I"#$

% &' %
PR O O Opx x X g
&I
&' /I 0 %
' * 1 %
& 2 3
4 4
1 )
2
0 + * &5 2
1%

)7% 38 % % +%

)**

% % % +*



Computing Intelligence Technique and
Multiresolution Data Processing for
Condition Monitoring

Khalid Rabeyee

School of Computing and Engineering

This thesis is submitted to ti&ehool of Computing and Engineering, University of
Huddersfield, in partial fulfilment of the requirements for the degree of Doctor of

Philosophy

March 2019



COPYRIGHT STATEMENT



ABSTRACT

Condition monitoring (CM) of rotary machines has gained increasing importance and extensive
research in recent years. Due to the rapumvth of datavolume automated data processing is
necessary in order to deal with massive data efficiently to produet/tand accurate diagnostic
results. Artificial intelligence (Al) and adaptive data processing approaches gamorbesing
solutions tahe challenge of large data volume. Unfortunately, the majorityf-tifasedechniques

in CM have been developed fanlg the postprocessing (classification) stage, whereas the critical
tasks including feature extraction and selection are still manually processed, which often require
considerable time and efforts but also yield a performance depending on prior knoahedge
diagnostic expertise.

To achieve an automatic data processing, the research of this PhD project provides an integrated
framework with two main approaches. Firstly, it focuses on extending Al technigakplrases,
including feature extractiohy applying Componential Coding Neural Network (CCNN) which

has been found to have unique properties of being trained through unsupervised learning, capable
of dealing with raw datasets, translation invariance and high computational efficiency. These
advantagesf CCNN make it particularly suitable for automatatalyzingof the vibration data
arisen from typical machine components such as the rolling element bearings which exhibit
periodic phenomena with high natationary and strong noise contamination. Tharge an
anomalyis detected, a further analysis technique to identify fthét is proposed using a
multiresolution data analysis approach baseDauble Density Discrete Wavelet Transfo(D-

DWT) which was grounded on oveampled filtetbanks with smoth tight frames. This makes it
nearly shiftinvariant which is important for extracting nstationary periodical peakalso, in

order to denoise and enhance the diagnostic features, a noveldpesidant adaptive thresholding
method based on harmorti signal ratio (HSR) is developed and implemented on the selected
wavelet coefficients. This method has been developed to be @astymated (adaptive) approach

to facilitate the process of fault diagnosis. The developed framework hasJadeakedusing both
simulated and measured dataseim typical healthy and defective tapered roller bearings which
are critical parts of all rotating machind$e results have demonstrated that the CCNN is a robust
technique for early fault detectioand also showekthat adaptive DEDWT is a robust technique

for diagnosing the faults induced to test bearings. The developed framework has achieved multi
objectives of high detection sensitivity, reliable diagnosismamimizedcomputing complexity.



DECLARATION



DEDICATION

| would like to dedicate my work to those who have supported and encouraged me during my

studies my mother, my wife, my children and other family.



ACKNOWLEDGEMENTS

| amdeeply indebtetb Prokessorengshou Gu androfessoAndrew Ball for their valuable

help, unlimited support and encouragement to make this dream true.



LIST OF CONTENTS

COPYRIGHT STATEMENT. ...coiiiiiiiitiiiti e e e eeeiiiiie e e e e s st ee e e e s smmnssnsssaseeeaeessnsssseeesemmeeeens 2
ABSTRACT ... tttiite ettt ettt e e e e e e sttt ettt e emme e e e e n s bt e et e e e e sansbeetannteeeeeeannbaneeeeeeeannssannnes 3
DECLARATION ..ttt e ettt ereet e e e e e e ettt e e e e e e e st nnnsseeeeaeeaanssbaeeeeeeaanmnnssssneeeeeeannnssnneesd 4
DEDICATION ...t tttttte ettt e e et retee sttt e e e e e s sttt e e e smmme e s e s st e e eaeeesansseeeesammeeeeeeannsnseaeaenennnseen 5
ACKNOWLEDGEMENTS......cutiiiiiiei ittt s eeme e s sttt e e e e e s seee s annntasaeessnsaaeeeeeeaannssannnssseeeens 6
LIST OF TABLES ..o oottt teete ettt e s rmme e e e e e e nab bt e e e e e smmme e e nnnntaeaaeeeaanns 13
TABEL OF FIGURES......oeiiiiiiiiiii ettt e e e e e et amnne e e e e e e annnees 14
LIST OF ABBREVIATIONS. ... iiittiiiiiee sttt iersteee e e e s st ee e e e e s ssmnnssaseeaaeesssnssseeeeeeessmnnssnns 18
LIST OF NOTATIONS.....ettii ettt e e sieee et e e e e s ettt e e e e e smmme e e s ssbaeeaaeessansseseesnnnreeeessnnnnes 20
LIST OF PUBLICATIONS. ...ttt e et e e eeeme et e e e e e e e e aa e e e e e nmmn e eees 22
(O 1 I8 = 0 11 23
N N @ 15 1O L @ I ] PP 23
O R == Tod (o [ (o 18] [0 PP PP PP PP PPPPPPPR 23
1.2 Condition MONITONNG STEPS.....coiiiiiiiiiiitiiieeieeeiiie e e e e e e eeemr e e e e e e e e e e e e aaeeeeas 24
1.2.1  Data ACQUISTHION. ...ttt ieeeeitbeb et ettt e e e e e e s ememr e e e e e e e e e e e e e e e eaaaeaassammme s 24
1.2.2  Data PrOCESSING.....cceiiiiiiiiiiiiieees et eeees bbb e e e e e e e e e e e e e e emmeee s 25
1.2.3  DECISIORMEAKING. .. tteeeeeeiiiieiieeee et eeenae 25

1.3 CM APPIOBCKHES. ... .ottt e ee bbbttt eees et e e e et e et e e e e e e e e e ammreeeeeeeeas 26
1.3.1  APPIICALION FOCUS. ... ...ttt ittt e et e e e e e e e e e e e e e e nnes 26
1.3.2 Data Gathering Technology FOCLS..............uuuuiiiiiimeeiiiiiiiiiiieiieee e 26
1.3.3  Data ANalySiS FOCUS......uuiiiiiiii e eeeeee e emme e e 26

1.4  Condition Monitoring Of REBS........ccoiiiiiiiiiiiicieeeeeie e eeeeeeeeeeeeeme e 29
1.4.1 SignatbasedmethOds...........ooooiiiiiiiiiie e 30
1.4.2 ModehlbasedmethOds. .......ccooiiiiiiiiiiiiieee e e e e e e e e e 36
1.4.3 Knowledgebased methodS..........ccooiiiiiiiii et 37

1.5  AIM and ODJECHVES.....ccoiiiiii e e e e e e e e a s 40
IR TN A 1 o O RSO R USSP P RRRRRPPPP 40
T @ L o] [T ox 1Y 41

1.6 Flowchart of Data ANAIYLICS ........uuiiiiiiiei e e e e eaa 43
A U [ 11 = Y/ PR 43
(O A I = S N P 44




2 FEATURE EXTRACTION AND ENHANCEMENT TECHNIQUES FOR CONDITION

MONITORING - THE LITERATURE REVIEW........coo e 44
/2205 I |11 Yo [T £ 0 o PO |
2.2 Demodulation Signal Based AppProachi..........ccccccccvviiieemiiiiiiiiiieceeeeeseeesieeee L A4
2.2.1  ENVEIOPE GNAIYSIS ...ceiiiiiiiiiiiiiiiiee e 45
2.2.2  HilDert tranSfOrmM.........oooiiiiiii et e e e anen s 47,
2.2.3  SpPeral KUMOSIS......cooiiiiiiiiii e eeee e e e e e e e e s eeenee s 48
2.2.4 Kurtogram and Fast KUrtOgraml............cuueiioiiiiiiiccieceeeeee e meee e 49
2.3 Adaptive and lterative Signal Based Approaches...........cccccoiiiiiiace 49
2.3.1  SIQNAI AVETAGING ... . uuuuuiiiiiieieiieeeeieeeree e et e e e e e e e e e e e s st e e e e e e e e e e e e e e e e e e s e nnne s 50
2.3.2  LiNEar PrediCliOn..........cuvuiiiiiiiiisimceeee ettt s s e e e e emmnraen s e e e e e e e e e e e e e eeeannn s 50
2.3.3 Adaptive Noise Cancellation (ANC)........ccoceeiiiiiiiiiiieeee e 50
2.3.4 SeltAdaptive Noise Cancellation (SANQC)........coooviiiiiiiiiiirr s 51
2.3.5 Time Synchronous AVEraging (TSA).......uuuuiciiiiieeeeeeceemriisa e e e e e e e e e e eeaeeens 51
2.3.6 Empirical Mode Decomposition (EMD).............ciiiiiiiiiiieceiciiee e 52
2.3.7 Minimum Entropy Deconvolution (MED)..........ccccoeiiiiiiiiiieceiiiiieee e 53
2.3.8  Wavelet TranSOM..........uuuiiiiiiiiiiiiiieeeiiie et e e e e e e e nes 53
2.4  Automated Data Analysis based on Artificial Intelligence.................ceevieeeennnnn. 66
2.4.1 Al for Data PostProcessing (Classification).........ccccoovveeeeiiiiieeciiiiiiee e, 66
2.4.2 Al for Data Processing (feature extractian).................eiicccereeeeervnnniinnnennn 6.7
2.4.3 Artificial Neural Network (ANN)......ccooiiiiiiiiimmme e erannaees 68
2.5 ReSearch MOotiVAtION..........ooiiiiiiiiieees e cerer e e e e e e e e e e e e s eeemeeees 76
2.6 SUIMIMAIY. ... ittt ettt e e e e e e e emens e e e e e e e e e e e e e e e e e sannnaeeeeeeeeeeeennnnnns 77
(O o A I8 I | = 18
3 ROLLING ELEMENT BEARINGS AND FAILURE MODES............ccccoivvvviiiieveeeeennn A8
G 700 R [ 1 0T [ Tod 1 o] o U UPURSRSRRPPPRRRSPRRRRY 4 o
3.2 REB TYPES ittt et O
3.3 REB COMPONENLS. ...ttt ieeee ettt bbb emmrnnnnees 81
G TG T8 A [ o1 =T o = o = PP 81

G TR T © 10 (=] gl = U= USSP 81
3.3.3  ROIING EIEMENTS ...t e e e e e e e e e 82
T I S = o PP PPPPPPPP 82
3.4 Bearing Failure Modes and Their CauUSES.........coiviiiiiiiiiceeiiie e 82




3.4.1 RoOIlliNg CONtACt FatiQUE........coiiiiiieiiiieeeieeeen s 84
3.4.2  COITOSION(USLE). . ieeeeeeeeieeeeeeeetiti e e e e e ettt e e eme e s e e e e e e e e e e e e e e ennnn s 85
I S B VLV | TP 85
3.4.4  PlastiC DefOrMatiOon...........uuuuuuiiiiiis e e et eneess e e e e e e e e e e e eeeeeenenane 87
3.4.5  ElECHIC ErOSION.....ccciiiiiiieieeeeeeii ettt e e e e e e e e e e e amnn s 87
4.6 FFACIUIE....ee ettt e e e e e et e e e e e e e asmmme e b e e e e eeeeed 38

3.5 SUMMEAIY. ..t eren e e e e e e e e e e e e et e e e e ne e e e e e e e eeeeeeennnnes 89
(O o I L 1 1 RPN Q0
4  VIBRATION ANALYSIS TECHNIQUES FOR CONDITION MONITORING.............. 90
ot R 1 011 o T U {1 [ o OSSR 90
4.2 Vibration-based Condition MONItONNG...........cciviiiiiiiiiiiimmee e eeeneees 90
4.3 Vibration MeasUIEMENTS.........coiiiiiiiiiiitieees st e e e enenssseseeeeeeeeeeaeaaaeeeeean 91
4.4  Vibration Response due to Bearing Defects.............iiiiiiccceeeiiiiiiiiiiee e 94
4.5 Characteristid-requencies of Bearing FaultS...............cccooviiiieeeii e 95

T I Y U] 01 0 1 = 1Y/ O 96
CHAPTER FIVE ...ttt ettt e emme e e ettt e e e e e e s st e s smnmraeeeeennsbneaeeeeaanns 96
5 COMPONENTIALCODING NEURAL NETWORK........ccoiitiiiiieeeesiieeeeineeeee e e e 96
o0 N [ 11 {0 Yo [T £ o o ISP 96
5.2 Unsupervised Features Learning and Auto ENCOEr.............ooooviiiieeeiiiniinnnnn. 96
5.3 Componential coding neural NEtWABCNN).........coooiiiiiiiiiiireer e 99
5.3.1 Novelty Detection and Diagnosis MOdEIS...........ccccceviiiiiiccce 100

NG T2 =1 (o] gl 2 7= TSY=To [ D= (=T ox 1o | I 100
5.3.3 Componential Codingeural networlArchitecture and Theory..........ccccc....... 102
5.3.4 Componential Codingeural networkmplementation Stages........................ 107

5.4 SUMIM@IY.cciitiieeeeitttie s emer et s s e e e e e e e e et s ammma e s s s e e e e e e eeeeeeeeness s s mnneeeeeeeeeenennnnns 109
(O A I Y 1 110
6 WAVELET THRESHOLDFOR DENOISING, A PROPOSED METHAQD................. 110
G0 A 01 1 Yo [T £ o o USSR 110
6.2 Data Denoising by ThresholdiftfJ REVIEW...........oooiiiiiiiiiiieeee e 110
6.2.1  VISUSKHIINK....cuieiiii et s eeeees 112
6.2.2  SUIMESNIINK ..ot e e e e e s 113
B.2.3  HEUISUIE... e e e e et eeeeees 113
6.2.4  NEIGNBIOCK......couiiiiiie e e e 114




6.2.5  BAYESSHNIIR ..o 115

(G2 T V11 0110 0 = PRSPPI 115

6.3 Limitation of the Current Thresholding Methods.............ccccoviiiiieemn, 116
6.4  Proposed MethQd............oouiiiiiiiiiiieee e 116
6.4.1 DenoiSing AIGOItNML. ...ttt e eeee e e e e e e e e e 117

6.5 SUMIMAIY... oo et e e e e e e e rmnm e e e e e e e e e e 120
(O 1 e I Y Y N R 121
7 EXPERIMENTAL FACILITIES AND PROCEDURES...........ci i 121
4% S 111 £ To 18 o 1o o PSPPI 121
7.2 Test Rig DeVelOpmMENt........coiii i eeeee e eeee e 122
5 R Y/ [0 (o ] (TR PP 123
7.2.2 Data Acquisition System (DAQ)........cuuuuuuuiiiieiiee i e e e e eeeen 123
7.2.3  ACCEIEIOMELEN.....ccii ittt rres sttt eener bbb e e e e e e e e e e e e e s emmeeees 126
7.2.4  ChargeAmMPlIfier (CA) ..ot eree e e e e e e e e e aaaanans 128
A7 T =1 To o To [ PP 129
7.2.6  ThermoS COUPIES....ccco i eeee e v e e e e e e e e ean 130
A S [ o B\ (= 1 o 7= 10 o [~ 130
7 S T B I = L [ o [ 0% o SO 131
7.2.9  SUPPOIT BEAMNNG......coiiiiiiiiiiiieeee e e e e e e e e e eens 132
7.2.10 Tapered ROIEr BEAING.......uuu ittt 133
7.2.11 TRBS Setting MethOds............uuuiiiiiiiiiii e 135
7.2.12 Wear Simulation Using an Adjustable Clearance Mechanism.................... 136
7.2.13 FAUIt SEEAING......uuttiiiiiiiiiiit e 139

7.3  EXperimantal ProCeUUIE..........ooi it eeee st ceeee e e e e e e e e e 140
T4 SUIMIMEIY. ittt eme s e e e e e e e e e e s emmm e e e e e e e e e e eees 141
(O 1 e I = = [ N S 142
8 VIBRATION DATA A NALYSIS AND CLEARANCE ESTIMATION BASED ON LOW
FREQUENCY BAND ANALY SIS ...t eeemme e e e e e eaa e eees 142
S 700 R [ 0 Yo [ Td 1 o] o SRS 142
8.2 Estimation of GeometriC Parameters..........oooviiiiiiiiiicme e 143
8.3 Initial Experimental Results and DISCUSSION...........ccoouiiiiiiiiicceeeeeeeeeee e 143
8.3.1  Time DOMAIN ANAIYSIS.......uuuiiiiiiiiiiiiiiiiiieeeeeeie ettt 144
8.3.2  SPECHIUM ANAIYSIS....cciiiiiiiieiiiiiis e ereeie e e e e e e e e e e e e e e eeaaaaa 150

10



8.3.3  Envelope Spectrum ANAIYSIS........coouuiuiuiiiii et 152
8.4  Deviation of characteristiC freqUENCIES..............uuuuiiiiiiieeeiiiiiiiiieee e eeeeeees 158
C J o A O 101 (=] g = Tl = TP PUPRPUTPUPPPPPTIN 161
B.4.2 RO ... e e e aeaees 161
8.5 Vibration Response and Spectral Lines AnalysSiS...........cccccuvvmmimmmrniiinniiiiiinnne. 162
8.5.1 Outer Race DefeCt ANAIYSIS........cooiiiiiiiiiiiiiiiee e 163
8.5.2  ROller DefeCt ANAlYSIS......ccooiiiiiiiiieiiiiieeme e e 163
8.6 Internal Clearance Estimation Based L-6vequency Band Analysis.................... 165
G T S 1 U 11 0] 1 =Y PSPPI 167
CHAPTER NINE......cciiiititiiiie e iiiiteeette et e e e e e st e e e e e e s s imnessstaeeeeeeaaassbseeeaessmmmeessnssseeeaaeesanns 169
9 AUTOMATED DATA ANA LYSIS USING COMPONENTIAL CODING NEURAL
NETWORK ...ceeiie ettt eeete et e e e e e sttt e e e e e s smmes s s aee e et aeeeassteeeeeeammme e e ssnsbseeeeeeeaanssseesann 169
LS % [ 11 {0 Yo [T £ o ST 169
9.2 CCNN Evaluation Using Simulated Data...............ccccovviiieeeiiiiiiieeeeeeeeeeeeeeee. 169
9.2.1 Test Procedure and CCNN Parameters..........cooooeieiimmmneeeesssseiiiiinieeeeeeens 170
9.2.2 Nonadaptive Network Parameters Optimization................cccovvveeeeeeeeeeeeeenn. 170
9.2.3 Anomaly Detection Results for Periodic Signal...........cccoooeiiiiiieeciiiiieeeeenn. 172
9.2.4 Anomaly Detection Results for Impact Signals..............cceovviivieeeiieeeeee e, 176
9.3 Implementation of the CCNN to Real Data.................covvviiicceeeiiiieeeiiiee e 196
S IR T R I = U1 o1 0 To TS =T = R POUOP 196
LS IR I Y £ 1o = 1o RSO SURPR 198
9.3.3 Implementéion Results and DISCUSSION..........cceieeiieieeiiieeeiiciee e, 201
.4 SUMIM@IY.c.citteeeeeeitttee s eeer e e e e e e e e e e et s emmma e s s st e e e e e e eeeeeeensssssmnneeeeeeeeeennnnnnns 209
(O 1 I8 S I = P 210
10 SEMIFAUTOMATED WAVELET DATA ANALYSIS BASED ON ADAPTIVE
THRESHOLDING METHONDL......ui et seemme e e e e e e e e e e e e emeeas 210
100 0 A [ 1 o o 13 o o 211
10.1.1 The implementation of the proposed method................evvviiieeeiiiiiiiiiiiieeeee. 212
10.2 Enhancement of Diagnostic Features USINGDMYT .........cccvviiiiiiiiiiiiiiicceeeeeeeennn 213
10.2.1 Outer race Small Fault (2mm)...........cooiiiiiiiierr e 214
10.2.2 Small ROIIEr FAUIL..........ueiiiie e eeeeeer e e e e e e e e e e eeeereannane 226
10.3 Enhancement of Diagnostic Features USINGIDVIT ............ccccuvvvvvimeeerieeniniinnnnne 236
10.3.1 Small Outer RAcCe fault.........ccooeiiiiiiiiiiiieeeecce e eeeeeeeeeee e 236
10.3.2 Small ROIEr FAUIL..........ueeiieies e eerer e e e e e e e e e e e eeeeeannane 238




10.4 Enhancement of Diagnostic Features Using DIDNT ..........cccooeiiiiiiiiiiiiinnnneeeeenn. 241

10.4.1 Small Outer RAce FaUll.............uuuiumiiiiieeeer e 241
10.4.2 Small ROIEr FAUIL.........uueeiiiie e eeeeeeer e 243
10.5 The Evaluation Of HSR........cooiiiii et 246
10.6  SUMMAIY.....iiiiiieeiiiiee et e e e e e e e e amnn e e e e e e e e e 250
CHAPTER ELEVEN... .ottt e eeeee et e et e e e et e e e et eeeaanaeeeen 254
11 CONCLUSION AND FUTURE WORK ... eemme e 254
150 A 1 o T 1¥ o o o U 255
11.2 Objectives and AChIEVEMENIS...........uuuuuiiiiii i e e s rrrnr e eeee e 255
I8 ORC T O] T 11 13 o o PP 257
11.4 Contribution t0 KNOWIEAQE. .........vviiieiiiiie st eeeerc e e e e e e 259
11.5 Recommendations for FUture Work............cocoiiiiiiimmmnniiiiiiiieeeeeee e 260

12



LIST OF TABLES

Table3-1 Types of rolling element DEArNGS[L7.7]........oveeiiii e 80
Table3-2 Failure modes and their possible Causes [221]........ccuuviiiiiiieemeieeeee e 89
Table7-1 technical specifications d€larkeinduction motor [269]...............ccooiiiiiirreeci 123
Table7-2 Technical specifications of the SEB device [271].........ccooiiiiiiiiiiiiieeneieeee e 125
Table7-3 Technical specifications of Multifunction HO..............cccciiin e, 125
Table7-4 Sensors technical SPECITICALION............c.uiiiiiiiii e enn 128
Table7-5 Technical specification of Charge AMPHfier.............oooiiiiico e 129
Table7-6 Technical specifications of the Encoder RI32 [272]...........uvvvviiiiiiimneeeeeieeiieeeeeeeeeeeee 130
Table7-7 Thermocouple technical SPeCIfiCAtIQN...........cociiiiiiiiiee e 130
Table7-8 Moore & Wright Dial INAICALOL............cccoiiiiii e reer e e e e e e e e e e e e e e e e e e e e e e 132
Table7-9 Manufacture specifications of double angular contact ball bearing NSK.3307............. 133
Table7-10 Tapered bearing 31308 geometrical informatian..............cccceeeeccceeeeiieeiiiiiiiiieeeeeee e 135
Table7-11 Seeded defect size Of DEANNGS........coooiiiii i 139
Table8-1 CharacteristiC Fault FrEQUENCIES...........ooiiiiiiiii et 142
Table8-2. Defect frequencies of bearings tested at 1500.LAM.............ccooiiiieeciiiiiiieniines 143
Table8-3 Deviation of characteristic frEQUENCIES. ........uuuuiiiiiiiiee e 162
Table8-4. Theperiodicity due to various loading and transmission path influences.[287]............ 162
Table9-1 NetwWork ParameterS. ... ..o rmmmr e e e e e e e e e e e e e e e e e e e e s aeees s e e s s e e e e ans 172
Table9-2 Impact Signal Training ParametersS...........uuuuuueiiiiiiin e eeee e e s ceeeeeeeeeneeeennes 181
Table9-3 NetWOrk ParameLersS..........oooiiiiiiiii e oo e e e e e e e e e e e anees s e e s e e e e e enas 197
Table10-1 comparison of improvement achieved usimg proposed thresholding for small outer race
FOIET FAUIT (2 MMttt ettt e e e e e e s rmmme s st e e e e e e e e e e e mnnas 25

13

and



TABEL OF FIGURES

Figure1-1 Condition MONItONNG STEPS......ceiiiuiiiiriiiie e eeet e e e e e e e e e s smme e e e r e e e e e e e s ammneeeas 25
FIQUIrEe1-2 CM @PPIOGCNES.......cciiiiiiiiiiie ettt eeemr et e e e e e s e e et s emmmr e e e e e e e e e nnnnnees 26
Figurel-3 Data procesSing apPPrOACNES ... ...uuuiuueiitiiimre e e e et e e e e e e e e e e e e e ess e a s s e e s e e e e e e e e e emmmeees 27|
Figure1-4 Data analysis Methods fOr CIM.............uiiiiiiiiiiieee e eae 29
Figurel-5 Fault detection teChNIQUES............coiiiiiiiie et e ee e eeseren e as 30
Figure1-6 Signal based Fault diagnosis using VIDratiQn...............coooiiicceniiiiiiiiie e 31
Figure1-7 Main methods of anomaly detection................uuiiiiiieeeiiie e 38
Figurel-8 Feature learning methods in-Based approach..............cccovvvvviieeeeiciiiiiiie e, 40
Figure1-9 Implementation framMEWOIK ............oeiiiiiiiiiime e e neees 43
Figure2-1 Envelope analysisS ProCEAUIE............cccooeeiiiiiceeemmme e s e e e e e e s e e e e e eeeeeeeeeeenennn 4D
Figure2-2 Envelope analysis ProCess [Z1]......ccooiiiiiiiiiii e rmmmr e e e e e e e e e e e e e ees e 46
Figure2-3 DD-DWT oversampled analysis and synthesis filter banks............ccccccoiccciiiiiinnn. 60
Figure2-4 duattree complex wavelet transform [153]........uuuiiiiiiiiiiiccceeeeeeeeeeeeeeeeeereeeeee e 63
Figure2-5 Double Density Dual Tree DWT [155]......cuiiiiiiiiiiiiiiiimmeiiie e e 65
FIQUIE2-6 NEUIOMN STUCTULE ... .uuuttiiieriiiiiiiiiiimmmeeeeeeeeeeeeeteeeeeeeseessaenssnnssnnsnnnnnnnsaassssmmmreseeesseesserssees) 69
Figure2-7 Sigmoid fUNCHION...........oiiiiiiiiieeeer e eeeet e e e e e e e e e e eeeeeees 70
FIGUrE 3-1 Failure IMOUES ... ..ottt ettt et e e e e e e s s rmmne s e eeaeeeeas 83
Figure3-2 Bearing failure reasons [207].......ccooo e e e e e e e e e 84
Figure4-1 Vibration MeasuremMeNt StEPS.........oicuiiiiiiiiiieeere e e e e e e e e s emer e e e e e s s s e e e emmms 92
Figure4-2 schematic diagram for accelerometer [7Z1]..........cccuvimiiiiieemiiie e 93
T[0T S A A | o I =Y oo Lo = PP a8
Figure6-1 Hard and Soft Thresholding FUNCHON.............cuuiiiiiiiieeeeeee e 112
Figure6-2 Implementation fIOWChALL..............uviiiiii e e 119
Figure7-1. Schematic diagram Of the tESTLIG.........coiiiiiiiiiiii e 122
FIQUIET7-2. TOSE R iiieiiiiiiiiitte ittt eeer et e e e e e e e e et e e emmmt e e e e e e e e e bbb e e e e e e e e e 123
FIQUre7-3 DAQ PrOCESS SIS ...uuuuuuuiiiiiiieiieisicmteeeeeeeeeeeeeeeeseesssss rnetssasaasaaaaaaaaaaaaaeeessnastsssssssssnnnes 124
FIgUre7-4 SCB68 CONMNECTAL..........c.uuutiiiiieee e et e ettt e e e e e amme e e e s st e et e e e e e s ammme e e e e annenees 124
Figure7-5 Multi-function 1O NI B22L........cccooiiiiii i rrrr e e e e e e e e e eaaeeaeaeeeeeesanenses 125
Figure7-6 Piez0eleCtriC aCCEIEIOMELEL. ... ..uuuiiiiiiiiiiitiemme e e e e e eee e s 126
Figure7-7 Typical freqUENCY MESPONSE. .......uuiiiiiiiiieeee ittt e e e e e rmmee st r e e e e e e ennnas 126
Figure7-8 Hengstler Incremental Encoder [272]..........ooovviiiiiiiieeeieee e 129
Figure7-9 Matrix Pitter 8075 C MELNC QAUGE ........uuuiiiiiiiieee ettt e e e rmmee e 131
Figure7-10 Dial INAICALOr [274] ... .ccceiieeeeee ettt rrer e e e e e e e e e e e e e e aaaaeaaeessmassreraneannes 131
Figure7-11 Doublerow angular contact ball bearing 3307Z.............uuuviiiiiie e, 133
FIQUrE7-12 TRB 31308........ceiiiiiiiieiiiieiiiimemia e s eea e e eseeeeeeeeeeeeeeameesaeateaeseaeeneeennaesnssmmneeaaeeaaaeaeaseeeeeeees 134
Figure7-13 TRB SChemMatiC diagram.............uuiiiiiiiiiiimmnreeeeeeeeeeeeeeeeeeeeeeeeeeeetee e rmmme e 135
Figure7-14 Sketch diagram of the clearance adjustment mechamism...............ccvueemriiiiiieenneenn. 136
Figure7-15 Adjustable clearance mechaniSm...............ccvviiieccriiiiiiiiiii e 137
Figure7-16. Measurement range selection based on typical life[279,.280]..............vvvmeneeenne... 138
Figure7-17 AXial ClearanCe FaNQE.......coii ittt eeeee ettt eset e e e e e e st e e e e s emmreeeeeeas 138
Figure7-18 seeded defects (a) 2 mm (b) 4mm on outer race, and (c) 2mm (d) 4 mm on.roller..140
Figure8-1 Time Analysis oBaseline and Small OQuter Race.............ccovviiiiimmmiiiieiiiiiccc e 145
Figure8-2 Time Analysis of Baseline and Large Outer RACE..............uveviiiieeeeeeeeieiiiiiiee e 146
Figure8-3 Time Analysis of Baseline and Small Roller Defect..............viimreeeiiiiiiiii, 147
Figure8-4 Time Analysis of Baseline and Large Roller DefecCt.........cccccooviiiiimmmniiiiiiiiieiee s 148
Figure8-5 RMS and Kurtosis of Baseline a@aiter Race Cases..........cccvvvevviiiiiicceeiinieeeeeeernninneeens 149

14



Figure8-6 RMS and Kurtosis of Baseline and Roller Cases..............oeo oo e e eevvevvvvvevveviev e 150

Figure8-7 Spectrum Analysis of baseline and outer race defects..........ccccvvviccceiiiiiciiiieeeeeenn, 151
Figure8-8 Spectrum Analysis of baseline and Roller defects...............eovviiieeeiiiiiiii e 152
Figure8-9 Envelope Spectrum Analysi$ the Baseling.........cccoooooiiiiiiii i eeee 153
Figure8-10 Envelope Spectrum Analysis of the Small Outer Race DefeCt...........cccoeeecemriiinnnee. 154
Figure8-11 Envelope Spectrum Analysis of the Large Outer Race Defect (dmm)....................... 155
Figure8-12 Envelope Spectrum Analysis of the Small Roller Defect (2mm)..............cccvvvieemnnnee. 156
Figure8-13 Envelope Spectrum Analysis of the Large Roller Defect (4mm).............cccvvvieemnnnee. 157
Figure8-14 Deviation of the Outer Race Characteristic Frequencies.................coceeevvivvvnnnnnnn. 158
Figure8-15 Deviation of the Roller Characteristic Frequencies.............ccccoeiicmeiiiie e, 159
Figure8-16. (a) Schematic Diagram of a TRB, and (b) a Worn Example..................oveeeiinnnnns 161
Figure8-17. Envelope Analysis of Outer Race Fault with Shaft Periodicity Effect....................... 163
Figure8-18. Envelope Analysis of Roller Defect with Cage Frequency Effects...........cccccccooveee. 164
Figure8-19 Envelope Analysis of Roller Defect with Unbalanced Shaft Effect.......................... 165
Figure8-20 Fault Peak Amplitude vS. CIEAranCe...........cceeiiiiiiiieeeriiiee e e 166
Figure8-21 Low-Frequency Vibration for Clearance Estimation...................ccoececviiviivivivinnnnnnnn, 166
Figure9-1 Iterations NUMDEL....... ..o e rmmmr e e e e e e e e e e e e e e et e re s e e e e e e aeeaaeeas 173
Figure9-2 Weight Vectors Obtained from Simulated Periodic Signal.............ccccoviieeeeieiiininns 174
Figure9-3 Simulated PeriodiCi@Nal...............uuuiiiiiiiiiiime e eeeeeeeeeeeee e eeee e mmme e 174
Figure9-4 RECONSIIUCTION TESL. ...t eme e rmmee e e e e e e e s rmnne e 175
Figure9-5 Performance of Frequency Variation Using Periodic Signal Detection....................... 176
Figure9-6 Random Phase Error and Frequency Fluctuation Induced by Slippage...................... 179
Figure9-7 Time Domain of the Generated Signal Using Three Madels.............ccccooviieaceeeiiiinnns 180
Figure9-8 Envelpe Spectrum of the Generated Signal Using Three Madels.............................. 180
Figure9-9 Noise Free training SIgNal...........coooiiiiiiiiimeeiieeeeeee e resr e eeeeees 181
FIQUIe9-10 TraiNiNg EITOL.......oiiiiiiiiiiiiiee ettt eree e e e e e e s e e et e emmmr e e e e e e e e e nnnneees 182
Figure 9-11 Original Signal and Reconstructed Signal during training...........cccccccvvieeeeeeeeeeeeeennn. 183
Figure9-12 Time Signal used to Train the CCNN...........uuiiiiiiiiii e 183
Figure9-13 Weight Vectors of Model for Noideree Signal..............vviviiiiiiine e 184
Figure9-14 Simulated Impact Signals with Noise used for Training and Testing CCNN............. 185
Figure9-15 Simulated Impact Signals with Noise used for Training and Testing CCNN.............. 186
Figure9-16 Attenuation of Weight Variation and Reconstruction error for the case with{BBIR...186
Figure9-17 WeightVectors for the Signal with SNRT.3)........cccvviiiiiiiiieeiicee e 187
Figure9-18 Time Signal with SNR-7.3) and Learned Features in the Data Model....................... 188
Figure9-19 ADI of Testing Network with Same Data of Training..............coooeeeirieeciiiviviiins 189
Figure9-20 Simulated Data Used FOr TraiNiG .........ooiuurriiiiiieeeeeee e e e eeer e e e e 189
Figure9-21 Reconstruction Error for Unseen Data Used in Training and Testing Stage............ 190
Figure9-22 ADI Detection Performance of Simulated Signal with Outer Race Defect................ 191
Figure9-23 The Reconstruction Error for Unseen Training Data and Signal with Outer Race. Fa9P)
Figure9-24 ADI Detection Performance for The Simulated Signal with Inner Race .Eault........... 193
Figure9-25 Reconstruction Error for Unseen Training Datd Signal with Inner Race Fault.......... 194
Figure9-26 ADI Detection Performance of Simulated Signal with Cage Eault....................cccco.... 195
Figure9-27 The Reconstruction Error for Unseen Training Data and Signal with Cage. Fault....195
Figure9-28 NetWOrk CONVEIGEINCE. ........uuuiiiiiiiieeee e e ettt e e e e e smme e e e e e e e e e e e s smmme e e e 198
Figure9-29 Weight Vectors Obtained during training...........coooeoii oo iccceeeeeeeeeee e 199
Figure9-30 Reconstructed Signal in Validation Stage............cooiviiiiimmmniiiiiiieeeeeeesseeeieee 200
Figure9-31 Reconstructed Signal in Validation Stage...........coeuuiiiiiiicceeiiie e eeeeee e e 200

15



Figure9-32 RMS of Raw Signal and Envelope Spectrum for all Outer Race Cases...........cc...... 202

Figure9-33 ADI Detection Results of Baseline Data with all clearances...............ccveeeeeeiinnnn. 202

Figure9-34 RMS of Raw Data and ADI Detection Results of Small Outer Race all clearances..203

Figure9-35 RMS of Raw Signal and ADI Detection Results of Large Outer Race all clearance204

Figure9-36 Detection Results for all Baseline, Small and Large Outer Race fault.Cases.......... 204
Figure9-37 RMS of Raw Data and ADI Detection Results of Baseline and Outer Race all.CaseX)5
Figure9-38 RMS of Raw Signal and Envelope Spectrum for Roller Faults..................ccceeinnnee. 206
Figure9-39 RMS and ADI DetectioResults of Small Roller Fault...................cccoveeeeiiiiiininnen, 206
Figure9-40 RMS and ADI Detection Results of Large Roller Faull.............cccccoimmneeeeeeeennennnn, 207
Figure9-41 ADI Detection Results of Baseline, Small and Large Roller Fault....................cc...... 208
Figure9-42 RMS of Raw Signal and ADI Detection Results for Roller Fault Cases.................... 208
Figurel0-1 DaubeChies WaVEIEL...........uviiiiiiiiiiiieee e 212
Figure10-2 (a) Time Domain and (b) Spectrum of the Original and Denoised Signal................. 214
Figurel10-3 Improvement of Harmonic Ratio during Steps usingT ............cccvvvvvvvvneinmimenneeennn 215
Figure10-4 Improvement Percentage of Denoised Signal usingdMY ............ccooverviiiiiivimmminnnnnne. 216
Figurel10-5 Time Domain of Small Outer Race Fault signals.............ccccccviiee e 217
Figurel10-6 Time Domain of Denoised Small Outer Race Fault signals.........ccccceevvviiccreeeeenennn, 217
Figure10-7 Envelope Spectrum of Reconstructed and Denoised Coefficients...............ccvveeennnee 218
Figure10-8 Envelope Spectrum of Reconstructed and Denoised Coefficients.........cccceeeevvvee.... 219
Figure10-9 Envelope Spectrum of Reconstructed and Denoised Coefficients...............ccvveeennnee 219
Figure10-10 Envelope Spectrum of Reconstructed and Denoised Coefficients............ccccevvvceee.. 220
Figurel0-11 Envelope Spectrum of Reconstructed and Denoised Coefficients.................c.c.... 220
Figure10-12 Envelope Spectrum of Original Signals for Sr@aiter Race Fault..................ccooee 221
Figurel10-13 Envelope Spectrum of Reconstructed Coefficients for Small Outer Race.Eault.....222
Figure10-14 Envelope Spectrum of Denoised Signals for Small Outer Race.Fault.................... 223
Figure10-15 Envelope Spectrum of Original Signal for all Clearance Cases.............cccvveeemuneee. 224
Figurel10-16 Envelope Spectrum of Reconstructed Coefficients for Small Outer Race.Eault.....225
Figure10-17 Envelope Spectrum of Denoised Signal for Small Outer Race...........ccccccovvvcceennns 225
Figure10-18 RMS of Kurtosis and Denoised Outer Race Signals with all Clearance.Cases......226
Figurel10-19 Improvement of the Harmonic to Signal Ratio for Small Roller Fault (2mm)........... 227
Figure10-20 Percentage of improvement fmall Roller Fault (2mm)...........ccccceeeeiiiiiicciiieee 228
Figure10-21 Time Domain of Raw Data for Small Roller Fault..............ccoovvviieeerieie 229
Figure10-22 Time Domain of Denoised Signals for Small Roller Fault..............c..coooecniiiinenns 229
Figure10-23 Envelope Spectrum of Reconstructed and Denoised Coefficients......................... 230
Figure10-24 Envelope Spectrum of Reconstructed and Denoised Coefficients......................... 231
Figure10-25 Envelope Spectrum of Reconstructed and Denoised Coefficients...........ccccccevveee.. 231
Figure10-26 Envelope Spectrum of Reconstructed and Denoised Coefficients.................c.c.... 232
Figure10-27 Envelope Spectrum of Reconstructed and Den@seffiCients. ..., 232
Figure10-28 Envelope Spectrum of Original Signal for Roller Fault................oocveemriiiiieenneenn. 233
Figure10-29 Envelope Spectrum of Reconstructed Coefficients............coooo i iiiceciiiiiiiiiiiies 234
Figure10-30 Envelope Spectrum of Denoised Coefficients for Small Roller Fault UsinBWD .....235
Figure10-31 Kurtosisof Raw & Denoised Signal Using DDWT ..........ouiiiiiiiiiiiiiiiiimee e eeeeeeee e 236
Figure10-32 Improvement of Harmonic Ratio during Steps using HSR WithFDBMT ....................... 237

Figure10-33 Improvement Percentage of Harmonic Ratio during Steps using HSR witMOT...... 237

Figure10-34 Envelope Spectrum of Denoised Signal for Small Outer Race using HSR widWOJT238

Figure10-35 Improvement of Harmonic Ratio during Steps using HSR WithFDBMT ....................... 239

16



Figurel10-37 Envelope Spectrum of Denoised Signal for Small Outer Race using HSR widh\D 1240
Figure10-38 Improvement of Harmonic Ratio during Steps using HSR with VI .................... 241
Figure10-39 Improvement Percentage of Harmonic Ratio during Steps using HSR witiCWDD...242
Figure10-40 Envelope Spectrum of Denoised Signal for Small Outer Race using HSR witMOD243
Figure10-41 Improvement of Harmonic Ratio during Steps using HSR with VI .................... 244
Figure10-42 Improvement of Harmonic Ratio during Steps using HSR with BEDMT .................... 244
Figure10-43 Envelope Spectrum of Denoised Signal for SmalleRr Fault using HSR with DDIDWT
..................................................................................................................................................... 245
Figure10-44 Envelope Spectrum of Small Outer Race Fault Signal Usin@O ......................... 246
Figure10-45 Comparison between four benchmark thresholding methods and HSR method for Outer Race
Fault Signal Using DEDWT ......ccooiii e s s e e e e e e e e e e e e e aa e s aee st e e es s s e eeaaeeaaaeas 24
Figure10-46 Comparison between Raw and Reconstructed Coefficients and Denoised Signal Using HSR
MEthOd WIth DIDWT ...coiiiiiiiiiiiititit e e et e e e s ettt e e e e e e emmma e e e e e e s st taeeeaaeeeeesmmme e e e e annsssnsseneeaeaens 24
Figure10-47 Comparison between Four Benchmark Thresholding Methods and HSR Method for Roller
Fault Signal USING DEDWT ......ootiiiiiiiiiiiie it eeeee e e e e e eeee et e e e e e e e s s bbb e e e e e s emmme e e e e e e s e aennnes 249
Figure10-48 Comparison between Wavelet Transform Methods in Features Enhancement......251
Figure10-49 Kurtosis of Original Signal for Small Outer Race and Roller Faults......................... 252
Figure10-50 Comparison between wavelet transform methQds.............ooooimmmiiiiiiiieee s 253

17



LIST OF ABBREVIATIONS

ANC Adaptive Noise Cancellation

ADC AnalogTo-Digital Converter

Al Artificial Intelligence

ANN Artificial Neural Network

ADI Average Discrimination Index

CA Charge Amplifier

CCNN Componential Codin§leuralNetwork
CM Condition Monitoring

CWT Continues Wavelet Transform

DAQ Data AcquisitionSystem

DSP Digital Signal Processing

DFT Discrete Fourier Transform

DWT Discrete Wavelet Transform

DDFT Double DFT

DDD-DWT DoubleDensity DualTree DNVE
DD-DWT DoubleDensityDWT

DT-DWT DualTreeDWT

EMD Empirical Mode Decomposition
FFT FastFurrier Transform

FENT Feed Forward Neural Network
HSR Harmonic To Signal Ratio

HMM Hidden Markov Model

HOS Higher Order Statistics

HFRT High-Frequency Resonance Technique
I/10 Input / Output

IFFT Invers Fast Furrier Transform

KNN K NearestNeighbours

KFDA Kernel Fisher Discriminant Analysis
LDA Linear Discrimination Index

LP Linear Prediction

MED Minimum Entropy Deconvolution
MSB Modulation Signal Bispectrum

PS Power Spectrum

PCA Principle Component Analysis

REM Reconstruction ErrdBased Detection Model
RUL Remaining Useful Life

REBs Rolling Element Bearings

RMS Root Mean Square

SGWT Second Generation WavelBtansform
SANC SelfAdaptive Noise Cancellation
SOM SelftOrganizing Feature Maps
STFT ShortTime Fourier Transform

SNR SignatTo-Noise Ratio

18




SK Spectral Kurtosis

SVM Support Vector Machine

TRB Tapered Roller Bearings
TSA Time Synchronous Averaging
UDWT Undecimated &VT

WT Wavelet Transform

WVD WignerVille Distribution

19




LIST OF NOTATIONS

TP Raw vibrationsignal

1 B; Fourier transform

‘o6& B Fourier transform of analytic signal
L:B; Power pectrum

o:P Waveletfunction

9:T; Wavelet transform

é Standard deviation

= scaling parameters

i translation parameters
oY:P Complex conjugate of

D J; WaveletLow pass filter
C.J; WaveletHigh pass filter
0:P, Scaling function

o0g:P Real part of DTDWT
EQg:P Imaginarypart of D-DWT
0¢: P, Second wavelet of DIDWT
D,:J; Low pasdilter of DD-DWT
B:J; High pass filter of DEDWT

Realwavelet coefficients of D-DWT

L Bnd
follfo

RealScaling coefficients of DDWT

@%G Imaginary wavelet coefficients of BDWT
€) &G Imaginary Scaling coefficients of BDWT
* >R Hilbert transform

U Contact angle

@ Rolling element diameter

& Pitch dameter

Y, Rolling elements number

B Shaft frequency

"N Reconstruction error i@CNN

& Output of neurones in neural netwerk
U Reconstructed signal

S Weight vector

?N® Correlation function

?R® Convolution function

(7°:® Inverse ofFourier Transform

N U; Activation function

U Threshold parameter @CNN neuron

@] Softness parameter &ECNN neuron
W:1; The code of neuron function

= Weightscales

Mean squared error MS&veraged over training datasets

20




2

o
I

Averaging over training data operator

a Neural network learning rate
4, MSE of unseen dataset
4, MSE of monitored dataset

Average Discrimination Index

Denoised wavelet coefficients

Nonlinear threshold function (soft, hard)

Estimated threshold value

Reconstructed signal

Disjoint blocks of Neighblock threshold

RO ool %
c |
+

The minimax risk bound

5

Reconstruction function afaveletcoefficients

Harmonic ratio

Ratio of unthresholded signal

Harmonic of thresholded signal

IVill|Z|©

(6)]
I

Harmonicratio to signal ratio

Fault frequency

Shaft peaks

01| 0 |40

Envelope spectrum of threconstructedignal

21




1)

2)

3)

4)

5)

6)

7)

8)

LIST OF PUBLICATIONS

.KDOLG 5DEH\HH ;LDROL 7DQJ )HQJVKTRX Bfféct FhE&WehaZ ' %[
Evolution on Vibration based Fault Detection in Tapered Roller Beatings, E)fteenth
International Conference on Condition Monitoring and Machinerylufeai Prevention
Technologies, 10th12th SeptembeR018, Nottingham, UK

Khalid Rabeyee, Xiaoli Tang, Yuandong Xu, Dong Zhen, Fengshou Gu, Andrew D. Ball
(2018 dimagnosing the Change in the Internal Clearances of Rolling Element Bearings based
on Vibrdion Signatured[In: Proceedings of the 24th International Conference on Automation
& Computing, Newcastle University, Newcastle upon Tyne, UK, $eptember 2018

Khalid RabeyeeYuandong Xu $LVKD $ODVKWHU )HQJVKRX *XA $QGUL}
Componatial Coding Neural Network based Signal Modelling for Machinery Condition
Monitoring TIn Proceedings of the 32nd International Congress and Exhibition on Condition
Monitoring and Diagnostic Engineering Managemeng September 2019, University of
Huddesfield, West Yorkshire, UK

Khalid Rabeyee, Yuandong Xu, Samir Alabied, Fengshou Gu, Andrew D. Ball. (2019),
Extraction of Information from Vibration Data using Double Density Discrete Wavelet Analysis
for Condition MonitorindfIn Proceedings oSixteenh International Conference on Condition
Monitoring and AsseVlanagenent, 25th- 27th June 2019%lasgow UK

Khalid Rabeyee, Yuandong Xu, Fengshou Gu, Andrew D. Ballpvel Wavelet Thresholding
Method for Vibration Data Denoising and Diagnostic Featimehancement in Condition
Monitoring{ In: Proceedings of the 25th International Conference on Automation &
Computing, Lancaster University, Lancaster UK September 2019

Yuandong Xu, Dong Zhen, James Xi Gu, Khalid Rabeyee, Fulei Chu, Fengshou Guwy Andre
D. Ball, Early Fault Detection in Rolling Bearings based on Autocorrelated Envelope Signals
Mechanical Systems and Signal Processing, (under review).

$LVKD $ODVKWHU <XQSHQJ &DR .KDOLG 5DEH\Bdéhd )HQJIV
Graph Modelling for ©ndition Monitoring of Electromechanical Systems Based on Motor
Current Analysigf ,Q 3URFHHGLQJV RI WKH QG ,QWHUQDWLRQ
Condition Monitoring and Diagnostic Engineering Managemenb September 2019,
University of Huddersfial, West Yorkshire, UK

Samir Alabiedl, Alsadak Daraz, Khalid Rabeyee, Ibrahim Algatawneh, Fengshou Gu and
Andrew D. Ball,Motor Current Signal Analysis Based on Machine Learning for Centrifugal
Pump Fault Diagnosi§ In: Proceedings of the 25th Interna@brConference on Automation

& Computing, Lancaster University, Lancaster UK7 September 2019.

22



CHAPTER ONE

INTRODUCTION

In this chapter,the importanceof condition monitoring and fault diagnosis are outlined in
association with variousionitoring techniqued/ibration based monitoring is paid more attention

in terms ofdata processing techniques. Moreover, this chapter presents the motivation of the
researchon whichthe aim and objectivasf this researclare put forward. Finally, ipresents the
structure of thehesis

1.1 Background

Dataprocessinghas become a key factor aimosteveryindustrial processlue to the massive
guantity of data produced by modern machines and instrum@éfits the development of
communicationnetwork and nhformation technologymachinerysystems are becoming more
systematic, automatedsomplicated and expensive with lower tolerance for performance
degradation, safety hazards and productivity decioawditionMonitoring (CM) is defined as the
procedure of monitoringnd analysinggome parameters ofsystemconditiorf1]. CM has been

the subject of interest in various industries toueashe reliability and state of machine healith.
fact, condition monitoring can be considered as a data processing system as it can be carried out
through modelling, signal processing and artificial intelligencéddowever, inding useful
informationin a given datasetith the increase ofjuantity and complexityis becoming more
critical and challenging tafk]. The so-calledfeature extraction and selection hgsnedmore
importance and attentidn recent yeard-eature extraction and selectioan be seen as a general
method ands applied for several reasodspenihg on thegod of the applicationit can be used

to reduce the dimensionality of the daia as patternrecognition,also for classificationor
predictiongasks, removing irrelevant and redundant datal etextracted features can be used as
a representationf the dataConventional mnual approachesrethought torely entirely on the
prior knowledgeof the expertise to carry out the task of extractirsgful and informative
information.With thedevelopment oAl approaches anddaptivedata processinglgorithms the
process of extracting and selectime¢evantandinformative information can bicilitated and also
automatefB, 4]. In the field of vibratiorbased CM, feature extraction and selection are critical and
have a real impact on the diagnosis process results with respect to effectiveness and efficiency.
Therefore in thisresearch automatedand senmtautomated appaches are investigated as an
integrated framework for vibration data analysis. Based on Al technityee features are
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automatically extracted and used to build a data model for anomaly detection, whilst for fault
diagnosis, features are adaptively estied using multesolutiondata analysidased adaptive
thresholding methad

1.2 Condition Monitoring Steps

Generally, as illustrated ifFigure 1-1f CM consists of threamain key stepsnamely; data

acquisition, data processing and decision mgkin@ver recent years, an extensive research effort
has been done in each thie CM steps. This has led to the emergence wérty of methods,
techniquesand algorithms. This thesis is considering dapsocessingstepand particularly, to
automatehetaskof diagnostic feature extraction fanomalies detection arfdcilitate the taslof

fault diagnosis

1.2.1 Data Acquisition

In the acquisition stepthe data ixollectedto obtaindata relevant tthe systemcondition.Several
CM techniques are available for the datajuisition processuch as vibration, oil monitoring,
thermography monitoringiltrasonianonitoring and radiographimonitoring1]. Mainly CM data

can becollectedin thedataacquisitionprocesswithin two maincategoriess following

Value type this type of data can becorded at particulartime and analysed f&M such as oil
analysis, pressurandtemperature@nd humiditydata

Waveform type: this type of @tais collectedin atimely manner forCM and normally isa time
series called timsignal Such as acoustic and vibration dathe most widelyusedwaveform in
CM isvibrationsignal acoustiemissionsignal Other types of waveform data aneotorcurrent

signature ultrasonic signalstc.[5].
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— Data handling
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Fault prediction
— Prognostic -I:

RUL

Figure1-1 Condition monitoring steps

1.2.2 Data Processing

In this step the collecteddata in the previouprocesss to be handledanalysé andinterpreed

There are variouBSPtechniqguesmodelling methodandknowledgebasedalgorithmsavailable
andthe selection of the analysis technigiependn thetypeof data[6]. This processs to detect

any anomalies occur in the analysed data that can affect the efficiency of the system oalead to

potentialbreakdown.

1.2.3 DecisionMaking

This step is to recommend an efficient maintenance policy depending on the defect prognosis or
severity offaults. A number of échnique$ave been developed over the past decddedecision

making in CM strategyTheycan be generalised intbe following main categoriedetection,
diagnosticandprognosticsFault detection focues on detecting the abnormalitythe monitored

dataas early as possiblEaultdiagnostics focus on isolation and identification of faults nvtiney
occur.Faultprognosticsattempts to predict the remaining useful life of the monitored machine or
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predict faults or failures before they occHiowever it was claimed thgirognostics cannantirely

replacediagnosticsasin reality not all faults and failurearepredictabl§7].

1.3 CM Approaches

GenerallystudyingCM is carried out through three main approaches as s‘@dagljrel-z namely
as data analysis focus, data gathering technology focus and application focus. In thibestiadiy,

analysis focus is considered.

Data Analysis

Focus
Condition
Monitoring
Data Gathering o
Technique Apgllcanon
Focus ocus

Figurel-2 CM approaches
1.3.1 Application Focus

In CM, application focusdiscuses diverse fields of machinery suchs induction motors,

manufacturing tools, gearboxes, engines, bearings, centrgugals electrehydraulics,etc|8].

1.3.2 Data Gathering Technology Focus

This prospect of CM is focusing on developing instruments, methods and techniques for data
sensing and data gathering suchAa®ustics, Vibration Motor Current Signature, Wireless

Communications, Impact Analysis, Controller Behaviour, Emissieties

1.3.3 Data Analysis Focus

Data processing is a primary key factortire CM process and a reliable and effective data
processing techniqueas been foalongtime of interest for botlacademiaand industrial word.
An ideal data processing technique for CM shougbult in a low-dimensiongl noisefree
representationf the processed data withe aim of discovering useful informatiorlso, it should

be robust to tim&arying and nonlinearityatureof the monitored data, whictan be used to
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accuratelyinterpret the condition of the monitored systdm general data processing CM
consideringnodetbasedmethods, signal processinggh order statistics, demodulation methods,
adaptive algorithms, feature extraction, feature selectiobiihsedcclassifiers.

Thisthesisfocuses omlata analysifor CM and @& shown ifFigurel-3| it can besaidthat he main

approaches fa€M data processing arérstly, conventional signal processingecondly, adaptive
methods and thirdly, automated (Afjethods Conventional sigal processingnethodsare time
domain analysis, statistical parameters, and frequency domain analysis, also, demodulation

analysis technique.

Data analysis approches

Conventional signal Semiautomated (adaptivg) Artificial intellegence
processing methods signal processing methofls | (automated) based methdds

Figurel-3 Data processing approaches

The £miautomatedapproach covers all the technigues that adopt adaptive algorithms to process
the data. It can be said that in seaatomated techniques only a small number of parameters may
need to be adjusted fdhe studiedcas¢9]. Automateddata procesapproach considers the
implementation of artificial intelligence algorithms to minimize human intervention in the process
of condition monitoring. Seval Al techniques in computer science were implemented for
machinery CMsuch as neural networks and support vector macteiteg10]. In this study
automated and semtautomated data analysis approaches are considered for condition
monitoring.The aim of developingnautomatedpproach based Al is to make the task of anomaly
detection independent of wahained technical staff. Whilsthé aim of developinga semi
automatedappoach is to facilitate the task of data analysisdiagnosticand make the task less

dependent on wetrainedtechnicians.

The main aim of CM iso avoid systems breakdown aride consequencef catastrophic failures
by detecting and diagnosing initial faults as early as possible. For a successful CM and from data

analysisstandpointas depicted 1r|¥igure1-4 data analysis methods can be classified according to

the taskof processingnto two main methods Feature Extraction by extracting the relevant
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features from a dataset Data filtering by removing the irrelevant components from the signal

and use the residual signal

Feature extraction task can be conducted through decomposing the sedata into several
components and then, to iddéptthe condition of the machindhe sensor data components are
explored based on prior knowledge orihyestigating the change in the behaviour of a dataset
compared to the reference data taken framideal condition. Several methods have been
developed to decompose the sensor data, they can be classified based on the domain of the analysis

into thefrequencydomain and timdrequency domain.

Data filtering is the second method of analysis, it is performed by rematiaginwanted
component and consider the residual sensor data as an output of intdr@gtrocess. This task is

also called denoising and data enhancement. Several methods have been developed to carry out
sensor data filtering and enhancement. Filtering metfaldsto two main categories, namely,
nontadaptive methods and adaptive metholloreover, data filtering can be performethietime

domainor in the transformationdomain. Time domain methods are used for strictly periodic

signals, a typical time domain filtering method is signal averaging
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DI=T D DataDriven techniquel

Non-Parametric Data
Driven techniques

Figurel-4 Data analysis methods for CM
1.4 Condition Monitoring of REBs

Condition Monitoring Applications tREBs havébeen extensively studied due to several reasons
e.g, REBs play an important rola almost all types of rotanpmachines and REBs failures are the
most cause of machines breakddwm]. A survey was carried out by the Etec Power Research
Institute concludedthat about 40% of most common faults am induction motor are related to
bearing[12, 13] Moreover,it has been statedadistically in[14], that he most common faults
occurdue to rolling contadiatigue after a certain running timeéhis issue starts with the presence
of tiny cracksunderneathhe surface of the bearimgmponents. It was also reported timater or
outer race flaw are amongdiout 90% of the variolREBsdefects, whilstage and rolling element

flaw is the cause of the remaining malfuncfisj.

In the REBS, the presence of faudtech as cracks or pits locatedbaiaring raceway surfaces
fatigue may lead eventually to machine breakdown. Al$éajure of the bearing caused by,
misalignment, etc., magausecatastrophic failure of the machinery system. Moreover, bearing

failure was found to bene of the most commaeasongor a breakdownin rotary machind46].
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Such failures can lead to catastrophic and usually result galdsting industrial downtime that
hasusuallyeconomic consequen¢&7]. Also, the bearing fault detection in the early stages will
decrease the cost of unwanted shut d@h In order to preverguchunexpected bearing failures,
several techniques were developedimitor REBs Among them, vibration analysis has been for
alongtime one othe most widely used as arfegftive methodand popular strate¢d3, 19] Also,

the vast majority of thadvanced signal processing techniques is related to vibration measurements
[11, 2023].

Therefore,n this researctbased on vibration, an integrated frameworgrigposed tomplement
an Al approachfor early fault detection also adaptivetime-frequency data analysis for fault
diagnosis. Thughedecisioncould be taken as early as possible to increase the life of the bearings

and reduc¢hemaintenance cost.

Several method$ased on vibratiomave been applied tbearing fault detection as shown in

Figurel-5| Thesemethodsan becategorisedhto three maimgroupsnamely: signabased, radel

based and knowledg®ased.[10, 18]

Fault diagnosis techniques

Knowledge
based

Signalbased model-based

Figure1-5 Fault detection techniques

1.4.1 Signalbasedmethods

Signatbasedtechniquedor fault detectionare based on analysing the time domain spettal
components of measureidta The signalbasediechniques applietb process vibratiomatafor

CM of REBscan be classified intthe followingmain categorieas depicted i|rIFigure1—6 time-

domainanalysis frequency domaianalysistime-frequencyanalysisand demodulatioanalysis
methodg[24]. Vibration signal contains enormous information, therefore, a number of vibration
signal analysis techniques have been developed to highlight some components of interest in a
signal. These techniques analysis signals intithe domain or in theransformationdomain

(frequency or timdrequency domaih25].
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Figure1-6 Signal based Fault diagnosis using vibration

1.4.1.1 Time-domain

Time domain analysis is the process of analysing and displaying the vibration data as a function of
time. In thetime domain, methods that sensitive to oscillations involve statistical parameters are
used to highlight some trends in the vibration datze analysis n the timedomainis usually
carried out to explore the statistical characteristics of the monitorefP@latelany gdatistical
parametersised for vibration analysi® describe the monitored datecluderoot mean square
(RMS), kurtosis, crest factor, peak vall@yrtosis, peakto-peak interval high-order statistics,
skewness, et21]. The derived stistical parameterare usualljknown astime-domain features.
Kurtosis and crest factore said to bemore sensitive to the shap# the signal because they
increasavith the increase dhe spikiness of the vibratiaignal[27]. On the other hand, Skewness
measuementis claimed to beaneffectivemeasure only foasymmetricalsignals[28]. However,
limited success has been reported when using domain analysisiethods for diagnosis of REBs

andtheywere found to be a poor mmaement of fault features REBs[29]
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RMS is a simple statistical method to detect the gradual or sudden changes in the energy of a

vibration signal in théime domain. RMS for sinusoidal signal cab deriyad] as:

s ,a
4/5 L ©:] | Ty
Uab
Where Tjs a time series signalis the total number of data points akd timeindex.RMS can be used as

(1.1)

ameasuref the signal energy, however, it does not identify in which component the defect[@dgurs

Kurtosis is a measure of the impulsiveness of a signal, it calculates the nornfalirégctentred

moment. It can be derivd@2] as

s TyFas
-QN =1 @——A
J - e
Where & is themean of the signal andis thestandardleviation of thesignal.The kurtosis value is about

(1.2)

3 for a healthy bearing in a good condition, wherirginl fault occurs the kurtosis value will increase,
however, the value declines as the severity incrigie

Peak valuecan becalculatedhs the sample index for the maximum amplitude of a sinusoidal signal
asit can becalculated34] as:

LA=B=HR#H H4/5 (13

The Crest factor computeghe ratio of peak value to the root mean square, it allows to estimate
the shape of the vibration signal waveform. Crest factor value of a signal less than 3.0 will indicate
to a sinusoidal signahowever,a higher value will indicate to thempulsivesignal so can be used

to assess the bearing conaliti Crest factor is comput¢d?2] as:

LA=K=HQA
?NABP? PlK—NW Q (1.4

It was reported that the peak value will highly depend on the section of the sigigghbelysed, thus, crest

factor may not be stable. Analysing the distribution of the acceleration can give more details. Healthy
bearings are expected to have a Gaussian distribution, on the other hand, a relative increase in the tail levels
can be expectddom a damaged bearing. High order stits with a variety of moments is another measure

and fourth order has been found in somewhat useful. Bandpass filtering also developed to examine only the

band of interest in a signal.

32



1.4.1.2 Frequency-domain

Frequency analysis is a widely used technique to analyse vibration signal, Fast Fourier Transform
(FFT) has facilitated the spectrum analysis and made it more efficient. It gives the ability to
investigate the changes in sub frequency bands of a sigrthltfBoamplitude and frequency of

the spectral lines can be investigated. Knowing the speed of rotation and the calculated frequencies
for the machine components, some of the peaks can be iderfiiedequencydomainanalysis

is awell-known and broagl used data analysis technidogsed on thelea oftransforning time

series datanto the frequencydomain. FFT was developed to efficiently perform theurier
transformation processith remarkaby reduced complexity. FFT has bdenalongtimethemost
commonly usednethod fortransformingraw vibration signals fronthe time domaininto the
frequencydomain.Frequencies of interegh thetransformationdomain can beasily identiied

and isolatd, this propertys one ofthe main advantag®ef FT analysisover timedomain analysis.
Moreover features can be extracted from the whadectrum orfrom just certain frequenciesf
interest[5]. Powerspectrum is amongghe most commonly used tool in spectrum analysis.
However,REBs usually produceomplex vibration signaldue to the effects of the background
noise. Thereforedentifying bearingdefectsonly by observing the spectrum signals is difficult,
besidsthe effects of the sidebands and the harmonics of the fault frequencies. Mdleonen
stationary nature of signals makes applying FFT methodwhich is in fact based on the
assumption ofhe periodicsignal, not suitab[85]. Therefore, itis very unlikelyto identify the

faulty peaksn the spectrumasthe energy ofimpact vibrationsusually will be distributesvera

wide range of frequenciedn addition,the frequency of thalefecthaslow energy and henoget
easilymasked byother low frequencies amoise also, interpreting and quantifying some other

peaks of the spectrum may not be an easy task in some cases.

1.4.1.3 Time-frequency Domain

Thenonlinearity and nonstationarigharacteristics of some vibration datakeextracting useful
and sensitive features from the daiat an easy task.daddresshis issueseverallime-frequency
analysismethods have been developed, they have pepular methoslto process nosstationary
signals.One of the welknown method is ShortTime Fourier transform (STFT), the STFT
technique divides thentirewaveform signal into with shottme segmentsisingaslidingwindow
and then applyFFT to each sgment. However, STF§uffers from low-resolutionproblems.
Another time-frequencyanalysismethodis WignerVille Distribution (WVD) which used to

overcome both thew-resolutionproblems andime information. MoreoveMWaveletTransform
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(WT) is anothettime-frequency analysibased on the idea ofultiresolutionanalysisThere are a
number ofwavelettransform methods available such as continues wavelet transi@onge
wavelet transformWavelet packet transform, et¢/avelet transforms have beextensively used
for REBsfault diagnosign thepast two decadg36]. For example, Rubini et §1.4], usedwavelet

transform tadiagnosebearings affected bgnincipientsurfacefault.

1.4.1.4 Higher Order Statistics (HOS)

For several years the first and secamder statistics, such as variance, meamwer spectrunand
autocorrelation have beaxtensivelyapplied for vibration analysis. However, they just used to
characteris€&saussian and linear signals. Whilst in practice,-Gamnssian and nonlinear signals
can be studied using higher order statisiosh as kudsis and skewne$37].

1.4.1.4.1 HOS Time Domain

In the time domain, thautocorrelation function is the second order measureit askinown that
the thirdorder moment depends owo independent lagsi1 andm2, so in a similar way by adding
lag terms to the thirdrder, higher order moments can be forrf88]. It should be known that the

term of moments is used to denote first/second order whilstulantsareused for HOS.

1.4.1.4.2 HOS Frequency-domain
Polyspectrais usedto refer toHOS in the frequency domain, including the 2nd order and so on.

Power Spectral(PS) is a secondrder measure and it can be simply computed by multiplying the

signal Fourier Transform togetheitlvits complex conjugate as:

L'B; L' A:B:%BA (1.5

where : :B; Fourier Transformand : %:B; it's conjugate of theT:P, and ' Agthe expectation

operatioror by computing Discrete Fourier Transform (DFT) of the autocorrelation fun¢@gh

However, Thomas[39] reportedthat in the presence of high background ndisem rotating
machinery, the use gfower spectrum become ineffective and walffect the fault diagnosis

accuracjz0].

Bispectrum, mostimplementatiorof HOS in the frequency domain, focusses on the bispectrum
and the trispectrurknown asthird-orderand fourthorder measuresespectively[38, 40] At the

third-order, the bispectrum can bealsocomputedy taking aDoubleDFT (DDFT) of the

third-order cumulants cais aproduct ofthe FT atdifferentfrequencies as:
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Where : U E;is the complexconjugateand ' A#As the statistical expectati@peratorTo reduce
Gaussiamoiseandto preserve some of the n@aussian information of the measured vibration,
HOS, has been implemented to solve detection and classification prddiEmis was claimed
that usingnontlinear featuresnotivated by the higher order specisaa promisingsolution to
analyse thenon-Gaussian andionlinear vibration signals, thugt, can extractmore diagnostic
featuresthan power spectrurdoe$4?2]. Collis et al[43], claimed that the trispectrurm a more
powerfultool because it represents a decomposition of kurtosis over frequénidse the PSit
may be considerdthatthe bisgctrum and trispectrum are functionswiltiple frequenciesThey
containphase information as well asagnitudenformationabout the originavibration signal It
has been reported that the bispectrum analysis provides a much better feature fgntissdud
different faults simulated on an experimental rig when compared to the spectrum analysis alone,
without the phase and orbit analygid].

Bicoherenceis realised as a normalisbépectrumBicoherence takes bounded values between 0
and 1, this makes it a suitable meagorquantify the extent of phase couplingtive vibration

signal. The normalisatiois ariserdue to variancéessuesof the bispectral estimatof40].

Several stdiesused bispectrum in the fault diagnob@ve beemeported in the literature.oF
instance Saidi et al[37] Stated thahigherorderspectraarea promising approach to extract ron

linear features used to analyse the-lo@ar and norGaussian characteristics of the vibration
signals Liang et al[45], appliedpower spectrum, bispectrum and neural networé&xtractfault
patternfrom a vibration signabf induction motors, the study showed that bispectrum supguess

the noise and shoed some useful information in signals. Pineyro et g46] examined the
implementations of power spectral and bispectral on the bearing fault signals. However, the study
reported that when implementing second order power spectral, the resonances cannot be
distinguished from periodic signals, while Bispectrum ¥easd highly sensitivein detecting the

phase coupling peaks in the spectrum, however, the main disadvantage is the high memory

consumption needed for data procesly
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Modulation Signal Bispectrum (MSB)

Due to the observed efficiency of bispectrum and to compensate for the deficiencies of Polyspectra
techniquesmoreover to enhancethe conventional bispectrum in characterizing the vibration
signals, Gu et a[47], has examined a new modifiémrm of the conventional bispectrum, called

a Moduldion Signal Bispectrum (MSB) as:

$‘aae:%é%;|—'A:%E%;ZZ%F%;:U:%;;U;%;A (1.7)

Where, : % B;is the complex conjugate f:B; and A#fis the statistical expectation operation.
B &g and B E B representhree individual frequency components derived from Folgégies
integral.Since then it has been as a promising technigudetecing nonlinear componentsy
detecting phase coupling in modulation signal. It was also founddoéddféectivetool to suppress

randomnoise.

1.4.2 Model-basedmethods

Modelbasednethods have been widely implemented for CM of machinery sysfemaccurate
model of the systeris heededo imitate the real process behavigi8]. Implementing nodet
basedmethodsfor CM of mechanical systems wilequire mechanistic knowledge arglevant
theoriesof the monitored systemfb]. Over the years several modelsed methods have been
devolved and they can be categorized into two main groups nagysitemdynamic modelling,
Fault dynamic modelling8].

1.4.2.1 System Dynamic Models

System dynamienodelsare developedo simulatethe dynamicof REBs in order to investigate
their behaviourand featuresAlso to understand the transmission of vibration through bearings

structure and the influence of load distribution on the dynamic of the bdadhgstc.

1.4.2.2Fault Dynamic Modelling

Analytical and numericalault models ardoeing used foCM of REBs in several waysA fault
dynamic modetan beused tosimulate the faultgonditions ofREBS also,it is used to evaluate
the capability of data analysisethodsn extractng the diagnosticfeatures In addition, it can be
usedto determine the severity of the fallL1]. In literature, a numbesf modetbasedmethods
developedfor fault diagnosissuch asPennacchet al. [49] presenteca modelbased transverse
crack identification methodhereVania et al[50] proposednodd-basedault diagnosianethod

based orthefrequencydomain.
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Most of the model basdthve studiedocalizeddefectsusinga variety ofmodelling techniques.
For more detaild:I-Thalji etal [11] provided a comprehensive comparative review of system and
fault modellingfor rolling bearings. Howeverijt was claimed thamodetbasedechniques have
several limitations such as haw experimentallyerifying the expected resulfS1]. Moreover,

the modelbasedtechniques fail to deliver satisfactory performance duehtopresenceof
disturbances, noise, modelling uncertainties and/or parameter varigg@pevelopingan
accurately a mathematical modehich describes physical sstem in realworld applications is
usually not an easy tasKherefore,the implementation of modélased methodologies still
limited [53].

1.4.3 Knowledgebasedmethods

The ndustrial world becoming more automated and the amount ottttaystems can produce

has increased massiveljence, analytical modellingnd thetraditional digitalsignalprocesing
cannothandle such huge, diverse and rapid datalayginay notbe able tgerformto asufficient
diagnosis,In addition, the fault diagnosis of a machine normally requires technicalsskill
experienceanN QRZOHGJH RI WKH PDFKLQHYV VWUXFWXUH ZKHUH
busy or costly. Thysn order to automatide diagnosic procedures and providee engineer with
aidtomakeaGHFLVLRQ D E Re&it swtK, 1A exéf $)stdn artificial intelligent system

(Al) that support parallel processing can be utilj$6fl There areseveralknowledgebased

methods for automatic fault diagnosis have bessl such adArtificial Neural Network(ANN),

Expert Systemd-uzzy Logi¢ Support Vector Machin€SVM) [10].

This research focuses on knowledgesed techniqueshich will be discussed in the upcoming
sectionsn more detailsRecently, the use of methodologies such as diagnostics and prognostics
aided by Al tools such as ANN, KNN, SVM etc. have withessed an increase for assessing the health
of theREBs[54]. Generally, intelligent Condition monitoring approach involves three main steps,
firstly, signal acquisitiorstepsecondly features extracticstep and finally, faults classification
[55]. Feature extraction is thask of extractinghe most informativéeaturesnvhich representhe
datafrom the gatheredsignalsusing signal processing techniqueSurrently, there are several
manualways to carry out the task of feature extractoich as statisticgdarametersspectrum
analysis and timérequency analysisHowever pbtainedeatures may contaumseles®r redundant
information and consequently, affect the diagnosis outcomes assugtiease the computation

cost Thus feature selection becomas important task to reduce dalienensionality by selecting

only informativeand sensitive features. In the final step, the selected features are used and fed to
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train Al algorithm As a reult, by using these techniques the conditioinhe monitored system
can be determing®6]. The quality of extracted features from thenitoredREBs signals mostly

play animportantrole in the effectiveness of these approaches.

It seems that Al plays a vital role in C84 n the last decades, the application of Al to REBs has
beengaining more attention in the industrial world, such as ANN, SVM, discriminant analysis etc.
for instance, Tyagi et al28] has presented a comparative study of SVM and ANNh&
application of REB fault detectioithe eliability of REBs diagnosis can be improveduiifising

the automated approachegich also came cost effective anshve time. Furthermore, automated
REBsCM does not depend axpertisgudgment{57]. Several attempts adopting Al Approaches
have been carried out, most of the studies used Al approaches fprguetsindclassification)

while some studies used Al approaches for data processing psachsss anomaly detection task

1.4.3.1 Anomaly detection

Anomaly detection can be defined as the process of identifying that the test data differ in some
ways from the data used in the training the model. Anomaly detectiorattrasted many
researchers and reiged lots of attention in many applications such as processing massive datasets
arises form critical systems. The abnormal nsoafea systemare not always knowpriori, this

may make the use of conventional mglass methods invisible. The anomaly @&t approach
cariesthe potential solution in which the prior knowledge of abnormal modes are not required and
normal mode can be learnt lilding a datamodel with the available data of the normal
conditions. The unseen monitored data then is cordpaith the model of the normal condition

and the resultant novelty score dausedto measure the difference between the monitored data
and the normal conditidmased on a predefined threshold. If the score reached above the threshold,
the condition is deemed to baleviationfrom normalitywhichindicatingto a physical change in

the systemAnomaly detection is classified into five general categories as 1sef58i.

Anomaly Detection
]
| | | ]

Reconstruction Information
Based Theoretic

Probabilistic Distance based

Figurel-7 Main methods of anomaly detection
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In probabilistic methodsisually density estimation of the normal class is involved based on the
idea that having low density areas in the data used for traim&ags the probability of containing
normal components in these areas is IDistancebasedmethodsarebased on the concetat
normal conditions tightly grouped while anomaly data is located far from its nearest neighbour
these methodsinvolve clustering and nearest neighbour techniqli&ée reconstruction based
method is realised by training a model using training datdthen usethe trainednodel to map

the unseen data. If the unseen data is abnormal, the reconstruction error between the unseen data
and the training data wilaise the value of the novelty score and the anomaly then is detected
Information theoretic b&sl methodéased on the idea that timormation contenwill be altered
significantly if the anomalies exist in the datasets. This approaeltheoretic measures like
entropy to compute the information conteintshe training data s@9].

1.4.3.2 Shallow Featureslearning methods

Learningintrinsic structure of data has attractétiH V H D atfemtibnUidy vhany years. In order to
extract a representation which can precisely describe a set of data, valuable features are to be
extracted and selected effectivdigature leaning is animportanttaskin Al-basedapproaches for
both novelty detecion and classificatiorand has delivered good results in many fields and
applications According to the literature, amy Al-basedechniquesavebeen appliein CM for

the classification task whilst the featuegsstill empirically extracted such as calculating statistical
parameterand then to be used as inputfeaturesin a classifier However, withthe increasan

the complexity and higkdimensionalityof nowadaysdatg manually crafted parameters cannot
effectivelydescribe and represent the dadeally, extracting an informative representation from
high-dimensional and complex data or discovering valuable information beeornmegortantand
more challenging task. In Alased approachgeaturesxtractionis typically implemented based

on two main paradigmsknown as superviseléarning andunsupervisedearningas depicted in

Figure 1-8| Both supervised and unsupervised learning can be implemented based on shallow

learningmethodologyand deep learningmethodology The selectiorof the paradigmis based on
the aim of the appiation andthe availability of labelled data fdhe task at handSupervised

learning is used to build a classifier that learnsmigansto predict the outputfrom given input

by discovering the intrinsistructure inthe given datasetl.e. identify and then assigan
unknownhidden paernto a previouslydefined classThis methodis visible when the labelled
data is available, the earliestipervised techniquir feature learning i$rinciple component
analysis PCA) and it was developed in 19@y Pearsojt0]. On the other hand,nsupervised

featurelearningis used to discovdriddenpatterns in a given set of unlabelled dat®e used for
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clustering by grouping similar items together or as a data representation for classificatitretask
earliest technique implementdte unsupervised learningaradigmis lineardiscriminationindex
(LDA) which wasdeveloped byrisherin 1936.[60]. PCA and LDA are welknown as the earliest

features learning methods.

1.4.3.2.1 DeepFeatures Learning

Besides shallow learning, deep learning was propims2d06 by Hintorby [61] and since then, it
has been investigated in many domains suclcasputer vision,image processingyoice
recognitionand natural language processing. €@eep learning iechieved by building deep
architecture networlith extendechidden layerso learn multipldevels of data representations
A numberof deep learing models are availabkuch asDeep Belief NetworkStacked Aute

Encodey Convolutional NeuraNetwork,and Recurrent Neural Netwof&2].

Continues
— Regression
Logistic
Supervised
(Task-driven) — Binary
(2]
o
(]
=
m - . .
g 1 | — Classification Multi-class
g
I
IS
4 Clustring — Multi-label
Unsupervised
(Data-driven)
Dimensionality reductign

Figurel-8 Feature learning methods in-Ahsed approach

1.5 Aim and Objectives

The aim and the objectives of this researcHisited below:

151 Aim

The main aim of this study is tevelop a framewortor machineryCM. This aim will be carried
out by automatingthe task ofanomaly detection adopting unsupervised machine learning

algorithm. Moreover, to make the task of diagnostic procedure less dependent emainel
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labours bydevelopingan adaptive algorithm with wavelet transform feature extraction and

enhancement by denoising the decomposed coefficients

Intelligent dataanalysisapproach based on unsupervised ANN will be investigated for efficiently
characterisindarge raw datasets arisen from condition monitoring systems and thereby for the

automated fault detection at the very early stages.

The second part of the developed framework igribancing the features of interesting an
adaptivealgorithm with an expensivewavelettransform (DD-DWT) and hence carry out the

diagnosis of critical machine components such as rolling element bearings.

1.5.2 Objectives
To achieve the aim, thesearclsets ughefollowing key objectives:
Objective one:To explore and gain insight into the methods of current CM and their applications.

Objective two: To review the current analysis techniques of the experimental vibration signals,
also, Artificial intelligence based techniques for anomaly detection ratioin data. Furthermore,
to carry out a critical review of the waveledsed data analysis techniques and their existing

benchmark thresholding methods used for experimental data denoising and feature enhancement.

Objective three: To automate the task dafarly fault detection and severity estimation by

implementing an automated technique based Al approach.

Objective four: To implement DBDWT for vibration data analysis in field of CM and develop a

thresholding algorithm for vibration data denoising agatdire enhancing.

Objective five: To investigate the impact of changes in internal clearance, due to inevitable wear,
on the richness of diagnostic signal information and fault detection and diagnosis. Moreover, to
design a test rig and develop an adjustakearance mechanism in which the radial clearances can

be controlled and the defects can be seeded into tapered bearings.

Objective six: To evaluate the performance and capability of the CCNN using simulated data in
order to explore its reliability andffectiveness on bearing fault detection in comparison with

conventional techniques.
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Objective sevenTo evaluate the performance and capability of the CCNN using the vibration data

gathered from baseline and defective bearings.

Objective eight: To evalua¢ the performance DDWT with comparison to both DCTWT and

DDD-DWT in features extraction with the developed thresholding technique.

Objective nine: To evaluate the performance of the developed thresholding technique (HSR) in

features enhancement and ddg¢aoising against the benchmark thresholding techniques.
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1.6 Flowchart of Data Analytics

Figure1-9{shows theintegrated framework with two main implementation approaedepted in

thisPhD projectFirstly, it focuses on extending Al techniques as an automatic data processing for
early fadt detection by applying Componential Coding Neural Network (CCNN). Then, once an
anomaly is detected, a further analysis technique to identify the fault is propessedemi
automatic data processing proceduseng a multiresolution data analysis apglodased on
DoubleDensity Discrete Wavelet Transform (BDWT) with a novel leveldependat adaptive

thresholding method.

Figure1-9 Implementation framework
1.7 Summary
In this Chapter, a brief backgroundgisen in (section 1.1whilst, the condition monitoring steps
explored in(section 1.2)Moreover, the condition monitoring focuses were listed in (section 1.3)
and Condition monitoring of REBs were discussed in (section 1.4) with focus on signal based,
model based and knowledge based. Finally, the aim and the objectives alongside with flowchart

of this research were presentedsaction 1.5).
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CHAPTER TWO

FEATURE EXTRACTION AND ENHANCEMENT TECHNIQUES FOR
CONDITION MONITORING - THE LITERATURE REVIEW

Adaptive anditerative methods are reviewed with critical commeintsthis chapter Signal
processing baseckéture extraction and enhancement techniguekiding Al approachesre
exploredin line with their applicatiors to condition monitoring. With enhjasises orvibration-
basedmonitoring, toth critically sampled and oversampledexpensivavavelet are discussed in

details.

2.1 Introduction

A variety of signal denoising and feature enhancement techniques have been developed and applied
in CM. Thesetechniques are categorised and discussed in this research according to the
methodology of processing the acquired datnce, groupedsaonventionaladaptive and Al

based (automated). This categorization is adopted because the aim of this studipimateahe
detection task and to facilitate the diagnosis task, in additidé3inCerrada etl. reviewed the

recent work 2012016 in vibration signal analysis and fault diagnosis and stated that the

techniques aabe categorisenhto two main categories, sigabased and Abased techniques.

2.2 Demodulation Signal Based Approach

Amplitude modulation is identified as a multiplication of a low frequency modulating signal by a
high-frequencycarrier signal. This phenomenon will produce frequency components (peaks) in the
spectra of the modulated signal, these peaks appeasméhanddocated at the carrier (high)
frequency band, and spaced with the modulation (low) frequérmrefore, dmodulating the

signal to extract the modulation signal from the carrier frequency will be JsdjuFor bearing

fault detection, modulating frequency is the frequency of interest as the resonance frequency is
high and has fewpectral lines. However, by using tb@nventionakpectrum, it is not possible to
recover characteristic defect frequencies from the resonance frequency. Fortunately, a technique
calledhigh-frequencyresonance technique (HFR@)so called envelope awals,allow extracting

the modulating frequency from the resonance frequency bHFRIT can extract periodic pulses,

also it can extract the amplitusieodulated signals from vibration signals with less sensitivity to

the influences of slippagdnvelopearalysis has been proposed and comprehensively used,
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particularly for bearing fault diagnog&5-67]. Envelope analysis can extract amplitudedulated

signals from vibration signals.

2.2.1 Envelope analysis

For a defective bearing, the pulse generated by the cdrmgageen the defective area and the
bearing rollers will excite resonance frequency. The structural resonant frequency caused by pulse
excitations is considered as an amplitude modulated sigmabamplitude modulation of the exited

bursts can occur due tavo reasons, the first reason is when the rolling elements passing through
the load zone with so the modulation will be at the same rate, the second scenario, it can happen
when the defect is rotating, the transmission path will vary with respect txéuesensor. The
envelopeanalysishas the ability to provide more diagnostic information than raw data or spectrum

analysis. It has been widely applied to detect and diagnose defects in bearing and gears. As seen

in[Figure 2-1| the application oénvelopeanalysis is applied through three main steps, bandpass

filtering, rectification,andspectrum analysis.

: Bandpass P Spectrum
Raw signal filtering Rectification » analysis

Figure2-1 Envelope analysis procedure

In more details as depicted |Figure 2-2| envelope analysis is applied by firstly to ensuring

maximum signato-noise ratio, a bandpass filtering step around the excited frequency band to
exclude the undesired low frequencies. THesguencies may be associated with imbalance and
the misalignment. The next step is rectification bydéodulatiorprocess that extracts the signal
envelope usinglilbert transform and smooth the signal by low pass filter to remove the resonance
(carrig) frequency. Finally, the spectrum of the demodulated signal is calcUkB&¢dThe
diagnostic information, including the repetition rate of the fault peaks, can be found in the derived
spectrum of the envelopEnvelopeanalysis of a signal is applied through several §gisas is

depicted below:
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Where T:Ris the raw signal; : Bijs the Fourier transform of the raw signal 4 ¢ B;is the Fourier
transform of theanalyticsignal derived from raw signal: P, and Tp 4. P, is the analytic signal,
Tz 4 P is the calculated envelop&he spectrum analysis of the envelope functigyy P, can be

expressed as
. 5 4B, L +((6KTy 5P o+ (25)
. @ & B;is Fourier transform ofTg : P.
The process of amplitude demodulation can be carried out digitally either using fubbdrake
rectification or by using Hilbert transform techniques. A considerable improvement in performing

the envelope analysis has been achieved using theHitiresformebecause it reduces the whole

number of data samples to be proce$g6il

Figure2-2 Envelope analysis procefcil ]
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However, it was claimed that dsearingdamage develop and increases to a sever level, the
vibration signal may exhibit more random features and become irregular. This can make envelope
technique inaccurate for identifying diagnostic features from the vibration $8fjaMoreover,

it is not an easy task to specify the frequency lvalnidh contains the highest sigrtatnoise ratio

(SNR). This has led to the emergence of other techniques such as Spectral Kurtoses and Kurtogram
and Fast Kurogram etc. to specihetbest frequency band and select the central frequency where
the highest SNR in allocated in the spectrum

2.2.2 Hilbert transform

It was first introduced by David Hilbert to solve some integral equations, Gajp@®] iapplied the

Hilbert transform to associate theal signal with thecomplexsignal. Giventime seriesT:P, L

U... ‘M PE>« < «fi Pthe complex signal can be derive{26)

TP L TR EF&P (26)

Where F éP,is an imaginary signal added to the real sighaP, and é:Pis a function yielded
from T:P by converting: O EiRinto :F ? K®P and converting: ? K®PRinto : O EJR. In this
case, is a quadrature tdl: Pthus the oscillating is transformed into a rotating vector. The
associated with  can be yielded as
s T @i 2.7)

éP=-+ Tii,—
'@ oy PF i

-~

Where i is the transformer parameter aftepresentsime. To verify thesufficiencyof|(2.6)|in

convertinge<siRfnto F... ‘@ RANd ... ‘@ Nto <A P

s T i
TRLF=+ é&:i,— @ 28)
€ o¢ IFP

According to Gabof73] T:P,and é: P, with satisfying reciprocal relations arecognizeds a pair
of the Hilbert transform. Analytic signal is aomplexsignal whose imaginary part is a Hilbert

transform of the real part.

Randall and Bon¢B] stated that Hilbert transform of a time fuocti can be obtained as

>

. S S
*SIR?L URs+ Ti,— @P
€ g PFI@

(2.9)
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It can be interpreted ascanvolutionof the function T: B with s & of signal as in and will result
in anothettime domain signal.
. S .
UP L— UT:PR (210
eP
It shifts the input signal phase by®98lilbert transform can beealizedin the frequency domain

by takingthe Fourier transform oftl P as
aB; L ::B:FFOCR); (2.12)

Thus, it can be achieved in the frequency domain by shifting the phase for the positive
frequency andEe t for the negative frequency elements. And then takingirtherseof the

FourierTransformto get the signal back to time dom@&h

Hilbert transform can be applied to either nonstationary or nonlgngaals, it can produce sharper
output more than other conventional methods. Hilbert transform is used to compute the envelope
of thesignalwhen it applied to thenodulatedsignal, the output will be the modulating frequency.

In the case of using Hilbettansform for a defective bearing, it will yield the impulses response
matches the roller passing frequency. However, to perform envelope analysis to a signal, selecting
the optimum frequency band is usually set manually, and it has been for a loagédeus task.
Therefore, several attempts have been carried out to facilitate the selection of the optimum
frequency band, among them spectral kurtosis, kurtogram and the later developed version Fast

Kurtogram.

2.2.3 Spectral kurtosis

Selecting the besuitable band for demodulation has been a real challenge when using envelope
analysis, with many claiming that it is difficult. To overcome this issue, Spectral Kurtosis (SK) has
been proposed to find the most impulsive band and has been used as etdmdting transients
buried in noisg74-76].

Spectral kurtosis is developed to solve the problem of seletttenguitable frequency band for
bandpass filtering. It has been proposed to find the most impassive frequency band, the first
reported use of SK was [7] to detect impulsive parts in a sonar signal. The frequepayain
kurtosis was derived as a function of frequencgeldlaon STFT. The first reported use of SK for
bearing faults was if¥8], it was applied to a vibration data collected from a defective bearing and

SK was used, based on STFT, to find the highest SNR region. SKrdieatorwhich indicates
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to the distribution of the impulsiveness of a signal in the frequency transformationfositiy

order statistics. This gives SK the ability to identify the transients and in which frequency band
these transients occurred everthe presence of high additive noise. SK can be obtained from
STFT by sliding the window along the signal and calculate the local Fourier transform for each
window at thetime P The magnitudeA: : RB; ®Ais squared so can represent the local power
spectrumat thetime as a function of frequency and averaged over time. HowdverB; 6 A

can be seen adanctionof time and interpreted as a complex envelopd&:¢¥#B;, if the frequency
bandpass filtered contains pulses, it can be detected by taking the kurtosisoof ptexenvelope

. 'R as

AP BA (212
By ey L

Where €2) isusedto normalizethe result to be zero when: FB; is acomplex Gaussian, and the
operator is time averaging@4]. For maximum SK, the window of STFT has to be smaller than

the spacing between pussand larger than the pulse itself.
2.2.4 Kurtogram and Fast Kurtogram

As statedhbove the STFT length, as well as the bandwidth obidwedpaséilter, have annmportant
impact on the SK value obtained. For this, Antoni ¢78].proposed Kurtogram to show a two
dimensional map contains SK obtained from different STFT window lengths. The results will be
calculatedfor all potential combinations of bandwidths, used for bandpass filteringceice

frequencies.

In practice it will be a high computation cost to calculate the Kurtogram for all potential
combinations ofbandwidths used for bandpass filtering, ameéntre frequencies. Thus, Fast
Kurtogram was developed, as alternativeto Kurtogram, by Antoni in[79] to reduce the
computational cost of calculating the kurtogram by adopting the fast-ratdtifilterbank
procedure. The bandwidths will be iteratively halved and the process will begin with the entire

signal spectrum asanesamplewindow.
2.3 Adaptive and lterative Signal Based Approaches

Signatbasedmethods are widely implemented to the task of feature extraction in CM and the

extracted featuse areused for process monitoringdlowever, due to the presence of strong
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background noisen the acquired data, identifying the faults from raw data has not always been
possible, hence, denoising and enhancing the desired features are fundamenialGitépsr

accurate andffective detection and diagnosis proce{e@¢
2.3.1 Signal Averaging

Signal averaging has been foramng time and widely used to reduce the noise and enhance
experimental signgl80, 81] Signal averaging is achieved by using the available time for the
measurement in taking many identical successive measurements, instead of using all the available
time for a single measurement. And then with a shorter time constanptthmumfilter apdied.

By adding successive signals together, because if its incoherenoejdéwill tend to average,

whilst, signals will tend to add coherenj8]. Averaging can be done in both time domain and in

the frequencydoman[83], also in the timdrequency domairj84]. McFadden andoozhy[85]

suggested thaveragingechniqueof the envelope signal for rolling element bearimagdosis.
2.3.2 Linear Prediction
Linear predictionis a well know technique uses Autoregressive (AR) model and has been

implemented as a way of extracting a signal of interest frooordaaminatedsignal. Linear
prediction can be derivd@]as in(2.13

a
URPLFI =GTPFG
p@b

(2.13)

Where UPR is the predicted value and is derived as weighted sutwaflue|Sawalhjin [76],

Claimed that it is possible to use autoregressive methods in linear prediction to remove
deterministic components, bying an ARbased linear prediction filter to separate the impulses

originates from a defective bearing from the measured signal.

2.3.3 Adaptive Noise Cancellation (ANC)

ANC is used teseparatéwo uncorrelated components from a primary signal. The procedwse use
a reference signal contains only one of them. The ANC willattgptivelyto find a transfer
function, and then the modified reference signal will be subtracted from the primary signal, while
the other componengseleft unchange@6]. The output of the ANC is given as in

%L TEJ, F U (2.14)
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Where Tis the signal pathJ;is theprimary inputnoise path,Us the output of the filtered reference
input and will be subtracted frori E J,to give the canceller outp#§87]. In [88, 89] ANC was

used to extract a faulty bearing signal corrupted by severe gear meshing noresufkshowed
considerable success in detecting a seeded defacing signal corrupted by gear background
noise. IN[88], ANC was implemented in bearing fault detection and was used to denoise the signal
and improve the SNRhe studyshowed that the spectral and statistical analysis techniques have

become more effective in the diagnostic roles after the application of ANC.

2.3.4 Selft-Adaptive Noise Cancellation (SANC)

SANC is another signal enhancement technique used to separate a dgierfrequency from
other random frequencies. In this method a delayed vedditime primary signal is made as a
reference signal, then if the correlation length of the random signal is shorter than thg tletay
SANC will not be able to identify theelationship, and the transfer function between the delayed
version of itself and the deterministic part of the signal and will be fprdd Many adaptation
rules are used to minimize the total output noise pommwrever, the most widely used algorithm
is the least mean squalteMS). The output of the filter is derivg®0] asbelow

UGL9':Ga:GF¢; (2.15)
Where 9 is thea vectorrepresents the weighting coefficientsSy : : GF ¢; a vector with the

delayed version of the signahdthe outputtan bethen derived fronthe below:

QG LTGFUG; (2.16)

In [90], the study investigated the implementation of SANC in order to denoise the bearing faulty
signal, the study claimed that the results obtained showed that SANC is capable to eliminate the
unwanted nise and facilitate the recognition of the different components in the spectrum of the
signal. For more detail§91] has reviewed and evaluated the adaptive algorithms foe nois
cancellationHowever, when using SANC, the convergence stage may laslkoiog tBme period,

especially for filters of high orddi&].

2.3.5 Time Synchronous Averaging (TSA)

TSA based on the idea of exploiting thatural periodicity of vibration signals, this means
averaging aignalover many rotations can remove almost all the components of a signal which are

not at afrequencyrelated to the rotatig82]. TSA cab be derivefB] as
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Where U. R is the averaged signagis the averaging period) stands for thewverage segments
number.It has been widely applied to denoise and enhance vibration signal for two desirable
reasons: firstly, it can be used to reduce the components of a vibration signal that are asynchronous
with rotating shaft frequen¢ secondly, asesult,this will amplify the amplitude of the important
component in the vibration signal relative to the noise. McFaddem@hyapplied TSA to the
envelope signal collectefdlom a bearing85], vibration signal wasynchronizedelative to the
cage with the rotation speed of the shaft. The study claimed that it revealed the spalisewhich
induced already on the inner race. TSA was extensively studiecpphedaas diltering process
to vibration signal of gears and bearing and in some studies was combined with other techniques,
for instance,[93] has applied TSA tenvelopesignal combined with Support Vector Maceafor
bearing diagnosis and it was claimed that lead to efficient bearing fault diagnosis. Another
application of TSA was reported [84], the proposed technique is basedanalysif the jerk
energy gradient of the synchronously averaged vibration signal collected from a faulty bearing with

innerrace fault and outer race fault.

2.3.6 Empirical Mode Decomposition (EMD)

EMD is a seladaptive signal processing technique and one of theftageency analysis
techniques for nonlinear and netationary data processing., EMD can decompose any input data
set, based on its local characteristic time scale, into a séhdeand small number of components
called intrinsic mode function (IMF)95]. EMD decomposes dat1:1; into Intrinsic Mode
Function (MFs) ({96] as in

a

TTPRLI GENa

(s (2.18)
In which, after extractin¢J of IMFs, Nis the residuef 1:1; EMD has been used for enhancing
bearing signald97] has applied END to extract the fault features and remove the noise from the

data.

52



2.3.7 Minimum Entropy Deconvolution (MED)

MED was developed by Wigginf®8], and since then it has been widely applied in signal
processing. It more likely, especially in the case wwitfih-speedbearings, individual fault pulses
will be modified bythe transmission path, thus, sharp impacts, whictiravelling through the
transmissiompath betweethe bearing and the sensor, nb@extremely misshap§e9]. TheMED
aims to find the optimal filterC>?to invert impulse response function of the systé&ml?
as:DUC;=?L (X F i ?where UX F H epresents Kronecker delta function. The filtex ?

is derivedwith Ccoefficients[100]as in(2.19

i
UJ; LI CGMJFG
b@b

(2.19)

The objective function is sought by maximizing the kurtosis vdtus.used to enhance the fault
pulses byremoving the effect of the transmission p&MtED technique has been used 6] by
Sawalhi et al. dr maximizing the capability of Spectral Kurtosi$e study claimed that MED
effectively deconvolved the effect of the transmission path and clarified the impulses also greatly
enhanced the results of envelope analysis in diagnosing the bearingJitaudt.et al.[101]
implemented MED technique to seek an optimal set of filter coefficients, to improve the fault
impulses, in order to make the filtered signal containimgurer fault information, and envelop
spectrum analysiwas used to demodulate the fault frequencies. Barszcz[80hpresented the
usage of the MED technique to enhancement the fault features torfdadt detection and
diagnosis. Despite the successful implementation of MED in some [E¥38st has been reported

that MED is unable to handle bafichited data properly. Thus, whemalyzingnoisy data, iis

difficult to overcome this limitation.

2.3.8 Wavelet Transform

It has to be noted that due to tkwarying environments, the CM data is usually complex in
reality{26]. Time-Frequency domain analysis, it has beeneffiective technique to analysis
vibration data collecteddm rotatory machinge Both stationary and nestationary signal can be
effectively analysed using tirfeequency domain techniques. This can be considered as the main
advantage compared to freqagrdomain techniques. The wéhown timefrequency techniques

are Wavelets, Short Time Fourier Transform and Wigrige Distribution [103]. This resarch

focuses oiWaveletTransform and its application to vibration signal analysis.
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2.3.8.1 Wavelet Transform for Feature Extraction

In the conventional filtebased signal denoising methods, the frequency components outside a
predefined range are normally set to zeros, which may leddsitty some useful required
information from the signal. The fault impulses appear in signals nigromder a wide frequency

band, thus, the filtering methods may smooth some of the fault impulses. Features extracted from
time or frequency domains cannot include all useful information. Thus, time and frequency domain
are combined both in TimErequencydomain method such &horttime Fourier Transform
(STFT), wherasignalis decomposed into frequencies and corresponding time resolution and then
applying FFT to each window to monitor frequencies over time, however, S{fféls from the

fixed window wlosetime-frequencyresolution is constant. For more details, the performances of

the different timefrequency domain methods are compared and can be foliodJin

Besides the ability of wavelet in analysing rsiationarydatawhich is considered as the original
intention of developing waveletgnother successful implementation wévelet transform if
feature extraction. The compact support property of veavgives it the feature of energy
concentrationthis results in yielding many coefficients with small energy which can be excluded
without losing the important and informative components in the analysed signal. Hence, few
coefficientscan be used teepresent the diagnostic featuréhe key issue is to identify the best
coefficients tharepresenthe diagnostic features. Thresholding has been known as a promising
solution and widely accepted to shrink the uninformative components from the analysed
signal104].

2.3.8.2 The adaptive property of Wavelet transform

Wavelet transform was developed, to overcome STFT problems, as an advanced technique of
signal andimage processinfl05]. Compared to the constant resolution property of the-time
frequency in STFT he timefrequency resolution of the wavelet transfasradaptive andlepends

on the frequency of the signalK HQFH LWYV FRQVLGHUHG .Oke &daptxe®© WL UH
property gives wavelet the ability to obtain high time but lowrequency resolution at high
frequencies, whilst, at low frequenciesgdn obtain low time but higfrequency resolutidi06].

The wavelet transform is well known and widely used in data processirggl@ral applications

such as image processing and signal processing.

In condition monitoring, there adifferentapplicatiors of wavelet such as the analysis of time

frequency domain, feature extraction, signal enhancement and denoising, signal compression etc.
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[107]. In terms of vibration signal, wavelet gives an excellent representation for several types of
signals that containing jumps and spikes (singularitiepyovides optimal sparse representation

for such signals, the sparsity comes from the fact that sinagleta oscillate locally, only wavelets
overlapping a singularity will have large wavelet coefficients whilst the rest of other coefficients

will have smaller coefficientgL08].
Wavelet is obtaied by scaling factorand translation factor from mother wavele® : B as

O0¢as - P L—S_Iiip::Pr; (220
Ve =
Where =& scaling and translation parameters respectit€8]. Several kinds of wavelets are
available for a differendf types theapplicatiors can be found in the literatur€omparisonstudy
based on their pperties can be found [A10]. Kunpengetal., in [111] reviewedthe stateof-the-

art of wavelettransform methodsith some results.

In this research we consider wavelets that are analogous to Ddube¢f FRQVWUXFWLRQ IR
and compact suppoi®WT, DT-DWT[108], DD-DWT [112], anddouble density dual treé@DD-

DWT [113], as they suit the application of analysing vibration bearing signals for several reasons,
Daubecles wavelets provide the best match to vibration signal produced from a defected bearing.
Also, it has a given number of vanishing moments and it supports FIR filteedland the use of

the fast algorithnj110].

Unlike filtering-based methods, the waveletm@sing method does not corrupt the important
components of the signal, because theeketshrinks the noise using simultaneousaaling in
both domains frequency and tiffid 4]. Wavelet transforms has been widely studied and proposed

for experimental vibration signal processing.

2.3.8.3 ContinuesWavelet Transform (CWT)

The continues wavelet transform has been investigated to map the datavardomensional
coefficients to identify the presence of impacts in a signal due ddfesisCWT is represerd

as

S ~ PFi
2SP4: L— + T.R3Y—p@P (2.21)
Vi =

Where 8%P denotes the complex conjugaté &:P and 60@%Ais the basis wavelet

function109]. However, in the application of CWT, a very redundant transform will be produced
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which leads to the increase otomputational timgl16]. This led to the emergence widely

implementedlyadic wavelet calle®iscrete Wavelet Transform (DWT).

2.3.8.4 Discrete Wavelet Transform (DWT)

In order to overcome the redundant transform produced form the @@i§cretizatiormethod is
applied to dilation and translation parameters. This can be done by chtregirigtion paameter
=> W%and the parametep > u©>[109]. When thechace of scales and translations based on
powers of twothe analysis will be more efficient and with tsemeaccuracy of CWT. This type
of analysis is called DWT117]. The DWT was developed by Malldtl8]and it can be expressed
as

s . PF >t©
. b &0 (2.22)
@SEa>,L3/1_©¢T.P,6 —5pP@P

This transform is orthogonal and nroedundant wavelgt19]. DWT is critically sampled wavelet
using FIR perfect reconstruction filter barjk20]. Wavelet and dilation functions etulti-scales
are generated ahown irr(2.23) and(2.24)

T:PL3%I DJI1:tPFJ; (223
a
PL¥MI %J:1:tPFJ; (224

a
Where [:.; represents low pass filter ar. i« ; high pass filter,d:1; scaling function and

d: 1 wavelet function111]. The interest in using DWTs method comes from the fact that signal
impulses can be identified from the high frequencies of the wavelet with a good resdi2fipn

Low time resolution and higfrequency resolution can be obtained at low frequencies, whereas, a

high time resolution but lw-frequencyresolution can be obtained at high frequenfiéd].

Several DWT denoising approaches have been developed amongst them coefficient modelling and
wavelet shrinkage methods. Wavelet shrinkage method is the most wittglted method for
signals denoising, as it requires low computational complexity. This method is based on
thresholding technique to shrink the noise and preserve the importanvroemp in the residual

signal. Therefore, wavelebased denoising technique have been extensively implemented in

recent years

The sequence of applying wavelstsed denoising is to
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Firstly , decompose noisy data intdevels, wherd. is the number on decomposition levels.

Secondly perform anonlinearthresholdingafter selecing the optimalthresholding valueto

remove noise from the data upltdevels.

Finally, a reconstruction of the dwised signal is carried out throughe inverse wavelet
transform of theshunk detail coefficients. Using the nonlinear shrinkageha transformation

domainmakes this method distinctive from other linear denoising meti@a4.

It is possible to denoise contaminated vibration signal with sharp transients through the
thresholding function in wavelet transformation domajh23, 124] Several wavelebased
methods for the denoising have beavailable, for instancgl125] implemented the wavelet
transform scale space filteringchniques and Bayes shrinkage for noise estimation and denoising.
Altman [126] used wavelet packet analysis based multiple {pess filtering to denoise bearing
vibrationsignals andjood results were obtained. [tR27] the signal is denoised first to eliminate
unwanted noise and spikes using wavelehdising, and the obtained wavelet coefficients were
fed to nonlinear PCA algorithm aan input vector. Although wavelet has been widely applied for
signal processg, the denoising process affected by the base function where it cannot change
adaptively according to the signal characteristics.

Second generation wavelet (SGWT) emerga@aentyears and has been wigénplemented in

signal processing. It is based on a lifting schemmnstruct biorthogonal wavelets introduced by
Daubechies and Sweldefi8], it has some advantages and faster than the cbonahwavelet

DWT. For instance, Li et a[129], proposed a technique named adaptive morphological gradient
lifting wavelet basedon SGW for bearing vibration signal denoising and feature
extraction. However, some shortcoming has been reported when using second gemeragiiat,

it suffersfrom frequency aliasing problem due to the $iplifandmergingoperations ppces§l30].

To overcome frequency aliasing, Bao e{HB1], proposed a redundant secaygheration wavelet
(RSGW). In this method, split and merge operations are avoided in the transformation process,
thus, it does not suffer from tlieequencyaliasingproblem. Lu et al[130] proposedan adaptive
redundant SGWT denoising method for vibration signal. The extracted features frommthisete

signal used as inputs into the SVM for fault detection. Feng dtLa2] proposed differential
evolution (DE) optimization and antisymmetric real Lapla@velet asa filter to elimirate the
interferential vibrations and remove stochastic noise from the original vibration signal. Then used

envelop analysis to detect the bearing defectfl38] Su et al. applied optimal Morlet wavelet
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filter to eliminate the frequency associated with interferential vibrations in rolling element bearing
and an autocoetation enhancement algorithm is applied to the denoised signal to shrink the
residual inband noise and highlight the periodic faulty features. Despite the wide implementation
of DWT and SGWT, when it comes to the rnstationary and notinear vibration gnal,

conventional wavelet suffers from two main disadvantages as following:

f High shift sensitivity, a small shift in the signal ntagultin a major variation in the energy
distribution of DWT coefficients at different levels. The DWgTshifing-sensiive because

the coefficients havenpredictaleg behaviour when the input signal shifts in tifi84].
f Frequency aliasing which mégadto lossof important components of a signal.

For thementionedreasonsabove it turns out the idea of using an expensive wavelet instead of a
critically-sampled oneAn expansive wavelet transforms (Npint signal into (M) coefficients

with (M > N). A number of expansive DWTs types have been developed such as Undecimated
DWT, DuatTree Complex DWT and DoubBensity DWT.

2.3.8.5 Expansive DWTs

The «pansiveor redundant wavel@éransform results in a redundant representation of a signal in
the waveletdomain. The wavelet coefficients are longer in length than the original signal, by
increasing the sampling plane of the tiimequency using oversampled filter banks. As a result,
this will give more flexibility in the wavelet design and this type of wavelet has more advantages

compared to critically sampled DWT.

2.3.8.5.1 Undecimated DWT

The ndecimated discrete wavetetnsforns (UDWT) also known as redundant wavelet transform
is an impoved version of DWT. UDWT have the advantages that ishif&invarianttransform

and there is no dowsampling operation involved Unlike tBNT, whichdownsamplethe detail

and approximation coefficients at each le{EB5]. Therefore, the approximation and detail
coefficients of UDWT equal in length to the original signal at each level. UDW3aunpples the
coefficients at each level bbthlow and high pass filter3 he upsampling operation is equivalent
to dilating wavelets and then doweamples in the reconstruction process. The coefficients
resolution declines with growing levels of decomposition. Howevethacase of Fscales &
implemented, UDWT is redundant (expensive) Bi s and therefore considered as a highly
redundant transforii36].
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UDWT has been studied for vibration signal analysis, for instance, Hah, .37] have
implemented undecimated wavelet (MUDW) for noise smoothing and feature extraction of the
beaings signal in rotating machinefl38] used undecimated wavelet transformation based on
lifting scheme for denoising vibration signal gathered framgearbox the results showed the
capability of the method in enhancing theraition signal[139] implemented UDWT to denoise
gear vibration signal as a ppeocessing technique, the approximation coefficients were used and
have shown to be most suitable to denoise the sighahgetal.[140] investigated the application

of UDWT to feature extraction of impulsive vibration signal and claimed that the UDWT s
effective in fault diagnosis. I[141], UDWT has been applied to bearing vibration signal and, the
results showed that it can diagnose bearing failure quickly and effectivelgt&{i42] proposed

a higherdensity dyadic WT and several wavelet transforms were investigated for vibration signals
collected from faulty roller bearings. The study claimed that the presented technique outperforms
the other typical wavelet traimsms, however, this method produces high redundant wavelet, which

asaresult increases the complexity of computation.

Despite the reported successful application of UDWT compared to the critically sampled DWT,
especially for nosstationary signals, it has an expansiactor of log N, therefore it is considered

as a highly redundant expensive wavelet and therefore cotiopaldy high expensivg§l3l, 143,

144,

2.3.8.5.2 Double Density DWT (DD-DWT)

Double Density DWT was introduced p¥12] and is grounded on owsampled filter banks, to
reduce the translation sensitivity, instead of critically sampled conventional DWT. It is analogous
to well known Daubechies orthonormal wavelets and now in the oversampled case with tight
frames. ltis called oversampled as tlogerallrate of the subband signals is larger than the input

by 3/2. the DBEDWT uses scaling functioid : B, and two distinct wavelet§s and d¢ where one

wavelet is set to be offset malf fromthe other wavelgtl13] as shown if{2.25)|.

8s:P N 8s: PF r v (2.25)

DD-DWT has one scaling functionP, , two wavelet functionsds: P, &¢ andtheyshould satisfy

scaling functiof(2.26)|and wavelet functig2.27)

T:RL%I D:J:1:tPFJ; (2.26)

a
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8P L ¥ D;J;1:tPFJ; &L sa (2.27)

a
In the equationsDy: J; represents the low pass filter whilg: J; AEL s& are the high pass filters
[112].

Figure2-3 DD-DWT oversampled analysis and synthesis filter banks

For satisfying perfect reconstruction condition whereV, L : :V, filters should satisfy the

condition$(2.28)[anq(2.29)|when * ; V. is the <transform of ; J; as:

4V s VVE*5:Vi*5is VVE*gVi*gis VLt (2.28
*2: V¥4 Fs VVE*5:Vi*5iFs V E*g:Vi*g:FS V, L T (2.29

With the design of having more wavelets, a narrower spacing between adjacent wavelets within
each scale will be obtaindti45]. DD-DWT is constructed with decomposing and reconstruction

three filter banks oversampled by 3/2 as shoyFigare2-3| Motivated by the successadopting

an overcomplete expansion &factorof 2 redundancy idual tree discrete wavelet transfolD-
ANT[144], which improves the shi#ensitivity of the DWT, Double density DWT was proposed.
DD-DWT has several advantages that make it outperform critically sampled DWT and
undecimated DWT. The double density DWalsssexpansive version of the undecimated DWT.
Also, DD-DWT has very smooth wavelets and it is nearly shifariant. This property is important

for extracting periodical peaks. Another property is the reduced frequency aliasing effects which
claimed to be effective for detecting harmonic featuresrankes the DEDWT well suited for
applications such as netationary signal processing that rolling bearing produces. DD_DWT has
improved timefrequency bandwidth product. It has more wavelets than necessary givech

narrower spacing between adjacerdvelets within the same scale and is less redundant than
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undecimated wavel¢t13]. In UDWT, the redundancy grows with the number of levels, however,

DD-DWT isjusttwo timesexpensivg120].

DD-DWT has been implemented in image processing and denoising, for instance, Sveinsson. et al,
[146] applied DDDWT to denoise Synthetic Aperture Radar (SAR) images by reducing the
speckle of SARmagesand claimed that the method was able to remove the speckles and enhanced
the performance of detection for SAR based recognitiofil4i@], DD_DWT applied for image
denoising in order to derive texture feature of the images, the results showed the potential capacity
of DD-DWT in performing the taskArfia et al[148] used DBDDWT to filter image components

and experimental results showed the effectiveness of this image denoising metfid@],lia
comparative study has been cadriout using different wavelets for Ground Penetrating Radar
(GPR) signals and it was found that the same level of processing, HiBNDDoutperforms the

Haar mother wavelets or Daubechies order 6 when using soft thresholding. Another comparison
study cared out[150], between DWT and DIDWT in image denoising, It was found that with
thesameevel of decomposing, the BDWT outperforms the DWT.

DD-DWT has several advantages that make it outperform critically sampled DWT and
undecimated DWT. The double density D\ig a less expansive version of the undecimated DWT.
Also, DD-DWT has very smooth wavelets and it is nearly shifariant. This property is important

for extracting periodical peaks. Another property is the reduced frequency aliasing effects which
claimed to be effective for detecting harmonic features and makes tHBVWD well suited for
applications such as netationary signal processing that REBs produce. DD_DWT has improved
time-frequency bandwidth product. It has more wavelets than necessary gideéch narrower
spacing between adjacent wavelets within the same scale [108]. However, according to my
knowledge, DBDWT has never been explored to the scenarios of detecting and diagnosing faults

from machine components such as bearings.

2.3.8.5.3 Dual-Tree Complex DWT

The DualTree ComplexDWT (DT-Z:7 LV DQ HQKDQFHPHQW WR WKH ':
limitation in DWT and to mitigate the expensive cost of the undecimated DWT.

DT-Z:7 ZDV LQLWLDOO\ SU RIZA sstGextpensivwiavdaieXdnd investigated later
by Selesnic§108]. DT-Z:7 FDQ EH H[SUHVVHG DV

3:P L3y PEEZP (2.30)
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Where d: P, is the real andE ¢, P, is the imaginarypart[151]. It uses two critically sampled
DWT trees in parallel, one trée generate the real part and second tree to generate the imaginary
part of the wavelet coefficients separately. The wavelet coefficients of the real part can be expressed

as
>1

) Y )
@:G Lte+ T:Rdgkt"PF Co@&FL sa & (2.31)
29
Where Hs the level, while the scaling coefficierttan be expressed as
. A>T -
G GLt+ TRIGIAPFG@P (2:32)

Similarly, wavelet @2: G and scaling? 2: G coefficients forthe imaginarypart can be derived
from d4,P, and T4 P. And then the wavelet coefficients and scaling coefficients can be derived

by combining theluattree[152] asin|(2.33)|and(2.34)

@GL P GEE@Ga FLsda&d: (2.33)
®:G L ¢:G EED:G (2.34)

When setting other coefficients to zero, the decomposition coefficients are individually
reconstructeil53] as shown if{2.35)[and(2.36)

@PLEVSSd  @:G3g:t'PFI;El @%Goyt PR J;haFL sad 4 (239
QP Lt®S6d  &E:GigthPFI ;EI QaGTtAPFJI;h (236
a a

I and Jrepresents the filter lengthg®: P, and @: P, arerealandequal in lengthwith T:P. The
analytic of 8: P.givesDT- Z : 7 excellent properties, to achieve th&: P and &y, P, should form

a perform Hilbert transform as
04P L *<0DPR= (2.37)

where represents the Hilbert transform and the two DWTs form an approximate Hilbert

transform pair, so the second pair is viewed as a Hilbert transform of the first pair, and as
demonstrated ifLt53, 154]the associated scaling filter of one pair should be approximately-a half

sample delayed version of the scaling filter of the other pair as:
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%P, N Dy: PF ray (2.39)

When designed in this way, this wavelet is call@dalTree Complex DWT [155]. It was
demonstrated that, by using a pair of wavelet transforms, significant improvements can be achieved

in signal processing.

DT-Z:7 FRPHV s@menadditionalmportant properties, it ispproximatelyshift-invariant
perfectreconstruction usinghort linearphase filters and limited redundan@;l for 1-D with
independent of the number of scdle$3, 143] This doubled redundancy offers more information
about the data for analysis with limited extra computation cost. The implementation AMDT
using separable filteramks, significantly improved denoising capab[tli§6]. In the DF AVT,
implementation of decomposition and reconstruction is carried mg two parallel DWTs with

different low-pass and higlpass filters in each scale as showAd%3].

Figure2-4 duakttree complex wavelet transforb53]

The tree of DT ANTSs uses a different set of filters, and each set satisfies the perfect reconstruction
condition. The perfect reconstruction property of the-BT7 KLJK VKLIW VHQVLWL
computational and perfect reconstruction make it a good candidate for des@sialg157]. The

design of the filters of DTZ:7 KDV VRPH LPSRUWDQW FK D ip&ss filtdastin. VW L F \
the two trees differ by 0.5 a sample period. All filters are from the same orthonormal set.
Reconstruction filters arthe reverse of analysi$he filters ofUppertree are the reverse of the

seconétree filters.The twotrees have the same frequency response. All of this comes with a limited
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redundancy cost of 2N in-I2, which is much lower than the redundancy of aquly shift
invariant DWT. DF 2WT has been extensively investigated in image and signal processing, for
instance, Wangt al [153] used the DTANT with the NeighCoeff thresholding for denoising
gearbox vibration signal. The study claimed that the developed technique outperformed DWT and
fastkurtogram [158] DT- AN T was applied to denoise audio signals contaminatedaaiditive

white noise of different inteity. The study claimed that BTAWT outperforns conventional DWT

in the casef optimal selection of threshold level.

2.3.8.5.4 The Double-Density DualTree DWT (DDD-DWT)

Double Density Dual Tree DWT was developed by Selesnicklb]. This wavelet is an
overcomplete wavelet and intended to have the properties of betA\DITand DBDWT into one
transform. DBDWT and DF 2WT share some properties such as both are overcompleie by
factor of 2 in 1D, approximately shift invariant, both adopt FIR filter banks with perfect
reconstruction. However, they are different in some aspects such asatetes form a Hilbert
transform in Dual Tree whilst in Double density they set to be offset by one half from each other,
they usea differentstructure of filter bank. DTANT is considered as a complex while IIWT

not viewed as such. These differenced aimilarities motivated the idea of combining the two
wavelets in a single transform which have the advantagbsthf dual tree and double density
wavelets. The new function is a dyadic wavelet with tight frames based on two scaling functions

0s : R &g: P, and four distinct wavelets designed in a specific way d&%9] :
Opy-P@ 4« Pad FL s& (2.39
From the fouwaveletsone pair is set to be offset frolmet other pair by one half as:
0P NOgs:PFrava 04:P NOg:PFray (2.40)

While d4:P will form approximateHilbert transform of dgs: P, and 84: P, will form an

approximate Hilbert transforndgg: P, as:

04:PL*0g:PA 04 PL*>Dy:R? (2.41)
As seen ifFigure2-5| two separate filter bankB;:J; and % J; are used with . The upper

tree represents the real part whilst the lower tree represents the imaginary part of the complex
transform[159, 160] The DDDDWT uses two ovesampled iterated filter banks working in a

parallel manner. The tiraevers of the analysis filters are used as synthesis filters. The filter banks
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satisfy the properties: perfect reconstruction, Hilbert transform pair property, specified vanishing

moments short support.

Figure2-5 Double Density Dual Tree DW[IL55]

When * {z) is the <transform of On) and %gz) is the <transformof Z%n). The perfect

reconstruction condition as the following:

6 6
i *ypV*gsvLta | *gVi*gFs VL (2.42)
Ut v

And the same for%; V.. The wavelet and dilation functiotiwough(2.43)|and(2.44)|and(2.45)

6:RL¥% I D:J;6D:tPFJ; (243
a

ds:P L% | D:J;6D:t PF J; (244
a

8os:P L% | DO:J;6D:tPF J; (2.49)

a
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And the samdor 04, P, 6%@: P4 EL sd The new function is compact support with vanishing

moments. The application of DBDWT includes image processing, data denoising and enhancing

etc. DataAnalysis Basedeature enhancement and denoidiigthods

Studying experimental signals normally is not an easy taslauise some weak signals are non
stationary and suffer from havirdow signal to noise ratio (SNR). In practisggnals do not exist
without noise,however, when the noise level corrupts a sigtied,noise removing become a
necessary process. The denoising process campladain the original signal (time domain) or in
thetransformatiordomain (Fourier or Waveld)22, 161] for experimental signalspnventional

signal processing methods cannot be used effectively to extract the trud Bs@pahs a result,
enhancing andlenoising those signals becomeeal challenge[80]. Enhancement of vibration

signal measured from machines has been carried out by suppressing the background noise so as to
increase the sharpness of thalfampulses.Noise is normally random signals with broadband
frequency and this band will overlap with the signals of interest. Thus, with general filtering
methods, it is challenging to effectively remove the unwanted noise from the Jitpvéls An

optimal denoising method should preserve the required signal features which are fundamental to
the application while eliminating unwanted noise as much as poddnts.techniques have been
proposed in signal enhancement for fault diagnostics anchtwsgeexperimental vibration signal,

here some of the welnown and widely used techniques.

2.4 Automated Data Analysisbasedon Artificial Intelligence

The main aim of Albasedapproachess to learn the patterfrom the treated signal in order to
associateit to a predefined or knowrcondition The learned pattern is considered as data
representation and used fomulti-classificationtaskwhena supervisegaradigm is adopted. In

this case, the entire knowledge about the expected condition must be known. The vast majority of
Al-based approachedidressed in this manner. On the other hand, unsupervised paradigm aims to
learn the pattern ahenormalcondition and then use the learned model to monitor the process and
detectanychangsoccurin thedatadue toaphysical changdn this paradigmAl-basedechnique

is used for features extraction, features selectiom the signals generated by theonitored

system also fodimensionality reduction.

2.4.1 Al for Data PostProcessing(Classification)

The vast majority oAl-basedapproacheare implementetbr postprocessing process CM, the
expected conditions have to be qiefined and the algorithnedrns how to classify eachput
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instanceto a predefined conditiorJsing Al for classification in CM has been of interest to
researchexfor alongtime. The features are extracted based on human experience and are crafted
basedonthe expertise knowled{fg. For instanceZhang et al[163] haveimplemented SVM to
diagnoseREBs,features were extracted based on setatisticalparameterfrom the signal in the

time andthe frequency domain. Saidi et [@7], has used bspectrum as feature extraction and
PCAtoreduce thelimensionalityof the dataTheextractedrincipal components were fed to SVM

to detect four types of bearing defewtish differentseveritiesfor eachfault type. Yuwono et al.

[164] proposed an automatic bearing fault diagnosis method using Hidden Markov Model (HMM)
fed with the extracted fault frequency signatures by Wavelet Kurtogram and Cepstral Liftering.
[165] simulation datagenerated by high resolution simulates is used to train machine learning
classifiers instead of using historical datae generated dataere used as inputs to train and
investigateSVM and KNN, also CNN was applied to the generated data to diagnose simulated
defects. The study claimetiat high accuracywas achievedin all cases and applied methods.
However, simulation data cannot simulate the reality and all possible operating condition of
nowadays compl systemsAlthough Al approaches have witnessed an increase in the field of
CM of REB, however, the accuracy of these methogbkly depend®sn a set of suitably selected

feature vectors as input to classifiers in order to accurately detect and itleatilyaring faults.

2.4.2 Al for Data Processing (feature extraction)

The quantity of machineeadable data rapidly increases but fortunately, machine learning offers
techniques by which the massive data can be automatically procésséte performance of
machindearning techniques is highly depending on the feature extraction and selection step, hence,
signal processing techniques widely implemented to extract and select the input feafires of
basedmethods. However, they have to be very efficient@isolation of fault characteristics from

the raw signals. In the literature, several techniques based on time d@mhabb, 166, 167]
frequency domairfl68Jand timefrequency domaii64, 169171] have been implemented to
extract features for REBs fault diagnosis using neural netwiddisever in most cases, the feature
extracted from these domains were hiliimensional and redundant andaassultin gainingpoor
diagnostic informatiof172]. The task of dimensionality reduction is deeply connected to the
feature extraction and selectiag the aim is to capture the significant components of a dataset
[173] Thus, robust diagnostic feature extraction and analysis techniques are needed to extract the
discriminative and informative fault features in a given feature vector. This is can be considered as
means of either dimensionality reduction of the featureespadeature selection of the feature

vector. To obtain the representative features from the data, a number of the Al algorithms in CM
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were developed to carry out the task of feature extraction. Thus, many methods have been
developed for diagnostic featuegtraction and analysis. Amortigem,component analyses such

as principal component analysis (PCI8Y, 174]and linear discriminant analysis (LDJAY5],
Wavelet Kurtogranjl64], kernel Fisher discriminant analysis (KFOBg], these techniques have

been widely utilized in extracting features for fault diagnosis.

PCA is unsupervised analysis method and was reported to be effective for diagnostic feature
analysis and the produced principal components can provide disciuaifiatlty features for
diagnosis. However, it was claimed that PCA is limited to preserve the discriminative properties of
theanalyzeddata as itacks intercategorgeparability estimation procefkr6]. Feature learning
methods may hold the potential solution to overcome the aforementioned limitatevantional

Al diagnosis methods. To overcome shortcoming mentioned above, adaptively learn the feature
from raw data can be highly desirable which aeanurately represent the data by using advanced

Al techniques. In thisesearcha neural network based adaptagtoencodeis used for feature

extraction and selection.

2.4.3 Atrtificial Neural Network (ANN)

Several attempts have been carried out in ordeutionzate the fault diagnosis of REBs, ANN
amongst the most Al methods applied for fault diagno#$so, some variants of ANN also
investigated in CM such as polynomial neural networks, dynamic wavelet neural networks, self
organizing feature maps (SON)77], multilayer perceptron neural netw]. ANN is a parallel

data processing unit consists of an assembly of grouped connected neurons, ANN implements a
training aborithm eitherfeedforwardor back propagation to perform specified functions to adjust

the interconnection weights and biases value until the error between the predefined predicted output

and the actual network output reaches the possible minimun{i@fle

ANN has the advantages that it can readily process nonlinearptdgh and noistationary
dynamics. The structure of ANN consists of three layers: the input layer, the lagde, and the

output layer. Each layer consists of a number of neurons act as processing elements linked with
each other in a way that they interact by using numerically weighted connfs3ijosainly, the
implementation of ANN consists of three main steps namely, training, testing, and implementation.
In thetrainingstage of a model, feature extraction and selection are the most important and critical

stages.
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2.4.3.1 Fundamentalsof ANN

Artificial neural network (ANN) is an information processing paradigm based on biological
nervous systems of the human brakiNN consists 6 a predefinednumber of interconnected
processing neurons that work together in order to solve a specifi28s4N learn by example,

it simulates the learning process in human biological systems includes the adjustments of the
synaptic connections that exist betweenrtearons The earliest artificial neuron was developed

by the neurophysiologist Warren McCulloch and the logician W#&lis in 1943. But due to the
limitation of the available technology at that time, they did not do too fhé8h To understand

neural networksasanexample we will describe the simplest possible neural network, one which

FRPSULVHV D VLQJOH 3{BgeP®Q ~ $V VKRZQ LQ

Figure2-6 Neuron Structure

The input signals are multiplied with individual weights, and the multiplication results are summed

up together intdhe value g as illustrated below:

a
% [ Ty8Syy (2.46)
Uan
The sum is fed into an activation function; one example is the sigmoid furigtipas illustrated

below:

S
BT L—— 24
SEATE (2.47)
The sigmoid function output resul®& T; lie between 1 and 0 as shown in function, however, there
are several versions of activation functions such as tang activation function where thdieesults

betweenl and 1.
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Figure2-7 Sigmoid function

ANN can be configured for pattern recognition or data classification or any other specific
application. Through a learning process, ANN has been extensivelyous®de several problems
such as in prediction, classification, data dimensionality redyctsatfcontrol, function
approximation, pattern recognition eft79]. Data processing using ANN h&st to go through
atrainingstage which can be carried out by one of several three main methods:

X Supervised

X Semisupervised

X Unsupervised

In supervised training, theetworkis trained with input values agairlgiown output values.e
there is a targeoutput for each input pattern, and the netwinids to learn to create the desired

outputs

In semisupervised training is the case where a li@velleddata or unlabelled data are available

and one is extended in order to increase the accuracy nétiverk

Unsupervised training algorithm, on the other hand, is the case where there is only training data
without any corresponding target values. However, by lookingtHerinput patterns sharing
common features, theetworkcanallow us to discover hiden patterns in the data. This is achieved

by approaching problems with little or no idea what our results should loolkatikiethe network

will be able torecognizehe features across the range of input patterns.

As ANN has the ability to extract meagiul information from complicated or imprecise data, thus
it can be used to perforpatterngecognition and detect trends that are too awkward to be noticed

by other computer techniqy&g8]. When a neural network is well trai, it can be considered as
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an "expert" in the task adnalyzingthe data which has been given to the network. Some other
advantages can be achieved when using ANN like:
X Adaptive learning: the algorithm can adapt itself based on the input data during training, it
has the ability to learn how to perform some tasks.
X SelfOrganizationbased on the data an ANN receives while training, it can create its own
organizatioror representation.
x Parallel Processing: ANN has the advantages of parallel processihg network
consists of a predefined number of highly interconneeéotonsvorking as processing

elements in a parallel way to solve a specific issue.

2.4.3.2 ANN Training Meth ods

Generally, training methods are classified into three categories supervisegupemised and
unsupervised. Each of which has its advantages and draybaZksRecently, deep learning
methodology hadeenof interest in CM and witnessed increased implementation in feature
learning. Several studies appliadleeplearning approach to avoid the nefed using feature
extractorfl80]. Among them Convolutional Neural Networkis a weltknown and widely
implemented deep learning methodology arahystudiesattempted to appl€NN to machinery
CM.

SupervisedTraining, in supervised trainingiethodsfor each input pattertiere is a target output,
and the network learrduring the training stage haw produce the required outp|it81].

SemiSupervised Training, semisupervised learningnethodis a hybrid approachn which

extending either unsupervised or supervised learning ledieded andunlabeleddata

Unsupervised Training, in unsupervised trainingnethods, the networkies to find a hidden
pattern in the input data learn the most important features and then to betasgassify network
inputs. Common unsupervised learning tasks ingLic8g:
x DataClusteringor grouping similar items together in each clustethe maintask is to
separate thmputinstances into groups.
X Anomaly detection, which identifies tladnormality in the data with reference to training
data and how mudfe new data idifferent from the majority.
x Dimensionality reductionn many cases the data needbégrocesses too large or it

has a high inensional space, unsupervised algorittaresvidely utilizedin the task of
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dimensionality reductiowhich aims to represeefficiently the input datavith a lower

dimensional featurspace

2.4.3.3 Application of ANN to REB Condition Monitoring

The DSSOLFDWLRQ RI DUWLILFLDO QWHof REBSCN)-bifes Rubdiavitials 1 1 TV
financial rewards and has consequently been the subject of considerable research recently. ANN
has been extensively studiedaault detection and diagnosis tesgue. ANN has been applied

LQ VHYHUDO PDQQHUV IRU 5(%V IDXOW GHWHFW [(fRaQMsDQG G

extraction and selectio@nd as data pogtrocessindclassification task)

2.4.3.4 ANN for Postprocessing

ANN has been applied as agtprocessing tool so far, while the inputs were derived by
conventional feature extraction and selection techniques. For examil@2jnfor bearing outer

race andnner race defect detection, supervised pattern recognition technique based on neural
network is proposed and used both time domain and frequency domain features as the inputs of the
neural network. The study reported that time domain features more acefi@t adopting
statistical parameters to extract the features include RMS, Variance, Skewness, and Kurtosis and
used as inputs to the neural netwddkal et al.[183] proposed bearinfault diagnosis system
usingenvelope accompanied with FFT atitbert Transformmethods foextracting the diagnostic
features, and ANNnetworkoptimized by GAwas implementetb classify the features extracted

from of REBs vibration data

In order to impove the precision of fault description, Chen et[B884] useddependent feature
vector (DVA) for extracting and selecting features, and probability neural network (PNN) is
proposed to denote the fault symptom attributegl86], a Feed Forward Neural Network (FFNN)

with Levenberg Marquardt training algorithm has bpeyposed taliagnose thdefect ofbearings.

A single dataset collected froorm@bearingwas used foboth the networktraining stageand the
validationstage. However, the method cannot be generalized as they used just the same bearing for
training and testing stages. Another attempt has been propodé8@jpy using Weibull Failure

Rate Function in order to reduce the effect of nééstors andused Artificial Neural Network

(ANN) for bearings defect diagnosis. However, the error between estimated and actual damage
severity was high athe beginning of the experiment and it declined only at the end of the
experiment where the REB damdmgrome very large. IN187], authors have presentadolling

bearing fault diagnosis using supeed neural networks and the features extracted using
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time/frequencydomain. Diagnosis resuléssound70% for each for three different faults, inner race,
ball, andlooseness, by using Computmulated and real data. Sreejith et[all], developed
automated diagnosis usiageedforward neural network for REBs. The FFNN fed with features
extracted from tima&lomain vibration signal by using both Normal negativelikglihood vdue

and kurtosis value. Levenbekdarquardt (LM) algorithm was used for supervised training. Single
point faults on inner race, outer race and ball are introduced into the test bearings using electron
discharge machining. However, although the resulingd to be good, vibration signals measured

from only a single location.

Moura et al188], appliedhybrid methodshased orsignal processing and pattern recognition
techniques to diagnose the severity of beadiefgcts The features were extracted by using both
detrendedluctuation analysis and rescatemhge analysis techniques. The extracted features were
fedinto ANN. Supervised learninglgorithmwasused to train thelassifier. Three different levels

of bearing fault severities were introduced at the outer race and have been classified yielded

reasonably good results.

Althoughthe application of Al has been gainimgportance in the area of automated REBs fault
detection and diagnosi$ere are still a lot of work has to be done in order to maximize the benefits

of it. In the literature, most of the Al approaches have been applied using supervised learning
techniquedgo train the network. However, supervised learning reqlatesleddata of each of the

known faults and this needs a lot of human efforts to prepare this sort of data. Furthermore, most
of the Al approaches have been applied forjpogtessing procegslassification task), while a
number of conventional techniques have been implemented for processing stage (features
extraction and selection) to extract discriminative features such as time domain techniques,
frequency domaimandtime-frequency domairetchniques. However, when adopting conventional
techniques for data processing stage, extracting the featuresdgadko be carried out manually,

and that relies on prior knowledge of expertise, moreover, this highly dependent on the advantage
of human mngenuity, thus, timeonsuming, costly antabour intensivg56]. Moreover, using
conventional techniques in the processing stage when applying ANN, thprposss stage will

suffer from being affected by background noise which degrades the measurement quality and led
to the high-dimensionality of features vectors.afiitional Al technigues are unable to extract
diagnostic and discriminative features from raw bearings data directly. Thus, Itis can be useful to
remove such random noise before proceeding with bearing diagnostic didlysisinsupervised

feature learning, network learning is considered as a nonlinear function, and by this function, the
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raw data will be transformed from the original space into a feature space. So no prior knowledge

or labelleddata are requiret train the network.

2.4.3.5 Recent Work Applied ANN for Feature Learning

Several studies reported in the literature that applied ANN to feature learning process, some of the

recent work applied ANN to feature learnisigch as following:

x Gan et a[189]in 2016 proposed a hierarchical diagnosis networistructed wittwo layers
deep belief network combined with wavelet packet usegttac the representative features.
The extracted features were fed to train the network using supervised paradigm. The health
conditions were classified using the proposed network.

x Lietal. in 2016 developeddeep statistical feature learningethod using stack&daussian
Bernoulli deep Boltzmann machine for deep feature learning. Vibratieasuements of
rotating machineryvereused as inputs to the developed method

X Chen and Li[190] in 2017 proposed feature learning method based on-saritor data
fusion technique. Thieature vectors were constructed by extracsitagistical featureBom
the vibrationsignals of different sensorghefeature vectorsised asnputsto multiple twe
layer sparse autoencodeetworks for feature fusion. Finally, the fused feature vedtors
eachhedth conditionwere used terain DeepBelief Networkfor bearing fault @ssification
task using supervised paradigm.

X Zhang et al[180] in 2017 presentsa new method for features learning calledtransfer
learning approach for fault diagnosis with neuretworks In this method, the network was
fed with massivedatato learn the features and the network parameters adjusted accordingly,
also the structure afienetworkresponds to the distribution changes in the training data. The
data used in the trairgnare different from the target data to improve the performance of the
network.

X Shao etl.[189] in 2018proposedin improved convolional deep belief neural network with
compressed sensing technolodyeaturesverelearnedfrom vibration data collected from
bearingsbased onsuperviseddeep learning paradigm and exponential moving average
technigue was implemented to enhance andrgésiag the performance of tle®nstructed
model. In this study, all studied cagexpected defectsyere madeartificially to the test
bearings and this can limit the methodology applidédon patterns frorthe known existed

cases.

74



x Feng et a[190] in 2018developed a local connection network based sparse autoencoder
neural networkfor intelligent fault diagnosisThe developed nikods were applied to
vibration data collected from bearings withe different hedthy conditiors. Supervised
paradigm is implemented using 10 class classification probthnough the features were
learned from the raw dat#he accuracy of thelassificationachievedis limited to the
artificially made defects in thetudied conditions and it may not be valid to be implemented
to a different unseen machinery system.

X Liu et al. [191] in 2018 presentedecurrentneural networkbased autoencoders for fault
diagnosis it was applied tovibration datacollected from bearings with different health
conditions. The autoencoder was used to denoise the vibration data and a supervised training
paradigm is used tean the features and classify the inputs into predefined class conditions.
The classification accuracy achieved was compared to the results obtained froem8W\
was claimed that the proposed method outperformed SVM with good results.

x Jiang et al[62] in 2018developed an intelligent fault diagnobsiased oran improved deep
recurrent neural networkSupervised deelearning paradigm is used to train the proposed
method, spectrum data used as inputs and was fed into the developed network. Stacked hidden
layers were constructed for deep learning the features. Experimental vibration data was used
to evaluate the effegeness of the proposed methods and it was reported to be more effective
than traditional intelligendiagnostiomethods.

x Pan etkl. [192] in 2018developed a novel deep learning neural network named liftingNet to
adaptively learn features directly from vibration data. It was constructed with several layers,
split layer, prediction layer, updating layer, pooling layer and finely connection layer. A
supervisedpamdigm is used to train the network using two datasets of motor bearings. The
study claimed that the feature®re layetwise learnecandgood classificatiomesults were
achieved

X Hoang et a[63] in 2019 applieddeepstructure ofconvolutionalneural networkor bearing
fault diagnosiseachvibrationsignalwastransformed from D into one corresponding2
vibration image andsed as input to the netwotke supervisegaradigmwas used to train
the network The studyclaimed that a very high classification accuracy was achieved using
the proposed method.

x Waziralilah et e[2] in 2019 reviewed the agphtion of deep learning usir@onvolutional

Neural Networkin bearing fault diagnosis, the study concluded thdhe literatureonly a
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few works were reported thatas proposed the architecture of CNN learn featuresgor

bearing fault diagnosiwith its severity

2.4.3.6 Drawbacks of existing methods

¥, It can be seen that most of the works ataygied to manual simulated health condisiaich
weremade according to a specific diagnosis issue and probably unsuitable for other issues

% The above methodsased on thassunption that datawill be collectedin the sameperating
conditiors and exhibit similardistribution and feature spac@/hilst, in reality, could not be

applicable for realorld working conditions.

2.5 Researchmotivation

Studying experimental signals normally is not an easy task, because some weak signals are non
stationary and suffer from having a low signal to noise ratio (SN&pa collected from vibration
sensors mounted on a defectbaaringusuallyhave the naturefamon-stationarities and they are
instead considered as cydtationary signal§74]. Furthermore, bearing fault signals are always
relatively contaminated by background noise and often is higher than the amplitude of the incipient
anomaliesDeveloping a reliable algorithms to effectivelgtect anomalies and diagnaise health

condition of such a complex systems is the main motivation of this PhD project

To addresshe aforementioned weaknessas integrated framework with two maapproaches
presented in this research. Firstiyy unsupervised feature learni@@NN is concentrad on in

this study for machinery condition monitoring carry out the task of early fault detection and
severity estimatedAs theCCNN has the advantage of translation invariance to tackle the cyclo
stationary nature of bearing signals, this study appti toTapered rollebearing fault detection

and this might hold the potential solution to overcome the mentioned obstacles mentioned above

in the early fault detection task

For the diagnosis to localise the defectcur in REBsMultiresolution dataanalysis approaches
applied using@D-DWT to analyse the vibration daatongside with a novel thresholding technique

to denoiseand enhance the extracted features ftieencollected data’he double density DWiG

used in this research as it iteas expnsive version of the undecimated DWT. Also,-DWT

has very smooth wavelets and it is nearly shiariant. This property is important for extracting
periodical peaks. Another property is the reduced frequency aliasing effects which claimed to be
effecive for detecting harmonic features and makes thelIDT well suited for applications such

as nonstationary signal processing tHREBsproduce. DD_DWT has improved tirfiequency
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bandwidth product. It has more wavelets than necessary which give a naspawisg between
adjacent wavelets within the same scale [108pwever, according to my knowledgeD-DWT
has never been explored to the scenarios of detecting and diagnosing faults fromemachi

components such as bearings.

2.6 Summary

In this Chapterfeature extractioand enhancemehtsed adaptive and iterati@pproacheviewed
in (section 2.2)In in (section 2.3) automated methods based Al approach were discussed. The
drawbacks of the most widely applied recent methods were.|Btedapproachesre explored in

line with their applications to condition monitoring.
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CHAPTER THREE

ROLLING ELEMENT BEARINGS AND FAILURE MODES

This chapter presents the fundamentals of RER&8ading REBs types, REBs componeautsl its
applications.Moreover bearingfailure modes and their potential root causes discussedvith
particular interests of various slow effects such as wear and ero$tan#t frequencies appear in
vibration signal signature of the bearing due to the presentoeafl defectivesire alsoillustrated
in this chapter.

3.1 Introduction

REBs have been widely utilized the vastmajority of rotating machines to reduce the friction
betweerrotatingadacent partsBearingsareone ofthe mosimportantelements in these machines

due to their relively lower price and operational ease. The reliability of REBs depends on the
smooth and quiet running within the machines. However, REBsavgnzedas acommon reaso

for failures in rotatorymachine. The literature shows that approximately halffailures in
induction machines are due to bearing falil&3, 194] Different kinds of REBs have come into

use in industrial applications, each type is designed to support specific task. Before discussing the

CM of bearing, this chapter will present the basic types of REBs and their components.

3.2 REB Types

REBs come in dierent sizes and shapes and they can be classified into different categories
according to the application such as the load they support or according to the shape of the roller
elementsHowever in Table2, REBs are classified according to their standpgrometric shape

[177]. The main two categories are roller shape aibshape, each of which includes a verity of

types.

Generally, ball bearings can sustain lower load capacity but they are udsidhiapeed
applications as the balhce contact area is very small (point contact) and hence, results in smaller
friction force[195]. Whilst, roller bearing can support higher load capacity because theyahave
largercontact area (line contact), hence, applied load will produce smaller contact stresses. On the
other hand, the angular dawt roller bearings can support simultaneously high radial and axial
loads[196]. According toTable LW TV F O HigdJare/dkaBsifiedediddendling on the physical
shape and the kind of load direction they support, combined load, radial load or axial load. Another
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classification can be rotation speed, temperature resistance and so on. For instance, ball bearings
are foundn precision applications and good at the application of high speed under moderate axial
and radial loads. Thus, they are very popular and widely ugbdimdustrialworld. Whilst, roller

bearings are utilized in diverggpes of machinerguch as highoad or temperature, also, the
application requiring simultaneously support of axial and radial load and d® @} Therefore,

this research will focus on tapered roller bearing and they will be erdrmrthe real experiment.
Moreover, studies based on tapered bearings can be extended to other types of Roller bearings.
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Table3-1 Types of rolling element bearinds 7]

There are several kinds of bearings available and they have their individual advantages and
applications. The commonly used REBs according to their shape are illustrated in the following,
ball bearings are widely used and they are available in designstarnsradial and axial loads

independently or simultaneously.

Cylindrical bearing uses rollers &slling elementsThe contact area Isie-contact between the
roller and the race, the load is distributed over the larger area, this gives them théoadalitya

high capacity of radial loads, as welshigh-speedcapability. Moreover, rollers are designed in
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such a way that their length ad@meterarenot much different to avoid their tendency to skew.
They are available with or without ribs, thegn carrythelight axial load when designed with rips,
while bearings without ribs can facilitate the assembly and gives them the ability to absorb the shaft

expansion.

Tapered bearings are designed to carry simultaneously radiddrastioads.For this purpose, the

rollers and the races are madataperedshape. Their axial load capacity ratio has a linear relation

with the contact angle between rollers and cones. Tapered bearings usually come into components
apart, sothe outer race is sepate from the inner which comes with rollers and cage. The
components are assembled when mounted preloaded ahed@imountof clearance depends on

the application.

Spherical roller bearing normalhsstwo barrelshaped rows of rollers in separate raceways rolling
around two raceways with a spherical outer race. They are capable to support large réuiastand

load capacity and can be used for heavy industrial equipment.

Needle bearingises cylindrical needle rollers witla smalldiameter. They can be used in limited
radial space conditions. The large ratio between the rollers length and diameter makes them able
to carrytheradialload for their size. There are different designs of needle beampgsds on the

application.

3.3 REB Components

Rolling bearingconsiss of four basic parts: inner race, outer race, rolling elements, and cage. Other
special bearings have added parts such as seals and guide race. For supporting the bearing load,
inner raceputer race, and rolling elements are used, while the cage is used to separate adjacent
rolling elements from each other to avoid the friction. Bearing components are described in more

details below.

3.3.1 Inner race

The inner race is mounted on the ro