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Abstract      

Abstract      

      The mammalian target of rapamycin (mTOR) kinase has been widely studied over the 

past years due to its involvement on cell growth and proliferation on cancer cell lines. A 

common structural motif of some potent ATP-competitive inhibitors of mTOR is the bridged-

morpholine ring attached to various heteroaromatics, such as the thienopyrimidine ring. 

However, there are no reported compounds that have the bridged-morpholine ring connected 

to the heteroaromatic moiety via a carbon-carbon bond. 

 

     This report describes a method to prepare the bridged-morpholine moiety, starting from 

simple commercially available materials. The key C-C bond next to the nitrogen was made 

via an iminium ion intermediate and the use of simple Grignard reagents, such as  

methylmagnesium bromide and ethylmagnesium bromide, in the presence of a boron 

trifluoride etherate. Although the exact configuration of the formed C-C bond was not 

assigned, evidence suggests that it was obtained as a single diastereomer in the case of the 

ethyl substituted compound and as a mixture of diastereomers in the case of the methyl 

substituted compound. In addition, attempt to introduce an aryl substituent was made via 

Grignard chemistry, but the reaction was not as regioselective as in the case of alkyl groups.                   

        In addition, C-N linked morpholine and bridged-morpholine containing 

thienopyrimidine derivatives, which are known to be potent and selective mTOR inhibitors, 

were made in order to be used as a reference point for mTOR inhibition. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Molecular structure and biological functions of mTOR kinase. 

     The mammalian target of rapamycin (mTOR) is a serine/threonine kinase, a part of the 

vital mechanistic target of rapamycin signaling pathway, expressed in all eukaryotic cell 

types. More specifically, mTOR is responsible for the phosphorylation of two key governors 

of translation, p70S6 (S6K1) and 4E-BP1 kinase. Phosphorylation of S6K1 triggers 

phosphorylation of the S6 protein of the 40S small ribosomal subunit, which then enables this 

subunit to associate with the 60S large ribosomal subunit in order to form the ribosome and 

thus initiate protein synthesis. In the latter case, phosphorylation of 4E-BP1 leads to the 

release of its grip on the key translational initiation factor eIF4E. As soon as the eIF4E is 

liberated, it can form complexes with several other initiation factors and the resulting 

complexes enable ribosomes to initiate the translation of certain mRNAs (Figure 1). 1  

  

Figure 1: The mTOR circuit in cells.1  

     One of mTOR's main functions is the regulation of homeostasis, by serving as a molecular 

systems integrator that supports cellular and organism interactions with the environment, 

mediated by nutrients, growth factors and energy metabolism. This is achieved by direct 

interference with cellular responses such as protein synthesis, transcription, autophagy, 

metabolism and organelle biogenesis. As a result, brain activity is directly affected by this 
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pathway, which triggers the proliferation of neural stem cells and is also responsible for the 

assemblance and maintenance of circuits within the brain. Behaviors such as the feeding, 

sleeping and circadian rhythms, as well as some neurodegenerative and neuropsychiatric 

diseases are directly related to the mTOR signaling pathway.2   

      Belonging to the phosphoinositide 3-kinase family, mTOR is activated by its connection 

to two different biochemical complexes: the mTOR complex 1 (mTORC 1) and the mTOR 

complex 2 (mTORC 2), which are high molecular weight (259 kDa) and highly conserved 

protein complexes. Although little is known about mTORC2, it is believed to be linked to the 

PI3K pathway that is usually dysregulated in cancer. On the other hand, much more is known 

about mTORC1, which is linked to several anabolic pathways associated with cell and tissue 

growth, such as protein synthesis, ribosome production, lipogenesis, nucleotide synthesis and 

autophagy. Recent studies indicate that mTORC1 function is hyperactivated in more than 

70% cases of all human tumors. Both complexes exert their activity when they are 

autophosphorylated via their intrinsic serine/threonine kinase activity and subsequently 

phosphorylate other proteins involved in those pathways by altering their activities and 

subcellular localization.3,4,5  

1.2 The first generation of mTOR kinase inhibitors 

        In 1975, a macrolide antibiotic product derived from the strain of Streptomyces 

hygroscopicus, known as rapamycin (Figure 2), was isolated and used as an antifungal agent. 

Early studies showed that rapamycin can halt the growth of a wide spectrum of eukaryotic 

cells, while further studies conducted about its mode of action led to the identification of 

mTOR genes and pathway. While its exact mechanism of action is still not clear, rapamycin 

forms a complex with a small protein called FKBP12 and then the complex binds irreversibly 

to the FKBP12-rapamycin domain of mTORC1, inhibiting its kinase activity, thus leading to 

the inhibition of cellular proliferation and cell growth.4   
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Figure 2: Chemical structure of rapamycin. 

         However, due poor aqueous solubility and pharmacokinetics, rapamycin was gradually 

replaced by various analogues, known as rapalogs, such as the temsirolimus (Wyeth), 

everolimus (Novartis) and ridaforolimus (Ariad Pharmaceuticals). Although a number of 

rapalogs have been synthesized, only minor clinical benefits have been reported. This is due 

to the fact that in certain cell types the inhibition of mTORC1 is incomplete, while their 

inability to bind to mTORC2 is also believed to be a cause, as it would probably compensate 

for any loss of mTORC1 activity. Finally, feedback loops acting on the mTORC1 complex 

may also counteract the action of rapalogs.5  

 

1.3 The second generation of mTOR kinase inhibitors 

       A second generation of mTOR inhibitors was then developed, often referred as ATP-

competitive mTOR kinase inhibitors (TKIs). Unlike the rapalogs, TKIs inhibit the kinase 

activity of both mTORC1 and mTORC2 complexes, which showed promising results during 

clinical trials against cancer growth and survival, by decreasing protein translation, 

decelerating cell cycle progression and inhibiting angiogenesis in cancer cell lines. While the 

stronger potency of TKIs compared to rapalogs is well-established, several toxicity problems 

have been reported as well as the need for combination of different kinase inhibitors along 

with TKIs in certain types of tumours.5  
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 1.3.1 Discovery of pyrazolopyrimidines as potent ATP-competitive inhibitors of mTOR. 

 

       In 2009, Wyeth's research laboratories reported the synthesis of highly potent and 

selective ATP-competitive inhibitors of the mammalian target of rapamycin, bearing the 

pyrazolopyrimidine moiety (Table 1). High throughput screening followed by hit to lead 

development identified compound 1a as a potent inhibitor of mTOR. However, low 

metabolic stability of 3-phenol group (T1/2 = 5min) and low selectivity over PI3Ka kinase led 

to the replacement of 3-phenol group by its bioisostere 4-acetamidophenyl group (compound 

1b) and other analogues, while urea 1g showed the best affinity for the ATP-binding site. 

Structure-activity relationships studies revealed that the urea group makes three hydrogen 

bonds to the ATP-binding pocket, two between the urea NHs and Asp2195 and one between 

the urea carbonyl and Lys2187 (Figure 3). 6   
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Compound              R                                           Y                    mTORa  

1a                        3-OH                                         N                9.6 ± 1.5 

1b                        4-NHCOCH3                                          N                7.0 ± 0.9 

1c                        3-NHCOCH3                                         CH              2450 ± 450  

1d                       4-NHCO2CH3                                         N                4.6 ± 1.1 

1e                        4-NHCO2CH2CH3                             CH              46 ± 6 

1f                        4-NHCO2CH2CH2OH              N                 1.5 ± 0.1 

1g                        4-NHCONHCH3                                 N                0.38 ± 0.05 

a Average IC50 (Nm ± SEM) 

Table 1: Pyrazolopyrimidine containing compounds as ATP-competitive inhibitors of 

mTOR.6   
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Figure 3: Docking of compound 1g in an mTOR homology model via the urea moiety. 6  

 

           A convenient synthetic route for the formation of the pyrazolopyrimidine scaffold was 

reported (Scheme 1), starting from the cyclisation of 1-benzyl-4-hydrazinylpiperidine 2 with 

2,4,6-trichloropyrimidine-5-carbaldehyde 3 followed by the addition of morpholine to give 

compound 4. Debenzylation of 4 with α-chloroethyl chloroformate gave 5, which was then 

treated with di-tert-butyl dicarbonate to protect the piperidine NH, followed by Suzuki 

coupling with the pinacol ester of 4-aminophenylboronic acid and then the conversion of the 

aniline to the urea moiety by treatment with triphosgene and methylamine. Removal of tert-

butyl carbamate group under acidic conditions gave compound 6, in which the NH group 

could be further functionalized to give a series of compound 7 (Table 2).6  
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Scheme 1. Reagents and conditions:(a) triethylamine; (b) morpholine; (c) α-chloroethyl 

chloroformate; (d) di-tert-butyl dicarbonate; (e) 4-aminophenylboronic acid, palladium (0), 

sodium carbonate; (f) triphosgene, methylamine; (g) trifluoroacetic acid; (h) triphosgene, then 

alcohol or amine; (i) acid chloride; (j) aldehyde/sodium triacetoxyborohydride.6 

 

 

 

 



14 
 

                                     

Compound                 R1                                          mTORa 

7a                                  -H                                                     1.4 ± 0.4 

7b                            -Bn                                                  0.52 ± 0.10 

7c                           -CH3                                                        22 ± 7 

7d                            -COCH3                                                  2.1 ± 0.4 

7e                            -CONHCH3                                        2.0 ± 0.3 

7f                            -CON(CH3)2                                          1.1 ± 0.1 

7g                            -CO2CH3                                         0.46 ± 0.08 

a  Average IC50 (Nm ± SEM) 

Table 2: Pyrazolopyrimidine containing compounds as ATP-competitive inhibitors of 

mTOR.6   
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1.3.2 Morpholine derivatives as mTOR inhibitors 

       In 2009, following their research on pyrazolopyrimidines, Wyeth research laboratories 

reported the importance of morpholine (Compound 7g) on binding to Val882 on the hinge 

region of mTOR. As a result, different morpholine derivatives (Compounds 8a to 8k) were 

inserted on the pyrazolopyrimidine scaffold, using the same synthetic route as described 

above (Scheme 1), in order to optimize the effects on potency and selectivity over PI3K, 

focused on the structure of compound 7g which was the best candidate (Table 3). 7 

 

 

                                   

 

Compound                  R1                     R2                           mTORa 

8a                                            Me                         0.22 ± 0.01 

8b                                             Me                         0.22 ± 0.01 

8c                                              Me                      2.3 ± 0.4 
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8d                                              Et                         0.32 ± 0.06 

8e                                               Et                        0.2 ± 0.02 

8f                                                Et                       0.62 ± 0.10 

8g                                               Et                       1.9 ± 0.6 

8h                                                            0.20 ± 0.01 

8i                                                                  0.11 ± 0.01 

8j                                                                0.16 ± 0.02 

8k                                                             0.62 ± 0.06 

a Average IC50 (Nm ± SEM) 

Table 3: The effect of different morpholine derivatives on the pyrazolopyrimidine scaffold to 

the binding affinity to mTOR.7 
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      Further structure-activity relationships studies showed that the interactions between the 

hinge region of mTOR and morpholine are associated with the width of the morpholine 

containing pocket, which is partially defined by Tyr867 and Cys885. An equatorial methyl 

group giving a wider morpholine group in racemic 2-methylmorpholine (Compounds 8g and 

8k) made the morpholine moiety wider than the binding pocket, which resulted in the 

displacement of the morpholine away from Val882, thus decreasing their potency compared 

to the morpholine analogue (Compound 7g). However, constraining two equatorial methyl 

groups in an axial conformation through formation of an ethylene bridge (Compounds 8a, 8b, 

8e and 8f) resulted in higher potency against mTOR, while better selectivity against PI3K 

was achieved. This is due to the fact that a single amino acid difference between mTOR and 

PI3Kα/PI3Kγ leads to a wider depth morpholine pocket in the first case that can 

accommodate better the bridged morpholine substituents.7  

 

1.3.3. Discovery of 2-(4-substituted-pyrrolo[2,3-b]pyridine-3-yl)methylene-4-

hydroxybenzofuran-3(2H)-ones as potent and selective inhibitors of mTOR. 

       In 2010, following their research on ATP-competitive inhibitors of mTOR, Wyeth's 

research group identified the indole-bearing 4,6-dihydroxybenzofuranone 9a as an early lead. 

Several analogues with improved physicochemical and pharmacological properties were then 

synthesized (Table 4). Structure-activity relationships revealed that the 7-N on the 7-

azaindole moiety forms a hydrogen bond to Val2240 in the hinge region at the ATP binding 

site of mTOR, which explains the lower IC50 values of those compounds (Compounds 9c to 

9f) compared to those who have an indole moiety instead (Compounds 9a and 9b). In 

addition, the 4-hydroxy group in the benzofuranone portion forms hydrogen bond interactions 

with Lys2187, while the 6-hydroxy group makes hydrogen bonding interactions with 

Asp2195 and the backbone-NH of Phe2358.  
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Compound            A                 R                X                Y               mTORa 

9a                       CH                H                OH              OH           800 

9b                     CH                Ph               OH              OH             33 

9c                       N                   H                OH              OH           42 

9d                     N                  Ph                OH              OH           0.46 

9e                      N                  Ph                OH              H              3.45 

9f                       N                  Ph                H                 OH          19 

a Average IC50 (Nm ± SEM) 

Table 4: Benzofuranone derivatives as ATP-competitive inhibitors of mTOR. 

        A straightforward synthetic route was used for the synthesis of that series of compounds. 

Starting from the N-methylation of 4-bromo-7-azaindole 10, a Mannich reaction gave 

compound 11, which was then heated with hexamethylenetetramine to give the key 4-bromo 

aldehyde intermediate 12. A variety of 4-substituents were introduced via Suzuki or 

Buchwald coupling conditions to yield compounds 13 and 14, respectively. Finally, 

subsequent coupling with hydroxybenzofuranones in acidic conditions yielded compounds 15 

and 16, respectively (Scheme 2).8  
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Scheme 2. Reagents and conditions: (a) NaH, DMF, then MeI, room temperature; (b) (CHO)n, Me2NH  

HCl, n-BOH, heat; (c) hexamethylenetetramine, 66% propionic acid, heat; (d) for 13: ArB(OH)2, 

Pd(PPh3)4, Na2CO3, DME, heat; for 14: NHR1R2, Pd2(dba)3, 2'-(dicyclohexylphosphino)-N,N-

dimethylbiphenyl-2-amine, K2HPO4, DME, heat; (e) substituted benzofuranone, EtOH, HCl, heat.8 

 

1.3.4 Discovery of thienopyrimidines as potent and selective inhibitors of mTOR. 

         In 2010, Wyeth research laboratories introduced the thienopyrimidine scaffolds as 

highly potent and selective inhibitors of mTOR. Compounds 17a and 17b had some moderate 

potency but lack of selectivity between mTOR and PI3K. Replacement of the morpholine 

substituent by a bridged morpholine resulted in a higher affinity for mTOR, as a single amino 

acid difference (Phe961Leu) in the hinge region of PI3K and mTOR leads to a deeper pocket 

on mTOR that can accommodate the additional steric bulk of the morpholine bridge. As a 

result, several thienopyrimidines analogues (Compounds 17c to 17g) bearing the bridged 

morpholine were then synthesized that showed promising results against mTOR kinase 

(Table 5). 
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Compound                    R                         Ar                              mTORa 

17a                                                                  49 ± 13 

17b                                                           61 ± 3  

17c                                                                  58 ± 4 

17d                                                           57 ± 8 

17e                                                               22 

17f                                                    11 ± 4 

17g                                                        26.5 ± 0.7 

a Average IC50 (Nm ± SEM) 
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Table 5: Thienopyrimidine derivatives as ATP-competitive mTOR inhibitors.9 

       Bridged morpholine thienopyrimidine analogues were prepared via a 4 step synthetic 

route, starting from the condensation of 3-aminothiophene-2-carboxamide 18 with 

triphosgene to give thienopyrimidine 19, followed by chlorination with phosphorus 

oxychloride to give the intermediate 20. The next step involved the regioselective 

nucleophilic displacement of the 4-chloride by the bridged morpholine to give compound 21, 

followed by Suzuki coupling to introduce various aromatic substituents on the 6th position of 

compound 22 (Scheme 3).9  

 

Scheme 3: Reagents and conditions: (a) triphosgene, dioxane, 80 oC; (b) POCl3, 120 oC; (c) 

CH2Cl2, EtOH, Et3N; (d) ArB(OR)2, Pd(PPh3)4, toluene, EtOH, aq. Na2CO3, microwave, 120 

oC.9 

 

1.3.5 Discovery of 2-ureidophenyltriazines bearing bridged morpholines as ATP-

competitive mTOR inhibitors. 

       Due to the extensive conservation of the ATP-binding pockets of mTOR and PI3K, 

further research aimed at developing selective mTOR inhibitors. In both the 

pyrazolopyrimidines and thienopyrimidines series, that were synthesized and described 

above, the bridged-morpholine analogues showed significantly better selectivity for mTOR 

over PI3K, compared to the unfunctionalized morpholine. A single amino acid difference in 

the hinge region, results in a deeper pocket in mTOR compared to PI3K, that can 
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accommodate the additional steric bulk of the morpholine bridge. As a result, in 2010, Wyeth 

research laboratories reported the synthesis and biological evaluation of 2-

ureidophenyltriazines bearing the bridged morpholine (Compounds 23a to 23e) as potent and 

selective ATP-competitive mTOR inhibitors (Table 6). 

                                      

Compound                         R1                                    mTORa 

23a                                                                          2.5 ± 0.5 

23b                                                                          2.8 ± 0.6 

23c                                                                        2.6 ± 0.5 

23d                                                                0.50 ± 0.01 

23e                                              1.7 ± 0.4 

a Average IC50 (Nm ± SEM) 

Table 6: 2-ureidophenyltriazine derivatives as ATP-competitive mTOR inhibitors.10 

     A straightforward synthetic route was reported for that series of compounds, starting from 

the reaction of cyanuric chloride 24 with two equivalents of bridged morpholine to give the 

di-substituted chlorotriazine 25. This was followed by the coupling with 4-
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aminophenylboronic acid under Suzuki coupling conditions and then the reaction with 

triphosgene and an amine to give the corresponding ureas 23 (Scheme 4).10  

 

 

Scheme 4: Reagents and conditions: (a) two equiv. bridged morpholine, Et3N; (b) 4-

aminophenylboronic acid, Pd(0), sodium carbonate; (c) triphosgene, Et3N, then R1NH2.
10 

 

1.3.6 Synthesis of oxabispidines as ATP-competitive mTOR inhibitors. 

           Given the attribution of morpholine moiety on increasing the binding affinity to 

mTOR, further research was focused on compounds bearing morpholine analogues. 

Oxabispidines (Figure 4) are bicyclic morpholine groups that are the core structure of some 

pharmaceuticals that are mainly used as atrial repolarisation-delaying agents for the treatment 

of cardiac arrhythmia, P2X7 receptor antagonists/interleukin-1β inhibitors, Factor Xa 

inhibitors, as well as mTOR and PI3 kinase inhibitors.                                                                          

 

Figure 4: The oxabispidine structure 11 

        In 2012, Gill and Kerr et al. reported the synthesis of the oxabispidine 28 via a key 

intramolecular Mannich cyclisation of oxazine 26 via iminium ion 27, under acidic 

conditions in the presence of methanol (Scheme 5). 
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Scheme 5: Formation of oxabispidine ring via an intramolecular Mannich cyclisation of 

oxazine 26. 

      Ring opening of commercially available (S)-(-)-2,3-epoxypropylphthalimide 29 with 

amine 30 followed by heating at reflux in the presence of a catalytic amount of acid, formed 

acetal 31. This was followed by the swap of benzyl group to benzyl carbamate to give 

compound 32 that was then treated with a catalytic amount of acid at reflux to give the 

oxazine 33. Deprotection of the pthalimide revealed the amine 34, which was then treated 

with a range of aldehydes to give imines 35a-d.  Treatment with 1 molar equivalent of 

trifluoromethanesulfonic acid and 1 molar equivalent of methanol formed the oxabispidine 

hemiaminal ethers 36a-d, via an intramolecular Mannich cyclisation (Scheme 6).11       
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Scheme 6: Reagents and conditions: (a) EtOH, reflux; (b) TsOH (10 mol%), toluene, reflux; 

(c) ClCO2Bn, CH2Cl2, r.t.; (d) MeNH2, EtOH, reflux; (e) RCHO, MgSO4, CH2Cl2; (f) 

CF3SO3H, CH2Cl2, MeOH.11 

 

1.3.7 Synthesis of conformationally-locked bicyclic morpholines 

In 2013, following their research on oxabisbidines, Gill and Kerr et al reported a convenient 

way for the synthesis of differentially-functionalised, strained and synthetically challenging 

bridged bicyclic morpholines (Figure 5). Bearing the morpholine moiety, while attached to 

other heteroaromatic moieties, those building blocks were expected to have relevance in a 

range of therapeutic contexts, including the use as mTOR inhibitors.  

 

                                                                

Figure 5: The structure of bridged-bicyclic morpholine derivatives as mTOR inhibitors. 

       The synthesis started from the protection of commercially available glycidol 37 with 

triisopropyl group to give the protected epoxide 38, which was then ring-opened by amine 

acetal 39 and then the addition of sub-stoichiometric quantities of protic acid gave the core 

morpholine acetal 40. Alcohol deprotection and subsequent oxidation under Swern conditions 

gave the key aldehyde intermediate 41. Conversion to alkene via Wittig reaction gave 

compound 42 and then switching of the amine protecting group to facilitate the elimination of 

methanol under acidic conditions gave compound 43. This was followed by a hydroboration-

oxidation reaction to give compound 44, which was then oxidized to the key aldehyde 

intermediate 45. Cyclisation of the aldehyde catalyzed by p-toluenesulfonic acid gave the 

core bicyclic morpholine scaffold of compound 46 as a single diastereomer, in which the 

bridging oxygen, the methoxy unit and the alcohol moiety were all positioned on the same 

face of the bridged bicyclic morpholine (Scheme 7).12   
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Scheme 7: Reagents and conditions: (a) TIPSCl, imidazole, THF, r.t.; (b) 39, ethanol, reflux; 

(c) p-TsOH (40 mol%), 115 oC; (d) TBAF, THF, 0 oC; (e) (COCl)2, DMSO, NEt3, CH2Cl2, -

60 oC to 0 oC; (f) BrPPh3Me, KHMDS, THF, -78 oC to r.t.; (g) BnCOCl2, CH2Cl2, r.t.; (h) p-

TsOH (40 mol%), toluene, reflux; (i) 9-BBN, THF, r.t.; (j) 30% H2O2, 3M NaOH, 0 oC; (k) 

DMP, CH2Cl2, r.t.; (l) p-TsOH (10 mol%), MeOH, MeCN, r.t.12 
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CHAPTER 2: PROJECT DESCRIPTION AND GOALS 

2.1 Bridged bicyclic morpholines as potential mTOR inhibitors. 

      The importance of morpholine and bridged bicyclic morpholine derivatives as potent 

mTOR inhibitors is extensively described in the sections above. Those two moieties 

connected to different scaffolds via the nitrogen atom, such as the pyrazolopyrimidines 

(Section 1.3.1), thienopyrimidines (Section 1.3.4) and 2-ureidophenyltriazines (Section 

1.3.5), showed great binding affinity to mTOR, acting as ATP-competitive mTOR inhibitors. 

The aim of this project was to investigate the effect that would have if different scaffolds 

were embedded to the bridged bicyclic morpholine moiety via the carbon next to nitrogen 

(Compounds 50 and 51) rather than via the nitrogen atom (Compounds 47,48, 49)  (Figure 6). 

The bridged-morpholine group was chosen rather than the morpholine group, as in general it 

possessed greater selectivity to mTOR over PI3K kinase.  

 

Figure 6: Novel C-linked bridged-morpholine derivatives to be tested as mTOR inhibitors. 
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     In order to evaluate the biological activity of C-linked bridged-morpholine derivatives, 2-

arylthienopyrimidines containing the morpholine (Compound 52) and the bridged morpholine 

(Compound 53) moiety will be synthesized (Figure 7). As described above, those compounds 

are expected to be potent and selective mTOR inhibitors and will be used as reference 

compounds. 

             

Figure 7: Thienopyrimidines reference compounds 

     As different routes for the formation of the bridged-morpholine scaffold have already been 

reported, the main challenge for the project will be the formation of a C-C bond next to the 

nitrogen atom of the bridged-morpholine ring. The primary goal of the project is to create that 

C-C bond next to the nitrogen atom on the bridged-morpholine ring, through a methyl 

(Compound 54) and an ethyl (Compound 55) group and then extend this chemistry to create a 

C-C bond with the 2-arylthienopyrimidine ring, (Compound 56) (Figure 8). In addition, 

different groups will be introduced to the bicyclic bridged-morpholine ring, in order to 

evaluate their effect on the binding affinity and potency against mTOR kinase. 

 

Figure 8: Target compounds to be made, illustrating the C-C bond connection next to the 

nitrogen atom of the bridged-morpholine ring. 
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2.2 A flexible approach for the formation of C-substituted bispidines 

      In 2000, a convenient method for the formation of C-substituted bispidines was described 

by O' Brien et al.13 This was achieved by the reaction of α-methoxy bispidine amide 57 with 

boron trifluoride etherate and a Grignard reagent to form the key carbon-carbon bond next to 

the nitrogen atom in a single step, resulting in the formation of compounds 58a-d as single 

diastereomer (Scheme 8).  

                                   

 Scheme 8: Grignard addition to α-methoxy bispidine amide 57 to deliver C-substituted 

bisbidines.13   

           Mechanistically, the complexation of boron trifluoride etherate to the methoxy group 

of compound 57 followed by its elimination gives the key intermediate bispidine N-

acyliminium ion, which is then attacked by the Grignard reagent to form compound 58 

(Scheme 9). 

 

Scheme 9: Formation of the compound 58 via a nucleophilic attack of Grignard reagent. 
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       Due to structural similarities of the bispidine ring and the bicyclic bridged morpholine 

ring, this would be an interesting approach for the formation of our C-C linked bridged 

morpholine derivatives. Our target compound 61 could be made via a similar mechanism as 

the one described above, as soon as the substituted bridged morpholine scaffold (Compound 

59) would be reacted with a Grignard reagent in the presence of a Lewis acid, such as the 

boron trifluoride etherate, via an iminium ion intermediate 60 (Figure 11). 

 

 Scheme 10: Synthetic strategy for the formation of C-linked bridged morpholine derivatives 

via an iminium ion intermediate. 

 

2.3 Preparation of the bridged-morpholine scaffold 

     Our plan regarding the synthesis of the bridged-morpholine scaffold was based on the 

route described in section 1.3.7, including some modifications in order to shorten the step 

count. Commercially available 3-buten-1-ol 62 will be protected with triisopropyl group to 

give alcohol protected compound 63, which will be followed by the epoxidation of the 

double-bond to give compound 64. The epoxide will be then regioselectively ring-opened 

with amine 65 to give compound 66, which will then cyclise to compound 67 as a mixture of 

diastereomers, using a catalytic amount of acid in reflux. With the substituted morpholine 

scaffold in hands, switching of benzyl protecting group using benzyl chloroformate will give 

carbamate 68, which will be treated with a catalytic amount of acid in reflux to eliminate 

methanol and form compound 69. Removal of triisopropyl chloride group by 

tetrabutylammonium fluoride will reveal the primary alcohol 70, which will be oxidized 

using Dess-Martin periodinane to give the aldehyde intermediate 71. Finally, the addition of a 

catalytic amount of acid in methanol will give the bridged-morpholine 72, as a single 

diastereomer, via a key iminium ion intermediate (Scheme 11). 



31 
 

 

Scheme 11: Reagents and conditions: (a) TIPSCl, imidazole, dry THF; (b)mCPBA, DCM, 

r.t.; (c) ethanol, reflux; (d) p-TsOH (40mol%), toluene, reflux; (e) benzyl chloroformate, 

dichloromethane; (f) p-TsOH (40mol%), toluene, reflux; (g) TBAF, dry THF, 0 oC; (h) DMP, 

dry DCM, r.t.; (i) p-TsOH (10 mol%), MeOH, acetonitrile, r.t. 

 

      With the bridged bicyclic morpholine structure in hands, the effect of different 

substituents on the bridged morpholine ring could be explored. In addition, the key carbon-

carbon bond formation next to the nitrogen atom of the morpholine ring could be obtained by 

the protection of the secondary alcohol 72 to give compound 73, followed by the elimination 

of methoxy group and then the addition of a Grignard reagent to give the carbon linked 

bridged morpholine 74, via an iminium ion intermediate (Scheme 12). 
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Scheme 12: Reagents and conditions: (a) TIPSCl, imidazole, dry THF; (b) BF3.Et2O, RMgX, 

dry THF. 

 

2.4 Preparation of the morpholine and bridged-morpholine containing 2-

arylthienopyrimidines. 

     A straightforward synthetic route will be used for the formation of the 2-

arylthienopyrimidine scaffold. Starting from the coupling of commercially available methyl-

3-amino-2-thiophenecarboxylate 75 with 4-methoxybenzoyl chloride 76 to give compound 

77. Addition of ammonia at 85 oC will give compound 78, which will be then cyclised to the 

2-arylthienopyrimidine compound 79 under basic conditions. Reaction with phosphorus 

oxychloride will form compound 80, which will be then coupled with morpholine and 

bridged-morpholine moieties to give compound 81 and 82 respectively, that will be finally 

deprotected to reveal the phenol group (Compounds 83 and 84), which is critical for binding 

to the mTOR kinase binding pocket (Scheme 13). 
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Scheme 13: Reagents and conditions: (a) pyridine, acetone; (b) NH3, MeOH, 90 oC; (c) t-

BuOK, t-BuOH, reflux; (d) POCl3, DMF, r.t.; (e) for 81: morpholine, dioxane; for 82: 

bridged-morpholine, dioxane; (f) BBr3, DCM. 
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CHAPTER 3: RESULTS AND DISCUSSION 

 

3.1 Synthesis of morpholine and bridged-morpholine containing 2-

arylthienopyrimidines as a reference point for mTOR inhibition. 

 

     The synthesis of 2-arylthienopyrimidine scaffold containing the morpholine and bridged-

morpholine moieties was based on Scheme 10. Following a literature procedure14, the 

synthesis was started from the reaction of commercially available methyl-3-amino-2-

thiophenecarboxylate 75 with 4-methoxybenzoyl chloride 76 in the presence of pyridine. The 

reaction went to completion after 16 hours and pure product 77 was obtained after being 

triturated with diisopropyl ether, in 73% yield (Scheme 14). 

 

Scheme 14: Synthesis of compound 77 

     The second step involved the reaction of compound 77 with a solution of ammonia in 

methanol at 90 oC in a sealed tube. According to a literature example15, formation of amide 

78 would be followed by cyclisation to compound 79 in a single step. However, after 48 

hours only uncyclised amide 78 was obtained in 83% yield, in a pure state without the need 

for further purification, as indicated by a broad signal at 5.72 ppm for the NH2 protons of the 

amide group (Scheme 15). This indicated the need for a base to deprotonate the amide in 

order for the cyclisation to compound 79 take place. 
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 Scheme 15: Synthesis of compound 78 

 

     The third step involved the reaction of compound 78 with potassium tert-butoxide in tert-

butanol in reflux16. The reaction went to completion after 2 hours and pure product 79 was 

obtained in 77% yield, without the need for further purification (Scheme 16). The choice for 

a bulky base, such as the potassium tert-butoxide was essential in order to avoid any 

nucleophilic attack on the amide carbonyl group, which was observed using a 5% aqueous 

solution of NaOH as the base. 

 

   Scheme 16: Synthesis of compound 79 

      Following a literature procedure15, the next step involved the reaction of compound 79 

with phosphorus oxychloride in dimethylformamide to give compound 80. The reaction went 

to completion after 4 hours at room temperature and pure product was obtained in 86% yield 

without any further purification (Scheme 17). 



36 
 

 

Scheme 17: Synthesis of compound 80 

    The next stop involved the nucleophilic aromatic substitution of chloride of compound 80 

with morpholine to give compound 81. The reaction was carried out in 1,4-dioxane in reflux 

for 24 hours17. Pure product was obtained in 79% yield without the need for further 

purification (Scheme 18). 

 

Scheme 18: Synthesis of compound 81 

    The same reaction conditions that were described above, were used for the formation of the 

bridged-morpholine containing thienopyrimidine 82, which was obtained in 79% yield 

(Scheme 19). 

 

Scheme 19: Synthesis of compound 82 
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      The final step involved the demethylation of compound 81 to give compound 83. 

Structure-activity relationships suggest that the phenol group of thienopyrimidine 83, as for 

the compounds 17a and 17b that were described on section 1.3.4, is critical for binding to 

mTOR binding pocket. As indicated by literature18, compound 81 was reacted with 2-

diethylaminoethanethiol hydrochloride in the presence of potassium tert-butoxide to give 

compound 83. After 48 hours, 1H NMR revealed that the methyl group was still present, 

indicating that no reaction took place (Scheme 20). 

 

 

Scheme 20: First attempt to demethylate compound 81. 

    A second attempt to demethylate compound 81 was carried out using boron tribromide in 

dichloromethane at room temperature19 (Scheme 21). After 24 hours, TLC indicated that all 

of the starting material had reacted. However, mass spectrometry showed that compound 83 

was not the product, indicating that the product would be some sort of salt, possible by the 

coordination of hydrobromide to the nitrogen at the 1-position of the pyrimidine ring. The 

same product was obtained when this reaction was carried out in reflux. 

 

 

Scheme 21: Second attempt to demethylate compound 81 
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      A third attempt to demethylate compound 81 using trimethylsilyl iodide in 

dichloromethane at room temperature 20 was then made (Scheme 22). After 48 hours, no 

reaction had happened, with the 1H NMR indicating only the presence of starting material, 

while the same result was observed when the reaction was carried out in reflux. 

 

Scheme 22: Third attempt to demethylate compound 81 

 

A final attempt to demethylate compound 81 was made using strong acid conditions via 

hydrobromide (48 mol%) and acetic acid in water21. The reaction was carried out in reflux for 

24 hours (Scheme 23). As in the case of boron tribromide, a separate spot was observed on 

the TLC plate indicating complete consumption of starting material. However, 1H NMR was 

similar to the case of boron tribromide indicating the formation of a hydrobromide salt via the 

nitrogen atom at the 1-position on the pyrimidine ring. 

 

Scheme 23: Fourth attempt to demethylate compound 81 

   As a method for demethylation of 81 has not been identified, further work towards 

obtaining compound 83 should focus on alternative protecting group for the phenol. Products 

81 and 82 would be expected to display some potency against mTOR and would accordingly 

be of value in screening.  
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3.2 Synthesis of morpholine and bridged-morpholine containing quinazolines as a 

reference point for mTOR inhibition. 

     Morpholine containing quinazolines have recently been reported to be dual PI3K and 

mTOR inhibitors and have been of particular interest as anticancer agents 22,23. As a result, 

we decided to make morpholine and bridged-morpholine containing quinazolines as a second 

reference point for mTOR inhibition. 

     Nucleophilic aromatic substitution of chloride of commercially available 4-chloro-2-

phenylquinazoline 84 with morpholine and bridged-morpholine gave compounds 85 and 86, 

respectively (Scheme 24). The reaction was carried out in reflux for 24 hours and products 

were obtained in high yields without the need for further purification17. 

 

Scheme 24: Synthesis of compounds 85 and 86 

 

3.3 Synthesis of the bridged-morpholine scaffold  

       The synthesis of the bridged-morpholine scaffold was based on Scheme 8 as described 

on section 2.3, including some modification in order to reduce the amount of steps. The 

synthesis started from the alcohol protection of commercially available 3-buten-1-ol 62 with 

triisopropylsilyl chloride in the presence of imidazole to give compound compound 63 in 

89% yield12 (Scheme 25). 
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Scheme 25: Synthesis of compound 63. 

       This was followed by the epoxidation of the double bond of compound 63 with meta-

chloroperoxybenzoic acid to give compound 64 in 83% yield24, without the need for further 

purification (Scheme 26). 

 

 

 Scheme 26: Synthesis of compound 64. 

     Amine 65 that would be coupled with epoxide 64 was prepared by the reaction of 

commercially available aminoacetaldehyde dimethyl acetal 65a with benzaldehyde 65b in 

ethanol, followed by the addition of sodium borohydride12. Pure amine 65 was obtained in 

87% yield (Scheme 27). 

 

 Scheme 27: Synthesis of compound 65. 

     The next step involved the regioselective addition of amine 65 to the least hindered carbon 

of epoxide 64 in reflux for 16 hours to give compound 66 in 73% yield (Scheme 28)12. This 

reaction was also carried out with microwave heating (150 W, 150 oC) and went to 

completion after only 5 hours. The product was obtained in 76% yield. However, due to the 

relatively small size of the microwave reaction vessel available and the need for larger 

quantities of product 66, the first set of conditions was chosen as the appropriate method. The 

moderate yield for this reaction is due to the formation of compound 67, which was isolated 

by column chromatography on silica, as ethanol being a polar protic solvent catalyzes the 
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cyclisation of compound 66. Of course, this was not a drawback for this method as the next 

step involves that reaction. 

 

Scheme 28: Synthesis of compound 66. 

      Cyclisation of compound 66 was achieved with the addition of a catalytic amount of 

para-toluenesulfonic acid (40 mol%) at 115 oC for 16 hours12. Compound 67 was isolated 

after column chromatography on silica as a mixture of diastereomers (60:40) in 69% yield 

(Scheme 29). There was no need for separation of diastereomers as the methoxy group would 

be eliminated at a later point of synthesis. 

 

Scheme 29: Synthesis of compound 67. 

      Subsequently, switching of benzyl protecting group to carbamate using benzyl 

chloroformate gave compound 68 (Scheme 30)12. This was done in order to facilitate the 

elimination of methanol in the next step, as protonation of the basic nitrogen of morpholine 

67 presumably disfavours formation of the intermediate oxonium species. Insertion of the 

carbamate group resulted in the appearance of rotamers, due to the restricted C-N bond 

rotation that creates different environments for protons. The presence of rotamers was also 

indicated by variable temperature NMR spectroscopy experiments conducted by Gill and 

Kerr et al. The 1H NMR of compound 68 gave broad signals with low resolution and 

complex multiplicities due to the presence of compound 68 as a mixture of diastereomers and 
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rotamers. As a result, the product was taken on to the next step without any further 

purification. 

 

Scheme 30: Synthesis of compound 68. 

     The next step involved the elimination of methanol with the use of a catalytic amount of 

para-toluenesulfonic acid (40 mol%) in reflux to give compound 69 in 29% yield (Scheme 

31)12. The low yield of the reaction is probably caused by the formation of an unidentifiable 

polymer that was observed on the baseline of the TLC plate and could not been isolated from 

column chromatography.  

 

Scheme 31: Synthesis of compound 69. 

       After that, we examined the effect on the reaction yield if smaller quantities of acid were 

used for the formation of compound 69, without any improved yields to be obtained, while 

the time needed for the completion of reaction was increased.  On the other hand, when we 

tried this reaction at a lower concentration of compound 68 in toluene, we noticed a slight 

increase of the reaction yield from 29% to 38%. We believe that this is due to the fact that 

any intermolecular reaction that would possibly form the polymer, would be done at a lower 

rate in the presence of more solvent. 

     The instability of triisopropylsilyl group in acidic conditions was believed to contribute to 

the low yield for this reaction, as that would give the deprotected alcohol, which could then 



43 
 

react intermolecular with the double bond of compound 69 that was formed. Due to the fact 

that there was a considerable amount of steps remaining for our final product, we decided to 

spend some time into optimizing the yield for that reaction, starting from the switch of 

triisopropylsilyl protecting group to pivalate ester, in order to introduce an acid-stable alcohol 

protecting group. More specifically, we started the synthesis again by protecting 3-buten-1-ol 

62 with trimethylacetyl chloride 87 in the presence of pyridine to give the pivaloyl ester 88,25 

which was then reacted with meta-chloroperbenzoic acid to give epoxide 89.24 That was then 

coupled with amine 65 in reflux to give the uncyclised product 90 in 68% yield.12 The 

moderate yield compared to the yield we got from the reaction of triisopropylsilyl protected 

compound 64 with amine 65 was caused by the side reaction of amine 65 with the carbonyl 

group of the pivaloyl ester of compound 89 to give the side product 91 (Scheme 32). As a 

result, we decided that the use of a bulky protecting group, such as the triisopropylsilyl group, 

was essential as any amount of improved yield on the elimination of methanol step would be 

lost at this point.  

 

Scheme 32: An alternative synthetic route with the use of trimethylacetyl chloride for the 

protection of 3-buten-1-ol 62. 

 

      The synthesis was carried out by removing the triisopropylsilyl group of compound 69 to 

reveal the primary alcohol. This was achieved with the use of tetrabutylammonium fluoride 

(TBAF) in dry THF at 0 oC to form compound 70 in 56% yield (Scheme 33)12. 
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Scheme 33: Synthesis of compound 70. 

 

    This was followed by the oxidation of the primary alcohol of compound 70 using Dess-

Martin periodinane in dry DCM, to form compound 71 in 64% yield (Scheme 34)12.  

 

Scheme 34: Synthesis of compound 71. 

   The final step for the formation of the bridged-morpholine scaffold included the cyclisation 

of aldehyde 71 with the use of a catalytic amount of para-toluenesulfonic acid in the presence 

of methanol to form compound 72 in 68% yield (Scheme 35). More specifically, protonation 

of the aldehyde carbonyl group induces the cyclisation to a key iminium ion intermediate 

71a, which is then followed by the nucleophilic attack of methanol to give the substituted 

bridged-mopholine 72 (Scheme 36)12. As previously reported, the reaction was completely 

diastereoselective, with compound 72 being obtained as a single diastereomer. 

 

Scheme 35: Synthesis of compound 72. 
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Scheme 36: Reaction mechanism for the formation of compound 72. 

      Based on previous published work12, NOESY experiments reported showed that the 

bridging oxygen, the methoxy unit and the alcohol group were situated on the same face of 

the bridged bicyclic structure (Figure 11). In addition, coupling constants of Ha, Hb and Hc 

validate the above configuration. More specifically, Ha has a small coupling constant to Hb 

(Jab = 1.5 Hz), while the methyoxy unit is placed on the exo face of the morpholine ring that 

is reported to have adopted a boat conformation. Moreover, Hb does not couple to Hc (Jbc = 0 

Hz) indicating that they are orthogonal to each other, hence cis, while the alcohol group is 

placed on the exo face of the rigid 5-membered ring. 

 

 

Figure 11: NMR-based structural elucidation of 72. 

 

3.4 Synthesis of bridged-morpholine substituted derivatives. 

     With the bridged-morpholine scaffold in hands, it was decided to introduce different 

substituents on that ring. Commencing with the oxidation of the secondary alcohol 

(Compound 72) to compound 92. This was achieved using Dess-Martin periodinane in dry 

DCM and the product was obtained after column chromatography in 69% yield (Scheme 

37)12. 
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Scheme 37: Synthesis of compound 92. 

    Subsequently, following a literature procedure, the addition of ethylmagnesium bromide to 

the ketone of compound 92 gave compound 93 in 63% yield, as a single diastereomer 

(Scheme 38)12. The reaction was carried out in dry THF under nitrogen atmosphere. 

 

Scheme 38: Synthesis of compound 93. 

 

     The ethyl group is expected to be delivered to the more accessible exo-face of the ketone, 

as it has been reported in the case of methyl substituent on the same position12. NOESY 

experiments could have been conducted in order to validate the above configuration. 

      In addition, the reaction of the secondary alcohol 72 with quinazoline 84 gave compound 

94 in 87% yield. More specifically, the nucleophilic aromatic substitution of chloride to form 

the ether product was achieved in the presence of NaOH at 100 oC after 24 hours, while the 

product was obtained without the need for any further purification, as a single diastereomer 

(Scheme 39). 
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Scheme 39: Synthesis of compound 94. 

 

3.5 Synthesis of C-C substituted bridged-morpholine derivatives      

     The initial approach for the formation of the C-C bond next to the nitrogen of the 

morpholine ring was based on a report by O’ Brien et al. on the formation of C-substituted 

bispidines (Scheme 9)13. As a result, the initial plan was to protect the secondary alcohol of 

compound 72 with triisopropylsilyl chloride in dry THF to form compound 73, which would 

be then reacted with a Grignard reagent, such as the methylmagnesium bromide, in the 

presence of boron trifluoride etherate to form compound 73b via an iminium ion 

intermediate. However, the protection of alcohol did not go to completion after 48 hours at 

room temperature and product 73 was isolated after column chromatography in only 18% 

yield (Scheme 40). An alternative reagent for the protection of the secondary alcohol would 

be the use of triisopropylsilyl trifluoromethanesulfonate (TIPSOTf) that is more reactive than 

triisopropylsilyl chloride or the use of a different alcohol protective group such as the 

trimethylsilyl group derived from trimethylsilyl chloride (TMSCl). 
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     Scheme 40: Synthesis of compound 73. 

      After that, the further examination of chemistry of the iminium ion intermediate that is 

formed during the cyclisation process, as described above, was decided. More specifically, it 

was decided to use a Grignard reagent, instead of methanol, as the nucleophile, in order to 

deliver the key C-C bond next to the nitrogen atom on the bridged-morpholine ring. Due to 

the sensitive nature of the Grignard reagent in the presence of a Bronsted acid such as the 

para-toluenesulfonic acid that was used in the case of methanol as the nucleophile, it was 

found appropriate to induce the cyclisation using a Lewis acid, such as the boron trifluoride 

etherate. As a result, the key aldehyde intermediate 71 was reacted with methyl magnesium 

bromide in dry THF in the presence of boron trifluoride etherate. After 16 hours, the reaction 

went to completion with compound 95 being obtained in 27% yield, after column 

chromatography (Scheme 41). This reaction was not entirely regioselective, as there was a 

minor product derived from the addition of the Grignard reagent to the carbonyl of the 

carbamate group. The 1H NMR spectrum of compound 95 was very similar to that of 

compound 72, indicating that the product was obtained as a single diastereomer, with each 

proton having two sets of signals derived from the presence of rotamers.  

 

Scheme 41: Synthesis of compound 95. 
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     As in the case of compound 72, Jbc = 0 indicating that C-Hb and C-Hc bonds are 

orthogonal, consistent with the exo-alcohol structure 95. However, Jab = 6.5 Hz compared to 

compound 72 (Jab = 1.5 Hz). This could indicate either a different configuration at this 

stereocenter or alternatively could be indicative of a different conformation. Additional 

NOESY experiments should be conducted in order to determine the exact configuration on 

that position. 

      Due to the low yield of this reaction, it was decided to examine different reaction 

conditions. More specifically, running the reaction at -78 oC instead of 0 oC using a dry ice 

and acetone bath could possibly eliminate any side reactions. However, under these 

conditions the cyclisation of compound 71 to the iminium ion intermediate did not take place 

and the product isolated from column chromatography came from the addition of 

methylmagnesium bromide to the aldehyde to give compound 71b (Scheme 42). 

 

Scheme 42: Attempted C-C bond formation at -78 oC. 

 

     Due to the complexity and low resolution of the 1H NMR spectrum caused by the presence 

of rotamers of compound 95, it was worthy to remove the carbamate protecting group as this 

would simplify the spectrum by removing the presence of rotamers. More specifically, 

compound 95 was reduced with lithium aluminium hydride to give crude compound 96 

(Scheme 43). Purification of compound 96 by column chromatography was not possible, as 

we could not separate the main product from the byproduct of the reaction, benzyl alcohol. 

The 1H NMR spectrum suggested that compound 96 was obtained as a single diastereomer, 

derived from the multiplicity of the methyl protons on nitrogen (doublet at 1 ppm) and the 

methyl protons attached to nitrogen (singlet at 2.18 ppm). However, due to solvent 

contamination and the impurity of the 1H NMR spectrum, a reasonable estimation of 

composition by comparison of the relative integrals of 1H NMR signals for compound 96 and 
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benzyl alcohol could not be made. Furthermore, additional experiments should be conducted 

in order to establish the exact configuration of the methyl substituent. 

 

Scheme 43: Synthesis of compound 96. 

    Having established the chemistry for the formation of the key C-C bond next to the 

nitrogen on the bridged-morpholine ring, further attempts were made to introduce different 

aliphatic substituents on that position. The next example involved the reaction of compound 

71 with ethylmagnesium bromide to give compound 97 in 32% yield (Scheme 44). As in the 

previous case, the 1H NMR indicated that the product was obtained as a single diastereomer, 

with each proton giving two sets of signals arising from the presence of rotamers. 

 

Scheme 44: Synthesis of compound 97. 

      As in the case of compound 95, the proton (Hb) on the bridging oxygen carbon does not 

couple with Hc (Jbc = 0), as Hc appears as a broad doublet (J = 7.3 Hz) from coupling to two 

neighboring Hd protons. That means that Hb and Hc are orthogonal, hence cis to each other 

with the alcohol group being placed on the exo-face of the molecule. As for the morpholine 

ring, the fact that the Ha proton appears in the 1H NMR spectrum on the same region as Hb 

and the two protons next to the nitrogen as a multiplet, could not let us obtain any 

spectroscopic data regarding their coupling constants. As a result, further NOESY 

experiments should be conducted in order to determine the relative configuration on the 

carbon bearing the ethyl group. 
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      The carbamate group of compound 97 was then reduced to compound 98 with lithium 

aluminium hydride (Scheme 45). Again, it was not possible to isolate compound 98 from the 

byproduct of the reaction, the benzylic alcohol. However, the 1H NMR spectrum verified that 

compound 98 was obtained as a single diastereomer from the multiplicity of the CH3CH2 

group on the ethyl substituent (triplet at 0.92 ppm), as well as the methyl substituent on 

nitrogen (singlet at 2.29 ppm). Again, due to the complexity of 1H NMR spectrum, a 

reasonable estimation of composition by comparison of the relative integrals of compound 97 

and benzyl alcohol could not be made. Moreover, additional experiments should be 

conducted in order to establish the exact configuration of the ethyl substituent. 

 

Scheme 45: Synthesis of compound 98. 

    After that, it was attempted to introduce an aromatic substituent on the carbon next to 

nitrogen, by the reaction of compound 71 with 4-isopropylphenylmagnesium bromide in dry 

THF to give compound 99 (Scheme 46). After 24 hours, all of the starting material had 

reacted. However, 1H NMR spectrum showed that the key C-C bond next to the nitrogen had 

not been formed, as the main product was the addition of the Grignard reagent to the carbonyl 

of the carbamate group, while there were also other unidentifiable products present.  

 

Scheme 46: Attempted synthesis of compound 99. 

 

 



52 
 

3.6 Future work 

     Due to time constrictions, the introduction of more substituents via a C-C bond on that 

position was not possible. More specifically, compound 80 can be reacted with Mg turnings 

to give compound 100 that could then be coupled with compound 71 in the presence of boron 

trifluoride etherate to form C substituted bridged-morpholine 101 (Scheme 47). 

 

    Scheme 47: Synthesis of compound 101. 

     In addition, more aliphatic substituents could be introduced on that position, such as the 

isopropyl group, as well as unsaturated substituents, like alkenes and alkynes. In addition, 

more reactions including aromatic substituents could be explored, as well as optimization of 

the reaction conditions in order to improve the yield of the key C-C bond formation step by 

the use of alternative Lewis acids reagents. 
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CHAPTER 4: Experimental 

4.1 General information 

      Unless otherwise stated, all reactions were carried out under an inert atmosphere of dried 

nitrogen, in glassware that had been flame-dried. Reagents were purchased from Sigma-

Aldrich, Acros, Fisher Scientific and Fluorochem. Dichloromethane was distilled from 

calcium hydride. Tetrahydrofuran (99.5%, extra dry over molecular sieve) was purchased 

from Fisher Scientific and used as such. Thin layer chromatography was performed on 

aluminium sheets coated with Merck silica gel 60 F254 with visualization using potassium 

permanganate solution and/or scrutinized under 254 nm and 365 nm UV light. Column 

chromatography was performed using Silica 60 (40-63 microns) supplied by Sigma-Aldrich 

unless otherwise stated. All melting points were obtained using a Smart SMP10 melting point 

instrument and are uncorrected. 

      Nuclear magnetic resonance (NMR) spectroscopy was performed on a Bruker Advance 

400 MHz spectrometer (1H NMR at 400 MHz and 13C NMR at 100 MHz) with samples 

dissolved in the appropriate deuterated solvent. Chemical shifts in 1H NMR and 13C NMR are 

relative to the deuterated solvent peak and reported as singlet (s), doublet (d), triplet (t), 

quarted (q) and combinations thereof, or multiplet (m). Coupling constants (J) are quoted in 

Hz and are averaged between coupling partners and rounded to the nearest 0.5 Hz. Mass 

spectrometry (MS) were performed using a Bruker MicroTOF-Q instrument with 

electrospray ionization in the positive mode, FT-IR data was acquired using Thermo Electron 

Corporation Nicolet 380 FTIR with Smart Orbit diamond window instrument with 

wavenumbers reported in cm-1. 

     It should be noted that the 1H NMR spectra of compounds 69-72, 92-95 and 97 give the 

appearance of a mixture of two isomers. Based on previous published work with similar 

compounds, which included the use of variable temperature studies, we believe that this is, in 

fact, due to restricted rotation between stable conformations of the carbamate.12 
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4.2 Synthetic procedures and analysis 

 

Methyl 3-(4-methoxybenzamido)thiophene-2-carboxylate 77 

       

A solution of 4-methoxybenzoyl chloride (3.06 g, 1.12 equiv., 17.9 mmol) in acetone (20 

mL) was added dropwise to a stirring mixture of methyl-3-amino-2-thiophenecarboxylate 

(2.51 g, 1 equiv., 15.9 mmol) in acetone (130 mL) and pyridine (10 mL, 15.45 equiv., 245.6 

mmol). The reaction mixture was stirred overnight. Then the solvent was evaporated in vacuo 

and the residue was dissolved in DCM. The solution was washed with water (2 x 30 mL), 

dried over MgSO4 and concentrated in vacuo. The residue was then triturated under 

diisopropyl ether and the precipitate was filtered off and dried to afford 77 as a white solid 

(3.38 g, 11.6 mmol, 73%). 

Mp: 130-135 oC (no lit. mp available); 1H NMR (400 MHz, CDCl3) δ 11.12 (bs, 1H, NHCO), 

8.29 (d, J = 5.6 Hz, 1H, 3-H), 7.98 (d, J = 8.7 Hz, 2H, 8-H and 8'-H), 7.52 (d, J = 5.6 Hz, 1H, 

4-H), 7.00 (d, J = 8.7 Hz, 2H, 9-H and 9'-H), 3.93 (s, 3H, CO2CH3), 3.88 (s, 3H, OCH3); 
13C 

NMR (100 MHz, CDCl3) δ 165.30 (C6), 163.81 (C1), 162.89 (C10), 145.57 (C5), 131.86 

(C3), 129.42 (2C, C8, C8'), 125.92 (C2), 122.37 (C7), 114.13 (2C, C9, C9'), 109.99 (C4), 

55.48 (OCH3), 52.05 (CO2CH3); m/z (ESI+) calculated for C14H13NO4S [M+H]+ 292.0565, 

observed 292.0642 (error 1.03 ppm); νmax (solid, cm-1): 3327 (NH), 1693 (C=O amide). 

 

 

 

 

 



55 
 

3-(4-methoxybenzamido)thiophene-2-carboxamide 78  

    

In a sealed tube flushed with compound 77 (0.45 g, 1 equiv., 1.63 mmol) was added NH3 (7 

M in Methanol, 128 equiv., 30 mL) and the reaction mixture was placed in an oil bath at 90 

oC for 48 hours. Upon completion of the reaction, the volatiles were removed in vacuo to 

afford 78 as a white solid (0.37 g, 1.34 mmol, 83%). 

Mp: 142-147 oC (no lit. mp available); 1H NMR (400 MHz, CDCl3) δ 11.86 (bs, 1H, CONH), 

8.35 (d, J = 5.5 Hz, 1H, 3-H), 7.98 (d, J = 8.9 Hz, 2H, 8-H, 8'-H), 7.43 (d, J = 5.5 Hz, 1H, 4-

H), 6.98 (d, J = 8.9 Hz, 2H, 9-H, 9'-H), 5.72 (bs, 2H, CONH2), 3.87 (s, 3H, OCH3); 
13C NMR 

(100 MHz, CDCl3) δ 166.25 (C6), 163.97 (C1), 162.80 (C10), 145.24 (C5), 129.50 (2C, C8, 

C8'), 128.10 (C3), 126.07 (C2) 123.37 (C7), 114.05 (2C, C9, C9'), 110.81 (C4), 55.47 

(OCH3) m/z (ESI+) calculated for C13H12N2O3S [M+H]+ 277.0569, observed 277.0645 (error 

1.33 ppm); νmax (solid, cm-1): 3390 (NH), 1647 (C=O amide). 

 

2-(4-methoxyphenyl)thieno[3,2-d]pyrimidin-4(1H)-one 79 

 

To a solution of compound 78 (1.3 g, 1 equiv., 4.70 mmol) in t-BuOH (15 mL) was added 

potassium tert-butoxide (1.05 g, 2 equiv., 9.40 mmol) and the solution was heated in reflux 

for 4 hours. The reaction was quenched with water (5 mL) and the solution was taken to pH = 

8 with acetic acid. The solid formed was filtered and washed with water to give 79 as a white 

solid (0.93 g, 3.61 mmol, 77%). 
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Mp: 144-149 oC (no lit. mp available); 1H NMR (400 MHz, CDCl3) δ 10.04 (bs, 1H, NH), 

8.01 (d, J = 9.1 Hz, 2H, 8-H, 8'-H), 7.85 (d, J = 5.4 Hz, 1H, 3-H), 7.44 (d, J = 5.4 Hz, 1H, 4-

H), 7.05 (d, J = 9.1 Hz, 2H, 9-H,  9'-H), 3.90 (s, 3H, OCH3); 
13C NMR (100 MHz, DMSO-d6) 

δ 162.27 (C1), 159.06 (C6), 158.62 (C10), 154.40 (C5), 135.76 (C3), 129.97 (2C, C8, C8'), 

125.84 (C2), 125.08 (C7), 120.97 (C4), 114.51 (2C, C9, C9'), 55.93 (OCH3); m/z (ESI+) 

calculated for C13H10N2O2S [M+H]+ 259.0463, observed 259.0539 (error 1.32 ppm); νmax 

(solid, cm-1): 1608 (C=O), 1259 (C-O).   

 

4-chloro-2-(4-methoxyphenyl)thieno[3,2-d]pyrimidine 80 

 

 To a solution of compound 79 (0.6 g, 1 equiv., 2.10 mmol) in DMF (16 mL) was added 

phosphorus (V) oxychloride (0.23 mL, 1.2 equiv., 2.52 mmol). The reaction mixture was 

stirred for 4 hours at room temperature. Upon completion of the reaction, the mixture was 

poured on ice slowly and the precipitate was filtered, washed with water and dried in vacuo 

to afford 80 as a white solid (0.48 g, 1.74 mmol, 83%).  

Mp: 160-165 oC (no lit. mp available); 1H NMR (400 MHz, CDCl3) δ 8.47 (d, J = 9.0 Hz, 2H, 

8-H, 8'-H), 7.99 (d, J = 5.4 Hz, 1H, 3-H), 7.58 (d, J = 5.4 Hz, 1H, 4-H), 7.01 (d, J = 9.0 Hz, 

2H, 9-H, 9'-H), 3.89 (s, 3H, OCH3); 
13C NMR (100 MHz, CDCl3) δ 162.80 (C1), 162.04 

(C6), 161.58 (C10), 154.79 (C5), 136.68 (C3), 130.19 (2C, C8, C8'), 129.30 (C2), 127.48 

(C7), 125.13 (C4), 113.98 (2C, C9, C9'), 55.42 (OCH3); m/z (ESI+) calculated for 

C13H9
35ClN2OS [M+H]+ 277.0124, observed 277.0199 (error 0.95 ppm); νmax (solid, cm-1): 

2169 (C=N),1295 (C-O).   
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4-(2-(4-methoxyphenyl)thieno[3,2-d]pyrimidin-4-yl)morpholine 81 

 

To a solution of compound 80 (0.48 g, 1 equiv., 1.73 mmol) in 1,4-dioxane (16 mL) was 

added morpholine (0.29 mL, 2 equiv., 3.46 mmol) and the reaction mixture was heated in 

reflux for 24 hours. Then the reaction was quenched with water (10 mL) and the reaction 

mixture was extracted with DCM (3 x 15 mL). The organic extracts were then washed with a 

5% aqueous solution of NaOH (10 mL), water (10 mL), brine (10 mL), dried over MgSO4 

and concentrated in vacuo to afford 81 as a white solid (0.44 g, 1.34 mmol, 78%). 

Mp: 155-160 oC (no lit. mp available); 1H NMR (400 MHz, CDCl3) δ 8.40 (d, J = 8.6 Hz, 2H, 

8-H, 8'-H), 7.72 (d, J = 5.5 Hz, 1H, 3-H), 7.48 (d, J = 5.5 Hz, 1H, 4-H), 6.97 (d, J = 8.6 Hz, 

2H, 9-H, 9'-H), 4.06 (t, J = 5.2 Hz, 4H, 11-H2, 11'-H2), 3.91-3.87 (m, 7H, OCH3, 12-H2, 12'-

H2); 
13C NMR (100 MHz, CDCl3) δ 162.94 (C1), 161.28 (C6), 160.27 (C10), 158.27 (C5), 

131.46 (C3), 131.13 (C2), 129.66 (2C, C8, C8'), 125.49 (C7), 113.61 (2C, C9, C9'), 112.19 

(C4), 66.86 (2C, C11, C11'), 55.36 (OCH3), 46.35 (2C, C12, C12'); m/z (ESI+) calculated for 

C17H17N3O2S [M+H]+ 328.1041, observed 328.1115 (error 0.48 ppm); νmax (solid, cm-1): 

2964 (C-H), 1352 (C-O). 
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3-(2-(4-methoxyphenyl)thieno[3,2-d]pyrimidin-4-yl)-8-oxa-3-azabicyclo[3.2.1]octane 82 

 

 

To a solution of compound 80 (0.28 g, 1 equiv., 1.01 mmol) in 1,4-dioxane (12 mL) was 

added 8-oxa-3-azabicyclo[3.2.1]octane hydrochloride (0.30 g, 2 equiv., 2.02 mmol) and 

triethylamine (0.28 mL, 2 equiv., 2.02 mmol). The reaction mixture was heated in reflux for 

24 hours. Upon completion, the reaction was quenched with water (8 mL) and the reaction 

mixture was extracted with DCM (3 x 15 mL). The organic extracts were then washed with 

5% aqueous solution of NaOH (8 mL), water (8 mL), brine (8 mL), dried over MgSO4 and 

concentrated in vacuo to afford 82 as a yellow solid (0.28 g, 0.79 mmol, 79%). 

Mp: 162-167 oC (no lit. mp available); 1H NMR (400 MHz, CDCl3) δ 8.40 (d, J = 9.3 Hz, 2H, 

8-H, 8'-H), 7.72 (d, J = 5.6 Hz, 1H, 3-H), 7.47 (d, J = 5.6 Hz, 1H, 4-H), 6.97 (d, J = 9.3 Hz, 

2H, 9-H, 9'-H), 4.55-4.51 (m, 4H, 12-H2, 12'-H2), 3.87 (s, 3H, OCH3), 3.54-3.51 (m, 2H, 11-

H, 11'-H), 2.03-1.90 (m, 4H, 13-H2, 13'-H2); 
13C NMR (100 MHz, CDCl3) δ 162.74 (C1), 

161.24 (C6), 160.18 (C10), 159.25 (C5), 131.46 (C3), 131.22 (C2), 129.66 (2C, C8, C8'), 

125.45 (C7), 113.58 (2C, C9, C9'), 112.12 (C4), 74.01 (2C, C11, C11'), 55.36 (OCH3), 51.42 

(2C, C12,  C12'), 27.82 (2C, C13, C13'); m/z (ESI+) calculated for C19H19N3O2S [M+H]+ 

354.1198, observed 354.1270 (error 0.15 ppm); νmax (solid, cm-1): 2955 (C-H), 1357 (C-O). 
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4-(2-phenylquinazolin-4-yl)morpholine 85 

 

To a solution of 4-chloro-2-phenylquinazoline (0.50 g, 1 equiv., 2.07 mmol) in 1,4-dioxane 

(20 mL) was added morpholine (0.36 mL, 2 equiv., 4.15 mmol) and the reaction mixture was 

heated in reflux for 24 hours. After that, the reaction was quenched with water (10 mL) and 

the reaction mixture was extracted with DCM (3 x 20 mL). The organic extracts were then 

washed with 5% aqueous solution of NaOH (10 mL), water (10 mL), brine (10 mL), dried 

over MgSO4 and concentrated  in vacuo to afford 85 as a white solid (0.49 g, 1.69 mmol, 

82%). 

Mp: 151-156 oC (lit. mp 157-158 oC); 1H NMR (400 MHz, CDCl3) δ 8.55 (dd, J1 = 7.50 Hz, 

J2 = 2.60 Hz, 2H, 10-H, 10'-H), 7.98 (d, J = 8.5 Hz, 1H, 6-H), 7.88 (d, J = 8.3 Hz, 1H, 3-H), 

7.73 (t, J = 7.4 Hz, 1H, 5-H), 7.52-7.39 (m, 4H, 4-H, 11-H, 11'-H, 12-H), 3.94 (t, J = 4.2 Hz, 

4H, 14-H2, 14'-H2), 3.84 (t, J = 4.2 Hz, 4H, 13-H2, 13'-H2); 
13C NMR (100 MHz, CDCl3) δ 

164.97 (C8), 159.47 (C1), 152.85 (C7), 138.50 (C2), 132.54 (C6), 130.27 (C9), 129.19 (C3), 

128.41 (2C, C10, C10'), 128.38 (2C, C11, C11'), 125.09 (C5), 124.64 (C4), 115.37 (C12), 

66.83 (2C, C14, C14'), 50.40 (2C, C13, C13'); m/z (ESI+) calculated for C18H17N3O [M+H]+ 

292.1372, observed 292.1448 (error 1.28 ppm); νmax (solid, cm-1): 2032 (C-H aromatic), 1109 

(C-N). 
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3-(2-phenylquinazolin-4-yl)-8-oxa-3-azabicyclo[3.2.1]octane 86 

 

To a solution of 4-chloro-2-phenylquinazoline (0.40 g, 1 equiv., 1.66 mmol) in 1,4-dioxane 

(17 mL) was added 8-oxa-3-azabicyclo[3.2.1]octane hydrochloride (0.49 g, 2 equiv., 3.32 

mmol) and triethylamine (0.46 mL, 2 equiv., 3.32 mmol). The reaction mixture was heated in 

reflux for 24 hours. After that, the reaction was quenched with water (10 mL) and the 

reaction mixture was extracted with DCM (3 x 20 mL). The organic extracts were then 

washed with 5% aqueous solution of NaOH (10 mL), water (10 mL), brine (10 mL), dried 

over MgSO4 and concentrated  in vacuo to afford 86 as a yellow solid (0.44 g, 1.38 mmol, 

85%). 

Mp: 159-164 oC (no lit. mp available); 1H NMR (400 MHz, CDCl3) δ 8.53 (dd, J1 = 7.7 Hz, 

J2 = 2.3 Hz, 2H, 10-H, 10'-H), 7.96 (d, J = 8.1 Hz, 1H, 6-H), 7.86 (d, J = 7.6 Hz, 1H, 3-H), 

7.71 (t, J = 6.9 Hz, 5-H), 7.53-7.46 (m, 3H, 11-H, 11'-H, 12-H), 7.38 (t, J = 6.9 Hz, 1H, 4-H), 

4.49-4.34 (m, 6H, 14-H, 14'-H, 13-H2, 13'-H2), 4.03 (d, J = 13.8 Hz, 1H, 15-H), 3.47 (dd, J1 = 

12.6 Hz, J2 = 2.2 Hz, 1H, 15-H), 3.21 (d, J = 12.6 Hz, 1H, 15'-H), 2.99 (dd, J1 = 13.8 Hz, J2 =  

2.2 Hz, 1H, 15'-H); 13C NMR (100 MHz, CDCl3) δ 164.65 (C8), 162.38 (C1), 159.26 (C7), 

138.63 (C2), 132.33 (C6), 130.16 (C9), 129.06 (C3), 128.35 (2C, C10, C10'), 128.34 (2C, 

C11, C11'), 124.92 (C5), 124.50 (C4), 114.63 (C12), 74.68 (2C, C14, C14’), 54.46 (2C, C13, 

C13'), 27.50 (2C, C15, C15'); ); m/z (ESI+) calculated for C20H19N3O [M+H]+ 318.1528, 

observed 318.1603 (error 0.75 ppm); νmax (solid, cm-1): 2956 (C-H), 2168 (C-H aromatic), 

1004 (C-N). 
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(But-3-en-1-yloxy)triisopropylsilane 63 

 

To a solution of 3-buten-1-ol (11.93 mL, 1 equiv., 138.68 mmol) in anhydrous THF (150 mL) 

was added imidazole (10.56 g, 1.1 equiv., 155.10 mmol). To the solution was then added 

triisopropylsilyl chloride (33.2 mL, 1.1 equiv., 155.10 mmol) and the reaction mixture was 

stirred at room temperature for 22 hours. Upon completion of the reaction, the white 

suspension was filtered through a pad of silica and the filter cake was washed with 1:1 

hexanes/ethyl acetate (180 mL). The filtrate was concentrated in vacuo to afford 63 as a 

colourless oil (28.15 g, 115.10 mmol, 89%). 

1H NMR (400 MHz, CDCl3) δ 5.90-5.71 (m, 1H, 2-H), 5.10-5.00 (m, 2H, 1-H2), 3.73 (t, J = 

6.9 Hz, 2H, 4-H2), 2.45-2.25 (m, 2H, 3-H2), 1.11-1.04 (m, 21H, Si(CH(CH3)2)3); 
13C NMR 

(100 MHz, CDCl3) δ 135.54 (C2), 116.17 (C1), 63.07 (C4), 37.66 (C3), 18.00 

(Si(CH(CH3)2)3), 11.99 (Si(CH(CH3)2)3); νmax (oil, cm-1): 2856 (C-H), 994 (C=C). 

Due to the sensitive nature of this product accurate mass spectral details could not be 

obtained. 

 

Triisopropyl(2-(oxiran-2-yl)ethoxy)silane 64 

 

To a solution of 63 (20 g, 1 equiv., 87.64 mmol) in DCM (230 mL) was added meta-

chloroperoxybenzoic acid (70-75%) (23.7 g, 1.1 equiv., 96.36 mmol) in three portions. The 

reaction mixture was stirred at room temperature for 16 hours. Upon completion, the white 

precipitate formed was filtered off, the reaction mixture was concentrated in vacuo and the 

solids were redissolved in hexanes (250 mL). The suspension was filtered through a pad of 

silica and the filter cake was washed with 10:1 hexanes/ethyl acetate (200 mL). The filtrate 

was concentrated in vacuo to afford 64 as a colourless oil (17.77 g, 72.72 mmol, 83%). 

1H NMR (400 MHz, CDCl3) δ 3.86 (t, J = 6.1 Hz, 2H, 4-H2), 3.12-3.06 (m, 1H, 2-H), 2.79 (t, 

J = 4.7 Hz, 1H, 1-H), 2.52 (dd, J1 = 4.7 Hz, J2 = 2.8 Hz, 1H, 1-H), 1.83-1.68 (m, 2H, 3-H2), 
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1.07-1.05 (m, 21H, Si(CH(CH3)2)3); 
13C NMR (100 MHz, CDCl3) δ 60.33 (C4), 50.09 (C2), 

47.24 (C1), 36.08 (C3), 17.97 (Si(CH(CH3)2)3), 11.92 (Si(CH(CH3)2)3); m/z (ESI+) 

calculated for C13H28O2Si [M+H]+ 245.1859, observed 245.1931 (error 0.98 ppm); νmax (oil, 

cm-1): 2865 (C-H), 1103 (C-O). 

 

N-benzyl-2,2-dimethoxyethan-1-amine 65 

 

To a solution of aminoacetaldehyde dimethyl acetal (11.74 mL, 1 equiv., 110.96 mmol) in 

ethanol (60 mL) was added benzaldehyde (11.28 mL, 1 equiv., 110.96 mmol) and the 

reaction mixture was stirred at room temperature for 12 hours. The mixture was then cooled 

to 0 oC and sodium borohydride (6.30 g, 1.5 equiv., 166.44 mmol) was added portionwise. 

The reaction mixture was left to stir at room temperature for 16 hours and the resultant oil 

was acidified to pH~9 with 2M HCl. The solvent was then removed in vacuo and water (50 

mL) was added. The pH was corrected again to pH~9 and the product was extracted with 

ethyl acetate (3 x 30 mL). The combined organic extracts were washed with brine (10 mL), 

dried over MgSO4 and concentrated in vacuo to afford 65 as a colourless oil (18.83 g, 96.53 

mmol, 87%). 

1H NMR (400 MHz, CDCl3) δ 7.35-7.24 (m, 5H, Ar-H), 4.48 (t, J = 5.5 Hz, 1H, 1-H), 3.79 

(s, 2H, 3-H2), 3.35 (s, 6H, OCH3), 2.74 (d, J = 5.5 Hz, 2H, 2-H2); 
13C NMR (100 MHz, 

CDCl3) δ 140.11 (C4), 128.42 (2C, C5, C5'), 128.14 (2C, C6, C6'), 127.00 (C7), 103.92 (C1), 

53.95 (C3), 53.90 (2C, OCH3), 50.52 (C2); m/z (ESI+) calculated for C11H17NO2 [M+H]+ 

196.1259, observed 196.1329 (error 2.07 ppm); νmax (oil, cm-1): 2289 (C-H), 1495 (N-H), 

1126 (C-N). 
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5-benzyl-11,11-diisopropyl-3-methoxy-12-methyl-2,10-dioxa-5-aza-11-silatridecan-7-ol 

66 

 

To a solution of amine 65 (8.41 g, 1 equiv., 43.09 mmol) in ethanol (220 mL) was added 

epoxide 64 (10.55 g, 1 equiv., 43.09 mmol) and the reaction mixture was heated in reflux for 

16 hours. Upon completion, the mixture was cooled to ambient temperature and concentrated 

in vacuo. Column chromatography on silica (1:6 Petrol/EtOAc) afforded 66 as a colourless 

oil (13.83 g, 31.45 mmol, 73%). 

1H NMR (400 MHz, CDCl3) δ 7.31-7.22 (m ,5H, Ar-H), 4.34 (t, J = 5.5 Hz, 1H, 7-H), 3.85-

3.60 (m, 5H, 5-H2, 11-H2, 9-H), 3.30 (s, 3H, OCH3), 3.24 (s, 3H, OCH3), 2.73 (dd, J1 = 14.0 

Hz, J2 = 6.15, 1H, 8-H), 2.63-2.46 (m, 3H, 6-H2, 8-H), 1.62 (q, J = 6.2 Hz, 2H, 10-H2), 1.05-

1.04 (m, 21H, Si(CH(CH3)2)3); 
13C NMR (100 MHz, CDCl3) δ 138.93 (C4), 129.09 (2C, C3 

and C3'), 128.33 (2C, C2 and C2'), 127.20 (C1), 103.22 (C7), 66.06 (C9), 61.63 (C5), 60.85 

(C11), 60.40 (C8), 55.75 (C6), 53.84 (OCH3), 53.04 (OCH3), 37.44 (C10), 18.02 

(Si(CH(CH3)2)3), 11.92 (Si(CH(CH3)2)3); m/z (ESI+) calculated for C24H45NO4Si [M+H]+ 

440.3120, observed 440.3190 (error 0.48 ppm); νmax (oil, cm-1): 2940 (C-H), 1083 (C-N). 
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4-benzyl-2-methoxy-6-(2-((triisopropylsilyl)oxy)ethyl)morpholine 67 

  

A one-necked round bottom flask was charged with 66 (10 g, 1 equiv., 22.74 mmol) and p-

TsOH (1.56 g, 0.4 equiv., 9.10 mmol). A plug of cotton wool was placed in the neck of the 

flask and the flask was placed into an oil bath which had been preheated to 115 oC. The 

reaction mixture was left to stir at this temperature for 16 hours. Upon completion of the 

reaction, the mixture was diluted with DCM (100 mL) and quenched with a saturated 

aqueous solution of sodium bicarbonate (40 mL). The organic layer was separated, dried over 

MgSO4 and concentrated in vacuo. The resultant oil was purified by column chromatography 

on silica (1:1 Petrol/EtOAc) to yield 67 as a 60:40 mixture of diastereomers (6.39 g, 15.69 

mmol, 69%). 

 1H NMR (400 MHz, CDCl3) δ 7.33-7.23 (m, 5H, Ar-H), 4.64 (bd, J = 2.2 Hz, 0.4H, 7-H, 

minor isomer), 4.47 (dd, J1 = 8.5 Hz , J2 = 2.2 Hz, 0.6H, 7-H, major isomer), 4.18-4.09 (m, 

0.6H, 9-H, major isomer), 3.90-3.73 (m, 2.4 H, 5-H2, 9-H minor isomer), 3.51 (t, J = 3.1 Hz, 

2H, 11-H2), 3.48 (s, 1.8H, OCH3, major isomer), 3.38 (s, 1.2H, OCH3, minor isomer), 2.89-

2.69 (m, 2H, 6-H, 8-H), 2.23-2.20 (dd, J1 = 11.6 Hz, J2 = 2.2 Hz, 0.4H, 6-H, minor isomer), 

1.95-1.61 (m, 3.6H, 10-H2, 8-H, 6-H major isomer), 1.08-1.03 (m, 21H, Si(CH(CH3)2)3); 
13C 

NMR (100 MHz, CDCl3) δ 137.51 (C4, major isomer), 136.80 (C4, minor isomer), 129.46 

(2C, C3, C3', minor isomer), 129.19 (2C, C3, C3', major isomer), 128.26 (2C, C2, C2', major 

isomer), 128.18 (2C, C2, C2', minor isomer), 127.19 (C1, major isomer), 127.15 (C1, minor 

isomer), 100.34 (C7, major isomer), 97.17 (C7, minor isomer), 70.50 (C9, major isomer), 

65.52 (C9, minor isomer), 63.26 (C5, minor isomer), 62.69 (C5, major isomer), 59.63 (C11, 

minor isomer), 59.23 (C11, major isomer), 57.86 (C8, minor isomer), 57.66 (C8, major 

isomer), 56.81 (OCH3, minor isomer), 56.27 (OCH3, major isomer), 55.67 (C6,  minor 

isomer), 54.86 (C6, major isomer), 36.81 (C10, minor isomer), 36.43 (C10, major isomer), 

18.03 (Si(CH(CH3)2)3, major isomer), 17.71(Si(CH(CH3)2)3, minor isomer), 12.30 

(Si(CH(CH3)2)3, minor isomer), 11.95 (Si(CH(CH3)2)3, major isomer); m/z (ESI+) calculated 
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for C23H41NO3Si [M+H]+ 408.2856, observed 408.2929 (error 0.68 ppm); νmax (oil, cm-1): 

2941 (C-H), 1090 (C-N).  

 

Benzyl2-(2-((triisopropylsilyl)oxy)ethyl)-2,3-dihydro-4H-1,4-oxazine-4-carboxylate 69 

 

To a stirred solution of 67 (6.39 g, 1 equiv., 15.69 mmol) in DCM (290 mL) was added 

benzyl chloroformate (3.54 mL, 1.6 equiv., 25.10 mmol) and the reaction mixture was stirred 

at ambient temperature for 20 hours. Upon completion of the reaction, the solvent was 

evaporated in vacuo and the residue was redissolved in toluene (600 mL). To the reaction 

mixture was added p-TsOH (1.08 g, 0.4 equiv., 6.28 mmol) and the reaction mixture was 

heated in reflux using the Dean-Stark apparatus for 4 hours. The solution was then cooled to 

ambient temperature and the reaction was quenched with a saturated aqueous solution of 

sodium bicarbonate (100 mL). The organic layer was separated, dried over MgSO4 and 

concentrated in vacuo. The resultant oil was purified by column chromatography on silica 

(8:1 Petrol/EtOAc) to yield 69 as a 60:40 mixture of rotamers (1.90 g, 4.55 mmol, 29%). 

1H NMR (400 MHz, CDCl3) δ 7.40-7.28 (m, 5H, Ar-H), 6.34 (d, J = 4.9 Hz, 0.4H, 7-H  

minor rotamer), 6.22 (d, J = 4.9 Hz, 0.6H , 7-H major rotamer), 6.02 (d, J = 4.9 Hz, 0.4H, 6-

H minor rotamer), 5.89 (d, J = 4.9 Hz, 0.6H, 6-H major rotamer), 5.24-5.15 (m, 2H, 5-H2), 

4.13-3.82 (m, 4H, 8-H2, 11-H2), 3.29-3.17 (m, 1H, 9-H), 1.83-1.80 (m, 2H, 10-H2), 1.06-1.05 

(m, 21H, Si(CH(CH3)2)3); 
13C NMR (100 MHz, CDCl3) δ 152.19 (C12, major rotamer), 

152.02 (C12, minor rotamer), 136.18 (C4, major rotamer), 136.15 (C4, minor rotamer), 

129.61 (2C, C3, C3', minor rotamer), 128.55 (2C, C3, C3', major rotamer), 128.25 (2C, C2, 

C2', minor rotamer), 128.21 (2C, C2, C2', major rotamer), 128.18 (C1, minor rotamer), 

128.03 (C1, major rotamer), 105.71 (C7), 105.15 (C6), 70.92 (C11, minor rotamer), 70.84 

(C11, major rotamer), 67.62 (C5, minor rotamer), 67.58 (C5, major rotamer), 59.13 (C8, 

minor rotamer), 58.96 (C8, major rotamer), 46.43 (C9, minor rotamer), 45.76 (C9, major 

rotamer), 35.52 (C10, minor rotamer), 35.40 (C10, major rotamer), 17.98 (Si(CH(CH3)2)3, 
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minor rotamer), 17.71 (Si(CH(CH3)2)3, major rotamer), 12.31 (Si(CH(CH3)2)3, major 

rotamer), 11.93 (Si(CH(CH3)2)3, minor rotamer); m/z (ESI+) calculated for C23H37NO4Si 

[M+H]+ 420.2492, observed 420.2566 (error 0.39 ppm); νmax (oil, cm-1): 2941 (C-H), 1707 

(C=C), 1060 (C-N).  

 

Benzyl 2-(2-hydroxyethyl)-2,3-dihydro-4H-1,4-oxazine-4-carboxylate 70 

 

Tetrabutylammonium fluoride (4.55 mL, 1 equiv., 4.55 mmol, 1M in THF) was added to a 

solution of 69 (1.90 g, 1 equiv., 4.55 mmol) in anhydrous THF (30 mL) at 0 oC. The reaction 

mixture was stirred at 0 oC for 2 hours. After that, the reaction was quenched with a saturated 

aqueous solution of sodium bicarbonate (20 mL) and the organic layer was separated. The 

organic layer was dried over MgSO4 and concentrated in vacuo. The resultant oil was 

purified by column chromatography on silica (4:1 Petrol/EtOAc) to yield 70 as a mixture of 

rotamers (60:40) (0.67 g, 2.54 mmol, 56%). 

1H NMR (400 MHz, CDCl3) δ 7.37-7.26 (m, 5H, Ar-H), 6.33 (d, J = 4.8 Hz, 1H, 7-H minor 

rotamer), 6.21 (d, J = 4.8 Hz, 1H, 7-H, major rotamer), 6.01 (d, J = 4.8 Hz, 1H, 6-H minor 

rotamer), 5.88 (d, J = 4.8 Hz, 1H, 6-H, major rotamer), 5.18 (s, 2H, 5-H2), 4.12-3.81 (m, 4H, 

8-H2, 11-H2), 3.27-3.14 (m, 1H, 9-H), 1.89-1.75 (m, 2H, 10-H2); 
13C NMR (100 MHz, 

CDCl3) δ 152.22 (C12, major rotamer), 151.94 (C12, minor rotamer), 136.07 (C4), 129.35 

(2C, C3, C3', minor rotamer), 128.58 (2C, C3, C3', major rotamer), 128.35 (2C, C2, C2', 

minor rotamer), 128.28 (2C, C2, C2', major rotamer), 128.19 (C1, minor rotamer), 128.06 

(C1, major rotamer), 105.93 (C7), 105.40 (C6), 72.18 (C11, major rotamer), 71.54 (C11, 

minor rotamer), 67.73 (C5, major rotamer), 67.67 (C5, minor rotamer), 59.22 (C8), 46.29 

(C9, minor rotamer), 45.59 (C9, major rotamer), 34.72 (C10, minor rotamer), 34.65 (C10, 

major rotamer); m/z (ESI+) calculated for C14H17NO4 [M+H]+ 264.1158, observed 264.1230 

(error 0.08 ppm); νmax (oil, cm-1): 3432 (O-H), 2925 (C-H), 1700 (C=C), 1123 (C-N). 
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Benzyl 2-(2-oxoethyl)-2,3-dihydro-4H-1,4-oxazine-4-carboxylate 71 

 

To a stirred solution of 70 (0.67 g, 1 equiv., 2.54 mmol) in dry DCM (12 mL) was added 

Dess-Martin periodinane (1.18 g, 1.1 equiv., 2.80 mmol). The reaction mixture was stirred at 

ambient temperature for 30 minutes in which time a white precipitate was formed. Upon 

completion of the reaction, the reaction mixture was diluted with Et2O (10 mL) and the 

volatiles were evaporated in vacuo. The residue was then redissolved in Et2O (15 mL) and a 

1:1 mixture of 10% aqueous solution of sodium thiosulfate (10 mL) and a saturated aqueous 

solution of sodium bicarbonate (10 mL) was added. The organic layer was separated, washed 

with brine (10 mL), dried over MgSO4 and concentrated in vacuo. The resultant oil was 

purified by column chromatography on silica (4:1 Petrol/EtOAc) to yield 71 as a mixture of 

rotamers (60:40) (0.42 g, 1.61 mmol, 64%). 

1H NMR (400 MHz, CDCl3) δ 9.79 (s, 1H,CHO), 7.40-7.26 (m, 5H, Ar-H), 6.36 (d, J = 

4.8Hz, 1H, 7-H, minor rotamer), 6.24 (d, J = 4.8 Hz, 1H, 7-H, major rotamer), 5.99 (d, J = 

4.8 Hz, 1H, 6-H, minor rotamer), 5.87 (d, J = 4.8 Hz, 1H, 6-H, major rotamer), 5.19 (s, 2H, 

5-H2), 4.49-4.44 (m, 1H, 9-H), 4.07-3.94 (m, 1H, 8-H, major rotamer), 3.35-3.22 (m, 1H, 8-

H, minor rotamer), 2.82-2.58 (m, 2H, 10-H); 13C NMR (100 MHz, CDCl3) δ 198.71 (C11, 

minor rotamer), 198.56 (C11, major rotamer), 152.20 (C12) ,151.89 (C12), 129.12 (C4, 

minor rotamer), 128.63 (C4, major rotamer), 128.43 (2C, C3, C3', minor rotamer), 128.36 

(2C, C3, C3', major rotamer), 128.25 (2C, C2, C2', minor rotamer), 128.13 (2C, C2, C2', 

major rotamer), 128.07 (C1, minor rotamer), 127.89 (C1, major rotamer), 106.05 (C7), 

105.55 (C6), 68.72 (C5, major rotamer), 68.22 (C5, minor rotamer), 67.88 (C8, minor 

rotamer), 67.82 (C8, major rotamer), 45.74 (C9, major rotamer), 45.66 (C9, minor rotamer), 

45.55 (C10, minor rotamer), 44.92 (C10, major rotamer); νmax (oil, cm-1): 1671 (C=O), 162 

(C=C), 1122 (C-N). 

 Due to the sensitive nature of this product accurate mass spectral details could not be 

obtained. 
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Benzyl-7-hydroxy-2-methoxy-8-oxa-3-azabicyclo[3.2.1]octane-3-carboxylate 72 

 

To a solution of 71 (0.42 g, 1 equiv., 1.61 mmol) in acetonitrile (15 mL) was added methanol 

(0.13 mL, 2 equiv., 3.22 mmol) followed by the addition of p-TsOH (0.02 g, 0.1 equiv., 0.16 

mmol). The reaction mixture was stirred at ambient temperature for 16 hours before being 

quenched with a saturated aqueous solution of sodium bicarbonate (5 mL). The solution was 

then diluted with Et2O (20 mL) and the organic layer was separated. The aqueous phase was 

extracted with Et2O (3 x 20 mL) and the combined organic extracts were dried over MgSO4 

and concentrated in vacuo. The resultant oil was purified by column chromatography on 

silica (3:1 Petrol/EtOAc) to afford 72 as a mixture of rotamers (60:40) (0.32 g, 1.09 mmol, 

68%). 

1H NMR (400 MHz, CDCl3) δ 7.38-7.28 (m, 5H, Ar-H), 5.22-5.11 (m, 2H, 5-H2), 5.05 (d, J = 

1.5 Hz, 1H, 6-H, major rotamer), 4.92 (d, J = 1.5 Hz, 1H, 6-H, minor rotamer), 4.54 (d, J = 

7.1 Hz, 1H, 9-H, major rotamer), 4.47 (d, J = 7.1 Hz, 1H , 9-H, minor rotamer), 4.30 (dd, J1 = 

7.5 Hz, J2 = 2.3 Hz, 1H, 11-H, major rotamer), 4.23 (dd, J1 = 7.5 Hz, J2 = 2.4 Hz, 1H, 11-H, 

minor rotamer), 4.18 (bs, 1H, 7-H, minor rotamer), 4.12 (bs, 1H, 7-H, major rotamer), 3.53-

3.19 (m, 5H, OCH3, 8-H2), 2.20 (dd, J 1= 13.6 Hz, J2 = 7.4 Hz, 1H, 10-H, major rotamer), 

2.16 (dd, J1 = 13.8 Hz, J2 = 7.6 Hz, 1H, 10-H, minor rotamer), 1.86 (dd, J 1= 7.6 Hz, J2 = 2.5 

Hz, 1H, 10-H, major rotamer), 1.83 (dd, J1 = 7.4 Hz , J2 = 2.5 Hz, 1H, 10-H, minor rotamer); 

13C NMR (100 MHz, CDCl3) δ 156.31 (C12, major rotamer), 155.78 (C12, minor rotamer), 

136.00 (C4, major rotamer), 135.82 (C4, minor rotamer), 128.64 (2C,C3, C3', major 

rotamer), 128.62 (2C, C3, C3', minor rotamer), 128.48 (2C, C2, C2', major rotamer), 128.45 

(2C, C2, C2', minor rotamer), 128.33 (C1, major rotamer), 128.19 (C1, minor rotamer), 83.66 

(C7, major rotamer), 83.19 (C7, minor rotamer), 81.86 (C6, major rotamer), 81.46 (C6, minor 

rotamer), 75.18 (C9, major rotamer), 74.69 (C9, minor rotamer), 72.55 (C11, major rotamer), 

72.32 (C11, minor rotamer), 67.89 (C5, major rotamer), 67.66 (C5, minor rotamer), ), 55.71 

(OCH3, major rotamer), 55.22 (OCH3, minor rotamer), 45.80 (C8, major rotamer), 45.13 (C8, 
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minor rotamer), 38.73 (C10, major rotamer), 38.63 (C10, minor rotamer); νmax (oil, cm-1): 

3448 (O-H), 2935 (C-H),  1102 (C-N). 

Due to the sensitive nature of this product accurate mass spectral details could not be 

obtained. 

 

Benzyl-2-methoxy-7-oxo-8-oxa-3-azabicyclo[3.2.1]octane-3-carboxylate 92 

 

To a solution of 72 (0.32 g, 1 equiv., 1.09 mmol) in dry DCM (8 mL) was added Dess-Martin 

periodinane (0.50 g, 1.1 equiv., 1.20 mmol). The reaction mixture was stirred at ambient 

temperature for 30 minutes in which time a white precipitate was formed. Upon completion 

of the reaction, the reaction mixture was diluted with Et2O (10 mL) and the volatiles were 

removed in vacuo. The residue was redissolved in Et2O (15 mL) and a 1:1 mixture of 10% 

aqueous solution of sodium thiosulfate (5 mL) and a saturated aqueous solution of sodium 

bicarbonate (5 mL) was added. The organic layer was separated, washed with brine (5 mL), 

dried over MgSO4 and concentrated in vacuo. The resultant oil was purified by column 

chromatography on silica (4:1 Petrol/EtOAc) to yield 92 as a mixture of rotamers (60:40) 

(0.21 g, 0.73 mmol, 69%). 

1H NMR (400 MHz, CDCl3) δ 7.38-7.28 (m, 5H, Ar-H), 5.25-5.06 (m, 3H, 5-H2, 6-H), 4.82 

(d, J = 7.7 Hz, 1H, 9-H, major rotamer), 4.74 (d, J = 7.7 Hz, 1H, 9-H, minor rotamer), 4.15 

(bs, 1H, 7-H, minor rotamer), 4.08 (bs, 1H, 7-H, major rotamer), 3.81-3.63 (m, 2H, 8-H2), 

3.45 (s, 1.2H, OCH3, minor rotamer), 3.31 (s, 1.8H, OCH3, major rotamer), 2.72-2.64 (m, 1H, 

10-H), 2.32-2.21 (m, 1H, 10-H); 13C NMR (100 MHz, CDCl3) δ 210.29 (C11, major 

rotamer), 209.63 (C11, minor rotamer), 155.88 (C12, minor rotamer), 155.50 (C12, major 

rotamer), 135.72 (C4, minor rotamer), 135.57 (C4, major rotamer), 128.62 (2C, C3, C3', 

minor rotamer), 128.57 (2C, C3, C3', major rotamer), 128.42 (2C, C2, C2', minor rotamer), 

128.07 (2C, C2, C2', major rotamer), 128.03 (C1, minor rotamer), 127.97 (C1, major 
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rotamer), 81.10 (C6, major rotamer), 80.66 (C6, minor rotamer), 77.06 (C7), 73.33 (C9, 

major rotamer), 72.83 (C9, minor rotamer), 68.12 (C5, major rotamer), 67.96 (C5, minor 

rotamer), 56.33 (OCH3, minor rotamer), 55.65 (OCH3, major rotamer), 44.76 (C8, minor 

rotamer), 44.02 (C8, major rotamer), 30.32 (C10, minor rotamer), 29.68 (C10, major 

rotamer); νmax (oil, cm-1):  2932 (C-H), 1763 (C=O), 1095 (C-N). 

Due to the sensitive nature of this product accurate mass spectral details could not be 

obtained. 

 

Benzyl-7-ethyl-7-hydroxy-2-methoxy-8-oxabicyclo[3.2.1]octane-3-carboxylate 93 

 

A solution of 92 (0.21 g, 1 equiv., 0.73 mmol) in dry THF (5 mL) was cooled to 0 oC. Then 

ethylmagnesium bromide (1.1 M in THF, 0.86 mL, 1.3 equiv., 0.95 mmol) was added 

dropwise and the reaction mixture was stirred at 0 oC for 2 hours. After completion, the 

reaction was quenched with a saturated aqueous solution of ammonium chloride and the 

organic layer was separated, dried over MgSO4 and concentrated in vacuo. The resultant oil 

was purified by column chromatography on silica (6:1 Petrol/EtOAc) to yield 93 as a mixture 

of rotamers (60:40) (0.16 g, 0.50 mmol, 68%).  

1H NMR (400 MHz, CDCl3) δ 7.38-7.35 (m, 5H, Ar-H), 5.35 (s, 1H, 6-H, major rotamer), 

5.27 (s, 1H, 6-H, minor rotamer), 5.24-5.13 (m, 2H, 5-H2), 4.36 (d, J = 7.4 Hz, 1H, 9-H, 

major rotamer), 4.28 (d, J = 7.4 Hz, 1H, 9-H, minor rotamer), 3.87-3.33 (m, 6H, OCH3, 7-H, 

8-H2), 2.26-2.19 (m, 1H, 10-H), 1.73-1.56 (m, 3H, 10-H, CH2CH3), 0.99 (t, J = 7.5 Hz, 3H, 

CH2CH3); 
13C NMR (100 MHz, CDCl3) δ  159.12 (C12, minor rotamer), 157.99 (C9, major 

rotamer), 136.22 (C4), 128.53 (2C, C3, C3', minor rotamer), 128.20 (2C, C3, C3', major 

rotamer), 128.05 (2C, C2, C2', minor rotamer), 127.89 (2C, C2, C2', major rotamer), 127.89 

(C1), 81.38 (C6, major rotamer), 81.09 (C6, minor rotamer), 80.77 (C7, minor rotamer), 

80.43 (C7, major rotamer), 77.22 (C9), 74.33 (C11, major rotamer), 73.96 (C11, minor 
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rotamer), 67.69 (C5, major rotamer), 67.57 (C5, minor rotamer), 55.94 (OCH3, minor 

rotamer), 55.48 (OCH3, major rotamer), 46.24 (C8, minor rotamer), 45.59 (C8, minor 

rotamer), 41.27 (C10), 34.68 (CH2CH3, major rotamer), 34.63 (CH2CH3, minor rotamer), 

7.63 (CH2CH3); m/z (ESI+) calculated for C14H17NO4 [M+Na]+ 343.1576, observed 344.1465 

(error 0.29 ppm); νmax (oil, cm-1): 3442 (O-H), 2924 (C-H), 1196 (C-N). 

 

 

Benzyl-2-methoxy-7-((2-phenylquinazolin-4-yl)oxy)-8-oxa-3-azabicyclo[3.2.1]octane-3-

carboxylate 94 

 

To a solution of 72 (35 mg, 1 equiv., 0.12 mmol) in DMSO (5 mL) was added 4-chloro-2-

phenylquinazoline (29 mg, 1 equiv., 0.12 mmol) and NaOH (5.6 mg, 1.2 equiv., 0.14 mmol) 

and the reaction mixture was heated in reflux for 24 hours. After completion, the reaction 

mixture was diluted with EtOAc (15 mL) and extracted with water (2 x 5 mL). The organic 

extracts were collected, dried over MgSO4 and concentrated in vacuo to yield 94 as a mixture 

of rotamers (60:40) (51 mg, 0.10 mmol, 87%) without any further purification.  

1H NMR (400 MHz, CDCl3) δ 8.57-7.32 (m, 14H, Ar-H), 5.25-5.13 (m, 2H, 5-H2), 5.06 (bs, 

1H, 6-H, major rotamer), 4.94 (bs, 1H, 6-H, minor rotamer), 4.57 (d, J = 7.1 Hz, 1H, 9-H, 

major rotamer), 4.50 (d, J = 7.1 Hz, 1H, 9-H, minor rotamer), 4.32 (bd, J = 6.8 Hz, 1H, 11-H, 

major rotamer), 4.25 (bd, J = 6.8 Hz, 1H, 11-H, minor rotamer), 4.20 (bs, 1H, 7-H, minor 

rotamer), 4.13 (bs, 1H, 7-H, major rotamer), 3.55-3.19 (m, 5H, OCH3, 8-H2), 2.50-2.11 (m, 

2H, 10-H2); 
13C NMR (100 MHz, CDCl3) 185.07 (C13, major rotamer), 184.82 (C13, minor 
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rotamer), 166.28 (C14, major rotamer), 166.19 (C14, minor rotamer), 156.28 (C12, major 

rotamer), 155.76 (C12, minor rotamer), 149.31 (C20), 137.88 (C19), 136.04 (C21, major 

rotamer), 135.86 (C21, minor rotamer), 133.89 (C15, major rotamer), 133.82 (C15, minor 

rotamer), 129.08 (C22, major rotamer), 128.75 (C22, minor rotamer), 128.64 (2C, C16, 

C16’), 128.61 (2C, C16, C16’), 128.49 (C24, major rotamer), 128.45 (C24, minor rotamer), 

128.31 (2C, C17, C17’), 128.22 (2C, C17, 17’), 127.99 (C23, major rotamer), 127.95 (C23, 

minor rotamer), 127.16 (C18, major rotamer), 126.95 (C18, minor rotamer), 83.70 (C7, major 

rotamer), 83.25 (C7, minor rotamer), 81.88 (C6, major rotamer), 81.47 (C6, minor rotamer), 

75.19 (C9, major rotamer), 74.70 (C9, minor rotamer), 72.59 (C11, major rotamer), 72.39 

(C11, minor rotamer), 68.20 (C5, major rotamer), 67.85 (C5, minor rotamer), 55.75 (OCH3, 

major rotamer), 55.24 (OCH3, minor rotamer), 45.81 (C8, major rotamer), 45.14 (C8, minor 

rotamer), 38.84 (C10, major rotamer), 38.80 (C10, minor rotamer); νmax (oil, cm-1): 2947 (C-

H), 1697 (C=N), 950 (C-O). 

 

Benzyl-7-hydroxy-2-methyl-8-oxa-3-azabicyclo[3.2.1]octane-3-carboxylate 95 

 

A solution of 71 (0.30 g, 1 equiv., 1.15 mmol) in dry THF (7 mL) was cooled at 0 oC. Then 

BF3.Et2O 48% (0.33 mL, 1 equiv., 1.15 mmol) was added, followed by the addition of 

methylmagnesium bromide (0.82 M, 1.40 mL, 1 equiv., 1.15 mmol). The reaction mixture 

was stirred at 0 oC for 2 hours and then left to stir at ambient temperature for 22 hours. After 

completion, the reaction was quenched with a saturated aqueous solution of ammonium 

chloride (5 mL) and the aqueous phase was extracted with EtOAc (3 x 10 mL). The organic 

extracts were collected, dried over MgSO4 and concentrated in vacuo. The resultant oil was 

purified by column chromatography on silica (2:1 Petrol/EtOAc) to yield 95 as a mixture of 

rotamers (60:40) (85 mg, 0.30 mmol, 27%). 

1H NMR (400 MHz, CDCl3) δ 7.42-7.35 (m, 5H, Ar-H), 5.20-5.13 (m, 2H, 5-H2), 4.55 (d, J = 

7.6 Hz, 1H, 9-H, major rotamer), 4.47 (d, J = 7.2 Hz, 1H, 9-H, minor rotamer), 4.40 (dd, J1 = 
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7.3 Hz, J2 = 2.2 Hz, 1H, 11-H, major rotamer), 4.34 (dd, J1 = 7.3 Hz, J2 = 2.2 Hz, 1H, 11-H, 

minor rotamer), 4.04 (d, J = 6.5 Hz, 1H, 6-H, major rotamer), 3.98 (d, J = 6.5 Hz, 1H, 6-H, 

minor rotamer), 3.91 (bs, 1H, 7-H, major rotamer), 3.85 (bs, 1H, 7-H, minor rotamer), 3.65-

3.20 (m, 2H, 8-H2), 2.24 (dd, J1 = 13.6 Hz, J2 = 7.3 Hz, 1H, 10-H, major rotamer), 2.17 (dd, 

J1 = 13.6 Hz, J2 = 7.3 Hz, 1H, 10-H, minor rotamer), 1.85 (dd, J1 = 7.5 Hz, J2 = 2.2 Hz, 1H, 

10-H, major rotamer), 1.82 (dd, J1 = 7.5 Hz, J2 = 2.2 Hz, 1H, 10-H, minor rotamer), 1.33-1.24 

(m, 3H, CH3); 
13C NMR (100 MHz, CDCl3) δ 155.89 (C12, major rotamer), 155.79 (C12, 

minor rotamer), 136.49 (C4, major rotamer), 135.97 (C4, minor rotamer), 128.58 (2C, C3, 

C3', major rotamer), 128.55 (2C, C3, C3', minor rotamer), 128.14 (2C, C2, C2'), 127.81 (C1, 

major rotamer), 127.74 (C1, minor rotamer), 85.67 (C7, major rotamer), 85.18 (C7, minor 

rotamer), 75.39 (C9, major rotamer), 75.15 (C9, minor rotamer), 74.96 (C11, major rotamer), 

74.43 (C11, minor rotamer), 67.29 (C5, major rotamer), 67.21 (C5, minor rotamer), 50.75 

(C6, major rotamer), 50.21 (C6, minor rotamer), 45.50 (C8, major rotamer), 44.95 (C8, minor 

rotamer), 38.99 (C10, major rotamer), 36.75 (C10, minor rotamer), 15.21 (CH3, major 

rotamer), 14.48 (CH3, minor rotamer); νmax (oil, cm-1): 3462 (O-H), 2961 (C-H), 1091 (C-N). 

Due to the sensitive nature of this product accurate mass spectral details could not be 

obtained. 

 

3,4-dimethyl-8-oxa-3-azabicyclo[3.2.1]octan-6-ol 96 

 

To a solution of 95 (60 mg, 1 equiv., 0.22 mmol) in diethyl ether (3 mL) was added lithium 

aluminum hydride (20 mg, 3.3 equiv., 0.75 mmol). The reaction mixture was stirred at 

ambient temperature for 24 hours. The reaction was quenched with water (0.5 mL) and stirred 

for 10 min. Then a 15% aqueous solution of NaOH (0.5 mL) was added and stirring 

continued for a further 10 min. A further charge of water (1 mL) was added and stirring 

continued for a further 15 min. The mixture was then extracted with diethyl ether (3 x 5 mL) 

and the combine organic extracts were dried over MgSO4 and then concentrated in vacuo. 

The residue was purified by column chromatograpgy on silica (1:3 Petrol/EtOAc) to afford 

96 as a single diastereomer (27.26 mg, crude). 
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1H NMR (400 MHz, CDCl3) δ 4.47 (dd, J1 = 7.4 Hz, J2 = 2.5 Hz, 1H, 2-H), 4.40 (d, J = 6.0 

Hz, 1H, 4-H), 3.82 (bs, 1H, 5-H), 2.78-2.73 (m, 1H, 6-H), 2.36 (dd, J1 = 13.2 Hz, J2 = 7.4 Hz, 

2H, 2-H1), 2.18 (s, 3H, NCH3), 1.73-1.68 (m, 2-H3), 1.00 (d, J = 6.7 Hz, 3H, CH3); 
13C NMR 

(100 MHz, CDCl3) δ 76.05 (C2), 66.92 (C4), 55.29 (C5), 53.01 (C6), 48.39 (C1), 40.83 

(NCH3), 40.52 (C3), 7.27 (CH3).  

 

Benzyl-2-ethyl-7-hydroxy-8-oxa-3-azabicyclo[3.2.1]octane-3-carboxylate 97 

 

A solution of 71 (0.65 g, 1 equiv., 2.23 mmol) in dry THF (13 mL) was cooled at 0 oC. Then 

BF3.Et2O 48% (0.64 mL, 1 equiv., 2.23 mmol) was added, followed by the addition of 

ethylmagnesium bromide (1.1 M, 2.02 mL, 1 equiv., 2.23 mmol). The reaction mixture was 

stirred at 0 oC for 2 hours and then left to stir at ambient temperature for 22 hours. After 

completion, the reaction was quenched with a saturated aqueous solution of ammonium 

chloride (10 mL) and the aqueous phase was extracted with EtOAc (3 x 15 mL). The organic 

extracts were collected, dried over MgSO4 and concentrated in vacuo. The resultant oil was 

purified by column chromatography on silica (2:1 Petrol/EtOAc) to yield 97 as a mixture of 

rotamers (60:40) (0.21 g, 0.71 mmol, 32%). 

1H NMR (400 MHz, DMSO-d6) δ 7.38-7.34 (m, 5H, Ar-H), 5.18-5.08 (m, 2H, 5-H2), 4.47-

4.20 (m, 1H, 9-H), 4.22 (bd, J = 7.3 Hz, 1H, 11-H, major rotamer), 4.18 (bd, J = 7.3 Hz, 1H, 

11-H, minor rotamer), 3.74-3.36 (m, 4H, 6-H, 7-H, 8-H2), 2.44-2.12 (m, 1H, 10-H, major 

rotamer), 1.71-1.51 (m, 1H, 10-H, minor rotamer), 1.37-1.31 (m, 2H, CH2CH3), 0.86-0.79 

(m, 2H, CH2CH3); 
13C NMR (100 MHz, CDCl3) δ 156.32 (C12, major rotamer), 156.06 

(C12, minor rotamer), 136.50 (C4, major rotamer), 136.36 (C4, minor rotamer), 128.56 (2C, 

C3, C3', major rotamer), 128.55 (2C, C3, C3', minor rotamer), 128.19 (2C, C2, C2', major 

rotamer), 128.12 (2C, C2, C2', minor rotamer), 127.90 (C1, major rotamer), 127.85 (C1, 
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minor rotamer), 83.14 (C7, major rotamer), 82.96 (C7, minor rotamer), 75.23 (C9, major 

rotamer), 74.70 (C9, minor rotamer), 74.19 (C11, major rotamer), 73.86 (C11, minor 

rotamer), 67.38 (C5, major rotamer), 67.22 (C5, minor rotamer), 52.42 (C6, major rotamer), 

51.99 (C6, minor rotamer), 45.77 (C8, major rotamer), 45.19 (C8, minor rotamer), 38.62 

(C10, major rotamer), 36.95 (C10, minor rotamer), 30.55 (CH2CH3, major rotamer), 30.32 

(CH2CH3, minor rotamer), 10.41 (CH2CH3, major rotamer), 10.37 (CH2CH3, minor rotamer); 

νmax (oil, cm-1): 3390 (O-H) 2935 (C-H), 1067 (C-N). 

Due to the sensitive nature of this product accurate mass spectral details could not be 

obtained. 

 

4-ethyl-3-methyl-8-oxa-3-azabicyclo[3.2.1]octan-6-ol 98 

 

To a solution of 97 (150 mg, 1 equiv., 0.51 mmol) in diethyl ether (8 mL) was added lithium 

aluminum hydride (63 mg, 3.3 equiv., 1.68 mmol). The reaction mixture was stirred at 

ambient temperature for 24 hours. The reaction was quenched with water (1 mL) and stirred 

for 10 min. Then a 15% aqueous solution of NaOH (1 mL) was added and stirring continued 

for a further 10 min. A further charge of water (1 mL) was added and stirring continued for a 

further 15 min. The mixture was then extracted with diethyl ether (3 x 10 mL) and the 

combine organic extracts were dried over MgSO4 and then concentrated in vacuo. The 

residue was purified by column chromatography on silica (1:3 Petrol/EtOAc) to afford 96 as 

a single diastereomer (63.50 mg, crude). 

 

1H NMR (400 MHz, CDCl3) δ 4.46-4.22 (m, 1H, 5-H), 4.16 (dd, J1 = 7.2 Hz, J2 = 1.7 Hz, 1H, 

2-H), 4.11 (d, J = 6.4 Hz, 1H, 4-H), 2.69-2.65 (m, 1H, 6-H), 2.49-2.41 (m, 2H, 2-H1), 2.29 (s, 

3H, NCH3), 1.76-1.57 (m, 4H, 2-H3, CH2CH3), 0.92 (t, J = 7.50 Hz, 3H, CH2CH3); 
13C NMR 

(100 MHz, CDCl3) δ 75.73 (C2), 66.40 (C4), 56.21 (C5), 54.03 (C6), 45.27 (C1), 41.14 

(NCH3), 40.56(C3), 12.81 (CH2CH3), 10.87 (CH2CH3). 
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Chapter 6: Appendix (NMR data) 
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Compound 63 
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Compound 64 
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Compound 65 
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Compound 66 
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Compound 67 
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Compound 69 
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Compound 71 
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Compound 72 

 

 

 

 

 

 



95 
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Compound 93 

 

 

 

 

 

 

 



97 
 

Compound 94 
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Compound 95 
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Compound 98 

 

 

 

 

    

 

 


