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ABSTRACT 

Condition monitoring (CM) of rotary machines has gained increasing importance and extensive 

research in recent years. Due to the rapid growth of data volume, automated data processing is 

necessary in order to deal with massive data efficiently to produce timely and accurate diagnostic 

results. Artificial intelligence (AI) and adaptive data processing approaches can be promising 

solutions to the challenge of large data volume. Unfortunately, the majority of AI-based techniques 

in CM have been developed for only the post-processing (classification) stage, whereas the critical 

tasks including feature extraction and selection are still manually processed, which often require 

considerable time and efforts but also yield a performance depending on prior knowledge and 

diagnostic expertise.  

To achieve an automatic data processing, the research of this PhD project provides an integrated 

framework with two main approaches. Firstly, it focuses on extending AI techniques in all phases, 

including feature extraction by applying Componential Coding Neural Network (CCNN) which 

has been found to have unique properties of being trained through unsupervised learning, capable 

of dealing with raw datasets, translation invariance and high computational efficiency. These 

advantages of CCNN make it particularly suitable for automated analyzing of the vibration data 

arisen from typical machine components such as the rolling element bearings which exhibit 

periodic phenomena with high non-stationary and strong noise contamination. Then, once an 

anomaly is detected, a further analysis technique to identify the fault is proposed using a 

multiresolution data analysis approach based on Double-Density Discrete Wavelet Transform (DD-

DWT) which was grounded on over-sampled filter banks with smooth tight frames. This makes it 

nearly shift-invariant which is important for extracting non-stationary periodical peaks. Also, in 

order to denoise and enhance the diagnostic features, a novel level-dependant adaptive thresholding 

method based on harmonic to signal ratio (HSR) is developed and implemented on the selected 

wavelet coefficients. This method has been developed to be a semi-automated (adaptive) approach 

to facilitate the process of fault diagnosis. The developed framework has been evaluated using both 

simulated and measured datasets from typical healthy and defective tapered roller bearings which 

are critical parts of all rotating machines. The results have demonstrated that the CCNN is a robust 

technique for early fault detection, and also showed that adaptive DD-DWT is a robust technique 

for diagnosing the faults induced to test bearings. The developed framework has achieved multi-

objectives of high detection sensitivity, reliable diagnosis and minimized computing complexity.  
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 CHAPTER ONE 

1 INTRODUCTION   

In this chapter, the importance of condition monitoring and fault diagnosis are outlined in 

association with various monitoring techniques. Vibration based monitoring is paid more attention 

in terms of data processing techniques. Moreover, this chapter presents the motivation of the 

research, on which the aim and objectives of this research are put forward. Finally, it presents the 

structure of the thesis. 

1.1 Background 

Data processing has become a key factor in almost every industrial process due to the massive 

quantity of data produced by modern machines and instruments. With the development of 

communication network and information technology, machinery systems are becoming more 

systematic, automated, complicated and expensive with a lower tolerance for performance 

degradation, safety hazards and productivity decline. Condition Monitoring (CM) is defined as the 

procedure of monitoring and analysing some parameters of a system condition[1]. CM has been 

the subject of interest in various industries to ensure the reliability and state of machine health. In 

fact, condition monitoring can be considered as a data processing system as it can be carried out 

through modelling, signal processing and artificial intelligence. However, finding useful 

information in a given dataset with the increase of quantity and complexity is becoming more 

critical and challenging task[2]. The so-called feature extraction and selection has gained more 

importance and attention in recent years. Feature extraction and selection can be seen as a general 

method and is applied for several reasons depending on the goal of the application, it can be used 

to reduce the dimensionality of the data or as pattern recognition, also for classification or 

predictions tasks, removing irrelevant and redundant data etc. I.e. extracted features can be used as 

a representation of the data. Conventional manual approaches are thought to rely entirely on the 

prior knowledge of the expertise to carry out the task of extracting useful and informative 

information. With the development of AI approaches and adaptive data processing algorithms, the 

process of extracting and selecting relevant and informative information can be facilitated and also 

automated[3, 4]. In the field of vibration-based CM, feature extraction and selection are critical and 

have a real impact on the diagnosis process results with respect to effectiveness and efficiency. 

Therefore in this research, automated and semi-automated approaches are investigated as an 

integrated framework for vibration data analysis. Based on AI technique, the features are 
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automatically extracted and used to build a data model for anomaly detection, whilst for fault 

diagnosis, features are adaptively extracted using multiresolution data analysis based adaptive 

thresholding method. 

1.2 Condition Monitoring Steps 

Generally, as illustrated in Figure 1-1, CM consists of three main key steps namely; data 

acquisition, data processing and decision making[5]. Over recent years, an extensive research effort 

has been done in each of the CM steps. This has led to the emergence of a verity of methods, 

techniques and algorithms. This thesis is considering data processing step and particularly, to 

automate the task of diagnostic feature extraction for anomalies detection and facilitate the task of 

fault diagnosis.  

1.2.1 Data Acquisition 

In the acquisition step, the data is collected to obtain data relevant to the system condition. Several 

CM techniques are available for the data acquisition process such as vibration, oil monitoring, 

thermography monitoring, ultrasonic monitoring, and radiographic monitoring[1]. Mainly CM data 

can be collected in the data acquisition process within two main categories as following: 

Value type: this type of data can be recorded at a particular time and analysed for CM such as oil 

analysis, pressure, and temperature and humidity data. 

Waveform type: this type of data is collected in a timely manner for CM and normally is a time 

series called time signal. Such as acoustic and vibration data. The most widely used waveform in 

CM is vibration signal, acoustic emissions signal. Other types of waveform data are; motor current 

signature, ultrasonic signals, etc. [5]. 
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Figure 1-1 Condition monitoring steps 

1.2.2 Data Processing 

In this step, the collected data in the previous process is to be handled, analysed and interpreted. 

There are various DSP techniques, modelling methods and knowledge-based algorithms available, 

and the selection of the analysis technique depends on the type of data [6]. This process is to detect 

any anomalies occur in the analysed data that can affect the efficiency of the system or lead to a 

potential breakdown. 

1.2.3 Decision-Making 

This step is to recommend an efficient maintenance policy depending on the defect prognosis or 

severity of faults. A number of techniques have been developed over the past decades for decision 

making in CM strategy. They can be generalised into the following main categories: detection, 

diagnostics and prognostics. Fault detection focuses on detecting the abnormality in the monitored 

data as early as possible. Fault diagnostics focus on isolation and identification of faults when they 

occur. Fault prognostics attempts to predict the remaining useful life of the monitored machine or 
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predict faults or failures before they occur. However, it was claimed that prognostics cannot entirely 

replace diagnostics as in reality not all faults and failures are predictable[7]. 

1.3 CM Approaches 

Generally, studying CM is carried out through three main approaches as seen in Figure 1-2, namely 

as data analysis focus, data gathering technology focus and application focus. In this study, the data 

analysis focus is considered. 

 
Figure 1-2 CM approaches 

1.3.1 Application Focus 

In CM, application focus discusses diverse fields of machinery such as induction motors, 

manufacturing tools, gearboxes, engines, bearings, centrifugal pumps, electro-hydraulics, etc.[8]. 

1.3.2 Data Gathering Technology Focus 

This prospect of CM is focusing on developing instruments, methods and techniques for data 

sensing and data gathering such as Acoustics, Vibration, Motor Current Signature, Wireless 

Communications, Impact Analysis, Controller Behaviour, Emissions, etc. 

1.3.3 Data Analysis Focus 

Data processing is a primary key factor in the CM process and a reliable and effective data 

processing technique has been for a long time of interest for both academia and industrial word. 

An ideal data processing technique for CM should result in a low-dimensional, noise-free 

representation of the processed data with the aim of discovering useful information. Also, it should 

be robust to time-varying and nonlinearity nature of the monitored data, which can be used to 
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accurately interpret the condition of the monitored system. In general data processing in CM 

considering model-based methods, signal processing, high order statistics, demodulation methods, 

adaptive algorithms, feature extraction, feature selection and AI-based classifiers. 

This thesis focuses on data analysis for CM and as shown in Figure 1-3, it can be said that the main 

approaches for CM data processing are: firstly, conventional signal processing, secondly, adaptive 

methods and thirdly, automated (AI) methods. Conventional signal processing methods are; time 

domain analysis, statistical parameters, and frequency domain analysis, also, demodulation 

analysis technique.  

 

 
Figure 1-3 Data processing approaches 

 

The semi-automated approach covers all the techniques that adopt adaptive algorithms to process 

the data. It can be said that in semi-automated techniques only a small number of parameters may 

need to be adjusted for the studied case[9]. Automated data process approach considers the 

implementation of artificial intelligence algorithms to minimize human intervention in the process 

of condition monitoring. Several AI techniques in computer science were implemented for 

machinery CM such as neural networks and support vector machine, etc.[10]. In this study 

automated and semi-automated data analysis approaches are considered for condition 

monitoring. The aim of developing an automated approach based AI is to make the task of anomaly 

detection independent of well-trained technical staff. Whilst the aim of developing a semi-

automated approach is to facilitate the task of data analysis for diagnostic and make the task less-

dependent on well-trained technicians.  

The main aim of CM is to avoid systems breakdown and the consequence of catastrophic failures 

by detecting and diagnosing initial faults as early as possible. For a successful CM and from data 

analysis standpoint, as depicted in Figure 1-4, data analysis methods can be classified according to 

the task of processing into two main methods ; Feature Extraction by extracting the relevant 
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features from a dataset or Data filtering  by removing the irrelevant components from the signal 

and use the residual signal.  

Feature extraction task can be conducted through decomposing the sensors data into several 

components and then, to identify the condition of the machine. The sensor data components are 

explored based on prior knowledge or by investigating the change in the behaviour of a dataset 

compared to the reference data taken from an ideal condition. Several methods have been 

developed to decompose the sensor data, they can be classified based on the domain of the analysis 

into the frequency domain and time-frequency domain.  

Data filtering  is the second method of analysis, it is performed by removing the unwanted 

component and consider the residual sensor data as an output of interest in the process. This task is 

also called denoising and data enhancement. Several methods have been developed to carry out 

sensor data filtering and enhancement. Filtering methods fall into two main categories, namely, 

non-adaptive methods and adaptive methods.  Moreover, data filtering can be performed in the time 

domain or in the transformation domain. Time domain methods are used for strictly periodic 

signals, a typical time domain filtering method is signal averaging.    
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Figure 1-4 Data analysis methods for CM 

1.4 Condition Monitoring of REBs 

Condition Monitoring Applications to REBs have been extensively studied due to several reasons 

e.g., REBs play an important role in almost all types of rotary machines and REBs failures are the 

most cause of machines breakdown [11]. A survey was carried out by the Electric Power Research 

Institute concluded that about 40% of most common faults in an induction motor are related to 

bearing [12, 13]. Moreover, it has been stated statistically in [14], that the most common faults 

occur due to rolling contact fatigue after a certain running time. This issue starts with the presence 

of tiny cracks underneath the surface of the bearing components. It was also reported that inner or 

outer race flaw are amongst about 90% of the various REBs defects, whilst cage and rolling element 

flaw is the cause of the remaining malfunction[15].  

In the REBs, the presence of faults such as cracks or pits located at bearing raceway surfaces or 

fatigue may lead eventually to machine breakdown. Also, failure of the bearings caused by, 

misalignment, etc., may cause catastrophic failure of the machinery system. Moreover, bearing 

failure was found to be one of the most common reasons for a breakdown in rotary machines[16]. 
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Such failures can lead to catastrophic and usually result in long-lasting industrial downtime that 

has usually economic consequence [17]. Also, the bearing fault detection in the early stages will 

decrease the cost of unwanted shut down [18]. In order to prevent such unexpected bearing failures, 

several techniques were developed to monitor REBs. Among them, vibration analysis has been for 

a long time one of the most widely used as an effective method and popular strategy[13, 19]. Also, 

the vast majority of the advanced signal processing techniques is related to vibration measurements 

[11, 20-23]. 

Therefore, in this research based on vibration, an integrated framework is proposed to implement 

an AI approach for early fault detection, also adaptive time-frequency data analysis for fault 

diagnosis. Thus, the decision could be taken as early as possible to increase the life of the bearings 

and reduce the maintenance cost.  

Several methods based on vibration have been applied to bearing fault detection as shown in 

Figure 1-5. These methods can be categorised into three main groups namely: signal-based, model-

based and knowledge-based.  [10, 18]. 

 

Figure 1-5 Fault detection techniques 

1.4.1 Signal-based methods 

Signal-based techniques for fault detection are based on analysing the time domain and spectral 

components of measured data. The signal-based techniques applied to process vibration data for 

CM of REBs can be classified into the following main categories as depicted in Figure 1-6: time-

domain analysis, frequency domain analysis, time-frequency analysis and demodulation analysis 

methods [24]. Vibration signal contains enormous information, therefore, a number of vibration 

signal analysis techniques have been developed to highlight some components of interest in a 

signal. These techniques analysis signals in the time domain or in the transformation domain 

(frequency or time-frequency domain)[25]. 
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Figure 1-6 Signal based Fault diagnosis using vibration 

1.4.1.1 Time-domain  

Time domain analysis is the process of analysing and displaying the vibration data as a function of 

time. In the time domain, methods that sensitive to oscillations involve statistical parameters are 

used to highlight some trends in the vibration data. The analysis in the time-domain is usually 

carried out to explore the statistical characteristics of the monitored data[26]. Many statistical 

parameters used for vibration analysis to describe the monitored data include root mean square 

(RMS), kurtosis, crest factor, peak value, Kurtosis, peak-to-peak interval, high-order statistics, 

skewness, etc.[21]. The derived statistical parameters are usually known as time-domain features. 

Kurtosis and crest factors are said to be more sensitive to the shape of the signal because they 

increase with the increase of the spikiness of the vibration signal [27]. On the other hand, Skewness 

measurement is claimed to be an effective measure only for asymmetrical signals [28]. However, 

limited success has been reported when using time domain analysis methods  for diagnosis of REBs 

and they were found to be a poor measurement of fault features in REBs [29] 
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RMS is a simple statistical method to detect the gradual or sudden changes in the energy of a 

vibration signal in the time domain. RMS for sinusoidal signal cab derived [30] as: 
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Where �T�Ü is a time series signal �J is the total number of data points and �E is time index. RMS can be used as 

a measure of the signal energy, however, it does not identify in which component the defect occurs [31].     

Kurtosis is a measure of the impulsiveness of a signal, it calculates the normalized fourth centred 

moment. It can be derived [32] as: 
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Where �ä  is the mean of the signal and �ê is the standard deviation of the signal. The kurtosis value is about 

3 for a healthy bearing in a good condition, when an initial fault occurs the kurtosis value will increase, 

however, the value declines as the severity increase [33]. 

Peak value can be calculated as the sample index for the maximum amplitude of a sinusoidal signal  

as it can be calculated [34] as: 

 �L�A�=�G���R�=�H�Q�AL �¾�t H�4�/�5 
(1.3) 

The Crest factor computes the ratio of peak value to the root mean square, it allows to estimate 

the shape of the vibration signal waveform. Crest factor value of a signal less than 3.0 will indicate 

to a sinusoidal signal, however, a higher value will indicate to the impulsive signal so can be used 

to assess the bearing condition. Crest factor is computed [32] as: 
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(1.4) 

It was reported that the peak value will highly depend on the section of the signal being analysed, thus, crest 

factor may not be stable. Analysing the distribution of the acceleration can give more details. Healthy 

bearings are expected to have a Gaussian distribution, on the other hand, a relative increase in the tail levels 

can be expected from a damaged bearing. High order statistics with a variety of moments is another measure 

and fourth order has been found in somewhat useful. Bandpass filtering also developed to examine only the 

band of interest in a signal.  
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1.4.1.2 Frequency-domain  

Frequency analysis is a widely used technique to analyse vibration signal, Fast Fourier Transform 

(FFT) has facilitated the spectrum analysis and made it more efficient. It gives the ability to 

investigate the changes in sub frequency bands of a signal. Both the amplitude and frequency of 

the spectral lines can be investigated. Knowing the speed of rotation and the calculated frequencies 

for the machine components, some of the peaks can be identified. The frequency-domain analysis 

is a well-known and broadly used data analysis technique based on the idea of transforming time 

series data into the frequency domain. FFT was developed to efficiently perform the Fourier 

transformation process with remarkably reduced complexity. FFT has been for a long time the most 

commonly used method for transforming raw vibration signals from the time domain into the 

frequency domain. Frequencies of interest in the transformation domain can be easily identified 

and isolated, this property is one of the main advantages of FT analysis over time-domain analysis. 

Moreover, features can be extracted from the whole spectrum or from just certain frequencies of 

interest [5].  Power spectrum is amongst the most commonly used tool in spectrum analysis. 

However, REBs usually produce complex vibration signals due to the effects of the background 

noise. Therefore, identifying bearing defects only by observing the spectrum signals is difficult, 

besides the effects of the sidebands and the harmonics of the fault frequencies. Moreover, the non-

stationary nature of signals makes applying the FFT method, which is in fact based on the 

assumption of the periodic signal, not suitable[35]. Therefore, it is very unlikely to identify the 

faulty peaks in the spectrum as the energy of impact vibrations usually will be distributed over a 

wide range of frequencies. In addition, the frequency of the defect has low energy and hence get 

easily masked by other low frequencies or noise, also, interpreting and quantifying some other 

peaks of the spectrum may not be an easy task in some cases. 

1.4.1.3 Time-frequency Domain  

The nonlinearity and nonstationarity characteristics of some vibration data make extracting useful 

and sensitive features from the data, not an easy task. To address this issue, several Time-frequency 

analysis methods have been developed, they have been popular methods to process non-stationary 

signals. One of the well-known methods is Short-Time Fourier transform (STFT), the STFT 

technique divides the entire waveform signal into with short-time segments using a sliding window 

and then apply FFT to each segment. However, STFT suffers from low-resolution problems. 

Another time-frequency analysis method is Wigner-Ville Distribution (WVD) which used to 

overcome both the low-resolution problems and time information. Moreover, Wavelet Transform 
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(WT) is another time-frequency analysis based on the idea of multiresolution analysis. There are a 

number of wavelet transform methods available such as continues wavelet transform, discrete 

wavelet transform. Wavelet packet transform, etc. Wavelet transforms have been extensively used 

for REBs fault diagnosis in the past two decades[36]. For example, Rubini et al.[14], used wavelet 

transform to diagnose bearings affected by an incipient surface fault.   

1.4.1.4 Higher Order Statistics (HOS) 

For several years the first and second-order statistics, such as variance, mean, power spectrum and 

autocorrelation have been extensively applied for vibration analysis. However, they just used to 

characterise Gaussian and linear signals.  Whilst in practice, non-Gaussian and nonlinear signals 

can be studied using higher order statistics such as kurtosis and skewness [37]. 

1.4.1.4.1 HOS Time Domain 

In the time domain, the autocorrelation function is the second order measure, and it is known that 

the third-order moment depends on two independent lags m1 and m2, so in a similar way by adding 

lag terms to the third-order, higher order moments can be formed [38]. It should be known that the 

term of moments is used to denote first/second order whilst, cumulants are used for HOS. 

1.4.1.4.2 HOS Frequency-domain  

Polyspectra is used to refer to HOS in the frequency domain, including the 2nd order and so on. 

Power Spectral (PS) is a second-order measure and it can be simply computed by multiplying the 

signal Fourier Transform together with its complex conjugate as: 

 �L�:�B�; L �' �Ã�: �:�B�;�: �Û�:�B�;�Ä (1.5) 

where �: �:�B�; Fourier Transform and �: �Û�:�B�;  it's conjugate of the �T�:�P�;, and �' �Ã�®�Ä the expectation 

operation or by computing a Discrete Fourier Transform (DFT) of the autocorrelation function [38]. 

However, Thomas  [39] reported that in the presence of high background noise from rotating 

machinery,  the use of power spectrum become ineffective and will affect the fault diagnosis 

accuracy[20].  

Bispectrum, most implementation of  HOS in the frequency domain, focusses on the bispectrum 

and the trispectrum known as third-order and fourth-order measures respectively [38, 40]. At the 

third-order, the bispectrum  can be also computed by taking a Double DFT (DDFT) of the 

third-order cumulants or as a product of the FT at different frequencies as: 
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 �>�:�B�5�á�B�6�; L �' �Ã�: �:�B�5�;�: �:�B�6�;�: �Û�:�B�5 E�B�6�;�Ä 
(1.6) 

Where �: �Û�:�B�; is the complex conjugate and �' �Ã���ä�Ä is the statistical expectation operator. To reduce 

Gaussian noise and to preserve some of the non-Gaussian information of the measured vibration, 

HOS, has been implemented to solve detection and classification problems [41]. it was claimed 

that using non-linear features motivated by the higher order spectra is a promising solution to 

analyse the non-Gaussian and non-linear vibration signals, thus, it can extract more diagnostic 

features than power spectrum does[42]. Collis et al.[43], claimed that the trispectrum is a more 

powerful tool because it represents a decomposition of kurtosis over frequency. Unlike the PS, it 

may be considered that the bispectrum and trispectrum are functions of multiple frequencies. They 

contain phase information as well as magnitude information about the original vibration signal.  It 

has been reported that the bispectrum analysis provides a much better feature for the diagnosis of 

different faults simulated on an experimental rig when compared to the spectrum analysis alone, 

without the phase and orbit analysis [44]. 

Bicoherence is realised as a normalised bispectrum. Bicoherence takes bounded values between 0 

and 1, this makes it a suitable measure to quantify the extent of phase coupling in the vibration 

signal. The normalisation is arisen due to variance issues of the bispectral estimators [40]. 

Several studies used bispectrum in the fault diagnosis have been reported in the literature. For 

instance, Saidi et al. [37] Stated that higher-order spectra are a promising approach to extract non-

linear features used to analyse the non-linear and non-Gaussian characteristics of the vibration 

signals. Liang et al. [45], applied power spectrum, bispectrum and neural network to extract fault 

pattern from a vibration signal of induction motors, the study showed that bispectrum suppressed 

the noise and showed some useful information in signals.  Pineyro et al. [46] examined the 

implementations of power spectral and bispectral on the bearing fault signals. However, the study 

reported that when implementing second order power spectral, the resonances cannot be 

distinguished from periodic signals, while Bispectrum was found highly sensitive in detecting the 

phase coupling peaks in the spectrum, however, the main disadvantage is the high memory 

consumption needed for data processing[20].  
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Modulation Signal Bispectrum (MSB) 

 Due to the observed efficiency of bispectrum and to compensate for the deficiencies of Polyspectra 

techniques, moreover, to enhance the conventional bispectrum in characterizing the vibration 

signals, Gu et al. [47], has examined a new modified form of the conventional bispectrum, called 

a Modulation Signal Bispectrum (MSB) as: 

 �$�à�æ�:�B�5�á�B�6�; L �' �Ã�: �:�B�6 E�B�5�;�: �:�B�6 F �B�5�;�: �Û�:�B�6�;�: �Û�:�B�6�;�Ä 
(1.7) 

Where, �: �Û�:�B�; is the complex conjugate of X�:�B�;  and ���Ã�ä�Ä is the statistical expectation operation. 

�B�5�á�B�6 and �B�5 E�B�6 represent three individual frequency components derived from Fourier series 

integral. Since then it has been as a promising technique for detecting nonlinear components by 

detecting phase coupling in modulation signal. It was also found to be an effective tool to suppress 

random noise.  

1.4.2 Model-based methods 

Model-based methods have been widely implemented for CM of machinery systems. An accurate 

model of the system is needed to imitate the real process behaviour [18]. Implementing model-

based methods for CM of mechanical systems will require mechanistic knowledge and relevant 

theories of the monitored systems[5]. Over the years several model-based methods have been 

devolved and they can be categorized into two main groups namely: System dynamic modelling, 

Fault dynamic modelling[48]. 

1.4.2.1 System Dynamic Models 

System dynamic models are developed to simulate the dynamic of REBs in order to investigate 

their behaviour and features. Also to understand the transmission of vibration through bearings 

structure and the influence of load distribution on the dynamic of the bearings[11], etc. 

1.4.2.2 Fault Dynamic Modelling 

Analytical and numerical fault models are being used for CM of REBs in several ways.  A fault 

dynamic model can be used to simulate the faulty conditions of REBs, also, it is used to evaluate 

the capability of data analysis methods in extracting the diagnostic features. In addition, it can be 

used to determine the severity of the faults [11]. In literature, a number of model-based methods 

developed for fault diagnosis such as Pennacchi et al. [49] presented a model-based transverse 

crack identification method where Vania et al. [50] proposed model-based fault diagnosis method 

based on the frequency domain. 
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Most of the model based have studied localized defects using a variety of modelling techniques. 

For more details, El-Thalji et al [11] provided a comprehensive comparative review of system and 

fault modelling for rolling bearings. However,  it was claimed that model-based techniques have 

several limitations such as how to experimentally verifying the expected results [51]. Moreover,  

the model-based techniques fail to deliver satisfactory performance due to the presence of 

disturbances, noise, modelling uncertainties and/or parameter variations [52]. Developing an 

accurately a mathematical model which describes a physical system in real-world applications is 

usually not an easy task. Therefore, the implementation of model-based methodologies is still 

limited [53].  

1.4.3 Knowledge-based methods 

The industrial world becoming more automated and the amount of data that systems can produce 

has increased massively. Hence, analytical modelling and the traditional digital signal processing 

cannot handle such huge, diverse and rapid data and they may not be able to perform to a sufficient 

diagnosis, In addition, the fault diagnosis of a machine normally requires technical skills, 

experience and �N�Q�R�Z�O�H�G�J�H���R�I���W�K�H���P�D�F�K�L�Q�H�¶�V���V�W�U�X�F�W�X�U�H�����Z�K�H�U�H���L�Q���S�U�D�F�W�L�F�H�����W�K�H���H�[�S�H�U�W�V���D�U�H���H�L�W�K�H�U���W�R�R��

busy or costly. Thus, in order to automate the diagnostic procedures and provide the engineer with 

aid to make a �G�H�F�L�V�L�R�Q���D�E�R�X�W���W�K�H���5�(�%�¶�V���Kealth state, An expert system or artificial intelligent system 

(AI) that support parallel processing can be utilised[10]. There are several knowledge-based 

methods for automatic fault diagnosis have been used such as Artificial  Neural Network (ANN), 

Expert Systems, Fuzzy Logic, Support Vector Machine (SVM) [10].  

This research focuses on knowledge-based techniques which will be discussed in the upcoming 

sections in more details. Recently, the use of methodologies such as diagnostics and prognostics 

aided by AI tools such as ANN, KNN, SVM etc. have witnessed an increase for assessing the health 

of the REBs [54]. Generally, intelligent Condition monitoring approach involves three main steps, 

firstly, signal acquisition step secondly features extraction step and finally, faults classification 

[55]. Feature extraction is the task of extracting the most informative features which represent the 

data from the gathered signals using signal processing techniques. Currently, there are several 

manual ways to carry out the task of feature extraction such as statistical parameters, spectrum 

analysis and time-frequency analysis. However, obtained features may contain useless or redundant 

information and consequently, affect the diagnosis outcomes as well as increase the computation 

cost. Thus, feature selection becomes an important task to reduce data dimensionality by selecting 

only informative and sensitive features. In the final step, the selected features are used and fed to 
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train AI algorithm. As a result, by using these techniques the conditions of the monitored system 

can be determined [56]. The quality of extracted features from the monitored REBs signals mostly 

play an important role in the effectiveness of these approaches. 

It seems that AI plays a vital role in CM as in the last decades, the application of AI to REBs has 

been gaining more attention in the industrial world, such as ANN, SVM, discriminant analysis etc. 

for instance, Tyagi et al. [28] has presented a comparative study of SVM and ANN in the 

application of REB fault detection. The reliability of REBs diagnosis can be improved by utilising 

the automated approaches, which also can be cost effective and save time. Furthermore, automated 

REBs CM does not depend on expertise judgment [57]. Several attempts adopting AI Approaches 

have been carried out, most of the studies used AI approaches for post-processing (classification) 

while some studies used AI approaches for data processing process such as anomaly detection task.  

1.4.3.1 Anomaly detection  

Anomaly detection can be defined as the process of identifying that the test data differ in some 

ways from the data used in the training the model. Anomaly detection has attracted many 

researchers and received lots of attention in many applications such as processing massive datasets 

arises form critical systems. The abnormal modes of a system are not always known priori, this 

may make the use of conventional multi-class methods invisible. The anomaly detection approach 

carries the potential solution in which the prior knowledge of abnormal modes are not required and 

normal mode can be learnt by building a data-model with the available data of the normal 

conditions. The unseen monitored data then is compared with the model of the normal condition 

and the resultant novelty score can be used to measure the difference between the monitored data 

and the normal condition based on a predefined threshold. If the score reached above the threshold, 

the condition is deemed to be a deviation from normality which indicating to a physical change in 

the system. Anomaly detection is classified into five general categories as seen in   [58].  

 
Figure 1-7 Main methods of anomaly detection 

Anomaly Detection

Probabilistic Distance based Reconstruction 
Based

Information 
Theoretic 



39 

In probabilistic methods usually, density estimation of the normal class is involved based on the 

idea that having low density areas in the data used for training means the probability of containing 

normal components in these areas is low. Distance-based methods are based on the concept that 

normal condition is tightly grouped while anomaly data is located far from its nearest neighbour 

these methods involve clustering and nearest neighbour techniques. The reconstruction based 

method is realised by training a model using training data, and then use the trained model to map 

the unseen data. If the unseen data is abnormal, the reconstruction error between the unseen data 

and the training data will raise the value of the novelty score and the anomaly then is detected. 

Information theoretic based methods based on the idea that the information content will be altered 

significantly if the anomalies exist in the datasets. This approach use theoretic measures like 

entropy to compute the information contents in the training data set[59].  

1.4.3.2 Shallow Features learning methods    

Learning intrinsic structure of data has attracted �U�H�V�H�D�U�F�K�H�U�¶�V attention for many years. In order to 

extract a representation which can precisely describe a set of data, valuable features are to be 

extracted and selected effectively. Feature learning is an important task in AI-based approaches for 

both novelty detection and classification and has delivered good results in many fields and 

applications. According to the literature, many AI-based techniques have been applied in CM for 

the classification task whilst the features are still empirically extracted such as calculating statistical 

parameters and then to be used as an input features in a classifier. However, with the increase in 

the complexity and high-dimensionality of nowadays data, manually crafted parameters cannot 

effectively describe and represent the data. Ideally, extracting an informative representation from 

high-dimensional and complex data or discovering valuable information becomes an important and 

more challenging task. In AI-based approaches, features extraction is typically implemented based 

on two main paradigms known as supervised learning and unsupervised learning as depicted in 

Figure 1-8. Both supervised and unsupervised learning can be implemented based on shallow 

learning methodology and deep learning methodology. The selection of the paradigm is based on 

the aim of the application and the availability of labelled data for the task at hand. Supervised 

learning is used to build a classifier that learns the means to predict the outputfrom given input

by discovering the intrinsic structure in the given dataset. I.e. identify and then assign an 

unknown hidden pattern to a previously defined class. This method is visible when the labelled 

data is available, the earliest supervised technique for feature learning is Principle component 

analysis (PCA) and it was developed in 1901 by Pearson[60].  On the other hand, unsupervised 

feature learning is used to discover hidden patterns in a given set of unlabelled data to be used for 
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clustering by grouping similar items together or as a data representation for classification task, the 

earliest technique implemented the unsupervised learning paradigm is linear discrimination index 

(LDA) which was developed by Fisher in 1936. [60]. PCA and LDA are well-known as the earliest 

features learning methods. 

1.4.3.2.1 Deep Features Learning  

Besides shallow learning, deep learning was proposed in 2006 by Hinton by [61] and since then, it 

has been investigated in many domains such as computer vision, image processing, voice 

recognition and natural language processing etc. Deep learning is achieved by building a deep 

architecture network with extended hidden layers to learn multiple levels of data representations. 

A number of deep learning models are available such as Deep Belief Network, Stacked Auto-

Encoder, Convolutional Neural Network, and Recurrent Neural Network [62].  

 
Figure 1-8 Feature learning methods in AI-based approach 

1.5 Aim and Objectives 

The aim and the objectives of this research are listed below: 

1.5.1 Aim 

The main aim of this study is to develop a framework for machinery CM. This aim will be carried 

out by automating the task of anomaly detection adopting unsupervised machine learning 

algorithm. Moreover, to make the task of diagnostic procedure less dependent on well-trained 
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labours by developing an adaptive algorithm with wavelet transform for feature extraction and 

enhancement by denoising the decomposed coefficients. 

Intelligent data analysis approach based on unsupervised ANN will be investigated for efficiently 

characterising large raw datasets arisen from condition monitoring systems and thereby for the 

automated fault detection at the very early stages.  

The second part of the developed framework is to enhancing the features of interest using an 

adaptive algorithm with an expensive wavelet transform (DD-DWT) and hence carry out the 

diagnosis of critical machine components such as rolling element bearings.  

1.5.2 Objectives 

To achieve the aim, the research sets up the following key objectives:   

Objective one: To explore and gain insight into the methods of current CM and their applications. 

Objective two:  To review the current analysis techniques of the experimental vibration signals, 

also, Artificial intelligence based techniques for anomaly detection in vibration data. Furthermore, 

to carry out a critical review of the wavelet-based data analysis techniques and their existing 

benchmark thresholding methods used for experimental data denoising and feature enhancement. 

Objective three: To automate the task of early fault detection and severity estimation by 

implementing an automated technique based AI approach.   

Objective four: To implement DD-DWT for vibration data analysis in field of CM and develop a 

thresholding algorithm for vibration data denoising and feature enhancing. 

Objective five: To investigate the impact of changes in internal clearance, due to inevitable wear, 

on the richness of diagnostic signal information and fault detection and diagnosis. Moreover, to 

design a test rig and develop an adjustable clearance mechanism in which the radial clearances can 

be controlled and the defects can be seeded into tapered bearings. 

Objective six: To evaluate the performance and capability of the CCNN using simulated data in 

order to explore its reliability and effectiveness on bearing fault detection in comparison with 

conventional techniques. 
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Objective seven: To evaluate the performance and capability of the CCNN using the vibration data 

gathered from baseline and defective bearings. 

Objective eight: To evaluate the performance DD-DWT with comparison to both DT-CWT and 

DDD-DWT in features extraction with the developed thresholding technique. 

Objective nine: To evaluate the performance of the developed thresholding technique (HSR) in 

features enhancement and data denoising against the benchmark thresholding techniques. 
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1.6 Flowchart of Data Analytics  

Figure 1-9 shows the integrated framework with two main implementation approaches adopted in 

this PhD project. Firstly, it focuses on extending AI techniques as an automatic data processing for 

early fault detection by applying Componential Coding Neural Network (CCNN). Then, once an 

anomaly is detected, a further analysis technique to identify the fault is proposed as a semi-

automatic data processing procedure using a multiresolution data analysis approach based on 

Double-Density Discrete Wavelet Transform (DD-DWT) with a novel level-dependant adaptive 

thresholding method.  

 

Figure 1-9 Implementation framework 

1.7 Summary 

In this Chapter, a brief background is given in (section 1.1), whilst, the condition monitoring steps 

explored in (section 1.2). Moreover, the condition monitoring focuses were listed in (section 1.3) 

and Condition monitoring of REBs were discussed in (section 1.4) with focus on signal based, 

model based and knowledge based.  Finally, the aim and the objectives alongside with flowchart 

of this research were presented in (section 1.5).  
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CHAPTER TWO  

2 FEATURE EXTRACTION AND ENHANCEMENT TECHNIQUES  FOR 

CONDITION MONITORING  - THE LITERATURE REVIEW  

Adaptive and iterative methods are reviewed with critical comments in this chapter. Signal 

processing based feature extraction and enhancement techniques including AI approaches are 

explored in line with their applications to condition monitoring. With emphasises on vibration-

based monitoring, both critically sampled and oversampled or expensive wavelet are discussed in 

details. 

2.1 Introduction  

A variety of signal denoising and feature enhancement techniques have been developed and applied 

in CM. These techniques are categorised and discussed in this research according to the 

methodology of processing the acquired data, hence, grouped as conventional, adaptive and AI-

based (automated). This categorization is adopted because the aim of this study is to automate the 

detection task and to facilitate the diagnosis task, in addition, in [63] Cerrada et al. reviewed the 

recent work 2010-2016 in vibration signal analysis and fault diagnosis and stated that the 

techniques can be categorised into two main categories, signal-based and AI-based techniques.  

2.2 Demodulation Signal Based Approach 

Amplitude modulation is identified as a multiplication of a low frequency modulating signal by a 

high-frequency carrier signal. This phenomenon will produce frequency components (peaks) in the 

spectra of the modulated signal, these peaks appear with sidebands located at the carrier (high) 

frequency band, and spaced with the modulation (low) frequency. Therefore, demodulating the 

signal to extract the modulation signal from the carrier frequency will be useful [64]. For bearing 

fault detection, modulating frequency is the frequency of interest as the resonance frequency is 

high and has few spectral lines. However, by using the conventional spectrum, it is not possible to 

recover characteristic defect frequencies from the resonance frequency. Fortunately, a technique 

called high-frequency resonance technique (HFRT), also called envelope analysis, allow extracting 

the modulating frequency from the resonance frequency band. HFRT can extract periodic pulses, 

also it can extract the amplitude-modulated signals from vibration signals with less sensitivity to 

the influences of slippage. Envelope analysis has been proposed and comprehensively used, 
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particularly for bearing fault diagnosis [65-67]. Envelope analysis can extract amplitude-modulated 

signals from vibration signals.  

2.2.1 Envelope analysis 

For a defective bearing, the pulse generated by the contact between the defective area and the 

bearing rollers will excite resonance frequency. The structural resonant frequency caused by pulse 

excitations is considered as an amplitude modulated signal. The amplitude modulation of the exited 

bursts can occur due to two reasons, the first reason is when the rolling elements passing through 

the load zone with so the modulation will be at the same rate, the second scenario, it can happen 

when the defect is rotating, the transmission path will vary with respect to the fixed sensor. The 

envelope analysis has the ability to provide more diagnostic information than raw data or spectrum 

analysis. It has been widely applied to detect and diagnose defects in bearing and gears.  As seen 

in Figure 2-1, the application of envelope analysis is applied through three main steps, bandpass 

filtering, rectification, and spectrum analysis.  

 
Figure 2-1 Envelope analysis procedure 

In more details as depicted in Figure 2-2, envelope analysis is applied by firstly to ensuring 

maximum signal-to-noise ratio, a bandpass filtering step around the excited frequency band to 

exclude the undesired low frequencies. These frequencies may be associated with imbalance and 

the misalignment. The next step is rectification by the demodulation process that extracts the signal 

envelope using Hilbert transform and smooth the signal by low pass filter to remove the resonance 

(carrier) frequency. Finally, the spectrum of the demodulated signal is calculated [68]. The 

diagnostic information, including the repetition rate of the fault peaks, can be found in the derived 

spectrum of the envelope. Envelope analysis of a signal is applied through several steps [69] as is 

depicted below:   

 �: �:�B�; L �(�(�6�:�T�:�P�;�; (2.1) 
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 �T�Ô�á�ç�:�P�; L �(�(�6�?�5�:�: �Ô�á�ç�; 
(2.3) 

 �T�Ø�á�:�P�; L ¥�T�Ô�á�ç�:�P�;�Û�T�Ô�á�ç�:�P�; 
(2.4) 

Where �T�:�P�; is the raw signal, �: �:�B�;is the Fourier transform of the raw signal, �: �Ô�á�ç�:�B�; is the Fourier 

transform of the analytic signal derived from raw signal���T�:�P�;, and �T�Ô�á�ç�:�P�;   is the analytic signal, 

�T�Ø�á�:�P�; is the calculated envelope. The spectrum analysis of the envelope function �T�Ø�á�:�P�;  can be 

expressed as 

 �: �Ø�á�:�B�; L �+���(�(�6k�T�Ø�á�:�P�;o�+ 
(2.5) 

�: �Ø�á�:�B�;��is Fourier transform of �T�Ø�á�:�P�;.  

The process of amplitude demodulation can be carried out digitally either using full base-band 

rectification or by using Hilbert transform techniques. A considerable improvement in performing 

the envelope analysis has been achieved using the Hilbert transformer because it reduces the whole 

number of data samples to be processed [70].  

 
Figure 2-2 Envelope analysis process [71]  
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However, it was claimed that as bearing damage develop and increases to a sever level, the 

vibration signal may exhibit more random features and become irregular. This can make envelope 

technique inaccurate for identifying diagnostic features from the vibration signal [35]. Moreover, 

it is not an easy task to specify the frequency band which contains the highest signal-to-noise ratio 

(SNR). This has led to the emergence of other techniques such as Spectral Kurtoses and Kurtogram 

and Fast Kurogram etc. to specify the best frequency band and select the central frequency where 

the highest SNR in allocated in the spectrum. 

2.2.2 Hilbert transform  

It was first introduced by David Hilbert to solve some integral equations, Gabor in [72] applied the 

Hilbert transform to associate the real signal with the complex signal. Given time series �T�:�P�; L

�Ù�…�‘�•�ñ�PE�>�•�‹�•�ñ�P, the complex signal can be derived as (2.6).  

 �TÜ�:�P�; L �T�:�P�; E�F�ê�:�P�; (2.6) 

Where �F�ê�:�P�; is an imaginary signal added to the real signal �T�:�P�;, and �ê�:�P�;��is a function yielded 

from �T�:�P�;  by converting �:�O�E�J�ñ�P�; into �:F�?�K�O�ñ�P�; and converting �:�?�K�O�ñ�P�;into�:�O�E�J�ñ�P�;. In this 

case, is a quadrature to �T�:�P�;thus the oscillating is transformed into a rotating vector. The 

associated with  can be yielded as:  
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Where �ì is the transformer parameter and �P represents time. To verify the sufficiency of (2.6) in 

converting �•�‹�•�ñ�P into F�…�‘�•�ñ�P and �…�‘�•�ñ�P into �•�‹�•�ñ�P 
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According to Gabor [73] �T�:�P�; and �ê�:�P�; with satisfying reciprocal relations are recognized as a pair 

of the Hilbert transform. Analytic signal is a complex signal whose imaginary part is a Hilbert 

transform of the real part. 

Randall and Bond [9] stated that Hilbert transform  of a time function  can be obtained as 
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It can be interpreted as a convolution of the function �T�:�P�; with �s���è  of signal as in and will result 

in another time domain signal. 

 
�TÜ�:�P�; L

�s
�è�P

�Û�T�:�P�; 
(2.10) 

 It shifts the input signal phase by 90º. Hilbert transform can be realized in the frequency domain 

by taking the Fourier transform of �TÜ�:�P�; as  

 �:à�:�B�; L �: �:�B�;�:F�F�O�C�J�:�B�;�; (2.11) 

Thus, it can be achieved in the frequency domain by shifting the phase F�è���t for the positive 

frequency and E�è���t for the negative frequency elements. And then taking the inverse of the 

Fourier Transform to get the signal back to time domain[9].  

Hilbert transform can be applied to either nonstationary or nonlinear signals, it can produce sharper 

output more than other conventional methods. Hilbert transform is used to compute the envelope 

of the signal when it applied to the modulated signal, the output will be the modulating frequency. 

In the case of using Hilbert transform for a defective bearing, it will yield the impulses response 

matches the roller passing frequency.  However, to perform envelope analysis to a signal, selecting 

the optimum frequency band is usually set manually, and it has been for a long time a tedious task. 

Therefore, several attempts have been carried out to facilitate the selection of the optimum 

frequency band, among them spectral kurtosis, kurtogram and the later developed version Fast 

Kurtogram.     

2.2.3 Spectral kurtosis   

Selecting the best suitable band for demodulation has been a real challenge when using envelope 

analysis, with many claiming that it is difficult. To overcome this issue, Spectral Kurtosis (SK) has 

been proposed to find the most impulsive band and has been used as a tool for extracting transients 

buried in noise [74-76].  

Spectral kurtosis is developed to solve the problem of selecting the suitable frequency band for 

bandpass filtering. It has been proposed to find the most impassive frequency band, the first 

reported use of SK was in [77] to detect impulsive parts in a sonar signal. The frequency-domain 

kurtosis was derived as a function of frequency based on STFT. The first reported use of SK for 

bearing faults was in [78], it was applied to a vibration data collected from a defective bearing and 

SK was used, based on STFT, to find the highest SNR region. SK is an indicator which indicates 
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to the distribution of the impulsiveness of a signal in the frequency transformation using fourth-

order statistics. This gives SK the ability to identify the transients and in which frequency band 

these transients occurred even in the presence of high additive noise. SK can be obtained from 

STFT by sliding the window along the signal and calculate the local Fourier transform for each 

window at the time �P. The magnitude �Ã���: �:�P�á�B�;���6�Ä is squared so can represent the local power 

spectrum at the time  as a function of frequency and averaged over time. However, �Ã���: �:�P�á�B�;���6�Ä  

can be seen as a function of time and interpreted as a complex envelope of �T�:�P�á�B�;, if the frequency 

bandpass filtered contains pulses, it can be detected by taking the kurtosis of the complex envelope 

�: �:�P�á�B�; as:  

 
�- �:�B�; L

�Ã���: �:�P�á�B�;���8�Ä
�Ã���: �:�P�á�B�;���6�Ä�6

F �t 
(2.12) 

Where (-2) is used to normalize the result to be zero when �: �:�P�á�B�; is a complex Gaussian, and the 

operator is time averaging[74]. For maximum SK, the window of STFT has to be smaller than 

the spacing between pulses and larger than the pulse itself.   

2.2.4 Kurtogram and Fast Kurtogram  

As stated above, the STFT length, as well as the bandwidth of the bandpass filter, have an important 

impact on the SK value obtained. For this, Antoni et al.[79] proposed Kurtogram to show a two-

dimensional map contains SK obtained from different STFT window lengths. The results will be 

calculated for all potential combinations of bandwidths, used for bandpass filtering, and centre 

frequencies. 

In practice, it will be a high computation cost to calculate the Kurtogram for all potential 

combinations of bandwidths, used for bandpass filtering, and centre frequencies. Thus, Fast 

Kurtogram was developed, an as alternative to Kurtogram, by Antoni in [79] to reduce the 

computational cost of calculating the kurtogram by adopting the fast multi-rate filter-bank 

procedure. The bandwidths will be iteratively halved and the process will begin with the entire 

signal spectrum as a one-sample window. 

2.3 Adaptive and Iterative Signal Based Approaches 

Signal-based methods are widely implemented to the task of feature extraction in CM and the 

extracted features are used for process monitoring. However, due to the presence of strong 
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background noise in the acquired data, identifying the faults from raw data has not always been 

possible, hence, denoising and enhancing the desired features are fundamental steps in CM for 

accurate and effective detection and diagnosis procedure[63].  

2.3.1 Signal Averaging  

Signal averaging has been for a long time and widely used to reduce the noise and enhance 

experimental signals[80, 81]. Signal averaging is achieved by using the available time for the 

measurement in taking many identical successive measurements, instead of using all the available 

time for a single measurement. And then with a shorter time constant, the optimum filter applied. 

By adding successive signals together, because if its incoherence, the noise will tend to average, 

whilst, signals will tend to add coherently[82]. Averaging can be done in both time domain and in 

the frequency domain[83], also in the time-frequency domain [84].  McFadden and Toozhy [85] 

suggested the averaging technique of the envelope signal for rolling element bearing diagnosis.   

2.3.2 Linear Prediction 

Linear prediction is a well know technique uses Autoregressive (AR) model and has been 

implemented as a way of extracting a signal of interest from a contaminated signal. Linear 

prediction can be derived [9]as in (2.13) 

 
�TÜ�:�P�; L FÍ �=�:�G�;�T�:�PF�G�;

�ã
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(2.13) 

Where �TÜ�:�P�; is the predicted value and is derived as weighted sum of �L value. Sawalhi in [76], 

Claimed that it is possible to use autoregressive methods in linear prediction to remove 

deterministic components, by using an AR-based linear prediction filter to separate the impulses 

originates from a defective bearing from the measured signal.  

2.3.3 Adaptive Noise Cancellation (ANC)  

ANC is used to separate two uncorrelated components from a primary signal. The procedure uses 

a reference signal contains only one of them. The ANC will try adaptively to find a transfer 

function, and then the modified reference signal will be subtracted from the primary signal, while 

the other components are left unchanged[86]. The output of the ANC is given as in  

 �%L �TE�J�4 F �U (2.14) 
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Where �T is the signal path, �J�â is the primary input noise path, �U is the output of the filtered reference 

input and will be subtracted from �TE�J�4 to give the canceller output �% [87]. In [88, 89], ANC was 

used to extract a faulty bearing signal corrupted by severe gear meshing noise. The results showed 

considerable success in detecting a seeded defect-bearing signal corrupted by gear background 

noise. In [88], ANC was implemented in bearing fault detection and was used to denoise the signal 

and improve the SNR. The study showed that the spectral and statistical analysis techniques have 

become more effective in the diagnostic roles after the application of ANC. 

2.3.4 Self-Adaptive Noise Cancellation (SANC)  

SANC is another signal enhancement technique used to separate a deterministic frequency from 

other random frequencies. In this method a delayed version of the primary signal is made as a 

reference signal, then if the correlation length of the random signal is shorter than the delay �¿, the 

SANC will not be able to identify the relationship, and the transfer function between the delayed 

version of itself and the deterministic part of the signal and will be found [74]. Many adaptation 

rules are used to minimize the total output noise power, however, the most widely used algorithm 

is the least mean square (LMS). The output of the filter is derived [90] as below  

 �U�:�G�; L �9 �Í �:�G�;�ä�: �:�GF�¿�; (2.15) 

Where �9  is the a vector represents the �*  weighting coefficients �S�Ü, �: �:�GF�¿�; a vector with the 

delayed version of the signal and the output can be then derived from the below : 

 �O�:�G�; L �T�:�G�; F �U�:�G�;�; (2.16) 

 In [90], the study investigated the implementation of SANC in order to denoise the bearing faulty 

signal, the study claimed that the results obtained showed that SANC is capable to eliminate the 

unwanted noise and facilitate the recognition of the different components in the spectrum of the 

signal. For more details, [91] has reviewed and evaluated the adaptive algorithms for noise 

cancellation. However, when using SANC,  the convergence stage may last for a long time period, 

especially for filters of high orders[74]. 

2.3.5 Time Synchronous Averaging (TSA)  

TSA based on the idea of exploiting the natural periodicity of vibration signals, this means 

averaging a signal over many rotations can remove almost all the components of a signal which are 

not at a frequency related to the rotation[92]. TSA cab be derived [8] as: 
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Where �U�:�P�; is the averaged signal, �6 is the averaging period, �0 stands for the average segments 

number. It has been widely applied to denoise and enhance vibration signal for two desirable 

reasons: firstly, it can be used to reduce the components of a vibration signal that are asynchronous 

with rotating shaft frequency, secondly, as result, this will amplify the amplitude of the important 

component in the vibration signal relative to the noise. McFadden and Toozhy applied TSA to the 

envelope signal collected from a bearing [85], vibration signal was synchronized relative to the 

cage with the rotation speed of the shaft. The study claimed that it revealed the spalls which were 

induced already on the inner race. TSA was extensively studied and applied as a filtering process 

to vibration signal of gears and bearing and in some studies was combined with other techniques, 

for instance,  [93] has applied TSA to envelope signal combined with Support Vector Machines for 

bearing diagnosis and it was claimed that lead to efficient bearing fault diagnosis. Another 

application of TSA was reported in [94], the proposed technique is based on analysis of the jerk 

energy gradient of the synchronously averaged vibration signal collected from a faulty bearing with 

inner race fault and outer race fault. 

2.3.6 Empirical Mode Decomposition (EMD)  

 EMD is a self-adaptive signal processing technique and one of the time-frequency analysis 

techniques for nonlinear and non-stationary data processing., EMD can decompose any input data 

set, based on its local characteristic time scale, into a set of a finite and small number of components 

called intrinsic mode function (IMF) [95]. EMD decomposes data �T�:�P�; into Intrinsic Mode 

Function (IMFs) �G�Ü [96] as in  

 
�T�:�P�; L Í �G�Ü
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In which, after extracting �J of IMFs, �N�á��is the residue of �T�:�P�;. EMD has been used for enhancing 

bearing signals, [97] has applied EMD to extract the fault features and remove the noise from the 

data.  
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2.3.7 Minimum Entropy Deconvolution (MED)  

 MED was developed by Wiggins [98], and since then it has been widely applied in signal 

processing. It more likely, especially in the case with high-speed bearings, individual fault pulses 

will be modified by the transmission path, thus, sharp impacts, which are travelling through the 

transmission path between the bearing and the sensor, may be extremely misshapen [99]. The MED 

aims to find the optimal filter �C�>���? to invert impulse response function of the system �D�>�J�? 

as�:�D�Û�C�;�>�J�?L �Û�>�JF�H�à �?, where �Û�>�JF �H�à �? represents Kronecker delta function. The filter �C�>�J�? 

is derived with �G coefficients [100]as in (2.19)  
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The objective function is sought by maximizing the kurtosis value. It is used to enhance the fault 

pulses by removing the effect of the transmission path. MED technique has been used in [76] by 

Sawalhi et al. for maximizing the capability of Spectral Kurtosis. The study claimed that MED 

effectively de-convolved the effect of the transmission path and clarified the impulses also greatly 

enhanced the results of envelope analysis in diagnosing the bearing fault. Jiang et al. [101] 

implemented MED technique to seek an optimal set of filter coefficients, to improve the fault 

impulses, in order to make the filtered signal containing clearer fault information, and envelop 

spectrum analysis was used to demodulate the fault frequencies. Barszcz et al. [99] presented the 

usage of the MED technique to enhancement the fault features for both fault detection and 

diagnosis. Despite the successful implementation of MED in some cases, [102] it has been reported 

that MED is unable to handle band-limited data properly. Thus, when analyzing noisy data, it is 

difficult to overcome this limitation. 

2.3.8 Wavelet Transform 

It has to be noted that due to time-varying environments, the CM data is usually complex in 

reality[26]. Time-Frequency domain analysis, it has been an effective technique to analysis 

vibration data collected from rotatory machines. Both stationary and non-stationary signal can be 

effectively analysed using time-frequency domain techniques. This can be considered as the main 

advantage compared to frequency domain techniques. The well-known time-frequency techniques 

are Wavelets, Short Time Fourier Transform and Wigner-Ville Distribution [103].  This research 

focuses on Wavelet Transform and its application to vibration signal analysis.   
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2.3.8.1 Wavelet Transform for Feature Extraction 

In the conventional filter-based signal denoising methods, the frequency components outside a 

predefined range are normally set to zeros, which may lead to losing some useful required 

information from the signal. The fault impulses appear in signals normally cover a wide frequency 

band, thus, the filtering methods may smooth some of the fault impulses. Features extracted from 

time or frequency domains cannot include all useful information. Thus, time and frequency domain 

are combined both in Time-Frequency domain method such as Short-time Fourier Transform 

(STFT), where a signal is decomposed into frequencies and corresponding time resolution and then 

applying FFT to each window to monitor frequencies over time, however, STFT suffers from the 

fixed window whose time-frequency resolution is constant.  For more details, the performances of 

the different time-frequency domain methods are compared and can be found in[104]. 

Besides the ability of wavelet in analysing non-stationary data which is considered as the original 

intention of developing wavelets, another successful implementation of wavelet transform if 

feature extraction. The compact support property of wavelet gives it the feature of energy 

concentration, this results in yielding many coefficients with small energy which can be excluded 

without losing the important and informative components in the analysed signal. Hence, few 

coefficients can be used to represent the diagnostic features. The key issue is to identify the best 

coefficients that represent the diagnostic features. Thresholding has been known as a promising 

solution and widely accepted to shrink the uninformative components from the analysed 

signal[104].      

2.3.8.2 The adaptive property of Wavelet transform  

Wavelet transform was developed, to overcome STFT problems, as an advanced technique of 

signal and image processing [105]. Compared to the constant resolution property of the time-

frequency in STFT, the time-frequency resolution of the wavelet transform is adaptive and depends 

on the frequency of the signal�����K�H�Q�F�H�����L�W�¶�V���F�R�Q�V�L�G�H�U�H�G���D�V���D���P�X�O�W�L�U�H�V�R�O�X�W�L�R�Q���D�Q�D�O�\�V�L�V. The adaptive 

property gives wavelet the ability to obtain high time but low-frequency resolution at high 

frequencies, whilst, at low frequencies, it can obtain low time but high-frequency resolution[106]. 

The wavelet transform is well known and widely used in data processing for several applications 

such as image processing and signal processing. 

In condition monitoring, there are different applications of wavelet such as the analysis of time-

frequency domain, feature extraction, signal enhancement and denoising, signal compression etc. 
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[107]. In terms of vibration signal, wavelet gives an excellent representation for several types of 

signals that containing jumps and spikes (singularities), it provides optimal sparse representation 

for such signals, the sparsity comes from the fact that since wavelets oscillate locally, only wavelets 

overlapping a singularity will have large wavelet coefficients whilst the rest of other coefficients 

will have smaller coefficients [108]. 

Wavelet is obtained by scaling factor �= and translation factor �ì from mother wavelet �ð�:�P�; as:  

 
�ð�Ô�á���:�P�; L

�s

�¾�=
l
�PF�ì
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Where �=�á�ì scaling and translation parameters respectively[109]. Several kinds of wavelets are 

available for a different of types the applications can be found in the literature. Comparison study 

based on their properties can be found in [110]. Kunpeng et al., in [111] reviewed the state-of-the-

art of wavelet transform methods with some results. 

In this research we consider wavelets that are analogous to Daubech�L�H�V�¶���F�R�Q�V�W�U�X�F�W�L�R�Q���I�R�U���R�U�W�K�R�J�R�Q�D�O��

and compact support, DWT, DT-DWT[108], DD-DWT [112], and double density dual tree DDD-

DWT [113],  as they suit the application of analysing vibration bearing signals for several reasons, 

Daubechies wavelets provide the best match to vibration signal produced from a defected bearing. 

Also, it has a given number of vanishing moments and it supports FIR filters and allows the use of 

the fast algorithm [110].  

Unlike filtering-based methods, the wavelet de-noising method does not corrupt the important 

components of the signal, because the wavelet shrinks the noise using simultaneous re-scaling in 

both domains frequency and time [114]. Wavelet transforms has been widely studied and proposed 

for experimental vibration signal processing. 

2.3.8.3 Continues Wavelet Transform (CWT)  

The continues wavelet transform has been investigated to map the data into two-dimensional 

coefficients to identify the presence of impacts in a signal due defects[115]. CWT is represented 

as:  
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Where �ð�Û�:�P�; denotes the complex conjugate of �ð�:�P�; and �ð�Û�@
�ç�?��

�Ô
�A is the basis wavelet 

function[109]. However, in the application of CWT,  a very redundant transform will be produced 
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which leads to the increase of computational time[116]. This led to the emergence of widely 

implemented dyadic wavelet called Discrete Wavelet Transform (DWT).  

2.3.8.4 Discrete Wavelet Transform (DWT) 

In order to overcome the redundant transform produced form the CWT, a discretization method is 

applied to dilation and translation parameters. This can be done by changing the dilation parameter 

�=���>�U���t�Ô and the parameter �>���>�U���t�Ô�> [109]. When the choice of scales and translations based on 

powers of two, the analysis will be more efficient and with the same accuracy of CWT. This type 

of analysis is called DWT [117]. The DWT was developed by Mallat [118]and it can be expressed 

as: 
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This transform is orthogonal and non-redundant wavelet[119]. DWT is critically sampled wavelet 

using FIR perfect reconstruction filter banks [120]. Wavelet and dilation functions at multi-scales 

are generated as shown in (2.23) and (2.24). 

 �Î �:�P�; L �¾�t Í �D�:�J�;�Î �:�t�PF�J�;
�á

 (2.23) 

 �ð�:�P�; L �¾�t Í �‰�:�J�;�Î �:�t�PF�J�;
�á

 (2.24) 

Where �D�:�J�; represents low pass filter and �‰�:�J�; high pass filter, �ö�:�P�; scaling function and 

�ð�:�P�;wavelet function [111]. The interest in using DWTs method comes from the fact that signal 

impulses can be identified from the high frequencies of the wavelet with a good resolution [121]. 

Low time resolution and high-frequency resolution can be obtained at low frequencies, whereas, a 

high time resolution but a low-frequency resolution can be obtained at high frequencies [104].  

Several DWT denoising approaches have been developed amongst them coefficient modelling and 

wavelet shrinkage methods. Wavelet shrinkage method is the most widely adopted method for 

signals denoising, as it requires low computational complexity. This method is based on 

thresholding technique to shrink the noise and preserve the important components in the residual 

signal. Therefore, wavelet-based de-noising techniques have been extensively implemented in 

recent years. 

The sequence of applying wavelet-based de-noising is to: 
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Firstly , decompose noisy data into L levels, where L is the number on decomposition levels. 

Secondly, perform a nonlinear thresholding after selecting the optimal thresholding value, to 

remove noise from the data up to L levels. 

Finally , a reconstruction of the de-noised signal is carried out through the inverse wavelet 

transform of the shrunk detail coefficients. Using the nonlinear shrinkage in the transformation 

domain makes this method distinctive from other linear denoising methods [122].  

It is possible to denoise contaminated vibration signal with sharp transients through the 

thresholding function in wavelet transformation domains [123, 124]. Several wavelet-based 

methods for the denoising have been available, for instance, [125] implemented the wavelet 

transform scale space filtering techniques and Bayes shrinkage for noise estimation and denoising. 

Altman [126] used wavelet packet analysis based multiple band-pass filtering to denoise bearing 

vibration signals and good results were obtained. In [127] the signal is denoised first to eliminate 

unwanted noise and spikes using wavelet de-noising, and the obtained wavelet coefficients were 

fed to non-linear PCA algorithm as an input vector. Although wavelet has been widely applied for 

signal processing, the denoising process affected by the base function where it cannot change 

adaptively according to the signal characteristics. 

 Second generation wavelet (SGWT) emerged in recent years and has been widely implemented in 

signal processing.  It is based on a lifting scheme to construct biorthogonal wavelets introduced by  

Daubechies and Sweldens [128], it has some advantages and faster than the conventional wavelet 

DWT.  For instance, Li et al. [129], proposed a technique named adaptive morphological gradient 

lifting wavelet based on SGW for bearing vibration signal denoising and feature 

extraction.  However, some shortcoming has been reported when using second generation wavelet, 

it suffers from frequency aliasing problem due to the splitting and merging operations process[130]. 

To overcome frequency aliasing, Bao et al. [131], proposed a redundant second-generation wavelet 

(RSGW). In this method, split and merge operations are avoided in the transformation process, 

thus, it does not suffer from the frequency aliasing problem. Lu et al. [130] proposed an adaptive 

redundant SGWT denoising method for vibration signal. The extracted features from the de-noised 

signal used as inputs into the SVM for fault detection. Feng et al. [132] proposed differential 

evolution (DE) optimization and antisymmetric real Laplace wavelet as a  filter to eliminate the 

interferential vibrations and remove stochastic noise from the original vibration signal. Then used 

envelop analysis to detect the bearing defects. In [133] Su et al. applied optimal Morlet wavelet 
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filter to eliminate the frequency associated with interferential vibrations in rolling element bearing 

and an autocorrelation enhancement algorithm is applied to the denoised signal to shrink the 

residual in-band noise and highlight the periodic faulty features. Despite the wide implementation 

of DWT and SGWT, when it comes to the non-stationary and non-linear vibration signal, 

conventional wavelet suffers from two main disadvantages as following:  

�ƒ High shift sensitivity, a small shift in the signal may result in a major variation in the energy 

distribution of DWT coefficients at different levels. The DWT is shifting-sensitive because 

the coefficients have unpredictable behaviour when the input signal shifts in time [134]. 

�ƒ Frequency aliasing which may lead to loss of important components of a signal. 

For the mentioned reasons above, it turns out the idea of using an expensive wavelet instead of a 

critically-sampled one. An expansive wavelet transforms (N)-point signal into (M) coefficients 

with (M > N). A number of expansive DWTs types have been developed such as Undecimated 

DWT, Dual-Tree Complex DWT and Double-Density DWT. 

2.3.8.5 Expansive DWTs  

The expansive or redundant wavelet transform results in a redundant representation of a signal in 

the wavelet domain. The wavelet coefficients are longer in length than the original signal, by 

increasing the sampling plane of the time-frequency using oversampled filter banks. As a result, 

this will give more flexibility in the wavelet design and this type of wavelet has more advantages 

compared to critically sampled DWT.  

2.3.8.5.1 Undecimated DWT 

The undecimated discrete wavelet transforms (UDWT) also known as redundant wavelet transform 

is an improved version of DWT.  UDWT have the advantages that it is a shift-invariant transform 

and there is no down-sampling operation involved Unlike the DWT, which downsamples the detail 

and approximation coefficients at each level [135].  Therefore, the approximation and detail 

coefficients of UDWT equal in length to the original signal at each level. UDWT up-samples the 

coefficients at each level of both low and high pass filters. The up-sampling operation is equivalent 

to dilating wavelets and then down-samples in the reconstruction process. The coefficients 

resolution declines with growing levels of decomposition. However, in the case of �F scales are 

implemented, UDWT is redundant (expensive) by �FE�s and therefore considered as a highly 

redundant transform [136].  
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UDWT has been studied for vibration signal analysis, for instance, Hao et al., [137] have 

implemented undecimated wavelet (MUDW) for noise smoothing and feature extraction of the 

bearings signal in rotating machines. [138] used undecimated wavelet transformation based on 

lifting scheme for denoising vibration signal gathered from a gearbox, the results showed the 

capability of the method in enhancing the vibration signal. [139] implemented UDWT to denoise 

gear vibration signal as a pre-processing technique, the approximation coefficients were used and 

have shown to be most suitable to denoise the signal. Zhang et al.[140] investigated the application 

of UDWT to feature extraction of impulsive vibration signal and claimed that the UDWT is 

effective in fault diagnosis. In [141], UDWT has been applied to bearing vibration signal and,  the 

results showed that it can diagnose bearing failure quickly and effectively. Qin et al.[142]  proposed 

a higher-density dyadic WT and several wavelet transforms were investigated for vibration signals 

collected from faulty roller bearings. The study claimed that the presented technique outperforms 

the other typical wavelet transforms, however, this method produces high redundant wavelet, which 

as a result, increases the complexity of computation. 

Despite the reported successful application of UDWT compared to the critically sampled DWT, 

especially for non-stationary signals, it has an expansion-factor of log N, therefore it is considered 

as a highly redundant expensive wavelet and therefore computationally high expensive [131, 143, 

144]. 

2.3.8.5.2 Double Density DWT (DD-DWT)  

Double Density DWT was introduced by [112] and is grounded on over-sampled filter banks, to 

reduce the translation sensitivity, instead of critically sampled conventional DWT. It is analogous 

to well- known Daubechies orthonormal wavelets and now in the oversampled case with tight 

frames. It is called oversampled as the overall rate of the subband signals is larger than the input 

by 3/2.  the  DD-DWT uses scaling function �ö�:�P�; and two distinct wavelets �ð�5  and �ð�6, where one 

wavelet is set to be offset by half from the other wavelet [113] as shown in (2.25) . 

 �ð�6�:�P�; N�ð�5�:�PF�r�ä�w�; (2.25) 

DD-DWT has one scaling function �:�P�; , two wavelet functions �ð�5�:�P�;�á�ð�6  and they should satisfy 

scaling function (2.26) and wavelet function (2.27): 

 �Î �:�P�; L �¾�t Í �D�4�:�J�;�Î �:�t�PF�J�;
�á

 (2.26) 
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 �ð�Ü�:�P�; L �¾�t Í �D�Ü�:�J�;�Î �:�t�PF�J�;
�á

���á�EL �s�á�t (2.27) 

In the equations, �D�4�:�J�; 
 represents the low pass filter while �D�Ü�:�J�;�á�EL �s�á�t

 
  are the high pass filters 

[112].  

 

Figure 2-3 DD-DWT oversampled analysis and synthesis filter banks 

For satisfying perfect reconstruction condition where �; �:�V�; L �: �:�V�;, filters should satisfy the 

conditions (2.28) and (2.29) when �*�Ü�:�V�; is the �< transform of �D�Ü�:�J�; as: 

 �*�4�:�V�;�* �:�s���V�; E�*�5�:�V�;�*�5�:�s���V�; E�*�6�:�V�;�*�6�:�s���V�; L �t (2.28) 

 �*�4�:�V�;�*�4�:F�s���V�; E�*�5�:�V�;�*�5�:F�s���V�; E�*�6�:�V�;�*�6�:F�s���V�; L �r (2.29) 

With the design of having more wavelets, a narrower spacing between adjacent wavelets within 

each scale will be obtained [145]. DD-DWT is constructed with decomposing and reconstruction 

three filter banks oversampled by 3/2 as shown in Figure 2-3. Motivated by the success of adopting 

an overcomplete expansion by a factor of 2 redundancy in dual tree discrete wavelet transform DT-

�ŽWT[144], which improves the shift-sensitivity of the DWT, Double density DWT was proposed. 

DD-DWT has several advantages that make it outperform critically sampled DWT and 

undecimated DWT.  The double density DWT is a less expansive version of the undecimated DWT. 

Also, DD-DWT has very smooth wavelets and it is nearly shift-invariant. This property is important 

for extracting periodical peaks. Another property is the reduced frequency aliasing effects which 

claimed to be effective for detecting harmonic features and makes the DD-DWT well suited for 

applications such as non-stationary signal processing that rolling bearing produces. DD_DWT has 

improved time-frequency bandwidth product. It has more wavelets than necessary which give a 

narrower spacing between adjacent wavelets within the same scale and is less redundant than 
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undecimated wavelet [113]. In UDWT, the redundancy grows with the number of levels, however, 

DD-DWT is just two times expensive [120].  

DD-DWT has been implemented in image processing and denoising, for instance, Sveinsson. et al, 

[146] applied DD-DWT to denoise Synthetic Aperture Radar (SAR) images by reducing the 

speckle of SAR images and claimed that the method was able to remove the speckles and enhanced 

the performance of detection for SAR based recognition. In [147], DD_DWT applied for image 

denoising in order to derive texture feature of the images, the results showed the potential capacity 

of DD-DWT in performing the task. Arfia et al [148] used DD-DWT to filter image components 

and experimental results showed the effectiveness of this image denoising method. In [149], a 

comparative study has been carried out using different wavelets for Ground Penetrating Radar 

(GPR) signals and it was found that the same level of processing, the DD-DWT outperforms the 

Haar mother wavelets or Daubechies order 6 when using soft thresholding. Another comparison 

study carried out [150], between DWT and DD-DWT in image denoising, It was found that with 

the same level of decomposing, the DD-DWT outperforms the DWT. 

DD-DWT has several advantages that make it outperform critically sampled DWT and 

undecimated DWT.  The double density DWT is a less expansive version of the undecimated DWT. 

Also, DD-DWT has very smooth wavelets and it is nearly shift-invariant. This property is important 

for extracting periodical peaks. Another property is the reduced frequency aliasing effects which 

claimed to be effective for detecting harmonic features and makes the DD-DWT well suited for 

applications such as non-stationary signal processing that REBs produce. DD_DWT has improved 

time-frequency bandwidth product. It has more wavelets than necessary which give a narrower 

spacing between adjacent wavelets within the same scale [108].  However, according to my 

knowledge, DD-DWT has never been explored to the scenarios of detecting and diagnosing faults 

from machine components such as bearings. 

2.3.8.5.3 Dual-Tree Complex DWT 

The Dual-Tree Complex DWT (DT-�Ž�:�7���� �L�V�� �D�Q�� �H�Q�K�D�Q�F�H�P�H�Q�W�� �W�R�� �W�K�H�� �'�:�7�� �W�R�� �R�Y�H�U�F�R�P�H�� �W�K�H��

limitation in DWT and to mitigate the expensive cost of the undecimated DWT.  

DT-�Ž�:�7���Z�D�V���L�Q�L�W�L�D�O�O�\���S�U�R�S�R�V�H�G���E�\���.�L�Q�J�V�E�X�U�\��[144] as an expensive wavelet and investigated later 

by Selesnick [108].  DT-�Ž�:�7���F�D�Q���E�H���H�[�S�U�H�V�V�H�G���D�V: 

 �ð�:�P�; L �ð�Û�:�P�; E�E�ð�‰�:�P�; (2.30) 
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Where �ð�Û�:�P�; is the real and, �E�ð�‰�:�P�;  is the imaginary part [151]. It uses two critically sampled 

DWT trees in parallel, one tree to generate the real part and second tree to generate the imaginary 

part of the wavelet coefficients separately. The wavelet coefficients of the real part can be expressed 

as: 

 �@�Ý
�Ë�:�G�; L �t

�Ý
�6± �T�:�P�;�ð�Ûk�t�Ý�PF�Go�@�P�á�FL �s�á�t�á�ä�ä�ä�,

�>�¶

�?�¶
 (2.31) 

Where �F is the level, while the scaling coefficients can be expressed as:   

 �O�Ã
�Ë�:�G�; L �t

�Ã
�6± �T�:�P�;�î �Û�:�t�Ã�PF�G�;�@�P

�>�¶

�?�¶
 (2.32) 

Similarly, wavelet �@�Ý
�Â�à�:�G�;  and scaling �?�Ý

�Â�à�:�G�; coefficients for the imaginary part can be derived 

from �ð�‰�:�P�;  and �T�‰�:�P�;. And then the wavelet coefficients and scaling coefficients can be derived 

by combining the dual-tree [152] as in (2.33) and (2.34): 

 �@�Ý
�Ö�:�G�; L �@�Ý

�Ë�:�G�; E�E�@�Ý
�Â�à�:�G�;�á �FL �s�á�t�á�å �ä�ä�, (2.33) 

 �O�Ã
�Ö�:�G�; L �O�Ý

�Ë�:�G�; E�E�O�Ã
�Â�à�:�G�; (2.34) 

When setting other coefficients to zero, the decomposition coefficients are individually 

reconstructed [153] as shown in (2.35) and (2.36). 

 �@�Ý�:�P�; L �t�:�Ý�?�6�;���6dÍ �@�Ý
�Ë�:�G�;�ð�Û�:�t

�Ý�PF �I �; EÍ �@�Ý
�Â�à�:�G�;�ð�‰�:�t

�Ý�PF �J�;
�á�à

h�á�FL �s�á�t�á�å �á�, (2.35) 

 �O�Ã�:�P�; L �t�:�Ã�?�5�;���6dÍ �O�Ã
�Ë�:�G�;�î �Û�:�t�Ã�PF�I �; EÍ �O�Ã

�Â�à�:�G�;�î �‰�:�t �Ã�PF�J�;
�á�à

h (2.36) 

�I ��and �J represents the filter lengths, �@�Ý�:�P�; and �O�Ý�:�P�; are real and equal in length with �T�:�P�;. The 

analytic of �ð�:�P�; gives DT-�Ž�:�7 excellent properties, to achieve this, �ð�Û�:�P�; and �ð�‰�:�P�; should form 

a perform Hilbert transform as: 

 �ð�‰�:�P�; L �* �<�ð�D�:�P�;�= (2.37) 

 where  represents the Hilbert transform and the two DWTs form an approximate Hilbert 

transform pair, so the second pair is viewed as a Hilbert transform of the first pair, and as 

demonstrated in [153, 154] the associated scaling filter of one pair should be approximately a half-

sample delayed version of the scaling filter of the other pair as:  
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 �‰�4�:�P�; N�D�4�:�PF�r�ä�w�; (2.38) 

When designed in this way, this wavelet is called Dual-Tree Complex DWT [155]. It was 

demonstrated that, by using a pair of wavelet transforms, significant improvements can be achieved 

in signal processing.  

DT-�Ž�:�7�� �F�R�P�H�V�� �Z�L�W�K��some additional important properties, it is approximately shift-invariant, 

perfect reconstruction using short linear-phase filters and limited redundancy, 2:1 for 1-D with 

independent of the number of scales [113, 143]. This doubled redundancy offers more information 

about the data for analysis with limited extra computation cost. The implementation of DT-�ŽWT, 

using separable filter banks, significantly improved denoising capability[156]. In the DT-�ŽWT, 

implementation of decomposition and reconstruction is carried out using two parallel DWTs with 

different low-pass and high-pass filters in each scale as shown in[153]. 

 

Figure 2-4 dual-tree complex wavelet transform [153] 

The tree of DT-�ŽWTs uses a different set of filters, and each set satisfies the perfect reconstruction 

condition. The perfect reconstruction property of the DT-�Ž�:�7���� �K�L�J�K�� �V�K�L�I�W�� �V�H�Q�V�L�W�L�Y�L�W�\���� �O�R�Z��

computational and perfect reconstruction make it a good candidate for denoising signals [157]. The 

design of the filters of DT-�Ž�:�7���K�D�V���V�R�P�H���L�P�S�R�U�W�D�Q�W���F�K�D�U�D�F�W�H�U�L�V�W�L�F�V���V�X�F�K���D�V���W�K�H���O�R�Z-pass filters in 

the two trees differ by 0.5 a sample period. All filters are from the same orthonormal set. 

Reconstruction filters are the reverse of analysis. The filters of Upper-tree are the reverse of the 

second-tree filters. The two trees have the same frequency response. All of this comes with a limited 
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redundancy cost of 2N in 1-D, which is much lower than the redundancy of a perfectly shift-

invariant DWT. DT-�ŽWT has been extensively investigated in image and signal processing, for 

instance, Wang et al [153] used the DT-�ŽWT with the NeighCoeff thresholding for denoising 

gearbox vibration signal.  The study claimed that the developed technique outperformed DWT and 

fast kurtogram. [158] DT-�ŽWT was applied to denoise audio signals contaminated with additive 

white noise of different intensity. The study claimed that DT-�ŽWT outperforms conventional DWT 

in the case of optimal selection of threshold level.  

2.3.8.5.4 The Double-Density Dual-Tree DWT (DDD-DWT) 

Double Density Dual Tree DWT was developed by Selesnick in [155]. This wavelet is an 

overcomplete wavelet and intended to have the properties of both DT-�ŽWT and DD-DWT into one 

transform. DD-DWT and DT-�ŽWT share some properties such as both are overcomplete by a 

factor of 2 in 1D, approximately shift invariant, both adopt FIR filter banks with perfect 

reconstruction. However, they are different in some aspects such as two wavelets form a Hilbert 

transform in Dual Tree whilst in Double density they set to be offset by one half from each other, 

they use a different structure of filter bank. DT-�ŽWT is considered as a complex while DD-DWT 

not viewed as such. These differences and similarities motivated the idea of combining the two 

wavelets in a single transform which have the advantages of both, dual tree and double density 

wavelets. The new function is a dyadic wavelet with tight frames based on two scaling functions 

�ö�è�:�P�;�á�ö�ß�:�P�;�� and four distinct wavelets designed in a specific way as in  [159] :  

 �ð�Û�á�Ý�:�P�;�á�ð�‰�á�Ý�:�P�;�á �FL �s�á�t���� (2.39) 

From the four wavelets, one pair is set to be offset from the other pair by one half as:  

 �ð�Û�6�:�P�; N�ð�Û�5�:�PF�r�ä�w�;�á �ð�‰�6�:�P�; N�ð�‰�5�:�PF�r�ä�w�;�� (2.40) 

While �ð�‰�5�:�P�; will form approximate Hilbert transform of �ð�Û�5�:�P�; and �ð�‰�6�:�P�; will form an 

approximate Hilbert transform �ð�Û�6�:�P�;  as: 

 �ð�‰�5�:�P�; L �* �>�ð�Û�5�:�P�;�?�á �ð�‰�6�:�P�; L �* �>�ð�Û�6�:�P�;�? (2.41) 

 As seen in Figure 2-5, two separate filter banks �D�5�:�J�;  and �‰�5�:�J�; are used with . The upper 

tree represents the real part whilst the lower tree represents the imaginary part of the complex 

transform [159, 160]. The DDD-DWT uses two oversampled iterated filter banks working in a 

parallel manner. The time-revers of the analysis filters are used as synthesis filters. The filter banks 
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satisfy the properties: perfect reconstruction, Hilbert transform pair property, specified vanishing 

moments, short support.      

 

Figure 2-5 Double Density Dual Tree DWT [155] 

When �*�Ü(z) is the �< transform of �D�Ü(n) and �‰�Ü(z) is the �< transform of �‰�Ü(n).  The perfect 

reconstruction condition as the following: 

 
Í �*�Ü

�6

�Ü�@�4

�:�V�;�*�Ü�:�s���V�; L �t�á Í �*�Ü

�6

�Ü�@�4

�:�V�;�*�Ü�:F�s���V�; L �r�� (2.42) 

And the same for �‰�Ü�:�V�;. The wavelet and dilation functions through (2.43) and (2.44) and (2.45). 

 �ö�:�P�; L �¾�t ��Í �D�4�:�J�;�ö�D
�á

�:�t�PF�J�; (2.43) 

 �ð�Û�5�:�P�; L �¾�t ��Í �D�5�:�J�;�ö�D
�á

�:�t�PF�J�; (2.44) 

 �ð�Û�6�:�P�; L �¾�t ��Í �D�6�:�J�;�ö�D
�á

�:�t�PF�J�; (2.45) 
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And the same for���ö�‰�:�P�;,�����ð�‰�Ü
�:�P�;�á�������EL �s�á�t. The new function is compact support with vanishing 

moments. The application of DDD-DWT includes image processing, data denoising and enhancing 

etc.  Data Analysis Based feature enhancement and denoising Methods  

Studying experimental signals normally is not an easy task, because some weak signals are non-

stationary and suffer from having a low signal to noise ratio (SNR). In practice, signals do not exist 

without noise, however, when the noise level corrupts a signal, the noise removing become a 

necessary process. The denoising process can take place in the original signal (time domain) or in 

the transformation domain (Fourier or Wavelet)[122, 161]. for experimental signals, conventional 

signal processing methods cannot be used effectively to extract the true signal [162]. As a result, 

enhancing and denoising those signals become a real challenge [80]. Enhancement of vibration 

signal measured from machines has been carried out by suppressing the background noise so as to 

increase the sharpness of the fault impulses. Noise is normally random signals with broadband 

frequency and this band will overlap with the signals of interest. Thus, with general filtering 

methods, it is challenging to effectively remove the unwanted noise from the signals [104].  An 

optimal denoising method should preserve the required signal features which are fundamental to 

the application while eliminating unwanted noise as much as possible. Many techniques have been 

proposed in signal enhancement for fault diagnostics and to denoise experimental vibration signal, 

here some of the well-known and widely used techniques. 

2.4 Automated Data Analysis based on Artificial Intelligence  

The main aim of AI-based approaches is to learn the pattern from the treated signal in order to 

associate it to a predefined or known condition. The learned pattern is considered as data 

representation and used for a multi-classification task when a supervised paradigm is adopted. In 

this case, the entire knowledge about the expected condition must be known. The vast majority of 

AI-based approached addressed in this manner. On the other hand, unsupervised paradigm aims to 

learn the pattern of the normal condition and then use the learned model to monitor the process and 

detect any changes occur in the data due to a physical change. In this paradigm, AI-based technique 

is used for features extraction, features selection from the signals generated by the monitored 

system also for dimensionality reduction. 

2.4.1  AI  for Data Post-Processing (Classification) 

The vast majority of AI-based approaches are implemented for post-processing process in CM, the 

expected conditions have to be pre-defined and the algorithm learns how to classify each input 
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instance to a predefined condition. Using AI for classification in CM has been of interest to 

researchers for a long time. The features are extracted based on human experience and are crafted 

based on the expertise knowledge[2]. For instance, Zhang et al. [163] have implemented  SVM to 

diagnose REBs, features were extracted based on some statistical parameters from the signal in the 

time and the frequency domain.  Saidi et al.[37], has used bi-spectrum as feature extraction and 

PCA to reduce the dimensionality of the data. The extracted principal components were fed to SVM 

to detect four types of bearing defects with different severities for each fault type. Yuwono et al. 

[164] proposed an automatic bearing fault diagnosis method using Hidden Markov Model (HMM) 

fed with the extracted fault frequency signatures by Wavelet Kurtogram and Cepstral Liftering. In 

[165] simulation data generated by high resolution simulates is used to train machine learning 

classifiers instead of using historical data, the generated data were used as inputs to train and 

investigate SVM and KNN, also CNN was applied to the generated data to diagnose simulated 

defects. The study claimed that high accuracy was achieved in all cases and applied methods. 

However, simulation data cannot simulate the reality and all possible operating condition of 

nowadays complex systems. Although AI approaches have witnessed an increase in the field of 

CM of REB, however, the accuracy of these methods highly depends on a set of suitably selected 

feature vectors as input to classifiers in order to accurately detect and identify the bearing faults.  

2.4.2 AI  for Data Processing (feature extraction) 

The quantity of machine-readable data rapidly increases but fortunately, machine learning offers 

techniques by which the massive data can be automatically processed. As the performance of 

machine learning techniques is highly depending on the feature extraction and selection step, hence, 

signal processing techniques widely implemented to extract and select the input features of AI-

based methods. However, they have to be very efficient in the isolation of fault characteristics from 

the raw signals. In the literature, several techniques based on time domain [24, 55, 166, 167], 

frequency domain [168]and time-frequency domain[164, 169-171] have been implemented to 

extract features for REBs fault diagnosis using neural networks. However, in most cases, the feature 

extracted from these domains were high-dimensional and redundant and as a result in gaining poor 

diagnostic information [172]. The task of dimensionality reduction is deeply connected to the 

feature extraction and selection, so the aim is to capture the significant components of a dataset 

[173] Thus, robust diagnostic feature extraction and analysis techniques are needed to extract the 

discriminative and informative fault features in a given feature vector. This is can be considered as 

means of either dimensionality reduction of the feature space or feature selection of the feature 

vector. To obtain the representative features from the data, a number of the AI algorithms in CM 
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were developed to carry out the task of feature extraction. Thus, many methods have been 

developed for diagnostic feature extraction and analysis. Among them, component analyses such 

as principal component analysis (PCA) [37, 174] and linear discriminant analysis (LDA)[175], 

Wavelet Kurtogram [164], kernel Fisher discriminant analysis (KFDA)[58], these techniques have 

been widely utilized in extracting features for fault diagnosis.  

PCA is unsupervised analysis method and was reported to be effective for diagnostic feature 

analysis and the produced principal components can provide discriminative faulty features for 

diagnosis. However, it was claimed that PCA is limited to preserve the discriminative properties of 

the analyzed data as it lacks intercategory separability estimation process [176]. Feature learning 

methods may hold the potential solution to overcome the aforementioned limitation in conventional 

AI diagnosis methods. To overcome shortcoming mentioned above, adaptively learn the feature 

from raw data can be highly desirable which can accurately represent the data by using advanced 

AI techniques. In this research, a neural network based adaptive autoencoder is used for feature 

extraction and selection. 

2.4.3 Artificial  Neural Network (ANN) 

Several attempts have been carried out in order to automate the fault diagnosis of REBs, ANN 

amongst the most AI methods applied for fault diagnosis.  Also, some variants of ANN also 

investigated in CM such as polynomial neural networks, dynamic wavelet neural networks, self-

organizing feature maps (SOM) [177], multilayer perceptron neural network[53]. ANN is a parallel 

data processing unit consists of an assembly of grouped connected neurons, ANN implements a 

training algorithm either feedforward or back propagation to perform specified functions to adjust 

the interconnection weights and biases value until the error between the predefined predicted output 

and the actual network output reaches the possible minimum value[165].    

ANN has the advantages that it can readily process nonlinear, high-order, and non-stationary 

dynamics.  The structure of ANN consists of three layers: the input layer, the hidden layer, and the 

output layer. Each layer consists of a number of neurons act as processing elements linked with 

each other in a way that they interact by using numerically weighted connections[53]. Mainly, the 

implementation of ANN consists of three main steps namely, training, testing, and implementation. 

In the training stage of a model, feature extraction and selection are the most important and critical 

stages. 
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2.4.3.1 Fundamentals of ANN 

Artificial neural network (ANN) is an information processing paradigm based on biological 

nervous systems of the human brain. ANN consists of a predefined number of interconnected 

processing neurons that work together in order to solve a specific issue[28]. ANN learn by example, 

it simulates the learning process in human biological systems includes the adjustments of the 

synaptic connections that exist between the neurons. The earliest artificial neuron was developed 

by the neurophysiologist Warren McCulloch and the logician Walter Pits in 1943. But due to the 

limitation of the available technology at that time, they did not do too much[178]. To understand 

neural networks, as an example, we will describe the simplest possible neural network, one which 

�F�R�P�S�U�L�V�H�V���D���V�L�Q�J�O�H���³�Q�H�X�U�R�Q���´���$�V���V�K�R�Z�Q���L�Q��Figure 2-6. 

 
Figure 2-6 Neuron Structure 

The input signals are multiplied with individual weights, and the multiplication results are summed 

up together into the value g as illustrated below: 

 
�‰L Í �:�T�Ü

�á

�Ü�@�4

�ä�S�Ü�Ý�; (2.46) 

The sum is fed into an activation function; one example is the sigmoid function �B�:�T�;, as illustrated 

below: 

 
�B�:�T�; L

�s
�sE�A�T�L�?�ë (2.47) 

The sigmoid function output results �B�:�T�;��lie between 1 and 0 as shown in function, however, there 

are several versions of activation functions such as tang activation function where the results lie 

between -1 and 1. 
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Figure 2-7 Sigmoid function 

ANN can be configured for pattern recognition or data classification or any other specific 

application. Through a learning process, ANN has been extensively used to solve several problems 

such as in prediction, classification, data dimensionality reduction, self-control, function 

approximation, pattern recognition etc. [179]. Data processing using ANN has first to go through 

a training stage which can be carried out by one of several three main methods: 

�x Supervised 

�x Semi-supervised  

�x Unsupervised  

In supervised training, the network is trained with input values against known output values, i.e 

there is a target output for each input pattern, and the network tries to learn to create the desired 

outputs. 

In semi-supervised training is the case where a few labelled data or unlabelled data are available 

and one is extended in order to increase the accuracy of the network. 

Unsupervised training algorithm, on the other hand, is the case where there is only training data 

without any corresponding target values. However, by looking for the input patterns sharing 

common features, the network can allow us to discover hidden patterns in the data. This is achieved 

by approaching problems with little or no idea what our results should look like, and the network 

will be able to recognize the features across the range of input patterns. 

As ANN has the ability to extract meaningful information from complicated or imprecise data, thus 

it can be used to perform patterns recognition and detect trends that are too awkward to be noticed 

by other computer techniques[178]. When a neural network is well trained, it can be considered as 
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an "expert" in the task of analyzing the data which has been given to the network. Some other 

advantages can be achieved when using ANN like:  

�x Adaptive learning: the algorithm can adapt itself based on the input data during training, it 

has the ability to learn how to perform some tasks.  

�x Self-Organization: based on the data an ANN receives while training, it can create its own 

organization or representation.  

�x Parallel Processing: ANN has the advantages of parallel processing as the network 

consists of a predefined number of highly interconnected neurons working as processing 

elements in a parallel way to solve a specific issue.  

2.4.3.2 ANN Training Meth ods  

Generally, training methods are classified into three categories supervised, semi-supervised and 

unsupervised. Each of which has its advantages and drawbacks[172]. Recently, deep learning 

methodology has been of interest in CM and witnessed increased implementation in feature 

learning. Several studies applied a deep learning approach to avoid the need for using feature 

extractors[180]. Among them, Convolutional Neural Network is a well-known and widely 

implemented deep learning methodology and many studies attempted to apply CNN to machinery 

CM.     

Supervised Training,  in supervised training methods, for each input pattern there is a target output, 

and the network learns during the training stage how to produce the required outputs[181]. 

Semi-Supervised Training, semi-supervised learning method is a hybrid approach in which 

extending either unsupervised or supervised learning using labelled and unlabeled data.  

Unsupervised Training, in unsupervised training methods, the network tries to find a hidden 

pattern in the input data to learn the most important features and then to be used to classify network 

inputs. Common unsupervised learning tasks include[179]: 

�x Data Clustering or grouping similar items together in each cluster, so the main task is to 

separate the input instances into groups. 

�x Anomaly detection, which identifies the abnormality in the data with reference to training 

data and how much the new data is different from the majority. 

�x Dimensionality reduction, in many cases the data needs to be processed is too large or it 

has a high dimensional space, unsupervised algorithms are widely utili zed in the task of 
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dimensionality reduction which aims to represent efficiently the input data with a lower 

dimensional feature space. 

2.4.3.3 Application of ANN to REB Condition Monitoring  

The �D�S�S�O�L�F�D�W�L�R�Q���R�I���D�U�W�L�I�L�F�L�D�O���Q�H�X�U�D�O���Q�H�W�Z�R�U�N�V�����$�1�1�¶�V�����W�R���W�K�H CM of REBs (CM) offers substantial 

financial rewards and has consequently been the subject of considerable research recently. ANN 

has been extensively studied as a fault detection and diagnosis technique. ANN has been applied 

�L�Q���V�H�Y�H�U�D�O���P�D�Q�Q�H�U�V���I�R�U���5�(�%�V���I�D�X�O�W���G�H�W�H�F�W�L�R�Q�V���D�Q�G���G�L�D�J�Q�R�V�L�V�����,�W�¶�V���X�V�H�G���D�V���G�D�W�D���S�U�R�F�H�V�V�L�Q�J��(features 

extraction and selection) and as data post-processing (classification task). 

2.4.3.4 ANN for Post-processing  

ANN has been applied as a post-processing tool so far, while the inputs were derived by 

conventional feature extraction and selection techniques.  For example, in [182], for bearing outer 

race and inner race defect detection, supervised pattern recognition technique based on neural 

network is proposed and used both time domain and frequency domain features as the inputs of the 

neural network. The study reported that time domain features more accurate after adopting 

statistical parameters to extract the features include RMS, Variance, Skewness, and Kurtosis and 

used as inputs to the neural network. Unal et al. [183] proposed bearing fault diagnosis system 

using envelope accompanied with FFT and Hilbert Transform methods for extracting the diagnostic 

features, and ANN network optimized by GA was implemented to classify the features extracted 

from of REBs vibration data. 

In order to improve the precision of fault description, Chen et al. [184] used dependent feature 

vector (DVA) for extracting and selecting features, and probability neural network (PNN) is 

proposed to denote the fault symptom attributes. In [185], a Feed Forward Neural Network (FFNN) 

with Levenberg Marquardt training algorithm has been proposed to diagnose the defect of bearings. 

A single dataset collected from one bearing was used for both the network training stage and the 

validation stage. However, the method cannot be generalized as they used just the same bearing for 

training and testing stages. Another attempt has been proposed by  [186] by using Weibull Failure 

Rate Function in order to reduce the effect of noise factors and used Artificial Neural Network 

(ANN) for bearings defect diagnosis. However, the error between estimated and actual damage 

severity was high at the beginning of the experiment and it declined only at the end of the 

experiment where the REB damage becomes very large. In [187], authors have presented a rolling 

bearing fault diagnosis using supervised neural networks and the features extracted using 
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time/frequency-domain. Diagnosis results around 70% for each for three different faults, inner race, 

ball, and looseness, by using Computer-simulated and real data. Sreejith et al. [24],  developed 

automated diagnosis using a feed-forward neural network for REBs. The FFNN fed with features 

extracted from time-domain vibration signal by using both Normal negative log-likelihood value 

and kurtosis value.  Levenberg-Marquardt (LM) algorithm was used for supervised training. Single 

point faults on inner race, outer race and ball are introduced into the test bearings using electron-

discharge machining.  However, although the result claimed to be good, vibration signals measured 

from only a single location.  

Moura et al.[188], applied hybrid methods based on signal processing and pattern recognition 

techniques to diagnose the severity of bearing defects.  The features were extracted by using both 

detrended-fluctuation analysis and rescaled-range analysis techniques. The extracted features were 

fed into ANN.  Supervised learning algorithm was used to train the classifier.  Three different levels 

of bearing fault severities were introduced at the outer race and have been classified yielded 

reasonably good results. 

Although the application of AI has been gaining importance in the area of automated REBs fault 

detection and diagnosis, there are still a lot of work has to be done in order to maximize the benefits 

of it. In the literature, most of the AI approaches have been applied using supervised learning 

techniques to train the network. However, supervised learning requires labelled data of each of the 

known faults and this needs a lot of human efforts to prepare this sort of data. Furthermore, most 

of the AI approaches have been applied for post-processing process (classification task), while a 

number of conventional techniques have been implemented for processing stage (features 

extraction and selection) to extract discriminative features such as time domain techniques, 

frequency domain, and time-frequency domain techniques. However, when adopting conventional 

techniques for data processing stage, extracting the features task, need to be carried out manually, 

and that relies on prior knowledge of expertise, moreover, this highly dependent on the advantage 

of human ingenuity, thus, time-consuming, costly and labour intensive[56]. Moreover, using 

conventional techniques in the processing stage when applying ANN, the post-process stage will 

suffer from being affected by background noise which degrades the measurement quality and led 

to the high-dimensionality of features vectors. Traditional AI techniques are unable to extract 

diagnostic and discriminative features from raw bearings data directly. Thus,  It is can be useful to 

remove such random noise before proceeding with bearing diagnostic analysis[74] In unsupervised 

feature learning, network learning is considered as a nonlinear function, and by this function, the 
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raw data will be transformed from the original space into a feature space. So no prior knowledge 

or labelled data are required to train the network. 

2.4.3.5 Recent Work Applied ANN for Feature Learning  

Several studies reported in the literature that applied ANN to feature learning process, some of the 

recent work applied ANN to feature learning such as following: 

�x Gan et al.[189] in 2016 proposed a hierarchical diagnosis network constructed with two layers 

deep belief network combined with wavelet packet used to extract the representative features. 

The extracted features were fed to train the network using supervised paradigm. The health 

conditions were classified using the proposed network. 

�x  Li et al. in 2016 developed a deep statistical feature learning method using stacked Gaussian-

Bernoulli deep Boltzmann machine for deep feature learning. Vibration measurements of 

rotating machinery were used as inputs to the developed method.   

�x Chen and Li [190] in 2017 proposed feature learning method based on multi-sensor data 

fusion technique. The feature vectors were constructed by extracting statistical features from 

the vibration signals of different sensors. The feature vectors used as inputs to multiple two-

layer sparse autoencoder networks for feature fusion. Finally, the fused feature vectors for 

each health condition were used to train Deep Belief Network for bearing fault classification 

task using supervised paradigm. 

�x Zhang et al. [180] in 2017 presents a new method for features learning called a transfer 

learning approach for fault diagnosis with neural networks. In this method, the network was 

fed with massive data to learn the features and the network parameters adjusted accordingly, 

also the structure of the network responds to the distribution changes in the training data. The 

data used in the training are different from the target data to improve the performance of the 

network. 

�x Shao et al.[189] in 2018 proposed an improved convolutional deep belief neural network with 

compressed sensing technology.  Features were learned from vibration data collected from 

bearings based on supervised deep learning paradigm and exponential moving average 

technique was implemented to enhance and generalising the performance of the constructed 

model. In this study, all studied cases (expected defects) were made artificially to the test 

bearings and this can limit the methodology applied to learn patterns from the known existed 

cases. 
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�x Feng et al.[190] in 2018 developed a local connection network based sparse autoencoder 

neural network for intelligent fault diagnosis. The developed methods were applied to 

vibration data collected from bearings with the different healthy conditions. Supervised 

paradigm is implemented using 10 class classification problem. Although the features were 

learned from the raw data, the accuracy of the classification achieved is limited to the 

artificially made defects in the studied conditions and it may not be valid to be implemented 

to a different unseen machinery system. 

�x Liu et al. [191] in 2018 presented recurrent neural network-based autoencoders for fault 

diagnosis, it was applied to vibration data collected from bearings with different health 

conditions. The autoencoder was used to denoise the vibration data and a supervised training 

paradigm is used to lean the features and classify the inputs into predefined class conditions. 

The classification accuracy achieved was compared to the results obtained from SVM and it 

was claimed that the proposed method outperformed SVM with good results. 

�x Jiang et al. [62] in 2018 developed an intelligent fault diagnosis based on an improved deep 

recurrent neural network. Supervised deep learning paradigm is used to train the proposed 

method, spectrum data used as inputs and was fed into the developed network. Stacked hidden 

layers were constructed for deep learning the features. Experimental vibration data was used 

to evaluate the effectiveness of the proposed methods and it was reported to be more effective 

than traditional intelligent diagnostic methods.   

�x Pan et el. [192] in 2018 developed a novel deep learning neural network named liftingNet to 

adaptively learn features directly from vibration data. It was constructed with several layers, 

split layer, prediction layer, updating layer, pooling layer and finely connection layer. A 

supervised paradigm is used to train the network using two datasets of motor bearings. The 

study claimed that the features were layer-wise learned and good classification results were 

achieved.   

�x Hoang et al.[63] in 2019 applied deep structure of convolutional neural network for bearing 

fault diagnosis, each vibration signal was transformed from 1-D into one corresponding 2-D 

vibration image and used as input to the network, the supervised paradigm was used to train 

the network. The study claimed that a very high classification accuracy was achieved using 

the proposed method. 

�x Waziralilah et el.[2] in 2019 reviewed the application of deep learning using Convolutional 

Neural Network in bearing fault diagnosis, the study concluded that in the literature only a 
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few works were reported that has proposed the architecture of CNN to learn features for 

bearing fault diagnosis with its severity.  

2.4.3.6 Drawbacks of existing methods 

�¾ It can be seen that most of the works above applied to manual simulated health conditions which 

were made according to a specific diagnosis issue and probably unsuitable for other issues. 

�¾ The above methods based on the assumption that data will be collected in the same operating 

conditions and exhibit similar distribution and feature space. Whilst, in reality, could not be 

applicable for real-world working conditions. 

2.5 Research motivation  

Studying experimental signals normally is not an easy task, because some weak signals are non-

stationary and suffer from having a low signal to noise ratio (SNR). Data collected from vibration 

sensors mounted on a defective bearing usually have the nature of non-stationarities and they are 

instead considered as cyclo-stationary signals [74]. Furthermore, bearing fault signals are always 

relatively contaminated by background noise and often is higher than the amplitude of the incipient 

anomalies. Developing a reliable algorithms to effectively detect anomalies and diagnose the health 

condition of such a complex systems is the main motivation of this PhD project.   

To address the aforementioned weaknesses, an integrated framework with two main approaches is 

presented in this research. Firstly, an unsupervised feature learning CCNN is concentrated on in 

this study for machinery condition monitoring to carry out the task of early fault detection and 

severity estimated. As the CCNN has the advantage of translation invariance to tackle the cyclo��

stationary nature of bearing signals, this study applies it to Tapered roller bearing fault detection 

and this might hold the potential solution to overcome the mentioned obstacles mentioned above 

in the early fault detection task.  

For the diagnosis to localise the defects occur in REBs, Multiresolution data analysis approaches 

applied using DD-DWT to analyse the vibration data alongside with a novel thresholding technique 

to denoise and enhance the extracted features from the collected data. The double density DWT is 

used in this research as it is a less expansive version of the undecimated DWT. Also, DD-DWT 

has very smooth wavelets and it is nearly shift-invariant. This property is important for extracting 

periodical peaks. Another property is the reduced frequency aliasing effects which claimed to be 

effective for detecting harmonic features and makes the DD-DWT well suited for applications such 

as non-stationary signal processing that REBs produce. DD_DWT has improved time-frequency 
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bandwidth product. It has more wavelets than necessary which give a narrower spacing between 

adjacent wavelets within the same scale [108].  However, according to my knowledge, DD-DWT 

has never been explored to the scenarios of detecting and diagnosing faults from machine 

components such as bearings. 

2.6 Summary 

In this Chapter, feature extraction and enhancement based adaptive and iterative approach reviewed 

in (section 2.2). In in (section 2.3) automated methods based AI approach were discussed. The 

drawbacks of the most widely applied recent methods were listed. The approaches are explored in 

line with their applications to condition monitoring. 
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CHAPTER THREE  

3 ROLLING ELEMENT BEARINGS AND FAILURE MODES  

This chapter presents the fundamentals of REBs including REBs types, REBs components and its 

applications. Moreover, bearing failure modes and their potential root causes are discussed with 

particular interests of various slow effects such as wear and erosions. Fault frequencies appear in 

vibration signal signature of the bearing due to the presence of local defectives are also illustrated 

in this chapter. 

 
3.1 Introduction  

REBs have been widely utilized in the vast majority of rotating machines to reduce the friction 

between rotating adjacent parts. Bearings are one of the most important elements in these machines 

due to their relatively lower price and operational ease. The reliability of REBs depends on the 

smooth and quiet running within the machines. However, REBs are recognized as a common reason 

for failures in rotatory machines. The literature shows that approximately half of failures in 

induction machines are due to bearing faults [193, 194]. Different kinds of REBs have come into 

use in industrial applications, each type is designed to support specific task. Before discussing the 

CM of bearing, this chapter will present the basic types of REBs and their components.  

3.2 REB Types 

REBs come in different sizes and shapes and they can be classified into different categories 

according to the application such as the load they support or according to the shape of the roller 

elements. However, in Table 2, REBs are classified according to their standard geometric shape 

[177]. The main two categories are roller shape and ball shape, each of which includes a verity of 

types.  

Generally, ball bearings can sustain lower load capacity but they are used in high-speed 

applications as the ball-race contact area is very small (point contact) and hence, results in smaller 

friction force [195]. Whilst, roller bearing can support higher load capacity because they have a 

larger contact area (line contact), hence, applied load will produce smaller contact stresses. On the 

other hand, the angular contact roller bearings can support simultaneously high radial and axial 

loads [196]. According to Table �������L�W�¶�V���F�O�H�D�U���W�K�D�W���E�H�D�U�Lngs are classified depending on the physical 

shape and the kind of load direction they support, combined load, radial load or axial load. Another 
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classification can be rotation speed, temperature resistance and so on. For instance, ball bearings 

are found in precision applications and good at the application of high speed under moderate axial 

and radial loads. Thus, they are very popular and widely used in the industrial world. Whilst, roller 

bearings are utilized in diverse types of machinery such as high load or temperature, also, the 

application requiring simultaneously support of axial and radial load and so on [197]. Therefore, 

this research will focus on tapered roller bearing and they will be examined in the real experiment. 

Moreover, studies based on tapered bearings can be extended to other types of Roller bearings.   
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Table 3-1 Types of rolling element bearings[177] 

 

There are several kinds of bearings available and they have their individual advantages and 

applications. The commonly used REBs according to their shape are illustrated in the following, 

ball bearings are widely used and they are available in designs to sustain radial and axial loads 

independently or simultaneously.  

Cylindrical bearing uses rollers as rolling elements. The contact area is line-contact between the 

roller and the race, the load is distributed over the larger area, this gives them the ability to carry a 

high capacity of radial loads, as well aas high-speed capability. Moreover, rollers are designed in 
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such a way that their length and diameter are not much different to avoid their tendency to skew. 

They are available with or without ribs, they can carry the light axial load when designed with rips, 

while bearings without ribs can facilitate the assembly and gives them the ability to absorb the shaft 

expansion.        

Tapered bearings are designed to carry simultaneously radial and thrust loads. For this purpose, the 

rollers and the races are made in a tapered shape. Their axial load capacity ratio has a linear relation 

with the contact angle between rollers and cones. Tapered bearings usually come into components 

apart, so the outer race is separate from the inner which comes with rollers and cage. The 

components are assembled when mounted preloaded or with the amount of clearance depends on 

the application.    

Spherical roller bearing normally has two barrel-shaped rows of rollers in separate raceways rolling 

around two raceways with a spherical outer race. They are capable to support large radial and thrust 

load capacity and can be used for heavy industrial equipment.  

Needle bearing uses cylindrical needle rollers with a small diameter. They can be used in limited 

radial space conditions. The large ratio between the rollers length and diameter makes them able 

to carry the radial load for their size. There are different designs of needle bearings depends on the 

application.  

3.3 REB Components  

Rolling bearing consists of four basic parts: inner race, outer race, rolling elements, and cage. Other 

special bearings have added parts such as seals and guide race. For supporting the bearing load, 

inner race, outer race, and rolling elements are used, while the cage is used to separate adjacent 

rolling elements from each other to avoid the friction. Bearing components are described in more 

details below.  

3.3.1 Inner race 

The inner race is mounted on the rotating shaft. As a result, it will be rotating with the shaft. The 

raceways shape will depend on the type of bearing. 

3.3.2 Outer race 

The outer race is usually the fixed part and it is mounted in the housing of the machine. Depending 

on the type of bearing, the shape of the raceways will have different forms such as cylindrical, spherical, 

or tapered. 



82 

3.3.3 Rolling Elements 

There are two major types of rolling elements and can be classified to ball bearings and roller bearings. 

In balls bearings the load transfers by point contact with the raceways. Where in the roller bearing, 

the load transfers via line contact with the raceways. The rolling elements are often made of carbon 

chromium steel. 

3.3.4 Cage 

The cage also called separator is made from cold rolled steel strip and it is used to separate adjacent 

rolling elements from each other and keeps them evenly spaced to avoid the friction while the 

machine is operating.  

3.4 Bearing Failure Modes and Their Causes   

REBs failure is one of the foremost factors in rotary machinery failure, such bearing failures may 

occur in a very rapid time due to several reasons. The prediction of rating fatigue life of a bearing 

is stated as �.�5�4 life based on LP which theory was developed by Lundberg and Palmgren [198] as 

in (3.1). 

 
�.�5�4L l

�%
�2

p
�ß

 
(3.1) 

With �.�5�4 means 90% reliability bearing fatigue life in 10^6 revolutions, where  �% represents the 

basic dynamic capacity, �2 is the equivalent load and �H is the load life exponent. The LP theory is 

based on the hypothesis that the primary cause of bearing failure will be normal fatigue. This means 

about 10% of the identical bearing population running in normal operating conditions will fail 

within about one year, whilst, 90% of the same population will equal or exceed the one year time 

before showing any sign of fatigue damage. However, half of the survived bearings may fail within 

five years of use and referred to as L50 [199, 200]. 

 Common premature failure of the bearing can be caused by several factors such as fatigue, a lack 

of lubrication or contaminated lubricant, excessive loading, plastic deformation, corrosion, 

improper installation and manufactures error [51]. Therefore, the investigation of these factors and 

vibration they produce is significant for the condition monitoring of bearings.  

The bearing defects generally can be classified into two main categories, distributed defects also 

called distributed wear and localized defects also called localized wear [201]. Distributed defects 

is an important category of bearing faults and can affect the entire structure of the bearing. To some 
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extent, a deviation from the ideal design of a bearing in operation cannot be avoided and the shape 

of the bearing components as a result will change. The severity of change will depend on the 

tolerance with which the bearing was manufactured, also on the wear which will occur during 

operation. Distributed defects include raceway roughness, off-size rollers, waviness, and 

misaligned races, can be caused by several reasons like manufacture errors, improper handling or 

installation and abrasive wear [202]. These defects are likely will increase the contact forces and 

which eventually lead to premature bearing fatigue and consequently, machine failure [203].   

Localized defects can be caused by fatigue damage on the rolling surfaces and often will lead to 

bearing failure. The failure caused by rolling contact fatigue is the most common cause of failure 

in bearings. Contact fatigue has many characteristics such as pits, spalls, cracks and scoring etc. 

[204, 205].  

 

Figure 3-1 Failure Modes 

Despite the recent advance made in understanding and analyzing the failure mechanisms of rolling 

bearings, it is still not reasonably possible to outline a coherent view of the failure modes. Failure 

modes are in somehow interrelated and in some cases, a developed failure mode can form and 

considered as another failure mode. Failure modes classification adopted in this research is found 

consisted with ISO 15243:2017 [206]. The ISO standard states six failure modes with their various 

sub-modes, these failure modes are Fatigue, Corrosion, Wear, Electrical erosion, Plastic 

deformation and finally Fracture as it can be seen in Figure 3-1. However, these failure modes do 

not highlight the causes behind the failure of bearings. According to the SKF study, failure modes 

can be caused by several reasons as seen in Figure 3-2. The Figure shows almost half of the 

common causes is lubricant-related. About one-third of causes is fatigue, whilst 1/6 belongs to 
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other categories which include overloading, improper handling, false design, and fitting or 

dismounting related issues.   

 
Figure 3-2 Bearing failure reasons [207] 

Figure 3-2 may vary according to the application of the bearing as it may encounter several 

damages due to any of these reasons. The characteristics of each failure mode will be discussed in 

more details below:     

3.4.1 Rolling contact Fatigue  

Fatigue is one of the most common factors of the failure in bearings. It can be classified as sub-

surfaces fatigue and surface fatigue. Subsurface fatigue results from the heavy load applied in the 

Hertzian contact zone. This repeated stress can make structural changes to the underneath surface 

of the raceways. These changes may propagate into surface fatigue after sufficient time and 

initiating localized defects in several forms, especially in the presence of other factors such as 

lubricant-related factor. Eventually, these defects may lead to severe contact fatigues. Such fatigue 

is very likely to increase friction and may have a serious impact on the bearings of the running 

machinery [208]. Fatigue can affect a bearing in a form of their sub-failure modes as following: 

3.4.1.1 Cracks 

In running loaded bearing, the sub-surfaces (below the surface) will experience the maximum shear 

stress. At some point, cracks initially occur at the sliding contact points under maximum stress and 

eventually propagate to reach the surfaces to form small pits. Several reasons can create cracks on 
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bearings raceway or roller surfaces, the most common causes are overloading or the excessive force 

used in mounting or dismantling the bearing, 

3.4.1.2 Spalling  

Spalling, also called flaking, is well-known damage in bearings and it can be produced as a result 

of classical contact fatigue, in other words, when the bearing reaches the end of expected operating 

life.  Also, it can occur due to other factors such as excessive load, tight preloaded fitting, expansion 

due to excessive heat as well as housing or shaft related issues.   Spalling can impose damage to 

rolling bearing before reaching their calculated rating life. Usually, spalling initiate below the 

surfaces in the area of maximum shear stress, then propagate to reach the component surfaces. 

When spalling damage reaches a certain level, it can be identified from the produced vibration and 

noise. This can be an indicator to replace the bearing to prevent the system of breakdown. Spalling 

can as a result of developed damages such as electric erosion smearing or pitting[209]. 

3.4.1.3 Smearing  

Smearing can occur when the loaded bearing is running under inadequate or unsuitable lubrication, 

so removed material from one side will be deposited onto the other surface. The transferred metal 

will get hardened by the high operating temperature [210]. Smearing can also occur as a result of 

sliding to a radially loaded bearing when the rollers are accelerated due to entering into the load 

zone.  

3.4.2 Corrosion (rust) 

Bearing are subjected to get rust during storage, operating if water or corrosive agents enter into 

bearing assembly, especially in poor lubrication condition where the lubricant fails to protect the 

bearing component surfaces. Rust can form on raceway, cage or roller surfaces. The risk of 

corrosion is much higher if the bearing in standstill or poor storage condition 

3.4.3 Wear  

The wear phenomenon was defined as the removal of operating material surfaces due to the 

repetitive motion on its surfaces. When two solid surfaces are in repeated contact an interaction 

either physical or chemical will occurs and will lead to material removal [211]. The typical causes 

of bearing failure have been investigated for a number of 1400 rolling element bearings. The results 

showed that almost 30% of rolling bearing failures are caused by wear or lubricant-related matters 

[212]. In the literature, there are several mechanisms of wear may occur during bearing life. The 

types of wear are adhesive wear, abrasive wear, corrosive wear and erosive wear [11, 213]. These 
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mechanisms produce a variety of wear evolution progress with respect to materials and surfaces 

changes [214].   

3.4.3.1 Abrasive wear  

Abrasive wear may occur after running-in for a sufficient length of time with respect to the 

operating conditions, the surfaces of rolling bearing are often subjected to a mild two-body abrasive 

wear. It is called tow-body abrasive wear when a material is removed from a softer surface by the 

asperity on a harder surface in the contact area. Another type of abrasive wear is called three-body 

wear. This type of wear can occur when a foreign particle enters into a bearing and rolling between 

the opposing contact surfaces. Foreign particles can penetrate into the bearing from worn seals or 

fine or grinding dust, also during installation or maintenance procedures and roughen the contact 

surfaces. Similarly, fine particles in lubricants can be released during operation when the metal 

components contact each other, especially in poor lubrication condition. However, some factors 

can accelerate the propagation of the wear and such as poor lubrication and leads to premature 

failure as a result (Olofsson, Andersson, and Björklund 2000). In the case of mild wear, an action 

can be taken, so the bearing and the housing can be cleaned and readjusted after being lubricated 

before putting it back to services. Otherwise, bearing subjected to excessive wear should be 

replaced to avoid breakdown of the system. 

3.4.3.2 Adhesive wear  

Generally, adhesive wear can occur when two moving surfaces have a molecular attraction between 

the contacting asperities, and if the internal cohesive strength is less than the adhesive strength of 

materials. After bearings run for a sufficient time, adhesive wear may take a place. Adhesive wear 

can also occur due to the breakdown of the protective lubrication film caused by over speed or 

excessive load, as well as improper lubrication [215]. In these cases, as protective lubricant film 

will not provide adequate protection, the material will transfer from one side to another side in 

contact with the friction heat. This type of wear has a linear relationship with pressure applied, so 

it will increase from mild to severe as the pressure increases. Furthermore, it will be larger if the 

used materials are identical as the adhesion is more likely to occur between similar atoms and 

welding them together [213].  In radially loaded bearings, the most critical zone in which slips may 

occur is that of the rollers entering the loading zone. When the bearing rotates, the rollers run slower 

in the unloaded area due to friction and then suddenly will be accelerated when they enter to the 

loading zone. Therefore, the phenomenon of adhesive or smearing wear can be encountered [216].    
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3.4.3.3 Corrosive Wear  

This type of wear is another cause of serious wear defects in a rolling bearing, acid, moisture, and 

water or other contaminants may penetrate into bearings assembly through worn or damaged seals 

and cause rust on running surfaces. As the rust particles will interfere with the lubricant, wear will 

be encountered and the rust pits may develop to flaking and spalling which makes the bearing no 

longer can be used [51]. 

3.4.4 Plastic Deformation  

If a metal-rolling Hertz contact is overloaded, plastic deformation will take palace, several reasons 

can cause plastic deformation such as static or shock overload, false handling and mounting, also 

indentation from foreign particles. Another reason is the unstable thermal balance especially when 

the high temperature is reached, which will destruct the lubricant, consequently, the friction will 

increase in the contact points and leads to permanent deformation. It can occur when the applied 

load is larger than the elastic of the bearing material, this can make a permanent change to the 

geometry of the bearing. 

It can increase the looseness or impose other undesirable consequences in a bearing [217]. 

Indentation is called true brinelling if it caused by false mounting or excessive load. Furthermore, 

an indentation may also be caused by foreign particles or other contaminants when entering into 

the bearing assembly, this type is called false brinelling. These foreign particles will roll into the 

raceways and will cause indentations and harm the bearing. Severe indentations will lead to 

premature spalling. 

3.4.5 Electric Erosion  

This type of failure occurs from the passage of current through a bearing used in electrical 

machinery. The electric erosion is a damage that can cause premature failure to the bearing surfaces 

and rollers [218]. This potential damage can be caused by either DC current as a result of the 

electrostatic charge or AC current from inverter-fed drives which may pass through the bearing 

components [219]. When current proceeds from one surface to another via rollers, it produces very 

high temperature on the contact points which will result in a series of localized electrical pits. If 

these electrical pits are severely damaged the surfaces, the bearing should be replaced, however, 

moderate pits do not usually result in failure [212].  
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3.4.6 Fracture  

The fracture can be a result of excessive force applied to mount or dismount the bearing. When 

using hummer blows to mount or dismount a bearing, cracks can be initiated and may grow to 

cause large cracks when the bearing is running. Continue running loaded bearing under this 

condition, cracks can develop into complete fracture [220]. Moreover, Factors like over preload or 

excessive shock loads, extreme heat and improper mounting and handling can cause a forced 

fracture to the bearing components.     

The aforementioned failure modes alongside with their potential causes are summarized in 

Table 3-2. The listed failure modes are matched with their potential causes, some of the failures 

can be caused by several factors such as fatigue, whilst, a factor can cause several failure modes 

such as lubrication- related factor.  
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Table 3-2 Failure modes and their possible causes [221] 

3.5     Summary 

In this Chapter, bearing types (section 3.2), bearing components (section 3.3) and bearing failure 

modes (section 3.4) were discussed. Also, the causes of the failure modes were discovered.  

  

Cause 

 

 

 

Failure mode 
symptoms 

Reasons 

Operating condition Environmental factor Lubrication  Human Error  

O
ve

rlo
ad

 

V
ib

ra
tio

n
 

E
xc

es
si

ve
 s

pe
ed 

S
ha

ft 
or

 h
ou

si
ng

 
is

su
es

 

In
ap

pr
op

ria
te

 
te

m
pe

ra
tu

re
 

D
us

t 

W
at

er
 o

r 
m

oi
st

ur
e 

E
le

ct
ric

al
 le

ak
ag

e 

C
or

ro
si

ve
 a

ge
nt

s 

In
ad

eq
ua

te
 /o

ld
 / 

co
nt

am
in

at
ed

 

M
ou

nt
in

g
/fi

tti
ng

 
 

H
an

dl
in

g 
/S

to
ra

ge
 

M
an

uf
ac

tu
re

s 
er

ro
r 

Contact 
fatigue 

spalling *    *  *      *  *  *  *  
Cracks *  *  *   *  *  *  *   *  *  *   

Smearing *   *  *       *  *   *  
Corrosion (rust)     *   *   *  *   *  *  
Electric erosion        *      *  

fracture *  *  *  *        *  *  *  

wear 
Abrasive *  *  *    *     *  *  *   
Adhesive *   *   *      *  *   *  
corrosive      *  *   *      

Plastic 
deformation *     *       *  *  *  
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CHAPTER FOUR 

4 VIBRATION  ANALYSIS TECHNIQUES FOR CONDITION 

MONITORING  

In this chapter, vibration as the mainstream technique of condition monitoring is explored, the 

importance of vibration to condition monitoring and fault diagnosis are discussed. Vibration 

transducer types and placements are overviewed in the course of data acquisition. Vibration 

responses to bearing defects and their characteristics are exemplified. In addition, vibration data 

analysis is surveyed. Finally, single row tapered bearing is detailed as the focused bearing of this 

research.  

4.1 Introduction  

An object is said to vibrate if it is oscillating with respect to a reference point, while the frequency 

of the object is the number of motion during a period of one second and its represented in Hertz 

(Hz) [222]. Several detection techniques are available to monitor machines in the industry; among 

them vibration technique. Vibration has been for a long time one of the most commonly used 

techniques for condition monitoring of machinery[48]. Several advantages make vibration-based 

more likely to be preferable than other monitoring techniques. For instance, it has an immediate 

reaction to changes in the monitored system, in addition, vibration more likely will highlight 

directly the defective component. Furthermore, many advanced techniques have been developed 

and are available to analysis vibration signal [9]. Bearings produce vibration while in operation 

even if they are geometrically perfect and fault-free due to varying compliance. However, a 

defective bearing with a localized or distributed fault could generate high vibration levels which 

include several peaks. These peaks are repeated as a function of rotational speed and the 

geometrical information of the bearing. Thus, vibration measurement is adopted widely in bearing 

monitoring.  Successful vibration measurement can be carried out by first calibrating and properly 

mounting the sensors on the monitored machine [223]. Transducers measure the mechanical energy 

in the form of electric energy by applying a conversion process.  

4.2 Vibration -based Condition Monitoring  

The vibration-based technology has been successfully applied for fault diagnosis in the monitoring 

of rotating machinery [224] An effective and reliable CM tools are required to monitor the healthy 

condition of REBs during their operating life. The vibration signals produced due to defects in them 
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have been widely studied. Researchers, particularly in the offshore oil and aerospace industries, 

started during the late 1970s and early 1980s, to employ vibration based fault detection [225]. It 

has been stated that in industry, vibration is the most commonly applied technique used in CM, and  

90% of all machinery failures can precisely be identified by monitoring the vibration signals which 

can help to make an accurate prediction of future failure [9, 177]. 

However, it is well known that the CM techniques such as vibration, supply the fault data for 

bearings in the form of raw signals, which are often contaminated by other system parts noises such 

as shaft rotational speed, background noise, etc. thus it has to be treated accurately to perform 

appropriate diagnosis and prognosis of the REBs [20]. Consequently, more robust and reliable 

signal processing techniques are still needed to accurately extract and select the fault features from 

the raw signals. 

4.3 Vibration Measurements 

Measuring Vibration of the rotary machine requires several technical pieces of equipment. In 

mechanics, the movement can be described by, velocity, displacement or acceleration. Various 

tools are used to measure vibration, transducers are widely adopted for vibration measurement and 

they are of three main types; displacement, velocity, and acceleration, and there is a mathematical 

relationship links them[226].  

Displacement refers to the distance that a vibrating object has moved from a reference point, it 

represented as a sine wave with amplitude and can be quantified by calculating the amplitude of 

object displacement in a meter . Displacement is a preferred measure for low frequency.  

Velocity measures the highest speed that a vibrating object reached while oscillating in the direction 

of motion. It can be quantified by the rate of displacement change per time unit i.e. 

. Velocity is a preferred measure for the frequency range of 10 Hz-1 KHz.  

Finally, acceleration represents the rate of change in object velocity with respect to time. 

Acceleration is usually quantified by a meter per second squared . In this research, 

accelerometers are considered.  

Accelerometers are cost-effective, light in weight with small sizes, also they have high sensitivity 

with decent wide frequency range, thus, it can be used to measure high frequency[227, 228]. The 

output signal produced by accelerometers is proportional to the acceleration of the mechanical 

vibration [71]. The measurement value type can be determined depending on the frequency range 
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of interest. For bearing monitoring, acceleration is chosen because of the modulation of defects 

(low) frequencies by the resonance (high) frequency.    

 
Figure 4-1 Vibration measurement steps 

The vibration measurement for condition monitoring consists of several steps, as illustrated in 

Figure 4-1, it starts with mounting the transducer on the vibrating machine, and signal is amplified 

and converted into electric current or voltage before it goes to the linked computer or recoding unit, 

and then the signal can be analyzed by vibration analysis techniques.  

In machinery condition monitoring, the widely adopted sensors are piezoelectric accelerometers. 

These accelerometers use the piezoelectric properties of ceramics and crystals to convert vibration 

into electric quantity [9]. 

The accelerometer is used as a basic sensor to measure the vibration on stationary parts of 

machines, the accelerometer measures absolute vibration by converting the deformation of 

piezoelectric ceramic plats, which built in the sensor, into electric charge. Generally, larger or 
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range at which it can measure. The generated electric charge cannot travel a long distance, 

therefore, accelerometers are fitted with pre-amplifiers to transform the electric charge into a 

voltage and their sensitivity is stated as mV/g. Figure 4-2 shows a typical design of the so-called 

pressure type accelerometer. The piezoelectric is placed between the upper mass (inertia) and the 

lower base mass, a spring is used to clamp the components of the sensor. When the monitored 

machine vibrates the lower mass also will vibrate while the upper mass stays at rest. This will result 

in a force produced and applied to the piezoelectric plate and electric charge will be created with a 

quantity proportional to the acceleration of the machine surface.   

Several advantages make accelerometers more preferable for machinery condition monitoring, 

accelerometers are designed in such a way that mounting orientation on machines does not affect 

their performance, unlike velocity sensors. Another advantage, accelerometers do not contain any 
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moving components, therefore, no frequent calibration process is needed. This makes them reliable 

and durable, also mounting and dismounting them on the machine structure is very easy. They can 

measure a decent wide frequency range from 0.1Hz-30KHz, in addition, they provide a large 

dynamic frequency range [71]. Therefore, the accelerometer is used for data collection in this 

research. 

 
Figure 4-2 schematic diagram for accelerometer [71] 

For accurate vibration measurement, an accelerometer attachment into machine structure has to be 

done in a proper manner. As the accelerometer measures what is vibrates itself, thus, it must be 

attached directly onto the monitored component of the rotary machine. Incorrect installation of the 

sensor can ruin the measured signal or it may not fully use the available frequency range of the 

used sensor. The accelerometer can be mounted in several ways, it can be mounted using a screw, 

glue (adhesive), magnet, beeswax, and touch needle. The way of mounting depends on the machine 

application or frequency range of interest. Each way of mounting has its cons and pros. However, 

screw attachment is considered one of the most reliable methods. The surface area underneath the 

sensor has to be flat and cleaned before attachment. In addition, there should be a full contact 

between the sensor base and the machine surface. Adhesive or glue method is another reliable 

method when the suitable adhesive is applied, also the surface area underneath the sensor is cleaned 

and roughened. In practice, a base with a screw is attached rigidly with glue onto the machine 

surface rather than glueing the sensor itself and then the sensor is fitted using a screw. The mounting 

task must ensure that the surface and the measured vibration are identical [229].   

The vibration signal is transmitted, from the sensor to data analyzer through cables for wired 

sensors. In the industrial environment, factors such as electromagnetic field and static charge are 
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expected to be present. These factors can strongly affect the measured data if the cables used to 

link the sensors are not protected and shielded to a high standard quality.       

4.4 Vibration  Response due to Bearing Defects 

For a bearing with well-known localized faults, when the rolling element passes over the defect 

area, a series of repetitive short transient pulses will be produced that can excite structural 

resonances. Other vibration sources may include manufacturing errors and background noise. The 

vibrations induced by either or manufacturing errors or localized defects may contain, in a rather 

wide band, high energies around the structural resonant frequencies. However, as a result of 

slippage and sliding caused by the variation of the load angle of the rolling element, the spacing 

between these impulses is not constant and the impulses are usually described as pseudo 

cyclostationary [99]. Thus, it has to be treated accurately to perform an appropriate diagnosis and 

prognosis of the REBs [20]. 

When a fault occurs in a bearing such as peeling, spalling, galling, subcase fatigue or failure of the 

bearings as a result of misalignment, surface roughness, shaft slope, or due to high extent of 

waviness and inclusions, etc., the overall vibration level is affected. The faults should be detected 

and a decision has to be made on time to avoid, the consequences of fault development which can 

be a catastrophic collapse of the system, resulting in a financial loss and maybe put the safety of 

the workers at risk [22].  It is known theoretically that a robust early fault detection method has to 

be sensitive to impulsive signals and the changes occur in signature [177, 230]. 

The most popular approach for detecting the defects is vibration monitoring of REBs. Single point 

defects like cracks, spits, located at the inner race or outer race and at the balls.  When one of these 

defects occurs, the roller element pass over the defect area results in a repeated series of impacts 

because of the collisions of the metal to metal contact. As these impacts have wideband energy, 

they will excite the natural frequency resonance of the machine. The repetition rate of these impacts 

is equal to one of the characteristic fault frequencies previously defined[193]. 

 The vibration signature is characterized by these sharp peaks. The characteristic fault frequencies 

are normally low frequencies and masked by background noise, therefore, it is very unlikely to 

diagnose the insipient defect frequency by using conventional spectrum analysis as these impact 

vibrations distribute their energy over a wide range of frequencies. However, as the impacts have 

wideband energy, consequently, they will excite some higher frequencies resonance of the system 

(carriers), the amplitudes of the excited higher resonance frequencies will be modulated by 
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characteristic fault frequencies. Around those resonance frequencies, the main energy of the fault 

signal of the REBs can be found [53]. 

4.5 Characteristic Frequencies of Bearing Faults 

Defects in REBs can be mainly categorized into four types: outer race fault, inner race fault, rolling 

element fault and carriage defects, each of which is characterized by periodic impacts with a 

characteristic rate. For ideal operations, i.e. without slippage and surface wear, the defect or 

characteristic frequency can be calculated based on bearing geometric parameters and shaft speed 

[74] according to Equations (4.1) to (4.4). 

Ball Pass Frequency of Outer Race (BPFO) �² produced from the rolling of all rolling elements 

across a defect in the outer race: 
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�s
�t

�Vl�sF
�@
�&

�…�‘�•�=p�B�æ (4.1) 

where �V stands for the number of rolling elements, �@ is the diameter of the rolling element, �& is the 

pitch diameter, �Ù is the contact angle, and �B�æ is the shaft frequency. 

Ball Pass Frequency of Inner Race (BPFI) �² produced from the rolling of all rolling elements 

across a defect in the inner race: 

 �B�»�É�ÂL
�s
�t

�Vl�sE
�@
�&

�…�‘�•�=p�B�æ (4.2) 

Ball Spin Frequency (BSF) �²  the spin frequency generated from the spins of each rolling element, 

the Ball Fault Frequency (BFF) is calculated as 2×BSF: 
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Fundamental Train Frequency (FTF) �² is generated due to a defect in the cage: 
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A localised damage of a rolling element will impact the inner race and the both outer race once a 

spin and two transients are generated. Thus, �t�B�»�Ì is used as the fault frequency of rolling element. 

The theoretical fault frequencies of bearings used in this study are calculated for the outer race, 

rolling elements, carriage and inner race. 
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4.6 Summary 

In this Chapter, vibration technique as the mainstream technique of condition monitoring was 

discussed. Vibration-based Condition Monitoring and vibration measurement were explored in 

(section 4.2 and 4.3), whilst, vibration response due to defective bearing was discussed in (section 

4.4). In addition, characteristic frequencies of bearing faults were presented in details in (section 

4.5).  

CHAPTER FIVE  

5 COMPONENTIAL  CODING NEURAL NETWORK  

This chapter presents the fundamentals of ANN. Both supervised and unsupervised schemes are 

understood based on a specified neural network: auto-encoder. Finally, as a promising algorithm 

for effectively processing vibro-acoustic signals, the componential coding neural network (CCNN) 

is elaborated with its theoretical basis and the implementation procedure. 

5.1 Introduction  

The application of artitficial intellegance techniques to machine fault detection has been gaining a 

remarkable success, especially when applied to REBs condition monitoring. One of the successful 

implemented Artificial intelligence (AI) approaches is the Artificial  Neural Network (ANN)[182]. 

This chapter presents the use of a componential coding neural network for machinery fault detection 

and potential diagnosis. 

5.2 Unsupervised Features Learning and Auto Encoder  

Supervised learning has been a successful tool of AI, and has gained a successful implementation 

to several domains and application such as automatic zip code recognition, speech recognition, 

driverless cars, and so on. However, in some domains or applications, supervised learning still 

considered as severely limited as the input features need to be specified manually before it can be 

fed into the network and force the network to learn a model to match the output.  In Such domains 

for example like computer vision, signal, and audio processing, their features-engineering work is 

very clever. Also, the design of feature extractors is extremely expensive and the generalization of 

these extractors can be really poor [231]. Therefore, in such cases, learning better feature 

representations than the hand-engineered ones can be optimized by adopting unsupervised 

algorithms[232]. One of the neural network unsupervised learning algorithms is autoencoder that 
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adopts backpropagation. Autoencoder was introduced in the 1980s by[233]. Autoencoder consists 

of an input layer, hidden layer, and output layer as shown in Figure 5-1. 
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Figure 5-1 Auto encoder 

Autoencoder tries to make the target values equal to the input by learning a function �D�Ð�ä�Õ�:�T�; N�T  

In other words, it is trying to get an approximation to the identity function, in order to get the output 

�TÜ that is very similar to input �T by minimizing the reconstruction error as in shown equation (5.1).  

 �' �å L �Ã���TF�TÜ���6�Ä (5.1) 

Autoencoder is based on the principle of encoding a module followed by decoding the module, by 

reducing the number of units in the hidden layer. Thus, If there are correlated features in the inputs, 

the algorithm can learn a compressed representation of the data and extract structures (patterns) 

from the data[231]. This method is highly recommended where a low dimensional representation 

of the data needs to be modelled. 

However, several studies advocated that the use of sparse representations for data, in which the 

dimension of the hidden layer is equal or bigger than the dimension of the input layer [234-236].  
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They stated that sparse- representations can provide many advantages. For example, adopting high-

dimensional representations in image processing raises the possibility that image categories will be 

easily separable, and it can present a simple analysis of the input data by extracting the hidden 

structure in the data. Moreover, in a human brain, there are some pieces of evidence that the 

biological vision uses sparse representations in early visual areas[237, 238]. Therefore, so as to 

preserve the useful information in the input, considering a complete representation to reconstruct 

the input data to it can be really reasonable. Based on the principles of ANN and unsupervised 

learning adopting autoencoder, this research presents the use of optimized autoencoder approach 

called Componential coding neural network to bearings fault detection and severity measurement. 

5.3 Componential coding neural network (CCNN) 

Componential Coding Neural Network was originally introduced and investigated for high-

dimensional image processing in [57, 187, 239]. CCNN is an unsupervised neural network and 

based on the idea that the unsupervised network is able to discover related repetitive component 

substructures, which appears frequently in the different input data. CCNN architecture has been 

developed based on the idea of autoencoder architecture of one-dimensional network, a basic data 

pattern is specified as a one-dimensional column vector of length  windowed from a long time 

sequence. The input layer is equal to the data pattern length. The training algorithm used in CCNN 

was developed to optimize the accuracy of the reconstruction process when the model during 

training tries to reconstruct the input signal on average, mean square error (MSE) is minimized 

based on how much differ model-based reconstructed signal from the input signal[57]. 

CCNN was developed for image data processing. Limited work has been reported of apply this 

network to the machinery condition monitoring, Webber et al. [240], have developed a one-

dimensional network architecture, for novelty detection and has been applied to both induction 

motor three-phase and to a transverse flux motor current data, for the induction motor, Voltage 

imbalance was studied by seeding of a 20 V imbalance and a 40 V imbalance to the power supply 

system. The study claimed that the network has a good capability in novelty detection and 

discrimination to detect seeded voltage imbalances, also performed well when compared to 

conventional techniques [241]. For the transverse flux motor, flux data from the rotor were 

collected and CCNN has been applied to detect five different fault cases, CCNN performed well 

and has given good results [241]. However, CCNN has never been explored to the scenarios of 

detecting and diagnosing faults from other machine components such as bearings. The vibration 
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signals from faulty bearings are representatives for many different components but with significant 

differences from that studied in [241]. 

5.3.1 Novelty Detection and Diagnosis Models 

Novelty detection and diagnosis are essential tasks in CM and from the network model and training 

fundamentals, data reconstruction is an approach that can be followed to generate data models in 

CM tasks. 

5.3.2 Error Based Detection 

If the CCNN has been trained with a baseline dataset, the novelty or the changes of a new dataset 

from the baseline training data set can be found through the reconstruction error of the new data 

set using the trained neural network model. The averaged error �' �å, as it shown in (5.1), represents 

the difference between the current input data and the data model obtained during training stage. 

This averaged error then gives a general measurement of the novelty. This method is called the 

reconstruction error based detection model (REM) [240]. 

CCNN tries to capture the characteristics of the training signal and then subsequently measure how 

much is the difference between the characteristics of the unseen signal and the original signal used 

fir training. In neural network terminology, this can be defined as an anomaly detection task. In 

[58], the anomaly detection defined as the task of recognizing that the testing data is different in 

some respect from that data used during the training process. The capability of CCNN in detecting 

novelty characteristics is because CCNN was developed on the basis that it will not reconstruct all 

signals with the same accuracy, however, it will only reconstruct accurately signals that share very 

similar characteristics with signals used for training the network. So the optimal accuracy of the 

reconstruction will be only for the data that share similar characteristics with the training signals, 

otherwise, there will be a certain difference in the reconstruction error and it can be determined by 

measuring how imprecisely each data-set reconstructed [240]. 

CCNN algorithm will be training using bearing signals recorded under healthy condition. The 

anomaly will be detected when monitoring data differ from the data that was recorded under healthy 

operating condition during the training process. Thus, fault detection can be realized as anomaly 

detection, where anomaly arises as the result of a fault in the monitored system. The severity of the 

change is inferred from the reconstruction error measured value between the signal and its 

reconstruction. The first stage of using CCNN is to train CCNN by benchmark a date set under a 

certain operating condition as a baseline i.e. free of faults, the training is carried out in order to 
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model a training signal by minimizing the MSE between the data set and its reconstruction, as less 

as possible.  The second stage is the validation stage, in this stage; in order to test how the data 

model matches the unseen baseline data, the model will be tested using unseen baseline data.  This 

is conducted by acquiring a new dataset, known to be healthy, under the same condition used in 

recording the training data. Using a new data set, the MSE will be measured to determine how new 

data set differ from the model. No training or error minimization is involved in this stage.  The 

previous sages are considered as a calibration process to calibrate the CCNN.  The final stage is 

the monitoring stage, in this stage a new data set is recorded and measure how MSE differs from 

the model obtained in the first stage and then from the difference between the MSE of the validation 

stage and MSE of monitoring stage, it possible to know how does the monitoring data differ from 

the model than the validation data does. The anomaly can be detected using the Average 

Discrimination Index (ADI), which represents the ratio of MSE for the monitoring stage to the 

MSE for the validation stage minus 1. If the ADI value greater than zero by a fraction of 1, this 

clearly means that the monitoring data much differ from the model than the validation data set does 

and a clear indication of a physical change in the system, i.e., a fault is detected. Obviously, a 

higher amplitude of the error would indicate to a greater physical change in the monitored system 

from its healthy condition and the amplitude of the ADI is used as an indication of the fault severity. 

Moreover, the idea behind considering the amplitude of the ADI is that a high change in the 

amplitude would indicate a larger change in the monitored system from its healthy condition. 

A conventional autoencoder is designed to transform input data into a coded form while applying 

some constraints such as minimizes the dimensionality of the data to a certain predefined level. 

However, CCNN algorithm was designed to have the sparseness property when coding the inputs 

to keep the most important components of the dataset, then retains the maximum information about 

that input dataset when decoding it back.in the reconstruction process. Thus, the reconstructed data 

will be similar to the original data by minimizing the reconstruction error to a minimum possible 

value  

Compared to similar algorithms such as PCA, Componential coding neural network has some 

advantages such as. Firstly, when using CCNN, there is no need to pre-process the data, also there 

is no need to prior-knowledge about the data, as it extracts its own features automatically from 

dataset directly through an adaptive training algorithm. Secondly, CCNN offers the advantage of 

time translation invariance, for instance, discovering time-localized features in a signal that have 

time-invariance (non-stationary) is one of the profits of CCNN, while linear PCA can find only 
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periodic eigenvectors. The sensitivity of CCNN to time translation invariance arises from the non-

linearity neural output function of CCNN. Thus, CCNN is capable to detect faults with greater 

sensitivity. 

Essentially, CM of the bearings using CCNN may be implemented up to different stages: 

�x Novelty detection can be accomplished through the reconstruction errors made by 

comparing the original one with model prediction. 

�x Fault severity can be detected by the characteristics of the amplitudes of the ADI. 

�x Fault identification can possibly be realised by characterisation of the model parameters 

such as weight vectors and scale parameters. 

5.3.3 Componential Coding neural network Architecture and Theory  

CCNN has as a single layer of neurons, every neuron will receive the same input vector �T and 

computes a different output �U. The output is derived as a function of the input �T  and the network 

parameters.  Most of the parameters values are obtained adaptively in the training stage. The 

neurons encode the input data as a non-linear function of the input data into encoding coordinates 

�UL �:�U�5�á�U�6�á�å �U�á�;. The reconstruction process  �U�\ �TÜ , however, is a linear inverse transformation 

reproduces a model-based �TÜ of the input vector �T  based on the output  . The transformation process 

�U�\ �TÜ  is loos because of the constraints imposed on the process, In other words, the output �U will 

not contain all the information available in the input data  . Thus, �TÜ will not be exactly equal to �T, 

however, instead, they will be different by the value of the error �:���TF �TÜ���6�;.  

The data model is derived from all the neural values the output encode  �U�:�T�;, so the reconstruction 

error or the inaccuracy of the reconstruction of the input data is a function of the data model as 

deriving �:�TÜ�; relies on �:�U�;. The weight vectors are the neural parameters which define the data 

features that the model extracts to describes the data. The difference between any new data and the 

data model is computed by MSE as  �Ã���TF�TÜ���6�Ä averaged over all that data set [239, 240].     

The training algorithm used in CCNN is called gradient descent algorithm. This algorithm trains 

the model in order to match the training data set as close as possible. It works by searching around 

the combination of all parameters space until it reaches the lowest level in the error surface and 

where MSE cannot be minimized anymore. At this level, it can be said that training is reached it's 

optimum and the data model is said to be best matches the training data set. The parameters present 

in the function �U�:�š�; derived during the training process are named adaptive parameters, as they 
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have been derived in an adaptive process. These parameters are weight vectors and scale 

parameters. Other parameters also present in �U�:�š�; are non-adaptive as they are not generated by 

the gradient descent training algorithm. Those parameters include the threshold value, the softness 

value, the number and the size of weight vectors. Those parameters are manually chosen and 

adjusted by trial and error to make ADI value larger as possible for a known anomaly data.  

The derived features that form the data-model in the training phase are encoded in the adaptive 

process and will be called weight vector �9 L �>�S�5�á�S�6�á�å �S�Ý�?, where the index �F  runs from �s���–�‘���, 

where �, represents the total number of components in the weight set. 

5.3.3.1  The Components Coding Stage  

The output of neurones in any neural network is usually computed as a scalar product between the 

input data �:�T�; and weight vectors �:�S�;  as �æL �TH�S�Ý. However, instead of one scalar product, the 

output of the neurones in CCNN is being computed �0 products for each �S�Ý so as to form a periodic 

correlation function �?�NL �:�T�á�S�Ý�;  

The periodic correlation function can be computed as a circular convolution operator very 

efficiently by using FFT, as an order of �0 �Ž�‘�‰�:�0�; operations, alternative of the �0�6 product 

operations which is required in calculating the �0 offset scalar products. The correlation function 

for data samples originates from a sensor is computed as shown in  

 �?�Nk�T�á�S�ÝoL �( �?�5k�(�:�T�; H�(�:�S�Ý�;�Ûo (5.2) 

Where x is the input data, the function �(�:�;��represents one dimensional FFT transformation, �( �?�5()  

is the inverse of Fourier Transform, �:���;�Û stands for complex conjugate and H represents the point-

wise multiplication to get a vector of coordinate products. 

5.3.3.2 Threshold Activation Function 

In this step, a non-linear threshold activation function �N�:�Ú�; is applied to the output of the circular 

correlation between the input pattern �T and the weight vector �S�Ý   so �ÚL �?�N�:�T�á�S�Ý�;. This will 

generate �, output code vectors �U�Ý�:�T�;. The non-linearity is adopted to add the sparseness property 

to the output code, so the output of a few neurons should contribute more than the rest. If the value 

of the threshold is set properly, only a few neurons will produce large output �T�á�S P�Ü as all neurons 

output will be thresholded. Hence, the neurons will fire only if their weight vectors match well the 

input data pattern. 
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Neuron function used as depicted in (5.3) where the symbol �N denotes the network neuron function 

is a non-linear function [239]: 

 
�N�:�Ú�; L

�s
�t

\�O���H�K�Cd�sE�A�T�Ll
�ÚF�Ü

�O
ph`

�6

 (5.3) 

Where �Ú is the correlation between the inputs and the weight vector, which is derived by . 

 �ÚL �?�N�:�T�á�S�Ý�; (5.4) 

The threshold �Ü and softness �O are the parameters of the network neuron and hence, the initial 

values of these parameters, as well as the number of weight vectors, need to be determined at the 

early stage of network design. 

The code �U�Ý�:�T�; is yielded from the neuron function applied to �?�N correlation function as in  

 �U�Ý�:�T�; L �N�:�?�N�:�T�á�S�Ý�;�; (5.5) 

The sets of the output �U�Ý�:�T�; constitute the output code of the CCNN for the input �T  [239]. 

5.3.3.3 Model-Based Data Reconstruction 

The output code derived using Equation (5.5) is used to perform the reconstruction process �:�TÜ�; of 

the input �:�T�;, by firstly convolve each of �U�Ý�:�T�;  with the corresponding �S�Ý and then the resulting 

convolution �,  is combined by the weighted summation [57, 240]. 

 �TÜL Í �=�Ý���?�R�@�S�Ý�á�U�Ý�:�T�;�A

�Ã

�Ý�@�5

 (5.6) 

Where �=�Ý represents the adaptive parameters called weight scales, the values of weight scales are 

determined by optimization procedure and will be illustrated later. 

The convolution function can be efficiently computed by using FFT as the���S�Ý��is only one-

dimensional time signals belongs to the input. This convolution function is computed as 

 �?�R�@�S�Ý�á�U�Ý�:�T�;�AL �( �?�5l�(k�S�ÝoH�( �@�U�Ý�:�T�;�Ap (5.7) 

Where �?�R is a circular convolution operator. 
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The network scale parameter �=�Ý in Eq (5.6) is a one-dimensional array�=L [�=�5�á�å �á�=�Ã_. Its elements 

�=�Ý are scalars, each corresponding to a weight vector �S�Ý. Where �, denotes the number of weight 

vectors. The scale parameter is found using equation. 

 
�=�Ý� Í �:�/ �?�5�;�Ý�Ý�ò���Ã�T�®�?�R�:�S�Ý�ò�á�U�Ý�ò�:�T�;�;�Ä�<�ë�Ð�ê�=

�Ã

�Ý�ò

 (5.8) 

Where the inverse �/ �?�5 is a square matrix of size �, H�, and its elements are calculated by: 

 �I �Ý�Ý�ò � �Ã�?�R���:�S�Ý�á�U�Ý�:�T�;�; �®�?�R�:�S�Ý�ò�á�U�Ý�ò�:�T�;�;�Ä�<�ë�Ð�Ð�= (5.9) 

In both of the above equations, the scalar product involves summation over all the time samples 

and �?�R���:�S�Ý�á�U�Ý�:�T�;�; is �0 dimensional vectors. 

The random formation of training data patterns is one of the important steps for the realisation of 

the translation invariant mechanism. Moreover, with the definitions of correlation and convolution 

functions, the reconstruction process is invariant with respect to translation of any weight vector 

by any arbitrary time displacement. On the other hand, with respect to constant weight vectors, any 

translation (wrap-around) of input x will result only in the translation of the reconstruction �TÜ 

accordingly but its shape will not be altered, thus, the reconstruction accuracy will not be affected 

by the absolute angular position of the revolving component[240]. 

5.3.3.4 Obtaining matched weight vectors by minimizing the MSE  

The adaptive training process involves matching the weight vectors to the training signals in order 

to minimize the reconstruction errors on averages over the training dataset �6 [239]. The MSE of 

the reconstruction is computed as in. 

 �' �Í L �Ã���TF�TÜ�����6�Ä�<�ë�Ð�Í �= (5.10) 

The operator �Ã�®�®�Ä�<�ë�Ð�Í �=��denotes averaging process overall �T in training dataset �6.  

The optimization of the reconstruction is realised by minimizing �' �Í  with respect to �TÜ implicit 

adaptive parameters �S�Ý of ��, by the iterative gradient descent algorithm on  �' �Í ��in the vector space 

of the �S�Ý. The gradient descent algorithm updates the network weights by implementing (5.11) 

[240]: 
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 �@�S�Ý
�@�P

L �ã�Ý�:�P�;�Ã�=�Ý���?�N�@�TF�TÜ�á�U�Ý�:�T�;�A�Ä�<�Ñ�=E�ã�Ý�Ã���?�N�@�T�á�U�ñ
�Ý�:�T�; H�C�Ý�:�T�;�A�Ä�<�Ñ�= (5.11) 

Where �C�Ý�:�T�; is obtained [240] as: 

 �C�Ý�:�T�; L �?�N�@�:�TF�TÜ�;�á�S�Ý�A (5.12) 

In the training process, the best match of weight vectors �S�Ý to training data features will be achieved 

when the scale parameters �=�Ý reach the values that reduce the reconstruction error �' �Í . Therefore, 

in order to accomplish the best model of the data, weight vectors and scale parameters will be 

optimized jointly together. The other notations are defined below. 

The network size and parameters are as following: 

�x The network weights are a two-dimensional array as �9 L �>�S�5�á�S�5�á�ä�ä�S�Ý. The size of each 

�S�Ý is equal to the size of the data pattern �T. 

�x The scalar parameter is a one-dimensional array as �=L [�=�5�á�ä�ä�á�=�Ý_  and for each weight 

vector �S�Ý there is a corresponding scalar parameter �=�Ý.    

The purpose of training the CCNN is to optimise the weights and the scale parameter on a statistical 

basis. These optimal values are identified through the adjustment of the network and network 

training parameters given below. 

5.3.3.5 Network Parameters: 

1) The length of each batch of the input �T��or the length of the weight vector �S�Ý, as the input 

layer equal to the hidden layer and equal to the output layer. 

2) The number of weight vectors �,. 

3) The non-linear function parameters values: theta �ô  and sigma �O. 

4) To define the value of softness more accurately, [239] proposed to use the following rule: 

�OL �r�ä�r�w�Û�ô this rule is more practical since it provides a higher potential for the neuron 

to move away from the initial configuration at both the lower and the higher threshold 

value. 

5) The network learning rate �ã��is selected to be as small as possible in order to obtain a 

smooth minimisation process. 
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5.3.4 Componential Coding neural network Implementation Stages 

The application of CCNN in the context of condition monitoring involves, capturing the features 

of the training dataset and then measure how much does differ any new dataset from the original 

training dataset. In this study, MATLAB is used to implement CCNN. The application of 

componential coding neural network is consisting of three stages namely training, validation and 

monitoring as discussed below: 

5.3.4.1 Training Stage 

The first stage of applying CCNN is to first benchmark a baseline data-set (free of faults) under a 

known operating condition. Then train the CCNN algorithm to model the baseline dataset as 

healthy operating condition, by minimizing the MSE averaged over the baseline training dataset. 

A small MSE value means that the data model is precisely matched to the training dataset. The 

training procedure by minimizing the error should result in a data model which is matched to the 

dataset used in training as accurate as possible. 

Training  Algorithm  

The process of training CCNN involves the following basic steps: 

�x In this step, generate initial weight vectors with random values and scale into unit length. 

�x The optimal scale parameters are calculated for the weight vectors, a weight-vector 

gradient for each weight is obtained, and these gradient vectors are scaled to a constant 

value of learning rate. 

�x The weight vectors are updated by the scaled gradient vectors and scale the new weight 

vectors to unit length. 

The training stage starts by: 

�x Segment the input data samples into a sub-pattern array (segments) each segment length �. 

as the same length of the weight vector to form �T of size �0 H�. from the data set, which is 

a long time sequence. The patterns number �.  is larger than weight vectors number �% so 

duplication of the weight vector is carried out to be �%H�., thus, the size of the arrays is 

identical. In addition, each of the patterns is truncated from the long sequence with random 

entries. These entries also vary from iteration to iteration. This random formation of training 

data patterns is one of the important steps for the realisation of the translation invariant 

mechanism of the CCNN. 
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�x Calculate the correlation of the �. training patterns one by one to each of the weight vectors 

in �9 . 

�x Implement the non-linear neuron function element by element to the correlation results. 

These produce C numbers of array �4 of size �0 H�.. Each �4 belongs to a weight vector. 

�x Run the convolution of the �% weight vectors over the corresponding matrix �4 to produce 

the corresponding convolution array �%�á. 

�x Calculate the scale factors averaging over all �.��values as in (5.8) and (5.9). 

�x Calculate the raw gradient vectors, normalise it to unit length and multiply the unit-length 

vector by the specified learning rate so that the length of the vector is re-scaled into the 

value of the learning rate. Upgrade the old weight vector by adding the re-scaled gradient 

vector and then normalise the new weight vector so that its norm equals 1. 

5.3.4.2 Validation Stage 

Validation is conducted to measure how accurately does the trained model matches another new 

healthy dataset. This is carried out by feeding the CCNN with a new (unseen) healthy dataset, from 

the same operating condition as training data set operating condition, and then measuring MSE to 

determine how close is the new healthy dataset to the data model derived during the training stage. 

This validation will result to obtain the MSE for the healthy dataset without performing training or 

minimizing. Validation dataset must be unseen dataset and not the same data set used during the 

training process. Training and validation process constitute a calibration process and has to be done 

with health (free of faults) condition. 

5.3.4.3 Monitoring Stage 

 This stage is the final process of applying CCNN and is conducted by feeding the CCNN with new 

datasets from the same configuration under the same conditions during the training, and then 

measuring, using Mean Squared Error MSE, how the new dataset differs from the data model 

derived during training. By comparing the MSE for both baseline and new data set, it can be known 

how much each new monitoring dataset differs from the training model than the difference of the 

healthy calibration (unseen) dataset. The novelties can be detected using the Average 

Discrimination Index (ADI) and it is calculated as shown in (5.13). 

 
�#�&�+L

�4�à F �4�è

�4�è
 (5.13) 

where �4�à �� is Mean Squared Error (MSE) of the new monitored dataset.���4�è��is the MSE of the 

unseen healthy dataset [240]. 
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If the �#�&�+ of �4�à �� is larger than �4�è by a fraction of 0.1, this means the model has a poor match to 

a new dataset than it does to the baseline dataset used in the validation. This indicates that a physical 

change (fault) has occurred in the monitored bearing. 

5.4 Summary 

In this chapter, unsupervised features learning and auto encoder was explored in (section 5.2), 

componential coding neural network was discussed in (section 5.3) with the theoretical 

background, architecture and the implementation stages.  
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 CHAPTER SIX 

6 WAVELET THRESHOLD  FOR DENOISING, A PROPOSED METHOD 

This chapter presents the fundamentals of Wavelet Transform (WT) for enhancing the diagnostic 

information that usually is contaminated by noise. The mechanisms and corresponding algorithms 

of WT based de-noising are examined firstly. Then a new method is proposed to achieve effective 

noise reduction for the signals dealt with in this study. 

6.1 Introduction  

To enhance signals of bearing features, noise suppression is a critical step. Shrinkage denoising in 

the transformation domain is the process of removing the noise or unwanted components from a 

number of wavelet coefficients. The use of the shrinkage method has proven its ability as an 

effective way to suppress the noise of noisy signals with low computational complexity [242]. The 

selection of threshold method and estimation of the value are vital steps to the success of the 

wavelet regression, thus, it has been receiving an intense research effort. Nason [243] reviewed 

various methods of thresholding methods including their selection and estimation. The thresholding 

rule decides the components of the coefficient that needs to be retained or eliminated. Thresholding 

of the detail coefficients can be applied into two categories, as universal for all decomposition 

levels or level-dependent approach [244]. Wavelet thresholding method introduced firstly by 

Donoho et al. [123] and two thresholding were presented, namely as hard and soft threshold. In 

the case of hard thresholding, as seen in (6.5),  all the coefficient with absolute values  will be 

put to zeros, while the soft thresholding rule additionally subtracts the set threshold value from the 

all the coefficient towards zero, as depicted in (6.6) where   is a thresholding function[245].  

6.2 Data Denoising by Thresholding-A Review 

More analytically, assume there is a given N samples of a noisy signal �T�:�P�;, where �O�:�P�; is the 

unknown function of interest  and �J�:�P�; is the Gaussian white noise with zero mean and noise level 

 [246]: 

 �T�:�P�; L �O�:�P�; E�ê�J�:�P�; (6.1) 

where �PL �s�á�t�á�å �á�0 then the steps of wavelet denoising can be represented as [80]: 

�x Choose the �9 �:�®�; type and the decomposition level �. with  �sQ�. Q�H�K�C�6�:�0�;. 
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�x Apply the wavelet transform as  

 �S�ß�ÜL �9 �:�T�; (6.2) 

where �9 �:�®�; wavelet transform,���S�ß�Ü noisy coefficients, �H�–�Š  is a level of  and  �E�–�Š is a 

detail component location of �EL �:�s�á�ä�ä�á�t�Å�;.  

�x Estimate the noise level  based on the thresholding technique. 

�x Apply the threshold as 

 �SÝ�ß�ÜL �6�:�S�ß�Ü�á�ä�; (6.3) 

Where �SÝ�ß�Ü denote the denoised wavelet coefficients, �6 denote nonlinear threshold function 

(soft, hard) and �ä stands for estimated threshold value. 

�x Reconstruct the denoised signal �O� ̧as  

 �O� ̧L �9 �?�5�:�SÝ�ß�Ü�; (6.4) 

Where �9 �?�5�:�®�; denote reconstruction process (invers wavelet transform) 

The reconstructed signal �O� ̧quality can be influenced by the type of �9 �:�®�; or by the shrinkage process 

by either thresholding function  or estimated threshold value. Several thresholding methods 

have been proposed to shrink the noise of experimental signals. As shown in (6.5) and (6.6) 

respectively, hard and soft thresholding among others is the most widely used in the wavelet 

transformation domain for removing the noise from noisy data, [247]. 

 
�6�Û�Ô�å�×

�:�ê�×�Ô�; L \
�S�ß�Ü�á�����������������������������������������S�ß�Ü�� R�ä
�r�á���������������������������������������������S�ß�Ü�� O�ä

  ̀ (6.5) 

 
�6�æ�â�Ù�ç

�:�ê�×�Ô�; L \
�O�E�C�J�:�S�ß�Ü�;���:���S�ß�Ü��F �ä�;�á ���S�ß�Ü�� R�ä
�r�á���������������������������������������������������������������������������������������������S�ß�Ü�� O�ä

  ̀ (6.6) 

For visual clarity, Figure 6-1 shows both functions �Z�K�L�F�K���V�F�D�O�H�G���W�R���W�K�H���L�Q�W�H�U�Y�D�O���>�í��, 1]. The dotted 

lines indicate the original single. X-axis represented detail wavelet coefficients �S�ß�Ü obtained in 

(6.2), and Y-axis for the corresponding thresholding function as it is obtained in (6.3). Figure 6-1 

(a) shows �6�Û�Ô�å�×
�:�ê�×�Ô�; function and it clarifies how all observations  are shrunk to zeros, whilst, 



112 

only large observations have remained unchanged.  Figure 6-1 (b) shows how �6�æ�â�Ù�ç
�:�ê�×�Ô�;can shrink 

all the observations by the estimated value of . 

 
Figure 6-1 Hard and Soft Thresholding Function 

It has been reported that, in wavelet transformation domain, the energy of signal tends to be 

concentrated into a relatively few numbers of large coefficients whilst, the noise will be spread at 

a large number of the coefficients with relatively low energy [80, 116, 248, 249]. This increases 

the options to illuminate the noise while retaining the important information of the signal as much 

as possible. As a result, a signal can be enhanced by removing components smaller than an 

estimated threshold [250]. Based on this principle, wavelet coefficients thresholding for data 

denoising has been an extensive research domain since the first pioneering work by Donoho and 

Johnstone [251]. Since then, several thresholding techniques and estimators have been developed, 

this research focuses on some of the most widely adopted techniques, such as VisuShrink, 

SureShrink, HeurSure, NeighBlock, BayesShrink and Minimaxi thresholding technique.  

6.2.1 VisuShrink  

Also considered as universal threshold or sqtwolog threshold, it was proposed by Donoho and 

Johnstone [124] with regardless of the thresholding function type and represented by  

 �äL �ê¥�t�Ž�‘�‰���:�0�; (6.7) 
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Where  is the noise variance obtained by median absolute deviation (MAD) of the coefficients 

as:  

 �ê�ßL d
�/�#�&�:�S�ß�;
�r�ä�r�x�y�v�w

hL �H
�I�A�@�E�=�J�:���S�ß���;

�r�ä�r�x�y�v�w
�I (6.8) 

 and  is the length of the observed signal while �:�S�ß) is the empirical wavelet coefficient to the 

level [252].  The value 0.6745 was selected for calibration with the Gaussian distribution[253]. 

Due to the fact that STD of the signal may not be a reliable estimator, later on, Donoho and 

Johnstone suggested estimating the �ê in the wavelet domain, instead of original signal, at the finest 

levels as they hold most of the noise. However, using VisuShrink with soft thresholding, it was 

reported that VisuShrink is more likely to over smooth the signal and result in missing some 

genuine features of a signal [254]. Whilst, genuine features (peaks) more likely to be preserved 

when it is applied in conjunction with hard thresholding, sometimes at the cost of less smooth fits 

[255]. Another concern was reported because of its dependence on data size, it can be 

unwarrantedly large and lead to unknown signal distortion [256]. 

6.2.2 SureShrink 

 Also called Rigrsure, this threshold is generated under a risk rule by m�L�Q�L�P�L�]�L�Q�J���6�W�H�L�Q�¶�V���8�Q�E�L�D�V�H�G��

Risk Estimate (SURE). For each detail level, a sub-band threshold is calculated based on SURE 

rule [257]. This technique is a subband adaptive, level dependant. It is represented by  

 �ä�ÜL �ê�Ü¥�S�à  (6.9) 

With (�S�à ) is the �I �–�Š coefficient wavelet square at the lowest risk which selected from wavelet 

�F�R�H�I�I�L�F�L�H�Q�W�� �V�T�X�D�U�H�V�� �Y�H�F�W�R�U���� �V�R�U�W�H�G�� �L�Q�� �D�V�F�H�Q�G�L�Q�J�� �Z�D�\�� �>�P�����P�����P�����«�P�Q�@���� �D�Q�G�� ���ê�Ü) is the level-

dependant standard deviation of a noisy signal [258]. Although it was claimed that SureShrink 

results in relatively large noise when the SNR is too small, it is still one of the most widely adopted 

thresholds [259]. 

6.2.3 HeurSure 

HeurSure technique was developed by Donoho, this method is an automatic procedure and hybrid 

approach combines the VisuShrink with SureShrink. It can be applied using one of two scenarios 

automatically, first, it uses the SureShrink technique shown in (6.9), however, if a test of signal 
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coefficients at a level �H��proved that the signal is deemed too small, as a second scenario, a fixed 

threshold based on  �ä�6 L �ê¥�t�Ž�‘�‰���:�0�; will be applied instead [255, 260]. 

Both VisuShrink and SureShrink can be considered as functions of the data length and the variance 

of the noise [261]. However, as SureShrink is a level-dependent technique, the local neighbourhood 

of each coefficient is not taken into consideration. Thus, lots of the components from the wavelet 

coefficients could be removed [161].  

6.2.4 NeighBlock  

As noted above, in SureShrink, the local neighbourhood of each coefficient is not taken into 

account, which may lead to losing many important components from the coefficients. On the 

contrary, NeighBlock threshold, proposed by Cai et al. [262], as a block thresholding technique, 

increases the accuracy of estimation by including the influence of neighbouring coefficients. This 

is performed by grouping the coefficients with similar properties, assuming they contain important 

parts of the signal, and then calculate the threshold based on the grouped block instead of level-

dependant technique. it was claimed that when applying NeighBlock technique, the estimation 

accuracy is enhanced compared to SureShrink [263]. More analytically: 

After transforming the signal into the wavelet domain, wavelet coefficients are grouped at each 

level �H into disjoint blocks �>�Þ
�ß of length �C�5 L �>�:�H�K�C�0�;���t�?, and then extending each block �>�Þ

�ß��by 

points of �C�6 L �I�=�T�>�:�s�á�C�5���t�;�?���� in both directions, in this way, overlapping bigger blocks �$�Þ
�ß  of 

length �CL �C�5 E�t�C�6����will be formed [264]. For each level, each block �>�Þ
�ß will be indexed���G, the 

coefficients will be estimated by a shrinkage rule as �SÝ�ß�ÜL �6k�S�ß�Ü�á�ä�Þ
�ßo  for all �:�H�á�G�; �Ð�:�>�Þ

�ß�; where 

the �ä�Þ
�ß��is obtained from the larger block �>�Þ

�ß as   

 �>�Þ
�ß L �•�ƒ�š���:�r�á�:

�sF �ã�C�ê�6

�Ü�6
�ß�á�Þ

�; (6.10) 

 Where  is a constant of 4.50524, and the variance of the extended block is represented by �ê�6 and 

�Ü�6
�ß�á�Þ is the sum of the squared coefficients in each sliding window denoted as 

 �Ü�6
�ß�á�Þ L Í �S�6

�ß�á�Þ

�:�ß�á�Ü�;���Ð���»�Ö
�×

 (6.11) 
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In this way, �$�Þ
�ß can be seen as a sliding window translates each time by the amount of �:�s�ä�w�Û�C�5�;��of 

the coefficients in the centre of the window for each window will be estimated. Finally, reconstruct 

the thresholded coefficients to restore the signal [262].   

6.2.5 BayesShrink  

The BayesShrink technique implements Bayesian mathematical framework to derive the optimal 

level-dependant threshold for soft threshold function [256] and it can be calculated for a subband 

�$��as:   

 �6�» L
�ê�6

�ê�T
 (6.12) 

With   represents noise variance estimation and �ê�ë��is the signal variance estimation for the 

considered subband and can be calculated as: 

Where �ê�ê�6 can be derived as: 

 �ê�ê�6 L
�s

�0�6��Í �S�6
�ß�Ü

�Ç

�ß�á�Ü�@�5

 (6.14) 

Where �0 is the wavelet coefficients number �S�ß�Ü on the considered subband whilst �ê can be 

calculated as: 

 �êL
�/�#�&�:�S�ß�Ü�;
�r�ä�r�x�y�v�w

 (6.15) 

6.2.6 Minimaxi  

In this technique, based on the statistical minimax principle for estimator designing, a constant 

threshold value is chosen to produce minimax performance for MSE against an ideal procedure. 

The minimax estimator is the procedure of realising the minimum of the maximum MSE over 

specific function classes, see Donoho and Johnstone [265].  

More analytically, To recover the unknown function �O�:�®�;��from  �T�:�P�; L �O�:�P�; E�ê�J�:�P�;, Minimaxi 

technique measures the performance of the estimation of �O� ̧L �:�O��̧:�P�;�; from �OL �:�O�:�P�;�;, with regard 

to a quadratic loss at the sample points by minimizing the risk as small as possible as: 

 �N�:�O��̧á�O�; L �J�?�5���' �!�O�̧F �O�!�6�á�á�á
�6  (6.16) 

 �ê�TL �>�•�ƒ�š���:�ê�ê�6 F�ê�6�á�r�;�?�5���6 (6.13) 
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 �ä�á�ÛL
�E�J�B
�ä ���O�Q�>

�à
���J

�N�� �:�à�;

�J�?�5 E�:�à�6���ä�s�;
�K (6.17) 

Where �ä�á�Û is the minimax risk bound and will be the value of �ä. 

6.3 Limitation of the Current Thresholding Methods 

Thresholding methods suffer from some limitations, the choice of threshold type usually based on 

an ad-hoc manner. Another challenge is that the signal and noise distribution may not be well 

matched at all levels [261]. Moreover, the conventional hard thresholding sometimes becomes 

highly sensitive to little changes in the experimental signals and exhibits some discontinuities 

[266]. In the case of soft thresholding, all the coefficients are equally shrunk through a threshold 

value, it may lead to the deviation in the reconstruction process[162, 267]. Furthermore, although 

thresholding is considered as an effective and simple task, estimating its effective value is not an 

easy task. A trial and error approach to find the optimal value  can be a tedious and challenging 

task. Hence, noise level estimation has received intensive research to simplify the selection of 

the optimal threshold value of  and effectively eliminate noise from signal coefficients. Despite 

the much recent effort that has sought to effectively estimate and shrink the noise in the wavelet 

transformation domain, however, limited work was reported that specifically targeted experimental 

signals. Generally, successful thresholding method in signal denoising highly relying on the 

accurate estimation of the noise level [268], thus noise level must be estimated correctly to obtain 

good performance denoising.  

6.4 Proposed Method 

Based on these considerations and challenges, in this research, an adaptive data-driven based on 

hard thresholding compound with envelope analysis is proposed and tested against the well-known 

thresholding techniques Sqtwolog, Rigrsure, HeurSure and Minimaxi. Hard thresholding is 

adopted as it was claimed that, it can lead to a better reproduction of peak heights and 

discontinuities [94]. Moreover, the developed technique is level-dependant and takes into account 

the coefficients with high energy in the process of estimating the noise value. The developed 

technique can adaptively find the optimal threshold value effectively by obtaining the optimal ratio 

of the first three harmonics of the demodulated signal. Also, the developed method outperforms 

the conventional wavelet thresholding methods. The proposed technique estimates the noise for 

each level in the wavelet domain and iteratively find the optimum threshold as described in the 

following algorithm:  
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6.4.1 Denoising Algorithm  

The denoising algorithm is used to denoise the signal by estimating the thresholding value 

adaptively and level-dependant, the algorithm starts with decomposing the signal into �. levels and 

then shrinks the noise based on the estimated threshold value. The iterative process continue until 

the highest signal to noise ratio is reached using HSR as a measure of signal improvement. The 

steps of the denoised algorithm are as below: 

i. Select the input signal 

ii.  Decompose the signal into �. levels �S�ß�Ü =W(x), where �. O���H�K�C�t�:�0�;  

iii.  Calculate the coefficients energy using STD  

iv. Coefficients with similar high energy are considered to be selected and put the rest of the 

coefficients to zeros 

v. For each level �H sort in descending order the data points within the range of (1:2000), this 

range covers one rotation period and it can be calculated as �(�æ���B�æ where �(�æ sampling rate, 

�B�æ shaft frequency (50000/25=2000). 

vi. Estimate the initial threshold value by calculating the mean value for the selected data range 

for each �H�P�D level as  

 �I L �:Í �S�ß�:�F�;

�á

�Ý�@�5

�;���J (6.18) 

vii.  Apply the hard threshold level-dependant using the estimated initial value �SÝ�ß�ÜL �6�:�S�ß�Ü�á�ä�; 

with �ä=zero for the first step as the output will be compared with the output of the next 

steps. 

viii.  Reconstruct the decomposed signal �O� ̧L �9 �?�5�:�SÝ�ß�Ü�; . 

ix. Calculate the envelope spectrum of the reconstructed signal �5�� L �(�(�6�:�A�J�R�:�O��̧;�; 

x. calculate���>��as the sum of the first three harmonics for the thresholded signal and obtained 

as: 

 �>L Í �5���:�F�®�B�å�;

�7

�Ý�@�5

 (6.19) 

xi. where �B�å is the fault frequency �F is the harmonic number 

xii. calculate the sum of data points within the range of band �$ (from 100Hz to 600Hz) as 
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 �=L Í �5���:�F�;

�k�_�v���:�»�;

�Ý�@�k�g�l���:�»�;

 (6.20) 

xiii.  Find the shaft harmonics �R within the selected band range �$��of the demodulated signal as 

 
�RL Í �5���:�F�®�B�æ�;

�k�_�v�:�»�;���Ù�Þ

�Ý�@�5

 (6.21) 

xiv. calculate the ratio �N of the first three harmonics to the rest of the demodulated signal as 

 �NL
�>

�:�=F �>F�R�;
 (6.22) 

xv. To reach an optimal threshold using automatic adjustment , iteratively increase the 

threshold  value in each step by a fixed small value and repeat all the steps until the 

reconstructed signal becomes too spars i.e. when the length of the data points=zero in 

reconstructed signal reaches 95% compared to the original signal  then stop and select the 

best threshold value with the best SNR by selecting the highest harmonics ratio reached 

from all the steps as: 

 �D�O�NL ml
�•�ƒ�š���:�N�;

�=�5
pF �sq�Û�s�r�r (6.23) 

Where �=�5 is ratio of the un-thresholded reconstructed signal within the band �$,  

xvi. end 

Using the proposed threshold, several types of WT will be investigated to enhance the experimental 

vibration signals. Moreover, this research shows that considering an accurate statistical description 

of both the signal and noise components can lead to an effective denoising technique that can reduce 

the noise level as well as preserve the required features. 

The flowchart shown below Figure 6-2 describes the implementation steps of the algorithm starts 

with decomposing the input signal and ends with calculating the best harmonic to signal ratio 

achieved. 
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Figure 6-2 Implementation flowchart 

�E�} 
�z���• 

�>L Í �5���:�F�®�B�å�;

�7

�Ý�@�5

 

�=L Í �5���:�Fo

�à�Ô�ë�:�»�;

�Ý�@�k�g�l�:�»�;

 

�RL Í �5���:�F�®�B�æ�;

�à�Ô�ë�:�»�; �Ù�Þ�¤

�Ý�@�5

 

Env spectrum �5�� L �(�(�6�:�A�J�R�:�O��̧;�; 

Reconstructions �O�̧L �9 �?�5�:�SÝ�ß�Ü�; 

Apply the T and increase T gradually for 
 all steps>1  

Estimate level-based initial threshold T 

Decompose signal L levels 

�NL
�>

�=F�>F�R
 

�7�R�R���V�S�D�U�V�H��
�=�H�U�R�V�!������ 

�*�5�4L ml
�I�=�T�:�N�;

�=�5
pF �sq�Û�s�r�r 

Signal 

�=�5 is un-thresholded 

coefficients of first step 

�R is���•�Z���(�š���‰�����l�• 

�$���>���v��  �~�í�ì�ì�,�Ì�r�ò�ì�ì�,�Ì�• 

�B�å���(���µ�o�š���(�Œ���‹�µ���v���Ç 
�F���Z���Œ�u�}�v�]�����v�µ�u�����Œ 
 

�> is��thresholded 
coefficients 



120 

6.5 Summary 

In this Chapter, the fundamentals of Wavelet Transform for enhancing the diagnostic information 

were discussed.  The existing thresholding methods with their limitations were reviewed in (section 

6.2 and section 6.3) respectively. Also, the proposed thresholding algorithm was presented in 

(section 6.4).  
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CHAPTER SEVEN 

7 EXPERIMENTAL FACILITIES  AND PROCEDURES 

In this chapter, the test system is described in details. It starts with the design of the test rig. In 

addition, the bearings used to carry out the experiment as well as their geometrical information is 

described. Furthermore, this chapter illustrates the mounting settings of bearing and the clearance 

adjustment mechanism, also describes all the instruments required to carry out the vibration 

measurement such as, the data acquisition system, transducers used to collect the vibration data, 

temperature coupling and the encoder to monitor the motor speed.    

7.1 Introduction  

One of the important elements of CM studies is the introducing of the faults into a practical system 

that simulates the real industrial world in a controlled manner which will provide real data. Several 

reasons behind of idea of using an existing test rig that was developed and used in CEPE lab at the 

University of Huddersfield. The rig offers isolation from other sources of vibration and offers also 

the ease of accessing the instruments and the other experimental facilities due to the optimal 

construction of the test rig. 

In order to investigate the proposed methods for experimental signal analysis, an experiment was 

carried out using tapered roller bearings. The test rig is carried out in a simple way with relevance 

to the industrial world in which faults can be introduced in a controlled way and the vibration can 

be accurately measured. The choice of a TRB is due to the widespread of using this component in 

industries. 

The test rig was developed on the basis of an adjustable clearance mechanism. The test rig consists 

of a motor, coupling, two bearing housing, shaft, data acquisition system, two piezoelectric 

accelerometers (CA-YD-104T) which have been mounted on the test bearing housing, one was 

horizontally and the other was mounted vertically. A clearance adjustable mechanism was 

developed to adjust the clearance within the typical maximum life range provided by the 

manufacturer. A slip metric gauge box set, type Matrix Pitter 8075 C, was used to precisely measure 

the clearance. The tapered bearing is chosen in this study because it is well-known as a noise 

bearing and they come apart, hence, the clearance is adjustable while mounting.  The test rig is 

designed in such a way to be easy to be assembled and dismounted. Thus, the bearings used with 
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the different conditions can easily be fitted in the test rig. The experiment facilities and procedure 

will be explored in details in the following:           

7.2 Test Rig Development 

The experimental work was conducted using two main parts, the first part is the bearing rig, as 

shown in Figure 7-1 and Figure 7-2, which was developed to facilitate the running of bearing in a 

similar way as the real world application. In addition, it was developed to facilitate the adjusting 

procedure of the internal clearance using the precise tools to measure the internal clearance. The 

second part is the instruments required to collect the vibration data, the shaft speed and the 

temperature. This simple structure was adopted to avoid possible noise influences of additional 

components such as radial load devices. 

 

Figure 7-1. Schematic diagram of the test rig 
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Figure 7-2. Test Rig 

7.2.1 Motor   

An induction motor is used as a drive power, as seen in Figure 7-2, it is a three-phase and 4kw. A 

spider flexible coupling is used to couple the motor to the shaft. The motor speed is controlled by 

a controller type Siemens at 1500 rpm. The specifications of the motor are illustrated in the 

Table 7-1.  

Table 7-1 technical specifications of  Clarke induction motor [269] 

No Technical Features Value 
1 Number of phases 3 
2 Number of Poles 4 
3 Voltage 230/400 V 
4 current 5.9-9.2 A 
6 Motor type 112M/4 
7 Shaft Speed 1500 RPM 
8 hp 5.5 

7.2.2 Data Acquisition System (DAQ) 

Data acquisition is a process, Figure 7-3, in which a physical phenomenon is transformed into a 

digital data format using DAQ system and its accessories. A DAQ system is used to sample, 

acquire, convert and store data on a computer. The data acquisition device can collect different 

types of data such as vibration, current temperature, voltage, pressure, etc. DAQ system converts 
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the input signal from analog format into digital format using analog-to-digital converter (ADC) and 

then send the acquired data to a computer for storage and analysis task.  

 
Figure 7-3 DAQ process steps 

Several instruments and accessories are used for a complete data acquisition procedure including 

transducers, data acquisition device, controller card, cables, amplifiers, power supply devices, a 

computer, data acquisition software for receiving, storing and analysing the acquired data. These 

basic elements of the DAQ system used in this research will be explored below.  

7.2.2.1 DAQ system devices 

The data acquisition Accessories used in this research consists of two main devices, SCB-68 

Shielded Desktop Connector Block 68-Pin and Multifunction I/O (MIO), both SCB-68 and MIO 

are connected via 68-pin cable. 

The SCB-68 is a Shielded Desktop Connector Block with 68-Pin screw terminal type National 

Instruments as shown in Figure 7-4, this device has a general breadboard which can be customised 

to interchanging electrical components. This device can support conditioning to signals up to 16 

analog-input channels. It has been equipped with 5 input channels [270]. The technical 

specifications of the SCB-68 are listed in Table 7-2.  

 
Figure 7-4 SCB-68 connector 
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Table 7-2 Technical specifications of the SCB-68 device [271] 

No Feature Value 
1 Number of screw terminals 68 all I/O signals are available at screw terminals 
2 I/O connector One 68-pin male SCSI connector 
3 Maximum Working Voltage �•�������9�S�N���������9�'�& 
4 Operating temperature  0 to 70 °C 
5 Weight  828 g 
6 Wire gauge 14�±30 AWG 

Multifunction I/O devices offer a mix of I/O with varying channels, sample rates, output rates, and 

other features to meet many common measurement requirements. These devices are ideal for a 

wide variety of industrial applications such as laboratory automation, research, and design 

verification. A multi-function IO type NI 6221, as it can be seen in Figure 7-5, is used in this 

research. The technical specifications are shown in Table 7-3. It has been fitted in a computer and 

linked to SCB-68 connection block via SCSI-68 connector [270].   

 
Figure 7-5 Multi -function IO NI 6221 

Table 7-3 Technical specifications of Multifunction I/O 

No Feature Value 
1 Number of channels 8 differential or 16 single ended 

2 ADC resolution 16 bits 

3 Sample rate 250 kS/s 

4 Timing accuracy 50 ppm of sample rate 

5 Input coupling  DC 

6 Input range  ±0.2 V, ±1 V, ±5 V, ±10 V 

7 Input FIFO size  4,095 samples 
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7.2.3 Accelerometer 

The accelerometer is used as a basic sensor to measure the vibration on stationary parts of 

machines, the accelerometer measures absolute vibration by converting the deformation of 

piezoelectric ceramic plats, which built in the sensor, into electric charge. The generated electric 

charge cannot travel a long distance, therefore, accelerometers are fitted with pre-amplifiers to 

transform the electric charge into a voltage and their sensitivity is stated as mV/g or pC/unit. The 

selection of sensors has to be made based on the frequency range of interest and the anticipated 

level of the signals. Piezoelectric accelerometers are well-known and widely used to measure the 

vibration in condition monitoring of machinery. They have a wide dynamic frequency and a decent 

frequency range as well as good sensitivity   

 
Figure 7-6 Piezoelectric accelerometer  

In this study, two accelerometers as seen in Figure 7-6, type (CA-YD-104T), are used to collect the 

vibration data from the test bearing. One sensor was mounted vertically on the top of the hosting 

housing of the test bearing, whilst, another sensor was mounted horizontally on the side of same 

the housing.  

 
Figure 7-7 Typical frequency response 
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The frequency response of the accelerometer has a linear trend in the range of 0.1 KHz to 7 KHz 

as seen in Figure 7-7, in addition, the technical information is listed in Table 7-4.  
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Table 7-4 Sensors technical specification 

No Feature Value 
1 Model no  CA-YD_104T 

2 Charge Sensitivity  3.640 pC/m/s2  

3 Transverse Sensitivity  �”������ 

4 Frequency Range 5%  0.5 - 7,000 Hz 

5 Capacitance 1722 pF 

7 Polarity Positive direction 

8 Operating Temp Range  -20 to +120 °C 

9 Weight 32g 

10 Mounting Method  M5  

11 Sensing Element  PZT-5  

12 Structural Design  Central Compression  

13 Output Type  TNC  

7.2.4 Charge Amplifier (CA) 

The Charge Amplifier is used to condition the output vibration signal from the piezoelectric sensor 

and then transfer it to the DAQ system. A general purpose charge amplifier type YE5856 is used 

to link the sensors to the DAQ system. This amplifier has several features, the upper-frequency 

limit is 500 kHz, small in size, and with high integration. Three decimal-system uniformization 

output with a Built-in multiple lowpass and high pass filters with low noise and high precision. It 

can accept charge and voltage inputs with overload Indication. The technical specifications of the 

CA are listed in Table 7 5. The charge amplifier is used in the experiment to condition the signal. 

The CA accepts sensor output signals in a form of charge and convert them into a form that the 

data acquisition system can manipulate which is voltage in this experiment. The CA YE5856 has 

the ability to adjust the output using the switcher. The CA Switch is Selectable with values of (1, 

10, 100 to 1000 mV/unit). The vibration data collected by the accelerometer with a value of (3.640 

pC/m/s2) is transferred to the CA to be amplified and converted from charge into a voltage with an 

adjusted switch value of (10 mV/m/s2) and then transferred into DAQ system.  
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Table 7-5 Technical specification of Charge Amplifier 

No Feature Value 
1 Input Range Voltage: ±10VP (Max); Charge: ±106 PC (Max) 

2 Output Range Voltage: ±10VP (Max) 

3 Noise �”�����������9�� 

4 Gain (Selectable) 0.1, 1, 10, 100, 1000 ,10000 mV/Unit 

5 Accuracy ±1% 

6 Low Pass Filter (selectable) 1k, 3k, 10k, 30k, 100k,500kHz (-3dB±1dB),-12dB/Oct 

7 High Pass Filter (selectable) 0.3, 1, 3,10,30,100Hz (-3dB±1dB), -6dB/Oct 

8 Temperature Operating 0-40°C 

9 Max Humidity 95%R.H 

10 Power Supply DC: ±18 to ±27V; AC: 220V50Hz/110V60Hz 

11 Dimensions 70mm(W) - 132.5mm(H) - 200mm(D) 

12 Weight 1.5kg 

13 Connections Input: L5; Output: BNC; Power Supply: 3GTJE3(AC) 

14 Input Cable Double-ended L5 STYV-1 low noise cable(2m) 

15 Output Cable Double-�H�Q�G�H�G���%�1�&����������R�X�W�S�X�W���F�D�E�O�H�������P�� 

7.2.5 Encoder 

The instantaneous angular speed of a rotating shaft can be measured using encoders.  To monitor 

the rotating speed of shaft a Hengstler Incremental Encoder (type RI32) is fitted on the fan cowl 

using a flexible coupling. The maximum speed of this encoder, as seen in  

Figure 7-8, is 6000 rpm and can produce a series of pulses with a number of 100 pulses per 

revolution. The specifications of the Encoder provided by the manufacturer are illustrated in 

Table 7-6.   

 

Figure 7-8 Hengstler Incremental Encoder [272] 
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Table 7-6 Technical specifications of the  Encoder RI32 [272] 

No Attribute  Value 
1 Pulses Per Revolution 100 
2 Encoder Technology Incremental 
3 Maximum Speed 6000rpm 
4 Output Signal Type Push Pull 
5 Shaft Type Solid 
6 Supply Voltage �������:���������9��Dc 
7 IP Rating IP40 
8 Overall Height 27mm 
9 Minimum Operating Temperature -10°C 
10 Maximum Operating Temperature +60°C 
11 Series RI32 
12 Switching Frequency 200 kHz 

7.2.6  Thermos Couples 

Thermocouple RS PRO Type is used to measure the temperature of the tested bearing. It has been 

mounted on the tested bearing housing and linked to DAQ system. The technical specifications 

provided by the manufacturer are depicted in Table 7-7. 

Table 7-7 Thermocouple technical specification 

No Feature Value 
1 Type K 
2 Probe Length 2m 
3 Diameter  1/0.2mm 
4 Temperature range  -60 ºC  to  +350 ºC 
5 Termination Type  Miniature Plug 
6 Standards Met IEC 
7 Response Time Fast 

7.2.7 Slip Metric Gauge 

A slip metric gauge box set, type Matrix Pitter 8075 C, was used to precisely measure the clearance. 

This is the workshop grade 2 version, typically used for setting up machine tools, positioning 

milling cutters and checking mechanical widths. Moreover, it can also be used as a length 

measurement for the regulation and adjustment of indicating measuring instruments and linear 

dimensions of industrial components[273]. 
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Figure 7-9 Matrix Pitter 8075 C metric gauge 

7.2.8 Dial Indicator 

Dial indicators, as seen in Figure 7-10, are designed specifically to measure relative position. It 

consists of the dial (face), case, and the plunger. The plunger is spring loaded part that can be 

depressed into the case making the dial needle to move clockwise. A dial indicator with a magnetic 

base is used to measure the shaft endplay[274].  

 
Figure 7-10 Dial indicator [274] 

When there is no pressure is applied to the plunger, it is fully extended out of the case. The total 

distance that s plunger travels in or out varies depending on the model of the indicator. The face 
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can be rotated to set the indicator needle to zero. It is flexible and hence can be mounted in too 

many options.  

Table 7-8 Moore & Wright Dial Indicator 

No Feature Value 
1 Brand Moore & Wright (Metric) 
2 Range  10 mm 
3 Dial reading 0.01mm 
4 Graduation 100 
5 Stem diameter 8mm 
6 Mounting type Magnetic base 

7.2.9 Support Bearing 

A double angular contact bearing type NSK 3307 is used in the experiment as a support bearing. 

Double row angular contact ball bearing, as seen in Figure 7-11, consists of solid inner race, outer 

race, balls assemblies with polyamide or sheet steel cages. Due to the higher quality of balls, high 

quality raceway surfaces and the more precise dimensional and running tolerances, their internal 

friction is low and the noise level of the application during operation is reduced. They can support 

axial loads in both directions and high radial loads. They are particularly suitable for applications 

where rigid axial guidance is required.  The axial load carrying capacity they can support depends 

on the contact angle. Hence, the larger the contact angle, the higher the axial load they can be 

subjected to. The choice of this bearing to act as a support bearing in the experiment is based on 

the high axial guidance which it can provide.    
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Figure 7-11 Double-row angular contact ball bearing 3307 

Table 7-9 Manufacture specifications of double angular contact ball bearing NSK 3307 

No Dimensions Measurements 
1 d 35  mm  
2 D 80  mm  
3 B 34,9  mm  
4 a 47,986  mm 
5 D1 68,9  mm 
6 d1 51,8  mm 
7 r 1.5 mm 
8 Contact angle �. 30°  
9 Mass 0,73  kg  
10 Basic dynamic load rating, radial 55000  N  
11 Basic static load rating, radial 36500  N  
12 Fatigue limit load, radial 2460  N  

7.2.10 Tapered Roller Bearing  

TRB have tapered outer race and tapered inner race as well as tapered rollers. They have a high 

capacity to support combined load simultaneously, radial and thrust load. The capacity of axial 

load support has a linear relationship with the contact angle �=. Thus TRBs are used in the high load 

applications, such as differential gears and wheels of vehicle, gas turbine engines, helicopter 

transmissions, milling machine spindle, etc. Long service life is expected when operated under 
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good condition[275]. A tapered roller bearing consists of outer and inner rings with tapered rollers 

in a window cage and tapered raceways as seen in Figure 7-12. 

 
Figure 7-12 TRB 31308 

The geometrical dimensions are illustrated in the schematic diagram in Figure 7-13 and the 

geometrical information is shown in Table 7-10.  

When the radial load is applied, it will induce force in the axial direction, thus, it has to be handled 

by using a pair of bearing. As the cup and the inner race with rollers come apart, mounting the 

bearing with a preloaded condition or with clearance is possible. TRB can be set at initial machines 

assembly to any desired axial or radial clearance. This helps to control a bearing to meet expected 

application operating conditions, and as a result, optimum bearing performance can be achieved. 

There are several advantages of the flexibility to setting TRB such as longer life can be expected 

by setting the bearing based on the application performance requirements, easy to be assembled as 

the inner ring with rollers and the outer ring come separate, moreover, it can be set at the time of 

machine assembly.   
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Figure 7-13 TRB schematic diagram 

Table 7-10 Tapered bearing 31308 geometrical information 

No Specifications 
1 Series 31308  
2 Cone Part Number X31308  
3 Cup Part Number Y31308  
4 Design Units Metric  
5 Bearing Weight 0.700 Kg  
6 Cage Type Stamped Steel  
7 Dimensions 
8 d - Bore 40.000 mm  
9 D - Cup Outer Diameter 90.000 mm  
10 B - Cone Width 23.000 mm  
11 C - Cup Width 17.000 mm  
12 T - Bearing Width 25.250 mm  
13 Basic Load Ratings 
14 C90 - Dynamic Radial Rating (90 million revolutions)4  26200 N 
15 C1 - Dynamic Radial Rating (1 million revolutions)5  101000 N  
16 C0 - Static Radial Rating 88100 N  
17 Ca90 - Dynamic Thrust Rating (90 million revolutions)6  37000 N  

7.2.11 TRBs Setting Methods  

TRBs can be assembled by several methods; supplied as pre-set assemblies, automatic techniques 

and manual method [276]. Pre-set assemblies are available in a variety of styles, forms and 

arrangements, this type of assemblies are designed for many applications that require the use of 

close coupled or double-row bearing assemblies. Pre-set bearings are provided by the manufacturer 
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and usually supplied with a specified internal clearance for given application requirements. As an 

alternative to manual methods, automated bearing setting techniques. Many of the automated 

settings techniques have been developed, among them Set-right, Projecta-Set, Acro-Set, Clamp-

set, Torque-Set etc. each of which has its own advantages and limitations. In this research, the 

manual method is adopted due to the ease of access to the test bearing and the less complexity and 

tools that are needed to manually set the bearing. Moreover, a settings variation from the optimum 

settings is expected when using automated methods. The devices which are needed are costly and 

need a certain level of knowledge to be utilised [277].   

Manual bearing setting method is the most widely used to set RRBs on different equipment. 

Manually method does not require any special tooling or charts or fixtures etc. the successful 

�P�R�X�Q�W�L�Q�J�� �G�H�S�H�Q�G�V�� �R�Q�� �W�K�H�� �D�V�V�H�P�E�O�H�U�¶�V�� �V�N�L�O�O�� �D�Q�G�� �M�X�G�J�P�Hnt. This method involves tightening the 

adjustable nut while rotating the shaft until a slight bind in the rotation is felt. Then the desired 

settings can be achieved by slightly adjusting the nut back or forward turn.  A magnetic base 

indicator can be used with a pry bar to measure the endplay of the bearing [278].     

7.2.12 Wear Simulation Using an Adjustable Clearance Mechanism 

During the experiment, a mechanism for the preload adjustment was built by controlling the 

clearance between the outer race, which was fixed in the housing, and rollers assembled with the 

cage. This was executed by rotating a precision positioning screw nut, to move axially relative to 

the reference slip, to make the bush, and fit the inner ring into the outer race. The schematic diagram 

of the clearance measurement system is described in Figure 7-14. The value of the clearance is 

calculated by measuring the gap between the reference slip and the nut edge based on the thickness 

of the calibrated slips. The reference slip, as seen in Figure 7-14 and in Figure 7-15, can be firmly 

fitted to a groove of 5mm width, which was grooved in the shaft, to be used as a reference when 

measuring the gap. 

 
Figure 7-14 Sketch diagram of the clearance adjustment mechanism 
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The settings of TRBs at assembly are defined mainly as three conditions as following: 

�x Firstly, the endplay setting is when an axial clearance between rollers and raceways 

produces a measurable gap.  

�x Secondly, a line-to-line setting (zero clearance), is the transitional point between endplay 

and preload settings.  

�x Thirdly, a preloaded setting is when there is an axial interference between rollers and 

raceways and there is no measurable gap in-between. This can be carried out by applying 

pressure to the two surfaces relative to each other in this manner pressing the two surfaces 

firmly against each other and placing the bearing in a stressed condition[279].  

 
Figure 7-15 Adjustable clearance mechanism 

After setting up the bearing to the line-to-line setting which is assumed to have zero clearance, the 

measurement slips are used to measure the gap between a slip which is fitted in the groove and the 

positioning nut edge that controls the adjustment of the position of the cone to the outer race.  
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Figure 7-16. Measurement range selection based on typical life[279, 280] 

 
Figure 7-17 Axial clearance range 
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The total width of the slips fitted in the gap is used as a measure of the internal clearance. So a 

measure of 11.14 mm is used as a zero-clearance setting, and a smaller gap value than 11.14 mm 

means an endplay setting, whilst a larger gap value than 11.14 mm indicates a preloaded setting. 

The clearance range zone was chosen based on the optimal settings range within the maximum 

typical life, provided by the manufacturer as seen in Figure 7-16. Two endplay cases with measured 

width of 11.12mm and 11.10mm (with clearance variation of +0.02mm and +0.04mm, 

respectively) and two preloaded cases with the measured width of 11.16mm and 11.18mm (with 

clearance variation of �±0.02mm and �±0.04mm, respectively) were adjusted to study the effect of 

the clearance. 

7.2.13 Fault Seeding  

In this experiment, five bearings were used to study the different types and severities of bearing 

faults. The healthy bearing was used as a baseline or reference.  On the other side, rectangular slot 

defects with two different severities were artificially made using an electro-discharge machine 

(EDM). Defects were induced into one bearing with small outer race and another bearing with large 

outer race defect, also one bearing with small fault on the roller and another bearing with large fault 

on the roller. The fault size and the description can be seen in Table 7-11 and in Figure 7-18, 

respectively. The defective area was restricted to a small value to simulate initial faults and enlarged 

in two other cases. In order to exclude the influence of the temperature on the bearing internal 

clearance, data was recorded after warming up the test rig until the temperature remained stable at 

around 30ºC. Five recordings were recorded and compared to confirm the stability and accuracy of 

the experiment.  

Table 7-11 Seeded defect size of bearings 

Bearing No. Bearing condition Defect length (mm) Defect depth (mm) 
1 Healthy �± �± 
2 Outer race with small fault 2.0 0.2 
3 Outer race with large fault 4.0 0.2 
4 Roller fault with small fault 2.0 0.2 
5 Roller fault with large fault 4.0 0.2 
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Figure 7-18 seeded defects (a) 2 mm (b) 4mm on outer race, and (c) 2mm (d) 4 mm on roller 

7.3 Experimental Procedure  

In this study, the vibration data was collected using the following procedure: 

1. For warming up the bearing rig, before start recording data, the bearing rig ran 10 minutes. 

2. All data were collected under 1500 rpm motor speed. 

3. The sampling rate used in the experiment was 50 KHz. 

4. The time duration of each data recordings was 30 seconds so this meant each of the 

recorded data will cover about over 750 shaft rotations (30*25). 

5. The length of the recorded data was 50000*30= 1500000 data-points.  

6. In order to ensure that the signals obtained are consistent, each case of bearing conditions 

repeated five times so five data-sets of each condition were recorded at the same day so all 

experiments were assumingly conducted under the same conditions. 

7. The five bearing conditions have been tested with the same speed and operating conditions.  
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8. The faults-free bearings tested by recording the vibration signals using the accelerometer 

mounted on the bearing housing in the vertical direction, this data is used as baseline data 

(reference).  

9. The second test for the bearing with outer race fault started with the smaller defect then the 

larger defect.  

10. The next test was for the bearing with roller fault started with the smaller defect then the larger 

defect.  

7.4 Summery 

This chapter described the development of the test rig, in (section 7.2) the components with all 

instruments were explored, also, the adjustable clearance mechanism was described in details. The 

experimental procedure presented in (section 7.3). 
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CHAPTER EIGHT  
 

8 VIBRATION  DATA ANALYSIS AND CLEARANCE ESTIMATION 

BASED ON LOW -FREQUENCY BAND ANALYSIS  

In this chapter the collected vibration datasets are analysed and explored in the time domain and 

frequency domain, also the effect of wear evolution on the condition monitoring of REBs is analysed 

based on internal clearance changes resulting from the wear effect. Then, an experimental study is 

ingeniously designed to simulate wear evolution and evaluate its influence on well-known envelope 

signatures according to measured vibrations from widely used tapered roller bearings. The fault 

type was diagnosed in two indices: the magnitude variation of characteristic frequencies and the 

deviation of such frequencies.  

8.1 Introduction  

In this chapter, data collected from the baseline and defective bearings analysed, the analysis start 

with identifying the missing parameters that are required to theoretically calculate the fault 

frequencies of the tested bearing. Moreover, based on the experimentally identified fault 

frequencies, the deviation of the fault frequencies due to clearance changes is investigated. A 

clearance adjustment mechanism is developed and used for this purpose. The results are presented 

and discussed also summarised at the end of this chapter. 

Bearing fault frequency can be calculated using the formulas shown in Table 8-1 based on the 

geometrical information usually provided by the manufacturers[74]. However, TRBs come apart 

and some of the parameters will be dependent on the bearing settings. Hence, to identify those 

missing parameters, an experiment is carried out and then the fault frequency can be calculated 

according to the missing parameters. 

Table 8-1 Characteristic Fault Frequencies 

Fault type Calculation formula 

BPFO: Ball Pass Frequency of Outer Race (Hz)  
�B�»�É�ÂL

�s
�t

�Vl�sE
�@
�&

�…�‘�•�=p�B�æ 
(8.1) 

 

BPFI: Ball Pass Frequency of Inner Race (Hz)  
�B�»�É�ÂL

�s
�t

�Vl�sE
�@
�&

�…�‘�•�=p�B�æ 
(8.2) 

 

BSF: Ball Spin Frequency (Hz) 
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FTF: Fundamental Train Frequency (Hz)  
�B�ÖL

�s
�t

l�sF
�@
�&

�…�‘�•�=p�B�æ 
(8.4) 
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where �V stands for the number of rolling elements, �@ is the diameter of the rolling element, �& is the 

pitch diameter, �Ù is the contact angle, and �B�æ is the shaft frequency. A localised defect of a rolling 

element impacts the outer race and the inner race once a spin and two transients are generated. 

Thus, �t�B�»�Ì��is normally used as the fault frequency to indicate rolling element defects. The 

theoretical fault frequencies of bearings used in this study are calculated for the outer race, rolling 

elements, carriage and inner race. 

8.2 Estimation of Geometric Parameters 

Due to the geometry and the component separation characteristics of tapered roller bearings, the 

parameters, such as rolling element diameter, pitch diameter and contact angle needed for the 

theoretical fault frequency calculation, are not available from the open data resources. A test 

approach was adopted to estimate these key parameters. Based on measured data with artificial 

faults on outer race and a roller, the shaft frequency���B�æ, �B�»�É�È, and �t�B�»�Ì were identified from the 

experiment results. With these known frequencies, the parameters were estimated, and the 

parameter �Ú can be estimated according to 

 �ÚL
�B�æ

�t�B�»�Ì
�H�sF l�sF

�t�B�»�É�È

�V�B�æ
p

�6

�I (8.5) 

Which is derived by Equations (8.1) and (8.3). Then submitting equation (8.5) to Equation(8.3). 

Then �…�‘�•�= can be estimated by 

 �…�‘�•�=L l�sF
�t�B�»�É�È

�V�B�æ
p���Ú (8.6) 

Thereafter, at a running speed of 1500 rpm �:�B�æL �t�w�*�V�; and clearance of zero, all characteristic 

frequencies can be obtained as shown in Table 8-2. 

Table 8-2. Defect frequencies of bearings tested at 1500 rpm 

Fault location Defect frequency (Hz) 
Inner race 217.5595 
Outer race 157.1041 

Roller 133.5958 
Cage 10.4736 

8.3 Initial Experimental Results and Discussion 

The analysis of the data starts with time domain, frequency domain and envelope spectrum. Also 

the deviation of the characteristic frequencies is analysed.  
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8.3.1 Time Domain Analysis 

The analysis of the data starts with exploring the time domain analysis of the different cases; 

baseline, small outer race fault (2mm) and large outer race (4mm). Also, small and large roller fault 

cases will be discussed.  Figure 8-1 and Figure 8-2 explore 0.2 seconds of the vibration raw signals 

for baseline, small and large outer race faulty signals respectively for all clearances ( +0.04 +0.02 

0.00 -0.02 -0.04).   Three traces are present, the blue trace is from the baseline bearing and the red 

trace is from the small fault in the outer race while the magenta trace is from the large fault in outer 

race. 

The amplitude of the cases shows a slight increase in the presence of a physical change in the 

system. The case belongs to outer race fault as seen in Figure 8-2 is larger as it belongs to the large 

fault with a severity of 4mm on the outer race. 

From the time domain analysis of two faulty cases of outer race small and large, it can be noticed 

that the amplitude of two faulty cases increases slightly with the decrease of clearance with regard 

to the baseline and it is dominated by the defects signal energy. However, for the cases with large 

clearance, the amplitude is not clearly shown any changes. 
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Figure 8-1 Time Analysis of Baseline and Small Outer Race  

It can be observed that, in the outer race fault cases, the structures of the data show differences 

from the baseline data, especially in the smaller clearances. The change occurs in the more 

detailed parts of the waveforms. The periodic feature, however, remains in the waveforms. Case 2 

amplitude clearance -0.04 (magenta trace) is slightly larger than that of case 1 with the same 

clearance (red trace). 
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Figure 8-2 Time Analysis of Baseline and Large Outer Race 

In Figure 8-3, a healthy bearing signal (blue trace) and a bearing with a small defect on the roller 

(red trace) are presented. Whilst, Figure 8-4 compares the baseline signal with large roller defect 

(magenta trace). It can be seen that there is a presence of some peaks which belongs to the defect 

induced into the roller. The amplitude of the peaks for both small roller and large roller defect 

increased with the decrease of the clearance.   The structures of the data show differences from the 

baseline data, the change occurs in the more detailed parts of the waveforms. 
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Figure 8-3 Time Analysis of Baseline and Small Roller Defect 

The periodic feature, however, remains in the waveforms. Moreover, in the signal signature of the 

outer race defects, there are repetitive impacts at intervals which corresponding to the time interval 

between the rolling elements and the defects point when the roller elements pass over the defect 

area, results in a repeated a series of impacts because of collisions of the metal to metal contact. 

Also in the case of roller defects as the roller spins, the line contact between the races and defect 

area on the roller will produce a repeated series of impacts. The magnitude of peaks appeared in 

the cases of the outer race are smaller than the peaks appeared in the roller cases. This is because 

of the contact area in the roller cases are larger than the out race cases as the defect induced at the 

edge of the outer ring, thus, the rollers are not fully in contact with defect area due to the design of 

the bearing. 
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Figure 8-4 Time Analysis of Baseline and Large Roller Defect 

Despite the slight change of the signal amplitude in the time domain analysis, it is still not adequate 

to identify the defects occurred in the two faulty cases. Moreover, raw vibration signals from 

bearings do not always generate a signal that shows the impacts similar to the clarity as they appear 

in Figure 8-2 and Figure 8-4, because the raw vibration signal will be the summation of all vibration 

signals from the entire system, thus, will be containing many components. Moreover, usually, at 

the early stage of bearing defects like spalling, incipient impulses will be contaminated and masked 

by the background noise of the entire system components. Therefore, it will be very unlikely to be 

detected by viewing the time signal. A further investigation will be carried out using statistical 

analysis in the next section. 

For more demonstration, statistical analysis is carried out using RMS and Kurtosis. Figure 8-5 and 

Figure 8-6 shows the results obtained from the statistical analysis for each bearing. RMS of the 

baseline and two outer race cases are calculated and shown in Figure 8-5 (a), however, it does not 
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provide a clear indication of the faults induced into the outer race for the bearing with outer race 

fault.  Figure 8-6 (a) presents the RMS of baseline and the bearings with roller fault, it can be seen 

that RMS of the large roller fault has a higher amplitude compared to the baseline data while the 

small fault does not have such clear difference. Kurtosis is another statistical parameter used to 

investigate the change in the signal structure due to the seeded faults. The results obtained in 

Figure 8-5 (b) Figure 8-6 (b) from Kurtosis again cannot obviously describe the presence of the 

faults in both bearings with different severities for all clearance cases. 

 

Figure 8-5 RMS and Kurtosis of Baseline and Outer Race Cases 
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Figure 8-6 RMS and Kurtosis of Baseline and Roller Cases 

8.3.2 Spectrum Analysis  

The presence of peaks induced by faults in the spectrum analysis can be used to diagnose the faults 

in rotary machinery. In the case of diagnosing a bearing defect, the characteristic fault frequencies 

need to be calculated in advance as depicted in Table 8-1 and in Table 8-2. Fault frequencies can 

be checked by exploring the location of the faults in the vibration spectrum. As seen in Figure 8-7, 

the spectrum of vibration data is presented for the baseline (a) and two outer race faulty cases, small 

outer race fault (b) and large outer race fault (c). However, there are no dominant peaks in the 

spectrum around the outer race fault frequency 156Hz that clearly can be identified by the 

difference between the baseline and faulty cases. 
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Figure 8-7 Spectrum Analysis of baseline and outer race defects 

Figure 8-8 shows the spectrum analysis of the vibration data for baseline (a), small roller fault (b) 

and large roller fault (c). The calculated characteristic fault frequency for roller as seen in Table 8-2 

is around 134 Hz, however, the spectrum analysis does not provide clear peak belongs to the roller 

defect in the two faulty cases (b) and (c) compared to the spectrum of the baseline signal (a).  From 

the results obtained using Fast Fourier Transform, it can be concluded that it is very unlikely to 

detect the peaks belong to the calculated faults at 156 Hz and 134 Hz with their harmonics for the 

outer race defects and the roller defects. It can be seen that there is no significant increase in the 

amplitudes at the defects frequencies compared with the no-fault case.  
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Figure 8-8 Spectrum Analysis of baseline and Roller defects 

8.3.3 Envelope Spectrum Analysis 

As discussed in Chapter Five, Envelope analysis has been a well-known method for monitoring 

REBs, to perform envelope analysis, the signal needs to be passed through a band-high-pass filter 

to eliminate the low-frequency noise, and then rectify the signal, and then in the envelope spectrum, 

the fault frequency components can be identified. The common envelop analysis has been 

performed to all bearings data. First, data filtered by passing it through the frequency band 2 KHz 

to 4 KHz and then envelop analysis performed. Figure 8-9 shows the envelop analysis of baseline 

signal and the results show that it is very flat and no spectrum signs can be identified for all 

clearance cases. 
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Figure 8-9 Envelope Spectrum Analysis of the Baseline 

Figure 8-10 presents the envelope spectrum of vibration data collected from a defective bearing 

with a small (2mm) outer race fault for all clearance cases. It can be seen that for large clearance 

cases (+0.04 and +0.02), the fault peaks and their harmonics cannot be easily detected. However, 

some of the fault peaks associated with preloaded conditions (-0.02mm and -0.04mm) can be 

detected at 157 Hz with their second harmonics and sidebands spaced with the rotation frequency.  

At the same time, peaks at the characteristic defect frequency for large fault severity (4mm) 

(magenta trace) with some large internal clearance conditions (+0.02mm and +0.04mm) can be 

seen in Figure 8-11. The faulty peaks for large outer race fault, especially for clearance smaller 
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than (+0.02), appear clearly at 157 Hz with their second harmonics at 314 Hz and third harmonic 

at 471 Hz till fifth harmonic spaced with the rotation speed due to the unbalanced shaft.  

Figure 8-12 shows the envelope spectrum of vibration data gathered from a defective bearing with 

a small roller fault (2mm), in the large clearance condition (+0.04), the peaks and their harmonics 

not clear enough to be used to diagnose the bearing condition. In clearance conditions +0.00 and 

smaller, the faulty peaks can be detected with their second harmonic spaced with cage frequency 

(10.5 Hz) as summarised in Table 8-4. The magnitude of the spectral lines increases with the 

declines of the internal clearance. 

 

Figure 8-10 Envelope Spectrum Analysis of the Small Outer Race Defect 
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Figure 8-11 Envelope Spectrum Analysis of the Large Outer Race Defect (4mm) 

On the other hand, the larger roller fault (magenta traces), shown in Figure 8-13, indicates clearly 

to the presence of the defects. It can be seen that in the roller case at (134 Hz), the amplitude of the 

peaks escalated as the severity of the fault increased. Also, the magnitude clearly grows with the 

decline of the internal clearances.  In more details, the frequency of the large roller defect appears 

with the harmonics at 268 Hz 402 Hz 536 Hz and 670 Hz respectively. 
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Figure 8-12 Envelope Spectrum Analysis of the Small Roller Defect (2mm) 



157 

 

Figure 8-13 Envelope Spectrum Analysis of the Large Roller Defect (4mm) 

Although envelope analysis has demonstrated its ability to detect and identify some of the faulty 

conditions with their harmonics and spaced with the expected sidebands, it cannot detect effectively 

the faulty conditions in the large clearance cases. Moreover, an important step of applying envelope 

analysis is to choose the best bandpass filtering, which still not an easy task. Despite the 

development of advanced techniques to determine the best band such as Fast Kurtogram, these 

techniques reported to fails in many cases. 
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8.4 Deviation of characteristic frequencies 

Interestingly while exploring the vibration signal collected from defective bearing with an outer 

race and another bearing with a roller defect, it was found that the fault peaks tend to shift in both 

cases. This phenomenon motivated us to carry further investigation to identify the reasons behind 

the deviation of the characteristic frequencies. As it can be seen in Figure 8-14, the outer race fault 

peaks shifts with the change in the clearance condition. it can be clearly seen that as the clearance 

declines, the characteristic fault frequency of the outer race declines and the magnitude increase 

remarkably.  

 

Figure 8-14 Deviation of the Outer Race Characteristic Frequencies 

Moreover, in roller fault case, the characteristic frequency tends also to shift, however, in the 

opposite direction to the outer race fault peak shift. As seen in Figure 8-15, as the clearance decrease 

the fault peaks frequency of the roller increased and the magnitude also increased. 
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Figure 8-15 Deviation of the Roller Characteristic Frequencies 

In reality, tapered bearings, shown in Figure 8-16 (a), are assembled at the location of the 

application with different clearance setting, the adopted internal clearance will depend on the 

application they are used for as discussed in chapter three. Moreover, bearing races may undergo 

inevitable wear in their lifetime [51]. According to Halme and Andersson [281], several 

mechanisms of wear, such as adhesive, fretting, abrasive, etc., can occur in REBs. Abrasive wear 

can be classified into two categories, named two-body and three-body abrasive wear. The two-

body abrasive wear may be encountered when one of two sliding contact surfaces is harder than 

the other surfaces causing to remove parts the softer material.   Three-body abrasive wear occurs 

when hard particles penetrate into the sliding surfaces causing material removing from both sliding 

surfaces.  Moreover, the surface texture can be changed due to plastic deformation. The clearance 

will increase with the occurrence of wear. �³�6�H�Y�H�U�H���Z�H�D�U���F�K�D�Q�J�H�V���W�K�H���U�D�F�H�Z�D�\���S�U�R�I�L�O�H���D�Q�G���D�O�W�H�U�V���W�K�H��

�U�R�O�O�L�Q�J���H�O�H�P�H�Q�W���S�U�R�I�L�O�H���D�Q�G���G�L�D�P�H�W�H�U�����L�Q�F�U�H�D�V�L�Q�J���W�K�H���E�H�D�U�L�Q�J���F�O�H�D�U�D�Q�F�H�´��[51]. Furthermore, Nguyen-

Schäfer [282] pointed out that the internal clearance strongly affects load distribution as well as 

�Z�H�D�U���� �$�F�F�R�U�G�L�Q�J�� �W�R�� �W�K�H�� �O�L�W�H�U�D�W�X�U�H���� �W�K�H�� �H�I�I�H�F�W�� �R�I�� �L�Q�W�H�U�Q�D�O�� �F�O�H�D�U�D�Q�F�H�� �R�Q�� �5�(�%�V�¶�� �O�L�I�H�� �K�D�V�� �U�H�F�H�L�Y�H�G 

considerable research interest. However, limited work has been observed that investigated the 

impact of wear and simulated wear on the condition monitoring of REBs with the assumption of 
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clearances variance. Rehab et al. [283] investigated vibration amplitude for two ball bearings with 

two different radial clearances and focused only on the inner race and outer race defects. The study 

�F�O�D�L�P�H�G���W�K�D�W���W�K�H�� �Y�L�E�U�D�W�L�R�Q�V�¶�� �H�Q�H�U�J�\�� �L�Q�F�U�H�D�V�H�G�� �Z�L�W�K�� �W�K�H�� �V�H�Y�H�U�L�W�\�� �R�I�� �W�K�H�� �R�X�W�H�U���U�D�F�H�� �G�H�I�H�F�W���� �Z�K�L�O�H�� �L�W��

declined with the severity of the inner race defect. Goerke et al. [284] studied the effects of radial 

clearance changes on vibration frequencies in double-row self-aligning ball bearings. The 

experimental study claimed that an increasing clearance leads to a change of the contact angle, and 

as a result, a linear relationship was found between clearance and vibration frequency. The results 

showed that, as the clearance decreases, so the contact angle decreases and shrinks the fundamental 

train frequency. However, this study concluded only the effects of clearance changes on the 

fundamental train frequency.  

Fitzsimmons and Clevenger [285] carried out an experimental study to evaluate the effects of three 

key parameters of contaminants on the wear of tapered bearing.  These parameters are; 

concentration of contaminants in the lubricant, the size of particles and hardness of the particles. 

The study stated that tapered bearing not very likely will  suffer from the two-body abrasive wear 

due to the fact that the components of the bearing are made of a similar material with the same 

hardness level and mechanism. However, they pointed out that tapered bearing can suffer from 

adhesive wear or three-body abrasive wear. When contaminates penetrate into the bearing, because 

of the nature of tapered roller, the lubricant is pumped towards the large end of the bearing and the 

contaminants will be circulated with the lubricant flow, thus, will abrade the surfaces of the bearing. 

Moreover, the study claimed that wear in the tapered bearing can occur to surfaces that exposed to 

sliding and rolling contact at the same time.  This could be either on the roller ends or the large end 

rib of the inner race. As excessive wear occurs, it would lead bearing dimensions to change in a 

form of bearing width reduction, this will change the initial setting of the bearing. Moreover, it can 

result in an increasing noise levels. The study concluded that excessive wear can occur to tapered 

bearing if the hardness of the contaminant particles is greater than or equal to the hardness of the 

bearing material.    

In the case of tapered roller bearings (TRBs), however, it has not been reported how an increasing 

clearance due to mounting setting or unavoidable wear can affect the vibration signature and hence 

the diagnostic performances.   

The analysis shows that the geometric ratio �ÚL �@���&  and contact angle �=��values will depend on 

the setting used when mounting the bearing, also will change due to loss of materials during 
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operation, which will always lead to increased bearing clearances. Eventually, the characteristic 

frequency will change or vary.  

 

Figure 8-16. (a) Schematic Diagram of a TRB, and (b) a Worn Example 

8.4.1 Outer race 

In the case of testing a defective bearing with an outer race fault, as depicted in Figure 8-14, the 

fault peaks magnitude increases in each step of minimizing the clearance, however, unlike roller 

defect frequency behaviour, the outer race fault peaks exhibit a decreasing trend when the internal 

clearance minimized. The declining trend of the outer race fault frequency �B�»�É�È is due to the 

increase in �@
�×

�½
�…�‘�•�=�A value, which according to Equation (8.1), will result in a decrease in the 

overall value of l�sF �@
�×

�½
�…�‘�•�=�Ap, hence, �B�»�É�È��will have a declining trend. Interestingly, despite the 

declining in �Ú value, �:�ÚH�…�‘�•�=�; exhibit an increasing trend. As the increase in �…�‘�•�= (contact 

angle) more than the declining in  �Ú value. It can be concluded that the contact angle has a higher 

impact on the outer race fault frequency behaviour than the pitch diameter does.   

8.4.2 Roller  

A defective bearing with roller fault was tested while the internal clearance has been minimized 

five steps by a value of 0.02 from (+0.04) to (-0.04) in each case. It was found that �B�»�Ì has increased 

in each step. Also, �:�ÚL �@���&�;��value will become smaller and �:�…�‘�•�=�; will become larger. As 

demonstrated in Table 8-3, according to (8.3), although l�sF �@
�×

�½
�…�‘�•�=�A

�6
p will decline, however, 

the increases of �:�&���t�@�;  having more influence which makes �B�»�Ì increases. This is because the 

roller will slide to the up towards the upper edge of the inner race, the parameter �& (pitch diameter) 

will increase and the contact angle will decrease when clearance decreases, as illustrated in 
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Figure 8-16 (b). It can be concluded that the change in the pitch diameter value affects the roller 

characteristic frequency, therefore, the impact of the change in the pitch diameter at �B�»�Ì is higher 

than the impact of the change in the contact angle���…�‘�•�=. 

There is a clear change in the frequency as the internal clearance changes in the range specified by 

bearing manufacturers (see Clearance setting range figure).  

Table 8-3 Deviation of characteristic frequencies 

Clearance 
(mm) 

Outer race fault 
 �Œ�n�|�{ ��(Hz) 

Roller fault  
 �Œ�n�•��(Hz) �. �F�R�V���.�� �¼L �Š���p �¼���‰�•�™�:�»�; 

+0.040 158.14 132.45 32.05º 0.8475 0.1840 0.1560 
+0.020 157.35 133.17 28.81º 0.8762 0.1828 0.1602 

0.0 157.12 133.60 27.61º 0.8861 0.1821 0.1614 
-0.020 157.05 133.89 27.10º 0.8902 0.1817 0.1617 
-0.040 157.05 134.12 26.91º 0.8916 0.1813 0.1617 

 

8.5 Vibration Response and Spectral Lines Analysis  

Calculating the exact dynamic behaviour of a machine is not an easy task especially when the 

machines are built of many different parts. Thus, a simple model is normally used to represent the 

machine structure [64]. Intensive theoretical vibration models have been developed to characterise 

�W�K�H���Y�L�E�U�D�W�L�R�Q���P�H�F�K�D�Q�L�V�P���D�Q�G���W�K�H���H�I�I�H�F�W�V���R�I���W�K�H���S�D�U�D�P�H�W�H�U�V�¶���Y�D�U�L�D�W�L�R�Q���V�X�F�K���D�V���W�U�D�Q�V�P�L�V�V�L�R�Q���S�D�W�K���D�Q�G��

loading, including single and multiple localised defects [51]. Su and Sheen [286] developed a 

model to characterise the vibrations of a bearing subjected to loading variation and various 

transmission path conditions with arbitraril y located defects. The developed model specifies the 

periodic characteristics of loading variations and also the effects of the transmission path on the 

vibration of the contact energy due to the defects of different bearing components. The magnitude 

of the contact energy is generally affected by loading related to the unbalanced shaft, misalignment, 

radial or axial load, manufacturing errors and preload. Table 8-4 illustrates the reasons for periodic 

characteristics and their effects on each of the bearing defects where �B�æ is the shaft frequency, �B�Ö��is 

the cage frequency and  �B�»�Ì is the roller spin frequency. 

Table 8-4. The periodicity due to various loading and transmission path influences [287] 

Cause of periodicities 
Defect type 

Outer race �:�Œ�n�|�{ �; Inner race �:�Œ�n�|�u�; Rolling element (�Œ�n�•�; 
Stationary loading - �B�æ �B�Ö 

Loading due to shaft unbalance �B�æ - �B�æF �B�Ö 
Loading due to roller diameter 

errors �B�Ö �B�æF �B�Ö - 

Transmission path - �B�æ  �B�Ö and 2�B�»�Ì 
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8.5.1 Outer Race Defect Analysis 

Figure 8-17, shows the envelope spectrum analysis of the bearing with outer race defect, the fault 

peak frequency of outer race �:�B�»�É�È�; in the first harmonic (red dot trace) and the consequent 

harmonics are spaced with the shaft frequency���B�æ (25 Hz) as listed in Table 8-4. The sidebands 

present due to the unbalanced shaft as the shaft used in this test is found to be unbalanced by 0.09 

mm when calibrated. The spectral lines with green dot traces represent the shaft frequency  

�B�æ��and its harmonics. The close spectral line is the sidebands of the harmonics overlapped in some 

regions. 

 

Figure 8-17. Envelope Analysis of Outer Race Fault with Shaft Periodicity Effect 

8.5.2 Roller Defect Analysis 

The spectra of enveloped vibration signals of roller fault bearings are illustrated in Figure 8-18. 

The spin frequency �B�»�Ì (red trace) and roller fault frequency���t�B�»�Ì (black trace) spaced with the 

cage frequency �B�Ö due to transmission path effect as illustrated in Table 8-4. Interestingly, in this 

study, it was found that the cage frequency �B�Ö (cyan trace) exists with its harmonics and can be seen 
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clearly. This because the defective roller when spins it does get a line contact with the cage of 

bearing and appears with at the cage characteristic frequency. 

 

Figure 8-18. Envelope Analysis of Roller Defect with Cage Frequency Effects 

The unbalanced shaft effect is illustrated in Figure 8-19, it can be seen that the �B�»�Ì roller spin 

frequency is spaced with �B�æ��F �B�Ö  (magenta trace) which is 14.5 Hz in this operating condition. This 

periodicity is consistent with the summary listed in Table 8-4.  After the previous analysis and 

discussion for the three bearings, the results demonstrate that, for accurate severity diagnosis, the 

effect of the wear evolution for TRBs needs to be taken into account. 
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Figure 8-19 Envelope Analysis of Roller Defect with Unbalanced Shaft Effect 

8.6 Internal Clearance Estimation Based Low-Frequency Band Analysis 

The vibration response to internal clearance changes in the low-frequency band is investigated in 

this chapter. The faulty peaks were extracted from a defective bearing with outer race and from 

another defective bearing with roller fault. The results are shown in Figure 8-20 (a) and (b) 

respectively. The amplitude of the faulty peaks increased with the declining of internal clearances. 

Figure 8-21 (a) shows the impact of the change in clearance at the vibrations in a wide band. It can 

be seen that RMS of whole band vibration for outer race fault with all clearance cases show no 

clear trend with the declining of the internal clearance of bearings, neither the RMS of data with 

roller fault does. On the other hand, in a low band frequency of 1:1000 Hz, the RMS values of the 

vibration signals show a clear declining trend for all cases including baseline data as seen in (b). 

The amplitude remarkably declined with the decrease of the internal clearances. Whilst 

interestingly, the fault peaks amplitude of both Outer race and roller increased remarkably with the 

declining of the internal clearance as depicted in Figure 8-20 (a) and (b). 
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Figure 8-20 Fault Peak Amplitude vs. Clearance 

 

Figure 8-21 Low-Frequency Vibration for Clearance Estimation 
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8.7 Summary 

In this chapter, for theoretical fault frequency calculation, two sets of data are used to estimate the 

missing key parameters: pitch diameter and contact angle. Based on measured data with artificial 

faults on outer race and a roller, the shaft frequency �B�æ, and �B�»�É�È, and �t�B�»�Ì were identified from 

the experiment results. Moreover, alongside baseline data is used as a reference, sets with different 

internal clearances data for outer race, the roller with two fault severities were analysed. The 

analysis started by exploring the time and frequency domain analysis, then envelope spectrum 

analysis also adopted in this chapter. Despite the slight change of the signal amplitude in the time 

domain and time domain statistical analysis, it is still not adequate to identify the defects occurred 

in the two faulty cases. Moreover, from the results obtained using Fast Fourier Transform, it can 

be concluded that it is very unlikely to detect the peaks belong to the calculated faults at 156 Hz 

and 134 Hz with their harmonics for the outer race defects and the roller defects. It can be seen that 

there is no significant increase in the amplitudes at the defects frequencies compared with the no-

fault case. 

The use of well -known envelope analysis shows the ability of the technique in detecting defects 

with large severity with their harmonics and spaced with the expected sidebands, also, reasonable 

results for small faults with high preloaded conditions. However, when clearance become larger 

within the specified range provided by the manufacturer, the envelope does not provide clear results 

for the small fault severity especially for the internal clearance of (+0.04). Moreover, an important 

step of applying envelope analysis is to choose the best bandpass filtering, which still not an easy 

task. Despite the development of advanced techniques to determine the best band such as Fast 

Kurtogram, these techniques reported to fails in many cases. 

Furthermore, to clarify the impact of mounting clearance settings or wear evolution on bearing 

fault diagnostics, an adjustable clearance mechanism method was adopted in the test to track the 

variation in vibration signatures. Two feature parameters are used to diagnose the internal clearance 

variation: the change in magnitude of characteristic frequencies which is usually used to diagnose 

fault severity, and the deviation of characteristic frequencies, which is suggested in this research to 

estimate internal clearance changes and wear evolution. The experimental results show that the 

defective magnitude declines remarkably with the increase of the clearance (wear evolution) for 

different fault cases. Moreover, the outer race fault shows a declining trend as the preload value 

increases, on the other hand, the deviation for roller faults exhibits an increasing trend as the preload 

value increases. Especially, these frequency deviations from nominal characteristic can be an 
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indication of wear evolution. Further investigation will be carried out to study the clearance 

estimation by analysing the low-frequency band; also, the influence of clearance on geometrical 

information of the TRB and, consequently, on the fault features will be studied.  
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CHAPTER NINE 

9 AUTOMATED DATA ANALYSIS  USING COMPONENTIAL CODING 

NEURAL NETWORK  

In order to evaluate the performance of CCNN, the detail of its implementation is presented based 

on different types of data in this Chapter. Firstly, it is applied to simulated datasets to show its 

performance in characterising different types of signals met in condition monitoring. Then it is 

assessed based on experimental data from different fault types and severity. 

9.1 Introduc tion 

This chapter presents the evaluation of CCNN using simulation data and presents the results 

obtained from applying CCNN to real data collected from the test bearings with discussion, In order 

to efficiently and effectively use the CCNN for condition monitoring, the detailed rules for the 

selection of CCNN parameters is studied based on typical condition monitoring data features. 

Vibration signal from condition monitoring is one-dimensional, it fluctuates in both time and 

frequency domains, and often only small variations occur in the signal from condition to another. 

9.2 CCNN Evaluation Using Simulated Data  

This section focuses on the selection of parameter values when applying CCNN to data. The 

novelty detection is inferred when the network is trained with a baseline signal, the novelty or the 

changes of the faulty signal from the baseline training signal can be found through the 

reconstruction error of the new signal using the trained neural network. The reconstruction error 

can be calculated by: 

 �' �è L �Ã�:���TF�TÜ���6�;�Ä (9.1) 

The reconstruction error �' �è is obtained from unseen data-set during the validation stage. Thus, the 

magnitude of the error is the differences between the new data and the training data. This averaged 

error then gives a general measurement of the novelty. This method is called Reconstruction Error 

Based Detection Model (REM). REM is computed using ADI as shown in (9.2). ADI will have a 

value close to zero (ADI<0.1) if the monitored data-set is healthy. However, ADI should have a 

much larger value than zero (ADI>0.1) if the monitored dataset is anomaly compared to the unseen 

dataset used in the calibration stage during training because the accuracy of reconstruction should 

be much less than the reconstruction accuracy of non-anomaly dataset. The reason behind using 
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unseen dataset  �4�è��is to improve the generalization of the derived data model from the training 

process to avoid the problem of run-into overfitting to the dataset used in the training.  

 
�#�&�+L

�4�à F �4�è

�4�è
 (9.2) 

9.2.1 Test Procedure and CCNN Parameters 

In order to ensure the stability of the CCNN and illustrate the capability of the method in anomaly 

detection, network firstly needs to be optimised and then the network will be tested in terms of 

performance evaluation using simulated signals. These steps will be discussed in details below. 

Firstly , the network will be optimized using synthetically created signals (simulated signals) based 

on the features of condition monitoring data. With the aiming of learning the training experiences, 

the simulated signal is formed with simple structures. Knowing the structure of the data allows the 

characteristics of the parameters and detection performances to be considered more easily. 

 Secondly, the performance evaluation of CCNN using simulation data will be carried out using 

simulated signals. Two types of signals will be used periodic and impact signals. These simulated 

signals will consist of the principal frequency with modulated signal frequencies and random noise 

to simulate REBs condition monitoring data. 

Using simulated signals, where the structure of the signals is known, gives us a better understanding 

in the followings: 

�x To determine the optimal training parameters. 

�x To explore the impact of the noise on learning the features. 

�x To explore the capability of CCNN in the detection of signal amplitude changes.  

�x The detection of changes in the frequency components. 

�x The detection of changes in the signal structure. 

9.2.2 Non-adaptive Network Parameters Optimization  

Non-adaptive network parameters are optimised using trial and error procedure in order to get the 

optimal parameters for anomaly detection. A simple periodic signal was generated to be used in 

the optimization process. To simulate condition monitoring data for optimizing the network, the 

simple simulated signal contains a principal frequency component and a random portion of noise 

as seen in (9.3).  
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 �T�:�P�; L �:�#�5�…�‘�•���:�t�è�B�í�P�;�; E�J�:�P�; (9.3) 

where �B�í is the principle frequency with amplitude of �#�5, �J�:�P�; is a random noise. 

Weight Vector  

Simulations were carried out to evaluate the influence of the number of the weight vectors and the 

size of each weight vector on the data reconstructions and anomaly detection capabilities. 

Weight Vector Size 

Simulations tests show that the size of the weight vector has an impact on the ADI amplitudes. In 

other words, when the size of each weight vectors increases to be close to the number of data points, 

the network gets better anomaly detection capability. Therefore, In the simulation test, the 

frequency is 500 Hz while the sampling rate is 15KHz, so the size of each weight vector is set to 

be 32 (15000/500=30) to cover one period of the principle frequency component. 

Weight Vector Number 

For the number of weight vectors, the optimization process shows that the more of the weight vector 

we create, the more details about the signal structure the network gets. Thus, in simulation, the 

number of weight vectors is set to be 6 to represent the expected frequency components from 

generated 5 principle frequencies and the random noise (500Hz, noise). 

Network Threshold Value 

Simulations have shown that as the value of the threshold increases, the training errors generally 

increase. The largest value of ADI was found around the threshold of 0.40.  Thus, the threshold 

value is set to 0.40 in the simulation test. 

Softness Value 

Varying the softness value has led to more dramatic influence on the results, and stronger influence 

on the training error. The best results were obtained when the softness set to between 0.16 �± 0.2. 
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After identifying the values of non-adaptive parameters, in this test two signal structures will be 

considered in the evaluation of the performance of the CCNN. Firstly, the sensitivity of the CCNN 

to the changes of the signal structure using simple periodic signal, and secondly, the discrimination 

capability over additive noise levels using impact signals. 

9.2.3 Anomaly Detection Results for  Periodic Signal 

The capability of CCNN in the detection of frequency variation is tested. A simple periodic signal 

was generated from a simple cosine wave signal with a small portion of noise as shown in (9.3) 

where �#�s is signal amplitude and set to 2, �B�í represents frequency and set to 500 Hz and �P is time 

set to be one second, �J�:�P�; random noise and set to 0.1 and the sampling frequency set as 15 kHz. 

The network parameters and training parameters were set to the optimal values found in the 

network optimization. The network parameters used in these experiments are shown in Table 9-1. 

This configuration allows the study of network training characteristics and detection capability of 

the CCNN.  

Table 9-1 Network parameters 
Item Value 

Weight vectors numbers 6 
Weight Vector dimension 32 
Threshold 0.40 
learning rate   0.05 
sigma  0.2 
Batch number Data length /WV dimension 
Iteration 200 
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Figure 9-1 Iterations Number 

Figure 9-1 shows that after 80 iterations, both the weight variation and MSE were nearly stabilised 

and become almost flat with regards to the remaining training iterations. The weight vectors 

obtained from the training stage are shown in Figure 9-2. It can be seen that the weight vectors 

reflect the signal components, as described in Figure 9-3, the weight vectors match both the 

deterministic and the random components.  

From the training result, as described in Figure 9-4, the signal reconstruction test shows that the 

model learned the required features that were needed to be able to reconstruct the very similar to 

the original signal using the learnt model.  
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Figure 9-2 Weight Vectors Obtained from Simulated Periodic Signal 

 
Figure 9-3 Simulated Periodic Signal 
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Figure 9-4 Reconstruction Test 

The frequency variations are inspected. A number of 5 test signals were formed with a variation in 

5 Hz steps around the frequency values of the training signal. The same noise level was used for 

the test signals and that of training signals. 

As seen in Figure 9-5, the results show clearly that the CCNN is very sensitive to changes in signals 

structure (frequency). Both MSE and ADI show that the CCNN is capable of detecting the changes 

in the frequencies with regard to the training signal. 






















































































































































































































