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Abstract 

 

In modern industries, condition monitoring is considered as the most promising technology to 

ensure the productivity, reliability and safety of machines. This thesis focuses on developing 

effective and efficient approaches to monitor the changepoint of rotating machines at an early stage 

based on the resonant modulation and demodulation techniques. Having had a literature review 

relating to the resonant modulation based machine condition monitoring, it has been identified that 

potential technical deficiencies in achieving accurate condition monitoring may lie in the lack of 

a good understanding of resonant modulation and effective fault detection and diagnosis, which 

often leads to difficulties in optimising post-processing signal processing approaches to extract 

accurate fault features. 

Based on the hypothesis of linear systems, the resonant modulation in outputs of the systems vary 

under different input excitations (periodic, approximately periodic impulsive, and quasi-

stationary). Different inputs can lead to different modulation characteristics. Performing an 

effective demodulation of these responses is the most beneficial part for utilising the resonant 

modulation methods in vibration-based condition monitoring. The characteristics of the vibration 

signals are expected to be effectively analysed by different signal processing approaches for early 

fault detection and diagnosis. 

From the perspective of the system identification, the stochastic subspace identification (SSI) 

approach is employed to select the optimal central frequencies rather than selecting the most 

impulsive frequency band, which is targeted by the method similar to Kurtogram. Through 

simulation and experimental studies, it shows that the SSI is more robust to the strong background 

noise (SNR≤-30dB) in selecting the optimal frequency bands than the conventional Kurtogram 

method. Based on the frequency bands selected by the SSI, a novel method, named ensemble 

average of autocorrelation signals (EAAS), was developed to demodulate the periodic impacts 

induced resonant responses. The simulation study shows that EAAS can identify the incipient 

bearing faults from the noisy vibration signals at a SNR less than -35dB and the performance of 

the EAAS is also verified by the experiments on ball bearings of induction motors. For the 

aperiodic impacts induced resonant modulation, the output responses are not periodic and are 

terminologically named as cyclostationary signals. Two novel approaches, ensemble average of 
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autocorrelated envelopes (EAAE) and phase linearisation based modulation signal bispectrum 

(PL-MSB), were developed to characterise the cyclostationary responses due to the nonstationary 

impacts. The simulation studies demonstrated that the proposed EAAE and PL-MSB can handle 

the extremely poor signals (SNR≤-30dB) to extract the strong fault signatures for the purpose of 

accurate diagnosis of bearing faults. The experimental studies on tapered roller bearings show that 

the proposed two methods outperform the conventional envelope for early fault detection and 

diagnosis under an extremely low SNR and large random slippages.  
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Chapter 1  Introduction 

 

This chapter gives a brief introduction to the research background associated with the research 

undertaken in this thesis. The background of machine condition monitoring is investigated, with a 

focus on the vibration-based condition monitoring technique, the most commonly used technique 

for monitoring the working conditions of the machines. Based on the investigation, the research 

motivation as well as the aims and objectives are summarised. Finally, the organisation of the 

whole thesis is explained. 
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1.1 Background of Condition Monitoring 

Machines are expected to fully operate from the beginning of their working life right up until their 

failure in order to maximize the usage of their useful life. However, unexpected malfunctions in 

machines sometime result in production loss or even casualties. The instinct solution for machine 

failure is preventive maintenance, which means the maintenance is carried out periodically to 

prevent the occurrence of machine failures. This maintenance strategy is effective but not efficient 

due to extra cost and unnecessary resources by replacing the machine parts at set intervals.  

In general, maintenance strategies can be classified into three groups: Reactive Maintenance, 

Preventive Maintenance, and Condition based Maintenance [1]. Here a brief introduction of three 

maintenance strategies is given as follows. 

Reactive Maintenance. Reactive maintenance is the earliest maintenance strategy, in which 

machines run until break down and then the failure parts or systems can be fixed. The repair works 

are not scheduled, which means some industries using low cost and duplicate machines can use 

this maintenance strategy because the malfunction of one machine has little effect on the whole 

production line. However, in most industries the failure of critical equipment can result in 

significant loss of production and even people’s lives if the maintenance is not conducted in time. 

The reactive maintenance usually requires more time to recover and high costs to repair. 

Preventive Maintenance. Preventive maintenance also named as the time-based maintenance, is 

achieved by the periodic replacement or repair of machines or machine parts. Usually the time 

intervals are selected to be less than 1% to 2% of failure time. This maintenance strategy is planned 

in advance so that most machine failures can be avoided. However, unneglectable disadvantages 

are not only the occurrence of a small amount of failures but also the excessive maintenance work 

and replaced components.  

Condition based Maintenance. Condition based maintenance is to find the potential or early 

breakdown of a machine through condition monitoring. Thus, the maintenance can be carried out 

at the most appropriate time compared with the reactive maintenance and preventive maintenance. 

Condition based maintenance can lead to an optimum maintenance strategy because it is able to 

denote the current working conditions and also give the prediction of the remaining useful life of 

machines. However, the challenge for condition based maintenance is the high requirement of 

effective and efficient condition monitoring techniques. 

The origin of Condition Monitoring (CM) can be traced to the earliest development of the 

machinery employed in different industries [2]. The methods of using human beings’ senses 

(looking, listening, smelling and touching) are still valid even though more and more advanced 
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and sophisticated equipment is developed to monitor the health condition of machines. Condition 

monitoring has been widely adopted in many areas, such as power generation, manufacturing, 

mining, chemicals, transportation, etc. Practically, Condition Monitoring is carried out during the 

operation of machines, so that various measurements, including vibration, acoustics, acoustic 

emission, instantaneous currents, thermal variations, pressure and exhaust emissions, can be 

acquired. Based on this data, the health conditions of the machines can be determined by the 

acquired data via various signal processing methods, the maintenance decision can then be made 

based on the results of fault detection, diagnosis and prognosis. 

1.2 Condition Monitoring Methods 

Condition monitoring aims to acquire the current working condition of machines and denote the 

best time for the maintenance, hence minimizing the interruption to production. The commonly 

used techniques in condition monitoring are vibration/acoustics, oil analysis, process parameters, 

and thermal imaging.  

Oil Analysis based Condition Monitoring. Lubrication oil is essential in the machines as it can 

significantly reduce friction forces and extend lifespan of machinery. Oil analysis is to take 

lubricant samples regularly and then detect the quantity, type, shape, size, material of the debris, 

the current oil viscosity, the additives and other contaminations. These parameters can show the 

type and location of defects according to the components’ differences and the relative movement. 

Sometimes oil samples are not easy to obtain from the machines. Furthermore, equipment for oil 

analysis is quite expensive and the offline monitoring is usually not conducted in time, which 

makes oil analysis not reliable for most of the machines.  

Process Parameters based Condition Monitoring. Process or performance parameters are an 

effective method for monitoring machine conditions because process parameters directly indicate 

the efficiency of certain machines, such as compressors and engines. If a malfunction occurs in 

the machine, the drop in outputs can be seen when comparing to the normal conditions. However 

process parameters based condition monitoring are not effective for transmission systems or other 

faults which has an insufficient negative effect on the machine efficiency.  

Thermal Imaging based Condition Monitoring. Thermal imaging is becoming a more attractive 

way to obtain machine fault detection and diagnosis, owing to the fast development of advanced 

sensing instrument and computing capacity. Temperature information is highly correlated with the 

working conditions of machines. Heat usually comes from either friction or chemical reaction in 

most machines and consequently, temperature signals could be an effective indictor for machine 

health condition. Thermal imaging techniques extend the single point temperature into a two 
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dimensional heat distribution, which allows to more effectively monitor machines in a contactless 

way. However, this technology is not sensitive to the early faults of rotating machines, for instance 

fatigue pitting.  

Vibration based Condition Monitoring. All working machines generate vibrations due to the 

dynamic forces no matter how good the machine conditions are. Despite the dynamics of the 

working principles, some instances, including manufacture errors, installation errors, load and 

speed oscillations, lubrication conditions, and fluid-structure interactions, makes vibration more 

pronounced. Such dynamic responses are often repeatable along the rotation of machines, and the 

periodicity of vibration signals can directly indicate the internal conditions, which makes the 

Fourier analysis significantly powerful in the frequency domain. This thesis focuses on the 

vibration based condition monitoring for achieving early fault detection and diagnosis. 

Acoustics based Condition Monitoring. Airborne acoustic signals are basically the time-varying 

pressure waves. The variation of the varying pressure signals can be captured by microphones, 

which attracts increasingly more attention in machine condition monitoring due to the noncontact 

installation and wide monitoring range. Acoustic signals from operating machines are dependent 

on the environment and the distance of the measurement location from machines. Usually acoustic 

signals contain strong background noise and advanced signal processing methods are highly 

desired in acoustics based condition monitoring. 

Instantaneous Angular Speed based Condition Monitoring. Rotating speeds of machines are a 

very important parameter to demonstrate the working conditions as the dynamic motions of 

machines are highly related to rotating speeds. Instantaneous angular speed (IAS) also called 

torsional vibration describes the dynamic oscillation along the torsional direction of the flexible 

rotor, which plays the critical role of rotating machines. IAS has been widely used in the 

reciprocating engines/compressor and gearboxes for effective and efficient condition monitoring. 

Electrical Signals based Condition Monitoring. Induction motors are widely used as the power 

source in industries. Another frequently used technique in machine condition monitoring is based 

on stator current signals, which is known as motor current signature analysis (MCSA). The 

implementation of this technique does not need an extra transducer. The instantaneous current 

signals are sensitive to malfunctions or failure of the whole system. 

Acoustic Emission based Condition Monitoring. Acoustic emission is the radiation of elastic 

waves due to the material deformation or crack formation. The rapid release of energy can be 

captured using a very high sampling rate by acoustic emission transducers from the surface of 

machines. The typically range in machine condition monitoring is between 100kHz and 1MHz. 
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Acoustic emission is an effective approach to machine condition monitoring and it has been widely 

used in fault detection and diagnosis of bearings, gearboxes and engines.  

1.3 System Identification 

Aiming to predict, control, monitor and improve the plant and machinery systems, a special 

technique named system identification utilises observed or experimental data to describe the 

systems by the mathematical language. Figure 1-1 depicts the schematic procedure of the system 

identification. 

Input
System

(Unkown)
Output

System 

Identification

Model
 

Figure 1-1 System identification schematic diagram [3] 

The description of the relationship between input and output is the mathematical model that is the 

prime objective of the identification. System identification is a methodology for building 

mathematical models of dynamic systems using measurements of the system's input and output 

signals. The process of system identification requires that: 

• Measure the input and output signals from the system in time or frequency domain. 

• Select a model structure. 

• Apply an estimation method to estimate value for the adjustable parameters in the 

candidate model structure. 

• Evaluate the estimated model to see if the model is adequate for the application needs. 

A dynamic model is a mathematical relationship between a system's input and output variables. 

Models of dynamic systems are typically described by differential or difference equations, transfer 

functions, state-space equations, and pole-zero-gain models. Generally, the model is divided into 

two parts: deterministic models depicted by mathematical description; stochastic models 

represented by both the statistical and mathematical description. Obviously, a precise model is 

beneficial for design, control, monitoring, diagnoses, prognosis and improvement.  

According to the prior knowledge, system identification can be classified as white box, grey box 

and black box. A white box system means that it can be expressed as deterministic equations while 

a black box system can only be represented by inputs and outputs. Grey box systems overlap the 

white and black systems, which only have partial information of systems. However, most of 
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system identification is based on black box modelling by using historic data in mechanical 

engineering. Black box based system identification involves artificial intelligence, which has been 

developed quickly due to the updates of computational resources and theoretical research. 

1.4 Research Motivation 

The marketplace is of high competition and the machines must maintain high efficiency in case of 

the elimination. However, the health condition of machines varies with the time elapsing. Large 

quantities of information, such as acoustics, vibration, acoustic emission, temperature, pressure, 

lubrication oil, power supply, are captured and analysed during the operation. The data acquisition 

system, consisting of transducers, data acquisition devices and computers, plays an important role 

for collecting raw information of machines in condition monitoring. These techniques establish 

the basis of maintenance strategies because the present and past conditions of machine systems 

can be identified by the acquired signals. Only in this way can it ensure in real time that machines 

work in the appropriate conditions with high productivity and reliability.  

Rotating machines play an extremely important role in machinery systems and rotating machines 

are widely used in domestic and industrial applications. Usually the rotating parts are supported 

by rolling element bearings or journal bearings. These bearings can guide the movement of rotors, 

reduce frictions between rotors and stators, and support internal or external torques. Suffering from 

hash working environments, bearings are usually the most vulnerable components in the rotating 

machines [4], for instance wind turbines, gas turbines, automobiles, trains, ships and aircrafts. The 

health conditions of bearings in these machines have a significant influence on the whole rotating 

machine system. Therefore, condition monitoring of bearings in these machines are highly desired 

for effective and reliable operation and production. Usually these rotating machines are working 

under very harsh conditions including high temperature, high pressure, heavy loads, and varying 

speeds. Figure 1-2 shows several bearing failure cases of industrial machines. The bearing fault 

detection and diagnosis was not successfully achieved in time, consequently the severe failures of 

bearings and even whole machines occurred. The harsh working conditions as well as the complex 

system construction lead to significant difficulties for condition monitoring due to the obtained 

signals being nonstationary and poor signal to noise ratio.  



30 

 

Figure 1-2 Bearing failure cases from industrial machines: (a) wind turbine; (b) gearbox; (c) 

pump; (d) train bogie; (e) motor; (f) automobile 

The early fault detection and diagnosis of bearings allow ample time for planning and 

implementing maintenance operations. Rolling element bearings are designed to have long service 

life. Bearing defects are usually inevitable due to the large quantities of revolutions. Bearings work 

in various conditions and several factors can accelerate the defect development. More than 50% 

of bearing faults are induced by lubrication failure [5]. Corrosion is the second most common 

failure factor, and less than ideal mounting procedure is recognised as the third [6]. The other 

common causes of bearing failure are overload, misalignment, and installation errors. Cracks in 

microscale initially occur on micro-surfaces and then propagate to a localised fault in macroscale. 

The incipient fault of bearings is considered as the micro-scale cracks occurred on the micro-

surfaces of bearing elements. The desired fault diagnosis is to identify the microscopic bearing 

defects, which then allows sufficient time for maintenance activities. The early fault detection and 

diagnosis aims to identify the bearing defects once the faults occur. However, the micro-scale 

cracks are very difficult to detect and diagnose due to the very weak fault signatures and strong 

background noise. The early fault detection and diagnosis [7] are extremely pursued in machine 

condition monitoring. 

1.5 Aim and Objectives of the Research 

The aim of this research project is to investigate the resonant modulation in vibration signals from 

rotating machines for achieving incipient fault detection and diagnosis. The resonant modulation 

is a common and important part in vibration signals and the employment of the resonant 

modulation can lead to the effective condition monitoring of machines. To fully understand the 

resonant modulation and exploit the merits of the resonance in machines, this research is carried 

out by completing the following objectives: 
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(1) Review the research on resonant modulation and the corresponding signal processing 

methods for machine fault detection and diagnosis; 

(2) Investigate the resonant modulation under various excitations and hence pave the way to 

the advanced demodulation methods for incipient fault diagnosis; 

(3) Propose a system identification method to determine the optimal frequency bands other 

than using the methods to find the most impulsive frequency bands; 

(4) Develop a signal processing method to demodulate deterministic resonant modulation 

signals induced by the periodic excitations;  

(5) Develop a signal processing method to demodulate cyclostationary resonant modulation 

signals induced by the cyclostationary impacts. 

1.6 Organisation of the Thesis 

The remaining contents of the thesis are organised as follows: 

Chapter 2 reviews the research activities of the demodulation approaches in machine condition 

monitoring and the publications on investigating resonant modulation in rotating machines. 

Chapter 3 explains the resonant modulation in the linear system under the three types of inputs, 

which paves the way to develop effective demodulation methods for early fault detection and 

diagnosis. 

Chapter 4 introduces the developed state space model of the bearing, describes the SSI method for 

selecting the optimal frequency bands and demonstrates the demodulation approach for extracting 

the periodic fault features. 

Chapter 5 verifies the performance of the proposed methods by experimental studies on the ball 

bearings.  

Chapter 6 proposes two novel methods to demodulate the cyclostationary resonant modulation 

signals effectively from the extremely poor SNR.  

Chapter 7 examines the developed methods by using the vibration signals from tapered roller 

bearings. 

Chapter 8 draws the conclusions of the research works and provides recommendations for further 

investigations on the resonant modulation based incipient fault detection and diagnosis.  
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Chapter 2  Literature Review of Demodulation Analysis in 

Condition Monitoring 

 

This chapter reviews the commonly used demodulation approaches in machine condition 

monitoring. The demodulation techniques, including envelope analysis, Teager Kaiser energy 

operator, modulation signal bispectrum and spectral correlation, are reviewed to show the current 

research state on demodulation analysis in bearing fault detection and diagnosis. Large quantities 

of researchers make great contributions to detect the impulsive behaviour in vibration signals. 

The resonant modulation is not fully exploited for achieving early fault detection and diagnosis. 
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2.1 Demodulation Techniques based Fault Detection and Diagnostics 

As introduced in the first chapter, condition monitoring is effective to detect and prognosticate 

malfunctions in machinery systems and many researchers have made great contributions to 

exploring condition monitoring techniques. The application of CM techniques can date back to the 

development of machines and at the beginning human senses were relied on to monitor the 

machine conditions [2]. Over time, technologies in this field have made great progress and many 

measurements, such as vibration, acoustics, acoustic emission, instantaneous current, temperature, 

pressure, and chemical parameters can be utilised to achieve machine condition monitoring 

successfully. Rotating machines promoted the industrial revolution and have played a dominant 

role since the last century [8]. As the rotating machines are extensively used, CM of these machines 

is significant to guarantee good performance. Though a variety of condition monitoring methods 

are available, the vibration based methods are considered to be the most widely applied technique 

for CM [9]. Many journal articles, conference papers and technical reports on this subject are 

published every year.  

Modulation is a common phenomenon in rotating machines and the modulation gives a chance for 

detecting and diagnosing the defects as early as possible. The modulation phenomenon can 

enhance the weak fault information by carrying the low frequency information to a high frequency 

range. The meshing frequencies, natural frequencies, passing frequencies, and supply frequencies 

are potential carrier frequencies in collected signals from rotating machines. The modulation can 

make the fault information more pronounced in the high frequency range than that in the low 

frequency range. An early milestone method in the time domain is the development of the envelope 

analysis on bearing vibration signals by Darlow [10]. The original name of the envelope is “high 

frequency resonance technique”, which demodulates the resonant responses to find the bearing 

defects effectively. The envelope analysis is still popular in machine condition monitoring for 

demodulation analysis [11], [12]. The envelope analysis is a very good and robust method in 

vibration based fault detection and diagnosis. Usually the envelope is obtained from analytic 

signals by the Hilbert transform and the noise is inclusive during the calculation. Consequently the 

main problem of the envelope in early fault detection and diagnosis is that the envelope itself 

cannot suppress background noise, which makes the envelope is ineffective in early fault 

diagnosis. Another frequently used demodulator is Teager Kaiser Energy Operator (TKEO) [13], 

Kaiser formalised the energy operator for processing speech signals. The TKEO can denote the 

energy of the transient responses which can reveal the cyclic variation in rotating machines. The 

effectiveness of TKEO relies on the impacts induced transient responses, which is the typical 

resonant modulation in vibration signals. Bozchalooi and Liang [14] used wavelet transform to 
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suppress the random noise in vibration signals and then employed TKEO to demodulate the 

vibration signals for effective detection and diagnosis of gear faults. Liang and Bozchalooi [15] 

state that the TKEO can eliminate the frequency interference and demodulate the amplitude 

modulation without the requirement of the prior knowledge. They demonstrated the TKEO can 

achieve bearing fault detection and diagnosis at the SNR of -15 dB. Liu, Wang and Lu [16] used 

the Local Characteristic-scale Decomposition to obtain monocomponent signals and then the 

decomposed signals were demodulated by the TKEO. The monocomponent signals are desired for 

TKEO because of the less interference between multiple harmonics. Imaouchen et al. [17] 

proposed the ensemble empirical mode decomposition based frequency-weighted TKEO for 

detecting the bearing faults. The TKEO fails in the simulated case at a noise level of SNR-5dB. 

The TKEO approach is also a good method to demodulate the amplitude and frequency modulation 

vibration signals. One of the deficiencies of TKEO is similar to the envelope analysis, which is 

that it is not robust to strong background noise. Moreover, the TKEO is approximately the squared 

envelope of the differential of the signal [18]. In addition, Randall and Smith denote that the TKEO 

of a multi-component carrier frequencies is meaningless for the frequency modulation signals [18]. 

It is assumed that the target signal of TKEO is dominated by a mono-component carrier frequency 

and the TKEO of the raw signal may result in misleading results. Reference [18] gives an guide to 

implement the TKEO for machine fault detection and diagnosis.  

The envelope based demodulation analysis fully exploits the merit of the high Signal to Noise 

Ratio (SNR) around the natural frequencies. The prior step for envelope analysis is the 

determination of the optimal frequency bands otherwise the envelope analysis cannot be 

guaranteed to show the reliable results. Concentrated on the determination of optimal frequency 

bands and envelope analysis, the large quantities of research were carried out to find a robust way 

to select good candidates for demodulation analysis. Since Antoni [19] studied Spectral Kurtosis 

(SK) thoroughly, Kurtogram [20] based on short-time fast Fourier transform (STFT) and Wavelet 

Transform (WT) has been explored by many researchers [21]. Gu [22] paid attention to the bearing 

fault severity diagnosis based on the kurtogram and envelope analysis. With the assistance of the 

Kurtogram, an optimal frequency band can be determined to achieve the best demodulation results 

by the envelope. The Kurtogram is struggling to find a good frequency band under the adverse 

impacts of strong background noise and aperiodic impulses, which are often the circumstances at 

the early fault stage of bearings. Barszcz and JabŁoński [23] proposed the protrugram, which 

calculates the kurtosis of the envelope spectrum other than the filtered time signals and the method 

can handle the vibration signals with poorer signal to noise ratios than Kurtogram. However, this 

method calculates the envelope spectrum before getting the optimal frequency band, which 
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actually obtains the diagnosis results in the middle. The protrugram is not a logic way to detect 

and diagnose bearing faults. Antoni [24] developed the infogram by replacing the kurtosis with 

negentropy and moreover, both time and frequency domain can share the same concept. The 

infogram is motivated by the protrugram and the infogram is also calculated from the envelope or 

squared envelope. These two methods share same deficiencies that they are not effective under a 

very poor signal to noise ratio. The improvement of these algorithms for determining optimal 

frequency bands attracts a large number of researchers [25]–[28]. The improved methods increase 

the robustness of the aforementioned signals but are hard to break through the problem of heavy 

noise mixed in the signals. Even with the proper frequency bands, the envelop analysis or TKEO 

are still ineffective to extract the fault signatures in the circumstances of incipient fault diagnosis 

because both envelope and TKEO do not have the ability of noise suppression.  

Another famous demodulation technique belongs to the high order spectrum analysis. The 

applications of the bispectrum can effectively decouple the modulation components [29]–[31]. To 

improve the performance of conventional bispectrum for charactering the modulation signals, the 

Modulation Signal Bispectrum (MSB) is introduced by Gu [32] to demodulate fault features and 

suppress random noise from vibration signals to identify and quantify common faults of 

reciprocating compressors. Then, Tian [33], [34] and Rehab [35] applied the MSB based fault 

detector to identify the bearing faults at a very low SNR (less than -20dB). The MSB originates 

from the conventional bispectrum (CB) and takes into account the lower and upper sidebands 

simultaneously. A comparison between CB and MSB was carried out in [36] and it evidently 

shows that the MSB can give more accurate and sparse diagnostic results. However, the MSB 

methods are based on the Fourier transform and is designed to eliminate the stationary noise, which 

cannot effectively tackle the nonstationary signals generated by bearings due to the random 

slippage between bearing elements. Recently, Spectral Correlation has been developed to 

characterise cyclostationary signals by extracting cyclic energy features, and it has been applied 

successfully to vibration signals for detecting and diagnosing bearing problems. Antoniadis and 

Glossiotis used the framework of cyclostationary analysis to extract the periodical varying 

statistics in bearing vibration signals [37]. The squared envelope analysis can obtain a similar 

representation with the spectral correlation over all frequency range when processing 

cyclostationary signals [38]. Antoni [39] dedicated the cyclostationary processes in rotating 

machines which formed a guideline for characterising rotating machine signals. The cyclic spectral 

analysis can detect and diagnose bearing faults in poor quality signals and furthermore it can also 

indicate the fault severity [40]. Antoni [41] present the similarities and differences between the 

spectral correlation and the conventional spectral analysis and this reference also gives a guide for 
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implementing cyclic spectral analysis in practice. Raad [42] et al. proposed several efficient 

indicators to evaluate the cyclostationarity at different orders without computing the polyspectra, 

these indicators are verified and appear to be very promising to indicate the conditions of 

machines. The cyclic spectra analysis has attracted an increase in attention on machine condition 

monitoring Antoni [43] gives an elaborate tutorial on cyclostationary analysis for machine fault 

detection and diagnosis using 20 examples. Similarly a guideline is also given by Wang [44] for 

easily and quickly finding informative spectral frequency bands for generating enhanced envelope 

spectrum from spectral coherence. Although the Spectral Correlation is versatile, the computation 

consumes many resources. Antoni [45] developed a short-time Fourier transform (STFT) based 

fast computing method of Spectral Correlation. The spectral correlation is very effective at 

extracting energy oscillation information from cyclostationary signals, but these methods are 

unable to suppress the strong background noise. The capability of reducing noise is highly desired 

in early fault detection and diagnosis. To the best of the author’s knowledge, scarce methods can 

achieve the bearing fault detection and diagnosis under the SNR of less than -30dB.  

2.2 System Identification in Condition Monitoring 

The application of system identification has been increasing significantly for several decades, 

which interests a variety of researcher. Zadeh [46] and Eykhoff [47] proposed that the basics of 

the system identification is to model the system. Ljung [48] defined that the system identification 

uses the input and output data to select one better model from another according to the certain 

criteria. All the definitions emphasise the importance of four elements: input data, output data, the 

model and the standard. 

Usually, the methods can be divided into linear and nonlinear system identification according to 

the property of the system. For linear systems, the origination can be dated back to the late 1960s 

and the development is along these two directions. The first direction is named as prediction error 

framework, which means the system model comes from the minimum difference between the 

practical and simulated outputs. Åström [49], [50] et al. introduced the Maximum Likelihood 

principle to improve the modelling techniques. Ljung [51] summarised the linear system technique 

to be a similarity issue. Schoukens [52] used the Maximum Likelihood principle to identify the 

system in the frequency domain. The second direction, instrumental variable method, was 

developed almost at the same time, which is owing to the output based system identification of Ho 

and Kalman [53]. By further developing the output-only technique, Akaike [54], [55] proposed the 

white stochastic data driven identification method. Viberg [56] and Overchee [57] proposed a 

magical method, subspace identification, to promote the techniques. Bauer [58] made a survey on 
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the statistical features of subspace identification to reveal that many researchers had explored this 

in the last ten years. Generally, the strategies of system identification are nonparametric and 

parametric identification [59]. The nonparametric strategy means the identification is to estimate 

the impulse response function, frequency response function, correlation function or power spectral 

density while the other strategy is to identify a set of parameters associated with the system, both 

two strategies aim to develop a best model. Gevers [60] made a seminal overview on the system 

identification techniques. Linear system identification is a discipline that has evolved considerably 

during the last 30 years and now linear time-invariant system identification is considered to be a 

reliable source. The system identification techniques are widely used in the control system but 

they are not frequently applied in machine condition monitoring.  

However, linear systems are an exception and nonlinear behaviours are generic in nature. The field 

of nonlinear system identification has been explored for a long time since Ibáñez [61], Masri and 

Caughey [62] studied the nonlinear methods.. Nonlinear system dynamics has been studied for a 

relatively long time and numerous methods have been developed. The methods are classified 

according to seven categories: linearization, time and frequency domain methods, modal methods, 

black-box modelling and structural model updating in reference [63]. For years, one way to study 

nonlinear systems was the linearization approach [64], many efforts have been spent in order to 

develop theories for the investigation of nonlinear systems identification. Caughey [65], [66] 

combined stochastic averaging method and the equivalent linearization method to give a good 

prediction of nonlinear oscillation. Iwan [67] and Mason [68] developed the linearization method 

based on Caughey’s work. Rice [69] describes how the system governed by the non-linear 

differential equation can be identified. Obviously, the equivalent linearization method cannot 

identify the strong nonlinear systems. Hence, the concept, equivalent linear systems with random 

coefficients, was employed to predict the response of the strong nonlinear systems [70]–[73]. The 

time domain methods utilize the time series to identify the system, while frequency domain 

methods are correlated to the frequency response function or spectra. One of the milestones of 

time domain identification is the restoring force surface method, which is introduced by Masri and 

Caughey [62]. Since Box and Jenkins [74] used the linear variant method based on Auto-

Regressive Moving Average (ARMA) to model and predict the system behaviours, Leontaritis and 

Billings [75], [76] transferred the ARMA to nonlinear field. Lacy and Berstein [77] presented the 

nonlinear SSI approach. The development of frequency domain methods is later than the time 

domain. Bendat [78] considered the higher order spectrum to identify the systems and Yasuda 

[79], [80] et al estimated the system parameters by harmonic balance method. Rice and Fitzpatrick 

[81], [82] identified both the single and multiple degree of freedom nonlinear systems through the 
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reverse path analysis. Another important method in frequency domain is the nonlinear 

identification through feedback of the output, which is presented by Adams and co-authors [83] 

and Haroon [84] et al who further developed this method. The combination of time and frequency 

methods also plays a vital role in the identification field. Staszewski [85] carried out a survey on 

the use of the wavelet analysis for the nonlinear phenomenon. Rosenberg [86], [87] introduced 

nonlinear normal mode and applied it in the vibration theory. Bellizzi [88] compared the nonlinear 

modes from the experiment and calculation to implement system identification. Nonlinear system 

identification is very active now and large quantities of scholars are making great efforts in this 

field. 

The last part of system identification is the black box modelling. Recently, machine learning has 

greatly expanded the capabilities of empirical modelling and these new approaches in this field are 

referred to data driven modelling. As the name suggests, data driven modelling is to identify the 

black box systems by only using the input and output variables. Many black-box methods have 

been developed, such as polynomial regression [89], [90], neural networks [91]–[94], fuzzy logic 

[92], [95]–[97], support vector machine [98]–[100]. The black box modelling technique has 

attracted an increase in attention in machine condition monitoring.  

System identification serves as an effective and efficient tool for understanding the system 

dynamics. The applications of system identification in machine condition monitoring are not as 

common as the control system. Wei, Jia and Liu [101] proposed a model based fault detection of 

railway vehicle suspensions by only using the acceleration signals. Jesueesk and Ellermann [102] 

utilised multiple Kalman filter to estimate the working conditions of the full-scale railway vehicle 

suspension system. Liu and co-authors [103] modelled the rail vehicle suspension system based 

on a recursive least square filter and lead to the effective fault diagnosis technique. Liu et al. [104] 

classified the correlation signal as several subset and then identified it by the stochastic subspace 

identification to monitor the suspension conditions. The employment of system identification in 

another perspective is the deployment of the resonance. In most cases, the resonant behaviour is 

not desired for machines and the resonance may cause the failure of machines and even 

catastrophic accidents. The natural frequencies of mechanical systems are the inherent properties, 

which are independent on the excitations. Generally a machine has numerous natural frequencies 

and only the first several frequencies are considered because the high orders of the modes locate 

in a very high frequency range. Although most machines are designed to escape the resonance, the 

excitation of the modes is not avoidable. The resonant behaviour is a profitable carrier in vibration 

signals from rotating machines, which gives a valuable chance for effectively monitoring the 

incipient failure. Wang [105] presents a resonance demodulation technique to extract the tooth 
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crack fault features from the residual signals, which are obtained by subtracting time synchronous 

averaging signals from raw vibration signals. The method is superior to the conventional meshing 

components and leads to a robust indicator of gear tooth cracks. The gear meshing resonance is 

studied further to demonstrate that the resonant demodulation can separate the compound localised 

faults on both gear tooth and rolling bearings [106]. The reason behind this is the bearing faults 

impact on bearing resonance that would modulate the meshing components because the input for 

resonant modulation in rolling bearings is exclusive of the meshing impacts. Wang, Chu and Han 

[107] developed a resonant modulation based filtering algorithm to extract the gear failure 

information from the strong background noise. Tong et al. [108] gave an insight of the meshing 

resonance in gearboxes and developed a meshing impact energy distribution approach to select the 

optimal frequency band for resonant demodulation. The resonance modulation is an important 

phenomenon in machine vibrations and the resonant demodulation gives the potential to achieve 

early fault detection and diagnosis. However, the effectiveness and efficiency of early fault 

detection and diagnosis significantly relies on emerging signal processing methods. Although large 

quantities of advanced methods have been developed, most of the research activities focus on the 

impulsive characteristics of the output vibration signals but neglect the system itself. For example, 

most of the research activities in bearing fault diagnostics make great contributions to locating the 

most impulsive frequency band of the vibration signals and little research has been found to 

investigate the influence from the transfer function of the bearing system. System identification is 

the interface between the real world and the mathematical world. This technique is of great help 

to understand the dynamics of machine systems. The system outputs are the interference with the 

responses, which makes the fault detection and diagnostics more difficult. In order to gain the 

insight of systems for the purpose of efficient fault detection and diagnoses, system identification 

is employed to further understand the dynamics of the machines. With the reference of system 

identification, CM can be more effective and more reliable in the field of fault detection and 

diagnoses. The bearing fault detection and diagnosis is based on the resonant modulation, which 

has been investigated for decades. Most of the research is focused on detecting and enhancing the 

impulsive behaviour, which is not feasible in early fault detection and diagnosis because the 

incipient faults induced impulsive responses are fully submerged into strong background noise. 

To solve the problem of early bearing fault detection and diagnosis, research on system 

identification enhanced resonant modulation is eagerly undertaken in this thesis. ,  
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Chapter 3  Modulation Mechanisms in Rotating Machines 

 

As the input of the system varies from stationary to nonstationary due to the working principle of 

machines, this chapter starts from the general modulation signals and then discusses the resonant 

modulation responses under the excitations of the periodic, aperiodic, and quasi-stationary input. 

The modulation mechanism can pave the way to the effective approaches for the fault detection 

and diagnosis.  
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3.1 Modulation Signals 

Modulation is a general phenomenon in the vibration signals of rotating machines. The modulation 

of vibration signals usually includes amplitude modulation, frequency modulation and phase 

modulation. Phase modulation is the angular deviation from the linearly phase of the carrier 

frequency and thus the derivation of the phase modulation is the frequency modulation. 

Consequently, the vibration signals would be discussed from the Amplitude Modulation (AM) and 

Phase Modulation (PM).  

Generally, the amplitude of the carrier signal varying with time is known as the amplitude 

modulation. Figure 3-1 displays an example of the amplitude modulation signal. The instantaneous 

amplitude of the carrier signal in Figure 3-1 (b) varies as the modulating signal in Figure 3-1 (a), 

leads to the amplitude modulation signal in Figure 3-1 (c). The spectrum in Figure 3-1 (d) can 

show the components clearly. 

 

Figure 3-1 Example of amplitude modulation 

Another type of modulation signals is the phase modulation and the instantaneous phase of the 

carrier signal which does not linearly increase with the time but varies regularly. The example of 

a phase modulation signal is shown in Figure 3-2. As shown in Figure 3-2 (c), the phase modulation 

signal shows a different manner and the spectrum in Figure 3-2 (d) shows the phase modulation 

signal has numerous sidebands with the interval of modulating frequency.  
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Figure 3-2 Example of phase modulation 

 

3.2 Modulation in Linear Systems 

The modulation mechanism in rotating machines is based on the definition of the AM and PM. 

Usually the vibration signals are collected on the surface of the machine surfaces and the responses 

collected by the accelerometers which actually pass the system transfer function and are briefly 

demonstrated by Figure 3-3.  

Input
Mechanical System

(Transfer Function)
Output

 

Figure 3-3 Responses of mechanical systems 

Consequently, the vibration signals are dependent on the transfer function and the input excitations. 

With the hypothesis of linear systems, the response 𝑦(𝑛) of a linear system to the input 𝑥(𝑛) 

 𝑦(𝑛) = ℋ{𝑥(𝑛)}   (3.1) 

where, ℋ{∙} is the transfer function of the system.  

The Equation (3.1) can be rewritten as a convolution between the impulse response function h(n) 

and the input 𝑥(𝑛). 

 𝑦(𝑛) = ℎ(𝑛) ∗ 𝑥(𝑛)   (3.2) 
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Here the discussion of the modulation mechanisms is based on the example a linear system with 

three Degree of Freedom (DOF) and the Frequency Response Function (FRF) of the system is 

shown in Figure 3-4.  

 

Figure 3-4 FRF of the 3 DOF system 

Once the input matches with the natural frequencies of the system, the cumulation of the energy 

can lead to the great amplitude around the natural frequencies giving the mechanical resonance. In 

most cases, the resonance is not a desired behaviour for machines and the resonance may cause 

the failure of machines and even catastrophic accidents. The natural frequencies of mechanical 

systems are the inherent properties, which are independent on the excitations. Generally a machine 

has numerous natural frequencies and only the first several frequencies are considered because the 

high orders of the modes locate in a very high frequency range. Although most of machines are 

designed to escape the resonance, the excitation of the modes is rarely avoidable. Especially the 

defects induced input variation may excite the system modes. Therefore, the resonant responses 

give a valuable chance to enlarge the weak fault information of machines for effective condition 

monitoring.  

As shown in Figure 3-5, the input of the rotating mechanical system can be divided into three 

groups. For rotating machines under constant speeds and loads, the input of the system can be 

classified into periodic and cyclostationary signals. The periodic signal is part of the stationary 

signals. and the cyclostationary signals are within the range of nonstationary signals. The 

cyclostationary signals have high order statistical properties and vary cyclically with time. The 

cyclostationary signals can be classified into the impulsive and quasi-stationary signals. The 

impulsive cyclostationary signals usually indicate localised early faults of rolling element bearings. 

The quasi-stationary signals relate more to the tribological responses from the interaction between 

oil films and micro-surface asperities.  In this thesis, the periodic and aperiodic impulsive 

excitations are the main investigation contents in the fault detection and diagnosis of rolling 

element bearings.  
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Figure 3-5 Input types in rotating machines 

3.2.1 Periodic Input  

In the first case, the periodic input is discussed here. The periodic input is quite straightforward 

for understanding the modulation mechanism. The periodic impacts generated by the rotation of 

rotors are far from perfect in illustrating sinusoid waveform, hence these periodic signals are 

composed by a series of harmonics explained by the Fourier theory.  
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   (3.3) 

Figure 3-6 (a) shows the example of a periodic signal in the frequency domain. Usually the 

amplitude of the harmonics in vibration signals decrease. In rare circumstances, the high order 

harmonics could have high amplitude, it depends on the characteristics of the input forces or 

torques. If the target system has the characteristics of the FRF in Figure 3-6 (b), the output obtained 

from external surface is displayed in Figure 3-6 (c), which has been transformed into the frequency 

domain.  
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Figure 3-6 Periodic input based modulation 

 

Figure 3-7 Resonance transmissibility [109] 

The FRF denotes the transmissibility of the system in a certain degree. As shown in Figure 3-7, 

although the harmonics in the low frequency range have high amplitude, the low transmissibility 

of the system results in the low amplitude output. When the harmonics are close to the resonant 
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frequency, the responses show a tendency towards the pronounced amplitude. The vibration 

signals in the resonant area result in the modulation phenomenon. The natural frequencies become 

the carrier frequency and the periodic fault frequency denotes the modulating frequency. Not all 

the natural frequencies are a good carrier for the modulation signals because the harmonics in 

certain natural frequencies are nearly zero and unable to excite the resonant behaviour. For instance, 

the third mode in the Figure 3-6 is not obvious in the output while the first two natural frequencies 

are the good candidates. The energy in this output responses is focused in the range of two resonant 

frequencies.  

The components in low frequency range are usually contaminated by the severe background noise, 

and are difficult to extract. The resonant area can enhance the periodic input and the demodulation 

from the limited frequency band can obtain the features with high signal to noise ratio (SNR). 

Although the demodulation analysis upon the resonant modulation has already utilised the most 

beneficial part of the vibration signals, the incipient faults such as a tiny fatigue pitting on the gear 

tooth surface results in very weakly impulsive impacts. These periodic impacts within the resonant 

zones are difficult to distinguish from the strong background noise. The high capacity of noise 

suppression is strongly desired for effective fault detection and diagnosis in an early stage.  

3.2.2 Approximately Periodic Impulsive Input 

The periodic input is an ideal scenario in mechanical dynamics. In most cases, the input of the 

mechanical system is far from the perfect periodic signal. These excitation sources are about 

periodic, terminologically named as the cyclostationary signals. The most typical case is the 

bearing vibration signals. If bearings run at purely rotation, the localised defects can generate 

periodic signals. However, the bearings are not working as designed and the rolling elements 

running in and out of the loading zone cause some random slippages. The random slippage 

destroys the periodicity of the excitation forces and results in a series of approximately periodic 

impacts. The system input and output in the time domain are shown in Figure 3-8. The temporal 

signal seems periodic but it is actually a nonstationary signal.  
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Figure 3-8 Aperiodic impulsive signals in the time domain 

The characteristics of the signal can be demonstrated more clearly in the frequency domain. The 

spectrum of the input and output signals are shown in Figure 3-9. If the nonstationary signal is 

explained by the Fourier transform, the amplitude of high order harmonics significantly decreases. 

The responses are shown in Figure 3-9 (c) and the discrete components in the spectrum disappears 

due to the impulsive cyclostationary input. The components around the first and second natural 

frequencies are taking the main energy of the vibration signals, which doesn’t show sparse 

frequencies but two clusters in the frequency domain.  

 

Figure 3-9 Aperiodic impulsive signals in the frequency domain 

The first order statistics don’t vary periodically. The second order statistic parameters, for example 

spectral correlation analysis, can disclose the discrete cyclic frequencies. The integral of the 

autocorrelation functions along the frequency axis can reveal the cyclostationarity of the vibration 
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signals. The envelope analysis has been verified to be equivalent to envelope analysis in a certain 

degree[110], which is much more straightforward than the spectral correlation analysis. The 

envelope spectrum of the vibration around the second natural frequency is shown in the Figure 

3-10.  

 

Figure 3-10 Envelope spectrum of the output 

The vibration signals obtained from a rolling bearing with a small localised defect are typically 

impulsive cyclostationary. The localised defect on bearings at early stages generates a series of 

weak impacts induced by the rolling elements passing the fault[1]. The nonstationary inputs result 

in the nonstationary output. The responses around the natural frequencies in the example is noise-

free and in practical conditions, the transmission path is long and the responses acquired are 

significantly low SNR. The noise reduction is expected in effective condition monitoring 

approaches.  

3.2.3 Quasi-stationary Input 

Another typical input in machines is the tribological behaviour. The lubrication joint in machines 

are designed to build a perfect oil film so that the mating surfaces can be fully separated and also 

the oil film is not too thick to consume the extra energy for overcoming the friction.  

Properties of surface topography have a significant influence on friction and lubrication. Surface 

profiles in the lubricated conjunctions are the random deviation from the nominal surface. The two 

dimensional topography have two main properties, including roughness and waviness. Roughness 

is the fluctuation of the micro-surface, which is usually represented by the distribution of asperities 

with varying amplitudes and spacing. Asperities are considered as the main excitation sources in 

tribological responses. Waviness is also the fluctuation of the surface but it describes the profile 

with a long wavelength. Waviness on surfaces usually relates to the unstable machining process, 

for instance the vibration or even chatter. 
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Figure 3-11 Surface profile: waviness and asperities 

Suppose the surfaces textures are both homogeneous and isotropic, the interaction between the 

random asperities and oil film generates stationary excitations. Due to the waviness in the profile, 

the random stationary excitations become cyclostationary signals, which is demonstrated by the 

example in Figure 3-12 (a). The cyclostationary signal in Figure 3-12 (a) is an amplitude 

modulated white noise by a sinusoidal waveform. The output of the system excited by the input is 

displayed in Figure 3-12 (b), which is still a cyclostationary signal.  

 

Figure 3-12 Quasi-stationary signals in the time domain 

To demonstrate the characteristics of the modulation signals, the input and output signals are 

converted into the frequency domain by the Fourier transform. The input signal in Figure 3-13 (a) 

shows a flat spectrum and the cyclic properties cannot be identified by the Fourier analysis. By 

multiplying with the FRF of the 3 DOF system, the output response is shown in Figure 3-13 (c). 

The resonant modulation based on the natural frequencies displays three clusters in the whole 
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spectrum. The other frequency bins are not pronounced and hence easily submerged into the strong 

background noise.  

 

Figure 3-13 Quasi-stationary signals in the frequency domain 

The cyclostationary excitations are induced by the tribological behaviour and therefore the strength 

of the resonance can indicate the lubrication conditions if the responses obtained have a high signal 

to noise ratio. The properties of the quasi-stationary outputs and random noise are difficult to 

distinguish, hence noise reduction is not easily achieved when monitoring the lubrication 

conditions.  

3.3 Summary 

This chapter describes the resonant modulation in rotating machines. Based on the hypothesis of 

a linear system, the output of the systems vary due to the different input excitations. Briefly the 

input can be divided into three types: periodic, aperiodic impulsive, and quasi-stationary. 

Consequently, the responses from the system are of different modulation characteristics. The 

effective demodulation analysis of these responses is the most beneficial part for utilising the 

resonant modulation in vibration based condition monitoring. The characteristics of the vibration 

signals are expected to be effectively analysed by different signal processing approaches for the 

early fault detection and diagnosis. This thesis is based on the periodic and aperiodic impulsive 

signals and then three novel signal processing methods are developed for achieving the condition 

monitoring of rolling element bearings at a very early stage, which means that the developed 

methods can detect and diagnose bearing faults under an extremely low SNR (<-30dB).  
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Chapter 4  Simulation Study of Ball Bearing Fault Detection and 

Diagnosis 

 

This chapter focuses on investigating resonant modulation induced by the periodic impacts 

through the simulation studies. The state space model of the rolling element bearings was 

established to simulate the dynamic responses of rolling bearings. The stochastic subspace 

identification (SSI) was introduced to serve as the method to determine the optimal central 

frequencies. The robustness of the SSI method was examined by large quantities of Gaussian and 

non-Gaussian noise. At the same time, a signal processing method, ensemble average of 

autocorrelation signals (EAAS), was developed to demodulate the resonant modulation for 

detecting and diagnosing the bearing faults at early stage. Different levels of white Gaussian noise 

were added to evaluate the performance of the proposed demodulation method. The capability of 

the SSI and EAAS is benchmarked by the Kurtogram and envelope analysis, respectively.  
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4.1 Model Development 

4.1.1 Characteristic Frequencies of Bearing Faults 

As demonstrated in Figure 4-1, a rolling element bearing is comprised of an inner race, an outer 

race, rolling elements and a cage which holds the rolling elements in a given relative position. If a 

spall occurs on one of the races, a periodic impulse will be excited by the rolling elements, which 

presents the fault characteristics determined by the dimensions of the bearing, the fault parts, and 

the rotating speed. The characteristic fault frequencies of rolling element bearings are determined 

by the shaft rotating speeds and the bearing dimensions, which is deduced from the relative speeds 

between bearing elements. For a fixed outer race bearing, Equations (4.1) to (4.4) can be used to 

calculate the theoretical fault frequencies [22].  

Outer Race

Inner Race

Rollers

Dc

Cage

Db

 

Figure 4-1 Schematic diagram of the rolling element bearing 

Characteristic frequency of outer race faults: 

 𝑓𝑜 =
𝑁𝑟

2
𝑓𝑟(1 −

𝐷𝑏

𝐷𝑐
𝑐𝑜𝑠 𝜑)   (4.1) 

Characteristic frequency of Inner race faults: 

 𝑓𝑖 =
𝑁𝑟

2
𝑓𝑟(1 +

𝐷𝑏

𝐷𝑐
𝑐𝑜𝑠 𝜑)   (4.2) 

Characteristic frequency of roller faults: 

 𝑓𝑏 =
𝐷𝑐

2𝐷𝑏
𝑓𝑟(1 − (

𝐷𝑏

𝐷𝑐
𝑐𝑜𝑠 𝜑)2)   (4.3) 

Characteristic frequency of cage faults (often called the fundamental train frequency): 

 𝑓𝑐𝑎𝑔𝑒 =
1

2
𝑓𝑟(1 −

𝐷𝑏

𝐷𝑐
𝑐𝑜𝑠 𝜑)   (4.4) 

where, 𝑁𝑟 is number of balls, 𝑓𝑟 is the shaft rotating frequency, 𝐷𝑏 is the roller diameter, 𝐷𝑐 is the 

pitch circle diameter, and 𝜑 is the contact angle. Practically, the characteristic fault frequencies 
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for a certain bearing has only one critical variable, the rotating speed of the shaft as the dimensions 

of a certain bearing are determined.  

4.1.2 State Space Model of Bearing Vibration   

Vibration induced by the rolling elements passing raceway defects is usually of amplitude 

modulation signal [111]. The impacts from the localised faults are considered as a series of 

impulses. If the rotating speed of the shaft is constant, the impacts become a periodic signal. These 

impacts usually spread over a wide frequency range, which can excite the resonance of bearing 

systems and hence result in modulation phenomenon between periodic impacts and system 

resonances. The dynamic responses of rolling element bearings in this thesis are simulated by a 

state space model with three degree of freedom (DOF). Figure 4-2 (a) shows the lumped model 

with three DOF for simulating the dynamic responses. The model in Figure 4-2 (a) can be concisely 

depicted by the model in Figure 4-2 (b), which is a general representation of lumped models.  

 

Figure 4-2 Schematic diagram of the bearing model: (a) schematic bearing; (b) simplified 

lumped model 

The bearing system can be simplified as a three DOF model: the sensor, the stationary part (the 

bearing housing and the outer race), and the rotating part (the shaft and the inner race). 

Consequently, this three DOF model can be expressed by a common vibration equation as 

 𝑴�̈� + 𝑪�̇� + 𝑲𝒙 = 𝑭  (4.5) 

where, 𝒙 = [𝑥1 𝑥2 𝑥3]𝑇 is the displacement of each DOF; 𝑴, 𝑪, and 𝑲 are the mass matrix, 

damping matrix and stiffness matrix respectively. The expresses of these system matrixes are 

shown as follows:  

 𝑴 = [

𝑚1
𝑚2

𝑚3

]  (4.6) 
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 𝑪 = [
𝑐1 −𝑐1
−𝑐1 𝑐1 + 𝑐2 −𝑐2

−𝑐2 𝑐2 + 𝑐3

]  (4.7) 

 𝑲 = [

𝑘1 −𝑘1
𝑘1 + 𝑘2 −𝑘2
−𝑘2 𝑘2 + 𝑘3

]  (4.8) 

Suppose the rolling elements purely roll on the raceways and consequently, the impacts of rolling 

elements passing the defects become the main inputs of the bearing model. Hence, the forces 𝐅 on 

the bearing model are  

 𝑭 = [0 𝑓(𝑡) −𝑓(𝑡)]𝑇  (4.9) 

where, 𝑓(𝑡) is the impact forces induced by the collisions between rolling elements and raceways. 

In most circumstances, the outer ring of bearings is fixed, and the inner ring is the rotating part. If 

the defect occurs on the outer ring, the impact forces are nearly constant, which can be expressed 

as 

 𝑓(𝑡) = ∑ 𝐴𝑓𝛿(𝑡 − 𝑘𝑇𝑓)
+∞
𝑘=1   (4.10) 

where, 𝐴𝑓 is the amplitude of the impact forces from the rolling element passing defects; 𝑇𝑓 is the 

characteristic time cycle of outer race faults; 𝑘 denotes the number of the successive impacts 

during the bearing rotation. δ(∙) is the delta function, which is defined as  

 𝛿(𝑡) = {
1, 𝑡 = 0
0, 𝑡 ≠ 0

  (4.11) 

It is well known that the load distribution of bearings is not even along with the circumference and 

the loaded zone is shown in the Figure 4-3.  

 

Figure 4-3 Loaded zone of rolling element bearings 
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Consequently, the impacts induced by the inner race faults would not be constant and will vary 

according to the relative position to the loaded zone. The variation of the impact strength is 

described by the rotation of the inner race, which is actually the same as the shaft rotation. The 

impact forces can be expressed as 

 𝑓(𝑡) = ∑ 𝐴𝑓 |𝑐𝑜𝑠 (2𝜋
𝑓𝑟

2
𝑡 + 𝜑𝑓)| 𝛿(𝑡 − 𝑘𝑇𝑓)

+∞
𝑘=1   (4.12) 

where, 𝑓𝑟 is rotating frequency of the inner ring; 𝜑𝑓 is the initial phase upon the collision position 

to the loaded zone.  

Therefore, the impact forces can be summarised as 

 𝑓(𝑡) = {
∑ 𝐴𝑓𝛿(𝑡 − 𝑘𝑇𝑓)
+∞
𝑘=1 , 𝑜𝑢𝑡𝑒𝑟 𝑟𝑎𝑐𝑒 𝑓𝑎𝑢𝑙𝑡𝑠

∑ 𝐴𝑓 |𝑐𝑜𝑠 (2𝜋
𝑓𝑟

2
𝑡 + 𝜑𝑓)| 𝛿(𝑡 − 𝑘𝑇𝑓)

+∞
𝑘=1 , 𝑖𝑛𝑛𝑒𝑟 𝑟𝑎𝑐𝑒 𝑓𝑎𝑢𝑙𝑡𝑠

  (4.13) 

The state space model is a common representation of a linear system by first-order differential 

equations. It is a time domain approach to conveniently and compactly describe system dynamics 

with multiple inputs and outputs. Owing to the merits, the state space model is widely used in 

many different areas. This method is employed to establish the bearing dynamic model. The 

general expression of state space models is denoted as 

 {
�̇�(𝑡) = 𝑨𝒔𝑥(𝑡) + 𝑩𝒔𝑢(𝑡)

𝑦(𝑡) = 𝑪𝒔𝑥(𝑡) + 𝑫𝒔𝑢(𝑡)
  (4.14) 

where, 𝑥(𝑡) is the state vector; 𝑦(t) is the output vector; 𝑢(t) is the input vector; 𝐀𝒔 is the system 

matrix; 𝑩𝒔 is the input matrix; 𝑪𝒔 is the output matrix; and 𝑫𝒔 is the feedthrough matrix.  

The Equation (4.14) is a common expression and in the bearing model, the feedthrough matrix is 

omitted as there is no feedback in the bearing dynamics. The parameters in the state space model 

are  

 𝑨𝒔 = [
𝟎 𝑰

−𝑴−𝟏𝑲 −𝑴−𝟏𝑪
]  (4.15) 

 𝑩𝒔 = [
𝟎

−𝑴−𝟏]  (4.16) 

 𝑪𝒔 = [
𝑰 𝟎
𝟎 𝑰

]  (4.17) 

All the parameters used in the state space model of bearing vibrations are listed in the Table 4-1. 

This model is simplified from Rehab’s thesis [112] and the parameters used in this simulation are 

also based on the Rehab’s thesis. 
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Table 4-1 Model parameters 

Parameters Values 

𝒎𝟏 0.1kg 

𝒎𝟐 2.0kg 

𝒎𝟑 1.0kg 

𝒌𝟏 2.0e8N/m 

𝒌𝟐 3.6e9N/m 

𝒌𝟑 1.0e9N/m 

𝒄𝟏 89.4Ns/m 

𝒄𝟐 1.0e3Ns/m 

𝒄𝟑 1.1e3Ns/m 

 

Based on the parameters used in the model, the modal characteristics can be shown by the 

Frequency Response Functions (FRFs). It can be seen that the natural frequencies of the bearing 

model are 3468Hz, 7117Hz and 11781Hz, which are potential carrier frequencies of the bearing 

defects induced modulation signals.  

 

Figure 4-4 FRFs of the bearing model 
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4.2 Method to Determine Optimal Frequency Bands 

The modulation characteristics in the rolling element bearing systems are that the resonant 

responses are modulated by the periodic impacts of rolling elements passing the localised defects. 

The modulation characteristics lead to the low frequency components shifting from low frequency 

range to high frequency range [113]. The High Frequency Resonance Technique (HFRT), later 

called envelope analysis, was developed by Darlow et al. [10] and demonstrated an outstanding 

demodulation capability. Envelope analysis in the whole frequency band includes some noise, 

which does not guarantee the optimal detection and diagnosis of the localised defects. To 

effectively demodulate the fault signatures from the vibration signals, the determination of the 

optimum frequency bands become the primary problem.  

Based on the recursive impulse characteristics, numerous researchers are attracted to develop 

various approaches to select optimal frequency bands. The most commonly used method is 

Kurtogram, which aims to point out the band pass filtered signals with the most obvious impulse 

events. Most of the research works focus on finding the frequency bands which contains the 

impulse behaviour. Although these research activities have achieved significant outcomes in 

bearing fault diagnostics, the modulation characteristics are not considered during the development 

of the approaches. Therefore, the system identification based approach is developed in this thesis 

to find the optimal carrier frequencies for further demodulation analysis. There is a specific 

research topic in the field of system identification, which is named as Operational Modal Analysis 

(OMA). OMA can extract the modal parameters only from the outputs of the system. Stochastic 

Subspace Identification (SSI), used for over a decade, is a high-performance method to identify 

the resonance behaviours of the system, hence this method is introduced to determine the optimal 

frequency bands for further demodulation analysis. The procedure of identification is deduced 

from the first principle equation [114], [115]. Generally, a 𝑛 degrees of freedom (DOF) system 

can be defined as 

 𝑴𝑠�̈�𝑠(𝑡) + 𝑪𝑠𝑥�̇�(𝑡) + 𝑲𝑠𝑥𝑠(𝑡) = 𝑭𝑠(𝑡) = 𝑩𝑠𝑢(𝑡)   (4.18) 

where, 𝑴𝑠, 𝑪𝑠and 𝑲𝑠 ∈ 𝑹
𝑛×𝑛 are the mass, damping and stiffness matrixes respectively, �̈�𝑠(𝑡), 

�̇�𝑠(𝑡), and 𝑥𝑠(𝑡) ∈ 𝑹
𝑛×1 are the acceleration, velocity and displacement vectors, 𝐹𝑠(𝑡) ∈ 𝑹

𝑛×1 is 

the external force which is factorised to be an input space matrix 𝑩𝒔 ∈ 𝑹
𝑛×𝑚 and an input time 

vector 𝑢(𝑡) ∈ 𝑹𝑚×1. 

With the following definitions 

 𝑥(𝑡) = [
𝑥𝑠(𝑡)
�̇�𝑠(𝑡)

]   (4.19) 
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Equation (4.18) can be transformed to a state equation 

 �̇�(𝑡) = 𝑨𝑐𝑥(𝑡) + 𝑩𝑐𝑢(𝑡)   (4.20) 

with 

 

𝑨𝑐 = [
𝟎𝑛×𝑛 𝑰𝑛×𝑛

−𝑴𝑠
−1𝑪𝑠 −𝑴𝑠

−1𝑲𝑠
]

𝑩𝑐 = [
0𝑛×𝑚
𝑴𝑠
−1𝑩𝑠

]

  (4.21) 

where, 𝑨𝑐 ∈ 𝑹
2𝑛×2𝑛 is the state matrix and 𝑩𝑐 ∈ 𝑹

2𝑛×𝑚 is the input matrix. 

Practically, the measurements are finite and only 𝑙 points of the system are monitored, so the 

observation equation can be assumed to be 

 𝑦(𝑡) = 𝑪𝑎�̈�𝑠(𝑡) + 𝑪𝑣�̇�𝑠(𝑡) + 𝑪𝑑𝑥𝑠(𝑡)   (4.22) 

where, 𝑦(𝑡) ∈ 𝑹𝑙×1 is the outputs, and 𝑪𝑎, 𝑪𝑣 ,𝑪𝑠 ∈ 𝑹
𝑙×𝑛 are the output matrices of acceleration, 

velocity and displacement. 

Then, Equation (4.22) can be rewritten as 

 𝑦(𝑡) = 𝑪𝑥(𝑡) + 𝑫𝑢(𝑡)   (4.23) 

with 

 
𝑪 = [𝑪𝑑 − 𝑪𝑎𝑴𝑠

−1𝑲𝑠 𝑪𝑣 − 𝑪𝑎𝑴𝑠
−1𝑪𝑠]

𝑫 = 𝑪𝑎𝑴𝑠
−1𝑩𝑠

   (4.24) 

where, 𝑪 ∈ 𝑹𝑙×2𝑛 is the output matrix and 𝑫 ∈ 𝑹𝑙×𝑚 is the direct transmission matrix. 

To sum up, a continuous time deterministic state space model shows as follows, 

 {
�̇�(𝑡) = 𝑨𝑐𝑥(𝑡) + 𝑩𝑐𝑢(𝑡)
𝑦(𝑡) = 𝑪𝑥(𝑡) + 𝑫𝑢(𝑡)

  (4.25) 

In practice, the data sets are acquired at a discrete time interval 𝛥𝑡, therefore, a discrete state space 

model is assumed to be 

 {
𝑥(𝑘 + 1) = 𝑨𝑥(𝑘) + 𝑩𝑢(𝑘)

𝑦(𝑘) = 𝑪𝑥(𝑘) + 𝑫𝑢(𝑘)
  (4.26) 

where, 𝑥(𝑘)  is the state vector at 𝑘𝛥𝑡 , 𝑨 = 𝑒𝑨𝑐𝛥𝑡  is the discrete state matrix and 𝑩 = [𝑨 −

𝐼]𝑨𝑐
−1𝑩𝑐 is the discrete input matrix. 

The stochastic noise is virtually inevitable and the input of a stochastic process is not easy to 

measure. The characteristics of the input are the same as the noise. Combining the stochastic input 

and noise, a stochastic and discrete identification can be derived to be presented as [115] 
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 {
𝑥(𝑘 + 1) = 𝑨𝑥(𝑘) + 𝑤(𝑘)

𝑦(𝑘) = 𝑪𝑥(𝑘) + 𝑣(𝑘)
  (4.27) 

with 

 𝐸 [(
𝑤(𝑗)
𝑣(𝑗)

) (𝑤(𝑘)𝑇 𝑣(𝑘)𝑇)] = (
𝑸 𝑺

𝑺𝑇 𝑹
)𝛿𝑗𝑘 ≥ 0   (4.28) 

where, 𝑥(𝑘) ∈ 𝑹2𝑛×1 and 𝑦(𝑘) ∈ 𝑹𝑙×1 are respectively the state and the output of the system at 

discrete time 𝑘; 𝑤𝑘 ∈ 𝑹
2𝑛×1 and 𝑣𝑘 ∈ 𝑹

𝑙×1 are unmeasurable signals, which are assumed that: (1) 

The mean value is zero; (2) The signals are stationary; (3) The signals obey the Gaussian 

distribution. 𝑨 ∈ 𝑹2𝑛×2𝑛 is the system matrix; 𝑪 ∈ 𝑹𝑙×2𝑛 is the output matrix, the matrixes 𝑸 ∈

𝑹2𝑛×2𝑛, 𝑺 ∈ 𝑹2𝑛×𝑙and 𝑹 ∈ 𝑹𝑙×𝑙 are the corresponding covariance. 

The state covariance matrices are defined as 

 

∑ = 𝐸[𝑥(𝑘 + 1)𝑥𝑇(𝑘 + 1)]

= 𝐸[(𝑨𝑥(𝑘) + 𝑤(𝑘))(𝑨𝑥(𝑘) + 𝑤(𝑘))𝑇]

= 𝑨𝐸[𝑥(𝑘)𝑥𝑇(𝑘)] + 𝐸(𝑤(𝑘)𝑤𝑇(𝑘))

= 𝑨∑𝑨𝑇 + 𝑸

   (4.29) 

Where, ∑ is independent from time because of the features of the linear time-invariant (LTI) 

system. 

The output covariance matrices are defined as 

 𝜦𝑖 = 𝐸[𝑦(𝑘 + 𝑖)𝑦
𝑇(𝑘)]   (4.30) 

Where, 𝑖 is the time delay. 

The state-output covariance is defined as 

 

𝑮 = 𝐸[𝑥(𝑘 + 1)𝑦𝑇(𝑘)]

= 𝐸[(𝑨𝑥(𝑘) + 𝑤(𝑘))(𝑪𝑥(𝑘) + 𝑣(𝑘))𝑇]

= 𝑨∑𝑪𝑇 + 𝑺

  (4.31) 

Finally, the kernel equation of covariance based SSI can be deduced as 

 𝜦𝑖 = 𝑪𝑨
𝑖−1𝑮   (4.32) 

Before implementing the identification method, some definitions are introduced. In consideration 

of the stochastic inputs, the reference outputs are vital in the identification process. Provided that 

𝑙 outputs are monitored, 𝑟 references will be selected 

 𝑦(𝑘) = [
𝑦𝑟𝑒𝑓(𝑘)

𝑦∼𝑟𝑒𝑓(𝑘)
]   (4.33) 

where, 𝑦𝑟𝑒𝑓(𝑘) ∈ 𝑹𝑟×1 is the references and 𝑦∼𝑟𝑒𝑓(𝑘) ∈ 𝑹(𝑙−𝑟)×1 is the remaining elements. 
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The measured outputs of the system are formed into a block Hankel matrix, which is shown as 

 𝐻 =
1

√𝑗

[
 
 
 
 
 
 
𝑦𝑟𝑒𝑓(0) 𝑦𝑟𝑒𝑓(1) ⋯ 𝑦𝑟𝑒𝑓(𝑗−1)

𝑦𝑟𝑒𝑓(1) 𝑦𝑟𝑒𝑓(2) ⋯ 𝑦𝑟𝑒𝑓(𝑗)
⋯ ⋯ ⋯ ⋯

𝑦𝑟𝑒𝑓(𝑖−1) 𝑦𝑟𝑒𝑓(𝑖) ⋯ 𝑦𝑟𝑒𝑓(𝑖+𝑗−2)
𝑦(𝑖) 𝑦(𝑖+1) ⋯ 𝑦(𝑖+𝑗−1)
𝑦(𝑖+1) 𝑦(𝑖+2) ⋯ 𝑦(𝑖+𝑗)
⋯ ⋯ ⋯ ⋯

𝑦(2𝑖−1) 𝑦(2𝑖) ⋯ 𝑦(2𝑖+𝑗−2) ]
 
 
 
 
 
 

= [
𝒀0|𝑖−1
𝑟𝑒𝑓

𝒀𝑖|2𝑖−1
] = [

𝒀𝑝
𝑟𝑒𝑓

𝒀𝑓
]
↕ 𝑟𝑖
↕ 𝑙𝑖

"𝑝𝑎𝑠𝑡"

"𝑓𝑢𝑡𝑢𝑟𝑒"
   (4.34) 

In addition, if the outputs are ergodic, the outputs covariance can be further estimated by 

 �̂�𝑖 =
1

𝑗
∑ 𝑦(𝑘 + 𝑖)𝑦𝑇(𝑘)
𝑗−1
𝑘=0    (4.35) 

Then, the Toeplitz matrix consisting of output covariance is expressed as follows 

 𝑻1|𝑖 = 𝒀𝑓𝒀𝑝
𝑇 =

[
 
 
 
�̂�𝑖 �̂�𝑖−1 ⋯ �̂�1
�̂�𝑖+1 �̂�𝑖 ⋯ �̂�2
⋯ ⋯ ⋯ ⋯
�̂�2𝑖−1 �̂�2𝑖−2 ⋯ �̂�𝑖 ]

 
 
 

   (4.36) 

The Toeplitz matrix can be decomposed into two parts 

 𝑻1|𝑖 = [

𝑪
𝑪𝑨
⋯

𝑪𝑨𝑖−1

] [𝑨𝑖−1𝑮 ⋯ 𝑨𝑮 𝑮] = 𝑶𝑖𝑪𝑖   (4.37) 

Both observability matrix 𝑶𝑖 ∈ 𝑹
𝑙𝑖×𝑛  and controllability matrix 𝑪𝑖 ∈ 𝑹

𝑛×𝑟𝑖 can be obtained after 

singular value decomposition (SVD) of the Toeplitz matrix 

 𝑻1|𝑖 = 𝑼𝑺𝑽
𝑇 = [𝑼1 𝑼2] [

𝑺1
0
] [
𝑽1
𝑇

𝑽2
𝑇] = 𝑼1𝑺1𝑽1

𝑇   (4.38) 

where, 𝑼 ∈ 𝑹𝑙𝑖×𝑙𝑖  and 𝑽 ∈ 𝑹𝑟𝑖×𝑟𝑖  are orthonormal matrices; 𝑺 ∈ 𝑹𝑙𝑖×𝑟𝑖  is a diagonal matrix 

consisting of the singular values in a descending order. Hence, the observability and controllability 

matrices can be known as 

 
𝑶𝑖 = 𝑼1𝑺1

1/2

𝑪𝑖 = 𝑺1
1/2
𝑽1
𝑇

   (4.39) 

Besides, another Toeplitz matrix 𝑻2|𝐼+1containing the information of the state matrix 𝐴 is easy to 

obtain according to the definition  

 𝑻2|𝐼+1 = [

𝑪𝑨
𝑪𝑨2

⋯
𝑪𝑨𝑖

] [𝑨𝑖−1𝑮 ⋯ 𝑨𝑮 𝑮] = 𝑶𝑖𝑨𝑪𝑖   (4.40) 

Since the observability and controllability matrix are clear, the state matrix 𝑨 can be deduced from 

Equation (4.40). 
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 𝑨 = 𝑶𝑖
†𝑻2|𝑖+1𝑪𝑖

† = 𝑺𝑖
−1/2

𝑼1
𝑇𝑻2|𝑖+1𝑽1𝑺1

−1/2
   (4.41) 

where (•)†  is the pseudo inverse of a matrix. As the state matrix is obtained, the system 

identification goes into the post-processing stage. The characteristics of the system is related to 

the eigenvalues, which is shown as 

 𝑨 = 𝜳𝜦𝜳−1   (4.42) 

Where, 𝜳 is the matrix constituted of eigenvectors and 𝜦 = 𝑑𝑖𝑎𝑔(𝜆𝑞) is the diagonal matrix that 

is only containing the complex eigenvalues 𝜆𝑞 . Considering the relation between discrete and 

continuous system 𝑨 = 𝑒𝑨𝑐𝛥𝑡, the eigenvalues and eigenvectors of the continuous system are 

 {
𝜳𝑐 = 𝜳

𝜆𝑐 =
𝑙𝑛(𝜆𝑞)

𝛥𝑡

  (4.43) 

Finally, the resonant frequency of the system can be calculated theoretically by 

 𝑓 =
√(𝜆𝑐

𝑅)2+(𝜆𝑐
𝐼 )2

2𝜋
   (4.44) 

Where, 𝜆𝑐
𝑅 and 𝜆𝑐

𝐼  are the real and imaginary part of the complex values 𝜆𝑐 respectively. 

The natural frequencies identified from faulty bearing vibration signals are the potential central 

frequencies of the optimal bands. However, the approach of SSI is easily influenced by many 

factors, for instance the background noise, the nonlinear characteristics, the nonstationary 

components, and so on. The undesired factors can lead to the appearance of fake modes, which 

gives misleading results. Therefore, a method based on the system orders was developed to 

distinguish real modes. It is well known that the core issue of the system identification is the 

determination of the correct model order. Theoretically a system has an infinite number of modes 

but usually only the modes within a certain frequency range or in a certain frequency band are 

considered in the practical analysis. In order to acquire all the desired modal parameters of the 

target system, the orders chosen are usually higher to decrease the bias [116]. During the process 

of identification, the system order increases to select the modes according to the quality criteria, 

which is the method of Stabilization Diagram (SD). The SD is proved to be a promising tool for 

the identification of real modes. Consequently, the excited modes in the output signals can be 

accurately identified and then used for the further demodulation analysis. 

Vibration signals from a rolling element bearing with a localised fault contain a series of transient 

responses and the time interval between the transient responses is the desired information in the 

diagnostic analysis. The Kurtogram aims to locate the transient impulsive signals based on the 

kurtosis of signals in the time domain that are filtered by the Short-Time Fourier Transform (STFT) 
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or Wavelet Packet Transform (WPT). It has been proved useful in the detection and diagnosis of 

bearing faults. The Kurtogram comes from the spectral kurtosis and it gives a more vivid 

representation of the two dimensional results. Although Kurtogram is effective under some 

conditions, the performance is not satisfied in the presence of a low signal-to-noise ratio or non-

Gaussian noise, which is a common situation for the incipient faults. In this research study, the 

Kurtogram is employed to benchmark the SSI based optimal frequency band selection. The 

comparison of these two methods will be shown in both simulation and experiment studies. 

4.3 Method of Ensemble Average of Autocorrelation Signals  

Envelope analysis is a popular method in detection and diagnostics of bearing faults. Vibration is 

the commonly used signal to monitor the bearings but the vibration features, associated with 

bearing faults, are often submerged by the heavy background noise. Although the envelope 

analysis fully exploits the merits of high signal to noise ratio around the resonant frequencies, it 

reaches its maximum potential when tackling the heavily contaminated signals. Therefore, the 

noise reduction is an essential capability for incipient fault detection and diagnosis. 

In reference [117], autocorrelation functions are used to enhance the natural frequencies in real-

time so that the bearing fault detection can adapt the changes of significant natural frequencies, 

corresponding to the change in conditions. Raheem [118] used wavelet transform to increase the 

signal to noise ration and then calculated autocorrelation functions of wavelet coefficients to 

extract bearing faults in the time domain. At the same time, Rafiee [119] and co-authors present a 

novel time–frequency-based feature recognition system for gear fault diagnosis using 

autocorrelation of continuous wavelet coefficients. Recently, autocorrelation is employed to guide 

the time synchronous average for fault detection of gearboxes in wind turbines [120]. A novel 

method, Ensemble Average of Autocorrelation Signals (EAAS), is developed to suppress the 

random noise and enhance fault signatures for diagnosing bearing defects at an early stage. 

4.3.1 Properties of Autocorrelation Analysis 

4.3.1.1 Signal Period and Phase 

Autocorrelation analysis describes the similarity of the signal with its own delayed version, which 

is helpful in analysing periodic signals. It is an important concept in signal processing due to the 

merits of periodic enhancement and noise suppression. A periodic signal function 𝑥(𝑛) with a 

period 2𝐿, can be expanded into a Fourier series, which can be expressed as follows 
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𝑥(𝑛) = 𝑎0 + ∑ (𝑎𝑘 𝑐𝑜𝑠
2𝜋𝑘

𝐿
𝑛 + 𝑏𝑘 𝑠𝑖𝑛

2𝜋𝑘

𝐿
𝑛)𝑁

𝑘=1

= 𝑎0 + ∑ [√𝑎𝑘2 + 𝑏𝑘
2 𝑐𝑜𝑠 (

2𝜋𝑘

𝐿
𝑛 − 𝑡𝑎𝑛−1

𝑏𝑘

𝑎𝑘
)]𝑁

𝑘=1

, 𝑁 ≥ 1   (4.45) 

The autocorrelation function of the signal 𝑥(𝑛) is proposed to be 

 

𝑅𝑥𝑥(𝜏) =
1

2𝐿
∑ 𝑥(𝑛)𝑥(𝑛 + 𝜏)𝐿−1
𝑛=−𝐿

=
1

2𝐿
∑

[𝑎0 + ∑ (𝑎𝑘 𝑐𝑜𝑠
2𝜋𝑘

𝐿
𝑛 + 𝑏𝑘 𝑠𝑖𝑛

2𝜋𝑘

𝐿
𝑛)𝑁

𝑘=1 ] ∙

[𝑎0 + ∑ (𝑎𝑘 𝑐𝑜𝑠
2𝜋𝑘

𝐿
(𝑛 + 𝜏) + 𝑏𝑘 𝑠𝑖𝑛

2𝜋𝑘

𝐿
(𝑛 + 𝜏))𝑁

𝑘=1 ]

𝐿−1
𝑛=−𝐿

= 𝑎0
2 + ∑ (

𝑎𝑘
2+𝑏𝑘

2

2
𝑐𝑜𝑠

2𝜋𝑘

𝐿
𝜏)𝑁

𝑘=1

   (4.46) 

From Equation (4.46), it can be seen that  

• The autocorrelated signal of the period signal is also periodic and moreover, the period is 

same as that of the original signal. It can disclose the self-similarity of the original signals. 

• The initial phase of the autocorrelation signal is always 0, which means that the initial 

phase of an autocorrelated signal is independent of the raw signal. In other words, the 

autocorrelation signals discard phase information and return only the power, which is 

therefore an irreversible operation. 

4.3.1.2 Noise Suppression 

Another great feature of the autocorrelation signal is that white noise decays quickly to zero with 

the increase of time lags. A vibration signal from faulty bearings usually consists of the periodic 

fault signal and background noise, which can be described as 

 𝑦(𝑛) = 𝑥(𝑛) + 𝑤(𝑛)  (4.47) 

where, 𝑥(𝑛) is the periodic signal generated by the fault impact series, and 𝑤(𝑛) represents white 

noise. Consequently, the autocorrelation signal of 𝑦(𝑛) [121] can be expressed 

 

𝑅𝑦𝑦(𝜏) =
1

2𝐿
∑ 𝑦(𝑛)𝑦(𝑛 + 𝜏)𝐿−1
𝑛=−𝐿

=
1

2𝐿
∑ [𝑥(𝑡) + 𝑤(𝑡)][𝑥(𝑡 + 𝜏) + 𝑤(𝑡 + 𝜏)]𝐿−1
𝑛=−𝐿

= 𝑅𝑥𝑥(𝜏) + 𝑅𝑥𝑤(𝜏) + 𝑅𝑤𝑥(𝜏) + 𝑅𝑤𝑤(𝜏) 

  (4.48) 

Being random, the autocorrelation of white noise is zero. The periodic signal 𝑥(𝑛) and white noise 

𝑤(𝑡) are independent and thus, 𝑅𝑥𝑤(𝜏) and 𝑅𝑤𝑥(𝜏) are approximately zero. 𝑅𝑥𝑤(𝜏) and 𝑅𝑤𝑥(𝜏) 

can be omitted. The autocorrelation signal of 𝑦(𝑛) becomes 

 𝑅𝑦𝑦(𝜏) ≈ 𝑅𝑥𝑥(𝜏)   (4.49) 

This is the reason why autocorrelation can achieve noise cancellation. 
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4.3.1.3 Inherent Synchronousness 

Autocorrelation signals can retain periodic components and increase signal to noise ratio (SNR). 

As explained above, the calculation of the autocorrelation function discards phase information, 

and consequently, the autocorrelation functions of the signal segments are synchronous with a new 

phase of zero. According to Equation (4.50), the autocorrelation signal 𝑅𝑦𝑦(𝜏) is independent of 

the time variable 𝑛 in the raw signal 𝑦(𝑛).  

 
𝑅𝑦𝑦(𝜏) =

1

2𝐿
∑ 𝑦(𝑛)𝑦(𝑛 + 𝜏)𝐿−1
𝑛=−𝐿

=
1

2𝐿
∑ 𝑦(𝑛 + 𝑛𝑑𝑒𝑙𝑎𝑦)𝑦(𝑛 + 𝑛𝑑𝑒𝑙𝑎𝑦 + 𝜏)
𝐿−1
𝑛=−𝐿

   (4.50) 

Multiple autocorrelation signals calculated from different samples of a continuous periodic signal 

𝑦(𝑛) are inherently synchronous because the initial phase of all autocorrelation signals is zero. 

The average of these signals becomes a straightforward realisation of Time Synchronous 

Averaging (TSA) in the lag domain. This property is important in the following EAAS method. 

4.3.1.4 FFT based Fast Computation 

The autocorrelation function of a stationary signal 𝑥𝑁(𝑛) with a length of 𝑁  is expressed as 

follows 

 𝑅𝑥𝑥(𝜏) = 𝐸{𝑥𝑁(𝑛 + 𝜏)𝑥𝑁(𝑛)
∗}   (4.51) 

where, 𝐸{∙} is the expectation and ∗  is the complex conjugate. The Power Spectral Density 

(PSD) of a signal is equal to the Fourier Transform of the autocorrelation according to Wiener-

Khinchin theorem. It allows fast computing of the autocorrelation using the Fast Fourier Transform 

(FFT), which can be achieved by the following equations. 

 𝑋(𝑛) = ∑ 𝑥𝑁(𝑛)𝑒
−𝑖
2𝜋𝑛𝑘

𝑁𝑁−1
𝑘=0    (4.52) 

 𝑅𝑥𝑥 =
1

𝑁
∑ [𝑋(𝑛)𝑋(𝑛)∗]𝑒𝑖

2𝜋𝑛𝑘

𝑁𝑁−1
𝑘=0    (4.53) 

In the practical application, the autocorrelation function of the discrete signal 𝑥𝑁(𝑛) is calculated 

based on a proper zero padding, which avoids the circularity problem. The signal 𝑥𝑁(𝑛) is zero 

padded to have a length of 2𝑁 − 1 and then, the zero padded signal 𝑥2𝑁−1(𝑛) = [𝑥𝑁(𝑛), 0,0, … 0⏟    
𝑁−1

] 

is transformed by the FFT.  

 𝑋2𝑁−1(𝑛) = ∑ [𝑥2𝑁−1(𝑛)]𝑒
−𝑖
2𝜋𝑛𝑘

2𝑁−12𝑁−1−1
𝑘=0   (4.54) 

 �̂�𝑥𝑥 =
1

2𝑁−1
∑ [𝑋2𝑁−1(𝑛)𝑋2𝑁−1(𝑛)

∗]𝑒𝑖
2𝜋𝑛𝑘

2𝑁−12𝑁−1−1
𝑘=0    (4.55) 

After the inverse FFT, the autocorrelation array �̂�𝑥𝑥 is rearranged to map the values to the lags 

from −(𝑁 − 1) to +(𝑁 − 1) by using Equation (4.56). 
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 𝑅𝑥𝑥(𝜏) = [�̂�𝑥𝑥(𝑁 + 1: 2𝑁 − 1); �̂�𝑥𝑥(1: 𝑁)]   (4.56) 

Autocorrelation becomes suitable for the online fault detection and diagnostics owing to the fast 

computing approach. 

For discrete time signals, the autocorrelation function is defined to be either biased or unbiased 

 𝑟𝑥𝑥(𝑙) = {

1

𝑁−|𝑚|
∑ 𝑥(𝑛)𝑥(𝑛 + 𝑚 − 1)𝑁−𝑚+1
𝑛=1 , 𝑈𝑛𝑏𝑖𝑎𝑠𝑒𝑑

1

𝑁
∑ 𝑥(𝑛)𝑥(𝑛 + 𝑚 − 1)𝑁−𝑚+1
𝑛=1 , 𝐵𝑖𝑎𝑠𝑒𝑑

  (4.57) 

 

4.3.2 Ensemble Average of Autocorrelation Signals (EAAS) 

 

Figure 4-5 Flow chart of EAAS 

The approach of Ensemble Average of Autocorrelation Signals (EAAS) is developed to suppress 

the noise and enhance the periodic information in vibration signals based on the properties of the 

autocorrelation function. Incipient fault signatures of bearings are often submerged within the 
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strong background noise. The EAAS is derived by considering the characteristics of periodicity 

enhancement and synchronicity of signal segments. The flow chart in the Figure 4-5 shows key 

steps to implement the EAAS.  

In detail, the steps of EAAS are as follows: 

Step 1. The raw vibration signal 𝑥(𝑛) with a length of 𝑁 is processed by the Stochastic Subspace 

Identification to identify the natural frequencies, the natural frequencies can then be evaluated to 

find the optimal frequency bands. 

Step 2. The filtered signal 𝑥𝑓(𝑛) is obtained by implanting a Fourier bandpass filter based on the 

selected frequency band from the raw vibration signal 𝑥(𝑛). 

Step 3. The signal vector is re-organised to be a buffer matrix that comprises of short segments 

with overlaps. The re-organisation of signals is shown in Equation (4.58). The filtered signal with 

a length of 𝑁 is rearranged to 𝑚 + 1 short segments with a length of 𝑙 and an overlap of 𝑙 − 𝑘 +

1. If the last segment is less than 𝑙, the segment is zero padded to 𝑙. 

 𝑿𝑓
𝑙×𝑚 =

[
 
 
 
 
 
𝑥𝑓(1) 𝑥𝑓 (𝑘) ⋯ 𝑥𝑓 (𝑘 + (𝑚 − 2)(𝑘 − 1)) ⋮

⋮ ⋮ ⋯ ⋮ 𝑥𝑓 (𝑁)

𝑥𝑓 (𝑘) 𝑥𝑓(𝑘 + (𝑘 − 1)) ⋯ 𝑥𝑓 (𝑘 + (𝑚 − 1)(𝑘 − 1)) 0

⋮ ⋮ ⋯ ⋮ ⋮
𝑥𝑓 (𝑙) 𝑥𝑓 (𝑙 + (𝑘 − 1)) ⋯ 𝑥𝑓 (𝑙 + (𝑚 − 1)(𝑘 − 1)) 0 ]

 
 
 
 
 

  (4.58) 

The segment length 𝑙 is determined by the demand of frequency resolutions in the diagnostic 

results. In this thesis, the resolution of 1Hz is used to distinguish the characteristic fault frequencies 

and the length 𝑙 is double of the sampling frequency, which will be explained in the next step. The 

overlap ratio (𝑙 − 𝑘 + 1)/𝑙 is usually recommended to be 0.5 to 0.7 by experience, which increase 

the average times in the ensemble average operation. A too high overlap ratio does not contribute 

very much to the optimisation of the final results, which is not meaningful in the practical signal 

analysis.  

Step 4. The segments are used to calculate the unbiased autocorrelation signals, which converts 

the time domain signal into the lag domain. The lag length directly determines the final frequency 

resolution. In this thesis, the resolution of 1Hz is used and the lag length is the same as the sampling 

frequency to ensure a high frequency resolution for fault detection. Moreover, to increase the 

accuracy of the autocorrelation estimation, the length 𝑙 of the signal segments is chosen to be 

double that of autocorrelation lag 𝜏. 
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 𝑿𝑓
𝑙×𝑚 ⇒

[
 
 
 
𝑅𝑥𝑥
1 (1) 𝑅𝑥𝑥

2 (1) ⋯ 𝑅𝑥𝑥
𝑚 (1)

𝑅𝑥𝑥
1 (2) 𝑅𝑥𝑥

2 (2) ⋯ 𝑅𝑥𝑥
𝑚 (2)

⋮ ⋮ ⋯ ⋮
𝑅𝑥𝑥
1 (𝜏) 𝑅𝑥𝑥

2 (𝜏) ⋯ 𝑅𝑥𝑥
𝑚 (𝜏)]

 
 
 
= 𝑹𝑋𝑋

𝜏×𝑚   (4.59) 

Step 5. The beginnings of the autocorrelation signals contain greater amount of noise due to the 

limited signal lag. To eliminate the influence of extreme values at the beginnings, the 

autocorrelation signals of each segment only retain the lags which are greater than 𝜏𝑐  and the 

others are assigned to be zero. The 𝜏𝑐 is empirically selected to be about one tenth of the lag 𝜏. 

 𝑹𝑋𝑋
𝜏×𝑚 ⇒

[
 
 
 
 
 

0 0 ⋯ 0
⋮ ⋮ ⋯ ⋮

𝑅𝑥𝑥
1 (𝜏𝑐 + 1) 𝑅𝑥𝑥

2 (𝜏𝑐 + 1) ⋯ 𝑅𝑥𝑥
𝑚 (𝜏𝑐 + 1)

𝑅𝑥𝑥
1 (𝜏𝑐 + 2) 𝑅𝑥𝑥

2 (𝜏𝑐 + 2) ⋯ 𝑅𝑥𝑥
𝑚 (𝜏𝑐 + 2)

⋮ ⋮ ⋯ ⋮
𝑅𝑥𝑥
1 (𝜏) 𝑅𝑥𝑥

2 (𝜏) ⋯ 𝑅𝑥𝑥
𝑚 (𝜏) ]

 
 
 
 
 

   (4.60) 

Step 6. The ensemble average of the autocorrelation segments can be achieved owing to the 

synchronised phase, which is denoted as follows. 

 �̄�𝑋𝑋
𝜏×1 = 𝐸[𝑹𝑋𝑋

𝜏×𝑚]   (4.61) 

Step 7. The envelope of the enhanced signal �̄�𝑋𝑋
𝜏×1 is then calculated from the analytic signals 

obtained by the Hilbert transform.  

Step 8. The envelope spectrum is obtained by the Fourier transform, which makes the fault 

detection and diagnosis easily confirmed by the sparse representation in the frequency domain.  

White noise decays to zero quickly in the procedure of autocorrelation calculation and the average 

is evidently useful to increase the signal-to-noise ratio. The combination of the two techniques 

leads to an outstanding noise elimination algorithm. Furthermore, the proposed method is achieved 

by calculating the autocorrelation of the short segments, which can be applied in the buffer based 

online data acquisition system and hence, leads to accurate and efficient real time fault diagnosis. 

4.4 Demodulation Analysis of Outer Race Fault Signals 

This section describes the performance of the aforementioned methods based on the developed 

bearing model. Two main steps of the bearing fault detection and diagnosis are the determination 

of the optimal frequency bands and the demodulation analysis. The performance of fault diagnosis 

methods is susceptible to background noise, either Gaussian or non-Gaussian. Therefore, the 

robustness of the developed and conventional methods is investigated under the influence of 

different levels of noise. 
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4.4.1 Determination of Optimal Frequency Bands 

4.4.1.1 Effect of Gaussian Noise 

The influence of random noise cannot be neglected in the process of fault detection and diagnosis 

because the ambient working conditions of rotating machines generate large quantities of noise. 

The white noise is the most challenging problem in machine condition monitoring, especially in 

incipient fault detection. The bearing vibration signals are inevitably contaminated by noise and 

in most circumstances, the noise is considered to obey the normal distribution. CM pursues to 

detect the faults as early as possible, which then allows ample time to implement the maintenance 

operations. Different levels of white Gaussian noise were added into the simulated signals so that 

it can be used to evaluate the proposed approach performance in incipient fault detection and 

diagnostics. Signal to Noise Ratio (SNR) is commonly used to quantify the strength of the white 

Gaussian noise, which is defined as 

 𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10 (
𝑃𝑠

𝑃𝑛
) = 20 𝑙𝑜𝑔10 (

𝑅𝑀𝑆𝑠

𝑅𝑀𝑆𝑛
)  (4.62) 

where, 𝑃𝑠 and 𝑃𝑛 are the power of the noise free signal and the noise respectively; 𝑅𝑀𝑆𝑠 and 𝑅𝑀𝑆𝑛 

are the root mean square values of the noise free signal and the noise respectively. 

Figure 4-6 shows the time waveform of the simulated signals contaminated by six levels of white 

Gaussian noise. The publications on bearing condition monitoring can achieve the fault diagnosis 

at the SNR less than -20dB. To verify the effectiveness of the proposed method, the amount of 

noise added into the signal is from -10dB to -35dB with an even interval of -5dB. The periodic 

impacts induced by bearing faults are submerged into the strong background noise in all simulated 

cases, which gives a fair examination of the proposed method in early fault detection and diagnosis 

of rolling element bearings. From the six subfigures in Figure 4-6, it can be seen that the maximum 

values of the noisy signals vary from 200m/s2 to 3000 m/s2, which are 2 to 30 times of the 

amplitude of the faulty signal.  
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Figure 4-6 Time waveform of the simulated outer race fault signals at SNR of : (a) -10dB, (b) -

15dB, (c) -20dB, (d) -25dB, (e) -30dB, (f) -35dB 

Apart from the time domain analysis, the Fourier transform based frequency domain analysis is 

given in the Figure 4-7. The amplitude spectra can have a more impressive representation 

regarding the demodulation analysis. The noise floor in the spectrum increases along with the 

decrease of SNRs and the resonant areas in the vibration signals are submerged in the noise 

gradually. If the sparse components around the natural frequencies are above the noise carpet, the 

envelope analysis based on the optimal frequency bands can lead to the successful detection and 

diagnosis of the bearing defects, which is the reason why the envelope based demodulation 

analysis in the high frequency range is prior to the direct identification of the theoretically fault 

frequencies in the low frequency range. The experimental signals in the low frequency range 

contains large quantities of noise including vibration from the nearby machines, rotor imbalance, 

electrical noise. The fault information in the low frequency range of the amplitude spectrum is 

nearly covered by the undesired vibration and noise. Consequently, the detection and diagnosis in 

the low frequency domain becomes extremely difficult. The resonance modulation gives the 

opportunity of early fault detection and diagnosis owing to the high transmissibility of the bearing 
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system. The resonant responses usually have large amplitudes, which leads to a high SNR around 

the natural frequencies. However, the incipient defects induced fault information is usually very 

weak and hence, the faulty signatures are fully submerged into the background noise, which is 

similar with the cases shown in the Figure 4-7 (e) and (f). The poor SNR of the vibration signals 

makes the determination of the optimal frequency bands and the demodulation analysis very 

challenging.  

 

Figure 4-7 Spectra of the simulated outer race fault signals at SNR of : (a) -10dB, (b) -15dB, (c) -

20dB, (d) -25dB, (e) -30dB, (f) -35dB 

Considering the modulation mechanisms of the bearing fault vibration signals, a system 

identification based optimal frequency bands selection approach, Stochastic Subspace 

Identification, is proposed to find the optimal frequency bands in the presence of large quantities 

of background noise. The performance of the SSI to determine the demodulation frequency band 

is benchmarked by the famous Kurtogram. 

The Kurtogram of the outer race fault signal at the SNR of -10dB is shown in the Figure 4-8. From 

the developed bearing model, the natural frequencies of the system are 3468Hz, 7117Hz and 

11781Hz, which are the candidates of the optimum centre frequency. Based on the FRF of the 
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bearing model and the spectrum of the simulated signal, the frequency band centred at 7117Hz is 

theoretically the best option for the demodulation analysis. The Kurtogram demonstrates that the 

optimal frequency band is around 7031Hz with a bandwidth of 1563Hz, which locates at the fifth 

level of the Kurtogram.  

 

Figure 4-8 Kurtogram for the case of outer race faults at SNR -10dB 

The Stabilisation Diagram used in the SSI gives the manifest description of the modes identified 

in the OMA. These three criteria  in the Equation (4.63) to (4.65) show that three criteria are 

implemented by the threshold value of the variation [104]. The modal frequency stability is 

expressed as 

 |𝑓𝑖+1 − 𝑓𝑖| ≤ 100  (4.63) 

where, 𝑓𝑖 and 𝑓𝑖+1 are the natural frequencies at 𝑖𝑡ℎ and (𝑖 + 1)𝑡ℎ order. The modal shape stability 

is the coherence between the modal shapes at 𝑖𝑡ℎ order and (𝑖 + 1)𝑡ℎ order, which can be shown 

as 

 (1 −
|𝜙𝑖+1
∗ 𝜙𝑖|

2

(𝜙𝑖+1
∗ 𝜙𝑖+1)(𝜙𝑖

∗𝜙𝑖)
) < 1%   (4.64) 

where, 𝜙𝑖 and 𝜙𝑖+1 are the modal shapes at 𝑖𝑡ℎ and (𝑖 + 1)𝑡ℎ order. The damping ratio stability is 

the difference of damping ratio at adjacent orders, which is expressed as 

 |𝜉𝑖+1 − 𝜉𝑖| < 0.2%   (4.65) 
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where, 𝜉𝑖  and 𝜉𝑖+1  are the damping ratios at 𝑖𝑡ℎ  and (𝑖 + 1)𝑡ℎ  order. With the increase of the 

system orders, the modal information extracted by the SSI is drawn in the Figure 4-9 (a). 

According to three criteria, including the stability of the modal frequencies, modal shapes and 

damping ratios, the modes meeting these criteria are plotted in the Figure 4-9 (b). 

 

Figure 4-9 Stabilisation Diagram of SSI for the case of outer race faults at SNR -10dB: (a) all 

modes identified; (b) modes meeting three criteria 

From the Stabilisation Diagram of the SSI method, three stable modes are identified, which are 

the exact three modes of the simulated bearing model. A Normalised Rate is developed to show 

the recurrence rates of the modes along with the order increase. The Normalised Rate of every 

frequency bin is defined as  

 𝑅𝑁(𝑓) =
∑ 𝑓(𝑗)
𝑁𝑒
𝑗=𝑁𝑠

𝑁𝑠−𝑁𝑒+1
× 100%  (4.66) 

where, 𝑓 is the frequency in the frequency range; 𝑁𝑠 is the beginning order of the identified system; 

and 𝑁𝑒  is the maximum order of the identified system. The Normalised Rate is an important 

indicator that can distinguish the real modes from the mixture of the real and fake modes in the 

identification. Figure 4-10 displays the Normalised Rates of these three modes and the indicators 

are almost one, which demonstrates the robustness of the mode identified by the SSI approach. 

The Normalised Rate is affected by the SNR of the signals. If the SNR of the output signals is high, 

the Normalised Rates of the real modes will be close to 100%. Consequently, the Normalised Rate 

is a potential indicator for the optimum centre frequency from the modes identified. The problem 
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for the SSI method based determination of the optimal demodulation analysis is that the SSI cannot 

indicate the bandwidth of the demodulation analysis. According to the engineering experience, the 

appearance of the characteristic fault frequency of the bearings and its first three harmonics can 

be used to confirm the detection and diagnosis of the defects solidly. Therefore, the bandwidth is 

determined to be three and half times of the desired characteristic fault frequency on both sides of 

the central frequency.  

 

Figure 4-10 Normalised Rate of stable modes in the Stabilisation Diagram for the case of outer 

race faults at SNR -10dB 

The case of the bearing signals at the SNR of -10dB is considered as high-quality measurements 

in the early fault detection and diagnosis. If the bearing faults are at the early stage, the fault size 

is tiny and the background noise including mechanical and electrical noise is much stronger than 

the fault induced signals, and hence, the SNR of the obtained signals are much lower than the 

simulated -10dB. In the simulation study, the signal quality can be controlled very well. The 

simulated cases at lower SNR was capable of examining the performance of the proposed method.  

The second simulation case of the outer race faults is the signals at the SNR of -15dB, which means 

the Root Mean Square (RMS) value of the added noise is more than 1.7 times of the last -10dB 

case. Figure 4-11 and Figure 4-12 show that both methods can indicate the optimal central 

frequency. The Kurtogram in Figure 4-11 denotes that the optimal frequency band is around 

7422Hz with a bandwidth of 781.3Hz, which locates at the sixth level of the Kurtogram. The 

Normalised Rate in Figure 4-12 shows that the natural frequency 7125Hz has the highest rate, 

which means the signal in this frequency band has a higher SNR than the other natural frequency 

based frequency bands.  
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Figure 4-11 Kurtogram for the case of outer race faults at SNR -15dB 

 

Figure 4-12 Normalised Rate of stable modes in the Stabilisation Diagram for the case of outer 

race faults at SNR -15dB 

The third simulation case of the outer race faults is the signal at the SNR of -20dB and the 

amplitude of noise can reach up to 600m/s2. In this case, the noise level for Kurtogram analysis is 

too high to obtain the accurate frequency band, which is shown in the Figure 4-13. The Kurtogram 

recommends the frequency band around 12.5kHz with a bandwidth of 25kHz at the first level. The 

frequency band is too wide and it is not meaningful in the envelope analysis. This result denotes 

that the defects induced vibration signals within all the frequency bands in the Kurtogram are 

submerged so that the impulsive fault characteristics cannot be recognised. The Normalised Rate 

in the Figure 4-14 shows that the natural frequency 7113Hz has the highest rate, which means the 
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signal in this frequency band has a higher SNR than the other natural frequencies based frequency 

bands.  

 

Figure 4-13 Kurtogram for the case of outer race faults at SNR -20dB 

 

Figure 4-14 Normalised Rate of stable modes in the Stabilisation Diagram for the case of outer 

race faults at SNR -20dB 

In the three following cases, the Kurtogram results in Figure 4-15, Figure 4-17 and Figure 4-19 

are unable to select the optimal frequency bands. It chooses a quite wide frequency band and the 

bandwidth is more than 15kHz. Such a wide frequency band is not meaningful in the demodulation 

analysis, especially for the early fault detection and diagnosis because a wide frequency band 

includes too much noise, leading to the unsuccessful detection and diagnosis. In contrast, the SSI 

based approach can robustly identify the optimal central frequencies. The results of Normalised 



76 

Rates in the Figure 4-16, Figure 4-18, and Figure 4-20 show the central frequencies of the optimal 

frequency band in these three cases are the second order mode of the bearing model. Furthermore, 

the rates decrease along with the increase of background noise, which is acceptable as the 

theoretical expectation. The frequency bands recommended by the SSI are centred at about 

7110Hz, which are the best candidate for the demodulation analysis. According to the spectrum, 

the selected mode is the most easily excited mode owing to the high transmissibility of the system 

resonance.  

 

Figure 4-15 Kurtogram for the case of outer race faults at SNR -25dB 

 

Figure 4-16 Normalised Rate of stable modes in the Stabilisation Diagram for the case of outer 

race faults at SNR -25dB 
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Figure 4-17 Kurtogram for the case of outer race faults at SNR -30dB 

 

 

Figure 4-18 Normalised Rate of stable modes in the Stabilisation Diagram for the case of outer 

race faults at SNR -30dB 
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Figure 4-19 Kurtogram for the case of outer race faults at SNR -35dB 

 

 

Figure 4-20 Normalised Rate of stable modes in the Stabilisation Diagram for the case of outer 

race faults at SNR -35dB 

4.4.1.2 Effect of Non-Gaussian Noise 

Although the white Gaussian noise is widely used in the simulation study, it cannot represent the 

background noise in the experimental conditions. The non-Gaussian noise, such as the random 

impulses, has significant influence upon the diagnostic results. The effects from this kind of non-

Gaussian noise are investigated in this section. A series of aperiodic impulses were added into the 

simulated signals and furthermore, a small amount of white Gaussian noise was added 
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simultaneously to simulate the practical working conditions of the rolling bearings. The aperiodic 

impulses are generated by the random function and the amplitude of the large random impulses 

are set at double the maximum value of the signals with Gaussian noise. Similar to the generally 

defined SNR, the influence of the aperiodic impulses is measured by a new definition of the 

impulse SNR (𝑆𝑁𝑅𝑖), which is expressed as follows. 

 𝑆𝑁𝑅𝑖 = 20 𝑙𝑜𝑔10 (|
𝐴𝑠

𝐴𝑖
|)  (4.67) 

where, As is the peak value of the noise-free signal and Ai denotes the maximum value of the large 

random impulses. Two cases with the aperiodic impulses are simulated to evaluate influences of 

the random impulses on the determination of the most informative frequency bands. The bearing 

signal is same as that used in the study of white Gaussian noise. The random impulses are 

generated by the Matlab function, randi, which obeys a uniform distribution. The amount of 

random impulses is ten per second, or in another word 0.01% of the total samples. Two cases 

including the pure signals and noisy signals are involved in the research of the negative effects 

from the non-Gaussian noise. The maximum values come from either the peak value of the 

periodic signals or a localised value with a large amplitude from the white Gaussian noise.  

Figure 4-21 shows the temporal waveforms in the two non-Gaussian noise cases. In the Figure 

4-21 (a), only several aperiodic impulses were displayed and the signal does not contain Gaussian 

noise which aims to show the inefficiency of the approaches only detecting the impulsive 

characteristics. Large quantities of methods were developed to find the frequency band that 

contains the most impulsive behaviour and these methods are usually not from the viewpoint of 

the modulation mechanism. This particular case can give an accurate picture of the deficiency of 

the conventional Kurtogram. However, this case does not take account of white noise and is not 

reasonable. Consequently, another case of the signal with both white Gaussian and non-Gaussian 

noise in Figure 4-21 (b) was given to show the reasonable comparison of the Kurtogram and SSI 

method. In this case, a decent amount of white Gaussian noise is generated to submerge the faulty 

bearing signals, making the SNR of the signal -10dB. At this noise level, the Kurtogram is able to 

detect the optimal frequency band if only Gaussian noise presents in the simulated signal. To 

compare the robustness of the proposed SSI and the Kurtogram, a series of random impulses at the 

rate of 0.01% was created as the additive non-Gaussian noise. As explained previously, the 

amplitude of these aperiodic impulses are two times the maximum value of the bearing signals 

with the white Gaussian noise. 
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Figure 4-21 Time waveform of the simulated outer race fault signals with non-Gaussian noise at: 

(a) 𝑆𝑁𝑅𝑖 -6dB and 𝑆𝑁𝑅 20dB, (b) 𝑆𝑁𝑅𝑖 -17dB and 𝑆𝑁𝑅 -10dB 

Figure 4-22 gives a manifest and sufficient representation of the simulated signals in the frequency 

domain. The faulty signals are shown by the dashed red lines and shows the resonant modulation 

in the vibration signal from rolling element bearings. The limited number of impulses have little 

influence on the amplitude spectrum because the energy of the impulse signal is dispersed into the 

whole frequency range, and the effects become very small in the amplitude spectrum. As shown 

in Figure 4-22 (a), the spectra of the noise-free and noisy signals are quite difficult to distinguish. 

In the following simulation cases, the main difference in the amplitude spectra is on account of the 

white Gaussian noise that has an equal intensity in the frequency bins.  
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Figure 4-22 Spectra of the simulated outer race fault signals with non-Gaussian noise at: (a) 

𝑆𝑁𝑅𝑖 -6dB and 𝑆𝑁𝑅 20dB, (b) 𝑆𝑁𝑅𝑖 -17dB and 𝑆𝑁𝑅 -10dB 

The simulated bearing signal at 𝑆𝑁𝑅𝑖 -6dB and 𝑆𝑁𝑅 20dB is supposed to be the easiest case for 

selecting the frequency band because of a significantly high SNR. However, this signal seems to 

be a challenge for the approach of Kurtogram. It is shown in the Figure 4-23 that the Kurtogram 

denotes the best frequency band from 12.5kHz to 62.5kHz. The result indicates that one of the 

deficiencies of Kurtogram is that its powerless to deal with the irregular pulses. Because the signal 

does not contain any white Gaussian noise, nearly all the frequency bands allow the detection and 

diagnosis of the bearing defects. Consequently, the frequency band recommended by the 

Kurtogram is not meaningful in obtaining the fault signatures. The demodulation analysis is 

described in depth and discussed in the next section. Figure 4-24 shows that the proposed system 

identification method, SSI, can accurately identify the natural frequencies and furthermore, the 

Normalised Rates of identified three modes are approaching to one, which demonstrates that the 

extracted modal information has a very high SNR. The identified natural frequencies are the carrier 

frequencies in the bearing fault detection and diagnosis. 
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Figure 4-23 Kurtogram for the case of outer race faults at 𝑆𝑁𝑅𝑖 -6dB and 𝑆𝑁𝑅 20dB 

 

Figure 4-24 Normalised Rate of stable modes in the Stabilisation Diagram for the case of outer 

race faults at 𝑆𝑁𝑅𝑖 -6dB and 𝑆𝑁𝑅 20dB 

Both Gaussian and non-Gaussian noise were added to the bearing signals in this case study and 

the results of the Kurtogram and SSI are depicted in the Figure 4-25 and Figure 4-26 respectively. 

The Kurtogram in the Figure 4-25 recommends the whole frequency band as the optimum 

candidate for the envelope analysis. The Figure 4-26 shows that the SSI based approach discloses 

all the natural frequencies of the bearing model with very high Normalised Rates, which are the 

carrier frequencies in the amplitude modulation signals.  
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Figure 4-25 Kurtogram for the case of outer race faults at 𝑆𝑁𝑅𝑖 -17dB and 𝑆𝑁𝑅 -10dB 

 

Figure 4-26 Normalised Rate of stable modes in the Stabilisation Diagram for the case of outer 

race faults at 𝑆𝑁𝑅𝑖 -17dB and 𝑆𝑁𝑅 -10dB 

 

4.4.2 Demodulation Results and Analysis 

In the aforementioned section, several typical cases are simulated to address the realistic conditions 

of the rolling element bearings. These signals were used to examine the performance of the two 

approaches, Kurtogram and SSI, in determining the optimal frequency bands for the further 

demodulation analysis. In this part, the demodulation analysis including the developed EAAS and 

the benchmark method (conventional envelope, CE) is present. Since Darlow [10] developed the 

techniques of envelope analysis, this demodulation technique has been popular for approximately 



84 

40 years. The proposed method, EAAS, is discussed and compared based on the optimal frequency 

bands selected in the previous section. The benchmark method, the conventional envelope, is 

obtained by the ensemble average of the segments’ spectra, which makes the fault detection and 

diagnosis more reliable. The detailed steps to obtain the CE results in this thesis are shown in the 

Figure 4-27. The ensemble average of the amplitude spectra can result in a more robust result than 

the directly calculated envelope spectrum. However this ensemble average does not suppress the 

background noise in the signals, and it cannot detect and diagnose the incipient faults when the 

SNR is very low. 

 

Figure 4-27 Flow chart of CE in this thesis 

The demodulation results of EAAS and CE are shown and discussed below. The results of EAAS 

and CE of the outer race fault signal at SNR -10 dB are shown in the Figure 4-28 respectively. In 

the Figure 4-28 (a), EAAS denotes a substantial sparse spectrum comprised by the characteristic 

fault frequency and corresponding harmonics based on the central frequency selected by the SSI 

method. In order to compare the frequency bands by the Kurtogram and SSI, the CE based on the 

optimal frequency band by the SSI is also calculated and the spectrum of the SSI based CE is 

shown in Figure 4-28 (b), which gives a more convincing comparison of the EAAS and CE in the 
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demodulation analysis. The SSI based CE gives an accurate diagnosis of the bearing faults. As 

displayed in Figure 4-28 (c), the Kurtogram based CE gives a similar spectrum as the SSI based 

CE. The noise floor in the CE spectrum is obviously higher than that in the EAAS spectrum 

because the conventional envelope does not have the capability of noise reduction.  

 

Figure 4-28 EAAS and CE of outer race faults at 𝑆𝑁𝑅 -10dB 

Figure 4-29 depicts the spectra of the EAAS, SSI based CE, and Kurtogram based CE. With the 

increase of the background noise, the EAAS method gives a remarkable representation of the fault 

information, which is shown in Figure 4-29 (a). In this case, both Kurtogram and SSI find the 

similar frequency band for demodulation analysis. As shown in Figure 4-29 (b) and (c), the noise 

floors in the spectra of two CE approaches are increasing due to the random noise. In addition, the 

SSI based CE in Figure 4-29 (b) displays a higher amplitude of the theoretical fault frequency than 

the Kurtogram based CE, which demonstrates that the frequency band by the SSI is better. 
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Figure 4-29 EAAS and CE of outer race faults at 𝑆𝑁𝑅 -15dB 

In the case of outer race signals at -20dB, the high-level noise has little influence on the proposed 

EAAS, which is shown in Figure 4-30 (a). The spectrum obtained by the EAAS shows the fault 

signatures clearly with a naught noise floor. Figure 4-30 (b) describes that the SSI based CE can 

accurately detect and diagnose the bearing faults. In this case, the Kurtogram is affected by the 

background noise. Based on the frequency band selected by Kurtogram, the CE can demodulate 

the characteristic fault frequencies. The Kurtogram chose a very wide frequency band from 0Hz 

to 25,000Hz, which includes all the natural frequencies of the bearing model. This then gives a 

chance for the Hilbert transform based envelope to detect and diagnose the bearing faults. 

However, a wide range frequency band based envelope spectrum also takes account of the negative 

influence of the noise, which does not utilise the advantage of the high SNR around the natural 

frequencies. If the signals are poorer than -20dB, the envelope results can be misleading which 

can be verified in the next -25dB case.  
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Figure 4-30 EAAS and CE of outer race faults at 𝑆𝑁𝑅 -20dB 

When the bearing signals are heavily contaminated into a level of the SNR at -25dB, the EAAS in 

the Figure 4-31 (a) shows three sparse components which are corresponding to the theoretical fault 

frequency and higher order harmonics. The Kurtogram based CE in the Figure 4-31 (c) fails to 

extract the fault information with a wide frequency band although the frequency band contains the 

carrier frequencies. In this circumstance, the monitoring results of the Kurtogram based CE are 

misleading. In contrast, the SSI based CE in the Figure 4-31 (b) gives an impressive statement that 

the outer race faults were accurately detected by a narrow frequency band around the natural 

frequency 7113Hz. The EAAS has a great capacity of noise reduction and hence, the characteristic 

fault frequency and the harmonics are obvious in the results.  
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Figure 4-31 EAAS and CE of outer race faults at 𝑆𝑁𝑅 -25dB 

If the signal is more challenging, the methods without the ability of noise suppression are very 

difficult to use to extract the fault information behind the random noise. In this simulated case, the 

Signal to Noise Ratio becomes -30dB. As shown in Figure 4-32 (a), the EAAS upon the frequency 

band selected by the SSI approach displays a satisfied result and the spectrum clearly shows the 

characteristic frequency of the outer race defects and its harmonics. It is not beyond the expectation 

that the Kurtogram based CE in Figure 4-32 (c) is impossible to demodulate the fault signatures 

from such noisy signals because the frequency band is so large that too much noise is involved in 

the demodulation process. When the frequency band is optimal, the CE has the potential to find 

the fault features. As shown in Figure 4-32 (b), the frequency peaks obtained by the SSI based CE 

can be seen above the noise floor but the noise carpet is too high to submerge the fault signatures, 

therefore the incipient fault detection and diagnosis desired is outstanding capacity of noise 

reduction.  
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Figure 4-32 EAAS and CE of outer race faults at 𝑆𝑁𝑅 -30dB 

The worst situation in the outer race fault simulation study is that the SNR of the signal becomes 

-35dB, which leads to the useful fault information relating to the fault is totally submerged by the 

random noise in both time and frequency domain. In this circumstance, the demodulation methods, 

such as conventional envelope are no longer effective no matter how well the frequency bands are 

selected. From the results of EAAS in the Figure 4-33 (a), the proposed method is still operative 

owing to the reduction of the random noise. In contrast, the CE in the Figure 4-33 (b) and (c) fails 

to detect the bearing faults based on the frequency bands determined by either the Kurtogram or 

the SSI.  
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Figure 4-33 EAAS and CE of outer race faults at 𝑆𝑁𝑅 -35dB 

With the increase of the additive noise, the performance of CE based on the optimal frequency 

band is degraded gradually because the envelope cannot suppress random noise. It is evident that 

EAAS achieves the best results in the outer race fault detection and diagnosis.  

4.4.3 Quantification of Outer Race Fault Signatures  

To quantify the fault signatures extracted by the EAAS and CE, a strength indicator of bearing 

fault signatures is designed by following the concept of the Signal to Noise Ratio and the indicator 

is denoted as  

 𝑆𝑁𝑅𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 = 10 𝑙𝑜𝑔10 (

1

𝑁ℎ
∑ 𝐴ℎ(𝑘)

2𝑁ℎ
𝑘=1

1

𝑁𝑠
∑ 𝐴𝑠(𝑘)2
𝑁𝑠
𝑘=1

)   (4.68) 

where, 𝑁ℎ and 𝐴ℎ are the length and amplitude of the fundamental characteristic fault frequency 

and its harmonics; 𝑁𝑠  and 𝐴𝑠  are the length and the amplitude of the remaining values in the 

spectrum. In this study, the limit of the spectrum used to calculate the strength of the fault features 

are from 10Hz to 314.3Hz (3.5 times of characteristic fault frequency). To decrease the drawback 

of the spectral leakage, a short frequency band with the width of 6Hz around the fault frequency 

and harmonics is adopted to include the energy of the fault frequency as much as possible. The 

frequency band of the fault features is determined by the width of the characteristic fault frequency 

in the spectrum.  
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The signature indicators in the Figure 4-34 show that the proposed method is more effective than 

the conventional envelope. The feature strength of EAAS decreases with the increase of noise 

levels but the 𝑆𝑁𝑅𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 is above 14dB in all six simulated cases. The maximum 𝑆𝑁𝑅𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 

of the SSI based CE and Kurtogram based CE are 22dB and 11dB respectively. With the increase 

of the noise, the fault signatures are degraded gradually and in the last case, the fault indicator is 

approximately zero, which means the fault information is submerged by the random noise.  

 

Figure 4-34 Quantification of outer race fault signatures 

4.5 Demodulation Analysis of Inner Race Fault Signals 

Similar to the simulation studies of the outer race faults, investigation of the inner race faults was 

carried out by following the same procedure, which are the selection of the optimal frequency 

bands and the demodulation analysis.  

4.5.1 Determination of Optimal Frequency Bands 

4.5.1.1 Effect of Gaussian Noise 

The inner race faults are more complex than the outer race faults in nature because the location of 

the defects is rotating along with the inner race of the bearing. Consequently, the input forces of 

the excitation are varying with respect to the relative angle between the localised defects and the 

loading zone of bearings. The varying inputs themselves are a modulation signal and then the 

modulation forces result in the further modulation phenomenon by the transfer function of the 

bearing system. The inner race fault signatures are usually comprised of the theoretical fault 

frequency and the sidebands with the periodicity of the varying forces.  

Six cases of the bearing inner race fault are simulated to be the SNR from -10dB to -35dB and the 

investigation is repeated to study the performance of the proposed methods. Figure 4-35 and Figure 

4-36 display the simulated inner race fault signals in the time and frequency domain respectively. 

The SNRs of the signals decrease from -10dB to -35dB with an interval of -5dB. 
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Figure 4-35 Time waveform of the simulated inner race fault signals at SNR of : (a) -10dB, (b) -

15dB, (c) -20dB, (d) -25dB, (e) -30dB, (f) -35dB 
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Figure 4-36 Spectra of the simulated inner race fault signals at SNR of : (a) -10dB, (b) -15dB, (c) 

-20dB, (d) -25dB, (e) -30dB, (f) -35dB 

The inner race fault signals are more challenging compared to the outer race faults because the 

signals contain not only the characteristic fault frequencies but also the sidebands. The Kurtogram 

in Figure 4-37 depicts the most impulsive frequency band is centred at 7031Hz with a frequency 

bandwidth of 1563Hz, which is the theoretically optimal frequency band. This case is a clearly 

self evident in bearing detection and diagnosis. The noise added is white Gaussian noise and 

moreover the signal quality is very good. Therefore, the frequency band selected by the Kurtogram 

is the most appropriate. The SSI based frequency band selection can identify the modal parameters 

but the harmonics make the OMA method extract a fake mode in the stabilisation diagram of 

Figure 4-38. Based on the Normalised Ratio in Figure 4-39, the threshold for selecting modes is 

very high and it gives up the fake mode as well as a real mode, which is a deficiency of stochastic 

subspace identification. Several methods can improve this disadvantage, and the application of 

SSI in this scenario allows the existence of multiple modes because the fault signatures extracted 

from several candidate frequency bands can be easily compared to find the most effective.  



94 

 

Figure 4-37 Kurtogram for the case of inner race faults at SNR -10dB 

 

Figure 4-38 Stabilisation Diagram of SSI for the case of inner race faults at SNR -10dB: (a) all 

modes identified; (b) modes meeting three criteria 
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Figure 4-39 Normalised Rate of stable modes in the Stabilisation Diagram for the case of inner 

race faults at SNR -10dB 

In the case of the inner race fault signal at SNR -15dB, both Kurtogram and SSI can identify the 

optimal central frequency, which is shown in Figure 4-40 and Figure 4-41 respectively. The 

frequency bands are close to each other, which are the second mode of the bearing system. This 

case is similar to the case study in the outer race fault diagnosis.  

 

Figure 4-40 Kurtogram for the case of inner race faults at SNR -15dB 
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Figure 4-41 Normalised Rate of stable modes in the Stabilisation Diagram for the case of outer 

race faults at SNR -15dB 

When bearing signals are more severely contaminated by the white Gaussian noise, the Kurtogram 

fails to select the optimal frequency band. As displayed in Figure 4-42, the frequency band picked 

by the Kurtogram is from 0Hz to 25,000Hz. It is different with the benchmark method in that the 

SSI in Figure 4-43 identifies the three carrier frequencies but only two modes are selected due to 

the noise interference.  

 

Figure 4-42 Kurtogram for the case of inner race faults at SNR -20dB 
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Figure 4-43 Normalised Rate of stable modes in the Stabilisation Diagram for the case of outer 

race faults at SNR -20dB 

The simulated signals at SNR from -25 to -35dB are significantly difficult to handle by the 

Kurtogram because of the negative impact of the random noise, which are shown in the Figure 

4-44 Figure 4-46 and Figure 4-48. As displayed in Figure 4-45 Figure 4-47 and Figure 4-49, the 

performance of the SSI approach also deteriorates but it is still able to obtain the carrier 

frequencies. The candidate central frequencies allow the effective and reliable fault detection and 

diagnosis.  

 

Figure 4-44 Kurtogram for the case of inner race faults at SNR -25dB 

 



98 

 

Figure 4-45 Normalised Rate of stable modes in the Stabilisation Diagram for the case of outer 

race faults at SNR -25dB 

 

Figure 4-46 Kurtogram for the case of inner race faults at SNR -30dB 
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Figure 4-47 Normalised Rate of stable modes in the Stabilisation Diagram for the case of outer 

race faults at SNR -30dB 

 

Figure 4-48 Kurtogram for the case of inner race faults at SNR -35dB 
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Figure 4-49 Normalised Rate of stable modes in the Stabilisation Diagram for the case of outer 

race faults at SNR -35dB 

 

4.5.1.2 Effect of Non-Gaussian Noise 

By following the same way in the outer race simulation, a series of random pulses are generated, 

of which the amplitude is two times of the maximum values of the noisy signals. Figure 4-50 and 

Figure 4-51 exhibit the temporal waveforms and spectrum of the bearing fault signals with non-

Gaussian noise.  

 

Figure 4-50 Time waveform of the simulated inner race fault signals with non-Gaussian noise at: 

(a) 𝑆𝑁𝑅𝑖 -6dB and 𝑆𝑁𝑅 19dB, (b) 𝑆𝑁𝑅𝑖 -15dB and 𝑆𝑁𝑅 -10dB 
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Figure 4-51 Spectra of the simulated outer race fault signals with non-Gaussian noise at: (a) 

𝑆𝑁𝑅𝑖 -6dB and 𝑆𝑁𝑅 19dB, (b) 𝑆𝑁𝑅𝑖 -15dB and 𝑆𝑁𝑅 -10dB 

The determination of the optimal frequency bands by the Kurtogram and SSI approaches are 

shown in Figure 4-52 and Figure 4-53 respectively. Due to the unfavourable influence, the 

Kurtogram cannot find the right frequency band even though the SNR of the simulated signals is 

high. In contrast, the SSI extract the three modes of the bearing model. A fake mode around 

7100Hz is also identified due to the influence of the harmonics.  
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Figure 4-52 Kurtogram for the case of inner race faults at 𝑆𝑁𝑅𝑖 -6dB and 𝑆𝑁𝑅 19dB 

 

Figure 4-53 Normalised Rate of stable modes in the Stabilisation Diagram for the case of inner 

race faults at 𝑆𝑁𝑅𝑖 -6dB and 𝑆𝑁𝑅 19dB 

Figure 4-54 and Figure 4-55 shows the frequency band recommended by the Kurtogram and SSI. 

It is not beyond expectation that the Kurtogram is unable to find the proper frequency band with 

the increase of the Gaussian and non-Gaussian noise. The normalised rate in the SSI results shows 

that the four modes including three real and one fake are identified. The fake modes cause issues 

in the dynamic analysis of the systems and substantial quantities of research has been done to 

improve the accuracy of the identification. The fakes modes are not a big problem in the 

demodulation analysis because the method is used to select a frequency band for the demodulation. 
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The fake modes are mainly from the harmonics in the bearing signals and consequently the 

frequency is mainly within the frequency band. Moreover, these candidates of the frequency bands 

are easily compared, and the proposed indicator of the fault signatures is able to make the 

comparison and selection automatically.  

 

Figure 4-54 Kurtogram for the case of inner race faults at 𝑆𝑁𝑅𝑖 -15dB and 𝑆𝑁𝑅 -10dB 

 

Figure 4-55 Normalised Rate of stable modes in the Stabilisation Diagram for the case of inner 

race faults at 𝑆𝑁𝑅𝑖 -15dB and 𝑆𝑁𝑅 -10dB 
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4.5.2 Demodulation Results and Analysis 

Based on the frequency bands selected by the Kurtogram and SSI, the results of EAAS and CE are 

compared in the fault detection and diagnosis of inner race faults using six simulated cases. Figure 

4-56 and Figure 4-57 show that the EAAS and CE based on the optimal frequency band can lead 

to the effective diagnosis owing to the high SNR of the signals.  

 

Figure 4-56 EAAS and CE of inner race faults at 𝑆𝑁𝑅 -10dB 



105 

 

Figure 4-57 EAAS and CE of inner race faults at 𝑆𝑁𝑅 -15dB 

When the simulated inner race fault signal was contaminated by the random noise to the SNR of -

20dB, the EAAS in Figure 4-58 (a) shows a significantly sparse spectrum, which only contains the 

shaft rotating frequency, the characteristic fault frequency, the fault frequency harmonics, and the 

sidebands. This EAAS result gives a very satisfied diagnosis with a nearly zero noise floor. The 

SSI based CE is displayed in Figure 4-58 (b) and the spectrum is rich in fault information. The 

undesired issue is that the noise floor is high due to the strong background noise. The worst result 

in this case is obtained by the Kurtogram based CE, which is displayed in Figure 4-58 (c). The 

noise floor is high and the amplitude of fault features is not pronounced compared to the noise 

floor. In addition, the sidebands of the second and third harmonic are not visible in the spectrum, 

which denotes the performance of the Kurtogram based CE is not satisfied in the inner race fault 

detection.  
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Figure 4-58 EAAS and CE of inner race faults at 𝑆𝑁𝑅 -20dB 

The vibration signals of the inner race fault are contaminated to the level of SNR -25dB. The 

demodulation results in Figure 4-59 denote that the EAAS is the most effective and efficient 

approach compared to the other two means. The fault signatures extracted by EAAS is of high 

quality, which has not only the high amplitude of fault frequency but also the extremely low noise 

floor. The SSI based CE with a proper frequency band in Figure 4-59 (b) can detect and diagnose 

the inner race faults whilst the Kurtogram based CE in Figure 4-59 (c) does not succeed in 

extraction of the defect features. Based on the results in Figure 4-59 (b) and (c), the main problem 

for this CM failure is the unsuitable frequency band, which results in a misleading result.  
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Figure 4-59 EAAS and CE of inner race faults at 𝑆𝑁𝑅 -25dB 

When the vibration signals are more severely distorted by the random noise, the capability of noise 

reduction becomes critical in the early fault detection and diagnosis of rolling bearings. The spectra 

in the Figure 4-60 and Figure 4-61 indicate that the CE cannot obtain the fault information from 

such a noisy signal. No matter how accurate the frequency bands are selected, the approaches 

without noise suppression are unable to tackle the challenging task of fault detection and diagnosis 

in a very early stage. To fulfil the early fault detection and diagnosis, the proposed EAAS is very 

capable to suppress the random noise and enhance the periodic fault features. Therefore, with the 

frequency band from SSI, the EAAS successfully detects the inner race defects of the rolling 

bearing.  



108 

 

Figure 4-60 EAAS and CE of inner race faults at 𝑆𝑁𝑅 -30dB 

 

Figure 4-61 EAAS and CE of inner race faults at 𝑆𝑁𝑅 -35dB 

4.5.3 Quantification of Inner Race Fault Signatures  

The demodulation results show the EAAS has the best performance in bearing fault detection and 

diagnosis. The strength of the fault signatures is quantified by the indicator 𝑆𝑁𝑅𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 proposed 

in Equation (4.68). In comparison with the outer race faults, the inner race faults have the sidebands 
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due to the excitation variation. The sidebands around the fault frequency are highly correlated with 

the fault features and consequently, the sidebands are also taken in account in 𝐴ℎ. The limit of the 

spectrum used to calculate the strength of the fault features are from 10Hz to 473.2Hz (3.5 times 

of characteristic fault frequency). To decrease the drawback of the spectral leakage, a short 

frequency band with the width of 6Hz is adopted to include the energy of the fault frequency as 

much as possible. The frequency band of the fault features is determined by the width of the 

characteristic fault frequency in the spectrum.  

Figure 4-62 shows that the signature indicators 𝑆𝑁𝑅𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 of EAAS is more effective than the 

conventional envelope. With the increase of the noise, the fault signatures are degraded gradually 

and in the last cases, the signature indicator of CE is approximately zero, which means the fault 

information is submerged by the random noise.  

 

Figure 4-62 Quantification of inner race fault signatures 

4.6 Summary 

This chapter investigates the periodic input based modulation signals from the rolling element 

bearings. To simulate the dynamic responses under the deterministic excitations, a state space 

model of a rolling bearing with three degree of freedom was developed to serve the simulation 

studies in this thesis. A series of periodic impacts was created to excite the linear bearing model 

for simulating the vibration responses. The prior step of the demodulation analysis is usually to 

determine the optimal frequency bands. The Kurtogram is a widely used approach for selecting 

the optimal frequency bands, which looks for the frequency bands containing the most impulsive 

behaviour. The resonant modulation is actually the resonance of the system and consequently, an 

operational modal analysis method, SSI, is employed to select the optimal central frequency for 

the demodulation analysis. Benchmarked by the Kurtogram, the SSI based optimal frequency 

bands are around the natural frequencies of the bearing system, which plays the role of the carrier 

frequencies in the resonant modulation. The SSI approach is more robust to both Gaussian and 
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non-Gaussian noise. A novel method, named ensemble average of autocorrelation signals (EAAS), 

was developed to suppress the random noise for effective and efficient fault detection and 

diagnosis at a very early stage. Both outer race fault signals and inner race fault signals at six levels 

of SNR from -10dB to -35dB demonstrate that the EAAS is a more reliable and more accurate 

approach for identifying the fault signatures from severely contaminated vibration signals.  
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Chapter 5  Experimental Study of Ball Bearing Fault Detection and 

Diagnosis 

 

In order to verify the aforementioned methods, experiments on ball bearings are carried out. The 

vibration from ball bearings are considered to be dominated by the deterministic components. In 

this chapter, the bearing experiments are introduced from the aspects of the test rig, data 

acquisition system, and test procedure. These vibration measurements from six fault cases are 

used to verify the performance of the proposed EAAS in characterising the periodic impacts based 

resonant modulation. The periodic fault signatures extracted by the EAAS are benchmarked by the 

Kurtogram based envelope analysis.  
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5.1 Test Facilities 

5.1.1 Mechanical and Electric Systems 

Bearing data sets are acquired from a test rig shown in Figure 5-1, which mainly consists of an 

induction motor and a DC generator. The motor and generator are connected by a flexible coupling, 

allowing small misalignment. The 4kW induction motor is a four-pole machine and its rated speed 

is 1420rpm. The load applied on the motor is supplied by the DC generator. The motor is connected 

to the DC generator by a flexible jaw coupling that allows a certain degree of misalignment. The 

essential control unit can control the speeds and power outputs and it also balances the torques by 

adjusting the magnetic fields. The power consumed in the tests is tiny because the power flow is a 

close loop due to the advanced control unit. The core of the control unit is the Variable Frequency 

Drive (VFD) which alternates the input frequency or voltage to control the motor speeds.  

 

Figure 5-1 Layout of the motor bearing test rig 

The key specifications of the test rig equipment are listed in Table 5-1.  

Table 5-1 Equipment of motor bearing test rig 

Equipment Model Key Specification 

VFD 650V 0-240Hz, 15kW 

Induction Motor 112MA/4 1420rpm, 4kw 

DC Generator CBH5025 1500rpm, 4kw 

5.1.2 Data Acquisition System 

Apart from the electromechanical system, the data acquisition system is another important type of 

test facility. The vibration transducers used in this experiment are accelerometers because the 

modulation usually occurs at thousands of hertz and the acceleration based vibration is more 

effective at high frequency measurements. As shown in Figure 5-2, two accelerometers are 
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installed at both vertical and horizontal position on the motor shell around the target bearing. To 

acquire the vibration data sets, a high speed analogue-to-digital converter (ADC) is essential to 

obtain the digital signals for further processing. In the meantime, a commercial encoder is 

connected to the free end of the motor by the plastic tube as an adapter. The encoder signals are 

used to calculate the rotating speed of the motor and then calculate the theoretical characteristic 

frequencies of the ball bearing faults. A K type thermocouple is also implemented to measure the 

internal temperature by drilling a hole into the internal room. The temperature measurements can 

monitor the health condition of motors and allow to align the working conditions of motors at 

different test cases. Two accelerometers, an encoder and a thermocouple are connected to the data 

acquisition device by the 50ohm BNC cables.  

 

Figure 5-2 Schematic diagram of the motor bearing test rig 

The apparatus used in the test rig is listed in Table 5-2 and the key specifications of these devices 

are also attached in the table.  

Table 5-2 Data acquisition device used in motor bearing tests 

Equipment Model Key Specifications 

Data Acquisition Device YE6232B 16 channels, 96kHz 

Accelerometer CA-YD-185 5mv/(m/s2), 0.5-5000Hz 

Encoder 260-3724 100ppr, 6000rpm 

Thermocouple K type 0 to 200°C 

 

The data acquisition device is a 16-channel parallel sampling hardware and it can collect the data 

samples through multiple channels by using a sampling rate of up to 96kHz per channel. The 

detailed specifications of the data acquisition device are shown in Table 5-3.  
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Table 5-3 Specifications of the data acquisition device 

Parameters  Specifications 

Model YE6232B 

Channels 16 

A/D bits 24bit 

Input Mode V/IEPE 

IEPE Power Supply 4mA/+24VDC 

Signal Input Range ≤±10VP 

Signal Frequency Range DC-30kHZ(-3dB±1dB) 

Gain ×1, ×10, ×100 

Filter Independent Anti-filtering 

Accuracy ±0.5％ 

Sample Rate (Max.) 96kHz/CH, Parallel 

Interface USB 2.0 

Trigger Modes Signal Trigger 

Dimensions (mm) 236W×88H×277D 

Weight 4 kg 

Power Supply AC: 220V 50Hz; 110V 60Hz 

 

The data acquisition software for driving the hardware is YE7600, which allows users to control 

the sampling frequency and sample duration on demand. The graphical user interface of the 

software is displayed in Figure 5-3.  
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Figure 5-3 Graphical user interface of the data acquisition software 

 

5.2 Test Procedure 

The reason to implement experiments on motors is that bearing failure is a common fault in 

induction motors which play an important role in power sources. The failure of motors can cause 

the substantial decrease of productivity and safety. The condition monitoring of induction motors 

is highly desired in industrial appliances. The ball bearings are most frequently used in induction 

motors and the bearings in the test are deep groove ball bearings. The bearings are installed at both 

sides of the motor rotors, which can reduce the friction, handle the axial loads and guide the rotary 

movement. There are a pair of ball bearings at the drive and non-drive end and in the tests, only 

the bearings at the drive end is the target for monitoring, which is shown in Figure 5-4.  
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Figure 5-4 Target ball bearing in the motor 

As shown in the Figure 5-4, the faulty bearing circled by the red ellipse is located at the drive end 

of the motor. The specifications of the bearing are shown in Table 5-4. 

Table 5-4 Specification of the bearing 

Parameters Specifications 

Model 6206 

Number of Balls 9 

Ball Diameter 9.53 mm 

Pitch Circle Diameter 46.4 mm 

Contact Angle 0 

 

Two types of bearing faults are simulated in this experiment, they are outer race faults and inner 

race faults. The faults of bearings are seeded by making a pitting on the race ways. According to 

the pitting size, the faults are classified into three type: large (about 4𝑚𝑚 × 2𝑚𝑚), medium (about 

2𝑚𝑚 × 1𝑚𝑚) and small (about 1𝑚𝑚 × 0.2𝑚𝑚). The defects are manually seeded and the depth 

of the defects are very small (less than 0.05𝑚𝑚). The outer race faults are displayed in Figure 5-5 

and the photographs of the inner race defects are shown in Figure 5-6.  

 



117 

 

Figure 5-5 Outer race faults 

 

Figure 5-6 Inner race faults 

After seeding faults on the bearings, tests of every fault case were carried out to obtain the vibration 

signals. The tests are scheduled to proceed in full speed (1500rpm) versus five loads (0, 25%, 50%, 

75% and 100%) for every fault bearing. The 100% load is the full power output of the induction 

motor, which generates about the torque of 25Nm. In each test, the thermocouple is used to monitor 

the motor temperature after the warmup stage. If the temperature goes over 40°C, the designed 

speed and load can be reached by the control system to start data logging. The threshold of 

temperature can reduce the influence from the motor performance parameters and lead to reliable 

data sets for further analysis.  

The main concern in the process of data acquisition is to meet the Nyquist sampling theorem. 

Theoretically a sampling rate of twice interested frequency components can preserve the relative 

information but in practice a sampling frequency of 10 times higher than the highest frequency is 

empirically recommended for more satisfied analysis results. Therefore, the sampling rate in all 

cases is configured to be 96kHz and the time duration for each data is 30 seconds. The sample 

length is based on the demand of the propose methods for achieving a decent averaging time. A 

longer time duration can achieve better results, but it consumes considerable storage space, which 
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is opposite to the CM aim of cost-effective means. Besides, the test loop in every case was repeated 

three times to decrease the measurement errors and ensure the reliable data sets. 

As the speed in the whole test is configured to be nearly the same at 1500rpm, the theoretically 

characteristic fault frequencies can be calculated according to Equation (4.1) to (4.4) with bearing 

parameters. The theoretically characteristic fault frequencies of the ball bearing are listed in Table 

5-5.  

Table 5-5 Theoretically characteristic fault frequencies of the ball bearing 

Characteristic Fault Frequencies Frequency Value 

Outer Race Frequency 89.2Hz 

Inner Race Frequency 135.3Hz 

Ball Frequency 58.1Hz 

Cage Frequency 9.9Hz 

 

Three dynamic signals obtained from the test rig are shown in Figure 5-7. The temperature signals 

are not displayed here because the temperature data is a DC component, which usually vary slowly 

and can be represented by the mean values. The structure of the time domain signals is regular 

because of the periodicity of the rotating machine. The Figure 5-7 (a) describes the pulse signals 

from the encoder in every revolution, which can be utilized to calculate the rotating speed. 

Additionally, the encoder signals are significantly important in the time synchronous averaging 

(TSA) or order tracking methods. The Figure 5-7 (b) and (c) display the vertical and horizontal 

vibration obtained at the 100% load of large outer race faults. The vibration at two positions is 

different due to the different transmission paths and the orthogonal directions of the dynamic 

responses.  
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Figure 5-7 Time domain signal 

 

5.3 Signal Analysis and Discussion 

5.3.1 Time Domain Analysis 

Figure 5-8 illustrates the temporal vibration signals of the bearings with outer race faults from the 

vertical accelerometer. The vibration signals of the cases with large, medium and small faults are 

displayed in Figure 5-8 (a), (b) and (c) respectively. It is clear that the periodic peaks are induced 

by the bump when balls pass the defect on the outer race. The periodic events represent the 

characteristic fault result from the local defect of the bearing. The time interval between impulses, 

especially for the cases of large outer race faults, is 0.011s, which is actually the fault characteristic 

period of the outer race defects. In addition, the amplitude of the vibration decreases with the 

decrease of fault size. 
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Figure 5-8 Time waveform of the vibration induced by the outer race faults 

The vibration signals acquired in the cases of inner race faults are depicted in the Figure 5-9. The 

inner race faults of the ball bearing are also caught in the time domain analysis.  

 

Figure 5-9 Time waveform of the vibration induced by the inner race faults 
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Both outer race and inner race faults can be identified from the time domain signals but the method 

is not easy to implement in practice. The signal acquired from the test rig is usually much better 

than the one from the actual working machines because the running condition of the test rig 

including speed and load is more stable, and furthermore, the noise from other systems and ambient 

environments is less. To summarise, the time domain analysis is able to detect the bearing faults 

but practically it is not reliable especially when the impulses are submerged by the noise.  

5.3.2 Determination of Optimal Frequency Bands 

The vibration signals from the large outer race faults are analysed by the Kurtogram in Figure 5-10 

and the optimal frequency band recommended by the Kurtogram is centred at 33.5kHz with a 

frequency bandwidth of 1000Hz, which locates at the level 5.6. 

 

Figure 5-10 Kurtogram for the case of large outer race fault at 100% load 

The Stabilisation Diagram of SSI in identifying the system modes at the large outer race faults are 

shown in Figure 5-11. It can be seen that the modes identified are located at the peak in the power 

spectrum, which is identical to the empirical knowledge.  
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Figure 5-11 Stabilisation Diagram of SSI for the case of large outer race fault at 100% load 

Calculated from the Stabilisation Diagram, the resonant frequencies of the bearing system with 

high normalised rate are shown in Figure 5-12 and the central frequencies over the threshold are 

1530Hz and 2383Hz. The method here is not for the purpose of modal analysis and hence the 

analysis does not focus on the identification of the full modal properties. The pronounced modes 

identified by the SSI are more likely to be the carrier frequencies because the modal responses are 

manifest in the vibration signals and are easily extracted.  

 

Figure 5-12 Normalised Rate of stable modes in the Stabilisation Diagram for the case of large 

outer race fault at 100% load 

In the medium fault case, the most impulsive frequency band is from 0Hz to 24kHz denoted by 

the Kurtogram at level 1 in Figure 5-13. The system identification method, SSI, selects five central 

frequency candidates, which are 1898Hz, 2523Hz, 5011Hz, 6496Hz and 10882Hz in Figure 5-14.  
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Figure 5-13 Kurtogram for the case of medium outer race fault at 100% load 

 

Figure 5-14 Normalised Rate of stable modes in the Stabilisation Diagram for the case of 

medium outer race fault at 100% load 

For the small fault case, the Kurtogram shows in Figure 5-15 that the optimal frequency band is 

centred at 29.5kHz with a bandwidth of 1000Hz. The bearings used in these tests are the same 

model, and the materials and dimensions of the bearings are similar. The modal parameters are 

slightly different due to the manufacture errors and installation but the modal properties of the 

bearing system are considered to be not significantly different. Considering not all modes can be 

excited in various working conditions, the candidates for the potential optimal central frequency 

can be different but should be one of the bearing modes. The results from the SSI method are more 

reasonable because the candidates of the central frequencies overlap with each other. In the case 
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of small outer race faults, the potential carrier frequencies are 1479Hz and 6061Hz, which are 

shown in Figure 5-16.  

 

Figure 5-15 Kurtogram for the case of small outer race fault at 100% load 

 

Figure 5-16 Normalised Rate of stable modes in the Stabilisation Diagram for the case of small 

outer race fault at 100% load 

For the case of the large bearing inner race fault, the vibration signal is processed by the Kurtogram 

and the optimal frequency band selected in Figure 5-17 is centred at 35.5kHz with a frequency 

bandwidth of 1000Hz. Figure 5-18 displays that the SSI identified the natural frequencies of 

2424Hz, 3402Hz, 4763Hz, 6387Hz and 9582Hz. 
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Figure 5-17 Kurtogram for the case of large inner race fault at 100% load 

 

Figure 5-18 Normalised Rate of stable modes in the Stabilisation Diagram for the case of large 

inner race fault at 100% load 

The medium inner race fault generates weak impulsive responses and in the Figure 5-19, the 

Kurtogram displays the frequency band from 21kHz to 24kHz. The normalised rates in Figure 

5-20 show that the optimal central frequencies identified by the SSI are 3324Hz, 5412Hz and 

6117Hz. 
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Figure 5-19 Kurtogram for the case of medium inner race fault at 100% load 

 

Figure 5-20 Normalised Rate of stable modes in the Stabilisation Diagram for the case of 

medium inner race fault at 100% load 

As depicted in the Figure 5-21, the Kurtogram in the small inner race fault case shows that the 

optimal frequency band is from 0Hz to 16kHz. The frequency band is too wide and some undesired 

noise would be involved in the demodulation analysis. Figure 5-22 shows that the SSI recommends 

the optimal centre frequency at 2998Hz.  
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Figure 5-21 Kurtogram for the case of small inner race fault at 100% load 

 

Figure 5-22 Normalised Rate of stable modes in the Stabilisation Diagram for the case of 

medium inner race fault at 100% load 

Stochastic subspace identification can extract the resonant frequencies of rolling element bearings 

with different faults. The stabilization diagrams demonstrate that the identification results vary 

with the fault size and fault position. Hence, it is logically considered that the faults have an 

influence on the dynamics of the bearing systems. Furthermore, the dimension and material of the 

same model bearings are not identical. The identification methods need to be further studied 

especially the three conditions for stabilization diagram. Usually the natural frequencies identified 

by the SSI are multiple and these frequencies, especially with high normalised rates, are potentially 

the optimal carrier of the bearing fault signatures. One of the extracted natural frequencies can 
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lead to the optimal diagnosis results, which can be achieved by the trial and error studies using the 

proposed method. The optimal frequency bands extracted by the Kurtogram and SSI are 

summarised in the Table 5-6.  

Table 5-6 Optimal Frequency Bands 

Faults 

Kurtogram SSI 

Central 

Frequency 

Frequency 

Bandwidth 

Central 

Frequency 

Frequency 

Bandwidth 

Large Outer Race Faults 33500Hz 1000Hz 1530Hz 602Hz 

Medium Outer Race Faults 12000Hz 24000Hz 2523Hz 609Hz 

Small Outer Race Faults 29500Hz 1000Hz 1479Hz 602Hz 

Large Inner Race Faults 35500Hz 1000Hz 2424Hz 903Hz 

Medium Inner Race Faults 22500Hz 3000Hz 3324Hz 900Hz 

Small Inner Race Faults 8000Hz 16000Hz 2998Hz 895Hz 

 

5.3.3 Demodulation Results and Analysis 

The optimal central frequencies and frequency bandwidths are obtained by Kurtogram and SSI 

approaches. The demodulation analysis based on the frequency bands is introduced in this section. 

Not all loads are present in this section. Only the graphical results of vibration signals at 100% 

load conditions are discussed here.  

Figure 5-23 shows the EAAS and CE results based on the optimal frequency bands selected by the 

SSI and Kurtogram approaches. The EAAS in Figure 5-23 (a) denotes the characteristic fault 

frequency of the outer race faults. Furthermore, the characteristic fault frequency of the bearing 

carrier can be seen. It is reasonable that the cage is not perfect. The faults of bearings are manually 

seeded and during the dismantling and assembling of bearings components, the cage has been 

damaged. The Kurtogram based CE in Figure 5-23 (c) shows that this method fails to find the 

faults that have occurred. The SSI based CE in Figure 5-23 (b) gives a fair demonstration of the 

outer race faults. Due to the leak of noise suppression, the SSI based CE has a high noise floor 

compared to EAAS. Consequently, the cage fault features are submerged by the random noise, 

leading to an ambiguous diagnosis conclusion.  
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Figure 5-23 EAAS and CE for the case of large outer race fault at 100% load 

For the medium outer race defect, the EAAS gives a promising representation of the bearing failure 

in Figure 5-24 (a). As in the aforementioned explanations, the cage frequency in the spectrum of 

EAAS denotes its imperfection. The multiple harmonics of the fundamental frequency and the 

sidebands around the outer race characteristic fault frequency are obvious to reveal the improper 

working conditions of the bearing carrier. The Figure 5-24 (b) and (c) show that both Kurtogram 

based CE and SSI based CE are able to detect the medium outer race faults because the frequency 

bands selected are inclusive of the carrier frequencies of the bearings. The Kurtogram based CE is 

valid by using a wide frequency band because the modulated fault features are above the noise 

carpet, which is the major benefit of the demodulation analysis. The amplitude of the characteristic 

fault frequency and the harmonics show that the fault signatures extracted by the SSI based CE 

are stronger than the Kurtogram base CE. The results will be quantitively compared by the 

signature strength ratio in the following section.  
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Figure 5-24 EAAS and CE for the case of medium outer race fault at 100% load 

In the case study of a small outer race fault, the effectiveness of the aforementioned methods is 

expected to be thoroughly evaluated and compared. However, the vibration signals are of high 

SNR owing to the optimal laboratory environments and simple transmission path. Therefore, the 

small faults can be detected by the methods of EAAS in Figure 5-25 (a) and SSI based CE in 

Figure 5-25 (b). As shown in in Figure 5-25 (c), the Kurtogram based CE fails to diagnose the 

outer race failure because the frequency band selected by the Kurtogram does not contain the 

natural frequencies of the bearing.  
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Figure 5-25 EAAS and CE for the case of small outer race fault at 100% load 

The faults on the outer rings are more easily detected than the defects on the inner raceways. The 

periodically varying forces make the modulation phenomenon more complicated, resulting in the 

appearance of sidebands. The demodulation result of EAAS is displayed in Figure 5-26 (a) and 

the characteristic frequency of the inner race faults are manifest. Additionally, the rotating 

frequency of the shaft and second order harmonic is significantly high due to the rotor imbalance 

and the misalignment. The SSI based CE in Figure 5-26 (b) shows an identical conclusion with 

the EAAS. Unfortunately the Kurtogram based CE in Figure 5-26 (c) cannot demodulate the fault 

information due to an improper frequency band.  
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Figure 5-26 EAAS and CE for the case of large inner race fault at 100% load 

The next case is based on the medium severity of the inner race defects. The demodulation results 

from the system resonance are depicted in Figure 5-27 and the most informative spectrum is 

obtained by the EAAS. The resolution of the spectrum has been defined in order to accurately 

locate the components relating to the dynamics of the bearing elements. Figure 5-27 (a) shows that 

besides the fault signatures of the inner race, the sidebands around the fault frequency are also 

visible in the EAAS spectrum. The sidebands are mainly the second harmonic of the shaft rotating 

frequency and the modulated frequency from the shaft rotating frequency and the cage fault 

frequency. The second harmonic of the shaft rotating frequency is significantly obvious because 

the rolling element running in and out the loaded zone of the bearing can be roughly considered as 

a symmetric variation of the impact force. Consequently, the variation period is half of the shaft 

rotating period, leading to a substantially high peak in the spectrum. The SSI based CE in Figure 

5-27 (b) denotes the fault features of the inner race ways and the sidebands are double of the shaft 

rotating frequency. The fault information of the cage is not shown in the SSI based CE spectrum. 

It is expected that the Kurtogram based CE in Figure 5-27 (c) cannot detect the inner race faults 

by using an inappropriate frequency band.  
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Figure 5-27 EAAS and CE for the case of medium inner race fault at 100% load 

The last case in this chapter is the small fault on the inner race. As shown in Figure 5-28 (a), the 

EAAS approach can obtain an informative representation in the frequency domain. The 

characteristic fault frequency of the inner race defects has a large amplitude in the EAAS spectrum. 

Furthermore, the other components including the shaft rotating frequency and its harmonics, the 

modulated cage fault frequency are also pronounced in the frequency domain. As displayed in 

Figure 5-28 (b) and (c), both the SSI based CE and SSI based CE can identify the inner race faults 

but the fault signatures relating to the cage deformation are not obvious in the CE spectrum.  
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Figure 5-28 EAAS and CE for the case of small inner race fault at 100% load 

Unlike the amplitude of the characteristic fault frequency for the outer race fault cases, the fault 

signatures extracted for the inner race fault cases are significantly smaller. The reason behind this 

is the effect of phase noise. Ideally the bearings are expected to roll along the raceways, but the 

rolling elements running in and out of the loaded zones have a small amount of slippage. 

Consequently, the phase noise destroys the periodicity of the signals, resulting in the nonperiodic 

measurements. The EAAS is a specific method for characterising the deterministic signals and any 

phase noise can distort the autocorrelation functions based on Equation (4.46).  

The results of the fault signatures also denote that the incipient defects on inner raceways are more 

vulnerable to the random slippage. The presence of the phase noise enervates the capability of the 

EAAS and hence the fault signature strength is lower than the conventional envelope analysis. 
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Another important point in this analysis is the fault severity and among the six cases, the small 

inner race fault has actually the minimum defect, which can be verified by the amplitude of the 

fault features identified by the CE approach. The attenuation of the performance of EAAS denotes 

that the hypothesis of pure rotation in ball bearings is violated. The negative effect can be omitted 

in the cases of large bearing defects, but it will be a critical factor when the fault is small. The 

methods that are not robust to phase noise are unable to achieve the incipient fault detection and 

diagnosis. The results in this section also denote that the slippage in ball bearings is quite limited, 

which will be demonstrated in the next simulation study.  

5.3.4 Quantification of Bearing Fault Signatures  

The demodulation results in the last section have shown the outstanding performance of the 

proposed EAAS. To quantify the signature strength of the bearing faults, the 𝑆𝑁𝑅𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 of three 

demodulation methods are depicted from Figure 5-29 to Figure 5-34.  

The signature strength of the EAAS and conventional envelope for the large outer race fault signals 

is shown in Figure 5-29. The strength of the fault features extracted by EAAS is much higher than 

the conventional envelope analysis because the EAAS is capable of noise reduction and envelope 

analysis has no ability of noise suppression. The SSI based CE has a more obvious fault feature 

than the Kurtogram based CE because the SSI can select the proper carrier frequency. 

 

Figure 5-29 Quantification of fault signatures for large outer race defects 

The medium fault on the outer raceway can be detected by the EAAS and CE. The 𝑆𝑁𝑅𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 

of the EAAS in Figure 5-30 is not as high as the other case because the EAAS in Figure 5-24 

detects dozens of frequency components related to the cage fault. The equation for calculating the 

𝑆𝑁𝑅𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒  is not exclusive to the cage fault information in the spectrum of EAAS and 

consequently attenuates the strength of the fault features.  
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Figure 5-30 Quantification of fault signatures for medium outer race defects 

As shown in Figure 5-31, the strength of the small outer race fault is within the expectation that 

the EAAS is the most promising approach for ball bearing fault detection and diagnosis.  

 

Figure 5-31 Quantification of fault signatures for small outer race defects 

The fault signatures for the inner race faults of ball bearings are shown in Figure 5-32 to Figure 

5-34. The results of the inner race faults denote that the EAAS performs better than the 

conventional envelope on the noise reduction. The test rig in the laboratory usually works in a 

better environment than the industrial scenario. Therefore the SSI based CE can effectively 

diagnose the bearing faults based on an appropriate frequency band.  

 

Figure 5-32 Quantification of fault signatures for large inner race defects 
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Figure 5-33 Quantification of fault signatures for medium inner race defects 

 

Figure 5-34 Quantification of fault signatures for small inner race defects 

 

5.4 Summary 

The experimental studies on ball bearings were carried out to verify the proposed EAAS and SSI 

methods for characterising the resonant modulation vibration signals. Six faulty cases of outer and 

inner race defects were carried to obtain the vibration signals at five different loads. Then the 

system identification approach was employed to analyse these vibration signals for selecting the 

optimal frequency bands. Based on the frequency bands recommended by the SSI and Kurtogram, 

the filtered signals around the natural frequencies can be demodulated by the EAAS and CE 

methods. The demodulated fault signatures show that EAAS is the most effective and efficient for 

detecting and diagnosing the ball bearing faults among the three approaches. The 𝑆𝑁𝑅𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 of 

the fault gives quantified measurements of the fault features to the noise carpet in the spectrum. 

The experimental studies have verified that the proposed SSI and EAAS are effective for 

demodulating the periodic impacts induced resonant modulation signals.  
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Chapter 6  Simulation Study of Tapered Roller Bearing Fault 

Detection and Diagnosis 

 

This chapter focuses on investigating resonant modulation induced by the aperiodic impacts 

through the simulation studies. The state space model of the rolling element bearings introduced 

in Chapter 4 is employed by amending the inputs to be a series of nonstationary impacts. The 

cyclostationary responses are part of the nonstationary signals and the deterministic approach, 

EAAS, is not effective under this condition. Then, two novel signal processing methods, Ensemble 

Average of Autocorrelated Envelopes (EAAE) and Phase Linearisation based Modulation Signal 

Bispectrum (PL-MSB), are developed to detect and diagnose the bearing faults at a very early 

stage. The different levels of phase noise are simulated to examine the EAAE and PL-MSB which 

are benchmarked by the conventional envelope analysis.  
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6.1 Random Slippage in Bearing Modelling  

Rolling element bearings are designed to purely rotate during the service and the rolling behaviour 

is an effective means to minimise friction between raceways and rolling elements. However, the 

bearings inevitably suffer from the relative slippage between the bearing rings and rolling elements 

in practice because the working conditions of bearings are undesired, for instance load variations, 

localised deformation, random impacts, and lubrication failure. These reasons result in the 

distortion of the pure rolling and lead to the undesirable slippage. According to reference [110], 

approximately 1% to 2% slippage happens in the rolling element bearing. A further study [37] 

shows that the bearing vibration signals consist of phase noises. The slippage also leads to the 

differences between the theoretically characteristic fault frequencies with the experimental one 

[22]. Additionally, the slippage can become more severe if the radial clearances of bearings turn 

out to be larger with the increase of service time. At this stage, bearings are more likely to start 

localised fatigue defects. This small random slippage results in variations between the periods of 

impulses and consequently the impacts from the localised defects are not periodic. The input of 

the bearing system becomes nonstationary and these nonstationary impacts are classified into the 

cyclostationary signals due to the periodic variation of the statistical properties.  

Due to the random slippage (phase noise), the EAAS cannot guarantee the best results in all cases 

because this stationary signal processing method cannot handle the nonstationary signals. The 

EAAS is sensitive to the phase noise, leading to the significant decrease of the fault signatures. 

The random slippage in ball bearings due to the incipient fault is tiny and consequently, the EAAS 

is still effective to detect the faults occurred. However, some bearings, for instance tapered roller 

bearings, are more vulnerable to phase noise due to the installation errors. In such circumstances, 

the early faults are substantially challenging in being identified by the conventional methods. The 

capable methods are expected to characterise nonstationary signals and suppress the strong 

background noise effectively. 

It is simple to generate the modulation signal based on equation, however, the vibration including 

fault information is a phase-lock signal and it cannot indicate the slippage of bearings in practical 

working conditions. To simulate the random slippage induced inputs for the bearing model, the 

dynamics of the slippage is investigated. It has been found that the pitting induced impacts are not 

periodic anymore, which becomes a Markov process. The impacts occurred currently are only 

determined by its most recent impacts. Therefore, the successive impacts are simulated as a 

Markov chain, which is expressed as follows.  

 𝑇𝑓
𝑠(𝑘) = 𝑇𝑓

𝑠(𝑘 − 1) + 𝑇𝑓 + ∆𝑡(𝑘)   (6.1) 
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where, 𝑇𝑓
𝑠(𝑘) is the moment of the 𝑘𝑡ℎ impact; 𝑇𝑓 is the cycle of impacts or the fault cycle; and 

∆𝑡(𝑘) is the random slippage at 𝑘𝑡ℎ  impact. Consequently, the impact forces with the random 

slippage can be denoted as 

 𝑓(𝑡) = {
∑ 𝐴𝑓𝛿 (𝑡 − 𝑇𝑓

𝑠(𝑘))+∞
𝑘=1 , 𝑜𝑢𝑡𝑒𝑟 𝑟𝑎𝑐𝑒 𝑓𝑎𝑢𝑙𝑡𝑠

∑ 𝐴𝑓 |𝑐𝑜𝑠 (2𝜋
𝑓𝑟

2
𝑡 + 𝜑𝑓)| 𝛿 (𝑡 − 𝑇𝑓

𝑠(𝑘))+∞
𝑘=1 , 𝑖𝑛𝑛𝑒𝑟 𝑟𝑎𝑐𝑒 𝑓𝑎𝑢𝑙𝑡𝑠

  (6.2) 

The bearing model developed in Chapter 4 is still used here and the inputs of the model are changed 

into the nonstationary forces in Equation (6.2). ∆𝑡(𝑘) is an import variable to show the degree of 

the slippage between the rolling elements and race ways. According to the different levels of 

slippage, the bearing vibration with localised faults can be simulated more practically. To more 

precisely control the slippage level, the random phase errors are generated to obey to the uniform 

distribution. In total, four cases are simulated to investigate the nonstationary responses of the 

bearings. As this research aims to diagnose the bearing faults at an early stage, the SNR of the 

simulated signals are set up to a very low value. Combing the effects of white Gaussian noise and 

the phase noise, the developed fault detector can be evaluated and verified in different conditions.  

The periodicity of the outer race faults is shown in Figure 6-1 and it can be seen that the variation 

of the fault periods increases with more slippage.  

 

Figure 6-1 Phase error induced by slippage 
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The instantaneous characteristic fault frequency of the outer race fault is displayed in Figure 6-2. 

The variation of the fault frequency varies from 0.89Hz to 3.59Hz with respect to the slippage of 

0.5% to 2%. The randomness of the bearing faults is simulated to fit to a uniform distribution, 

which allows a more accurate control of the slippage level. The variation of the instantaneous fault 

frequency manifestly obeys the uniform distribution.  

 

Figure 6-2 Fault frequency fluctuation induced by slippage 

The variation of the impact timing makes the periodic signals to cyclostationary signals. The 

fluctuation of the fault cycles makes conventional fault detectors ineffective.  

6.2 Method of Ensemble Average of Autocorrelated Envelopes (EAAE) 

6.2.1 Ensemble Average of Autocorrelated Envelopes (EAAE) 

Encouraged by the significant noise reduction, the EAAE is improved from the EAAS for 

tolerating the phase noise whilst suppressing the random noise. In some types of bearings, the 

slippage at the early fault stage are also large enough to destroy the periodicity of the fault 

information, which makes fault detection more difficult [110]. The input of the system becomes 

from the periodic forces into aperiodic impacts and hence the output of a linear system is difficult 

to characterise by stationary signal processing methods. To address these problems, the Ensemble 

Average of Autocorrelated Envelopes (EAAE) is derived based on autocorrelation functions of the 

envelope of the raw vibration signals. The detailed steps to implement EAAE is shown in Figure 

6-3.  
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Figure 6-3 Flow chart of EAAE 

In detail, the steps of EAAE are described as follows: 

Step 1. The original vibration signal 𝑥(𝑛) with a length of 𝑁  is processed by the Stochastic 

Subspace Identification to find the natural frequencies of the bearing system, which are used as 

the optimal central frequency in the following steps. 

Step 2. The filtered signal 𝑥𝑓(𝑛) is obtained by implanting a Fourier bandpass filter based on the 

selected central frequency and the frequency band. The Fourier bandpass filter is achieved by only 

retaining the Fourier coefficients within the range of the bandpass filter. The other coefficients in 

the two-sided spectrum are assigned to be zero. The inverse Fourier transform of the modified 

Fourier coefficients can lead to the filtered signal 𝑥𝑓(𝑛). 

Step 3. The envelope signals 𝑥𝑓
𝑒(𝑛) are then obtained from the analytic signal of the filtered signal 

𝑥𝑓(𝑛). The analytic signal can be calculated using Hilbert transform. 
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Step 4. The envelope vector is re-represented to be a buffer matrix that comprises of short segments 

with overlaps. The reorganisation of the signals is shown in Equation (4.58). The filtered signal 

with a length of 𝑁 is rearranged to 𝑚 + 1 short segments with a length of 𝑙 and an overlap of 𝑙 −

𝑘 + 1. If the last segment is less than 𝑙, the segment is zero padded to 𝑙. 

 𝑿𝑓𝑒
𝑙×𝑚 =

[
 
 
 
 
 
𝑥𝑓
𝑒(1) 𝑥𝑓

𝑒  (𝑘) ⋯ 𝑥𝑓
𝑒  (𝑘 + (𝑚 − 2)(𝑘 − 1)) ⋮

⋮ ⋮ ⋯ ⋮ 𝑥𝑓
𝑒 (𝑁)

𝑥𝑓
𝑒  (𝑘) 𝑥𝑓

𝑒(𝑘 + (𝑘 − 1)) ⋯ 𝑥𝑓
𝑒  (𝑘 + (𝑚 − 1)(𝑘 − 1)) 0

⋮ ⋮ ⋯ ⋮ ⋮
𝑥𝑓
𝑒 (𝑙) 𝑥𝑓

𝑒  (𝑙 + (𝑘 − 1)) ⋯ 𝑥𝑓
𝑒  (𝑙 + (𝑚 − 1)(𝑘 − 1)) 0 ]

 
 
 
 
 

  (6.3) 

The segment length 𝑙 is determined by the demand of frequency resolutions in the diagnostic 

results. In this thesis, the resolution of 1Hz is used to distinguish the characteristic fault frequencies 

and the length 𝑙 is double of the sampling frequency, which will be explained in the next step. The 

overlap ratio (𝑙 − 𝑘 + 1)/𝑙  is usually recommended to be 0.5 to 0.7 by experience, which 

increases the average times in the ensemble average operation. A too high overlap ratio does not 

contribute to the optimisation of the final results, which is not meaningful in the practical signal 

analysis. 

Step 5. The segments are used to calculate the unbiased autocorrelation signals, which converts 

the time domain signal into the lag domain with a long lag to ensure a high frequency resolution 

for fault detection. The lag length directly determines the final frequency resolution. In this thesis, 

the resolution of 1Hz is used and the lag length is the same as the sampling frequency to ensure a 

high frequency resolution for fault detection. Moreover, to increase the accuracy of the 

autocorrelation, the length 𝑙 of the signal segments is chosen to be double that of autocorrelation 

lag 𝜏. 

 𝑿𝑓𝑒
𝑙×𝑚 ⇒

[
 
 
 
𝑅𝑥𝑥
1 (1) 𝑅𝑥𝑥

2 (1) ⋯ 𝑅𝑥𝑥
𝑚 (1)

𝑅𝑥𝑥
1 (2) 𝑅𝑥𝑥

2 (2) ⋯ 𝑅𝑥𝑥
𝑚 (2)

⋮ ⋮ ⋯ ⋮
𝑅𝑥𝑥
1 (𝜏) 𝑅𝑥𝑥

2 (𝜏) ⋯ 𝑅𝑥𝑥
𝑚 (𝜏)]

 
 
 
= 𝑹𝑋𝑋

𝜏×𝑚   (6.4) 

Step 6. The beginnings of the autocorrelated envelope signals contain a greater amount of noise 

due to the limited signal lag. To eliminate the influence of extreme values at the beginnings, the 

autocorrelated envelopes of each segment only retain the lags which are greater than 𝜏𝑐 and the 

others are assigned to be zero. The 𝜏𝑐 is empirically selected to be about one tenth of the lag 𝜏. 
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 𝑹𝑋𝑋
𝜏×𝑚 ⇒

[
 
 
 
 
 

0 0 ⋯ 0
⋮ ⋮ ⋯ ⋮

𝑅𝑥𝑥
1 (𝜏𝑐 + 1) 𝑅𝑥𝑥

2 (𝜏𝑐 + 1) ⋯ 𝑅𝑥𝑥
𝑚 (𝜏𝑐 + 1)

𝑅𝑥𝑥
1 (𝜏𝑐 + 2) 𝑅𝑥𝑥

2 (𝜏𝑐 + 2) ⋯ 𝑅𝑥𝑥
𝑚 (𝜏𝑐 + 2)

⋮ ⋮ ⋯ ⋮
𝑅𝑥𝑥
1 (𝜏) 𝑅𝑥𝑥

2 (𝜏) ⋯ 𝑅𝑥𝑥
𝑚 (𝜏) ]

 
 
 
 
 

   (6.5) 

Step 7. The ensemble average of the autocorrelated envelope segments can be calculated as 

follows. 

 �̄�𝑋𝑋
𝜏×1 = 𝐸[𝑹𝑋𝑋

𝜏×𝑚]   (6.6) 

Step 8. The spectrum is obtained by the Fourier transform, which makes the fault detection and 

diagnosis easily confirmed by the sparse representation in the frequency domain.  

6.2.2 Similarity and Difference between EAAS and EAAE 

The similarity and difference of EAAS and EAAE are displayed in Figure 6-4. The EAAS is 

designed to process the stationary signals, which can significantly suppress the random noise in 

the periodic signals. The EAAS is more powerful to extract the periodic information in the 

stationary signals because the amplitude and phase information are identical in different cycles 

whilst the EAAE is good at processing the cyclostationary signals, especially for the bearing 

vibration signals. The transient responses of the rolling elements passing the defects are the core 

information in detecting and diagnosing bearing faults. The outlines of the transient responses are 

the envelopes extracted despite the noise. Considering the transient responses are not periodic, the 

phase noise results in the ineffectiveness of the autocorrelation. In contrast, the envelope can align 

the outlines to a certain degree and make the phase to be periodic despite the nonstationary timing 

of the transient responses, which allows the autocorrelation to retain the periodic parts and remove 

the nonstationary parts. The EAAE exploits the merits of the envelope analysis to characterise the 

nonstationary (especially cyclostationary) signals, which can greatly increase the signal to noise 

ratio of the desired information. For practical applications, the difference of EAAS and EAAE is 

the sequence of the envelope and autocorrelation, however these two methods are under different 

theoretical background. The segments lead to the autocorrelation matrix 

[𝑅𝑥𝑥(𝑡1, 𝜏), 𝑅𝑥𝑥(𝑡2, 𝜏),⋯𝑅𝑥𝑥(𝑡𝑛, 𝜏)] , which can increase the robustness of the method to 

nonstationary components in the signals.  
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Figure 6-4 Similarity and difference between EAAS and EAAE 

 

6.3 Method of Phase Linearisation based Modulation Signal Bispectrum 

(PL-MSB) 

6.3.1 Modulation Signal Bispectrum (MSB) 

The method of Modulation Signal Bispectrum (MSB) originates from high order spectrum 

analysis. A conventional second order spectrum analysis method, bispectrum (CB), is defined as 

follows [29]  

 𝐵𝐶𝐵(𝑓1, 𝑓2) = 𝐸{𝑋(𝑓1)𝑋(𝑓2)𝑋
∗(𝑓1 + 𝑓2)}  (6.7) 

in which, 𝑋(𝑓) = ∫ 𝑥(𝑡)𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡 denotes the Fourier transform of a temporal signal 𝑥(𝑡); 𝑓1 and 

𝑓2 are two frequency components from the spectrum 𝑋(𝑓); 𝑋∗(𝑓) is the complex conjugate of 

𝑋(𝑓); and 𝐸{ } denotes the ensemble average. The conventional bispectrum is a complex third 

order measurement and it contains both the magnitude and phase of the interacting components. If 

the frequency components of 𝑓1 and 𝑓2 are nonlinearly coupled, the additional component 𝑓1 + 𝑓2 

would be generated. The total phase in the bispectrum phrase 𝑋(𝑓1)𝑋(𝑓2)𝑋
∗(𝑓1 + 𝑓2) is denoted 

as 
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 𝜑𝐶𝐵(𝑓1, 𝑓2) = 𝜑(𝑓1) + 𝜑(𝑓2) − 𝜑(𝑓1 + 𝑓2)  (6.8) 

The phase information of the coupled components would be constant, which shows good 

performance in the demodulation analysis of the quadratic coupled frequency components 𝑓1 and 

𝑓2. If the components 𝑓1 and 𝑓2 are independent components or noise, the total phase 𝜑𝐶𝐵(𝑓1, 𝑓2) 

will be random within [−𝜋, 𝜋] and the averaging of the bispectrum phrase 𝑋(𝑓1)𝑋(𝑓2)𝑋
∗(𝑓1 + 𝑓2)  

will be close to zero. With ensemble averaging in the Equation (6.7), the coupled components are 

enhanced owing to the same phase information. The other independent components and random 

noise will tend towards zero due to random phase.  

The MSB is an improved version of the conventional bispectrum and it considers the lower and 

upper sideband at the same time, which allows accurate description of modulation signals. The 

MSB method is defined as 

 𝐵𝑀𝑆(𝑓1, 𝑓2) = 𝐸{𝑋(𝑓1 + 𝑓2)𝑋(𝑓1 − 𝑓2)𝑋
∗(𝑓1)𝑋

∗(𝑓1)}  (6.9) 

where, 𝑋(𝑓)  denotes the Fourier transform of the temporal signal 𝑥(𝑡) ; 𝑓1  and 𝑓2  are two 

frequency components in the spectrum 𝑋(𝑓); 𝑋∗(𝑓) is the complex conjugate of 𝑋(𝑓); and 𝐸{ } 

denotes the operation of ensemble average. For a periodic modulation signal, the phase of the MSB 

phrase 𝑋(𝑓1 + 𝑓2)𝑋(𝑓1 − 𝑓2)𝑋
∗(𝑓1)𝑋

∗(𝑓1) can be calculated as 

 𝜙(𝑓1, 𝑓2) = 𝜙(𝑓1 + 𝑓2) + 𝜙(𝑓1 − 𝑓2) − 𝜙(𝑓1) − 𝜙(𝑓1)  (6.10) 

If the components 𝑓1 and 𝑓2 are coupled by modulation (AM or PM), the subsequent phase can be 

expanded as 

 {
𝜙(𝑓1 + 𝑓2) = 𝜙(𝑓1) + 𝜙(𝑓2)

𝜙(𝑓1 − 𝑓2) = 𝜙(𝑓1) − 𝜙(𝑓2)
  (6.11) 

Consequently, the total phase of the MSB phrase will be constant. The constant phase of the 

coupled components allows the ensemble average of the MSB phrase from different signal 

segments. The averaging can enhance modulation characteristics and suppress both the 

independent components and random noise. However, the potential lower sideband in modulation 

signals is not inclusive in the CB. The MSB method is more effective in characterising modulation 

signals because it considers the upper and lower sidebands from a modulation signal 

simultaneously. The MSB approach has been investigated in references [34], [122]–[124] and the 

MSB is able to extract the modulating components in the vibration, acoustic, and motor current 

signals for diagnosing machine faults. It has been demonstrated that the MSB method is highly 

effective in extracting incipient fault signatures. The CB is not adequate in the analysis of the 

modulation signals [36]. Sidebands around the carrier frequency component are usually much 

smaller than the carrier signal. The estimation of the sidebands by the FFT spectrum is usually not 
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reliable because the background noise is strong and camouflages these small but important 

components. The implementation of the MSB method is based on the conventional Fourier 

transform, which is not an efficient way to tackle cyclostationary signals. For this reason, the MSB 

is extended by using a phase linearisation method to improve the performance in characterising 

the cyclostationary signals. The improvement can increase the strength of the deterministic 

components, allowing the PL-MSB to process the cyclostationary signals effectively. The 

developed PL-MSB approach aims to process the cyclostationary signals from rolling element 

bearings. The cyclostationary signals are generated by the random slippage between bearing 

components. The random slippage in the rolling element bearings can reach up to 2% [110] and 

the slippage makes the theoretically periodic impacts into a pseudo-periodic series, 

terminologically named as cyclostationary signals. 

6.3.2 Phase Linearisation based Modulation Signal Bispectrum (PL-MSB) 

Many methods have been developed to characterise time varying vibration signals. One of the 

most popular is Time Synchronous Averaging (TSA). TSA is extensively used in vibroacoustic 

signal analysis due to the merits of noise reduction. The averaging can lead to high Signal to Noise 

Ratio (SNR), and it can achieve successful fault diagnosis of rotating machines [120], [125], [126]. 

The implementation of the TSA approach relies on reference signals from a tachometer. The shaft 

revolution is usually the working cycle of machines, for instance gears and engines, and therefore, 

the dynamic responses of the rotating machine are repeatable in revolutions. Consequently, the 

vibroacoustic signals from different shaft revolutions can be averaged. The deterministic 

components can be enhanced for the purpose of accurate diagnoses. However tachometer signals 

are not always available, and hence ‘tacho-less’ TSA techniques have been developed to overcome 

this deficiency [127]–[130]. The tacho-less approaches rely on the accurate estimation of the 

instantaneous frequency/phase [125], [126], [131]. With the accurate frequency/phase information 

of the target components, the raw vibroacoustic signals can be segmented in the time domain and 

then averaged in the angular domain. However, the TSA method in bearing fault diagnosis is not 

applicable because the bearing fault frequencies is usually not the integer of the shaft frequency. 

Moreover, the phase noise in bearing vibration signals is transient, which is difficult to tackle in 

the TSA method. Therefore, the phase linearisation is developed here to minimise the influence of 

the phase noise.  

A monocomponent signal is described by one single “ridge” in the time and frequency domain, 

and the ridge represents the energy concentrated region in the time-frequency representation. Such 

a monocomponent signal 𝑠(𝑡) can be expressed in a complex form as 
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 𝑠(𝑡) = 𝑅𝑒{𝑎(𝑡)𝑒𝑖𝜑(𝑡)}  (6.12) 

where, 𝑎(𝑡)  and 𝜙(𝑡)  are the instantaneous amplitude and instantaneous phase respectively; 

𝑅𝑒{ } represents the real part of the complex number. For a periodic signal, the instantaneous 

phase 𝜑(𝑡) is a linearly incremental function of time, which can be expressed as 

 𝜑(𝑡) = 𝜔𝑡 + 𝜑(0)  (6.13) 

where, 𝜑(0) is the initial phase of this periodic signal and ω is the angular frequency of the 

periodic signal. Periodic signals are an exception and nonstationary signals are generic in nature. 

The periodicity in vibration signals is distorted by the unstable working conditions, which are due 

to the internal and external factors. If the instantaneous phase is distorted by the random slippage, 

and the monocomponent signal 𝑠(𝑡) can be expressed as 

 𝑠(𝑡) = 𝑅𝑒{𝑎(𝑡)𝑒𝑖[𝜑(𝑡)+𝑛(𝑡)]}  (6.14) 

in which, 𝑛(𝑡) denotes the phase noise from random slippage and speed oscillation. Then, the 

distorted instantaneous phase 𝜙(𝑡) yields to 

 𝜙(𝑡) = 𝜑(𝑡) + 𝑛(𝑡)  (6.15) 

Therefore, the instantaneous phase of the distorted periodic signal is 

 𝜙(𝑡) = 𝜔𝑡 + 𝜑(0) + 𝑛(𝑡)  (6.16) 

The random phase error 𝑛(𝑡) is an independent variate, which is not correlated with the linear 

increment 𝜔𝑡 and the initial phase φ(0). The dominate component in ϕ(t) is the deterministic 

component ωt + φ(0). Consequently, a linear regression model is a good way to explain the 

variation of the instantaneous phase. The phase noise 𝑛(𝑡) becomes the random deviations in the 

linear representation. The linear regression model removes the random errors and retains the linear 

part, which can be shown as 

 �̂�(𝑡) = 𝑎𝑡 + 𝑏  (6.17) 

where, the coefficient 𝑎 and the instance 𝑏 can be obtained from the linear fitting model.  

An amplitude modulation signal composed of multiple components can be described by the 

individual mono-component signals. In this manner the phase noise induced by random slippage 

within a bearing can be supressed and the strength of the deterministic components can be 

enhanced by the phase linearisation. In detection and diagnosis of incipient bearing faults, the raw 

signals are severely contaminated by strong background noise. The estimation of the instantaneous 

phase is easily influenced by the random noise. For the purpose of accurate estimation of the phase 

information, a linear prediction filter is used to suppress random noise [132], [133]. A linear 

prediction model can predict the deterministic random signals, including Gaussian white noise. 
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The residual signal then retains the bearing fault related components but with much less noise, and 

this in turn allows the more accurate estimation of instantaneous phase. After phase correction, the 

cyclostationary signal is modified to be approximately periodic one. The new phase relationship 

can be more realistically characterised by the MSB method to further suppress noise. The PL-MSB 

can be achieved by the following equation 

 �̂�𝑀𝑆(𝑓𝑐, 𝑓𝑥) = 𝐸⟨�̂�(𝑓𝑐 + 𝑓𝑥)�̂�(𝑓𝑐 − 𝑓𝑥)�̂�
∗(𝑓𝑐)�̂�

∗(𝑓𝑐)⟩  (6.18) 

where, �̂�(𝑓)  is the Fourier transform of the reconstructed signal �̂�(𝑡) = 𝑥(𝑡)𝑒−𝑖𝑛(𝑡). The steps of 

the proposed PL-MSB is shown in the Figure 6-5.  

 

Figure 6-5 Flow chart of the PL-MSB method 

The details of each step are introduced as follows. 

Step 1: The original vibration signals 𝑥(𝑡)  are pre-processed by the Stochastic Subspace 

Identification to identify the natural frequencies and then the natural frequencies can be 

evaluated to find the optimal frequency bands. 

Step 2: The filtered signal is obtained by implanting a Fourier bandpass filter based on the selected 

central frequency and the frequency band. The Fourier bandpass filter is achieved by only 
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retaining the Fourier coefficients within the range of the bandpass filter. The other 

coefficients in the two-sided spectrum are assigned to be zero. The inverse Fourier 

transform of the modified Fourier coefficients can lead to the filtered signal 𝑥𝑓(𝑛). 

Step 3: The filtered signal is processed by the linear prediction method for roughly supressing the 

noise. The deterministic random process, for example the Gaussian white noise, can be 

perfectly predicted by the linear prediction. The order of LPC is usually determined by the 

trial and error method. In this proposed method, the order of the linear prediction is selected 

as high as 200 to allow the residual signal to be obtained. 

Step 4: The filtered residual signal is used to obtain the analytic signal by the Hilbert transform. 

The analytic signal is employed to estimate the instantaneous phase 𝜙(𝑡) of the residual 

signal.  

Step 5: The instantaneous phase is linearised by a linear fitting and then generates a linearly 

incremental phase. The new phase array is used to reconstruct the new signal �̂�(𝑡) via the 

spline interpolation.  

Step 6: The new signal phase �̂�(𝑡) is used as the input of the Modulation Signal Bispectrum 

(MSB) for the MSB magnitudes and coherence. The concise and interpretable result is 

extracted by the peak of the carrier frequency.  

6.4 Demodulation Analysis of Cyclostationary Bearing Signals  

The demodulation analysis of the bearing faults in this section focuses on evaluating the 

performance of the proposed methods in the incipient bearing fault detection and diagnosis. The 

main problem discussed is the influence of the random phase errors in the cyclostationary signals 

under the conditions of extremely low SNR (less than -30dB).  

6.4.1 Demodulation Analysis of Outer Race Fault Signals  

As explained at the beginning, the analysis of the severely contaminated bearing signals is 

presented in this section. The outline of the noisy signals is displayed to address the challenge of 

the vibration signals. Figure 6-6 shows the spectrum of the simulated cyclostationary bearing 

signals at different levels of random slippage under the SNR of -31dB. The spectrums denote that 

the phase noise significantly decreases the amplitude of the resonant areas in the frequency domain, 

which can be verified by the spectrums in the Figure 4-7. Due to the nonstationary input, the output 

of the bearing model is too difficult to characterise by the stationary signal processing approaches. 

Consequently the Fourier transform based spectrum shows that the spectral energy is smeared over 

frequency bins. The spectrums of noise-free signals in the Figure 4-7 is three times higher than the 
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amplitude in the Figure 6-6. The leakage of the spectrum represents three clusters in the frequency 

domain other than the sparse components in the periodic signals. 

 

Figure 6-6 Spectra of cyclostationary outer race fault bearing signals at SNR -31dB and: (a) 

0.5% slippage; (b) 1% slippage; (c) 1.5% slippage and (d) 2% slippage 

The prior step in the proposed methods is to select an appropriate frequency band for the purpose 

of extracting fault signatures accurately. Therefore, the results of the Kurtogram and SSI are shown 

in the following contents. The recommended frequency bands by the Kurtogram and SSI are 

displayed in the Figure 6-7 to Figure 6-14. In the case of outer race faults at 0.5% slippage and 

SNR -31dB, the most impulsive frequency band is from 0Hz to 25kHz denoted by the Kurtogram 

at level 1 in Figure 6-7. The SSI selects the central frequency of 7120Hz in Figure 6-8.  
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Figure 6-7 Kurtogram for the case of outer race faults at 0.5% slippage and SNR -31dB 

 

Figure 6-8 Normalised Rate of stable modes in the Stabilisation Diagram for the case of outer 

race faults at 0.5% slippage and SNR -31dB 

In the case of outer race faults at 1% slippage and SNR -31dB, the most impulsive frequency band 

by the Kurtogram is centred at 41.67kHz with a frequency bandwidth of 16.67kHz at level 1.6 in 

Figure 6-9. The SSI selects the central frequency of 7080Hz in Figure 6-10.  
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Figure 6-9 Kurtogram for the case of outer race faults at 1% slippage and SNR -31dB 

 

Figure 6-10 Normalised Rate of stable modes in the Stabilisation Diagram for the case of outer 

race faults at 1% slippage and SNR -31dB 

In the case of outer race faults at 1.5% slippage and SNR -31dB, the most impulsive frequency 

band by the Kurtogram is centred at 41.67kHz with a frequency bandwidth of 16.67kHz at level 1 

in Figure 6-11. The SSI selects the central frequency of 7114Hz in Figure 6-12.  
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Figure 6-11 Kurtogram for the case of outer race faults at 1.5% slippage and SNR -31dB 

 

Figure 6-12 Normalised Rate of stable modes in the Stabilisation Diagram for the case of outer 

race faults at 1.5% slippage and SNR -31dB 

In the case of outer race faults at 2% slippage and SNR -31dB, the most impulsive frequency band 

by the Kurtogram is centred at 41.67kHz with a frequency bandwidth of 16.67kHz at level 1 in 

Figure 6-13. The SSI selects the central frequency of 7140Hz in Figure 6-14.  
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Figure 6-13 Kurtogram for the case of outer race faults at 2% slippage and SNR -31dB 

 

Figure 6-14 Normalised Rate of stable modes in the Stabilisation Diagram for the case of outer 

race faults at 2% slippage and SNR -31dB 

The optimal central frequencies in the four slippage cases are shown in Table 6-1. Compared to 

the Kurtogram, the SSI method gives more reasonable determination of the optimal frequency 

bands for further demodulation analysis.  
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Table 6-1 Optimal frequency bands of cyclostationary outer race fault signals 

Cases of Outer Race Faults 

Kurtogram SSI 

Central 

Frequency 

Frequency 

Bandwidth 

Central 

Frequency 

Frequency 

Bandwidth 

0.5% Slippage  12500Hz 25000Hz 7120Hz 629Hz 

1% Slippage 41666Hz 16666Hz 7140Hz 629Hz 

1.5% Slippage 41666Hz 16666Hz 7080Hz 629Hz 

2% Slippage 41666Hz 16666Hz 7114Hz 629Hz 

 

Due to the large quantities of white noise, the frequency bands selected by the Kurtogram is 

misleading, which is a very wide frequency band covering all the natural frequencies of the bearing 

model. The wide frequency band inevitably involves a large amount of noise and consequently a 

wide frequency band is unable to give the promising fault diagnosis results especially for the 

incipient fault detection. The SSI method does not focus on finding the most impulsive frequency 

band but extracting the modal parameters from the vibration signals. The critical point in the OMA 

is that the system modes are excited by the external inputs, which means the impacts from the 

rolling elements passing the localised faults excite the identified natural frequencies. Therefore the 

identified modes from the bearing faulty signals are carrier frequencies in the modulation signals. 

The natural frequencies accurately identified by the SSI approach are the desired candidates in the 

demodulation analysis. However, the SSI is unable to be independent of background noise. If the 

SNR of the signals is too low, this can reach to the limit of the method. It can be seen that not all 

bearing modes can be extracted from the simulated vibration signals because the input for the 

bearing model is not stationary and furthermore the noise totally submerges the informative 

components. 

Based on the central frequencies selected by the Kurtogram and SSI methods, the demodulation 

analysis of the proposed methods and the benchmarked methods was carried out. As the 

cyclostationary characteristics of the faulty bearing vibration signals were addressed here, the 

simulation studies are mainly to compare the capability of the five demodulation methods under 

different levels of random slippages. It has to be mentioned here that the aim of these methods is 

to detect and diagnose the bearing faults at an early stage. Therefore, a large amount of white 

Gaussian noise up to -31dB is employed to contaminate the bearing fault signals. The first 

cyclostationary case is that the bearing components occur a slippage of 0.5%, which means that 

the instantaneous outer race fault frequency varies from 89.35Hz to 90.25Hz in the simulated 
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signal. The variation of the instantaneous fault frequency and its harmonics are different compare 

to most publications [134]–[136]. Most of the research focuses on the vibration signals with slowly 

varying speeds whilst the cyclostationary bearing vibration signals are extremely transient 

responses. The conventional approaches for slow time varying signals are not applicable here.  

As shown in Figure 6-15, the envelope spectrum of the phase linearised signal cannot reveal the 

outer race bearing faults at SNR -31dB and 2% slippage. Therefore, the phase linearisation is not 

sufficient for the early fault detection and diagnosis of bearings, which tells the necessity of the 

further noise reduction method. Consequently, the PL-MSB is developed to achieve the early fault 

diagnosis of rolling bearings.  

 

Figure 6-15 Envelope spectrum of the phase linearised signal for the case of outer race fault at 

SNR -31dB and 2% slippage 

The results of the five methods, including three novel ones and two conventional ones, are depicted 

in the Figure 6-16. The Figure 6-16 (a) shows the proposed EAAE for the bearing signals with 

random slippages. The theoretical fault frequency of outer race defects is visible in the spectrum. 

The second harmonic of the fault theoretical frequency is not so pronounced due to the large 

quantities of amplitude and phase noise. The Figure 6-16 (b) displays the slice of the PL-MSB 

magnitudes which represents the concise two dimensional results for an easily interpretable 

diagram. The fault signature of the outer race failure is most obvious in these five methods. The 

PL-MSB based sparse spectrum denotes that the noise of both amplitude and phase has been 

significantly suppressed. However, due to the poor quality of the signals, the higher order 

harmonics of the fault theoretical frequency is not shown in the frequency domain. The three 

remaining methods, including EAAS and two CE methods, are displayed in Figure 6-16 (c), (d) 

and (e). These methods fail to detect the outer race faults because either the EAAS is not designed 

for the cyclostationary signals or the CE methods are unable to reduce the noise in the signals.  
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Figure 6-16 EAAE, PL-MSB, EAAS and CE for the case of outer race fault at SNR -31dB and 

0.5% slippage 

The increasing slippage case of the bearing with 1% phase noise is investigated to compare the 

effectiveness of the proposed methods. In the Figure 6-17 (a) and (b), both EAAE and PL-MSB 

are successful in obtaining the fault features from the severely contaminated noise. The capability 

of these two methods can be demonstrated sufficiently. The effectiveness of these two methods 

will be compared quantitatively based on the signature strength in Equation (4.68). Similarly to 

the case of 0.5% slippage, the EAAS is unable to extract the second order statistic parameters with 

periodicity. The definition of autocorrelation in Equation (4.46) is specific for the stationary 

signals, which exceeds the application scope when processing nonstationary signals. The SSI 

based CE in Figure 6-17 (d) can obtain the fault information but the noise carpet in the spectrum 

is very high, leading to the weak fault signatures. Additionally, due to the uncertainty of the added 
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noise, the SSI based CE is not always effective, which can be verified in the case of 0.5% slippage. 

The conventional envelope with the optimal frequency band has difficulty in identifying the faults 

and therefore the Kurtogram based CE is not beyond the expectation based on a significantly wide 

frequency band.  

 

Figure 6-17 EAAE, PL-MSB, EAAS and CE for the case of outer race fault at SNR -31dB and 

1% slippage 

The demodulated signals in the frequency domain for the case of 1.5% slippage are similar to that 

for the case of 1% slippage.  
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Figure 6-18 EAAE, PL-MSB, EAAS and CE for the case of outer race fault at SNR -31dB and 

1.5% slippage 

For the harshest case with 2% slippage between the rolling elements and raceways, the 

instantaneous frequency of the outer race faults varies from 88.0Hz to 91.6Hz. The difference of 

the fault frequency can reach up to 3.6Hz. The EAAE in Figure 6-19 (a) still works in the simulated 

signals but the strength of the fault indicators is not satisfied. It is shown in Figure 6-19 (b) that 

the PL-MSB is sufficient to give a reliable diagnosis result. However, the EAAS, SSI based CE 

and Kurtogram based CE are unable to extract fault features, which are shown in the Figure 6-19 

(c), (d) and (e). 
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Figure 6-19 EAAE, PL-MSB, EAAS and CE for the case of outer race fault at SNR -31dB and 

2% slippage 

6.4.2 Demodulation Analysis of Inner Race Fault Signals 

The simulation studies on the inner race faults follow the route arranged in the outer race faults. 

Figure 6-20 shows the spectrum of the simulated cyclostationary bearing signals at different levels 

of random slippage under the SNR of -31dB. The spectrums denote that the phase noise 

significantly decreases the amplitude of the resonant areas in the frequency domain, which 

manifests comparing to Figure 4-36. Due to the nonstationary input, the output of the bearing 

model is too difficult to characterise by the stationary signal processing approaches. Consequently 

the Fourier transform based spectrum shows that the spectral energy is smeared over frequency 
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bins. The leakage of the spectrum represents three clusters in the frequency domain other than the 

sparse components in the periodic signals. 

 

Figure 6-20 Spectra of cyclostationary inner race fault bearing signals at SNR -31dB and: (a) 

0.5% slippage; (b) 1% slippage; (c) 1.5% slippage and (d) 2% slippage 

The optimal frequency bands in these simulated inner race signals are shown in the following 

figures. The Figure 6-21, Figure 6-23, Figure 6-25, and Figure 6-27 denote the frequency bands 

by the Kurtogram which may contain the most impulsive behaviour. To summarise, the frequency 

bands recommended by the Kurtogram are substantially wide, which is not theoretically good in 

the early fault detection and diagnosis. The frequency bands selected by the operational modal 

analysis, SSI, are displayed in Figure 6-22, Figure 6-24, Figure 6-26, and Figure 6-28. In four 

slippage cases, only the second order mode of the bearing model at 7117Hz is identified from the 

cyclostationary signals. 

In the case of inner race faults at 0.5% slippage and SNR -31dB, the most impulsive frequency 

band by the Kurtogram is centred at 8333Hz with a frequency bandwidth of 16.67kHz at level 1.6 

in Figure 6-21. The SSI selects the central frequency of 7111Hz in Figure 6-22.  
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Figure 6-21 Kurtogram for the case of inner race faults at 0.5% slippage and SNR -31dB 

 

Figure 6-22 Normalised Rate of stable modes in the Stabilisation Diagram for the case of inner 

race faults at 0.5% slippage and SNR -31dB 

In the case of inner race faults at 1% slippage and SNR -31dB, the most impulsive frequency band 

by the Kurtogram is centred at 8333Hz with a frequency bandwidth of 16.67kHz at level 1.6 in 

Figure 6-23. The SSI selects the central frequency of 7111Hz in Figure 6-24.  
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Figure 6-23 Kurtogram for the case of inner race faults at 1% slippage and SNR -31dB 

 

Figure 6-24 Normalised Rate of stable modes in the Stabilisation Diagram for the case of inner 

race faults at 1% slippage and SNR -31dB 

In the case of inner race faults at 1.5% slippage and SNR -31dB, the most impulsive frequency 

band by the Kurtogram is centred at 37.5kHz with a frequency bandwidth of 25kHz at level 1 in 

Figure 6-25. The SSI selects the central frequency of 7099Hz in Figure 6-26.  
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Figure 6-25 Kurtogram for the case of inner race faults at 1.5% slippage and SNR -31dB 

 

Figure 6-26 Normalised Rate of stable modes in the Stabilisation Diagram for the case of inner 

race faults at 1.5% slippage and SNR -31dB 

In the case of inner race faults at 1.5% slippage and SNR -31dB, the most impulsive frequency 

band by the Kurtogram is centred at 12.5kHz with a frequency bandwidth of 25kHz at level 1 in 

Figure 6-27. The SSI selects the central frequency of 7180Hz in Figure 6-28.  
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Figure 6-27 Kurtogram for the case of inner race faults at 2% slippage and SNR -31dB 

 

Figure 6-28 Normalised Rate of stable modes in the Stabilisation Diagram for the case of inner 

race faults at 2% slippage and SNR -31dB 

The optimal central frequencies in the four slippage cases of the inner race faults are summarised 

in Table 6-1. Compared to the Kurtogram, the SSI method gives more reasonable determination 

of the optimal frequency bands for further demodulation analysis.  
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Table 6-2 Optimal frequency bands of cyclostationary inner race fault signals 

Cases of Inner Race Faults 

Kurtogram SSI 

Central 

Frequency 

Frequency 

Bandwidth 

Central 

Frequency 

Frequency 

Bandwidth 

0.5% Slippage  8333Hz 16666Hz 7111Hz 946Hz 

1% Slippage 8333Hz 16666Hz 7091Hz 946Hz 

1.5% Slippage 37500Hz 25000Hz 7099Hz 946Hz 

2% Slippage 12500Hz 25000Hz 7180Hz 946Hz 

 

The inner race faults are often a more challenging task due to the long transmission path and 

varying excitation forces. The impacts of rolling elements passing the localised defect are not only 

amplitude varying but also direction varying. The accelerometers on the bearing housing can only 

obtain the vibration on a single direction and the vibration projecting on the accelerometer axis 

cannot capture all the dynamic responses relating to the bearing detects, and hence, gives more 

barriers to detect and diagnose the bearing failure. Figure 6-29 depicts the demodulation results in 

the simulated case of 0.5% slippage. It is obvious that only EAAE and PL-MSB can find the fault 

theoretical frequency of the inner race faults from the extremely low SNR signals. However, the 

high order harmonics is very difficult to detect and the EAAE shows some potential for high order 

harmonics but with very low amplitude. The other three methods are not effective under these 

conditions. 
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Figure 6-29 EAAE, PL-MSB, EAAS and CE for the case of inner race fault at SNR -30dB and 

0.5% slippage 

The slippage of the bearings goes into the next level. The demodulation results of the five methods 

are denoted in Figure 6-30. The performance of these methods is similar to the case of 0.5% 

slippage.  
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Figure 6-30 EAAE, PL-MSB, EAAS and CE for the case of inner race fault at SNR -30dB and 

1% slippage 

For the inner race fault signals with 1.5% slippage, the EAAE and PL-MSB give the accurate 

diagnosis of the inner race faults. To be different, the SSI based CE gives an accurate fault indicator 

about the inner race fault. However, based on the Monte Carlo tests, this method cannot give an 

accurate indication. 
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Figure 6-31 EAAE, PL-MSB, EAAS and CE for the case of inner race fault at SNR -30dB and 

1.5% slippage 

The Figure 6-32 illustrates the analysis results of the bearing signals under the worst condition in 

the simulation studies. Based on the spectra in the Figure 6-32, the EAAE gives the best 

representation of the fault signatures. The fundamental fault frequency as well as the second order 

harmonic is significantly obvious in the EAAE spectrum, which outperforms the other methods. 

The PL-MSB in Figure 6-32 (b) also allows the effective detection and diagnosis of the inner race 

defects. The other methods fail to diagnose the inner race faults. 
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Figure 6-32 EAAE, PL-MSB, EAAS and CE for the case of inner race fault at SNR -30dB and 

2% slippage 

6.4.3 Quantification of Bearing Fault Signatures  

The spectrums of the five demodulation approaches at different levels of slippage show that the 

novel methods, EAAE and PL-MSB, are much more effective and efficient than the conventional 

methods. The strength of the fault signatures were calculated by using Equation (4.68) and the 

quantified results of the outer race and inner race are shown in Figure 6-33 and Figure 6-34. The 

EAAE and PL-MSB can generate stronger and more reliable fault signatures than the conventional 

approaches. Additionally, the method EAAS is effective in processing the periodic impacts based 

resonant modulation signals but it is not reliable in the aperiodic impacts based resonant 

modulation signals. The conventional envelope analysis has difficulty in finding the fault 
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information from the noisy signals. Between the five demodulation methods, the PL-MSB is the 

most powerful approach for extracting the most effective fault signatures.  

 

Figure 6-33 Quantification of fault signatures for tapered bearing outer race defects 

 

Figure 6-34 Quantification of fault signatures for tapered bearing inner race defects 

6.5 Summary 

In this chapter, the responses of the bearing under the aperiodic impulsive excitations are 

investigated for the effective demodulation of the bearing fault signals. To simulate the slippage 

between bearing elements, a series of random impacts that satisfied the Markov process was 

simulated to drive the linear bearing model. The cyclostationary responses under these excitations 

are significantly different to the periodic impacts in Chapter 4. The nonstationary inputs lead to 

the cyclostationary responses and the resonant modulation enlarges the periodicity of the second 

order statistics. To tackle the challenging vibration signals, two novel methods, EAAE and PL-

MSB, were developed to handle the phase noise and suppress the temporal noise. The EAAE used 

the Hilbert transform based envelope analysis to tolerate the slippage in the cyclostationary 

responses and it has been verified that the method is effective for the tapered bearing vibration 

signals. The PL-MSB reduces the phase noise by using the linear fitting of the phase variation 

along the timestamp and, after linearisation, the coupled components can be enhanced by the 

ensemble averaging. The PL-MSB demonstrates the method is effective for the aperiodic 
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impulsive excitations based resonant modulation. Both simulation and experimental studies 

demonstrate that the proposed methods can detect the bearing defects from the cyclostationary 

responses by demodulating from the limited band in resonant zones.  
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Chapter 7  Experimental Study of Tapered Roller Bearing Fault 

Detection and Diagnosis 

 

Based on the simulation studies upon the cyclostationary signals in Chapter 6, the experimental 

investigation on the tapered roller bearings were introduced in this chapter. The experiments aim 

to verify the findings in the simulation studies. Two novel methods, Ensemble Average of 

Autocorrelated Envelopes (EAAE) and Phase Linearisation based Modulation Signal Bispectrum 

(PL-MSB), are verified based on the vibration signals obtained from the tapered bearing test rig.  
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7.1 Test Facilities 

7.1.1 Mechanical and Electric Systems 

The experimental studies upon tapered roller bearings were conducted to verify the proposed fault 

detection approaches. The vibration signals are captured from an in-house bearing test system. The 

slippage rates of bearings are well controllable, which is an easy way to investigate the proposed 

methods. However, in experimental studies, it is actually very difficult or nearly impossible to 

carry out the bearing tests under the working conditions of 2% slippage and less than -30dB SNR. 

Compared to the widely used ball bearings, the tapered roller bearings are more susceptible to 

random slippage because the internal clearance is determined by manual control. The inappropriate 

clearance has a critical impact on the slippage, making it difficult to measure the slippage level in 

practice. The slippage level can be roughly controlled by adjusting the clearance in the bearings. 

The more clearance between bearing components, the more slippage when the tapered bearings 

occur.  

Figure 7-1 shows the photograph of the tapered bearing test rig. The test system includes a tapered 

bearing, a deep groove ball bearing and an induction motor. The tapered bearing is the target for 

experiments and the ball bearing is to support the long shaft. The main shaft and the inductor motor 

are connected by a flexible coupling. 

 

Figure 7-1 Photograph of the tapered bearing test rig 

Figure 7-2 shows that the internal clearance of the tapered bearing can be adjusted by the adjustable 

nut allowing it to move axially upon the threads on the shaft. The outer race of the bearing is fixed 

by the housing and the inner race is installed on the shaft. The bearing clearance is mapped with 

the gap between the adjustable nut and the flange on the main shaft. The positioning of the 

adjustable nut can control the internal clearance of the tapered bearing, which also controls the 

preload on the bearing. The internal clearance of the tapered bearings can directly influence the 

contact stiffness and determines the rotating condition of rollers. The reference gap Δ𝑑 can be 

measured accurately by a gauge block tool box, which allows the precise control of the bearing 

clearance.  
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Figure 7-2 Schematic diagram of the tapered bearing test rig 

7.1.2 Data Acquisition System  

Two charge type accelerometers were installed on the tapered bearing housing to obtain the 

vibration signals of the bearing under different clearance. The charge type accelerometers are 

usually highly sensitive when comparing to the Integrated Electronics Piezo-Electric (IEPE) 

accelerometers. The output from charge type accelerometers has to be amplified by the charge 

amplifier, which can then be measured by the data acquisition device. The lubrication condition 

has a critical impact on the dynamic responses of the bearings and therefore a thermocouple was 

installed on the housing to monitor the temperature of the bearing during the running stage. 

Additionally, a commercial encoder was attached onto the fan end of the motor by a rubber tube, 

which is used to measure the rotational speed of the whole rig. The data acquisition card for 

collecting the outputs of four transducers is National Instrument PCI-6221, a multifunction 

input/output device with the resolution of 16bit and an overall sampling rate of 250kS/s.  

The apparatus used in this experimental study is listed in Table 7-1. 

Table 7-1 Specifications of the data acquisition system 

Item Manufacturer  Model Key Specifications 

Date Acquisition Card National Instrument NI 6221 16bit, 250kS/s overall 

Charge Amplifier Brüel & Kjær B&K 2635 0.2Hz-100kHz with noise < 5 ×10-3pC 

Accelerometers Sinocera CA-YD-104T 3.640pC/ms-2 in 0.5Hz-7000Hz 

Thermocouple RS K type 0-100°C 

Encoder Hengstler RI32 100ppr, max 6000rpm 

 

Adjustable 

Nut

Tapered 

Bearing

Support 

Bearing

Δd 
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To meet the requirement of the data collection, a data acquisition software based on the 

LabWindows/CVI was developed to have a user-friendly graphical user interface (GUI) for online 

monitoring of temperature, vibration levels, and rotating speeds. The developed data collection 

software can ensure the similar running conditions of the bearing when logging the vibration 

signals, which eliminate the other undesired influence for the purpose of accurate comparison of 

the dynamic responses under different levels of slippage. All outputs of sensors were sampled 

simultaneously for 30 seconds using the data acquisition card at a sample rate of 50kHz.  

7.2 Test Procedure 

The test bearing used is a Timken type 31308 taper roller bearing. It has a bore diameter of 40mm, 

an outer diameter of 90mm and a width of 25.25mm. The specifications of the bearing are shown 

in Table 7-2. 

Table 7-2 Specification of the tapered bearing 

Parameters Specifications 

Model 31308 

Number of Rollers 15 

Bore 40mm 

Cup Outer Diameter 90mm 

Cone Width 23mm 

Cup Width 17mm 

Bearing Width 25.25mm 

Bearing Weight 0.7kg 

 

The faults simulated in this chapter are the outer race defects. Two different size of localised 

defects were seeded on the outer race of the bearings. Figure 7-3 shows the photographs of the 

faulty bearings. As shown in Figure 7-3 (a), a line scratch with 4mm length, 0.3mm width and 

0.05mm depth was created near the edge of the outer race. The Figure 7-3 (b) displays the small 

outer race fault with a line scratch of 2mm length, 0.1mm width and 0.05mm depth. Often the 

bearing faults start with localised pitting, the line scratch with a very small width was used to 

simulate a small early stage fatigue defect on the outer race. Furthermore, more than 1mm scratch 

is out of the rolling path of the rollers because the fault location is too close to the edge of the outer 

ring.  
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Figure 7-3 Photograph of the outer race faults: (a) 4mm defect; and (b) 2mm defect 

The faulty bearings were tested with five successive levels of internal clearances to simulate 

different degrees of wear. As shown in Figure 7-2 the control of internal clearances of the testing 

tapered bearing is realised by turning an adjustable nut in forward or backward directions. In this 

experiment, the internal clearance of the bearings is represented by the gap between the nut and 

the shaft flange. In this experiment, the internal clearance of the faulty bearings is designed into 

five successive levels. The gaps between the nut and the shaft flange are configured to have five 

levels based on the axial movement of the adjustable nut. These gap levels correspond to wear 

degrees of bearings, which are detailed in the Table 7-3.  

Table 7-3 Test cases 

Cases Clearance Levels Speed Gap 𝜟𝒅 

Large Outer Race Fault 

+60um 

100% 

(1500rpm) 

14.77mm 

+40um 14.79mm 

+20um 14.81mm 

0um 14.83mm 

-20um 14.85mm 

Small Outer Race Fault 

+60um 14.79mm 

+40um 14.81mm 

+20um 14.83mm 

0um 14.85mm 

-20um 14.87mm 

 

The real values of the gaps are not identical because the test rig cannot be guaranteed to be identical 

after the dismantling and re-assembly. Therefore, the absolute gap values are different for two 

cases. The 0 gap of the tapered bearings are determined by the finger tight position. By taking the 
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position of the 0 gap as a reference, the other positions are achieved by moving the adjustable nut 

along the shaft direction. For every gap level, the test system runs for about 40 minutes to finish 

the warm-up stage until the temperature indicated by the thermocouple goes up to 40°C. after 

warm-up, the motor is powered by the VFD to run at 1500rpm for 5 minutes and from the third 

minute, the signals are logged for the duration of 30 seconds at the sampling frequency of 50kHz.  

 

7.3 Demodulation Analysis of Cyclostationary Vibration Signals 

7.3.1 Determination of Optimal Frequency Bands 

The vibration signals obtained from the tapered bearing test rig are analysed following the basic 

route of signal processing. Figure 7-4 shows the temporal vibration waveforms from two 

accelerometers on the bearing housing. The vibration signals demonstrated were from the large 

outer race fault at the gap zero, which means the dynamics responses come from the zero internal 

clearance of the bearings. Both vertical and horizontal vibrations display the periodic impulses 

that are induced by the rollers passing the outer raceway.  

 

Figure 7-4 Raw vibration signals in the time domain: (a) vertical; and (b) horizontal 

Several common statistic parameters are calculated and show the general characteristics of the 

bearing vibration. The Root Mean Square (RMS) values of the raw signals are shown in Figure 

7-5. The RMS values are often used to present the violence of the vibration responses. Vibration 



180 

in both directions shows that the vibration energy is kept at the same level under different bearing 

clearances. Therefore the RMS is not robust in monitoring the wear degree of the bearings.  

 

Figure 7-5 RMS of raw vibration signals: (a) vertical; and (b) horizontal 

Kurtosis is another commonly used parameters to measure the impulsiveness of a random signal 

in essence. However kurtosis takes into account both periodic and aperiodic impulses and hence it 

can be easily interfered with. Although the kurtosis has its drawbacks, it is still a very good 

indicator in the modulation signal analysis. Figure 7-6 depicts the kurtosis values of each samples 

under five gap levels. The kurtosis vertical vibration signals show that a severe fault of the bearing 

can lead to more impulsive signals. 
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Figure 7-6 Kurtosis of raw vibration signals: (a) vertical; and (b) horizontal 

The Gini index is a statistical parameter in the time domain for measuring the inequality of data 

sets. The index is in the range from 0 to 1. Zero means the distribution of the data is perfectly equal 

whilst 1 means the absolute inequality. The Gini index is originally an indicator in the economics 

and it has been extended into the vibration analysis. The Gini index is also sensitive to the 

impulsive responses in the time domain. The Figure 7-7 displays the trend of the Gini index 

computing from the vibration signals under five clearances. The vertical vibration shows that the 

more severer the fault of the bearing, this results in a larger Gini index therefore could be a good 

indicator for the fault severity. However the horizontal vibration does not show a meaningful 

relationship because the horizontal vibration contains not only the radial vibration but also the 

axial vibration.  
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Figure 7-7 Gini index of raw vibration signals: (a) vertical; and (b) horizontal 

The spectrum analysis of the vibration signals is a widely used technique in condition monitoring. 

The Fourier transform based frequency domain analysis is always a promising technique to show 

an informative result in another perspective. Figure 7-8 displays the power spectrum of the 

vibration signal at both directions. The power spectrum is estimated by the Welch’s method using 

a window of 25,000 and an overlap of 60%. The solid line and dashed line represent the power 

spectrum of the vertical and horizontal vibration signals. The vibration shows a great distinction 

in the low and high frequency range. The vertical vibration has a higher energy level in almost 

frequency bands for two. The frequency band from 3000Hz to 7000Hz empirically contains several 

modes, which are the potential carrier frequencies for the demodulation analysis.  

 

Figure 7-8 Power spectrum of vibration signals 
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At the beginning, the optimal frequency bands are obtained by Kurtogram and SSI methods. The 

internal clearances of the bearings have a significant influence on the rotating condition and 

contact stiffness of the rolling elements, and consequently have a direct impact on the dynamic 

responses. If the system inputs are not a wide frequency band excitation, the modes of the bearings 

cannot be excited and only the natural frequencies matched within the input range can be the 

potential carrier frequency. Therefore, these two methods are employed to analyse the vibration 

signals obtained at various clearances. Figure 7-9 to Figure 7-28 show the recommended frequency 

bands for the demodulation analysis.  

In the case of the large outer race fault at clearance -20um, the most impulsive frequency band by 

the Kurtogram is centred at 14.84kHz with a frequency bandwidth of 1563Hz at level 4 in Figure 

7-9. The SSI in Figure 7-10 selects three candidates of the central frequencies, which are 1441Hz, 

4082Hz and 5797Hz.  

 

Figure 7-9 Kurtogram for large outer race fault at clearance -20um 



184 

 

Figure 7-10 Normalised Rate of stable modes in the Stabilisation Diagram for large outer race 

fault at clearance -20um 

In the case of the large outer race fault at clearance 0um, the most impulsive frequency band by 

the Kurtogram is centred at 13.54kHz with a frequency bandwidth of 2083Hz at level 3.6 in Figure 

7-11. The SSI in Figure 7-12 selects three candidates of the central frequencies, which are 4079Hz, 

5793Hz and 8237Hz.  

 

Figure 7-11 Kurtogram for large outer race fault at clearance 0um 
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Figure 7-12 Normalised Rate of stable modes in the Stabilisation Diagram for large outer race 

fault at clearance 0um 

In the case of the large outer race fault at clearance +20um, the most impulsive frequency band by 

the Kurtogram is centred at 21.87kHz with a frequency bandwidth of 2083Hz at level 3.6 in Figure 

7-13. The SSI in Figure 7-14 selects two candidates of the central frequencies, which are 4083Hz 

and 10982Hz.  

 

Figure 7-13 Kurtogram for large outer race fault at clearance +20um 
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Figure 7-14 Normalised Rate of stable modes in the Stabilisation Diagram for large outer race 

fault at clearance +20um 

In the case of the large outer race fault at clearance +40um, the most impulsive frequency band by 

the Kurtogram is centred at 22.66kHz with a frequency bandwidth of 1563Hz at level 4 in Figure 

7-15. The SSI in Figure 7-16 selects three candidates of the central frequencies, which are 4073Hz, 

4985Hz and 8241Hz.  

 

Figure 7-15 Kurtogram for large outer race fault at clearance +40um 
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Figure 7-16 Normalised Rate of stable modes in the Stabilisation Diagram for large outer race 

fault at clearance +40um 

In the case of the large outer race fault at clearance +60um, the most impulsive frequency band by 

the Kurtogram is centred at 22.92kHz with a frequency bandwidth of 4167Hz at level 2.6 in Figure 

7-17. The SSI in Figure 7-18 selects two candidates of the central frequencies, which are 4075Hz 

and 8236Hz.  

 

Figure 7-17 Kurtogram for large outer race fault at clearance +60um 
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Figure 7-18 Normalised Rate of stable modes in the Stabilisation Diagram for large outer race 

fault at clearance +60um 

In the case of the small outer race fault at clearance -20um, the most impulsive frequency band by 

the Kurtogram is centred at 22.27kHz with a frequency bandwidth of 781.3Hz at level 5 in Figure 

7-19. The SSI in Figure 7-20 selects two candidates of the central frequencies, which are 5782Hz 

and 8035Hz.  

 

Figure 7-19 Kurtogram for small outer race fault at clearance -20um 



189 

 

Figure 7-20 Normalised Rate of stable modes in the Stabilisation Diagram for small outer race 

fault at clearance -20um 

In the case of the small outer race fault at clearance 0um, the most impulsive frequency band by 

the Kurtogram is centred at 22.66kHz with a frequency bandwidth of 520.8Hz at level 5.6 in Figure 

7-21. The SSI in Figure 7-22 selects three candidates of the central frequencies, which are 3988Hz, 

8001Hz and 9013Hz.  

 

Figure 7-21 Kurtogram for small outer race fault at clearance 0um 
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Figure 7-22 Normalised Rate of stable modes in the Stabilisation Diagram for small outer race 

fault at clearance 0um 

In the case of the small outer race fault at clearance +20um, the most impulsive frequency band 

by the Kurtogram is centred at 11.98kHz with a frequency bandwidth of 1042Hz at level 4.6 in 

Figure 7-23. The SSI in Figure 7-24 selects three candidates of the central frequencies, which are 

5795Hz, 8225Hz and 10985Hz.  

 

Figure 7-23 Kurtogram for small outer race fault at clearance +20um 
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Figure 7-24 Normalised Rate of stable modes in the Stabilisation Diagram for small outer race 

fault at clearance +20um 

In the case of the small outer race fault at clearance +40um, the most impulsive frequency band 

by the Kurtogram is centred at 11.98kHz with a frequency bandwidth of 1042Hz at level 4.6 in 

Figure 7-25. The SSI in Figure 7-26 selects five candidates of the central frequencies, which are 

4176Hz, 5410Hz, 5813Hz, 8228Hz and 10984Hz.  

 

Figure 7-25 Kurtogram for small outer race fault at clearance +40um 
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Figure 7-26 Normalised Rate of stable modes in the Stabilisation Diagram for small outer race 

fault at clearance +40um 

In the case of the small outer race fault at clearance +60um, the most impulsive frequency band 

by the Kurtogram is centred at 21.87kHz with a frequency bandwidth of 2083Hz at level 3.6 in 

Figure 7-27. The SSI in Figure 7-28 selects four candidates of the central frequencies, which are 

5394Hz, 5783Hz, 8235Hz and 10989Hz.  

 

Figure 7-27 Kurtogram for small outer race fault at clearance +60um 
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Figure 7-28 Normalised Rate of stable modes in the Stabilisation Diagram for small outer race 

fault at clearance +60um 

A summary of the optimal frequency bands of the vibration signals are listed in the Table 7-4.  

Table 7-4 Optimal Frequency Bands 

Faults Clearance 

Kurtogram SSI 

Central 

Frequency 

Frequency 

Bandwidth 

Central 

Frequency 

Frequency 

Bandwidth 

Large Outer 

Race Faults 

-20um 14844Hz 1563Hz 4082Hz 1099Hz 

0um 13542Hz 2083Hz 4079Hz 1099Hz 

+20um 21875Hz 2083Hz 4083Hz 1099Hz 

+40um 22656Hz 1563Hz 4073Hz 1099Hz 

+60um 22917Hz 4167Hz 4075Hz 1099Hz 

Small Outer 

Race Faults 

-20um 22266Hz 781Hz 5782Hz 1092Hz 

0um 22656Hz 521Hz 3988Hz 1099Hz 

+20um 11979Hz 1042Hz 5795Hz 1099Hz 

+40um 11979Hz 1042Hz 5813Hz 1099Hz 

+60um 21875Hz 2083Hz 5783Hz 1099Hz 

 

7.3.2 Demodulation Results and Analysis 

Based on the optimal frequency bands selected in the last section, the demodulation results of the 

EAAE, PL-MSB, EAAS and CE are compared to show the capability of fault detection and 

diagnosis. The discussion of the fault conditions starts from the most severe which means the 

vibration signals were collected from the faulty bearing with the large defect at the minimum 

clearance. The fault signatures are supposed to be most obvious and Figure 7-29 shows the 

demodulation results of the large outer race defect at a solid contact between rolling elements and 

raceways. All five methods can successfully extract the fault frequency of the rollers passing the 

localised defect. The EEAS in the Figure 7-29 (c) shows a fair result only because the tapered 

bearings are susceptible to the random slippage. The vibration signals of the tapered bearings are 
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nonstationary and are difficult to characterise by the stationary signal processing method EAAS. 

The other four methods generate a promising result for denoting the outer race fault. The sidebands 

around the fault frequency are the shaft rotating frequency. Usually the sidebands are not visible 

in the outer race fault because the location of defects does not rotate with the rotors and the impacts 

of the collisions between rollers and faults are nearly constant. In this case, the sidebands around 

the fault frequency and harmonics are obvious, which is induced by the imbalance of the shaft.  

 

Figure 7-29 EAAE, PL-MSB, EAAS and CE for large outer race fault at clearance -20um 

The dynamic responses of the bearing under zero clearance are similar to that under -20um 

clearance. The spectra in Figure 7-30 denote the diagnostic information extracted is similar to that 

at clearance -20um in spite of the amplitude of the fault signatures being lower because of the 

smaller contact stiffness.  
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Figure 7-30 EAAE, PL-MSB, EAAS and CE for large outer race fault at clearance 0um 

When the internal clearance of the bearings increases to +20um, the contacts between the rollers 

and the large outer race fault are still decent. Hence, the fault features of the outer race defects are 

very pronounced in the demodulation results. Based on the frequency bands selected by the 

Kurtogram and SSI methods, the demodulation analysis can obtain the fault information with high 

confidence.  
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Figure 7-31 EAAE, PL-MSB, EAAS and CE for large outer race fault at clearance +20um 

The internal clearance increases to +40um by rotating the adjustable nut backwards to make the 

gap between the nut and shaft flange as 14.79mm. With the increase of the clearance, the slippages 

between bearing elements rise, which can be verified by the result of EAAS in Figure 7-32 (c). 

Due to the increase of the nonstationarity, the EAAS cannot extract the fault signatures due to the 

increase of the phase noise. The other four methods are effective because the envelope can allow 

a certain degree of random phase noise in the analysis. With the increase of the clearance, the 

amplitude of the fault frequency is lower than 1 in the EAAE, which also denotes the more 

nonstationary characteristics in the vibration signals. 
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Figure 7-32 EAAE, PL-MSB, EAAS and CE for large outer race fault at clearance +40um 

Among the test conditions of the large outer race defect, the internal clearance of +60um is the 

worst scenario in the vibration based fault detection. With this large clearance, the dynamics of 

the bearing components becomes extremely complicated and the responses due to the nonlinear 

system and nonstationary inputs increase the barriers for the effective fault detection and diagnosis 

especially in a very early stage. The results in Figure 7-33 show that only the EAAS is unable to 

find the bearing faults due to the capability of the approach limited within the range of stationary 

signals. The developed methods, EAAE and PL-MSB, represent a very sparse spectra which is 

informative with the fault frequency and the shaft rotating frequency. The fault frequency is much 

lower than that of the small clearance and the noise carpet in the conventional envelope at two 

frequency bands is higher than the approaches with the ability of noise suppression.  
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Figure 7-33 EAAE, PL-MSB, EAAS and CE for large outer race fault at clearance +60um 

The five scenarios of large outer race faults show that the conventional demodulation methods can 

reveal the fault information in the vibration signals. The bandpass filter itself has a noise reduction 

effect and it can reduce the negative impacts on the diagnostic results. For the large fault cases, 

the background noise cannot shield the fault features, consequently the methods used in the section 

except for EAAS are effective enough to indicate the fault occurrence on the outer ring.  

If the defects on the raceways are incipient, the methods without noise reduction are not capable 

for finding the tiny failure of bearings. The experiments of the small defect on the tapered roller 

bearings were carried out to examine the methods on incipient fault detection and diagnosis. The 

first scenario in the small outer race fault is the internal clearance -20um, which means the installed 

bearing has a preload without other external forces. The contact between bearing rollers and rings 

is quite solid and consequently the impacts induced by the localised defect are supposed to be the 
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strongest. The Figure 7-34 shows the diagnostic results obtained by the five methods. The results 

obtained in EAAE, PL-MSB and CE show that the fault signatures are much smaller than that in 

the large fault signals. The main component is the shaft rotating frequency, which dominates the 

demodulated signals.  

 

Figure 7-34 EAAE, PL-MSB, EAAS and CE for small outer race fault at clearance -20um 

The internal clearance of the bearing increases to the finger tight condition. Based on the frequency 

bands selected by the Kurtogram and SSI, the demodulation analysis is presented in the Figure 

7-35. The fault frequency of the outer race defect is 157Hz at the 100% motor speed. The 

spectrums of EAAE and PL-MSB methods in the Figure 7-35 (a) and (b) display a manifest fault 

feature. Figure 7-35 (d) displays that the SSI based CE can extract the fault frequency from the 

noisy signals although the noise floor is significantly high in the spectrum. The Kurtogram based 
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CE in Figure 7-35 (e) fails to find the fault information because the frequency band used is not 

rich of fault information.  

 

Figure 7-35 EAAE, PL-MSB, EAAS and CE for small outer race fault at clearance 0um 

The next scenario of the bearing test is the internal clearance of +20um. The small outer race defect 

at the clearance +20um is a challenging case for the fault detection. The Figure 7-36 displays the 

demodulation analysis of the bearing faults. The EAAE and PL-MSB in Figure 7-36 (a) and (b) 

tell the fundamental frequency of the outer race defect has a very tiny amplitude. The most obvious 

component is the shaft rotating frequency. As shown in Figure 7-36 (d), the SSI based CE is hardly 

to highlight the fault signature from the background noise. The Kurtogram based CE shows the 

same strength of the fault signatures but the noise floor contains too random peaks, which confuses 

the final diagnostic result.  
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Figure 7-36 EAAE, PL-MSB, EAAS and CE for small outer race fault at clearance +20um 

The internal clearance of the bearings increases to +40um. The slippages between rollers and 

raceways would increase to a high level and the vibration signals are quite difficult to be analysed 

by the stationary signal processing methods. The input of the bearing system is not as regular as 

the pure rotating condition. The fault diagnosis of the outer race fault is a tough task because the 

impacts induced by the localised faults show a flat spectrum in the frequency domain, which is a 

typically cyclostationary signal. Figure 7-37 describes the demodulation analysis based on the 

resonant modulation mechanisms. The EAAE in Figure 7-37 (a) shows a clean spectrum, in which 

the fault frequency of 157Hz is obvious and the rotating frequency sideband is also visible due to 

the imbalance of the shaft. The high amplitude of fundamental frequency of the rotating shaft 

denotes the dominate signals in the demodulated waveform. The PL-MSB in Figure 7-37 (b) 

displays the method can extract the fault information from the noisy signals however the noise is 



202 

not sufficiently suppressed due to the instantaneous phase not being accurately estimated. It is not 

beyond expectation that the EAAS is not effective for this nonstationary signal. With the assistance 

of the proper frequency band, the SSI based CE can obtain the information of the outer race fault 

but the fault signature does not exceed the noise carpet and it can be easily neglected because of 

the tiny amplitude. The spectrum in the Figure 7-37 (e) shows that the Kurtogram based CE cannot 

find the fault which occurred on the outer race.  

 

Figure 7-37 EAAE, PL-MSB, EAAS and CE for small outer race fault at clearance +40um 

The most challenging signals in the tapered roller bearing tests are the internal clearance of +60um. 

The clearance between the inner ring and the outer ring leads to a significantly low contact stiffness 

which means the rollers suffer from a high level of random slippages. The cyclostationary bearing 

signals analysed by the five methods and the results are shown in Figure 7-38. The EAAE method 

clearly shows the defect frequency of the outer race. The rotating frequency is still the most 
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pronounced component in the demodulated signals. The PL-MSB delivers a best diagnostic 

spectrum with a significantly obvious fault frequency, which clearly shows the outer race fault. 

The conventional envelope is not reliable at this condition because the fault signature is so weak 

that the fault features are submerged into the background noise.  

 

Figure 7-38 EAAE, PL-MSB, EAAS and CE for small outer race fault at clearance +60um 

7.3.3 Quantification of Bearing Fault Signatures  

To quantify the practical performance of five demodulation methods, the signature indicators 

𝑆𝑁𝑅𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 extracted in processing the experimental vibration signals are shown in Figure 7-39. 

The fault signatures extracted by the EAAE and PL-MSB are more pronounced than the other 

three methods. Although the fault size is large, the fault information extracted by the EAAS is 

attenuated substantially with the increase of the internal bearing clearance, which can show the 
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vibration signals of the tapered bearing is cyclostationary. In spite of the EAAS, the other four 

approaches can detect the occurrence of the outer race fault. The developed EAAE and PL-MSB 

are the most effective and the strength of the fault features is more than 18dB at all five clearances. 

The SSI based CE indicate better diagnostic results than the Kurtogram based CE because the 

frequency band selected by the SSI is more reliable. 

 

Figure 7-39 Signature indicators 𝑆𝑁𝑅𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 of large outer race faults 

For the very tiny fault on the outer ring of the tapered bearing, the nonstationary fault impacts are 

weak and the induced responses are of poor SNR. The fault signatures extracted by the five 

methods are shown in Figure 7-40. The EAAE and PL-MSB demonstrate the effectiveness on 

early fault detection and diagnosis.  

 

Figure 7-40 Signature indicators 𝑆𝑁𝑅𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 of small outer race faults 

7.4 Summary 

The experimental studies on the tapered roller bearings verified the findings in the simulation 

investigation. The slippage phenomenon of rolling bearings introduced by Randal et al [110] were 

introduced in practical working conditions. The slippage within tapered bearings was controlled 

by the internal clearances. The vibration signals obtained at five clearance levels were collected to 
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examine the performance the methods on demodulating the resonant responses. Using the 

aperiodic impulses as the system input can lead to the cyclostationary output of the vibration 

signals. In this resonant modulation process, the demodulation methods for periodic signals are 

ineffective in this nonstationary condition. EAAE and PL-MSB are powerful methods to detect 

the incipient bearing faults even when the SNR of the signals is extremely low.  
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Chapter 8 Conclusions and Future Work 

 

This chapter summarises the research activities and achievements for vibration-based machine 

condition monitoring in this thesis. The research achievements for the objectives are also 

summarised here. The contributions to knowledge are also included in this chapter. Finally, the 

future works are recommended for effective machine condition monitoring by using the resonant 

modulation and demodulation. 
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8.1 Conclusions 

This research aims to exploit the resonant modulation in rotating machines for effective and 

efficient fault detection and diagnosis at early stages. By modelling and simulation based studies, 

several signal processing methods and a novel sensing technique were developed to extract fault 

signatures from extremely noisy vibration signals. The research objectives have been fulfilled and 

summarised as follows 

(1) The typical demodulation methods, including envelope analysis, energy operator, 

modulation signal bispectrum (MSB), spectral correlation, were reviewed to present state-

of-the-art usage of resonant modulation in vibration based condition monitoring of rotating 

machines.  

(2) The dynamic responses of a linear system under different types of excitations were 

investigated to highlight the characteristics in resonant modulation, which leads to the basis 

for developing reliable demodulation methods. 

(3) The stochastic subspace identification (SSI) was employed to determine the optimal central 

frequencies from vibration signals, showing more reliable results than the widely used 

Kurtogram method. 

(4) The ensemble average of autocorrelation signals (EAAS) was developed to suppress the 

random noise and enhance the modulating signals in the resonant zones. The developed 

method can demodulate the fault information for the resonant behaviour under the very 

poor SNR up to -35dB. 

(5) The ensemble average of autocorrelated envelopes (EAAE) and phase linearisation based 

modulation signal bispectrum (PL-MSB) were developed to characterise the aperiodic 

impacts induced resonant modulation signals and the second order cyclic properties can be 

identified by these two novel methods from very poor-quality signals.  

The research activities carried out in the thesis are based on the resonant modulation in rotating 

machines and the findings can be summarised as follows: 

(1) The review of the frequently used demodulation methods shows that resonant modulation 

and demodulation in vibration-based condition monitoring of rotating machines attract 

substantial attention but the insight of the resonant modulation has not been sufficiently 

investigated from the perspective of system identification.  

(2) Based on the hypothesis of linear systems, the resonant modulation in outputs of the 

systems vary according to different input excitations. Three types of inputs (periodic, 

aperiodic impulsive, and quasi-stationary) can lead to different modulation characteristics. 

The effective demodulation analysis of these responses is the most beneficial part for 

utilising the resonant modulation in vibration based condition monitoring. The 

characteristics of the vibration signals are expected to be effectively analysed by different 

signal processing approaches for early fault detection and diagnosis at a very early stage. 
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(3) The stochastic subspace identification (SSI) approach is employed to select the optimal 

central frequencies from the viewpoint of system identification other than to select the most 

impulsive frequency band by using methods like Kurtogram. The simulation and 

experimental studies show that the SSI is more robust to the strong background noise. 

(4) A novel method, named ensemble average of autocorrelation signals (EAAS), was 

developed to demodulate the periodic impacts induced resonant modulation signals and 

suppress the random noise for the purpose of effective and efficient early fault detection. 

Both simulation and experimental studies show that the EAAS is a more reliable and more 

accurate approach than the conventional envelope analysis for identifying the incipient ball 

bearing faults from severely contaminated vibration signals.  

(5) The responses of the bearing under the approximate periodic impulsive excitations are 

cyclostationary. The random phase of aperiodic impacts is simulated by a Markov process 

and the cyclostationary responses under the approximately periodic excitations are 

characterised by two novel methods, EAAE and PL-MSB. Both simulation and experiment 

studies demonstrate that the proposed methods can detect the bearing defects from the 

extremely noisy cyclostationary responses by demodulating from the limited bandwidth 

vibration in resonant zones.  

 

8.2 Contributions to Knowledge 

The research activities in this thesis are concentrated on the resonant modulation and demodulation 

and the investigation has delivered new understanding on vibration based machine condition 

monitoring. The contributions to knowledge are listed as follows: 

(1) The ensemble average of autocorrelation signals (EAAS) is a novel method to suppress the 

random noise and enhance the periodicity of the fault information. Combined with the 

central frequencies recommended by the stochastic subspace identification (SSI), the 

EAAS is able to deliver a promising and accurate fault diagnosis of early bearing faults.  

(2) The ensemble average of autocorrelated envelopes (EAAE) developed for analysing 

impulsive cyclostationary signals is capable to identify the incipient defect from the 

severely contaminated nonstationary vibration signals.  

(3) The phase linearisation based modulation signal bispectrum (PL-MSB) can eliminate the 

phase noise and tune the cyclostationary measurements into the deterministic components 

dominated signals. The PL-MSB is capable of characterising the second order 

cyclostationary vibration signals from the rolling element bearings and consequently gives 

effective and efficient detection and diagnosis of bearing failure at a very early stage.  
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8.3 Future Work 

The resonant modulation in rotating machines has been investigated in this thesis and the 

modulation phenomena give potentials for effective and efficient detection and diagnosis at a very 

early stage. The continuation of the study could be considered from the following points. 

(1) The SSI based optimal frequency bands can be improved to find the optimal natural 

frequency from the identified modal parameters. Moreover, the other operational modal 

analysis methods can be evaluated to find the appropriate methods for the different inputs 

induced resonant modulation behaviour. 

(2) The background noise in raw vibration signals can be suppressed for the purpose of more 

accurately estimating the instantaneous phase of the carrier signal. On this basis, the PL-

MSB can be applied more effectively for cyclostationary bearing signals.  

(3) The conventional on-shell accelerometer is challenging in abstracting the desired 

information due to the contamination of the noise and the impacts from nearby machines 

or components. Novel sensing techniques can be explored to increase signal qualities. For 

instance, the On-Rotor Sensing (ORS) is a technique to directly obtain the rotor vibration 

signals by using an on-rotor accelerometer. The ORS can obtain high signal to noise ratio 

signal by nature because the ORS signals are exclusive of the complicated transmission 

path and the large quantities of background noise. 

(4) Most of the machine failures can be attributed to lubrication failure. The early fault 

detection and diagnosis is recommended to monitor the lubrication conditions other than 

the existent defects. Monitoring lubrication conditions can lead to more effective and 

efficient detection and diagnosis of rotating machines.  
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