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Abstract 

The aim of this research was to determine the origins of the microbes that drive bone 

diagenesis. Studying the microstructural changes skeletal tissue can undergo after death could 

lead to more accurate ways of establishing postmortem intervals when dealing with 

skeletonised remains. Previous research has allowed the development of methods to determine 

the post mortem interval (PMI) during the decomposition of the soft tissue, but this estimation 

becomes less accurate as the PMI increases. This study focused on the physical changes that 

occurred, from the macroscopic level of weathering and surface modifications, to the 

histological changes to the microstructure of the hard tissue. Proteomic analysis to chart 

changes in the bone proteome over time was also conducted. 

This research compared different tissue types and different deposition environments; three 

tissue types, defleshed bone, excised fleshed limbs, and whole rat; two deposition 

environments, buried in soil, exposed on the surface. Forty-six medium sized domestic rats 

(Rattus rattus) were used for this experiment, giving three repeats per condition plus control 

(day 0) analysis. This was a multi-analytical approach with a variety of techniques being 

implemented; soft tissue decomposition was recorded using the total body score (TBS) followed 

by the macroscopic analysis of bone surface weathering. Ultra-violet (UV) analysis was 

conducted alongside histological analysis using compound microscopy and digital microscopy. 

Further analysis of the bone was conducted using Confocal Laser Scanning Microscope (LSM). 

Bone proteomics were added as a result of collaboration with Dr Noemi Procopio at 

Northumbria University. 

Overall, this experiment produced statistically significant results for the increasing presence of 

diagenetic changes to the bone with increasing PMI. P values of less than 0.05 were obtained 

between samples at 4 weeks PMI and 28 weeks PMI for the histological analysis, Confocal LSM 

and proteomic analysis, which confirm the increasing destruction of bone integrity with 

increasing PMI.  It was also found that the earliest signs of microscopic foci of destruction (MFD) 

occurred prior to the skeletonisation of the remains, agreeing with previous research. It was 

found that the deposition environment did not play the significant role in bone diagenesis that 

was hypothesised. The same was true for the presence of the gut microbiome, which did 

accelerate the initial diagenesis of the bone within the first 8 weeks. Diagenesis appeared to 

slow after the first 8 weeks, and all samples showed little comparable differences in diagenetic 

changes by 28 weeks. 

This research contributes to our understanding of bone diagenesis in forensic timescales. It gives 

us more information about the role of gut and soil bacteria in bone diagenesis and could aid the 

estimation of PMI in certain situations. However, more research is needed with longer 

timescales, and human subjects, to improve accuracy. 
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Chapter One: 

1.1 Introduction 

The purpose of this research was to determine the origin of the microbes that drive the 

decomposition of skeletal remains. It is believed that by studying the changes that bone can 

undergo after death, post mortem interval (PMI) estimations could be greatly improved (Ross 

& Cunningham, 2011; Hoke et al, 2013; Boaks et al, 2014). This could have huge implications in 

forensic science and police investigations, as well as having the potential to help in 

archaeological research. 

During police investigations it can sometimes be necessary to analyse skeletal remains. This is 

most often undertaken by a forensic anthropologist, and during these anthropological 

investigations, the environment in which the remains have been left can have a major impact 

on the integrity of the bone (Cappella et al, 2018). This is due to microbial interactions which 

can cause measurable physical and chemical changes to the microstructure of the hard tissue. 

These changes are referred to as ‘bone diagenesis’ (Langley & Tersigni-Tarrant, 2017). 

Macroscopically, these changes can present as weathering, in the form of cracking, 

discolouration, and flaking to the external surface of the bone (Behrensmeyer, 1978; Pokines et 

al, 2018). Histologically, they can be seen as microbial infiltration. Known as microscopical foci 

of destruction (MFD), they present as tunnels and bores in the microstructure of the bone, 

obliterating the osteons and other features in their wake (White & Booth, 2014; Booth et al, 

2016). Collagen, which makes up 90% of the organic matter within bone, has the ability to 

fluoresce under light from the ultra-violet (UV) spectrum. Due to this ability, the loss of collagen 

can also be measured as a reduction in fluorescence can be seen (Ramsthaler et al, 2009; Hoke 

et al, 2013). Proteomic analysis has recently been introduced as a potential source of 

information when analysing skeletal remains (Procopio et al, 2018). This analysis has mostly 

been utilised in archaeological contexts for detecting bone diagenesis (Buckley & Wadsworth, 

2014). However, recent research conducted by Procopio et al (2017; 2018) has shown potential 

for PMI estimation.  

Current literature focuses on two main themes; determining between archaeological bones, 

generally those more than 100 years old (Creamer & Buck, 2009), and those of forensic interest 

(Maggiano et al, 2006; Creamer & Buck, 2009; Capasso et al, 2017); and more sensitive methods 

for determining PMI (Ross & Cunningham, 2011; Wilson & Christensen, 2017; Cappella et al, 

2018). Current research into PMI estimation centres around conflicting theories of the source 

of the microbes that drive bone diagenesis, with literature citing both the endogenous 
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microbiome of the gut (Jans et al, 2004; White & Booth, 2014), and the exogenous colonies 

found in soil (Hackett, 1981; Reiche et al, 2003). 

The ability to accurately estimate PMI is of importance to police investigations as it could have 

the potential to help establish timelines, narrow down suspects, locate further evidence, and 

determine victim identity in the case of unidentified remains (Overholtzer, 2015; Pérez-

Martínez et al, 2017). When skeletonised remains are found, the first thing to establish is 

whether they are of forensic interest or archaeological (Maggiano et al, 2006; Hoke et al, 2013; 

Capasso et al, 2017; Cappella et al, 2018). This can often be an ambiguous question as the cut-

off limit can vary from region to region, for example Hoke et al (2013) writes that less than 50-

60 years PMI is classed as forensically relevant, Ramsthaler et al (2009) states the limit as 30-50 

years, while Creamer and Buck (2009) go further with a limit of 100 years. Once this has been 

established, it is necessary to narrow down the post mortem interval. Due to the complex 

process of decomposition, however, this has proven to be difficult to achieve. At best, forensic 

anthropologists can give a range of time; this can often be in the range of months in the case of 

fully skeletonised remains – the longer the PMI, the longer the range is (Langley & Tersigni-

Tarrant, 2017).  

Much research has already been conducted into ways to accurately estimate PMI but there is 

still much more to do (Ross & Cunningham, 2011; Hoke et al, 2013; Wilson & Christensen, 2017; 

Cappella et al, 2018). Decomposition is a complicated process and as such, it can be affected by 

many factors; this includes intrinsic factors such as the health and condition of the individual, 

and extrinsic factors, for example the burial environment, clothes, temperature (Langley & 

Tersigni-Tarrant, 2017). With this in mind, this project focused on two different conditions; 

buried in soil vs exposed on the surface, to determine how the different environments affect 

the decomposition process and level of bone diagenesis observed.  

Further to this, the project’s main aim was to determine the origins of the microbes that drive 

bone diagenesis. To answer this, various samples were left in the two conditions at 

HuddersFIELD, the University of Huddersfield’s Outdoor Taphonomic Facility. These samples 

were divided into three categories; whole rats (Rattus rattus), the fleshed legs of rats, the 

defleshed long bones of rats. The purpose of these categories was to control the origin of 

potential microbes; the whole rats would contain endogenous bacteria from the body, including 

the gut bacteria; while the fleshed legs would contain only any bacteria present in the flesh (if 

any); and the defleshed bones would theoretically be free of endogenous bacteria associated 

with the flesh, so any bacteria seen could be assumed to be environmental bacteria (exogenous 
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bacteria). The long bones were extracted from the whole rats and fleshed legs and analysed 

alongside the defleshed bones to determine the presence of any diagenetic processes. The 

bones from the three categories were compared to determine the level of diagenetic 

alterations, and whether bone in one category/condition was more susceptible to diagenetic 

changes than the others.  

A variety of techniques were used to analyse these samples; these ranged from macroscopic 

observations of the samples when they were recovered from HuddersFIELD, to the microscopic 

changes on the bone surface and within cross sections of the bones. To determine the PMI of 

human remains, forensic specialists can refer to the Total Body Score (TBS), a table of known, 

observable changes that occur to the body after death (Langley & Tersigni-Tarrant, 2017). This 

project used an adapted version of TBS to note changes that occurred to the soft tissues of the 

rat samples over time, which took into consideration differences such as fur and body size. Bone 

surface changes were analysed using a Keyence microscope, while histological changes to the 

bone were observed under compound microscopy, Keyence digital microscopy and Confocal 

laser scanning microscope (LSM). The Keyence was chosen due to its greater magnification 

ability and clarity of images while the Confocal LSM was chosen as a novel technique. The ability 

to conduct histological analysis with little preparation of the samples was an added factor, as 

was the Confocal LSM’s potential to quantify collagen loss via fluorescence of the bones. With 

the help of Dr Procopio at Northumbria University, proteomic analysis was conducted on some 

samples. This was to determine whether any changes in protein content were affected by 

increasing PMI, different deposition environments, or tissue types.  

Rats were used in this project as an alternative to human tissues. In the case of forensic 

relevance, it would have been preferable to obtain human subjects, however this was not an 

option due to restrictions in the UK (HTA, 2004). When it comes to the use of human tissue, 

there are certain factors to consider; the main two being consent, and the ethical implications 

of the research being conducted. The Human Tissue Act 2004, does not strictly prohibit the use 

of human remains for this type of research, therefore it could be possible were the remains 

donated specifically to this type of project, however the ethical considerations would also have 

to be met. Animals, such as pigs (Sus scrofa domesticus), are often used as analogues for 

humans, but this is not ideal. Differences in diet, disease, gut microbiome, bone microstructure 

(to name a few), can make them unreliable substitutes (Jans et al, 2004; Brönnimann et al, 

2018). In fact, Jans et al (2004) found that animals bones are less likely to be attacked by 

microbes than human bone, and when they are attacked, fungal microbes are more likely to be 
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the cause than bacterial. A comparative atlas was used to compare rat bone to human bone, 

and to take into account any differences in the microstructure (Treuting et al, 2017). 

1.2 Aims 

The aims of the research are: 

• To determine the origin of the microbes which drive bone diagenesis. 

• To determine which techniques best identify bone diagenesis. 

• To determine which criteria works best for quantifying bone diagenesis. 

• To determine what impact the deposition environment has on bone diagenesis. 

1.3 Research Questions 

1. What is bone diagenesis? 

2. How is it defined? (In terms of the following parameters: weathering patterns, 

discolouration, internal structure, tunnelling, bacterial infiltration, histological changes, 

collagen content using birefringence and UV fluorescence). 

3. How do these parameters change with time? 

4. Can changes in these parameters be used to determine post mortem interval? 

5. Does autolysis (the cell lead decomposition) affect bone diagenesis? (Measured by set 

parameters using excised, fleshed legs). 

6. Does the presence of internal gut bacteria influence bone diagenesis? (Measured by set 

parameters using whole rats). 

7. Does the presence of soil influence bone diagenesis? (Measured using the parameters 

set above). 

 

1.4 Hypotheses 

Alternative hypotheses are presented, the null hypotheses are given in italics. 

• There will be a statistically significant increase in bone diagenesis as measured by 

weathering patterns in the bones of the exposed, defleshed samples, compared to the 

whole and fleshed samples. 

• There will not be a statistically significant increase in bone diagenesis as measured by 

weathering patterns in the bones of the exposed, defleshed samples, compared to the whole 

and fleshed samples. 

• There will be a statistically significant increase in bone diagenesis as measured by 

discolouration in the bones of the buried, defleshed samples, compared to the whole and 

fleshed samples. 
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• There will not be a statistically significant increase in bone diagenesis as measured by 

discolouration in the bones of the buried, defleshed samples, compared to the whole and 

fleshed samples. 

• There will be a statistically significant increase in bone diagenesis as measured by the 

integrity of the internal structure in the bones of the whole samples, compared to the 

fleshed and defleshed samples. 

• There will not be a statistically significant increase in bone diagenesis as measured by the 

integrity of the internal structure in the bones of the whole samples, compared to the 

fleshed and defleshed samples. 

• There will be a statistically significant increase in bone diagenesis as measured by tunnelling 

due to bacterial infiltration in the bones of the whole samples, compared to the fleshed 

and defleshed samples. 

• There will not be a statistically significant increase in bone diagenesis as measured by 

tunnelling due to bacterial infiltration in the bones of the whole samples, compared to the 

fleshed and defleshed samples. 

• There will be a statistically significant increase in bone diagenesis as measured by 

histological changes in the bones of the whole samples, compared to the fleshed and 

defleshed samples. 

• There will not be a statistically significant increase in bone diagenesis as measured by 

histological changes in the bones of the whole samples, compared to the fleshed and 

defleshed samples. 

• There will be a statistically significant increase in bone diagenesis as measured by the 

decrease in collagen content in the bones of the whole samples, compared to the fleshed 

and defleshed samples. 

• There will not be a statistically significant increase in bone diagenesis as measured by the 

decrease in collagen content in the bones of the whole samples, compared to the fleshed 

and defleshed samples. 

• There will be a statistically significant increase in bone diagenesis as measured by the 

change in bone proteome in the bones of the whole samples, compared to the fleshed and 

defleshed samples. 

• There will not be a statistically significant increase in bone diagenesis as measured by the 

change in bone proteome in the bones of the whole samples, compared to the fleshed and 

defleshed samples. 
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General observations 

• There will be a continuing, measurable increase in weathering in the bones of the exposed 

samples over the time period of 32 weeks. 

• There will not be a continuing, measurable increase in weathering in the bones of the 

exposed samples over the time period of 32 weeks. 

• There will be a continuing increase in discolouration in the bones of the buried samples 

over the time period of 32 weeks. 

• There will be a continuing increase in discolouration in the bones of the buried samples over 

the time period of 32 weeks. 

• There will be a continuing, measurable change in the integrity of the internal structure of 

the bones in all conditions over the time period of 32 weeks. 

• There will not be a continuing, measurable change in the integrity of the internal structure 

of the bones in all conditions over the time period of 32 weeks. 

• There will be a continuing, measurable increase in tunnelling due to bacterial infiltration in 

the bones in all conditions over the time period of 32 weeks. 

• There will not be a continuing, measurable increase in tunnelling due to bacterial infiltration 

in the bones in all conditions over the time period of 32 weeks. 

• There will be a continuing, measurable increase in histological changes in the bones in all 

conditions over the time period of 32 weeks. 

• There will not be a continuing, measurable increase in histological changes in the bones in 

all conditions over the time period of 32 weeks. 

• There will be a continuing, measurable decrease in collagen content in the bones in all 

conditions over the time period of 32 weeks. 

• There will not be a continuing, measurable decrease in collagen content in the bones in all 

conditions over the time period of 32 weeks. 
 

Condition/origin of bacteria 

• There will be a measurable change in bone diagenesis in the bones of the fleshed samples 

due to autolysis. 

• There will not be a measurable change in bone diagenesis in the bones of the fleshed 

samples due to autolysis. 

• There will be a statistically significant increase in bone diagenesis in the bones of the whole 

samples due to the presence of gut bacteria, compared to the fleshed and defleshed 

samples. 



 

18 | P a g e  
 

• There will not be a statistically significant increase in bone diagenesis in the bones of the 

whole samples due to the presence of gut bacteria, compared to the fleshed and defleshed 

samples. 

• There will be a measurable difference in bone diagenesis in the bones of the buried 

samples, compared to the exposed samples. 

• There will not be a measurable difference in bone diagenesis in the bones of the buried 

samples, compared to the exposed samples.  

This research has potential to impact forensic science as an understanding of the origins of 

bacteria which drive decomposition could help in the cases of clandestine graves (White & 

Booth, 2014). Not only could it help establish the PMI of the remains, it could also have the 

potential to determine whether the remains have previously been buried elsewhere due to the 

effect different environments could have on decomposition (Langley & Tersigni-Tarrant, 2017). 

Further to this, it could also inform the archaeological sciences in their understanding of bone 

degradation. 
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Chapter Two: 

Taphonomy and Bone Diagenesis – Current Research and Theories 

2.1 Introduction 

It is well known that the soft tissues decompose after death. Not only has there been much 

research into this, but it is obvious due to the visible changes remains undergo (Wilson & 

Christensen, 2017). What is lesser known, particularly in non-research fields, is that the hard 

tissues also undergo decomposition (Ross & Cunningham, 2011). Unlike the soft tissues, these 

changes are not as obvious; they occur at a much slower rate and, with the exception of surface 

modifications as the result of weathering and/or soil erosion, they are not easily visible (Jans et 

al, 2004). These changes occur to the microstructure of the osteological tissue, and therefore 

cannot be seen without the aid of histological or analytical equipment (Turner-Walker & 

Syversen, 2002; Jans et al, 2004).  

A greater understanding of bone diagenesis and the forms it can take could have important 

implications for the fields of forensic anthropology, and archaeology. For the former, it could 

lead to better techniques for estimating the PMI, while for the latter it could give an 

understanding of how long bones are likely to last in different burial contexts (Capella et al, 

2018). More accurate techniques for establishing PMI is of great interest to many researchers 

and much has been written on this (Bell et al, 1996; Creamer & Buck, 2009; Ramsthaler et al, 

2011; Wilson & Christensen, 2017; Capella et al, 2018; Sarabia et al, 2018). Due to the complex 

nature of decomposition, however, determining PMI accurately is somewhat elusive (Vass, 

2011); currently forensic investigators can determine a range of time but this becomes less 

accurate the longer the post mortem period (Wilson & Christensen, 2017). 

Bone diagenesis studies have mostly focused on archaeological samples (Reiche et al, 2003; 

Booth et al, 2016; Capella et al, 2018), therefore it had been assumed that diagenesis only 

occurred once remains had reached the skeletal phase; the final and longest stage of 

decomposition (Brönnimann et al, 2018). Recent studies, however, have led to a shift in this 

assumption (Bell et al, 1996; Boaks et al, 2014; White & Booth, 2014). 

There are four ways to determine whether bone diagenesis has taken place. According to Dixon 

et al (2008) they are; 

1. The destruction of the histological integrity, 

2. Change in crystallinity, 

3. Increase in porosity, 
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4. Loss of collagen 

This research focuses on the loss of histological integrity and current literature cites the most 

likely causes of these changes to be microbial infiltration, either fungal (generally only seen in 

aquatic depositions), or bacterial (Hackett, 1981). There are two theories for the origins of these 

bacteria (White & Booth, 2014); 

1. The endogenous bacteria of the gut microbiome 

2. The exogenous bacteria from the burial environment, such as bacterial colonies within 

soil.  

This review will discuss the taphonomic processes that lead to bone diagenesis, in particular the 

loss of histological integrity, and the key research that has been conducted in this area. 

2.2 Process of Decomposition 

The phrase ‘taphonomy’ comes from the Greek words, Taphos and Nomos, meaning grave law 

(Blau, 2014). It is the study of decomposition; a broad subject that covers the processes from 

the point of death through to the retrieval of the remains (Pokines & Symes, 2014). 

Decomposition begins soon after death and can be broken down into stages (Goff, 2009). While 

the order of each stage can be determined with some accuracy (Brooks, 2016), due to the 

potential effects of intrinsic and extrinsic factors, the rate at which each stage occurs cannot be 

(Gelderman et al, 2019).  

Langley & Tersigni-Tarrant (2017) write that there are five stages of decomposition; 

Table 2.1 Stages of decomposition.  

Stage Characteristics Time Interval 

Fresh Algor mortis, livor mortis, rigor 

mortis 

1 day – approx. 1 week 

Discolouration Marbling, abdomen slight green, 

skin slippage 

Day 1 – weeks  

Bloat (active 

decomposition) 

Distention of tissues, overall colour 

changes, leaching of VFAs 

Starts within 48 hours 

Advanced 

decomposition (initial 

skeletonisation) 

Purging of body fluids, exposure of 

skeletal elements 

Starts at least 1 week after 

death 

Skeletonisation Exposure and drying of the entire 

skeleton 

Several weeks – months 

after death 

Source: Langley & Tersigni-Tarrant (2017). p.281Autolysis is the first stage to occur; this is the destruction of 

the cells due to swelling, which in turn is caused by the lack of oxygen being circulated (Pokines 

& Symes, 2014). Within the first 24 hours the Mortis Triad takes place; 
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1. Livor mortis – the settling of the blood to the lower parts of the body due to gravity, 

resulting in discolouration (Goff, 2009). This can be seen within less than an hour of 

death, and can become ‘fixed’ around 8 hours after (Pokines & Symes, 2014), 

2. Rigor mortis – the stiffening of the muscles (Pokines & Symes, 2014). This occurs as a 

result of a decrease in ATP and pH, it can begin within 2 hours of death occurring, with 

the body entering full rigor at around 12 hours after death (Goff, 2009). It is generally 

accepted that this stiffness lasts for around 12 hours before starting to disappear, again 

over the course of 12 hours (Brooks, 2016), although extrinsic factors, such as 

temperature, can change the rate at which this occurs (Goff, 2009; Cockle & Bell, 2015). 

3. Algor mortis – the cooling of the body temperature (Goff, 2009). This can be greatly 

affected by both intrinsic and extrinsic factors, such as mode of death, size of the 

individual, placement of the individual in relation to heat sources (Goff, 2008; Pokines 

& Symes, 2014). 

Putrefaction, also referred to as the bloating or active stage (Langley & Tersigni-Tarrant, 2017), 

occurs after. This is the destruction of the soft tissues by the host’s own microbiome and is 

discussed in section 2.3.1. 

Advanced decomposition occurs when skeletonisation begins (Pokines & Symes, 2014). The 

microbial activities of the intrinsic bacteria, as well as the activities of various insects that feed 

on the remains, result in the destruction of the soft tissues and exposure of the osteological 

material (Pokines & Symes, 2014; Langley & Tersigni-Tarrant, 2017). 

The final, and longest stage, of decomposition is the skeletal stage (Langley & Tersigni-Tarrant, 

2017). This is considered to have been reached when more than 50% of the bone tissue has 

been exposed (Langley & Tersigni-Tarrant, 2017). 

Current PMI estimation techniques take these stages into account; it is clear from Table 2.1 that 

as the remains progress onto each stage, the potential time interval increases. The mortis triad; 

algor mortis, rigor mortis, livor mortis, can help in the first hours, or even days after death 

(Byers, 2017) but once this stage has passed, methods of PMI estimation become less accurate 

(Wilson & Christensen, 2017). The skeletonisation stage is prone to the most inaccuracy when 

determining the PMI interval. This is in part due to a lack of understanding of the influence the 

endogenous and exogenous microbes have on the skeletal tissue (White & Booth, 2014; Wilson 

& Christensen, 2017).  

2.3 The Role of Bacteria 
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Bacteria plays a big role in the process of decomposition (Hyde et al, 2015), it is the driving force 

behind the putrefactive stage and leads to the eventual skeletonisation of the remains (Goff, 

2009; Hyde et al, 2015). These bacteria come from a variety of sources; from the intrinsic 

bacteria in the body, to the extrinsic bacteria found in the environment, most often that found 

within the burial soil and/or carried to the remains via the insects that come to feed on the soft 

tissue (Goff, 2009). 

2.3.1 The Microbiome of the Human Gut 

The human body contains tens of trillions of bacterial cells (Ursell et al, 2012). While these are 

found throughout the body, the majority reside in the gut, helping to ensure a healthy digestive 

system (Lloyd-Price et al, 2016). Systems within the body help to keep these microbes in place, 

and their numbers limited in life (Goff, 2009) However, in death, they are able to migrate 

throughout the body as the process of decomposition occurs. 

 

Fig 2.1 A healthy microbiome. Source: Lloyd-Price et al (2016) 

These microbes, shown in Fig 2.1, waste no time digesting the soft tissues of the body after 

death, resulting in the putrefaction stage (DeBruyn & Hauther, 2017). This occurs first in the gut, 

where the greatest abundance of bacteria reside (Hyde et al, 2013). As the bacteria digest the 

tissues, gases are produced resulting in bloating of the abdomen and the purging of fluids from 

the body (Goff, 2009; Hyde et al, 2015). It is already understood that these microbes play a big 

role in the decomposition of the soft tissues, but the role they play in bone diagenesis is still a 

subject of debate (Bell et al, 1996; White & Booth, 2014). 

Research undertaken by White & Booth (2014) aimed to show whether these endogenous 

microbes played a part in bone diagenesis. This study involved a comparison of stillborn piglets 

(Sus scrofa) to piglets of less than 6 months of age, using the theory that the stillborn piglets 
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would have no gut microbiome due to the sterile environment of the uterus (White & Booth, 

2014). It has long been theorised that the uterus is absent of bacterial microbes during 

pregnancy and therefore babies are sterile until the moment of birth (Lim et al, 2019). The White 

& Booth (2014) study does appear to support the endogenous microbial theory, with the 

stillborn piglets showing no bacterial infiltration when compared with the older piglets. The 

older piglets did not display the expected diagenetic changes, with the authors theorising that 

they were most likely seeing an earlier form of microbial tunnelling (White & Booth, 2014). 

Given UK farming practices however, and the overuse of antibiotics (White, 2009; Sustain, 

2019), one has to wonder whether the piglets used were not the most ideal candidates when 

looking for bacterial origins of bone diagenesis. It has been well established that antibiotics 

change the gut microbiome of the users; in this case the mother pigs, and the surviving piglets, 

therefore they could have the potential to affect any results seen (Ursell et al, 2012). Out of 

twelve piglets, only two had been stillborn; this is a small number of biological replicates and 

not enough to be statistically significant in supporting the endogenous microbiome theory.   

Other literature has suggested support for the endogenous theory (Bell et al, 1996; Jans et al, 

2004; Booth et al, 2016). Jans et al (2004) found that the bones from complete burials, were 

more likely to show bacterial infiltration than the bones from incomplete burials. This suggests 

that the microbiome of the gut could have influenced the diagenetic changes seen (Jans et al, 

2004), however the incomplete burials were because of butchery, therefore the lack of bacterial 

infiltration may have been due to how the remains were treated prior to burial rather than the 

lack of putrefaction. 

2.3.2 Bacterial Colonies in Soil 

A body that has been buried will not decompose as quickly as one that has been left on the 

surface (Goff, 2009). The soil provides protection against factors such as temperature changes, 

predator access, insects; these have an impact on the speed of decomposition (Goff, 2009). 

However, the body is not fully protected from microbial infiltration; soil contains its own 

colonies of bacteria and fungi, which have the potential to feed upon the remains (Metcalf et 

al, 2016). 

Due to the complexity of the burial environment, the effects soil colonies could have on remains 

is little known (White, 2009; Hyde et al, 2015). It is believed that the bacteria could feed upon 

the body from the outside, and the presence of fungi in grave sites does appear to support this 

(Tranchida et al, 2014). However, factors such as burial depth can impact decomposition; fewer 

microbes will be found in the soil the deeper the burial (Fierer et al, 2003). 
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Recent soil studies have turned their attention to the changes bacterial colonies in soil undergo 

during the process of decomposition (Finley et al, 2015; Hyde et al, 2015; Procopio et al, 2019). 

The bacteria from the putrefactive stage is released from the body, allowing it to colonise the 

soil and change the natural microbiome (Child, 1995; Goff, 2009). Literature suggests that this 

change is short lived, however, with the more competitive endogenous soil bacteria eventually 

destroying the invading bacteria (Child, 1995).  

Child (1995) writes that the destruction of the bacteria from the remains leads to it having a 

limited effect on bone diagenesis and therefore, what is seen must be caused by infiltration of 

the soil colonies, rather than infiltration from the body itself (Child, 1995). The theory that soil 

microbial colonies affect bone diagenesis has been supported by other researchers (Hackett, 

1981; Reiche et al, 2003; Lopez-Costas et al, 2016).  

Reiche et al (2002) used a variety of analytical methods, including scanning electron microscopy 

and elemental analysis. Overall, they supported the exogenous microbial theory, having found 

that the interactions between the skeletal tissue and the soil affected the level of diagenetic 

changes seen (Reiche et al, 2002). However, although there were several analyses involved in 

this research, the fact that these are archaeological samples must be taken into consideration. 

The burial practices cannot be known with certainty and these may have influenced how the 

bone has degraded. Also, given that they are archaeological, the soft tissue decomposed many 

years ago and the soil has had time to interact with the hard tissue; even if the endogenous 

origins theory is the correct one, the microbial communities in soil have had several years to 

interact with the remaining skeletal tissue. Of course, this is only true if microbes are present in 

the soil at the depth of burial. Given that microbial communities are more prevalent closer to 

the surface (Fierer et al, 2003) and the average burial depth is 6 feet (ICCM, 2004), the question 

must be asked whether soil microbes are present? If these colonies cannot survive at that depth, 

then how does bone diagenesis occur, if not caused by the host’s own microbiome? 

2.4 The Structure of Bone 

Osteological tissue consists of two types (Kendall et al, 2018); 

1. Cortical bone – also known as ‘compact bone’, it is a dense, hard material found 

externally on the long bones and flat bones (White & Folkens, 2005),  

2. Cancellous bone – also referred to as ‘spongy bone’ due to its honeycomb appearance, 

it is found at the ends of the long bones and the centre of the flat bones (White & 

Folkens, 2005). 
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Despite their different structural appearances, these two types of tissue have the same 

molecular compositions (White & Folkens, 2005). 

 

 

Fig 2.2 

The gross anatomy of a long bone 

(femur). Source: Langley & 

Tersigni-Tarrant (2017), p.85 

Bone diagenesis analysis primarily involves the cortical bone; this is usually taken from the mid-

shafts of the long bones as there is a higher abundance of cortical bone tissue available (Turner-

Walker & Syversen, 2002; Jans et al, 2004).  

The internal structure of adult human bone is composed of Osteons (White & Folkens, 2005). A 

vascular canal (Haversian canal) takes its place at the centre, surrounded by lamellar bone 

(White & Folkens, 2005). This lamellar bone contains osteocytes which reside within lacunae; 

small cavities within the bone. Small canals (canaliculi) run between the lacunae, which allow 

the osteocytes to communicate with each other (Folkens & White, 2005). Collagen fibres make 

up the lamellar bone, and it is these bundles that give the bone it’s strength (Byers, 2017). Bone 

diagenesis can affect the histological structure of the bone, including these collagen fibres 

(White & Booth, 2014; Assis et al, 2015; Delannoy et al, 2018). 

2.4.1 Rattus rattus 

Due to restrictions within the UK, this project used long bones from the domestic rat, rather 

than human bone. Rodent bones are very similar to human bone with just a few exceptions 

(Treuting et al, 2017).  

 

Table 2.2 Comparison of human and rodent bone.  
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Source: Treuting et al (2017) p.70 

Unlike in humans where the tibia and fibula are separate bones, the fibula is fused to the tibia 

in the rat (Treuting et al, 2017). The rat also has more vertebrae than humans due to the bones 

in their tails (Treuting et al, 2017). 
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Fig 2.3 Skeletal anatomy A) human, B) rat.  

Source A) Treuting et al (2017) p.69.  

Source B) Skeleton of a rat. Source: Visual Dictionary Online 

http://www.visualdictionaryonline.com/animal-kingdom/rodents-

lagomorphs/rodent/skeleton-rat.php 

Unlike human bone, rodent bone does not contain osteons (Treuting et al, 2017). Instead, the 

bone is composed of two types; the central part is made up of disorganised bone, with 

osteocytes and vascular canals irregularly spaced within, while the outer sections are more 

organised with the osteocytes appearing more evenly spread, vascular canals are not often seen 

here (Bach-Gansmo et al, 2015). 

http://www.visualdictionaryonline.com/animal-kingdom/rodents-lagomorphs/rodent/skeleton-rat.php
http://www.visualdictionaryonline.com/animal-kingdom/rodents-lagomorphs/rodent/skeleton-rat.php
http://www.visualdictionaryonline.com/animal-kingdom/rodents-lagomorphs/rodent/skeleton-rat.php
http://www.visualdictionaryonline.com/animal-kingdom/rodents-lagomorphs/rodent/skeleton-rat.php
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Fig 2.4 Bone cross sections A) Human. Source: Langley & Tersigni-Tarrant (2017) p.84. B) Rat. Source: Bach-Gansmo et al (2015) 

Table 2.3 Comparison of human and rodent bone histology.  
 

        Feature                                      Rodent bone                                                                    Human bone

 
Source: Treuting et al (2017) p.70 

2.5 Bone Diagenesis 

Bone diagenesis is the term used to refer to the changes that bone can undergo after death 

(Hedges & Millard, 1995; Jans et al, 2004; Kendall et al, 2018). This is caused by many factors, 

such as chemical and mineral loss through the breakdown of the skeletal tissue (Collins et al, 

2002) and the interaction between the skeletal tissue and the microbes nearby; potentially 

endogenous microbes or exogenous (White & Booth, 2014). Current literature cites both 

microbial origins as a potential cause of bone diagenesis (Reiche et al, 2003; Jans et al, 2004; 

White & Booth, 2014; Lopez-Costas et al, 2016) and is described below. 

While this research focuses on microbial infiltrations, in the form of MFD, as a way of 

determining the presence of bone diagenesis, there are other ways to assess the level of 

preservation of skeletal material. Smith et al (2007) and Nielsen-Marsh et al (2007) noted that 

the porosity of the bone was of importance when determining how well preserved a sample 

was. This was a study conducted on archaeological samples, but the theory could be just as 

relevant in forensic samples. It was determined that different types of bone have unique pore 

structures. This could be utilised to assess the level of bone diagenesis that has taken place 

(Smith et al, 2007, Nielsen-Marsh et al, 2007). The results of their study indicated that on 
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average the pore size of the bone samples increased as the OHI category given decreased 

(Collins et al, 2007). Nielsen-Marsh et al (2007) notes that increased porosity can be a result of 

microbial infiltration. 

2.5.1 Microbial Infiltration 

The histological analysis of thin sections of bone can be used to determine the presence of 

microbial activity (Pokines & Symes, 2014). Much research has already been conducted with the 

focus being on thin sections (Hoke et al, 2011; White & Booth, 2014), but while there has been 

progress, there is still too much inconsistency in the results to produce a valid method of PMI 

estimation (Bell et al, 1996; Delannoy et al, 2018). The problem appears to stem from the 

complexity of decomposition; as with the soft tissues, many factors can affect the rate at which 

the bone degrades (Child, 1995; Delannoy et al, 2018). Intrinsic factors, such as the age, weight, 

health of the deceased can affect how decomposition occurs (Nicholson, 1996); Creamer & Buck 

(2009) found that the bones of juveniles are more susceptible to diagenetic effects. Extrinsic 

factors, such as mode of deposition, burial medium used, and climate, have been shown to have 

an effect also (Fernandez-Jalvo et al, 2010). To establish an accurate method of PMI estimation 

these factors, which can be many, all need to be considered. 

The destruction of osteological tissue by microbial infiltration was first observed in 1864 by Carl 

Wedl when he noticed tunnelling within the microstructures of bones and teeth that had been 

left in well water (Hackett, 1981). He determined that these had been caused by fungal microbes 

within the water, and they later became known as Wedl tunnels (Hackett, 1981). Subsequent 

forms of tunnelling were identified by Hackett in 1981. These were given the title of non-Wedl 

tunnels and are thought to be caused by bacteria (Trueman & Martill, 2002). 

Table 2.4 The four types of tunnelling identified and their causes  

Type Cause 

Wedl tunnel Fungal microbes 

Linear longitudinal tunnel  

Bacterial microbes Budded tunnelling 

Lamellate tunnels 

(Jans et al, 2004)Hackett (1981) referred to these tunnels as ‘microscopic foci of destruction’ (MFD) 

and much has been written about them (Dixon et al, 2008; White & Booth, 2014; Brönnimann 

et al, 2018; Morales et al, 2018), leading to the development of the Oxford Histological Index 

(OHI) (Hedges & Millard, 1995). 

Table 2.5 Oxford Histological Index  
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Category Approx % intact bone Description 

0 <5 No original features identifiable other than Haversian 
canals 

1 <15 Small areas of well-preserved bone present, or some 
lamellar structure preserved by pattern of destructive 
foci 

2 <50 Some well-preserved bone present between 
destroyed areas 

3 >50 Larger areas of well-preserved bone present 

4 >85 Bone is fairly well preserved with minor amounts of 
destroyed areas 

5 >95 Very well preserved, similar to modern bone 
(Errickson & Thompson, 2017) 

This index has been used by many to determine the level of destruction seen in the skeletal 

tissue (Jans et al, 2004; Dixon et al, 2008; Assis et al, 2015; Morales et al, 2018), however it 

should perhaps be used with caution. Given that it was developed with archaeological bone in 

mind, it may be of little use in research that is attempting to determine the level of skeletal 

destruction in bones of forensic interest. Certainly, this could be the case with White & Booth 

(2014), who saw unexpected diagenetic changes in their piglet specimens. It must also be noted 

that this index does not distinguish between the different types of infiltration seen; only the 

level of destruction occurring (Brönnimann et al, 2018). 

 
A 

 
B 

Fig 2.5 Samples from HuddersFIELD. Samples were retrieved at 24 weeks PMI. x400 magnification. A) Exposed defleshed bone, 

B) Exposed whole rat Source: Author 

2.5.2 Loss of Collagen 

Collagen makes up 90% of the organic material in bone (Kendall et al, 2018). Literature states 

that this collagen can be lost through bone diagenesis (Dixon et al, 2008). The loss of collagen 

can be observed in several ways (Boaks et al, 2014; Mello et al, 2017). The most used method is 

analysing for the loss of birefringence (Brönnimann et al, 2018; Delannoy et al, 2018). This can 
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be done alongside light microscopy analysis and involves using cross polarised light to determine 

the level of birefringence seen in the sample.  

Bone is a birefringent material due to the layout of the collagen fibres that make up the lamellar 

bone (Bell et al, 1996). As the collagen is destroyed by the process of diagenesis, this 

birefringence is lost (Delannoy et al, 2018); a method of measuring the loss in birefringence 

could directly measure the loss of collagen. Birefringence has been analysed by many 

researchers (Jans et al, 2002; Assis et al, 2015; Delannoy et al, 20018), however attempts at 

quantifying what is occurring has been limited. Jans et al (2002) determined the level of 

birefringence seen using a comparison method; fresh bone compared with the archaeological 

samples. 

Current literature has also used the skeletal tissues autofluorescence to determine PMI (Hoke 

et al, 2011; Ramsthaler et al, 2011). This research has attempted to exploit the bones tendency 

to fluoresce when exposed to light of certain wavelengths; in most cases wavelengths within 

the ultra-violet (UV) spectrum (Hoke et al, 2011). It has been shown in some cases that the 

intensity of fluorescence, as well as the colour, could change over time (Hoke et al, 2013). While 

this may not be accurate enough to provide concrete PMI estimates for forensic investigations, 

it could one day have the potential to distinguish between archaeological bones and those of 

forensic interest (Ramsthaler et al, 2011). 

2.5.3 Other Causes of Bone Diagenesis 

While the focus of this research are the microbes that drive bone diagenesis, it must be noted 

that there are other factors which can also drive bone diagenesis. 

Exposure to the natural elements can drive the degradation of bone; rainfall, sun exposure and 

temperature can lead to weathering, such as cracking and flaking. The extent of weathering can 

be determined using the Behrensmeyer weathering index (1978). Exposure to sunlight can lead 

to bleaching of the bones; extreme temperature changes can cause the surface of the bones to 

crack and flake over time. Using the Behrensmeyer weathering index (1978), it can be possible 

to determine the extent of weathering that has occurred. However, a study conducted by 

Fernandez-Jalvo et al (2010) found that most bone samples did not show signs of surface 

weathering, the exception were signs of corrosion at the sites where the bones touched the 

ground. Ross and Cunningham (2011) also found little evidence of surface weathering. 

Collins et al (2002) writes that factors that can drive bone diagenesis include time, temperature 

and pH. High temperatures and/or extreme pH levels (acidic or alkali) can lead to the breakdown 
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and loss of proteins (Collins et al, 2002). A seven-year study conducted by Nicholson (1996) 

found little evidence of increased degradation occurring to samples at a higher pH. 

Other analyses have been used to determine the presence of bone diagenesis. These include 

chemical methods (Knight & Lauder, 1967; Fernandez-Jalvo et al, 2010; López-Costas et al, 2016; 

Mello et al, 2017), which are not discussed as part of this project. 

2.6 Summary 

This chapter has given a brief review of the literature available on bone diagenesis. It has been 

shown that this process of decomposition is complicated and has many different pathways, with 

the histological integrity being at the forefront of research (White & Booth, 2014; Morales et al, 

2018). It has been demonstrated that much has been written in this area, with many theories 

having been explored. However, there appears to be a lack of understanding in the origins of 

the microbes that drive diagenetic changes within skeletal material. White & Booth (2014) made 

progress in this area with their research, but little appears to have been carried out since. As 

they used stillborn piglets for their ‘sterile’ specimens, one cannot rule out the potential for 

contamination. While the theory still stands that the uterine environment is a sterile one (Lim 

et al, 2018), the potential for microbial presence cannot be eliminated. In the case of stillbirth, 

it has been shown that bacteria can be present within the amniotic fluid (Lim et al, 2018).  

This is also the case for the literature in favour of the exogenous theory. Reiche et al (2003), for 

example, used archaeological bones as samples. As these bones will have been exposed to the 

gut microbiome during the initial soft tissue decomposition, it cannot be ruled out that the 

diagenetic changes seen are as a result of the putrefactive stage, rather than a result of the soil 

microbes.  

This research has proposed something different. In an effort to determine the microbial origins, 

the questionable factors were removed as much as possible. This research used rat samples, 

with three different sample tissue types being chosen; whole rats to ensure the presence of the 

gut microbiome; excised, fleshed rat legs to allow for the effects of autolysis to be analysed; and 

defleshed bones from rats to remove all endogenous bacteria. Two environments were used; 

buried to allow the effects of soil microbes to be analysed; and exposed to show the absence of 

soil microbes.  

 

 

 



 

32 | P a g e  
 

Table 2.6 The microbes being included per condition. Exc Indicates microbes being excluded 

 Exposed condition Buried condition 

Whole rats Gut bacteria Soil microbes 

Gut bacteria 
Exc  Soil microbes  

Excised, fleshed legs Autolytic effects Soil microbes, 

Autolytic effects 
Exc Soil microbes 

Gut bacteria 

Exc Gut bacteria 

Defleshed bones Environmental effects Soil microbes 

Exc Soil microbes 

Gut bacteria 

Autolytic effects 

Exc Gut bacteria 

Autolytic effects 

There also appears to be some discrepancy with the way research in this area is presented, the 

histology, for example, is an observable analysis (White & Booth, 2014). While this is the nature 

of histological analysis, it would be beneficial to have some method of quantification in place. 

This appears to be the case not only for the tunnelling that can occur, but also for the 

autofluorescence and birefringence.  

This project attempts to find a method of quantification for these analyses. Image software is 

used to determine a measurement of diagenetic alterations occurring in the histological 

contexts. The fluorescence of the samples are analysed further with the use of a Confocal LSM. 

This is an underutilised tool in bone diagenesis studies, and its ability to determine alterations 

in fluorescence are explored here.  
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Chapter Three: 

Methods and Materials 

This chapter sets out the methods that were followed in the course of this project, including 

problems that were encountered and how they were overcome. 

It is noted that differences in the microstructure of rat bone could have the potential to affect 

the results seen in this study. These include, but are not limited to, the lack of haversian systems 

and presence of irregular vascular canals limiting the transmigration of the gut bacteria to the 

internal structure of the bone.  

3.1 Sample Preparation 

Forty-six medium sized (average weight = 151-250g) domestic rats (Rattus rattus) were used in 

this study. These were purchased from a reptile supplies store 

(https://www.reptilecentre.com/frozen-rats-medium-5-pack-151250g_p4023038.htm) and 

were not killed for the purpose of this research. The rats were flash frozen within 2-3 hours of 

death occurring and kept frozen until they were prepared for dissection. The rats arrived via 24-

hour delivery packaged and still frozen. They were transferred to a freezer for storage until 

ready to be used (approximately 7 days). Prior to dissection, the required number of rats were 

defrosted at 4˚C for 24 hours. The rats were dissected over two days and kept refrigerated at 

4˚C overnight1.  

An application for ethical approval was submitted to SRIEC and granted – grant number SAS-

RIEC 18-2611-1. 

Thirty-six rats were prepared as field samples; this was to allow for three repeats per condition 

and interval. A total of eight intervals were intended for this study, with samples being collected 

every four weeks. A further ten rats were put aside to be used as control/test samples. 

There were two conditions; buried in soil and exposed on the surface of a plastic container. The 

tissue samples were divided into three categories; whole rats, the fleshed legs of rats, the 

defleshed long bones of rats. 

 

 

                                                           
1 Time between death and deposition at HuddersFIELD was 10 days. It is assumed that freezing halts decomposition therefore PMI 
refers to time since deposition and does not consider time frozen. 

https://www.reptilecentre.com/frozen-rats-medium-5-pack-151250g_p4023038.htm
https://www.reptilecentre.com/frozen-rats-medium-5-pack-151250g_p4023038.htm
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Table 3.1 The conditions and categories used for this research. (n) indicates number of samples  

Tissue samples  (n) Buried (n) Exposed 

Whole rats 

 

8 

(1 per 

condition) 

8 

(1 per condition) 

Fleshed legs 

 

24 

(3x legs per 

condition) 

24 

(3x legs per 

condition) 

Defleshed legs 

 

24 

(3x bones per 

condition) 

24 

(3x bones per 

condition) 

Plastic boxes were used as this allowed some control over the deposition environment and 

easier control over scavenging animals. The boxes used measured 20x13.5x17 cm for the buried 

samples, as each repeat was buried separately, and 51x32x18 cm for the exposed samples. A 

different box was used for the buried samples to limit the need to disturb the burials until they 

were ready to be excavated. Holes were drilled into the bottom of all boxes to allow for 

drainage. Plastic lids were placed onto the buried sample boxes. Godwins top soil was used as a 

burial medium. 

The whole rats were placed directly into their conditions as they required no dissections. Eight 

rats were placed into a large plastic container. Eight smaller 3 litre plastic containers were filled 

with 5 cm (approx 1.35 litres) of top soil. One whole rat was placed into each container and 

covered with a further 1.35 litres of top soil. Plastic lids were placed onto the boxes. 

3.1.1 The Dissection 

Examples of the boxes and their contents are shown in figs 3.1-3.6. 
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Fig 3.1 Small box with whole rats buried Fig 3.2 Plastic box with exposed rats 

All four limbs were removed from twelve rats. Twenty-four limbs were placed into a large plastic 

container. Eight smaller containers were prepared with 1.35 l of top soil. Three limbs were 

placed into each container and covered with a further 1.35 l of top soil. Plastic lids were placed 

onto the boxes. 

  
Fig 3.3 Small box with fleshed legs buried Fig 3.4 Large box containing exposed legs 

All four long bones; femur and humerus, were removed from the remaining twelve rats using a 

size 10 scalpel. They were defleshed as much as possible without damaging the bone surface. 

Twenty-four long bones were placed into a large plastic container. Eight small containers were 

filled with 1.35 l of top soil, three long bones were placed into each box and covered with a 

further 1.35 l of top soil. Plastic lids were placed onto the boxes. 

  

Fig 3.5 Small box with buried long bones Fig 3.6 Large box with exposed bones 
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3.1.2 HuddersFIELD 

On the afternoon of the 14th November 2018, the samples were transported to HuddersFIELD, 

the animal taphonomic facility used by the University of Huddersfield.  

Elitech data loggers were used to record hourly temperatures of each condition2. They were 

placed into the three containers for weeks 4, 16, and 32 of the buried samples, and into all three 

boxes for the exposed samples.  

The buried samples were placed behind the wall of a barn where they would be hidden from 

view and protected from the weather during the winter months. Large rocks and metal poles 

found in the field were placed on top of the boxes to prevent scavenger activity (see fig 3.7). 

 

Fig 3.7 

Small boxes in situ; 

back row whole 

rats, middle row 

fleshed, excised 

limbs, and front 

defleshed bone 

The boxes containing the exposed samples were placed in a more open position within the field. 

The lids were removed to allow insects access. Metal wire cages were placed over the boxes to 

protect against scavenging animals (see fig 3.8). 

   
Fig 3.8 Large boxes in situ; left to right, whole rat; fleshed, excised limbs; defleshed bone 

3.2 Retrievals 

Samples were taken every four weeks.  

 

 

                                                           
2 The data loggers failed to record therefore average temperatures and rainfall were obtained from a local weather station. 
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Table 3.2 Dates samples were taken from HuddersFIELD 

Collection number Date  

 
‘Zero’ - initial samples 14/11/18 

1 14/12/18 

2 08/01/19 

3 05/02/19 

4 05/03/19 

5 02/04/19 

6 30/04/19 

7 28/05/19 

 8 25/06/19 

Buried samples – as each set of samples were contained within their own boxes, one box each 

for the defleshed, fleshed, and whole, was collected each month. The lids were kept in place 

until they had been returned to the laboratory. 

Exposed samples – photographs were taken of each box before retrieval of the samples. Three 

long bones, plus attached flesh in the cases of the fleshed and whole samples, were taken each 

time. They were placed into separate plastic bags. 

3.2.1 Cleaning the bones 

The bones all required cleaning prior to being frozen. The long bones from the fleshed and whole 

samples required dissecting. This was done in the following way; 

Exposed bones Cleaned using distilled water. 

Exposed fleshed Any flesh was dissected using a size 10 scalpel. The bones were rinsed in 

distilled water. 

Exposed whole The long bones were dissected using a size 10 scalpel then rinsed with 

distilled water. 

Buried bones  The soil was sieved to find the bones. They were cleaned using distilled 

water. 

Buried fleshed  The flesh was dissected from the bones using a size 10 scalpel. The bones 

were cleaned using distilled water. 

Buried whole The bones were dissected using a size 10 scalpel then cleaned with 

distilled water. 
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Photographs were taken of all samples throughout the cleaning process (see Chapter Four). The 

samples were placed into labelled plastic bags before freezing3.  

3.3 Histology and Analysis 

Mid sections were taken for histological analysis. Fig 3.9 shows examples of defleshed long 

bones, the ends of the bones were not used for analysis. 

 

Fig 3.9 Examples of sections 

taken for analysis 

Thin sections were prepared using the manual preparation technique adapted by Maat et al 

(2001). The technique was adapted slightly due to the small size of the samples.  

Samples were cut into 3-4 mm thick pieces using a small hacksaw – fragile samples required 

thicker cuts. They were hand-sanded on wet 240 grit silicon-carbide sandpaper to remove most 

of the roughness. Once a sample thickness of 1 mm was achieved, the pieces were rinsed in 

distilled water to remove any excess grit. They were then further sanded on wet 1200 grit 

silicon-carbide sandpaper until the desired thickness was achieved. This was done by placing the 

sample onto a small piece of wet sandpaper. A further damp piece was placed on top of the 

sample, rough side down. This piece was moved in a circular motion to polish the sample. A 

small, clean paintbrush was used to turn the sample at regular intervals during this process to 

ensure an even sample. The sample was sanded until it started take on an opaque appearance.  

Samples of various thickness were tested using a compound microscope; it was determined a 

thickness of 0.1 mm gave the best balance between clear images and keeping the samples 

whole. Fig 3.10 show examples of the thicker sample and the ‘optimal’ thickness – note the 

histological features are clearer in the thinner sample. 

                                                           
3 It is noted that the freezing of the samples may have potentially affected results seen. As observed by Polkines et al (2018), 
freeze/thawing bone can lead to increased weathering effects, such as cracking, particularly superficial cracks to the surface and 
potential bone shrinkage.  
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A  B  
Fig 3.10 Trial samples A) 0.3mm thick sample; too dark to see histological features B)  0.1mm thick sample, histological features 

are clearly seen 

Once the desired thickness was achieved, the sample was rinsed to remove any grit. This was a 

four-stage process, consisting of two small wells of distilled water mixed with a small amount of 

washing up liquid, and two further wells of distilled water. The washing up liquid allowed better 

removal of dirt as it stopped the grit from rising to the surface of the water (fig 3.11). Once 

rinsed, the sample was placed onto a clean, glass slide (fig 3.112). 

 

Fig 3.11 

Equipment used for manual 

preparation 

 

 

 

Fig 3.12 

Thin sample on slide 

0.1mm thick with glass 

coverslip 

 

Desired thickness was confirmed using light microscopy. If the sample was too thick, it was 

further sanded using 1200 grit silicon-carbide sandpaper as described above. The desired 

thickness was achieved when it had reached 0.1mm, as determined using digital calipers. 

3.3.1 Macroscopic Analysis 

The samples were analysed in various ways to determine whether bone diagenesis was taking 

place. As fleshed and whole samples were used in this study, it was decided to take note of the 

decomposition of the soft tissues to determine whether the presence of the gut microbiome 

affected the rate of decomposition.  

Soft Tissue Decomposition 

The whole and fleshed samples were observed for signs of decomposition. An adapted version 

of the Total Body Score (TBS) based on rabbit decomposition (Adlam & Simmons, 2007) was 

used. This was selected due to the similarities in rats and rabbits, such as the smaller body size 

and presence of fur. A copy of the TBS for rabbits (Adlam & Simmons, 2007) can be found in 
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Appendix Two. The TBS used for human remains (Langley & Tersigni-Tarrant, 2017) can also be 

found in Appendix One for comparison. 

A 

 

B 

 

C 

 
Fig 3.13 Examples of decomposition seen, A) 8 weeks PMI B) 16 weeks PMI C) 4 weeks PMI 

The whole samples were observed in three areas; head and neck, abdomen, and limbs. These 

scores were then added to give the TBS. Results can be found section 4.4 to show the extent of 

decomposition observed.  

As the fleshed samples were limbs only, they were observed only in this category. Results can 

be found in section 4.4. Fig 3.13 shows examples of the decomposition seen at various PMI’s. 

Surface Modifications 

The samples were analysed for any surface modifications and signs of weathering. A VHX-2000 

Keyence microscope was used to determine what changes, if any, were occurring. Further 

images can be found in Appendix Three. Fig 3.14 shows examples of surface modifications 

observed. 

A 

 

B 

 

C 

 
Fig 3.14 Examples of surface modifications seen, A) 16 weeks PMI B) 12 weeks PMI C) 12 weeks PMI 

The buried samples were analysed for signs of soil erosion, flaking, discolouration. The exposed 

samples were analysed for signs of weathering. They were scored using the Behrensmeyer 

weathering index (1978) shown below (table 3.3): 

 

 



 

41 | P a g e  
 

Table 3.3 Behrensmeyer weathering index 

Stage Description 

0 Bone is greasy and shows no signs of cracking or flaking; tissue may adhere 

to or cover the bone. 

1 Bone exhibits cracking (longitudinal for long bone or mosaic for articular 

surfaces); residual soft tissue may be present. 

2 Outer layer of cortex displays cracking and flaking; residual soft tissue may 

be present. 

3 Outer layer of bone has roughened, fibrous patches where all cortical bone 

is missing; residual tissue is rarely seen. 

4 Most of the outer bone surfaces is rough and fibrous, with no cortex 

remaining; cracks are open and have splintered. 

5 Poor bone integrity, falling apart, extremely fragile, possibly spongy bone 

exposure, ill-defined bony shape. 
 Source: Langley, N.R. & Tersigni-Tarrant, M.A. (2017) p.285 

Fig 3.15 gives examples of the weathering stages using the Behrensmeyer weathering index. 

  

 

Fig 3.15 Surface modification examples 

Bone samples showing surface modifications with weathering 

scores of 0, 2, & 5 (indicated as WS). Source: Louys. J. (2012) 

 

Ultra-violet (UV) Fluorescence 

Studies conducted by Hoke et al (2011; 2013) and Yoshino et al (1991) showed the potential of 

measuring the level/intensity of autofluorescence in bone to determine PMI; due to the 

destruction of collagen within the bone structure. A Dino-Lite USB microscope with UV LEDs at 

a wavelength of 375 nm was used to assess fluorescence. Photographs of the autofluorescence 

were taken. These were compared with images of a control (fresh) sample to determine 

whether the samples’ ability to fluoresce had been lost over time (fig 3.16). 
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A  

 
B  

 
C  

Fig 3.16 Examples of autofluorescence, A) fresh B) 8 weeks PMI C) 24 weeks PMI 

ImageJ software was used to analyse fluorescence images. This was done by overlaying a grid 

at a specific size (3,500 pixels2), three boxes were chosen at separate points on the sample and 

analysed using the measure function. The measurements were then used to calculate an 

average (fig 3.17). 

 

A 

 

B 

Fig 3.17 ImageJ software. A) Sample with grid 

overlaid. B) Results table example. 

 

3.3.2 Microscopic Analysis 

The samples were analysed microscopically to check for any histological changes, such as 

tunnelling within the bones’ microstructure. This was done in a variety of ways to maximise the 

chances of seeing any infiltrations. The following criteria were used to assess changes (table 

3.4): 
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Oxford Histological Index (OHI) 

Table 3.4 Oxford histological index  

Category Approx % intact bone Description 

0 <5 No original features identifiable other than Haversian 
canals 

1 <15 Small areas of well-preserved bone present, or some 
lamellar structure preserved by pattern of destructive 
foci 

2 <50 Some well-preserved bone present between 
destroyed areas 

3 >50 Larger areas of well-preserved bone present 

4 >85 Bone is fairly well preserved with minor amounts of 
destroyed areas 

5 >95 Very well preserved, similar to modern bone 
Source: Errickson & Thompson (2017) 

Fig 3.18 gives examples of the OHI stages. 

 A  B 

 C 

Fig 3.18 OHI examples 

Histological samples showing the Oxford Histological Index 

stages 5, 2, & 0 respectively. 

Sources: 

(A & C): Hedges et al (1995) 

(B): Booth et al (2016) 

The type of tunnelling was also assessed where possible. Fig 3.19 is a schematic of each 

tunnelling type; 

1. Wedl tunnelling – fungal caused 

2. Linear longitudinal tunnel 

3. Budded tunnelling                              sometimes referred to as non-Wedl tunnelling 

4. Lamellate tunnelling                          Bacterial caused 
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Fig 3.19 Types of 

tunnelling 

Source: Jans et al (2004) 

Osteocyte Count 

Image software (ImageJ) was used to analyse the microscopy images. To do this a grid was 

overlaid onto the image being analysed at an area per point of 30,000 pixels2 (fig 3.20). Three 

boxes were chosen from the grid; the number of osteocytes seen were counted within these 

boxes. These numbers were used to calculate an average number of osteocytes present per box. 

 

Fig 3.20 Osteocyte counting method. Fresh 

sample with grid overlaid on ImageJ 

Compound Microscope 

A Leica ICC50HD with a 10x eyepiece was used for this analysis to observe signs of diagenesis, 

such as tunnelling. The slide containing the sample was placed onto the stage. A lower 

magnification of 4x was used to establish where the sample was on the slide. Magnification was 

increased to 10x to capture images for quantitative analysis. 40x magnification was observed to 

verify the 10x images.  

Birefringence: 

Birefringence was analysed using light microscopy. This was done by placing a polarising light 

filter onto the microscope and turning it to achieve cross polarised light. This allowed the dark 

and light bands caused by the collagen content within the cross section of the bone to be seen. 

The birefringence of the field samples were compared to control (fresh) samples (fig 3.21). 
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A 

 

B 

 

C 

 
Fig 3.21 Histological sections, A) fresh B) 16 weeks PMI C) fresh birefringence  

Keyence Microscopy 

A Keyence microscope was used to analyse the samples at 500x and 1000x magnification to 

observe signs of diagenesis such as tunnelling and destruction of the microstructure of the 

sample (fig 3.22). 

   
Fig 3.22 Histology sections 1000x magnification, A) fresh section B) 4 weeks PMI C) 16 weeks PMI 

Confocal LSM 

Confocal LSM was chosen because it allowed histological analysis and an examination of the 

fluorescence of the samples. Another advantage of the Confocal LSM was that it could analyse 

thicker samples; thicker samples of 1 mm thick were originally used. However, these proved too 

thick to allow for histological analysis, therefore this was changed to use the 0.1 mm thick 

samples (fig 3.23). 

A 

 

 

Fig 3.23 1 mm sample under Confocal 

LSM, 

A) Reflection image 

B) Fluorescence at 488 nm 

 

B 

 

The samples were examined on a Zeiss LSM 880 Confocal microscope, using an excitation 

wavelength of 488nm as used by Capasso et al (2017). The detector was set to detect 
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fluorescence in the range of 508-695 nm. The placement of this fluorescence could be compared 

with a non-fluorescing image to determine where this was taking place (fig 3.24). 

  
Fig 3.24 Confocal LSM, fresh sample, 0.1mm thickness 

3.4 Proteomic Analysis 

Samples from day 0, 12 weeks, and 24 weeks PMI were sent for proteomic analysis, in order to 

determine if there were changes in the bone proteome with time since burial. This was carried 

out by Dr Noemi Procopio at Northumbria University. Dr Procopio followed the protocol set out 

in the paper by Procopio & Buckley (2017). This paper discusses the use of two different agents 

for the extraction of proteins; in this experiment, formic acid was used. Three repeats were 

performed to allow for statistical analysis to be conducted. LC-MS/MS analysis was used to 

analyse the samples using a Q Exactive Plus orbitrap mass spectrometer with LC nano-flow 

UltiMate 3000.  

Progenesis software was used to analyse the raw data gained from the LC-MS/MS. This allowed 

for comparisons to be made between the samples in a variety of ways; buried vs exposed; bone 

vs whole; fresh vs 12 weeks vs 24 weeks. Progenesis assigned a number to the proteins in the 

raw data, relative abundance was the term given to this number as it had no units. Principal 

component analysis (PCA) was used to show the data; this took all proteins into account and 

allowed the variability in the samples to be seen. Analysis of variance (ANOVA) was used to 

obtain a p-value for each protein, which was then corrected to a q-value. 

3.5 Statistical Analysis 

Three repeats were conducted of each method where possible to allow for statistical analysis 

to be conducted on results. Due to the small size and fragility of the samples, especially the later 

samples, three repeats were not always possible; however statistical analysis was conducted 

where it could be. 

Due to the complex nature of the research, the results were presented in a variety of ways; 
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• The two deposition conditions were compared to determine the differences an exposed 

versus buried environment could make.  

• Each condition was analysed as the experiment progressed to determine whether any 

changes were occurring at a uniform rate over time.  

• The different sample types (defleshed bone, fleshed, whole) were compared to 

determine whether the presence or absence of gut bacteria affected the rate of bone 

diagenesis.  

• To attempt to answer the gut vs soil theory, the buried, defleshed bones were compared 

to the exposed, whole specimens to determine if the presence of gut bacteria, or soil 

bacteria had affected the rate of bone diagenesis.  
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Chapter Four: 

Results 

4.1 Introduction 

The results of this project are explained here. This was an extensive project incorporating 

multiple analytical techniques; therefore images are shown only to refer to the taphonomic and 

diagenetic changes that occurred over the course of the project. For further images, please refer 

to the Appendices at the end. 

4.2 Temperature and Rainfall 

Elitech data loggers were placed in various boxes to record the hourly temperature, however 

for reasons unknown, these did not record. Weather data was obtained from World Weather 

Online. 

 
Graph 4.1 Average monthly temperature at the HuddersFIELD site during the period the samples were 

deposited. Source: WorldWeatherOnline (https://www.worldweatheronline.com/halifax-weather-

averages/west-yorkshire/gb.aspx) 

0

2

4

6

8

10

12

14

16

Nov Dec Jan Feb Mar Apr May

Te
m

p
er

at
u

re
 (

˚C
)

Month

Average monthly temperature Minimum monthly temperature

Maximum monthly temperature

https://www.worldweatheronline.com/halifax-weather-averages/west-yorkshire/gb.aspx
https://www.worldweatheronline.com/halifax-weather-averages/west-yorkshire/gb.aspx
https://www.worldweatheronline.com/halifax-weather-averages/west-yorkshire/gb.aspx
https://www.worldweatheronline.com/halifax-weather-averages/west-yorkshire/gb.aspx


 

49 | P a g e  
 

 
Graph 4.2 Average monthly rainfall at the HuddersFIELD site during the time the samples were deposited. 

Source: WorldWeatherOnline (https://www.worldweatheronline.com/halifax-weather-averages/west-

yorkshire/gb.aspx) 

4.3 Soft Tissue Decomposition 

The specimens were deposited on the same day (14th November 2018). Samples from each 

condition were collected every 4 weeks for a total of 28 weeks. Table 4.1 gives images of the 

exposed samples at the deposition site; advancing stages of decomposition is PMI increases. 

4.3.1 Exposed whole samples 

The first samples were collected 4 weeks after deposition. It was clear to see that the exposed 

whole samples were undergoing a fairly advanced decomposition, with a TBS of 32 from the rat 

collected, considering the short time and cooler weather. There was a lot of entomological 

activity taking place on these samples, with some skeletonisation on the limbs. The remaining 

flesh was dry and brittle.  

Entomological activity had ceased by 8 weeks PMI. Very little tissue remained on the limbs; they 

were easy to identify in the box, as were a couple of the rat skulls. By 16 weeks PMI, some of 

the long bones were beginning to disarticulate and they could be collected using tweezers due 

to very little adherent soft tissue.  

By week 24 there was advanced skeletonisation, with even the tougher tissue on the tails 

starting to skeletonise. Structures such as the vertebrae, pelvis, and ribs were easily identifiable 

in the box. The paws remained covered in tissue. The same was seen for the week 28 samples, 

with little advancement in the amount of skeletonised remains seen (>75% skeletonisation). 

4.3.2 Exposed fleshed, excised samples 
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Unlike the whole samples, the fleshed samples showed delayed decomposition, with no signs 

of insect activity at 4 weeks. The only visual indication something was occurring was the layer 

of yellowish fungus covering the surface. The tissue underneath was tough to cut through. 

No entomological activity was seen until 12 weeks PMI. By 16 weeks PMI, the insects had 

disappeared, leaving very little soft tissue behind (> 50% skeletonisation). The long bones were 

easily collected using tweezers by week 24 due to advanced skeletonisation. As with the whole 

samples, the paws remained covered in soft tissue. Week 28 saw similar results, with the paws 

still covered in soft tissue; the long bones were easily identifiable and mostly disarticulated. 

4.3.3 Buried whole samples 

These samples did not reach skeletonisation. The soft tissue underwent decomposition, but this 

was very limited. At 4 weeks PMI, there were very little signs of decomposition occurring to the 

external features of the sample. The abdomen was visibly bloated by 8 weeks PMI, with rupture 

having occurred by the 12 week collection, making the soil very moist. Skin slippage also 

occurred at this time. Adipocere was seen at 16 weeks PMI, and by 20 weeks PMI it was 

throughout the sample, with the flesh becoming waxy and fragile. By the final collection at 28 

weeks PMI, the flesh was very fragile and falling apart making extraction of the long bones easy. 

4.3.4 Buried fleshed, excised samples 

The fleshed samples followed a similar decomposition pattern as the whole samples with the 

exception of the wet, abdominal rupture. By 8 weeks PMI, some skeletonisation had occurred 

at the excision sites, however this was limited to just this area and did not progress over time. 

Adipocere started to develop at 16 weeks PMI, with the flesh becoming fragile and waxy by 24 

weeks PMI. 28 weeks PMI saw the same results as the whole samples with the long bones being 

easily removed from the remaining tissue. 

Table 4.1. Exposed whole and fleshed samples in situ at HuddersFIELD 

Exposed Whole bodies Fleshed, excised limbs 

Fresh 

 
Fresh, no signs of decomposition can be 
seen 

 
Fresh, no signs of decomposition can be 
seen 
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4 weeks 

 
Entomological activity. Skeletonisation 
can be seen 

 
No signs of entomology. Yellow coating 

on the surface of limbs 

8 weeks 

 
Increased skeletonisation  

 
Yellow coating (suspected fungal) has 
increased on tissue surface 

16 weeks 

 
 
Base of box shows 
layer of fluid from 
decomposition 
fluids and rain 
water 

 
Less entomological activity 

 
Skeletonisation starting to occur 

24 weeks 

 

 

 
 

skull 

 
Bones can be clearly seen and identified 

 
Bones can be clearly seen, still 
articulated 

 Exposed bone 

 Exposed bone 

 Exposed bone 

vertebrae 
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28 weeks 

 
More than 50% skeletonisation 
occurred, even paws and tails starting to 
be exposed 

 
Increased skeletonisation occurring 

The decomposition process advanced with each collection date, with both the whole and fleshed samples showing 

advanced skeletonisation by 28 weeks PMI.  

4.4 Total Body Score 

The samples were visually examined upon recovery from HuddersFIELD. The fleshed and whole 

samples were given a score based on an adapted version of the Total Body Score (TBS) (Adlam 

& Simmons, 2007). For further information, see Appendix Two. The buried samples were 

difficult to assess due to the levels of damp soil adhered to the tissue, therefore a cautious score 

was made based on how easy the bones were to extract. 

The TBS is split into sections for the whole samples (head & neck, abdomen, and limbs) and a 

total of these sections is given in table 4.2. 

It is clear to see from Graph 4.3 that there was a delay in decomposition of the buried samples. 

This delay was seen in both whole and fleshed samples, indicating that it was the deposition 

environment that led to the difference, rather than the samples condition. 

The whole samples decomposed in a quicker time than the fleshed samples, for both buried and 

exposed conditions, yet they both reached the same end point by 28 weeks (see Graphs 4.4 A 

& B). 
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Table 4.2. Condition of samples upon retrieval 

Fresh 
whole 
and fresh 
flesh 
 
 

 
HN:1, A:1, L:1 

T:3 

 
L:1 

 

 4 weeks 8 weeks 12 weeks 16 weeks 20 weeks 24 weeks 28 weeks 

Buried 
fleshed, 
excised 
limbs 

 
L:1 

 
L:2 

 
L:4 

 
L:4 

 
L:6 

 
L:6 

 
L:8 

Buried 
whole 
bodies 

 
HN:2, A:2, L:2 

 T:6 

 
HN:3, A:3, L:2 

 T:8 

 
HN:4, A:5, L:4 

T:13 

 
HN:6, A:6, L:6 

T:18 

 
HN:7, A:6, L:6 

T:19 

 
HN:7, A:7, L:8 

T:22 

 
HN:7, A:9, L:8 

T:24 
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Exposed 
fleshed, 
excised 
limbs 

 
L:2 

 
L:3 

 
L:5 

 
L:7 

 
L:7 

 
L:8 

 
L:9 

Exposed 
whole 
bodies 

 
HN:5, A:6, L:6 

T:17 

 
HN:8, A:7, L:7 

T:22 

 
HN:8, A:9, L:7 

T:24 

 
HN:8, A:9, L:9 

T:26 

 
HN:8, A:9, L:9 

T:26 

 
HN:10, A:11, L:9 

T:30 

 
HN:12, A:11, L:9 

T:32 
Fleshed and whole samples as they were recovered from the field. The decomposition process advanced with each collection. Head & Neck (HN), abdomen (A), limbs (L) scores are indicated below each image. The total (T) for 

the TBS is given. 
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Graph 4.3. Total body scores for comparison between the buried and exposed whole rat and excised, fleshed limbs. TBS 
for the whole samples were based on three measurements therefore they were higher than the excised, fleshed limbs. It 
can see been that the exposed samples (whole and fleshed) decomposed more quickly than their buried counterparts. 
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A Comparison of the TBS from the limbs of the exposed whole rat samples and the exposed excised, fleshed samples. The whole 

samples decomposed more quickly than the fleshed samples initially, but they did reach the same TBS by 28 weeks.  

 
B Comparison of the TBS from the limbs of the buried whole rat samples and the exposed excised, fleshed samples. It can be 

seen the whole samples decomposed more quickly than the fleshed samples, however they did reach the same TBS scores at 

variance PMIs. 

Graph 4.4 Comparisons of the TBS of limbs from the whole and fleshed samples over time A) Exposed samples, B) Buried samples 
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4.5 Weathering and Surface Modifications 

The bones from all conditions were analysed using Keyence microscopy for any signs of 

degradation. The exposed samples were scored using the Behrensmeyer (1978) weathering 

index (see Table 3.3). The buried samples were scored using the same method to indicate any 

surface modifications seen; however it should be noted that Behrensmeyer (1978) only 

intended for this index to be used on exposed bones. 

As Table 4.3 shows, the samples did not succumb to extensive surface degradation, only one 

buried sample at 24 weeks PMI was given a score of 2 due to extensive flaking (fig 4.1). 

  
Fig 4.1. Buried bone showing category 2 weathering at 24 weeks PMI. Arrows indicate the flakes seen. Source: Author 

Most samples had achieved a score on the weathering index of 1 by the end of the experiment, 

but overall 28 weeks PMI was not a long enough interval to show significant changes (table 4.3). 

Table 4.3. Weathering scores 

Condition Time (weeks) A B C 

Fresh 0 0 0 0 

 

 

Buried bone 

4 0 0 Missing 

8 0 0 0 

12 0 0 0 

16 1 0 1 

20 1 1 1 

24 1 2 1 

28 1 0 Missing 

 

 

Buried fleshed, 

excised limbs 

4 0 0 0 

8 0 0 0 

12 0 0 0 

16 1 1 1 

20 1 1 1 

24 0 1 1 

28 1 1 1 

 4 0 0 0 
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Buried whole 

bodies 

8 0 0 0 

12 0 0 0 

16 0 0 0 

20 1 0 0 

24 1 0 1 

28 1 0 0 

 

 

Exposed bone 

4 0 0 0 

8 0 0 0 

12 0 0 0 

16 0 0 0 

20 1 1 1 

24 1 1 1 

28 1 1 1 

 

 

Exposed 

fleshed, excised 

limbs 

4 0 0 0 

8 0 0 0 

12 0 0 0 

16 0 0 0 

20 1 0 1 

24 1 0 1 

28 0 1 0 

 

 

Exposed whole 

bodies 

4 0 0 0 

8 0 0 0 

12 0 0 0 

16 1 1 1 

20 1 1 1 

24 1 1 1 

28 1 1 0 

The samples did not succumb to extensive weathering and/or surface modifications. While many of the samples were scored 1 on 

the Behrensmeyer weathering index, many were still in good condition by 28 weeks PMI and only one samples was given a score of 

2.The surface weathering seen included; 

• pitting to the ends of the bones 

• flaking and cracks 

• soil adhesion 

• Spots potentially due to bacteria or fungi 

• Adipocere 

• Blue flakes from painted panels stored nearby 

Table 4.4 shows some examples of the types of changes seen throughout the experiment. This 

is not an exhaustive index and further images can be found in Appendix 3.  
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Table 4.4. Sample images from 4 and 28 weeks showing the changes observed 

 4 weeks PMI 28 weeks PMI 

Buried 

bone 

 

 
Soil staining 

  
Buried 

fleshed, 

excised 

legs 

  
Buried 

whole 

bodies 

  
Exposed 

bone 

  
Exposed 

fleshed, 

excised 

legs 

  

flaking/

peeling 

adipocere 

suspected 

moss growth 
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Exposed 

whole 

bodies 

  

Many of the samples were still showing little signs of weathering/surface modifications throughout the project.Adipocere was 

observed on the buried whole and fleshed samples as the experiment progressed with the 

whole rat samples showing the most extensive adipocere formation (fig 4.2). 

Green growths were observed on the exposed samples, in particular the defleshed bone 

samples (fig 4.3). This was most likely due to the samples being placed into plastic boxes for the 

duration of the experiment. The boxes were intended to prevent predator disturbances but, 

due to the lack of drainage, may have allowed the samples to become wetter than they would 

have had they been left on the soil surface. 

 

Fig 4.2. Buried whole body sample 

showing adipocere on the surface at 

28 weeks PMI 

 



 

61 | P a g e  
 

 

Fig 4.3. Exposed defleshed bone 

showing possible moss growth at 28 

weeks PMI 

Many of the bones exhibited signs of cracks, flakes and pitting as can be seen below in figs 4.4-

4.9; 

 
Fig 4.4 Exposed fleshed, excised sample at 8 weeks 

PMI exhibiting cracks 

 

 
Fig 4.5 Buried whole body sample at 24 weeks PMI 

showing pitting, possibly due to soil erosion 

 
Fig 4.6 Buried defleshed bone at 12 weeks PMI with 

pitting to proximal end 

 

 
Fig 4.7 Exposed whole body sample at 24 weeks PMI 

with increased porosity 

 
Fig 4.8 Exposed fleshed, excised sample at 12 weeks 

PMI with flaking to the proximal end 

 

 
Fig 4.9 Exposed fleshed, excised sample at 28 weeks 

PMI showing signs of flaking 

4.6 UV fluorescence 
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The bones were analysed using a Dino-Lite USB microscope with UV (375nm) LEDS to determine 

whether there was any loss in autofluorescence due to collagen degradation. Saukko & Knight 

(2015) discuss the ‘sandwich’ effect, whereby bone will slowly lose its ability to fluoresce, 

starting at the outer and inner rims and working its way across the entire cross section of the 

bone. The images were taken at a x75 magnification and examined visually for any emerging 

pattern.  

 
A. Fresh 

 
B. 4 weeks 

 
C. 8 weeks 

 
D. 16 weeks 

 
E. 24 weeks 

 
F. 28 weeks 
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Fig 4.10 UV fluorescence of HuddersFIELD samples (A-F) 

As the images in fig 4.10 show, there was a visual difference between the samples at different 

PMI’s, however this was not consistent, and the sandwich effect was not clearly seen.  

Images were analysed for level of intensity using ImageJ, and Table 4.5 was constructed to show 

the results.  

 

Table 4.5 Averages of the intensities obtained from ImageJ 

Condition Time 

(weeks) 

A B 

  Mean 

(RGB) 

Min 

(RGB) 

Max 

(RGB) 

Mean 

(RGB) 

Min 

(RGB) 

Max 

(RGB) 

Fresh 0 134.994 42 173 132.813 101 153 

 

Buried bone 

4 123.813 88 152 106.392 42 138 

8 115.194 88 144 108.692 76 142 

16 135.591 87 154 144.710 94 163 

24 99.175 68 136 85.210 47 147 

28 128.678 77 162 144.692 91 165 

 

Buried 

fleshed, 

excised 

limbs 

4 136.988 85 157 151.035 123 164 

8 140.655 54 193 125.780 56 179 

16 172.898 109 193 165.066 143 180 

24 159.981 119 181 139.420 104 154 

28 133.076 73 163 148.501 106 165 

 

Buried 

whole 

bodies 

4 140.765 98 155 144.578 98 160 

8 147.966 125 159 134.578 94 161 

16 163.534 99 190 166.695 114 188 

24 127.247 82 184 169.314 115 192 

28 157.639 75 176 124.822 82 158 

 

Exposed 

bone 

4 125.101 43 155 137.922 81 159 

8 134.517 68 158 141.920 104 170 

16 125.450 52 178 139.547 98 170 

24 99.233 56 158 73.957 41 122 

28 128.355 83 156 116.773 72 145 

 

Exposed 

fleshed, 

excised 

limbs 

4 146.401 66 170 132.251 79 164 

8 157.414 117 189 140.534 98 168 

16 163.909 111 182 148.694 116 174 

24 78.042 45 150 143.489 90 170 

28 145.359 123 161 108.806 60 151 

 

Exposed 

whole 

bodies 

4 136.358 90 161 101.909 56 130 

8 120.184 75 156 163.677 129 179 

16 154.738 118 175 151.878 105 173 

24 105.922 57 167 127.632 85 161 

28 147.324 106 169 149.309 103 172 
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The mean was used to determine changes within the samples; to calculate graphs. Maximum fluorescence and minimum 

fluorescence are given to show the differences observed within the same samples (fluorescence was not consistent 

throughout).Graphs 4.9 show the averages obtained from the ImageJ analysis for each condition 

and tissue type. These show inconsistencies within the samples; R2 values (<0.3) were calculated 

to show that the variances cannot be explained from this data set, indicating that there was no 

correlation between fluorescence loss and time4. 

 
A The average intensity calculated from ImageJ for the buried bone samples over time with error bars 

 
B The average intensity calculated from ImageJ for the buried excised, fleshed samples over time with error bars 

                                                           
4 R2 values were classified in the following way; >0.3 noteworthy, >0.5 large, >0.7 very large (McCormick et al, 2015) 
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C The average intensity calculated from ImageJ for the buried whole samples over time with error bars 

 
D The average intensity calculated from ImageJ for the exposed bone samples over time with error bars 
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E The average intensity calculated from ImageJ for the exposed excised, fleshed samples over time with error bars 

 
F The average intensity calculated from ImageJ for the exposed whole samples over time with error bars 

Graph 4.5 The average intensity (RGB) calculated using ImageJ for each sample/condition over time (with error bars). The 

inconsistencies encountered with the UV fluorescence can be seen. 

Comparisons were made between the two deposition environments (graph 4.6); buried and 

exposed, to determine whether these influenced fluorescence loss. This showed there was an 

inconsistency in some samples, particularly between weeks 8 and 24; this appeared to have a 

greater effect in the exposed samples. 

y = -4.8546x + 149.64
R² = 0.1804

60

80

100

120

140

160

180

4 8 16 24 28

In
tn

es
it

y 
(R

G
B

)

PMI (weeks)

Exposed
Excised
Flesh -
Intensity
(RGB)

Linear
Trendline
for Exposed
Excised
Flesh
Intensity
(RGB)

y = 3.3213x + 125.93
R² = 0.0967

60

80

100

120

140

160

180

4 8 16 24 28

In
tn

es
it

y 
(R

G
B

)

PMI (weeks)

Exposed
Whole rat
- Intensity
(RGB)

Linear
Trendline
for
Exposed
Whole rat
Intensity
(RGB)



 

67 | P a g e  
 

 
Graph 4.6 Comparison of the average intensity calculated with ImageJ for the deposition environments over time. 
Inconsistencies in the levels of fluorescence can be seen; the exposed samples showed the greatest loss in fluorescence by 
the end of the experimentation. 

Further comparisons were made between the three tissue types to determine whether any 

pattern emerged (graph 4.7). As with the deposition environments, there appeared to be 

inconsistency in the samples. 

 
Graph 4.7 A comparison of the average intensity calculated with ImageJ for the three tissue types over time. Inconsistencies 
in the levels of fluorescence are shown; the defleshed bone samples (all) showed the greatest overall loss in fluorescence. 

To determine whether the measuring procedure was causing the issues with inconsistencies, 

further measurements were taken. This involved using the freehand tool in ImageJ to draw 
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around the sample, as close to the edges as possible (fig 4.11). The intensity of the pixels were 

then calculated. 

 
Fig 4.11 Secondary fluorescence measurement. 

The light lines show the freehand drawing tool 

used to obtain a measurement. 

This method was carried out on the buried bone and exposed whole rat samples only as it made 

very little difference to the overall results being seen (graph 4.8). 

 
Graph 4.8 A comparison of the average intensity calculated with ImageJ for the deposition environments using an alternative 
method of measurement (as described above). As with the grid method, inconsistencies were found in the samples. 

4.7 Histology 

As discussed in previous chapters, skeletal material can undergo microbial infiltration. The rate 

of destruction caused by these microbes increases over time. Hackett (1981) categorised these 

MFD into four categories; Wedl, linear longitudinal, lamellate, and budded. When analysing the 

samples from this study, efforts were made to identify which of these four MFD were present, 
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however due to the preparation method used5, this was not always possible. Therefore, the 

microbial infiltrations seen were placed into two categories; Wedl and non-Wedl. There were 

times when unexpected changes were observed as described below. 

Both compound microscopy and digital microscopy was used to determine any diagenetic 

alterations occurring. It was found, however, that due to the preparation method used, the 

digital microscope was not ideal for obtaining clear images, particularly as the PMI increased 

(fig 4.12). 

 

Fig 4.12 Exposed whole, 16 weeks PMI. Keyence microscope 

(1000x). Arrow shows where microscope struggled to focus due 

to thick sample 

Amalgamations 

Dark shadows were seen early on; these were quite extensive in places (figs 4.13 & 4.14). They 

did not take the expected form of tunnelling, making them difficult to identify. As they closely 

resembled the amalgamations described in White & Booth (2014), they were given this category 

in the results table. 

 
Fig 4.13 Amalgamations seen, buried bone, week 4 (100x)  

 
Fig 4.14 Amalgamations seen using Keyence microscopy, buried 

bone, week 4 (500x)  
 

 

                                                           
5 Preparation method used sandpaper which was abrasive. Potential for damage to the samples meant the MFD seen could not 

be further categorised with confidence. 
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Diagenetic Osteocyte Lacunae 

Larger than expected and sometimes misshapen osteocyte lacunae were also seen in many 

samples (figs 4.15 & 4.16). Again, these did not fall under the categories of MFD given, however 

due to the nature of them, it was clear to see that some form of degradation was taking place. 

Following White & Booth (2014), these were termed diagenetic osteocyte lacunae. 

 

Fig 4.15 Abnormal osteocyte lacunae, exposed whole rat, 

week 16 (400x). 

Black arrow – diagenetic, white arrow - normal 

 

Fig 4.16 Abnormal osteocute lacunae, buried whole rat, 24 

weeks (1000x) Keyence microscope 

Black arrow – diagenetic, white arrow - normal 

Fig 4.17 show examples of diagenetic osteocyte lacunae from White & Booth (2014). 

  

Fig 4.17 Examples of diagenetic osteocytes and amalgamations. Source: White & Booth (2014) 

Wedl Type 2 

Another type of MFD seen that has not been described often was Wedl type 2 tunnelling. This 

takes places around the osteocytes and affects the canaliculi, making the tunnels larger than 

usual (fig 4.18).  
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Fig 4.18 Wedl type 2 – enlarged canaliculi (exposed whole rat, week 16) 
         Black arrow – enlarged canaliculi, white arrow - normal 
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4.7.1 Diagenetic Features 

Table 4.6 A complete inventory of samples and features seen over time 

      

PMI Condition Tissue 
Type 

Sample Section Diagenetic 
Lacunae 

Wedl 
Tunnels 

Non-Wedl 
Tunnels 

Amalgamations Birefringence OHI Score 

0 weeks Fresh Bone A T     Normal 5 

B L     Normal 5 

4 Weeks Buried Bone A T     Reduced 4 

B L     Obliterated 3 

C T     Significant loss 3 

Fleshed 
limb 

A T     Reduced 4 

B T     Reduced 3 

C T     Obliterated 3 

Whole rat A T     Significant loss 2 

B T     Localised loss 2 

C T     Significant loss 3 

Exposed Bone A T     Significant loss 3 

B T     Significant loss 4 

C T     Localised loss 4 

Fleshed 
limb 

A T      Significant loss 3 

B T     Significant loss 3 

C T     Significant loss 4 

Whole rat A T     Significant loss 3 

B T     Localised loss 3 

C T     Significant loss 3 

8 Weeks Buried Bone A T     Localised loss 3 

B T     Localised loss 3 

C T     Localised loss 4 

Fleshed 
limb 

A T     Significant loss 3 

B T     Reduced 3 

C T     Localised loss 2 

Whole rat A T     Significant loss 3 

B T     Significant loss 3 

C T     Significant loss 3 
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Exposed Bone A T     Significant loss 3 

B T     Localised loss 2 

C T     Significant loss 3 

Fleshed 
limb 

A T     Significant loss 3 

B T     Localised loss 3 

C T     Significant loss 3 

Whole rat A L     Localised loss 2 

B T     Localised loss 3 

C T     Significant loss 3 

16 Weeks Buried Bone A T     Significant loss 2 

B T     Significant loss 2 

C T     Reduced 2 

Fleshed 
limb 

A T     Significant loss 2 

B T     Obliterated 1 

C T     Significant loss 2 

Whole rat A T     Significant loss 2 

B T     Significant loss 2 

C T     Localised loss 2 

Exposed Bone A T     Significant loss 2 

B T     Significant loss 3 

C T     Significant loss 2 

Fleshed 
limb 

A T     Obliterated 1 

B T     Significant loss 2 

C T     Obliterated 2 

Whole rat A T     Reduced 3 

B T     Obliterated 3 

C T     Significant loss 1 

24 Weeks Buried Bone A T     Significant loss 1 

B T     Reduced 2 

C T     Significant loss 1 

Fleshed 
limb 

A T     Significant loss 2 

B T     Obliterated 1 

C T     Reduced 1 
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Whole rat A T     Significant loss 1 

B T     Reduced 1 

C T     Significant loss 1 

Exposed Bone A L     Obliterated 2 

B T     Significant loss 1 

C T     Significant loss 2 

Fleshed 
limb 

A L     Significant loss 2 

B T     Significant loss 1 

C T     Significant loss 1 

Whole rat A L     Normal 3 

B T     Significant loss 1 

C T     Reduced 3 

28 Weeks Buried Bone A T     Localised loss 1 

B T     Significant loss 2 

C T     Significant loss 1 

Fleshed 
limb 

A L     Significant loss 1 

B T     Normal 0 

C T     Localised loss 0 

Whole rat A T     Significant loss 1 

B T     Obliterated 1 

C T     Significant loss 0 

Exposed Bone A T 0    Obliterated 0 

B T     Significant loss 0 

C L     Significant loss 1 

Fleshed 
limb 

A T 0    Obliterated 0 

B T     Significant loss 1 

C L     Significant loss 1 

Whole rat A L 0    Obliterated 0 

B T     Significant loss 0 

C T     Significant loss 1 
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Diagenetic alterations were seen as early as 4 weeks PMI and steadily increased as time 

progressed with some samples scoring 0 on the OHI at 28 weeks PMI. Non-Wedl tunnels were 

seen frequently with 85 out of the 90 field samples showing Wedl tunnels and bores. However, 

despite research showing that animal bones are more prevalent to Wedl tunnelling (Jans et al, 

2004; Brönnimann et al, 2018), they were not seen as often as expected with only 30 out of 90 

samples showing this type of infiltration (graph 4.9). 

 
Graph 4.9 A histogram to show the types and number of features seen in all samples. An overview of the samples obtained, 
and features seen throughout the experimentation. 

Images of all samples can be found in Appendix five. 

4.7.2 Birefringence 

As well as determining what diagenetic features were present in the samples, birefringence was 

also observed. The level seen was recorded over time and categorised. Originally the 

Birefringence Index (BI) was used to determine the level seen; this used a scale of 1-0 with 1 

being normal, 0.5 reduced, and 0 obliterated. However, this did not seem enough to account 

for what was being seen in the samples, therefore two further categories were added to give 

the following (table 4.7); 

Table 4.7 Grades given for BI 

Grade Description 

1 Normal birefringence seen 

0.75 Localised loss seen 

0.5 Reduced 

0.25 Significant loss (localised sections may still appear normal) 
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0 Obliterated 

Fig 4.19 gives examples of each category in the adapted BI. It can be seen that each image gets 

progressively darker with more birefringence lost until the final stage where it is completely 

obliterated. 

 
Normal 

 
Localised loss 

 
Reduced 

 
Significant loss 

 
Obliterated 

 

Fig 4.19 Examples of birefringence. It can be seen that each grade gets progressively darker. 

 
Graph 4.10 A histogram to show the changes to the birefringence in all samples. An overview of the BI categories and the number 

of samples for each one. 
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Graph 4.10 shows the grades given for birefringence and how many samples fell into each 

category. 4 samples showed normal birefringence; however, 2 of these were from the fresh day 

0 samples and therefore normal was to be expected for them. Only 2 field samples still showed 

a normal level of birefringence upon analysis; these were from 24 weeks PMI, exposed whole 

rat, and 28 weeks buried, fleshed limb samples. At the other end of the scale, 12 samples 

showed a complete loss of birefringence; only 4 of these were from the 28 weeks collection. 

Using the amended Birefringence Index, each sample was assigned a percentage where 100% 

showed normal birefringence and 0% showed all birefringence had been lost. These calculated 

percentages were used to create graphs to give a visual representation of what was happening 

over time. 

 
Graph 4.11 A comparison of the birefringence loss observed using an adapted BI Index in all samples over time. 
Inconsistencies can be seen in the level of birefringence observed. 

While many samples did show a loss in birefringence, there was no clear pattern to this (graph 

4.11). As can be seen by the R2 values (ranging from 0.15 – 0.75), birefringence loss over time 

cannot be predicted from this data set. As some samples were longitudinal samples, further 

analysis was conducted to exclude these samples, however this still did not yield any significant 

results. It should also be noted as this was an adapted method of measuring birefringence loss, 

it was not a validated method. This was also only measured by the researcher and therefore any 

results given are subjective. 
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4.7.3 OHI – observable method 

Alongside the analyses described above, the sample were also given an OHI score. This was done 

by analysing the images obtained on a compound microscope at varying magnifications (40x, 

100x, 400x), and using a Keyence microscope for higher magnifications (500x and 1000x); scores 

were given based on the level of unaltered bone seen. Graph 4.12 shows the scores given for 

each tissue type and condition at each time interval. These are not whole numbers as the 

average score was given for each category. 

It can be seen that the samples in all conditions degraded over time with the OHI score given 

decreasing at a fairly steady rate, and the best fit lines support a linear regression (R2 values 

>0.7). 

 
Graph 4.12 A comparison of the changes to the average OHI scores observed in all samples over time. OHI decreased over 
time for all samples (with few discrepancies seen; these most likely due to averages being used). R2 values above 0.83 were 
obtained. 

To determine what affect the two deposition environments had on the samples, a separate 

graph (graph 4.13) was created. As can be seen there was little variance between the buried 

and exposed samples when all samples were compared together, with the buried samples 

achieving an R2 value of 0.92 and the exposed samples achieving R2 0.95. 
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Graph 4.13 The average OHI scores observed to all buried samples compared with all exposed samples. Little variation is seen 
between the buried and exposed samples indicating the burial environment may have little effect on OHI. 

Further to this, the three tissue types were compared (graph 4.14). This was done irrelevant of 

deposition environment. There appears to be little variation when comparing the defleshed 

bone and excised, fleshed limb samples with them both following similar decreasing patterns. 

However, the whole rat samples show a variance, particularly at 4 weeks PMI. 

 
Graph 4.14 The average OHI scores observed between all tissue types. Little variation is seen with the exception of the whole 
samples at 4 weeks PMI – this is most likely due to the presence of the gut bacteria leading to increased microbial destruction. 
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4.7.4 OHI – counted method 

Quantification of loss of histological integrity of the bone was attempted using a counting 

method. This involved counting the number of osteocyte lacunae seen in each sample; this was 

then converted into a percentage of intact bone still visible. This percentage was used to assign 

an OHI score to each sample (graph 4.15). 

 
Graph 4.15 A comparison of the tissue types and deposition environments using the alternative (counted) method of 
calculating the OHI. It is shown that the OHI score decreased as the PMI increased. R2 values were not as high as the previous 
method with one value as low as 0.78 being seen. 

Graph 4.15 shows that the counted method supports a decrease in percentage of intact bone 

over time. R2 values of above 0.7 were achieved for all samples.  

The deposition environments were compared to determine whether there was a significant 

difference seen. Graph 4.16 shows that the deposition environment had little effect on the 

amount of microbial infiltration that occurred. 
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Graph 4.16 A comparison of the changes to the OHI scores of the two deposition environments over time. There was very 

little variance between the buried and exposed samples. 

Further to this, the tissue types were compared (graph 4.17). 

 
Graph 4.17 A comparison of the changes to the OHI scores of the three tissue types over time. The fleshed, excised samples 

(all) gave the greatest variance at 4 weeks. This is different to the variance seen using the observational method and could 

indicate that the observational method was not ideal due to its subjectivity. 

4.7.5 Counted vs Observable Method 

To work out which method worked best for determining the level of bone diagenesis occurring, 

the two methods were compared. This was done by creating a graph of variance (graph 4.18), 
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taking into account the overall OHI scores given for all samples. To create this the counted OHI 

score was subtracted from the observed OHI score. It can be seen that the observed method 

gave lower scores to the samples, particularly the later ones.  

 
Graph 4.18 Graph of variance to show differences in OHI scores between observed and counted methods. (Columns above the 
line indicate a lower score for counted method when compared with observed method). The observable method gave lower 
scores than the counted method – this could be due to the subjectivity of the observable method, and bias by the researcher 
(double blind studies would be recommended in future research). 

4.8 Confocal LSM 

Due to time issues, not all samples were analysed using the Confocal LSM. As this was a new 

technique in bone diagenesis, samples that were more likely to show some variance were 

chosen; these were from halfway through the experiment and near the end. Samples from 

collection weeks 16 and 24 were analysed, as well as fresh samples for testing and control (fig 

4.20).  

 
Fig 4.20 Fresh sample showing extensive fluorescence. Arrow indicates 
fluorescence seen 
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The fresh sample showed extensive fluorescence at 488 nm. Samples at weeks 16 and 24 

showed significant decreases in fluorescence (figs 4.21-4.32). 

 
Fig 4.21 Week 16 buried defleshed bone 

 

 
Fig 4.22 Week 24 buried defleshed bone 

 
Fig 4.23 Week 16 buried excised, fleshed limb 

 

Fig 4.24 Week 24 buried excised, fleshed limb 

 
Fig 4.25 Week 16 buried whole rat 

 

 
Fig 4.26 Week 24 buried whole rat 

 
Fig 4.27. Week 16 exposed defleshed bone 

 

 
Fig 4.28 Week 24 exposed defleshed bone 
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Fig 4.29 Week 16 exposed excised, fleshed limb 

 

 
Fig 4.30 Week 24 exposed excised, fleshed limb 

 
Fig 4.31 Week 16 exposed whole rat 
 

 
Fig 4.32 Week 24 exposed whole rat 

Zeiss software, Zen black was used to analyse the intensity of fluorescence. The histogram 

feature on the software produces an intensity table using the RGB scale of 0-255. The table was 

set to skip black and white pixels as this was focused mainly on the fluorescence; the averages 

were calculated from these histogram tables and used to create graphs to show changes 

occurring over time. Graph 4.19 shows an overall decrease in fluorescence intensity in all 

samples analysed. 
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Graph 4.19 The changes to the level of intensity (measured by fluorescence) between all sample conditions. There is little 

variation between the samples with the exception of the exposed whole rat samples.  

Further graphs were produced to compare the effects the deposition environment had on 

fluorescence, and the different tissue types. Graph 4.20 shows that the deposition environment 

has little effect on the loss of fluorescence intensity, with the samples showing little variation in 

the overall loss seen. 

 
Graph 4.20 The changes to the level of intensity (measured by fluorescence) between the two deposition environments. 
Initially it appears the buried samples lose the most fluorescence, however there is little variance in the later (24 week PMI) 
samples. 
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Graph 4.21 The changes to the intensity (measured by fluorescence) between the three tissue types. The whole rat samples 

showed the lest loss in fluorescence while the defleshed bone and excised, fleshed samples showed some inconsistencies.  

The tissue type did appear to have an effect on loss of fluorescence intensity. The whole rat 

samples showed the least overall loss when compared with the defleshed bones and the 

excised, fleshed limbs (graph 4.21), with the whole rat samples losing 63% of their fluorescence 

while the defleshed bone samples and the fleshed, excised limb samples lost 68% and 72% 

respectively.  

There were some samples that showed unusual fluorescence when analysed on the Confocal 

LSM. These samples appeared to have specific, localised areas of fluorescence (fig 4.33 & 4.34). 

 
Fig 4.33 Buried excised, fleshed sample, 16 weeks 
PMI 

 
Fig 4.34 Exposed whole rat, 24 weeks PMI 

To confirm whether this was due to an issue with the samples, histological samples from 

Sheffield University were obtained for analysis. These were part of the White & Booth (2014) 

collection. The localised fluorescence can be seen clearly in Figs 4.35 and 4.36. 
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Fig 4.35 Foetal Sus scrofa, 6 months exposed PMI 

 
Fig 4.36 Neonate Sus scrofa, 6 months PMI 

Slides for fig 4.35 and 4.36 borrowed with thanks from Sheffield University Archaeology department (White & Booth 2014 collection) 

4.9 Proteomic Analysis 

Samples were sent to Dr Noemi Procopio at Northumbria University for proteomic analysis to 

determine the protein abundance of the bones and analyse whether these changed with 

increasing PMI, and with the presence of gut bacteria. The samples were selected based on their 

potential to answer the original research questions; fresh samples for control purposes; buried, 

defleshed bones and exposed whole rat from week 12; and buried, defleshed bones and 

exposed whole rat from week 24. Three samples were sent to allow for repeat measurements 

to be made. The proteins were extracted from the samples using the protocol set out in 

Procopio & Buckley (2017) and analysed using LC-MS/MS. 

The schematic below (fig 4.37) shows the variability of all samples analysed. Each colour 

corresponds to a different condition: 

• Pale blue – fresh (control) 

• Pink – buried defleshed bone (12 weeks) 

• Purple – exposed whole rat (12 weeks) 

• Blue – buried defleshed bone (24 weeks) 

• Orange – exposed whole rat (24 weeks) 

Fig 4.37 shows a PCA map of all the samples analysed. Principle Component Analysis was done 

to analyse the variation, if any, between the samples. The grey labels are the names of the 

proteins found while the coloured dots represent the samples. The distance between the dots 

represents the variance in their protein content, and specifically, the abundance of the 

individual proteins. The Principle Component 1, found on the x axis, accounts for more 

difference in the protein content than differences in Principle Component 2; the greatest 

variability occurs between the light blue dots (fresh) and the blue dots (buried defleshed bone, 

24 weeks PMI). 
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Fig 4.37 PCA showing all samples analysed. Pale blue dots – fresh (control), pink dots – buried defleshed bone at 12 weeks PMI, purple dots – exposed whole rat at 12 weeks PMI, blue dots – buried 
defleshed bone at 24 weeks PMI, orange dots – exposed whole rat at 24 weeks PMI 
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The fresh samples show a difference in their protein content compared with the week 12 and 

week 24 PMI samples, with the biggest variance being seen between the fresh and 24 weeks 

PMI.  

The PMI analysis was further investigated. This gave the following: 

• Purple – fresh (control) 

• Pink – week 12 

• Blue – week 24 

These PCA maps (Fig 4.38 and 4.39) show the variance when comparing the PMI. Fig 4.38 shows 

the fresh samples and the grouped (defleshed bone and whole rat) samples for weeks 12 and 

24. It can be seen that there is less variance between the fresh and week 12 samples compared 

to the fresh and week 24 samples. Fig 4.39 shows the grouped samples for weeks 12 and 24, 

minus the fresh samples. The variance between the two PMI’s can be seen through the 

separation on the Principle Component 1 axis. The week 24 samples showed an increase in 

protein abundance therefore, the PCA map was further studied to determine which proteins 

were causing this shift. 
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Fig 4 38. PCA of PMI including fresh. Purple dots – fresh (control), pink dots – all samples at 12 weeks PMI, blue dots – all samples at 24 weeks PMI 

 
Fig 4.39 PCA of PMI only. Pink dots – all samples at 12 weeks PMI, blue dots – all samples at 24 weeks PMI 
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Fig 4.40 shows vector maps which show the proteins that had the biggest influence. The colours 

correspond to: 

• Red – fresh (control) 

• Green – 12 weeks 

• Yellow – 24 weeks 

The bar charts below the vector maps show the 15 most significant proteins, with the size of the 

bar indicating how much they contributed to the separation of the samples on the vector map. 

Those over the red line collectively contribute over 50% to the two dimensions (Dim 1 for left 

chart, Dim 2 for right chart). The proteins (up to MBL1 for Dim1 and PGS1 for Dim2) explain at 

least 50% of the contribution to the first and second dimensions respectively. 

 
Fig 4.40 Analysis of specific proteins causing the shift between PMI. Red dots – fresh (control), green dots – all samples at 12 
weeks PMI, yellow dots – all samples at 24 weeks PMI. The histograms indicate the proteins having the biggest effect on the 
samples. 

The left-hand side shows that the proteins HEMO and TRFE (blood proteins) are pushing the 

fresh samples down on the Principle Component 2 axis. The bar chart to the left shows that 

these two proteins are making a contribution of about 6.5% in pushing the fresh samples down 

in the first dimension. 
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The right-hand side shows the proteins PGS1 and PGS2 pushing the week 24 samples to the right 

on the vector map, separating them from the other samples. The bar chart shows they are 

important contributors to the second dimension on the PCA map. 

PGS1 and PGS2 correspond with Biglycan and Decorin, bone proteins (Procopio & Buckley, 

2016). These showed higher in abundance in the week 24 samples compared with the fresh and 

week 12 samples. This was not as expected; it had been anticipated that the proteins would be 

lower in abundance as time increased. One hypothesis is that the degradation of the bones may 

have led to easier extraction of the proteins. 

As with the other analyses, the deposition environments were compared to determine whether 

being buried or left exposed had an effect on protein content (fig 4.41). The colours correspond 

to: 

• Purple – fresh (control) 

• Blue – exposed samples 

• Pink – buried samples 

The collection weeks were combined for this analysis in order to take only the deposition 

environment into account. As can be seen below, there was not a big difference between the 

buried and exposed samples. This can be determined as the samples were not well separated 

along the x axis. As the buried samples were defleshed bones only and the exposed samples 

were from whole rats; the PCA below can also be used to analyse any differences between the 

two tissue types. It can be concluded that the tissue types made no difference on protein 

content. 
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Fig 4.41 PCA of the deposition environments. Purple dots – fresh (control), blue dots – all exposed samples, pink dots – all buried samples 
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4.10 Statistical Analysis 

Statistical analysis was conducted where possible; due to the small number of repeats and often 

limited variation of data values this wasn’t always possible. T-tests were performed for the OHI 

scores using the visual method, however due to the low samples size, it was not possible to get 

anything significant. Therefore the counted method was used to determine statistical 

significance. 

Due to the irregular patterns of fluorescence using UV light, a t-test was performed pairing all 4 

weeks PMI samples with all 28 weeks PMI samples. This resulted in a P value of 0.507, as this 

was >0.05 (Rumsey, 2011) it indicated that there was no statistical significance to the results 

seen6. 

Table 4.8 T-test for weeks 4 and 28 PMI (UV fluorescence) 

  Week 4 Week 28 

Mean 131.9606 136.1111 

Variance 232.664 222.51 

Observations 12 12 

Pooled Variance 227.587  
Hypothesized Mean 
Difference 0  
df 22  
t Stat -0.67391  
P(T<=t) one-tail 0.253694  
t Critical one-tail 1.717144  
P(T<=t) two-tail 0.507388  
t Critical two-tail 2.073873   

 

The t-test analysis was conducted for the osteocyte counting method to determine whether the 

results being seen were of statistical significance. When comparing the 4 weeks PMI samples 

with 28 weeks PMI, a P value of 2.34 x10-14 was calculated. This shows that there is less than 5% 

chance of the results seen being due to random variations, making them statistically significant. 

T-tests were also calculated comparing defleshed bone to the whole rat samples, and the buried 

environment to the exposed environment. These gave P values of 0.428 and 0.778 respectively, 

showing that these variations were not statistically significant and could be due to other factors6.  

 

Table 4.9 T-test for week 4 and week 28 PMI (counted lacunae) 

                                                           
6 If a P value of less than 0.05 was calculated the results were considered statistically significant and the null hypothesis was 

rejected. 
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  Week 4 Week 28 

Mean 12.37888889 4.093889 

Variance 5.891469281 1.899237 

Observations 18 18 

Pooled Variance 3.895353105  
Hypothesized Mean 
Difference 0  
df 34  
t Stat 12.59332327  
P(T<=t) one-tail 1.16924E-14  
t Critical one-tail 1.690924255  
P(T<=t) two-tail 2.34E-14  
t Critical two-tail 2.032244509   

Table 4.10 T-test for bone and whole rat samples (counted lacunae) 

  Bone Whole 

Mean 9.494444444 8.8 

Variance 11.68100255 10.98544 

Observations 30 30 

Pooled Variance 11.33322158  
Hypothesized Mean 
Difference 0  
df 58  
t Stat 0.798925802  
P(T<=t) one-tail 0.213796499  
t Critical one-tail 1.671552762  
P(T<=t) two-tail 0.427592999  
t Critical two-tail 2.001717484   

Table 4.11 T-test for buried and exposed samples (counted lacunae) 

  Buried Exposed 

Mean 8.937037 8.733333 

Variance 12.08244 11.19242 

Observations 45 45 

Pooled Variance 11.63743  
Hypothesized Mean 
Difference 0  
df 88  
t Stat 0.283245  
P(T<=t) one-tail 0.388827  
t Critical one-tail 1.662354  
P(T<=t) two-tail 0.777655  
t Critical two-tail 1.98729   

 

A normal distribution graph was created for the counted lacunae method. It can be seen that 

the data points are evenly distributed across the mean, with the averages being 8.937 for all 

buried samples and 8.733 for the exposed samples. The curves for both buried and exposed 



 

96 | P a g e  
 

samples are shown to be very similar across both sides of the mean, indicating that microbial 

destruction was very similar, regardless of the deposition environment. 

 
Graph 4.22 Normal Distribution of the OHI scores using the counted lacunae method 

T-tests were performed on the Confocal LSM data to determine whether there was any 

statistical significance to them. This showed there was statistical significance when comparing 

the day 0 samples with the 24 weeks PMI samples, with a P value of 2.06x10-6. The same was 

found when comparing the defleshed bone and whole rat samples, with a P value of 0.007. 

However, when the two deposition environments were compared no statistical significance was 

found (P value = 0.137). 

Table 4.12 T-test day 0 vs 24 weeks PMI 

  Day 0 Week 24 

Mean 8875.854 2867.787 

Variance 0 356949.4 

Observations 6 6 
Hypothesized Mean 
Difference 0  
df 5  
t Stat 24.63242  
P(T<=t) one-tail 1.03E-06  
t Critical one-tail 2.015048  
P(T<=t) two-tail 2.06E-06  
t Critical two-tail 2.570582   

Table 4.13 T-test buried vs exposed  

  Buried Exposed 

Mean 2900.288 3466.998 
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Variance 626098.1 4418487 

Observations 36 36 
Hypothesized Mean 
Difference 0  
df 45  
t Stat -1.51391  
P(T<=t) one-tail 0.068521  
t Critical one-tail 1.679427  
P(T<=t) two-tail 0.137042  
t Critical two-tail 2.014103   

Table 4.14 T-test bone vs whole  

  Bone Whole 

Mean 2597.488 3599.148 

Variance 309828.7 973602.5 

Observations 12 12 
Hypothesized Mean 
Difference 0  
df 17  
t Stat -3.06284  
P(T<=t) one-tail 0.003522  
t Critical one-tail 1.739607  
P(T<=t) two-tail 0.007043  
t Critical two-tail 2.109816   

 

Statistical analysis was conducted on the proteomics. The abundance of proteins PGS1 and PGS2 

was very similar between the fresh samples and the samples from week 12, but between the 

fresh samples and the 24 week samples, there was a statistically significant difference (p < 0.05) 

in the abundance of PGS1 and PGS2. This indicates that the results seen were not due to random 

variations. The levels of these proteins were higher in the samples with the longer deposition 

interval. 
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Chapter Five: 

Discussion 

5.1 Introduction 

The main purpose of this research was to attempt to answer the long-standing question of 

where the bacteria responsible for bone diagenesis originates (Hackett, 1981; White & Booth, 

2014). As discussed in previous chapters there are two main themes for this; 

1. That the intrinsic gut bacteria are the driving force behind bone diagenesis; having been 

kept in place by the immune system throughout life, the gut bacteria are able to move 

freely throughout the body after death, leading to infiltration of the skeletal material 

(White & Booth, 2014), 

2. That bacteria in the environment are responsible for diagenesis; particular focus is 

usually placed on the bacterial colonies in the burial soil (Hackett, 1981). 

This chapter will analyse and critically discuss the results obtained throughout this project. The 

research questions presented in Chapter One will also be revisited. 

5.2 Soft Tissue Decomposition and TBS 

The decomposition of the soft tissue was not the purpose of this research, however as this 

project used whole and fleshed samples, it was decided to document the process to determine 

whether the burial and/or tissue conditions had any effect on the rate of decomposition seen. 

The samples were deposited on the 14th November 2018 and left for a total of 196 days. The 

first set of samples were collected four weeks later; it was anticipated that due to the cold 

weather, the decomposition process would be slow. However, the exposed, whole samples were 

full of entomological activity and some skeletonisation had already started to occur. The fleshed, 

excised legs took longer to attract insect activity and for skeletonisation to begin; this did not 

occur until 12 weeks PMI. A comparison of the limbs from the whole samples and the excised 

samples shows the difference in rate of decomposition. It can be seen on Graph 4.4 that the 

limbs from the whole samples showed an increased rate of decomposition, with a TBS of 6 being 

achieved by 4 weeks PMI compared with the excised limbs TBS of 2. Unlike the whole samples 

which quickly attracted insects, which in turn accelerated the decomposition process, the 

fleshed, excised legs did not attract insects until sometime between the week 8 and week 12 

collections. This delay was most likely due to the lack of odour; the scent of decomposition 

caused by the intrinsic gut bacteria in the whole samples attracted the insects to the samples. 

The ensuing feeding frenzy led to the extensive skeletonisation seen at the 8 week collections. 
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Graph 4.3 gives a clear indication of the effect of insect activity on the whole samples, which 

showed a sudden increase in TBS score from 3 to 17 in just four weeks. By 8 weeks PMI, the TBS 

had only increased to 22, which suggests that the lack of insect activity between 4 and 8 weeks 

PMI caused the rate of decomposition to slow. 

The buried samples showed a substantial difference in decomposition compared with the 

exposed samples as can be seen on Graph 4.3. Unlike the exposed samples, the rate of 

decomposition was much slower with the whole samples achieving a TBS score of 6 at 4 weeks 

PMI. As these samples were in lidded boxes, it is safe to assume there was a significant lack of 

entomological activity. This lack of insect activity, as well as the protection the soil will have 

provided against temperature changes had an effect on the decomposition seen. The limbs from 

the buried samples, both whole and excised, show little difference in rate of decomposition; the 

whole samples had a slight increased TBS at times but this was not to any significant extent. 

Both sets did succumb to adipocere; this had occurred by 16 weeks PMI. It was more extensive 

in the whole samples due to the increased amount of soft tissue. As adipocere often occurs in 

moist, anaerobic conditions (Langley & Tersigni-Tarrant, 2017), this was to be expected due to 

the enclosed conditions the samples were left in – drainage holes were drilled into the bottom 

of the boxes, but these did not adequately allow all the water collected over the winter months 

to drain. 

5.3 Weathering and Surface Modifications 

Significant changes to the bone surfaces were not seen. It had been anticipated that, due to the 

weather changes, some change to the surface would occur, however this was not the case. 

Behrensmeyer (1978) does state it can take up to six months for bones to achieve a weathering 

score of 1. This experiment ran for a total of 28 weeks, and most bones were given a score of 1 

by that time, so while this was not as expected, it was in line with the time range given.  

The exposed samples were showing surface degradation by 4 weeks PMI with pitting and some 

flaking occurring. This did not change significantly throughout the course of the project; 

microcracks were sometimes seen but nothing to substantiate a weathering score of above 1. 

Towards the end of the experiment, many of the exposed bones were beginning to show a green 

discolouration; this was quite moist and was possibly due to moss growth on the samples. The 

samples had been placed into large plastic boxes, in part to protect them from scavenging, 

however these may have also kept the environment damp/wet, as they did not drain very well. 

This could have allowed the moss to grow. It also has to be noted that the plastic box may have 

protected the samples from any effects the wind could have potentially had on weathering. 
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The buried bones, while not likely to succumb to any weathering changes, were scored based 

on any changes that occurred due to the soil interactions with the surface of the bone. In this 

case, it was anticipated that no changes would occur with the exception of some erosion due to 

soil. However, it was a buried defleshed bone sample that gave the highest score (of 2) at 24 

weeks PMI. This score was given due to extensive pitting and a crack that ran through the 

sample. This appears to have been an anomaly as it was the only sample to be given a score of 

2 and the corresponding samples at 28 weeks PMI did not show the same level of degradation. 

The whole rat samples and excised samples did succumb to adipocere and this can be seen in 

images in section 4.5. In some samples, the adipocere appeared to coat the bone; while this was 

not removed to analyse the surface underneath, it is likely that it protected the bones from any 

surface degradation (Munro & Munro, 2008). 

While it has to be noted that in forensic cases, factors such as scavenging would need to be 

taken into account, this research does show that weathering and surface modifications by 

themselves/alone cannot be used to accurately determine PMI. This may be different in 

scenarios with longer PMI’s, however further research would be needed. In this case, it is also 

clear that weathering does not change as a result of the deposition environment or tissue type 

(again the lack of scavenging here needs to be considered); and while the Behrensmeyer (1978) 

weathering score is for exposed remains, this shows it can be used to some extent on buried 

remains due to the effects the soil can have on the bone surface.  

5.4 UV Fluorescence 

The autofluorescence of the samples were analysed to determine whether any pattern could be 

distinguished to give an indication of PMI. It is thought that the collagen in bone allows for 

fluorescence to be seen when the bone is subjected to light within the UV range; this experiment 

used light at a wavelength of 375 nm. The theory states that as the collagen is destroyed through 

bone diagenesis, the level and intensity of fluorescence will decrease (Hoke et al, 2013). This 

proved to be inconsistent and no correlation could be found between intensity of 

autofluorescence and PMI. The ‘sandwich’ effect; a phenomenon whereby the intensity of 

fluorescence decreases over time from the outer and inner rims of the cross section (Saukko & 

Knight, 2015), was not seen. The use of image software, ImageJ, also did not give any significant 

results when used to analyse the fluorescence intensity. As the graphs in section 4.6 show there 

was a very poor correlation and R2 values of  <0.3 were calculated. There are several possible 

reasons for this; for example, while the samples were biologically similar, differences in their 

size, age at death, health, could have caused variations in collagen levels at the start of the 
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experiment. Inconsistent collagen levels on day 0 are bound to skew results as collagen loss 

cannot be consistently tracked. A better method would have been to analyse each individual 

sample on day 0 so it could be compared with the end loss. However, as this experiment 

analysed cross sections of the bone, that would have been an impractical approach. Other 

factors such as the type of bone analysed also need to be considered; this experiment used the 

long bones, however a selection of femur, humerus, and tibia were used, therefore the initial 

collagen levels in each type of bone have to be considered. It would have been more practical 

to use the same type of bone throughout this study, but due to limited available long bones and 

the need for repeated samples, different types were used. The question also has to be asked; 

what is fluorescing in the later samples? Can it be accurately stated that it is the collagen 

fluorescing? It has already been determined that bacteria are present on the samples as these 

drive the bone diagenesis, therefore could it be bacteria that are causing the inconsistent 

results? To answer this, one would need to isolate the bacteria on the samples and analyse them 

to determine whether they would fluoresce at the wavelength used. Unfortunately, bacterial 

analysis was not an option for this project, but it would be wise to consider this for future 

research. 

Despite this inconsistency, the samples were compared to determine whether deposition 

environment or tissue type had an effect on autofluorescence. As expected, the inconsistent 

results affect what can be seen in the comparisons, but it is possible to determine that both the 

exposed and buried samples followed a very similar pattern. The same can be concluded when 

comparing the fleshed and whole samples: - Graph 4.7 shows a similar pattern between the two 

tissue types, while the buried bone shows much lower levels of autofluorescence. 

Unfortunately, the inconsistencies mean it is impossible to determine whether this difference is 

due to the bone being defleshed and therefore exposed to the elements sooner, or due to 

variations in the subjects. 

5.5 Histology 

5.5.1 Microscopical Foci of Destruction 

Two types of microscope were used for histological analysis; compound and digital, to 

determine whether any diagenetic alterations were occurring over time. Overall, it was found 

that while the compound microscope could be used to obtain clear images of the samples, the 

digital microscope was not as good – this was most likely due to the preparation technique that 

was used. Digital Calipers were used to measure the thickness of the samples, however there 

was still room for error in the measurements – a thickness of 0.1 mm was aimed for, but due to 
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the sanding techniques, there will have been slight variations between the samples. This may 

have caused the focus issues that were encountered on the digital microscope. 

The first samples were collected at 4 weeks PMI, and signs of microbial infiltration could be seen 

at that point. This indicates that the first signs of diagenetic alterations occur before this time. 

These changes were observed in samples from all conditions, including the samples that 

required defleshing upon collection, indicating that diagenesis occurs before the skeletal stage 

of decomposition. The buried whole rats showed the most extensive signs of MFD with two of 

the three samples scoring a 2 on the OHI. While a score of less than 5 had been anticipated, such 

a low score was surprising. Potential reasons for this are given as the presence of the gut 

bacteria, the soft tissue of the buried samples were much slower to decompose suggesting the 

gut bacteria may have had longer to infiltrate the bones compared with the exposed whole rat 

samples, which gave an OHI score of 3. 

Over the course of this experiment, the MFD as categorised by Hackett (1981) were seen. As 

with previous bone diagenesis research, these MFD increased as the PMI increased, however 

there were other diagenetic alterations seen that had not been categorised by Hackett (1981). 

These took the forms of dark banding, or shadows, on the cross sections of the samples and 

enlarged, misshapen osteocyte lacunae. These appeared similar to the early diagenetic changes 

noted by White & Booth (2014), where they were given the terms ‘amalgamations’ and 

‘diagenetic lacunae’. The same terms were used here to describe the changes being seen. These 

amalgamations and diagenetic lacunae were seen extensively in most samples analysed over 

the course of the experiment; however there is very little in the literature about this. As most 

bone diagenesis research is conducted on skeletal remains, it can be concluded that these are 

most likely early forms of MFD often seen during and soon after the soft tissue decomposition. 

While these were still observable in most samples at 28 weeks PMI, it could be theorised that 

over a longer time scale, the amalgamations and diagenetic lacunae are obliterated by the other 

forms of MFD and therefore are rarely seen in older skeletal remains, for example archaeological 

remains. There were three samples from week 28 that showed zero diagenetic lacunae present, 

this was due to the osteocyte lacunae being obliterated by non-Wedl MFD; they were 

consequently given an OHI of 0 and showed no birefringence. These samples would support the 

theory that amalgamations and diagenetic lacunae can be obliterated over time by other forms 

of MFD. 

As this experiment used domestic rats as subjects, it had been anticipated that the samples 

would succumb to Wedl tunnelling. Jans et al (2004) and Brönnimann et al (2018) both found 
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that animal bones were less likely to succumb to microbial tunnelling and when they did, they 

were more prevalent to Wedl tunnelling than non-Wedl tunnelling when compared with human 

bones. However, this was not the case here. Very few samples showed signs of fungal 

infiltration; of the 90 field samples that were analysed over the 28 weeks, only 30 showed the 

presence of Wedl tunnels, while 85 showed some form of non-Wedl tunnelling. According to 

Hackett (1981), Wedl tunnelling is caused by the infiltration of fungal spores while non-Wedl 

tunnelling occurs as a result of bacterial infiltration. Wedl tunnelling has shown to be more 

prevalent in water burials than soil, although if the soil is damp enough, they have been 

observed (Brönnimann et al, 2018). The Wedl tunnels that were seen were mostly type 2, the 

enlargement of the canaliculi; given the structure of the canaliculi it may be that they are more 

prone to microbial infiltration and this is why some samples were attacked in this way. No reason 

has been given in the literature as to why animal bones succumb to Wedl tunnels more easily 

than human bones, but it is thought that it could possibly be due to the difference in 

microstructure, such as the absence of osteon systems which plays a part (Jans et al, 2004); 

however the results here did not support this theory.   

5.5.2 Birefringence 

The birefringence of the samples were observed throughout the experiment. This was carried 

out using a polarised compound microscope and the samples were scored based on the level of 

birefringence seen compared to a fresh (control) sample. The birefringence index was used to 

rate these samples; however it was found that the three-category scale was not enough for the 

levels of birefringence being seen throughout the course of the 28 weeks. Due to this, two more 

categories were added to the index. These took into account samples that showed localised 

losses in birefringence, which were not considered to be enough to give a rating of ‘reduced’; 

and those samples that showed significant loss of birefringence, typically these samples showed 

localised areas that were still birefringent. As this was an adaptation to the BI by the researcher, 

there was a limitation in that the method of analysis was not validated. This was also a 

measurement only conducted by the researcher and therefore the results are subjective; 

another researcher may not show the same results when observing the same samples. This 

appears to be an issue with this type of measurement and better methods of analysis, such as 

double-blind analysis, should be considered in any future work. 

Only two samples showed normal birefringence during the experiment, these were one from 

the week 24 collections, and one from week 28, while twelve showed obliterated birefringence 

as defined in section 4.7.2. Four of the obliterated samples were from the week 28 collections, 

with three of them also showing no observable lacunae. The week 4 collections had two 
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obliterated samples; one of these was a longitudinal section while the other was transverse. 

While transverse sections were preferable for this type of analysis, due to the preparation 

method used, they were not always possible to obtain. The longitudinal sections were not as 

clear to analyse under the microscope as the transverse, and were often slightly thicker, this 

could explain why this sample was showing no birefringence after only 4 weeks PMI.  

As with the UV fluorescence analysis, the birefringence showed no consistency over time. While 

most samples (88 field samples) showed some loss in birefringence, there was no linear pattern 

to this and as the R2 values show (0.15-0.75), no correlation could be found to indicate that 

birefringence decreased as time increased. As Graph 4.11 shows, the level of birefringence was 

inconsistent throughout. This could be explained by the preparation method used. The 

preparation method was imperfect, the samples had to be hand sanded to the required 

thickness. This had to be done with care so not to destroy the microstructure of the samples 

while also allowing for an optimal thickness to be obtained to allow the transmitted light of the 

microscope to pass through the sample. This method meant the samples were not identical in 

thickness, and while the variances may only be slight, they will have been enough to hinder the 

birefringence of the samples. A better preparation method would have been preferred and must 

be considered in any future research. 

5.5.3 Oxford Histological Index 

The Oxford Histological Index as devised by Hedges & Millard (1995) was used to rate the 

samples on their level of intact structural integrity. As the OHI relies on the judgement of the 

person analysing the samples, which may not necessarily be without bias, an attempt was made 

to quantify the level of microbial destruction occurring. The two methods were run side by side; 

one was based on the judgement of the researcher, while the other used ImageJ to count the 

number of osteocyte lacunae visible in the samples. The graphs in sections 4.7.3 and 4.7.4 show 

that while both methods indicate a loss in structural integrity over time, the observer did score 

the samples lower than they were as the PMI increased (see Graph 4.18 for the variance 

between the two methods). Both methods gave good linear regression lines and the R2 values 

(>0.7) indicated a very large correlation between decreasing OHI scores with increasing time. 

The lowest R2 value (0.78) calculated was for the buried excised, fleshed samples using the 

counted method. Inconsistencies such as this could be due to the types of bones used; this 

experiment used humerus, femur and tibia for analysis; the size and age of the subject could 

also have an effect. Despite these potential issues, overall it was shown that as the PMI 

increased, so did the amount of microbial infiltrations. A t-test was carried out on the counted 

method to determine whether the results being obtained were of significance. This gave a P 
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value of 2.34x10-14; as this is lower than the accepted 0.05 value (Rumsey, 2011) it shows that 

the results being obtained were statistically significant and it can be concluded that OHI score 

decreases as the PMI increases. 

To determine whether the deposition environment had an effect on the level of bone diagenesis 

occurring, the buried samples were compared with the exposed samples. Using Graphs 4.13 and 

4.16 it can be seen that the deposition environment had little effect on the samples. Using the 

observable method, the exposed samples show a slightly more consistent loss when compared 

with the buried samples, however this could be due to observer error rather than the samples 

themselves. When comparing this with the counted method, it is clear that the two 

environments show an almost identical rate of bone diagenesis. This would indicate that the 

environment is of little consequence to microbial infiltrations. However, this may not be true in 

a forensic case; in this experiment the buried samples were enclosed in lidded boxes limiting the 

exposure to insect activity and environmental fluctuations, such as temperature changes and 

rainfall. These factors may have affected the amount of microbial tunnelling seen in these 

samples. The exposed samples were also placed into plastic boxes, while this was deliberate to 

limit the samples coming into contact with the soil on the ground, and to stop scavenging 

animals, this may also have affected microbial tunnelling. Therefore, it can only be concluded 

that the deposition environment had no effect on bone diagenesis in this experiment only.  

As this experiment used three different tissue types, they were compared to determine what, if 

any, differences were occurring between them. Here the two different methods used to observe 

microbial tunnelling showed a few differences. The observable method showed a significant 

decrease in OHI score between 0 and 4 weeks PMI for the whole rat samples; initially this was 

believed to be due to the bloat stage of decomposition, this would confirm the theory that 

intrinsic gut bacteria can affect bone diagenesis, particularly during the soft tissue 

decomposition stage. However, upon analysing Graph 4.17 for the counted method, it can be 

seen that the whole rats do not show significantly different results to the excised, fleshed limb 

samples and the defleshed bone samples during the first 4 weeks PMI. Here, however it can be 

seen that the OHI shows a consistent decrease in the whole samples for the first 8 weeks post-

mortem, with the OHI decreasing from 5 at day 0 to 3 by week 8. This could show that the 

intrinsic gut bacteria affect the skeletal tissue for the first 8 weeks; this would coincide with the 

insect activity for the exposed samples, that had left the samples by the week 8 collections 

having left very little tissue remaining. The defleshed bone samples gave the least OHI decrease 

overall. This could be due to the removal of the soft tissue and lack of gut bacteria present and 

would confirm the theory that the intrinsic gut bacteria drive bone diagenesis.  
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5.6 Confocal LSM 

The use of the Confocal LSM was a novel approach to this experiment as, despite its potential, 

it has been little utilised in the area of bone diagenesis. The ability to use the reflection mode to 

obtain images of the microstructure of the bone, as well as the fluorescence analysis means this 

has the potential to be very useful in bone diagenesis research.  

As this was a novel technique at the University of Huddersfield, it took a lot of time to establish 

the ideal settings to allow for clear fluorescence analysis to take place – this meant a lot of time 

was lost that had not been anticipated. As a result, only two sets of samples were analysed 

alongside fresh samples for control. These samples were from collection weeks 16 and 24. 

Despite the small sample numbers, differences can be seen.  

Software from Zeiss make it possible to convert the intensity of the samples into easy to 

understand tables; these were then used to calculate averages which could be used to create 

graphs to show what was occurring to the samples over time. This was particularly useful when 

comparing images of the samples. From the images obtained, it initially looked like the buried 

fleshed, excised limbs and the buried whole rats were maintaining their levels of fluorescence – 

something that was not expected, particularly in the whole samples due to the presence of the 

gut bacteria; however upon further analysis using the intensity tables this was found to not be 

the case. As Graph 4.19 shows, there was an overall decrease between the control samples and 

week 24 collection samples indicating that the intensity of fluorescence was lost over time. 

There was some inconsistency in the week 16 collection samples, however this could be due to 

the samples not being identical in thickness; as previously discussed the preparation method 

was not ideal and did limit some of the results seen. When the t-test was performed using the 

day 0 samples and week 24 collections, a P value of 2.06x10-6 was given, this would indicate that 

the loss of fluorescence was statistically significant, however more research needs to be 

considered using this technique.  

When comparing the deposition environments, there was little difference seen. The exposed 

samples showed a slightly higher intensity in fluorescence at 16 weeks PMI, however by 24 

weeks PMI there was little variation between the levels of fluorescence intensity seen.  The t-

test was performed to calculate a P value (0.137) which showed the results were not statistically 

significant.  

As with the other analyses, the tissue types were compared. Graph 4.21 shows there is a vast 

difference between the whole rat samples and both the defleshed bones and the excised, 

fleshed leg samples. The whole rat samples showed less loss in fluorescence intensity when 
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compared to the other tissue types. As with the images, this was unexpected as previous 

research (White & Booth, 2014) has shown that the presence of gut bacteria drive bone 

diagenesis. A t-test gave a P value of 0.007 when comparing the defleshed bone samples with 

the whole rat samples; this would indicate that the results being seen here are statistically 

significant and not due to random variation within the samples. This would indicate that the 

presence of the gut bacteria does not have a significant effect on bone diagenesis as previously 

thought. Other potential causes for fluorescence, such as the presence of decomposition 

bacteria, were considered but no literature could be found to state that bacteria would fluoresce 

at the wavelengths used.  

Despite what these results show, they do have to be taken with caution. There is still some 

debate over why bones have the ability to autofluoresce; the most popular theme being that 

the collagen fibres within the microstructure of the bone are the cause although no one knows 

why this is (Capasso et al, 2017). Research undertaken by Capasso et al (2017) found links 

between collagen content and fluorescence intensity, however, as with this experiment, they 

also found localised fluorescence within their samples. Further investigation showed that this 

fluorescence appeared to be due to the ‘Rouget-Neumann sheath’. This substance is found in 

spaces between the osteocytes and the walls of the canaliculi (Capasso et al, 2017). As can be 

seen in Figs 4.35 and 4.36, the fluorescence is specific and does appear to be where this Rouget-

Neumann sheath would be expected. As this fluorescence could affect the results using Confocal 

LSM and the intensity table from Zeiss software, it may not be possible to get a true indication 

of fluorescence loss due to collagen destruction without knowing the full extent of this localised 

fluorescence. Further research is needed to explore this. 

5.7 Proteomic Analysis 

The samples sent to Northumbria University were selected based on their potential to answer 

the original research questions; what are the origins of the bacteria that drive bone diagenesis? 

For this three each of the buried defleshed bones and the exposed whole rat samples from 

collection weeks 12 and 24 were sent along with fresh bones (three bone samples). The purpose 

of analysing the protein content of the defleshed bone samples was to determine what, if any, 

effects the burial soil had on the protein content, while the analysis of the exposed whole rats 

was done to determine whether the presence of the gut microbiome during the decomposition 

stage had led to any shifts in protein abundance. 
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Progenesis software was used to analyse the data obtained from the LC-MS/MS. Using this it 

was possible to analyse all the data together; and to separate them into groups to allow for 

comparisons.  

At first glance, it could be seen that there was a good variability between all samples; the fresh 

samples stood apart from the field samples as expected, and the level of variance increased at 

the deposition time increased.  

Comparing the fresh samples with the samples collected in week 12 and week 24, it could be 

seen that the week 24 samples were showing the greatest variance from the fresh samples. 

Originally it had been expected that this would be due to proteins breaking down as part of bone 

diagenesis and this would lead to fewer proteins being extracted for the LC-MS/MS analysis. 

However, what was seen was a greater abundance of proteins in the week 24 samples. It is 

hypothesised that this was due to easier extraction of the proteins in the later samples due to 

the breakdown of either the proteins themselves, or of the bone material through the 

decomposition process. As the PMI analysis used samples from more than one subject, it is 

believed that the results being seen are not due to biological variability between the animals 

used, and are due to the effects of the deposition time.  

Further analysis was conducted to determine which proteins were causing the variations seen. 

The proteins causing the most significant variances were plasma proteins, particularly in the 

fresh samples, and bone specific proteins, mainly in the later PMI samples. It was found that the 

collagenous proteins were not causing any statistically significant changes as they did not appear 

to be causing any of the variances seen on the PCA maps; this would agree with the results seen 

for the UV analysis and the birefringence, which also related to collagen content. Due to this, 

the non-collagenous proteins were focused on; these were shown to be more sensitive to 

damage and significant increases were found. Further analysis showed the two most influential 

proteins contributing to the differences being observed between the fresh and 24 weeks PMI 

samples to be PGS1 and PGS2. These were bone proteins; biglycan and decorin and are found 

within the bone matrix. ANOVA showed the P value to be statistically significant (P <0.05) 

indicating that the results seen were not due to random variations. 

Research previously conducted by Procopio et al (2018) also found that biglycan increased with 

increasing PMI; the analysis presented here did not reach six months to compare with the 

research by Procopio et al (2018), but in the case of Procopio et al (2018) it was found that these 

levels peaked between four- and six-months PMI. These results could indicate a potential new 
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biomarker for PMI estimation, however as this experiment and those conducted by Procopio et 

al (2018) and Prieto-Bonete et al (2019) are the only ones of this kind, more research is needed.  

As well as the increasing PMI, the deposition environment conditions were compared to 

determine whether they had an effect on the proteome of the samples. It was found that there 

was no difference between the buried samples and the exposed samples; the samples were not 

well separated on the Principle Component 1 axis when shown on the PCA chart. This 

corresponds with what has been seen in the other analyses presented in this experiment; 

whether the remains are buried or left exposed, there is little to no difference in the rate of bone 

diagenesis.  

As the buried samples were all defleshed bone samples and the exposed samples were all whole 

rat samples, the deposition results can also be used to compare the tissue types. Again, it can 

be determined that the presence of the gut microbiome made little difference to the protein 

abundance (p > 0.05). The presence of the bacterial colonies within the soil also had little effect.  

5.8 Implications and Limitations 

5.8.1 Implications 

The results seen in this study could have implications in the field of bone diagenesis as it shows 

that what has previously been believed may not actually be true in all scenarios. The White & 

Booth (2014) study showed that the presence of gut bacteria drove bone diagenesis while what 

has been shown here is that this may not always be the case. Here we can see that while the 

presence of the gut bacteria does lead to an initial increase in bone diagenesis, this slows once 

the soft tissue decomposition has ceased; the later samples did not show a big variation when 

comparing the defleshed bones with the whole rat samples. It has also shown that while the 

deposition environment may greatly affect the rate at which the soft tissues decompose, it 

doesn’t have as big an influence on the rate at which bone diagenesis occurs. 

This research could have implications in both forensic anthropology and archaeology. Research 

in bone diagenesis could help to establish the rate at which the structural integrity of skeletal 

tissue is lost; something that is important to both these fields of study.  

Archaeological studies are more concerned with how people lived, and as the skeleton is often 

all that remains, studies using bone samples are often undertaken. The problem is that most 

techniques are destructive; as they are dealing with human remains, there is reluctance to doing 

many of these tests if the results are not likely to be productive. Knowing the point at which 

certain tests are likely to be unreliable could be very useful here.  
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Forensic anthropology, however, has the question of PMI to answer. Many have suggested that 

more research in bone diagenesis could allow this question to be answered one day. However, 

it has to be noted that despite much research into this, little progress has been made. This could 

be due to most research being conducted on remains of archaeological interest; it is only in 

recent years that forensic interest has peaked in bone diagenesis.   

5.8.2 Limitations 

This experiment used domestic rats as human analogues due to UK legislation that currently 

restricts the use of donated human remains for research in forensic taphonomy. While rats were 

suitable for this experiment, future research ideally needs to be undertaken with human 

subjects if significant results are to be gained. Rats were used here for ease, but it needs to be 

remembered that there are vast differences between the human skeleton and that of an animal. 

Variations in lifestyle, such as diet and potential disease, can make a difference to the subject; a 

rat will have a vastly different microbiome to that of a human due to their restricted diet, which 

needs to be considered when looking at the results of this experiment (Nagpal et al, 2018). Did 

the diet of the subject play a part in the lack of gut microbiome-driven bone diagenesis seen 

here? The difference in bone microstructure also needs to be addressed; it is known that many 

animal bones generally lack the osteon systems found in human bones. While this research 

appears to show that this does not play a significant part in bone diagenesis, it may be that there 

are variations yet to be discovered. There is a lack of comparison research for human and animal 

bone, within forensic timescales, to know what limitations the use of animal subjects has on 

forensic anthropology. 

The timescale for this experiment also presented a problem. As for a Masters by Research, time 

was limited and therefore the field experiments only ran for a total of 28 weeks. Other forensic 

taphonomy studies have run for much longer, allowing for more changes to be seen. While there 

have been changes here, inconsistencies in some analytical techniques have hampered results. 

Had the time allowed, a much longer experiment with less frequent data collections may have 

been preferable. These samples were also left in the field from November – May, meaning the 

summer months were not covered. While the winter of 2018/19 was mild, the diagenetic 

changes may have been much different had the experiment run for longer, covering the more 

variable UK weather.   

The preparation method presented a particular problem with this research. It would have been 

preferable to embed the samples and use a microtome to slice them, however a lack of 

resources meant that this was not an option. Instead the manual bone preparation method 
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adapted by Maat et al (2001) was used. This required wet sanding the samples to a preferred 

thickness, in this case 0.1 mm, before placing them onto a glass slide. While Digital Calipers were 

used to measure the thickness of the samples, this was not ideal, slight variations between 

samples were encountered. This may have hindered some of the results seen here; 

unfortunately without repeating the conditions of the experiment and using the preferred 

embedding method, it is impossible to estimate the exact influence the preparation method 

may have had.  

5.9 Further Work and Adaptations 

This project was not without its difficulties. As this was a Masters by Research the project could 

only run for one year; with planning and time for analysis this was cut down to 28 weeks. While 

degradation to the samples was seen, it would have been beneficial to have a longer deposition 

period. In hindsight it has been noted that more samples should have been used to allow for 

more repeats and therefore obtain better statistics. The samples in this research were only 

observed by one person, this was not ideal as the changes observed are subjective. A method 

such as double-blind observations would be recommended in any further research. 

There were also issues encountered with the materials used; the plastic boxes used for the 

buried samples did not have sufficient drainage, as a result water did gather in the bottom of 

the boxes. The larger boxes used for the exposed samples also required better drainage, water 

did gather in the base due to the uneven surface leading to some of the samples turning green 

with suspected moss growth. It is also possible that the high sides of the large plastic boxes may 

have protected the samples from the effects of weathering. In hindsight it may have been better 

to place the samples directly on the ground with the cage above to protect from scavengers. 

While it was not the focus of the project, weekly monitoring in the form of photographs of the 

soft tissue decomposition could have been beneficial for the TBS section. The biggest hurdle for 

this project was the histology preparation technique. Due to limited resources a manual 

technique was used which was abrasive and may have affected some of the results seen. Any 

future research should be done with better techniques, such as fixing and embedding the 

samples and using a microtome to obtain thinner, more consistent samples.  

It is also noted that soil analysis should have been conducted throughout the project. Microbial 

testing of the soil (and analysis of the gut microbiome) was discussed and rejected due to 

financial and time constraints. However, simple tests such as pH and hydrology would have been 

possible. This is something that would be done in any future research.  
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5.10 Summary 

This experiment has given some interesting and unexpected results. It was initially thought that 

the whole rat samples would show the greatest amount of diagenetic alteration, however this 

has not been the case. While the soft tissue decomposition did follow the expected path of 

decomposition, the skeletal tissue did not. The bloat stage did appear to have an increased effect 

on bone diagenesis when assessing the samples using the OHI, however the other tissue types 

appeared to catch up by the end of the experiment. There also appeared to be little difference 

between the two deposition environments, with the exception of the soft tissue decomposition. 

While the results presented here appear to deviate from other research in this area, the samples 

used have to be considered. Other researchers have used domestic pigs as their human 

analogues, while it was decided to use domestic rats here due to the number of subjects 

required; the subjects used may be the cause of the discrepancies being seen. 

5.10.1 Future Research 

This project has given rise to some interesting results for forensic taphonomy. While some of 

the results seen were not as expected, there has been some statistically significant knowledge 

gained. It was found that some analytical techniques, such as weathering and UV analysis, are 

not ideal when working with smaller timescales/PMI, however longer field studies could 

determine if these could be viable methods of longer PMI estimation.  

Histological analysis and proteomic analysis did yield significant results in bone diagenesis. 

Histologically, the samples all showed increasing levels of MFD as deposition time increased. The 

method of quantifying MFD within samples using osteocyte lacunae counting showed promise, 

with statistically reliable results gained (P = 2.34x10-14). More work would be needed to develop 

a less time-consuming method than was used here but for a novel technique, these results show 

potential; R2 values of >0.77 (R2 = 0.922, R2 = 0.9131, R2 = 0.9081, R2 = 0.9031, R2 = 0.896, R2 = 

0.7814) were obtained and a statistically significant P value (2.34x10-14) for the deposition time 

was calculated. The use of the Confocal LSM led to the finding that the PMI had an effect on the 

samples; more research would need to be conducted using this technique as it is a new approach 

to bone diagenesis. The proteomic analysis also showed a relationship between increasing 

deposition time and protein abundance; with the greatest variances being seen at 24 weeks 

deposition (P = < 0.05 compared to fresh samples). The proteins causing this shift were isolated 

and corresponded with the results of previous research. It is hoped that with more work, a 

potential new biomarker for PMI estimation may have been found. 

                                                           
7 R2 values above 0.7 were considered to show a very large correlation (McCormick et al, 2015) 
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Conclusions 

This research has produced some interesting and significant results. Relating to the hypotheses 

stated in Chapter One, the following was observed: 

• The hypotheses for the weathering of the samples were rejected as the time scale was 

not long enough to see any significant changes to the bone surfaces. 

• The hypotheses relating to the presence of the gut microbiome were accepted for the 

initial eight weeks PMI. The gut microbiome did appear to accelerate the destruction of 

the internal structure of the bone and the presence of MFD, however this slowed in the 

later stages of decomposition, resulting in a lack of comparable changes between the 

later samples. 

• The hypothesis relating to the collagen content was rejected as the results seen were 

inconsistent. 

• The hypotheses relating to the integrity of the internal structure of the bone and the 

presence and extent of MFD seen were accepted. As the PMI increased, so did the level 

of destruction seen, this was measurable and did have statistically significant results (P 

= 2.34x10-14). 

• The hypotheses relating to the tissue types; defleshed bone (soil bacteria); excised, 

fleshed limbs (autolysis); whole rats (gut microbiome), were rejected. Once the initial 

bloat stage had ended for the whole samples, there were no statistically significant 

differences between the levels of microscopical destruction seen.  

Statistically significant results obtained were: 

• Very large R2 values of >0.7 (McCormick at el, 2015) were found for the OHI using both 

methods of analysis, showing the link between increasing PMI and increasing levels of 

MFD 

• The osteocyte lacunae counting method gave a P value for PMI week 4 vs week 28 was 

2.34x10-14, indicating a strong link between increasing PMI and increasing levels of MFD 

• Confocal LSM showed potential for the analysis of bone diagenesis when comparing the 

fluorescence intensity of fresh samples with 24 weeks deposition samples (P < 0.05).  

• Confocal LSM analysis showed a statistically significant difference in fluorescence 

intensity when comparing the whole rat samples with the defleshed bone samples (P = 

0.007). 
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• Proteomic analysis showed that the abundance of specific bone proteins (PGS1 and 

PGS2) were statistically significant between fresh samples and 24 weeks PMI samples (P 

= <0.05). 

This research has given some significant results to the field of forensic anthropology and the 

study of bone diagenesis. It has shown that the presence of microbes, such as those found in 

the gut microbiome and those found in soil, do play a part in bone diagenesis. The intrinsic gut 

bacteria appear to accelerate bone diagenesis but only for a short period of time. This research 

is of importance for the field forensic science as it could help resolve the inaccuracy of PMI 

estimation, however more research with longer time scales is needed. 
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Appendix One: 

Total Body Score (Humans) 

TBS for head and neck 

 

TBS for abdomen

 

TBS for limbs

 
Total Body Score as adapted by Megyesi et al (2005). Source: Langley & Tersigni-Tarrant (2017) pp. 293-294 

  



 

116 | P a g e  
 

Appendix Two: 

Total Body Score (Rabbits) 

TBS for head and neck 

 

TBS for abdomen 
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TBS for limbs 

 
Total body score adapted for rabbits. Source: Adlam & Simmons (2007) 
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Appendix Three: 

Weathering and Surface Modifications 

All images are x100 magnification unless indicated. 
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Appendix Four: 

UV fluorescence 

Fresh 

  

   

Buried 
Bone 

 
4 weeks 

 
8 weeks 

 
16 weeks 

 
24 weeks 

 
28 weeks 

A 

     
B 

     



 

127 | P a g e  
 

Buried 
Flesh 

 
4 weeks 

 
8 weeks 

 
16 weeks 

 
24 weeks 

 
28 weeks 

A 

     
B 

     
Buried 
Whole 

 
4 weeks 

 
8 weeks 

 
16 weeks 

 
24 weeks 

 
28 weeks 

A 

     



 

128 | P a g e  
 

B 

     
Exposed 

Bone 
 

4 weeks 
 

8 weeks 
 

16 weeks 
 

24 weeks 
 

28 weeks 

A 

     
B 

     
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 



 

129 | P a g e  
 

Exposed 
Flesh 

4 weeks 8 weeks 16 weeks 24 weeks 28 weeks 

A 

     
B 

     
Exposed 
Whole 

 
4 weeks 

 
8 weeks 

 
16 weeks 

 
24 weeks 

 
28 weeks 

A 

     



 

130 | P a g e  
 

B 

     
 



 

131 | P a g e  
 

Appendix Five: 

Compound Microscope 

All images are x100 magnification 
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