\right)$ to give 192 ($538 \mathrm{mg}, 78 \%$) as a pale brown oily solid; mp $=95-97^{\circ} \mathrm{C}$, lit. mp not available; $R_{f}=0.11\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 100: 1\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.13(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{\mathrm{H}}), 7.80(\mathrm{~s}, 1 \mathrm{H}, 3-\underline{\mathrm{H}}), 7.62(\mathrm{dd}, \mathrm{J}=1.9,8.3 \mathrm{~Hz}$, $1 \mathrm{H}, 6-\underline{H}), 7.30(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{H}), 4.69(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, 13 \mathrm{a}-\underline{\mathrm{H}}), 4.35\left(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, 15-\underline{C H}_{2}\right)$, $3.78-3.66$ (m, $1 \mathrm{H}, 11-\underline{H}$), $3.57-3.38$ (m, $2 \mathrm{H}, 11,13-\underline{H}$), $2.33-2.04(\mathrm{~m}, 3 \mathrm{H}, 12,13-\underline{H}), 1.37(\mathrm{t}, \mathrm{J}=7.1$ $\left.\mathrm{Hz}, 3 \mathrm{H}, 16-\mathrm{CH}_{3}\right), 0.21\left(\mathrm{~s}, 9 \mathrm{H}, 19-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=163.1$ (qC, $\mathrm{C}=\mathrm{O}, 9-\underline{\mathrm{C}}$), 162.7 (qC, $\mathrm{C}=\mathrm{O}, 14-\underline{\mathrm{C}}$), 137.5 ($\mathrm{qC}, 1$ or 13b- $\underline{\mathrm{C}}$), $135.9(\mathrm{CH}, 3-\underline{\mathrm{C}}), 135.4(\mathrm{CH}, 6-\underline{\mathrm{C}})$, $135.2(\mathrm{CH}, 8-\underline{\mathrm{C}}), 132.1$ (qC, 4 a or $8 \mathrm{a}-\underline{\mathrm{C}})$, 129.3 ($\mathrm{qC}, 4 \mathrm{a}$ or $8 \mathrm{a}-\underline{\mathrm{C}}$), 128.1 ($\mathrm{qC}, 1$ or $13 \mathrm{~b}-\underline{\mathrm{C}}$), 124.1 (qC, $7-\underline{\mathrm{C}}$), $123.2(\mathrm{CH}, 5-\underline{\mathrm{C}}), 102.4(\mathrm{qC}, 17-\underline{\mathrm{C}}), 97.9(\mathrm{qC}, 18-\underline{\mathrm{C}}), 61.2\left(\mathrm{CH}_{2}, 15-\underline{\mathrm{C}} \mathrm{H}_{2}\right)$, $53.3(\mathrm{CH}, 13 \mathrm{a}-\underline{\mathrm{C}}), 46.6\left(\mathrm{CH}_{2}, 11-\underline{\mathrm{C}} \mathrm{H}_{2}\right), 28.4\left(\mathrm{CH}_{2}, 13-\underline{\mathrm{CH}} \mathrm{H}_{2}\right), 24.3\left(\mathrm{CH}_{2}, 12-\underline{\mathrm{C}} \mathrm{H}_{2}\right), 14.3\left(\mathrm{CH}_{3}, 16-\underline{\mathrm{C}} \mathrm{H}_{3}\right),-0.2$ ($3 \mathrm{CH}_{3}, 19-\mathrm{CH}_{3}$).
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Si}$: 407.1665 [M], 408.1738 [$\left.\mathrm{M}+\mathrm{H}\right]^{+}$; found: 407.1674 [M], $408.1745[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3100,2958,2898,2158,1715,1636,1600,1543,1494,1436,1368,1322,1249,1178$, 1159, 1112, 1042, 963, 838, 729, 663, 553.
Known compound. ${ }^{203}$

Ethyl 7-ethynyl-9-oxo-11,12,13,13a-tetrahydro-9H-benzo[e]imidazo [5,1-c]pyrrolo[1,2-a][1,4]diazepine-1-carboxylate (193)

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$
Molecular Weight: 335.36
Prepared according to General procedure N using TBAF ($1.48 \mathrm{mmol}, 386 \mathrm{mg}, 1.48 \mathrm{~mL}$), 192 (1.06 mmol , 430 mg) and THF (10 mL), RT for 15 min ; purified by flash chromatography ($\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ acetone, $9: 1$) to give 193 ($348 \mathrm{mg}, 98 \%$) as a white solid; $\mathrm{mp}=159-160^{\circ} \mathrm{C}$, lit. mp not available; $R_{f}=0.16\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $9: 1$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.26(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}, 3-\underline{\mathrm{H}}), 7.74(\mathrm{dd}, \mathrm{J}=1.9,8.3 \mathrm{~Hz}$, $1 \mathrm{H}, 6-\underline{H}), 7.39(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{H}), 4.77(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}, 13 \mathrm{a}-\underline{\mathrm{H}}), 4.44\left(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, 15-\mathrm{CH}_{2}\right)$, $3.86-3.77$ (m, $1 \mathrm{H}, 11-\underline{H}), 3.64-3.50(\mathrm{~m}, 2 \mathrm{H}, 11,13-\underline{H}), 3.25(\mathrm{~s}, 1 \mathrm{H}, 18-\underline{H}), 2.39-2.16(\mathrm{~m}, 3 \mathrm{H}, 12,13-$ H), $1.46\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, 16-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=163.0(\mathrm{C}=\mathrm{O}, 9$ or $14-\underline{\mathrm{C}})$, $162.6(\mathrm{C}=\mathrm{O}, 9$ or $14-\underline{\mathrm{C}}), 137.5$ (qC, 1 or $\left.13 \mathrm{~b}-\underline{\mathrm{C}}\right)$, $135.9(\mathrm{CH}, 3-\underline{\mathrm{C}}), 135.8(\mathrm{CH}, 6-\underline{\mathrm{C}})$, $135.4(\mathrm{CH}, 8-\underline{\mathrm{C}}), 132.6(\mathrm{qC}, 4 \mathrm{a}$ or $8 \mathrm{a}-\underline{\mathrm{C}})$, 129.6 (qC, 4 a or $8 \mathrm{a}-\underline{\mathrm{C}})$, 128.1 (qC, 1 or 13b- \underline{C}), $123.3(\mathrm{CH}, 5-\underline{C})$, 123.1 ($\mathrm{qC}, 7-\underline{\mathrm{C}}$), $81.2(\mathrm{qC}, \underline{\mathrm{C}} \equiv \mathrm{CH}), 80.2(\mathrm{C} \equiv \underline{\mathrm{CH}}), 61.3\left(\mathrm{CH}_{2}, 15-\underline{\mathrm{CH}} \mathrm{H}_{2}\right)$, $53.3(\mathrm{CH}, 13 \mathrm{a}-\underline{\mathrm{C}}), 46.7\left(\mathrm{CH}_{2}, 11-\underline{\mathrm{CH}_{2}}\right), 28.5\left(\mathrm{CH}_{2}, 13-\underline{\mathrm{CH}_{2}}\right), 24.4\left(\mathrm{CH}_{2}, 12-\underline{\mathrm{CH}_{2}}\right), 14.4\left(\mathrm{CH}_{3}, 16-\underline{\mathrm{CH}_{3}}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$: 335.1270 [M], $336.1343[\mathrm{M}+\mathrm{H}]^{+}$; found: 335.1271 [M], 336.1345 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): v=3292,3212,3077,2923,2852,1709,1637,1601,1541,1438,1365,1249,1179,1112$, 1044, 956, 859, 721, 659, 539.

Known compound. ${ }^{203}$

4-Methyl-3,4-dihydro-1 H-benzo[e][1,4]diazepine-2,5-dione (194)

Chemical Formula: $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$ Molecular Weight: 190.20

Prepared as described for 186 using 185 ($10 \mathrm{mmol}, 1.63 \mathrm{~g}$), sarcosine 204 ($11 \mathrm{mmol}, 0.98 \mathrm{~g}$) and DMSO $(10 \mathrm{~mL})$, to furnish $194(1.43 \mathrm{~g}, 75 \%)$ as a pale brown solid; $\mathrm{mp}=244-245^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=243-246{ }^{\circ} \mathrm{C} ;{ }^{278} R_{f}=$ 0.13 (EtOAc/PE, 2/1).
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{DMSO}): \delta=10.47$ (s, $1 \mathrm{H}, 1-\mathrm{NH}$), 7.74 (dd, J = 1.4, $7.8 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{\mathrm{H}}$), $7.54-7.47$ (m, $1 \mathrm{H}, 8-\underline{H}), 7.25-7.19(\mathrm{~m}, 1 \mathrm{H}, 7-\underline{\mathrm{H}}), 7.12-7.08(\mathrm{~m}, 1 \mathrm{H}, 9-\underline{\mathrm{H}}), 3.84\left(\mathrm{~s}, 2 \mathrm{H}, 3-\mathrm{CH}_{2}\right), 3.12\left(\mathrm{~s}, 3 \mathrm{H}, 10-\underline{C H}_{3}\right)$. ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, \mathrm{DMSO}): \delta=170.2$ ($\mathrm{qC}, 2-\underline{\mathrm{C}}$), 167.0 (qC, 5- $\underline{\mathrm{C}}$), 137.4 ($\mathrm{qC}, 9 \mathrm{a}-\underline{\mathrm{C}}$), 132.4 (CH, 8- $\underline{\mathrm{C}}$), $131.3(\mathrm{CH}, 6-\underline{\mathrm{C}}), 126.6(\mathrm{qC}, 5 \mathrm{a}-\underline{\mathrm{C}}), 124.3(\mathrm{CH}, 7-\underline{\mathrm{C}}), 121.1(\mathrm{CH}, 9-\underline{\mathrm{C}}), 52.6\left(\mathrm{CH}_{2}, 3-\underline{\mathrm{C}} \mathrm{H}_{2}\right), 36.3\left(\mathrm{CH}_{3}, 10-\right.$ CH_{3}).

FT-IR $\left(\mathrm{cm}^{-1}\right): v=3204,3150,3053,2980,2889,1693,1630,1579,1477,1373,1243,1148,989,769,746$, 697, 500.

Known compound. ${ }^{278,} 279$

7-Bromo-4-methyl-3,4-dihydro-1 H-benzo[e][1,4]diazepine-2,5-dione (195)

Chemical Formula: $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrN}_{2} \mathrm{O}_{2}$
Molecular Weight: 269.10
Prepared as described for 187 using 194 ($7.36 \mathrm{mmol}, 1.4 \mathrm{~g}$), glacial acetic acid (15 mL), NaOAc (7.36 mmol, 0.6 g), bromine ($8.83 \mathrm{mmol}, 1.41 \mathrm{~g}, 0.45 \mathrm{~mL}$) in 15 mL of glacial acetic acid, RT for 16 h ; purified by flash chromatography (EtOAc/PE, 2:1) to give 195 ($1.2 \mathrm{~g}, 60 \%$) as a white solid; $\mathrm{mp}=255-257^{\circ} \mathrm{C}$, lit. mp $=260-261{ }^{\circ} \mathrm{C} ;{ }^{280} R_{f}=0.23$ (EtOAc/PE, 2:1).
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{DMSO}): \delta=10.57$ ($\mathrm{s}, 1 \mathrm{H}, 1-\mathrm{NH}$), 7.82 ($\mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{\mathrm{H}}$), 7.69 (dd, J=2.4, 8.6 $\mathrm{Hz}, 1 \mathrm{H}, 8-\underline{H}), 7.05(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, 9-\underline{H}), 3.88\left(\mathrm{~s}, 2 \mathrm{H}, 3-\underline{\mathrm{H}}_{2}\right), 3.11\left(\mathrm{~s}, 3 \mathrm{H}, 10-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.0$ (qC, 2 or $5-\mathrm{C}$), 165.7 (qC, 2 or $5-\underline{\mathrm{C}}$), 136.8 (qC, $\left.9 \mathrm{a}-\underline{\mathrm{C}}\right), 135.1$ (CH , $8-\underline{C}), 133.4(\mathrm{CH}, 6-\underline{\mathrm{C}}), 128.4(\mathrm{qC}, 5 \mathrm{a}-\underline{\mathrm{C}}), 123.4(\mathrm{CH}, 9-\underline{\mathrm{C}}), 116.1(\mathrm{qC}, 7-\underline{\mathrm{C}}), 52.4\left(\mathrm{CH}_{2}, 3-\underline{\mathrm{CH}_{2}}\right), 36.4\left(\mathrm{CH}_{3}\right.$, $\left.10-\mathrm{CH}_{3}\right)$.
FT-IR $\left(\mathrm{cm}^{-1}\right): v=3202,3143,3054,2950,1693,1615,1594,1474,1422,1361,1251,1150,988,821,769$, 581, 469.
Known compound. ${ }^{280,} 281$

4-Methyl-7-((trimethylsilyl)ethynyl)-3,4-dihydro-1 H-benzo[e][1,4]diazepine-2,5-dione (196)

Prepared according to General procedure M using 195 ($1.7 \mathrm{mmol}, 457 \mathrm{mg}$), $\mathrm{Et}_{3} \mathrm{~N}(25 \mathrm{~mL}), \mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL})$, $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.17 \mathrm{mmol}, 120 \mathrm{mg}, 10 \mathrm{~mol} \%)$ and $143(3.4 \mathrm{mmol}, 334 \mathrm{mg}, 0.47 \mathrm{~mL}), 20 \mathrm{~h}$ at $85^{\circ} \mathrm{C}$; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 100: 1\right)$ to give 196 ($452 \mathrm{mg}, 92 \%$) as a pale white solid; $\mathrm{mp}=$ $216-218{ }^{\circ} \mathrm{C} ; R_{f}=0.24\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.100: 5\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.94(\mathrm{~s}, 1 \mathrm{H}, 1-\mathrm{NH}), 8.06(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{\mathrm{H}}), 7.52$ (dd, J=1.9, 8.3 $\mathrm{Hz}, 1 \mathrm{H}, 8-\underline{\mathrm{H}}), 6.95(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, 9-\underline{\mathrm{H}}), 3.88\left(\mathrm{~s}, 2 \mathrm{H}, 3-\mathrm{CH}_{2}\right), 3.28\left(\mathrm{~s}, 3 \mathrm{H}, 10-\underline{C H}_{3}\right), 0.24(\mathrm{~s}, 9 \mathrm{H}, 13-$ CH_{3}).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=169.9$ (qC, C=O, 2 or $5-\underline{\mathrm{C}}$), 166.5 (qC, $\mathrm{C}=\mathrm{O}, 2$ or $\left.5-\underline{\mathrm{C}}\right), 135.7(\mathrm{CH}, 6-\underline{\mathrm{C}})$,
 96.0 (qC, 12-르), $52.5\left(\mathrm{CH}_{2}, 3-\underline{\mathrm{C}} \mathrm{H}_{2}\right), 36.7\left(\mathrm{CH}_{3}, 10-\underline{\mathrm{C}} \mathrm{H}_{3}\right), 0.0\left(3 \mathrm{CH}_{3}, 13-\underline{\mathrm{C}} \mathrm{H}_{3}\right)$.

HRMS (Dual ESI): calc m / z for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}$: 286.1138 [M], 287.1210 [$\left.\mathrm{M}+\mathrm{H}\right]^{+}$; found: 286.1144 [M], $287.1217[\mathrm{M}+\mathrm{H}]^{+}$.

FT-IR $\left(\mathrm{cm}^{-1}\right): v=3219,3166,3035,2953,2898,2156,1708,1627,1607,1496,1409,1360,1247,994$, 835, 758, 649, 504.

Previously unreported.

4-Methyl-7-((triethylsilyl)ethynyl)-3,4-dihydro-1 H -benzo[e][1,4]diazepine-2,5-dione (197)

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}$
Molecular Weight: 328.49
Prepared according to General procedure M using 195 ($0.74 \mathrm{mmol}, 200 \mathrm{mg}$), $\mathrm{Et}_{3} \mathrm{~N}(15 \mathrm{~mL}), \mathrm{CH}_{3} \mathrm{CN}(12$ $\mathrm{mL}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(37 \mu \mathrm{~mol}, 26 \mathrm{mg}, 5 \mathrm{~mol} \%)$ and $144(1.49 \mathrm{mmol}, 209 \mathrm{mg}, 0.29 \mathrm{~mL}), 20 \mathrm{~h}$ at $80^{\circ} \mathrm{C}$; purified by flash chromatography (EtOAc/PE, 2:3) to give 197 ($201 \mathrm{mg}, 82 \%$) as a white solid; $R_{f}=0.15$ (EtOAc/PE, 1:1).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.65(\mathrm{~s}, 1 \mathrm{H}, 1-\mathrm{NH}), 8.09(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{\mathrm{H}}), 7.55(\mathrm{dd}, \mathrm{J}=1.9,8.3$ $\mathrm{Hz}, 1 \mathrm{H}, 8-\underline{H}), 6.95(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, 9-\underline{\mathrm{H}}), 3.90\left(\mathrm{~s}, 2 \mathrm{H}, 3-\underline{C H}_{2}\right), 3.30\left(\mathrm{~s}, 3 \mathrm{H}, 10-\underline{C H}_{3}\right), 1.05(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}$, $\left.9 \mathrm{H}, 14-\underline{\mathrm{H}}_{3}\right), 0.69\left(\mathrm{q}, \mathrm{J}=7.9 \mathrm{~Hz}, 6 \mathrm{H}, 13-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=169.8(\mathrm{qC}, \mathrm{C}=\mathrm{O}, 2$ or $5-\underline{\mathrm{C}}$), 166.4 (qC, $\mathrm{C}=\mathrm{O}, 2$ or $5-\underline{\mathrm{C}}), 135.6(\mathrm{CH}, 6$ or 8$\underline{\mathrm{C}}), 135.5(\mathrm{CH}, 6$ or $8-\underline{\mathrm{C}}), 135.1$ (qC, $9 \mathrm{a}-\underline{\mathrm{C}}), 126.5$ (qC, $5 \mathrm{a}-\underline{\mathrm{C}}$), 120.8 ($\mathrm{qC}, 7-\underline{\mathrm{C}}$), 120.5 (CH, 9- $\underline{\mathrm{C}}$), 104.3 (qC, $11-\underline{C}), 93.4(q \mathrm{C}, 12-\underline{\mathrm{C}}), 52.4\left(\mathrm{CH}_{2}, 3-\underline{\mathrm{CH}}_{2}\right), 36.6\left(\mathrm{CH}_{3}, 10-\mathrm{CH}_{3}\right), 7.4\left(3 \mathrm{CH}_{3}, 14-\underline{\mathrm{C}} \mathrm{H}_{3}\right), 4.3\left(3 \mathrm{CH}_{2}, 13-\underline{\mathrm{C}} \mathrm{H}_{2}\right)$. Previously unreported.

7-Ethynyl-4-methyl-3,4-dihydro-1 H-benzo[e][1,4]diazepine-2,5-dione (198)

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$
Molecular Weight: 214.22

Method A: Prepared according to General procedure N using TBAF ($1.86 \mathrm{mmol}, 485 \mathrm{mg}, 1.86 \mathrm{~mL}$), 196 $(1.33 \mathrm{mmol}, 380 \mathrm{mg})$ and THF $(10 \mathrm{~mL})$, RT for 15 min ; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl} / \mathrm{MeOH}\right.$,
$100: 1$ to $100: 2$) to give 198 ($240 \mathrm{mg}, 84 \%$) as a white solid; $\mathrm{mp}=263-264{ }^{\circ} \mathrm{C}$, lit. mp not available; $R_{f}=$ $0.15\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, 9:1).
Method B: Prepared according to General procedure N using TBAF ($0.86 \mathrm{mmol}, 223 \mathrm{mg}, 0.86 \mathrm{~mL}$), 197 ($0.61 \mathrm{mmol}, 201 \mathrm{mg}$) and THF (7 mL), RT for 10 min ; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $9: 1$ to $7: 3$) to give 198 ($123 \mathrm{mg}, 94 \%$) as a white solid; $\mathrm{mp}=263-264{ }^{\circ} \mathrm{C}$, lit. mp not available; $R_{f}=0.15$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.9: 1\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{DMSO}): \delta=10.63(\mathrm{~s}, 1 \mathrm{H}, 1-\mathrm{NH}), 7.78(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{\mathrm{H}}), 7.59(\mathrm{dd}, \mathrm{J}=2.0,8.4$ $\mathrm{Hz}, 1 \mathrm{H}, 8-\underline{H}), 7.10(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{HZ}, 1 \mathrm{H}, 9-\underline{H}), 4.23(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{C} \underline{H}), 3.88\left(\mathrm{~s}, 2 \mathrm{H}, 3-\underline{C H}_{2}\right), 3.11(\mathrm{~s}, 3 \mathrm{H}, 10-$ CH_{3}).
${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, \mathrm{DMSO}): ~ \delta=170.0$ (qC, $\mathrm{C}=\mathrm{O}, 2$ or $\left.5-\underline{\mathrm{C}}\right), 166.1$ ($\mathrm{qC}, \mathrm{C}=\mathrm{O}, 2$ or $5-\underline{\mathrm{C}}$), 137.7 (qC, 9a- $\underline{\mathrm{C}}$), $135.2(\mathrm{CH}, 8-\underline{\mathrm{C}}), 134.8(\mathrm{CH}, 6-\underline{\mathrm{C}}), 126.7(\mathrm{qC}, 5 \mathrm{a}-\underline{\mathrm{C}}), 121.6(\mathrm{CH}, 9-\underline{\mathrm{C}}), 117.4(\mathrm{qC}, 7-\underline{\mathrm{C}}), 82.8$ (qC, $\underline{\mathrm{C}}=\mathrm{CH})$, $81.4(\mathrm{C} \equiv \underline{\mathrm{C}} \mathrm{H})$, $52.5\left(\mathrm{CH}_{2}, 3-\underline{\mathrm{C}} \mathrm{H}_{2}\right), 36.3\left(\mathrm{CH}_{3}, 10-\underline{\mathrm{C}} \mathrm{H}_{3}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$: $214.0742[\mathrm{M}], 215.0815[\mathrm{M}+\mathrm{H}]^{+}$; found: 214.0742 [M], 215.0814 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): v=3249,3192,3127,3010,2929,1669,1613,1603,1488,1375,1196,995,842,778$, 696,569, 466.
Known compound. ${ }^{282}$

Ethyl 8-bromo-5-methyl-6-oxo-5,6-dihydro-4H-benzo[f]imidazo[1,5-a][1,4]diazepine-3-carboxylate (199)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{BrN}_{3} \mathrm{O}_{3}$ Molecular Weight: 364.20

To a solution of $195(2.86 \mathrm{mmol}, 770 \mathrm{mg})$ in anhydrous THF $(50 \mathrm{~mL})$, cooled to $0^{\circ} \mathrm{C}$ and under N , t-BuOK $\left(3.15 \mathrm{mmol}, 353 \mathrm{mg}\right.$) was added and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 20 min . After cooling the reaction mixture to $-35^{\circ} \mathrm{C}$, diethyl chlorophosphate $205(3.72 \mathrm{mmol}, 0.54 \mathrm{~mL})$ was added dropwise and the resulting mixture was brought to $0{ }^{\circ} \mathrm{C}$ and stirred for 30 min . The mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and ethyl isocyanoacetate 206 ($3.15 \mathrm{mmol}, 0.35 \mathrm{~mL}$), followed by t-BuOK ($3.15 \mathrm{mmol}, 353 \mathrm{mg}$) were added. The reaction was allowed to warm to room temperature and stirred for 4 h . After this time, saturated aqueous $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ was added and the aqueous layer was extracted with ethyl acetate $(3 \times 75 \mathrm{~mL})$. The organic phase was dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography (EtOAc/PE, 2:1) to give 199 ($0.42 \mathrm{~g}, 40 \%$) as a white solid; $\mathrm{mp}=187-188^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=192-193^{\circ} \mathrm{C} ; 202 R_{f}=0.18$ (EtOAc/PE, 3:1). 150 mg of starting 195 were recovered. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.23(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, 7-\underline{\mathrm{H}}), 7.90(\mathrm{~s}, 1 \mathrm{H}, 1-\underline{\mathrm{H}}), 7.77(\mathrm{dd}, \mathrm{J}=2.1,8.5 \mathrm{~Hz}$, $1 \mathrm{H}, 9-\underline{\mathrm{H}}), 7.33(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 10-\underline{\mathrm{H}}), 5.23(\mathrm{apps}, 1 \mathrm{H}, 4-\underline{\mathrm{H}}), 4.53-4.30(\mathrm{~m}, 3 \mathrm{H}, 4,13-\underline{\mathrm{H}}), 3.26(\mathrm{~s}, 3 \mathrm{H}$, $\left.15-\underline{C H}_{3}\right), 1.47\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, 14-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=165.1$ (qC, 6 or $12-\underline{\mathrm{C}}$), 162.8 (qC, 6 or $\left.12-\underline{\mathrm{C}}\right), 135.7$ ($\mathrm{CH}, 1$ or $\left.9-\underline{\mathrm{C}}\right), 135.5$ $(\mathrm{CH}, 1$ or $9-\underline{\mathrm{C}}$), $135.3(\mathrm{qC}, 10 \mathrm{a}-\underline{\mathrm{C}}), 134.8(\mathrm{CH}, 7-\underline{\mathrm{C}}), 130.9(\mathrm{qC}, 3$ or $3 \mathrm{a}-\underline{\mathrm{C}}), 130.6$ (qC, 3 or $3 \mathrm{a}-\mathrm{C}$), 128.9 $(\mathrm{qC}, 6 \mathrm{a}-\underline{\mathrm{C}})$, $123.4(\mathrm{CH}, 10-\underline{\mathrm{C}})$, $122.5(\mathrm{qC}, 8-\underline{\mathrm{C}}), 61.1\left(\mathrm{CH}_{2}, 13-\underline{\mathrm{CH}_{2}}\right), 42.2\left(\mathrm{CH}_{2}, 4-\underline{\mathrm{C}} \mathrm{H}_{2}\right), 36.0\left(\mathrm{CH}_{3}, 15-\underline{\mathrm{C}} \mathrm{H}_{2}\right)$, $14.3\left(\mathrm{CH}_{3}, 14-\mathrm{CH}_{2}\right)$.
FT-IR $\left(\mathrm{cm}^{-1}\right): v=3101,2979,2900,1721,1628,1593,1494,1343,1251,1154,1111,938,829,658,517$. Known compound. ${ }^{202}$

Ethyl 5-methyl-6-oxo-8-((trimethylsilyl)ethynyl)-5,6-dihydro-4H-benzo[f]imidazo[1,5-a][1,4]diazepine-3-carboxylate (200)

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Si}$
Molecular Weight: 381.51
Prepared according to General procedure M using 199 ($1.7 \mathrm{mmol}, 620 \mathrm{mg}$), $\mathrm{Et}_{3} \mathrm{~N}(25 \mathrm{~mL}), \mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL})$, $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.17 \mathrm{mmol}, 120 \mathrm{mg}, 10 \mathrm{~mol} \%)$ and $143(3.4 \mathrm{mmol}, 334 \mathrm{mg}, 0.47 \mathrm{~mL}), 20 \mathrm{~h}$ at $85^{\circ} \mathrm{C}$; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 100: 1\right)$ to give 200 (583 mg, 90\%) as a pale brown oily solid; mp $=166-168{ }^{\circ} \mathrm{C}$, lit. mp not available; $R_{f}=0.1\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 100: 1\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.06(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, 7-\underline{\mathrm{H}}), 7.84(\mathrm{~s}, 1 \mathrm{H}, 1-\underline{\mathrm{H}}), 7.60(\mathrm{dd}, \mathrm{J}=1.9,8.3 \mathrm{~Hz}$, $1 \mathrm{H}, 9-\underline{H}), 7.33(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, 10-\underline{\mathrm{H}}), 5.11$ (app s, $1 \mathrm{H}, 4-\underline{\mathrm{H}}), 4.50-4.20(\mathrm{~m}, 3 \mathrm{H}, 4,13-\underline{H}), 3.16$ (s, 3 H , $15-\mathrm{CH}_{3}$), 1.36 (t, J = $\left.7.1 \mathrm{~Hz}, 3 \mathrm{H}, 14-\mathrm{CH}_{3}\right), 0.19\left(\mathrm{~s}, 9 \mathrm{H}, 18-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=165.6$ (qC, C=O, 6 or $12-\mathrm{C}$), 162.8 (qC, $\mathrm{C}=\mathrm{O}, 6$ or $12-\mathrm{C}$), 136.1 (CH, 7- C), $135.4(\mathrm{CH}, 9-\underline{\mathrm{C}})$, 135.2 ($\mathrm{qC}, 6 \mathrm{a}$ or $9 \mathrm{a}-\underline{\mathrm{C}}$), $134.8(\mathrm{CH}, 1-\underline{\mathrm{C}})$, 131.2 ($\mathrm{qC}, 6 \mathrm{a}$ or $9 \mathrm{a}-\underline{\mathrm{C}}$), 129.0 ($\mathrm{qC}, 3$ or 3a- $\underline{\mathrm{C}}$), 128.7 (qC, 3 or $3 \mathrm{a}-\underline{\mathrm{C}}$), 123.9 (qC, 8- $-\underline{C}$), $121.8\left(\mathrm{CH}, 10-\underline{\mathrm{C}}\right.$), 102.3 (qC, 16- C), 97.7 (qC, 17- $\underline{\mathrm{C}}$), 60.9 (CH_{2}, $\left.13-\mathrm{CH}_{2}\right)$, $42.2\left(\mathrm{CH}_{2}, 4-\underline{\mathrm{C}} \mathrm{H}_{2}\right), 35.8\left(\mathrm{CH}_{3}, 15-\underline{\mathrm{CH}_{3}}\right), 14.3\left(\mathrm{CH}_{3}, 14-\mathrm{CH}_{3}\right),-0.2\left(3 \mathrm{CH}_{3}, 18-\underline{\mathrm{C}} \mathrm{H}_{3}\right)$.

HRMS (Dual ESI): calc m / z for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Si}$: 381.1509 [M], 382.1581 [M+H]+; found: 381.1517 [M], $382.1586[\mathrm{M}+\mathrm{H}]^{+}$.

FT-IR (cm- $): ~ v=3128,2980,2955,2893,2163,1719,1650,1604,1560,1504,1374,1251,1166,1118$, 1077, 965, 833, 763, 658, 549.
Known compound. ${ }^{283}$

Ethyl 5-methyl-6-oxo-8-((triethylsilyl)ethynyl)-5,6-dihydro-4H-benzo[f] imidazo[1,5-a][1,4]diazepine-3-carboxylate (201)

Chemical Formula: $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Si}$
Molecular Weight: 423.59
Prepared according to General procedure M using 199 ($0.41 \mathrm{mmol}, 150 \mathrm{mg}$), $\mathrm{Et}_{3} \mathrm{~N}(10 \mathrm{~mL}), \mathrm{CH}_{3} \mathrm{CN}(8 \mathrm{~mL})$, $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(29 \mathrm{mg}, 41 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%\right.$) and $144(0.82 \mathrm{mmol}, 116 \mathrm{mg}, 0.15 \mathrm{~mL}), 20 \mathrm{~h}$ at $85^{\circ} \mathrm{C}$; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.100: 4\right)$ to give 201 ($167 \mathrm{mg}, 96 \%$) as a pale brown oil; $R_{f}=0.3$ ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /acetone, 100:8).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.18(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, 7-\underline{\mathrm{H}}$), $7.93(\mathrm{~s}, 1 \mathrm{H}, 1-\underline{\mathrm{H}}$), 7.70 (dd, J=1.8, 8.3 Hz, $1 \mathrm{H}, 9-\underline{H}$), 7.39 (d, J = 8.3 Hz, $1 \mathrm{H}, 10-\underline{H}$), 5.22 (app d, J = $9.6 \mathrm{~Hz}, 1 \mathrm{H}, 4-\underline{H}$), $4.55-4.28$ (m, $3 \mathrm{H}, 4,13-\underline{H}$), $3.26\left(\mathrm{~s}, 3 \mathrm{H}, 15-\mathrm{CH}_{3}\right), 1.46\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, 14-\mathrm{CH}_{3}\right), 1.06\left(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 9 \mathrm{H}, 19-\mathrm{CH}_{3}\right), 0.70(\mathrm{q}, \mathrm{J}=7.9$ $\left.\mathrm{Hz}, 6 \mathrm{H}, 18-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=165.8(\mathrm{qC}), 162.8(\mathrm{qC}), 136.3(\mathrm{CH}, 7-\underline{\mathrm{C}}), 135.6(\mathrm{CH}, 9-\mathrm{C}), 135.4(\mathrm{qC})$, $134.8(\mathrm{CH}, 1-\underline{\mathrm{C}}), 131.2(\mathrm{qC}), 129.1(\mathrm{qC}), 128.7(\mathrm{qC}), 124.3(\mathrm{qC}), 121.8(\mathrm{CH}, 10-\mathrm{C}), 103.5(\mathrm{qC}), 95.5(\mathrm{qC})$, $61.1\left(\mathrm{CH}_{2}, 13-\underline{\mathrm{CH}_{2}}\right), 42.3\left(\mathrm{CH}_{2}, 4-\underline{\mathrm{C}} \mathrm{H}_{2}\right), 35.9\left(\mathrm{CH}_{3}, 15-\underline{\mathrm{C}}_{3}\right), 14.3\left(\mathrm{CH}_{3}, 14-\underline{\mathrm{C}} \mathrm{H}_{3}\right), 7.4\left(3 \mathrm{CH}_{3}, 19-\underline{\mathrm{C}} \mathrm{H}_{3}\right), 4.2$ ($3 \mathrm{CH}_{2}, 18-\mathrm{C}_{2}$).

Previously unreported.

Ethyl 8-ethynyl-5-methyl-6-oxo-5,6-dihydro-4H-benzo[f]imidazo[1,5-a][1,4]diazepine-3-carboxylate (202)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$
Molecular Weight: 309.33
Method A: Prepared according to General procedure N using TBAF ($1.79 \mathrm{mmol}, 467 \mathrm{mg}, 1.79 \mathrm{~mL}$), 200 $(1.28 \mathrm{mmol}, 487 \mathrm{mg})$ and THF $(10 \mathrm{~mL})$, RT for 15 min ; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $9: 1$) to give 202 ($364 \mathrm{mg}, 92 \%$) as a white solid; $\mathrm{mp}=200-202{ }^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=206-207{ }^{\circ} \mathrm{C} ;{ }^{283} R_{f}=0.2$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.9: 1\right)$.

Method B: Prepared according to General procedure N using TBAF ($0.35 \mathrm{mmol}, 91 \mathrm{mg}, 0.35 \mathrm{~mL}$), 201 ($0.25 \mathrm{mmol}, 105 \mathrm{mg}$) and THF (4 mL), RT for 10 min ; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $9: 1$) to give 202 ($62 \mathrm{mg}, 81 \%$) as a white solid; $\mathrm{mp}=200-202{ }^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=206-207{ }^{\circ} \mathrm{C} ;{ }^{283} R_{f}=0.2$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.9: 1\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.20(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}, 1-\underline{\mathrm{H}}), 7.74$ (app d, J=6.8 Hz, 1 $\mathrm{H}, 9-\underline{H}), 7.43(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 10-\underline{H}), 5.22(\mathrm{apps}, 1 \mathrm{H}, 4-\underline{\mathrm{H}}), 4.54-4.29(\mathrm{~m}, 3 \mathrm{H}, 4,13-\underline{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}$, $\left.15-\mathrm{CH}_{3}\right), 3.25(\mathrm{~s}, 1 \mathrm{H}, 17-\underline{\mathrm{H}}), 1.47\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, 14-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=165.6(\mathrm{qC}), 162.8(\mathrm{qC}), 136.5(\mathrm{CH}, 7-\underline{\mathrm{C}}), 135.8(\mathrm{CH}, 9-\underline{\mathrm{C}}), 135.4$ (qC), $134.9(\mathrm{CH}, 1-\underline{\mathrm{C}}), 131.7(\mathrm{qC}), 129.3(\mathrm{qC}), 128.8(\mathrm{qC}), 123.1(\mathrm{qC}), 122.0(\mathrm{CH}, 10-\underline{\mathrm{C}}), 81.2(\mathrm{qC}, 16-\underline{\mathrm{C}}), 80.1$ $(\mathrm{CH}, 17-\underline{C}), 61.1\left(\mathrm{CH}_{2}, 13-\underline{\mathrm{C}} \mathrm{H}_{2}\right), 42.3\left(\mathrm{CH}_{2}, 4-\underline{C H}_{2}\right), 35.9\left(\mathrm{CH}_{3}, 15-\underline{\mathrm{CH}_{3}}\right), 14.3\left(\mathrm{CH}_{3}, 14-\underline{\mathrm{CH}_{3}}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$: 309.1113 [M], $310.1186[\mathrm{M}+\mathrm{H}]^{+}$; found: 309.1114 [M], 310.1187 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): v=3235,3112,2979,2913,2850,1698,1636,1602,1495,1393,1251,1189,1111,1059$, 924, 827, 663, 498.
Known compound. ${ }^{283}$

General procedure O: To a suspension of 4'-azidoisoflavone (1.0 equiv.) and the corresponding alkyne (1.0 equiv.) in a $\mathrm{H}_{2} \mathrm{O} / t-\mathrm{BuOH}$ mixture ($2: 1$ ratio), sodium ascorbate ($0.1-0.2$ equiv.) was added, followed by $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (0.02-0.05 equiv.). After the resulting mixture was stirred rapidly overnight at $100{ }^{\circ} \mathrm{C}$, the end of reaction was confirmed by TLC and the mixture was diluted with 10 mL of water and cooled in ice. ${ }^{207}$ Workup (1): the precipitate was collected by filtration, washed with cold water (10 mL), and dried under vacuum suction; the crude was purified by flash chromatography to give the desired hybrid. Workup (2): the precipitate was collected by filtration, washed with cold water $(10 \mathrm{~mL}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and $\mathrm{CH}_{3} \mathrm{OH}(10$ mL) and dried under vacuum suction to give the desired hybrid.

7-Hydroxy-3-(4-(4-(triethylsilyl)-1 H-1,2,3-triazol-1-yl)phenyl)-4H-chromen-4-one (209)

Chemical Formula: $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Si}$
Molecular Weight: 419.56
Method A: Prepared according to General procedure O using 128 (107 $\mu \mathrm{mol}, 30 \mathrm{mg})$, 144 ($107 \mu \mathrm{~mol}, 15$ $\mathrm{mg}, 20 \mu \mathrm{~L}$), $\mathrm{H}_{2} \mathrm{O} / t-\mathrm{BuOH}\left(2: 1\right.$ ratio, 3 mL), sodium ascorbate ($21.5 \mu \mathrm{~mol}, 4 \mathrm{mg}, 0.2$ equiv.) and $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ ($5.5 \mu \mathrm{~mol}, 1.5 \mathrm{mg}, 0.05$ equiv.), overnight at $100{ }^{\circ} \mathrm{C}$; workup (1), purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 100: 1\right)$ to give $209(20 \mathrm{mg}, 45 \%)$ as a pale yellow solid; $\mathrm{mp}=256-258{ }^{\circ} \mathrm{C} ; R_{f}=0.3$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 100: 5\right)$.
Method B: To a solution of $128(107 \mu \mathrm{~mol}, 30 \mathrm{mg})$ and $144(214 \mu \mathrm{~mol}, 30 \mathrm{mg}, 39 \mu \mathrm{~L}) \mathrm{in}$ DMF (1 mL), $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(21.5 \mu \mathrm{~mol}, 6 \mathrm{mg})$ was added and the resulting mixture was stirred and heated at $100^{\circ} \mathrm{C}$ for $20 \mathrm{~h} .{ }^{209}$ The end of reaction was confirmed by TLC and the mixture was diluted with 10 mL of water and cooled in ice. The precipitate was collected by filtration, washed with cold water (10 mL), and dried under vacuum suction. The crude product was purified by flash chromatography (PE/EtOAc, 1:1) to give 209 (23 $\mathrm{mg}, 51 \%$) as a pale yellow solid; $\mathrm{mp}=256-258{ }^{\circ} \mathrm{C} ; R_{f}=0.27$ (PE/EtOAc, 1:1).
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{DMSO}): \delta=10.89$ (s, $1 \mathrm{H}, 7-\mathrm{OH}$), 8.91 (s, $1 \mathrm{H}, 5 "-\underline{\mathrm{H}}$), 8.54 (s, $1 \mathrm{H}, 2-\underline{H}$), $8.04-7.97$ ($\mathrm{m}, \mathrm{J}=8.8,8.7 \mathrm{~Hz}, 3 \mathrm{H}, 5,3^{\prime}, 5^{\prime}-\underline{H}$), 7.82 ($\mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{\mathrm{H}}$), 6.98 ($\mathrm{dd}, \mathrm{J}=2.2,8.8 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}$), $6.92(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{\mathrm{H}}), 1.00\left(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 9 \mathrm{H}, 7\right.$ " $\left.-\mathrm{CH}_{3}\right), 0.83\left(\mathrm{q}, \mathrm{J}=7.7 \mathrm{~Hz}, 6 \mathrm{H}, 6\right.$ "-CH2$\left.\underline{H}_{2}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, \mathrm{DMSO}): \delta=174.7$ (C=O, 4-C-C), 163.2 (qC, 7-C-C), 157.9 (qC, 8a-C-C), 154.8 (CH, 2-C), 143.8 (qC, 4^{\prime} or $4^{\prime \prime}-\underline{C}$), 136.3 (qC, 4^{\prime} or $4^{\prime \prime}-\underline{C}$), 132.6 ($q \mathrm{C}, 1^{\prime}-\underline{\mathrm{C}}$), 130.6 ($2 \mathrm{CH}, 2^{\prime}, 6^{\prime}-\underline{\mathrm{C}}$), 129.5 ($\mathrm{CH}, 5^{\prime \prime}-\underline{\mathrm{C}}$), $127.8(\mathrm{CH}, 5-\underline{\mathrm{C}}), 122.8(\mathrm{qC}, 3-\underline{\mathrm{C}}), 120.2\left(2 \mathrm{CH}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{C}}\right), 117.0(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 115.9(\mathrm{CH}, 6-\underline{\mathrm{C}}), 102.7(\mathrm{CH}, 8-$ C-), $7.7\left(3 \mathrm{CH}_{3}, 7\right.$ "- $\left.\mathrm{CH}_{3}\right)$, $3.5\left(3 \mathrm{CH}_{2}, 6\right.$ "- $\left.\underline{\mathrm{C}}_{2}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Si}: 419.1665$ [M], 420.1738 [M+H]+; found: 419.1669 [M], $420.1741[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3238,3084,2951,2873,1620,1572,1519,1464,1364,1263,1236,1096,1016,885$, 839, 713, 544.
Previously unreported.

3-(4-(4-(3-Chloropropyl)-1 H-1,2,3-triazol-1-yl)phenyl)-7-hydroxy-4H-chromen-4-one (210)

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{ClN}_{3} \mathrm{O}_{3}$
Molecular Weight: 381.82
Method A: Prepared according to General procedure O using $128(180 \mu \mathrm{~mol}, 50 \mathrm{mg}), 207(180 \mu \mathrm{~mol}, 18.5$ $\mathrm{mg}, 19 \mu \mathrm{~L}$), $\mathrm{H}_{2} \mathrm{O} / t-\mathrm{BuOH}\left(2: 1\right.$ ratio, 3 mL), sodium ascorbate ($36 \mu \mathrm{~mol}, 7 \mathrm{mg}, 0.2$ equiv.) and $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ ($9 \mu \mathrm{~mol}, 2.2 \mathrm{mg}, 0.05$ equiv.), overnight at $100{ }^{\circ} \mathrm{C}$; workup (1), purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 100: 3\right)$ to give $210(20 \mathrm{mg}, 30 \%)$ as a pale yellow solid; $\mathrm{mp}=245{ }^{\circ} \mathrm{C}$ (decomp.); $R_{f}=0.13$ (ethyl acetate/petroleum ether, 1:1).
Method B: To a solution of $128(90 \mu \mathrm{~mol}, 25 \mathrm{mg})$ in DMF, $207(180 \mu \mathrm{~mol}, 18 \mathrm{mg}, 19 \mu \mathrm{~L})$ was added, followed by the addition of $\mathrm{Cul}\left(18 \mu \mathrm{~mol}, 3.5 \mathrm{mg}, 0.2\right.$ equiv.) and $\mathrm{Et}_{3} \mathrm{~N}(270 \mu \mathrm{~mol}, 27 \mathrm{mg}, 38 \mu \mathrm{~L}, 3$ equiv.), and the reaction mixture was stirred for 20 h at $\mathrm{RT} .{ }^{210}$ The mixture was diluted with water (10 mL), and the aqueous layer was extracted with ethyl acetate $(3 \times 20 \mathrm{~mL})$. The organic layer was washed with water $(20 \mathrm{~mL})$ and brine (20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The crude product was purified by flash chromatography (EtOAc/PE, 1:1) to give 210 ($13 \mathrm{mg}, 38 \%$) as a pale yellow solid; $\mathrm{mp}=245{ }^{\circ} \mathrm{C}$ (decomp.); $R_{f}=0.13$ (EtOAc/PE, 1:1).
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{DMSO}): \delta=10.89(\mathrm{~s}, 1 \mathrm{H}, 7-\mathrm{OH}), 8.69(\mathrm{~s}, 1 \mathrm{H}, 5 "-\underline{H}), 8.54(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{H}), 8.01(\mathrm{~d}, \mathrm{~J}=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{H}), 7.95\left(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{H}\right), 7.81\left(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{H}\right), 6.98$ (dd, J=2.1, 8.8 $\mathrm{Hz}, 1 \mathrm{H}, 6-\underline{H}), 6.92(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 3.76\left(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}, 8\right.$ " $\left.-\underline{C} \mathrm{H}_{2}\right), 2.87(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, 6$ "$\underline{\mathrm{C}}_{2}$), 2.15 (app quint, $\mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, 7$ "- CH_{2}).
 147.3 (qC, 4' or $4^{\prime \prime}-\underline{C}$), 136.5 (qC, 4^{\prime} or $4^{\prime \prime}-\underline{C}$), 132.6 (qC, $1^{\prime}-\underline{C}$), $130.6\left(2 \mathrm{CH}, 2^{\prime}, 6^{\prime}-\underline{\mathrm{C}}\right), 127.8(\mathrm{CH}, 5-\underline{\mathrm{C}}), 122.8$
(qC, 3-ㅡㅡ), $120.8\left(\mathrm{CH}, 5^{\prime \prime}-\underline{\mathrm{C}}\right), 119.9\left(2 \mathrm{CH}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{C}}\right), 117.0(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 115.8(\mathrm{CH}, 6-\underline{\mathrm{C}}), 102.7(\mathrm{CH}, 8-\underline{\mathrm{C}}), 45.2$ $\left(\mathrm{CH}_{2}, 8\right.$ "- $\left.\underline{\mathrm{C}}_{2}\right)$, $32.0\left(\mathrm{CH}_{2}, 6\right.$ "- $\left.-\mathrm{C}_{2}\right)$, $22.8\left(\mathrm{CH}_{2}, 7\right.$ " $\left.-\underline{\mathrm{C}} \mathrm{H}_{2}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{CIN}_{3} \mathrm{O}_{3}$: 381.0880 [M], 382.0953 [M+H]+; found: 381.0887 [M], $382.0961[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): v=3326,3138,3072,2924,2851,1637,1619,1589,1522,1465,13761257,1044,889,800$, 541.

Previously unreported.

7-Hydroxy-3-(4-(4-phenyl-1H-1,2,3-triazol-1-yl)phenyl)-4H-chromen-4-one (211)

Chemical Formula: $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$ Molecular Weight: 381.39

Prepared according to General procedure O using 128 (107 $\mu \mathrm{mol}, 30 \mathrm{mg}$), 208 ($107 \mu \mathrm{~mol}, 11 \mathrm{mg}, 12 \mu \mathrm{~L}$), $\mathrm{H}_{2} \mathrm{O} / t-\mathrm{BuOH}(2: 1$ ratio, 3 mL), sodium ascorbate ($11 \mu \mathrm{~mol}, 2.13 \mathrm{mg}, 0.1$ equiv., $11 \mu \mathrm{~L}$ freshly prepared 1 M solution in $\mathrm{H}_{2} \mathrm{O}$) and $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(2.15 \mu \mathrm{~mol}, 0.53 \mathrm{mg}, 0.02$ equiv., $2 \mu \mathrm{~L}$ freshly prepared 1 M solution in $\mathrm{H}_{2} \mathrm{O}$), overnight at $100{ }^{\circ} \mathrm{C}$; workup (1), purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 96: 4\right)$ to give 211 ($25 \mathrm{mg}, 61 \%$) as a white solid; $\mathrm{mp}=294{ }^{\circ} \mathrm{C}$ (decomp.); $R_{f}=0.2\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.9: 1\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{DMSO}): \delta=10.93$ (br s, $1 \mathrm{H}, 7-\mathrm{OH}$), 9.36 (s, $1 \mathrm{H}, 5$ "-H), 8.56 (s, $1 \mathrm{H}, 2-\underline{H}$), 8.07 - 8.00 ($\mathrm{m}, \mathrm{J}=8.7,8.7 \mathrm{~Hz}, 3 \mathrm{H}, 5,3^{\prime}, 5^{\prime}-\underline{H}$), 7.97 (app d, J = $7.2 \mathrm{~Hz}, 2 \mathrm{H}, 77^{\prime \prime}, 11^{\prime \prime}-\underline{\mathrm{H}}$), 7.86 (d, J=8.7 Hz, $2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{H}$), $7.52(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, 8$ ", 10"-H$), 7.40(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}, 9$ "-H्H), 6.98 (dd, J = 2.2, 8.7 Hz, $1 \mathrm{H}, 6-\underline{H}$), 6.92 ($\mathrm{d}, \mathrm{J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{\mathrm{H}}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, \mathrm{DMSO}): \delta=174.7$ (qC, 4-C), 163.3 (qC, 7-C-), 157.9 (qC, 8a-C), 154.8 (CH, 2- $\underline{\mathrm{C}}$), 147.8 (qC, 4^{\prime} or $4^{\prime \prime}-\underline{C}$), 136.4 (qC, 4^{\prime} or $4^{\prime \prime}-\mathrm{C}$), 133.0 ($\mathrm{qC}, 1^{\prime}$ or $6^{\prime \prime}-\mathrm{C}$), 130.7 ($2 \mathrm{CH}, 2^{\prime}, 6^{\prime}-\underline{C}$), 130.6 (qC, 1^{\prime} or
 (3 CH, $\left.3^{\prime}, 5^{\prime}, 5^{\prime \prime}-\underline{C}\right), 117.0(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 115.9(\mathrm{CH}, 6-\underline{\mathrm{C}}), 102.7(\mathrm{CH}, 8-\underline{\mathrm{C}})$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$: 381.1113 [M], $382.1186[\mathrm{M}+\mathrm{H}]^{+}$; found: 381.1116 [M], 382.1188 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): v=3587,3136,3057,2923,2830,1630,1598,1519,1481,1379,1266,1240,1094,887$, 855, 782, 692, 549.
Previously unreported.

7-(1-(4-(7-Hydroxy-4-oxo-4H-chromen-3-yl)phenyl)-1H-1,2,3-triazol-4-yl)-1,2,3,11a-tetrahydro-5H-benzo[e]pyrrolo[1,2-a][1,4]diazepine-5,11(10H)-dione (212)

Chemical Formula: $\mathrm{C}_{29} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{5}$ Molecular Weight: 519.52

Prepared according to General procedure O using $128(107 \mu \mathrm{~mol}, 30 \mathrm{mg}), 190(107 \mu \mathrm{~mol}, 26 \mathrm{mg}), \mathrm{H}_{2} \mathrm{O} / t-$ $\mathrm{BuOH}\left(2: 1\right.$ ratio, 3 mL), sodium ascorbate ($21.5 \mu \mathrm{~mol}, 4.5 \mathrm{mg}, 0.2$ equiv.) and $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(5.5 \mu \mathrm{~mol}, 1.5$ $\mathrm{mg}, 0.05$ equiv.), overnight at $100^{\circ} \mathrm{C}$; workup (2) to give $212(35 \mathrm{mg}, 63 \%)$ as a pale brown solid; $\mathrm{mp}=$ $>300{ }^{\circ} \mathrm{C} ; R_{f}=0.4\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 95: 5\right)$.
 $1 \mathrm{H}, 2^{\prime}-\underline{H}$), 8.36 (d, J = 2.0 Hz, $1 \mathrm{H}, 6-\underline{H}$), 8.07 (dd, J = 2.0, 8.4 Hz, $1 \mathrm{H}, 8-\underline{H}$), $8.02\left(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime \prime}, 5^{\prime \prime}-\right.$ H), 8.00 (d, J = $8.7 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{H}$), 7.84 (d, J = $8.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 ", 6 "-\underline{H}$), $7.24(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 9-\underline{H}), 6.96$ (dd, $\left.J=2.1,8.7 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\underline{H}\right), 6.90(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, 8 \prime-\underline{H}), 4.20(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 11 \mathrm{a}-\underline{\mathrm{H}}), 3.66-3.58(\mathrm{~m}$, $1 \mathrm{H}, 3-\underline{H}), 3.52-3.44(\mathrm{~m}, 1 \mathrm{H}, 3-\underline{H}), 2.01-1.76(\mathrm{~m}, 4 \mathrm{H}, 1,2-\underline{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, \mathrm{DMSO}): \delta=174.7$ (qC), 171.0 (qC), 164.7 (qC), 163.2 (qC), 157.9 (qC), 154.8 (CH), $146.8(q C), 136.6(q C), 136.3(q C), 133.0(q C), 130.7(2 \mathrm{CH}), 129.2(\mathrm{CH}), 127.8(\mathrm{CH}), 127.6(\mathrm{CH}), 127.5$ (qC), $126.4(\mathrm{qC}), 122.8(\mathrm{qC}), 122.5(\mathrm{CH}), 120.0(3 \mathrm{CH}), 117.0(\mathrm{qC}), 115.9(\mathrm{CH}), 102.7(\mathrm{CH}), 56.7(\mathrm{CH})$, $47.4\left(\mathrm{CH}_{2}\right)$, $26.2\left(\mathrm{CH}_{2}\right), 23.5\left(\mathrm{CH}_{2}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{29} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{5}$: 519.1543 [M], 520.1615 [M+H]+; found: 519.1542 [M], 520.1617 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): v=3204,3140,3085,2980,2881,1693,1620,1604,1567,1441,1378,1259,1040,838$, 542.

Previously unreported.

7-(1-(4-(7-Hydroxy-4-oxo-4H-chromen-3-yl)phenyl)-1 H-1,2,3-triazol-4-yl)-4-methyl-3,4-dihydro-1 H-benzo[e][1,4]diazepine-2,5-dione (213)

Chemical Formula: $\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{5}$ Molecular Weight: 493.48

Prepared according to General procedure O using 128 (107 $\mu \mathrm{mol}, 30 \mathrm{mg}$), 198 (107 $\mu \mathrm{mol}, 23 \mathrm{mg}), \mathrm{H}_{2} \mathrm{O} / t-$ $\mathrm{BuOH}\left(2: 1\right.$ ratio, 3 mL), sodium ascorbate ($21.5 \mu \mathrm{~mol}, 4.5 \mathrm{mg}, 0.2$ equiv.) and $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(5.5 \mu \mathrm{~mol}, 1.5$
$\mathrm{mg}, 0.05$ equiv.), overnight at $100^{\circ} \mathrm{C}$; workup (2) to give 213 ($34 \mathrm{mg}, 64 \%$) as a brown solid; $\mathrm{mp}=>300$ ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.4\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 95: 5\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, ~ D M S O): ~ \delta=10.90\left(\mathrm{~s}, 1 \mathrm{H}, 7{ }^{\prime}-\mathrm{OH}\right.$), 10.61 (s, $1 \mathrm{H}, 1-\mathrm{NH}$), 9.45 (s, $1 \mathrm{H}, 11{ }^{\prime \prime}-\underline{H}$), 8.56 (s, 1 H, 2'-H), 8.34 (s, $1 \mathrm{H}, 6-\underline{H}$), $8.14-7.98$ (m, $\left.4 \mathrm{H}, 8,5^{\prime}, 3^{\prime \prime}, 5^{\prime \prime}-\underline{H}\right), 7.86\left(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime \prime}, 6 "-\underline{H}\right), 7.24$ (d, J $=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 9-\underline{\mathrm{H}}$), 6.96 (app d, J=8.9 Hz, $1 \mathrm{H}, 6^{\prime}-\underline{H}$), $6.92\left(\operatorname{app~s,~} 1 \mathrm{H}, 8\right.$ '- \underline{H}), $3.93\left(\mathrm{~s}, 2 \mathrm{H}, 3-\underline{C H}_{2}\right), 3.17$ (s, $3 \mathrm{H}, 10-\mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, \mathrm{DMSO}): ~ \delta=174.7$ (qC), 170.1 (qC), 166.7 (qC), 163.2 (qC), 157.9 (qC), 154.8 (CH), 146.8 (qC), 137.2 (qC), 136.3 (qC), $133.0(q C), 130.7(2 C H), 129.1(C H), 128.2(C H), 127.8(C H), 127.1$ (qC), 126.4 (qC), 122.8 (qC), 121.9 (CH), $120.0(3 \mathrm{CH}), 117.0(q C), 115.8(\mathrm{CH}), 102.7(\mathrm{CH}), 52.7\left(\mathrm{CH}_{2}\right)$, $36.4\left(\mathrm{CH}_{3}\right)$.

HRMS (Dual ESI): calc m / z for $\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{5}$: 493.1386 [M], 494.1459 [$\left.\mathrm{M}+\mathrm{H}\right]^{+}$; found: 493.1389 [M], 494.1460 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3190,3108,30802935,1704,1621,1581,1486,1372,1260,1034,836,449$.
Previously unreported.

Ethyl 7-(1-(4-(7-hydroxy-4-oxo-4H-chromen-3-yl)phenyl)-1H-1,2,3-triazol-4-yl)-9-oxo-11,12,13,13a-tetrahydro-9H-benzo[e]imidazo[5,1-c]pyrrolo[1,2-a][1,4]diazepine-1-carboxylate (214)

Chemical Formula: $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{6}$ Molecular Weight: 614.62

Prepared according to General procedure O using 128 (107 $\mu \mathrm{mol}, 30 \mathrm{mg}$), 193 (107 $\mu \mathrm{mol}, 36 \mathrm{mg}$), $\mathrm{H}_{2} \mathrm{O} / t-$ $\mathrm{BuOH}\left(2: 1\right.$ ratio, 3 mL), sodium ascorbate ($21.5 \mu \mathrm{~mol}, 4.5 \mathrm{mg}, 0.2$ equiv.) and $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(5.5 \mu \mathrm{~mol}, 1.5$ $\mathrm{mg}, 0.05$ equiv.), overnight at $100^{\circ} \mathrm{C}$; workup (2) to give 214 ($40 \mathrm{mg}, 60 \%$) as a brown solid; $\mathrm{mp}=277^{\circ} \mathrm{C}$ (decomp.); $R_{f}=0.4\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 95: 5\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{DMSO}): \delta=10.90$ (br s, $1 \mathrm{H}, 7{ }^{\prime}-\mathrm{OH}$), 9.62 (s, $1 \mathrm{H}, 11^{\prime \prime}-\underline{\mathrm{H}}$), 8.57 (s, $1 \mathrm{H}, 2^{\prime}-\underline{\mathrm{H}}$), 8.53 (s, $1 \mathrm{H}, 3$ or $8-\underline{H}), 8.32(\mathrm{~s}, 1 \mathrm{H}, 3$ or $8-\underline{\mathrm{H}}), 8.30(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{\mathrm{H}}), 8.06(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}, 3$ ", 5 "- \underline{H}), 8.02 (d, J = 7.9 Hz, $1 \mathrm{H}, 5^{\prime}-\underline{H}$), $7.91-7.82$ (m, $3 \mathrm{H}, 5,2^{\prime \prime}, 6^{\prime \prime}-\underline{H}$), 6.99 (d, J = $8.4 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\underline{H}$), 6.93 ($\mathrm{s}, 1 \mathrm{H}, 8^{\prime}-\underline{H}$), $5.10-4.95(\mathrm{~m}, 1 \mathrm{H}, 13 \mathrm{a}-\mathrm{H}), 4.44-4.22\left(\mathrm{~m}, 2 \mathrm{H}, 15-\mathrm{CH}_{2}\right), 3.72-3.44\left(\mathrm{~m}, 2 \mathrm{H}, 11-\mathrm{CH}_{2}\right), 3.24-3.13(\mathrm{~m}$, $1 \mathrm{H}, 13-\underline{H}), 2.29-2.03$ (m, $3 \mathrm{H}, 12,13-\underline{H}$), $1.44-1.24$ (m, $3 \mathrm{H}, 16-\mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, \mathrm{DMSO}): ~ \delta=174.6$ (qC), 163.3 (qC), 163.2 (qC), 157.9 (qC), 155.9 (qC), 154.8 (CH), 146.1 (qC), 139.7 (qC), 136.2 (qC), 133.1 (qC), 130.7 (2 CH), 130.5 (qC), 130.0 (qC), 129.4 (CH), 127.8 (2 $\mathrm{CH}), 125.4(\mathrm{CH}), 122.7(\mathrm{qC}), 122.0(\mathrm{qC}), 120.9(\mathrm{CH}), 120.0(3 \mathrm{CH}), 117.0(\mathrm{qC}), 115.8(\mathrm{CH}), 102.6(\mathrm{CH})$, $61.0\left(\mathrm{CH}_{2}\right), 46.7\left(\mathrm{CH}_{2}\right), 28.2\left(\mathrm{CH}_{2}\right), 24.4\left(\mathrm{CH}_{2}\right), 14.6\left(\mathrm{CH}_{3}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{6}$: 614.1914 [M], 615.1987 [M+H]+; found: 614.1908 [M], 615.1978 $[\mathrm{M}+\mathrm{H}]^{+}$.

FT-IR $\left(\mathrm{cm}^{-1}\right): v=3201,3126,3077,2978,2897,1714,1625,1610,1574,1451,1370,1261,1190,1037$, 886, 837, 780, 658, 536.

Previously unreported.

Ethyl 8-(1-(4-(7-hydroxy-4-oxo-4H-chromen-3-yl)phenyl)-1 H-1,2,3-triazol-4-yl)-5-methyl-6-oxo-5,6-dihydro-4H-benzo[f]imidazo[1,5-a][1,4]diazepine-3-carboxylate (215)

Prepared according to General procedure O using 128 (107 $\mu \mathrm{mol}, 30 \mathrm{mg}$), 202 ($107 \mu \mathrm{~mol}, 31 \mathrm{mg}$), $\mathrm{H}_{2} \mathrm{O} / t-$ $\mathrm{BuOH}\left(2: 1\right.$ ratio, 3 mL), sodium ascorbate ($21.5 \mu \mathrm{~mol}, 4.5 \mathrm{mg}, 0.2$ equiv.) and $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(5.5 \mu \mathrm{~mol}, 1.5$ $\mathrm{mg}, 0.05$ equiv.), overnight at $100^{\circ} \mathrm{C}$; workup (2) to give 215 ($33 \mathrm{mg}, 56 \%$) as a pale brown solid; $\mathrm{mp}=$ $277{ }^{\circ} \mathrm{C}$ (decomp.); $R_{f}=0.4\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 95: 5\right)$.
 $1 \mathrm{H}, 1$ or $7-\underline{H}), 8.29(\mathrm{~s}, 1 \mathrm{H}, 1$ or $7-\underline{H}), 8.27(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 9-\underline{H}), 8.09-7.97\left(\mathrm{~m}, 3 \mathrm{H}, 5^{\prime}, 3^{\prime \prime}, 5^{\prime \prime}-\underline{H}\right), 7.93$ -7.81 (m, $\left.3 \mathrm{H}, 10,2^{\prime \prime}, 6^{\prime \prime}-\underline{H}\right), 7.03-6.86\left(\mathrm{~m}, 2 \mathrm{H}, 6^{\prime}, 8^{\prime}-\underline{H}\right), 5.10-4.89(\mathrm{~m}, 1 \mathrm{H}, 4-\underline{H}), 4.69-4.50(\mathrm{~m}, 1 \mathrm{H}, 4-$ H), $4.41-4.21\left(\mathrm{~m}, 2 \mathrm{H}, 13-\mathrm{CH}_{2}\right), 3.13\left(\mathrm{~s}, 3 \mathrm{H}, 15-\mathrm{CH}_{3}\right), 1.42-1.30\left(\mathrm{~m}, 3 \mathrm{H}, 14-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($100 \mathrm{MHz}, \mathrm{DMSO}$): $\delta=174.7$ (qC), 165.9 (qC), 163.3 (qC), 158.0 (qC), 155.9 (qC), 154.9 (CH), 147.1 (qC), 146.1 (qC), 139.7 (qC), 136.2 (qC), 133.1 (qC), 130.7 (2 CH), 130.4 (qC), 129.8 (qC), 129.4 $(\mathrm{CH}), 128.7(\mathrm{CH}), 127.8(\mathrm{CH}), 124.2(\mathrm{CH}), 122.7(\mathrm{qC}), 122.0(\mathrm{qC}), 120.9(\mathrm{CH}), 120.0(3 \mathrm{CH}), 117.0(\mathrm{qC})$, $115.9(\mathrm{CH}), 102.7(\mathrm{CH}), 60.6\left(\mathrm{CH}_{2}\right), 35.6\left(\mathrm{CH}_{3}\right), 14.7\left(\mathrm{CH}_{3}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}_{6}$: 588.1757 [M], $589.1830\left[\mathrm{M}+\mathrm{H}^{+}\right.$; found: 588.1752 [M], 589.1824 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): v=3321,3210,3115,3078,2980,1702,1624,1573,1500,1457,1377,1258,1194,1035$, 846, 794, 539.

Previously unreported.

3-(4-(4-(5,11-Dioxo-2,3,5,10,11,11a-hexahydro-1 H-benzo[e]pyrrolo[1,2-a][1,4]diazepin-7-yl)-1 H -

1,2,3-triazol-1-yl)phenyl)-4-oxo-4H-chromen-7-yl acetate (216)

Chemical Formula: $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{6}$
Molecular Weight: 561.55
Prepared according to General procedure O using $220(93 \mu \mathrm{~mol}, 30 \mathrm{mg}), 190(93 \mu \mathrm{~mol}, 23 \mathrm{mg}), \mathrm{H}_{2} \mathrm{O} / t-$ $\mathrm{BuOH}\left(2: 1\right.$ ratio, 3 mL), sodium ascorbate ($18.7 \mu \mathrm{~mol}, 4 \mathrm{mg}, 0.2$ equiv.) and $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(4.7 \mu \mathrm{~mol}, 1.5$ $\mathrm{mg}, 0.05$ equiv.), overnight at $100^{\circ} \mathrm{C}$; workup (2) to give 216 ($48 \mathrm{mg}, 91 \%$) as a pale brown solid; $\mathrm{mp}=$ $>300^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{DMSO}): ~ \delta=10.65$ (s, $1 \mathrm{H}, 10-\mathrm{NH}$), 9.47 ($\mathrm{s}, 1 \mathrm{H}, 11{ }^{\prime \prime}-\underline{H}$), 8.72 (s, $1 \mathrm{H}, 2$ '- $-\underline{H}$), 8.38 (d, J $=2.1 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 8.22\left(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\underline{H}\right), 8.13-8.05\left(\mathrm{~m}, 3 \mathrm{H}, 8,3^{\prime \prime}, 5^{\prime \prime}-\underline{H}\right), 7.89(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}$, $2 ", 6 "-\underline{H}), 7.64\left(d, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, 8^{\prime}-\underline{\mathrm{H}}\right), 7.36(\mathrm{dd}, \mathrm{J}=2.1,8.7 \mathrm{~Hz}, 1 \mathrm{H}, 6$ '- $-\underline{H}$), $7.27(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 9-\underline{\mathrm{H}})$, 4.23 (d, J = $7.9 \mathrm{~Hz}, 1 \mathrm{H}, 11 \mathrm{a}-\underline{\mathrm{H}}), 3.70-3.60(\mathrm{~m}, 1 \mathrm{H}, 3-\underline{\mathrm{H}}), 3.55-3.45(\mathrm{~m}, 1 \mathrm{H}, 3-\underline{H}), 2.36\left(\mathrm{~s}, 3 \mathrm{H}, 10{ }^{\prime}-\underline{C H}_{3}\right)$, 2.05-1.75 (m, 4 H, 1,2- 브).

HRMS (Dual ESI): calc m / z for $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{6}$: 561.1648 [M], 562.1721 [M+H]+; found: 561.1652 [M], 562.1724 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3213,3149,3078,2980,2884,1750,1682,1615,1567,1520,1484,1434,1371,1208$, 1181, 1098, 1034, 957, 884, 827, 774, 655, 567.
Previously unreported.

3-(4-(4-(4-Methyl-2,5-dioxo-2,3,4,5-tetrahydro-1 H-benzo[e][1,4]diazepin-7-yl)-1 H-1,2,3-triazol-1-yl)phenyl)-4-oxo-4H-chromen-7-yl acetate (217)

Chemical Formula: $\mathrm{C}_{29} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{6}$
Molecular Weight: 535.52
Prepared according to General procedure O using $220(93 \mu \mathrm{~mol}, 30 \mathrm{mg})$, $198(93 \mu \mathrm{~mol}, 20 \mathrm{mg}), \mathrm{H}_{2} \mathrm{O} / t-$ $\mathrm{BuOH}\left(2: 1\right.$ ratio, 3 mL), sodium ascorbate ($18.7 \mu \mathrm{~mol}, 4 \mathrm{mg}, 0.2$ equiv.) and $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(4.7 \mu \mathrm{~mol}, 1.5$ $\mathrm{mg}, 0.05$ equiv.), overnight at $100^{\circ} \mathrm{C}$; workup (2) to give 217 ($42 \mathrm{mg}, 84 \%$) as a pale brown solid; $\mathrm{mp}=$ $>300^{\circ} \mathrm{C}$.
 $\mathrm{s}, 1 \mathrm{H}, 6-\underline{H}), 8.20(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H}), 8.11-8.00\left(\mathrm{~m}, 3 \mathrm{H}, 5^{\prime}, 3^{\prime \prime}, 5^{\prime \prime}-\underline{H}\right), 7.87$ (d, J = $8.2 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime \prime}, 6$ "-
 $\left.2 \mathrm{H}, 3-\mathrm{CH}_{2}\right), 3.15\left(\mathrm{~s}, 3 \mathrm{H}, 10-\mathrm{CH}_{3}\right), 2.33\left(\mathrm{~s}, 3 \mathrm{H}, 10{ }^{\prime}-\mathrm{CH}_{3}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{29} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{6}$: 535.1492 [M], 536.1565 [M+H]+; found: 535.1507 [M], 536.1577 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): v=3232,3148,3077,2980,2875,1748,1695,1633,1574,1486,1435,1362,1222,1183$, 1033, 957, 887, 834, 788, 665, 501.
Previously unreported.

Ethyl 7-(1-(4-(7-Acetoxy-4-oxo-4H-chromen-3-yl)phenyl)-1H-1,2,3-triazol-4-yl)-9-oxo-11,12,13,13a-tetrahydro-9H-benzo[e]imidazo[5,1-c]pyrrolo[1,2-a][1,4]diazepine-1-carboxylate (218)

Chemical Formula: $\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{7}$
Molecular Weight: 656.66
Prepared according to General procedure O using $220(93 \mu \mathrm{~mol}, 30 \mathrm{mg})$, $193(93 \mu \mathrm{~mol}, 31 \mathrm{mg}), \mathrm{H}_{2} \mathrm{O} / t-$ $\mathrm{BuOH}\left(2: 1\right.$ ratio, 3 mL), sodium ascorbate ($18.7 \mu \mathrm{~mol}, 4 \mathrm{mg}, 0.2$ equiv.) and $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(4.7 \mu \mathrm{~mol}, 1.5$ $\mathrm{mg}, 0.05$ equiv.), overnight at $100^{\circ} \mathrm{C}$; workup (2) to give $218(50 \mathrm{mg}, 82 \%)$ as a brown solid; $\mathrm{mp}=262{ }^{\circ} \mathrm{C}$ (decomp.).
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{DMSO}): ~ \delta=9.65\left(\mathrm{~s}, 1 \mathrm{H}, 11{ }^{\prime \prime}-\underline{H}\right), 8.73(\mathrm{~s}, 1 \mathrm{H}, 2$ '- $-\underline{H}$), 8.54 (d, J=1.9 Hz, $1 \mathrm{H}, 8-\underline{H}$), 8.37 (br s, $1 \mathrm{H}, 3-\underline{H}$), 8.31 (dd, J = 1.9, $8.0 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}$), 8.23 (d, J = $8.7 \mathrm{~Hz}, 1 \mathrm{H}, 5$ '- H), 8.09 (d, J = $8.6 \mathrm{~Hz}, 2$ H, 3", $5^{\prime \prime}-\underline{H}$), $7.95-7.85\left(\mathrm{~m}, 3 \mathrm{H}, 5,2^{\prime \prime}, 6^{\prime \prime}-\underline{H}\right), 7.64(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, 8$ '- \underline{H}), 7.37 (dd, J = 2.1, $8.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.6^{\prime}-\underline{H}\right), 4.99(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 13 \mathrm{a}-\underline{\mathrm{H}}), 4.30\left(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, 15-\mathrm{CH}_{2}\right), 3.69-3.41\left(\mathrm{~m}, 2 \mathrm{H}, 11-\mathrm{CH}_{2}\right), 3.22$ $-3.14(\mathrm{~m}, 1 \mathrm{H}, 13-\underline{H}), 2.34\left(\mathrm{~s}, 3 \mathrm{H}, 10^{\prime}-\mathrm{CH}_{3}\right), 2.26-1.98(\mathrm{~m}, 3 \mathrm{H}, 12,13-\underline{H}), 1.32(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, 16-$ CH_{3}).
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{7}: 656.2019$ [M], 657.2092 [M+H]+; found: 656.2008 [M], 657.2081 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): v=3078,2980,2890,1770,1713,1639,1610,1557,1519,1437,1366,1181,1103,1036$, 957, 833, 787, 660, 533.
Previously unreported.

Ethyl 8-(1-(4-(7-acetoxy-4-oxo-4H-chromen-3-yl)phenyl)-1H-1,2,3-triazol-4-yl)-5-methyl-6-oxo-5,6-dihydro-4H-benzo[f]imidazo[1,5-a][1,4]diazepine-3-carboxylate (219)

Chemical Formula: $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{7}$ Molecular Weight: 630.62

Prepared according to General procedure O using $220(93 \mu \mathrm{~mol}, 30 \mathrm{mg})$, $202(93 \mu \mathrm{~mol}, 29 \mathrm{mg}), \mathrm{H}_{2} \mathrm{O} / t-$ $\mathrm{BuOH}\left(2: 1\right.$ ratio, 3 mL), sodium ascorbate ($18.7 \mu \mathrm{~mol}, 4 \mathrm{mg}, 0.2$ equiv.) and $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(4.7 \mu \mathrm{~mol}, 1.5$ $\mathrm{mg}, 0.05$ equiv.), overnight at $100^{\circ} \mathrm{C}$; workup (2) to give $219(42 \mathrm{mg}, 71 \%)$ as a brown solid; $\mathrm{mp}=274{ }^{\circ} \mathrm{C}$ (decomp.).
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{DMSO}): ~ \delta=9.60(\mathrm{~s}, 1 \mathrm{H}, 11 "-\underline{\mathrm{H}}), 8.71(\mathrm{~s}, 1 \mathrm{H}, 2$ '- $\underline{\mathrm{H}}$), $8.53-8.40(\mathrm{~m}, 2 \mathrm{H}, 1,7-\underline{\mathrm{H}}), 8.28$ (app dd, J = 1.2, $8.0 \mathrm{~Hz}, 1 \mathrm{H}, 9-\underline{H}$), 8.21 (d, J = $8.4 \mathrm{~Hz}, 1 \mathrm{H}, 5$ '-H), 8.06 (d, J = $8.6 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime \prime}, 5^{\prime \prime}-\underline{H}$), 7.95 7.85 (m, $3 \mathrm{H}, 10,2^{\prime \prime}, 6 "-\underline{H}$), 7.62 (d, J = $2.0 \mathrm{~Hz}, 1 \mathrm{H}, 8^{\prime}-\underline{H}$), 7.35 ($\mathrm{dd}, \mathrm{J}=2.0,8.4 \mathrm{~Hz}, 6$ '- $-\underline{H}$), $5.13-4.84$ ($\mathrm{m}, 1$ $\mathrm{H}, 4-\underline{\mathrm{H}}), 4.71-4.49(\mathrm{~m}, 1 \mathrm{H}, 4-\underline{\mathrm{H}}), 4.41-4.23\left(\mathrm{~m}, 2 \mathrm{H}, 13-\mathrm{CH}_{2}\right), 3.13\left(\mathrm{~s}, 3 \mathrm{H}, 15-\mathrm{CH}_{3}\right), 2.34(\mathrm{~s}, 3 \mathrm{H}, 10$ '$\left.\mathrm{CH}_{3}\right), 1.39-1.28\left(\mathrm{~m}, 3 \mathrm{H}, 14-\mathrm{CH}_{3}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{7}: 630.1863$ [M], 631.1936 [M+H]+; found: 630.1870 [M], 631.1943 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3115,3062,2981,1752,1731,1661,1638,1602,1573,1495,1438,1372,1212,1183$, 1157, 1037, 838, 763, 666, 535.
Previously unreported.

3-(4-Azidophenyl)-4-oxo-4H-chromen-7-yl acetate (220)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{4}$
Molecular Weight: 321.29
To a solution of $128(1.79 \mathrm{mmol}, 500 \mathrm{mg})$ in pyridine (3.6 mL), acetic anhydride ($17.9 \mathrm{mmol}, 1.7 \mathrm{~mL}$) was added dropwise, and the resulting mixture was stirred at RT for 4 h . Water (20 mL) was added and the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2} .{ }^{182}$ The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 100: 1\right)$ to give $220(490 \mathrm{mg}, 85 \%)$ as a white solid; $\mathrm{mp}=179-180{ }^{\circ} \mathrm{C} ; R_{f}=0.7\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ $\mathrm{CH}_{3} \mathrm{OH}, 100: 1$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.32(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 8.00(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 7.56(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.2^{\prime}, 6^{\prime}-\underline{H}\right), 7.31(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H}), 7.18(\mathrm{dd}, \mathrm{J}=2.1,8.7 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 7.10\left(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\right.$ H), $2.36\left(\mathrm{~s}, 3 \mathrm{H}, 10-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=175.5(\mathrm{C}=\mathrm{O}, 4-\underline{\mathrm{C}}), 168.6(\mathrm{C}=\mathrm{O}, 9-\underline{\mathrm{C}}), 156.7$ (qC, 8a-C$), 154.6$ ($\mathrm{qC}, 7-\underline{\mathrm{C}}$),
 $\underline{\mathrm{C}})$, 122.3 (qC, 4a-ㅡㅡ), $119.7(\mathrm{CH}, 6-\underline{\mathrm{C}}), 119.2\left(2 \mathrm{CH}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{C}}\right), 111.1(\mathrm{CH}, 8-\underline{\mathrm{C}}), 21.3\left(\mathrm{CH}_{3}, 10-\mathrm{CH}_{3}\right)$.
HRMS (Jet stream ESI): calc m / z for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{4}$: 321.0750 [M], 344.0642 [$\left.\mathrm{M}+\mathrm{Na}\right]^{+}$; found: 321.0762 [M], $344.0643[\mathrm{M}+\mathrm{Na}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3088,3047,2980,2889,2121,2082,1750,1620,1576,1506,1440,1360,1287,1241$, 1211, 1183, 1098, 904, 820, 689, 536.
Previously unreported.

3-(4-(1H-1,2,3-Triazol-1-yl)phenyl)-7-hydroxy-4H-chromen-4-one (221)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$ Molecular Weight: 305.29

TBAF ($77 \mu \mathrm{~mol}, 20 \mathrm{mg}, 77 \mu \mathrm{~L}, 1.0 \mathrm{M}$ in THF, 5% water) was added dropwise to a solution of 209 ($55 \mu \mathrm{~mol}$, 23 mg) in THF (1 mL) and the mixture was stirred at RT for 4 h and after at $50^{\circ} \mathrm{C}$ for 2 h . Water was added to the reaction mixture and the crude was extracted with ethyl acetate $(3 \times 30 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 95: 5\right)$ to give 221 ($10 \mathrm{mg}, 60 \%$) as a pale yellow solid; $\mathrm{mp}=>300^{\circ} \mathrm{C}$; R_{f} $=0.2\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 95: 5\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{DMSO}): \delta=8.89$ ($\mathrm{s}, 1 \mathrm{H}, 5 "-\underline{H}$), 8.54 (s, $1 \mathrm{H}, 2-\underline{H}$), $8.05-7.95$ (m, $4 \mathrm{H}, 5,3^{\prime}, 5^{\prime}, 4^{\prime \prime}-\underline{\mathrm{H}}$), 7.82 ($\mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{H}$), $6.98(\mathrm{dd}, \mathrm{J}=2.0,8.7 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 6.92(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, \mathrm{DMSO}): ~ \delta=174.7$ (qC, C=O, 4-C-C), 163.3 (qC, 7-ㅡㅡ) , 157.9 (qC, 8a- $\underline{\mathrm{C}}$), 154.8 ($\mathrm{CH}, 2-$ C-), 136.4 (qC, $\left.4^{\prime}-\underline{C}\right), 134.9\left(\mathrm{CH}, 4^{\prime \prime}-\underline{\mathrm{C}}\right), 132.9\left(\mathrm{qC}, 1^{\prime}-\underline{\mathrm{C}}\right), 130.7\left(2 \mathrm{CH}, 2^{\prime}, 6^{\prime}-\underline{\mathrm{C}}\right), 127.8(\mathrm{CH}, 5-\underline{\mathrm{C}}), 123.6(\mathrm{CH}$, $5 "-\underline{C}), 122.8(\mathrm{qC}, 3-\underline{\mathrm{C}}), 120.23\left(2 \mathrm{CH}, 3\right.$ ', $\left.5^{\prime}-\underline{\mathrm{C}}\right), 116.9(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 115.9(\mathrm{CH}, 6-\underline{\mathrm{C}}), 102.7(\mathrm{CH}, 8-\underline{\mathrm{C}})$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$: $305.0800[\mathrm{M}], 306.0873$ [M+H]+; found: 305.0803 [M], 306.0873 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): v=3159,3132,3084,2919,2850,1631,1601,1519,1455,1375,1254,1197,1101,1040$, 776, 543.
Previously unreported.

3.2.4 Synthesis of isoflavone/ β-sultam hybrids

Taurine sulfonyl chloride (223)

Chemical Formula: $\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{NO}_{2} \mathrm{~S}$
Molecular Weight: 180.04
Cystamine dihydrochloride 222 ($10.0 \mathrm{~g}, 44.4 \mathrm{mmol}$) was suspended in dry $\mathrm{CHCl}_{3}(250 \mathrm{~mL})$ and dry EtOH $(125 \mathrm{~mL})$ under N_{2}. After cooling the mixture to $-10^{\circ} \mathrm{C}$, chlorine gas was passed in until complete saturation ($\sim 2 \mathrm{~h}$, permanent creamy yellow suspension). After purging the system with N_{2}, dry $\mathrm{Et}_{2} \mathrm{O}(60 \mathrm{~mL})$ was added to the mixture. The reaction was stirred for an additional hour at RT and after stored overnight at 4 ${ }^{\circ} \mathrm{C}$. The formed precipitate was filtered off, washed with dry $\mathrm{Et}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$, and dried under vacuum suction to give 223 ($15.5 \mathrm{~g}, 97 \%$) as a white solid (the compound hydrolyses in water).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta=4.40\left(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{CH}_{2}\right), 3.71\left(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}, 1-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta=60.5\left(\mathrm{CH}_{2}, 2-\underline{\mathrm{CH}_{2}}\right), 34.2\left(\mathrm{CH}_{2}, 1-\underline{\mathrm{C}} \mathrm{H}_{2}\right)$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=2995,2911,2866,1599,1557,1514,1368,1279,1172,1158,1107,1085,1039,1028$, 948, 837, 773, 701, 600.
Known compound. ${ }^{284}$

1,2-Thiazetidine 1,1-dioxide (β-sultam, 224)

Chemical Formula: $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}_{2} \mathrm{~S}$
Molecular Weight: 107.13
To a suspension of finely ground anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}(172.18 \mathrm{mmol}, 18.25 \mathrm{~g})$ in dry ethyl acetate (400 mL), 223 ($86.09 \mathrm{mmol}, 15.5 \mathrm{~g}$) was added, and the resulting mixture was stirred at RT for 48 h . The mixture was filtered through Celite ${ }^{\mathrm{TM}}$ and the filtrate was concentrated to give 224 ($6 \mathrm{~g}, 65 \%$) as a white solid; $\mathrm{mp}=51$ $52^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=50-51^{\circ} \mathrm{C} .{ }^{285}$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.42$ (br s, $1 \mathrm{H}, 2-\mathrm{NH}$), 4.30 (td, J = 1.8, $\left.7 \mathrm{~Hz}, 2 \mathrm{H}, 1-\mathrm{CH}_{2}\right), 3.37(\mathrm{td}, \mathrm{J}=3.9$, $7.0 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{CH}_{2}$).
${ }^{13} \mathrm{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=61.0\left(\mathrm{CH}_{2}, 1-\underline{\mathrm{C}_{2}}\right), 28.2\left(\mathrm{CH}_{2}, 2-\underline{\mathrm{C}} \mathrm{H}_{2}\right)$.
GC-MS (EI): calc m / z for $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}_{2} \mathrm{~S}$: 107.0041 [M]; found: 106.9998, 76.9970, 63.9900, 47.9900, 42.1000. FT-IR (cm^{-1}): $v=3304,3048,3022,2988,2918,141,1329,1290,1239,1209,1147,1107,1038,960,908$, 801, 758, 663, 602.
Known compound. 285

3-(4-((1,1-Dioxido-1,2-thiazetidin-2-yl)methyl)phenyl)-7-methoxy-4H-chromen-4-one (225)

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{~S}$ Molecular Weight: 371.41

To a solution of $224(40 \mu \mathrm{~mol}, 4.3 \mathrm{mg})$ and benzyltriethylammonium chloride (TEBAC, $4 \mu \mathrm{~mol}, 0.91 \mathrm{mg})$ in dry $\mathrm{MeCN}(1 \mathrm{~mL})$ and under N_{2}, anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(60 \mu \mathrm{~mol}, 8.3 \mathrm{mg})$ was added and the mixture was stirred for 10 min at RT $\left(23^{\circ} \mathrm{C}\right) .134(40 \mu \mathrm{~mol}, 12 \mathrm{mg})$ was added and the resulting mixture was stirred at RT (23 ${ }^{\circ} \mathrm{C}$) for $20 \mathrm{~h} .{ }^{212}$ The reaction mixture was filtered, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and the filtrate was concentrated under vacuum to dryness. The crude was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}\right.$, 95:5) to give 225 ($10 \mathrm{mg}, 67 \%$) as a white solid; $\mathrm{mp}=194-195^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.15\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 95: 5\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.20(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 7.95(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{H}), 7.56(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}$,

 CH_{2}).

 $118.3(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 114.7(\mathrm{CH}, 6-\underline{\mathrm{C}}), 100.1(\mathrm{CH}, 8-\underline{\mathrm{C}}), 57.4\left(\mathrm{CH}_{2}, 1 "-\underline{\mathrm{C}} \mathrm{H}_{2}\right), 55.8\left(\mathrm{CH}_{3}, 9-\underline{\mathrm{C}} \mathrm{H}_{3}\right), 50.2\left(\mathrm{CH}_{2}, 7\right.$ '$\left.\mathrm{CH}_{2}\right), 35.4\left(\mathrm{CH}_{2}, 2\right.$ "- $\left.\mathrm{CH}_{2}\right)$.
HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{~S}: 371.0827$ [M], $372.0900[\mathrm{M}+\mathrm{H}]^{+}$; found: 371.0824 [M], $372.0897[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): v=3034,2926,2853,1626,1595,1439,1303,1254,1165,1023,826,768,528$.
Previously unreported.

2-((5-Phenyl-1,2,4-oxadiazol-3-yl)methyl)-1,2-thiazetidine 1,1-dioxide (226)

Chemical Formula: $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$
Molecular Weight: 265.29
To a solution of $224(0.2 \mathrm{mmol}, 22 \mathrm{mg})$ in dry $\mathrm{MeCN}(1.5 \mathrm{~mL})$ and under N_{2}, TEBAC ($0.02 \mathrm{mmol}, 5 \mathrm{mg}$) followed by anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(0.3 \mathrm{mmol}, 42 \mathrm{mg})$ were added and the mixture was stirred for 10 min at RT. $165(0.2 \mathrm{mmol}, 39 \mathrm{mg})$ was added and the resulting mixture was stirred at RT for $24 \mathrm{~h} .{ }^{212}$ The volatiles were removed and the crude was purified by flash chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{EtOAc}, 95: 5\right)$ to give 226 (35 mg , $66 \%)$ as a white solid; $\mathrm{mp}=128-129^{\circ} \mathrm{C} ; R_{f}=0.12\left(\mathrm{CHCl}_{3} / \mathrm{EtOAc}, 95: 5\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, acetone-d6): $\delta=8.15$ (d, J = $7.3 \mathrm{~Hz}, 2 \mathrm{H}, 8,12-\underline{\mathrm{H}}$), 7.71 (t, J = $7.4 \mathrm{~Hz}, 1 \mathrm{H}, 10-\underline{H}$), 7.64 (t, J = $7.4 \mathrm{~Hz}, 2 \mathrm{H}, 9,11-\underline{H}), 4.41\left(\mathrm{~s}, 2 \mathrm{H}, 6-\underline{C H}_{2}\right), 4.28\left(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, 1^{\prime}-\underline{C H}_{2}\right), 3.46(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}$, 2'- CH_{2}).
${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, acetone-d $)$: $\delta=175.9$ (qC, $5-\underline{\mathrm{C}}$), $167.0(\mathrm{qC}, 3-\underline{\mathrm{C}}), 133.1(\mathrm{CH}, 10-\underline{\mathrm{C}})$, $129.4(2 \mathrm{CH}$, $9,11-\underline{\mathrm{C}}), 127.9(2 \mathrm{CH}, 8,12-\underline{\mathrm{C}}), 123.9(\mathrm{qC}, 7-\underline{\mathrm{C}}), 58.1\left(\mathrm{CH}_{2}, 1{ }^{\prime}-\mathrm{CH}_{2}\right), 41.4\left(\mathrm{CH}_{2}, 6-\mathrm{CH}_{2}\right), 36.3\left(\mathrm{CH}_{2}, 2^{\prime}-\underline{\mathrm{CH}_{2}}\right)$. HRMS (Dual ESI): calc m/z for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$: 265.0521 [M], 266.0594 [M+H]+; found: 265.0526 [M], $266.0599[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR (cm-1): $v=3037,2973,2921,2852,1608,1558,1479,1410,1347,1313,1205,1158,1117,932$, 779, 737, 685, 634.
Previously unreported.

2-Chloro-1-(1,1-dioxido-1,2-thiazetidin-2-yl)ethan-1-one (229), 2-(2-chloroacetamido)ethane-1-

 sulfonic acid (231), and 2-(2-chloroacetamido)ethane-1-sulfonyl chloride (232)To a solution of $224(9.33 \mathrm{mmol}, 1 \mathrm{~g})$ and DMAP ($0.933 \mathrm{mmol}, 114 \mathrm{mg}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ cooled at $78^{\circ} \mathrm{C}$ and under N_{2}, chloroacetyl chloride $227(9.33 \mathrm{mmol}, 1.05 \mathrm{mg}, 0.75 \mathrm{~mL}$) was added dropwise and the reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 minutes. $\mathrm{Et}_{3} \mathrm{~N}(9.33 \mathrm{mmol}, 945 \mathrm{mg}, 1.3 \mathrm{~mL})$ was added dropwise over 10 minutes at $-78^{\circ} \mathrm{C}$, and the resulting mixture was allowed to warm to room temperature and stirred for 27 hours. ${ }^{136}$ The mixture was filtered and the filtrate was concentrated under reduced pressure. The crude product was purified immediately by flash chromatography (EtOAc/PE, 2:1) to give $229(0.8 \mathrm{~g}, 46 \%)$ as a white solid; $R_{f}=0.44$ ($\mathrm{EtOAc} / \mathrm{PE}, 2: 1 ; \mathrm{KMnO}_{4}$). Dissolution of the desired compound in CDCl_{3} led to the formation of a mixture of title compounds.

- 2-chloro-1-(1,1-dioxido-1,2-thiazetidin-2-yl)ethan-1-one (229)

Chemical Formula: $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{CINO}_{3} \mathrm{~S}$ Molecular Weight: 183.61
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=4.30\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, 2{ }^{\prime}-\mathrm{CH}_{2}\right), 4.27\left(\mathrm{~s}, 2 \mathrm{H}, 2-\mathrm{CH}_{2}\right), 3.80(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2$ $\mathrm{H}, 1^{\prime}-\mathrm{CH}_{2}$).
HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{CINO}_{3} \mathrm{~S}$: 182.9757 [M], 183.9830 [M+H]+; found: 182.9754 [M], 183.9827 [M+H] ${ }^{+}$.

Known compound, modified method. ${ }^{286}$

- 2-(2-chloroacetamido)ethane-1-sulfonyl chloride (232)

Chemical Formula: $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{NO}_{3} \mathrm{~S}$
Molecular Weight: 220.06
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.19$ (br s, $1 \mathrm{H}, \mathrm{NH}$), 4.08 (s, $2 \mathrm{H}, 4-\mathrm{CH}_{2}$), $4.01-3.90(\mathrm{~m}, 4 \mathrm{H}, 1,2-\mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3},{ }^{13} \mathrm{C}\right.$ for the mixture): $\delta=166.8(\mathrm{qC}), 164.0(\mathrm{qC}), 63.8\left(\mathrm{CH}_{2}\right), 58.2\left(\mathrm{CH}_{2}\right), 42.3$ $\left(\mathrm{CH}_{2}\right), 42.0\left(\mathrm{CH}_{2}\right)$, $34.9\left(\mathrm{CH}_{2}\right), 31.3\left(\mathrm{CH}_{2}\right)$.
FT-IR (cm^{-1}, for the mixture): $\mathrm{v}=3330,3081,2953,1659,1548,1401,1360,1261,1150,1022,925,807$, 699.

Previously unreported.

1-(1,1-Dioxido-1,2-thiazetidin-2-yl)ethan-1-one (230)

Chemical Formula: $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{NO}_{3} \mathrm{~S}$
Molecular Weight: 149.16
To a solution of $224(1.87 \mathrm{mmol}, 200 \mathrm{mg})$ and DMAP ($0.142 \mathrm{mmol}, 17 \mathrm{mg}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ cooled at $-78{ }^{\circ} \mathrm{C}$ and under N_{2}, acetyl chloride ($1.87 \mathrm{mmol}, 147 \mathrm{mg}, 134 \mu \mathrm{~L}$) was added dropwise and the reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 minutes. $\mathrm{Et}_{3} \mathrm{~N}(1.87 \mathrm{mmol}, 189 \mathrm{mg}, 261 \mu \mathrm{~L})$ was added dropwise over 5 minutes at $-78^{\circ} \mathrm{C}$, and the resulting mixture was allowed to warm to RT and stirred for 27 hours. ${ }^{136}$ The mixture was filtered and the filtrate was concentrated under reduced pressure to obtain a yellow oily solid. The crude product was purified by flash chromatography (EtOAc/PE, 2:1) to give $230(85 \mathrm{mg}, \mathbf{3 0 \%}$) as a white solid; $\mathrm{mp}=74-75^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=74-75{ }^{\circ} \mathrm{C} ;{ }^{136} R_{f}=0.35\left(\mathrm{EtOAc} / \mathrm{PE}, 2: 1 ; \mathrm{KMnO}_{4}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.22\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, 2\right.$ '- CH_{2}), $3.70\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, 1{ }^{\prime}-\mathrm{CH}_{2}\right.$), 2.29 (s , $\left.3 \mathrm{H}, 2-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=167.4(\mathrm{C}=\mathrm{O}, 1-\underline{\mathrm{C}}), 57.4\left(\mathrm{CH}_{2}, 1\right.$ ' $\left.-\underline{\mathrm{C}} \mathrm{H}_{2}\right), 31.0\left(\mathrm{CH}_{2}, 2\right.$ 2'- $\left.\underline{\mathrm{CH}_{2}}\right), 23.3\left(\mathrm{CH}_{3}, 2-\right.$ CH_{3}).

HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{NO}_{3} \mathrm{~S}$: 149.0147 [M], 150.0219 [M+H]+; found: 149.0141 [M], $150.0213[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): \mathrm{v}=3061,2981,1695,1680,1370,1312,1197,1153,1042,778,547$.
Known compound. ${ }^{136}$

4-oxo-3-phenyl-4H-chromen-7-yl 2-(2-chloroacetamido)ethane-1-sulfonate (234), and 2-(2-((4-oxo-3-phenyl-4H-chromen-7-yl)oxy)acetamido)ethane-1-sulfonic acid (233)
To a suspension of $\mathbf{3 0}(100 \mu \mathrm{~mol}, 24 \mathrm{mg})$ and a mixture of 229,231 and $232(20 \mathrm{mg})$ in dry $\mathrm{MeCN}(2 \mathrm{~mL})$ under $\mathrm{N}_{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}(110 \mu \mathrm{~mol}, 15.2 \mathrm{mg})$ was added, and the reaction was stirred for 4 h at $80^{\circ} \mathrm{C}$. The resulting mixture was allowed to cool to RT, the volatiles were removed, and the crude purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 100: 1\right)$ to give:

- 4-oxo-3-phenyl-4H-chromen-7-yl 2-(2-chloroacetamido)ethane-1-sulfonate (234), white solid (5 $\mathrm{mg}, 11 \%) ; \mathrm{mp}=164-165^{\circ} \mathrm{C} ; R_{f}=0.1\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.95: 5\right)$.

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{CINO}_{6} \mathrm{~S}$ Molecular Weight: 421.85
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, acetone- d_{6}): $\delta=8.40(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 8.30(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 7.97(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH})$, 7.70 (d, J = $2.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H}$), $7.67-7.60\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{H}\right), 7.52$ (dd, J = 2.2, $8.8 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}$), $7.48-7.34$
(m, $\left.3 \mathrm{H}, 3^{\prime}, 4^{\prime}, 5^{\prime}-\underline{\mathrm{H}}\right), 4.13\left(\mathrm{~s}, 2 \mathrm{H}, 4^{\prime \prime}-\underline{C H}_{2}\right), 3.89\left(\mathrm{app} \mathrm{q}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime \prime}-\underline{C H}_{2}\right), 3.81$ (app t, J = $6.2 \mathrm{~Hz}, 2$ $\mathrm{H}, 1$ " $-\mathrm{CH}_{2}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.39(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 8.04(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{H}), 7.55(\mathrm{app} \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, 2$ H, 2', $6^{\prime}-\underline{H}$), $7.50(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H}), 7.49-7.38\left(\mathrm{~m}, 3 \mathrm{H}, 3^{\prime}, 4^{\prime}, 5^{\prime}-\underline{H}\right), 7.35(\mathrm{dd}, \mathrm{J}=2.2,8.8 \mathrm{~Hz}, 1 \mathrm{H}, 6-$ H), 7.24 (br s, $1 \mathrm{H}, \mathrm{N} \underline{H}$), 4.09 (s, $2 \mathrm{H}, 4$ "-CH2 \underline{H}_{2}, 3.96 ($\mathrm{q}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}, 2$ "- $\underline{C H}_{2}$), 3.61 (t, J = $6.0 \mathrm{~Hz}, 2 \mathrm{H}, 1$ "CH_{2}).

 $\left(\mathrm{CH}, 4{ }^{\prime}-\underline{C}\right), 125.9(\mathrm{qC}, 3$ or $4 \mathrm{a}-\underline{\mathrm{C}}), 123.5(\mathrm{qC}, 3$ or $4 \mathrm{a}-\underline{\mathrm{C}}), 119.3(\mathrm{CH}, 6-\underline{\mathrm{C}}), 111.6(\mathrm{CH}, 8-\underline{\mathrm{C}}), 50.2\left(\mathrm{CH}_{2}, 1\right.$ "$\left.\underline{\mathrm{C}}_{2}\right), 42.3\left(\mathrm{CH}_{2}, 4\right.$ "- $\left.\mathrm{CH}_{2}\right), 34.5\left(\mathrm{CH}_{2}, 2 "-\mathrm{C}_{2}\right)$.
HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{CINO}_{6} \mathrm{~S}$: 421.0387 [M], $422.0460[\mathrm{M}+\mathrm{H}]+$; found: 421.0390 [M], $422.0462[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR (cm^{-1}): $\mathrm{v}=3283,3086,2922,2852,1642,1616,1556,1445,1365,1224,1161,1044,954,837,769$, 693, 530.
Previously unreported.

- 2-(2-((4-oxo-3-phenyl-4H-chromen-7-yl)oxy)acetamido)ethane-1-sulfonic acid (233), recovered from the top of the column as a pale yellow solid ($20 \mathrm{mg}, 50 \%$); $\mathrm{mp}=278-280^{\circ} \mathrm{C}$ (decomp.).

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{7} \mathrm{~S}$ Molecular Weight: 403.41
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta=7.83(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 7.64(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 7.34-7.14(\mathrm{~m}, 5 \mathrm{H}$, $2^{\prime}, 3^{\prime}, 4^{\prime}, 5^{\prime}, 6^{\prime}-\underline{H}$), 6.77 (app d, J = $8.8 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}$), 6.56 (app s, $1 \mathrm{H}, 8-\underline{H}$), 4.06 (s, $2 \mathrm{H}, 4 "-\underline{H}_{2}$), $3.45(\mathrm{t}, \mathrm{J}=$ $\left.6.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 "-\underline{C H}_{2}\right), 2.92\left(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, 1\right.$ "- CH_{2}).
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{DMSO}): \delta=8.47(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 8.39(\mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$), $8.05(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}$, $5-\underline{H}$), 7.57 (d, J = $7.0 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{H}$), 7.42 (app t, J = $7.2 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{H}$), 7.36 (app t, J = $7.2 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-$ H), 7.16 ($\mathrm{d}, \mathrm{J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H}$), 7.12 ($\mathrm{dd}, \mathrm{J}=2.3,8.8 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}$), $4.64\left(\mathrm{~s}, 2 \mathrm{H}, 4\right.$ "-CH2 \underline{H}_{2}, 3.41 (q, J=6.4 $\mathrm{Hz}, 2 \mathrm{H}, 2$ "- CH_{2}), $2.58\left(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, 1\right.$ " $-\mathrm{CH}_{2}$).
 154.7 ($\mathrm{CH}, 2-\underline{\mathrm{C}}$), 132.3 ($\mathrm{qC}, 1^{\prime}-\underline{\mathrm{C}}$), 129.4 (2 CH, $\left.2^{\prime}, 6^{\prime}-\underline{\mathrm{C}}\right)$, 128.6 (2 CH, $\left.3^{\prime}, 5^{\prime}-\underline{\mathrm{C}}\right), 128.2\left(\mathrm{CH}, 4^{\prime}-\underline{\mathrm{C}}\right), 127.5(\mathrm{CH}$, $5-\underline{C}), 124.2(q C, 3-\underline{C}), 118.5(q C, 4 a-\underline{C}), 115.7(\mathrm{CH}, 6-\underline{\mathrm{C}}), 102.2(\mathrm{CH}, 8-\underline{\mathrm{C}}), 67.7\left(\mathrm{CH}_{2}, 4\right.$ "- $\left.\mathrm{CH}_{2}\right), 50.4\left(\mathrm{CH}_{2}\right.$, 1 "- C_{2}), $35.7\left(\mathrm{CH}_{2}, 2\right.$ "- $\left.-\mathrm{CH}_{2}\right)$.
HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{7} \mathrm{~S}$: 403.0726 [M], $404.0798[\mathrm{M}+\mathrm{H}]^{+}$; found: 403.0728 [M], $404.0798[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3359,3224,3047,2980,2888,1656,1642,1624,1536,1443,1377,1250,1196,1057$, 840, 749, 694, 527.
Previously unreported.

General procedure P: To a solution of the corresponding isoflavone (1.0 equiv.) in dry DMF (1 mL) and under $\mathrm{N}_{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}$ (2.5 equiv.) and 1,2-dibromoethane (5.0 equiv.) were added and the mixture was stirred and heated at $80^{\circ} \mathrm{C}$ for 3 h under $\mathrm{N}_{2} .{ }^{215}$ Water $(10 \mathrm{~mL})$ was added, and the precipitate was filtered, washed with water and dried under vacuum suction. The crude was purified by flash chromatography to give the corresponding compound.

7-(2-Bromoethoxy)-3-(4-hydroxyphenyl)-4H-chromen-4-one (236), and 7-(2-bromoethoxy)-3-(4-(2-bromoethoxy)phenyl)-4H-chromen-4-one (237)
Title compounds were prepared according to General procedure P using 26 ($0.15 \mathrm{mmol}, 38 \mathrm{mg}$), DMF (1 $\mathrm{mL}), \mathrm{K}_{2} \mathrm{CO}_{3}(375 \mu \mathrm{~mol}, 52 \mathrm{mg})$ and 1,2-dibromoethane $(0.75 \mathrm{mmol}, 65 \mu \mathrm{~L}), 80^{\circ} \mathrm{C}$ for 3 h ; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $100: 1$ to $\left.10: 1\right)$ to give:

- 7-(2-bromoethoxy)-3-(4-hydroxyphenyl)-4H-chromen-4-one (236), white solid ($35 \mathrm{mg}, 64 \%$); $\mathrm{mp}=$ $186-187{ }^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=160-162{ }^{\circ} \mathrm{C} ;{ }^{217} R_{f}=0.1\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.95: 5\right)$.

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{BrO}_{4}$ Molecular Weight: 361.19
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, acetone- d_{6}): $\delta=8.52\left(\mathrm{~s}, 1 \mathrm{H}, 4{ }^{\prime}-\mathrm{OH}\right), 8.20(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 8.11(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}})$, 7.47 ($\mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{H}$), $7.14-7.05(\mathrm{~m}, 2 \mathrm{H}, 6,8-\underline{H}), 6.88\left(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{H}\right), 4.54(\mathrm{t}, \mathrm{J}=$ $\left.5.5 \mathrm{~Hz}, 2 \mathrm{H}, 9-\underline{C H}_{2}\right), 3.85\left(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}, 10-\mathrm{CH}_{2}\right)$.
 4^{\prime} or $8 \mathrm{a}-\underline{\mathrm{C}}$), $152.5(\mathrm{CH}, 2-\underline{\mathrm{C}}), 130.1$ (2 CH, 2', $\left.6^{\prime}-\underline{\mathrm{C}}\right), 127.4(\mathrm{CH}, 5-\underline{\mathrm{C}}), 124.5$ (qC, 1' or $3-\underline{\mathrm{C}}$), 123.3 (qC, 1' or $3-\underline{C}), 118.6(q C, 4 a-\underline{C}), 114.9\left(2 \mathrm{CH}, 3^{\prime}, 5{ }^{\prime}-\underline{\mathrm{C}}\right), 114.6(\mathrm{CH}, 6-\underline{\mathrm{C}}), 101.1(\mathrm{CH}, 8-\underline{\mathrm{C}}), 68.6\left(\mathrm{CH}_{2}, 9-\underline{\mathrm{CH}} \mathrm{H}_{2}\right), 29.6$ ($\mathrm{CH}_{2}, 10-\mathrm{CH}_{2}$).
HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{17} \mathrm{H}_{13}{ }^{79} \mathrm{BrO}_{4}$: 359.9997 [M], $361.0070[\mathrm{M}+\mathrm{H}]^{+}$; found: 359.9996 [M], $361.0069[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR (cm-1): v = 3129 (br), 3013, 2882, 1623, 1594, 1514, 1439, 1247, 1198, 1095, 953, 884, 823, 532.
Known compound. 217

- 7-(2-bromoethoxy)-3-(4-(2-bromoethoxy)phenyl)-4H-chromen-4-one (237), white solid (7 mg, $10 \%) ; \mathrm{mp}=179-180^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=170.2-172.4{ }^{\circ} \mathrm{C} ;{ }^{91} R_{f}=0.35\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.98: 2\right)$.

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{O}_{4}$
Molecular Weight: 468.14
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.23(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 7.93(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 7.50(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.2^{\prime}, 6^{\prime}-\underline{H}\right), 7.01(\mathrm{dd}, \mathrm{J}=2.3,8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 6.98\left(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{H}}\right), 6.87(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-$ H), $4.39\left(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}, 7\right.$ ' or $\left.9-\underline{C H}_{2}\right), 4.33\left(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}, 7\right.$ ' or $\left.9-\mathrm{CH}_{2}\right), 3.70(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}, 8$ ' or $10-\mathrm{CH}_{2}$), $3.66\left(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}, 8\right.$ ' or $\left.10-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=175.7$ (qC, 4-C-C), 162.3 (qC, 7-C), 158.1 (qC, 4' or 8a-C-C), 157.8 (qC, 4' or $8 \mathrm{a}-\underline{\mathrm{C}}), 152.2(\mathrm{CH}, 2-\underline{\mathrm{C}}), 130.2\left(2 \mathrm{CH}, 2^{\prime}, 6^{\prime}-\mathrm{C}\right.$), $128.1(\mathrm{CH}, 5-\underline{\mathrm{C}}), 124.9(\mathrm{qC}, 1$ or $3-\underline{\mathrm{C}})$, 124.8 ($\mathrm{qC}, 1$ or $3-\underline{\mathrm{C}}$), $118.9(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}})$, $114.8\left(2 \mathrm{CH}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{C}}\right), 114.6(\mathrm{CH}, 6-\underline{\mathrm{C}}), 101.0(\mathrm{CH}, 8-\underline{\mathrm{C}}), 68.2\left(\mathrm{CH}_{2}, 7\right.$ or $\left.9-\mathrm{CH}_{2}\right), 67.9$ $\left(\mathrm{CH}_{2}, 7\right.$ ' or $\left.9-\underline{C H}_{2}\right), 29.0\left(\mathrm{CH}_{2}, 8^{\prime}\right.$ or $\left.10-\underline{\mathrm{C}}_{2}\right), 28.3\left(\mathrm{CH}_{2}, 8\right.$ or $\left.10-\underline{\mathrm{C}}_{2}\right)$.
HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{19} \mathrm{H}_{16}{ }^{79} \mathrm{Br}^{81} \mathrm{BrO}_{4}$: 465.9415 [M], 468.9468 [$\left.\mathrm{M}+\mathrm{H}\right]^{+}$; found: 465.9414 [M], $468.9469[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR (cm ${ }^{-1}$): v = 3089, 2924, 2852, 1630, 1599, 1511, 1445, 1249, 1176, 1019, 899, 827, 539.
Known compound. ${ }^{91}$

7-(2-Bromoethoxy)-3-(4-methoxyphenyl)-4H-chromen-4-one (238)

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{BrO}_{4}$
Molecular Weight: 375.22
Prepared according to General procedure P using 27 ($0.15 \mathrm{mmol}, 40 \mathrm{mg}$), DMF (1 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}(375 \mu \mathrm{~mol}$, 52 mg) and 1,2-dibromoethane ($0.75 \mathrm{mmol}, 65 \mu \mathrm{~L}$), $80^{\circ} \mathrm{C}$ for 3 h ; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $100: 2$) to give 238 ($40 \mathrm{mg}, 71 \%$) as a white solid; $\mathrm{mp}=183-184{ }^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=174-175$ ${ }^{\circ} \mathrm{C} ;{ }^{215} R_{f}=0.4\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, 98:2).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.22(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 7.92(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 7.49(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.2^{\prime}, 6^{\prime}-\underline{H}\right), 7.00(\mathrm{dd} \mathrm{J}=2.3,8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{\mathrm{H}}), 6.97\left(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{H}}\right), 6.85(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{\mathrm{H}})$, $4.38\left(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}, 9-\mathrm{CH}_{2}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, 7 \mathrm{~T}^{\prime}-\underline{\mathrm{H}}_{3}\right), 3.69\left(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}, 10-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=175.7$ (qC, 4-C-C), 162.2 (qC, 7-C), 159.6 (qC, 4' or 8a-C), 157.7 (qC, 4' or $8 \mathrm{a}-\underline{\mathrm{C}}), 152.1(\mathrm{CH}, 2-\underline{\mathrm{C}}), 130.1\left(2 \mathrm{CH}, 2^{\prime}, 6^{\prime}-\underline{\mathrm{C}}\right), 128.0(\mathrm{CH}, 5-\underline{\mathrm{C}}), 124.9(\mathrm{qC}, 1$ or $3-\underline{\mathrm{C}}), 124.1(\mathrm{qC}, 1$ ' or 3-C$)$, $118.9(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 114.5(\mathrm{CH}, 6-\underline{\mathrm{C}}), 113.9\left(2 \mathrm{CH}, 3\right.$, $\left.5^{\prime}-\underline{-}\right), 101.0(\mathrm{CH}, 8-\underline{\mathrm{C}}), 68.2\left(\mathrm{CH}_{2}, 9-\underline{\mathrm{CH}_{2}}\right), 55.3\left(\mathrm{CH}_{3}\right.$, 7'- Ch_{3}), $28.3\left(\mathrm{CH}_{2}, 10-\underline{\mathrm{C}} \mathrm{H}_{2}\right)$.
HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{18} \mathrm{H}_{15}{ }^{79} \mathrm{BrO}_{4}$: 374.0154 [M], $375.0226[\mathrm{M}+\mathrm{H}]^{+}$; found: 374.0159 [M], $375.0231[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3088,3007,2833,1626,1600,1574,1512,1443,1291,1249,1175,1026,952,829,633$, 540.

Known compound. ${ }^{215}$

7-(2-Bromoethoxy)-3-(3-methoxyphenyl)-4H-chromen-4-one (239), and 7,7'-(ethane-1,2-diylbis(oxy))bis(3-(3-methoxyphenyl)-4H-chromen-4-one (240)

Title compounds were prepared according to General procedure P using 28 ($0.15 \mathrm{mmol}, 40 \mathrm{mg}$), DMF (1 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}(375 \mu \mathrm{~mol}, 52 \mathrm{mg})$ and 1,2-dibromoethane ($0.75 \mathrm{mmol}, 65 \mu \mathrm{~L}$), $80^{\circ} \mathrm{C}$ for 3 h ; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.100: 2\right)$ to give:

- 7-(2-bromoethoxy)-3-(3-methoxyphenyl)-4H-chromen-4-one (239), white solid (41 mg, 72\%); mp = $136-137{ }^{\circ} \mathrm{C} ; R_{f}=0.4\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.98: 2\right)$.

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{BrO}_{4}$ Molecular Weight: 375.22
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.22(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 7.34(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.5^{\prime}-\underline{H}\right), 7.15\left(\mathrm{t}, \mathrm{J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\underline{H}\right), 7.10(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 6$ '- $-\underline{H}$), 7.01 (dd, J = 2.3, $8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 6.92$ (dd, J = 2.2 Hz, 8.2 Hz, 1 H, 4'-브), $6.85(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H}), 4.37\left(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}, 9-\mathrm{C} \underline{H}_{2}\right), 3.84(\mathrm{~s}$, $\left.3 \mathrm{H}, 7{ }^{\prime}-\mathrm{CH}_{3}\right), 3.68\left(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}, 10-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=175.4$ (qC, 4- $\underline{\mathrm{C}}$), 162.3 (qC, 7- $\underline{\mathrm{C}}$), 159.5 (qC, 3' or 8a- $-\underline{\mathrm{C}}$), 157.7 (qC, 3' or
 6'-ㅡㅡ), 118.9 (qC, 4a- $\underline{\mathrm{C}}$), $114.6(\mathrm{CH}, 6-\underline{\mathrm{C}}), 114.4\left(\mathrm{CH}, 2^{\prime}-\underline{\mathrm{C}}\right), 114.0\left(\mathrm{CH}, 4{ }^{\prime}-\underline{\mathrm{C}}\right), 101.1(\mathrm{CH}, 8-\underline{\mathrm{C}}), 68.2\left(\mathrm{CH}_{2}\right.$, $\left.9-\underline{\mathrm{CH}_{2}}\right), 55.3\left(\mathrm{CH}_{3}, 7\right.$ '- $\underline{\mathrm{CH}_{3}}$), $28.3\left(\mathrm{CH}_{2}, 10-\underline{\mathrm{CH}_{2}}\right)$.
HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{18} \mathrm{H}_{15}{ }^{79} \mathrm{BrO}_{4}$: 374.0154 [M], $375.0226[\mathrm{M}+\mathrm{H}]^{+}$; found: 374.0159 [M], $375.0232[\mathrm{M}+\mathrm{H}]^{+}$.

FT-IR (cm^{-1}): $\mathbf{v}=3077$, 2931, 2833, 1625, 1567, 1443, 1381, 1285, 1258, 1198, 1037, 828, 784, 700, 573.
Previously unreported.

- 7,7'-(ethane-1,2-diylbis(oxy))bis(3-(3-methoxyphenyl)-4H-chromen-4-one (240), white solid (10 $\mathrm{mg}, 11 \%) ; \mathrm{mp}=250-251^{\circ} \mathrm{C} ; R_{f}=0.1\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, 98:2).

Chemical Formula: $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{O}_{8}$ Molecular Weight: 562.57
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.26(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}, 5-\underline{\mathrm{H}}), 7.98(\mathrm{~s}, 2 \mathrm{H}, 2-\underline{\mathrm{H}}), 7.35(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}$, $5^{\prime}-\underline{H}$), 7.16 (dd, J = 1.6, 2.4 Hz, $2 \mathrm{H}, 2^{\prime}-\underline{H}$), $7.12\left(\mathrm{dt}, \mathrm{J}=1.2,7.6 \mathrm{~Hz}, 2 \mathrm{H}, 6^{\prime}-\underline{H}\right.$), 7.07 (dd, J = 2.3, $8.9 \mathrm{~Hz}, 2$ H, 6-브), 6.97 - 6.91 (m, $4 \mathrm{H}, 4$ ', $8-\underline{H}$), 4.50 (s, $4 \mathrm{H}, 9-\underline{C H}_{2}$), 3.86 (s, $6 \mathrm{H}, 7^{\prime}-\mathrm{CH}_{3}$).
 qC, 3 ' or $8 \mathrm{a}-\underline{\mathrm{C}}$), 152.8 (2 CH, 2- $\underline{\mathrm{C}}$), 139.0 (2 qC, $1^{\prime}-\underline{\mathrm{C}}$), 133.1 (2 qC, $3-\underline{C}$), 129.5 (2 CH, $5^{\prime}-\underline{\mathrm{C}}$), 128.1 (2 CH,
$5-\underline{\mathrm{C}})$, 125.2 ($2 \mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}$), $121.2\left(2 \mathrm{CH}, 6^{\prime}-\underline{\mathrm{C}}\right), 114.7(2 \mathrm{CH}, 6-\underline{\mathrm{C}}), 114.5\left(2 \mathrm{CH}, 2^{\prime}-\underline{\mathrm{C}}\right), 114.1\left(2 \mathrm{CH}, 4^{\prime}-\underline{\mathrm{C}}\right)$, $101.1(2 \mathrm{CH}, 8-\underline{C}), 66.7\left(2 \mathrm{CH}_{2}, 9-\underline{\mathrm{C}_{2}}\right), 55.3\left(2 \mathrm{CH}_{3}, 7{ }^{\prime}-\underline{C H}_{3}\right)$.
HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{O}_{8}$: 562.1628 [M], $563.1700[\mathrm{M}+\mathrm{H}]+$; found: 562.1622 [M], $563.1697[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3071,2960,2836,1620,1577,1436,1247,1190,1042,823,783,692$.
Previously unreported.

7-(2-Bromoethoxy)-3-(2-methoxyphenyl)-4H-chromen-4-one (241), and 7,7'-(ethane-1,2-

 diylbis(oxy))bis(3-(2-methoxyphenyl)-4H-chromen-4-one (242)Title compounds were prepared according to General procedure P using 29 ($0.15 \mathrm{mmol}, 40 \mathrm{mg}$), DMF (1 $\mathrm{mL}), \mathrm{K}_{2} \mathrm{CO}_{3}(375 \mu \mathrm{~mol}, 52 \mathrm{mg})$ and 1,2-dibromoethane ($0.75 \mathrm{mmol}, 65 \mu \mathrm{~L}$), $80{ }^{\circ} \mathrm{C}$ for 3 h ; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, 100:2) to give:

- 7-(2-bromoethoxy)-3-(2-methoxyphenyl)-4H-chromen-4-one (241), white solid (35 $\mathrm{mg}, 62 \%$); $\mathrm{mp}=$ $138-139{ }^{\circ} \mathrm{C} ; R_{f}=0.35\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.98: 2\right)$.

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{BrO}_{4}$ Molecular Weight: 375.22
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.21$ (d, J = $8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}$), 7.91 (s, $1 \mathrm{H}, 2-\underline{\mathrm{H}}$), 7.35 (td, J = 1.6, 7.9 Hz , $\left.1 \mathrm{H}, 4^{\prime}-\underline{H}\right), 7.32$ (dd, J = 1.6, $7.4 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\underline{H}$), $7.05-6.95\left(\mathrm{~m}, 3 \mathrm{H}, 3^{\prime}, 5^{\prime}, 6-\underline{H}\right), 6.86(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-$ H), $4.38\left(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}, 9-\underline{C H}_{2}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, 7 \mathrm{~T}^{-} \underline{\mathrm{H}}_{3}\right), 3.69\left(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}, 10-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=175.4$ (qC, 4-C-C), 162.2 (qC, 7-C), 157.8 (qC, 2' or $8 \mathrm{a}-\mathrm{C}$), 157.5 (qC, 2' or
 (qC, 1' or $3-\underline{\mathrm{C}}), 120.5\left(\mathrm{CH}, 5^{\prime}-\underline{\mathrm{C}}\right)$, $118.9(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 114.4(\mathrm{CH}, 6-\underline{\mathrm{C}}), 111.2\left(\mathrm{CH}, 3^{\prime}-\underline{\mathrm{C}}\right), 101.1(\mathrm{CH}, 8-\underline{\mathrm{C}})$, $68.1\left(\mathrm{CH}_{2}, 9-\underline{\mathrm{C}} \mathrm{H}_{2}\right), 55.7\left(\mathrm{CH}_{3}, 7{ }^{\prime}-\underline{\mathrm{C}_{3}}\right)_{3}, 28.4\left(\mathrm{CH}_{2}, 10-\underline{\mathrm{CH}_{2}}\right)$.
HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{18} \mathrm{H}_{15}{ }^{79} \mathrm{BrO}_{4}$: 374.0154 [M], $375.0226[\mathrm{M}+\mathrm{H}]^{+}$; found: 374.0169 [M], $375.0245[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR (cm-1): v = 3073, 2980, 2837, 1627, 1604, 1493, 1442, 1244, 1201, 1020, 961, 839, 783, 547.
Previously unreported.

- 7,7'-(ethane-1,2-diylbis(oxy))bis(3-(2-methoxyphenyl)-4H-chromen-4-one (242), white solid (4 mg, $4 \%) ; \mathrm{mp}=270-271^{\circ} \mathrm{C} ; R_{f}=0.1\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.98: 2\right)$.

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.24(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}, 5-\underline{\mathrm{H}}), 7.93(\mathrm{~s}, 2 \mathrm{H}, 2-\underline{\mathrm{H}}), 7.36(\mathrm{dt}, \mathrm{J}=1.5,7.8 \mathrm{~Hz}$, $\left.2 \mathrm{H}, 4^{\prime}-\underline{\mathrm{H}}\right), 7.33$ (dd, J = 1.3, $7.4 \mathrm{~Hz}, 2 \mathrm{H}, 6$ '- -H), $7.08-6.96$ (m, $6 \mathrm{H}, 3^{\prime}, 5^{\prime}, 6-\underline{H}$), $6.95(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 2 \mathrm{H}, 8-$ H), 4.49 (s, $\left.4 \mathrm{H}, 9-\mathrm{CH}_{2}\right), 3.81\left(\mathrm{~s}, 6 \mathrm{H}, 7{ }^{\prime}-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=175.4$ (2 qC, 4-C-C), 162.6 ($2 \mathrm{qC}, 7-\underline{\mathrm{C}}$), 157.9 ($2 \mathrm{qC}, 2$ or $8 \mathrm{a}-\underline{\mathrm{C}}$), 157.5 (2
 1^{\prime} or $3-\underline{C}$), $120.8(2 \mathrm{qC}, 1$ ' or $3-\underline{\mathrm{C}})$, $120.5\left(2 \mathrm{CH}, 5{ }^{\prime}-\underline{\mathrm{C}}\right), 118.9(2 \mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}})$, $114.4(2 \mathrm{CH}, 6-\underline{\mathrm{C}}), 111.1(2 \mathrm{CH}$, $3 '-\underline{C}), 101.1(2 \mathrm{CH}, 8-\underline{\mathrm{C}}), 66.7\left(2 \mathrm{CH}_{2}, 9-\underline{\mathrm{C}}_{2}\right), 55.8\left(2 \mathrm{CH}_{3}, 7{ }^{\prime}-\underline{\mathrm{C}}_{3}\right)$.
HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{O}_{8}$: 562.1628 [M], $563.1700[\mathrm{M}+\mathrm{H}]^{+}$; found: 562.1629 [M], $563.1701[\mathrm{M}+\mathrm{H}]^{+}$.

FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3078,2980,2935,1640,1604,1491,1438,1251,1194,1025,945,826,753,550$.
Previously unreported.

7-(2-Bromoethoxy)-3-phenyl-4H-chromen-4-one (243)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{BrO}_{3}$
Molecular Weight: 345.19
Prepared according to General procedure P using $30(0.15 \mathrm{mmol}, 36 \mathrm{mg})$, DMF (1 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}(375 \mu \mathrm{~mol}$, 52 mg) and 1,2-dibromoethane ($0.75 \mathrm{mmol}, 65 \mu \mathrm{~L}$), $80^{\circ} \mathrm{C}$ for 3 h ; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.100: 1\right)$ to give 243 ($46 \mathrm{mg}, 88 \%$) as a white solid; $\mathrm{mp}=202-203{ }^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=200-201$ ${ }^{\circ} \mathrm{C} ;{ }^{215} R_{f}=0.5\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, 98:2).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.24(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 7.95(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{H}), 7.56$ (app d, J=7.0 Hz, 2 H, 2', $6^{\prime}-\underline{H}$), 7.44 (app t, J = $7.2 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{H}$), 7.38 (app t, J = $7.2 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\underline{H}$), 7.02 (dd, J = 2.3, 8.9 $\mathrm{Hz}, 1 \mathrm{H}, 6-\underline{H}), 6.87(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H}), 4.39\left(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}, 9-\underline{C H}_{2}\right), 3.69(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}, 10-$ CH_{2}).
 (qC, 1'- $\underline{\mathrm{C}}$), 128.9 (2 CH, 2', $6^{\prime}-\underline{\mathrm{C}}$), $128.5\left(2 \mathrm{CH}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{C}}\right), 128.19\left(\mathrm{CH}, 4^{\prime}-\underline{\mathrm{C}}\right), 128.13(\mathrm{CH}, 5-\underline{\mathrm{C}}), 125.3(\mathrm{qC}, 3-$ $\underline{\mathrm{C}}), 118.9(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 114.6(\mathrm{CH}, 6-\underline{\mathrm{C}}), 101.1(\mathrm{CH}, 8-\underline{\mathrm{C}}), 68.2\left(\mathrm{CH}_{2}, 9-\underline{\mathrm{CH}_{2}}\right), 28.3\left(\mathrm{CH}_{2}, 10-\underline{\mathrm{CH}_{2}}\right)$.

HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{17} \mathrm{H}_{13}{ }^{79} \mathrm{BrO}_{3}$: 344.0048 [M], 345.0121 [$\left.\mathrm{M}+\mathrm{H}\right]^{+}$; found: 344.0049 [M], $345.0123[\mathrm{M}+\mathrm{H}]^{+}$.

FT-IR (cm$\left.{ }^{-1}\right): ~ v=3057,2980,2887,1627,1598,1493,1445,1378,1254,1007,830,805,694,529$.
Known compound. ${ }^{215}$

7-(2-Bromoethoxy)-3-(p-tolyl)-4H-chromen-4-one (244), and 7,7'-(ethane-1,2-diylbis(oxy))bis(3-(p-tolyl)-4H-chromen-4-one) (245)

Title compounds were prepared according to General procedure P using 31 ($0.15 \mathrm{mmol}, 38 \mathrm{mg}$), DMF (1 $\mathrm{mL}), \mathrm{K}_{2} \mathrm{CO}_{3}(375 \mu \mathrm{~mol}, 52 \mathrm{mg})$ and 1,2-dibromoethane ($0.75 \mathrm{mmol}, 65 \mu \mathrm{~L}$), $80^{\circ} \mathrm{C}$ for 3 h ; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.100: 1\right)$ to give:

- 7-(2-bromoethoxy)-3-(p-tolyl)-4H-chromen-4-one (244), white solid (36 mg, 66\%); mp = 202-203 ${ }^{\circ} \mathrm{C} ; R_{f}=0.45\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, 98:2 $)$.

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{BrO}_{3}$ Molecular Weight: 359.22
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.23(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 7.45(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.2^{\prime}, 6^{\prime}-\underline{H}\right), 7.25\left(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{H}\right), 7.01(\mathrm{dd}, \mathrm{J}=2.0,8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 6.86(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, 8-$ H), $4.39\left(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}, 9-\mathrm{CH}_{2}\right), 3.69\left(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}, 10-\mathrm{CH}_{2}\right), 2.39\left(\mathrm{~s}, 3 \mathrm{H}, 7 \mathrm{~T}^{\prime}-\mathrm{CH}_{3}\right)$.

 $118.9(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 114.5(\mathrm{CH}, 6-\underline{\mathrm{C}}), 101.0(\mathrm{CH}, 8-\underline{\mathrm{C}}), 68.2\left(\mathrm{CH}_{2}, 9-\underline{\mathrm{CH}_{2}}\right), 28.3\left(\mathrm{CH}_{2}, 10-\underline{\mathrm{CH}_{2}}\right), 21.2\left(\mathrm{CH}_{3}, 7\right.$ '$\left.\mathrm{C}_{3}\right)$.
HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{18} \mathrm{H}_{15}{ }^{79} \mathrm{BrO}_{3}$: 358.0205 [M], 359.0277 [M+H]+; found: 358.0209 [M], $359.0282[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3087,2980,2917,1626,1599,1440,1378,1254,1199,1044,1017,952,818,693,527$. Previously unreported.

- 7,7'-(ethane-1,2-diylbis(oxy))bis(3-(p-tolyl)-4H-chromen-4-one) (245), white solid (10 $\mathrm{mg}, \mathbf{1 2 \%}$); mp $=269-271^{\circ} \mathrm{C} ; R_{f}=0.25\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, 98:2).

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.25(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}, 5-\underline{\mathrm{H}}), 7.95(\mathrm{~s}, 2 \mathrm{H}, 2-\underline{\mathrm{H}}), 7.46(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 4 \mathrm{H}$, $\left.2^{\prime}, 6^{\prime}-\underline{H}\right), 7.25\left(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 4 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{H}\right), 7.06(\mathrm{dd}, \mathrm{J}=2.4,8.9 \mathrm{~Hz}, 2 \mathrm{H}, 6-\underline{H}), 6.94(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}, 8-$ H), $4.50\left(\mathrm{~s}, 4 \mathrm{H}, 9-\mathrm{CH}_{2}\right), 2.40\left(\mathrm{~s}, 6 \mathrm{H}, 7{ }^{\prime}-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=175.7$ ($2 \mathrm{qC}, 4-\underline{\mathrm{C}}$), 162.6 ($2 \mathrm{qC}, 7-\underline{\mathrm{C}}$), 157.8 ($2 \mathrm{qC}, 8 \mathrm{a}-\mathrm{C}$), 152.4 ($2 \mathrm{CH}, 2-$ C- $)$, 138.0 ($2 \mathrm{qC}, 4^{\prime}-\underline{\mathrm{C}}$), $129.2\left(4 \mathrm{CH}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{C}}\right)$, $128.9\left(2 \mathrm{qC}, 1^{\prime}-\underline{\mathrm{C}}\right)$, $128.8\left(4 \mathrm{CH}, 2^{\prime}, 6^{\prime}-\underline{\mathrm{C}}\right), 128.1(2 \mathrm{CH}, 5-\underline{\mathrm{C}})$, 125.3 (2 qC, 3-ㅡㅡ), 118.9 (2 qC, 4a- $-\underline{C}), 114.6(2 \mathrm{CH}, 6-\underline{\mathrm{C}}), 101.0(2 \mathrm{CH}, 8-\underline{\mathrm{C}}), 66.7\left(2 \mathrm{CH}_{2}, 9-\underline{\mathrm{C}} \mathrm{H}_{2}\right)$, 21.2 (2 $\mathrm{CH}_{3}, 7$ ' $-\mathrm{CH}_{3}$).
HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{O}_{6}$: 530.1729 [M], 531.1802 [M+H]+; found: 530.1730 [M], $531.1803[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): v=3095,2916,2851,1620,1598,1440,1249,1197,1046,883,819,532$.
Previously unreported.

7-(2-Bromoethoxy)-3-(4-chlorophenyl)-4H-chromen-4-one (246)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{BrClO}_{3}$ Molecular Weight: 379.63

Prepared according to General procedure P using 32 ($0.15 \mathrm{mmol}, 41 \mathrm{mg}$), DMF (1 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}(375 \mu \mathrm{~mol}$, 52 mg) and 1,2-dibromoethane ($0.75 \mathrm{mmol}, 65 \mu \mathrm{~L}$), $80^{\circ} \mathrm{C}$ for 3 h ; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /acetone, $100: 1$) to give $246(43 \mathrm{mg}, 75 \%)$ as a white solid; $\mathrm{mp}=194-195{ }^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=188-189$ ${ }^{\circ} \mathrm{C} ;{ }^{215} R_{f}=0.55\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, 98:2).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.22(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 7.95(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 7.51(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}$, $3^{\prime}, 5^{\prime}-\underline{H}$), $7.40\left(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{H}\right), 7.03(\mathrm{dd}, \mathrm{J}=2.3,8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 6.87(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-$ H), $4.40\left(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}, 9-\mathrm{CH}_{2}\right), 3.70\left(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}, 10-\mathrm{CH}_{2}\right)$.

 $118.8(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}})$, $114.8(\mathrm{CH}, 6-\underline{\mathrm{C}}), 101.1(\mathrm{CH}, 8-\underline{\mathrm{C}}), 68.2\left(\mathrm{CH}_{2}, 9-\underline{\mathrm{C}} \mathrm{H}_{2}\right), 28.2\left(\mathrm{CH}_{2}, 10-\underline{\mathrm{C}} \mathrm{H}_{2}\right)$.
HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{17} \mathrm{H}_{12}{ }^{79} \mathrm{Br}^{35} \mathrm{ClO}_{3}$: 377.9658 [M], 378.9731 [$\left.\mathrm{M}+\mathrm{H}\right]^{+}$; found: 377.9657 [M], $378.9732[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): v=3071,2950,1637,1607,1490,1441,1371,1250,1198,1045,884,830,531$.
Known compound. ${ }^{215}$

7-(2-Bromoethoxy)-3-(4-nitrophenyl)-4H-chromen-4-one (247)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{BrNO}_{5}$ Molecular Weight: 390.19

Prepared according to General procedure P using 33 ($0.15 \mathrm{mmol}, 42 \mathrm{mg}$), DMF (1 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}(375 \mu \mathrm{~mol}$, 52 mg) and 1,2-dibromoethane ($0.75 \mathrm{mmol}, 65 \mu \mathrm{~L}$), $80^{\circ} \mathrm{C}$ for 3 h ; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.100: 1\right)$ to give $247(36 \mathrm{mg}, 61 \%)$ as a yellow solid; $\mathrm{mp}=222-223{ }^{\circ} \mathrm{C} ; R_{f}=0.4$ ($\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ acetone, 98:2).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.30\left(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 3\right.$ ', $5^{\prime}-\underline{\mathrm{H}}$), $8.24(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}$), 8.06 (s, 1 $\mathrm{H}, 2-\underline{H}), 7.78\left(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{H}\right), 7.06(\mathrm{dd}, \mathrm{J}=2.3,8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 6.91(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-$ H), $4.41\left(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}, 9-\mathrm{CH}_{2}\right), 3.71\left(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}, 10-\mathrm{CH}_{2}\right)$.
 (qC, 1' or 4'- $-\underline{C}$), 138.7 ($q C, 1^{\prime}$ or $4^{\prime}-\underline{-}$), $129.6\left(2 \mathrm{CH}, 2^{\prime}, 6^{\prime}-\underline{C}\right), 128.1(\mathrm{CH}, 5-\underline{C}), 123.7\left(2 \mathrm{CH}, 3^{\prime}, 5^{\prime}-\underline{-}\right), 123.5$

HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{17} \mathrm{H}_{12}{ }^{79} \mathrm{BrNO}_{5}$: 388.9899 [M], 389.9972 [M+H]+; found: 388.9896 [M], $389.9970[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR (cm^{-1}): $v=3071,2927,1620,1594,1515,1438,1342,1256,1200,1044,834,785,690,524$.
Previously unreported.

Ethyl 2-(4-(7-(2-bromoethoxy)-4-oxo-4H-chromen-3-yl)phenyl)acetate (248)

Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{BrO}_{5}$ Molecular Weight: 431.28

Prepared according to General procedure P using $35(75 \mu \mathrm{~mol}, 24 \mathrm{mg})$, DMF (1 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}(187 \mu \mathrm{~mol}, 26$ mg) and 1,2-dibromoethane ($375 \mu \mathrm{~mol}, 33 \mu \mathrm{~L}$), $80^{\circ} \mathrm{C}$ for 3 h ; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.100: 2\right)$ to give $248(25 \mathrm{mg}, 78 \%)$ as a white solid; $\mathrm{mp}=151-152{ }^{\circ} \mathrm{C} ; R_{f}=0.36$ ($\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ acetone, 98:2).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.23(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 7.94(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 7.52(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.3^{\prime}, 5^{\prime}-\underline{H}\right), 7.36\left(d, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{H}\right), 7.02(\mathrm{dd}, \mathrm{J}=2.3,8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 6.87(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-$ $\underline{H}), 4.39\left(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}, 9-\underline{C H}_{2}\right), 4.16\left(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, 9{ }^{\prime}-\mathrm{CH}_{2}\right), 3.69\left(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}, 10-\underline{C H}_{2}\right), 3.65$ (s, $2 \mathrm{H}, 7$ ' $-\mathrm{CH}_{2}$), $1.26\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, 10^{\prime}-\mathrm{CH}_{3}\right.$).
 ($\mathrm{CH}, 2-\underline{\mathrm{C}}$), 134.1 (qC, 1^{\prime} or $4^{\prime}-\underline{\mathrm{C}}$), 130.6 ($\mathrm{qC}, 1^{\prime}$ or $4^{\prime}-\underline{\mathrm{C}}$), 129.4 ($2 \mathrm{CH}, 2^{\prime}, 6^{\prime}-\underline{\mathrm{C}}$), 129.1 ($2 \mathrm{CH}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{C}}$), 128.1 $(\mathrm{CH}, 5-\underline{\mathrm{C}}), 125.0(\mathrm{qC}, 3-\underline{\mathrm{C}}), 118.9(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 114.7(\mathrm{CH}, 6-\underline{\mathrm{C}}), 101.1(\mathrm{CH}, 8-\underline{\mathrm{C}}), 68.2\left(\mathrm{CH}_{2}, 9-\underline{\mathrm{CH}} \mathrm{H}_{2}\right), 60.9$ $\left(\mathrm{CH}_{2}, 9^{\prime}-\underline{\mathrm{C}}_{2}\right), 41.2\left(\mathrm{CH}_{2}, 7{ }^{\prime}-\underline{\mathrm{C}} \mathrm{H}_{2}\right), 28.3\left(\mathrm{CH}_{2}, 10-\underline{\mathrm{C}} \mathrm{H}_{2}\right), 14.2\left(\mathrm{CH}_{3}, 10{ }^{\prime}-\underline{\mathrm{C}}_{3}\right)$.

HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{21} \mathrm{H}_{19}{ }^{79} \mathrm{BrO}_{5}$: 430.0416 [M], 431.0489 [M+H]+; found: 430.0425 [M], $431.0501[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3086,2978,2929,1739,1628,1598,1443,1262,1161,827,781,527$.
Previously unreported.

7-(2-Bromoethoxy)-5-hydroxy-3-(4-methoxyphenyl)-4H-chromen-4-one (249), and 5,7-bis(2-bromoethoxy)-3-(4-methoxyphenyl)-4H-chromen-4-one (250)

Title compounds were prepared according to General procedure P using 71 ($150 \mu \mathrm{~mol}, 43 \mathrm{mg}$), DMF (1 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}\left(375 \mu \mathrm{~mol}, 52 \mathrm{mg}\right.$) and 1,2-dibromoethane ($750 \mu \mathrm{~mol}, 65 \mu \mathrm{~L}$), $80^{\circ} \mathrm{C}$ for 3 h ; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.100: 2\right)$ to give:

- 7-(2-bromoethoxy)-5-hydroxy-3-(4-methoxyphenyl)-4H-chromen-4-one (249), white solid (20 mg, $34 \%) ; m p=172-173{ }^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=157.1-159.2{ }^{\circ} \mathrm{C} ;{ }^{91} R_{f}=0.6\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, 98:2$)$.

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{BrO}_{5}$ Molecular Weight: 391.22
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.87(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{OH}), 7.87(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 7.45\left(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{\mathrm{H}}\right)$, 6.98 (d, J = $\left.8.6 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{H}\right), 6.41(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H}), 6.37(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 4.34(\mathrm{t}, \mathrm{J}=$ $6.1 \mathrm{~Hz}, 2 \mathrm{H}, 9-\underline{\mathrm{H}}_{2}$), 3.84 (s, $3 \mathrm{H}, 7{ }^{\prime}-\mathrm{CH}_{3}$), 3.66 (t, J = $6.1 \mathrm{~Hz}, 2 \mathrm{H}, 10-\mathrm{CH}_{2}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=180.8(\mathrm{qC}, 4-\underline{\mathrm{C}}), 163.8(\mathrm{qC}, 5$ or $7-\underline{\mathrm{C}}$), 162.8 (qC, 5 or $7-\underline{\mathrm{C}}$), 159.8 (qC, 4 ' or $8 \mathrm{a}-\underline{\mathrm{C}}$), 157.8 ($\mathrm{qC}, 4^{\prime}$ or $8 \mathrm{a}-\underline{\mathrm{C}}$), $152.8(\mathrm{CH}, 2-\underline{\mathrm{C}})$, $130.1\left(2 \mathrm{CH}, 2^{\prime}, 6^{\prime}-\underline{\mathrm{C}}\right)$, 123.7 ($\mathrm{qC}, 1^{\prime}$ or $3-\underline{\mathrm{C}}$), 122.8 (qC, 1^{\prime} or $3-\underline{C}$), $114.1\left(2 \mathrm{CH}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{C}}\right)$, $106.6(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 98.5(\mathrm{CH}, 6-\underline{\mathrm{C}}), 93.0(\mathrm{CH}, 8-\underline{\mathrm{C}}), 68.1\left(\mathrm{CH}_{2}, 9-\underline{\mathrm{CH}_{2}}\right), 55.3$ $\left(\mathrm{CH}_{3}, 7-\mathrm{CH}_{3}\right), 28.3\left(\mathrm{CH}_{2}, 10-\mathrm{CH}_{2}\right)$.
HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{18} \mathrm{H}_{15}{ }^{79} \mathrm{BrO}_{5}$: 390.0103 [M], 391.0176 [$\left.\mathrm{M}+\mathrm{H}\right]^{+}$; found: 390.0102 [M], $391.0176[\mathrm{M}+\mathrm{H}]^{+}$.

FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3122,3013,2957,2837,1661,1606,1569,1513,1440,1284,1165,1028,834,559$.
Known compound. ${ }^{91}$

- 5,7-bis(2-bromoethoxy)-3-(4-methoxyphenyl)-4H-chromen-4-one (250), white solid (19 mg, 25\%); $\mathrm{mp}=135-137^{\circ} \mathrm{C} ; R_{f}=0.4\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.98: 2\right)$.

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{O}_{5}$ Molecular Weight: 498.17
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.75(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 7.43\left(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6{ }^{\prime}-\underline{\mathrm{H}}\right), 6.94(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2$ H, $\left.3^{\prime}, 5^{\prime}-\underline{H}\right), 6.47(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H}), 6.43(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 4.35(\operatorname{app} \mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 4 \mathrm{H}, 9,11-$ CH_{2}), $3.82\left(\mathrm{~s}, 3 \mathrm{H}, 7\right.$ '- \underline{H}_{3}), $3.73\left(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, 10\right.$ or $12-\mathrm{CH}_{2}$), $3.67\left(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}, 10\right.$ or $12-\mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=175.1$ (qC, 4-C-), 162.0 (qC, 7-C-C), 159.8 (qC, 4' or 5-C), 159.7 (qC, 4' or
 $\left.\mathrm{CH}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{C}}\right)$, $110.8(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}})$, $99.0(\mathrm{CH}, 6-\underline{\mathrm{C}})$, $94.4(\mathrm{CH}, 8-\underline{\mathrm{C}}), 69.7\left(\mathrm{CH}_{2}, 9\right.$ or $\left.11-\underline{\mathrm{C}} \mathrm{H}_{2}\right), 68.1\left(\mathrm{CH}_{2}, 9\right.$ or 11$\left.\underline{\mathrm{C}}_{2}\right), 55.3\left(\mathrm{CH}_{3}, 7\right.$ '- $\left.-\mathrm{CH}_{3}\right), 28.3\left(\mathrm{CH}_{2}, 10\right.$ or $\left.12-\underline{\mathrm{C}} \mathrm{H}_{2}\right), 28.2\left(\mathrm{CH}_{2}, 10\right.$ or $\left.12-\underline{\mathrm{CH}_{2}}\right)$.
HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{20} \mathrm{H}_{18}{ }^{79} \mathrm{Br}_{2} \mathrm{O}_{5}$: 495.9521 [M], 496.9594 [M+H]+; found: 495.9521 [M], $496.9592\left[\mathrm{M}+\mathrm{H}^{+}\right.$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3077,2920,2828,1636,1607,1567,1510,1432,1290,1242,1160,1073,824,529$.
Previously unreported.

3-(4-Azidophenyl)-7-(2-bromoethoxy)-4H-chromen-4-one (251)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{BrN}_{3} \mathrm{O}_{3}$ Molecular Weight: 386.21

Prepared according to General procedure P using 128 ($0.15 \mathrm{mmol}, 40 \mathrm{mg}$), DMF (1 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}(375 \mu \mathrm{~mol}$, 52 mg) and 1,2-dibromoethane ($0.75 \mathrm{mmol}, 65 \mu \mathrm{~L}$), $80^{\circ} \mathrm{C}$ for 3 h ; purified by flash chromatography ($\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ acetone, $100: 1$) to give 251 ($43 \mathrm{mg}, 74 \%$) as a pale yellow solid; $\mathrm{mp}=170-171{ }^{\circ} \mathrm{C}$ (decomp.); R_{f} $=0.66\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, 98:2).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.22(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 7.95(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}), 7.56(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}$, $2^{\prime}, 6^{\prime}-\underline{H}$), 7.09 (d, J = $8.5 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{H}$), 7.02 ($\mathrm{dd}, \mathrm{J}=2.3,8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}$), $6.87(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-$ H), $4.39\left(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}, 9-\mathrm{CH}_{2}\right), 3.69\left(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}, 10-\mathrm{CH}_{2}\right)$.

 $118.8(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}})$, $114.7(\mathrm{CH}, 6-\underline{\mathrm{C}})$, $101.1(\mathrm{CH}, 8-\underline{\mathrm{C}})$, $68.2\left(\mathrm{CH}_{2}, 9-\underline{\mathrm{C}} \mathrm{H}_{2}\right), 28.3\left(\mathrm{CH}_{2}, 10-\underline{\mathrm{C}} \mathrm{H}_{2}\right)$.
HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{17} \mathrm{H}_{12}{ }^{79} \mathrm{BrN}_{3} \mathrm{O}_{3}$: 385.0062 [M], 386.0135 [M+H]+; found: 385.0063 [M], $386.0135[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR (cm^{-1}): $\mathrm{v}=3067,2944,2119,1619,1597,1505,1441,1254,1200,1045,831,535$.
Previously unreported.

2-(2-Bromoethyl)-1,2-thiazetidine 1,1-dioxide (258), and 2-ethenyl-1,2-thiazetidine 1,1-dioxide (259) Into a Schlenk flask at $0{ }^{\circ} \mathrm{C}$ were added $224(0.5 \mathrm{mmol}, 54 \mathrm{mg})$, TBAB ($0.05 \mathrm{mmol}, 16 \mathrm{mg}$) and KOH (powder, $1.25 \mathrm{mmol}, 70 \mathrm{mg}$). The mixture was placed under vacuum and backfilled with N_{2} three times. The cap was changed with a septum stopper under a positive pressure of N_{2}, and dry THF (2 mL) was added. 1,2-Dibromoethane ($1.75 \mathrm{mmol}, 150 \mu \mathrm{~L}$) was added dropwise at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 5 min , and after at room temperature for $5 \mathrm{~h} .{ }^{216}$ The reaction was filtered, washed with

DCM (25 mL), and the filtrate concentrated under vacuum to dryness. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, 200:1) to give:

- 2-(2-bromoethyl)-1,2-thiazetidine 1,1-dioxide (258), colorless oil (58 mg, 54%); $R_{f}=0.4$ ($\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ acetone, 98:2).

Chemical Formula: $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{BrNO}_{2} \mathrm{~S}$
Molecular Weight: 214.0770
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.15\left(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 1-\mathrm{CH}_{2}\right), 3.55-3.44\left(\mathrm{~m}, 4 \mathrm{H}, 3,4-\underline{\mathrm{H}}_{2}\right), 3.36(\mathrm{t}, \mathrm{J}=$ $6.7 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{CH}_{2}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=58.0\left(\mathrm{CH}_{2}, 1-\mathrm{CH}_{2}\right), 48.2\left(\mathrm{CH}_{2}, 3-\underline{\mathrm{C}} \mathrm{H}_{2}\right), 36.7\left(\mathrm{CH}_{2}, 4-\underline{\mathrm{C}} \mathrm{H}_{2}\right), 28.9\left(\mathrm{CH}_{2}\right.$, 2$\mathrm{CH}_{2}$).
FT-IR (cm^{-1}): $v=3043,2966,2897,1306,1140,758,663,566$.
Known compound, modified method, no data previously reported.

- 2-ethenyl-1,2-thiazetidine 1,1-dioxide (259), white solid ($1 \mathrm{mg}, 1 \%$); $\mathrm{mp}=80-81^{\circ} \mathrm{C} ; R_{f}=0.42$ ($\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ acetone, 98:2).

Chemical Formula: $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{NO}_{2} \mathrm{~S}$
Molecular Weight: 133.17
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.47$ (dd, $\mathrm{J}=8.9,15.5 \mathrm{~Hz}, 1 \mathrm{H}, 3-\underline{\mathrm{H}}$), 4.43 (dd, J=1.1, 8.9 Hz, $1 \mathrm{H}, 4-\underline{\mathrm{H}}$), 4.31 (dd, J = 1.1, $15.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-\underline{H}$), $4.21\left(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}, 1-\mathrm{CH}_{2}\right), 3.48\left(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=129.3(\mathrm{CH}, 3-\underline{\mathrm{C}})$, $93.8\left(\mathrm{CH}_{2}, 4-\underline{\mathrm{CH}_{2}}\right), 57.6\left(\mathrm{CH}_{2}, 1-\underline{\mathrm{CH}_{2}}\right), 33.0\left(\mathrm{CH}_{2}, 2-\underline{\mathrm{C}} \mathrm{H}_{2}\right)$. HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{NO}_{2} \mathrm{~S}$: 133.0197 [M], 134.0270 [$\left.\mathrm{M}+\mathrm{H}\right]^{+}$; found: 133.0193 [M], $134.0267[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR (cm ${ }^{-1}$): v = 3047, 2979, 2903, 1660, 1620, 1573, 1309, 1265, 1195, 1145,969, 855, 767, 645, 532. Known compound, modified method, no data previously reported. ${ }^{287}$

General procedure Q: To a solution of 224 (1.0-2.0 equiv.) in dry DMF or THF, the corresponding 7-(2-bromoethoxy)-isoflavone (1.0 equiv.) and tetrabutylammonium bromide (TBAB, 0.1 equiv.) were added. The mixture was cooled to $0^{\circ} \mathrm{C}$, and KOH (1.1 equiv.) was added in portions. The resulting mixture was stirred for 2-15 h at room temperature and after for $16-20 \mathrm{~h}$ at $45-80^{\circ} \mathrm{C} .{ }^{216}$ The volatiles were removed and the crude was purified by flash chromatography to give the desired product.

General procedure R: To a solution of the corresponding isoflavone (1.0 equiv.) in dry DMF or acetone or DMSO, and under $\mathrm{N}_{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}$ (1.3 equiv.) and 2-(2-bromoethyl)-1,2-thiazetidine 1,1-dioxide 258 (1.0 equiv.) were added, and the mixture was stirred and heated at $70-80^{\circ} \mathrm{C}$ for $17-24 \mathrm{~h}$. Workup (1): water was added (10 mL), the mixture was stirred for $10-30 \mathrm{~min}$ and after was filtered to get a white solid as crude product; workup (2): the reaction mixture was filtered, and the filtrate was concentrated to dryness to obtain the
crude product; workup (3): water (5 mL) was added and the mixture extracted with ethyl acetate (3×20 mL), the organic phase was washed with water $(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, dried over MgSO_{4} and concentrated to obtain the crude product. The crude was purified by flash chromatography to give the desired product.

7-(2-(1,1-Dioxido-1,2-thiazetidin-2-yl)ethoxy)-3-(4-methoxyphenyl)-4H-chromen-4-one (252)

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{6} \mathrm{~S}$
Molecular Weight: 401.43
Prepared according to General procedure R using 27 ($50 \mu \mathrm{~mol}, 13.4 \mathrm{mg}$), acetone (2 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($55 \mu \mathrm{~mol}$, 7.6 mg) and $258\left(52.5 \mu \mathrm{~mol}, 11.2 \mathrm{mg}\right.$), $70{ }^{\circ} \mathrm{C}$ for 17 h ; workup (2), purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.100: 2\right)$ to give $252(10 \mathrm{mg}, 50 \%)$ as a white solid; $\mathrm{mp}=154-155{ }^{\circ} \mathrm{C} ; R_{f}=0.1$ ($\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ acetone, 98:2).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.21(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 7.92(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 7.49(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.2^{\prime}, 6^{\prime}-\underline{H}\right), 7.03-6.94\left(\mathrm{~m}, 3 \mathrm{H}, 3^{\prime}, 5^{\prime}, 6-\underline{H}\right), 6.86(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{\mathrm{H}}), 4.24\left(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 2 \mathrm{H}, 9-\mathrm{C} \underline{H_{2}}\right), 4.16$ $\left(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 12-\mathrm{CH}_{2}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, 7 \mathrm{~T}^{\prime}-\underline{H}_{3}\right), 3.51\left(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 2 \mathrm{H}, 10-\underline{C H}_{2}\right), 3.38(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}$, 11- CH_{2}).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=175.7$ (qC, 4-C), 162.3 (qC, 7-C), 159.6 (qC, 4’ or 8a-C), 157.7 (qC, 4' or $8 \mathrm{a}-\underline{\mathrm{C}}$), $152.1(\mathrm{CH}, 2-\underline{\mathrm{C}}), 130.1\left(2 \mathrm{CH}, 2^{\prime}, 6^{\prime}-\underline{\mathrm{C}}\right), 128.0(\mathrm{CH}, 5-\underline{\mathrm{C}}), 124.9(\mathrm{qC}, 1$ or $3-\underline{\mathrm{C}}), 124.1(\mathrm{qC}, 1$ ' or $3-\underline{\mathrm{C}}$), $\left.118.9(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 114.5(\mathrm{CH}, 6-\underline{\mathrm{C}}), 113.9\left(2 \mathrm{CH}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{C}}\right), 100.9(\mathrm{CH}, 8-\underline{\mathrm{C}}), 66.9\left(\mathrm{CH}_{2}, 9-\underline{\mathrm{CH}}\right)_{2}\right), 58.1\left(\mathrm{CH}_{2}\right.$, $\left.12-\underline{C H}_{2}\right), 55.3\left(\mathrm{CH}_{3}, 7\right.$ '- $\left.\underline{\mathrm{CH}}_{3}\right), 45.6\left(\mathrm{CH}_{2}, 10-\mathrm{CH}_{2}\right), 36.9\left(\mathrm{CH}_{2}, 11-\mathrm{CH}_{2}\right)$.
HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{6} \mathrm{~S}$: 401.0933 [M], 402.1006 [M+H]+; found: 401.0932 [M], $402.1006[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3068,2951,2873,1626,1606,1511,1441,1308,1240,1175,1026,830,641,544$.
Previously unreported.

7-(2-(1,1-Dioxido-1,2-thiazetidin-2-yl)ethoxy)-3-phenyl-4H-chromen-4-one (253)

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{~S}$ Molecular Weight: 371.41

Method A: Prepared according to General procedure Q using $224(50 \mu \mathrm{~mol}, 5.4 \mathrm{mg})$, THF (1 mL), 243 (50 $\mu \mathrm{mol}, 17.2 \mathrm{mg}$), TBAB ($5 \mu \mathrm{~mol}, 5 \mathrm{mg}$) and KOH ($55 \mu \mathrm{~mol}, 3.1 \mathrm{mg}$), 2 h at RT and after overnight at $45^{\circ} \mathrm{C}$;
purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.100: 2\right)$ to give $253(4 \mathrm{mg}, 21 \%)$ as a white solid; $\mathrm{mp}=$ $200-201^{\circ} \mathrm{C} ; R_{f}=0.2\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, 100:2).
Method B: Prepared according to General procedure R using $30\left(60 \mu \mathrm{~mol}, 14.3 \mathrm{mg}\right.$), DMF (1 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($78 \mu \mathrm{~mol}, 11 \mathrm{mg}$) and 258 ($60 \mu \mathrm{~mol}, 13 \mathrm{mg}$), $80^{\circ} \mathrm{C}$ for 24 h ; workup (1), purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.100: 1\right)$ to give $253(13 \mathrm{mg}, 59 \%)$ as a white solid; $\mathrm{mp}=198-199{ }^{\circ} \mathrm{C} ; R_{f}=0.1$ ($\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ acetone, 99:1).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.23(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 7.96(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 7.56(\mathrm{app} \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}, 2$ H, 2', $6^{\prime}-\underline{H}$), 7.44 (app t, J = $7.3 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{H}$), 7.38 (app t, J = $7.3 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\underline{H}$), 7.01 (dd, J = 2.3, 8.9 $\mathrm{Hz}, 1 \mathrm{H}, 6-\underline{H}), 6.88(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H}), 4.25\left(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 2 \mathrm{H}, 9-\underline{C H}_{2}\right), 4.17(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 12-$ CH_{2}), $3.53\left(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 2 \mathrm{H}, 10-\mathrm{CH}_{2}\right), 3.39\left(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 11-\mathrm{CH}_{2}\right)$.
 (qC, 1'- $\underline{\mathrm{C}}$), 128.9 (2 CH, 2', $\left.6^{\prime}-\underline{\mathrm{C}}\right), 128.5\left(2 \mathrm{CH}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{C}}\right), 128.2\left(\mathrm{CH}, 4^{\prime}-\underline{\mathrm{C}}\right), 128.1(\mathrm{CH}, 5-\underline{\mathrm{C}}), 125.3(\mathrm{qC}, 3-\underline{\mathrm{C}})$, $118.9(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 114.6(\mathrm{CH}, 6-\underline{\mathrm{C}}), 100.9(\mathrm{CH}, 8-\underline{\mathrm{C}}), 66.9\left(\mathrm{CH}_{2}, 9-\underline{\mathrm{CH}_{2}}\right), 58.1\left(\mathrm{CH}_{2}, 12-\underline{\mathrm{C}} \mathrm{H}_{2}\right), 45.6\left(\mathrm{CH}_{2}, 10-\right.$ $\left.\mathrm{C}_{2}\right), 36.9\left(\mathrm{CH}_{2}, 11-\underline{\mathrm{C}} \mathrm{H}_{2}\right)$.
HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{~S}$: 371.0827 [M], $372.0900[\mathrm{M}+\mathrm{H}]^{+}$; found: 371.0829 [M], $372.0903\left[\mathrm{M}+\mathrm{H}^{+}\right.$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3044,2983,2905,1623,1594,1439,1303,1255,1144,1062,951,786,690,528$.
Previously unreported.

7-(2-(1,1-Dioxido-1,2-thiazetidin-2-yl)ethoxy)-3-(p-tolyl)-4H-chromen-4-one (254)

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{~S}$ Molecular Weight: 385.43

Method A: Prepared according to General procedure Q using $224(40 \mu \mathrm{~mol}, 4.3 \mathrm{mg})$, DMF (1 mL), 244 (20 $\mu \mathrm{mol}, 7.2 \mathrm{mg}$), TBAB ($2 \mu \mathrm{~mol}, 0.65 \mathrm{mg}$) and KOH ($44 \mu \mathrm{~mol}, 2.5 \mathrm{mg}$), 15 h at RT and after 20 h at $80^{\circ} \mathrm{C}$; purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.100: 2\right)$ to give $254(3 \mathrm{mg}, 38 \%)$ as a white solid; $\mathrm{mp}=$ $171-173{ }^{\circ} \mathrm{C} ; R_{f}=0.15\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.100: 2\right)$.
Method B: Prepared according to General procedure R using $31(60 \mu \mathrm{~mol}, 15.1 \mathrm{mg})$, DMSO (1 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($78 \mu \mathrm{~mol}, 11 \mathrm{mg}$) and 258 ($60 \mu \mathrm{~mol}, 13 \mathrm{mg}$), $80^{\circ} \mathrm{C}$ for 24 h ; workup (1), purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.100: 2\right)$ to give 254 ($13 \mathrm{mg}, 56 \%$) as a white solid; $\mathrm{mp}=172-173{ }^{\circ} \mathrm{C} ; R_{f}=0.15$ ($\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ acetone, 98:2).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.22(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 7.94(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 7.45(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.2^{\prime}, 6^{\prime}-\underline{H}\right), 7.25\left(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{H}\right), 7.00(\mathrm{dd}, \mathrm{J}=2.3,8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 6.87(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-$ $\underline{H}), 4.25\left(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 2 \mathrm{H}, 9-\underline{C H}_{2}\right), 4.17\left(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 12-\mathrm{CH}_{2}\right), 3.52\left(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 2 \mathrm{H}, 10-\underline{C H}_{2}\right), 3.39$ ($\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 11-\underline{\mathrm{H}}_{2}$), $2.41\left(\mathrm{~s}, 3 \mathrm{H}, 7 \mathrm{~T}^{-} \mathrm{CH}_{3}\right.$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=175.6$ (qC, $\left.4-\underline{\mathrm{C}}\right), 162.3(\mathrm{qC}, 7-\underline{\mathrm{C}}), 157.8(\mathrm{qC}, 8 \mathrm{a}-\underline{\mathrm{C}}), 152.4(\mathrm{CH}, 2-\underline{\mathrm{C}}), 138.0$ (qC, $\left.4^{\prime}-\underline{C}\right), 129.1\left(2 \mathrm{CH}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{C}}\right), 128.9\left(\mathrm{qC}, 1^{\prime}-\underline{\mathrm{C}}\right), 128.8\left(2 \mathrm{CH}, 2^{\prime}, 6^{\prime}-\underline{\mathrm{C}}\right), 128.0(\mathrm{CH}, 5-\underline{\mathrm{C}}), 125.3(\mathrm{qC}, 3-\underline{\mathrm{C}})$,
$118.9(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 114.5(\mathrm{CH}, 6-\underline{\mathrm{C}}), 100.9(\mathrm{CH}, 8-\underline{\mathrm{C}}), 66.9\left(\mathrm{CH}_{2}, 9-\underline{\mathrm{CH}}_{2}\right), 58.1\left(\mathrm{CH}_{2}, 12-\underline{\mathrm{CH}} \mathrm{H}_{2}\right), 45.6\left(\mathrm{CH}_{2}, 10-\right.$ $\left.\underline{\mathrm{C}}_{2}\right), 36.9\left(\mathrm{CH}_{2}, 11-\underline{\mathrm{CH}_{2}}\right), 21.2\left(\mathrm{CH}_{3}, 7\right.$ '- $\left.\underline{\mathrm{C}}_{2}\right)$.
HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{~S}$: 385.0984 [M], 386.1057 [M+H]+; found: 385.0995 [M], $386.1070[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): v=3080,2921,2853,1624,1601,1441,1316,1251,1169,1045,821,764,697,524$.
Previously unreported.

7-(2-(1,1-Dioxido-1,2-thiazetidin-2-yl)ethoxy)-3-(4-hydroxyphenyl)-4H-chromen-4-one (260)

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{6} \mathrm{~S}$ Molecular Weight: 387.41

Prepared according to General procedure R using 26 ($60 \mu \mathrm{~mol}, 15.2 \mathrm{mg}$), DMF (1 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}(78 \mu \mathrm{~mol}$, 11 mg) and $258(60 \mu \mathrm{~mol}, 13 \mathrm{mg}), 80^{\circ} \mathrm{C}$ for 24 h ; workup (3), purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.9: 1\right)$ to give $260(6 \mathrm{mg}, 26 \%)$ as a white solid; $\mathrm{mp}=229-230{ }^{\circ} \mathrm{C} ; R_{f}=0.15$ ($\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ acetone, 9:1).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}\right.$, acetone- d) : $\delta=8.59\left(\mathrm{~s}, 1 \mathrm{H}, 4{ }^{\prime}-\mathrm{OH}\right), 8.28(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 8.19(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}})$, 7.55 (d, J = $8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{H}$), $7.21-7.15(\mathrm{~m}, 2 \mathrm{H}, 6,8-\underline{H}), 6.96\left(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{H}\right), 4.42(\mathrm{t}, \mathrm{J}=$ $\left.5.1 \mathrm{~Hz}, 2 \mathrm{H}, 9-\underline{C H}_{2}\right), 4.28\left(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 12-\mathrm{CH}_{2}\right), 3.57\left(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 2 \mathrm{H}, 10-\underline{C H}_{2}\right), 3.46(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}$, $2 \mathrm{H}, 11-\mathrm{CH}_{2}$).
${ }^{13} \mathrm{C}-$ NMR (150 MHz , acetone- d_{6}): $\delta=174.7$ (qC, 4-C-C), 162.8 (qC, $7-\underline{\mathrm{C}}$), 157.8 (qC, 4' or $8 \mathrm{a}-\underline{\mathrm{C}}$), 157.3 (qC, 4^{\prime} or $8 \mathrm{a}-\underline{\mathrm{C}}$), $152.5(\mathrm{CH}, 2-\underline{\mathrm{C}}), 130.1\left(2 \mathrm{CH}, 2^{\prime}, 6^{\prime}-\underline{\mathrm{C}}\right), 127.2(\mathrm{CH}, 5-\underline{\mathrm{C}}), 124.5\left(\mathrm{qC}, 1^{\prime}\right.$ or $3-\underline{\mathrm{C}}$), 123.3 (qC, 1^{\prime} or $3-\underline{C}), 118.5(q C, 4 \mathrm{a}-\underline{\mathrm{C}}), 114.9\left(2 \mathrm{CH}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{C}}\right), 114.7(\mathrm{CH}, 6-\underline{\mathrm{C}}), 101.0(\mathrm{CH}, 8-\underline{\mathrm{C}}), 67.0\left(\mathrm{CH}_{2}, 9-\underline{\mathrm{CH}} \mathrm{H}_{2}\right), 57.8$ $\left(\mathrm{CH}_{2}, 12-\underline{\mathrm{C}} \mathrm{H}_{2}\right), 45.5\left(\mathrm{CH}_{2}, 10-\underline{\mathrm{C}} \mathrm{H}_{2}\right), 36.6\left(\mathrm{CH}_{2}, 11-\mathrm{CH}_{2}\right)$.
HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{6} \mathrm{~S}$: 387.0777 [M], 388.0849 [$\left.\mathrm{M}+\mathrm{H}\right]^{+}$; found: 387.0781 [M], $388.0853[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR (cm^{-1}): $v=3151,2980,2888,1625,1566,1443,1381,1255,1145,1072,954,827,534$.
Previously unreported.

7-(2-(1,1-Dioxido-1,2-thiazetidin-2-yl)ethoxy)-3-(3-methoxyphenyl)-4H-chromen-4-one (261)

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{6} \mathrm{~S}$
Molecular Weight: 401.43

Prepared according to General procedure R using 28 ($50 \mu \mathrm{~mol}, 13.4 \mathrm{mg}$), acetone (2 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}(55 \mu \mathrm{~mol}$, 7.6 mg) and $258(52.5 \mu \mathrm{~mol}, 11.2 \mathrm{mg}), 70{ }^{\circ} \mathrm{C}$ for 17 h ; workup (2), purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.100: 2\right)$ to give $261(10 \mathrm{mg}, 50 \%)$ as a white solid; $\mathrm{mp}=177-178{ }^{\circ} \mathrm{C} ; R_{f}=0.12$ ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /acetone, 97:3).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.22(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 7.96(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 7.34(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, 5'-브), 7.14 (app s, $1 \mathrm{H}, 2^{\prime}-\underline{H}$), 7.10 (d, J = $7.5 \mathrm{~Hz}, 1 \mathrm{H}, 6$ '- \underline{H}), 7.00 (dd, J = 2.0, $8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}$), 6.93 (dd, $\left.\mathrm{J}=2.4,8.2 \mathrm{~Hz}, 1 \mathrm{H}, 4{ }^{\prime}-\underline{H}\right), 6.87(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H}), 4.24\left(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 2 \mathrm{H}, 9-\mathrm{CH}_{2}\right), 4.16(\mathrm{t}, \mathrm{J}=6.7$ $\mathrm{Hz}, 2 \mathrm{H}, 12-\mathrm{CH}_{2}$), $3.84\left(\mathrm{~s}, 3 \mathrm{H}, 7 \mathrm{~T}^{-} \underline{\mathrm{H}}_{3}\right), 3.52\left(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 2 \mathrm{H}, 10-\underline{C H}_{2}\right), 3.38\left(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 11-\underline{C H}_{2}\right)$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=175.5$ (qC, 4-C$), 162.4$ (qC, $7-\underline{\mathrm{C}}$), 159.5 (qC, 3' or $8 \mathrm{a}-\underline{\mathrm{C}}$), 157.7 (qC, 3' or
 6'-ㅡㅡ), 118.9 (qC, 4a-ㅡㅡ), $114.7(\mathrm{CH}, 6-\underline{\mathrm{C}}), 114.4\left(\mathrm{CH}, 2^{\prime}-\underline{\mathrm{C}}\right), 114.1\left(\mathrm{CH}, 4{ }^{\prime}-\underline{\mathrm{C}}\right), 100.9(\mathrm{CH}, 8-\underline{\mathrm{C}}), 66.9\left(\mathrm{CH}_{2}\right.$, $\left.9-\underline{C H}_{2}\right), 58.1\left(\mathrm{CH}_{2}, 12-\underline{\mathrm{C}}_{2}\right), 55.3\left(\mathrm{CH}_{3}, 7\right.$ '- $\left.\mathrm{CH}_{3}\right), 45.6\left(\mathrm{CH}_{2}, 10-\underline{\mathrm{CH}_{2}}\right), 36.9\left(\mathrm{CH}_{2}, 11-\underline{\mathrm{CH}_{2}}\right)$.
HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{6} \mathrm{~S}$: 401.0933 [M], 402.1006 [M+H]+; found: 401.0935 [M], $402.1008[\mathrm{M}+\mathrm{H}]^{+}$.

FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3078,2954,2834,1624,1606,1440,1311,1255,1170,1037,834,789,691,541$.
Previously unreported.

7-(2-(1,1-Dioxido-1,2-thiazetidin-2-yl)ethoxy)-3-(2-methoxyphenyl)-4H-chromen-4-one (262)

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{6} \mathrm{~S}$ Molecular Weight: 401.43

Prepared according to General procedure R using 29 ($50 \mu \mathrm{~mol}, 13.4 \mathrm{mg}$), acetone (2 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}(55 \mu \mathrm{~mol}$, 7.6 mg) and 258 ($52.5 \mu \mathrm{~mol}, 11.2 \mathrm{mg}$), $70^{\circ} \mathrm{C}$ for 18 h ; workup (2), purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.100: 2\right)$ to give $262(11.5 \mathrm{mg}, 57 \%)$ as a white solid; $\mathrm{mp}=128-130{ }^{\circ} \mathrm{C}$; $R_{f}=0.1$ ($\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ acetone, 97:3).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.20(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}$), 7.91 (s, $1 \mathrm{H}, 2-\underline{\mathrm{H}}$), 7.35 (app td, J = 1.5, 7.9 $\mathrm{Hz}, 1 \mathrm{H}, 4^{\prime}-\underline{\mathrm{H}}$), 7.31 (app dd, J = 1.5, $7.4 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\underline{H}$), $7.05-6.95\left(\mathrm{~m}, 3 \mathrm{H}, 3^{\prime}, 5^{\prime}, 6-\underline{H}\right), 6.86(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}$, $1 \mathrm{H}, 8-\underline{H}), 4.24\left(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 2 \mathrm{H}, 9-\underline{C H}_{2}\right), 4.16\left(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 12-\underline{C H}_{2}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, 7{ }^{\prime}-\underline{C H}_{3}\right), 3.51(\mathrm{t}, \mathrm{J}$ $\left.=5.1 \mathrm{~Hz}, 2 \mathrm{H}, 10-\mathrm{CH}_{2}\right), 3.37\left(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 11-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=175.4$ (qC, 4-C-C), 162.2 (qC, 7-C), 157.8 (qC, 2' or $\left.8 \mathrm{a}-\underline{\mathrm{C}}\right), 157.5$ (qC, 2' or
 (qC, 1' or $3-\underline{C}$), $120.5\left(\mathrm{CH}, 5^{\prime}-\underline{\mathrm{C}}\right)$, $118.9(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}})$, $114.4(\mathrm{CH}, 6-\underline{\mathrm{C}}), 111.2\left(\mathrm{CH}, 3^{\prime}-\underline{\mathrm{C}}\right), 101.0(\mathrm{CH}, 8-\underline{\mathrm{C}})$, $66.9\left(\mathrm{CH}_{2}, 9-\underline{\mathrm{C}} \mathrm{H}_{2}\right), 58.1\left(\mathrm{CH}_{2}, 12-\underline{\mathrm{C}} \mathrm{H}_{2}\right), 55.7\left(\mathrm{CH}_{3}, 7\right.$ '- $\left.\underline{\mathrm{CH}}_{3}\right), 45.6\left(\mathrm{CH}_{2}, 10-\underline{\mathrm{C}}_{2}\right), 37.0\left(\mathrm{CH}_{2}, 11-\underline{\mathrm{C}}_{2}\right)$.

HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{6} \mathrm{~S}: 401.0933$ [M], 402.1006 [M+H]+; found: 401.0948 [M], $402.1025[\mathrm{M}+\mathrm{H}]^{+}$.

FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3047,2962,2836,1644,1607,1443,1311,1239,1172,1023,752,633,507$.
Previously unreported.

3-(4-Chlorophenyl)-7-(2-(1,1-dioxido-1,2-thiazetidin-2-yl)ethoxy)-4H-chromen-4-one (263)

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{CINO}_{5} \mathrm{~S}$
Molecular Weight: 405.85
Prepared according to General procedure R using 32 ($50 \mu \mathrm{~mol}, 13.6 \mathrm{mg}$), acetone (2 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}(55 \mu \mathrm{~mol}$, 7.6 mg) and $258(52.5 \mu \mathrm{~mol}, 11.2 \mathrm{mg}), 70{ }^{\circ} \mathrm{C}$ for 18 h ; workup (2), purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.100: 2\right)$ to give $263(13 \mathrm{mg}, 64 \%)$ as a white solid; $\mathrm{mp}=172-173{ }^{\circ} \mathrm{C} ; R_{f}=0.25$ ($\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ acetone, 98:2).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.20(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 7.94(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 7.50(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, $3^{\prime}, 5^{\prime}-\underline{H}$), $7.40\left(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{H}\right.$), 7.01 ($\mathrm{dd}, \mathrm{J}=2.3,8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}$), $6.87(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-$ H), $4.24\left(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 2 \mathrm{H}, 9-\underline{C H}_{2}\right), 4.16\left(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 12-\mathrm{CH}_{2}\right), 3.52\left(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 2 \mathrm{H}, 10-\underline{C H}_{2}\right), 3.37$ $\left(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 11-\mathrm{CH}_{2}\right)$.
 (qC, 1' or 4'- $-\underline{C}$), 130.3 (qC, 1^{\prime} or $4^{\prime}-\underline{\mathrm{C}}$), $130.2\left(2 \mathrm{CH}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{C}}\right), 128.6\left(2 \mathrm{CH}, 2^{\prime}, 6^{\prime}-\underline{\mathrm{C}}\right), 128.0(\mathrm{CH}, 5-\underline{\mathrm{C}}), 124.3$ (qC, 3-ㅡㅡ) , $118.7(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 114.8(\mathrm{CH}, 6-\underline{\mathrm{C}}), 101.0(\mathrm{CH}, 8-\underline{\mathrm{C}}), 66.9\left(\mathrm{CH}_{2}, 9-\underline{\mathrm{C}} \mathrm{H}_{2}\right), 58.1\left(\mathrm{CH}_{2}, 12-\underline{\mathrm{CH}} \mathrm{H}_{2}\right), 45.6$ $\left(\mathrm{CH}_{2}, 10-\underline{\mathrm{CH}_{2}}\right), 36.9\left(\mathrm{CH}_{2}, 11-\underline{\mathrm{CH}_{2}}\right)$.
HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{CINO}_{5} \mathrm{~S}$: 405.0438 [M], 406.1510 [M+H]+; found: 405.0444 [M], $406.0517[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR (cm-1): $u=3071,2980,2919,2879,1626,1603,1494,1447,1309,1248,1177,1089,830,757,544$. Previously unreported.

7-(2-(1,1-Dioxido-1,2-thiazetidin-2-yl)ethoxy)-3-(4-nitrophenyl)-4H-chromen-4-one (264)

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}$
Molecular Weight: 416.40
Prepared according to General procedure R using $33(40 \mu \mathrm{~mol}, 11.3 \mathrm{mg})$, acetone $(2 \mathrm{~mL}), \mathrm{K}_{2} \mathrm{CO}_{3}(44 \mu \mathrm{~mol}$, 6 mg) and 258 ($42 \mu \mathrm{~mol}, 9 \mathrm{mg}$), $70{ }^{\circ} \mathrm{C}$ for 18 h ; workup (2), purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.100: 2\right)$ to give $264(4.3 \mathrm{mg}, 25 \%)$ as a pale yellow solid; $\mathrm{mp}=230-232{ }^{\circ} \mathrm{C} ; R_{f}=0.2$ ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /acetone, 98:2).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.29\left(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{H}}\right), 8.23(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 8.05(\mathrm{~s}, 1$ H, 2-H्H), 7.77 (d, J = $\left.8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{H}\right), 7.05(\mathrm{dd}, \mathrm{J}=2.3,8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 6.91(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-$
H), $4.26\left(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 2 \mathrm{H}, 9-\underline{C H}_{2}\right), 4.17\left(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 12-\mathrm{CH}_{2}\right), 3.53\left(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 2 \mathrm{H}, 10-\underline{\mathrm{CH}}_{2}\right), 3.38$ (t, J = 6.7 Hz, 2 H, 11-C \underline{H}_{2}).
 (qC, 4'-ㅡㅡ), 138.7 (qC, 1'- \underline{C}), $129.6\left(2 \mathrm{CH}, 2^{\prime}, 6^{\prime}-\underline{C}\right), 128.1(\mathrm{CH}, 5-\underline{\mathrm{C}}), 123.6\left(2 \mathrm{CH}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{C}}\right), 123.5(\mathrm{qC}, 3-\underline{\mathrm{C}})$, $118.7(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 115.1(\mathrm{CH}, 6-\underline{\mathrm{C}}), 101.1(\mathrm{CH}, 8-\underline{\mathrm{C}}), 67.0\left(\mathrm{CH}_{2}, 9-\mathrm{CH}_{2}\right), 58.1\left(\mathrm{CH}_{2}, 12-\underline{\mathrm{C}} \mathrm{H}_{2}\right), 45.7\left(\mathrm{CH}_{2}, 10-\right.$ $\left.\underline{\mathrm{C}} \mathrm{H}_{2}\right), 36.9\left(\mathrm{CH}_{2}, 11-\underline{\mathrm{C}} \mathrm{H}_{2}\right)$.
HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}: 416.0678$ [M], 417.0751 [M+H] ${ }^{+}$; found: 416.0680 [M], $417.0753[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3078,2920,2851,1625,1592,1517,1442,1346,1311,1253,1174,1039,842,686,524$.
Previously unreported.

Ethyl 2-(4-(7-(2-(1,1-dioxido-1,2-thiazetidin-2-yl)ethoxy)-4-oxo-4H-chromen-3-yl)phenyl)acetate (265)

Chemical Formula: $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{7} \mathrm{~S}$
Molecular Weight: 457.50
Prepared according to General procedure R using 35 ($50 \mu \mathrm{~mol}, 16.2 \mathrm{mg}$), acetone (2 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}(55 \mu \mathrm{~mol}$, 7.6 mg) and $258(52.5 \mu \mathrm{~mol}, 11.2 \mathrm{mg}), 70{ }^{\circ} \mathrm{C}$ for 19 h ; workup (2), purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.100: 2\right)$ to give $265(9.6 \mathrm{mg}, 42 \%)$ as a white solid; $\mathrm{mp}=147-148{ }^{\circ} \mathrm{C} ; R_{f}=0.15$ ($\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ acetone, 96:4).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.22(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{H}), 7.52(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.3^{\prime}, 5^{\prime}-\underline{H}\right), 7.36\left(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{H}\right), 7.00(\mathrm{dd}, \mathrm{J}=2.2,8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 6.87(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-$ $\underline{H}), 4.25\left(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 2 \mathrm{H}, 9-\underline{C H}_{2}\right), 4.20-4.11\left(\mathrm{~m}, 4 \mathrm{H}, 9,12-\underline{C H}_{2}\right), 3.64\left(\mathrm{~s}, 2 \mathrm{H}, 7 \mathrm{~T}^{\prime}-\mathrm{CH}_{2}\right), 3.52(\mathrm{t}, \mathrm{J}=5.1$ $\left.\mathrm{Hz}, 2 \mathrm{H}, 10-\mathrm{CH}_{2}\right), 3.38\left(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 11-\mathrm{CH}_{2}\right), 1.26\left(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}, 10^{\prime}-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta=175.6$ (qC, 4-C-C), 171.5 (qC, 8'-C-C), 162.4 (qC, 7-C), 157.7 (qC, 8a-C), 152.6 ($\mathrm{CH}, 2-\underline{\mathrm{C}}$), 134.1 ($\left.\mathrm{qC}, 4^{\prime}-\underline{\mathrm{C}}\right), 130.6$ (qC, $\left.1^{\prime}-\underline{\mathrm{C}}\right), 129.4\left(2 \mathrm{CH}, 2^{\prime}, 6^{\prime}-\underline{-}\right), 129.1\left(2 \mathrm{CH}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{C}}\right), 128.0(\mathrm{CH}, 7-\underline{\mathrm{C}})$, $125.0(\mathrm{qC}, 3-\underline{\mathrm{C}}), 118.9(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}})$, $114.7(\mathrm{CH}, 6-\underline{\mathrm{C}}), 100.9(\mathrm{CH}, 8-\underline{\mathrm{C}}), 66.9\left(\mathrm{CH}_{2}, 9-\underline{\mathrm{CH}_{2}}\right), 60.9\left(\mathrm{CH}_{2}, 9\right.$ '$\left.\underline{\mathrm{C}}_{2}\right), 58.1\left(\mathrm{CH}_{2}, 12-\underline{\mathrm{C}} \mathrm{H}_{2}\right), 45.6\left(\mathrm{CH}_{2}, 10-\underline{\mathrm{C}} \mathrm{H}_{2}\right), 41.2\left(\mathrm{CH}_{2}, 7{ }^{\prime}-\underline{\mathrm{C}} \mathrm{H}_{2}\right), 36.9\left(\mathrm{CH}_{2}, 11-\underline{\mathrm{C}} \mathrm{H}_{2}\right), 14.2\left(\mathrm{CH}_{3}, 10\right.$ 'C_{2}).
HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{7} \mathrm{~S}$: 457.1195 [M], $458.1268[\mathrm{M}+\mathrm{H}]^{+}$; found: 457.1206 [M], $458.1280[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3042,2921,2851,1735,1625,1602,1445,1305,1249,1141,1020,821,542$.
Previously unreported.

7-(2-(1,1-Dioxido-1,2-thiazetidin-2-yl)ethoxy)-5-hydroxy-3-(4-methoxyphenyl)-4H-chromen-4-one (266)

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{7} \mathrm{~S}$
Molecular Weight: 417.43
Prepared according to General procedure R using 71 ($75 \mu \mathrm{~mol}, 21.3 \mathrm{mg}$), acetone (2 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}(83 \mu \mathrm{~mol}$, 11.5 mg) and $258(79 \mu \mathrm{~mol}, 17 \mathrm{mg}), 70^{\circ} \mathrm{C}$ for 18 h ; workup (2), purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $100: 1$ to $\left.100: 2\right)$ to give 266 ($19 \mathrm{mg}, 60 \%$) as a white solid; $\mathrm{mp}=161-162{ }^{\circ} \mathrm{C} ; R_{f}=0.43$ ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /acetone, 98:2).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.86(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{OH}), 7.87(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 7.45\left(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{\mathrm{H}}\right)$, $6.98\left(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{H}}\right), 6.40(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{\mathrm{H}}), 6.35(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 4.20(\mathrm{t}, \mathrm{J}=$ $\left.5.0 \mathrm{~Hz}, 2 \mathrm{H}, 9-\underline{C H}_{2}\right), 4.16\left(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 12-\underline{C H}_{2}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, 7 \mathrm{~T}^{\prime}-\underline{\mathrm{H}}_{2}\right), 3.48(\mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, 2 \mathrm{H}, 10-$ CH_{2}), $3.36\left(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 11-\mathrm{CH}_{2}\right)$.
 ($q \mathrm{C}, 8 \mathrm{a}-\underline{\mathrm{C}}$), $152.8(\mathrm{CH}, 2-\underline{\mathrm{C}}), 130.1\left(2 \mathrm{CH}, 2^{\prime}, 6^{\prime}-\underline{\mathrm{C}}\right), 123.7(\mathrm{qC}, 3-\underline{\mathrm{C}}), 122.8\left(\mathrm{qC}, 1^{\prime}-\underline{\mathrm{C}}\right), 114.1\left(2 \mathrm{CH}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{C}}\right)$, $106.6(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}})$, $98.5(\mathrm{CH}, 6-\underline{\mathrm{C}})$, $92.8(\mathrm{CH}, 8-\underline{\mathrm{C}}), 66.8\left(\mathrm{CH}_{2}, 9-\underline{\mathrm{CH}_{2}}\right), 58.1\left(\mathrm{CH}_{2}, 12-\underline{\mathrm{CH}_{2}}\right), 55.3\left(\mathrm{CH}_{3}, 7\right.$ '$\left.\underline{\mathrm{C}}_{3}\right), 45.5\left(\mathrm{CH}_{2}, 10-\underline{\mathrm{C}} \mathrm{H}_{2}\right), 36.9\left(\mathrm{CH}_{2}, 11-\underline{\mathrm{CH}_{2}}\right)$.
HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{7} \mathrm{~S}$: 417.0882 [M], 418.0955 [$\left.\mathrm{M}+\mathrm{H}\right]^{+}$; found: 417.0870 [M], $418.0948[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): v=3074,3043,2979,2912,2835,1660,1610,1572,1514,1291,1247,1174,1139,1029$, 820, 774, 677, 520.
Previously unreported.

3-(4-Aminophenyl)-7-(2-(1,1-dioxido-1,2-thiazetidin-2-yl)ethoxy)-4H-chromen-4-one (267)

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$
Molecular Weight: 386.42
Prepared according to General procedure R using 123 ($50 \mu \mathrm{~mol}, 12.6 \mathrm{mg}$), acetone (2 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}(55$ $\mu \mathrm{mol}, 7.6 \mathrm{mg}$) and $258(52.5 \mu \mathrm{~mol}, 11.2 \mathrm{mg}), 70^{\circ} \mathrm{C}$ for 18 h ; workup (2), purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.9: 1\right)$ to give $267(5 \mathrm{mg}, 26 \%)$ as a white solid; $\mathrm{mp}=158-159{ }^{\circ} \mathrm{C} ; R_{f}=0.1\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, 9:1).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, acetone- d_{6}): $\delta=8.13(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 8.11(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 7.36(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2$ H, 2', 6'- -), 7.13 - 7.04 (m, $2 \mathrm{H}, 6,8-\underline{H}$), 6.71 (d, J = $8.6 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{H}$), 4.78 (br s, $2 \mathrm{H}, 4^{\prime}-\mathrm{NH}_{2}$), 4.34 (t, J $\left.=5.1 \mathrm{~Hz}, 2 \mathrm{H}, 9-\underline{C H}_{2}\right), 4.21\left(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 12-\underline{C H}_{2}\right), 3.49\left(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 2 \mathrm{H}, 10-\underline{C H}_{2}\right), 3.39(\mathrm{t}, \mathrm{J}=6.7$ $\left.\mathrm{Hz}, 2 \mathrm{H}, 11-\mathrm{CH}_{2}\right)$.
 148.4 (qC, $4^{\prime}-\underline{C}$), 129.6 ($2 \mathrm{CH}, 2^{\prime}, 6^{\prime}-\underline{C}$), 127.2 (CH, $5-\underline{C}$), 124.9 ($q \mathrm{C}, 3-\underline{\mathrm{C}}$), 120.2 ($\mathrm{qC}, 1^{\prime}-\underline{\mathrm{C}}$), 118.5 ($\mathrm{qC}, 4 \mathrm{a}-$ C $)$, $114.6(\mathrm{CH}, 6-\underline{\mathrm{C}}), 113.8\left(2 \mathrm{CH}, 3^{\prime}, 5{ }^{\prime}-\underline{\mathrm{C}}\right), 100.9(\mathrm{CH}, 8-\underline{\mathrm{C}}), 67.0\left(\mathrm{CH}_{2}, 9-\underline{\mathrm{C}} \mathrm{H}_{2}\right), 57.8\left(\mathrm{CH}_{2}, 12-\underline{\mathrm{CH}}{ }_{2}\right), 45.5$ $\left(\mathrm{CH}_{2}, 10-\mathrm{CH}_{2}\right), 36.6\left(\mathrm{CH}_{2}, 11-\underline{\mathrm{CH}_{2}}\right)$.
HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$: 386.0936 [M], $387.1009[\mathrm{M}+\mathrm{H}]^{+}$; found: 386.0942 [M], $387.1015[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3442,3357,3042,2922,2852,1622,1519,1443,1296,1255,1167,1094,1052,821$, 528.

Previously unreported.

3-(4-Azidophenyl)-7-(2-(1,1-dioxido-1,2-thiazetidin-2-yl)ethoxy)-4H-chromen-4-one (268)

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$
Molecular Weight: 412.42
Prepared according to General procedure R using 128 ($50 \mu \mathrm{~mol}, 14 \mathrm{mg}$), acetone (2 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($55 \mu \mathrm{~mol}$, 7.6 mg) and $258(52.5 \mu \mathrm{~mol}, 11.2 \mathrm{mg}), 70^{\circ} \mathrm{C}$ for 18 h ; workup (2), purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $100: 2$) to give 268 ($8.5 \mathrm{mg}, 41 \%$) as a white solid; $\mathrm{mp}=164-165{ }^{\circ} \mathrm{C}$ (decomp.); $R_{f}=0.1$ ($\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ acetone, 98:2).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.21(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 7.95(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 7.56(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, 2',6'-브), 7.09 (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{H}$), 7.01 (dd, J = 2.2, 8.9 Hz, $1 \mathrm{H}, 6-\underline{H}$), 6.87 (d, J = $2.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-$ H), $4.25\left(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 2 \mathrm{H}, 9-\underline{H}_{2}\right), 4.17\left(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 12-\mathrm{CH}_{2}\right), 3.52\left(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 2 \mathrm{H}, 10-\underline{\mathrm{H}}_{2}\right), 3.38$ ($\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 11-\mathrm{CH}_{2}$)
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta=175.4$ (qC, 4- $\underline{\mathrm{C}}$), 162.5 (qC, 7- $\underline{\mathrm{C}}$), 157.7 (qC, 8a- $\underline{\mathrm{C}}$), $152.5(\mathrm{CH}, 2-\underline{\mathrm{C}}), 139.9$ (qC, $4^{\prime}-\underline{C}$), 130.3 (2 CH, 2', $6^{\prime}-\underline{C}$), $128.5\left(q C, 1^{\prime}-\underline{C}\right), 128.0(\mathrm{CH}, 5-\underline{\mathrm{C}}), 124.4(\mathrm{qC}, 3-\underline{\mathrm{C}}), 119.1\left(2 \mathrm{CH}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{C}}\right)$, $118.8(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}})$, $114.8(\mathrm{CH}, 6-\underline{\mathrm{C}})$, $101.0(\mathrm{CH}, 8-\underline{\mathrm{C}}), 66.9\left(\mathrm{CH}_{2}, 9-\mathrm{CH}_{2}\right), 58.1\left(\mathrm{CH}_{2}, 12-\underline{\mathrm{C}} \mathrm{H}_{2}\right), 45.6\left(\mathrm{CH}_{2}, 10-\right.$ $\left.\mathrm{C}_{2}\right), 36.9\left(\mathrm{CH}_{2}, 11-\underline{\mathrm{C}}_{2}\right)$.
HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$: 412.0841 [M], 413.0914 [M+H]+; found: 412.0845 [M], $413.0918[\mathrm{M}+\mathrm{H}]^{+}$.

FT-IR (cm^{-1}): $v=3048,2922,2851,2118,1621,1600,1509,1443,1311,1244,1176,1050,817,690,537$. Previously unreported.

3.2.5 Synthesis of isoflavone/benzo-ס-sultam hybrids

2-Bromo-N-(4-(7-methoxy-4-oxo-4H-chromen-3-yl)phenyl)benzenesulfonamide (270)

To a mixture of $\mathbf{1 2 5}(0.38 \mathrm{mmol}, 102 \mathrm{mg})$ and 2-bromobenzenesulfonyl chloride $\mathbf{2 6 9}(0.38 \mathrm{mmol}, 97 \mathrm{mg})$ at $0^{\circ} \mathrm{C}$, pyridine (0.6 mL) was added, and the resulting mixture was stirred for 2 h at $80^{\circ} \mathrm{C} . .^{218}$ The volatiles were removed and the crude was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.9: 1\right)$ to give $\mathbf{2 7 0}$ (145 $\mathrm{mg}, 78 \%)$ as a white solid; $\mathrm{mp}=267-268{ }^{\circ} \mathrm{C} ; R_{f}=0.64\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.9: 1\right) . \mathbf{1 2 5}(7 \mathrm{mg}, 6 \%)$ was also separated.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=8.16$ (d, J = $8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}$), $8.11-8.05(\mathrm{~m}, 1 \mathrm{H}, 6 "-\mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}, 2-$ H), $7.73-7.68\left(\mathrm{~m}, 1 \mathrm{H}, 3^{\prime \prime}-\mathrm{H}\right), 7.43\left(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\mathrm{H}\right), 7.41-7.36\left(\mathrm{~m}, 2 \mathrm{H}, 4^{\prime \prime}, 5^{\prime \prime}-\mathrm{H}\right), 7.24(\mathrm{br} \mathrm{s}, 1$ $\mathrm{H}, 1$ "-SO2NH), 7.20 (d, J = $8.6 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{H}$), 6.98 (dd, J = $2.4,8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}$), 6.84 (d, J = $2.4 \mathrm{~Hz}, 1$ $\mathrm{H}, 8-\mathrm{H}), 3.90\left(\mathrm{~s}, 3 \mathrm{H}, 9-\mathrm{CH}_{3}\right)$.
 (qC, $\left.1^{\prime \prime}-\underline{-}\right), 135.6$ (qC, $4^{\prime}-\underline{C}$), 135.2 (CH, $\left.3^{\prime \prime}-\underline{H}\right), 134.3$ (CH, $4^{\prime \prime}-\underline{-}$), 132.5 (CH, $\left.6^{\prime \prime}-\underline{H}\right), 130.0(2 \mathrm{CH}, 4-\underline{\mathrm{C}}), 129.4$ (qC), $128.0\left(\mathrm{CH}, 5^{\prime \prime}-\underline{H}\right), 127.9(\mathrm{CH}, 5-\underline{\mathrm{C}}), 124.3(\mathrm{qC}, 3-\underline{\mathrm{C}}), 121.3\left(2 \mathrm{CH}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{C}}\right), 119.7\left(\mathrm{qC}, 2^{\prime \prime}\right.$ or $4 \mathrm{a}-\underline{\mathrm{C}}$), 118.3 (qC, 2" or 4a-

HRMS (Jet Stream ESI): calc m / z for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{BrNO}_{5} \mathrm{~S}: 484.9933$ [M], 486.0005 [M+H] ${ }^{+}$; found: 484.9922 [M], $486.0000[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3165,3100,2980,2917,1626,1593,1513,1442,1337,1261,1159,1096,1037,933$, 839, 761, 571.
Previously unreported.

3-(4-(1,1-Dioxido-3-phenyl-2H-benzo[e][1,2]thiazin-2-yl)phenyl)-7-methoxy-4H-chromen-4-one

 (273), and N -(4-(7-methoxy-4-oxo-4H-chromen-3-yl)phenyl)-2-(phenylethynyl) benzenesulfonamide (272)Method A: To a degassed solution of $270(0.1 \mathrm{mmol}, 49 \mathrm{mg})$ in dry DMF (1 mL) and $\mathrm{Et}_{3} \mathrm{~N}(0.5 \mathrm{~mL})$, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(5 \mu \mathrm{~mol}, 3.5 \mathrm{mg})$ and $\mathrm{Cul}(12 \mu \mathrm{~mol}, 2.3 \mathrm{mg})$ were added and the mixture was stirred for 15 min. Phenylacetylene $271(115 \mu \mathrm{~mol}, 13 \mu \mathrm{~L})$ was added dropwise and the reaction mixture was stirred overnight at $70^{\circ} \mathrm{C}$ in a sealed tube. The reaction mixture was filtered, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and the filtrate concentrated to dryness. The crude was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, 100:1) to obtain 273 ($5 \mathrm{mg}, 10 \%$), the intermediate $\mathbf{2 7 2}$ ($10 \mathrm{mg}, 20 \%$), and the starting 270 ($15 \mathrm{mg}, \mathbf{3 0 \%}$). Method B: A mixture of $\mathbf{2 7 0}(40 \mu \mathrm{~mol}, 19.5 \mathrm{mg}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(2 \mu \mathrm{~mol}, 1.4 \mathrm{mg})$ and Cul ($4.8 \mu \mathrm{~mol}, 0.9 \mathrm{mg}$) in a Schlenk flask was placed under vacuum and backfilled with N_{2} three times. Degassed dry DMF (1 mL) and $\mathrm{Et}_{3} \mathrm{~N}(0.5 \mathrm{~mL})$ were added to the mixture under a positive pressure of N_{2} and the solution was stirred for 30 min at RT. A solution of $271(80 \mu \mathrm{~mol}, 9 \mu \mathrm{~L})$ in DMF (0.5 mL , degassed) was added dropwise over 1 h . After the first addition of 271 the temperature was raised to $70^{\circ} \mathrm{C}$. When the addition of alkyne was over, the flask was sealed and the reaction mixture stirred overnight at $70^{\circ} \mathrm{C}$. Water was added $(10 \mathrm{~mL})$,
and the mixture was extracted with DCM $(3 \times 15 \mathrm{~mL})$. The organic phase was washed with water $(3 \times 30$ $\mathrm{mL})$, brine $(30 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under vacuum. The crude was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, 100:1) to obtain 273 ($11 \mathrm{mg}, 54 \%$) as a white solid. Traces of 272 and 270 were observed on crude TLC.

- 3-(4-(1,1-dioxido-3-phenyl-2H-benzo[e][1,2]thiazin-2-yl)phenyl)-7-methoxy-4H-chromen-4-one (273), white solid; $\mathrm{mp}=308-310^{\circ} \mathrm{C} ; R_{f}=0.55\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.100: 5\right)$.

Chemical Formula: $\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{~S}$
Molecular Weight: 507.56
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.13(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 7.87-7.80(\mathrm{~m}, 2 \mathrm{H}, 2,8 "-\underline{\mathrm{H}}), 7.73-7.59(\mathrm{~m}$, $4 \mathrm{H}, 5$ ", $6^{\prime \prime}, 10^{\prime \prime}, 14 "-\underline{H}$), 7.52 (t, J = $7.4 \mathrm{~Hz}, 1 \mathrm{H}, 7$ "- $-\underline{H}$), 7.42 (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{H}$), $7.37-7.28$ (m, 3 H , $\left.11^{\prime \prime}, 12^{\prime \prime}, 13^{\prime \prime}-\underline{H}\right), 7.19\left(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{H}}\right), 7.10\left(\mathrm{~s}, 1 \mathrm{H}, 4^{\prime \prime}-\underline{H}\right), 6.96$ ($\mathrm{dd}, \mathrm{J}=2.3,8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}$), 6.82 (d, J = $2.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{\mathrm{H}}$), 3.89 (s, $3 \mathrm{H}, 9-\mathrm{CH}_{3}$).

 (qC, 1' or 4"a-C-C), 131.4 (qC, 1' or 4"a-C-C), $129.6\left(\mathrm{CH}, 12^{\prime \prime}-\underline{C}\right)$, $129.2\left(2 \mathrm{CH}, 2^{\prime}, 6^{\prime}-\underline{C}\right), 128.8(2 \mathrm{CH}, 11$ ", 13 "C), $128.6\left(\mathrm{CH}, 7^{\prime \prime}-\underline{\mathrm{C}}\right), 128.0\left(\mathrm{CH}, 5^{\prime \prime}\right.$ or $\left.6^{\prime \prime}-\underline{\mathrm{C}}\right)$, $127.7\left(3 \mathrm{CH}, 5,10^{\prime \prime}, 14^{\prime \prime}-\underline{\mathrm{C}}\right)$, 127.1 ($2 \mathrm{CH}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{C}}$), 124.0 (qC, $3-\underline{C}), 123.2(\mathrm{CH}, 8 "-\underline{C}), 118.2(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 114.7(\mathrm{CH}, 6-\underline{\mathrm{C}}), 114.5(\mathrm{CH}, 4$ "- $\underline{\mathrm{C}}), 100.0(\mathrm{CH}, 8-\underline{\mathrm{C}}), 55.8\left(\mathrm{CH}_{3}\right.$, 9- CH_{3}).
HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{~S}$: 507.1140 [M], 508.1213 [M+H]+; found: 507.1143 [M], $508.1215[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): v=3068,2916,1625,1595,1506,1437,1347,1257,1173,831,764,581$.
Previously unreported.

- N -(4-(7-methoxy-4-oxo-4H-chromen-3-yl)phenyl)-2-(phenylethynyl) benzenesulfonamide (272), white solid; $\mathrm{mp}=182-183^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.5\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.100: 5\right)$.

Chemical Formula: $\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{~S}$
Molecular Weight: 507.56
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.15(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 8.00$ (dd, J=1.0, $7.9 \mathrm{~Hz}, 1 \mathrm{H}, 6$ "-H), 7.84 (s, $1 \mathrm{H}, 2-\underline{\mathrm{H}}$), $7.71-7.64(\mathrm{~m}, 3 \mathrm{H}, 3$ ", 10 ", 14 "-브), 7.51 (td, J = 1.2, $7.6 \mathrm{~Hz}, 1 \mathrm{H}, 4$ "- -H), $7.47-7.35$ (m, 6 H ,
$2^{\prime}, 6^{\prime}, 5^{\prime \prime}, 11^{\prime \prime}, 12^{\prime \prime}, 13^{\prime \prime}-\underline{H}$), 7.27 (s, $1 \mathrm{H}, 4^{\prime}-\mathrm{NH}$), 7.18 (d, J = $7.2 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{H}$), 6.97 (dd, J = 2.3, $8.9 \mathrm{~Hz}, 1 \mathrm{H}$, $6-\underline{H}), 6.83(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{\mathrm{H}}), 3.90\left(\mathrm{~s}, 3 \mathrm{H}, 9-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=175.4$ (qC), 164.1 (qC), 157.8 (qC), 152.5 (CH), 139.7 (qC), 136.0 (qC), $134.2(\mathrm{CH}), 132.6(\mathrm{CH}), 131.7(2 \mathrm{CH}), 129.9(\mathrm{CH}), 129.8(2 \mathrm{CH}), 129.6(\mathrm{CH}), 129.1(\mathrm{qC}), 128.8(2 \mathrm{CH})$, $128.5(\mathrm{CH}), 127.7(\mathrm{CH}), 124.2(\mathrm{qC}), 121.7(\mathrm{qC}), 121.4(2 \mathrm{CH}), 120.7(\mathrm{qC}), 118.2(\mathrm{qC}), 114.7(\mathrm{CH}), 100.0$ $(\mathrm{CH}), 97.8(\mathrm{qC}), 86.1(\mathrm{qC}), 55.8\left(\mathrm{CH}_{3}, 9-\mathrm{CH}_{3}\right)$.
HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{~S}$: $507.1140[\mathrm{M}]$, $508.1213[\mathrm{M}+\mathrm{H}]^{+}$; found: 507.1147 [M], $508.1219[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR (cm^{-1}): $v=3170,3076,2916,1633,1599,1511,1434,1331,1255,1155,930,759,577$.
Previously unreported.

2-Bromo- N -phenylbenzenesulfonamide (279)

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{BrNO}_{2} \mathrm{~S}$
Molecular Weight: 312.18
A mixture of $269(1 \mathrm{mmol}, 255 \mathrm{mg})$ and aniline $275(1 \mathrm{mmol}, 91 \mu \mathrm{~L})$ in pyridine $(0.8 \mathrm{~mL})$ was stirred for 1 h at $80{ }^{\circ} \mathrm{C} .{ }^{218}$ The volatiles were removed and the crude was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.100: 4\right)$ to give $279(300 \mathrm{mg}, 96 \%)$ as a white solid; $\mathrm{mp}=133-134{ }^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=129-131$ ${ }^{\circ} \mathrm{C} ;{ }^{218} R_{f}=0.6\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.100: 4\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.08-7.98(\mathrm{~m}, 1 \mathrm{H}), 7.73-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 7.24-7.03(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=137.8(\mathrm{qC}), 135.7(\mathrm{qC}), 135.1(\mathrm{CH}), 134.1(\mathrm{CH}), 132.4(\mathrm{CH}), 129.4(2 \mathrm{CH})$, $127.8(\mathrm{CH}), 125.8(\mathrm{CH}), 121.7(2 \mathrm{CH}), 119.8(\mathrm{qC})$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3276,3085,2980,2888,1596,1572,1491,1401,1339,1156,1123,1024,904,753,699$, 580.

Known compound. ${ }^{218}$

2-Bromo-N-methylbenzenesulfonamide (280)

Chemical Formula: $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{BrNO}_{2} \mathrm{~S}$
Molecular Weight: 250.11
To a stirred solution of $269(1.96 \mathrm{mmol}, 500 \mathrm{mg})$ in $\mathrm{THF}(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}, 40 \%$ methylamine aqueous solution ($5.87 \mathrm{mmol}, 0.51 \mathrm{~mL}, 40 \%$ in $\mathrm{H}_{2} \mathrm{O}$) was added dropwise over 10 min , and the resulting mixture was stirred at RT for $3 \mathrm{~h} .{ }^{288}$ Water (15 mL) was added and the aqueous phase was extracted with ethyl acetate ($3 \times$ $20 \mathrm{~mL})$. The organic phase was washed with brine $(30 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure to afford 280 ($440 \mathrm{mg}, 90 \%$) as a white solid; $\mathrm{mp}=103-104{ }^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=99-101^{\circ} \mathrm{C} .{ }^{289}$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.15$ (dd, J = 1.8, $7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.75 (dd, J = 1.3, $7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.49 (td, J $=1.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{td}, \mathrm{J}=1.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.62(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=137.6(\mathrm{qC}), 135.1(\mathrm{CH}), 133.9(\mathrm{CH}), 132.2(\mathrm{CH}), 128.0(\mathrm{CH}), 119.7(\mathrm{qC})$, $29.4\left(\mathrm{CH}_{3}\right)$.
FT-IR $\left(\mathrm{cm}^{-1}\right): v=3302,3086,2980,2889,1574,1414,1313,1258,1157,1081,1023,952,849,752,648$, 579.

Known compound, modified method. ${ }^{289}$

tert-Butyl ((2-bromophenyl)sulfonyl)carbamate (281)

Chemical Formula: $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{BrNO}_{4} \mathrm{~S}$
Molecular Weight: 336.20
To a stirred solution of $269(1.96 \mathrm{mmol}, 500 \mathrm{mg})$ in THF $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, aqueous ammonia solution (97.84 mmol, $5.4 \mathrm{~mL}, 35 \%$ in $\mathrm{H}_{2} \mathrm{O}$) was added dropwise, and the resulting mixture was stirred 20 min at $0^{\circ} \mathrm{C}$ and after at RT for $10 \mathrm{~h} .{ }^{290}$ The reaction mixture was concentrated to dryness, water (15 mL) was added and the precipitate was filtered and dried under vacuum suction. The crude was suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and after DMAP ($0.196 \mathrm{mmol}, 24 \mathrm{mg}$), $\mathrm{Et}_{3} \mathrm{~N}(2.25 \mathrm{mmol}, 0.32 \mathrm{~mL})$ and di-tert-butyl dicarbonate (2.64 mmol , 577 mg) were added, and the resulting mixture was stirred for 1 h at RT. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, and after was washed with $1 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$, water $(2 \times 20 \mathrm{~mL})$, brine (30 mL), dried (MgSO_{4}), filtered, and concentrated under reduced pressure to afford 281 ($605 \mathrm{mg}, 92 \%$) as a white solid; $m p=115-116^{\circ} \mathrm{C}$, lit. mp unreported.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.26(\mathrm{dd}, \mathrm{J}=1.9,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{dd}, \mathrm{J}=1.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.44$ (m, 3 H$), 1.34(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=148.6(\mathrm{qC}), 137.9(\mathrm{qC}), 135.3(\mathrm{CH}), 134.7(\mathrm{CH}), 132.2(\mathrm{CH}), 127.7(\mathrm{CH})$, 120.1 (qC), 84.6 (qC), $27.9\left(3 \mathrm{CH}_{3}\right)$.

HRMS (Jet Stream ESI): calc m / z for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{BrNO}_{4} \mathrm{~S}$: 334.9827 [M], $357.9719[\mathrm{M}+\mathrm{Na}]^{+}$; found: 334.9826 [M], $357.9718[\mathrm{M}+\mathrm{Na}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3159,3087,2979,2883,1714,1574,1431,1348,1254,1146,1063,911,763,571$.
Known compound, modified method. ${ }^{290}$

2-lodo-N-phenylbenzenesulfonamide (282)

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{NO}_{2} \mathrm{~S}$
Molecular Weight: 359.18

To a stirred solution of 2-iodobenzenesulfonyl chloride $274(0.33 \mathrm{mmol}, 100 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, pyridine ($0.5 \mathrm{mmol}, 40 \mu \mathrm{~L}$) and aniline ($0.36 \mathrm{mmol}, 34 \mu \mathrm{~L}$) were added and the mixture was stirred overnight at RT. ${ }^{291}$ The volatiles were removed and the crude was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $100: 1$) to give 282 ($116 \mathrm{mg}, 97 \%$) as a white solid; $\mathrm{mp}=125-126{ }^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=124-125.5^{\circ} \mathrm{C} ;{ }^{292} R_{f}=0.6$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /acetone, 100:1).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.06(\mathrm{dd}, \mathrm{J}=1.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{dd}, \mathrm{J}=0.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{br} \mathrm{s}, 1$ H), $7.38(\mathrm{td}, \mathrm{J}=0.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{app} \mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.07(\mathrm{app} \mathrm{t}, \mathrm{J}=7.2,1$ H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=142.2(\mathrm{CH}), 140.9(\mathrm{qC}), 135.7(\mathrm{qC}), 133.8(\mathrm{CH}), 132.0(\mathrm{CH}), 129.3(2 \mathrm{CH})$, $128.5(\mathrm{CH}), 125.6(\mathrm{CH}), 121.5(2 \mathrm{CH}), 92.3(\mathrm{qC})$.
FT-IR $\left(\mathrm{cm}^{-1}\right): v=3265,3041,2980,1595,1566,1489,1408,1335,1279,1154,1096,1011,914,760$, 693578.

Known compound, modified method. ${ }^{292}$

2-Iodo-N-methylbenzenesulfonamide (283)

Chemical Formula: $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{INO}_{2} \mathrm{~S}$
Molecular Weight: 297.11
To a stirred solution of $274(0.33 \mathrm{mmol}, 100 \mathrm{mg})$ in $\mathrm{THF}(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}, 40 \%$ methylamine aqueous solution ($0.99 \mathrm{mmol}, 86 \mu \mathrm{~L}, 40 \%$ in $\mathrm{H}_{2} \mathrm{O}$) was added dropwise over 5 min , and the resulting mixture was stirred at room temperature for $3 \mathrm{~h} .{ }^{288}$ Water (5 mL) was added and the mixture was extracted with ethyl acetate (3 $\times 15 \mathrm{~mL})$. The organic phase was washed with brine $(30 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure. The crude was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.100: 1\right)$ to give 283 (94 mg, 95\%) as a white solid; $\mathrm{mp}=118-119{ }^{\circ} \mathrm{C}$, lit. $\mathrm{mp}=119-121^{\circ} \mathrm{C} ;{ }^{293} R_{f}=0.3\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, 100:1).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.14(\mathrm{dd}, \mathrm{J}=1.6,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{dd}, \mathrm{J}=0.8,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{td}, \mathrm{J}=$ $0.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.21 (td, J = 1.6, $7.7 \mathrm{~Hz}, 1 \mathrm{H}$), $5.26(\mathrm{app} \mathrm{d}, \mathrm{J}=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=142.2(\mathrm{CH}), 140.5(\mathrm{qC}), 133.6(\mathrm{CH}), 131.6(\mathrm{CH}), 128.6(\mathrm{CH}), 92.1(\mathrm{qC})$, $29.2\left(\mathrm{CH}_{3}\right)$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3308,3082,2937,1567,1431,1392,1315,1158,1116,1010,833,765,574$.
Known compound, modified method. ${ }^{293}$

2-lodo-N-(4-methoxybenzyl)benzenesulfonamide (284)

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{INO}_{3} \mathrm{~S}$
Molecular Weight: 403.23
To a stirred solution of $274(0.33 \mathrm{mmol}, 100 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, $\mathrm{Et}_{3} \mathrm{~N}(0.5 \mathrm{mmol}, 70 \mu \mathrm{~L})$ and $4-$ methoxybenzylamine $278(0.36 \mathrm{mmol}, 48 \mu \mathrm{~L})$ were added dropwise, and the resulting mixture was stirred overnight at RT . ${ }^{294}$ Water (5 mL) was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The organic phase was washed with brine (30 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure. The crude was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.100: 1\right)$ to give 284 (130 mg , $97 \%)$ as a colorless oil; $R_{f}=0.36\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, 100:1).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.12$ (dd, $\mathrm{J}=1.5,7.8 \mathrm{~Hz}, 1 \mathrm{H}, 3-\underline{H}$), 8.00 (app d, $\mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}$), 7.46 (app t, J = 7.6 Hz, $1 \mathrm{H}, 4-\underline{H}$), 7.18 (td, J = 1.5, $7.6 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{H}$), 7.09 (d, J = $8.6 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6{ }^{\prime}-\underline{H}$), 6.75 (d, $\left.J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{H}\right), 5.53\left(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}, 7^{\prime}-\mathrm{NH}\right.$), $3.99\left(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}, 7^{\prime}-\mathrm{CH}_{2}\right), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, 8 \mathrm{~B}^{\prime}-\right.$ CH_{3}).

 $55.3\left(\mathrm{CH}_{3}, 8^{\prime}-\mathrm{CH}_{3}\right), 46.9\left(\mathrm{CH}_{2}, 7 \mathrm{7}^{\prime}-\underline{\mathrm{CH}_{2}}\right)$.

HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{14} \mathrm{H}_{14} 1 \mathrm{NO}_{3} \mathrm{~S}: 402.9739$ [M], 829.9449 [2M+Na] ${ }^{+}$; found: 402.9721 [M], $828.9358[2 \mathrm{M}+\mathrm{Na}]^{+}$.
FT-IR (cm^{-1}): $\mathrm{v}=3313,3083,2932,2834,1610,1511,1421,1327,1246,1155,1028,820,750,573$.
Previously unreported.

3-(1,1-Dioxido-2-phenyl-2H-benzo[e][1,2]thiazin-3-yl)-7-methoxy-4H-chromen-4-one (289)

Chemical Formula: $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{~S}$ Molecular Weight: 431.46

Method A: In a Schlenk flask, 279 ($200 \mu \mathrm{~mol}, 62 \mathrm{mg}$) was added and the flask was placed under vacuum and backfilled with N_{2}. The cap was changed with a septum stopper under a positive pressure of N_{2}, dry DMF (2 mL) and $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$ were added, and the resulting solution was degassed with N_{2} for 20 min . $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{2}(10 \mu \mathrm{~mol}, 7 \mathrm{mg})$ and $\mathrm{Cul}(24 \mu \mathrm{~mol}, 4.6 \mathrm{mg})$ were added under a positive pressure of N_{2}, and the mixture was stirred for 30 min at RT. 3-Ethynyl-7-methoxy-4H-chromen-4-one $147(230 \mu \mathrm{~mol}, 46 \mathrm{mg})$ was dissolved in degassed DMF (0.5 mL) and added with a syringe to the mixture over 2 h . After the first addition of alkyne, the temperature was raised to $70^{\circ} \mathrm{C}$, and the resulting mixture was stirred at this
temperature overnight. ${ }^{218}$ Water was added and the mixture was extracted with dichloromethane (3×15 $\mathrm{mL})$. The organic layer was washed with water $(3 \times 15 \mathrm{~mL})$, brine $(25 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.100: 1\right)$ to give 289 ($38 \mathrm{mg}, 44 \%$) as a pale yellow solid; $\mathrm{mp}=248-250{ }^{\circ} \mathrm{C} ; R_{f}=0.5$ ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /acetone, 96:4).

Method B: Step i. Into a Schlenk flask were added 282 ($85 \mu \mathrm{~mol}, 30.5 \mathrm{mg}$), 10\% Pd/C ($2.55 \mu \mathrm{~mol}, 2.7 \mathrm{mg}$, $3 \mathrm{~mol} \%$), $\mathrm{PPh}_{3}(10.2 \mu \mathrm{~mol}, 2.7 \mathrm{mg}, 12 \mathrm{~mol} \%$), Cul ($4.25 \mu \mathrm{~mol}, 0.81 \mathrm{mg}, 5 \mathrm{~mol} \%$) and 147 ($97.75 \mu \mathrm{~mol}$, 19.6 mg), and the mixture was placed under vacuum and backfilled with N_{2} three times. The cap was changed with a septum stopper under a positive pressure of N_{2} and the flask was placed on an ice bath. Dry MeCN (1.5 mL , degassed) was added, and the resulting suspension was degassed with N_{2} for 10 min at $0{ }^{\circ} \mathrm{C}$. $\mathrm{Et}_{3} \mathrm{~N}(255 \mu \mathrm{~mol}, 36 \mu \mathrm{~L})$ was added dropwise at $0{ }^{\circ} \mathrm{C}$, and stirred for 5 min . The reaction mixture was allowed to warm to RT, the septum stopper was replaced with a lid under a positive pressure of N_{2}, and the reaction was stirred overnight at $80{ }^{\circ} \mathrm{C} .{ }^{221}$ The resulting mixture was filtered through Celite ${ }^{\mathrm{TM}}$, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$, and the filtrate concentrated under vacuum to dryness. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, 100:1) to give 289 ($12 \mathrm{mg}, 32 \%$) as a white solid; $R_{f}=0.4\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.98: 2\right)$. The intermediate, 285 ($6.5 \mathrm{mg}, 17 \%$), and the starting 282 ($10 \mathrm{mg}, 32 \%$) were also separated. Step ii. The intermediate $285(15 \mu \mathrm{~mol}, 6.5 \mathrm{mg})$ was dissolved in dry ethanol (1 mL) under $\mathrm{N}_{2}, \mathrm{Et}_{3} \mathrm{~N}(45 \mu \mathrm{~mol}, 7 \mu \mathrm{~L})$ and $\mathrm{AgNO}_{3}(3 \mu \mathrm{~mol}, 0.51 \mathrm{mg})$ were added, and the mixture was stirred at $80{ }^{\circ} \mathrm{C}$ for $10 \mathrm{~min} .{ }^{219}$ The resulting mixture was filtered through Celite ${ }^{\mathrm{TM}}$, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, and the filtrate concentrated under vacuum to dryness. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.100: 1\right)$ to give $289(6 \mathrm{mg}, 92 \%)$ as a white solid; $\mathrm{mp}=248-250{ }^{\circ} \mathrm{C} ; R_{f}=0.4$ ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /acetone, 98:2).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.30(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 8.15(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 8.10(\mathrm{~s}, 1 \mathrm{H}, 4 \mathrm{H}-\underline{\mathrm{H}}), 7.79$
 $\left.10^{\prime}, 11^{\prime}, 12^{\prime}, 13^{\prime}, 14^{\prime}-\underline{H}\right), 6.98(d d, J=2.1,8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 6.77(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H}), 3.87$ (s, $3 \mathrm{H}, 9-$ CH_{3}).

 $129.2\left(2 \mathrm{CH}, 11^{\prime}, 13^{\prime}-\underline{-}\right)$, $129.1\left(\mathrm{CH}, 7{ }^{\prime}-\underline{\mathrm{C}}\right), 129.0\left(\mathrm{CH}, 5^{\prime}-\underline{\mathrm{C}}\right), 128.0\left(\mathrm{CH}, 12^{\prime}-\underline{\mathrm{C}}\right), 127.5(\mathrm{CH}, 5-\underline{\mathrm{C}}), 126.4(2$ $\left.\mathrm{CH}, 10^{\prime}, 14^{\prime}-\underline{\mathrm{C}}\right)$, $123.3\left(\mathrm{CH}, 8^{\prime}-\underline{\mathrm{C}}\right), 120.3\left(\mathrm{CH}, 4^{\prime}-\underline{\mathrm{C}}\right), 117.9(\mathrm{qC}, 3$ or $4 \mathrm{a}-\underline{\mathrm{C}}), 117.8(\mathrm{qC}, 3$ or $4 \mathrm{a}-\underline{\mathrm{C}}), 115.2(\mathrm{CH}$, $6-\underline{C}), 100.1(\mathrm{CH}, 8-\underline{C}), 55.9\left(\mathrm{CH}_{3}, 9-\underline{\mathrm{C}}_{3}\right)$.
HRMS (Jet Stream ESI): calc m / z for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{~S}$: 431.0827 [M], $432.0900[\mathrm{M}+\mathrm{H}]+$; found: 431.0824 [M], $432.0898[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): v=3057,2980,2924,2846,1622,1560,1490,1435,1350,1326,1267,1177,1132,1097$, 1017, 937, 919, 833, 715, 657, 562.
Previously unreported.

2-((7-Methoxy-4-oxo-4H-chromen-3-yl)ethynyl)-N-phenylbenzenesulfonamide (285)

Chemical Formula: $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{~S}$
Molecular Weight: 431.46
In a Schlenk flask, $279(100 \mu \mathrm{~mol}, 31 \mathrm{mg})$ was added and the flask was put under vacuum and backfilled with N_{2}. The cap was changed with a septum under a positive pressure of N_{2}, dry DMF (1 mL) and $\mathrm{Et}_{3} \mathrm{~N}$ $(0.5 \mathrm{~mL})$ were added, and the resulting solution was degassed with N_{2} for 20 min . $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(5 \mu \mathrm{~mol}, 3.6$ mg) and $\mathrm{Cul}(12 \mu \mathrm{~mol}, 42.3 \mathrm{mg})$ were added under a positive pressure of N_{2}, and the mixture was stirred for 30 min at room temperature. $147(115 \mu \mathrm{~mol}, 23 \mathrm{mg})$ was dissolved in degassed DMF (0.3 mL) and added with a syringe to the mixture over 1 h . After the first addition of alkyne, the temperature was raised to $70^{\circ} \mathrm{C}$, and the resulting mixture was stirred at this temperature overnight. ${ }^{218}$ Water was added and the mixture was extracted with dichloromethane $(3 \times 15 \mathrm{~mL})$. The organic layer was washed with water $(3 \times 10$ $\mathrm{mL})$, brine $(15 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.100: 1\right)$ to give the intermediate $285(8 \mathrm{mg}, 18 \%)$ as a white solid; $m p=235-236{ }^{\circ} \mathrm{C} ; R_{f}=0.49\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.98: 2\right)$. The starting materials were also separated, 279 ($21 \mathrm{mg}, 67 \%$) and 147 ($2 \mathrm{mg}, 8 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=10.53$ (s, $1 \mathrm{H}, 1$ ' $\mathrm{SO}_{2} \mathrm{NH}$), $8.28-8.20(\mathrm{~m}, 2 \mathrm{H}, 2,5-\underline{\mathrm{H}}$), 8.13 (dd, J=1.3, $7.7 \mathrm{~Hz}, 1 \mathrm{H}, 2$ '- -H), 7.54 (dd, J = 1.3, $7.4 \mathrm{~Hz}, 1 \mathrm{H}, 5$ '- -H), 7.46 (td, J = $1.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}, 4{ }^{\prime}-\underline{H}$), 7.41 (td, J = $\left.1.4,7.7 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-\underline{H}\right), 7.29\left(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, 8^{\prime}, 12^{\prime}-\underline{H}\right), 7.16\left(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}, 9^{\prime}, 11^{\prime}-\underline{H}\right), 7.06$ (dd, J= 2.3, $8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{\mathrm{H}}), 6.96\left(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, 10{ }^{\prime}-\underline{\mathrm{H}}\right), 6.91(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{\mathrm{H}}), 3.94\left(\mathrm{~s}, 3 \mathrm{H}, 9-\mathrm{CH}_{3}\right)$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=176.4$ (qC, $\left.4-\underline{\mathrm{C}}\right), 164.9(\mathrm{qC}, 7-\underline{\mathrm{C}}), 158.0(\mathrm{qC}, 8 \mathrm{a}-\mathrm{C}), 157.5(\mathrm{CH}, 2-\underline{\mathrm{C}}), 141.6$
 $128.6\left(\mathrm{CH}, 3^{\prime}-\underline{\mathrm{C}}\right), 127.9(\mathrm{CH}, 5-\underline{\mathrm{C}}), 123.9\left(\mathrm{CH}, 10^{\prime}-\underline{\mathrm{C}}\right), 120.2\left(2 \mathrm{CH}, 8^{\prime}, 12^{\prime}-\underline{\mathrm{C}}\right), 120.1$ (qC, 4a or 6'- ${ }^{\prime}$), 116.8 (qC, 4 a or 6 '- $-\underline{C}$), $115.6(\mathrm{CH}, 6-\underline{\mathrm{C}}), 110.5(\mathrm{qC}, 3-\underline{\mathrm{C}}), 100.5(\mathrm{CH}, 8-\underline{\mathrm{C}}), 93.1(\mathrm{qC}, 11-\underline{\mathrm{C}}), 88.0(\mathrm{qC}, 10-\underline{\mathrm{C}}), 56.0$ $\left(\mathrm{CH}_{3}, 9-\mathrm{CH}_{3}\right)$.
HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{~S}$: 431.0827 [M], $432.0900[\mathrm{M}+\mathrm{H}]^{+}$; found: 431.0830 [M], $432.0903[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3147,3083,2896,2231,1622,1593,1437,1269,1213,1152,1093,921,832,760,693$, 564.

Previously unreported.

7-Methoxy-3-(2-methyl-1,1-dioxido-2H-benzo[e][1,2]thiazin-3-yl)-4H-chromen-4-one (290)

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NO}_{5} \mathrm{~S}$
Molecular Weight: 369.39
Step i. Into a Schlenk flask were added 283 ($85 \mu \mathrm{~mol}, 25 \mathrm{mg}$), 10\% Pd/C ($2.55 \mu \mathrm{~mol}, 2.7 \mathrm{mg}, 3 \mathrm{~mol} \%$), $\mathrm{PPh}_{3}(10.2 \mu \mathrm{~mol}, 2.7 \mathrm{mg}, 12 \mathrm{~mol} \%)$, Cul ($4.25 \mu \mathrm{~mol}, 0.81 \mathrm{mg}, 5 \mathrm{~mol} \%$) and $147(97.75 \mu \mathrm{~mol}, 19.6 \mathrm{mg})$, and the mixture was placed under vacuum and backfilled with N_{2} three times. The cap was changed with a septum stopper under a positive pressure of N_{2} and the flask was placed on an ice bath. Dry MeCN (1.5 mL , degassed) was added, and the resulting suspension was degassed with N_{2} for 10 min at $0^{\circ} \mathrm{C}$. $\mathrm{Et}_{3} \mathrm{~N}$ $(255 \mu \mathrm{~mol}, 36 \mu \mathrm{~L})$ was added dropwise at $0^{\circ} \mathrm{C}$, and stirred for 5 min . The reaction mixture was allowed to warm to RT, the septum stopper was replaced with a lid under a positive pressure of N_{2}, and the reaction was stirred overnight at $80^{\circ} \mathrm{C} .{ }^{221}$ The resulting mixture was filtered through Celite ${ }^{\mathrm{TM}}$, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(25 \mathrm{~mL})$, and the filtrate concentrated under vacuum to dryness. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, 100:1) to give a mixture of the intermediate $\mathbf{2 8 6}$ with the final product 290 (approximately $1: 1,14 \mathrm{mg}$) as a white solid; $R_{f}=0.3\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.98: 2\right)$. The starting $283(9 \mathrm{mg}$, 36%) was also separated.
Step ii. The obtained mixture (14 mg) was dissolved in dry ethanol (1 mL) under N_{2}, $\mathrm{Et} 3 \mathrm{~N}(57 \mu \mathrm{~mol}, 8 \mu \mathrm{~L})$ and $\mathrm{AgNO}_{3}(3.8 \mu \mathrm{~mol}, 0.64 \mathrm{mg})$ were added, and the mixture was stirred at $80^{\circ} \mathrm{C}$ for $10 \mathrm{~min} . .^{219}$ The resulting mixture was filtered through Celite ${ }^{\mathrm{TM}}$, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, and the filtrate concentrated under vacuum to dryness. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.100: 1\right)$ to give 290 ($13 \mathrm{mg}, 41 \%$ yield over two steps) as a white solid; $\mathrm{mp}=261-262{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.3\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, 98:2).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.37(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 8.20(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.90(\mathrm{app} \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, 1$ $\mathrm{H}, 8^{\prime}-\underline{H}$), 7.68 (s, $1 \mathrm{H}, 4^{\prime}-\underline{H}$), 7.63 (td, J = 1.2, $7.5 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\underline{H}$), $7.58-7.51$ (m, $2 \mathrm{H}, 5^{\prime}, 7^{\prime}-\underline{H}$), 7.05 (dd, J = $2.3,8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{\mathrm{H}}$), $6.91\left(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{\mathrm{H}}\right.$), $3.94\left(\mathrm{~s}, 3 \mathrm{H}, 9-\mathrm{CH}_{3}\right), 2.97\left(\mathrm{~s}, 3 \mathrm{H}, 9^{\prime}-\mathrm{CH}_{3}\right)$.
 (qC, 3'- $-\underline{C}$), 132.6 ($q \mathrm{qC}, 4^{\prime} \mathrm{a}$ or $8^{\prime} \mathrm{a}-\underline{\mathrm{C}}$), 132.5 ($\mathrm{CH}, 6^{\prime}-\underline{\mathrm{C}}$), 131.7 (qC, $4^{\prime} \mathrm{a}$ or $8^{\prime} \mathrm{a}-\underline{\mathrm{C}}$), 128.9 (CH, 5^{\prime} or $7^{\prime}-\underline{\mathrm{C}}$), 128.7
 4'-ㅡㅡ), 115.4 (CH, 6-ㅡㅡ), $100.2(\mathrm{CH}, 8-\underline{\mathrm{C}}), 56.0\left(\mathrm{CH}_{3}, 9-\underline{\mathrm{CH}_{3}}\right), 35.9\left(\mathrm{CH}_{3}, 9\right.$ 9'- $\left.\mathrm{CH}_{3}\right)$.
HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NO}_{5} \mathrm{~S}: 369.0671$ [M], 370.0744 [M+H]+; found: 369.0673 [M], $370.0744[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3078,2946,2843,1644,1619,1592,1434,1322,1165,1093,841,770,650,578$.
Previously unreported.

7-Methoxy-3-(2-(4-methoxybenzyl)-1,1-dioxido-2H-benzo[e][1,2]thiazin-3-yl)-4H-chromen-4-one (292), and 2-((7-methoxy-4-oxo-4H-chromen-3-yl)ethynyl)-N-(4-methoxybenzyl) benzenesulfonamide (288)

Step i. Into a Schlenk flask were added $284(85 \mu \mathrm{~mol}, 34.2 \mathrm{mg}), 10 \% \mathrm{Pd} / \mathrm{C}(2.55 \mu \mathrm{~mol}, 2.7 \mathrm{mg}, 3 \mathrm{~mol} \%)$, $\mathrm{PPh}_{3}(10.2 \mu \mathrm{~mol}, 2.7 \mathrm{mg}, 12 \mathrm{~mol} \%$), Cul ($4.25 \mu \mathrm{~mol}, 0.81 \mathrm{mg}, 5 \mathrm{~mol} \%$) and $147(97.75 \mu \mathrm{~mol}, 19.6 \mathrm{mg})$, and the mixture was placed under vacuum and backfilled with N_{2} three times. The cap was changed with a septum stopper under a positive pressure of N_{2} and the flask was placed on an ice bath. Dry MeCN (1.5 mL , degassed) was added, and the resulting suspension was degassed with N_{2} for 10 min at $0{ }^{\circ} \mathrm{C} . \mathrm{Et}_{3} \mathrm{~N}$ ($255 \mu \mathrm{~mol}, 36 \mu \mathrm{~L}$) was added dropwise at $0^{\circ} \mathrm{C}$, and stirred for 5 min . The reaction mixture was allowed to warm to RT, the septum stopper was replaced with a lid under a positive pressure of N_{2}, and after the reaction was stirred overnight at $80^{\circ} \mathrm{C} .{ }^{221}$ The resulting mixture was filtered through Celite ${ }^{\mathrm{TM}}$, washed with DCM (25 mL), and the filtrate concentrated under vacuum to dryness. The crude was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /acetone, $\left.100: 1\right)$ to give a mixture of the intermediate 288 with the final product 292 (approximately $10: 1,14 \mathrm{mg})$ as a pale yellow solid; $R_{f}=0.35\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, 98:2). The starting 284 ($4 \mathrm{mg}, 11 \%$) was also separated.
Step ii. The obtained mixture (14 mg) was dissolved in dry ethanol (1 mL) under N_{2}, $\mathrm{Et}_{3} \mathrm{~N}(88 \mu \mathrm{~mol}, 12 \mu \mathrm{~L}$) and $\mathrm{AgNO}_{3}(6 \mu \mathrm{~mol}, 1 \mathrm{mg})$ were added, and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 10 min . ${ }^{219}$ The resulting mixture was filtered through Celite ${ }^{\text {TM }}$, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, and the filtrate concentrated under vacuum to dryness. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.100: 1\right)$ to give 292 ($12.5 \mathrm{mg}, 31 \%$ yield over two steps) as a white solid; $\mathrm{mp}=212-213^{\circ} \mathrm{C} ; R_{f}=0.35\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, 98:2).

- 7-methoxy-3-(2-(4-methoxybenzyl)-1,1-dioxido-2H-benzo[e][1,2]thiazin-3-yl)-4H-chromen-4-one (292)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.25-8.18(\mathrm{~m}, 2 \mathrm{H}, 2,5-\underline{\mathrm{H}}), 7.75$ (app d, J=7.6 Hz, $1 \mathrm{H}, 8$ '- H), 7.53 (s, 1 $\mathrm{H}, 4^{\prime}-\underline{\mathrm{H}}$), 7.46 (td, J = 1.3, $7.5 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\underline{H}$), $7.40\left(\mathrm{td}, \mathrm{J}=1.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}, 7{ }^{\prime}-\underline{H}\right.$), $7.30(\mathrm{app} \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, 1$ H, 5'- -), 7.05 (dd, J = 2.3, $8.9 \mathrm{~Hz}, 1 \mathrm{~h}$), $6.91-6.85$ (m, $3 \mathrm{H}, 8,11^{\prime}, 15^{\prime}-\underline{H}$), 6.49 (d, J = $8.7 \mathrm{~Hz}, 2 \mathrm{H}, 12^{\prime}, 14^{\prime}-$ H), $4.55\left(\mathrm{~s}, 2 \mathrm{H}, 9^{\prime}-\mathrm{CH}_{2}\right), 3.94\left(\mathrm{~s}, 3 \mathrm{H}, 9-\mathrm{CH}_{3}\right), 3.62\left(\mathrm{~s}, 3 \mathrm{H}, 16{ }^{\prime}-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=174.6$ (qC, 4-C-C), 164.4 (qC, $7-\underline{C}$), 159.1 (qC, 8a or 13 '- C), 157.4 (qC, 8a or $13^{\prime}-\underline{C}$), 156.7 ($\mathrm{CH}, 2-\underline{\mathrm{C}}$), 133.6 ($\mathrm{qC}, 3^{\prime}-\underline{\mathrm{C}}$), 133.3 ($\mathrm{qC}, 4$ 'a or 8 'a- \underline{C}), 132.5 ($\mathrm{qC}, 4$ 'a or 8 'a- \underline{C}), 131.9 (CH, $\left.6^{\prime}-\underline{C}\right), 130.2\left(2 \mathrm{CH}, 11^{\prime}, 15^{\prime}-\underline{\mathrm{C}}\right), 128.5\left(\mathrm{CH}, 7{ }^{\prime}-\underline{\mathrm{C}}\right), 128.3\left(\mathrm{CH}, 5^{\prime}-\mathrm{C}\right.$), $127.6(\mathrm{CH}, 5-\underline{\mathrm{C}}), 125.7\left(\mathrm{qC}, 10^{\prime}-\underline{\mathrm{C}}\right), 122.3$ ($\left.\mathrm{CH}, 8^{\prime}-\underline{\mathrm{C}}\right), 120.3\left(\mathrm{CH}, 4^{\prime}-\underline{\mathrm{C}}\right), 118.2(\mathrm{qC}, 3$ or $4 \mathrm{a}-\underline{\mathrm{C}}), 117.9(\mathrm{qC}, 3$ or $4 \mathrm{a}-\underline{\mathrm{C}}), 115.3(\mathrm{CH}, 6-\underline{\mathrm{C}}), 113.1(2 \mathrm{CH}$, $\left.12^{\prime}, 14^{\prime}-\underline{\mathrm{C}}\right)$, $100.2(\mathrm{CH}, 8-\underline{\mathrm{C}}), 55.9\left(\mathrm{CH}_{3}, 9-\underline{\mathrm{CH}_{3}}\right), 55.1\left(\mathrm{CH}_{3}, 16\right.$ '- $\left.\left.\mathrm{CH}_{3}\right), 52.8\left(\mathrm{CH}_{2}, 9{ }^{\prime}-\underline{\mathrm{C}_{2}}\right)^{2}\right)$.
HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{NO}_{6} \mathrm{~S}$: 475.1090 [M], 476.1162 [$\left.\mathrm{M}+\mathrm{H}\right]^{+}$; found: 475.1098 [M], $476.1171[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): v=3076,2981,2835,1641,1596,1513,1436,1337,1245,1172,1074,853,763,665$.

Previously unreported.

- intermediate 2-((7-methoxy-4-oxo-4H-chromen-3-yl)ethynyl)- N -(4-methoxybenzyl) benzenesulfonamide (288)

Chemical Formula: $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{NO}_{6} \mathrm{~S}$
Molecular Weight: 475.52
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=8.53(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}, 1$ '-SO2NH$), 8.17(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{H}), 8.11$ (d, J = 8.9 Hz , $1 \mathrm{H}, 5-\underline{H}$), 8.00 (dd, J = 1.5, $7.2 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\underline{H}$), $7.47-7.33\left(\mathrm{~m}, 3 \mathrm{H}, 3^{\prime}, 4^{\prime}, 5^{\prime}-\underline{H}\right), 7.14(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}$, $9^{\prime}, 13^{\prime}-\underline{H}$), 7.01 ($\mathrm{dd}, \mathrm{J}=2.3,8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}$), 6.87 ($\mathrm{d}, \mathrm{J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H}$), $6.61\left(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 10^{\prime}, 12^{\prime}-\right.$

Previously unreported.

3-(1,1-Dioxido-2H-benzo[e][1,2]thiazin-3-yl)-7-methoxy-4H-chromen-4-one (293)

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{NO}_{5} \mathrm{~S}$
Molecular Weight: 355.36
$292(8.4 \mu \mathrm{~mol}, 4 \mathrm{mg})$ was dissolved in trifluoroacetic acid (0.5 mL) under N_{2} at RT , and the yellow solution was stirred at RT for 6 h . The volatiles were removed, and the crude product was purified by flash chromatography ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /acetone, 100:2) to give $293(1.6 \mathrm{mg}, 53 \%)$ as a white solid; $\mathrm{mp}=239-240^{\circ} \mathrm{C}$; R_{f} $=0.12\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.98: 2\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=9.65$ (br s, $\left.1 \mathrm{H}, 2^{\prime}-\mathrm{NH}\right), 8.35(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{H}), 8.17(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{H})$, 7.93 (app d, J = $\left.7.7 \mathrm{~Hz}, 1 \mathrm{H}, 8^{\prime}-\underline{H}\right), 7.58$ (td, J = 1.1, $7.7 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\underline{H}$), 7.49 (td, J = 1.1, $7.7 \mathrm{~Hz}, 1 \mathrm{H}, 7{ }^{\prime}-\underline{H}$), 7.43 (app d, J = $7.7 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\underline{H}$), 7.06 (dd, J = $\left.2.3,8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}\right), 6.90(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{\mathrm{H}}), 6.63$ (s, $1 \mathrm{H}, 4 \mathrm{4}^{\prime}-\underline{\mathrm{H}}$), 3.94 (s, $3 \mathrm{H}, 9-\mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta=176.1$ (qC, 4-ㅡㅡ), 164.9 ($\mathrm{qC}, 7-\underline{\mathrm{C}}$), 157.6 ($\mathrm{qC}, 8 \mathrm{a}-\underline{\mathrm{C}}$), $153.5(\mathrm{CH}, 2-\underline{\mathrm{C}}), 133.6$ (qC, 3'- $-\mathbf{C}$), 132.8 (qC, 4'a(CH, 5-C), 121.5 (CH, 8'-C), 117.7 (qC, 3 or $4 \mathrm{a}-\underline{\mathrm{C}}$), 117.3 (qC, 3 or $4 \mathrm{a}-\underline{\mathrm{C}})$, 115.7 (CH, 6-C-C), 106.0 (CH, 4'C), $100.2(\mathrm{CH}, 8-\underline{\mathrm{C}}), 56.0\left(\mathrm{CH}_{3}, 9-\mathrm{CH}_{3}\right)$.

HRMS (Dual AJSESI): calc m / z for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{NO}_{5} \mathrm{~S}: 355.0514$ [M], 356.0587 [M+H]+; found: 355.0516 [M], $356.0588[\mathrm{M}+\mathrm{H}]^{+}$.

Previously unreported.

3.2.6 Synthesis of ester and carbamate ester derivatives of some isoflavones

5-Hydroxy-3-(4-methoxyphenyl)-4-oxo-4H-chromen-7-yl dodecanoate (295)

Chemical Formula: $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{6}$ Molecular Weight: 466.57

To a solution of $71(0.35 \mathrm{mmol}, 100 \mathrm{mg})$ in anhydrous $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, pyridine (0.85 mL) and dodecanoyl chloride $294(0.42 \mathrm{mmol}, 92 \mathrm{mg}, 100 \mu \mathrm{~L})$ were added dropwise, and the mixture was stirred overnight at $45^{\circ} \mathrm{C} .{ }^{223}$ The volatiles were removed and the crude was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 100: 1\right)$ to give $295(112 \mathrm{mg}, 68 \%)$ as a pale yellow solid; $\mathrm{mp}=91-92{ }^{\circ} \mathrm{C} ; R_{f}=0.8$ ($\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 97: 3$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.84(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{OH}), 7.93(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 7.45\left(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{\mathrm{H}}\right)$, $6.98\left(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{H}\right), 6.74(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H}), 6.56(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}$, 7'-CH3 \underline{H}_{3}, $2.57\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 "-\mathrm{CH}_{2}\right.$), 1.75 (quintet, $\mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, 3$ " $-\mathrm{CH}_{2}$), $1.48-1.19(\mathrm{~m}, 16 \mathrm{H}$, $\left.4 ", 5 ", 6 ", 7 ", 8 ", 9 ", 10 ", 11 "-\underline{C H}_{2}\right), 0.89\left(t, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, 12 "-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=181.3$ (qC, 4-C-C), 171.3 (qC, 1"-C-C), 162.4 (qC, 5 or 7-C), 160.0 (qC, 5 or 7C), 156.9 (qC, 4' or $8 \mathrm{a}-\underline{\mathrm{C}}$), 156.1 (qC, 4^{\prime} or $8 \mathrm{a}-\mathrm{C}$), $153.3(\mathrm{CH}, 2-\underline{\mathrm{C}}), 130.1$ ($2 \mathrm{CH}, 2^{\prime}, 6^{\prime}-\underline{C}$), 124.1 (qC, 1^{\prime} or $3-\underline{C}$), 122.5 ($q \mathrm{C}, 1^{\prime}$ or $3-\underline{\mathrm{C}}$), 114.2 (2 CH, $3^{\prime}, 5^{\prime}-\underline{\mathrm{C}}$), 109.4 ($\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}$), $105.4(\mathrm{CH}, 6-\underline{\mathrm{C}}), 100.9(\mathrm{CH}, 8-\underline{\mathrm{C}}), 55.4$ $\left(\mathrm{CH}_{3}, 7{ }^{\prime}-\underline{\mathrm{C}} \mathrm{H}_{3}\right), 34.4\left(\mathrm{CH}_{2}\right), 32.0\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 29.1\left(2 \mathrm{CH}_{2}\right), 24.8$ $\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{2}\right), 14.2\left(\mathrm{CH}_{3}, 12\right.$ "- $\left.\mathrm{C}_{3}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{6}$: 466.2355 [M], 467.2428 [M+H]+; found: 466.2361 [M], 467.2430 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3072,2956,2916,2849,1765,1615,1514,1464,1355,1282,1244,1172,1046,841$, 721, 551.

Previously unreported.

5-Hydroxy-3-(3-methoxyphenyl)-4-oxo-4H-chromen-7-yl dodecanoate (296)

Chemical Formula: $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{6}$
Molecular Weight: 466.57

To a solution of $72(0.1 \mathrm{mmol}, 29 \mathrm{mg})$ in anhydrous THF (2 mL), Et $\mathrm{H}_{3} \mathrm{~N}(0.3 \mathrm{mmol}, 42 \mu \mathrm{~L})$ and $294(0.1 \mathrm{mmol}$, $22 \mathrm{mg}, 24 \mu \mathrm{~L}$) were added dropwise, and the mixture was stirred for 6 h at $50^{\circ} \mathrm{C}$. The volatiles were removed, and the crude was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 100: 1\right)$ to give 296 (40 mg , $85 \%)$ as a pale yellow solid; $\mathrm{mp}=57-58^{\circ} \mathrm{C} ; R_{f}=0.8\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 98: 2\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.80(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{OH}), 7.97(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{H}), 7.37\left(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 5{ }^{\prime}-\underline{\mathrm{H}}\right), 7.11$ -7.06 (m, $2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{H}$), $6.98-6.94\left(\mathrm{~m}, 1 \mathrm{H}, 4^{\prime}-\underline{H}\right), 6.75(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H}), 6.58(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}$, $6-\underline{H}$), $3.85\left(\mathrm{~s}, 3 \mathrm{H}, 7\right.$ '- CH_{3}), $2.58\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, 2\right.$ " $-\mathrm{CH}_{2}$), 1.76 (quintet, $\mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, 3$ "-CH2\underline{H}_{2}), $1.47-$ 1.19 ($\mathrm{m}, 16 \mathrm{H}, 4 ", 5 ", 6 ", 7^{\prime \prime}, 8^{\prime \prime}, 9^{\prime \prime}, 10 ", 11 "-\mathrm{CH}_{2}$), $0.88\left(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, 12 "-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=181.1$ (qC, 4-C-C), 171.3 (qC, 1"-C-C), 162.5 (qC, 5 or $7-\underline{C}$), 159.8 (qC, 5 or 7-
 (qC, 3-ㅡㅡ), $121.2\left(\mathrm{CH}, 6{ }^{\prime}-\underline{\mathrm{C}}\right), 114.7\left(\mathrm{CH}, 2^{\prime}-\underline{\mathrm{C}}\right), 114.3\left(\mathrm{CH}, 4{ }^{\prime}-\underline{\mathrm{C}}\right), 109.5(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 105.7(\mathrm{CH}, 6-\underline{\mathrm{C}}), 101.0$ $(\mathrm{CH}, 8-\underline{\mathrm{C}}), 55.4\left(\mathrm{CH}_{3}, 7{ }^{\prime}-\underline{\mathrm{CH}}_{3}\right), 34.5\left(\mathrm{CH}_{2}, 2 "-\underline{\mathrm{C}}_{2}\right), 32.0\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 29.3$ $\left(\mathrm{CH}_{2}\right)$, $29.1\left(\mathrm{CH}_{2}\right)$, $24.9\left(\mathrm{CH}_{2}, 3\right.$ "- $\left.\mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{2}\right), 14.2\left(\mathrm{CH}_{3}, 12\right.$ "- $\left.\mathrm{CH}_{3}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{6}: 466.2355$ [M], 467.2428 [$\left.\mathrm{M}+\mathrm{H}\right]^{+}$; found: 466.2364 [M], 467.2438 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3086,2949,2916,2848,1759,1645,1614,1571,1489,1431,1354,1284,1251,1135$, 1035, 903, 816, 770, 688, 508.
Previously unreported.

5-Hydroxy-3-(2-methoxyphenyl)-4-oxo-4H-chromen-7-yl dodecanoate (297)

To a solution of $73(35 \mu \mathrm{~mol}, 10 \mathrm{mg})$ in anhydrous THF (1 mL), $\mathrm{Et}_{3} \mathrm{~N}(105 \mu \mathrm{~mol}, 15 \mu \mathrm{~L})$ and $294(35 \mu \mathrm{~mol}$, $7.7 \mathrm{mg}, 8.5 \mu \mathrm{~L}$) were added dropwise, and the mixture was stirred for 4 h at $50^{\circ} \mathrm{C}$. The volatiles were removed, and the crude was purified by flash chromatography ($\mathrm{CHCl}_{3} / \mathrm{EtOAc}, 9: 1$) to give $297(13 \mathrm{mg}, 79 \%)$ as a white solid; $\mathrm{mp}=99-100^{\circ} \mathrm{C} ; R_{f}=0.53\left(\mathrm{CHCl}_{3} / \mathrm{EtOAc}, 19: 1\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.82(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{OH}), 7.92(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 7.38\left(\mathrm{td}, \mathrm{J}=1.7,7.9 \mathrm{~Hz}, 1 \mathrm{H}, 4{ }^{4}\right.$ H), 7.30 (dd, J = 1.7, $7.5 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\underline{H}$), 7.03 (td, J = 0.9, $7.5 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\underline{H}$), 7.00 (app d, J = $8.3 \mathrm{~Hz}, 1 \mathrm{H}$, 3 '- \underline{H}), $6.74(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{\mathrm{H}}), 6.56(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, 7{ }^{\prime}-\mathrm{CH}_{3}\right), 2.58(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}$, $2 \mathrm{H}, 2 "-\mathrm{CH}_{2}$), 1.76 (quintet, J = $7.5 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime \prime}-\mathrm{CH}_{2}$), $1.47-1.19$ (m, $16 \mathrm{H}, 4$ ", $5^{\prime \prime}, 6 ", 7 ", 8^{\prime \prime}, 9^{\prime \prime}, 10^{\prime \prime}, 11^{\prime \prime}-\mathrm{CH}_{2}$), $0.88\left(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, 12{ }^{\prime \prime}-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=181.1$ (qC, 4-C-C), 171.4 (qC, 1 "- C), 162.4 (qC, 5 or $7-\underline{\mathrm{C}}$), 157.5 (qC, 5 or 7$\underline{\mathrm{C}}$), 157.0 ($\mathrm{qC}, 2^{\prime}$ or $8 \mathrm{a}-\underline{\mathrm{C}}$), 156.1 ($\mathrm{qC}, 2^{\prime}$ or $8 \mathrm{a}-\underline{\mathrm{C}}$), $155.2(\mathrm{CH}, 2-\underline{\mathrm{C}}), 131.7\left(\mathrm{CH}, 6{ }^{\prime}-\underline{\mathrm{C}}\right), 130.4\left(\mathrm{CH}, 4^{\prime}-\underline{\mathrm{C}}\right)$,
 $(\mathrm{CH}, 6-\underline{\mathrm{C}}), 101.0(\mathrm{CH}, 8-\underline{\mathrm{C}}), 55.8\left(\mathrm{CH}_{3}, 7{ }^{\prime}-\underline{\mathrm{CH}}_{3}\right), 34.5\left(\mathrm{CH}_{2}, 2 "-\underline{\mathrm{CH}_{2}}\right), 32.0\left(\mathrm{CH}_{2}\right), 29.7\left(2 \mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right)$, $29.4\left(\mathrm{CH}_{2}\right)$, $29.3\left(\mathrm{CH}_{2}\right)$, $29.1\left(\mathrm{CH}_{2}\right), 24.9\left(\mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{2}\right), 14.2\left(\mathrm{CH}_{3}, 12\right.$ " $\left.-\underline{\mathrm{CH}_{3}}\right)$.

HRMS (Dual ESI): calc m/z for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{6}$: 466.2355 [M], 467.2428 [M+H]+; found: 466.2349 [M], 467.2422 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR (cm-1): $0=3099,2960,2916,2849,1770,1646,1620,1578,1494,1438,1362,1269,1129,1025$, 916, 838, 747, 505.
Previously unreported.

5-Hydroxy-3-(4-methoxyphenyl)-4-oxo-4H-chromen-7-yl undecylcarbamate (299)

Chemical Formula: $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{NO}_{6}$
Molecular Weight: 481.59
To a solution of $71(0.3 \mathrm{mmol}, 85 \mathrm{mg})$ in anhydrous THF (3 mL), Et ${ }_{3} \mathrm{~N}(0.9 \mathrm{mmol}, 125 \mu \mathrm{~L}$) and undecyl isocyanate $298(0.45 \mathrm{mmol}, 89 \mathrm{mg}, 102 \mu \mathrm{~L})$ were added dropwise, and the mixture was stirred for 6 h at $50^{\circ} \mathrm{C} .{ }^{295}$ The volatiles were removed and the crude was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}\right.$, 100:1) to give 299 ($100 \mathrm{mg}, 69 \%$) as a white solid; $\mathrm{mp}=134-135^{\circ} \mathrm{C} ; R_{f}=0.7\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 98: 2\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.80$ (s, $1 \mathrm{H}, 5-\mathrm{OH}$), 7.93 (s, $1 \mathrm{H}, 2-\underline{H}$), 7.46 (d, J = $8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6{ }^{\prime}-\underline{H}$), $6.99\left(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{H}\right), 6.84(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H}), 6.60(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 5.08(\mathrm{t}, \mathrm{J}=$ $5.7 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime \prime}-\mathrm{NH}$), $3.85\left(\mathrm{~s}, 3 \mathrm{H}, 7^{\prime}-\mathrm{CH}_{3}\right.$), $3.28\left(\mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime \prime}-\mathrm{CH}_{2}\right.$), 1.58 (quintet, $\mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.3^{\prime \prime}-\mathrm{CH}_{2}\right), 1.42-1.19\left(\mathrm{~m}, 16 \mathrm{H}, 4^{\prime \prime}, 5^{\prime \prime}, 6^{\prime \prime}, 7^{\prime \prime}, 8^{\prime \prime}, 9^{\prime \prime}, 10^{\prime \prime}, 11^{\prime \prime}-\mathrm{CH}_{2}\right), 0.88\left(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, 12^{\prime \prime}-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=181.4$ (qC, 4-C-C), 162.3 (qC, 5 or $7-\underline{\mathrm{C}}$), 160.0 (qC, 5 or $7-\underline{\mathrm{C}}$), 157.0 (qC, 4^{\prime}
 $3-\underline{\mathrm{C}}$), 122.7 (qC, 1^{\prime} or $3-\underline{\mathrm{C}}$), 114.2 ($2 \mathrm{CH}, 3^{\prime}, 5^{\prime}-\underline{\mathrm{C}}$), 109.0 ($\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}$), $105.0(\mathrm{CH}, 6-\underline{\mathrm{C}}), 100.5(\mathrm{CH}, 8-\underline{\mathrm{C}}), 55.5$ $\left(\mathrm{CH}_{3}, \mathrm{~T}^{\prime}-\mathrm{CH}_{3}\right), 41.5\left(\mathrm{CH}_{2}, 2^{\prime \prime}-\underline{\mathrm{CH}_{2}}\right), 32.0\left(\mathrm{CH}_{2}\right), 29.9\left(\mathrm{CH}_{2}\right), 29.8\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right)$, $29.6\left(\mathrm{CH}_{2}\right)$, $29.4\left(\mathrm{CH}_{2}\right)$, $29.3\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{2}\right), 14.2\left(\mathrm{CH}_{3}, 12 "-\mathrm{CH}_{3}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{NO}_{6}: 481.2464$ [M], 482.2537 [M+H] ${ }^{+}$; found: 481.2457 [M], 482.2527 [$\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR (cm^{-1}): $\mathrm{v}=3371,3078,3000,2952,2920,2850,1731,1647,1613,1583,1530,1358,1290,1241$, 1029, 836, 758, 558.
Known compound, modified method. ${ }^{223}$

5-Hydroxy-3-(3-methoxyphenyl)-4-oxo-4H-chromen-7-yl undecylcarbamate (300)

Chemical Formula: $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{NO}_{6}$
Molecular Weight: 481.59

To a solution of $72(0.2 \mathrm{mmol}, 57 \mathrm{mg})$ in anhydrous THF (3 mL), Et $\mathrm{H}_{3} \mathrm{~N}(0.6 \mathrm{mmol}, 84 \mu \mathrm{~L})$ and $298(0.3 \mathrm{mmol}$, $60 \mathrm{mg}, 69 \mu \mathrm{~L}$) were added dropwise, and the mixture was stirred for 6 h at $50^{\circ} \mathrm{C}$. The volatiles were removed, and the crude was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 100: 1\right)$ to give 300 (70 mg , $72 \%)$ as a white solid; $\mathrm{mp}=108-109{ }^{\circ} \mathrm{C} ; R_{f}=0.65\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 99: 1\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.77(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{OH}), 7.96(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{H}), 7.37\left(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 5{ }^{\prime}-\underline{\mathrm{H}}\right), 7.12$ $-7.05\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{H}\right), 6.99-6.93\left(\mathrm{~m}, 1 \mathrm{H}, 4^{\prime}-\underline{H}\right), 6.86(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H}), 6.61(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}$, $6-\underline{H}$), $5.08(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}, 1$ "-NH$), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, 7{ }^{\prime}-\underline{C H}_{3}\right), 3.28\left(\mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, 2\right.$ "- CH_{2}), 1.58 (quintet, $\left.\mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, 3 "-\underline{C H}_{2}\right), 1.42-1.19\left(\mathrm{~m}, 16 \mathrm{H}, 4 ", 5^{\prime \prime}, 6 ", 7 ", 8^{\prime \prime}, 9^{\prime \prime}, 10^{\prime \prime}, 11^{\prime \prime}-\mathrm{CH}_{2}\right), 0.88(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, 12$ "CH_{3}).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=181.1$ (qC, 4-C-C), 162.4 (qC, 5 or $7-\underline{\mathrm{C}}$), 159.8 (qC, 5 or $7-\mathrm{C}$), 157.0 (qC, 3'
 $124.3(\mathrm{qC}, 3-\underline{\mathrm{C}}), 121.3\left(\mathrm{CH}, 6^{\prime}-\underline{-}\right)$, $114.7\left(\mathrm{CH}, 2^{\prime}-\underline{\mathrm{C}}\right), 114.3\left(\mathrm{CH}, 4{ }^{\prime}-\underline{\mathrm{C}}\right), 109.0(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 105.1$ ($\mathrm{CH}, 6-\underline{\mathrm{C}}$), $100.5(\mathrm{CH}, 8-\underline{\mathrm{C}}), 55.4\left(\mathrm{CH}_{3}, 7{ }^{\prime}-\underline{\mathrm{C}} \mathrm{H}_{3}\right), 41.5\left(\mathrm{CH}_{2}, 2 "-\underline{\mathrm{CH}} \mathrm{H}_{2}\right), 32.0\left(\mathrm{CH}_{2}\right), 29.9\left(\mathrm{CH}_{2}\right), 29.8\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right)$, $29.6\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right)$, $29.3\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{2}\right)$, $22.8\left(\mathrm{CH}_{2}\right), 14.2\left(\mathrm{CH}_{3}, 12\right.$ "- $\left.-\underline{\mathrm{CH}_{3}}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{NO}_{6}$: 481.2464 [M], 482.2537 [M+H]+; found: 481.2471 [M], 482.2544 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): ~ v=3338,3076,2953,2917,2849,1721,1650,1619,1573,1530,1433,1359,1239,1176$, 1141, 1035, 817, 774, 690, 572.

Previously unreported.

5-Hydroxy-3-(2-methoxyphenyl)-4-oxo-4H-chromen-7-yl undecylcarbamate (301)

Chemical Formula: $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{NO}_{6}$
Molecular Weight: 481.59
To a solution of $73(35 \mu \mathrm{~mol}, 10 \mathrm{mg})$ in anhydrous THF (1 mL), $\mathrm{Et}_{3} \mathrm{~N}(105 \mu \mathrm{~mol}, 15 \mu \mathrm{~L})$ and $298(53 \mu \mathrm{~mol}$, $10.4 \mathrm{mg}, 12 \mu \mathrm{~L}$) were added dropwise, and the mixture was stirred for 4 h at $50^{\circ} \mathrm{C}$. The volatiles were removed, and the crude was purified by flash chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{EtOAc}, 19: 1\right)$ to give 301 (13 mg , 77%) as a white solid; $\mathrm{mp}=95-96{ }^{\circ} \mathrm{C} ; R_{f}=0.41\left(\mathrm{CHCl}_{3} / \mathrm{EtOAc}, 19: 1\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.79(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{OH}), 7.91(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{\mathrm{H}}), 7.39(\mathrm{td}, \mathrm{J}=1.7,7.9 \mathrm{~Hz}, 1 \mathrm{H}, 4$ ' H), 7.30 (dd, J = 1.7, $7.5 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\underline{\mathrm{H}}$), $7.03\left(\mathrm{appt} \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\underline{\mathrm{H}}\right.$), 6.99 (app d, J = $8.3 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-$ H), $6.84(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{\mathrm{H}}), 6.59(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 5.08(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}, 1$ "-NH), $3.80(\mathrm{~s}, 3$ $\mathrm{H}, 7{ }^{\prime}-\mathrm{CH}_{3}$), $3.27\left(\mathrm{q}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 "-\underline{C H}_{2}\right), 1.58\left(\mathrm{~m}, 2 \mathrm{H}, 3 "-\underline{C H}_{2}\right), 1.42-1.19(\mathrm{~m}, 16 \mathrm{H}$, $\left.4 ", 5 ", 6 ", 7 ", 8 ", 9 ", 10 ", 11 "-\underline{C H}_{2}\right), 0.88\left(t, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, 12 "-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=181.0$ (qC, 4-C-C), 162.2 (qC, 5 or $7-\underline{\mathrm{C}}$), 157.5 ($\mathrm{qC}, 5$ or $7-\underline{\mathrm{C}}$), 157.1 (qC, 2'
 $121.5\left(\mathrm{qC}, 1^{\prime}\right.$ or $3-\underline{\mathrm{C}}$), $120.7\left(\mathrm{CH}, 5^{\prime}-\underline{\mathrm{C}}\right)$, $119.4\left(\mathrm{qC}, 1^{\prime}\right.$ or $3-\underline{\mathrm{C}}$), $111.4\left(\mathrm{CH}, 3^{\prime}-\underline{\mathrm{C}}\right), 109.1(\mathrm{qC}, 4 \mathrm{a}-\underline{\mathrm{C}}), 105.0$
$(\mathrm{CH}, 6-\underline{\mathrm{C}}), 100.6(\mathrm{CH}, 8-\underline{\mathrm{C}}), 55.8\left(\mathrm{CH}_{3}, 7{ }^{\prime}-\underline{\mathrm{CH}}_{3}\right), 41.5\left(\mathrm{CH}_{2}, 2 "-\underline{\mathrm{CH}_{2}}\right), 32.0\left(\mathrm{CH}_{2}\right), 29.9\left(\mathrm{CH}_{2}\right), 29.8\left(\mathrm{CH}_{2}\right)$, $29.7\left(\mathrm{CH}_{2}\right)$, $29.6\left(\mathrm{CH}_{2}\right)$, $29.4\left(\mathrm{CH}_{2}\right)$, $29.3\left(\mathrm{CH}_{2}\right)$, $26.8\left(\mathrm{CH}_{2}\right)$, $22.8\left(\mathrm{CH}_{2}\right)$, $14.2\left(\mathrm{CH}_{3}, 12\right.$ " $\left.-\mathrm{CH}_{3}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{NO}_{6}$: 481.2464 [M], 482.2537 [M+H]+; found: 481.2454 [M], 482.2535 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): v=3348,3084,2916,2849,1749,1650,1615,1578,1517,1493,1434,1361,1307,1222$, 1145, 1035, 848, 746, 506.
Previously unreported.

3.2.7 Synthesis of some other hybrid derivatives of isoflavones

Dimethyl 1-(2-(3-(((3-(4-methoxyphenyl)-4-oxo-4H-chromen-7-yl)oxy)methyl)-1,2,4-oxadiazol-5-yl)phenyl)-1H-1,2,3-triazole-4,5-dicarboxylate (305)

Chemical Formula: $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{9}$
Molecular Weight: 609.55
A solution of $174(43 \mu \mathrm{~mol}, 20 \mathrm{mg})$ and $304(86 \mu \mathrm{~mol}, 12.3 \mathrm{mg}, 11 \mu \mathrm{~L})$ in dry toluene and under N_{2} was stirred overnight at $100{ }^{\circ} \mathrm{C} .{ }^{225}$ The volatiles were removed and the crude was purified by flash chromatography (DCM/EtOAc, 4:1) to give 305 ($19 \mathrm{mg}, 73 \%$) as a white solid; $\mathrm{mp}=178-179{ }^{\circ} \mathrm{C} ; R_{f}=0.43$ (DCM/EtOAc, 4:1). 174 ($3 \mathrm{mg}, 15 \%$) was also separated.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.39-8.32(\mathrm{~m}, 1 \mathrm{H}, 8 "-\mathrm{H}), 8.23(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{\mathrm{H}}), 7.93(\mathrm{~s}, 1 \mathrm{H}, 2-$ H), $7.87-7.77$ (m, 2 H, $9^{\prime}, 10^{\prime}-\underline{H}$), $7.63-7.56\left(\mathrm{~m}, 1 \mathrm{H}, 11^{\prime}-\underline{H}\right), 7.49$ (d, J = $\left.8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\underline{H}\right), 7.04$ (dd, J $=2.3,8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\underline{H}), 6.94\left(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\underline{H}\right), 6.93(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-\underline{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}, 6$ "CH_{2}), 4.01 ($\mathrm{s}, 3 \mathrm{H}$), $3.83(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=175.8$ (qC, $\left.4-\underline{\mathrm{C}}\right), 173.0(\mathrm{qC}, 5 "-\mathrm{C}), 166.7(\mathrm{qC}, 3 "-\underline{\mathrm{C}}), 161.9(\mathrm{qC}, 7-\mathrm{C}), 160.3$ (qC), 159.7 (qC), 158.2 (qC), 157.7 (qC), $152.3(\mathrm{CH}, 2-\underline{C}), 139.4(q C), 134.2(q C), 133.7(C H, 9 "$ or 10 "-C-C),
 $5-\underline{C}), 125.0(q C), 124.1(q C), 121.5(q C), 119.3(q C), 114.7(C H, 6-\underline{C}), 114.0\left(2 \mathrm{CH}, 3^{\prime}, 5^{\prime}-\mathrm{C}\right), 101.7(\mathrm{CH}, 8-$ C $)$, $61.3\left(\mathrm{CH}_{2}, 6 "-\underline{\mathrm{C}} \mathrm{H}_{2}\right), 55.4\left(\mathrm{CH}_{3}\right), 53.5\left(\mathrm{CH}_{3}\right), 53.0\left(\mathrm{CH}_{3}\right)$.
HRMS (Dual ESI): calc m / z for $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{9}$: 609.1496 [M], $610.1569[\mathrm{M}+\mathrm{H}]^{+}$; found: 609.1510 [M], 610.1578 $[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR $\left(\mathrm{cm}^{-1}\right): v=3078,2980,2929,2850,1737,1640,1608,1575,1513,1440,1354,1289,1176,1100$, 1022, 959, 826, 755, 550.

Previously unreported.

To a solution at room temperature of $123(0.2 \mathrm{mmol}, 50 \mathrm{mg})$ and $185(0.2 \mathrm{mmol}, 33 \mathrm{mg})$ in 1,4-dioxane (2 mL), N, N-diisopropylethylamine ($1 \mathrm{mmol}, 128 \mathrm{mg}, 0.17 \mathrm{~mL}$) was added. ${ }^{296}$ After the reaction mixture was stirred for 24 h at $100^{\circ} \mathrm{C}$, the end of reaction was confirmed by TLC and the mixture was diluted with 10 mL of water and cooled in ice. The precipitate was collected by filtration, washed with cold water, and dried under vacuum. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 100: 2\right)$ to give 307 ($40 \mathrm{mg}, 54 \%$) as a pale brown solid; $\mathrm{mp}=178-180^{\circ} \mathrm{C} ; R_{f}=0.2\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 100: 2\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{DMSO}): ~ \delta=8.40(\mathrm{~s}, 1 \mathrm{H}, 2-\underline{H}), 8.17$ (d, J = $\left.8.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\underline{H}\right), 7.93$ (dd, J = 1.2, 8.1 Hz,

 ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, \mathrm{DMSO}): ~ \delta=175.51$ (qC), 165.74 (qC), 156.56 (qC), 154.94 (qC), 153.59 (CH), 152.93 (qC), $149.20(q C), 135.68(C H), 131.61(C H), 130.00(2 C H), 127.31(C H), 124.87(q C), 122.01(q C)$, $120.82(\mathrm{CH}), 118.90(\mathrm{qC}), 117.20(\mathrm{CH}), 115.46(\mathrm{CH}), 113.87(2 \mathrm{CH}), 112.23(\mathrm{CH}), 107.32(\mathrm{qC})$.

HRMS (Dual ESI): calc m / z for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$: 372.1110 [M], $373.1183[\mathrm{M}+\mathrm{H}]^{+}$; found: 372.1111 [M], 373.1183 $[\mathrm{M}+\mathrm{H}]^{+}$.

FT-IR (cm^{-1}): $v=3461,3353,3224,3072,1699,1613,1588,1437,1216,1176,1046,884,749,542$.
Previously unreported

Chapter 4 References

1. S. O. Bachurin, E. V. Bovina and A. A. Ustyugov, Med. Res. Rev., 2017, 37, 1186-1225.
2. A. Martinez, M. D. Palomo Ruiz, D. I. Perez and C. Gil, Expert Opin. Investig. Drugs, 2017, 26, 403-414.
3. M. L. Bolognesi, Future Med. Chem., 2017, 9, 707-709.
4. K. M. Anderson and R. L. Mosley, in Neuroimmune Pharmacology, Springer, 2017, pp. 681-711.
5. Y. B. Lee, H. J. Lee and H. S. Sohn, J. Nutr. Biochem., 2005, 16, 641-649.
6. S. J. Chinta, A. Ganesan, P. Reis-Rodrigues, G. J. Lithgow and J. K. Andersen, Neurotox. Res., 2013, 23, 145-153.
7. X. Wang, S. Chen, G. Ma, M. Ye and G. Lu, Neuroreport, 2005, 16, 267-270.
8. N. T. Hiep, J. Kwon, D. W. Kim, B. Y. Hwang, H. J. Lee, W. Mar and D. Lee, Phytochemistry, 2015, 111, 141-148.
9. C. E. Rüfer and S. E. Kulling, J. Agric. Food. Chem., 2006, 54, 2926-2931.
10. F. H. Sarkar and Y. Li, Cancer Metastasis Rev., 2002, 21, 265-280.
11. M. M. Rahman, A. I. Gray, P. Khondkar and S. D. Sarker, Pharm. Biol., 2008, 46, 356-359.
12. Z. F. Mahmoud, Planta Med., 1981, 42, 299-301.
13. T. H. Kao, W. M. Wu, C. F. Hung, W. B. Wu and B. H. Chen, J. Agric. Food. Chem., 2007, 55, 11068-11079.
14. D. C. Vitale, C. Piazza, B. Melilli, F. Drago and S. Salomone, Eur. J. Drug Metab. Pharmacokinet., 2013, 38, 15-25.
M. Q. Ren, G. Kuhn, J. Wegner and J. Chen, Eur. J. Nutr., 2001, 40, 135-146.
15. S. Barnes, H. Kim, V. Darley-Usmar, R. Patel, J. Xu, B. Boersma and M. Luo, J. Nutr., 2000, 130, 656S-657S.
16. R. Velagapudi, M. Aderogba and O. A. Olajide, Biochim. Biophys. Acta, Gen. Subj., 2014, 1840, 3311-3319.
17. J. W. Tan and M. K. Kim, Molecules, 2016, 21, 548.
18. N. Gavande, N. Karim, G. A. Johnston, J. R. Hanrahan and M. Chebib, ChemMedChem, 2011, 6, 1340-1346.
19. J. Gustafsson, Climacteric, 2006, 9, 156-160.
20. T. Izumi, M. K. Piskula, S. Osawa, A. Obata, K. Tobe, M. Saito, S. Kataoka, Y. Kubota and M. Kikuchi, J. Nutr., 2000, 130, 1695-1699.
21. T. E. Steer, I. T. Johnson, J. M. Gee and G. R. Gibson, Br. J. Nutr., 2003, 90, 635-642.
22. C. E. Gleason, C. M. Carlsson, J. H. Barnet, S. A. Meade, K. D. Setchell, C. S. Atwood, S. C. Johnson, M. L. Ries and S. Asthana, Age Ageing, 2009, 38, 86-93.
23. C. E. Gleason, B. L. Fischer, N. M. Dowling, K. D. Setchell, C. S. Atwood, C. M. Carlsson and S. Asthana, J. Alzheimers Dis., 2015, 47, 1009-1019.
24. M. Soni, T. B. Rahardjo, R. Soekardi, Y. Sulistyowati, Lestariningsih, A. Yesufu-Udechuku, A. Irsan and E. Hogervorst, Maturitas, 2014, 77, 209-220.
25. N. C. Veitch, Nat. Prod. Rep., 2007, 24, 417-464.
26. N. Al-Maharik, Nat. Prod. Rep., 2019, 36, 1156-1195.
27. G. de Laire and F. Tiemann, J. Am. Chem. Soc., 1893, 15, 351-355.
28. E. A. M. Nur, M. Yousaf, I. Parveen, R. M. Hafizur, U. Ghani, S. Ahmed, A. Hameed, M. D. Threadgill and A. J. Al-Rehaily, Org. Biomol. Chem., 2019, 17, 1266-1276.
29. T.-H. Duong, M. A. Beniddir, V.-K. Nguyen, T. Aree, J.-F. Gallard, D.-H. Mac, H.-H. Nguyen, X.-H. Bui, J. Boustie, K.-P.-P. Nguyen, W. Chavasiri and P. Le Pogam, J. Nat. Prod., 2018, 81, 20262031.
30. P. Maskey Rajendra, N. Asolkar Ratnakar, M. Speitling, V. Hoffman, I. Grün-Wollny, F. Fleck Werner and H. Laatsch, Z. Naturforsch., B: Chem. Sci., 2003, 58, 686.
31. I. Schuhmann, C. B. Yao, W. Al-Zereini, H. Anke, E. Helmke and H. Laatsch, J. Antibiot. (Tokyo), 2009, 62, 453-460.
32. S. Das and J. P. N. Rosazza, J. Nat. Prod., 2006, 69, 499-508.
33. H. R. Kang, D. Lee, R. Benndorf, W. H. Jung, C. Beemelmanns, K. S. Kang and K. H. Kim, J. Nat. Prod., 2016, 79, 3072-3078.
34. T. Vogt, Mol. Plant, 2010, 3, 2-20.
35. A. Gholami, N. De Geyter, J. Pollier, S. Goormachtig and A. Goossens, Nat. Prod. Rep., 2014, 31, 356-380.
36. W. Baker and R. Robinson, J. Chem. Soc., Trans., 1925, 127, 1981-1986.
37. A. Lévai, J. Heterocycl. Chem., 2004, 41, 449-460.
38. K. Wähälä and T. A. Hase, J. Chem. Soc., Perkin Trans. 1, 1991, 3005-3008.
39. Q. Zhang and N. P. Botting, Tetrahedron, 2004, 60, 12211-12216.
40. Y. W. Kim, J. C. Hackett and R. W. Brueggemeier, J. Med. Chem., 2004, 47, 4032-4040.
41. T. Shokol, V. Semenyuchenko, S. Shilin, A. Turov, A. Ogorodniichuk and V. Khilya, Chem. Nat. Compd., 2005, 41, 533-538.
42. M. Frasinyuk and V. Khilya, Chem. Heterocycl. Compd., 1999, 35, 3-22.
43. J. M. Hastings, M. K. Hadden and B. S. Blagg, J. Org. Chem., 2008, 73, 369-373.
44. S. Balasubramanian and M. G. Nair, Synth. Commun., 2000, 30, 469-484.
45. Y. Kawamura, M. Maruyama, T. Tokuoka and M. Tsukayama, Synthesis, 2002, 2490-2496.
46. J. M. Pavese, R. L. Farmer and R. C. Bergan, Cancer Metastasis Rev., 2010, 29, 465-482.
47. R. A. Dixon and D. Ferreira, Phytochemistry, 2002, 60, 205-211.
48. R. Gammill, Synthesis, 1979, 1979, 901-903.
49. P. R. Kumar, C. Balakrishna, B. Murali, R. Gudipati, P. K. Hota, A. B. Chaudhary, A. J. Shree, S. Yennam and M. Behera, J. Chem. Sci., 2016, 128, 441-450.
50. S.-y. Zheng, X.-p. Li, H.-s. Tan, C.-h. Yu, J.-h. Zhang and Z.-w. Shen, Eur. J. Org. Chem., 2013, 2013, 1356-1366.
Y. Moon and S. Hong, Chem. Commun., 2012, 48, 7191-7193.
L. Liu, Q. Wang, Z. Zhang, Q. Zhang, Z. Du, D. Xue and T. Wang, Mol. Divers., 2014, 18, 777-785. T. Chanda, S. Chowdhury, S. Koley, N. Anand and M. S. Singh, Org. Biomol. Chem., 2014, 12, 9216-9222.
51. D. A. Vasselin, A. D. Westwell, C. S. Matthews, T. D. Bradshaw and M. F. Stevens, J. Med. Chem., 2006, 49, 3973-3981.
52. Z. Zhang, J. Qiao, D. Wang, L. Han and R. Ding, Mol. Divers., 2014, 18, 245-251.
53. R. Skouta and C. J. Li, Angew. Chem. Int. Ed. Engl., 2007, 46, 1117-1119.
54. R. Skouta and C.-J. Li, Tetrahedron Lett., 2007, 48, 8343-8346.
55. P. Mishra, S. Singh, P. Ankit, S. Fatma, D. Singh and J. Singh, Bull. Korean Chem. Soc., 2013, 34, 1070-1076.
56. P. Mutai, E. Pavadai, I. Wiid, A. Ngwane, B. Baker and K. Chibale, Bioorg. Med. Chem. Lett., 2015, 25, 2510-2513.
57. Z.-T. Zhang, Y.-Q. Ma, Y. Liang, D. Xue and Q. He, J. Heterocycl. Chem., 2011, 48, 279-285.
58. Y.-Q. Ma, Z.-T. Zhang, Q. He, D. Xue and P.-F. Zhang, Synth. Commun., 2012, 42, 933-941.
59. J. Yang, Z. Zhang and Q. He, J. Heterocycl. Chem., 2014, 51, 24-29.
60. J. Wang, Z. Zhang, W. Wang and F. Liu, Org. Biomol. Chem., 2013, 11, 2034-2038.
61. M. S. Frasinyuk, S. P. Bondarenko, V. P. Khilya, C. Liu, D. S. Watt and V. M. Sviripa, Org. Biomol. Chem., 2015, 13, 1053-1067.
62. C. Spoerlein, K. Mahal, H. Schmidt and R. Schobert, J. Inorg. Biochem., 2013, 127, 107-115.
63. H. X. Zhang and Z. X. Huang, Mol. Biol. Rep., 2012, 39, 7457-7463.
64. J. Yu, X. Bi, B. Yu and D. Chen, Nutrients, 2016, 8, 361.
65. C. Spagnuolo, S. Moccia and G. L. Russo, Eur. J. Med. Chem., 2018, 153, 105-115.
66. S. Lee, K. C. Lim, S. Y. Shin and Y. H. Lee, Bioorg. Med. Chem. Lett., 2010, 20, 6277-6281.
67. M. H. Abraham, W. E. Acree, C. E. Earp, A. Vladimirova and W. L. Whaley, J. Mol. Liq., 2015, 208, 363-372.
68. A. K. Milán-Noris, J. A. Gutiérrez-Uribe, A. Santacruz, S. O. Serna-Saldívar and C. MartínezVillaluenga, Food Chem., 2018, 268, 66-76.
69. I. Azcoitia, A. Moreno, P. Carrero, S. Palacios and L. M. Garcia-Segura, Gynecol. Endocrinol., 2006, 22, 63-69.
70. A. C. Pike, A. M. Brzozowski, R. E. Hubbard, T. Bonn, A. G. Thorsell, O. Engstrom, J. Ljunggren, J. A. Gustafsson and M. Carlquist, EMBO J., 1999, 18, 4608-4618.
71. K. P. Ho, L. Li, L. Zhao and Z. M. Qian, Mol. Cell. Biochem., 2003, 247, 219-222.
72. K. P. Devi, B. Shanmuganathan, A. Manayi, S. F. Nabavi and S. M. Nabavi, Mol. Neurobiol., 2017, 54, 7028-7041.
73. J.-W. Jeong, H. H. Lee, M. H. Han, G.-Y. Kim, W.-J. Kim and Y. H. Choi, Chem. Biol. Interact., 2014, 212, 30-39.
74. T. M. Yoon, J. W. Kim, J. G. Kim, W. G. Kim and J. W. Suh, J. Antibiot. (Tokyo), 2006, 59, 633639.
75. Y. H. Hwang, M. S. Kim, I. B. Song, J. H. Lim, B. K. Park and H. I. Yun, Biotechnol. Lett, 2009, 31, 789-795.
76. N. Jantaratnotai, P. Utaisincharoen, P. Sanvarinda, A. Thampithak and Y. Sanvarinda, Int. Immunopharmacol., 2013, 17, 483-488.
77. A. El-Bakoush and O. A. Olajide, Int. Immunopharmacol., 2018, 61, 325-337.
78. G. Nam, Y. Ji, H. J. Lee, J. Kang, Y. Yi, M. Kim, Y. Lin, Y. H. Lee and M. H. Lim, ACS Chem. Neurosci., 2019, 10, 3386-3390.
79. L.-T. Xin, S.-J. Yue, Y.-C. Fan, J.-S. Wu, D. Yan, H.-S. Guan and C.-Y. Wang, RSC Advances, 2017, 7, 31807-31832.
80. Y. H. Choi, G. H. Yon, K. S. Hong, D. S. Yoo, C. W. Choi, W. K. Park, J. Y. Kong, Y. S. Kim and S. Y. Ryu, Planta Med., 2008, 74, 1405-1408.
81. R. Wen, H. Lv, Y. Jiang and P. Tu, Bioorg. Med. Chem. Lett., 2018, 28, 1050-1055.
82. A. Matin, N. Gavande, M. S. Kim, N. X. Yang, N. K. Salam, J. R. Hanrahan, R. H. Roubin and D. E. Hibbs, J. Med. Chem., 2009, 52, 6835-6850.
83. Y. Shen, J. Zhang, R. Sheng, X. Dong, Q. He, B. Yang and Y. Hu, J. Enzyme Inhib. Med. Chem., 2009, 24, 372-380.
84. R. Sheng, X. Lin, J. Zhang, K. S. Chol, W. Huang, B. Yang, Q. He and Y. Hu, Bioorg. Med. Chem., 2009, 17, 6692-6698.
85. L. Jalili-Baleh, E. Babaei, S. Abdpour, S. Nasir Abbas Bukhari, A. Foroumadi, A. Ramazani, M. Sharifzadeh, M. Abdollahi and M. Khoobi, Eur. J. Med. Chem., 2018, 152, 570-589.
86. X. Qiang, Z. Sang, W. Yuan, Y. Li, Q. Liu, P. Bai, Y. Shi, W. Ang, Z. Tan and Y. Deng, Eur. J. Med. Chem., 2014, 76, 314-331.
87. B. Feng, X. Li, J. Xia and S. Wu, J. Enzyme Inhib. Med. Chem., 2017, 32, 968-977.
88. D. Wang, M. Hu, X. Li, D. Zhang, C. Chen, J. Fu, S. Shao, G. Shi, Y. Zhou, S. Wu and T. Zhang, Eur. J. Med. Chem., 2019, 168, 207-220.
89. G. H. Jin, S. K. Ha, H. M. Park, B. Kang, S. Y. Kim, H.-D. Kim, J.-H. Ryu and R. Jeon, Bioorg. Med. Chem. Lett., 2008, 18, 4092-4094.
90. L. Z. Chen, W. W. Sun, L. Bo, J. Q. Wang, C. Xiu, W. J. Tang, J. B. Shi, H. P. Zhou and X. H. Liu, Eur. J. Med. Chem., 2017, 138, 170-181.
91. G. Tang, K. Ding, Z. Nikolovska-Coleska, C. Y. Yang, S. Qiu, S. Shangary, R. Wang, J. Guo, W. Gao, J. Meagher, J. Stuckey, K. Krajewski, S. Jiang, P. P. Roller and S. Wang, J. Med. Chem., 2007, 50, 3163-3166.
92. J. Xiong, J. Li, Q. Yang, J. Wang, T. Su and S. Zhou, Breast Cancer Res., 2017, 19, 27.
93. E. M. Coutinho, Contraception, 2002, 65, 259-263.
94. T.-N. Chan, Z. Lu, W.-S. Yam, G.-Y. Yeap and C. T. Imrie, Liq. Cryst., 2012, 39, 393-402.
95. G. Y. Yeap, W. S. Yam, D. Takeuchi, K. Osakada, E. Gorecka, W. A. K. Mahmood, P. L. Boey and S. A. Hamid, Liq. Cryst., 2008, 35, 315-323.
96. G.-Y. Yeap, W.-S. Yam, W.-S. Chang, E. Gorecka, D. Takeuchi and K. Osakada, Phase Transitions, 2011, 84, 256-268.
97. V. M. Catalin, E. Fodor, P. G. Jones, C. G. Daniliuc, M. H. Franz, G. Kelter, H. H. Fiebig, M. Tamm and I. Neda, Rev. Roum. Chim, 2015, 60, 75-83.
98. G. D. Diana, D. L. Volkots, T. J. Nitz, T. R. Bailey, M. A. Long, N. Vescio, S. Aldous, D. C. Pevear and F. J. Dutko, J. Med. Chem., 1994, 37, 2421-2436.
99. S. Sharma, P. Sharma, N. Kumar and R. Dhude, Der Pharma Chemica, 2010, 2, 253-263.
100. K. Hemming, J. Chem. Res., 2001, 2001, 209-216.
101. A. Pace and P. Pierro, Org. Biomol. Chem., 2009, 7, 4337-4348.
102. M. Ono, M. Haratake, H. Saji and M. Nakayama, Bioorg. Med. Chem., 2008, 16, 6867-6872.
103. D. V. Dekhane, S. S. Pawar, S. Gupta, M. S. Shingare, C. R. Patil and S. N. Thore, Bioorg. Med. Chem. Lett., 2011, 21, 6527-6532.
104. C.-S. Jiang, Y. Fu, L. Zhang, J.-X. Gong, Z.-Z. Wang, W. Xiao, H.-Y. Zhang and Y.-W. Guo, Bioorg. Med. Chem. Lett., 2015, 25, 216-220.
105. F. Tiemann and P. Krüger, Ber. Dtsch. Chem. Ges., 1884, 17, 1685-1698.
106. T. Z. Deeb, J. Maguire and S. J. Moss, Epilepsia, 2012, 53, 79-88.
107. P. Szatkowska, M. Koba, P. Kośliński, J. Wandas and T. Bączek, Open Chemistry, 2014, 12, 9941007.
108. J. R. Hanrahan, M. Chebib and G. A. Johnston, Br. J. Pharmacol., 2011, 163, 234-245.
109. N. Kaur and D. Kishore, Synth. Commun., 2014, 44, 1375-1413.
110. A. Kamal, S. Prabhakar, M. Janaki Ramaiah, P. Venkat Reddy, C. Ratna Reddy, A. Mallareddy, N. Shankaraiah, T. Lakshmi Narayan Reddy, S. N. Pushpavalli and M. Pal-Bhadra, Eur. J. Med. Chem., 2011, 46, 3820-3831.
111. A. Kamal, R. Ramu, G. R. Khanna, A. K. Saxena, M. Shanmugavel and R. M. Pandita, ARKIVOC, 2005, 3, 83-91.
112. C. Ghosh and N. Tewari, J. Org. Chem., 1980, 45, 1964-1968.
113. B. Elger, A. Huth, R. Neuhaus, E. Ottow, H. Schneider, B. Seilheimer and L. Turski, J. Med. Chem., 2005, 48, 4618-4627.
114. B. Arbo, J. Hoppe, K. Rodrigues, L. Garcia-Segura, C. Salbego and M. Ribeiro, J. Steroid Biochem. Mol. Biol., 2017.
115. A. Pariente, S. B. de Gage, N. Moore and B. Bégaud, CNS Drugs, 2016, 30, 1-7.
116. C. H Zhou and Y. Wang, Curr. Med. Chem., 2012, 19, 239-280.
117. K. Potts, Chem. Rev., 1961, 61, 87-127.
118. B. Schulze and U. S. Schubert, Chem. Soc. Rev., 2014, 43, 2522-2571.
119. S. G. Agalave, S. R. Maujan and V. S. Pore, Chem. Asian J., 2011, 6, 2696-2718.
120. E. Perucca, J. Cloyd, D. Critchley and E. Fuseau, Epilepsia, 2008, 49, 1123-1141.
121. G. Chouinard, L. Annable, R. Fontaine and L. Solyom, Psychopharmacology (Berl.), 1982, 77, 229233.
122. K. V. Sujith, J. N. Rao, P. Shetty and B. Kalluraya, Eur. J. Med. Chem., 2009, 44, 3697-3702.
123. L. Jalili-Baleh, H. Forootanfar, T. T. Küçükkılınç, H. Nadri, Z. Abdolahi, A. Ameri, M. Jafari, B. Ayazgok, M. Baeeri, M. Rahimifard, S. N. Abbas Bukhari, M. Abdollahi, M. R. Ganjali, S. Emami, M. Khoobi and A. Foroumadi, Eur. J. Med. Chem., 2018, 152, 600-614.
124. H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem. Int. Ed. Engl., 2001, 40, 2004-2021.
125. K. Bozorov, J. Zhao and H. A. Aisa, Biorg. Med. Chem., 2019, 27, 3511-3531.
126. L. K. Rasmussen, B. C. Boren and V. V. Fokin, Org. Lett., 2007, 9, 5337-5339
127. R. J. Ward, F. Lallemand, P. de Witte, R. R. Crichton, J. Piette, K. Tipton, K. Hemmings, A. Pitard, M. Page, L. D. Corte, D. Taylor and D. Dexter, Biochem. Pharmacol., 2011, 81, 743-751.
128. W. Y. Tsang, N. Ahmed, P. S. Hinchliffe, J. M. Wood, L. P. Harding, A. P. Laws and M. I. Page, J. Am. Chem. Soc., 2005, 127, 17556-17564.
129. P. S. Hinchliffe, J. M. Wood, A. M. Davis, R. P. Austin, R. P. Beckett and M. I. Page, Org. Biomol. Chem., 2003, 1, 67-80.
130. J. Chanet-Ray and R. Vessiere, Org. Prep. Proced. Int., 1986, 18, 157-178.
131. Z. Yang and J. Xu, J. Org. Chem., 2014, 79, 10703-10708.
132. A. Pitard, PhD Thesis, University of Huddersfield, 2009.
133. K. C. Majumdar and S. Mondal, Chem. Rev., 2011, 111, 7749-7773.
134. S. Debnath and S. Mondal, Eur. J. Org. Chem., 2018, 2018, 933-956.
135. R. N. Brogden, R. C. Heel, T. M. Speight and G. S. Avery, Drugs, 1984, 28, 292-323.
136. A. M. Teema, S. A. Zaitone and Y. M. Moustafa, Neuropharmacology, 2016, 107, 432-450.
137. S. C. Vlad, D. R. Miller, N. W. Kowall and D. T. Felson, Neurology, 2008, 70, 1672.
138. J. H. Park, Y. S. Park, J.-B. Lee, K.-H. Park, M.-k. Paik, M. Jeong and H. C. Koh, J. Appl. Toxicol., 2016, 36, 10-23.
139. Y. Sui, D. Stanić, D. Tomas, B. Jarrott and M. K. Horne, Neurosci. Lett., 2009, 460, 121-125.
140. Z. Rankovic, J. Med. Chem., 2015, 58, 2584-2608.
141. A. Cavalli, M. L. Bolognesi, A. Minarini, M. Rosini, V. Tumiatti, M. Recanatini and C. Melchiorre, J. Med. Chem., 2008, 51, 347-372.
142. M. Decker, Curr. Med. Chem., 2011, 18, 1464-1475.
143. M. Matias, S. Silvestre, A. Falcao and G. Alves, Mini Rev. Med. Chem., 2017, 17, 486-517.
144. M. G. Savelieff, G. Nam, J. Kang, H. J. Lee, M. Lee and M. H. Lim, Chem. Rev., 2019, 119, 12211322.
145. P. K. Kadaba, Synth. Commun., 1974, 4, 167-181.
146. P. K. Kadaba, Synthesis, 1972, 1972, 628-630.
147. S. Balasubramanian, D. L. Ward and M. G. Nair, J. Chem. Soc., Perkin Trans. 1, 2000, 567-569.
148. J. Tummatorn, S. Ruchirawat and P. Ploypradith, Chem. Eur. J., 2010, 16, 1445-1448.
149. N. Miyaura and A. Suzuki, Chem. Rev., 1995, 95, 2457-2483.
150. L. Di and E. H. Kerns, in Drug-Like Properties, Academic Press, Boston, 2016, pp. 141-159.
151. D. Alezi, I. Spanopoulos, C. Tsangarakis, A. Shkurenko, K. Adil, Y. Belmabkhout, M. O' Keeffe, M. Eddaoudi and P. N. Trikalitis, J. Am. Chem. Soc., 2016, 138, 12767-12770.
152. Y. Ducharme, M. Blouin, M.-C. Carrière, A. Chateauneuf, B. Côté, D. Denis, R. Frenette, G. Greig, S. Kargman and S. Lamontagne, Bioorg. Med. Chem. Lett., 2005, 15, 1155-1160.
153. F.-X. Felpin, C. Lory, H. Sow and S. Acherar, Tetrahedron, 2007, 63, 3010-3016.
154. R. Martin and S. L. Buchwald, Acc. Chem. Res., 2008, 41, 1461-1473.
155. L. s. Jedinák, R. Zátopková, H. Zemánková, A. Šustková and P. Cankař, J. Org. Chem., 2016, 82, 157-169.
156. J. Zablocki, M. Abelman, M. Organ, Y. Bilokin, E. Elzein, T. Kobayashi, R. Kalla, T. Perry, X. Li and R. Jiang, US20090209533A1, 2009.
157. H. Dong, M. Zhang, Y. Wang, Z. Zhang and C. Niu, CN102617536A, 2012.
158. M. C. Bryan, K. Biswas, T. A. Peterkin, R. M. Rzasa, L. Arik, S. G. Lehto, H. Sun, F.-Y. Hsieh, C. Xu and R. T. Fremeau, Bioorg. Med. Chem. Lett., 2012, 22, 619-622.
159. K. M. Clapham, A. E. Smith, A. S. Batsanov, L. McIntyre, A. Pountney, M. R. Bryce and B. Tarbit, Eur. J. Org. Chem., 2007, 2007, 5712-5716.
160. J. E. Camp, ChemSusChem, 2018, 11, 3048-3055.
161. W. Wang, Y. He, P. Xu, Q. You, H. Xiao and H. Xiang, Bioorg. Med. Chem., 2015, 23, 4428-4433.
162. S. K. Mamidyala and M. A. Cooper, Chem. Commun. (Camb.), 2013, 49, 8407-8409.
163. C. H. Tang, C. S. Chang, T. W. Tan, S. C. Liu and J. F. Liu, Eur. J. Pharmacol., 2010, 648, 59-66.
164.
165.
166. W. Löwe, S. Witzel, S. Tappmeyer and R. Albuschat, J. Heterocycl. Chem., 2004, 41, 317-326.
G. Yilmaz, M. U. Kahveci and Y. Yagci, Macromol. Rapid Commun., 2011, 32, 1906-1909.
W. W. Turner, L. D. Arnold, H. Maag and A. Zlotnick, WO2015138895, 2015.
167. R. Ding, Y. He, X. Wang, J. Xu, Y. Chen, M. Feng and C. Qi, Molecules, 2011, 16, 5665-5673.
168. C. Zanato, M. G. Cascio, P. Lazzari, R. Pertwee, A. Testa and M. Zanda, Synthesis, 2015, 47, 817826.
169. M. Varga, S. Bátori, M. Kövári-Rádkai, I. Prohászka-Német, M. Vitányi-Morvai, Z. Böcskey, S. Bokotey, K. Simon and I. Hermecz, Eur. J. Org. Chem., 2001, 2001, 3911-3920.
170. S. Ast, H. Müller, R. Flehr, T. Klamroth, B. Walz and H.-J. Holdt, Chem. Commun., 2011, 47, 46854687.
171. F. Wu, C. Zhou, Y. Yao, L. Wei, Z. Feng, L. Deng and Y. Song, J. Med. Chem., 2016, 59, 253-263.
172. C. S. Chambers, PhD Thesis, University of Huddersfield, 2009.
173. A. K. Gupta, N. K. Vaishanv, R. Kant and K. Mohanan, Org. Biomol. Chem., 2017, 15, 6411-6415.
174. M. O. Akram, S. Bera and N. T. Patil, Chem. Commun., 2016, 52, 12306-12309.
175. P. Bhattacharya and A. Basak, Tetrahedron Lett., 2013, 54, 5137-5139.
176. T. Patonay, I. Pazurik and A. Ábrahám, Aust. J. Chem., 2013, 66, 646-654.
177. P. D. Bartlett and L. Knox, Org. Synth., 1965, 12-12.
178. J. Miao, H. Cui, J. Jin, F. Lai, H. Wen, X. Zhang, G. F. Ruda, X. Chen and D. Yin, Chem. Commun. (Camb.), 2015, 51, 881-884.
179. K. Ichino, H. Tanaka, K. Ito, T. Tanaka and M. Mizuno, J. Nat. Prod., 1988, 51, 906-914.
180. R. B. Patil, S. D. Sawant, K. V. Reddy and M. Shirsat, Res. J. Pharm. Biol. Chem. Sci., 2015, 6, 381-391.
181. P. D. Clarke, A. O. Fitton, M. Kosmirak, H. Suschitzky and J. L. Suschitzky, J. Chem. Soc., Perkin Trans. 1, 1985, 1747-1756.
182. I. Diamond and D. Overstreet, US20090124672A1, 2008.
183. N. Rooke, D. J. Li, J. Li and W. M. Keung, J. Med. Chem., 2000, 43, 4169-4179.
184. W. M. Keung, B. Vallee and G. Gao, WO2004002470A1, 2003.
185. H. Takahashi, D. Riether, A. Bartolozzi, T. Bosanac, V. Berger, R. Binetti, J. Broadwater, Z. Chen, R. Crux, S. De Lombaert, R. Dave, J. A. Dines, T. Fadra-Khan, A. Flegg, M. Garrigou, M. H. Hao, J. Huber, J. M. Hutzler, S. Kerr, A. Kotey, W. Liu, H. Y. Lo, P. L. Loke, P. E. Mahaney, T. M. Morwick, S. Napier, A. Olague, E. Pack, A. K. Padyana, D. S. Thomson, H. Tye, L. Wu, R. M. Zindell, A. Abeywardane and T. Simpson, J. Med. Chem., 2015, 58, 1669-1690.
186. J. Zablocki, R. Kalla, T. Perry, V. Palle, V. Varkhedkar, D. Xiao, A. Piscopio, T. Maa, A. Gimbel, J. Hao, N. Chu, K. Leung and D. Zeng, Bioorg. Med. Chem. Lett., 2005, 15, 609-612.
187. M. Koufaki, C. Kiziridi, F. Nikoloudaki and M. N. Alexis, Bioorg. Med. Chem. Lett., 2007, 17, 42234227.
188. S. T. Chung, Y. T. Huang, H. Y. Hsiung, W. H. Huang, C. W. Yao and A. R. Lee, Chem. Biodivers., 2015, 12, 685-696.
189. J. Blackburn, PhD Thesis, University of Huddersfield, 2014.
190. A. Caligiuri, M. Riccaboni and G. Amari, WO2010072338A1, 2013.
191. G. Amari, C. Pesenti and S. Bossolo, WO2013098145A1, 2014.
192. P. T. Lewis, K. Wähälä, A. Hoikkala, I. Mutikainen, Q.-H. Meng, H. Adlercreutz and M. J. Tikkanen, Tetrahedron, 2000, 56, 7805-7810.
193. C.-H. Wang, T.-H. Hsieh, C.-C. Lin, W.-H. Yeh, C.-A. Lin and T.-C. Chien, Synlett, 2015, 26, 18231826.
194. V. P. Khilya and V. V. Ishchenko, Chem. Heterocycl. Compd., 2002, 38, 883-899.
195. S. P. Bondarenko, M. S. Frasinyuk and V. P. Khilya, Chem. Nat. Compd., 2007, 43, 402-407.
196. B. Pettersson, V. Hasimbegovic and J. Bergman, J. Org. Chem., 2011, 76, 1554-1561.
197. A. S. Lindner, E. Geist, M. Gjikaj and A. Schmidt, J. Heterocycl. Chem., 2014, 51, 423-431.
198. J. Yang, Y. Teng, S. Ara, S. Rallapalli and J. M. Cook, Synthesis, 2009, 2009, 1036-1040.
199. X. Li, J. Yu, J. R. Atack and J. M. Cook, Med. Chem. Res., 2004, 13, 259-281.
200. S. R. Votey, G. M. Bosse, M. J. Bayer and J. R. Hoffman, Ann. Emerg. Med., 1991, 20, 181-188.
201. U. Busto, H. L. Kaplan, L. Zawertailo and E. M. Sellers, Clin. Pharmacol. Ther., 1994, 55, 451-463.
202. D. E. Thurston and D. S. Bose, Chem. Rev., 1994, 94, 433-465.
203. F. Himo, T. Lovell, R. Hilgraf, V. V. Rostovtsev, L. Noodleman, K. B. Sharpless and V. V. Fokin, J. Am. Chem. Soc., 2005, 127, 210-216.
204. B. C. Boren, S. Narayan, L. K. Rasmussen, L. Zhang, H. Zhao, Z. Lin, G. Jia and V. V. Fokin, J. Am. Chem. Soc., 2008, 130, 8923-8930.
205. S. Tanifuji, D. Nakamura, S. Takasaki and Y. Okumura, US20100249418A1, 2010.
206. Z. Wang, X. Wang, G. Zhang, W. Zhang and Z. Gao, Chem. Lett., 2015, 44, 1333-1335.
207. R. Acharya, D. A. Burnett, M. G. Bursavich, A. S. Cook, B. A. Harrison, G. Koenig and A. J. Mcriner, WO2016100184A1, 2016.
208. P. R. Babu, L. Ravindranath, D. Rajesh and B. Saritha, World J. Pharm. Pharm. Sci., 2016, 5, 929940.
209. N. J. Baxter, L. J. M. Rigoreau, A. P. Laws and M. I. Page, J. Am. Chem. Soc., 2000, 122, 33753385.
210. W. Koller, A. Linkies, H. Rehling and D. Reuschling, Tetrahedron Lett., 1983, 24, 2131-2134.
211. M. S. Frasinyuk, W. Zhang, P. Wyrebek, T. Yu, X. Xu, V. M. Sviripa, S. P. Bondarenko, Y. Xie, H. X. Ngo, A. J. Morris, J. L. Mohler, M. V. Fiandalo, D. S. Watt and C. Liu, Org. Biomol. Chem., 2017, 15, 7623-7629.
212. D. Reuschling, H. Pietsch and A. Linkies, Tetrahedron Lett., 1978, 19, 615-618.
213. D. K. Yadav, A. K. Gautam, J. Kureel, K. Srivastava, M. Sahai, D. Singh, N. Chattopadhyay and R. Maurya, Bioorg. Med. Chem. Lett., 2011, 21, 677-681.
214. S. Debnath and S. Mondal, J. Org. Chem., 2015, 80, 3940-3948.
215. D. Rambabu, P. V. N. S. Murthy, K. R. S. Prasad, A. Kandale, G. S. Deora, M. V. Basaveswara Rao and M. Pal, Tetrahedron Lett., 2012, 53, 6577-6583.
216. S. Xu, C. A. Rouzer and L. J. Marnett, IUBMB Life, 2014, 66, 803-811.
217. D. K. Barange, T. C. Nishad, N. K. Swamy, V. Bandameedi, D. Kumar, B. R. Sreekanth, K. Vyas and M. Pal, J. Org. Chem., 2007, 72, 8547-8550.
218. Z. Bluke, E. Paass, M. Sladek, U. Abel and V. Kauss, J. Enzyme Inhib. Med. Chem., 2016, 31, 664-673.
219. N. Fokialakis, X. Alexi, N. Aligiannis, D. Siriani, A. K. Meligova, H. Pratsinis, S. Mitakou and M. N. Alexis, Bioorg. Med. Chem., 2012, 20, 2962-2970.
220. T. Holas, K. Vavrova, M. Sima, J. Klimentova and A. Hrabalek, Bioorg. Med. Chem., 2006, 14, 7671-7680.
221. K. Hemming, M. N. Khan, P. A. O'Gorman and A. Pitard, Tetrahedron, 2013, 69, 1279-1284.
222. M. Bajda, N. Guzior, M. Ignasik and B. Malawska, Curr. Med. Chem., 2011, 18, 4949-4975.
223. D. J. Connolly, D. Cusack, T. P. O'Sullivan and P. J. Guiry, Tetrahedron, 2005, 61, 10153-10202.
224. G. Wang, F. Wang, D. Cao, Y. Liu, R. Zhang, H. Ye, X. Li, L. He, Z. Yang, L. Ma, A. Peng, M. Xiang, Y. Wei and L. Chen, Bioorg. Med. Chem. Lett., 2014, 24, 3158-3163.
225. A. Henn, S. Lund, M. Hedtjärn, A. Schrattenholz, P. Pörzgen and M. Leist, ALTEX, 2009, 26, 8394.
226. R. Parakalan, B. Jiang, B. Nimmi, M. Janani, M. Jayapal, J. Lu, S. S. W. Tay, E.-A. Ling and S. T. Dheen, BMC Neurosci., 2012, 13, 64.
227. A. EIAli and S. Rivest, Brain. Behav. Immun., 2016, 55, 138-150.
228. M. Bolós, R. Perea Juan and J. Avila, Biomol. Concepts, 2017, 8, 37.
229. M. M. Jin, F. Wang, D. Qi, W. W. Liu, C. Gu, C. J. Mao, Y. P. Yang, Z. Zhao, L. F. Hu and C. F. Liu, Front. Aging Neurosci., 2018, 10, 378.
230. H. Akiyama, S. Barger, S. Barnum, B. Bradt, J. Bauer, G. M. Cole, N. R. Cooper, P. Eikelenboom, M. Emmerling, B. L. Fiebich, C. E. Finch, S. Frautschy, W. S. T. Griffin, H. Hampel, M. Hull, G. Landreth, L. F. Lue, R. Mrak, I. R. Mackenzie, P. L. McGeer, M. K. O’Banion, J. Pachter, G. Pasinetti, C. Plata-Salaman, J. Rogers, R. Rydel, Y. Shen, W. Streit, R. Strohmeyer, I. Tooyoma, F. L. Van Muiswinkel, R. Veerhuis, D. Walker, S. Webster, B. Wegrzyniak, G. Wenk and T. WyssCoray, Neurobiol. Aging, 2000, 21, 383-421.
231. E. Spangenberg, P. L. Severson, L. A. Hohsfield, J. Crapser, J. Zhang, E. A. Burton, Y. Zhang, W. Spevak, J. Lin, N. Y. Phan, G. Habets, A. Rymar, G. Tsang, J. Walters, M. Nespi, P. Singh, S. Broome, P. Ibrahim, C. Zhang, G. Bollag, B. L. West and K. N. Green, Nat. Commun., 2019, 10, 3758.
232. P. S. Whitton, Br. J. Pharmacol., 2007, 150, 963-976.
233. D. K. Flaherty, in Immunology for Pharmacy, ed. D. K. Flaherty, Mosby, Saint Louis, 2012, pp. 1522.
234. H. Kolb and V. Kolb-Bachofen, Immunol. Today, 1992, 13, 157-160.
235. Y. Zhang and W.-a. Chen, Neurochem. Res., 2015, 40, 165-171.
236. M. T. Heneka and M. K. O'Banion, J. Neuroimmunol., 2007, 184, 69-91.
237. V. H. Perry, J. A. R. Nicoll and C. Holmes, Nat. Rev. Neurol., 2010, 6, 193.
238. K. Inoue, Glia, 2002, 40, 156-163.
239. K. T. Savjani, A. K. Gajjar and J. K. Savjani, ISRN Pharm., 2012, 2012.
240. D. A. Scudiero, R. H. Shoemaker, K. D. Paull, A. Monks, S. Tierney, T. H. Nofziger, M. J. Currens, D. Seniff and M. R. Boyd, Cancer Res., 1988, 48, 4827.
241. J. Sun, X. Zhang, M. Broderick and H. Fein, Sensors, 2003, 3, 276-284.
242. T. M. Lu, D. H. Kuo, H. H. Ko and L. T. Ng, J. Agric. Food. Chem., 2010, 58, 10027-10032.
243. A. Goel, A. Kumar, Y. Hemberger, A. Raghuvanshi, R. Jeet, G. Tiwari, M. Knauer, J. Kureel, A. K. Singh, A. Gautam, R. Trivedi, D. Singh and G. Bringmann, Org. Biomol. Chem., 2012, 10, 95839592.
244. V. Pivovarenko, V. Khilya and S. Vasil'ev, Chem. Nat. Compd., 1989, 25, 542-545.
245. G.-Y. Gao, D.-J. Li and W. M. Keung, Biorg. Med. Chem., 2003, 11, 4069-4081.
246. L. Tang, Y. Pang, Q. Yan, L. Shi, J. Huang, Y. Du and K. Zhao, J. Org. Chem., 2011, 76, 27442752.
247. W. Baker, J. B. Harborne and W. D. Ollis, J. Chem. Soc., 1953, 0, 1860-1864.
248. A. V. Stachulski, N. G. Berry, A. C. Lilian Low, S. L. Moores, E. Row, D. C. Warhurst, I. S. Adagu and J. F. Rossignol, J. Med. Chem., 2006, 49, 1450-1454.
249. R. L. Shriner and C. J. Hull, J. Org. Chem., 1945, 10, 288-291.
250. T. M. Lu, H. H. Ko, L. T. Ng and Y. P. Hsieh, Chem. Biodivers., 2015, 12, 963-979.
251. G. P. Mrug, S. P. Bondarenko, V. P. Khilya and M. S. Frasinyuk, Chem. Nat. Compd., 2013, 49, 235-241.
252. S. Bepary, I. K. Youn, H.-J. Lim and G. H. Lee, Bull. Korean Chem. Soc., 2013, 34, 2829.
253. R. Venkateswaran, J. Chem. Res. (S), 1998, 88-89.
254. K. E. Kövér and J. Borbély, Magn. Reson. Chem., 1985, 23, 90-94.
255. P. Salo, A. Essén-Suuronen, H. Salomies, R. Ketola and R. Kostiainen, JPC J. Planar Chromat., 2006, 19, 371-377.
256. D. Huan-wen, L. Jue-ying, Y.-I. Zhang, Q. Zhen-hua, L. Tie-jun, L. Ke and L. Chao-mei, Chin. J. Med. Chem., 2010, 4, 003.
257. H. Goto, Y. Terao and S. Akai, Chem. Pharm. Bull., 2009, 57, 346-360.
258. Y. Zhang, H. Zhong, Z. Lv, M. Zhang, T. Zhang, Q. Li and K. Li, Eur. J. Med. Chem., 2013, 62, 158167.
259. H.-w. Dong, Y.-I. Zhang, J.-y. Liu, Z.-h. Quan, T.-j. Li, K. Li and C.-m. Liu, AJSMMU, 2010, 30, 864869.
260. E. Grenet and J. Waser, Org. Lett., 2018, 20, 1473-1476.
261. M. C. Matos and P. V. Murphy, J. Org. Chem., 2007, 72, 1803-1806.
262. A. Singh, D. Bimal, R. Kumar, V. K. Maikhuri, M. Thirumal, N. N. Senapati and A. K. Prasad, Synth. Commun., 2018, 48, 2339-2346.
263. A. Nohara, T. Umetani and Y. Sanno, Tetrahedron, 1974, 30, 3553-3561.
264. M. V. Reddy, C. R. Su, W. F. Chiou, Y. N. Liu, R. Y. Chen, K. F. Bastow, K. H. Lee and T. S. Wu, Bioorg. Med. Chem., 2008, 16, 7358-7370.
265. C. Carola, S. Huber, R. Rosskopf and H. Buchholz, US20050043398A1, 2005.
266. T. Narender, K. Papi Reddy and B. Kumar, Tetrahedron Lett., 2008, 49, 4409-4415.
267. A. Nohara, T. Umetani and Y. Sanno, Tetrahedron Lett., 1973, 14, 1995-1998.
268. G. Amari and M. Riccaboni, US20110311459A1, 2011.
269. S. Sharma, S. Gangal and A. Rauf, Acta Chim. Slov., 2009, 56.
270. A. Wallberg, K. Nilsson, K. Granberg, S. Ghosal, A. Slassi, L. Edwards, M. Isaac, T. Xin, T. Stefanac and P. Dove, US20070259860A1, 2007.
271. A. A. Sousa, H. C. Chitwood and J. A. Durden, FR1363235A, 1965.
272. I. Pibiri, L. Lentini, M. Tutone, R. Melfi, A. Pace and A. Di Leonardo, Eur. J. Med. Chem., 2016, 122, 429-435.
273. W. B. Wright Jr, H. J. Brabander, E. N. Greenblatt, I. P. Day and R. A. Hardy Jr, J. Med. Chem., 1978, 21, 1087-1089.
274. D. H. Kim, J. Heterocycl. Chem., 1975, 12, 1323-1324.
275. L. Voskressensky, T. Borisova, M. Babakhanova, S. Akbulatov, A. Tsar’kova, A. Titov, V. Khrustalev and A. Varlamov, Russ. Chem. Bull., 2012, 61, 1220-1230.
276. M. Gerecke, W. Haefely, W. Hunkeler, P. Polc, E. Kyburz, H. Mohler and L. Pieri, CA1143728A, 1983.
277. S. Preshlock, S. Calderwood, S. Verhoog, M. Tredwell, M. Huiban, A. Hienzsch, S. Gruber, T. C. Wilson, N. J. Taylor, T. Cailly, M. Schedler, T. L. Collier, J. Passchier, R. Smits, J. Mollitor, A. Hoepping, M. Mueller, C. Genicot, J. Mercier and V. Gouverneur, Chem. Commun. (Camb.), 2016, 52, 8361-8364.
278. J. M. Cook, T. Clayton, Y. T. Johnson, S. Rallapalli and D. Han, US20100130479A1, 2009.
279. R. Liu, R. J. Hu, P. Zhang, P. Skolnick and J. M. Cook, J. Med. Chem., 1996, 39, 1928-1934.
280. R. Kolb, N. C. Bach and S. A. Sieber, Chem. Commun. (Camb.), 2014, 50, 427-429.
281. P. S. Hinchliffe, J. M. Wood, A. M. Davis, R. P. Austin, R. P. Beckett and M. I. Page, Org. Biomol. Chem., 2003, 1, 67-80.
282. E. Meyle, H.-H. Otto and C. Kratky, Monatsh. Chem, 1985, 116, 493-503.
283. H. Choi, M. Son, L. Harim, W. Shin and M. Khasanov, EP3139436A1, 2017.
284. M. Ogawa, K. Kitagawa, H Shirahashi and S Kuribayashi, WO2009148052A1, 2009.
285. S. Debnath and S. Mondal, Synthesis, 2016, 48, 710-722.
286. A. D. Borthwick, C. Chan, H. A. Kelly, N. P. King, S. Kleanthous, A. M. Mason, I. L. Pinto, D. R. Pollard, S. Senger, G. P. Shah, N. S. Watson and R. J. Young, WO03053925A1, 2003.
287. X. Su, H. Huang, W. Hong, J. Cui, M. Yu and Y. Li, Chem. Commun. (Camb.), 2017, 53, 1332413327.
288. K. S. Etsè, B. Dassonneville, G. Zaragoza and A. Demonceau, Tetrahedron Lett., 2017, 58, 789793.
289. J. Rábai, Synthesis, 1989, 1989, 523-525.
290. T. Akama, Y.-K. Zhang, C. Z. Ding, J. J. Plattner, K. R. Maples, Y. Freund, V. Sanders, Y. Xia, S. J. Baker, J. A. Niemann, X. Lu, M. Sales, R. Sharma, R. Singh, R. Jacobs, D. Chen and M. R. K. Alley, WO2009111676A2, 2009.
291. Y. Deng, W. Yuan, Z. Sang, X. Qiang and P. Bai, CN102827131A, 2012.
292. J. K. Pratt, D. A. Betebenner, P. L. Donner, B. E. Green, D. J. Kempf, K. F. McDaniel, C. J. Maring, V. S. Stoll and R. Zhang, US20040167123, 2004.
