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Abstract 

The analysis and understanding of abnormal behaviours in human crowds is a 

challenging task in pattern recognition and computer vision. First of all, the semantic 

definition of the term “crowd” is ambiguous. Secondly, the taxonomy of crowd 

behaviours is usually rudimentary and intrinsically complicated. How to identify and 

construct effective features for crowd behaviour classification is a prominent challenge. 

Thirdly, the acquisition of suitable video for crowd analysis is another critical problem.  

In order to address those issues, a categorization model for abnormal behaviour 

types is defined according to the state-of-the-art. In the novel taxonomy of crowd 

behaviour, eight types of crowd behaviours are defined based on the key visual patterns. 

An enhanced social force-based model is proposed to achieve the visual realism in 

crowd simulation, hence to generate customizable videos for crowd analysis. The 

proposed model consists of a long-term behavior control model based on A-star path 

finding algorithm and a short-term interaction handling model based on the enhanced 

social force. The proposed simulation approach produced all the crowd behaviours in 

the new taxonomy for the training and testing of the detection procedure. On the aspect 

of feature engineering, an innovative signature is devised for assisting the segmentation 

of crowd in both low and high density. The signature is modelled with derived features 

from Grey-Level Co-occurrence Matrix. Another major breakthrough is an effective 

approach for efficiently extracting spatial temporal information based on the 

information entropy theory and Gabor background subtraction. The extraction approach 

is capable of obtaining the texture with most motion information, which could help the 

detection approach to achieve the real-time processing. 

Overall, these contributions have supported the crucial components in a pipeline of 

abnormal crowd behaviour detecting process. This process is consisted of crowd 

behaviour taxonomy, crowd video generation, crowd segmentation and crowd 

abnormal behaviour detection. Experiments for each component show promising 

results, and proved the accessibility of the proposed approaches.  
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Chapter 1. Introduction 

1.1 Thesis Motivation 

In recent years, public safety has increased its importance and becoming an 

overwhelming issue globally. One of the major concerns is terrorism. The direct costs 

on human life and properties, and the potential harm to society from terrorist acts are 

often immeasurable. In order to tackle those challenges and to manage public safety, 

worldwide governments have invested enormous resources and effort into security 

infrastructure and techniques. For example, massive numbers of CCTV cameras have 

been installed in many countries across the globe. Laws and policies have been formed 

to authorize the usage of surveillance data for monitoring, evidence collection, and even 

emergency response. Furthermore, resources are invested into developing related 

scientific research and systems such as face recognition and tracking. 

As a consequence, massive amount of video data is collected. For example, a 

standard CCTV camera generates around 1 GB video data per hour, assuming 10 

thousand cameras are installed in a city, the daily recording of video data could add up 

to roughly 240 TB in size, which is impractical for long term storage and manual-based 

analysis. In most cases, the collected video data contains little value for post processing. 

In another word, these video footages contain ‘normal scenes’ only. The filtering of 

‘useful’ information from these massive video footages is a difficult task. The 

conventional approach for obtaining required video evidence from the ocean of data is 

by using human operators to view all collected videos, which is extremely exhausting, 

inefficient, and error-prone. In order to address this issue, models and techniques for 

automating the filtering and detection of valuable video “events” need to be explored. 

Public security research in general covers a wide range of topics, for example, 

public policy and regulations, scientific research and technology, and financial/social 

impact. This research focuses on using Computer Vision-related techniques for 
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improving the understanding of human crowd-based activities. The fundamental goal 

of this research is to effectively extract, model and recognize crowd patterns. It is 

envisaged that the findings and contributions of this research will be valuable for real-

world problem solving and applications such as digital forensic evidence retrieval and 

automated abnormal behaviour alarm systems. 

1.2 Background 

Computer Vision related researches for crowd analysis can be further categorized 

into application fields such as Content-based Image Retrieval (CBIR), Graphical 

Information Recognition (GIR) and Human Behaviour Analysis (HBA). 

CBIR aims to search relative images with similar features from database according 

to the semantic and context of the image. It has higher requirements on retrieval speed 

and efficiency than conventional image retrieval that relies on pixel level operations 

such as histogram, moments and color set. In the last decade, some CBIR techniques 

attempt to utilize the semantic information extracted from an image including geometry 

and structure, 3D segmentation, and object recognition for various applications. Due to 

the nature of scientific rigorous, forensic image retrieval is a crucial tool for modern 

policing. Lee et al. (2012) has investigated the Tattoo Image Retrieval techniques that 

can be used by investigators as a viable way for suspect and victim identification. 

GIR is also widely implemented in safety and security applications. Successful 

applications include fingerprint, vehicle registration plate, and shoeprint recognition 

technologies and systems. For example, shoeprints are capable of providing crucial 

evidence on suspect identification in forensic analysis. In most cases, shoeprint is a 

unique pattern similar to fingerprint. Even for shoes of same model, variant size and 

worn details can still be detected to distinguish different identities. Rathinavel and 

Arumugam (2011) proposed a novel approach on shoeprint recognition through 

matching partial shoeprint images with the whole image in a database. By using the 

proposed approach, the matched shoeprints can be used as valuable evidence in crime 
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scene investigation. 

The widely installed CCTV cameras generate massive amount of live video data, 

these data can be utilized for predicting potential hazardous behaviours. Current main 

stream practical systems still reply on human operators for intervention. However, this 

approach has some significant disadvantages. For example, fatigue-related omission 

and misidentification. In order to address these issues, CV-based techniques have been 

developed to automate the detection tasks (Xuxin et al., 2015), (Saxena et al., 2008), 

(SangHyun and HangBong, 2014). These approaches have explicit advantages. However, 

the challenge is still prominent since the definition of normal and abnormal behaviours 

is often implicit and ambiguous in real world. Therefore, how to achieve a high 

detection accuracy is the problem to be addressed. Figure 1-1 illustrates the field 

relations of this research. 

 

Figure 1-1. Research field hierarchy, blocks in blue color represents the covered fields. 

HBA can be divided into individual behaviour analysis and crowd behaviour 

analysis. Due to the different nature of these two types, approaches are significantly 

different while addressing these issues. For individual behaviour analysis, the 

fundamental concept is to detect and verify the actual behaviour of an individual such 

as waving hand, walking and running. In this approach, the target individual is firstly 

separated from others; then defined features are extracted from the individual. The 

modeled feature patterns will either be used for training the behaviour templates or 
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classifiers, or directly used for behaviour recognition. On the contrary, for crowd 

behaviour analysis, individuals are often treated as a whole. For example, pedestrians 

of close vicinity are considered as a single entity, which is segmented from the scene; 

then patterns or eigenvalues are extracted from this swarm. These eigenvalues are 

analyzed to decide which dominant behavioural type this crowd entity belongs to. An 

example of individual and crowd behaviour analysis is illustrated in Figure 1-2. Figure 

1-2(a) is the result of using the proposed approach in the research of Lazebnik et al., 

(2012). In this approach, a statistical model called Bag of Word (BoW) is utilized to 

classify the extracted texture patch (Sivic, 2009). To be specific, the labeled image 

patches are firstly used to train the semantic BoW model, once the model is trained, 

behaviours in new images will be classified according to the texture type’s statistical 

distribution. In Figure 1-2(a), different poses of the figure-skater such as Camel Spin 

and Sit Spin are detected. Figure 1-2(b) illustrates the behaviour of a crowd of people 

(Ernesto et al, 2006), where the image is segmented as foreground and background. 

The optical flow of the foreground is calculated to train a Hidden Markov Model (HMM) 

(Baum and Petrie, 1966). The HMM will then be able to decide if current scene contains 

abnormal crowd behaviours. 

 

(a) Analysis of Individual Behaviours illustrated in (Lazebnik, Torralba et al) 

 

(b) Analysis of Crowd Behaviours illustrated in (Ernesto, Scott et al, 2006) 

Figure 1-2. Examples of Behaviour Analysis on Individual Behaviours and Crowd Behaviours 
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1.3 Key Challenges for Online Crowd Behaviour Analysis 

Due to the unique patterns and factors affecting human crowds, the challenges for 

crowd behaviour analysis are strikingly different from individual behaviour analysis. 

As illustrated in Figure 1-3, three main phases must be implemented to obtain the final 

result for online crowd analysis. In the first phase, raw video data is obtained from 

either video camera or simulated footage. Also, some pre-processing of the raw video 

data is applied such as background subtraction as the preparation of the next phase. For 

the second phase, crowd’s low-level features are extracted from the processed video 

data, and further modelled into high-level semantic features. For the third phase, 

features are merged into descriptors to determine whether the anomaly exists in the 

crowd video. Various issues need to be addressed in each phase. This research managed 

to tackle 3 key issues in each of these three phases. 

 

Figure 1-3. The procedure of crowd analysis 

In the research of behaviour analysis in computer vision, wide-range of features and 

techniques are explored. The most appropriate feature/technique for the analysis of 

crowd behaviour is yet unknown. Therefore, the key issue needs to be solved is to find 

out the feature or descriptor which have the better performance on the recognition of 

crowd behaviours in the early phase of the program. The research concentrates on the 

support of the second and third phases of the analysis procedure to achieve the 

successful detection of abnormal crowd behaviours. This is the most crucial challenge 

to be tackled. 

As the research continues, another key issue is observed while testing the devised 

technique for crowd abnormal behaviour classification and detection – the definition 
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and categorization of crowd behaviours is implicit and ambiguous. This issue greatly 

impacts the measurement of the proposed techniques’ performance. Therefore, it needs 

to be addressed to support the first phase of the analysis procedure. 

While training and testing the devised machine learning model for behaviour 

classification, another major challenge is encountered – the benchmarking video 

datasets for crowd behaviours are extremely limited in both quantity and quality. 

Therefore, the third issue is the insufficiency of the crowd video data. 

1.4 Project Objectives and thesis Structure 

In order to address the three major challenges encountered during the research, the 

main objectives are summarized as follows.  

• Effective extraction of Spatio-Temporal Textures (STTs) for crowd behaviour 

representation. This objective aims to achieve the fast and effective extraction 

of texture with the most motion information to support the signature modelling 

process of crowd behaviour analysis. 

• Devising a novel descriptor/technique to achieve the recognition and 

classification of abnormal behaviours with high performance. This objective 

aims to tackle the first challenge encountered, which is the ultimate goal of this 

research. 

• Synthesis of crowd behaviours. A simulation technique has to be devised in 

order to produce crowd videos with desired elements. These elements include 

the designated crowd population, behaviours, video quality and etc. 

Contributions of this research have been made as follows. 

1) In the data obtaining phase, an innovative approach is devised to simulate 

various types of desired crowd behaviours. This contribution attempts to tackle the 

insufficiency of crowd videos with desired behaviours for analysis. Because the 
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irregular visual expression and varied form of crowd behaviours. Few comprehensive 

benchmarking datasets existed with all desired behavioural types. Therefore, generating 

crowd video using simulation algorithms become a viable and important strategy. 

2) In the feature extraction phase, a STT extraction approach based on information 

entropy is introduced to effectively obtain texture information from the STV. The 

feature extraction is often the most time consumptive phase in the behaviour 

recognition process. This contribution attempts to obtain the STT with most motion 

information with the least time consumption based on the core concepts of information 

entropy and Gabor filtering.  

3) In the behaviour recognition phase, a novel crowd behaviour descriptor based 

on GLCM is devised to classify abnormal behaviours such as congestion and panic 

dispersing of a crowd. The devised descriptor is proven to outperform classic pattern 

filter techniques such as TAMURA (Tamura et al., 1978). 

In addition, an enhanced Social Force Model (SFM) is devised to predict the 

individual’s destination in the crowd. When pedestrians with two different destinations 

are mixed in a crowd, it is inherently difficulty to identify the belonging of each 

pedestrian before the crowd is separated into two clusters. Inspired by the concept of 

boids model, an iterative approach is devised to estimate the pedestrian’s destination 

through an enhanced SFM. 

The structure and contents of the thesis are organized as follows:  

• Chapter 2 offers a comprehensive literature review of related researches, pilot 

systems, and their theoretical foundations;  

• Chapter 3 explores the nature of the crowd behaviours categorized by a self-

defined taxonomy, which leads to the revelation of the key challenges facing 

modern crowd behaviour analysis approaches;  

• Chapter 4 then moves on to tackle the crowd motion/behaviour representation 

issue by devising a texture feature extraction pipeline based on the information 
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entropy theory. The ultimate goal is to achieve the efficient acquirement of 

motion information from live video feeds;  

• Chapter 5 of the thesis defines a novel descriptor based on the Grey Level Co-

occurrence Matrix (GLCM) for aiding the abnormal behaviour recognition and 

classification;  

• Chapter 6 introduces a crowd synthesis model that integrates both long-term 

and short-term behaviour generating mechanisms;  

• In Chapter 7, experiments and evaluations are conducted on the proposed 

approaches of texture extraction, crowd behaviour recognition and behaviour 

synthesis;  

• Chapter 8 concludes the research with anticipated further works. 
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Chapter 2. Literature Review 

In this chapter, the relative knowledges of image and video features are reviewed. 

Furthermore, techniques for behaviour recognition using video data are introduced. The 

crowd behaviour synthesis/simulation approaches are reviewed in this chapter as well.   
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2.1 Image Feature Engineering 

Video features are utilized as the primary elements to model and construct pattern 

detectors in this research. Since video (frame) features are usually modelled in the same 

manners as image features, it is useful to introduce the conventional image features first 

which are frequently exploited in computer vision studies. 

As illustrated in Figure 2-1, conventional image features consist of four basic types, 

which are color-based, texture-based, shape-based and spatial-relation features 

respectively. Color-based feature and Texture-based feature are global-scale features, 

which describe the object’s surface pattern in the image. Different from color-based 

feature, texture-based feature is often not based on single-pixel values, and could only 

be described by a region of neighboring pixels. Shape-based features can be further 

categorized into contour features and regional features. Contour features describe the 

boundary of a target, and regional features describe detailed information filling in an 

area. Spatial-relation describes the spatial or orientation relations between multiple 

segmented regions in an image. These relations are of adjacent, occlusion, containing 

etc. Spatial-relations contain relative relation and absolute relation information. The 

former emphasizes on the relative relations between image regions, such as up and left; 

while the latter focuses on the distance and angle between them. 

 
Figure 2-1. Taxonomy of image features in computer vision 
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2.1.1 Colour-based features 

 Color-based features are global-scale features, which are often single-pixel-based. 

Since color-based features are insensitive to the change of target’s orientation and size, 

they do not show good performance on capturing the local patterns. When the size of 

image database is too large, image indexing using color-based features will generate 

unwanted effects.  

The Color Histogram is the most frequently used feature, it describes the global 

distribution of color values in the image. With advantages of rotation/translation/scaling 

irrelevancy, this feature can be used to describe images which are difficult to be 

segmented (Novak and Shafer, 1992). Since it does not include the local distribution 

and spatial information of colors, it is not capable of describing a specified object inside 

the image. Both Red-Green-Blue (RGB) and Hue-Saturation-Value (HSV) color maps 

are often used to quantify color histogram. The easiest approach to achieve image 

matching using color histogram is the Histogram Intersection. Assuming 𝑀(𝑖)  and 

𝑁(𝑖), which are two extracted color histograms with 𝑘 bins, where 𝑖 = 1,2, … , 𝑘. The 

distance of intersection 𝐷 can be represented in Equation 2-1. The smaller 𝐷 implies 

the higher similarity of two images. 

 
𝐷(𝑀, 𝑁) = ∑ 𝑀𝐼𝑁(𝑀(𝑖), 𝑁(𝑖))

𝑘

𝑖=1
 2-1 

 The Color Set is an approximation of color histogram. In order to model this feature, 

the color map is transformed into HSV. The transformed image is segmented and 

indexed with quantified color components. These color components are then 

transformed into a binary indexing set. Compared to color histogram, the color set 

feature contains spatial relation between segments. Furthermore, since the indexing set 

is of binary value, binary tree can be modelled to improve the indexing speed, which is 

beneficial in the case of large-scale image set. 

 In order to avoid the high dimensional vectors during the vectorization process, the 

feature of Color Moments is proposed in the research of Hui et al, (2002). An image is 

described using the Mean 𝜇, Variance 𝜎 and Skewness 𝑠 of three vectors in color 

map, which can be expressed in the following Equation 2-2, 2-3 and 2-4. 
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𝑁
∑ (𝑃𝑖,𝑗 − 𝜇𝑖)3

𝑁

𝑗=1
)

1
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 2-4 

 Where 𝑃𝑖,𝑗 indicates the 𝑖th color-component of 𝑗th pixel, and 𝑁 is the number 

of pixels in the image. The moments of any components 𝑌, 𝑈, 𝑉  in color map will 

derive a 9-dimensional histogram vector as follow Equation 2-5. The advantage of color 

moment is the low dimension feature. This feature is mainly utilized for decreasing the 

indexing range in practice. 

 𝐹𝑐𝑜𝑙𝑜𝑟 = [𝜇𝑌, 𝜎𝑌, 𝑠𝑌, 𝜇𝑈, 𝜎𝑈, 𝑠𝑈, 𝜇𝑉, 𝜎𝑉 , 𝑠𝑉] 2-5 

 The Color Coherence Vector (Greg et al, 1996) is another attempt to overcome the 

disadvantage of lacking spatial distribution of color histogram and color moment. By 

using a threshold, pixels in each color bin are divided into two clusters. If the size of 

coherence pixels is larger than threshold, these pixels are considered as converged, 

otherwise as non-converged. Assuming 𝛼𝑖 and 𝛽𝑖 are the number of converged and 

non-converged pixels in 𝑖th bin, the obtained color coherence vector would be < 𝛼1 +

𝛽1, 𝛼2 + 𝛽2, … 𝛼𝑁 + 𝛽𝑁 >. 

 

2.1.2 Texture-based Features 

 The texture-based features are global-scale features as well. It describes the surface 

pattern of a target in the image. The calculation of texture-based features often involves 

various pixels in certain regions. Most texture-based features are rotation irrelevant, 

and are resistance to noise, due to their statistical nature. A common disadvantage of 

texture-based features is the calculating results may vary significantly when the 

resolution changes. Also, the changing lighting condition will misguide the successful 

extraction of texture features. The texture-based features can be classified as Statistical, 

Geometrical, and Structural based. 
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 The Grey Level Co-occurrence Matrix (GLCM) is a typical statistical feature 

(Haralick et al, 1973). Relationships between neighboring pixels’ Grey-scale values are 

used to build a co-occurrence matrix, and then key features such as Energy, 

Homogeneity, Entropy and Correlation are modelled from GLCM. Patterns of GLCM 

are exploited in the following chapter of this research as well. Another statistical 

approach is to extract the width and orientation of texture by calculating the energy 

spectrum function of an image. 

 Histogram of Gradient (HOG) is another widely implemented statistical feature 

(Dalal and Triggs, 2005). It is modelled by calculating the gradient orientation’s 

histogram of local image. HOG feature is frequently used in pedestrian detection with 

Support Vector Machine (SVM) (Cortes and Vapnik, 1995), since its high performance 

on describing the shape of object. Its extraction process is illustrated in Figure 2-2. In 

the process, image is transformed into Grey color map and divided into cells. For each 

cell the oriented gradients histogram with 𝑘 bins are calculated and derived into a 𝑘 

dimensional vector. By using a sliding window with 𝑛 cells, the HOG of this window 

will be normalized as a 𝑘𝑛-dimensional descriptor. Similar statistical features include 

LBP (Ojala et al., 2002), Haar (Viola and Jones, 2001) and SIFT (Lowe, 1999). 

 

Figure 2-2. Extraction process of HOG feature 

 The geometrical feature is based on the assumption that complicated textures could 

be composed with fundamental texture elements in a certain pattern. A typical 

geometrical feature is the Voronoi Checkboard Pathology (Ghosh and Mallett, 1994). 

Another approach is using parameters of image’s structural model as the texture feature. 
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The conventional approach of feature modelling is Conditional Random Fields (CRF) 

(He et al., 2004), Markov Random Field (MRF) (Sean, 1996), and Gibbs Random Field 

(Koralov and Sinai, 2012). 

 In the research of Mikel et al. (2011), a so-called HOG3D descriptor is devised, 

which is modelled with the HOG feature in spatial-temporal scale. The HOG3D is used 

for the local behavioural matching to address the problem of detecting rare behaviours 

in a large dataset.  

2.1.3 Shape-based features 

 Shape-based features can be divided into contour and regional features. Contour 

features are often extracted using boundary characteristic detection algorithms. The 

Hough Transform is a conventional line boundary detection approach (Richard and 

Peter, 1972). The process of Hough transform is illustrated in following figure. In the 

process, edge points in the image are firstly extracted with the Canny edge detector. 

Next, a table of 𝜃  and 𝑟  is modelled for each point. By transforming to the polar 

coordinates, the intersection of curves indicates the 𝜃𝑥 and 𝑟𝑥 of possible boundary 

line. 

 
Figure 2-3. Hough Transform Boundary Detection 

 The Fourier Shape Descriptor is another type of contour feature (Wilhelm and 

Mark, 2013). Exploiting the closure and periodicity, the Fourier transform of the 

boundary describes the shape of object. The curvature function and centroid distance 

are derived from the transform as descriptors. 

 For regional features, shape factors such as area and perimeter are used for the 
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representation and matching of shapes. However, the extraction of shape factors is 

based on the image segmentation. The accuracy of segmentation greatly affects the 

performance of shape factors. 

 The image indexing or understanding based on shape-based features share some 

common problems. 1) Lacking of matured mathematical model. 2)  Low adaptiveness 

on disformed objects. 3) Mismatching between shape-based features and human 

subjective observation. 

2.1.4 Spatial-relation Features 

As above stated, the spatial-relation feature represents the spatial and directional 

relations between objects in the image, such as adjacent, occlusion and containing. The 

exploitation of spatial-relation features can improve the performance of content 

recognition. However, these features are sensitive to the rotation and scale-changing of 

the image. In practice, it is not sufficient to express the information using only the 

spatial-relation feature. Other features should be integrated.  

 In order to extract the spatial-relation features, one approach is to segment the 

image into regions, then extract features and create index (Barbara and Christian, 2012). 

Another approach is to divide the image into unified patches (Vikas et al., 2011). 

2.2. Video Features 

Different from features obtained from static image, video-based features often 

involve temporal information. By analyzing the temporal and spatial relations among 

multiple or consecutive frames, features can be more accurate in revealing the nature 

of footages. Since each video is composed of various length of frames (somewhat 

equivalent to static images), conventional image features are still utilized to help the 

modelling of visual patterns. Unlike low-level features, video-based features usually 

contain high-level “event” information such as semantic expression. Therefore, video-

based features exhibit higher efficiency when utilized in the research of behaviour 
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understanding and recognition. 

 As illustrated in Figure 2-4, video-based features could be classified into flow-

based features and spatial-temporal features. Because the main objective of this 

research is to analyze the behaviour of a crowd, a social-psychological related feature 

Social Force (SF) is adopted into this category as well. 

 

Figure 2-4. Taxonomy of Video Based Features 

2.2.1. Flow-based features 

 The most frequently utilized flow-based feature is Optical Flow. Optical flow 

represents the instant motion of object between two consecutive video frames (Lucas 

and Kanade, 1981). It is often expressed as a 2-dimensional motion vector, which 

incorporates the velocity along x and y directions. Due to its motion information, the 

optical flow is widely used as a video feature in the research of behaviour recognition, 

motion-based segmentation, global motion compensation and video compression. 

 The modelling of optical flow is based on three assumptions. 1) Brightness 

Consistency, where magnitudes of brightness among two consecutive frames remain 

constant; 2) Temporal Consistency, that the time difference between two consecutive 

frames should be small enough to ensure the motion consistency; 3) and, Spatial 

Consistency, indicating that most neighboring pixels should have the identical motion. 

 Under ideal situation, supposing a hand gesture is captured by the camera. The 

spatial position of this hand is moving from one place of the first frame to another place 

of the next frame. At the same time, brightness magnitude of this hand remains 
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unchanged, which could be expressed as Equation 2-6. 

 𝑓(𝑥, 𝑦, 𝑡) = 𝑓(𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦, 𝑡 + 𝑑𝑡) 2-6 

 Where 𝑓 is the brightness, 𝑑𝑥 and 𝑑𝑦 are the spatial shifting, 𝑑𝑡 is the time 

difference between two frames. According to the Taylor expansion, 𝑓(𝑥, 𝑦, 𝑡) could be 

removed and obtained Equation 2-7. 

 𝑓𝑥𝑑𝑥 + 𝑓𝑦𝑑𝑦 + 𝑓𝑡𝑑𝑡 = 0 2-7 

 By dividing 𝑑𝑡 on both sides we obtained Equation 2-8. 

 
𝑓𝑥

𝑑𝑥

𝑑𝑡
+ 𝑓𝑦

𝑑𝑦

𝑑𝑡
+ 𝑓𝑡 = 0 →   𝑓𝑥𝑢 + 𝑓𝑦𝑣 + 𝑓𝑡 = 0 2-8 

 Where 𝑢 and 𝑣 are optical flows along 𝑥 and 𝑦 directions. The main stream 

approaches to solve 𝑢  and 𝑣  are the Horn-Schunk (HS) method and the Lucas-

Kanade (LK) method. 

a) Horn-Schunk method 

 The HS method (Horn and Schunck, 1981) adapts an additional smoothness 

constraint to address the solution of 𝑢  and 𝑣 . This constraint assumes the velocity 

difference between pixel and its neighbors is limited. Therefore, acquiring 𝑢 and 𝑣 

becomes an optimization problem of the objective function. 

 
𝑚𝑖𝑛 ∬(𝑓𝑥𝑢 + 𝑓𝑦𝑣 + 𝑓𝑡)

2
+ 𝜆(𝑢𝑥

2 + 𝑢𝑦
2 + 𝑣𝑥

2 + 𝑣𝑦
2)𝑑𝑥𝑑𝑦 2-9 

 By traversing every pixel on the image, find a combination of 𝑢  and 𝑣  to 

minimize the objective function. Its first term is the brightness constraint, and the 

second term is the smoothness constraint. By applying partial derivate, two functions 

can be obtained, which could be used to get 𝑢 and 𝑣. 

 

{
(𝑓𝑥𝑢 + 𝑓𝑦𝑣 + 𝑓𝑡)𝑓𝑥 + 𝜆(∆2𝑢) = 0

(𝑓𝑥𝑢 + 𝑓𝑦𝑣 + 𝑓𝑡)𝑓𝑦 + 𝜆(∆2𝑣) = 0
 2-10 

b) Lucas-Kanade method 

 The LK method made an additional assumption that the local pixels have identical 

optical flow (Lucas and Kanade, 1981). According to the brightness constraint equation, 

we can obtain the following Equations 2-11. 
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 𝑓𝑥1𝑢+𝑓𝑦1𝑣=−𝑓𝑡

𝑓𝑥2𝑢+𝑓𝑦2𝑣=−𝑓𝑡
…

𝑓𝑥𝑛𝑢+𝑓𝑦𝑛𝑣=−𝑓𝑡

 2-11 

 Where 1,2 … 𝑛  are pixels in the local window. The equations above could be 

represented as 𝐴𝑈 = 𝑏 . By pre-multiplying the transposition of 𝐴 , we obtain 

𝐴𝑇𝐴𝑈 = 𝐴𝑇𝑏. If the inversed matrix of 𝐴𝑇𝐴 exists, the LK optical flow will be 𝑈 =

(𝐴𝑇𝐴)−1𝐴𝑇𝑏. 

c) Properties of optical flow 

 The optical flow exhibits high efficiency on the research of behaviour recognition. 

After further investigation, researcher reveal following patterns of optical flow 

(Beauchemin and Barron, 1995): 1) The reason of its effectiveness on behaviour 

recognition is the invariance to the image’s appearance, rather than its capability of 

capturing the motion information; 2) Accuracy of edges and minor spatial shifting that 

leads to distinctive behavioural patterns; and, 3) Object detection tasks can be achieved 

using optical flow information alone even on moving camera without contextual or 

environmental information. 

 The major disadvantage of optical flow is that it may not work without the 

constraints as stated before. For instance, it may not correctly abstract the real motion 

caused by objects due to illumination conditions. As illustrated in Figure 2-5, if the 

target object’s texture is uniformed and light source is static, the rotation of spherical 

object will not generate interpretable optical flow. On the other hand, when the light 

source is moving and object remain static, the optical flow might be generated by 

reflections and shadows. This result implies the optical flow is sensitive to illumination 

conditions. When the motion velocity is too high, conventional optical flow method 

may be falling too. Unfortunately, objects caught in a video of high velocity are 

commonplace. 
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Figure 2-5. (a) Moving but without optical flow. (b) Static but with optical flow. 

Various improved flow-based features are proposed by researchers to improve the 

robustness of optical flow, which includes Streak Flow (Mehran et al., 2010), Tracklet 

(Seung and Kuk, 2014), and Particle Flow (Ali and Shah, 2007).  

However, in general, sparser optical flow are still confronted by aperture problems, 

and the denser optical flow has the disadvantage of high computational time 

consumption, which made it inappropriate for real-time processing. 

2.2.2 Spatial-Temporal Features 

Flow-based features can be utilized to detect dominant events, however for the 

unstructured high-density crowd scenes, even a fine-grain representation such as optical 

flow would not provide enough motion information for processing. Thus Spatial-

Temporal features are used to detect abnormality to compensate the deficiencies. The 

related methods generally consider the motion as a whole, and characterize its spatial-

temporal distributions based on local 2D pixel patches and 3D voxel (volumetric-pixel) 

cubic. Spatial-temporal features have sound performance in motion understanding due 

to their strong descriptive power (Jing and Zhijie, 2016), and unlike flow-based features, 

the temporal information is preserved. 

a) Spatial-Temporal Volume 

The Spatial-Temporal Volume (STV) is a Spatial-Temporal model introduced by 

Adelson and Bergen (1985). The process of modelling the STV is illustrated in Figure 

2-6. In the first step, a set of consecutive video frames is obtained from the dataset or 

real-time video stream. These frames will be stacked up along time sequence. The 

selection of the frame’s indices is based on the actual video length, or the requirement 
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for the system. Each frame could be of Grey scale or RGB format. The size of selected 

data can be the entire frame or a portion of it. Once these frames are selected, they will 

be stacked together to generate a cube-shaped structure. According to the selection of 

width, height and number of frames, the size of this cube may be varied.  

The STV block can be viewed as a stretching of 2D pixels into 3D voxels and 

filling the entire 3D space. Therefore, the STV holds certain advantages comparing to 

the two-dimensional patterns on behaviour analysis. For example, the STV block 

contains temporal information such as trajectories of pedestrians. 

 

Figure 2-6. The STV modelling and STT extraction 

STV is widely utilized in action recognition, for example, Bolles et al. (1987) 

introduced a technique for the recovery of the geometric and structure information from 

a static scene using the STV. Kühne et al. (2001) exploits STV to achieve 3D scene 

segmentation. The two latest deep learning frameworks - the 3D convolution network 

with STV data (Bo et al., 2012) and the two-steam network with optical flows – have 

also been based on STV features.  

b) Spatial-Temporal Texture 

As stated in previous section, flow-based features have sound performance when 

the motion velocity is low. In order to extract the temporal information in a more robust 

way, the detailed information can be extracted from the STV. 

The textures within STV is named Spatial-Temporal Texture (STT), which could 

be used to extract patterns for modeling spatial and temporal signatures for behaviour 
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analysis. According to the requirements for different analyzing approaches, STT can be 

extracted in either 2D format or volume-based. The process of 2D STT extraction is 

illustrated in Figure 2-6. A STV block is sliced along horizontal or vertical directions. 

Each slice with one pixel in thickness is the obtained 2D STT. One possible approach 

to achieve the volume-based extraction is to implement background subtraction for each 

frame, and then keep the foregrounds pixels of interested objects. 

In practice, researchers attempted to detect the single person’s gestures such as cuts, 

wipes and waving hands using STT patterns (Ngo et al., 1999). The approach first 

extract STT that is convolved with a derivative Gaussian filter. The convolved result is 

further processed with the Gabor decomposition where the real components of multiple 

spatial-frequency channel envelopes are obtained before being modelled into texture 

feature vectors. Finally, a Markov energy-based image segmentation approach is 

applied on these vectors to determine the matched gesture type. 

2.2.3 Semantic Features 

 By further exploring the low-level features such as optical flow, semantic features 

can be modelled by incorporating “meaningful” high-level information. The most 

widely adapted semantic features in the research of crowd behaviour is the so-called 

“Social Force” for its sociology nature of describing agents behaviour in a crowd. 

 

Figure 2-7. Acceleration, Repulsive and Obstacle Avoidance Forces in SFM 

The Social Force Model (SFM) was first proposed by Helbing and Peter (1995). It 
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assumes that an agent in the crowd is always influenced by several forces derived from 

planned destination, neighbors in vicinity, and obstacles ahead and around. These forces 

determine the instant motion of a target agent. SFM can be obtained using Equation 2-

12. 

 
𝑠𝑓𝑖 = 𝑓𝑑 + ∑ 𝑓𝑗𝑖

𝑗≠𝑖
+ ∑ 𝑓𝑜𝑘𝑖 2-12 

Where 𝑠𝑓𝑖 indicates the final social force applied to pedestrian 𝑖. 𝑓𝑑 indicates the 

acceleration force, which derives from the agent’s desire of heading the destination with 

constant magnitude. 𝑓𝑗𝑖  indicates the social attraction and repulsive forces, which 

derives to avoid collision between agent 𝑖  and 𝑗 . 𝑓𝑜𝑘𝑖  indicates the obstacle 

avoidance force between obstacle 𝑘 and pedestrian 𝑖.  

𝑓𝑗𝑖 can be expressed as Equation 2-13, where 𝐴𝑖 and 𝐵𝑖 are constants to control 

the magnitude of 𝑓𝑗𝑖 . 𝑟𝑖𝑗  is the summation of agent 𝑖  and 𝑗 ’s radius. 𝑑𝑖𝑗  is the 

distance between 𝑖 and 𝑗. 𝑛𝑖𝑗 is the normalized vector to control 𝑓𝑗𝑖’s direction. The 

exponential function guarantees the fast magnification of 𝑓𝑗𝑖  when two agents are 

getting too close. On the contrary, if 𝑑𝑖𝑗 is large, magnitude of 𝑓𝑗𝑖 will have a fast 

reduction. Similarly, the obstacle avoidance force 𝑓𝑜𝑖 is derived when agent moves to 

obstacles such as walls. 

 𝑓𝑗𝑖 = 𝐴𝑖𝑒(𝑟𝑖𝑗−𝑑𝑖𝑗)/𝐵𝑖𝑛𝑖𝑗 2-13 

Process of modelling social force is illustrated in Figure 2-8. The map of motion 

flow/optical flow is extracted from the original image. Pedestrians’ positions are located 

with pedestrian detector in parallel process. Then 𝑓𝑑 , 𝑓𝑗𝑖  and 𝑓𝑜𝑘𝑖  can be modelled 

using the introduced equations. 
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Figure 2-8. Process of modelling Social Force 

 The modelled social force is used as features in the training and testing processes 

of the machine learning model such as Support Vector Machine (SVM) to classify the 

pedestrian’s behaviours (Lei Q. et al., 2012). The research of Mehran (2009) also 

exploited social force with BoW statistical model to detect the abnormal frames in the 

video. 

2.3 Techniques for Behaviour Recognition 

The techniques for behaviour recognition can be divided into two main branches, 

conventional approaches and deep learning-base ones. The conventional approaches 

use selected video features to train the machine learning model and understand the 

behaviour types. On the opposite, the core concept of deep learning is to feed large 

number of video data to the convolution neural network, so that the network can extract 

most efficient features in an unsupervised manner. Generally, machine learning has 

better performance than conventional approaches in recent years, but some 

conventional approaches such as improved Dense Trajectories (iDT) still have 

significant efficiency on behaviour recognition. Section 2.3.1 introduces the general 

procedure of conventional approach. Section 2.3.2 provides the detail of the state-of-

the-art conventional behaviour recognition approach, the dense trajectories. Section 
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2.3.3 gives introduction to the deep learning approaches. 

2.3.1 General Procedure of Conventional approach 

Behaviour Recognition is essentially a classification problem in computer vision. 

The general procedure of conventional approach consists of feature extraction, feature 

fusion and feature classification as illustrated in Figure 2-9. 

 

Figure 2-9. General Procedure of Conventional Approach 

a) Feature Extraction 

In order to extract features, either the 2-dimensional spatial information from image 

frame or the temporal information from video sequence are utilized. According to the 

modelling methods, the conventional feature extraction can be categorized as global 

and local approaches. The global approaches consider the entire video frame as an entity, 

extracting global feature with a top-down strategy of feature point detection, 

neighboring feature calculation and feature integration. Global approaches are 

insensitive to local occlusion and noise. On the contrary, its performance is heavily 

correlated to the number of feature points. The Local approaches concentrate on a 

segment of the video sequence, extracting feature with a bottom-up strategy of human 

detection, background tracking and region of interest encoding. The advantage of local 

approaches is the sufficiency of encoding information. The disadvantages are the 

reliance on the accuracy of human detection and sensitive to the noise and occlusion.  

The feature points are most widely exploited feature in the conventional behaviour 

recognition. Some state-of-the-art features are Space-Time Interest Points (STIP) 

proposed by Ivan (2005), Cuboid proposed by Rabaud et al. (2005), Motion Energy 

Image (MEI) & Motion History Image (MHI) proposed by Bobick and Davis (2001) 

and HOG & HOF proposed by Ivan et al. (2008).  



Chapter 2   Literature Review 

25 
 

b) Feature Fusion 

The contour, boundary and motion features of human aren’t compatible to each 

other. Since they usually have different dimensions and data structures, which cannot 

be utilized directly before being modelled. In order to acquire features with higher 

adaptiveness and efficiency, the feature fusion process is necessary. Furthermore, the 

feature fusion/encoding can remove the redundant information and enhance the 

accuracy of behaviour understanding. Main stream approaches of feature fusion include 

the Bag of Feature (BoF) and Fisher Vector. The extracted features such as texture, 

contour and optical flow are defined as low-level features. The fused low-level features 

are defined as mid-level features, and the classified features are defined as high-level 

semantic features in this research. 

⚫ Bag of Feature 

Bag of Feature (BoF) is also named Bag of visual Word (BoW) first proposed by 

Lazebnik et al. (2006), which is originated from the Bag of Words in the linguistics. 

Similar to linguistics, the key features could be extracted from the image data to model 

the visual word. By using the k-means classifier to cluster the features, similar features 

are considered as one class. The center of the cluster is the visual word. The statistic of 

each visual word is the codebook whose size is the number of classes. Due to the 

differences between the text and visual features, the strategy of local feature sampling, 

size of codebook, weight calculation of visual word and modelling of codebook are still 

major challenges to be tackled.  

The construction of BoW follows the order of extracting low-level features 

extraction and clustering, codebook establishment based on formulated clusters. And 

finally, classifier training using the Visual Words (clusters) from the codebook. 

⚫ Fisher Vector 

 Fisher Vector is another fusion technique proposed by Florent and Christopher 

(2007). Similar to BOW, it is also capable of achieve the normalization of feature 

matrices with different length. For example, the video features from videos with 

different length will generate feature matrices with different size. Before sending to the 
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neural network for classification, the feature matrices need to be processed into 

uniformed size. The BoW approach ignores the spatial relationship between the low-

level features, and the computational complexity is high. Furthermore, the BoW needs 

to be retrained when a new class is inserted. The Fisher Vector addressed these issues 

by using Expectation Maximization to train the SIFT descriptor with a wholesale of 

weighting, mean and covariance matrices and spatial distribution outputs. 

2.3.2 The State-of-the-art Conventional approach 

 iDT has the best performance of behaviour recognition among conventional 

approaches, which is proposed by Wang and Schmid (2013). In this section, iDT’s 

original version Dense Trajectories (DT) is introduced as an example to explain the 

details (Wang et al., 2013). The procedure is illustrated in Figure 2-10. According to 

the general procedure of DT, the feature points are firstly sampled with a filtering 

process. Next, the trajectories are extracted for each sample points. Then the STV 

around each trajectory is modelled for the calculation of HOG, Histogram of Optical 

Flow (HOF) and Motion Boundary Histogram (MBH). Finally, the normalized and 

encoded features are classified for the analyzing result. 

 

Figure 2-10. Procedure of DT behaviour recognition 

a) Dense Feature Points Sampling 

The DT extracts dense feature points in multiple spatial scales from image using 
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optical flow. Multiple spatial scales ensure the features to have a full coverage on all 

spatial scales. Next, feature points are tracked at the temporal scale. However, tracking 

is invalid with feature points of motionless background. Therefore, a threshold is 

adapted to remove feature points with low motion. The threshold 𝑇 could be expressed 

as Equation 2-14. 

 𝑇 = 0.001 × 𝑚𝑎𝑥𝑖∈𝐼𝑚𝑖𝑛 (𝜆𝑖
1, 𝜆𝑖

2) 2-14 

 Where (𝜆𝑖
1, 𝜆𝑖

2) are the modelled optical flow feature of pixel 𝑖 in image 𝐼. 𝜆𝑖
1 

indicates the flow magnitude along the horizontal direction, and 𝜆𝑖
2  indicates the 

magnitude along the vertical direction. The experiment indicates 0.001 is the most 

appropriate value in the filtering process. 

b) Trajectory Descriptor 

Assume the spatial position of the extracted feature point is 𝑃𝑡 = (𝑥𝑡, 𝑦𝑡), its spatial 

position in the next frame could be expressed as Equation 2-15. 

 
𝑃𝑡+1 = (𝑥𝑡+1, 𝑦𝑡+1) = (𝑥𝑡, 𝑦𝑡) + (𝑀 ∗ 𝑤𝑡)|𝑥𝑡,𝑦𝑡

 2-15 

 Where 𝑤𝑡 = (𝑢𝑡, 𝑣𝑡) is the dense optical flow obtained from 𝐼𝑡 and 𝐼𝑡+1. 𝑀 is 

an average filter. The trajectory of a feature point during consecutive 𝐿 frames could 

be expressed as (𝑃𝑡, 𝑃𝑡+1, … , 𝑃𝑡+𝐿). Because of the shifting of feature point, long-term 

tracking is often unreliable. Therefore, sampling process is conducted for each 𝐿 

frames repeatedly.  

 Furthermore, obtained trajectory could be used to model the trajectory shape 

descriptor. Assume a trajectory with length 𝐿  is expressed as (∆𝑃𝑡, … , ∆𝑃𝑡+𝐿−1) , 

where ∆𝑃𝑡 = (𝑃𝑡+1 − 𝑃𝑡) = (𝑥𝑡+1 − 𝑥𝑡 , 𝑦𝑡+1 − 𝑦𝑡). The descriptor could be obtained 

by regularizing with Equation 2-16. 

 

𝐷 =
(∆𝑃𝑡, … , ∆𝑃𝑡+𝐿−1)

∑ ||∆𝑃𝑗||𝑡+𝐿−1
𝑗=𝑡

 2-16 

c) Motion and Structure Descriptors 

The DT and iDT further exploit features including HOF, HOG and MBH to 

represent the motion. Along the obtained trajectory with length 𝐿, areas with size of 
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𝑁 × 𝑁 pixels are modelled as a STV. Next, the STV is divided by a 𝑛𝜎 × 𝑛𝜎 × 𝑛𝜏 

grid, where 𝑛𝜎 is the grid’s size along spatial space, and 𝑛𝜏 is the grid’s size along 

temporal space. In DT and iDT, 𝑁 = 32,  𝑛𝜎 = 2,  𝑛𝜏 = 3. Next, HOG, HOF and MBH 

are extracted from these volume blocks. 

⚫ HOG – HOG is the histogram of gradient of the Grey scale image. The bin 

number is set as 8, thus the dimension of HOG is 2 ∗ 2 ∗ 3 ∗ 8 = 96. 

⚫ HOF – HOF is the histogram of optical flow including the magnitude and 

direction information. The number of bins is set as 8 + 1, where 8 bins are 

identical to HOG, the extra bin is used for the statistic value of the number of 

pixels which is than a threshold. The dimension of HOF is 2 ∗ 2 ∗ 3 ∗ 9 = 108. 

⚫ MBH – MBH is the HOG feature on the optical flow map. The MBH is along 

two directions 𝑥 and 𝑦, thus its dimension is 2 ∗ 96 = 192. 

These features are normalized with the L2-norm.  

d) Feature Encoding and Classification 

For each video sequence, various trajectories could be extracted with a set of 

features. DT uses BOF (Feifei and Perona, 2005) to encode these features. The code 

book is trained with 100000 feature sets, and its size is set to 4000. Once encoded, 

features are classified by SVM with the RBF kernel, the classification result indicates 

the recognized behaviour. 

 The framework of iDT is identical to DT, the improvement concentrates on the 

optimization of optical flow and feature encoding. As the result, the efficiency is 

significantly improved. The accuracy increases from 84.5% to 91.2% on UCF50 set 

(Kishore and Mubarak, 2012), and from 46.6% to 57.2% on HMDB51 set (Kuehne et 

al. 2011). 

2.3.3 Behaviour Recognition using Deep Learning Framework 

As the fast development of deep learning, Convolutional Neural Network (CNN) 

becomes the main stream classification approach in computer vision. The miss-rate of 

ResNet-152 is 3.5%, which outperforms the 5.1% miss-rate of human vision. In order 



Chapter 2   Literature Review 

29 
 

to achieve the fusion of spatial and temporal features, three main branches are proposed 

by researchers, which are Two Stream (Karen and Andrew, 2014), Convolution 3D (Du 

et al., 2015) and CNN-Long Short-Term Memory (CNN-LSTM) (Tara et al., 2015). 

The structure of deep learning approaches on computer vison could be illustrated as 

Figure 2-11. 

 
Figure 2-11. Taxonomy of Deep Learning Approaches 

The general procedure of Deep Learning consists of 6 phases, which are data pre-

processing, network building, definition of classification function and Loss function, 

definition of optimizer, training, validating and testing process. The procedure is 

illustrated as Figure 2-12. 

 

Figure 2-12. General procedure of deep learning 

a) Data Pre-processing 

In this phase, the data set is evenly divided as training set, validating set and testing 

set with random distribution. Since the deep learning is a resource consuming task, the 

parallel computing is required. The parallel computing includes data parallelism and 

model parallelism. The data parallelism is to process a mini batch of data on multiple 

devices, in order to achieve the parallelism of gradient computing. The model 

parallelism is to process different models of a neural network on different devices, in 



Chapter 2   Literature Review 

30 
 

order to reduce the training time of each iteration. The Caffe (Yangqing et al., 2014), 

TensorFlow (Martin et al., 2016) and Pytorch (Ketkar, 2017) support data parallelism, 

and TensorFlow supports model parallelism. 

 The ordinary pre-processing of the video data includes centralization, 

normalization and whitening. The expansion process of the data set is required as well. 

The expansion is achieved by flipping, color jittering and random cropping /scaling 

/shifting of the image.  

b) Network Building 

The network building process includes network architecting, network parameter 

initialization and overfitting handling. 

For the behaviour recognition from video data, the main issue is to incorporate the 

temporal dimension into the network. Therefore, the conventional image recognition 

network architecture is adopted by networks such as VGG (Karen and Andrew, 2014), 

GoogLeNet and ResNet (Christian et al., 2015). For the parameter initialization and 

pre-training, the Xavier or Kaming initialization is adopted. The regularization and 

dropout process are adopted to enhance the generalization of the model. 

c) Classification Function and Loss definition 

The classification and regression problems are essentially identical as the primary 

issues of supervised learning whose learning feature is manually devised, besides the 

result of the former one is discrete classes and the later one is a continuous fitting curve. 

Therefore, the classification function could be defined with a regression function. 

Ordinary regression functions include Linear Regression, Logistic Regression and 

SoftMax Regression (Yang et al., 2018). Since the behaviour recognition belongs to the 

multi-label classification, the SoftMax Regression is most widely adopted. 

Loss describes the deviation between classification result and ground truth. The 

goal of training process is to achieve the global or local optimal by minimizing the Loss. 

Regular Loss functions include Minimum Mean Square Error (MMSE) (Ephraim and 

Malah, 1984), Hinge Loss (Junqi et al., 2014) and Cross Entropy Loss (Kai et al., 2018). 
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The Cross-Entropy Loss function is often exploited in the SoftMax regression. 

The main stream optimizers are Stochastic Gradient Descent (SGD), 

SGD+Momentum, SGD+Nesterov Momentum (Bottou, 2010), Adagrad, Adadelta, 

RMSProp and Adam (Diederik and Jimmy, 2015). The Adam is usually adopted as the 

optimizer by default. 

d) Training, Validation and Testing 

In the phase of training, the data is feed to the model iteratively in the unit of mini-

batch. For each iteration, the learning parameters are updated, the accuracy and loss 

values are returned. In the phase of validation, the performance of trained model is 

validated with the validation dataset for several iterations. The number of iterations is 

divided with K-fold approach. In the phase of testing, the testing data set is feed to the 

trained model to verify its generalization capability. The final accuracy could be 

represented with the confusion matrix, Top-1 and Top-5. 

e) Applications of Behaviour Recognition using Deep Learning 

In the research of Alexandre et al. (2016), an enforced CNN-LSTM model is 

proposed to predict the motion of pedestrian. In the so-called Social LSTM, each LSTM 

cell is provided with the information of pooled hidden state from neighboring cells. The 

state information is social hidden state tensor which captures the latent representation 

of the pedestrian, and is utilized to predict the distribution of the next possible position. 

Kai introduced an enhanced structure of CNN namely Fully Convolution Neural 

Network (FCNN) (Kai and Xiaogang, 2014). In the ordinary CNN, features of small 

image patches are extracted to train the model. The main disadvantage of ordinary CNN 

is that the computational complicity for real-time analysis. For the FCNN, fully 

connected layers are removed, and a 1 × 1 kernel is placed at the last layer for label 

prediction on the segmentation map. The FCNN claims to have better performance on 

segmentation than conventional CNN. 
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2.4 Crowd Simulation and Synthesis 

The video data acquisition has been a tough challenge in the research of crowd 

behaviour analysis. The expected features of video footage for crowd behaviour 

analysis include crowd with different densities, hybrid behavioural types and varied 

camera perspectives. Nevertheless, it is difficult or even illegal to collect the desired 

crowd video in real-life. Using actors to perform the desired scenarios might be a good 

approach, however when the density is high, potential hazardous situations might occur.  

In order to address this issue, the required crowd behaviours will be modelled using 

simulation algorithms in this research. Crowd simulation has the advantages of easiness 

to achieve the desired behaviours, high video quality and low cost. However, the most 

significant challenge is the visual realism of simulated video since it often suffers from 

the illogical movements which does not follow the common sense. In this section, 

taxonomy of crowd simulation techniques is introduced. 

2.4.1 Taxonomy of Crowd Simulation Approaches on Spatial Scale 

According to the different spatial scales, crowd simulation can be generally 

categorized into the Macroscopic, Mesoscopic and Microscopic approaches. 

a) Macroscopic Simulation 

The macroscopic simulation concentrates on crowds in large size. In this approach, 

the modelling of the entire crowd’s behaviour is the main objective rather than the 

behaviours of individuals. The core concept of this approach is to achieve the result by 

simulating the physical interaction among swarms of particles. Any social and 

psychological interactions between individuals are ignored. The advantage of this 

approach is the capability of simulating the behaviour with very large crowd scale and 

density. The main disadvantage is the insufficient visual realism of interactions between 

individuals. 

b) Microscopic Simulation 

 The microscopic approach is most widely adapted in the research of crowd 
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simulation, due to its significant capability of modelling the interactions between 

individuals. The most representative approaches are social force model and agent 

behaviour model. By specifically modelling the behaviour of each individual or local 

motion patterns, complex crowd behaviours could be generated. And the simulated 

crowd size and computational time are sacrificed compared with other approaches as 

the price. 

The detailed modelling procedure of Social Force is introduced in the section 2.2.3 

of feature extraction. The concept of social force involves the psychological impact 

when agent interact with others among the crowd, which is originated from the Boids 

model proposed by Craig (1987) for the bird flock simulation. In this model, three 

fundamental rules are designed to control agents’ movement illustrated in Figure 2-13. 

The first Separation rule is used as the avoidance mechanism, which prevents the 

collision with neighbors. In Figure 2-13(a), bird is influenced by three neighbors within 

its perception, and a repulsive force is derived to keep distance. The Alignment rule 

ensures the flock of birds to have an identical orientation with its neighbors. As Figure 

2-13(b) shows, its moving direction is slightly pulled left under the influence of other’s 

average direction within the perception. The Cohesion rule assures the bird always 

coherent to the flock. As shown in Figure 2-13(c), the bird is pulled to the average center 

of neighbors. Simulated birds mapped with Boids rules will converge as a flock. The 

repulsive force of SFM is derived from this concept. 

 

 

Figure 2-13. Rules of Boids behavioural model 
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Concept of Agent-based approach is similar to SFM with some differences. In the 

agent-based approach, each agent is mapped with a behavioural model. Beside 

interaction handling among agents, this model incorporates the long-term decision 

making, collision handling and etc. The crowd modelled only by SFM may not handle 

the long-term path finding, but a well-devised agent-based model is capable of handling 

complicated environment. On the contrast, the agent-based approach will consume 

more resource than other approaches. Therefore, it isn’t suitable for the simulation of 

crowd in high density. 

c) Mesoscopic Simulation 

 The mesoscopic simulation is an approach which has the performance between the 

macroscopic and microscopic approaches. It is capable of modeling interactions 

between individual at certain level, as well as maintaining the crowd’s size with higher 

computational expense. The crowd simulation using cellular automata is a typical 

mesoscopic approach (Blue and Adler, 1998). 

 The cellular automata is a discrete dynamical system, which is one of the theorical 

frameworks for the complex system behavioural analysis. The definition of cellular 

automat is as follows. Assuming a grid of blocks is put on a 𝑁-dimensional space, each 

block is defined as a cell. Each cell could be in any of 𝑘 states. For each iteration, 

every cell updates its state according to states of neighbors under the same rules. 

 The unique pattern of each cellular automata is determined by four main factors. 1) 

The motion dimension 𝑁  of the cell, for example, one dimensional or three 

dimensional. 2) Possible states 𝑘 for each cell. 3) Changing rules for each iteration. 4) 

The initial state of cells. Figure 2-14 illustrates the iterations of a 1-D cellular automata. 

Each cell has two states – black or white. The neighboring rules are as follows – for 

each white cell, if its left neighbor is black, then this cell will be set as black. Otherwise, 

this cell is set as white. The figure indicates the system becomes stable after 9 iterations. 
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Figure 2-14. Sample iterations of a cellular automata 

 By expanding the 1-D cellular automate into 2-D, the system can be used to 

simulate the crowd behaviour. Each cell represents a spatial position occupied by a 

pedestrian. A well devised behavioural rule determines the quality of simulation result. 

The mesoscopic approach improves the visual realism of individual interaction than 

macroscopic. However, since each cell can always be occupied by one pedestrian only, 

the mesoscopic approach isn’t appropriate for the high crowd density. 

The pattern comparison between the macroscopic, mesoscopic and microscopic 

approaches is listed in Table 2-1. The dilemma could be observed from the table during 

the selection of the appropriate approach. Using macroscopic approach for simulation, 

the absence of social interaction and long-term goal will hamper the visual realism. 

Using microscopic approach for simulation, the time consumption is not applicable for 

practice. Using mesoscopic approach might lose both benefits. Therefore, hybrid 

models are explored to devise a compromised approach which can effectively simulate 

the crowd in high density. 

 Macroscopic Mesoscopic Microscopic 

Crowd Density High Medium Low 

Social Interaction None None Yes 

Long-term Goal None None Yes 

Time Consumption Low Low High 
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Table 2-1. Pattern Comparison between modelling approaches 

2.4.2 Hybrid Crowd Simulation Models 

 The hybrid crowd simulation techniques in recent decades can be generally divided 

as Zone-based, Layer-based and Sequential-based. In these approaches, both 

macroscopic and microscopic models are adopted in different structures. 

a) Block-based Approach 

For block-based approach, the footage is divided into multiple blocks. The selection 

of macroscopic and microscopic approaches for each block is based on the actual 

situation. For blocks with simple environment, the macroscopic approach is adopted to 

reduce resource consumption. For blocks with complicated environment which consists 

of diverse possible agent behaviours, the microscopic approach is adopted to provide 

the more accurate simulating details. The approach is illustrated as Figure 2-15. 

 

Figure 2-15. Structure of Block-based approach 

 As shown in Figure 2-15, a scenario of cross road is simulated. For the intersection 

block which contains more agent interactions, the microscopic approach is adopted. For 

other blocks which has less likelihood of collision and interaction, the macroscopic is 

adopted to provide a general flow motion. This modeling structure is utilized in the 

research of Nguyen et al. (2011) to simulate an evacuation scenario by using the agent-

based microscopic model and continuum macroscopic model. By using this hybrid 

approach, the simulation speed in normal blocks increases, along with the improvement 

of the visual realism in important blocks. 
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 However, this kind of approach must handle the transition of agents between the 

macroscopic and microscopic modelled blocks. While moving from the macroscopic 

block to the microscopic block, agents are separated from the crowd flow using a 

disaggregation process. While moving on the contrast direction, an aggregation process 

is implemented to merge agents into a crowd flow. 

 Additionally, the concept of transition is expanded in the research of Sewall et al. 

(2011). In the research, the micro/macro approaches are constantly locally alternated 

based on features of the crowd such as the flow speed, instead of using the concept of 

blocks. This approach provides the switching of the simulated crowds in between global 

overlook and local details. 

b) Layers-based Approach 

For layer-based approach, the simulation is implemented in various layers. For each 

layer, the general crowd flow, long-term path finding, collision avoidance and social 

interactions are calculated separately. The layer using macroscopic approach usually 

provide the general flow information of the entire crowd. Then the simulation result is 

feed to the microscopic layer as an input. The microscopic layer calculates the detailed 

activities such as social interaction with the local motion information obtained from the 

macroscopic layer. The structure of the layer-based approach could be illustrated as 

Figure 2-16. 

 

Figure 2-16. A three-layer structure of hybrid crowd simulation 

 As shown in Figure 2-16, the first layer uses macroscopic approach to simulate the 
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general motion flow of the crowd. The interaction among agents and collision 

avoidance are simulated with the microscopic approaches using the flow information 

modelled in the first layer. In the research of Tissera et al. (2012), the obstacle layer is 

simulated with cellular automata approach. The interaction layer is simulated with 

social force. And the general crowd flow is simulated by scripted behavioural rules. 

 Comparing to the block-based, the layer-based structure doesn’t avoid detailed 

modelling in the layer with microscopic approach. Therefore, the simulation efficiency 

will still be significantly impacted by the increasement of crowd size. 

c) Sequential Structured Approach 

Similar to the block-based approach, the sequential structured approach also takes 

the concept of transferring between macroscopic and microscopic approaches. However, 

the transferring is temporal rather than spatial. The crowd is initially simulated in 

macroscopic approach to obtain the instant velocity and density. The simulating mode 

will be transferred under certain criteria such as the changing of local velocity. The 

sequential structured approach could be illustrated as Figure 2-17. 

 
Figure 2-17. Sequential Structured Simulation Approach. 

 As shown in Figure 2-17, when the density and velocity distribution is normal, the 

crowd is simulated with the macroscopic modelling approach. After the change of key 

pattern is detected, the microscopic approach will replace the former one. In the 

research of Xiong et al. (2009), the stableness of the crowd is used as the factor to 

determine whether the approach should be alternated. The major shortcoming of this 

approach is the simulation has better performance only if the crowd is more stable. If 
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the simulation is unstable during most of the duration, the overall efficiency will be 

similar as the microscopic approach when the crowd density is high. 

d) Comparison between Hybrid Simulation Approaches 

From the perspective of time efficiency, the block-based hybrid approach has the 

best performance to others. However, this performance is based on the assumption that 

the situation of each block is already known. From the perspective of scalability, the 

approach with higher scalability always has simpler agent’s behaviour simulation. The 

only exception is proposed in the research of Park et al. (2011). This sequential 

structured approach claims to simulate 20000 agents with interactions.  

2.5 Chapter Summary 

In summary, this chapter reviewed the most widely utilized features and techniques 

for the behaviour analysis in computer vision. The image and video features are firstly 

introduced. Then the main stream techniques for behaviour recognition are reviewed, 

including both individual and crowd behaivours. Finally, the techniques for crowd 

simulation are introduced including the macroscopic, microscopic, mesoscopic and 

hybrid approaches. 
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Chapter 3. Crowd Analysis and Behaviour 

Modelling 

In this chapter, the primary target for this research – the Crowd – is defined. Next, 

a taxonomy of crowd behaviour types is induced according to the key visual features 

and the categorization of the state-of-the-art in related research fields. Furthermore, the 

key modelling techniques for each of the proposed behaviour types are introduced. 
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3.1  Crowd Behaviour Definition 

By definition, a crowd is a collection of individuals with similar behaviours and 

physical interactions with each other. The research of social psychology indicates the 

general behaviour of the entire crowd does not always match the individual’s behaviour. 

As the size of crowd increases, the individual will be influenced by the global crowd 

behaviour due to the loss of personal wills and control. The global crowd behaviour 

will be affected vice versa.  

The behaviour of an individual in a crowd is determined by both physical and 

psychological factors. The physical factors consist of the long-term and local forces 

which determine the actual motion of an individual. For long-term forces, the path-

finding algorithms will generate a constant driving force which “forces” the individual 

toward the destination. The local forces could be the social forces which decides the 

interaction modes. Psychological factors can also change the physical behavioural 

mode of an individual, such as the term “radius of comfort zone” in social force 

definitions. The research of Reicher and Alan (2000) introduces three-staged 

psychological states of an individual among the crowd including submergence, 

contagion and suggestion. In the submergence state, the motion of an individual is 

completely determined by the crowd flow while personal consciousness is temporarily 

removed. In the contagion state, the motion pattern of an individual is gradually affected 

by its neighbors. In the suggestion state, the individual acts under its own consciousness. 

The global behaviour of a crowd is determined by various factors, such as the 

collection of individual’s behaviours and the “contextual” information of an 

environment. Overall, the classification of crowd behaviour types is a challenging task 

with little consensus due to the complicated combination of various visual stimuli and 

models.  

3.2 Crowd Behaviour Taxonomy 
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The research of Somayeh and Robert (2008) assumes that crowd behaviours are 

composed of basic behavioural patterns. The definition of basic behavioural patterns 

depends on the context and the so-called Moving Point Objects (MPO). Total 6 types 

of basic behaviours including Pursuit/evasion, fight, play, flock, leadership and 

congestion are defined. By definition, the pursuit/evasion behaviour consists of motions 

with high velocity and direction changing behaviours, for example, in a footage 

occupying large areas. The fight behaviour consists of frequently and fast physical 

contact between agents. The play behaviour has the hallmark of high-speed motion as 

well as long pauses. The flock behaviour is a crowd behaviour characterized by multiple 

agents with identical behaviours. The leadership behaviour is another crowd behaviour 

type, which consists of a leader with dominant motion patters and a group of followers. 

Followers will largely remain in constant distance from the group leader. The 

congestion behaviour usually possesses a pattern of low velocity motion accompanied 

by increasing queuing time. 

Hamidreza and Javad (2016) annotated the crowd activity in various datasets with 

both behaviour and emotion types. Five basic types of crowd behaviours are defined, 

including the normal state, obstacle avoidance, panic dispersing, fight and congestion. 

Six emotion labels are also introduced including angry, happy, excited, scared, sad and 

neutral. Furthermore, the authors mapped each behaviour and emotion type with 

specific scenarios. For example, the panic behaviours exist in scenarios such as an 

earthquake or terrorist attack. An emotion-based representation model of the crowd is 

further derived from those behaviour and emotion combinations. 

In the research of Solmaz et al. (2012), eigenvalues extracted from motion field are 

exploited to classify five different crowd behaviours. Crowd behaviours are categorized 

as blocking, lane, bottleneck, ring and fountainhead based on the crowd’s global visual 

patterns. 

The following Table 3-1 lists the different taxonomy of various crowd behaviours. 
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Research Taxonomy 

(Somayeh and Robert, 2008) 

Pursuit/evasion, Fight, Play, Flock, Leadership, and 

Congestion 

(Hamidreza and Javad, 2016) 

(Physical) Normal State, Obstacle Avoidance, Panic 

Dispersing, Fight and Congestion (Emotional) Angry, 

Happy, Excited, Scared, Sad and Neutral 

(Solmaz et al., 2012) Blocking, Lane, Bottleneck, Ring and Fountainhead 

(Momboisse, 1967) Casual, Conventional, Expressive, and Aggressive 

(Berlonghi, 1995) Spectator, Demonstrator, and Escaping 

Table 3-1   Crowd Taxonomy in various researches 

By investigating the state-of-the-art of crowd behaviour taxonomy, 8 fundamental 

human crowd behavioural types are proposed in this research amid their suitability for 

video-based analysis. According to their visual patterns, these behaviours include 

bottleneck, fountainhead, ring/circling, panic dispersing, congestion, crossing, 

avoidance, lane and the hybrid. Their global visual patterns can be illustrated as in 

Figure 3-1.  

 

Figure 3-1. Taxonomy of Crowd Behaviours 

a) Bottleneck, Fountainhead and Congestion 
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The bottleneck usually occurs when a crowd passes a narrow entrance. This crowd 

behaviour often exists with several intriguing sub-phenomena, which includes the 

faster-is-slower, arching-clogging, and oscillation effects. These effects can be 

exploited to evaluate the visual realism of any visual simulating attempts. For the faster-

is-slower effect, individuals or agents will congest at the entrance due to the frequent 

collision and larger repulsive forces. On the contrast, if the crowd velocity is low, the 

entire gathering of agents will actually pass through the entrance in less time. For the 

arching-clogging effect, agents will generate an arching shape under the influence of 

repulsive force among agents. For the oscillation effect, if the repulsive force is not 

appropriately handled, vibration phenomena between agents will significantly impact 

the visual realism. These sub-phenomena are illustrated in Figure 3-2. On the other hand, 

the fountainhead crowd behaviour is a reversed circumstance of the bottleneck, which 

shares the similar visual patterns. The congestion is an extreme situation of bottleneck. 

In this behaviour, since the entrance is heavily blocked, velocities of most pedestrians 

are severely impacted. The farther from the entrance, the pedestrian will have higher 

velocity, and vice versa. 

 

Figure 3-2. Sub-phenomena in Bottleneck and Fountainhead 

b) Lane, Avoidance and Crossing 
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For bottleneck, all agents have same destination in contrast to the lane and crossing 

usually consists of agents moving in the opposite directions. In these circumstances, 

two agents have a high probability of collision. In the real-life, pedestrians will attempt 

to avoid collision. In order to achieve this effect in the simulation, a collision handling 

mechanism is mapped to the agent. The visual realism of lane effect could be utilized 

as a criterion of the simulation quality. In the lane/crossing scenario, agents with same 

direction will gradually form a lane under the influence of properly set repulsive force 

as illustrated in Figure 3-3. 

 
Figure 3-3. Lane Effect of Crowd 

The avoidance is a special case of lane formation. When a pedestrian among the 

crowd falls, the following pedestrians will attempt to avoid the fallen one under the 

influence of interaction force. Once passed by, the crowd density will become even 

again under the influence of interaction force as well. The crossing is also a special case 

of lane by generating pedestrians along four different directions. Under the influence of 

interaction force, the pedestrian will exhibit complex hehaviours at the stage center. 

c) Ring/Circling 

For the ring and circling behaviours, agents circle around certain objects or 

individual with similar overall direction. The most representative of this type of 

behaviour is described by Hajj of Mecca (Solmaz et al., 2012). When the crowd density 

is high, the risk of stampede increases rapidly. Also, the Ring/Circling behaviours occur 

at the roundabout in high density would easily trigger a traffic deadlock. 

d) Panic Dispersing 

Videos with emergent behaviours are frequently exploited to devise automatic 

prediction and alarming system of abnormal crowd behaviours (Xinyi et al., 2011). For 
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crowd video containing emergent behaviours such as panic dispersing, it can normally 

be segmented into two subsequent stages. In the first or normal stage, emergency hasn’t 

occurred and individuals (i.e. pedestrians) have steady motions. In the second or 

abnormal stage, pedestrians will attempt to run away from the disturbance source. In 

this stage, various particular personal behavioural patterns will be triggered and 

possibly combined simultaneously. The hybridization increases the difficulty in online 

processing. Another type of crowd behaviour is obstacle avoidance. For example, when 

a person falls on the ground among a moving crowd, pedestrians around will attempt to 

avoid the fallen person. 

e) Hybridization 

In real-life, mixtures of multiple behaviour types are widely observed. Most of 

researches concentrates on the singular-typed crowd abnormal behaviour detection. 

However, in the perspective of practical implementation, a hybrid behaviour detecting 

capability is at the highest demand. Due to its complexity, in this research, the 

hybridization of crowd behaviours is treated as an independent type. Table 3-2 

summarizes the introduced crowd behaviours with their visual patterns and possible 

scenarios to take place. 

Crowd Behaviour Patterns Footage 

Bottleneck 

Faster Is Slower 

Arching Clogging 
Entrance 

Fountainhead 

Faster Is Slower 

Arching Clogging 
Exit 

Ring/Circling Move around certain target Roundabout 

Panic Dispersing 
Two Stages 

Escape from danger 

Public area 

Congested Oscillation Stairway 

Crossing Lane Cross road 

Obstacle Avoidance Separate Flow Walk path 
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Lane Lane Walk path 

Hybrid Hybrid Complex Scenes 

Table 3-2   Crowd Behaviours and corresponding patterns 

3.3 Chapter Summary 

In this chapter, the definition of the crowd is introduced as the foundation of the 

research of crowd behaviour analysis. Next, taxonomies of crowd behaviour types are 

introduced. Based on these taxonomies, a novel taxonomy of crowd behaviour types is 

proposed according to their key visual features. The details of visual features are also 

discussed. In the experiments, crowd behaviours in the taxonomy are simulated and 

utilized for detection and classification. 
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Chapter 4. Spatial-Temporal Texture Feature 

Extraction 

In this chapter, the theoretical model and baseline approach involved in the 

extraction process is firstly introduced. Then a corresponding processing pipeline and 

its functional modules are explained. Finally, a practical test and feasibility study on the 

devised framework is provided.  
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The modelling of STV starts with stacking up consecutive frames from video 

without identifying any motion information within it. In order to further exploiting a 

3D STV “block”, the 2D texture of, for example, a pedestrian’s motion can be extracted 

from it. However, the motion density within a STV is often distributed unevenly. For 

large portions of a STV, dynamic information can be extremely sparse or even non-

exist. Therefore, one of the key problems is to obtain the texture with most abundant 

motion information from the STV. The main challenge is to separate the motion 

information from the noise such as the background. Usually each voxel (volumetric 

pixel - the building block of STV) will be tested to decide if it contains motion 

information. However, this approach is very time consuming and will greatly impact on 

the real-time performance of a live system. In this research, an innovated approach is 

proposed to effectively acquire the texture with most motion information. The 

procedure of this approach is illustrated in Figure 4-1. 

 

Figure 4-1. The proposed STT extraction approach 

The devised approach exploits the concept of information entropy to select the 

extracted texture slice with most abundant information. Based on the magnitude of 

motion trails along with the continuously evolving STV, the information entropy is 

obtained with a Gabor filter. The STT with the highest entropy value will be selected as 

target STT which will be exploited for feature extraction at the following stage. On the 

other hand, this approach enables the extraction of the spatial-temporal information in 

an efficient way in comparison to the optical flow-based calculation across the entire 

STV block. 

4.1 Baseline Operation for STT selection 
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The proposed STT extraction approach involves the concepts of information 

entropy and Gabor background subtraction. The Gabor background subtraction is used 

to handle the unique streak-line noise in the extracted STT for a more precise entropy 

estimation. The information entropy lays a solid theoretical foundation for evaluating 

the quality of the extracted STT.  

4.1.1 Information Entropy 

The concept of information entropy is also referred as Shannon Entropy (Shannon, 

1948). In the theory of thermal dynamic, the entropy increases when the 

information/energy losses. In the field of information theory, the data with lower 

probability usually contains more information. And the generation of data is a negative 

entropy process, therefore, the information entropy should be negative to dynamic 

entropy. The definition of information entropy 𝐻(𝑋) is expressed as Equation 4-1. 

 

𝐻(𝑋) = − ∑ 𝑃(𝑥𝑖)𝑙𝑜𝑔2𝑃(𝑥𝑖)

𝑛

𝑖=1

 4-1 

where 𝑥𝑖 is a random variable with 𝑛 possible output from probability function. 

The information entropy becomes larger as the uncertainty of the variable increases, 

more information is required to make it explicit. The information entropy has three 

properties as follows. 

a) Monotonicity. The event with higher probability has lower information entropy. An 

extreme case could be “the sun rises from the east”. Since it is a confirmed event, 

zero number of information is involved. From the perspective of information theory, 

none of the uncertainty is removed from this event. 

b) Nonnegativity. The information entropy can’t be negative. Because it is impossible 

to increase the uncertainty by obtaining the information. 

c) Cumulativeness. The overall uncertainty of multiple random events could be 

expressed as the summation of each event’s uncertainty. If events 𝑋 = 𝐴 and 𝑌 =

𝐵  occurred simultaneously, where they are independent 𝑝(𝑋 = 𝐴, 𝑌 = 𝐵) =

𝑝(𝑋 = 𝐴) ∙ 𝑝(𝑌 = 𝐵), then information entropy 𝐻(𝐴, 𝐵) = 𝐻(𝐴) + 𝐻(𝐵). 
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The implementation of information entropy is further expanded to the visual 

information measurement. In this research, it is assumed that the image with higher 

entropy contains more motion information. The primary goal of this calculation is to 

obtain the STT with most motion (highest information entropy value).  

In the phase of raw video data pre-processing, the STV is sliced with horizontal 

and vertical cuts along time axis. The sampling density can be a variable depending on 

application circumstances. The sampling density links directly with computational 

workload, so a balance needs to be ensured. Once the STT selection strategy is decided, 

the information entropy can be calculated. Overall speaking, the STTs with larger 

entropy value will be selected for feature extraction. To compute information entropy 

of each STT, it is firstly transformed from the RGB space to Grey scale. The Grey scale 

value is then divided into 𝑛 bins. The 𝑥𝑖 denotes the number of pixels distributed in 

the range of Grey scale level 𝑖. 𝑃(𝑥𝑖) denotes the probability of pixels in Grey scale 

level 𝑖 in STT. 𝐻(𝑋) denotes the information entropy. The process is explained in the 

form of pseudo code in Listing 4-1. 
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Listing 4-1. Pseudo Code of Calculating Information Entropy 

 Figure 4-2 exhibits several sample images and their corresponding information 

entropy values. The assumption is proved by the calculation results in the figure: the 

image with more complicated patterns has higher value of information entropy. 

Therefore, one can further assume that the identified STT containing more motion 

information represented by the complex texture patterns. 

 
Figure 4-2. Images with corresponding Information Entropy Value 

4.1.2 Boundary Detection with Gabor Filter 

 The Gabor transform is a special short-time Fourier transform (Sejdić et al., 2009). 

In the biological perspective, the mechanism of Gabor wavelet convolving with the 

image is similar to the reaction of the single vision cell to the stimulus. This mechanism 

is sensitive on the processing of visual data, and robust in the changing environment. 

Therefore, this approach has been widely exploited in the researches of object detection 

and background subtraction. Deepak and Meher (2015) proposed a hierarchical 

approach of background subtraction based on both block and pixel information using 

the Gabor transformed magnitude features. In order to address some disadvantages of 

the conventional background subtraction approach, Zhou et al. (2008) attempts to 

utilize the five-frequency circular Gabor transform to achieve a better subtraction result. 

a) Definition of Gabor Filter 
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By definition, the two-dimensional Gabor kernel function is obtained by 

multiplying the Gaussian function and the sinusoidal function in the spatial-domain 

(Shen and Bai, 2004). The filter slides through entire image to implement the 

convolution. In practical, the Gabor window function is capable of extracting border or 

motion patterns along any direction. The kernel could be expressed as Equation 4-2. 

 
𝐺𝜆,𝜃,𝜑,𝜎,𝛾(𝑥, 𝑦) = 𝑒

−
𝑥′2

+𝛾2𝑦′2

2𝜎2 cos (2𝜋
𝑥′

𝜆
+ 𝜑) 4-2 

Where the 𝑥′ denotes the size of window function along 𝑥 axis, and 𝑦′ denotes 

the size of window function along 𝑦 axis. The value of 𝑥 is in the range between 

−𝑠𝑥 and 𝑠𝑥. The value of 𝑦 is in the range between −𝑠𝑦 and 𝑠𝑦. 𝜆, 𝜃, 𝜑, 𝜎, 𝛾 are 

the five parameters to determine the final form of kernel. Furthermore, Equation 4-3 

gives the definition of 𝑥′ and 𝑦′. 

 𝑥′ = 𝑥 𝑐𝑜𝑠𝜃 + 𝑦 𝑠𝑖𝑛𝜃

𝑦′ = 𝑦 𝑐𝑜𝑠𝜃 − 𝑥 𝑠𝑖𝑛𝜃
 4-3 

 The five parameters 𝜆, 𝜃, 𝜑, 𝜎, 𝛾  denotes the Wavelength, Orientation, Phase 

Offset, Standard Deviation and Aspect Ratio of the kernel function. The influence of 

changing these parameters is illustrated in Figure 4-3. By increasing the value of 𝜆 or 

𝜎, the cycle of kernel becomes larger. By changing the 𝜃, the orientation of kernel will 

rotate. By changing the 𝜑, the kernel switches between sine and cosine functions. The 

𝛾 controls the eclipse shape of the kernel function, large 𝛾 will generate a kernel with 

flat shape.  
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Figure 4-3. The influence to Gabor kernel by changing values of parameters 

b) Boundary Detection 

In this section, the technique of boundary detection using Gabor Filter is introduced. 

The procedure consists of four phases, including Gabor Kernel Selection, Preliminary 

Boundary Detection, Non-Maximum Suppression and Edge Reconnection as illustrated 

in Figure 4-4. 

 

Figure 4-4. Procedure of Boundary Detection with Gabor Filter 

In the Gabor kernel selection phase, a collection of Gabor kernel functions is 

generated by setting the values of 𝜆 and 𝜃. As an empirical example, the values of 𝜆 
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are set as 6.6, 3.3 and 2.2. The values of 𝜃 are set as 0, π/4，π/2 and 3π/4. Therefore, 

a collection with 12 kernel function is obtained as illustrated in Figure 4-5. 

In the preliminary boundary detection phase, the image is firstly transformed into 

the Grey scale colormap, then convoluted with each kernel in the collection, to obtain 

the preliminary boundary along each orientation. 

In the non-maximum suppression phase, the Grey scale level of each pixel is 

compared with its neighbors along the detecting orientation. The pixel will be 

conserved if it is local maximum. Otherwise, it will be set as zero. 

In the edge reconnection phase, the processed images will be merged. Then the 

remaining pixels will be reconnected into boundaries. In this example, for each pixel, 

neighbors in 8 orientations with Grey scale value lower than the threshold will be 

removed from the boundary candidates. The detected boundary is illustrated in Figure 

4-5. 

  

Figure 4-5. Results of each processing phase in Gabor boundary detection 

c) Extracting Motions in STT 

As previously claimed, the STT with more motion information assumes to have 

higher information entropy. However, the static edges in the footage is likely to produce 
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a number of entropies. Therefore, STT containing more background information may 

have higher entropy than the one with more motion information. In this case, the 

proposed STT selection mechanism based on entropy will fail. Due to the unique pattern 

of STT, the Gabor Boundary Detector can be utilized as a background subtractor to 

extract the foreground motion information. Details will be explained in the next section. 

4.2 Implementation of Effective STT Extraction 

As introduced in Figure 4-7, a four-step procedure based on the baseline concepts 

and the achieved effective STT extraction technique is devised. In this section, the logic 

of this procedure is explained. The contents are distributed as follows. Section 4.2.1 

proves the assumption that STT with more motion information has higher entropy. It 

also reveals the issue of inaccurate entropy estimation. Section 4.2.2 addresses the issue 

by importing the Gabor Boundary Detector. Section 4.2.3 further improves the 

Boundary Detector to achieve a better STT selection quality. 

4.2.1 Inaccurate Entropy Estimation in STT 

It is proved in Figure 4-2 that images (STTs) with more complicated patterns often 

have higher entropies. Since the motion information randomly distributed in the 

extracted STT, the STT with more motion supposes to leave more complex trajectory 

patterns. As illustrated in Figure 4-6, six STTs extracted from the same STV and their 

corresponding entropy values are listed in descend order. The ribbon-shape patterns are 

the pedestrian’s trajectories in STT. Visually, the STT with more ribbon-shape patterns 

has higher entropy. 
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Figure 4-6. Entropy values of random STTs 

In order to validate this observation, the proposed STT selecting approach is 

applied on more video data. Seven video footages of the benchmarking dataset UMN 

is adopted. The detailed information of UMN is introduced in Chapter 7.1.1. 20 STTs 

are extracted vertical and horizontal from each modelled STV. The STT with highest 

entropy is illustrated in Figure 4-7. Surprisingly, only selected STTs from UMN1, 

UMN6 and UMN7 have the ribbon-shape motion patterns. STTs from UMN2, UMN3, 

UMN4 and UMN5 has high entropy, however, they contain meaningless parallel lines 

instead of trajectories.  

 

Figure 4-7. Selected STTs from Various Video Footages 
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 By further analyzing the incorrectly selected STT, the meaningless lines produce 

even higher entropy than trajectories. As illustrated in Figure 4-8, these lines are 

generated by stretching the static background pixels with high contrast along the time 

axis. The existence of these lines leads to the inaccurate entropy estimation. The 

intuitive thought to address this issue will be to remove these lines. As previously 

introduced, the Gabor filter is capable of detecting the boundary. The extraction of 

motion pattern’s boundary is equivalent to the subtracted forground of a STT. In next 

section, an approach of background subtraction using Gabor filter is introduced. 

 

Figure 4-8. The parallel lines in STT which influence the entropy estimation. 

4.2.2 Improved STT selection strategy using Gabor Filter 

As explained in Figure 4-8, the static background only produces horizontal parallel 

lines. On the other hand, the motion trajectory in STT may be along any orientation. It 

can be recalled that the Gabor boundary detection approach uses Gabor kernel along 

various orientations to detect edges along all possible directions. Therefore, these 

horizontal parallel lines will also be detected as edges by Gabor kernel with θ = π/2 

that can be removed from the kernel collection. With the new kernel settings, the motion 

trajectories in STT are extracted using the devised four-phases boundary detection 
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approach. The improved boundary detector can be considered as a background 

subtractor for the STT. According to the improved STT selection approach, the 

information entropy is calculated, and the STT with more motion patterns instead of 

background lines will be identified. The improved STT selection approach is illustrated 

in Figure 4-9. 

 

Figure 4-9. The procedure of Improved STT selection approach 

To verify the effectiveness with the new STT selection strategy, the background 

subtraction results are tested with and without the kernel function θ = π/2 for Gabor 

filtering. In the first implementation, the Gabor filter had been applied eight times along 

each direction, namely, N, S, W, E, SW, NW, SE, and NE. The filtered STT along each 

direction is illustrated in Figure 4-10. Figure 4-10(a) shows the original STT. Figure 4-

10(b) to Figure 4-10(e) shows the results along W, E, S, N directions. Figure 4-10(g) to 

Figure 4-10(j) shows the results along SW, NW, SE, NE directions. After the eight 

results are obtained, they are integrated together as the final target STT for analysis. In 

this case, the parameters are set as follows: the wavelength is set to 2, the Standard 

Deviation is set to 0.45 (b-e), and 0.5 (g-j). 
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Figure 4-10. Gabor filtering results along eight directions 

The experiments were carried out on 7 video clips from the UMN dataset (Cui et 

al., 2011). The selected STTs are annotated in the first column of Figure 4-11. 

Comparing to the results without background subtraction (see Figure 4-7), the identified 

STT of UMN2 contains more motion trajectories and less parallel lines. However, STTs 

of UMN3, UMN4 and UMN5 are still not satisfactory.  

In the second implementation, the kernel function with θ = π/2 and θ = −π/2 

are remove from the kernel collection. Therefore, Gabor background subtraction will 

be applied and the final integration is accumulated along six directions. The results 

provide a significant improvement. All 7 identified STTs contain detailed motion 

textures that are ideal for the follow up crowd behaviour analysis. 



Chapter 4                                 Spatial-Temporal Texture Feature Extraction 

61 
 

 

Figure 4-11. Comparison Between Results with eight and six kernel functions 

4.2.3 Computational Efficiency 

The devised texture selection technique is capable of significantly reducing the 

computational time on pattern extraction process such as the optical flow. According to 

the nature of flow-based pattern extraction approach, every pixel of each frame will be 

calculated. The maximum number of pixels can be as large as 𝑤 ∗ ℎ ∗ 𝑡 , where 𝑤 

denotes the width of current frame, ℎ  denotes the height, and 𝑡  denotes the total 

frame numbers. The possible computational complexity of the approach can reach 

𝑂(𝑛3). In contrast, the proposed STT extraction approach only requires the collection 

of texture data from several sampling locations. Therefore, the possible number of 

pixels to be calculated will decrease to (𝑁 + 1)𝑤𝑡 + (𝑀 + 1)ℎ𝑡 , and the potential 

computational complexity will be 𝑂(𝑛2) . Since various behaviours will exhibit 

different unique patterns in the STT, if the STT with proper patterns is selected with the 

proposed technique, these patterns can be modelled as signature (feature vectors) for 
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behaviour analysis in the follow-on process. Different from the change detection of 

panic behaviour based on the optical flow, the recognition of different abnormal 

behaviours can only be achieved with the classification of modelled pattern signatures. 

4.2.4 Exploiting the STT for Panic Detection 

Since the extracted STT using proposed approach contains rich motion information, 

it is ideal for feature modelling and behaviour recognition. In this section, a sample 

application of STT for crowd panic dispersing detection is introduced to exhibit the 

STT’s potent nature. 

 
Figure 4-12. Motion Information in the STT 

Figure 4-12 illustrates an extracted STT. Marked by the time-axis t, the STT consists 

of normal and panic states. In the normal state, pedestrians move with low velocity. The 

corresponding texture in STT is sparse, and the slope of trajectory is low. When the 

panic occurs, pedestrians begin to move with high velocity. The texture becomes 

condense, and the slop becomes steeper. A panic dispersing detection model is 

established. For pixels belong to the same time t, their Grey scale values are 

accumulated. If the difference between the average value and the summation in any 

time is greater than a threshold, this frame will be considered abnormal. The pseudo 

code of this algorithm can be expressed as in Listing 4-2. 
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The proposed approach is applied on 6 videos of UMN containing panic dispersing 

behaviours. As illustrated in Figure 4-13, the first column shows the extracted STT. The 

second column shows the magnitude map filtered by the six-directional Gabor. The 

third column shows the trend of magnitude along 𝑡. For each 𝑡, the motion magnitudes 

are accumulated. When motion at 𝑡 is more drastic, the total magnitude will be larger. 

The color-bars under the magnitude trend indicate the detection results. The horizontal 

bar corresponds the 𝑡 of the magnitude trend. The Grey bar implies the first 100 frames 

of training phase. The black bar implies the normal state, and the white bar implies the 

detected anomalies. Comparing to the ground truth, all panic dispersing behaviours are 

successfully detected. 

𝐼 ← 𝑆𝑇𝑇      % Obtain STT 
𝐼 ← 𝑇𝑜𝐺𝑟𝑎𝑦𝑆𝑐𝑎𝑙𝑒(𝐼)   % Transform to Gray Scale Image 

𝑇 ← 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡     % Assign a constant value to the threshold 

(ℎ, 𝑡) = 𝑠𝑖𝑧𝑒(𝐼)     % Obtain the height and time length of STT 

𝐴 = 0 

𝐅𝐨𝐫 𝑖 = 1: 𝑡′      % For the first several frames 
     𝑀𝑖 = 0 
     𝐅𝐨𝐫𝑗 = 1: ℎ 
          𝑀𝑖 = 𝑀𝑖 + 𝐼(𝑖, 𝑗)   % Calculate the summation of Gray Level 
     𝐄𝐧𝐝 

     𝐴 = 𝐴 + 𝑀𝑖 

𝐄𝐧𝐝 
𝐴 = 𝐴/𝑡′      % Calculate the average of first several frames 

𝐅𝐨𝐫 𝑖 = 𝑡′: 𝑡      % For the rest frames 
     𝑀𝑖 = 0 
     𝐅𝐨𝐫𝑗 = 1: ℎ 
          𝑀𝑖 = 𝑀𝑖 + 𝐼(𝑖, 𝑗)   % Calculate the summation of Gray Level 
     𝐄𝐧𝐝 

     𝐈𝐅 𝑀𝑖 − 𝐴 > 𝑇           % If the difference is larger than threshold 

          𝐑𝐞𝐭𝐮𝐫𝐧 Abnormal        % Return anomaly 
     𝐄𝐧𝐝 

𝐄𝐧𝐝 

Listing 4-2. Pseudo Code of Panic Detection using STT 
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Figure 4-13. Crowd Panic Dispersing Detection Result 
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4.3 Chapter Summary 

In this chapter, an effective spatial-temporal texture extraction technique based on 

information entropy and Gabor background subtraction is proposed in order to support 

the feature extraction and modelling process of the crowd analysis framework. The 

concept of information entropy is firstly introduced and proved to have the capability 

of represent the quantity of information within the image. Therefore, the information 

entropy is exploited for the selection of STT with most motion information. In order to 

get rid of the impact of static background lines within STT which could potentially 

generate high entropy, a six-directional Gabor filter background subtraction technique 

is devised to achieve the background removal on the STT. The preliminary experiment 

indicates the proposed approach has a good performance on STT selection. And the 

selected STT will be utilized for pattern extraction and modelling in next chapter. 
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Chapter 5. Crowd Behaviours Classification and 

Abnormality Detection 

As highlighted in last chapter, valid STT contains abundant crowd motion 

information and can be further processed for pattern modelling and classification. In 

this chapter, the Grey-Level Co-Occurrence Matrix (GLCM) texture patterns for STT 

are investigated. It is then modelled into crowd behaviour descriptors for classification.  
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The contents of this chapter are distributed as follows: Section 5.1 provides a brief 

overview of texture patterns, and convers the extraction approach of GLCM. Section 

5.2 introduces the classifiers for behaviour recognition, and the rationale for adopting 

SVM. Section 5.3 explains the orderliness, descriptive and contrast features modelled 

from the primitive GLCM, and finally, the modelling and classification of the behaviour 

descriptors. Section 5.4 provides a case study on panic dispersion analysis. 

5.1  Image Texture Patterns 

The texture is a visual pattern revealing the homogeneity within an image. It 

describes the gradual or periodic change of the object’s surface structure. The three key 

patterns of textures are: the repeating local sequence; the non-random distribution; and, 

the uniformity within a texture region. Different from the color and Grey level patterns, 

the local texture information is described by the Grey level distribution of pixel and its 

neighbors. The global texture information is the repetitiveness of local texture 

information. 

Since the texture describes the surface property of corresponding objects, high-level 

semantic contents can be represented using only textures. Different from the color 

pattern, a piece of texture isn’t based on the single pixel, it involves the statistical 

calculation of multiple pixels within a region. Using texture can effectively alleviate 

pattern matching problems caused by the regional deviation. 

Using texture pattern is an effective approach when indexing images with large 

differences, for example, feature density. However, if the difference is not significant 

enough, normal texture patterns may fail to accurately reveal the nature of the observed 

targets. For example, the reflection on a specular surface will inundate effects from 

underlying textures of the object. In summary:  

 The advantages of using texture patterns. 

◼ The statistical calculation of all pixels within the region instead of single pixel. 

◼ Rotational invariance. 
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◼ Higher resistance of Nosie. 

 The disadvantages of using texture patterns. 

◼ The resolution of image significantly affects the extracted texture. 

◼ The brightness and reflection affect the extracted texture. 

◼ The obtained texture from 2-D image doesn’t always match the 3-D object’s 

actual texture. 

5.1.1 Taxonomy of Texture Pattern Extraction Approaches 

In order to extract the texture, a filtering window will be sliding through the image, 

pixels within the window are exploited for the texture calculation. However, the 

selection of window size is usually a dilemma. Texture is a regional concept, which is 

expressed by the spatial uniformity. The larger the window is, the easier to detect its 

uniformity. The change of uniformity indicates the boundary of different textures. 

Therefore, a smaller window can achieve the more accurate detection of texture 

boundary. In conclusion, if the size is too small, the inaccurate extraction occurs within 

the right texture. If the size is too large, the inaccurate extraction occurs between the 

boundary of textures. 

 Various texture extraction approaches have been examined. These approaches can 

be divided into four main categories as illustrated in Figure 5-1. These four categories 

consist of statistical, modelling, signal processing and structural approaches. 
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Figure 5-1. Taxonomy of Texture Extraction Approaches 

a) Statistical Approaches 

These approaches focus on the first, second or higher order statistical patterns in the 

texture region based on pixel and its neighbor’s Grey level. The typical approaches are 

as follows: GLCM and its derived patterns such as Energy, Entropy and Correlation are 

computed; texture pattern extracted from the energy spectrum function of the image; a 

semi-variogram reveals the randomness and structure of the image. 

The advantages of statistical approaches are the low modelling difficulty and high 

adaptiveness. Disadvantages are the disjoint to human visual model, and the absence of 

the global information and high computational complexity. 

b) Modelling Approaches 

The modelling approaches assume the texture pattern can be expressed as a 

parameter driven distribution model. Therefore, the core issue of this approach is the 

estimation of parameters. Typical approaches include Markov Random Field (Li, 1994), 

Gibbs Random Field (Howard and Haluk, 1987) and Fractal Model (Alex, 1984). 

The merits of this type of approaches include the flexibility of the balancing 
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between local randomness and global regularity features. The shortcomings are 

stemmed from the higher difficult parameter estimation, for example, the slow 

execution of the iterative process in MRF. 

c) Signal Processing Approaches 

The signal processing approaches usually transform certain region of the image into 

the temporal and spectrum domains, and then to extract the relatively stable patterns for 

expressing the uniformity within the region. Typical approaches include Gabor 

transform, Tamura texture and Wavelet transform. 

 The advantage is that it analyses textures in a more precise manner. The classic 

wavelet transform matches the human vision model and visual habits, which helps the 

segmentation of texture image. However, these approaches prefer regular texture 

patterns than the complex ones and having relative low performance on nature images. 

d) Structural Approaches 

The structural approaches assume the texture is composed with the permutation 

rules of texture elements, quantity of them, and the spatial structure. The core issues of 

this approach are the intrinsic difficult in extracting elementary texture elements and 

the spatial structure. The typical approaches are Syntactic Texture and Mathematical 

Morphology. 

5.1.2 Grey Level Co-occurrence Matrix 

The GLCM is also known as the Grey Tone Spatial Dependency Matrix, which is 

introduced in the research of Haralick et al. (1973). The GLCM expresses the statistic 

distribution of the different Grey scale value levels within an image. For any pixel pairs 

(𝑖, 𝑗)  and (𝑖 + 𝑎, 𝑗 + 𝑏) , the corresponding Grey levels are (𝑓1, 𝑓2) . Assume the 

maximum Grey level is 𝐿, the combination of (𝑓1, 𝑓2) will be 𝐿 ∗ 𝐿. For the entire 

image, frequency of each (𝑓1, 𝑓2) combination is modelled as a matrix 𝐺. Next, 𝐺 is 

normalized with the total number of combinations into 𝑃(𝑓1, 𝑓2) as the GLCM. In real-

life video, the extracted STT doesn’t have the regular patterns. Therefore,  𝐺 is often 

asymmetric. Since 𝐺 only aggregates the relation along single direction. In order to 
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make 𝐺 representing bi-directional relations, the transposing matrix 𝐺′ is calculated. 

Then the summation 𝑆  of 𝐺  and 𝐺′  is calculated. Next, the probability matrix 𝑃 

could be expressed as Equation 5-1. 

 

𝑃𝑖,𝑗 =
𝑆𝑖,𝑗

∑ 𝑆𝑖,𝑗
𝑁−1
𝑖,𝑗=0

 5-1 

 Where 𝑖  denotes the row index of matrix, and 𝑗  denotes the column index. 

According to the definition, the probability matrix 𝑃 contains two unique properties. 

1) Size of 𝑃 is determined by the number of 𝐿. For example, assuming the Grey scale 

values are divided into three levels, the total row and column number of 𝑃 will be 3. 

Therefore, when the 𝐿 becomes larger, size of 𝑃 will increase, and the pattern of 𝑃 

is more explicit. On the other hand, if the 𝐿 is too high, the distribution of 𝑃 will be 

sparser. In this situation, descriptive capability of 𝑃  will be greatly impacted. In 

practice, the range of the level number is usually set among 3 and 10. Furthermore, the 

proper 𝐿 could reduce the time consumption. 2) Since 𝑃 is symmetric, its diagonal 

where 𝑖 − 𝑗 = 0 denotes the combinations without Grey level differences. When the 

matrix indices stay far from the diagonal where |𝑖 − 𝑗|  is large, the Grey level 

differences become larger for the pixel pair. Therefore, more pixel pairs distributed in 

far side of the diagonal indicate the image has higher contrast value. 

An example is illustrated in Figure 5-2(a) - an image with 7 by 7 pixels. As shown 

in Figure 5-2(b), the highest Grey level is 14 and the lowest Grey level is 2, total number 

of levels is 4. The 4 Grey levels are replaced with 0 to 3 as illustrated in Figure 5-2(c), 

Figure 5-2(d) and Figure 5-2(e). It also means the range of (𝑓1, 𝑓2) is from 0 to 3. By 

setting the different 𝑎  and 𝑏 , and permutating the number of different (𝑓1, 𝑓2) 

combinations, the 𝐺 illustrated in Figure 5-2(f)-(g) is obtained. 
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Figure 5-2. GLCM extraction 

 The labelled slots in Figure 5-2(c) indicates the pixels pairs with (𝑓1 = 0, 𝑓2 =

1) , and (𝑎 = 1, 𝑏 = 0) . The total number of this combination is 10. Therefore, the 

corresponding slot of GLCM is set to 10 in Figure 5-2(f). Similarly, labelled slots in 

Figure 5-2(d) indicates the combination of (𝑓1 = 0, 𝑓2 = 0)  and (𝑎 = 1, 𝑏 = 1) , 

and labelled slots in Figure 5-2(e) indicates the combination of (𝑓1 = 0, 𝑓2 = 2) and 

(𝑎 = 2, 𝑏 = 0). The GLCM in Figure 5-2(f) indicates the (𝑓1 = 0, 𝑓2 = 1), (𝑓1 =

1, 𝑓2 = 2) , (𝑓1 = 2, 𝑓2 = 3)  and (𝑓1 = 3, 𝑓2 = 0)  have higher frequency. 

Therefore, the corresponding image has significant texture pattern from left-bottom to 

right-top. 

 The different values of (𝑎, 𝑏) will determine the different GLCM. The selection 

of (𝑎, 𝑏) should depend on the distribution of texture’s pattern. For the narrow texture, 

the value could be pairs such as (0,1) or (1,1). For the slow changing textures, the 

small (𝑎, 𝑏) will derive the larger values on the diagonal. On the other hand, the fast-

changing texture will make the smaller values on diagonal, and larger values on far-

side. The pseudo code to calculate the GLCM is illustrated in Listing 5-1. 
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5.2  Machine Learning Classifiers 

According to the proposed framework of crowd behaviour detection, once the 

texture patterns are extracted and modelled into descriptor, the classifier will be utilized 

to determine whether the descriptor is abnormal. The capability of classifiers greatly 

𝐼 ← 𝑆𝑇𝑇      % Obtain STT 
𝐼 ← 𝑇𝑜𝐺𝑟𝑎𝑦𝑆𝑐𝑎𝑙𝑒(𝐼)   % Transform to Gray Scale Image 

𝐿 ← 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡      % Set the number of gray levels 

(𝑎, 𝑏)       % Set the calculation direction 

𝐺(𝐿, 𝐿)        % Initialize the GLCM with size L by L 

(ℎ, 𝑤) = 𝑠𝑖𝑧𝑒(𝐼)     % Obtain the height and time length of STT 

𝐅𝐨𝐫 𝑖 = 1: ℎ      % For each pixel 
     𝐅𝐨𝐫𝑗 = 1: 𝑤 
 𝑚 = 𝐼(𝑖, 𝑗) ∗ 𝐿/256   % Normalize the f1 into the L scale 
        𝑛 = 𝐼(𝑖 + 𝑎, 𝑗 + 𝑏) ∗ 𝐿/256  % Normalized the f2 into the L scale 
 G(𝑚, 𝑛) = G(𝑚, 𝑛) + 1  % Increase the (f1,f2) by 1 
     𝐄𝐧𝐝 

𝐄𝐧𝐝 
 

𝑆 = 𝐺 + 𝐺′      % Summation of G and its transpose 
𝑃(𝐿, 𝐿)       % Initialize the Probability Matrix 

𝑇 = 0       % The accumulation of S 

𝐅𝐨𝐫 𝑖 = 1: 𝐿      % For each pixel 
     𝐅𝐨𝐫𝑗 = 1: 𝐿 
        𝑇 = 𝑇 + 𝑆(𝑖, 𝑗)    % Obtain the accumulation of S 
     𝐄𝐧𝐝 

𝐄𝐧𝐝 
 

𝐅𝐨𝐫 𝑖 = 1: 𝐿      % For each pixel 
     𝐅𝐨𝐫𝑗 = 1: 𝐿 
        𝑃(𝑖, 𝑗) = 𝑆(𝑖, 𝑗)/𝑇   % Calculate the Probability Matrix 
     𝐄𝐧𝐝 

𝐄𝐧𝐝 

Listing 5-1. pseudo code of GLCM calculation 



Chapter 5                Crowd Behaviours Classification and Abnormality Detection 

74 
 

affects the detection result. Therefore, the appropriate selection of classifier is crucial 

to the entire operation. In this section, conventional machine learning classifiers are 

introduced, including K-Nearest Neighbors, Support Vector Machine and Back 

Propagation Neural Network. And the reason of choosing SVM as the classifier for the 

crowd behaviour detection is explained. 

5.2.1 K-Nearest Neighbours 

Assume a training sample set exists, all data is labelled with different properties. 

When the test data is input, compare every property between test and training data, and 

find out the nearest samples. Next, the first k samples are used for analysis. The type 

exists most in these samples will be selected as the type of test data. The process of 

KNN is illustrated as Figure 5-3. If the k is set to 3, the type of circle will be classified 

as Triangle. Since there are 2 triangles in the 3 nearest neighbors. Similarly, If the k is 

set to 5, the type of circle will be classified as Rectangle. 

 
Figure 5-3. K-Nearest Neighbor Classification 

The advantages of KNN include the insensitive to rare value, low difficulty to 

achieve, and adaptiveness to multi-model classification. The primary disadvantage of 

KNN is the high computational and spatial complexity.  

5.2.2 Support Vector Machine 

The Support Vector Machine is a supervised generalized linear classifier based on 

binary classification. Its decision boundary is the maximum-margin hyperplane of 

learning sample’s solution. The SVM is firstly proposed in 1963, and various derived 
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enhancements are developed, including Multi-class SVM, Least-Square SVM, Support 

Vector Regression, Support Vector Clustering and Semi-Supervised SVM. The SVM is 

widely exploited in face recognition, text categorization and pattern recognition. The 

conventional SVM consists of two approaches, which are Linear and Kernel approaches. 

a) Linear Approach 

Given the input data 𝑋 = {𝑋1, … , 𝑋𝑁} and class set 𝑦 = {𝑦1, … , 𝑦𝑁}, where each 

data consists of multiple features as a feature space 𝑋𝑖 = [𝑥1, … , 𝑥𝑛] ∈ 𝜒. The binary 

parameter 𝑦 ∈ {−1,1} is used to label the positive and negative class. If a hyperplane 

𝜔𝑇𝑋 + 𝑏 = 0 of decision boundary in the feature space exists and divides the data into 

positive and negative, and the distance between the hyperplane and any sample is larger 

than 1 𝑦𝑖(𝜔𝑇𝑋𝑖 + 𝑏) ≥ 1 , then these data is considered linearly separable. The 

parameters 𝜔, 𝑏 are the normal vector and intercept of the hyperplane. Two parallel 

hyperplanes 𝜔𝑇𝑋 + 𝑏 = ±1  are modelled as the interval boundary to classify the 

samples, as expressed in Equation 5-2. 

 𝜔𝑇𝑋𝑖 + 𝑏 − 1 ≥ +1,   if 𝑦𝑖 = +1

𝜔𝑇𝑋𝑖 + 𝑏 + 1 ≤ −1,   if 𝑦𝑖 = −1
 5-2 

Data larger than the upper boundary is positive, and data smaller than the lower 

boundary is negative. The distance 𝑑 =
2

||𝜔||
 between two boundaries are defined as 

Margin. The samples fall right on the boundaries are defined as Support Vectors. As 

illustrated in Figure 5-4, the Grey circles indicate the support vectors. The dash lines 

indicate the interval boundaries. The full line indicates the decision boundary. 
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Figure 5-4. Support Vectors, Decision Boundary and Interval Boundary in SVM 

When a classification problem is not linearly separable, using the hyperplane will 

cause the classify losing. In this situation, some support vectors fall into the interval 

boundary or the wrong side of decision boundary. The Loss Function could quantify the 

classify losing. The 0-1 loss function could be defined as Equation 5-3. 

 
𝐿(𝑝) = {

0
1

     𝑝 < 0
     𝑝 ≥ 0

 5-3 

 Since the 0-1 loss function isn’t continuous, which isn’t appropriate for 

optimization. Regular solution is exploiting the surrogate loss, including Hinge Loss, 

Logistic Loss and Exponential Loss, expressed as Equation 5-4. The SVM uses hinge 

loss function. 

 ℎ𝑖𝑛𝑔𝑒:  𝐿(𝑝) = max (0,1 − 𝑝)

𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐:  𝐿(𝑝) = log [1 + exp (−𝑝)]

𝑒𝑥𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙:  𝐿(𝑝) = exp (−𝑝)

 5-4 

b) Kernel Approach 

Some linearly separable problems could be non-linearly separable. A hypersurface 

exists in the feature space to divide the positive and negative samples. By using the 

non-linear function, the non-linearly separable problem could be mapped into higher-

dimensional Hilbert Space 𝐻 from its original feature space to transform the problem 

into linear separable one. The hypersurface as the decision boundary could be expressed 

as Equation 5-5. 

 𝜔𝑇𝜙(𝑋) + 𝑏 = 0 5-5 

 Where 𝜙: 𝜒 → 𝐻 is the mapping function. Since the mapping function is complex 

non-linear function, therefore, the kernel function could be exploited to simplify the 

computation. The conventional kernel functions are listed as follows. When the 𝑛 is 1, 

the Polynomial Kernel becomes linear, the corresponding classifier becomes linear. 

◼ Polynomial Kernel:𝑘(𝑋1, 𝑋2) = (𝑋1
𝑇𝑋2)𝑛 

◼ RBF Kernel: 𝑘(𝑋1, 𝑋2) = exp (−
||𝑋1−𝑋2||2

2𝜎2 ) 

◼ Laplacian Kernel: 𝑘(𝑋1, 𝑋2) = exp (−
||𝑋1−𝑋2||

2𝜎2 ) 
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◼ Sigmoid Kernel: 𝑘(𝑋1, 𝑋2) = tanh[𝑎(𝑋1
𝑇𝑋2) − 𝑏] ,   𝑎, 𝑏 > 0 

5.2.3 Back Propagation Neural Network 

Back Propagation (BP) Neural Network is an effective multi-level neural network 

learning approach. In BP network, the signal is transferred forward and the deviation is 

transferred backward. By continuously adjusting the weight of network, the actual 

output will be gradually close to the desired output. The structure of a typical BP 

network is illustrated in Figure 5-5. 

 
Figure 5-5. Structure of BP Neural Network 

 The BP network consists of 𝐿 neural layers. The first layer is input layer, the 𝐿th 

layer is output layer. The 2nd to 𝐿 − 1 layers are hidden layers. Where the input vector 

is 

 𝑥⃗ = [𝑥1 𝑥2 … 𝑥𝑖 … 𝑥𝑚], 𝑖 = 1,2, … , 𝑚 5-6 

 The output vector is 

 𝑦⃗ = [𝑦1 𝑦2 … 𝑦𝑘 … 𝑦𝑛], 𝑘 = 1,2, … , 𝑛 5-7 

 The output of 𝑙th hidden layer is 

 
ℎ(𝑙) = [ℎ1

(𝑙)
 ℎ2

(𝑙)
… ℎ𝑗

(𝑙)
… ℎ𝑠𝑙

(𝑙)
], 𝑗 = 1,2, … , 𝑠𝑙 5-8 

 Where 𝑠𝑙 is the number of neural in 𝑙th layer. 

 Assuming 𝑊𝑖𝑗
(𝑙)

 is the weight of connection between the 𝑗th neural in 𝑙 − 1 layer 

and 𝑖th neural in 𝑙th layer. 𝑏𝑖
(𝑙)

 is the offset of the 𝑖th neural in 𝑙th layer. Thus 
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ℎ𝑖

(𝑙)
= 𝑓(𝑛𝑒𝑡𝑖

(𝑙)
)

𝑛𝑒𝑡𝑖
(𝑙)

= ∑ 𝑊𝑖𝑗
(𝑙)

ℎ𝑗
(𝑙−1)

+ 𝑏𝑖
(𝑙)

𝑠𝑙−1

𝑗−1

 5-9 

 Where 𝑛𝑒𝑡𝑖
(𝑙)

  is the input of the 𝑖 th neural in 𝑙 th layer. 𝑓(∙)  is the activation 

function of the neural. In most cases, the activation function will be a non-linear. The 

following two activation functions are usually adapted in BP network. The first one is 

the Sigmoid function, and the second one is the Hyperbolic Tangent function. 

 
𝑓(𝑥) =

1

1 + 𝑒−𝑥

𝑓(𝑥) =
1 − 𝑒−𝑥

1 + 𝑒−𝑥

 5-10 

The BP approach could be expressed as following processes. 

⚫ For all layers 2 ≤ l ≤ L, set ∆𝑊(𝑙) = 0, ∆𝑏(𝑙) = 0, where ∆𝑊(𝑙) is a zero matrix 

and ∆𝑏(𝑙) is a zero vector. 

⚫ For each 𝑖 between 1 to 𝑚 

◼ Calculating the gradient matrix of neural weight ∇𝑊(𝑙)  and offset ∇𝑏(𝑙) 

using back-propagation algorithm. 

◼ Calculating ∆𝑊(𝑙) = ∇𝑊(𝑙)(𝑖). 

◼ Calculating ∆𝑏(𝑙) = ∇𝑏(𝑙)(𝑖). 

⚫ Updating the weight and offset 

◼ Calculating 𝑊(𝑙) = 𝑊(𝑙) +
1

𝑚
∆𝑊(𝑙). 

◼ Calculating 𝑏(𝑙) = 𝑏(𝑙) +
1

𝑚
∆𝑏(𝑙). 

The advantages of BP network are its non-linear reflection capability and flexible 

network structure. The number of hidden layers and neural could be customized 

according to the actual situation. The primary disadvantages are the relatively slow 

training speed and the traps of falling into the local minimum. 

 In this research, the SVM is more appropriate than the BP network on the behaviour 

classification using STT. The main reason is the requirement of the large training set in 

neural network. However, the number of crowd behaviour video dataset is small and 
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not labelled. Compared to the BP network, the training data requirement for SVM is 

much lower. Therefore, the SVM is selected as the classifier. 

5.3  Classification using GLCM 

In order to exploit the STT, an approach of modelling the texture signature based 

on the GLCM patterns is devised for the recognition of abnormal crowd behaviour. 

Firstly, GLCM will be calculated. Next, these GLCM patterns will be further modelled 

into a signature/descriptor. The modelled signature will be utilized for training and 

classification of behaviours in STT. In the experiment, the results exhibit high accuracy 

on the detection of abnormal crowd behaviours such as panic dispersing and congestion. 

The modelled STT signature is proven to be an efficient descriptor for the automatic 

crowd analysis in practice. 

5.3.1 Modelling Features From GLCM 

The GLCM only represents the Grey level distribution of the texture, in order to 

more explicitly represent the motion information in the STT, the GLCM is further 

modelled into different features. As illustrated in Figure 5-6, once the target STT is 

extracted, the corresponding GLCM will be calculated. Next, the Orderliness features, 

Descriptive features and Contrast features will be modelled from the raw GLCM. Then, 

a signature will be modelled from these features. Finally, the signature will be used for 

the classification of crowd behaviours. 

 

Figure 5-6. Structure of the Signature Modelling approach 
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As illustrated in the third Step of Figure 5-6, the approaches of modelling the three 

features from the GLCM matrix 𝑃 are introduced in next section. 

5.3.2 Contrast Features of GLCM 

 By definition, the Contrast type features describe the acuteness of the Grey level 

changing between neighboring pixel pairs. The Contrast type consists of four features, 

which are contrast, dissimilarity, homogeneity and similarity. For contrast, when the 

pixel pair at row 𝑖 and column 𝑗 is far from the diagonal of GLCM probability matrix 

𝑃, the global contrast value will be larger. The contrast value 𝐶𝑂𝑁 can be obtained 

from 𝑃 with Equation 5-11. 

 

𝐶𝑂𝑁 = ∑ 𝑃𝑖,𝑗(𝑖 − 𝑗)2

𝑁−1

𝑖,𝑗=0

 5-11 

 The Dissimilarity feature is similar to the contrast. It also represents how drastic 

the Grey level changes in the texture by replacing the exponential weight with the linear 

weight. The dissimilarity could be denoted as 𝐷𝐼𝑆 and shown as Equation 5-12. 

 

𝐷𝐼𝑆 = ∑ 𝑃𝑖,𝑗|𝑖 − 𝑗|

𝑁−1

𝑖,𝑗=0

 5-12 

 The Homogeneity represents the consistency of the STT, which is also known as 

Inverse Different Moment (IDM). The changing trend of Homogeneity is exactly 

opposite to the Contrast. When the change of Grey level is less drastic, the value of 

Homogeneity will be larger. Equation 5-13 indicates the expression of Homogeneity as 

𝐻𝑂𝑀. 

 

𝐻𝑂𝑀 = ∑
𝑃𝑖,𝑗

1 + (𝑖 − 𝑗)2

𝑁−1

𝑖,𝑗=0

 5-13 

 Same to the relation between Contrast and Homogeneity, the Similarity feature is 

opposite to the Dissimilarity according to Equation 5-14. 

 

𝑆𝐼𝑀 = ∑
𝑃𝑖,𝑗

1 + |𝑖 − 𝑗|

𝑁−1

𝑖,𝑗=0

 5-14 

The Table 5-1 illustrates the comparison between the Contrast type features of 

various STT patches. These patches are collected from different positions and states in 



Chapter 5                Crowd Behaviours Classification and Abnormality Detection 

81 
 

the same STT. In the experiment, the window size of raw GLCM is set to 50 by 50. The 

sampling direction is horizontal, and the sampling step is set to 1. The level number of 

Grey level is set to 8. The results indicate the patch in Table 5-1(a) obtains higher 

homogeneity and similarity, but lower contrast and dissimilarity values than Table 5-

1(d), because it contains motion information of panic behaviour. 

5.3.3 Orderliness Features of GLCM 

 The Orderliness type features describe whether the changing of the Grey level 

between neighboring pixel pairs is regular. This type consists of three features, 

including Angular Second Moment (ASM), Energy and Entropy. The ASM is usually 

exploited for the evaluation of rotational acceleration. The ASM is expressed as 

Equation 5-15. 

 

𝐴𝑆𝑀 = ∑ 𝑃𝑖,𝑗
2

𝑁−1

𝑖,𝑗=0

 5-15 

 The Energy feature reveals the similar nature of texture to ASM, except the Energy 

(ENR) is the square root of ASM’s value shown as Equation 5-16. The Energy feature 

could be utilized in the research of fingerprint and botany. 

 
𝐸𝑁𝑅 = √𝐴𝑆𝑀𝑖,𝑗 5-16 

 The Entropy feature is opposite to Energy. Instead of regularity, this feature reveals 

the level of irregularity of the pixel distribution. If the motion in the STT is at the chaotic 

state, the entropy feature would be higher. The Entropy pattern ENT is shown as 

Equation 5-17. 

 

𝐸𝑁𝑇 = ∑ 𝑃𝑖,𝑗(−𝑙𝑛𝑃𝑖,𝑗)

𝑁−1

𝑖,𝑗=0

 5-17 

 The Table 5-1 also illustrates the obtained values of Orderliness type features. The 

distribution of different features follows their definitions. For example, the Entropy 

value of patch in Table 5-1(a) is smaller than the one in Table 5-1(d), since the previous 

one contains more motion information. 
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5.3.4 Descriptive Statistical Features of GLCM 

 The Descriptive Statistical type features are obtained by calculating the statistical 

information of the GLCM. This type consists of three features including Mean, Variance 

and Correlation. The Mean feature could be expressed as Equation 5-18. The 𝜇𝑖 and 

𝜇𝑗 indicate the Mean value along the row and column respectively. Since the matrix 𝑃 

is symmetric, the mean values along these directions equals to each other. 

 

𝜇𝑖 = ∑ 𝑖𝑃𝑖,𝑗

𝑁−1

𝑖,𝑗=0

   5-18 (a) 

 

𝜇𝑗 = ∑ 𝑗𝑃𝑖,𝑗

𝑁−1

𝑖,𝑗=0

 5-18 (b) 

 Similarly, the Variance of 𝑃 is obtained with corresponding Mean 𝜇, and marked 

as 𝜎2. And the value of Deviation is the square-root of the Variance, and marked as 𝜎. 

Both of these patterns could be expressed as Equation 5-19. 

 

𝜎𝑖
2 = ∑ 𝑃𝑖,𝑗(𝑖 − 𝜇𝑖)

2  

𝑁−1

𝑖,𝑗=0

   5-19 (a) 

 

𝜎𝑗
2 = ∑ 𝑃𝑖,𝑗(𝑗 − 𝜇𝑗)2

𝑁−1

𝑖,𝑗=0

 5-19 (b) 

As the last feature, the Correlation COR could be obtained with the previously 

calculated Mean and Variance, which could be expressed as Equation 5-20. 

 

𝐶𝑂𝑅 = ∑ 𝑃𝑖,𝑗

𝑁−1

𝑖,𝑗=0

[
(𝑖 − 𝜇𝑖)(𝑗 − 𝜇𝑗)

√𝜎𝑖
2𝜎𝑗

2

] 5-20 

5.3.5 GLCM Signature Modelling 

According to the classification procedure illustrated in Figure 5-6, once the above 

introduced features are obtained from the probability matrix, they will be modelled into 

a signature for the behaviour classification. In this section, the performance of these 

features is tested and evaluated. Four key features will be selected and modelled in order 

to derive the final signature. 

The first row of Table 5-1 illustrates six STT patches. These patches are extracted 
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from a single STT at different positions. The patch(a) to patch(c) are extracted from the 

normal STT. And the patch(d) to patch(f) are from the abnormal STT. Next, the values 

of Contrast, Orderliness and Descriptive Statistical features are calculated. Then, the 

trend of these values will be inspected. Firstly, patches with the abnormal behaviours 

tend to have higher values on Contrast, Entropy and Variance. For example, the Entropy 

values of patches from (a) to (c) are lower than those from (d) to (f). Secondly, STT 

patches with abnormal behaviours will have lower feature values than the normal ones, 

such as ASM. Furthermore, comparing to the changing trend of other features, Contrast, 

ASM, Entropy and Variance exhibit the most distinguished turbulence in value from 

normal to abnormal. Therefore, these four patterns are considered the most symbolic 

features to describe the behaviour in STT.  

In the following experiment, the global changing trend of these patterns on a STT 

is probed. As illustrated in Figure 5-7(a), the STT extracted from the first sequence of 

UMN dataset is used for the feature modelling. Videos from the UMN consist of two 

stages including normal state and panic dispersing. Therefore, the STT shown in Figure 

5-7(a) can be divided into two sections. A color bar at the bottom of figure labels the 

ground truth of STT. The section located in the Grey bar represents the normal state, 

and the one located in the black bar represents the panic state. The labelled ground truth 

generally matches the abnormal trajectories in STT. Therefore, the patterns extracted 

from the abnormal section of STT should also be able to represent the labelled ground 

truth. Since the STT is cut along the time axis, the width of STT equals to the length of 

video. By accumulating the pixels in each column, the global changing trend of these 

GLCM features along time could be observed. 

Changing trends of four different Contrast features’ magnitude are illustrated in 

Figure 5-7(b-e). When the abnormal behaviour occurs, the pattern values of Contrast 

and Dissimilarity indicate a significant surging. On the other hand, the pattern values 

of Similarity and Homogeneity will have a relatively smooth change. Figure 5-7(f-h) 

list the changing trends of Orderliness type features extracted from the STT in Figure 

5-7(a). When the panic dispersing occurs, the irregularity descripting features such as 
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Entropy increase quickly. On the contrary, the overall value of ASM suffers from a 

major decline. The trend of Energy isn’t sensitive to the abnormality. The changing 

trends of Descriptive Statistical type features are illustrated in Figure 5-7(i-l). When the 

abnormal behaviour occurs, the trend of Mean pattern is relatively smooth with the 

Variance, Standard Deviation and Correlation. Based on the assumption that the more 

sensitive the feature reacts to different state, the better performance for the behavioural 

analysis, four features are selected as the key patterns for the signature including CON, 

ASM, ENT and VAR. Despite the Dissimilarity is also sensitive, it is still given up since 

it has the same trend with CON. Same reason to the features such as Standard Deviation 

and Correlation. The modelled signature is a combination of the selected patterns, 

which is shown as Equation 5-21. The corresponding experiments to evaluate the 

performance of proposed signature will be implemented on different types of crowd 

behaviours in chapter 7. 

 

Figure 5-7. Trends of GLCM patterns along time 

 𝑆𝐼𝐺 = [𝐶𝑂𝑁, 𝐴𝑆𝑀, 𝐸𝑁𝑇, 𝑉𝐴𝑅] 5-21 
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 Patch (a) Patch (b) Patch (c) Patch (d) Patch (e) Patch (f) 

 

 

Contrast 0.2437 0.3237 0.2669 0.6853 0.5735 0.6473 

Dissimila 0.1922 0.2110 0.1935 0.3947 0.3645 0.4278 

Homogen 0.9085 0.9049 0.9103 0.8302 0.8379 0.8078 

Similarity 0.9101 0.9094 0.9132 0.8405 0.8459 0.8174 

ASM 0.3538 0.2134 0.4124 0.1853 0.2062 0.1767 

Energy 0.5948 0.4619 0.6422 0.4304 0.4541 0.4203 

Entropy 1.2977 2.0858 1.5294 2.3325 2.1747 2.3599 

Mean 2.4933 4.7598 2.7865 4.0635 2.6410 2.8265 

Variance 0.3859 3.7115 0.6728 2.5150 1.0509 2.8265 

Deviation 0.6212 1.9265 0.8202 1.5859 1.0251 1.0729 

Correlat 0.6843 0.9564 0.8016 0.8638 0.7272 0.7188 

Normal Yes Yes Yes No No No 

Table 5-1.  Comparison between texture patterns of Spatio-Temporal Texture patches 

5.4  Case Study: Real-time Change Detection 

The previously proposed crowd behaviour detection approach using GLCM and 

SVM involves the STT extraction, GLCM calculation, Signature modelling and 

classification. The procedure takes long training process and large quantity of training 

data. Despite achieving high accuracy, the relatively high time consumption of this 

approach affects the real-time implementation. For some crowd behaviours such as 

panic dispersing, the abnormality often involves the sudden change of pedestrian’s 

motion patterns such as velocity. Therefore, the drastic change of global motion may 

indicate the crowd abnormality. In this section, an approach which doesn’t consist of 

complex pattern extraction and classification is introduced to achieve the real-time 

detection of crowd panic dispersing. The general procedure of this approach is 
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illustrated in Figure 5-8. 

 

Figure 5-8. The proposed framework of panic crowd behaviour detection approach 

Once the video data is obtained from the stream, the pre-processing procedure is 

adopted on the primitive image data. In this research, the noise removal process is 

implemented. Then the background subtraction will be applied to reduce the 

computational time consumption of optical flow extraction. As the third step, the optical 

flow field will be calculated for each frame using the HS optical flow method. The 

obtained optical flow field will be modelled into a pattern value. In the final step, a 

trained threshold will be utilized to verify whether the current frame is abnormal. In the 

following paragraphs, each process step will be further explained in detail.  

5.4.1 Pre-processing and Parameter Setting 

Assuming the length of the raw video is 𝐹𝑙, the initial several frames of the entire 

video is selected as the training stage, which is marked as 𝐹. The selection of 𝐹 will 

depend on the actual situation. In this research, the first 20% of the 𝐹𝑙 is selected. The 

threshold 𝑇 will be used to verify whether the current frame is abnormal. In the pre-

processing stage, 𝑇  will be estimated. Also, the 𝑇  is dynamically adjusted as the 

frame index increases. In order to achieve the noise removal process, the wavelet 

denoising will be applied on each raw image. In order to balance the time consumption 

of the optical flow calculation, the rough background subtraction technique is applied. 

In the feature extraction stage, if the pixel is marked with background, it will not be 

processed to reduce the computational burden. 
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5.4.2 Feature Extraction and Post Processing 

Once the pre-processing is complete, the Horn-Schunk optical flow algorithm is 

applied on two consecutive frames. For example, if the current frame 𝑡  is being 

evaluated, the 𝑘 th 𝑡 + 1 th frames will be used for the optical flow extraction. The 

obtained optical flow is noted as 𝑢𝑡. Once the flow map is obtained, the post-processing 

will be implemented to optimize the flow distribution. A neighborhood average filtering 

is implemented on the 𝑢𝑡 to obtain a smoother flow map. The filtered map is denoted 

as 𝑣𝑡 . The Figure 5-9 illustrates the comparison between the extracted 𝑢𝑡  and the 

filtered 𝑣𝑡. The first figure shows the 𝑢𝑡 , and the second figure shows the 𝑣𝑡. The 

second figure illustrated the neighborhood average filtered optical flow field. The 

motions are more fluent and explicit. 

 

Figure 5-9. A comparison of optical flows before and after the neighborhood average procedure 

5.4.3 Signature Modelling 

Once the pre-processing and feature extracting stages are complete, patterns will be 

modelled into signature for the detection. When panic dispersing happens, the 

magnitude of pedestrian’s velocity will experience a greatly increasing. Figure 5-10 

illustrates the comparison between the optical flow field before and after the crowd 

panic is triggered. The first figure shows the distribution when pedestrians are walking 

in a normal state. The second figure shows the flow distribution after the anomaly 

occurs. When the anomaly happened, pedestrians will run toward to the right instead of 

walking. The flow map is visually denser than the one in normal state. Since the 

magnitude of global flow could be simple enough for analysis in the macroscopic 

perspective, it will be accumulated for each frame as the signature for the panic 

behaviour detection. 
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Figure 5-10. Changing of Magnitude in Panic Event 

The modelled signature could be expressed as the Equation 5-22. The 𝑣𝑘 is the 

neighborhood average filtered optical flow field. 𝑊 denotes the maximum width of 

𝑣𝑘, and 𝐻 denotes the maximum height of 𝑣𝑘. 

 

𝑆 = ∑ ∑ |𝑣𝑘
𝑤,ℎ|

𝐻

ℎ=1

𝑊

𝑤=1

 5-22 

5.4.4 Model Training 

The last step is to determine whether the current frame 𝑘 contains panic behaviour, 

once the signature is modelled from the optical flow. In training stage, the value of 

threshold 𝑇  will be estimated. The estimation of 𝑇  could be achieved with two 

different approaches. In the first approach, the threshold 𝑇 is set to a fixed value. The 

disadvantage is the adaptiveness would be hampered. In the second approach, 𝑇 could 

be dynamically adjusted according to the actual situation. The advantage is the high 

adaptiveness. However, the challenge of this approach is to devise a mechanism to 

obtain the optimal 𝑇. In this research, in order to estimate the threshold based on the 

actual situation, the 𝑆  value of first 𝐹  frames are accumulated. Then the average 

value 𝐴  of all 𝑆  is calculated. The procedure could be expressed as 𝐴 =
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𝐴𝑉𝐺(𝑆1, . . . , 𝑆𝐹). Then, the value of threshold 𝑇 is two times of 𝐴. Once the process 

is complete, a reasonable 𝑇  could be estimated for the footage. The Figure 5-11 

illustrates the difference between the calculated average value 𝐴 for the training stage 

and 𝑆  of each frame. In this stage, pedestrians remain in a casual state with low 

velocity. Therefore, the calculated difference is constant and stable. Thus, the obtained 

value of 𝑇 is 20 in this case. 

 

Figure 5-11. Difference values s between S and A value for each frame 

5.4.5 Anomaly Detection 

With the modelled parameters such as 𝐴  and 𝑇 , frames for testing will be 

evaluated whether the global magnitude suddenly becomes too large. In the detection 

phase, if the difference between 𝑆 of current 𝑘th frame and the average value 𝐴 is 

larger than the trained threshold 𝑇, this frame will be determined as abnormal. The 

condition could be noted as |𝑆𝑘 − 𝐴| > 𝑇. In Figure 5-12, the trend of |𝑆𝑘 − 𝐴| from 

the normal stage to the abnormal stage is illustrated. In the example, normal stage starts 

from the zero frame. After the 450th frame, pedestrians begin to disperse in panic state. 

The figure indicates the magnitude of 𝑆  drastically increases when the dispersing 

begins. The maximum difference could be as large as 120, which is six times larger than 

the threshold 𝑇. Therefore, the value of 𝑇 can be dynamically set larger in order to 

minimum the false positive detection. The results demonstrated the effectiveness and 

superior performance from the devised operational pipeline. 
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Figure 5-12. Detection results using the proposed framework 

The Pseudo Code of this approach is illustrated as below. 

In this chapter, the extraction process of GLCM is introduced and the derived 

statistical patterns are defined. By analysis their features on the different types of STTs, 

the most representing patterns are modelled as the descriptor for the classification. 

Another panic detection approach based on motion magnitude proposed in the early 

phase of this program is introduced as well. 

𝑉 ← 𝐷𝑎𝑡𝑎        % Obtain the video data 
𝐹 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑉)       % Obtain the length of video 
𝐹𝑡 = 0.2 ∗ 𝐹        % Get the first 20% frames 
𝑆𝑇 = 0         % Initialize the Summation 
𝐅𝐨𝐫 𝑘 = 1: 𝐹𝑡       % For each frame in the 20% frames 

𝑢𝑘 ← OF(𝑉(𝑘))         % Calculate the optical flow 
𝑣𝑘 ← Background_Subtraction(𝑢𝑘) % Background subtraction 

𝑆𝑇 = 𝑆𝑇 + ∑ ∑ |𝑣𝑘
𝑤,ℎ|𝐻

ℎ=1
𝑊
𝑤=1    % Get the summation 

𝐄𝐧𝐝 

𝐴 = 𝑆𝑇/𝐹𝑡        % Calculate the average 
𝐅𝐨𝐫 𝑘 = 𝐹𝑡 + 1: 𝐹      % For the rest frames 
       𝑢𝑘 ← OF(𝑉(𝑘)) 
       𝑣𝑘 ← Background_Subtraction(𝑢𝑘) 

       𝑆 = 𝑆 + ∑ ∑ |𝑣𝑘
𝑤,ℎ|

𝐻

ℎ=1

𝑊

𝑤=1

 

       𝐈𝐅 (|𝑆𝑘 − 𝐴| > 𝑇)     % If the difference is larger than T 
            𝐫𝐞𝐭𝐮𝐫𝐧 Abnormal     % Return abnormal 
       𝐄𝐧𝐝 

𝐄𝐧𝐝 

Listing 5-2. Pseudo Code of the change detection approach 
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Chapter 6. Complex Crowd Behaviour Synthesis 

and Simulation 

In this chapter, an innovate model for the crowd behaviour simulations is 

introduced. This model consists of three fundamental components including long-term 

path finding, short-term local optimal motion steering and social force-driven 

interaction handling.  
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6.1 Hybrid Rules for Crowd Synthesis 

In this research, various types of crowd behaviours and their extraction techniques 

are introduced. Actually, these theoretical models and operational principles can be a 

reversed and utilized in crowd simulation. For the sake of visual realism of crowd 

simulation, 3 aspects need to be taken care of, long term direction (destination), short 

term motion (contextual and scene awareness) and in-crowd interaction (following, 

collision avoidance, etc.).  

To develop a prototype crowd simulation system, firstly, the classic A-star (A*) 

algorithm is adapted as the long-term path finding model in order to achieve the global 

path planning. Secondly, for the short-term local optimal motion control, a steering 

algorithm introduced in the research of Reynolds (1987) is exploited to handle the short-

term motion decision. Thirdly, for the interaction handling model, an enhanced Social 

Force Model (Helbing et al., 1995) is renovated to handle the interaction between 

neighboring agents. 

 

Figure 6-1. The framework of proposed crowd synthesis technique. 

As Figure 6-1 illustrates, the path navigation component represents the long-term 

path finding model based on the A-star algorithm. The destination modifier component 

serves as the short-term local motion steering model. Take the example of a circling 

crowd, since they aren’t moving toward the destination and their instant velocity and 

direction is always changing, the short-term steering model adjusts agent’s orientation 

for each frame to keep it on the right path. Furthermore, if an agent is pushed away 

from its optimal path by interaction force, the short-term steering model will attempt to 

drag it back. Next, the interaction model serves as the collision handling component 
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illustrated in Figure 6-1. Its main function is to eliminate the collision between 

neighboring agents when moving. Usually interaction control models such as social 

force are utilized as the collision handler. However, due to their defects such as 

oscillation, an extended Social Force Model is adapted to provide a better visual realism. 

The above-mentioned components work together to steer the actual motion of agent. 

Under the influence of the combined components, the devised approach is capable of 

controlling each agent’s behaviour and ultimately lead it to the destination. 

6.1.1 Baseline Works 

In the proposed simulation approach, the A-star path finding algorithm plays a 

primary role of long-term path navigation. This algorithm is initially introduced by Hart 

et al. (1968). The A-star is an expansion of Dijkstra’s algorithm and outperforms its 

performance on path finding. According to the research of Yang et al. (2017), the A-star 

algorithm is the most efficient path finding method when the road map is static. 

Furthermore, the A-star algorithm can also play as the heuristic algorithm of solving 

many other problems. Without implementing any preprocessing, the A-star is capable 

of directly finding the path within several iterations. In the road network with fixed 

weights, the A-star algorithm exhibits a better performance. The fundamental idea of 

A-star algorithm is similar to the Expectation Maximum approach, which is to find the 

partially probed path with minimum weight and then estimate the distance to destination 

on every iteration as illustrated in Figure 6-2. The A-star algorithm could be expressed 

as Equation 6-1. 

 𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) 6-1 

where 𝑛  is the index number of current map node. 𝑔(𝑛)  is the calculated 

distance between initial node to node 𝑛  in current iteration. ℎ(𝑛)  is the estimated 

distance between current node 𝑛  to destination, the Euclid distance is used as the 

heuristic function in this research. The scene is a two-dimensional plane and divided 

into grid of 𝑚 by 𝑛 blocks or nodes. The height and width of each block is also one 

unit. In order to calculate the value of 𝑔(𝑛) at node 𝑛, eight neighboring nodes will 

be measured to get the minimum weight. 
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Figure 6-2. The grid of map nodes. 

The detailed procedure of A-star algorithm can be expressed as follows. Assume 

the start node is 𝑆, destination node is 𝐸. For each node 𝑃, the moving consumption 

from 𝑆  to 𝑃  could be denoted as 𝐺𝑃 , the distance between 𝑃  to 𝐸  could be 

denoted as 𝐻𝑃. The moving consumption from node 𝑃 to node 𝑁 could be denoted 

as 𝐷𝑃𝑁, the processing priority is denoted as 𝐹𝑃. 

1) Select the 𝑆 and 𝐸, insert (𝑆, 0) into the open list. Where 0 is the 𝐹𝑃 of 𝑆. 

The open list is a priority queue, the lower 𝐹𝑃 denotes the higher priority. 

2) If the open list is empty, the 𝐸  is unreachable. Otherwise, pop the 𝑃  with 

lowest 𝐹𝑃. 

3) Travel through the neighboring nodes of 𝑃, for each node 𝑁, if 𝑁 is in the 

close list, it will be ignored. Otherwise, it is processed as follows. 

a) If 𝑁 isn’t in the open list, let 𝐺𝑁 = 𝐺𝑃 + 𝐷𝑃𝑁, estimate the distance 𝐻𝑁 

from 𝑁 to 𝐸, let 𝐹𝑁 = 𝐺𝑁 + 𝐻𝑁. Set the parent node of 𝑁 as 𝑃, insert 

(𝑁, 𝐹𝑁) into open list. 

b) If 𝑁 isn in the open list, let 𝐺𝑁
′ = 𝐺𝑃 + 𝐷𝑃𝑁, if 𝐺𝑁

′ < 𝐺𝑁, then 𝐺𝑁
′ =

𝐺𝑁  and recalculate 𝐹𝑁 . Then replace the (𝑁, 𝐹𝑁)  in open list. Set the 

parent node of 𝑁 as 𝑃. 

4) Put node 𝑃 into close list. If 𝑃 is 𝐸, the searching is complete. Recursively 

looking for the parent node of 𝑃 until find 𝑆. The path is found. Otherwise, 

repeat step 2. 

The flow-chart of the operation pipeline is illustrated in Figure 6-2. 
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Figure 6-2. Flow Chart of A-star path finding algorithm 

6.1.2 Personal Space and Relative Velocity 

The main function of the collision handling component is to prevent the collision 

between neighboring agents. To be specific, a repulsive force will be triggered if two 

agents are getting too close. On the contrast, if the distance becomes larger than the 
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comfortable personal space, the repulsive force shouldn’t take effect any longer. In 

conventional approaches, the Social Force Model is most frequently exploited. The 

conventional SFM is introduced in chapter 2.  

However, the desired social force 𝑓𝑑 could only handle the crowd behaviour in the 

environment successfully with simple structure. If the environment in the stage 

becomes complicated, simulated agents relying on SF without path finding capability 

would be easily stuck by obstacles. In order to address this issue, the A-star path finding 

algorithm is adopted to achieve the long-term steering as the Path Navigation 

Component. And 𝑓𝑑 would serve as the short-term local optimal steering component. 

For the collision handing model, the two repulsive forces are exploited to prevent the 

collision between agents and obstacles. Together, these three components ensure the 

agents from reaching the final destination and crowd behaviours with correct visual 

realism. 

Despite the conventional SFM has been widely utilized in the crowd simulation, 

several disadvantages expose as further explored. These disadvantages could degrade 

the visual realism of the crowd, even with illogical behaviours. The first disadvantage 

is that simulated agent in the conventional SFM is always considered as a rigid body. 

Despite the repulsive force tries to avoid the collision, it will inevitably occur and the 

pedestrians should be deformed. In the research of Helbing et al. (2002), a physical 

contact force consists of body force and sliding friction force is imported into the SFM 

to address this issue. Also, in the conventional SFM, the calculation of repulsive force 

is based on the relative spatial location of agents. However, this approach isn’t always 

accurate. For example, if a pedestrian is following another, the front pedestrian 

shouldn’t be influenced by the repulsive force if he is unaware of the other pedestrian. 

Also, agents with different velocity should be psychologically affected by different 

repulsive forces. In order to address this issue, the repulsive force of the conventional 

SFM is improved. Two novel concepts include the Personal Space, and the Enhanced 

Repulsive Force are adapted to enhance the visual realism of the proposed simulation 

approach. 
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In the original SFM, the repulsive force between any two agents in the stage will 

constantly exist. With logarithmic function, if the distance between two agents become 

large, the repulsive force will become insignificant. This property brings one issue. In 

the crowd with high-density, for any two agents with large distance, the repulsive force 

is so small which can’t affect the agent’s actual motion. However, this process still 

consumes the computational resource. Overall, it derives large burden to the simulation. 

In order to address this issue, the Personal Space is introduced to the repulsive force 

modeling. The influence of Personal Space could be expressed as Equation 6-2. 

 
𝑓𝑖𝑗

′ = {
  𝑓𝑖𝑗, 𝑑𝑖𝑗 − 𝑟𝑗 ≤ 𝜌𝑖       

0,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 6-2 

Where 𝑓𝑖𝑗  is the repulsive force in conventional SFM. The constant value 𝜌𝑖 

represents the Personal Space of agent 𝑖. If the difference between distance and radius 

is larger than the Personal Space, the repulsive force will be ignored. This process is 

illustrated in Figure 6-3. 

 
Figure 6-3. The Repulsive Affected by Personal Space 

The second concept is the Enhanced Repulsive Force. Because the pedestrian 

walking in the queue head won’t be affected by the repulsive force since he/her doesn’t 

notice others. Therefore, if the pedestrian doesn’t notice the one behind him/her, the 

repulsive force doesn’t take effect at all. The more the pedestrian in front notices the 

pedestrian at back, the higher repulsive force is. This assumption could be expressed as 

Equation 6-3. 

 

𝑓𝑖𝑗
𝑟𝑒𝑝

= {
     𝜃(ℎ𝑗𝑖

𝑛)𝑓𝑖𝑗
′ ,                  𝑑𝑖𝑗 − 𝑟𝑗 > 𝜌𝑖

(1 + 𝜃(ℎ𝑗𝑖
𝑛)) 𝑓𝑖𝑗

′  ,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 6-3 



Chapter 6                        Complex Crowd Behaviour Synthesis and Simulation 

98 
 

 

Where ℎ𝑗𝑖
𝑛  is defined as ℎ𝑗𝑖

𝑛 = (𝑣⃗𝑗 − 𝑣⃗𝑖)𝑛⃗⃗𝑖𝑗, which is the Relative Velocity. Under 

its influence, if two agents are moving with the same direction, the force magnitude 

will be smaller. However, if they move in the opposite direction, the force would 

increase. The value of function 𝜃(𝑧) = 𝑧, if 𝑧 > 0. Otherwise, 𝜃(𝑧) = 0. Under this 

situation, if the function 𝜃(𝑧) detected two agents in opposite directions are about to 

collide, the repulsive force will take effect. But if these two agents already passed by 

each other, the repulsive force will be ignored. 

 
Figure 6-4. The Repulsive Force affected by Relative Velocity 

Combined with the A-star path finding algorithm as the long-term steering 

component, the final social force would be determined as Equation 6-4. 

 

𝑚𝑖

𝑑𝑣⃗𝑖

𝑑𝑡
= 𝑓𝐴∗ + ∑ 𝑓𝑖𝑗

𝑟𝑒𝑝

𝑗≠𝑖
 6-4 

Where the 𝑓𝐴∗ denotes long-term desired force if the agent is on the right track of 

the optimal path obtained by the A-star algorithm. If not, the 𝑓𝐴∗ denotes the short-

term desired force to drag the agent back to the correct path. By mapping the script with 

this proposed behaviour model to each agent, visually realistic crowd footages could be 

synthesized. The simulation experiments will be conducted in the chapter of 

experiments. 

6.1.3 Enforced Group Social Force Model 

In previous sections, a crowd modelling approach consisting of long-term path 

finding, short-term steering and interaction handling models is devised. This approach 

has addressed the global and local behaviours of each simulated agent. However, the 

common social relationship is ignored. In real-life, pedestrians familiar with each other 

will attempt to stay close. Despite the local interaction is fully composed of the 
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repulsive force in the previous research, the attracting force of SFM is omitted. 

Therefore, the research of this section will further expand the proposed model, in order 

to simulate the interactions between agents with common social relations. 

a) Group Attraction Force 

Inspired by the Cohesion rule of Boids Model introduced in previous chapter, 

pedestrians knowing each other will be psychologically kept closer by the force when 

moving toward the same destination. Therefore, a novel Group Attraction Force is 

introduced to simulate this phenomenon. The Group Attraction Force affecting agent 𝑖 

is pointing to the center of spatial position of all agents within agent 𝑖’s perception 

field, and marked as 𝑓𝐺𝑖. The 𝑓𝐺𝑖 could be defined as Equation 6-5. 

 
𝑓𝐺𝑖 = 𝐴𝑖𝑙𝑜𝑔𝑒

𝐷𝐼𝑆(𝐴𝑉𝐺(𝐶𝑎∈𝐺), 𝐶𝑖)

𝐵𝑖
𝑛𝐺𝑖 6-5 

 Where the 𝐶𝑎  represents the spatial position of any agent with the same 

destination within the perception field of agent 𝑖 . Notation 𝐺  is a collection of all 

agents with same destination index. The equation 𝐷𝐼𝑆(𝐴𝑉𝐺(𝐶𝑎∈𝐺), 𝐶𝑖)  indicates the 

distance between agent 𝑖  and the spatial position center of all agents in 𝐺 . The 

notation 𝑛𝐺𝑖 indicates the direction of Group Attraction Force, which points from 𝐶𝑖 

to 𝐴𝑉𝐺(𝐶𝑎∈𝐺). The 𝐴𝑖 and 𝐵𝑖 adjust the magnitude of 𝑓𝐺𝑖, their values depend on the 

actual situation. According to this equation, it could be notified that if agent 𝑖 is far 

from the average center of 𝐺, the magnitude of 𝑓𝐺𝑖 will become larger, and vice versa. 

The calculation of 𝑓𝐺𝑖 is illustrated in Figure 6-5(a). 

 

Figure 6-5. The Field Perception and the impact on result with different parameters, (a) The 

Perception Field of an agent 𝒊. (b) Grouping result when Field Perception is Broad. (c) Grouping 

result when Field Perception is narrow 
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b) Perception Field 

The Perception Field is another important concept to affect the group behaviour. It 

assumes that the perception of each agent can’t cover everyone on the stage. The Figure 

6-5(a) illustrates the Perception Field. The Perception Field is a Fan-shape area with the 

center at the spatial position of agent. The notation 𝑟 is the perception radius which 

determines how far the agent could sense. And the notation 𝜃 is the perception angle 

which determines how wide the agent could see. Other agents covered within this 

perception field will be sensed, on the contrary, other agents will be ignored. In the 

figure, only four agents will be noticed by the agent 𝑖. The import of perception field 

could significantly affect the shape of simulated crowd. When the value of 𝜃 is set to 

a large value, the formation of crowd could become wider, as illustrated in Figure 6-

5(b). On the contrast, if the value of 𝜃 is set to a smaller value, the crowd will be 

narrow as Figure 6-5(c). In the simulation, if the formation of the crowd become too 

wide or narrow, the visual realism of simulated video would be hampered. Therefore, 

an appropriate setting of perception field is crucial for the simulation. 

c) Enforced Crowd Simulation Model 

 With the Group Attraction Force and Perception Field, the proposed agent 

behaviour model is updated as Equation 6-6. The 𝑔𝑠𝑓𝑖 notes the final affected force 

applied to agent 𝑖 . This force is determined by three factors, which are long-term 

steering force 𝑓𝐴∗, interaction force 𝑓𝑖𝑗
𝑟𝑒𝑝

 and the group attraction force 𝑓𝐺𝑖. With the 

updated model, the proposed approach is expected to have a better performance while 

simulating the agents with various destinations. 

 
𝑔𝑠𝑓𝑖 = 𝑓

𝐴∗
+ ∑ 𝑓⃗⃗

𝑖𝑗

𝑟𝑒𝑝

𝑗≠𝑖
+ 𝑓

𝐺𝑖
 6-6 

6.2 Prediction using the Enhanced Social Force Model 

According to the definition of the proposed Group Attraction Force, forces derived 

from agents with same destination will point to a common center. This center has the 
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potential to be utilized as an identifier to backtrack the destination of agents. In this 

section, a method to predict the destination of agents from two different groups is 

introduced based on the Group Attraction Force. 

The trajectory prediction usually involves with the probability models such as 

Hidden Markov Model. These prediction models rely on the spatial patterns. However, 

the extraction of spatial patterns for each agent in high crowd density is often inaccurate. 

Especially when agents are clustered in a crowd, and affected by the intensive 

interaction forces. Since the group attraction forces 𝑓𝐺𝑖  of agents with same 

destinations point to the average center. According to the definition of Cohesion rule, it 

could be assumed that average centers of agents within the similar view perspective 

would cluster as one. If these clusters are spatially separated, they could be segmented 

to verify which group the agents belongs to. 

6.2.1 Assumption Validation 

Experiments are conduct to validate the proposed assumption. The spatial position 

of agents and average centers are collected from the crowd simulation, and illustrated 

in Figure 6-6. In the video, 30 agents from 3 different groups are generated. As 

illustrated in Figure 6-6(a), the spatial positions of agents are randomly distributed. It 

is difficult to determine which group the agent belongs to. The Figure 6-6(b) illustrates 

the distribution of average centers obtained from the simulation. The average centers 

are clustered under the influence of the group attraction force. After magnified the scale 

of Figure 6-6(b), the distribution of average center is illustrated in Figure 6-6(c). The 

average centers are clustered according to the group index of agents. 
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Figure 6-6. The comparison between agents’ distribution and the extracted grouping centers. (a) 

Distribution of agents. (b) Distribution of grouping centers. (c) Center distribution in magnified 

scale 

The Figure 6-7(a) illustrates the actual ground truth of the agents’ distribution. 30 

agents from three different groups are labelled with different shapes, which are round, 

square and cross respectively. The Figure 6-7(b) illustrates the prediction result using 

KNN clustering algorithm. The result implies the accuracy is relatively high. Therefore, 

the calculated average center is utilized as a novel pattern for the crowd’s common 

destination prediction, namely Grouping Center and will be marked as 𝐴𝐶𝑖, where 𝑖 

is the index of the agent.  

  

(a) (b) 

Figure 6-7. Comparison between ground truth and segmentation result. (a) Ground Truth. (c) 

Segmentation Result using proposed pattern 

6.2.2 Predict results on the simulated crowd 

In order to further validate the prediction performance, the proposed approach is 

implemented on ten simulated crowd footages. For each footage, three groups of agents 

are generated, and each group consists of 20 agents. Since the initial spatial positions 

of the agents are randomly distributed, the simulated videos vary for each iteration. The 

simulated video is composed with two different stages. For the first stage, agents are 

randomly mixed. And for the second stage, controlled by the proposed behavioural 

model, agents with same destination will eventually clustered. In the second stage, the 

clustered agents could be easily separated with the spatial information. In order to assess 
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the prediction capability of proposed approach, the prediction uses video data of the 

first stage. The Grouping Center 𝐴𝐶𝑖 will be calculated with the data collected from a 

certain frame. The prediction accuracy for each iteration is recorded, and once all ten 

simulations are implemented, an average accuracy will be calculated. In the experiment, 

the extracted Grouping Centers are segmented with the conventional K-mean clustering. 

The Table 6-1 illustrates the prediction accuracy of the ten simulations. Eight of 

ten experiments achieved the 90% plus accuracy. The fourth, sixth and seventh runs of 

the experiment reach 100%. However, the results of eighth and ninth runs obtain low 

accuracy. The reason is part of the grouping centers formed an additional cluster. 

Overall, the average accuracy of these ten simulations reached 88.83%, which proves 

accessibility of the proposed approach. 

 

Runs 1 2 3 4 5 

Accuracy 91.67% 93.33% 93.33% 100% 93.33% 

Runs 6 7 8 9 10 

Accuracy 100% 100% 60% 63.33% 93.33% 

Average 88.83% 

Table 6-1.  segmentation accuracy on simulated videos 

6.2.3 Structure of the behaviour prediction approach 

Under the premise that the extracted 𝐴𝐶𝑖 of all agents are detected, the Grouping 

Centers could be easily acquired. However, data used in last paragraph is collected from 

the simulation. The spatial position and group attraction force could be precisely 

exported from the simulation tool. But in the real-life footage, the Grouping Centers 

𝐴𝐶𝑖 needs to be modelled. According to the Equation 6-5, the Grouping Center 𝐴𝐶𝑖 

could be estimated with the group attraction force and agent’s spatial position. The 

agent’s spatial position could be obtained with the pedestrian detection approach. 

However, the group attraction force is also unknown. Equation 6-7 could be exploited 

to estimate the group attraction force 𝑓𝐺𝑖. Once 𝑔𝑠𝑓𝑖, 𝑓𝐴∗ and 𝑓𝑖𝑗
𝑟𝑒𝑝

 are obtained, the 
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𝑓𝐺𝑖 could be calculated. Therefore, the main objective is to find an efficient way to 

obtain 𝑔𝑠𝑓𝑖, 𝑓𝐴∗ and 𝑓𝑖𝑗
𝑟𝑒𝑝

. 

The Figure 6-8 illustrates the proposed procedure for crowd prediction. Agents are 

detected in the first stage. Detected agents will be utilized to estimate the repulsive force, 

actual velocity and desired force. Next, the group attraction force is calculated, and the 

grouping centers are obtained and clustered. Through the backtracking process, the 

destination of agent could be predicted. 

 

Figure 6-8. The framework of the proposed crowd prediction approach 

Assume the actual affected force, long-term desired force and repulsive force are 

correctly calculated and estimated, the group attraction force 𝑓𝐺𝑖 could be obtained 

using the following formulation derived from Equation 6-7. 

 
𝑓𝐺𝑖 = 𝑔𝑠𝑓𝑖 − 𝑓

𝐴∗
− ∑ 𝑓⃗⃗

𝑖𝑗

𝑟𝑒𝑝

𝑗≠𝑖
 6-7 

In order to get the agent’s destination, the point of interest approach is adapted to 

find out the possible destination in the scene. For example, if the motion flow density 

is significantly higher than rest of the scene for a long term, there might exist a 

destination such as exit. Therefore, this region could be considered as a point of interest. 

Once all the points of interest are obtained, the track-let of agent will be extracted from 

the flow map and the belonging of the point of interest will be evaluated to determine 

the direction of desired force. 

The actual velocity is the actual motion state of agent. The global flow-based 

features will be utilized for the calculation. The conventional optical flow extraction 
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algorithm such as HS and LK will be applied to obtain the optical flow map. Next, each 

agent will be tracked with a pedestrian detection approach. Then, the flow map and the 

distribution of agents will be matched, and each agent’s actual affected force could be 

estimated. The actual affected force is calculated from the particle mapped to the agent 

and eight neighboring particles, as shown in Equation 6-8. 

 𝑔𝑠𝑓𝑖 = 𝑘1𝑓𝑥,𝑦 + 𝑘2(𝑓𝑥−1,𝑦−1 + 𝑓𝑥−1,𝑦+1 + 𝑓𝑥+1,𝑦−1 + 𝑓𝑥+1,𝑦+1 

+𝑓𝑥−1,𝑦 + 𝑓𝑥,𝑦−1 + 𝑓𝑥+1,𝑦 + 𝑓𝑥,𝑦+1) 
6-8 

Where 𝑓𝑥,𝑦 indicates the actual affected force to agent 𝑖 at the co-ordinate 𝑥 and 

𝑦. The 𝑘 is the weight factor, because the force at the center position has a stronger 

impact on determining the final force, the value of 𝑘1 is set to 1. When calculating the 

neighboring values, the value of 𝑘2  is set to 0.4. The estimation of repulsive force 

𝑓𝑖𝑗
𝑟𝑒𝑝

 is using the enhanced SFM which is introduced in section 6.1.2. 

Thus, the methodologies for the calculation and estimation of these three forces are 

introduced. According to the equation, the Group Attraction Force 𝑓𝐺𝑖  could be 

obtained. Because 𝑓𝐺𝑖  is essential a vector, along with the agent’s spatial position 

(𝑥𝑖, 𝑦𝑖), the Grouping Center 𝐶𝑥,𝑦,𝑖 will be finally acquired. And they will be fed to the 

classifiers to segment. According to the clustering results, the corresponding agents will 

be backtracked and the destination will be mapped to the detected point of interest.  

In this chapter, a crowd simulation approach consists with long-term and short-term 

agent behaviour control models is proposed. The A-star path finding algorithm 

exploited by the long-term control model is firstly discussed. Then, the concepts of 

personal space and relative velocity are adapted for the short-term interaction handling 

model. The group attraction force model for the group behaviour handling is introduced 

as well. Inspired by the proposed group attraction force model, a behaviour prediction 

approach is also proposed and the preliminary experiment is conducted to prove its 

accessibility.  
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Chapter 7. Experiments and Evaluation 

In this chapter, experiments are conducted with the proposed approaches in previous 

chapters to validate their performances. The contents are distributed as follows: Section 

7.1 introduces the benchmarking video datasets for crowd behaviour analysis based on 

varied crowd density; Section 7.2 exhibits the effectiveness of the STT extraction 

method and the performance of the devised behaviour recognition approach based on 

GLCM against other benchmarking techniques. Section 7.3 demonstrates the 

experimental results on the crowd panic dispersing detection model. Section 7.4 

concludes the crowd simulation results using the devised crowd simulation system. 

Section 7.5 elaborates the crowd behaviour prediction results. 
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7.1  Datasets for Crowd Behaviour Analysis 

In this research, commonly used benchmarking crowd video datasets for behaviour 

analysis are deployed. The crowd density is a crucial factor of selecting the analyzing 

techniques. Most techniques having supreme performance on the crowd behaviour 

recognition in normal-density but a fast-declining performance when applied in 

challenging real-world environment such as those taken from high density outdoor 

scenes. Hence, the datasets in the experiment are divided into two, medium and high-

density crowds. 

7.1.1 Datasets with Medium Crowd Density 

a) The UMN dataset 

The UMN dataset is collected from the campus of the University of Minnesota, and 

all footages are performed based on predefined scripts. Videos from this dataset contain 

three scenes, which include lawn, plaza and library. Three video clips are performed by 

dozens of pedestrians for each scene. Figure 7-1 illustrates snapshots of footages in 

UMN. Figure 7-1(a) and Figure 7-1(b) illustrate snapshots of normal and abnormal 

states at a lawn ground. In Figure 7-1(a), fifteen pedestrians are walking casually on the 

lawn. In Figure 7-1(b), pedestrians are dispersing in a panic state. Figure 7-1(c) and 

Figure 7-1(d) illustrate snapshots at a library. When the anomaly happens, pedestrians 

are escaping along all directions. In Figure 7-1(e) and Figure 7-1(f), snapshots of videos 

taken from a plaza scene are illustrated. In Figure 7-1(e), pedestrians are walking in a 

normal state. In Figure 7-1(f), when the anomaly happens, pedestrians escape in left 

and right directions. 
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Figure 7-1. Normal and abnormal snapshots from UMN dataset 

The UMN data set is widely used in lab-based experiments (the criticism is it is 

based on simplified/idealized setting against the often much more challenging actual 

field trial scenarios). Cui et al. (2011) devised an Interaction Energy Potentials (IEP) 

model and tested it on the UMN. Ma et al. (2014) proposed an algorithm via online 

learning, and implemented it on UMN to compare with the performances from using 

the SFM, Optical Flow model, Streak line Potentials model, and Sparse reconstruction 

model. Raghavendra et al. (2011) exploited UMN to test the proposed Optimizing 

Interaction Force algorithm. Venkatesh and Zhu (2012) test the proposed locality model 

on UMN and compare the performance to Chaotic Invariants, Social Force, Optical 

Flow, and Sparse methods. 

b) The UCSD Dataset 

The UCSD Anomaly Detection Dataset is acquired from a stationary camera 
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mounted at an elevation, overlooking pedestrian walkways. The crowd density in the 

walkways ranges from sparse to very crowd. Abnormal events are caused by either: 1) 

the circulation of non-pedestrian entities in the walkways or 2) anomalous pedestrian 

motion patterns. The snapshots of the UCSD dataset are illustrated in Figure 7-2. 

 

Figure 7-2. Snapshots from UCSD dataset and the labelled anomalies 

c) PETS 2009 Dataset 

The PETS2009 Dataset contains multi-sensor sequences of different crowd 

activities. It is composed with five subsets: 1) calibration data; 2) training data; 3) 

person count and density estimation data; 4) pedestrian tracking data; 5) flow analysis 

and event recognition data. Each subset contains several sequences, and each sequence 

contains different view perspectives (from 4 up to 8). 

d) Forensic Dataset 

The forensic video dataset collected from real-life criminal events are also 

considered as an important data source for crowd analysis. This dataset contains 50 

videos from the record of real forensic criminal cases. The Figure 7-3(a) illustrates the 

snapshot of a video contains the violent behaviour near a construction set. In this video, 
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construction workers are trying to violently fight against the police, and the police fires 

shots to alarm the crowd. In Figure 7-3(b), a snapshot from surveillance camera records 

a severe fight bursts between two groups of users. The Figure 7-3(c) illustrates a fight 

at the basketball playground at US. All of these videos are obtained from real-life 

forensic evidence which is collected from the CCTV cameras installed in the public 

area. Therefore, this video dataset could be utilized to evaluate the possibility of the 

practical implementation for the proposed crowd analysis approach. However, a 

significant pattern of this dataset is that the density of the crowd is still not high enough 

for the analysis of extremely dense crowd. 

 

Figure 7-3. Snapshots from forensic video dataset 

7.1.2 Datasets of High Crowd Density 

The density of crowd in UMN, UCSD, PET2009 and forensic dataset is relatively 

low. In the research of crowd analysis, the crowd with high density is widely required. 

The approach exhibits good performance on low density crowd may generate 

unsatisfying detection result on high density crowd. Therefore, video datasets with high 

crowd density is also introduced. 

In the research of Chenney (2004), crowd videos collected from football matches 

are collected for a dataset. The dataset contains both violent and non-violent crowd 

behaviours. This video dataset contains 125 video footages with normal cheering 
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behaviour in football matches and another 125 video footages with violent fighting 

behaviours. Each video has the length of five to ten seconds. The following Figure 7-4 

illustrates snapshots of the dataset. In Figure 7-4(a), a snapshot of audience cheering 

for their football team is illustrated. Note that despite most of the crowd exhibit drastic 

motion, the crowd behaviour is non-violent. For Figure 7-4(b), football fans from 

different groups are fighting with each other. In this case, crowd might have the same 

motion magnitude with Figure 7-4(a), but its behaviour contains violence. The 

challenge is how to recognize the difference between these videos. On the other hand, 

these videos consist of the crowd with high density, which could be exploited for the 

analysis of extremely crowded situation. 

 
Figure 7-4. Snapshots from dataset with extreme high density 

In the experiments of the crowd behaviour analysis approaches, these video datasets 

will be exploited. Note that the simulated crowd videos are also been utilized. 

7.2   Classification Results using GLCM Signature 

 In this section, experiments are conducted to assess the performance of devised 

signature modelled from the GLCM matrix for the recognition of two crowd abnormal 

behaviours including panic dispersing and congestion. The proposed procedure of 

experiment is illustrated in Figure 7-5. As mentioned in the previous section, the six-

directional Gabor Filtering is applied on the target STT extracted from STV. After the 

background is filtered, the STT is divided into patches of 𝑚 by 𝑛 pixels. For each 

patch, the calculated signatures are sent to the classifiers, either to train or determine 
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what behaviour they belong to. Other features such as TAMURA proposed by Ranjan 

et al. (2016) will also be used for the crowd behaviour detection, and the experimental 

results between the proposed signature and TAMURA will be compared. 

 

Figure 7-5. Structure of proposed classification approach 

7.2.1 Training Process 

In the experiment, various types of classifiers are exploited for the performance 

evaluation of the proposed signature and TAMURA. Five different classifiers are used 

for the analysis including the K Nearest Neighbor (KNN), Naïve Bayes, Discriminant 

Analysis Classifier (DAC), Random Forest and Support Vector Machine. In the training 

process, STT patches are manually labelled as four different types including Empty, 

Normal, Congested and Panic. For the Empty patch, no motion trajectory exists except 

the static background. For the Normal patch, pedestrians are walking in a normal state, 

and the motion trajectory’s slope is small. For the Congested patch, the velocity of 

pedestrian is low and the trajectory’s slope is even smaller. Also, the motion strips are 

more condensed. For the Panic patch, the velocity of pedestrian is large and the slope 

is also large. Once labelled, the patches will be used for the training of the classifiers. 

7.2.2 Recognition Result 

 Once the training is complete, STT for classification will also be divided into 

patches, and corresponding signature will be modelled. The parameters for classifiers 

are set according to the following regulations. The 𝑚 and 𝑛 of the patch are set to 50 

and 50 in value. For the KNN classifier, the 𝑘 = 4 includes Empty, Normal, Panic and 
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Congestion respectively. The default setting will be implemented to other classifiers 

such as Naïve Bays, DAC and SVM in MATLAB. As illustrated in Figure 7-6, the 

classification result of KNN on the proposed signature is shown. Grids in blue color 

indicate the patch border. The cross mark in white color indicates the patch with Empty 

state. The cross mark in green color indicates the patch with normal state. The cross 

mark in amber color indicates the patch with congested state. Visually, patches 

representing different behaviours will show different patterns. When the crowd is 

congested, pedestrians’ motion would be very slow. Under this circumstance, 

pedestrian’s spatial shifting will take longer time. This will result the stripes or 

trajectories to have a slope with smaller value in congested state. On the other hand, if 

the crowd isn’t at the congested state, the extracted STT will exhibit condensed parallel 

stripes with small slop value. In summary, patches contain congested crowd behaviours 

will show trajectories with smaller slope than the one contains normal state. 

Furthermore, Contrast, Entropy and Variance of patches with congested behaviours 

usually have smaller value. 

 

Figure 7-6. Detection result using GLCM signature and KNN 

 As the comparison of performances on different feature, the TAMURA is also been 

exploited with the same procedure of behaviour classification. As illustrated in Figure 
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7-7, some patches with zero motion trajectory is labelled with green cross. Also, some 

patches with trajectory in normal density and slope are labelled with amber cross. This 

result indicates that the proposed signature has a higher accuracy on the congestion 

recognition. 

 

Figure 7-7. Detection result using TAMURA signature and KNN 

The performance of recognizing the panic dispersing crowd behaviour is also 

evaluated. The classification results are illustrated for both features in Figure 7-8. The 

Figure 7-8(a) shows the result using proposed signature, and Figure 7-8(b) shows the 

result using TAMURA. Both of the experiments have applied KNN classifier on the 

features. It could be observed that the performance of TAMURA is slightly better than 

the proposed signature for this certain video. 
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(a) GLCM and KNN (b) TAMURA and KNN 

Figure 7-8. Comparison of detection results on panic dispersing 

In order to further evaluate the performance of the proposed signature on different 

classifiers, the different combination of signatures and classifiers are implemented on 

all 11 videos in UMN set, UCSD set, Forensic set and 4 simulated video footages built 

with simulation tool. The average accuracy on all videos is calculated for each 

combination as the final score. For each patch, if the determined behavioural type 

equals to the manually labelled ground truth, the detection is considered successful. 

Thus, this patch 𝐶𝑖,𝑗 is marked as either 1 or 0. The overall accuracy 𝐴 for each video 

is obtained with Equation 7-1. And the accuracy for each feature/classifier combination 

is listed in Table 7-1. 

 

𝐴 =
∑ 𝐶𝑖,𝑗

𝑁
𝑖,𝑗=0

𝑖 ∗ 𝑗
 7-1 

 

Feature Classifier Simulated UMN UCSD Forensic 

GLCM KNN 75.14% 72.38% 82.31% 85.71% 

TAMURA KNN 78.86% 65.24% 83.79% 81.03% 

GLCM SVM 85.03% 70.12% 86.72% 88.37% 

TAMURA SVM 61.31% 70.12% 85.29% 82.10% 

GLCM Naïve Bayes 85.39% 55.24% 79.69% 81.10% 

TAMURA Naïve Bayes 76.34% 68.27% 77.13% 79.93% 
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GLCM DAC 76.67% 66.37% 75.38% 76.26% 

TAMURA DAC 82.65% 70.89% 78.49% 74.82% 

GLCM RandomForest 83.38% 65.54% 82.34% 75.29% 

TAMURA RandomForest 81.37% 70.00% 79.19% 79.36% 

 Table 7-1 Accuracy of multiple signatures and classifiers combination 

7.3   Panic Dispersing Detection Results 

In the experiments, all 11 video clips from the UMN dataset is analyzed using the 

proposed change detection approach on panic dispersing. The detection results are 

illustrated as Figure 7-9. The line in blue denotes the detection result, and the line in 

red denotes the manually labelled ground truth. When the value is zero, the current 

frame is normal. Otherwise, the frame is panic. Overall, all panic dispersing behaviours 

are successfully detected, besides some minor exceptions. For the second video, the 

detected panic appears several frames before the labelled ground truth, it is because 

labelling of the ground truth is not accurate. Also, the detection quickly becomes normal, 

because once pedestrians left the camera, the value of 𝑆 becomes small, the current 

frame will be considered as normal. But for the ground truth, current state is still 

abnormal. In order to address this problem, one possible solution is using a dynamic 

threshold which could be updated according to the actual changing of 𝑆. Another issue 

is the false positive detection such as the 10th detection. This problem is because the 

inappropriate value setting of thresholds. The threshold could be set larger to avoid this 

issue. 
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Figure 7-9. Detection result of the proposed change detection approach 
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7.4 Game Engine based Simulation 

In this section, six different types of crowd behaviours with an additional hybrid 

behaviour in the proposed taxonomy will be simulated.  

7.4.1 Simulation Tool 

For all simulations, the three-dimensional game engine Unity will be exploited for 

the crowd behaviour simulation. The engine Unity 3D is a multi-platform game 

development tool for developers to create interaction contents such as 3D video games, 

visualization of constructions and real-time 3D animations. Similar to tools such as 

Director, Blender game engine, Virtools and Torque Game Builder, Unity provides a 

GUI environment for the developing. Its IDE runs at Windows and Max OS, and is 

capable of publishing games to platforms such as Windows, Mac, Wii, iPhone, WebGL, 

Windows phone and Android. Overall, it is a powerful graphical tool. 

7.4.2 General Installation for All Simulations 

For all simulated videos, basic installation is set up for the simulation tool. The 

installation consists of three processes. 1) Agent generators. This model assigns the 

frequency, spatial distribution and initial parameters of generated agents. The proposed 

behavioural model is code with C# as a script file, then mapped to an object of agent as 

a prefab. When the simulation begins, the generator loads the prefab of agent, duplicates 

it, and generates the crowd. Multiple generators could exist simultaneously to spawn 

agents with different behavioural patterns. 2) Destinations. The destination doesn’t 

have to be an instantiated object, it might be fabricated into the agent’s behaviour model. 

The spatial position of destinations determines the long-term and short-term desired 

force, which is a very important component. 3) Environment. The environment plays 

the role of vessel to contain the generated agents. In simulations, the three processes 

will be adjusted to generate crowd behaviours including Lane, Crossing, Circling, 

Dispersing and fountainhead. A collection of simulated videos is illustrated in Figure 

7-10. 
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7.4.3 Installations of Different Crowd Simulations 

⚫ Bottleneck Behaviour 

To simulate the entrance of a building, two obstacles are placed with a narrow space 

between them. And the destination is set to the right side of obstacles. The generator 

replicates agents at the left side of the footage, and its spatial position follows the 

gaussian distribution. During the simulation, the typical pattern “faster is slower” for 

bottleneck crowd behaviour is clearly exhibited. By setting the generating rate of agent 

generator to a larger value, agents will be jammed at the entrance. Under the influence 

of repulsive force, agents with higher velocity would take more time to pass the 

entrance. 

⚫ Lane Behaviour 

Two walls at the top and bottom sides of the footage are modelled as the passage. 

Two agent generators are set in the simulation process. The first generator spawn agents 

from the left side of scene, and the generated agents attempt to move forward to the 

destination located at the right side. On the contrary, the second generator is located at 

the right side of the footage, and generated agents is moving to the destination at the 

left side. Different agents are rendered with different textures. In the simulated crowd, 

the Lane Effect shows explicitly. Under the influence of repulsive force, agents from 

the same group automatically line a queue while moving. 

⚫ Crossing Behaviour 

No environment installation is required in this simulation. One generator locates at 

the left side and another one locates at the top side of the footage. Agents from different 

generators are rendered with different textures as well. In the simulation, crowd 

successfully exhibits patterns such as Bypassing and Avoidance for the imminent 

collision.  

⚫ Panic Dispersing Behaviour 

In this simulation, a generator produces agent from the left side of the footage and 

moving to the right. The danger source rendered with different texture is modelled at 

the center of scene. At the normal state, agents are affected by the repulsive force, and 
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the danger source is treated as an obstacle. After switching to the abnormal state, agents 

attempt to escape from the danger source, and the collision avoidance effect is greatly 

hampered since the repulsive force no longer takes the dominant influence. 

⚫ Circling Behaviour 

In this simulation, the direction of desired force 𝑓𝑑  is usually pointed to the 

destination. However, the direction of 𝑓𝑑  will always be set perpendicular to the 

current velocity. The spatial position of destination is set at the center of footage. The 

simulation result shows that all agents are circling around the destination. On the other 

hand, agents maintain a good balance of distance under the influence of repulsive force. 

⚫ Fall Avoidance Behaviour 

To simulate this behaviour, one agent is placed at the center of the footage as the 

fallen pedestrian. Its behaviour model is removed so it won’t be affected by the social 

force. The simulation result implies that the crowd flow exhibits the separate and 

remerge phenomena under the impact of desired and repulsive force. 

⚫ Hybrid Behaviour 

For the experiment of hybrid behaviours, Fall Avoidance and Crossing are 

combined. The simulation result implies that both patterns from Fall Avoidance and 

Crossing are recreated.  
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Figure 7-10. Snapshots of simulation results using proposed approach 

7.4.4 Evaluation of Simulation Performance  

Despite behaviours are successfully simulated, the realism of the simulated crowd 

behaviour is still unknown. The most crucial factor is the visual realism because the 

primary purpose of crowd simulation is to be as much similar to the real-life as possible. 

For all the researches at recent decades, there are no benchmarking standards to 

evaluate the visual realism of the simulated crowd. The approaches for the evaluation 

have a great variety. For example, Stuart et al. (2015) uses surveys on a large pool to 

evaluate the general acceptance of the visual realism. Firstly, a website with the devised 

survey system is built up and opened to the public. The concept of Two-Alternate Force 

Choice (2AFC) is adopted to the system. The system has collected a large set of 

simulated video data with both proposed and other algorithms. For each time of choice, 

two manually selected videos with similar scenarios are shown to viewers to decide 

which one is more realistic. In the experiment, the result is a statistic by a large pool of 
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viewers. The advantage of this evaluation approach is the accuracy could be 

significantly high if viewer pool is large enough. However, the first disadvantage is that 

each cycle of evaluation would consume large amount of time. Another disadvantage 

is that the judgement of viewer is always based on the subjective decision. Despite the 

visual realism is subjective, however the evaluations of same videos would derive 

different results. 

Despite the evaluating pattern of the simulated crowd behaviours is still under 

exploration, some patterns for the behaviour in smaller scale between the crowd have 

been proposed. For example, while applying the repulsive force using the original SFM, 

the simulated crowd will exhibit clear oscillation effect. Therefore, this unrealistic 

phenomenon could be exploited to measure the performance of simulated repulsive 

force. 

Another possible pattern could be exploited to assess the performance of the 

simulation algorithm. Patterns extracted from the crowd videos such as trajectories and 

textures are mainly utilized to classify the different behaviours and abnormalities. In 

this research, the STT could be exploited for the evaluation. As illustrated in Figure 7-

11, the extracted STTs are illustrated for comparison. The Figure 7-11(a) shows a STT 

from the simulated crossing behaviour, and Figure 7-11(b) is a STTs extracted from the 

real-life video obtained from the cross road at Tokyo. Note these STTs exhibits the 

similar visual patterns. 

 
Figure 7-11. STTs comparison between simulated and real-life scene 

As illustrated in Table 7-2, patches representing different behaviours are manually 
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selected. For example, the first patch of Table 7-2 is selected from a texture from a real-

life video with no pedestrian exists. The fourth to sixth patches are selected from the 

simulated video which contains situations include no-agent, normal walking and 

crossing. In the experiment, modelled patterns of GLCM will be extracted from the 

selected STT patches, and the results are listed in the Table 7-2. By comparing the 

pattern values between patches with same behaviours of both simulated and real-life 

video, it could be observed that the changing trend of pattern values roughly matches. 

For example, the entropy value of patch with no pedestrians is less than the one with 

pedestrians for both real-life and simulated video. Therefore, these patterns could be 

exploited for the evaluation of realism as a supporting factor. 

 

 Empty Same Opposite Empty Same Opposite 

Patch 

      

Contrast 0.0310 2.6966 3.2560 0 1.1033 0.6612 

Dissimilarity 0.0220 0.9919 1.0889 0 0.4347 0.2938 

Homogenity 0.6623 0.3243 0.3110 0.6724 0.5174 0.5585 

Similarity 0.6629 0.3614 0.3512 0.6724 0.5348 0.5680 

ASMt 0.6093 0.0359 0.0391 0.6724 0.2740 0.2694 

Energy 0.6335 0.1519 0.1562 0.6724 0.4170 0.4114 

Entropy 0.1291 2.1923 2.2168 0 1.1915 1.1451 

Varriance 0.0356 1.9970 2.5652 0 1.0881 1.6975 

Correlation 0.0641 0.2112 0.2351 0 0.3314 0.5335 

Table 7-2   STTs pattern value comparison between real-life and simulated videos 

7.4.5 Simulation of Crowd with Grouping Behaviour 

 In this section, the crowd with grouping behaviours will be simulated with the 

proposed A-star and Enhanced SFM approach. Under the influence of group attraction 

force, the initially mixed agents would eventually group into clusters. The general 
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installation remains the same. The terrain is a plane without any obstacles. Note that 

the plane needs to be wide enough so that agents won’t exceed the border. The number 

of agents is fixed, and will be generated at the initial stage. To achieve the required 

behaviour, generated agents are expected to exist a longer period. Therefore, agents will 

move along a circular route. 

 Next, two experiments with different scenarios will be implemented to assess the 

performance of the grouping behavioural model. For the first experiment, the main 

purpose is to verify the influence of Group Attraction Force. In the experiment, three 

groups of agents are randomly distributed as one single cluster. Each of group consists 

of 10 agents. Agents are expected to be only influenced by the group attraction force 

from other agents from the same group. On the other hand, the repulsive force will be 

generated between any agents. Also, the velocity of agents from different group is set 

as an identical value to ensure the influence is only from the repulsive and group 

attraction force. The Figure 7-12(a) illustrates the initial state of the agents after several 

frames. Note that all agents are clustered together at the initial stage. 

 After 30 seconds, the formation of the simulated crowd will change significantly 

as illustrated in Figure 7-12(b). Behavioural patterns are observed under the impact of 

group attraction force. The first pattern is the clustering of agents by group indices. As 

illustrated the Figure 7-12(b), agents automatically clustered into three different groups. 

It could be verified that each cluster consists of agents from the same group. Under the 

influence of group attraction force, despite the velocity is set to identical value, the 

agents fall behind will be dragged to the average center. The distance among agents 

from the same group will gradually become smaller. Eventually, the repulsive force and 

group attraction force will derive a dynamic balance between agents. This pattern could 

be an evidence to prove the group attraction force achieves a good performance on 

crowd simulation. 
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Figure 7-12. Simulated Crowd and exhibited motion patterns. (a) Initial State. (b) Grouping 

result after 30 seconds. (c) The separation and convergence while routing obstacles 

Another behaviour pattern is the automatic maintenance of the cluster formation. 

The group influenced by the group attraction force would show wide or narrow 

formation. If the formation becomes too wide or narrow, the visual realism of the 

simulation might be hampered. Therefore, the parameters of perception field such as 𝜃 

and 𝑟  must be carefully set. As illustrated in Figure 7-12(b), the clustered groups 

exhibit a natural appearance. 

For the second experiment, the velocities of agents from different groups are set to 

different values. The main purpose of this experiment is to assess the performance of 

the formation distortion and recovery when agents’ motion is affected by the obstacles 

in the stage. The group attraction force should not affect the avoidance behaviour while 

agent is attempting to bypass the obstacles or other agents. And agents should merge 

into a cluster again under the influence of group attraction force after bypassing the 

obstacle. As illustrated in Figure 7-12(c), since the velocity of group 2 is higher, agents 

separates while bypassing. Then agents from group 2 merges again once passed group 

1. 

7.4.6 Computational Efficiency 

In order to further evaluate the simulation approach, the time consumption is also 

investigated. In most of cases, the researches of crowd simulation usually support the 

modelling of agent number in the range from dozens to hundreds. In extreme 

circumstance, millions of agents will be modelled simultaneously. Therefore, if the 

computational efficiency is low, the framerate will be seriously affected. Because the 
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repulsive force needs to be calculated between all agent pairs, assuming the population 

of agents is 𝑛, the total calculating times for all repulsive forces will be 𝑛 × (𝑛 − 1) 

for each frame. Despite the involving of the perception field and personal space could 

avoid some computational burdens, the general complexity for each frame is still 

𝑂(𝑛2). In the experiments, multiple simulations are implemented with the increasing 

number of agents from 30 to 200, and the average framerate for each simulation is 

recorded. The experiment results are shown in Figure 7-13. Using the proposed 

modelling approach, if the number of agents is lower than 70, the simulation could 

remain the framerate around 60, which is the desired value. When the number is larger 

than 70, a major drop of the framerate will happen. And a merely 10 framerate remains 

when the number of agents reaches 200. The experiment result indicates the proposed 

approach shows a good efficiency while simulating the crowd in mid-high density on 

the Unity platform. As for the simulation of crowd with high density, the algorithm 

should be further optimized. 

  

Figure 7-13. The relation between Frame rate Per-Second and Number of Agents 

7.5 Crowd Prediction Result 

In this section, the result of crowd prediction with the grouping center is introduced. 

According to the proposed approach, the prediction procedure includes the motion flow 

extraction, pedestrian detection and social force estimation. In section 7.5.1, the 



Chapter 7                                                   Experiments and Evaluation 

127 
 

simulated crowd for prediction is introduced. Section 7.5.2 shows the pedestrian 

detection and motion mapping result. Section 7.5.3 exhibits the procedure of social 

force estimation and calculation based on the motion map. In section 7.5.4, the 

prediction accuracy is compared between different classifiers at different frame indices. 

7.5.1 Crowd Simulation for Prediction 

The simulated crowd consists of 40 agents. In order to achieve the higher agent 

detection accuracy, the agent is a sphere with rigid body mapped with the behavioural 

model. The crowd contains agents from two groups, each group covers twenty agents. 

Agents from different groups are rendered with different textures. As shown in Figure 

7-14(a), the first group is rendered in green, and the second group is rendered in pale. 

Agents will be generated simultaneously at the initial stage. Two destinations are 

marked at the right-top and right-bottom on the footage with the shape of hexagon. The 

first group is targeting to the destination at the right-top, and the second group is 

targeting to the destination at the right-bottom. 

 

Figure 7-14. (a) Snapshot of the simulated crowd (b) The extracted optical flow 

Figure 7-14(a) illustrates the initial stage of the crowd. The figure is taken from the 

20th frame from the simulated video. The simulated agents are at randomly mixed state.  
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7.5.2 Pedestrian Detection and Motion Mapping 

The first step of the prediction procedure is to calculate the optical flow field and 

detect the spatial position of agents. For the flow-field extraction, the 20th and 22nd 

frames of the simulated video are utilized. The reason of choosing the frames from the 

initial stage is the randomly distribution of crowd. After the first several frames, under 

the influence of grouping force, two groups will be separated. Next in Figure 7-15(b), 

the HS optical flow is extracted from the image in Figure 7-15(a). 

The second stage is to extract the spatial positions of all agents. If the crowd is not 

in an extremely high density, the regular pedestrian detection algorithm would satisfy 

the requirement. In this experiment, the Hough circle detector are exploited to fulfill 

this task. 1) In the first step of Hough circle detection algorithm, the edges of current 

item in the scene are extracted using the conventional edge detection approach. In this 

case, the standard Sobel operator is utilized. The detected edges are illustrated as Figure 

7-15(a). 2) Assuming the radius of sphere is determined at range from 9 to 12 pixels, a 

circle function is adapted on all pixels to detect the shape of circle. The parameters of 

Hough function are set as follows. The radius step is set to 1, angle step is set to 0.1, 

minimum circle radius is 9, maximum circle radius is 12 and threshold is set to 0.51. 

The Figure 7-15(b) illustrates the comparison between the ground truth and detected 

agents with Hough circle detector. The manually labeled agents are marked with the 

black circle, and the detected agents are marked with the blue diamond shape. 

 

Figure 7-15. (a) The detected edges. (b) A comparison between location between ground truth and 

detected agents 
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Once the agent’s spatial position and the optical flow field are obtained, each agent 

will be matched to the flow map, in order to assign the actual force affected to the agent. 

According to the proposed approach, the eight neighboring flow vectors of the agent 

are accumulated with the center vector, to form the final actual force. The value of 

weight factor 𝑘 for neighboring flow is set as 0.4, and set to 1 for central flow. The 

mapped force for each agent is illustrated as Figure 7-16(a). Based on the comparison 

between the simulated video and mapped result, the instant motion of current frame is 

generally matched with a few deviations. 

7.5.3 Social Force Estimation 

The interaction force between agents will be estimated according to the extracted 

spatial position of agents. The Figure 7-16(b) illustrates the obtained repulsive force 

between agents according to the proposed SFM model. The Personal Space 𝜌 is set to 

5 pixels. The Agent Radius is set to 0.5 pixels. The 𝐴𝑖 and 𝐵𝑖 in Equation 2-13 is set 

to 2 and 0.5 respectively. Note that the 𝐵𝑖 is set to 1 for a more explicit expression. 
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Figure 7-16. The estimation procedure and prediction result 

Next, the long-term desired force is the estimated. The point of interest algorithm 

successfully learnt two destinations from another simulated video. The destination is 

predicted by tracking the trajectory of agent. But note that the prediction usually didn’t 

match the final result, because the final result is based on the classification of grouping 

center but not the point of interest. The Figure 7-16(c) illustrates the prediction result 

of the agent’s destination. 

After the extraction of actual affected force, the estimation of interaction force and 

long-term desired force are complete, the Equation 6-7 could be used to calculate the 

Group Attraction Force 𝑓𝐺𝑖. Then, the Grouping Center 𝐶𝑥,𝑦,𝑖 for each agent will be 

calculated according to Equation 6-5. In the experiment, the grouping centers are 

clustered with KNN, and the segmentation result is shown as Figure 7-16(d). Agents 
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from the first cluster is labelled with the red cross, and agents from the second cluster 

is labelled with the blue cross. The accuracy is 87.5% for this case. 

7.5.4 Evaluation of Prediction Result 

In this section, the accuracy of proposed approach is compared to various 

approaches. The prediction accuracy is compared every 5 frames. The result is 

illustrated in Figure 7-17. In the first experiment, the SVM is applied on the proposed 

patterns. The training data is generated from the early stage of the video footage. 

Without manually labelling, all training data are labelled with the result of conventional 

K-mean cluster algorithm. In Figure 7-17, the blue solid line indicates the accuracy 

using SVM on the proposed grouping center pattern. It could be observed that the 

average accuracy from the 5th frame to 110th frame is above 90%. The brown dash line 

indicates the accuracy using K-mean clustering algorithm on the proposed grouping 

center pattern. Its segment performance is slightly lower than the previous approach, 

but still above 80%. For comparison, SVM is applied on conventional spatial position. 

The accuracy is labelled with solid red line. The K-mean clustering algorithm is applied 

on spatial position and the accuracy is labelled with green dash line. For the initial 

several frames, the proposed approach obtained significantly higher accuracy than 

others. In the late stage, since the agents from different groups are already spatially 

separated, all approaches achieved high accuracy. Generally, the proposed grouping 

center exhibits an outstanding performance than the others on the prediction of 

randomly distributed crowd. 

 
Figure 7-17. A performance comparison between proposed pattern and others 
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Chapter 8. Conclusions and Future Work 

8.1. Contributions to Knowledge 

This research focuses on addressing key problems of crowd behaviour analysis and 

abnormality detection. The discussions encompass the taxonomy of crowd behaviours, 

behaviour recognition models based on the Spatio-Temporal Texture and GLCM, and 

crowd behaviour prediction based on the enhanced social force model. These works 

have delivered to the objectives set at the start of the project and contributed to the 

domain knowledge on the following aspects. 

8.1.1. Explicit Crowd Behaviour Definition and Taxonomy Principles 

In this contribution, the definition of crowd behaviour is discussed. An innovative 

taxonomy is also introduced based on crowd behaviour taxonomies proposed by 

Somayeh and Robert (2008), Hamidreza and Javad (2016) and Solmaz et al. (2012). 

According to the unique pattern of each behaviour, seven basic behavioural types are 

defined including Bottleneck, Fountainhead, Ring/Circling, Panic Dispersing, 

Congestion, Crossing, Avoidance and Lane. For example, the Congestion type consists 

of patterns such as faster is slower and arching clogging. Crowds with all seven types 

are simulated with the proposed synthesis approach in the experiment. The experiment 

results indicate the simulated crowd exhibits the desired behavioural patterns. 

8.1.2. Effective Spatio-Temporal Texture Extraction Approach 

In this contribution, an effective spatio-temporal texture extraction approach with 

the enhanced Gabor filter background subtraction is proposed. As the initial step of 

conventional behaviour recognition procedure, the purposed effective STT extraction 

is to obtain the texture with the most motion information of pedestrians. The video data 

is firstly modelled into a spatio-temporal volume, and a collection of STTs are evenly 
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sampled. According to the unique texture pattern of STT, a six-orientated Gabor filter 

is devised to subtract its background. After the motion information in STT is obtained, 

the information entropy is calculated. The highest entropy value indicates the STT with 

the most motion information, and will be selected as the target STT for the training and 

recognition processes. In the experiment, the proposed approach is implemented on 7 

videos of UMN dataset. The result indicates all extracted STTs contains the most 

motions of pedestrians. By comparing to the approach without applying the Gabor 

background subtraction, the result of proposed approach outperforms other approaches 

on all videos. The main advantage of this approach is low time consumption and 

relatively high texture quality if the sampling density is set properly. The problem is the 

decision of sampling density. To address this issue, the STV could be divided into 

several blocks along time axis before the STT sampling. 

8.1.3 Novel Crowd Behaviour Recognition Model and Pipeline 

In this contribution, two contributions on crowd behaviour recognition have been 

made. Firstly, a novel signature modelled with GLCM extracted from the STT is 

devised to detect the congestion and panic dispersing behaviours of the crowd. Secondly, 

a change detection approach based on modelled optical flow information is proposed 

to achieve the crowd panic dispersing with lower time consumption. 

According to the proposed procedure of abnormal behaviour analysis, signature will 

be modelled with the extracted STT. Then the modelled signature will be used to train 

the classifier and recognize the crowd behaviours. In this research, a novel signature 

based on GLCM and its derived features is devised to describe the crowd behaviour 

within textures. The STT is firstly divided into patches with a grid. Then, the symmetric 

GLCM is calculated for each patch. Next, four derived features of GLCM including 

Contrast, Angular Second Moment, Entropy and Variance are modelled into the 

signature for the training and testing of the classifier. In the experiment, 5 classifiers 

including KNN, SVM, Naïve Bayes, DAC and random forest are adapted to classify 

the proposed signature and the conventional TAMURA texture feature on the UMN 

dataset and the simulated congested crowd. The result shows the average detection 
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accuracy reaches around 70%. The proposed signature outperforms TAMURA on UMN 

dataset, and the TAMURA has better performance on the simulated footage. Also, the 

combination of proposed signature and Naïve Bayes classifier has the best performance 

than others. The advantage of the proposed approach is the relatively high accuracy on 

the congestion and panic dispersing crowd abnormal behaviours. However, the 

computational time of this approach is long, since the process of STT and GLCM 

extraction is time consumptive. An alternative crowd behaviour detection approach is 

introduced as well. 

 In an early phase of this program, a change detection approach of panic dispersing 

is devised to achieve the fast detection of panic dispersing within the crowd. Instead of 

the local pattern, the trend of global motion flow is exploited as a feature to detect the 

sudden change among the crowd. In the research, the HS optical flow field is extracted 

and modelled into a feature for each frame. Next, the average feature value of the 

training data is calculated. In the testing phase, if the difference between current and 

average features is larger than the threshold for certain period of time, the anomaly is 

considered to exist. In the experiment, all dispersing behaviours are detected on all 

videos of UMN with minor deviations. The advantage of this approach is the fast 

processing speed. However, it is essentially a change detector, thus it can’t classify the 

different types of crowd behaviours. 

8.1.4. Realistic Crowd Behaviour Synthesis and Prediction Methods 

In the research of crowd behaviour analysis, the acquisition of video data is an 

important problem. The benchmarking crowd video dataset is very limited and usually 

doesn’t include the desired crowd behaviour. In order to obtain the required crowd 

video for analysis, the simulation tool could be utilized to simulate crowd with certain 

behaviours. In this research, a simulation approach involved with A-star path finding 

and enhanced social force model is proposed to generate crowd behaviour with visual 

realism. The behaviour model consists of three components including long-term path 

finding, local steering and interaction handling components. The long-term path finding 

is determined by the A-star algorithm. The local steering and interaction handling are 
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determined by the enhanced social force model. The enhanced social force model 

adapted the concepts of personal space, view perspective and relative velocity to 

improve the visual realism of the simulation. Furthermore, the group attraction force is 

proposed to simulate the behaviour of agents with same destination. In the experiment, 

seven crowd behaviour types in the proposed taxonomy are successfully synthesized. 

The key motion patterns and global appearance prove the visual realism level of the 

simulated crowd. 

By transforming the formula of proposed behaviour model, the group attraction 

force and corresponding grouping center could be exploited to separate agents with 

different destinations when they are randomly distributed. In the research, agents are 

firstly detected and their instant motion flows are extracted. By calculating the actual 

affect force and estimating the repulsive and desired forces, the affected group 

attraction force could be obtained with the proposed formula. Therefore, the common 

grouping center will be used as a pattern to predict agents with same destination. In the 

experiment, the proposed approach is implemented on simulated crowds. Comparing 

to the spatial position, the grouping center exhibits the great performance on separating 

the crowd in the mixed state.  

8.2. Future Work 

Despite this research addressed some issues in the domain of crowd abnormal 

behaviour analysis, including the taxonomy of crowd behaviours, detection of 

congestion and panic dispersing, and crowd behaviour synthesis, several vital 

challenges remain to be tackled. This section covers some necessary directions to 

further expand the current research progress. 

Many proposed approaches in this research involve the pedestrian detection 

techniques. However, in crowd with extremely high density, the frequent occlusion and 

the insufficient information make the low accuracy of pedestrian detection. Thus, the 

proposed approaches will fail in this situation. In order to address this issue, one 
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possible solution is to adapt the soft-NMS technique proposed in the research of 

Navaneeth et al. (2017) for the occlusion handling, along with the global pedestrian 

count estimation techniques such as the research of Antoni et al. (2008). By combining 

the global estimation and local occlusion handling with the conventional pedestrian 

detection technique, the challenge of pedestrian detection in crowd with extremely high 

density might be achieved. 

In this research, the detection of congestion and panic dispersing has been 

addressed. However, according to the proposed taxonomy, several crowd behaviours 

are still not handled. In fact, no wide-range recognizing technique has been proposed 

in the domain of crowd behaviour analysis. Therefore, the proposed approach could be 

further expanded to handle more behaviour types. The ultimate goal is to devise a 

universal recognition technique which is capable of handling wide-range of crowd 

behaviours. 

The CV based crowd abnormal behaviour analysis exploits only video data. Some 

researches use network data collected from social media to predict the possible 

behaviour of the crowd within certain region. In the research of Michalis et al. (2017), 

the video and audio data are simultaneously adapted for the crowd behaviour analysis. 

Therefore, exploiting data from multiple sources including video, audio and network 

information could be another possible path to improve the performance of proposed 

analysis approaches. 
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