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Abstract 

As the demand for manufactured parts increase tremendously due to the short life 

span of products as well as mass production in this era; one of the most challenging 

problems faced production and quality departments is to ensure that the quality of 

manufactured parts is not compromised over quantity. 

In order to avoid excess downtime during quality assessments, on-line or on-

machine inspection is becoming preferred over off-line inspection. For dimensional 

inspection, on-machine probing can be adopted to reduce the need for manual or 

CMM based inspection. For typical surfaces produced on CNC machine tools used 

in advanced manufacturing industries, there is currently no on-machine 

measurement solution. To ensure high surface quality as well as high throughput 

on a typical shop floor; this thesis presents two approaches to enhance the chances 

of right-first-time manufacturing. 

The first is a new methodology that exploits the characteristics of a 2D laser line 

scanner for fast, on-machine areal surface measurement at the micro-scale level. A 

commercial low-cost laser triangulation instrument is improved and utilised to 

obtain a high resolution and wider measurement area suitable for the identification 

of a range of areal roughness parameters on machined parts produced using a 

typical milling process. 

Crucially, the traceability for the new methodology is also established. This 

includes reports of the measurement uncertainties associated with each of its 

metrological characteristics (MCs) and the combined uncertainty of each of its 

axes. The MCs that were considered include measurement noise, residual flatness, 

linearity deviation, perpendicularity deviation and amplification coefficient. A 

comparison of the novel technique with conventional lab-based surface metrology 

instrument shows a high correlation (99 %) between parameters as well as its ability 

to identify key features on a machined part such as scratches. The inspected 

surfaces had Sa (0.3 − 6 µm) which covers most of the advanced manufacturing 

industries such as aerospace, automotive and civil nuclear. 

The second approach involves the development of a novel method for enhancing 
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surface quality and machining parameter prediction on the manufacturing shop 

floor. A proposed artificial neural networks (ANN) model is utilised to predict the 

quality of the surface of manufactured parts based on the machining conditions as 

a preliminary or ‘pre-process’ tool before manufacturing. Pilot investigations 

leading to the selection of the appropriate parameters other than only Sa to be used 

as the output of the model is conducted. Also, other investigations that improve the 

robustness of the developed model to ensure that accurate prediction can be made 

were conducted. 

Finally, the proposed model is shown to compare favourably to alternative models 

in literature with different network architectures, training and learning algorithms. 

The model was validated for a range of conditions and was confirmed to have an 

accuracy of Sq (91%), Sal (93%) and Sa (91%) even for process parameters that 

were outside of the range used for training the model.  
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Chapter 1 

Introduction 

A noticeable trend over the past few decades confirm that as human population 

increases, the demand for manufactured products also rises tremendously. These 

products are used in various sectors such as construction, transportation, energy, and oil 

and gas industries all over the world. The majority of these products are produced 

through a series of machining processes, which transform the raw materials into a 

desirable shape, form, and size. Examples of conventional subtractive machining 

processes include milling, grinding and honing. 

The advancement of technology has played a key role in meeting up with the demands of 

manufactured products. As most industries are considering a move towards automated 

processes which involve incorporating advanced technologies such as robotics into the 

manufacturing process to reduce labour as well as increase productivity. However, the 

demands of manufacturing products are still not satisfied because most manufacturing 

companies, especially small and medium companies are still having some of their 

process on conventional machines. 

An alternative way often used in sectors that require a high volume of manufactured 

products is to employ services of multiple manufacturing companies i.e. creating a 

supply chain. Since it has been discovered that productivity increases when each 

manufacturing company is assigned batch production of a unique part of the overall 

product. The manufactured parts from all the manufacturing companies are then 

assembled to obtain a complete product. This method has many benefits apart from 

increasing productively. That is, parts can be used for other products as well, making 

manufacturing and storage very easy. 
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However, to guarantee an increase in production with reduced rejects, all manufacturing 

companies involved should have the same quality assurance scheme. The total effort 

made in ensuring that products conform to a detailed set of standards and specifications 

is known as quality assurance. Some of these standards include dimensional, surface 

finish and functional tolerances. Everyone involved with the manufacturing process is 

responsible for quality assurance of the product. The customer is responsible for 

communicating effectively with the designer; covering all expected attributes of the 

product, then from the designer to the manufacturer. 

The manufacturing level is often the most expensive of the whole process. Therefore, to 

eliminate errors that will lead to rejection of products after this level, techniques such as 

optimisation of the manufacturing process and effective inspection are employed to 

ensure the consumer is satisfied or delighted. 

 

 

1.1 Inspection in manufacturing process 
 

The approach for performing inspections can be grouped under three main categories 

which are; in-process, on-machine and post- process [1]. 

Post-process inspection is the most common inspection approach used in advanced 

manufacturing sectors. This involves movement of the machined part into a controlled 

environment to reduce the influence of contaminants that affect the measurement 

procedure. Post-process inspection is practised in many industries due to the difficulties 

in achieving the requisite efficiency and measurement uncertainty when using manual 

instruments on the machine or locally in the shop floor environment. Most high precision 

coordinate measurement instruments, such as Coordinate Measurement Machines 

(CMMs), are quite sensitive to temperature variation or such dirty environments. The 

presence of lubricants, swarf and mechanical vibrations in a shop floor contribute to the 

reasons most industries requiring inspection of components with tight tolerances prefer 

post-process measurement. Post process inspections typically require time and skilful 
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alignment procedures if re-machining is required. Using this type of inspection 

technique increases the manufacturing process’ idle time, which reduces production 

efficiency in general. Also, there is a lower success rate in attempts of re-machining parts 

if any defect is detected due to the alignment procedures. 

Online inspection technique is the direct opposite of post-process technique. It involves 

obtaining measurements from machined parts during the machining process. This 

implies that the measurement instrument is exposed to the harsh machining environment 

during measurement. The machined parts, however, remain in the same position. This 

removes the need for any alignment procedure as the machined part is held firmly on the 

machine tool throughout the inspection process. This is the most challenging technique 

because of the environmental disturbances such as abnormal temperature changes, 

lubrication and vibration which have high tendencies to affect most measurement 

instruments. However, from a theoretical stand point [1], this technique is the fastest and 

will reduce inspection time and increase productivity when compared to post process 

inspection because it is part of the machine tool. Ideally, the concept of in-process 

inspection compensates for the performance of the instrument to increase productivity. 

On-machine inspection technique also known as in-situ in other publications [2], [3] is a 

bridge between the aforementioned inspection methods. It seems to combine the 

advantages from both in-process and post-process techniques. On-machine technique 

involves measuring the machined part on the machine after the machining process. Since 

the machining process is completed during on-machine measurement, most of the 

environmental disturbances will have reduced. The remaining disturbances could be 

easily compensated for by the use of a sophisticated instrument. Such instrument is 

expected to have the capability to resist the disturbances on the shop floor. The time 

consumption for on-machine inspections can be better when compared to post-process 

inspections. Also, since inspection is performed on the shop floor the need to move 

machined parts is eliminated. 

In general, there has been a significant switch in the approach of inspections in the last 

decade. Much attention has been given to in-process and on-machine inspection instead 
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of post-process. This is only true for dimensional inspections but for surface inspections 

there is a desire to switch however, there are no economical solutions available.  

In-process will only be possible for applications where the uncontrolled environment is 

still suitable for the measurement instrument due to the sensitivity of most instruments. 

On the other hand, there is a higher chance of success for implementation of on-machine 

measurement instrument in manufacturing. The instrument is required to have a 

reasonable size. This will help to allow flexible mounting and ease in operation within 

the machine tool workspace. 

 

 

1.2 Surface metrology 
 

The surface of an object is defined as the boundary between the object and its 

surrounding environment. In the context of surface metrology in manufacturing, the 

object is the machined part. Surface metrology in manufacturing can therefore be 

described as a science of measurement which mainly focuses on the measurement of the 

deviations of the surface of a machined part from its proposed shape defined on the 

initial engineering drawing [4]. It could also be defined as “the science of measuring 

small-scale geometrical features on surfaces: the topography of the surface”[5]. 

For the past few centuries, dating back even to the First World War, manufacturing 

engineers have not been in total ignorance of the link between the surface of a product 

and its quality. As pioneers such as Amonton, Coulomb and da Vinci emphasized that 

friction and worn properties of manufactured parts are as a result of the surface of the 

product in the sixteenth century [5]. The history of surface metrology and the various 

changes that have occurred over the years can be found in [5], [6]. 

Advancement in this field and the knowledge about its importance in relation with other 

disciplines have increased tremendously during the last two decades [5]. Most of the 

advancements link to the discovery that the influences of functional surface can affect 

the quality of the manufactured parts. It has been proven in practice that 90 percent of 

all failures in engineering component are surface initiated through mechanisms such as 
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fatigue cracking and adhesive wear [7]. 

During this era, researchers and industrial engineers have been able to make innovations 

such as using the surface texture to monitor the state of a machine tool and 

manufacturing process, and also identifying the relationship between the surface texture 

and the optical, tribological, biological, aerodynamic and many other properties of the 

manufactured component [8]. Henceforth, a confirmation of the success of using 

information from surface texture as an indicator for quality assessment. 

Parameters deduced from a surface topology dataset can either be profile (line) based or 

an areal (area) based analysis. Profile related parameters are commonly used because it 

is straightforward to compute and relatively quick to measure as well. However, profile 

parameter of a machined part does not give much information about the measured part 

due to its small data size. Areal related parameters give more details about the measured 

part and are accepted by most surface metrology researchers. However, many industries 

have yet to adopt areal measurement for inspection, partly because many standards in 

GD&T (Geometric Dimensioning and Tolerancing) don’t require such detailed 

measurement [9] and partly because rapid measurement of an area usually requires 

optical instruments which can be expensive or require special environments to operate. 

Hence, areal parameters are considered in this thesis to enhance the integration of areal 

surface metrology on the shop floor and on the machine. Appendix A explains in 

detail some of the commonly used surface metrology parameters. 

 

1.3 Research motivation 
 

This research was motivated by an existing challenge for manufacturers, which is, 

ensuring that high quality products are manufactured whilst not compromising on the 

speed or efficiency of the manufacturing process. At the moment, most industries prefer 

inspection of the quality of machined part offline regardless of the disadvantages 

outlined earlier. However, as part of the European FP7 Nanomend project [10], research 

has proven the success of fully integrating a surface measurement instrument in a roll-
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2-roll manufacturing environment for on-line detection of manufacturing defects [11]. It 

has therefore confirmed the possibility of using areal surface parameters as indicators 

for defection in the manufacturing process at the nanoscale level. 

This research follows suit by integrating a surface metrology instrument into a typical 

shop floor machine tool for on-machine inspection at the microscale level ensuring data 

captured are not contaminated due to the environment. This includes levels of surface 

finish often required in the advanced manufacturing sectors. This is discussed in section 

1.5. 

This resolves the issue associated with moving large parts to a controlled-environment 

for surface measurement. And brings in end-users such as civil nuclear where very large 

parts require inspection, including surface measurements, but they cannot be moved 

easily and traditional portable profilometry provides limited information. 

After on-machine calibration of the chosen instrument for the above task, the 

manufacturing process is improved using the captured surface topology with the 

assistance of artificial intelligence techniques. 

 

 

1.4 Research aims and objectives 
 

The main aim of this thesis is; 

”to employ advanced techniques for increasing the quality of face-milled parts using 

areal surface roughness parameters obtained efficiently using on-machine surface 

measurement.” 

 

This can further be broken down into; 

 

1. Investigating the potential for embedding a surface measurement instrument into 

a milling machine for on-machine surface metrology. 

2. Predicting quality of face milled surfaces from machine conditions using 

intelligent techniques. 
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In order to achieve the above aims, this research work has come up with the following 

objectives: Objectives for aim 1 includes 

 
I. To investigate available surface metrology techniques suitable for on-machine 

surface measurement for face milling process on a typical shop floor. 

II. To develop a novel method to enhance the quality of measurement obtained from 

the identified technique for successful on-machine measurement. 

III. To validate the measurement technique for on-machine surface measurement to 

establish traceability. 

 
Objectives for aim 2 includes 

 

 
IV. To investigate the appropriate areal surface parameters for representing the face- 

milling process. 

V. To investigate the relationship between machining conditions and the selected 

areal surface parameters. 

VI. To develop different neural network models with different training algorithms, 

learning algorithms, transfer function for each layer and network architectures. 

VII. To identify the model that is best in predicting areal surface roughness parameters 

for a face milling process. 

 

1.5 Scope of research 
 

It is important to state that the scope of this research was limited to development or 

selection of a robust technique for on-machine measurement of the surface topography 

of machined parts from a normal milling process, as well as develop techniques to utilise 
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the acquired surface topography to improve the manufacturing process. 

To achieve that, the specification of the selected/developed technique should be better 

or same as the outline target specification in table 1.1. 

 

Table 1.1: Specification of target instrument 
 

Parameter  Targeted Specification 
 

Measurement Time < 1.0 min 

Measurement Area > 6.0 mm x 6.0 mm 

Vertical Resolution  0.5 µm 

Lateral Resolution 5 µm 

Size of instrument < 200 mm x 200 mm x 200 mm 

  Accuracy ≤ 0.5 µm  
 
 

It should be mentioned here that the target specifications, especially the resolution were 

chosen based on interviews with precision manufacturing industries such as Reliance 

Precision Limited in Huddersfield and the Nuclear Advanced Manufacturing Research 

Centre. It was concluded that the typical fine surface finish for the target industries for 

this research was of Ra between 0.8 to 1.6 µm. This would also satisfy the kind of 

requirements applied in the civil nuclear industry which typically specify an Ra between 

1.8 to 3.2 µm.  

Also, the second factor which was considered was the range of cutting conditions. The 

machining process used throughout this thesis was face-milling and the range of cutting 

parameters used throughout this research is shown in table 1.2. The properties of the 

cutting tools used will be described later. Based on the range of cutting conditions and 

the properties the spacing between the trails of the machining process is confirmed to 

be between 31–166 µm. The spacing between the trails can be related to the feed per 

tooth which can be computed using the formula below [12]. 

 

𝐹𝑒𝑒𝑑  𝑝𝑒𝑟 𝑡𝑜𝑜𝑡ℎ =  
𝐹𝑒𝑒𝑑 𝑟𝑎𝑡𝑒

𝐶𝑢𝑡𝑡𝑖𝑛𝑔 𝑠𝑝𝑒𝑒𝑑 ×  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑒𝑡ℎ
 

(1.1) 

 

These range of cutting parameters were considered after consulting with machinists in 
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the industry to ensure they all fall within the recommended cutting parameters provided 

by the manufacturer’s technical guide for end milling. 

 

Table 1.2: Range of cutting parameters used 
 

Parameter Minimum Maximum 

Cutting Speed (RPM) 4000.00 8000.00 

Feed Rate (mm/min) 750.00 2000.00 

Depth of Cut (mm) 0.20 1.70 

 

 

 

1.6 The structure of this thesis 
 

The structure of this thesis is given as follows: 

Chapter 1: The previous sections of this chapter have presented background on 

surface metrology and its relation to inspection in manufacturing. Also, the motivation, 

aims and objectives of this research have been clarified. The scope of research, which 

encompasses the target specification of the instrument to be used, has also been outlined. 

Chapter 2 presents a review of literature relating to surface metrology techniques as 

well as models for surface roughness parameters prediction. Subjects reviewed include 

the principle-based models, empirical-based models, and predictive models. Studies 

relating to the requirement of on-machine surface metrology has also been conducted. 

A comparison of the reviewed surface metrology techniques is also given which leads 

to selection of the appropriate technique for this research. 

Chapter 3 discusses the identified instrument in detail. It presents a novel technique 

to increase its specifications to meet the targeted specifications in table 1.1. Results 

obtained from the novel technique when purely simulation generated dataset are used is 

also presented as well as results from the simulated dataset with controlled noise levels 

to examine its robustness. 

Chapter 4 presents the on-machine calibration of the novel technique using 
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metrological characteristics (MCs). The MCs covered include measurement noise, 

residual flatness, amplification coefficient, linearity deviation and perpendicularity 

deviation after which an attempt to estimate the measurement uncertainty using MCs is 

unveiled. In conclusion, results of on-machine measurements using the novel technique 

is compared with another commercial instrument. 

Chapter 5 presents a series of investigations leading to the development of a robust 

model. These include; appropriate section to be used to represent a face milled surface 

to maintain consistencies, appropriate areal parameters in order to distinguish milled 

surfaces, appropriate technique to employed to avoid the impact of tool degradation 

during face milling samples and then influence of machining conditions on areal 

parameters. 

In chapter 6, different models are developed and verified. Results are compared, and 

the model with the highest accuracy of prediction is selected. 

In chapter 7 shows summary of the thesis results, conclusion and potential recommended 

topics for further research being discussed. 

Several appendices are provided in this thesis document; containing information that is 

more detailed, calibration certificate and tables of results. 
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Chapter 2 

Literature review 

The addition of metrology into the manufacturing chain allows easy and fast checks for 

right size, shape and finish of machined parts to specified tolerances. In this chapter, a 

general overview of metrology in manufacturing process is presented, followed by the 

requirement of on-machine surface metrology technique. This chapter also reviews and 

appraises current on-machine and in-process metrology techniques. The chapter 

concludes with a comparison of potential surface metrology techniques in order to 

identify the best instrument or technique that fits the specifications in chapter 1. 

 

 

2.1 Metrology in manufacturing processes 
 

In the past, metrology in manufacturing processes had been branded to be luxurious and 

had the stigma of being non-productive [13]. 

The reason given was that, integrating metrology into a manufacturing process will not 

improve the throughput of the process or ‘add value’ to the product. In other words, the 

number of parts machined within a defined period will not increase by adding metrology 

to the process. It was contended that the choice to incorporate metrology would increase 

the overall manufacturing cycle time, hence diminish the throughput. The increase in 

overall manufacturing time was attributed to the time spent to perform the metrology 

process whiles the machine tool is idle. This gave rise to questions about the importance 

of metrology in the manufacturing industry. Below are some of the benefits of metrology 
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in manufacturing that has been discovered over time. 

 
1. Metrology enhances effective communication between machinist, designers, 

suppliers, and customers. In fast-growing industries with high demands and 

customization such as the automotive industries where different sub-contractors 

or branches usually manufacture parts at different locations; measurement of 

features of produced parts is relevant. In most situations, the final product is an 

assembly of parts manufactured from other productions sites. To achieve quality 

products from all the industries and simultaneously satisfy the customer’s desire, 

metrological parameters can be used to communicate between all parties involved 

effectively. Customer rejects/returns rate will reduce as manufacturers for all 

location aim to achieve the customer’s specification using parameters obtained 

from metrology as indicators. 

2. Metrology gives rise to parameters that reflect the link between the geometrical and 

functional properties of the product. Simply put, parameters such as roundness and 

surface roughness average, which are obtained from metrology can easily be related 

to the functional performance and the form of the product. For example, the surface 

roughness average of a product can be related to the friction a product produces 

when in operation [14] . 

Another benefit of metrology when embedded into manufacturing process is that it 

reduces scrap rates. By integrating metrology into manufacturing process, operators 

can quickly identify when parts being manufactured are going out of tolerance. This is 

very useful in batch production, as in the case of any deviation in tolerance, subsequent 

parts will not be affected. This is because the operator will rectify or adjust 

manufacturing parameters to obtain the defined acceptable tolerance. In some cases, 

the out of tolerance product can be re-machined to achieve the pre-defined tolerance 

hence reducing scrap rate. The above stated benefits of integrating metrology into 

manufacturing process can be found in extant literature [13], [15], [16]. These benefits 
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have revealed that metrology can be used to achieve high efficiency, reduced scrap 

rates, high product reliability and increased productivity in manufacturing industries. 

These qualities are often the key goals of modern industries due to the high demand 

in industrial marketing. 

 

2.2 Branches of metrology in manufacturing 

industries 

Metrology has been defined earlier as the science of measurement.  In manufacturing, 

several properties of manufactured parts can be measured. These include temperature, 

weight, shape and surface integrity of the part. In order to eliminate confusion and 

maintain uniformity internationally, the Geometrical Product Specification and 

Verification (GPS) of the International Organization for Standardization (ISO) has 

identified nine geometrical properties which could be used to describe a machined part 

and are listed in BS ISO 14638:2015 [ 1 7 ] . 

 

Figure 2.1: Branches of metrology in manufacturing and workpiece properties. 

Reproduced from [17], [18] 

These properties can further be grouped under three main headings referred to as the three 
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main branches of metrology in manufacturing in this thesis as well as other publication 

[18]. Figure 2.1 represents the selected geometrical properties extracted from ISO 

14638:2015 and the metrology group they fall under at the time of writing this thesis. 

 

2.2.1 Dimensional metrology 
 

Based on reviewed literatures, dimensional metrology has been propelled to the 

forefront in most investigations of metrology related research and Journal. In other 

words, more literatures are available compared to geometrical or surface metrology. 

This might be because most costumers require manufactured parts to undergo 

dimensional and geometrical tolerance tests. This request has led engineers and 

researchers applying various techniques to obtain dimensional metrology information of 

machined part within a short frame of time (nanosecond range). 

The coordinate measurement machines (CMM) is one of the most common systems for 

obtaining dimensional properties of a machined part. CMMs are systems mainly made 

up of a movable probe device in three or more axes, within a specified workspace. The 

workspace is mapped by high precision linear transducers, one for each axis. 

By the machine following a precise manual or programmed path, the probe moves until 

it is in contact with surface of the machine part to be measured. The probe then sends a 

signal to a computer, which, in turn, allows for the memorization of that exact contact 

point coordinate. A control unit then utilizes the gathered coordinates to formulate a 

mathematical representation of the measured surface (associated geometrical elements) 

from which dimensions, the form and position tolerances, inter axes and hole diameters 

are obtained [19].There is a possibility as well for the CMM to be programmed in order 

to generate a complete dimensional test certificate. 

Yang et al. developed a high precision micro-CMM [20]. The micro-CMM moving 

volume was 160 mm × 160 mm × 100 mm (XYZ), and they concluded to have achieved 

50 nm measurement uncertainty with a measuring volume of 30 mm × 30 mm × 10 mm 
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(XYZ). CMMs, however, are susceptible and need to be operated in controlled 

environments in order to obtain reliable results. 

Optical methods have likewise been successfully used in dimensional metrology; for 

instance, in the measurement of length, displacement interferometry or laser 

triangulation could be utilised. And for angular measurements, optical encoders or 

autocollimators could be employed [21]. Other instruments such as laser tracker [22] 

and x-ray computed tomography [23], [24] have also been employed for dimensional 

metrology. 

Dimensional metrology can further be divided into three based on the scales; nano-scale 

dimensional metrology, micro-scale dimensional metrology [25] and large-scale 

dimensional metrology [26]. 

To obtain nano-scale information, techniques such as scanning probe microscopy (SPM) 

[27] and atomic force microscopy (AFM) [28] have been considered in dimensional 

metrology. 

 

 
2.2.2 Geometrical metrology 

 

Geometrical metrology gives a better description of a machined part compared to 

dimensional metrology. Unlike dimensional metrology, geometrical metrology focuses 

on capturing adequate information that can be used to represent all the features of a 

machined part and not just a single point-to-point estimation as in the case of 

dimensional metrology. However, it can be said that a series of dimensional datasets of 

a machined part can be used to obtain respective geometrical datasets. Due to this 

relationship, all instruments or techniques that can be employed to obtain geometrical 

datasets can be used to obtained dimensional datasets as well. Also, some dimensional 

metrology instruments with high specifications have a higher chance of being successful in 

geometrical metrology. Typical examples of instruments that have been used for both 

dimensional and geometrical metrology are the CMM and x-ray computed tomography 
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[29]. 

One of the trending application of geometrical metrology is in reverse engineering [30]. 

That is reproducing a mimic of the component from its geometrical dataset. 

 

2.2.3 Surface metrology 
 

Surface metrology dataset usually has a higher resolution compared to geometrical 

dataset. Ideally, both dimensional and geometrical dataset could be extracted for surface 

metrology dataset. However, the measurement area or coverage area of surface 

metrology datasets are usually very small compared to dimensional and geometrical 

dataset. Therefore, there would not be sufficient data to achieve such an aim. This thesis 

is centred on this branch of metrology, thus more details of this branch will be clarified 

in other sections of this thesis. Section 1.2 has already given an introduction to surface 

metrology and the following sections give more details about this branch of metrology. 

 

 

2.3 Instrumentation for surface metrology 
 

One of the most critical decisions in metrology regardless of the measurement 

process type is the instrument/technique to be utilized for measurement. 

Instrumentation therefore plays a vital role in metrology process and affects key 

properties of the acquired dataset such as the quality and size of the dataset. Also, 

the degree to which the dataset is influenced by external factors such as vibration and 

thermal variations has a high correlation with the robustness of the 

instrument/technique used. This section reviews available commercial instruments, as 

well as, techniques that have been employed surface metrology. 

This review does not consider contact methods due to their demerits. These include, but 

not limited to damaging of delicate measurands, and their slowness during measurement 

compared to the non-contact methods. Other groups that were also not considered is the 
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microscopes which include scanning probe microscopes (SPMs) and atomic force 

microscope (AFM), because of their sensitivity and slowness in nature. Bhushan [31] 

declares them unsuitable for in-process or on-machine measurement on a typical 

manufacturing shop floor. 

This review is focused on optical methods suitable for in-process/on-machine surface 

metrology measurement. Optical methods, in general, can be categorized or divided into 

two; techniques based on the principle of interferometry and the non-interferometry 

techniques. 

 

 

2.3.1 Interferometry-Based techniques for surface metrology 
 

Interferometry is a measurement technique that extracts properties of measurands by 

using the phenomenon of interference of waves such as light and sound waves. Albert A. 

Michelson developed the first instrument that utilized light interference as a measuring  

Figure 2.2: Components of Michelson’s interferometer 



18 

 

 

 

tool in the 1880’s. Michelson’s interferometer was made up of a beam splitter (half- 

silvered mirror), a detector and two mirrors as shown in figure 2.2. The principle of 

operation of Michelson’s interferometer is explained as follows. 

A beam of light (‘a’ in figure 2.2) is projected from a coherent light source towards a 

beam splitter. As its name suggests, the beam splitter splits beam ‘a’ into two beams (‘b’ 

and ‘b0’) at point ‘c’ and directs their paths towards the two mirrors. One of the mirrors 

represent the reference surface whiles the other mirror represents the measurands 

surface. The two beams (‘b’ and ‘b0’) are reflected to the beam splitter at point ‘e’ as 

beam (‘d’ and ‘d0’). The two reflective beams (‘d’ and ‘d0’) are recombined again to form 

beam ‘f’ at point ‘e’ on the splitter and sent to the detector. The path difference between 

beams (‘b + d’ and ‘b0 + d0’) cause a phase difference in beam ‘f’, which creates an 

interference fringe pattern. By processing beam ‘f’ received by the detector, the surface 

properties of the measurand, as well as other properties, can be obtained. 

This system has been modify over the years to obtain more robust instruments that can 

be widely employed in metrology. By using laser instead of a coherent light source, a 

charge-coupled device (CCD) as a dictator and a computer for analyses; the application 

of interferometry is found in high-resolution metrology applications. However, it is 

essential to note that techniques that make use of optical interferometry are very 

sensitive to noise from the environment such as mechanical vibration; thermal variations 

and air turbulence [32]. In an attempt to resolve these errors and improve the quality of 

the results several modifications an adjustment have been made to the ideal setup shown 

above. These are well documented in extant literature [33]. Below are some that have 

found their application in metrology. 

 
• Phase Shifting Interferometry (PSI) 

In PSI, the phase shift of the interference fringe pattern is controlled during the 

interferometry measurement. This can be achieved with or without mechanical 

assistance. Creath [34] suggests the use of rotating polarizers, moving diffraction 
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gratings, mirrors translation or glass slides tilting to achieving the controlled phase 

shift. Also, electro-optic, acousto-optic and photoelastic devices were outlined by 

Izatt and Chama [35] for phase modulation in PSI without any mechanical aid. PSI 

is preferred over other Interferometry techniques in metrology because it can 

achieve both resolution and a repeatability less than 1 nm in relation to the field of 

view. This is as a result of the surface heights being directly proportional to the 

interference phase [8], and hence the benefit of controlling the phase shift. 

However, due to the constant attempt to control the phase in the interference 

fringes, the measurement rate is meagre, hence increasing the exposure of the 

measurement results to environmental disturbances such as vibrations. 

4D Technology has commercialized this technique for on-machine metrology 

(NanoCam Sq) [36]. The available brochure on the instrument confirms shorter 

acquisition time which makes measuring possible on a shop floor despite vibration [37]. 

• Heterodyne Interferometry (HI) 

HI is achieved by introducing a frequency shift between two interferometer beams. 

The frequency shifting can be achieved either mechanically or non-mechanically 

just as in the case of PSI [38]. This is performed to obtain a smaller optical path 

difference (OPD) lesser than the observed spectral bands. By reducing the OPD, 

measurement has a better SNR (signal to noise ratio) [39] at the same time giving 

the ability to measure with nanometre accuracy. However, the major drawback of 

HI is the 2π phase ambiguity, limiting the OPD measurement range to half the light 

source wavelength. 

• White Light Interferometry (WLI) 

This interferometry technique uses a white light laser as a source of light. White 

light lasers are used because they have a short coherence length and a wide 

bandwidth. There are two requirements for a white light interferometry to achieve 

high resolution and stable measurement. That is to ensure that the position of the 

zero-order interference fringe and the spacing of the interference fringes must be 
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independent of the wavelength of the light source [40]. Wyant [40] elaborates on 

different types of white light interferometers that are used in surface metrology. 

Taylor-Hobson Ltd. has commercialized a type of white light interferometry 

referred to as the coherence correlation interferometry (CCI). The CCI 6000 has a 

vertical resolution of 0.01 nm, and a standard measurement range is 100 µm [41], 

[42]. One significant advantage of WLIs is their ability to measure non-continuous 

surfaces without phase ambiguity. However, they also face similar demerits as PSI; 

very expensive, sensitive to vibration and slow during measurement, hence not 

suitable for on-machine metrology. 

• Multi-Wavelength Interferometry (MWLI) 

This system is made up of more than one interferometer to obtain a high-quality 

measurement. One interferometer is allocated as a reference to compensate for 

environmental disturbances while others are used for the measurements, 

multiplexing two light sources having different wavelengths will effectively 

extend the measurement range of the method. Its robustness has been considered 

for on-machine measurement, and its stability has been confirmed in literature 

[43]. Luphos Gmbh has also commercialized it. Other merits of utilizing this 

technique includes the ability to measure optically rough surfaces which has been 

a challenge for other interferometric techniques [44]. However, the main 

disadvantage of MWLI is the cost involved in building it. 

• Wavelength Scanning Interferometry (WSI) 

The WSI can be related to coherence scanning interferometry (CSI), a type of 

WLI. This is because both techniques eliminate the 2π phase ambiguity error by 

combining multiple-wavelength. However, CSI suffers from slowness in 

measurement due to the high interference of environmental disturbances. Which 

is caused by the mechanical components used for phase shifting. WSI, on the other 

hand, achieves phase shifting by the variation of the illumination of the light source 

in the interferometer. The changing of the illumination is achievable in WSI 
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because it comprises of a tuneable wavelength laser diode utilized as a light source, 

an interferometer in a Linnik configured interferometer and a camera with CCD. 

The tuning range of a typical laser diode employed in WSI is usually several 

nanometers, which is achieved by modulating the injection current [45]–[47]. 

Early challenges faced by this technique as reviewed by various publications [48]–

[50] were highlighted as the hopping problems; which exist in laser diodes, and 

the narrow scanning range. This greatly affected the measurement accuracy of 

WSI. However, research has indicated that by combining the WSI with other 

techniques such as HI [51] and PSI [52], the accuracy is improved. Also, the 

hopping problems of a laser diode could be rectified by an external cavity laser 

diode [53]. Newer developments like the AOTF (acousto-optical-tuneable-filter) 

allow for the designing of fast scanning, wideband tuneable sources. 

Fortunately, a combination of the WSI with other techniques will not only increase 

the accuracy but also reduce the resistance of the system to environmental 

disturbance. Moreover, during the last decade, compensational circuitry has been 

added to the WSI in order to introduce it to on-machine measurements [54]. 

Elrawemi et al., [55] demonstrated the possibility of capturing areal surface dataset 

on-machine using a WSI. Their WSI could detect defects down to 3 µm in the 

lateral dimension. They compared the results obtained from a roll-to-roll 

manufacturing environment to an offline CCI in a controlled environment and 

concluded that they had good correlation. Henceforth their WSI can be integrated 

onto R2R platforms as a quality assurance tool. The WSI obtained quality 

measurement due to the robustness of the compensation system and the 

complexity of the measurement algorithms as well as high computing processors 

used for fast measurement. They also employed an active servo mechanism control 

system which serves as a tool for phase-compensation in eliminating 

environmental noise effects. This is presented in details by Jiang et al. [56]. This 

technique will be further considered for its possibility to be implemented for on-
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machine metrology on a typical shop floor in this thesis. 

 

 
2.3.2 Non-Interferometry techniques for surface metrology 

 
• Focus Variation (FV) 

In focus variation technique, two primary steps are employed to obtain surface 

metrology dataset over an area. 

1. Vertical scanning by mechanical translation of the optical head or the whole 

optics over the sample to obtain a stack of images of the sample at the 

same position. 

2. Application of image processing algorithms to the captured images to 

construct 3D topographical dataset based on the changes of the focus or 

sharpness of the image. 

It is one of the profoundly ingrained methods in surface metrology with an allied 

ISO standard for calibration [57]. Details of the principle of FV can be found in 

literature [57]–[59]. The FV technique is known for its ability to achieve very high 

axial resolutions (10 nm) [60]. Range for its vertical scan depends also on the 

objective working distance, ranging from a few mm to about 20 mm or more. 

However, the drawback of FV is linked to the slowness of vertical scanning as it 

makes the measurement results subjected to environmental disturbances such as 

vibration. In addition, this technique also struggles with measuring transparent 

samples because they have focus curves without dominant peaks. 

Regardless of all the above limitations, Alicona has commercialized FV for on- 

machine metrology. Alicona claims their IF-SensorR25 [61] and IF-Portable [62] 

measurement kits employ FV, and are suitable for integration with machine tools on a 

shop floor. Hence, this technique will be further considered for its possibility to be 

implemented for on-machine metrology on a typical shop floor in this thesis. 
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• Point Autofocus (PAF) 

In PAF, the surface topography of the sample to be measured is obtained by 

automatically focusing a laser beam at a small spot on sample surface and capturing 

the height information of the surface. With assistance from a moving XY scanning 

stage, the area surface height information of the scan can be obtained by traversing 

over the area of interest. The lateral resolution is determined by the laser beam spot 

size and the traversing speed used during the measurement [63]. Mitaka kohki co. Ltd. 

has commercialized this technique. MITAKA MLP - 3SP (size; 129 mm × 90 mm × 

162 mm) is claimed to have a moving range (XYZ) of 120 mm × 120 mm × 130 

mm with a scale resolution of 10 nm. According to the manufacturers dataset [64], 

it is suitable for in-line areal measurement when integrated into a finishing 

machine. This claim is questionable because one of the most significant limitations 

of PAFs is that it takes a long time to scan which exposes the captured dataset to 

environmental disturbances such as vibration. Moreover, because the traversing 

stage is usually controlled using mechanical translations, the immunity of the 

technique to environmental disturbances will require a very sophisticated 

compensatory system. 

• Laser Triangulation 

Laser triangulation uses the concept of trigonometry to obtain height information 

from a sample. The critical parameters needed for laser triangulation are the 

incident angle of a beam of laser projected over a sample and two known lengths. 

The distance between the light detector and the surface of the sample, and the 

distance between the laser light source and the light detector are the lengths 

required to obtain metrology information when using laser triangulation. It is one 

of the most common techniques in metrology and has been used for dimensional 

measurements [65], geometrical measurements [66] as well as surface 

imperfection measurement [67]. Commercial instruments that employ this 

technique for metrology include but not limited to Nextengine’s 3D scanners, 
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ShapeGrabber’s SG100 and Keyence LV7000 series. Review of the performance 

of these instruments are presented in extant literature [68]. 

This technique is very robust and less costly compared to other methods. It has 

also been used for in-situ applications not excluding obtaining a measurement 

from a shop floor [66], [69]. Also, because of its robustness, it has been integrated 

with robots for metrology purposes [70]. However, these are typically for form 

measurement and has so far not been used for surface finish measurement (at the 

time this review was conducted). This instrument will be further considered for its 

possibility to be implemented for on-machine surface texture metrology on a 

typical shop floor in this thesis. The reason is because some of the latest systems, 

from manufacturers such as Keyence and Micro-Epsilon, use a blue light source 

which provides a shorter wavelength, and which results in an improved resolution 

and lower noise when measuring shiny surfaces. These new characteristics are 

fundamental for measuring surface topography features at the micro-scale. 

Throughout the literature survey work very few academic publications on novel 

surface metrology instrument suitable for on-machine measurement were found. 

 

 

2.4 Requirements for on-machine surface 

metrology instrumentation in manufacturing 

The aim of this thesis includes the integration of a surface metrology instrument on a 

machine tool to capture surface topography of machined part in the micro-scale level. 

This act is expected to improve the throughput by reducing the number of scrapped parts 

as well as allowing re-machining of out of tolerance parts. For this aim to be achieved, 

the selected instrument must meet majority of the following requirements; 

 
1. Size – This size of the instrument needs to be considered. Integrating a bulky 
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instrument will not be realistic. The size of the instrument can pose a challenge on 

where to retrofit it in the existing machine tools platform. 

2. Measurement Speed-With the aim of increasing throughput by on-machine 

metrology, the time spent during the measurement process can affect the aim in 

two main ways. If the measurement speed is slow; 

• The time spent could absurdly increase the idle time of the machine tool. 

Hence would not be considered prudent to use the technique when compared 

to off-line measurement. 

• The impact of the environmental disturbances on the measurement increases 

as the measurement time increases. 

 

The ideal measurement time spent should be at least less than one minute to 

achieve benefits from on-machine metrology. 

3. Measurement range – As stated in chapter 1, the expected measurement area 

of the instrument should be at least 6 mm × 6 mm and the vertical range of at least 

1 mm. The selected instrument is expected to provide at least sub-micron 

resolution and repeatability. Since the target surfaces are face-milled parts, the 

selected instrument is also expected to have the ability to measure very rough 

surfaces. 

4. Robustness and cost – Some sophisticated instruments can be expensive due 

to their design, perhaps incorporating stable light sources, advanced optics or high 

frequency mechanical control systems for adaptive compensation. The selected 

instrument should be robust enough to resist environmental disturbances such as 

vibration, temperature, pressure, humidity and the presence of lubricants or 

cooling fluids. 

 

Most manufacturing processes use cooling fluids during the subtractive machining 
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process. Therefore, in order to capture quality datasets on the machine, it is expedient to 

use an instrument that will not be affected by the fluid during the on-machine 

measurement or robust enough to capture good data after air blast cleaning which will 

remove swarf and coolant but residues of coolant and oil may persist. An experiment 

performed by Mueller et al. [71] proves that microscopes may struggle to obtain quality 

measurement under such influence. By applying an oil film on an object and measuring 

it, they discovered that the disturbance affected the performance of the instrument by 

making the measurement very blurry as shown in figure 2.3. 

 

Figure 2.3: Measurement of a USAF1951 test target with a confocal microscope  (10 

objective, NA = 0.3). (a) Measurement in standard operating conditions. (b) 

Measurement with a thin oil film between the microscope and the test target. 

Reproduced from [71]. 

 

In section 2.3, a review of optical surface metrology techniques were presented. Based 

on their limitations, merits, and previous results or applications for on-machine 

metrology, the following techniques were selected and compared based on the 

requirements outlined earlier in this section. Table 2.1 shows the comparison between 

the selected instruments. 

The importance of the role of surface metrology in manufacturing industry cannot be 

overlooked as high demands, and high quality parts are expected as industries evolve. 

On-machine metrology is one of the techniques that can be used to monitor the quality 

of a machined part to meet specifications of consumers. However, even though 
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information obtained for on-machine metrology can be used for re-machining of the part 

if it is out of tolerance, it can be debated that this will not be possible if the part is smaller 

than specified.  

 

Table 2.1: Comparison between selected instruments 
 

  Laser 
Triangulation 
(Keyence 
LV7000) 

Focus Variation 
(Alicona IF-
sensor R25) 

Wavelength 
Scanning 
Interferometer 
(lens 
dependent) * 

1 Size of the 

instrument 

(XYZ) /mm 

 
111x 103 x 42 

 
126 x 153 x 249 

 
* 

2 Measurement 

time /sec 

** <1 <1 

3 Cost /£ 9,900.00 36,000.00 * 

 

* It is in the process of being commercialized by IBS precision as Arinna 

**Depending on the speed of mechanics employed to move to instrument across the 

area of interest. However, it takes < 32 µs to capture a single profile. 

 

Controlling the specifications of a machined part from the beginning of a 

manufacturing process could be made possible by employing predictive models in 

manufacturing. These can be used to avoid initial errors in the machining process by 

selecting the right manufacturing conditions. A combination of on-machine 

measurement and a good model that describes the relationship between the surface 

texture and the cutting conditions increases the possibility of right-first-time during the 

manufacturing process. 

 

 

2.5 Modelling methods in surface metrology 
 

Models can be referred to as functions that describe the state of a system based on the 

relationship between two corresponding datasets; one set as input and the other as output 
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dataset. In this thesis, the output of the models that will be considered are surface texture 

parameters and the inputs are factors on the shop floor that affect the surface texture. 

Numerous factors can influence the surface texture of machined parts during 

manufacturing. Examples of these factors adopted from [72] and [73] are presented in 

figure 2.4. 

Due to the complexity of the relationship between these factors in the figure 2.4 and the 

surface texture of machined parts, a significant amount of research has been dedicated 

to it in the last few decades.  

 

Figure 2.4:  Factors that influence the surface roughness of machined parts 

 

Models, in general, can be developed by either theoretical or experimental approach or 

in some cases a hybrid of both. Theoretical models are developed from already 
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established theories or first principles and are expressed in space differential equations 

to simulate the relationship between the output parameters (surface texture) and the input 

parameters to the model. They are also referred to as white-box models in other 

publications. These models maybe less costly to develop in terms of experimentation 

but the designer is expected to have a broad knowledge of the system to be modelled 

and there could be significant modeling work involved (for example physic modeling). 

The knowledge should comprise of the mathematical relation of the input and output 

as well as the operational principle of the system. It can be concluded that the designer’s 

mathematical understanding of the system plays a vital role in the model’s accuracy. 

That is, the closeness of the model to the real system depends on the mathematical 

understanding of the designer about the system. The accuracy is usually assessed by a 

comparison of results from both the model and the real system when using the same 

input dataset. An up to date review of theoretical models for surface roughness has been 

presented in [73]. 

The disadvantage of theoretical models is that, it is challenging and sometimes 

impossible to develop a theoretical model when the input and output do not have any 

existing proven relationship or the system under study is very complicated to analyse 

using first principles. In such scenario, experimental methods can be employed to 

acquire lots of data from the system. The data can be used to develop a model for the 

system. 

Data-driven models are very costly in terms of time and money. This is because the 

system needs to be operated using different inputs to obtain a set of corresponding 

outputs for both training and validation of the model. That is, based on the two datasets 

obtained (the input dataset and its corresponding output dataset), the model is developed. 

The set of data used to develop the model is referred to as the training dataset. Data-

driven models, unlike theoretical models, are not based on physical equations but on the 

experimental dataset, hence the name data-driven model. It has also be referred to as 

black box model or empirical-based models in other publications. Techniques employed 
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to obtain data-driven models can be grouped into two categories: statistical techniques, 

which includes regression methods, and artificial intelligence techniques, which include 

Artificial Neural Networks (ANNs) and fuzzy systems. A review of data-driven surface 

roughness models is presented in the following subsection. 

Models can also be developed from both experimental dataset and first principle 

physical equations of a system. This is referred to as a grey model. In other words, a 

grey model combines outputs from a data-driven model and theoretical model to obtain 

a more accurate model hence, is referred to as a hybrid model in other publications. A 

typical example of such model for surface roughness is presented by He et al. [74]. He 

et al. developed a model that incorporates both theoretical and empirical techniques in 

predicting the machined parts surface roughness of a single point diamond turning 

process. The theoretical side of the model used equations to describe the effects of the 

kinematics and minimum undeformed chip thickness on surface roughness while the 

empirical side of the model utilized ANN to handle the uncertain components such as 

the material spring back, plastic side flow and micro defects on the cutting edge of 

diamond tool associated with surface roughness. 

The following sub-sections review relevant literature on models of surface roughness 

related to this thesis.  

 

2.5.1 Principle-based models 

Felhő et al. [75] developed a theoretical model to predict surface profile parameters such 

as Ra and Rz in a face milling process. Based on previous mathematical equations 

presented in reviews by Arrazola et al. [76] and Peters et al. [77] on the roughness of a 

machined surface, Felhő and his team claim to have developed a model that consider the 

geometry of the inserts used, axial and radial run-out of inserts as well as cutting 

parameters; cutting depth and feed rate. Their model is supported by the theory that a 

milling process can be characterized as the main motion being produced by axial rotation 

of the milling tool while the movement of the part perpendicularly to the axis of the 
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cutter produces the auxiliary motion. This process creates a structured pattern on the 

milled part representing the surface finish on the part after milling. They concluded that 

the calculated theoretical surface roughness parameters ;Ra and Rz (see Appendix A 

for definitions) achieved by their model have a good correlation i.e. R2 of 0.978 and 

0.969 respectively with the measured roughness. A confocal chromatic surface 

measurement equipment was used to measure Ra and Rz of machined parts. Four 

different samples were machined with four different tool insert shapes; square, 

octagonal, circular and dodecagonal using different feed rates and were used in 

determining the accuracy of their model. 

Even though the average of three measurements was taken on each sample during the 

evaluation analysis, the number of samples could be considered low for such analysis. 

This is because by using four samples, in this case, the authors prevent readers from 

knowing the ability of the model to truly identify different shapes of inserts as well as 

the different levels of feed rate and their influence on the surface roughness. A 

paradoxical argument could also emerge when considering the pairing of the two 

variable parameters; the shape of the insert and the feed rate for each cutting trial. Lastly, 

face milled topographies are made up of height and spacing features. The evaluation of 

the model only highlights two height parameters and neglects spacing parameters. This 

does not show readers the model’s ability to predict spacing parameters. In such 

analysis, it is expedient for authors to consider varying one input parameter at a time to 

determine the true accuracy of the model.  Also, other spacing parameters should be 

considered. 

Muñoz-Escalona  and Maropoulos [78]  considered  most  of  the  suggestions  made above 

about  Felhő  et al.’s [75] model,  when  developing  their model. Muñoz-Escalona and 

Maropoulos developed a geometrical model for face-milled part using only square 

inserts. Based on the already established mathematical relationship between surface 

roughness of a milled surface and machine tools kinematics properties adopted from 

Baek et  al.[79] , Wang  et  al. [80] and the cutting tools geometrical parameters from 
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Franco et al. [81], a more accurate model was developed. In addition to the previously 

established relationships, Muñoz-Escalona and Maropoulos also considered the impact 

of tool run outs and axial tool deviation on the height values of the surface roughness. 

They concluded that their model had an accuracy of 98% based on the relative error 

obtained from the theoretical Ra (predicted values from the model) and real Ra 

(measured results from a surface measurement instrument, a non-contact white lamp 

profilometer ProScan2000). An L36 Taguchi experimental design was employed; which 

ensured effective variation of the feed per tooth, cutting speed, the axial cut depth and 

the radius of the tool nose during their testing trials. Hence 36 samples were machined 

for the evaluation of the model. Unfortunately, they also did not demonstrate the ability 

of the model to predict spacing parameters. 

Tomov et al., [82] also presented a theoretical model which was developed based on the  

 profile obtained from the kinematics of the cutting process and geometry of the tool 

insert. The cutting tool conditions used to develop the profile was feed rate, tool radius 

and tool angles. To adequately validate the model, twenty different cutting conditions 

were used to machine different samples for analysis by varying cutting speed, feed rate, 

tool nose radius and depth of cut. The real surface roughness of the machined samples 

was measured using Mitutoyo Surf test at five locations that are equally spaced around 

the sample’s circumference. Height parameters Ra and Rz were compared as well as 

spacing parameter Rsm (see Appendix A for definitions). 

Other white box models for the prediction of the profile of machined surface can also 

be found in [73]. As it was expressed in chapter 1, this thesis is geared towards areal 

parameters of machined surfaces due to their benefits over profile parameters. Below 

are examples of theoretical models for prediction of areal surface texture parameter. 

At the time of writing this thesis, only a few models were reported to have such ability. 

Tavares [83] reviewed and evaluated three white box models for prediction of areal 

surface texture. The three models were developed based on principles extracted from 

Greenwood and Williamson [84], Chang [85] and Zhao [86]. Tavares extracted areal 
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surface parameters such as Sa, Sq, St and Ssk (see Appendix A for definitions) from 

the output of the analysis of the model. He then gave a full description of the model’s 

ability to predict both spacing parameters and height parameters. With a stylus 

instrument applied in a raster mode, the surface topography of a real machined part was 

obtained for analysis. The evaluation area was 2 mm x 2 mm. 

The model developed by Felhő et al. [75], for predicting Ra and Rz was also revised 

to predict areal surface parameters in Felhő et al. [87]. The enhancement was made 

possible by using a CAD simulator to assist in creating the topography of a surface based 

on the results from their previous profile model [75]. Both visual and parametric 

comparison was shown to demonstrate the accuracy of the model. The areal surface 

topography was obtained by measuring samples with an optical instrument. Compared 

to their previous model, they only considered one insert shape and varied the feed rate 

during the evaluation process. They concluded that their models obtained a good 

accuracy by using the same cutting conditions as the experimental conditions in the 

simulation. The size of the evaluation area was 4 mm x 4 mm. 

 

 
2.5.2 Empirical-based models 

 

As explained earlier, the empirical-based model can be further divided into two: 

statistical models and artificial intelligence (AI) models. Due to the complexity of the 

relationship between the surface texture of a machined part and the cutting conditions 

used in machining, many data-driven models have been developed compared to 

theoretical models. Data-driven statistical models that utilise regression and response 

surface methodology (RSM) techniques have been considered in most literature, as well 

as AI models; genetic algorithm (GA), fuzzy logic algorithm, and artificial neural 

network (ANN) likewise [88]. It should be mentioned that there are hybrid models that 

com- bine two data-driven techniques to develop more accurate models. A typical 

example is adaptive neuro-fuzzy inference system (ANFIS) model which combines the 
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concept of artificial neural network and fuzzy logic algorithm. In addition, most data-

driven models are developed with assistance from high level programming packages 

such as MATLAB or statistical software packages such as Minitab, making them easier 

to develop compared to theoretical models, hence the difference in preference. 

Yang et al.,[89] presented a mathematical model which employed response surface 

methodology (RSM) for prediction of surface quality in a turning process. In order to 

reduce the cost involved in developing the model, three-factor central composite design 

of experiment (CCD) was used. CCD reduces the number of experiments required for 

training the model which results in a reduction of cost. The input to their model were 

cutting speed, feed rate and depth of cut which was used to predict the profile surface 

roughness (Ra) and the contour lines of the surface texture on the machined part 

(titanium alloy was the material used in their work). The accuracy of their model was 

verified using a one-way ANOVA, and they claimed that their model had high credibility. 

However, the validation process was based on a prediction of three samples which were 

also used for the training process, hence making the accuracy of the model questionable. 

Vallejo et al. [90], also developed an RSM model based on CCD datasets for predicting 

Ra in a high-speed milling operation. Feed rate, tool diameter, radial depth of cut and 

the curvature of the geometry of the cutting tool were used as the input to their model. 

They claimed their model showed excellent performance with an average percentage 

error of 14.3 % between the measured and predicted Ra. The verification dataset were 

all new cutting conditions and were different from the training dataset. 

Vishwakarma et al [91], developed a regression model to predict surface roughness (Ra) 

for electric discharge machining considering current, pulse time, duty cycle, gap voltage 

and flushing pressure as the input. Their results show that the flushing pressure has a 

minimum effect on the surface roughness for steel alloy. They claim their model had 

an average percentage error of prediction of 6.4 %. Unfortunately, the validation and 

training datasets were the same. Hence, the average percentage error might increase if 

new datasets are used for the validation process. 
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A genetic algorithm has also been used for developing models for the prediction of the 

surface texture of a machined part [92]–[94]. GA models mimic the process of natural 

evolution by integrating the “survival of the fittest” philosophy. Zain et al. [93] presents 

a GA surface roughness (Ra) model with the radial rake angle of the tool, combined with 

speed and feed rate cutting conditions as the input parameter. The model was compared 

with RSM model, and they claimed their model was more accurate. 

Another AI technique that has been used in prediction of surface texture parameters is 

fuzzy logic [95], [96]. In Ali et al. [95] a total of 16 input variables were used to develop 

a surface predictive model in a grinding process. This is the largest number of inputs for 

a data-driven model that has been reviewed in this thesis. 

ANN turns out to be one of the most commonly used AI techniques in developing a 

data-driven model. ANN surface roughness predictive models have been developed for 

different machining processes. This includes but is not limited to lathing process [97], 

end milling [98]–[100], high speed turning [101], hard turning [102], drilling [103], 

honing [104] and face milling [105]. The main reasons for the mass patronage of ANN 

is the ease of development and high accuracy compared to other data-driven models. For 

example, Paturi et al. [106] developed a regression model and ANN model with the 

same training dataset. They confirmed that the correlation coefficients between the 

predicted results and the experimental results of the ANN model and regression model 

were 0.998 and 0.978 respectively. Also, Asiltürk et al.[107], worked on similar research 

in a turning process and had similar findings. That is, ANN models are more accurate 

than regression models. A comparative study of ANN and RSM conducted by Patel et 

al. [108] for the prediction of surface roughness also proves that ANN is more effective 

than RSM. ANN have similarly been proven to be more accurate that fuzzy presented 

by Verma el al [109]. 

Hybrid models such as ANFIS have also been developed to predict the surface roughness 

for machining processes such as milling [110], [111] and turning [[112], [113]. Also, 

when the accuracy of ANFIS was compared with ANN by Verma el al [109], they 
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confirmed ANFIS had more accuracy than ANN when the two models were created from 

grinding process dataset. 

Other hybrid models include but are not limited to, integrating of ANN and GA to 

develop a model for predicting the surface roughness in milling [114] and electric 

discharge machining [115]. Also, an GA coupled with RSM model has also been 

developed by Sangwan [116]. 

Table 2.2 presents a comparison between principle-based and data-driven models. 

From table 2.2, its can be seen that the benefits of data-driven models out ways that of 

deriving models from first principles. Models based on first principles to predict the surface 

topology will not be considered in this thesis because of barriers such as cost, time and skills 

required to develop such models.  

 

Table 2.2    Comparison between principle-based and data-driven models; taken from [117]  

 Principle-based 

modelling 

Empirical-based modelling  

1. Data reliance  Small data Big data to train upon 

 

2. Domain 

expertise reliance  

High reliance upon deep 

domain expertise  

Can provide useful results 

with little domain knowledge  

 

3. Adaptability 

and deployability 

Requires complex and 

time-consuming 

derivation to account for 

new relations 

 

Rapidly adapt to the 

circumstances of a specific 

problem instance 

4. Interpretability Consistent, physically 

meaningful link between 

parameters 

Physics agnostics surrogate, 

limited by the rigidity of the 

model functional form. 
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2.6 Summary of review and gaps 
 
 

2.6.1 Measurement 
 

One of the aims of this thesis is to create a new system and methodology which will be 

suitable for on-machine surface metrology in a face-milling machining process. Section 

2.3 reviews most of the available techniques that have been considered in surface 

metrology in general. The review highlighted the advantages and the disadvantages of 

these techniques. A comparison was then made between three techniques. These 

techniques were chosen based on previous research and the datasheet specification of 

commercialized instruments that employ the techniques which confirm that they satisfy 

most of the requirement of on-machine measurement stated in section 2.4. The Keyence 

LV7000 series, which utilises laser triangulation technique, seems more promising from 

on-machine metrology compared to the others. Unfortunately, the following are still 

unknown about this instrument and needs to be explored: 

 
• Performance for on-machine surface measurement for face-milling 

manufacturing process - Most of the available literature on the identified 

instrument confirms its possibility to be used for on-machine form and 

dimensional measurement as well as surface imperfection detection. This increases 

the confidence to integrate this instrument for on-machine surface metrology. 

However, there is no record of it being used for surface metrology even in an off-

line set up. Therefore, this gap needs to be explored due to the instrument’s low 

cost and robustness compared to other surface metrology instruments. 

• Environmental Influence- On a typical shop floor, the instrument will be 

subjected to noise as a result of the impact of the environmental factors such as 

temperature and vibrations. As there is no record for using this instrument for 

surface metrology at the time of writing this thesis, there is also no record of its 
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ability to reduce environmental noise or compensate for errors associated with 

environmental variations. Therefore, investigations must be conducted to confirm 

the robustness of the identified instrument as well as develop techniques for 

improving the quality of results captured when using the identified instrument for 

surface metrology. 

• Calibration of the instrument- During the active period of this thesis, the 

standard for calibration of areal surface instrument was being drafted [118]. Only 

a few techniques have fully-approved ISO standards for calibrations. 

Unfortunately, laser triangulation is not one of them. In other words, there is no 

knowledge of the calibration process to employ when utilizing the Keyence 

LV7000 for areal surface measurement. This gap also needs to be investigated 

into.  

 

 
2.6.2 Predictive model 

 

To increase right-first-time in a milling process, the second aim of this thesis is geared 

towards employing optimization techniques to assist in predicting surface metrology 

information of machined surfaces based on the cutting conditions. Section 2.5 reviews 

both theoretical and data-driven surface roughness prediction models. The review 

reveals that the main factors affecting the surface texture of a machined parts are the 

kinematic properties of the cutting process. That is, the cutting speed, feed rate and depth 

of cut. Also, it was discovered from the review that using AI techniques for developed 

surface roughness model produces a more reliable and accurate model compared to other 

techniques. Hence, an AI model is considered in this thesis to assist the on-machine 

surface metrology to increase right-first-time machining on a shop floor. Unfortunately, 

the following areas have not been addressed in previous literature which create gaps in 

knowledge that need to be investigated. 

 

. Areal surface roughness model - All the available AI models had profile 



39 

 

 

 

surface parameters as output. Even though areal surface parameters give more 

accurate representation of a surface compared to profile parameters, none of the 

available AI models considers it as an output to the model. This is most likely due 

to the cost and time involved to obtain areal surface measurement as well as the 

availability of instrument. Hence developing a model for areal surface roughness 

parameters will be a novel contribution to knowledge and exploits the first aim of 

the project which will readily provide areal data sets. 

• Appropriate surface parameter - Numerous surface texture parameters can 

be obtained from a single areal measurement (See Appendix A). Some of the 

areal parameters have a great link with the functional performance of the machined 

surface. Hence, it is appropriate to investigate the right surface parameters that 

should be used to represent finishes obtained from face milling process. All the 

reviewed literature has paid no attention to selecting the appropriate surface 

roughness parameter that best describes machined part. This has created a gap in 

knowledge as there is no literature on surface parameters that best describes 

surfaces obtained from milling process. 

• Measurement area – The area on the sample which is measured plays a key 

role in the measurement process especially on surfaces that do not have uniform 

structure of texture. This is because measuring different areas on such samples 

will produce different surface metrology information even though it was machined 

with the same cutting conditions. An investigation will also be considered to select 

the best area on a milled surface to best represent the whole surface understudy. 
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Chapter 3 
 
 

Laser triangulation for on-machine 

areal surface measurement 

 
This thesis employs a low-cost laser triangulation line scanner for on-machine surface 

measurement. The overview of various techniques suitable for in-process and on- machine 

surface measurement and the specifications of new systems, described in the previous 

chapter, indicated that laser triangulation has the potential of being utilised for surface 

measurement of micro-scale level topography on machined parts. 

The primary target for the application of the technique is on-machine metrology, 

specifically for the measurement of the surface texture of face-milled parts directly on 

the machine tool. 

This chapter gives a detailed description of the instrument identified in the literature 

review and the logical justification.  A series of experimental and simulation analyses 

are conducted to fine-tune the instrument. A new method for obtaining surface 

measurement using the laser line scanner instrument is then introduced to achieve high 

resolution and accuracy for rapid areal surface metrology. 

 

3.1 General description of laser triangulation 
 

The process of triangulation originated from trigonometry; a branch of mathematics 

that deals with the relationships between lengths and angles of triangles. 
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Triangulation can be defined as a process of finding unknown properties based on 

some known properties, provided that all the properties have a triangular relation. In 

reality, the unknown property can be the distance between two locations or the angle 

between three locations. Today, triangulation is found in applications such as 

surveying, navigation systems and metrology instrumentation. 

In metrology, by setting up a laser diode and a light detector in the right order, the 

principle of triangulation has been used to develop non-contact displacement  

 

 
Figure 3.1: Laser triangulation for dimensional measurement 

 
 

measurement as shown in figure 3.1. The measurement range of the instrument is 

denoted as d in figure 3.1. R is the distance between the laser and the near end of the 

measurement range. ∆d, the distance between the surface of the object to be measured 

and the near end of the measurement range. ∆d is the unknown distance in most cases. 

With assistance from the grading on the light detector, the distance between the reflected 

light and the source of the light (laser diode) is determined, labelled as ∆L. 

∆L is the difference between L (a known distance from the laser diode to a known point 

(c0) on the graded light detector) and the point on the light detector where the reflected 

light is incident. Based on the point of incidence on the detector (for example, c2), the 

angle of reflection (α2) is computed using C1 and α1 or C3 and α3. 
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Some examples of laser triangulation applied in metrology applications and their merit 

over other techniques are reviewed in section 2.3.2. A laser line scanner, namely 

Keyence LJ V7000, which also utilised this technique is selected for further exploration 

for its potential to be used for on-machine surface metrology. At the time of this 

investigation, it was a new model with excellent specifications in terms of resolution 

and utilizes blue laser for low noise on shiny (machined) surfaces. 

 

 

3.2 Laser line scanner –Keyence LJ -V7000 
 

3.2.1 Description of the identified instrument 

The Keyence LJ – V7000 series is a group of sensor heads developed by Keyence 

Cooperation Ltd for obtaining inline 2D and 3D form measurements. These sensor heads 

are classified under laser line scanners because;  

(i) they employ a laser triangulation measurement technique to capture data  

(ii) they traverse over the area of measurement to capture the data  

Figure 3.2: LJ-V7020K sensor head, taken from [119] 

 

In other words, either the sample to be measured or the sensor head is kept in constant 

motion over the measurement area during the measurement process. The sensor head 

that was used in this thesis is the LJ-V7020K, and its primary components are shown in 



43 
 

 

 

figure 3.2. The datasheet of the chosen sensor head is presented in Appendix B. The 

sensor head shown in figure 3.2 comprise of;  

(1) Cylindrical lens  

(2) Semiconductor lasers  

(3) Processor  

(4) 2D ernostar lens  

(5) High-speed enhanced eye emulation complementary metal–oxide–semiconductor; 

HSE3 CMOS which serves as the light detector. The main noticeable enhancement 

comparing LJ-V7020K to the generic setup shown in figure 3.1 is the additional 

processor. This processor increases the rate at which the data is captured for high-speed 

measurement, handles imaging and generation of the data and checks whether or not the 

measurement is within tolerance (or in the field of view) before saving for post-process 

analysis. 

 

 
3.2.2 Specification of the identified instrument 

The specification of LJ V7020K is presented in its dataset presented in Appendix B. 

However, some specifications are worth mentioning because they are the anchors of 

further discussions in this thesis. These include the spatial resolution, the measurement 

resolution and the range. The resolution in the profile axis (the direction of the laser scan 

line, which in the recorded data displays as x-axis) is 10 µm over a length of 8 mm. In 

other words, every profile measured when using the LJ V7020K covers a length of 8 

mm and consists of 800 evenly spaced sampling points, hence has a resolution of 10 µm. 

Unfortunately, the length cannot be increased over 8 mm. In order to measure an area 

with width that exceeds 8 mm, multiple scans can be obtained in a raster mode and the 

captured dataset stitched together for analysis as considered by Nygaard [67].  

The measurement resolution is 0.1 µm in the z-axis direction i.e. the direction 

perpendicular to the surface being measured. The standoff distance from the sensor head 

to the surface is in the region 26.5 mm to 21.9 mm. Hence, the measurement range in the 
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z-axis is 4.6 mm. The resolution and the range in the z-axis cannot be altered.  

The resolution in the time-axis (y-axis) is dependent on the speed of travel of the sensor 

over the surface and the sampling frequency during the measurement process. Equation 

3.1 shows the relationship between the resolution in the time-axis, the sampling 

frequency and the speed of travel. 

 

 

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡𝑖𝑚𝑒 − 𝑎𝑥𝑖𝑠 (µ𝑚) =
𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑡𝑟𝑎𝑣𝑒𝑙 (µ𝑚 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑)

𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝐻𝑧)
 

(3.1) 

 

From equation 3.1, it can be deduced that by reducing the speed of travel and increasing 

the sampling frequency, the resolution in the time axis can be increased tremendously. 

A realistic example is if the sensor head is set to a sampling rate of 100 Hz and mounted 

on a CMM machine (as shown in figure 3.3) which is programmed to move at 1 mm/min 

across a known length, the resolution of the time-axis will be 1.67 µm, calculation 

shown below. 

 
 

Figure 3.3: LJ V7020K set on CMM for step height measurement in a clean room; 

arrow pointing the sensor head of the laser line scanner 

 

 

Sampling Frequency (Hz) = 100 Hz 

Speed of travel (µm/second) = 10 mm/min = 166.67 µm/second 
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Resolution in the time – axis (µm) = 166.67/ (100) = 1.67 µm 

 

However, it should be noted that moving at an extremely low speed and/or sampling at 

a very high frequency would greatly contribute to the level of contamination in the 

captured data. Therefore, it is expedient to find the optimized speed and sampling 

frequency to be used in every application i.e. identify the appropriate sampling 

frequency and speed of travel using the laser line scanner for on-machine surface 

metrology. Also, the minimum resolution is dependent on the beam waist radius of the 

laser or the spot size. The beam waist radius, ω, is given by; 

 

𝜔 =  (
2𝜆

𝜋
) (

𝐹

𝐷
) 

(3.2) 

Where ‘λ’ is wavelength, ‘F’ is the focal length of the lens and ‘D’ is the input beam 

diameter. The spot size, ‘Ss’ is also given by 

 

 

Ss = 2ω                                                (3.3) 

 

Therefore; 

 

𝑆𝑠 =  (
4𝜆

𝜋
) (

𝐹

𝐷
) 

(3.4) 

 
 

 

From the dataset of the identified instrument in Appendix B, the spot size of the 

Keyence LV7020K is 35 µm. This enables features of half the spot size to be measured 

[120]. Recall the expected spacing between the key features (machine trails) on the face-

milled parts, stated in chapter 1 (31 – 166 µm); the selected instrument should be capable 

of capturing these features during measurement. 
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3.2.3 Benefits of blue laser over red laser in metrology 

The lateral resolution of the identified instrument is expected to be higher than other 

commercial laser line scanners. This is because most commercial laser line scanners 

utilise red lasers (wavelength, λ, between 740 – 625 nm [121]) while the LJ-V7020K uses 

a blue laser [119] (wavelength is 405 nm according to the data sheet in Appendix B). 

Based on the magnitude of the two wavelengths obtained from red and blue lasers and 

from equation 3.4, the identified instrument should guarantee sharp profiles as shown in 

figure 3.4. Due to the spot size, blue lasers have lower intensity compared to the red laser 

and so they penetrate less significantly into the sample being measured. Due to the high 

penetrations of red lasers, the light defuses, resulting in a spot that is defocused on the 

target surface. This gives rise to a blurred spot reflected onto the detector, meaning that 

an exact distance cannot be defined by the sensor. On the other hand, due to the reduced 

intensity and wavelength, the blue laser does not penetrate into the target object but it 

produces a focused laser point on the detector, providing precise and stable measurement 

results. 

  

(a) With a conventional red laser, the beam 

that formed the image is thick, resulting in the 

generation of variation in the profile 

(b) With a blue laser (LJ – V 7020K), the image 

forming beam becomes sharp to enable the 

measurement of shapes 

Figure 3.4: Profile measurement obtained from red and blue laser taken from 

[122] 

 

The shorter wavelength also performs better on glossy or highly polished/machined 

surfaces. A shiny surface distorts a red laser, resulting in a “speckle” effect. This 

produces an increase in the signal noise on the detector and as a result, the accuracy is 

lost during measurement. On the other hand, the shorter wavelength of the blue laser 
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performs better with much less speckling, resulting in much lower level of noise, 

typically by a factor between two and three when compared to red lasers for surfaces 

similar to those being considered in this research [122]. 

 

3.2.4 Data type obtained from the laser line scanner 

Data obtained from 3D scanners can be in either a point cloud or grid format. In point 

cloud format, the dataset is saved in reference to coordinates. Simply put, the dataset is 

a three-columned table consisting of x, y and z coordinates where each row represents a 

measured feature or sampling point.  The grid format, on the other hand, presents the 

height values (z-axis coordinate) of the measured feature in a “large matrix”. The row 

and column in refer to the “large matrix” can be used to compute for its resolution as 

well as the x and y coordinates of the measured feature. Instruments that are designated 

for large volume scanning usually employ point cloud format while instruments that are 

used for obtaining height differences over surfaces usually utilise grid data format. The 

data obtained from the LV-J7020K is in a grid format. The rows represents all the 

measured profiles along the time-axis. 800 columns are obtained from measurements 

when using the LV-J7020K. This is because height differences are captured in 800 bins 

to obtain a profile. As explained earlier, the resolution in the profile axis is 10 µm due 

to the 800 bins evenly spaced over 8 mm and the time axis is dependent on the sampling 

frequency and the speed of measurement. Unlike the speed of measurement that can be 

varied over a wide range depending on the specification of the motion axis (in this case 

the feed rate of a CNC machine tool axis), the sampling frequency is limited by the 

manufacturer to nine different levels. In order to select the appropriate sampling 

frequency, an investigation was conducted. 

 

 
3.2.5 Selection of sampling frequency for on-machine surface 

metrology 

 
It is important to mention that, based on available literature at the time of this work, the 
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application of a laser line scanner to obtain areal surface topography measurement had 

not been performed therefore no guidelines for parameter selection existed. 

For the time-axis direction, a travel length of 8 mm was considered in order to obtain 

a square area as the measured area (8 mm is the fixed length of the profile axis). That 

also helps to achieve a larger coverage area than the stated targeted area in chapter 1, 

and one which is significantly larger than many areal surface measurement systems. 

To find the best sampling frequency, three arbitrary travelling speeds; 10, 20 and 30 

mm/min, were used to measure a step height of 999.90 µm with an uncertainty of 0.1 

µm from the artefacts calibration record. This was carried out first in a controlled 

environment and then on a shop floor. The speeds were carefully chosen, this is because 

the benefits of taken measurement with the identified instrument when the travelling 

speed is lesser than 10 mm/min is outwarded by the spot size of the instrument. Also, 

the target resolution in the time-axis cannot be met if the travelling speed is above 30 

mm/min.  

In the controlled environment (Coordinate Metrology Room), the room temperature was 

set to 20 C ± 0.5 C, the LJ-V7020K was mounted on a CMM (having passive vibration 

isolation) as shown in figure 3.3. For the second test, it was attached to a CNC machine 

spindle on the shop floor as shown in figure 3.5. The machine tool is a typical small 5-

axis CNC milling machine. It has 3 Cartesian axes have an average traverse range of 600 

mm and two rotary axes on which a 300 mm rotary work table is mounted. The test 

sample is clamped securely in a vice on the table. This is a very common CNC machine 

type and a typical setup for a component being manufactured on the machine, therefore 

the test is representative of the situation of in-process measurement we are trying to 

achieve. 
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Figure 3.5: CNC machine with Keyence mounted on for in machine surface measurement. 

1. Keyence Scanning Head 2. Specimen Block 3. Rotary worktable of 5-axis CNC machine 

tool 

 

 

Figure 3.6: Topography of step height measured using line scanner LJ-V7020K 

 

The nominal characteristic of the step height was obtained from the captured datasets by 

the following steps; 
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1. Average of high surface datasets was computed; ‘H’  

2. Average of low surface datasets was computed; ‘L’ 

3.The difference between the two average values was computed; ‘n’. 

 
Where ‘n’ is the expected nominal value of the step height (999.90 µm). Figure 3.6 

shows the topography of the step height obtained using the identified instrument. 

Measurements were performed three times for each sampling frequency, and the mean 

expected nominal value was considered. The error, which is the difference between the 

step height calibrated value and the measured value was obtained. Figure 3.7 shows a 

residual error from measuring the step height in both environmental conditions. The 

error bar depict the variations of the residual error whiles varying the travelling speed. 

 

 
 

Figure 3.7: Residual error bar chart of the step height measurement against different 

sampling frequencies 
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It can be observed from figure 3.7 that the error bar at 2000 Hz has no width, indicating 

measuring with such sampling frequency is immune to errors associated with scanning 

speed at all levels. Unfortunately, it is not so, during the analysis of the captured dataset, 

a great challenge arose, which is to process measurements with more than 30,000 

profiles. This issue could have been resolved by using a supercomputer with higher 

processing power than a typical desktop PC. Supercomputers were not considered 

because of availability and cost in relation to the scope of this thesis. Hence, datasets 

obtained whiles sampling frequency at 2000 Hz and scanning speed of 10 and 20 

mm/min are not represented on the error bar chart. Likewise, at 1000 Hz only 

measurement obtained from 10 mm/min is presented. From figure 3.7, it can be deduced 

that measurements taken in a clean room are less subjected to the scanning speed 

variations compared to the measurements obtained on the CNC machine. The error 

associated with the measurements as a result of the variations of scanning speed 

was observed to be 0.15 ± 0.03 µm for a clean room and 0.27 ± 0.11 µm on a typical 

CNC machine. 

This result also gives an insight into the instrument’s noise and the on-machine 

measurement noise. Further experiments carried out will be discussed in chapter 4 to 

vindicate the instrument’s noise and the on-machine measurement noise by utilising a 

novel scanning routine introduced in section 3.3. 

It is also clear from figure 3.7 that, on a typical CNC machine in a shop floor 

environment, sampling at a high frequency reduces the residual error in the 

measurement. However, on a CMM in a clean room, the sampling frequency does not 

have a clear relation with the residual error. 

100 Hz was selected as the sampling frequency and was utilised throughout the remain- 

der of thesis for the following reasons: 

1. Datasets obtained while sampling at 100 Hz and scanning at lower speeds such as 

10 mm/ min is more manageable (33 Megabyte per scan), this makes processing 

of the measurement acceptable given the available time in the research and the 



52 
 

 

 

large number of machined samples anticipated for the research and validation 

phases. 

2. Residual error, at three different speeds, is relatively small compared to 

measurement using other sampling frequencies in the case of both on-machine and 

clean room measurement. 

It is important to mention that the line scanner used in the thesis provides an option to 

filter the captured dataset in both the time axis and profile axis. None of the inbuilt 

filtering features were used, this is to prevent key features of the surface topography 

being filtered out. 

 

 

3.3 Improving lateral resolution in profile axis of 

LJ-V7020K 

As stated in chapter 1, the chosen approach for on-machine surface metrology is 

expected to have a lateral resolution < 5 µm. The identified instrument is limited to a 

lateral resolution of 10 µm in the profile-axis. In order to improve the resolution in the 

profile axis as well as minimising the effect of shop floor vibration, a new mode of using 

the laser line scanner is explored; referred to as multidirectional scanning technique 

(MDS). MDS is one of the novel contributions of this thesis and has been published 

[123]. The multidirectional laser line scanning technique has the ability to capture a 

large measurement area (8 mm x 8 mm) without data-stitching in a single scan within a 

short time period (< 1 min). The large measurement area is sufficient to detect any 

irregularities on all face-milled parts considered in this thesis. This conclusion was made 

based on recommendation in BS ISO 4288:1998 [124] and ISO 25178-3:2010 [125] for 

selecting sampling size when measuring periodic surfaces. However, the following 

assumptions were made since both standards were for profile measurements and not 

areal; 

 



53 
 

 

 

1. The surface structure of the machined parts is homogenous and periodic. 

2.RSm ≈ Fz 

Where; RSm is the profile elements (P) average width as it indicates average value of 

the length of the profile element (P) along the sampling length. Fz is the Feed per tooth 

vector of the face-milled surface where the profile element (P) is perpendicular to the 

lays of the face-milled surface. 

 

 
3.3.1 Procedure for performing MDS of areal measurement 

 

To perform MDS, a small 5 Axis CNC machine tool (as shown in figure 3.5) is used to 

facilitate automated cycles and provide a constant lateral velocity across the 

measurement area on the face-milled part size (30 mm x 30 mm x 20 mm) during 

measurement. Detailed description of the face-milled part used in this thesis is given in 

chapter 5. The surface to be evaluated is scanned in two directions as shown in figure 3.8. 

The two directions are perpendicular but have a common datum (the first bin as shown 

in Figure 3.8), which is achieved to within 10 microns using the CNC machine. In other 

words, with assistance from the rotary axis of the CNC machine, two scans over the same 

surface (measurement area) is possible, however, perpendicular to each other in relation 

to their first profile. 

 
 

Figure 3.8: First data obtained from both the 1st and 2nd scan during MDS surface 

measurement over an area 
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A single profile scan takes < 32 µs to capture dataset which is a vector consisting of 800 

elements (see datasheet in Appendix B). The short time spent minimises the effect of 

machine vibration i.e. any vibration having a frequency lower than ≈15 kHz will not 

affect the 800 points in a scan. This covers machine vibration experienced in this 

research. Subsequent scans are also unaffected relative to the line scan but are affected 

in an absolute sense over a scanned surface comprising many lines in the time axis. By 

rotating the sample, the direction, which was susceptible to vibration, is now measured 

by the line scan and thus is now immune. By combining the two datasets, it was 

envisaged that a robust 2.5D result could be obtained with good robustness against the 

inevitable vibration anticipated in on-machine measurement. Further analysis on the 

effect of vibration on MDS technique is included in section 3.4.  

The merging of the two datasets are processed in the following order, explained using 

simulated datasets. Due to small errors in the machine, the plane of the surface being 

measured is not parallel to the plane described by the motion axis and the laser sweep 

axis. This ‘tilt’ error would affect this technique which requires the two data sets to 

be merged. This is easily achieved using a slope removal algorithm, so that any form of 

tilt on the surface that is captured during scanning is removed before merging the two 

datasets. The slope removal algorithm is applied to each dataset separately before the 

merging process. Section 3.3.1.4 includes the detailed method for this step of the new 

process. 

 

3.3.1.1 Step 1: Importing datasets into MATLAB software 
 

The two datasets are imported into MATLAB and assigned with names for easy 

identification. In this description, scan 1 and scan 2 are used as the names for 

clarification propose (see figure 3.8). It should be mentioned that datasets obtained from 

the Keyence LV7020K scanner comprises of a header file and the dataset. Only the raw 

dataset is imported into MATLAB for MDS. Figure 3.9 shows two images captured after 

the simulated datasets are imported into MATLAB. 
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(a) Scan 1 (b) Scan 2 
 

Figure 3.9: Images captured after initial importing datasets in MATLAB 

 

 

From figure 3.9, the axis labelled with a red arrow is the y axis with reference to the 

surface of the sample being measurement on the machine tool and green arrow; the x 

axis. The change in axes observed from the two datasets shown in figure 3.9 is due to 

the 90-degree rotation explained in section 3.3.1. 

 

 

3.3.1.2 Step 2: Rotation of 2nd scan 
 

 The 2nd scan is rotated 90-degree anticlockwise. This is to ensure that the orientation 

of the 2 datasets are with reference to the axes of the surface being measured and not to 

the instrument’s axes (time and profile axes). Figure 3.10 shows a rotated form of scan 

 

3.3.1.3 Step 3: Resizing into square ‘matrices’ 
 

As it was stated earlier in section 3.3, the coverage area of the measured surface is square. 

However, the captured data is usually not a square matrix due to the difference in 

resolutions on the time and profile axes. In order to ensure the captured datasets are 

 

 

(a) Scan 1 (b) Scan 2 

Figure 3.10: Images of datasets in MATLAB after resizing 
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presented as a square matrix, (looking as if the resolutions on the time and profile axes 

are the same) empty rows or/and columns are embedded into the captured dataset as 

shown in figure 3.10. 

 

 

 

3.3.1.4 Step 4: Least square slope removal 
 

A typical dataset obtained from scanning a surface might have slope embedded in the 

dataset. This is usually caused by tilting of the surface as explained earlier. Figure 3.11 

shows a plot of such dataset. It can be observed from figure 3.11 that the impact of the 

slope on the dataset is in both X and Y axis.  

 

 

Figure 3.11. Dataset with slope affecting two axes 

 

In order to resolve this, a slope removal algorithm is applied to both axes. The algorithm 

first fits a best-fit plane through the entire captured dataset using the least squared 

method. A transformation to move the best-fit plane to the origin is obtained and applied 

to the dataset. The angle between the best-fit plane and the X-Y plane about the X-axis 

is then computed. The angle obtained is used to rotate all the points in the captured 

dataset. The outcome is displayed in Figure 3.12.  
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Figure 3.12:  Dataset with slope affecting only one axis 

 

 

The slope in figure 3.12 is along only one axis. In order to remove the slope in figure 

3.12, the same rotation procedure is followed as explained above but rotation about 

the Y-axis plane with the calculated angle is done instead of rotation about the X-

axis. The outcome after the translation and rotation procedures on the dataset is 

shown in figure 3.13. 

 

 
Figure 3.13: Dataset after applying slope removal algorithm 

 

 

 
3.3.1.5 Step 5: Merging the datasets 

 
Since the two datasets are now having the same size and have the same axes orientation 

which is with reference to the surface that was measured, an averaging technique is 
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employed to join the datasets. The result is the MDS dataset and is shown in figure 3.14. 

 

 
Figure 3.14: MDS initial dataset captured in MATLAB 

 

It should be mentioned that the MDS dataset does not have any reference to the axis of 

the measurement instrument (that is, it has no time or profile axes) and its axes are with 

reference to the actual surface of the sample that was measured. 

 
 

3.3.1.6 Step 6: Filling in the empty cells 
 

With the assistance of an advance data manipulation MATLAB algorithms, the missing 

data (observed as NaN in both figure 3.10 and 3.14) are estimated and filled as shown 

in figure 3.15. 

Figure 3.15: MDS final dataset captured in MATLAB 

 

The data manipulation algorithm operates in the following manner; 

i. Searches for the location of the missing data (NaN) in the topology (MDS 

dataset). 

ii. Identifies the size of missing data clustered in the location by finding the nearest 

neighbouring numerical values, both horizontally (x-axis or row) and vertically 
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(y-axis or column).  

iii. Generate a plane having the size of the cluster of missing data. The height 

variation in the plane is obtained using interpolation of the values extracted from 

the nearest neighbouring numerical values to the cluster of missing data. 

iv. The data in the plane is used to fill in the missing data. 

 

A header is then attached to the final dataset and saved as a .csv file which is easily 

accessible using surface metrology software packages such as Surfstand. 

 

In order to confirm the robustness of the data manipulation algorithm the following 

topologies (figure 3.16, 3.17 and 3.18) were parameterized and compared. 

 

Figure 3.16 A simulated ideal surface topology 

 

 

Figure 3.17 Induced missing data in the ideal surface topology 
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Figure 3.16  Reconstructed surface topology using the data manipulation after 

induced missing data 

 

The Sa values of the ideal topology, the induced missing data topology, and the restored 

missing data topology were 3.5 µm, 2.8 µm and 3.6 µm respectively. The difference 

between the Sa value of the ideal topology (figure 3.16) and the induced missing data 

topology (figure 3.17) was 0.7 µm whiles the difference between Sa value of the ideal 

topology and the restored missing data topology (figure 3.18) when using the data 

manipulation algorithm was less than 0.1 µm.  

It was also discovered that the differences between the ideal and restored missing data 

topologies were dependant on the cluster size. This is a limitation of this technique. In 

other words, this technique will struggle with large cluster size of missing data. 

However, since the data manipulation algorithm was used for only one missing data at 

a time during the MDS and the cluster size in a typical MDS data is very small, the 

error of deviation from the ideal topography will be negligible.  

 
3.3.2 Effect of perpendicularity deviation error on MDS 

techniques 

 
The fundamental concept of the MDS technique is based on the ability to capture two 

separate surface topology measurements of the same area but perpendicular to each 

other’s starting point using a laser line scanner. Although a CNC machine tool rotary 
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axis is very accurate, there will be deviations from the 90 degrees rotation during MDS 

therefore perpendicularity deviation as a result of the rotation process may introduce 

errors into the final merged topology.  

In order to understand the effect of the perpendicularity deviation, an experiment was 

conducted aimed at exploring the degree of error likely to be introduced into the MDS 

surface metrology final topology due to this deviation. A calibrated artefact that is, SFM 

001; image can be found in Appendix D.1.1 with Sq value of 5.6 µm and 

homogeneously spaced surface structure was considered as the surface to be measured 

in this experiment. 

 

Figure 3.19: Deviation from Sq values against error induced MDS 

 
 

With assistance of the rotary axis of the machine tool (resolution of 0.01 degree) 

perpendicularly deviation error was self-induced into the MDS technique in unit steps 

of 0.1 degree to ± 1 degree. This range covers rotary positioning errors in any type of 

CNC rotary axis on a shop floor and perhaps also lower precision indexing tables if they 

were to be used. Figure 3.19 shows the effects of the induced error on Sq parameters. 

From figure 3.19, it can be deduced that positive error induced in the rotational cycle of 

the MDS has a linear relationship with the impacted error on the Sq value whiles 

negative induced errors showed no relationship. 
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The cause of the difference in values is due to the fact that; a change in the angle for the 

measurement, changes the angle between the scanning line and the lays of the surface. 

Hence, there is a likelihood of missing key topography data during the measurement of 

the surface. The ideal recommended angle is 90 degree according to ISO standard. 

Changing the angle also changes the angle of refection of the laser triangulation 

instrument and hence, increase the chance of large variations. Another reason could be 

that, the change in the angle will also change the exposal of light to the surface being 

measured and this too can have an impact on the quality of the results. In any case, the 

overall effect is negligible for anticipated errors on CNC machine tool i.e. < 0.1 degrees 

proving that the method is robust against this potential error source. 

It should be mentioned that tilt of surface is bound to happen, which could also have an 

impact of the accuracy of the measured topology when using MDS. The cause of the tilt 

of the surface could be associated with two main factors; 

(1) Inability to replace the machined sample at the exact location it was machined due 

to uneven base of the sample.  

(2) Loose grip of the machined sample on the worktable of the machine tool due to 

improper tightening of machine vice during the cutting process as well as the 

measurement process.  

In order to avoid or reduce the above factors from affecting the measurement used in 

this thesis, the base of all samples were flatten and also a further inspection was 

conducted by the machinist to confirm the sample was firmly gripped in the worktable’s 

vice. 

 

 

3.4 Simulation of noise compensation using MDS 

for surface measurement 

In order to determine whether the MDS technique can reduce the impact of 
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environmental noise such as machine tool vibration, a series of simulations and 

experiments were conducted. The first experiment involved identifying height variations 

in measured results due to the impact of the environmental noise on the shop floor as 

well as in the machine tool. Secondly, an ideal surface topology for a milled surface was 

generated and with assistance from surface metrology software package, the Sq value of 

the simulated surface topology is obtained. This is referred to as ‘Sqi’. Finally, based on 

the results obtained from the first experiment, different levels of white noise were 

induced into the simulated surface topology to obtain different surface topology with 

induced noise. The Sq of these surface topologies were also retrieved and are referred to 

as ‘Sqn’. The Sq of the MDS surface topology, SqMDS, was also obtained after merging 

two surface topologies, both of which had white noise induced in them. The noise were 

induced in different axes directions, i.e. due to the different scan directions.  

It can be recalled from the explanation in section 3.3 that the same degree of noise affects 

the line scanner in its profile axis because the time spent to capture a single profile is < 

32 µs, sufficiently short that the deviation in the noise level during the scan of a single 

profile is negligible. Hence, the same level of noise affects the dataset in the same profile 

axis. However, the time-axis is subjected to different levels of environmental noise 

hence, the potential for a high level of inconsistencies when using a line scanner for 

surface metrology in its normal operating mode.  

In these experiments Sq was chosen as an indicator because of its high sensitivity to 

height variation compared to other height related areal surface parameters (See 

Appendix A). 

 

 
3.4.1 Simulation of ideal face-milled surface topology 

 

While the vibration levels measured are not very significant, the results obtained from 

the MDS method indicate a degree of immunity or averaging that occurs due to the 

different effects of noise in the time axis and the profile axis. In order to fully understand 
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this effect, simulations have been performed using ideal and noisy data. The following 

assumptions were made in the generation of the ideal surface topology; 

 
1. The surface topology of a face-milled part can be represented in a periodic form. 

Hence a continuous sinusoidal form is considered. 

 
2. The ideal surface topology is not affected by any other factor except the tool 

geometry. Factors such as tool wear, the effect of coolant and other cutting 

conditions were not considered in the simulation. The tool is made up of a round 

tip insert, hence a cycloid effect is used to represent the generated surface, where 

the radius of the cycloid effect is the radius of the tool inserts. The peaks also 

represent the feed per tooth vector. Figure 3.20 shows a cycloid for the simulation 

of a profile for a face-milled surface. 

 

 

Figure 3.20: Simulated profile for a face-milled surface 

 
 

Rz, the distance between the maximum and minimum point on the profile, which can be 

calculated using measurement from the vertical distance from the lowest valley to the 

highest peak within five sampling lengths, then averaging these distances is the same as 

the amplitude of the cycloid. 

A surface topology is generated using the simulated profiles in figure 3.20. A 

compilation of multiple simulated profiles is used to obtain the simulated surface 

topology which mimics the results from the laser line scanner when scanned over face-

milled parts. The outcome depicts a surface consisting of height maps which is similar 

to dataset obtained from the LV7020K instrument.  The final dataset is imported into 

Surfstand [126] a commercial and incorporates the relevant areal surface ISO standard 
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calculations for parameterization in order to obtain the Sq of the ideal simulated surface 

topology.  

It should be mentioned that Rz is varied to cover the full range of surface finish grades 

this research targets. 0.5, 1.0, 3.0, 6.0, and 8.0 µm Rz values were considered. Five 

different surface topologies were generated using the above Rz values and 

parameterized to obtained their corresponding Sq values. During the parameterisation 

process, no filtering technique was employed.  

Figure 3.21 shows the simulation of surface topology of a milled surface using multiple 

stacks of profiles (1600 profiles). Table 3.1 shows the Sq values obtained from all the Rz 

values considered. It can be seen from table 3.1 that as Rz increases, the corresponding 

Sq also increases as expected. 

 

Figure 3.21: Simulation of surface topology of milled surface 

 

Table 3.1: Rz and its corresponding Sq value 
 

  Rz (µm) Sqi(µm)  
 

0.50 0.15 

1.00 0.31 

3.00 0.92 

6.00 1.85 

8.00 2.47 

 
3.4.2 Quantification of environmental noise on height 

measurement 
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There is a huge variation of shop floor environmental conditions in different 

manufacturing industries. Factors such as the size of the shop floor, foundations (type 

and thickness), types of machines used, the proximity of the machines to each other, 

ventilation systems and the geographical location of the shop floor play an important 

role in environmental conditions on a shop floor. It is obvious that multiple machine 

tools could induce high temperature and vibrations with high amplitudes when the 

machines are all in operation compared to a shop floor with a single machine tool. 

We also cannot neglect the fact that, the floor vibrations; vibrations from active 

component of machines, passive vibrations on the shop floor and other sources of 

vibration will have different magnitudes on different shop floors. Zhang et al. [127] 

confirmed that on a typical machine in a shop floor, the vibration frequency range could 

cover from ≈12 Hz to ≈12 kHz. 

Apart from isolating the vibration in order to avoid its influence on the measurements, 

instruments used for on-machine surface metrology are expected to be robust to rapid 

temperature changes which is one of the main factors that effects on-machine metrology. 

Multiple sources of heat can be identified on a typical shop floor, which contributes to 

a large range of variance of the ambient temperature in a shop floor. These sources 

include heat generated from machine parts such as bearings, gears, and motors. Other 

sources of heat on the shop floor are also from the machining process itself or external 

sources (example, heat from outside the workshop when a door is open). It is very 

difficult to control most of these heat sources, henceforth; it is expedient that the 

identified instrument for the on-machine measurement is verified for its immunity to 

temperature variance during measurement. 

The shop floor considered in this thesis is within an academic machine tool workshop 

with several CNC machine tools operational. A series of studies were conducted to 

establish the feasibility for on-machine measurement on this shop floor. Finally, height 

variations caused due to the influence of the environmental noise on the shop floor is 

also measured. 
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3.4.2.1 Impact of temperature on surface metrology 
 

In this analysis, the main aim is to find out if the variation of temperature on the shop 

floor will affect the surface measurement obtained using MDS technique. In other 

words, the influence of temperature on the performance of the LV7020K based on the 

instrument’s specification when in operation in a shop floor is analysed. A check on the 

effect of any significant expansion of workpiece materials during the measurement 

procedure on the shop floor is also performed. The following metals were considered: 

aluminium, steel, and titanium and their coefficients of linear thermal expansion are 23.1 

x 10−6/K, 12 x 10−6/K, and 8.5 x 10−6/K respectively. 

In order to discovery the variation in temperature on the machine tool which the surface 

measurement procedure will be carried out, multiple temperature sensors were placed at 

vantage points around the machine tool. The sensors were attached to the following parts; 

the surface of the machined part (in this case aluminium), the surface of the worktable 

of the machine tool, the machine’s main cast iron structure and two sensors positioned 

arbitrarily inside the machine tool to measure the ambient temperature inside the 

working volume of the machine where the instrument (LV7020K) was mounted. The 

experiment was conducted over a 3-day period for any notable temperature change. 

Figure 3.22 was generated from the captured temperature data from the sensors. Figure 

3.22 shows experimental thermal profiles obtained for three days in a typical shop floor 

environment. The overall temperatures varied by approximately ± 2 oC in the head 

assembly and approximately. ± 0.5 oC at the bed (base structure of the machine) during 

the 3-day period. This result confirms that temperature change over a short period (< 1 

minute) will not have any significant impact on the surface measurement of the 

machined part. The maximum and minimum recorded temperature captured over the 

experimental period were 25.5 oC and 21.3 oC respectively as it can be seen in figure 

3.22. According to the specification of the instrument; LJ-V7020K (see Appendix 

B), the temperature sensitivity is 0.01% of FS/ oC. Due to the fact that the range of 

the measurement FS is so small for this application, typically < 10 µm, the 

maximum temperature effect would be negligible (0.0001 x 10 x 4.2 = 0.0042 µm). 
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Figure 3.22: Environmental temperature variations recorded over 3 days 

 

 

 

3.4.2.2 Impact of vibration on surface metrology 
 

In this section, the vibration which is generated by the machine tool and the local shop 

floor environment during the MDS technique is measured using an external instrument 

and compared with the acceptable vibrational frequency range and its corresponding 

amplitudes of the LV7020K. Vibrations are generated by various rolling and sliding 

elements of the drive system on the machine tool while the worktable is usually 

traversing. Any ancillary equipment such as pumps and any external machinery 

operating during the MDS scans also generates vibration. Analysis conducted in this 

section aims to expose the frequencies and amplitudes of these vibrations on the machine 

tool prone to affect the MDS method. The experiments conducted in this section was 

further divided into two; the impact of vibration on the vertical axis and lateral axis of 

MDS. 

 

 
Impact of vibration on vertical z-axis direction of MDS 

In this section, noise (vibration in a machine tool and the surrounding environment on 

the shop floor likely to be systematic and sinusoidal due to rotating motors, bearings, 

other machinery, structural resonances and other factors which may include the 

existences of random vibration as well) which affects the raw dataset captured during 
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on-machine surface metrology was measured. The noise is characterized as a variation 

of height which will be used in later simulations to determine how the variation is 

handled by the MDS. In order to achieve this, a single point laser triangulation 

instrument (LK-H022); with very high resolution of 0.01 µm was used to record changes 

in height readings of a flat artefact. The resolution of this instrument is 10 times better 

than the z-axis resolution (0.1 µm) of the laser line scanner. Three sets of environmental 

conditions were considered which are outlined below. 

(i) Performing the routine for the MDS procedure (in the machine tool)  

(ii) Inside the machine tool (whiles the instrument is idle)  

(iii) Outside the machine tool but on the shop floor (on a bench closer to the machine 

tool).  

The range between the captured data and standard deviation was computed and tabulated 

in table 3.2. It could be concluded from the results that measurements on the machine 

tool are less affected by noise and vibration compared to measurements obtained on the 

shop floor. This reduction of noise might be due to the inbuilt vibration absorption 

system of the machine tool. This reduces the amplitudes of the noise to almost half its 

magnitude if compared to measurement on the shop floor. 

 

Table 3.2: Height variation as a result of white noise in a machine tool 
 

Range (µm) Standard deviation (µm) 
 

On machine tool, in motion 0.25 2.91 ×10−5 
On machine tool, idle 0.37 3.55 ×10−5 
On the shop floor 0.59 0.89 ×10−4 

 
 

Another observable difference between the measurements when the machine tool was 

stationary and when in motion depicts that, the on-machine measurement without 

utilizing the machine tool axes increases the noise level unless the machine tool is 

completely turned off. However, this condition (measuring the noise when the machine 

tool is completely turned off and assuming some other system (for example a robot arm) 
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performs the motion for MDS) was not captured in table 3.2 because it is beyond the 

scope of this research. 

 

 
Impact of vibration on lateral-axis of MDS 

It is also important to consider the impact of vibration on the lateral -axis of captured 

data when using the MDS measurement technique as well. This vibration measurements 

were conducted with an industrial tri-axial accelerometer (type IMI ICP model 629A11) 

using a single NI 9234 data acquisition (DAQ) hardware unit. The sensitivity and 

measurement range of the accelerometer used were 100 mV/g and ± 50 g respectively. 

The data acquisition system had the following parts; NI 9234 IEPE ADC for capturing 

data in x, y and z-axes, an NI 9172 USB interface and a LabVIEW based data 

acquisition interface. 

Two pairs of vibration capturing experiments were conducted in this section. In the first 

experiment; the accelerometer was attached to the spindle (as shown in figure 3.23a) in 

order to measure the vibration that will affect the surface metrology instrument. The 

vibration data was captured whiles the machine tool performs the sequences for MDS. 

With the same set up (shown in figure 3.23a) a second experiment is conducted while 

the machine tool is stationary but not powered off. This forms the first pair of 

experiments.  

Another pair of experiments are conducted whiles the accelerometer is attached to the 

worktable as shown in figure 3.23b. Vibration data was also captured for both stationary 

and in motion states of the machine tool. It can be noticed that, two separate experiments 

have been conducted and one can be used to represent the natural inherent vibration 

frequency of the machine tool since the machine was not in motion. The second also 

represents vibration generated because of the axial traverse motion of the CNC machine. 
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It should be mentioned that by finding the double integral of the data captured from the 

accelerometer (acceleration); a displacement value is obtained which has direct relation 

to the surface metrology data captured when using LV7020K. In this experiment, the 

displacement value along the lateral axis of the laser line scanner, captured with the 

accelerometer, was considered as the error induced in the measurement by the vibration 

of the machine tool. 

 

(a) Frequency spectrum obtained (b) Frequency spectrum obtained 

when the machine is idle when during MDS measurement 
 

Figure 3.24: Frequency spectrum obtained when the accelerometer is attached to the 

spindle 

 

Figure 3.24 and figure 3.25 provide the frequency spectrums of the data captured with 

the accelerometer when attached to the spindle and worktable respectively. These were 

obtained by using Fast Fourier transform (FFT). From both results, it can be deduced 

  

(a) Accelerometer attached to the spindle 

during MDS measurement 

(b) Accelerometer attached to the worktable 

during MDS measurement 

 

Figure 3.23: Experimental setup to measure vibration during MDS measurement; red 

arrow pointing to accelerometer in both figures 
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that the machine tool generates more noise (vibration frequencies) whiles it is stationary 

compared to when it is in motion. This was an unexpected results. Also, by converting 

the acceleration axis of a normal frequency spectrum of a vibration signal to 

displacement, it can clearly be seen that the displacement caused by vibration during 

MDS measurement is within the vibration tolerance of the laser line scanner. 

 

 

  
 

(a) Frequency spectrum obtained (b) Frequency spectrum obtained 

when the machine is idle when during MDS measurement 
 

Figure 3.25: Vibration signal analysis obtained when the accelerometer is attached 

to the worktable 

 

Since all the dominant vibration frequencies shown in the frequency spectrum are less 

than half the sampling frequency of the MDS (100 Hz) the possibility of the results from 

MDS being immune to the vibrations is high. 

 

 
3.4.3 Simulation of ideal face-milled surface topology plus noise 

 

This section explores the variation in Sq value when noise is induced in a simulated 

surface topology. The simulated topologies used in this section consist of the 

aforementioned ideal structure (figure 3.21) and embedded self-induced noise. The 

magnitude of the induced noise was ensured to cover the experimentally determined 

ranges in the results in table 3.2. The noise was applied in the following manner; 

1. The same level of noise affects datasets along the same profile axis. Since it has 

been established that the time taken to capture a single profile data is short enough 
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to avoid the data being affected by different levels of noise.  

2. The effect of the noise on datasets along the same time axis fluctuates randomly. 

 

Multiple simulations were conducted with five different maximum amplitudes of the 

induced noise; 0.05, 0.10, 0.15, 0.20 and 0.25 µm. At each noise level, the Rz, of the 

ideal surface topology was also varied. 

 
 

3.4.3.1 Simulation of face-milled surface topology considering MDS effects 
 

During the MDS, the same surface is scanned twice; that is, if the topology shown in 

figure 3.21 is to be obtained using MDS, the first scan’s profile axis will be say parallel 

to the lays of the surface (y-axis) and the second scan’s profile axis will be perpendicular 

to the lays of the surface (x-axis). This means the manner in which the noise influences 

the two scans differs. That is, for the first scan, the variation of noise will be induced on 

the x-axis while the constant level of noise will be in the y-axis with reference to figure 

3.21. This is opposite in the case of the second scan. The variation of noise is expected 

to affect the y-axis while the constant level of noise; the x-axis with reference to figure 

3.21. Hence, Sq obtained from noise-induced surface topology will be referred to as Sqn1 

and Sqn2 where n1 and n2 denote first and second simulated scanned dataset 

respectively. 

 

 

3.4.3.2 Results; different noise levels in surface topology simulations 
 

Figure 3.26 shows a surface plot of the percentage residual error when the variation of 

noise is perpendicular to the ideal surface topology. The percentage residual error 

(%RE) is given by; 

 

%𝑅𝐸 =
𝑆𝑞𝑛 −  𝑆𝑞𝑖

𝑆𝑞𝑖
 

(3.5) 

 

Where Sqn is the Sq obtained from a surface topology with an induced noise, Sqi is 

obtained from the ideal surface topology and the two topologies were generated with the 
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same Rz. 

From Figure 3.23, it can be deduced that at low Rz, which is from 0.5 to approximately 

3 µm, the influence of the noise is relatively high compared to higher Rz values. Also, 

higher Rz values; Rz value above 3 µm, turn out to be almost immune to the low level 

of noise < 0.1 µm.  

 

 
 

Figure 3.26: Surface plot of residual error in Sq by scanning perpendicular to the 

surface lays 

 

Figure 3.27 shows a surface plot of the percentage residual error when the variation of 

noise is parallel to the ideal surface topology lay. The relationship between the impact 

of induced noise and the Rz values remains the same in both cases (that is in figure 3.26 

and 3.27). 

 Even though there was a reduction in the residual error (approximately about 1%) at the 

lowest Rz value (0.5 µm) when the maximum amplitude of the induced noise was at its 

highest (0.25 µm), most of the other features of the two results are similar. Figure 3.28 

presents a surface plot of the residual error obtained using the new MDS technique. 
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Figure 3.27: Surface plot of residual error in Sq by scanning parallel to the surface 

lays 

 

Comparing the three surface plots (figure 3.26, 3.27 and 3.28), it can be seen that there 

is a significant reduction in the level of residual error when the MDS technique is used 

. This can be due to the fact that, averaging multiple measurements of the same 

measurand but with different sensitivity due to the sampling rate, reduces the level of 

induced noise significantly. Hence, this demonstrates the possibility of the MDS 

reducing the level of noise. 

 

Figure 3.28: Surface plot of residual error in Sq by using MDS 

 

3.5 Summary of chapter 

The chapter has introduced the basics of laser triangulation and its application in 
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metrology. This chapter also gives the description of the identified instrument and its 

benefit over other instruments.  The lateral resolution of the instrument is 10 µm in the 

profile axis and for the time axis depends on the sampling frequency and speed of travel. 

The resolution in the z-axis is 0.1 µm making it more suitable for micro-scale 

measurement. The benefit of the identified instruments includes variable sampling 

frequency. 

In this chapter, with the assistance of a step height artefact, it was proven that sampling 

at 100 Hz, was the most suitable setting to achieve quality measurement in the targeted 

application without the height resolution being significantly affected by external noise. 

Merits of this selection include but not limited to not capturing a prohibitively large data 

size which is difficult to process and avoids very slow speeds scans which are subjected 

to a wider range of noise. The maximum amplitude of noise on the machine tool used 

in this thesis was found to be 0.17 µm.  

This chapter also presents a novel approach referred to as Multidirectional Scanning 

technique as a solution for the low resolution in the profile axis compared to the time-

axis and z-axis of captured data when using the selected instrument. This technique 

increases the resolution of the profile axis to match up with that of the time-axis. This is 

achieved by measuring the same area of evaluation twice with the same scanning 

parameters but perpendicular to each other with reference to their first scanned profile 

and fusing the two datasets together. It was revealed that the Multidirectional Scanning 

technique does not only increase the lateral resolutions but also significantly reduces the 

level of induced noise into the data by the environmental condition. This has been 

confirmed in this chapter with a series of simulations; where the noise was reduced from 

0.25 µm to approximately 0.1 µm. 

With such high expectation from the developed technique, the next chapter of the thesis 

considers the calibration of the multidirectional scanning technique as well as extensive 

validation of the results obtained using this technique. 
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Chapter 4 
 
 

Calibration and verification of MDS 

technique for areal surface 

topography measurement 

 
The previous chapter demonstrated the possibility of employing a commercially 

available laser triangulation device for on-machine surface metrology of machined 

(using milling processes) parts in a typical shop floor environment. This was successful 

by utilizing a new method that fuses two measurements obtained over the same area, but 

perpendicular to each other. The method enriches the lateral resolution of the 

measurement and reduces the influence of external vibration significantly. 

This technique for on-machine surface topography is novel, therefore its measurement 

results need to be compared with other instruments for full validation. It should be 

possible to calibrate the instrument/method as you would with any measurement system 

applied in the quality chain. Hence, this chapter is divided into two main parts. The first 

part presents an attempt to calibrate the new technique and the second; a comparison 

of measurement results between MDS, and another high specification, and 

commercial surface metrology instrument. The main aim of this chapter focuses on 

maintaining the traceability of measurement obtained from the novel technique as well 

as an attempt to estimate the uncertainty associated with the measurement. The factors 

that influence the traceability of surface metrology can be divided into two; hardware 
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related (the instrument-surface interaction) and software related (analysis algorithms 

and parameter calculations) [118]. In this thesis, the impact on traceability posed by 

software related factors were not considered because only one surface parameterization 

software (Surfstand version 6.0) is used throughout. This software has been calibrated 

and validated in other publication [128], [129]. Hence, calibration in this chapter will 

solely focus on the impact that instrument-surface interaction poses on traceability of 

the measurement result. This could be achieved by calibrating the operation axes of the 

technique and its spatial frequency responses. 

Calibration of measurement techniques can be performed using traceable, primary or 

secondary instruments with very low uncertainties which are usually kept by National 

Measurement Institutes (NMIs) or accredited laboratories. Calibration can also be 

performed using calibration artefacts. These artefacts are referred to as material 

measures in other publications (mainly ISO standards) and are usually used in the 

absence of suitable primary instruments. In addition, some calibration artefacts can be 

used in ‘harsh’ environments such as shop floor due to their robustness. Moreover, the 

cost of obtaining calibration artefacts is relatively lower compared to acquiring services 

of a primary instrument. However, the uncertainty of artefacts are typically higher than 

their equivalent primary or secondary instruments. Due to the above merits; artefacts 

were considered in the calibration of the MDS surface measurement technique. In 

addition, the application of artefacts for calibrating surfaces is normal practice. 

 

 

4.1 Calibration procedures 
 

It is important to mention that the term calibration used in this thesis is defined as [130]; 

“Operation that, under specified conditions, in a first step establishes a relation between 

the quantity values with measurement uncertainties provided by measurement standards 

and corresponding indications with associated measurement uncertainties and, in a 

second step, uses this information to establish a relation for obtaining a measurement 
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from an indication.” 

And, ought not to be mistaken for adjustment; which is also defined as [130];  

“Set of operations carried out on a measuring system so that it provides prescribed 

indications corresponding to given values of a quantity to be measured.” 

In simple words, calibration involves finding the relations between a measurement 

instrument or technique and a measurement standard whilst adjustment involves tuning 

measurement instrument or technique in order to have the same relation in magnitude 

with a measurement standard. By measuring a calibration artefact on an instrument, the 

metrological characteristics (MCs) of the measurement technique or instrument are 

obtained. 

ISO 25178 – 600 [131], defines the set of MCs that can be used to calibrate all types of 

surface topography measurement technique that captures areal topography. 

Unfortunately, at the time of writing this thesis, the ISO working group; TC213-WG16 

were still debating on developing the appropriate procedures for calibrating of different 

surface metrology techniques. Only a few of these calibration procedures have published 

which includes, but is not limited to, ISO 25178-601 [125]; contact (stylus) instruments 

and ISO 25178-606 [57]; non-contact (focus variation) instruments. 

Most MCs are determined using unique calibration artefacts such as optical flats and 

cross-gratings. Commercial surface metrology instrument manufacturers such as Taylor 

Hobson, Mitutoyo and Alicona, usually provide customized calibration artefact sets for 

the calibration of their instruments when purchased. Independent manufacturers such as 

Rubert and Co. Ltd in the UK also provides calibration artefacts for calibration of areal 

surface metrology instruments. A typical example of such artefacts is the “Bento Box” 

developed by the National Physical Laboratory (NPL) [130]. The calibration procedures 

undertaken in this thesis are divided into two; selection of the appropriate calibration 

artefacts and the selection of the appropriate step for calibrating the X, Y and Z axes of 

the MDS. It should be mentioned that, based on the following reasons, different 

calibration artefacts developed by different manufacturers were used to achieve different 

MC of the MDS technique because a ‘one size fits all’ solution could not be found; 
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1. The manufacturer’s intended use of the identified instrument is not for surface 

metrology, neither is it for multi-directional scanning. Hence, the original 

equipment manufacturer (OEM), namely Keyence, did not provide any areal 

calibration artefact for the instrument. 

2. Not every commercial calibration artefact set could be suitable for obtaining the 

MCs of MDS measurement technique. This is due to the properties of the material 

used in making most artefacts. A typical example is, the flatness of a transparent 

glass optical flat could not be measured using a laser triangulation instrument. 

3. Most of the available calibration artefacts were developed for calibrating nano-

scaled resolution instruments. Hence, making it difficult to employ them for a 

micro-scale technique such as MDS. 

 
Taking into consideration the above challenges and by reviewing of calibration 

procedures of other established techniques with similar operational characteristic as the 

MDS, the MCs of MDS were obtained in the following subsection. Also, other relevant 

publications [118], [132]–[134] which gives more insight on the calibration of areal 

surface topography instrument were considered in the process. For clarity, under each 

MC, the following is discussed; the definition of the MC, the calibration artefact 

employed, the procedure used and the results. 

Furthermore, in situations where the available artefacts are not suitable for obtaining a 

particular MC, a locally manufactured artefact is developed and calibrated. A typical 

example is the lateral amplification of MDS, which the developed artefact is presented 

in the section 4.1.1.  

 

 
4.1.1 Development of a cross-grating artefact suitable for 

calibrating MDS 

A cross-grating artefact is required to obtain the following MCs of the MDS technique; 

lateral amplification coefficient, linearity deviation, and perpendicularity deviation. All 

the available commercial cross-grating artefact were not suitable for calibrating MDS. 
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Reasons are as stated earlier in previous section. Another challenge that compelled the 

development of a new cross-grating artefact was the measurement area to be calibrated. 

The MDS captures an area of 8 mm x 8 mm size, hence the cross-grating artefact used 

for the calibration is expected to cover at least the measurement area. To overcome these 

challenges, a low-cost artefact was developed and calibrated through a primary 

instrument at NPL. The appropriate procedures for designing and manufacturing of the 

artefact as well as its calibration were extracted from [135]. 

 

4.1.1.1 Procedures used for developing the cross-grating artefact 
 

Due to the absence of an appropriate commercial calibration artefact to determining the 

lateral amplification coefficient and linearity deviation of the MDS measurement 

technique; a new, low-cost cross-grating equivalent artefact was developed.  

Figure 4.1: Design of cross-grating artefact 

 
 

The developed artefact is made of a steel cubic block. It contains thirty-six hemispherical 

groove features with 0.5 mm nominal diameter on one face of the cubic block and 1.50 

mm nominal distance between two features as shown in figure 4.1. The thirty-six groove 

features are in the form of a 6 x 6 grid and cover an area of 8 mm x 8 mm. The steps 

used to develop and calibrate the cross-grating artefact is as follows. 
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1. The proposed design as described above is first modelled using a computer-aided 

design (CAD) software package (as shown in figure 4.1). This gives the designer 

more control and understanding of the nominal distances between the grooves on 

the artefact. These nominal distances were used throughout the calibration process. 

2. Using a cutting speed and feed rate of 3750 RPM and 750 mm/min respectively, a  

cubic stainless steel block is first manufactured using face milling process. The 

diameter of the cutter used was 22 mm. All the faces of the cubic block were 

flatten. 

3. The top face of the cubic steel block; that is the face where the u-groove features 

will be machined; is further smoothed using a grinding process. With the aim of 

achieving a surface roughness of ≈100 nm . The surface roughness was confirmed 

using a stylus instrument (Bruker). The grinding wheel used was 1200 grit CBN 

vitreous bonded. Feed rate was varied between 5 and 31 mmpm, scaled to achieve 

a constant surface speed. The spindle speed was set to be 48 RPM. 

4. After the grinding process, the cubic steel block is then returned to the milling 

machine to machine the u-groove features using a 0.5 mm diameter milling tool 

with spindle speed and federate of 12000 RPM and 25 mm/min respectively. The 

spindle speed and feed rate were carefully selected to avoid tool breakage. 

 

Figure 4.2: Final grinding process of locally made cross grating 
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5. The grinding process is repeated after machining the u-groove features using the 

same spindle speed and feed rate in step 3 to achieve the final surface topography 

as well as to remove any burs as a result of step 4. This can be seen in figure 4.2. 

 

4.1.1.2 Calibration of the developed artefact 

 

The developed artefact was calibrated using an optiv classic non-contact coordinate 

measuring machine (CMM) which is traceable via an optical dimensional standard 

shown in figure 4.3. The calibration was based on the distances between the centres of 

paired u-grooves feature on the cross-grating artefact.  

The traceability of the calibration results is established using a substitution measurement 

method (See Appendix C for measurements results with CMM) of the optical 

dimensional standard plate. The detail of the uncertainty estimation for the distances on 

the cross-grating artefact and the combined uncertainty is shown in table 4.1. 

 
 

Figure 4.3: The NPL optical dimensional standard. Reproduced from [136] 

 
 

Influential factors considered included, the volumetric error, alignment error and optical 

path error. Other factors that were also considered in estimating the uncertainty of the 

measurement were influence factor due to thermal variation and error of coefficient 

thermal expansion of the measured part. 
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Table 4.1: Estimation of total uncertainty associated with cross grating artefact 
 

Sources Values/ 
µm 

Description 

umachP  
0.200 

Influence factors considering the 
machine performance which includes 
the volumetric error, alignment error 
and optical path error. (Type A) 
 
 

utemp  
0.005 

Influence factor due to thermal 
variation and error of coefficient 
thermal expansion of the cross- gratings 
artefact (Type B) 
 
 

uopticalplate  
0.050 

Influence factors from the 
measurement of the calibrated optical 
dimensional standard (Type B) 
 

utotal 0.206 Combined standard uncertainty 

 
 
 
 

4.1.2 Measurement noise of MDS technique 
 

4.1.2.1 Definition of measurement noise 
 
 

Measurement noise is defined as the noise added to the output signal during the typical 

utilization of the instrument. It includes the instrument noise as well as noise arising from 

the environment (thermal, vibration, air turbulence) and other sources [131]. It is the 

major error along the z-axis i.e. for the height measurement. 

 
 

4.1.2.2 Procedure to obtain the measurement noise 
 
 

To obtain the measurement noise of a surface topology technique, there are two methods 

that can be employed. They are referred to as the subtraction technique and averaging 

technique. Regardless of the procedure employed, the areal surface topography 

parameter, Sq, is used as the indicator. Below is the procedure for the subtraction 

technique; 
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1. Measure the same area twice under the same conditions, that is 

 
• The measurements should be in quick succession 

• The same instrument and operator should be used for both measurements 

 
2. One of the raw datasets obtained from step 1 is subtracted from the other, and the 

resulting dataset is expected to be dataset containing information regarding the 

measurement noise. 

3. The topology data which contains only the information about the measurement 

noise is parameterized using a surface topology analytical software to obtain the 

Sq value. 

4. Since the method of subtraction joins the variances of two identical probability 

distributions that each describe the instrument noise; the measurement noise 

Sqnoise can therefore be estimated by; 

𝑆𝑞𝑛𝑜𝑖𝑠𝑒 =
𝑆𝑞

√2
 

(4.1) 

 
 

For the other method of obtaining the measurement noise (averaging method), the 

suspicion that the noise contribution in a measurement diminishes while averaging 

numerous measurements over the same area of a sample is considered. The following are 

steps to obtain Sqnoise when using the averaging technique. 

 
1. The Sq f lat of the calibration artefact (flat surface) is obtained from the artefact 

calibration’s datasheet. 

2. The flat is measured and Sq is obtained from the captured topology. It should be 

mentioned the Sq (measured flat) has a relationship with the measurement noise 

(Sqnoise) and Sqflat, which is; 

𝑆𝑞 =  √𝑆𝑞2
𝑓𝑙𝑎𝑡

+ 𝑆𝑞2
𝑛𝑜𝑖𝑠𝑒

 
(4.2) 
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3. Multiple measurements (n) of the flat at the same area is captured, and the RMS 

height of the averaged surface topography (Sqn) is obtained. 

4. As per the fundamental assumption, the contribution of the measurement noise into 

the Sq value decreases as ‘n’ increases and their relationship is presented as;  

 

𝑆𝑞𝑛  =  √𝑆𝑞2
𝑓𝑙𝑎𝑡

+ 
𝑆𝑞2

𝑛𝑜𝑖𝑠𝑒

𝑛
 

(4.3) 

 

 

Sqnoise can then be deduced from the equation 4.2 and equation 4.3 as 
 

 

𝑆𝑞𝑛𝑜𝑖𝑠𝑒  =  √
𝑆𝑞2 − 𝑆𝑞𝑛

2

1 − 
1
𝑛

 

 

(4.4) 

 

 

There is no recommended number of repeated measurements (n), however, to confirm 

the reduction in the measurement noise as n increases, averaging of 2, 4, 8, and 16 

measurements are usually considered. 

 
 

4.1.2.3 Calibration artefact used for obtaining measurement noise of MDS 

technique 

 

The optical flat shown in figure 4.4 was used in this thesis for obtaining the measurement 

noise of MDS. The artefact had a flatness of less than 20 nm. It was obtained from the 

bento box artefacts; manufactured and calibrated by NPL. According to its 

calibration certificate (cert ref: 2013110351/1), it had an expanded uncertainty of 9.8 

nm at a coverage probability of 95% and coverage factor k = 2. 
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Figure 4.4: Optical flat for the calibration of MDS 

 

 

4.1.2.4 Results; measurement noise 
 
 

To characterise the noise level variation of the MDS surface measurement technique 

over its vertical range, the noise measurements are repeated in 3 distinct positions. They 

were above the recommended position (top), below the recommended position (bottom) 

and at the recommended position (centre). These ranges are important because the 

triangulation method has a ‘sweet’ spot in the centre of the detector, probably due to the 

optimal focal length. The top and bottom positions are approximately 2 mm off the 

recommended distances between the measurement instrument and the surface whiles the 

centre position is the recommend distances given by the manufacturer (see Appendix 

B). This was performed with a specific end goal to check noise level variation in the 

instrument’s entire field of view. The results from the subtraction technique and the 

averaging technique can be seen in table 4.2 and table 4.3 respectively. 

The moderate deviation from the subtraction values (see table 4.2) implies that only one 

subtraction between two surface measurements is sufficient to estimate measurement 

noise of MDS technique. 

A similar conclusion can also be made regarding the averaging method; i.e. averaging 

two or four measurements could be sufficient in estimating the measurement noise using 

the averaging method. 
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Table 4.2: Sqnoise (µm) using the subtraction technique 
 

 Sqnoise (µm) 

Approx. z-position 

/mm 

2 

(Top) 

0 

(Centre) 

-2 

(Bottom) 

Subtraction Run  

1 0.99 0.06 0.98 

2 1.13 0.04 1.08 

3 1.15 0.05 1.09 

4 1.10 0.07 1.08 

5 1.21 0.07 1.01 

Mean 1.12 0.06 1.07 

St. dev 0.073 0.012 0.051 

 
 

Table 4.3: Sqnoise (µm) using the averaging technique 
 

 Sqnoise (µm) 

Approx. z-position 

/mm 

2 

(Top) 

0 

(Centre) 

-2 

(Bottom) 

Number of Averaged 
measurement 

 

2 1.14 0.08 1.10 

4 1.11 0.06 1.10 

8 1.11 0.05 1.09 

16 1.10 0.05 1.08 

Mean 1.11 0.06 1.09 

St. dev 0.015 0.002 0.008 

 

 

Both subtraction and averaging methods are successful in estimating the measurement 

noise of the MDS technique. It was noticed from both methods that the measurement 

noise increases if the distance between the instrument and the surface is not at the 

recommended distance by the manufacturer. It can therefore be concluded that the 

measurement noise of the MDS technique is 0.06 µm since the range required to perform 

surface measurement is relatively small, and it is easy to use the machine tool to set-up 

the device in its optimal position. 

 
4.1.3 Residual flatness of MDS technique 
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4.1.3.1 Definition of residual flatness 

This MC expresses the quality of the areal reference of the technique and is defined 

[57] as; “the flatness of the areal reference”. 

It shows the effect of waviness induced into the measurement by vibration or optical 

effects such as stray reflections and optical speckles. Its main potential error is along the 

z-axis and therefore affect the height measurement. 

 

 

4.1.3.2 Procedure to obtain the residual flatness 

1. Ten measurements are taken arbitrarily over a reference flat surface. The purpose is 

to reduce the influence of undesirable factors such as scratches or dirt on the flat 

affecting the Sz value. 

2. The measurements are levelled using a high order polynomial to remove the form. 

 
3. Optical spikes are also removed from the measurements by setting threshold 

values. 

4. An averaged topology is obtained from the processed measurements. 

5.Sz is obtained from the averaged topology. 

 

The same artefact used for obtaining the MCs of the measurement noise is also used in 

this section. It should be mentioned that the flat surface from the NPL areal calibration 

set came with a traceable Sz value of 7.2 nm ± 10.3 nm with a 95% confidence (coverage 

factor k equal 2). 

 

4.1.3.3 Results; residual flatness 

Ten arbitrary measurements were obtained using the MDS at different locations on the 

artefact according to the recommendation of VDI/VDE 2655 [8]. The form and the 

residual surface were obtained using a 12th order polynomial form removal. An inbuilt 

feature, part of the parameterization software package used in this thesis (SURFSTAND 

V6.0) was used for both form removal and setting the threshold values. Images at each 
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stage are shown in figure 4.5. It should be mentioned, figure 4.5 focuses on showing the 

process and not necessarily the scales and axis labels. 

 

 

 
 

Figure 4.5: Flow chart for the flatness deviation threshold method 

Selection of appropriate threshold is critical because an incorrect threshold will 

underestimate the magnitude of the Sz value of the measurement. The challenge of 
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finding the appropriate threshold was overcame by setting the thresholds of the peaks 

and valleys of the residual surfaces so that they are 3 times larger than the Sq value of 

the residual surface. 

The final topology obtained when all the 10 measurements are averaged cumulatively is 

shown in figure 4.6. The Szflatness of the averaged topology was found to be 229 nm. 

Figure 4.6 shown the Szflatness value as the number of averaged measurements increases. 

 

 
 

Figure 4.6: Effect of increasing the number of averaged measurement of a flat 

 

 
 

4.1.3 Amplification coefficient and linearity deviation of MDS 

technique 

 
4.1.3.1 Definition of amplification coefficient and linearity deviation 

1. The amplification coefficient can be defined as “the slope of the linear regression 

curve obtained from the response curve”[131] as shown in figure 4.7. 

2. The linearity is defined as “the maximum local difference between the line, from 

which the amplification coefficient is derived, and the response curve” [131] as 

shown in figure 4.7. Their main potential error is along the x, y and z-axis. 
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It is important to mention that the amplification coefficient and linearity deviation could 

be obtain for both the lateral axes and the vertical axis for a surface measurement 

instrument. Therefore, the following sub-section is in two parts; the first focuses on 

finding the amplification coefficient and linearity deviation of the vertical axis of the 

MDS technique, then the second, focuses on the lateral axes. 

 

 

Figure 4.7: Example of an instrument response curve—: a- actual input quantities, b- 

measured quantities, 1- ideal response curve, 2-actual response curve of the instrument, 

3-line from which the amplification coefficient is derived, 4-local linearity deviation. 

Reproduced from [131]. 

 

 
 

4.1.3.2 Procedure; amplification coefficient and linearity deviation for z- 

axis 

1. Four different step height artefacts are selected for the z-axis calibration. It is 

ensured that the artefacts cover the entire z-axis range of the measurement 

instrument to be calibrated. 

2. Each artefact is placed parallel to the measurement instrument’s lateral plane. This 

allows easy removal of tilts using mathematical algorithms (plane fitting). Thereby 

reducing the effects on the lateral plane on the measured height. 

3. Each artefact is measured five times at five different positions. (i.e. 25 

measurements in total) 
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4. The following are computed from the captured height values in step 3 to generate 

a residual plot in order to deduce the linearity deviation. 

• Measurement error (δerr) = average measured value - calibrated value. 

• Repeatability (δrepeat) = maximum standard deviation of measured values 

of step heights. 

• Reproducibility (δreprod) = mean standard deviation of measured values of 

step heights. 

5. The amplification coefficient is also calculated using the following equation. 

 
 

𝛼 =  
∑ 𝐶𝑖𝐼𝑖

𝑛
𝑖=1

∑ 𝐶𝑖
2𝑛

𝑖=1

 
(4.5) 

 

 

Where the amplification coefficient is denoted by α, Ci are the calibrated values, Ii the 

measured values and n denotes the number of different step height artefacts used. 

 
 

4.1.3.3 Calibration artefact; amplification coefficient and linearity 

deviation for z-axis 

In order to obtain the amplification coefficient and linearity deviation of z-axis scale, 

four step heights were utilised [137]. The artefacts were carefully selected to ensure that 

their nominal height values cover the vertical range of the technique under study; in this 

case the instrument has a relatively large range compared to typical surface metrology 

instruments of 4.6 mm (see Appendix B). 

Although typical surface measurements would not use this range, it was deemed 

appropriate to calibrate over the full range in case freeform surfaces were measured, 

where the form deviation could easily be similar to typical profile measurement for 

which the instrument was originally designed. 
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(a) Surface topology of 1mm step height 
obtained using gauge blocks 

 

(b)  Step height using gauge blocks on CNC 
machine; arrow pointing to gauge blocks 

Figure 4.8: Calibration of Z-axis of MDS using gauge blocks 
 

In this thesis, calibrated gauge blocks were used to obtain the following step heights; 

1 mm, 1.25 mm, 3.5 mm and 4 mm. One of the advantages of using gauge blocks (see 

figure 4.8b) is their ability to obtain higher step heights which are not available in most 

commercial standard calibration sets for surface metrology while maintaining very 

low uncertainty. The calibrated gauge blocks used have an expanded uncertainty of 

(0.014 + 0.5L/1000) µm at a coverage probability of 95% with coverage factor; k = 2. 

Where L is the nominal height of the block. Figure 4.8a shows measurement obtained 

from a step height whiles using MDS. 

 

 

4.1.3.4 Results; amplification coefficient and linearity deviation for z-axis 

Table 4.4 and figure 4.9 are generated from the measurements obtained from the 

averaged profiles obtained from the step heights. The amplification coefficient of the z-

axis scale of the MDS was computed using the equation 4.5 and was found to be 0.995. 

Also, from figure 4.9 it can be deduced that the linearity deviation for the z-axis scale, 

lz , was in excess of 2.9 µm. 
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Figure 4.9: Bar Error chart of residual error obtained from MDS for calibration of 

its z-axis 
 

 

Table 4.4: Results obtained from calibrating of the z-axis of MDS using step heights 

 

 
 

 

 

 

 

 

4.1.3.5 Procedure; amplification coefficient and linearity deviation for 

lateral axes of MDS 

In order to obtain the amplification coefficient and the linearity deviation in the lateral 

axis of the measurement technique, a cross-grating artefact (see figure 4.1) was utilised. 

The following steps were employed; 

 
1. The cross-grating is measured five times at the same position. 

 
2. The distance between the centre of the first dimple and the other dimples are obtained 

from all the five measurements, i.e. in x-(horizontal), y- (vertical) and diagonal 

directions. The centre of the dimple is determined with the assistance of an image 

processing algorithm. 

3. The measurement error (δerr), repeatability (δrepeat) and reproducibility (δrep)  are 

obtained from the measurements in x- (horizontal), y- (vertical) and diagonal 

Nominal height/ µm 1000 1250 3500 4000 
δerr/µm 1.78 1.55 2.65 2.39 

δrepeat/µm 0.99 0.81 1.13 1.46 
δreprod/µm 0.58 0.68 1.06 1.32 
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directions. 

4. Residual error plots are generated for the three results. The amplification 

coefficients; αx αy and αdiagonal and linearity deviation, lx ly and ldiagonal are a lso 

computed. 

 

4.1.3.6 Calibration artefact; amplification coefficient and linearity 

deviation for lateral axes of MDS 

The calibration artefact used is the newly developed cross-grating described in section 

4.1.1.1. 

 

4.1.3.7 Results; amplification coefficient and linearity deviation for lateral 

axes of MDS 

The locally designed cross-grating artefact was measured using the MDS technique to 

obtain its grid topography. With the assistance of MATLAB’s image processing toolbox, 

the captured grid topography is converted into an image as shown in figure 4.10. 

Using an image processing algorithm, measurements are carried out to obtain the 

distances between the centres of the groove features in the x, y and diagonal directions 

as depicted in figure 4.10.  

 

Figure 4.10: Lateral and diagonal direction measurements using image processing 

algorithm; red line represents data along the same profile axis, blue line represents data 

along the same time axis and green line represents data in diagonal direction 

 
 

Table 4.5 and figure 4.11 are generated from the distance measurements obtained in 

the x-axis direction (marked with red line in figure 4.10). It should be mentioned that 
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the nominal distances; 1.5, 3.0, 4.5, 6.0, and 7.5 mm are obtained from the artefact 

design (Figure 4.1). That is 1.5 mm is the distance between the centre of the first groove 

feature and the second groove feature in the x- direction while 7.5 mm is the distance 

between the first groove feature and the centre of the sixth groove feature. 

 

Table 4.5: Results obtained from calibrating of the x-axis of MDS using cross grating 

artefact 
 

Nominal height/µm 1500 3000 4500 6000 7500 
δerr/µm -2.88 -1.19 1.95 -1.57 2.94 

δrepeat/µm 1.35 0.84 1.28 2.15 1.39 
δreprod/µm 1.26 0.09 0.10 1.75 0.03 

 

The amplification coefficient of the MDS considering x-axis scale was computed using 

the equation 4.5 and was found to be 0.98. Moreover, from figure 4.11 it can be deduced 

that the linearity deviation for the x-axis scale, lx , was in excess of 3.5 µm. 

Table 4.6 and figure 4.12 are generated from the measurements obtained from distance 

measurements obtained in the y-axis direction (marked with blue line in figure 4.10). 

 

Table 4.6: Results obtained from calibrating of the y-axis of MDS using cross grating 

artefact 
 

Nominal height/µm 1500 3000 4500 6000 7500 
δerr/µm 2.35 4.21 4.71 -5.48 1.31 

δrepeat/µm 1.06 2.39 2.13 1.06 1.70 
δreprod/µm 0.53 2.09 1.46 0.46 0.99 
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Figure 4.11: Bar error chart of residual error obtained from MDS for calibration of its x-

axis 

 
 

The amplification coefficient of the y-axis scale of the MDS was computed using the 

equation 4.5 and was found to be 0.959. Also, from figure 4.12 it can be deduced that 

the linearity deviation for the y-axis scale, ly, was in excess of 5.2 µm. 

 

Figure 4.12: Bar error chart of residual error obtained from MDS for calibration of 

its y-axis 

 

Table 4.7 and figure 4.13 are generated from the distance measurements obtained in the 

diagonal direction (marked with a green line in figure 4.10). The amplification coefficient 
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in the diagonal direction (dig) of the lateral scale of the MDS was computed found to be 

1.07. Also, from figure 4.13 it can be deduced that the linearity deviation in the diagonal 

direction, ldig , was in excess of 1.95 µm. 

 

Table 4.7: Results of the MDS error calculation in the diagonal direction 
 

 

 

 

 

 

 

 

 

Figure 4.13: Bar error chart of residual error obtained from MDS for calibration 

(diagonal) 
 

 

4.1.4 Perpendicularity deviation 
 

4.1.4.1 Definition; perpendicularity deviation 

It is defined as deviation from 900 of the angle between the x- and y-axes [131]. 

 
 

4.1.4.2 Calibration artefact; perpendicularity deviation 
 

The calibration artefact used is the newly developed cross-grating described in section 

4.1.1.1. 

Nominal height/ µm 2100 4200 6300 8400 10500 
δerr/µm -3.28 -3.56 -1.61 -1.01 4.47 
δrepeat/µm 3.12 2.16 1.24 3.21 3.71 
δreprod/µm 0.94 1.42 1.06 1.59 2.11 
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4.1.4.3 Procedure; perpendicularity deviation 
 

In order to obtain the perpendicularity deviation error of an instrument, the same results 

acquired from the x-(horizontal), y- (vertical) directions of the cross-gratings artefact in 

section 4.1.3.3 are used. The perpendicularity deviation is obtained by calculating the 

difference of the nominal and the measured angles between dimples on the cross-

gratings. 

 

 

4.1.4.4 Results; perpendicularity deviation 
 

It was discovered that the perpendicularity deviation of the MDS technique was 0.730 

which represents the average of all the perpendicularity deviations obtained by analysing 

the five measurements using an image processing algorithm. The perpendicularity error 

is therefore computed as the cosine error of measured length (the nominal distance 

between the groove features). The effect of the perpendicularity error was computed to 

be 1.29 µm. 

 

 

4.2 Measurement of uncertainty associated with MDS 
measurement 

It is a common practice to see statements on accuracy of surface metrology instrument 

on specification datasets or referred in documents if the instrument is used for 

measurement. However, statement on the uncertainty associated with surface 

topography measurements are rarely seen. The two main causes of this habit are most 

likely due to the complexity of the measurand and the measurement techniques usually 

employed. Research confirms that the greatest contributor to the variation in surface 

metrology results is the surface itself [118]. 

Regardless of this challenge, attempts have been made in estimating the uncertainty 

associated with surface measurement results when using MDS technique. This was 

achieved by considering the scale and noise contributions. 
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4.2.2 Scale contribution 

 This contribution is deduced from a combination of measurement error, traceability, 

repeatability and reproductively obtained during the amplification coefficient and 

linearity deviation calculation in section 4.1.3. Considering a simple measurement 

model, by linearly summing the sources of errors in Table 4.8, the total contribution 

associated with each axis can be deduced using the following equation [138]; 

Where i = xaxis, yaxis, zaxis and dig Ux axis , Uy axis and Uz axis were computed in the 

tables 4.9, 4.10 and 4.11 using information from tables 4.4, 4.5 and 4.6 respectively. 

 

Table 4.8: Uncertainty budget for scale contribution 

Source Distribution Formula 

Measurement error Rectangular 
𝑢2

𝑒𝑟𝑟 =  𝛿2
𝑒𝑟𝑟

3
⁄  

Repeatability Normal 𝑢2
𝑟𝑒𝑝𝑒𝑎𝑡 =  𝛿2

𝑟𝑒𝑝𝑒𝑎𝑡 

Reproductively Normal 𝑢2
𝑟𝑒𝑝𝑟𝑜𝑑 =  𝛿2

𝑟𝑒𝑝𝑟𝑜𝑑 

Traceability Normal 𝑢2
𝑡𝑟𝑎𝑐 =  𝛿2

𝑡𝑟𝑎𝑐 

 

Table 4.9: Standard measurement uncertainties associated with MDS calibration of the z-

axis scale 

 

Uncertainty contribution /µm 
Uncertainty /µm 

1000 1250 3500 4000 

uerr 1.03 0.89 1.53 1.38 

urepeat 0.99 0.81 1.13 1.46 

ureprod 0.58 0.68 1.06 1.32 

utrac 0.72 0.80 1.33 1.42 

uz axis 1.70 1.60 2.55 2.79 

 

 

𝑢𝑖 = √𝑢2
𝑡𝑟𝑎𝑐 + 𝑢2

𝑟𝑒𝑝𝑒𝑎𝑡 + 𝑢2
𝑟𝑒𝑝𝑟𝑜𝑑 +  𝑢2

𝑒𝑟𝑟 
(4.6) 
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Table 4.10: Standard measurement uncertainties associated with MDS calibration of 

the x-axis 
 

 

Uncertainty contribution/µm 
Uncertainty /µm 

 1500 3000 4500 6000 7500 

uerr 1.66 0.69 1.13 0.91 1.70 
urepeat 1.35 0.84 1.28 2.15 1.39 
ureprod 1.26 0.09 0.10 1.75 0.03 
utrac 0.21 0.21 0.21 0.21 0.21 

ux axis 2.49 1.11 1.72 2.92 2.20 

 

 

 

 
Table 4.11: Standard measurement uncertainties associated with MDS calibration of 

the y-axis 
 

Uncertainty contribution /µm  Uncertainty /µm  

1500 3000 4500  6000 7500 
uerr 1.36 2.43 2.72 3.16 0.76 

urepeat 1.06 2.39 2.13 1.06 1.70 
ureprod 0.53 2.09 1.46 0.46 0.99 
utrac 0.21 0.21 0.21 0.21 0.21 

uy axis 1.81 4.00 3.76 3.37 2.12 

 

 

 

4.2.3 Perpendicularity contribution 
 

The contribution of perpendicularity to the uncertainty of measurement (UPERP) is 

propagated in a rectangular distribution form, with an amplitude equal to the error of 

perpendicularity for the maximum length possible. Therefore, the contribution has been 

found to be equal to 1.29 µm in section 4.1.4.4. 

 

 
4.2.4 Noise contribution 

 
This contribution is deduced from the measurement noise and the residual flatness. The 

combined effect of the measurement noise and residual flatness (see table 4.12) on the 

z-axis measurement standard uncertainty uNF is given by 
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𝑢𝑁𝐹 = √𝑆𝑞2
𝑛𝑜𝑖𝑠𝑒

+   
𝑆𝑞2

𝑓𝑙𝑎𝑡𝑛𝑒𝑠𝑠

12
 

(4.7) 

 

 

 

Table 4.12: Uncertainty budget for noise contribution 

Source Distribution Formula 

Residual flatness Rectangular 
𝑢2

𝑓𝑙𝑎𝑡 =  
𝑆𝑧2

𝑓𝑙𝑎𝑡𝑛𝑒𝑠𝑠
12

⁄  

Measurement noise  Normal 𝑢2
𝑚𝑛 =  𝑆𝑞2

𝑛𝑜𝑖𝑠𝑒
 

 
 

 

Therefore, it can be computed that, UN F = 0.15 µm 

 

 

 

4.3 Comparison with another surface metrology 

instrument 

Comparison of measurement obtained from the MDS technique with measurements 

obtained from a calibrated instrument play a vital role in the traceability and validation 

process.  

4.3.1 Rules of comparison 

At the time of writing this thesis, areal surface metrology, in general, can be classified 

to be at its infancy stage. This is because most standards are still being developed 

compared to other branches of metrology. Due to this reason, there is no available 

standard stipulating the procedures or rules required for comparing two measurements. 

Even though it is guaranteed that the ISO 25178 part 4 will cover the topic on board 

[118], the committee involved has not released any information at the moment. 

Nevertheless, there have been few attempts to compare areal surface topologies. It could 

be concluded that ensuring the following factors match confirm fair comparison among 

areal surface metrology instruments. 
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• Size 

 
• Filtering 

 
• Resolution 

 
• Evaluation area 

 
To reduce the errors associated with the measurement of different areas on the same 

sample, a register was marked on all samples. 

The benchmark instrument is carefully chosen for the comparison purpose in this thesis. 

This is because the comparison between techniques that operates on different physical 

principles are bound to have high discrepancies [139]. A typical example of such 

comparison is between an optical instrument and a stylus instrument. High discrepancies 

could be observed because the optical instrument measures the optical path of the 

sample; whiles the stylus instrument measures the geometry of the sample. If the sample 

is made up of different materials with different reflective index, the measurement 

obtained from the optical instrument will be highly affected but no significant influence 

will be noticed on the measurement obtained from the stylus instrument. Also, the 

hardness of the sample might affect the measurement results from a stylus instrument, 

possibility damaging the samples by scratching the surface or increasing wear on the 

tips of the stylus during scans.  On the other hand, optical instruments are not faced with 

such challenges, hence the hardness of a sample will not have any significant impact on 

their measurement results. Even though the two instruments can be used to obtained 

surface measurements of samples, because different factors influence these instruments 

in different conditions, such comparisons are not encouraged.  

Since the MDS utilises an optical approach to obtain data (laser triangulation); the 

selected benchmark instrument for this comparison also employs an optical technique. 
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4.3.2 Benchmark instrument 
 

The optical instrument used as a benchmark instrument for this comparison is a focal 

variation instrument (Alicona G4). The principle of operation of this instrument has been 

described earlier in chapter 2. The benchmark instrument used was located in a 

temperature-controlled environment; 20 ± 0.5 0C. All measurements were performed 

with a 20x objective lens. Based on the chosen lens; the maximum system lateral 

resolution was 0.8 µm; maximum system vertical resolution was 50 nm with a 

repeatability of 15 nm. The measurement area for all samples was set to 8 mm x 8 mm 

and the time spent during every single measurement was approximately 3 hours per 

measurement. 

 

 
4.3.3 Samples used for comparison 

 

Six face-milled aluminium blocks; 35 mm x 35 mm x 10 mm; machined on a small 

three-axis CNC vertical machining centre were used. The milling process was performed 

with coolant (quakercool 7101 LF at a concentration of 7%) to aid the removal of heat 

from the material and to provide a stable temperature of the samples during the process. 

Different cutting parameters were used for cutting the samples to produce different 

surface finishes preferably all varying between very fine finish (0.8 µm) and rough finish 

(3.2 µm) as defined in section 1.5. This range covers surface finish for application i.e. 

precision machined surfaces typically produced by advanced manufacturing industry. It 

was also ensured that all the chosen cutting parameters are in the recommended range 

per the tooling manufacturer’s guideline. 

Two surface roughness artefacts; Microsurf 336, sample N4 which has an Ra of 0.20 µm and 

Mitutyo SFM 001 which has a Ra of 5.8 µm, were also measured using the two optical 

techniques. The purpose of using these artefacts is to confirm if the MDS could exceed the 

specification suggested in chapter 1. 
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4.3.4 Results from comparison 

 

4.4.4.1 Visual comparison 
 

The dataset captured when using the two surface metrology techniques were compared 

visually to check for any visible irregularities. This was achieved by importing the 

datasets into the Surfstand software package. The dataset was levelled, to remove any 

angular deviations as a result of the measurement table. No filtering or cut off frequencies 

were applied. Also, no threshold was applied whiles the dataset was being processed in 

the Surfstand software package. However, it should be mentioned that the MDS, has an 

internal feature for fixing missing dataset as explained earlier in section 3.3.1.5. 

Figure 4.14 shows three images of the Microsurf 336, sample N4 artefact; the top image 

is the image captured with a camera, followed by a screenshot of topology obtained from 

MDS and the last obtained from the Alicona G4 instrument. Images of the other samples 

can be found in Appendix D. 

 

 

4.4.4.2 Parametric comparison 
 

In order to have more knowledge about the relationship between the two surface 

metrology techniques, a comparison between their parameters generated from the 

measured samples were conducted taking into account the rules in section 4.4.1. All the 

samples were measured 3 times using each technique. ISO 25178-2 areal texture 

parameters; Sa was computed from each measurement and its average was used for this 

comparison. This is because it is the most frequently used surface areal parameter both 

in industry and in research environment according to a recent survey published in [9]. 

Results from the standard artefacts and the milled surfaces are presented in table 4.13 

and table 4.14 respectively which is discussed in the next section. 
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Table 4.13: Parametric comparison of artefacts; Sa in µm 
 

Artefact Name Alicona MDS Calibrated 
value 

 0.42 0.38  

Microsurf 336, sample N4 0.42 0.39 0.20 
 0.41 0.34  

 7.01 6.40  

Mitutyo SFM 001 6.99 6.38 5.80 
 6.98 6.32  

 

 

 

Table 4.14: Parametric comparison of machined blocks; Sa in µm 
 

 Sample 
Number 

Alicona MDS 

  0.422 0.387 
 1 0.419 0.387 
  0.419 0.384 

  0.701 0.640 

Smooth face milled surface 2 0.699 0.638 
  0.698 0.637 

  0.710 0.475 
 3 0.710 0.465 

  0.709 0.470 

  1.256 1.105 
 1 1.257 1.071 
  1.254 1.067 

  1.605 1.470 

Rough face milled surface 2 1.605 1.330 

  1.607 1.328 
  2.023 2.075 
 3 2.024 2.189 

  2.015 2.271 
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(a) Image from camera 

(b) Topology from MDS 

 

(c) Topology from Alicona 
 

Figure 4.14: Topologies and image of Microsurf 336, Sample N4 
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4.4.4.3 Discussions of results 
 

From the visual comparison, it can be confirmed that MDS can be used to detect 

malfunctions during a manufacturing process just as other lab-based surface metrology 

instruments such as the Alicona G4. This is because, by carefully observing the two 

topologies generated by both measurement techniques, (see figure 4.14 and Appendix 

D), both can measure distinctively close peaks, valleys and lays on a surface. On a 

typical machined surface, these features relate to machining parameters such as spindle 

speed and federate used for machining the component. Any abnormality in the 

machining process will cause a change in the surface topography of the component. 

Also, other imperfection features on the Artefact; Mitutoyo SFM 001 can also be easily 

identified in the topology obtained from MDS. These imperfection, mainly in the form 

of scratches, were as a result of a previous nail test or measurements using a stylus 

instrument. The ability to see these imperfection from MDS topologies confirms that 

MDS can be used to identify defects on a machined surface such as cracks, pore and 

buckle.  

The parametric comparison on the other hand exposes the deviation of the Sa values of 

the measured artefacts and their nominal value. The percentage error for the smooth 

surface finish artefact (Microsurf 336, N4) was over 100% whiles for the rough surface 

finish artefact (Mitutyo SFM 001) was about 10%. These error margin can be attributed 

to the scratches. Also, the smooth artefact has a very high error margin because of the 

sensitivity of fine finishes in general. 

However, a very significant observation which could be deduced from the parametric 

comparison is the close correlation between the parameters obtained from the MDS and 

Alicona G4. The percentage correlation between the two results was 99%. This 

conclusion could be made for both measurements from the artefacts and the machined 

samples. 

It can also be deduced that there is a constant lag in the parameters obtained from MDS 

when compared to parameters obtained from Alicona G4. This might be because of the 

data filling-in process of the MDS merging process explained in section 3.3.1.5. 
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The MDS measurement can, therefore, be used to obtain an on-machine measurement 

which has a high correlation with the lab-based instrument and as well as quick on-

machine analysis and detection of irregularities on a machined part. 

 

 

4.5 Summary of chapter 
 

This chapter supports the traceability of the novel MDS technique. The first part of this 

chapter present methods to obtain the following metrological characteristics of the 

MDS; measurement noise, residual flatness, amplification coefficient, linearity 

deviation and perpendicularity deviation. An attempt to estimate the uncertainties 

associated with all the scales were considered. It was confirmed that the MDS 

measurement technique is very useful in the micro-scale level.  

The second part of this chapter compares the results obtained from MDS with standard 

lab-based optical surface metrology instrument. The outcome validated the reliability of 

results obtained from MDS technique for quick assessment of the surface quality of 

parts, directly on the machine tool and in a shop floor environment.  The validation 

results show a strong correlation of 99% between the two results. It was also discovered 

that MDS can be used for the detection of irregularities on the surfaces of face milled 

parts. All of this capability is achieved with a much larger measurement area and low 

cost, in line with the high value manufacturing industries targeted by the application. 
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Chapter 5 
 
 

Preliminary investigations for 

on-machine surface metrology 

modelling 

 
The previous chapters have mainly focused on developing, evaluating and validating a 

new surface measurement technique suitable for on-machine metrology on a typical 

shop floor. The developed technique; MDS, provides an alternative to the challenges 

presented by off-machine measurement. These include eliminating the time spent on 

moving a machined component from the shop floor to a temperature-controlled room 

for metrology purpose. 

To increase the probability of right-first-time production whiles using the surface 

integrity of the machined parts as a quality indicator; a predictive model is employed to 

assist with the exploited novel on-machine surface measurement technique in the earlier 

chapters. The model utilises cutting conditions to predict areal surface parameters so 

that pre-process optimisation can also be performed. 

To develop the model, this chapter is dedicated to all the initial investigations conducted 

to ensure that the developed model is robust and reliable. At the end of this chapter, the 

appropriate areal parameters used to distinguish milled surfaces with different 

machining conditions are presented.  

In addition,, the relationship between the machining condition and the selected areal 
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parameters is also discussed. Other investigations such as the degree of tool degradation 

in face milling and the best area on the machined surface to measure are also conducted. 

 

 

5.1 Best measurement area to represent a milled 

surface 

Whitehouse [139] explained the inconstancies in profile analysis of milled surfaces. These 

inconstancies arise because of the different surface patterns created on the surface during the 

machining process. By measuring profiles across different sections of the same surface 

machined under the same conditions, different Ra values were obtained. He [139] also 

confirmed that there is a common trend of 40% variation of Ra values on regular face- 

milled surfaces. These inconstancies can be traced in areal measurement as well, even 

though the variation of Sa value across a milled surface might not be as high as 

40%. 

To develop a robust model for prediction of surface areal parameters, it is necessary to 

consider ways to reduce or possibly eliminate these inconstancies. A critical study was 

conducted in order to select the appropriate area that can be used to best represent the 

surface under study after face milling. This study was based on visual inspection of the 

patterns on surfaces of face-milled parts. 

Taking a critical look at the tool trails created on the machined part after a face milling 

process, it usually depicts the traces as shown in figure 5.1a or 5.1c [140]. 

 

Figure 5.1: Effect of the tilted cutter on the surface topography. Taken from [140] 
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Based on visual observations by the author, the topologies can be categorized into three 

main groups as depicted in figure 5.2 considering the uniformity of the topology.  

After measuring all the three different topologies and analysing them (results are 

tabulated in table 5.1 showing the different surface topology parameters on the same 

machined workpiece), it was noticed that surfaces with topologies as in figure 5.2b turns 

to have very high height surface topography parameters followed by figure 5.2a. It was 

concluded that figure 5.2a is the best topology, which will give the appropriate surface 

roughness parameters to represent the actual surface topography of the whole face-

milled surface based on the following reasons. 

 

 

 
 

(a) (b) (c) 
 
 

Figure 5.2: Different topology obtained from the same face milled workpiece 

 

Table 5.1: Results of different topology on the same machined workpiece 
 

Areal 
Parameters 

Figure 
5-2(a) 

Figure 
5-2(b) 

Figure 
5-2(c) 

Average 

Sa (µm) 1.48 1.58 1.21 1.42 

Sq (µm) 1.81 1.93 1.47 1.74 

Sz (µm) 14.08 16.04 13.6 14.57 

 

 

1. When a part is machined with a larger tool diameter, the topology in figure 5.2a 

will tend to cover much of the surface area of the parts. This is because figure 5.2b 

and 5.2c are as a result of the overlapping of milling paths to ensure all the surface 

of the part is milled. This practice makes the topology in figure 5.2a the dominant 

topology over the others on most surfaces of face milled parts. 
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2. The average of all surface areal parameters; considering the parameters obtained 

from the three different topologies, is closer to the areal parameters obtained from 

the topology in figure 5.2a when compared to that of the topology in figure 5.2b 

and 5.2c as it can be seen in table 5.1, presenting the areal height surface 

parameters of the three topologies and their average. 

3. Machine tools that do not suffer from the back cutting effects or chatter produce 

surface topology similar to that shown in figure 5.1a, only the topology in figure 

5.2a could be found on surfaces machined with such cutting conditions. 

4. The surface topology shown in figure 5.2a exhibits a periodic behaviour, hence it 

is easy to identify and characterize with unique features which can be related to 

the machining condition. 

 

The primary causes of the different topology on the same surface milled with the same 

cutting conditions is the effect of back cutting by the cutter during the milling process 

in most situations. Back cutting results from tilt and the cutter-spindle. Figure 5.1 shows 

the effect of tilted angle on the surface topography [140]. Figure 5.1a illustrates the 

expected surface if the cutter is inclined at angle β to the surface of the machined part 

as shown in figure 5.1b. If the cutter is not tilted as illustrated in figure 5.1d, the expected 

surface finish is as depicted in figure 5.1c. The angle β of inclination is very difficult to 

measure and control especially in older machine tools. 

 

 

5.2 Controlling degradation of the tool tip during 

face-milling 

The influence of tool degradation on the machined parts is inevitable. This is because of 

the brittleness and the hardness of the material that makes up the tool inserts and the 

workpiece. The influence of the tool degradation as well as the built-up edge formations 

can be observed throughout the machining process. Hence, much research such as 

documented in [141]–[144] has been geared toward its impact on surface finish. While 
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the most significant effect is tool wear, the term ‘degradation’ is used in this chapter to 

describe general condition change due to all factors. 

Also, in the thesis, it was aimed to ensure that the influence of tool degradation on the 

surface quality of the training samples used for developing the models in chapter 6 is 

reduced or eliminated in cases where this is possible. This is not unrealistic for industrial 

applications when finishing cuts are used to minimise such influences. 

Changing the tool inserts after face milling every sample would be an ideal way to avoid 

tool degradation for the training samples. However, it will be impractical because of the 

cost involved, as a high number of samples will be machined. Hence, changing the 

inserts as frequently as possible in order to avoid excessive tool degradation that may 

impact on the quality of the surface of the machined part was considered. To identify 

when to change the tool inserts, a series of experiments were conducted. 

It is worth mentioning that all the samples used in this thesis were made up of the same 

material and size (30 mm x 30 mm x 20 mm). The aluminium alloy used was AL 6061. 

The mechanical properties and composition of AL 6061 are shown in table 5.2 and table 

5.3 respectively. Moreover, the face milling was performed in a unidirectional manner 

on all the samples as well. 

 

Table 5.2: Mechanical properties of the workpiece (AL 6061) 
 

Mechanical Property Value 

Hardness, Rockwell A 40.00 

Tensile Strength, Yield (MPa) 276.00 

Elongation at Break(%) 17.00 

Modulus of Elasticity (GPa) 68.90 

Poisson’s Ratio 0.33 

Shear Modulus(GPa) 26.00 

 

 
In order to classify level of degradation of tool inserts after usage, the Alicona Infinite 

Focus G4 instrument was used to obtain the change between each tool insert before and 

after it is used. Measurement of the new tool insert was used as a reference form, and 

that of the used insert was inputted as the imperfect form. The area of defects (SIMt) 

 



116  

 

 

Table  5.3:  Composition (wt.%) of workpiece (AL  6061) 
 

Content Weight (%) 

Al 97.30 

Cr 0.30 

Cu 0.20 

Fe 0.10 

Mg 1.00 

Mn 0.10 

Si 0.60 

Ti 0.10 

Zn 0.20 

 

 
according to ISO 8785 [145] was obtained as the difference between the two 

measurements, which was used to represent the degree of degradation in this thesis. 

Also, with assistance of a locally-fabricated holder, the tool insert was always inclined 

at an angle of 45 degrees for all measurement, in order to measure the tip of the insert 

that was engaged with the workpiece during the machining process. As that gave the best 

measurement of the insert relative to the tip of the insert that had contact with the sample 

during the machining process and its subjection to degradation. 

To understand how fast the tool degrades and/or wears during the milling process, ten 

samples were machined using the same cutting conditions. After each milling process, 

the inserts and machined samples were measured to obtain the SIMt and the Sq 

respectively. Also, a digital indicator was used to check for tool degradation after every 

face milled sample on the machine tool. Two cutting conditions were used; for a 

relatively fine finish (Sq value <1 µm) and a rough finish (Sq value > 5 µm) generated 

using typical finishing and roughing parameters respectively. It was discovered that 

different cutting conditions had different impact on tool degradation. Figure 5.3 shows 

the image of new insert (left); figure 5.3a and 5.3c and used insert (right); figure 5.3b 

and 5.3d. The following observations were discovered after analysing the tool 

degradation and its impact on the surface quality while face-milling ten samples of 

aluminium alloy block. Additional insight was also gained during this work through 

discussions with an experienced machinist. 

 



117  

 

 

  

(a)  Image captured using Alicona software; 

New insert tip 

(b) Image captured using Alicona software; 

used insert tip 

 

  

(c)  New insert tips viewed under microscope (d)  Used insert tip viewed under microscope 
 

Figure 5.3: Images of inserts; from the alicona software and microscope 

 

 

1. There is a change in the volume of the tool insert after every revolution of the tool 

holder as it engages with the workpiece. This change could be as a result of wear, 

accumulation of residual on the tip of the tool (built-up edge) or the tip breaking. 

2. Breakage of the tip of the insert rarely happens if the machining process is 

performed under the recommended cutting conditions of chosen workpiece’s 

material which was followed in this research; hence breaking of the tip during 

machining was not experienced throughout this set of experiments. 

3. Tool wear is most likely to occur in the initial milling process, and this was deduced 

from the SIMt values obtained from the tool insert used for milling the first sample, 

which were approximately -97,100 µm2 (rough sample) and -12,000 µm2 (fine 

sample). The initial tool wear happens because the coatings covering the tool 

inserts were removed during the preliminary stages of the milling process. The 

difference in the SIMt values differs in both fine and rough milling tool inserts 
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because of the area of engagement. For the fine milling, a cutting depth of 0.2 

mm was used while for the rough milling, a cutting depth of 1.5 mm was utilised. 

Hence, a larger area of the tool insert is subjected to greater tool degradation during 

the rough sample milling process compared to the fine sample milling. 

4. Also, during the milling process, as the tool inserts engage with the workpiece, heat 

is generated. The generated heat sometimes reaches the melting point of the 

workpiece. Hence, the use of coolant in the cutting process to reduce the heat. 

However, with soft materials such as aluminium alloys, it was noticed that 

residuals of the aluminium alloys after melting, solidifies quickly at the tool tip, 

increasing the volume of the used insert at the end of the face milling process 

forming the built-up edges. 

5. The solidified mound at the tips of the inserts (built-up edges) could either chip off 

or increase in volume during subsequent milling. This is dependent on the cutting 

force, the temperature produced during the machining process and the cutting 

parameters. Unfortunately, no clear pattern was deduced on whether the built-up 

edge will chip off or increase in volume in subsequent milling. 

 
The change in the surface quality (Sq) of the samples over machining ten samples varied 

arbitrarily between 5.41 ± 0.27 µm and 0.95 ± 0.12 µm for the rough and finish samples 

respectively. This can be observed in figure 5.4 and 5.5 respectively. 

 

Figure 5.4 display the results obtained from machining 10 aluminium alloy samples 

using the same cutting parameter with an aim of obtained a fine surface; Chart 1 (on top) 

is the deviation in Sq value (machined surface) as the number of sample increases. Chart 

2 is results of SIMt obtained from the difference in tool inserts as machined sampled 

number increases. Chart 3 is a bar chart of the absolute deviation of height   of tool insert 

on-machine using a digital indicator. 

It can be observed from figure 5.4 that, the inserts first undergo losing of their coatings 

and slight degrades or/and wears (but enough to have an impact on the surface quality) 
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by observation of the first four samples. The fifth and sixth samples confirm the inserts’ 

built-up edges. The built-up edges chips off and building up again as further samples are 

machined. 

 

 

 

Figure 5.4: Effect of fine face milling on tool inserts as the number of samples increase 

 

Figure 5.5 display results obtained from machining 10 aluminium alloy samples using 

the same cutting parameter with an aim of obtained a rough surface; Chart 1 is the 

deviation in Sq value (machined surface) as the number of sample increases.  Chart 2 is 

results of SIMt obtained from the difference in tool inserts as machined sampled number 

increases. Chart 3 is a bar chart of the absolute deviation of height of tool insert on-

machine using a digital indicator.  

An observation of the charts in figure 5.5 depicts that after the initial tool inserts 
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degradation/ wear caused by milling the first two samples, the volume of the inserts 

does not change rapidly compared to figure 5.4. Comparing figure 5.4 and 5.5 confirm 

that there is no similarity of the imparts of tool degradation when machining with 

different cutting parameters. This might be due to factors such as the speed of the cutting 

tool and the area of engagement of the tool. In conclusion, in order to reduce the 

influence of tool degradation on the surface of the sample during the machining process, 

a digital indicator was used to quick check for significant tool degradation after every 

face milled sample as shown in figure 5.6. The tool insert was changed if a change in 

the height of the defection of 0.05 mm is detected. As it can be seen from figure 5.4 and 

5.5, milling with tool inserts with height defections above 0.05 mm has great impact 

on the surface quality. 

 

 

 

Figure 5.5: Effect of Rough face milling on tool inserts as the number of samples 

increase 
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Figure 5.6: Image - checking tool degradation using a digital indicator; arrow pointing 

to tool holder during the checking process 

 

 

5.3 Appropriate areal parameters to distinguish 

milled parts with different surface topologies 

The introduction to the concept of areal surface measurements guarantees a more 

detailed description of the surfaces under study, giving a greater statistical significance 

and better repeatability between samples of the same surface; compared to the initial 

profile measurement [146]. 

Even though it is a fact that there is a relationship between the surface topology of a 

machined part and the functional performance of the part, it is still unclear which of the 

surface topography parameters are most useful in a unique manufacturing process such 

as face milling. This problem is as a result of the initial development of areal surface 

parameters, mainly for ultra-precision surfaces such as optics, the lack of research into 

the functional significance of sophisticated parameters [139] and the lack of a systemic 

approach to select a few appropriate surface roughness parameters that can be used to 

describe the surface quality of a machined part. 

Different groups have used different surface parameters to define the surface quality of 

a product. A typical example would be the UK and USA using the average roughness 
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‘Ra’ as a control parameter whilst Germany, other eastern European countries and 

Russia employs the peak parameter for similar purposes [4]. This being one of the 

reasons for the lack of agreement on which parameters are best fit for representing a 

particular manufacturing process. Even though a single parameter could be used in 

indicating a variation in the manufacturing process, it may not be sufficiently 

discriminating or sensitive to pinpoint where the changes in the process have occurred. 

Moreover, a combination of parameters which are height related (Ra or Rq) cannot 

equally be used [147]. For the same reason areal surface parameters, such as Sa and Sq 

could potentially fail to discriminate between different manufacturing processes alone 

because both are height parameters [148]. 

In this section, a statistical approach is considered to suggest the most appropriate 

surface areal parameters for discrimination between different face-milled surfaces. The 

selected areal parameters will later be used as the output of the model in chapter 6. 

 

 
5.3.1 Procedure for selection of best areal parameter 

 

The method of selecting the appropriate surface areal parameters which will be 

implemented in this study has been utilized by Helmli et al. [149] to select significant 

areal parameters that can be used to discriminate between new and used abrasive papers. 

In their studies, they concluded that it is vital to select parameters based on their 

usefulness and significance; which is having disjoint intervals. The approach has been 

also been used by Das and Linke [150], to select surface roughness parameters that best 

distinguish between extruded surfaces and ground surfaces produced by #60 grit and 

#400 grit sizes. The technique used in the aforementioned works is referred to as cross-

correlation coefficient; a tool for the classification of problems with only two events 

such as good or bad parts. In this study, it will be used to classify rough (on the left) or 

fine (on the right) face-milled surfaces shown in figure 5.7. 
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Figure 5.7: Faced-milled blocks with different surface topography; The rough sample 

on the left had an Sa value of 5.7 µm whiles the fine face milled sample on the right had 

an Sa value of 1.2 µm 

 

 

The cross-correlation coefficient (rFR) between the two face-milled surfaces will be 

calculated using the formula [149] below; 

 

 

𝑟𝐹𝑅 =  
∑ (𝑆𝑣

𝐹.𝑖 −  𝜇𝐹)(𝑆𝑣
𝑅.𝑖 − 𝜇𝑅)𝑖=1

𝑛

√∑ (𝑆𝑣
𝐹.𝑖 −  𝜇𝐹)2𝑖=1

𝑛 ∑ (𝑆𝑣
𝑅.𝑖 −  𝜇𝑅)2𝑖=1

𝑛

 
(5.1) 

 

 

Sv in equation 5.1 represents a surface topography parameter, µF (µR) denotes the mean 

of the sample on a fine (rough) surface and SF,i(SR,i) is the surface topography 

parameter Sv of the ith sample on fine (rough) milled surface. “n” is the number of 

samples. The most significant parameter has the highest absolute cross correlation. 

 

In order to utilise the above method for choosing the right surface areal parameter for 

the predictive model, a series of repeated measurements were carried out. Ten 

measurements were taken from each face-milled sample (fine and rough) using the same 

technique, instrument, operator, in the same environment, at the same spot. All 20 

separate surface topologies were obtained with the same evaluation size, 8 mm x 8 

mm. 
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5.3.2 Results and discussion; selection of appropriate areal 

parameter 

 
After obtaining the twenty-four surface topography parameters for all the twenty 

measurements (10 per sample) using Surfstand V6 software package; the average and 

standard deviation were calculated, for the rough dataset and the fine dataset and in each 

case under a 95% confidence interval (coverage factor; K = 2 ) as shown in Appendix 

E. To find the surface topography parameter that is the most significant, the significant 

value is first computed. The significance; Si is calculated by using the intervals, and the 

mean of the two sample sets using the formula [149]; 

𝑆𝑖 =  
𝜕(𝑖𝑅, 𝑖𝐹 )

1
2 (𝜇𝐹 +  𝜇𝑅)

 
(5.2) 

 

 

Where ∂(iR ,iF) denotes the difference between the interval between the two datasets. 

Figure 5.8 shows the results of the significance against surface areal parameters 

between fine and rough face-milled surface.  

From figure 5.8, it can be seen that the height parameters (Sa, Sq and Spk) are most 

significant followed by the curves related parameters (Vvc and Vmc) and then the 

spacing parameter, Sal. 

 

 

 

Figure 5.8: Significance of areal parameters between fine and rough face-milled surface 
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As explained earlier, even though the height parameters (Sa and Sq) seem to have the 

highest value of significance, they may not be suitable to describe a machined surface 

alone. Sa and Sq are generally and widely used in many publications. This is because Sq 

is insensitive to differentiating peaks, valleys and the spacing of the surface as well as 

Sa. This has been demonstrated by Waterworth [148]. Spk, reduced peak height, is the 

next significant parameter after Sa and Sq.  Spk is an estimate of small peaks above the 

main plateau of the surface. It can be used to characterize the volume of material that is 

likely to be removed during running-in of a machined component [151] . 

The volume parameters (Vvc and Vmc) have shown a good relationship with functional 

requirements in several applications [148]. The Vvc and Vmc can be used to describe 

the performance of a surface without considering its highest peaks. The highest peaks 

on a surface are usually lost in the earlier stage of wear of the machined component. 

These volume parameters represent the fluid retention ability of the surface. 

The last parameter that will be considered from figure 5.8 is Sal. In using Fourier 

analysis, that is considering the surface topography of the machined workpiece is made 

up of a series of sine waves with different frequencies in all directions and amplitudes 

(see Appendix A), the power spectrum is a measure of the amplitude of each sine 

wave for a particular frequency, along a given direction. For an anisotropic surface 

(examples would be face-milled surfaces), Sal is in the direction perpendicular to the 

surface lay. A large value of Sal denotes that the surface is dominated by low spatial 

frequency components, while a small value for Sal denotes the opposite. Typically, the 

tool trace path in a milling process varies then there is changes in cutting conditions. The 

tool trace on a face milled surface has a relation with frequency components on the 

surface under study. This makes Sal a very important parameter in describing face-

milled surfaces. 

Based on the results and discussions above; Sa, Sq and Sal were considered as the main 

areal surface roughness parameter to be used as indicators suitable for distinguishing 

between the different levels of roughness on surfaces caused by face-milling. 
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5.4 Influence of machining conditions on areal 

parameters 

After identifying the appropriate areal parameters to be used for developing the 

predictive model, the next critical function that needs to be understood is the relationship 

between the milling conditions and the selected areal parameters. This is because 

different milling conditions causes different topologies on the surface of the machined 

parts as explained in chapter 2. 

Previous research has shown that varying the cutting conditions such as cutting speed, depth 

of cut, feed rate and type of coolant, greatly affects the surface roughness of the machined 

part [152], [153]. Even though there are existing literature on the influence of cutting 

conditions on the surface finish, the predominant focus is on profile roughness parameters. 

This leaves a gap in understanding of the influence of cutting parameters on areal surface 

parameters. Therefore, this section aims to examine the influence of cutting parameters on 

areal surface parameters. 

Many cutting conditions can influence the surface parameters as shown in chapter two. 

However, the most common cutting parameters identified via the reviewed literature in 

chapter two clearly shows that the depth of cut, cutting speed and feed rate are the most 

significant conditions that have great impact on the values of profile roughness 

parameters. While profile machining was the focus of the previous research it is assumed 

that the results are relevant to end milling processes. Henceforth, these three independent 

parameters are considered as the cutting parameters in this study.  

Experiments were planned as per Taguchi’s L’16 orthogonal array. Table 5.4 shows the 

investigating parameters used. These parameters were carefully chosen to ensure they 

all fall within the recommended cutting parameters provided by the manufacturer’s 

technical guide for end milling using the cutting tool [154]. 
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Table 5.4: Cutting parameters with levels 
 

Cutting Parameter Level 1 Level 2 Level 3 Level 4 

Cutting Speed (RPM) 4000 5300 6600 8000 

Feed Rate (mm/min) 750 1165 1580 2000 

DoC (mm) 0.20 0.70 1.20 1.70 

 

 
The Taguchi’s L’16 design of experiment produces 16 face-milled samples machined 

with different combinations of the cutting conditions shown in table 5.4. The purpose of 

using Taguchi’s L’16 instead of the traditional full factorial design of experiment is to 

reduce to number of resources used in the preliminary investigations and still achieve the 

aim of the study. 

The 16 different cutting parameters used for face milling the samples and corresponding 

surface topography information after measuring the samples are presented in 

Appendix F. The corresponding surface topography parameters (Sa, Sq, and Sal) 

were extracted from the surface topology measured using the MDS technique, as 

explained in chapter 3, and parameterized using Surfstand software package. 

The signal to noise ratio S/N ratios were calculated using the smaller-the-better 

characteristic proposed by Taguchi. With assistance from Minitab 17, a statistical 

analysis software, which is widely exploited in many engineering optimizations, analysis 

of variance (ANOVA) was carried out. 

It should be mentioned that in order to maintain a constant temperature during the face-

milling process, Coolant (Quakercool 7101 LF at a concentration of 7%) was used in the 

cutting process. Also, the tool degradation was also controlled as earlier. 

 

 
5.4.1 Analysis of variance (ANOVA) 

 

The experimental results of surface topography values were analysed with the Analysis 

of variance (ANOVA) method in order to identify the significant factors. During the 
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ANOVA process, a significance level of α = 0.5, i.e., for a confidence level of 95%; of 

the signal to noise (S/N) ratios were evaluated. ANOVA also determined the contribution 

of individual cutting parameters. The source with the lowest P-value is considered to 

have a significant contribution to the surface roughness. 

Table 5.5 and 5.6 show the results of the ANOVA for the areal parameters; Sq and Sal 

respectively. From the results, it can be observed that the feed rate is the most significant 

parameter followed by cutting speed. Depth of cut is the least significance in controlling 

Sq and Sal values of the machined part. From the results shown in table 5.5, the p-value 

of feed rate is 0.004 which is less than 0.05. This means that changing the feed rate 

whiles all other cutting parameters are constant will have higher impact on the value of 

Sq compared to when the other parameters are manipulated in the same manner. 

 

Table 5.5: Analysis of variance for Sq (µm) 
 

Source DF Adj SS Adj MS F-Value P-Value 

Speed 3 64.59 21.532 6.31 0.028 

Feed 3 138.97 46.325 13.58 0.004 

DoC 3 39.81 13.268 3.89 0.074 

Error 6 20.47 3.411   

Total 15 263.84    

 

Table  5.6:  Analysis of variance for Sal  (µm) 
 

Source DF Adj SS Adj MS F-Value P-Value 

Speed 3 174.66 58.219 11.64 0.007 

Feed 3 276.28 92.093 18.41 0.002 

DoC 3 23.74 7.913 1.58 0.289 

Error 6 30.02 5.003   

Total 15 504.69    

 
Also, from the results shown in table 5.6, the p-value of feed rate is 0.002, which is also 

less than 0.05 and means that feed rate has a significant impact on Sal value compared 

to the other cutting parameters. Table 5.7 shows the results of the ANOVA for Sa. From 

the results, it can be observed that all the cutting parameters have relatively great 

influence on the Sa value i.e. changing any cutting parameter will have a significant 

impact on the Sa value. In other words, none of the chosen control parameters is more 
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significant than the other. 

 

Table 5.7: Analysis of variance for Sa (µm) 
 

Source DF Adj SS Adj MS F-Value P-Value 

Speed 3 31.11 10.369 2.04 0.209 

Feed 3 68.94 22.98 4.53 0.055 

DoC 3 42.57 14.19 2.8 0.131 

Error 6 30.44 5.073   

Total 15 173.05    

 

 
5.4.2 Main effects of cutting parameters on areal parameters 

 

In statistics, a main effect is the effect of just one of the independent variables on the 

dependent variable i.e ignoring all other independent variables. In this section, the 

effects of the individual cutting parameters on the areal surface parameters where 

considered. 

 

Figure 5.9: Main effects plot for Sq 
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Figure  5.10:  Main effects plot for Sa 

 

Figure5.9a and 5.10a represent the main effect plots of cutting speed on Sq (Root mean 

square deviation of the surface) and Sa (arithmetical average of the surface) of a 

measured sample respectively. From the plots, both Sa and Sq reduce as cutting speed 

increases from 4000 to 8000 RPM. This is because, at the higher cutting speed, the 

tendency of built-up edge formation is decreased, more heat is carried away by the chip 

and less heat is dissipated to the sample, hence, the Sq is decreased. In order to achieve 

minimum Sq, the cutting speed should be kept at the highest level (8000 RPM). 

Similar results were obtained in previous research however they considered profile 

parameters; Rq [155]. 

Figure 5.9b and 5.10b represent the main effect plots of feed rate on Sa and Sq. From 

the plots, it is observed that the Sa and Sq increase with increasing feed rate from 750 

to 2000 mm/min. Increasing the feed rate increases the area of contact between the 

cutting inserts and the sample. This increases the cutting forces and stimulates higher 

values of Sa and Sq. To achieve minimum Sa or Sq, the feed rate should be kept at the 

lowest level (750 mm/min). 

Figure 5.9c and 5.10c represent the main effect plots of depth of cut on Sa and Sq. From 

the plots, it can be observed that the Sa and Sq value have an exponential relationship 
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with the depth of cut. Moreover, the effects of depth of cut on Sa and Sq are opposite in 

relation from 0.2 to 1.7 mm. It can be seen in both plots that after 0.7 mm depth of cut, 

there is a change in direction from increasing to decreasing or vice versa of the Sa or Sq 

value respectively. 

Figure 5.11 shows the main effect plot of the cutting speed and feed rate on the Sal 

parameter. It can be observed that an increase in the cutting speed and feed rate increases 

the Sal of the surface. By increasing the cutting speed from 4000 – 8000 RPM and the 

feed rate from 750 – 2000 mm/min, the surfaces produced become dominated by low 

spatial frequency features. However, varying the depth of cut from (0.2 – 1.7) mm will 

not have any significant impact on the level of spatial frequencies on the surface. 

 

 

Figure  5.11:  Main effects plot for Sal 

 

 

5.5 Summary of chapter 
 

From the investigations conducted in this chapter, the following conclusions were 

deduced: 

 
1. In order to avoid inconsistencies in measurement results obtained from face-milled 
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surfaces, the middle section of the tool trails on the machined surface will be 

considered in this thesis. This is because this topology can be found in every face 

mill sample regardless of the cutting condition used. It is also easy to identify due 

to its periodic structure. Finally, areal surface topography parameters obtained 

from the middle section is closer to the average of parameter obtained from all 

potential topologies suitable to be used for representing the entire surface of the 

machined samples. 

2. Even though tool degradation is inevitable in machining process due to the 

interaction between two different materials (the tool tip and the workpiece), it was 

discovered that in the cases were the workpiece is made of aluminium alloy, the 

tool can either wear (decreasing the overall tool insert volume) or incur built-up 

edges (increasing the overall tool insert volume). In order to avoid this 

phenomenon from impacting greatly on the surface quality of the machined 

samples used in this thesis, the tool inserts classified as useful were monitored to 

have a defection height that does not exceed 0.05 mm. 

3. The areal surface metrology parameters Sa, Sq and Sal show results which confirm 

their ability to be used as indicators for various levels of surface topography in a 

milling process. The conclusion was made after a sensitivity analysis was 

conducted considering 24 areal surface topography parameters. 

4. In an attempt to understand the cutting parameters influence on the selected surface 

areal texture parameters, an ANOVA was carried out using the cutting parameters 

(feed rate, depth of cut and cutting speed) as the factors and surface parameters 

(Sa, Sq and Sal) as responses. It was discovered that for Sq and Sal, the most 

significant parameter was the feed rate. 

 
Based on the information revealed in this chapter, the next chapter develops a predictive 

model using the cutting parameters as input and areal surface topography parameters as 

the output.
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Chapter 6 
 
 

Development and evaluation of 

surface metrology models 

 
On-machine metrology (bringing metrology onto the machine tool on the shop floor) 

has many benefits. One of its benefit is the elimination of challenges associated with 

realigning parts back on the machine tool for re-machining in case errors are identified 

during the post-process metrology analysis. Another important benefit is obtaining data 

in a short time. Often data from post-process inspection systems takes time, even days 

or weeks, to filter back for process improvement which will be greatly reduced if on-

machine metrology is practiced.  

In an attempt to increase the quality of machined parts; optimization of cutting 

parameters used for machining will increase the ability to control the surface quality 

which in turn is a key enabler for right-first- time production and reduces the quantity 

of defected parts that require re-machining. A system that combines a robust 

optimization model and on-machine metrology will not only increase productivity but 

also reduce the number of rejected parts as well. 

Based on the review in chapter two, surface roughness models using cutting conditions 

in milling process have been in existence for several decades. However, the majority of 

models that have been developed have mainly focused on profile surface roughness 
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parameters and not areal parameters. The few that considered areal parameters as 

outputs were theoretical models only (reviewed in section 2.5 of this thesis). 

The models developed in this chapter are data-driven models employing Artificial 

Intelligence (AI) methods to predict areal surface topography parameters (Sa, Sq and 

Sal) using cutting parameters (cutting speed, depth of cut and feed rate) because of its 

robustness and ease to develop. 

 

 

6.1 Artificial Intelligence (AI) methods 
 

An artificial intelligence (AI) model is a model that can make choices which would be 

viewed as intelligent if made by an individual. Artificial Intelligence is becoming more 

prominent and particularly amenable to modelling complex systems since it has 

exhibited better predictive ability compared to traditional methods. 

The most common AI techniques for models that have been utilized in manufacturing 

include genetic algorithm (GA), fuzzy logic algorithm, and artificial neural network 

(ANN). 

Neural networks use training data pairs representing the input and output of the system 

to learn a function that can be used to map the input to the output. Unlike methods such 

as linear regression, which only learn linear functions, feed forward neural networks can 

learn non-linear mappings [156]. They do this by transforming the input to another 

representation space using hidden layers that represent the parameters of a non-linear 

mapping function. The parameters of the hidden layers are then learned using gradient 

descent approach. 

ANN models have been used in several areas of engineering applications. They have 

been proven as an excellent tool for predictive modelling in machining and processes. 

They also provide a more accurate prediction compared to conventional modelling tools 

such as regression models in many cases, especially when solving highly non-linear and 
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complex problems that cannot be easily modelled mathematically [157]. Hence, an ANN 

model was considered in this research. 

 

6.1.1 Basic introduction to ANN 
 

ANN models are made of layers that can be classified into three categories: input layer, 

hidden layer(s) and the output layer. Every ANN model must have at least one hidden 

layer. However, multiple hidden layers can also be used. The number of hidden layers 

must be chosen carefully to avoid limiting the networks’ ability to generalise results for 

new input data.  

Each layer consists of neurons, which are also referred to as the processing elements. 

The elements are connected to other elements in the adjacent layer. The strength of the 

connection is expressed by the weight. In a feed-forward network, the weighted 

connections feed activations only in one direction from the input to the output layer as 

shown in figure 6.1. Figure 6.1 is a preliminary design of the structure of a feed-forward 

neural network. 

 

Figure 6.1: Structure of feed-forward neural network with four layers; one input layer, 

two hidden layers and one output layer 
 

 

Each neuron in a layer initially performs a weighted amassing of the individual input 

values and then passes the results through an activation function, with the exception of 
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the input layer elements where no computation is performed. The net input to each 

neuron is the sum of the weighted output of the neurons in the previous layer. The output 

of the element j in layer k is 

 

𝑛𝑒𝑡𝑗
𝑘 =  ∑ 𝑊𝑗𝑖

𝑘𝑂𝑖
𝑘−1 

(6.1) 

 

𝑂𝑘
𝑗

=  𝑓(𝑛𝑒𝑡𝑗
𝑘) =  

1

1 + 𝑒−(𝑛𝑒𝑡𝑗
𝑘)

 
(6.2) 

 

 
Where weight Wk

ji is between the ith neuron in the (k-1)th layer and the jth neuron in the 

kth layer, f(x) is the activation function and Oj
k is the output of the jth neuron in the kth 

layer. 

 

 

In order to obtain a successful model of ANN, there is substantial reliance on trial and 

error process with the influencing functions [157]. The MATLAB neural network 

toolbox could be used as an assistant for designing and updating these functions 

efficiently. By using this toolbox, the influencing functions include network type, 

training function, learning function, performance function, transfer function and the 

number of hidden layers. 

 

 
6.1.2 Selecting the right network structure and functions for 

ANN model 

 
The difficulty in building an ANN is to determine the number of hidden layers and 

neurons, the training and learning algorithm, the transfer function for each of the layers, 

and the network architecture to be used [158]. The transfer function could be any 

differentiable function such as hyperbolic tangent sigmoid (tansig), Log-sigmoid, 

(logsig) and linear (purelin). Also, there are over 14 training algorithms that could be 
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used when building an ANN, and only one can be utilized per model.  Each of these 

parameters can have a significant impact on the network’s performance, and care should 

be taken when choosing them to build a robust ANN. 

Choosing the right network architecture also plays an important role in the performance 

as well. Unfortunately, the method of selection of the transfer functions and the network 

architecture during the modelling is based on trial and error. In the last decade, research 

has been undertaken which attempt to propose methods to fix this problem. A detailed 

review for the past 20 years can be found in [159] by Sheela and Deepa on the various 

attempts and techniques suggested to solve this problem. Based on their survey, it is 

appropriate to conclude that this challenging task can only be made simpler by 

eliminating the combinations of algorithms and functions that provide high errors for a 

unique application. This approach only solves one side of the problem leaving the 

challenge of selecting the right network architecture and hidden layers. 

In order to solve the other half of the problem in this thesis, a guideline given by Zhang 

et al. [160] was considered in choosing the recommended number of neurons in the 

hidden layer and network architecture in this research. In accordance with Zhang et al., 

the recommended number of neurons in the hidden layers to be considered during the 

trial and error experiments should be in the order; ‘n/2’, ‘1n’, ‘2n’, and ‘2n+1’, ‘3n’, and 

‘3n+1’ where n is the number of input parameters. Also, it was considered the number 

of hidden layers should not exceed the number of inputs parameters. Henceforth, the 

following network architectures were considered; 3 − X1 − 3 and 3 − X1 − X2 − 3, where 

Xith represents the number of neurons in the ith hidden layer. 

To avoid the tedious trial and error approach, a MATLAB program was used to identify 

the best training algorithms, learning algorithms and transfer function for each layer   in 

this thesis. The program considered all possible combinations of the algorithms, transfer 

functions, and confirmed the performances of each possible combination. The results 

from the program is described in section 6.2. 
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6.1.3 Quality assessment of developed models 

 

After a model has been developed, it is expedient to confirm the quality of predictions 

obtained from it to assess the models accuracy. This procedure gives the confidence 

behind the model. This process is referred to as model validation. 

Two approaches are used in the validation of a model. The first examines the possibility 

of a model to predict dataset that was used in the training process. This is referred to as 

direct validation. If the model is not able to predict the dataset that has been used in 

the training procedure, it suggests that the model is not fit to be use to represent the 

system. The secondary test examines the possibility of the model to predict dataset that 

was not used in the training process, in other words, unseen dataset. This procedure is 

referred to as cross-validation. Cross-validation is mainly use to check the generalisation 

capability of the model [161]. 

In both tests, the predicted results by the model are compared with corresponding 

measured output to obtain its deviation. Usually a statistical index can be employed. The 

common statistical methods for this purpose include residual value, Root Mean Square 

Error (RMSE) and Correlation coefficient (R). These can also be referred to as 

performance criteria [162] . 

Root Mean Square Error (RMSE) and correlation coefficient (R) were used in this study 

to assess the performance of the developed model as well as to assist in selecting the 

right model structure. 

The coefficient of correlation (R) describes the degree of collinearity between predicted 

and measured data, which ranges between (-1, 1). This is an index of the degree of linear 

relationship between measured and predicted data. Systems with good correlations have 

an absolute magnitude approaching 1.  

The root mean square error is used to measure the difference between values predicted 

by a model and those measured from the experimental test. Systems with high accuracy 

have RMSE approaching 0. The coefficient of correlation (R) and RMSE were calculated 
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using the equation below: 

 

𝑅 =  
𝑛 ∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1 −  ∑ 𝑥𝑖

𝑛
𝑖=1 ∑ 𝑦𝑖

𝑛
𝑖=1

√(𝑛 ∑ 𝑥𝑖
2 − (∑ 𝑥𝑖

𝑛
𝑖=1 )2𝑛

𝑖=1 )√(𝑛 ∑ 𝑦𝑖
2 − (∑ 𝑦𝑖

𝑛
𝑖=1 )2𝑛

𝑖=1 )

 
 

(6.3) 

 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑥𝑖 − 𝑦𝑖)2𝑛

𝑖=1

𝑛
 

 

 

(6.4) 

Where n = total number of samples xi = measured values yi = predicted values 

 

 

6.2 Development of the ANN 
 

The description of key decisions required to develop a neural network was explained 

earlier. In this thesis, two ANNs were developed with each having a different network 

architecture. The first group has a single network with three inputs and three outputs as 

shown in figure 6.1. This model architecture will be referred to as conventional model 

in this thesis. The second model comprises of three networks enclosed to form a model. 

It has same inputs (three cutting parameters) but has a single output (either Sa, Sal, or 

Sq) connected to each network. This will be referred to as enclosed multiple network 

(EMN) model in this thesis. The structure of the EMN model is as shown in figure 6.2. 

 

 

Figure 6.2: Structure of enclosed multiple network model 
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The purpose for developing two models with different structures is to confirm if the 

conventional model will be as reliable as the enclosed multiple network model. The 

enclosed model is expected to be more accurate than the conventional model. This is 

because, for the enclosed multiple network models, each embedded network is 

responsible for a single output parameter making each network dedicated to prediction 

only one output parameter. However, in a conventional model, a single network is 

responsible for all three-output parameters. 

On the other side, the author also considered that, a conventional model with multiple 

outputs can be as reliable as an enclosed multiple network model, only if the output and 

input parameters are related that is, the stronger the relationship between the output 

parameters or/and input parameters; the higher the reliability of the conventional 

model. And since all three output parameters are surface areal parameters obtained from 

the same sample and the inputs parameters are all cutting parameters, it is worth 

investigating this possibility. And if per chance the conventional model is equally or 

better than the EMN model, it will be preferable over the enclosed multiple network 

model because it is less complex to develop.  

It should be mentioned that 64 samples were machined using full factorial design of the 

cutting parameters in table 5.4 and following all the suggestions made in earlier chapters 

for both the machining process as well as the measurement process. 

 

 
6.2.1 Conventional surface topography predictive model 

 

With the assistance of the MATLAB neural network toolbox and the programming codes 

for selecting the right network structure as well as the best transfer function explained 

in section 6.1.2, different conventional models were developed. The MATLAB program 

developed models with all possible combination of the algorithms and transfer functions 

and confirmed their performances using the direct validation approach and RMSE as the 

performance criteria.  
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For conventional model with only one hidden layer, that is 3 − X1 − 3; 1,512 models 

were developed from the possible combinations of function. For models with two hidden 

layers; 3 − X1 − X2 – 3; 27,216 were developed, where Xith represents the number of 

neurons in the ith-hidden layer. Due to the high numbers of developed models in each 

category, only the top five is presented. Table 6.1 and 6.2 presents the top five 

conventional models selected based of earlier discussion in section 6.1.3. 

 

Table 6.1: Best Models (Conventional Model 3−X1 −3 ) Based on their RMSE Values 
 

 Model Name / 

Architecture 

Training 

algorithm 

Learning 

algorithm 

Hidden 

Layer 1 

Output 

Layer 

RM SE 

1 net534/3-10-3 Trainlm learngdm Tansig purelin 0.2876 

2 net697/3-10-3 Trainscg learngdm Purelin purelin 0.3251 

3 net1206/3-3-3 Trainlm learngdm Logsig purelin 0.3144 

4 net1327/3-7-3 Trainrp learngdm Purelin purelin 0.3251 

5 net1390/3-9-3 Trainscg learngdm Purelin purelin 0.3221 

 
It is worth mentioning that the models presented in this section are made up of one 

network but have three outputs (areal surface parameters). Also, the RMSE was used 

for the performance criteria and was obtained from the predicted and the real response 

of the same input dataset (cutting parameters). 

 

 

Table 6.2: Best Models (Conventional Model 3 X1 X2 3 ) Based on their RMSE 

Values 
 

 

 
From table 6.1, the model assigned the name, net534 has the minimum RMSE followed 

by net1206. Hence, they will be considered in the next section for cross-validation. From 
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table 6.2, the model assigned the name, net19578 has the minimum RMSE followed by 

net8040. Hence, they will also be considered in the next section for cross validation. 

 

6.2.2 Enclosed multiple network model for surface topography 

prediction 

 
In this section, three groups of networks were created each predicting one areal surface 

topography parameters; Sa, Sq and Sal. For each surface parameter, 1512 networks with 

structure 3 − X1 − 1 were created in order to observe the performance of different 

combinations of the transfer functions and algorithm. Likewise, 27216 networks with 

structure 3 − X1 − X2 − 1 were created for the same purpose which considering models  

 

Table 6.3:  Best Networks for the prediction of only Sa 
 

 Model Name / 

architecture 

Training 

algorithm 

Learning 

algorithm 

Hidden 

Layer 1 

Hidden 

Layer 2 

Output 

Layer 

 
RM SE 

Network with 1 hidden Layer; 3 − X1 − 1 

1 net1209/3-6-1 Trainlm Learngdm tansig  purelin 0.5076 

2 net1206/3-3-1 Trainlm Learngdm logsig purelin 0.3416 

3 net504/3-3-1 Trainlm Learngd logsig purelin 0.4667 

4 net522/3-7-1 Trainlm Learngd logsig purelin 0.7308 

5 net678/3-7-1 Trainscg Learngd tansig purelin 0.5416 

Network with 2 hidden Layer; 3 − X1 − X2 − 1 

1 net21684/3-3-10-1 Trainlm Learngdm tansig tansig purelin 0.2463 

2 net13734/3-1-9-1 Trainbr Learngdm logsig logsig purelin 0.2473 

3 net8823/3-1-6-1 Trainlm Learngd logsig tansig purelin 0.1891 

4 net8847/3-1-7-1 Trainlm Learngd logsig logsig purelin 0.212 
5 net22073/3-9-3-1 Trainlm Learngdm tansig purelin purelin 0.3693 

 

with two hidden layers. The best network obtained from each of the three groups is 

selected to develop the enclosed multiple network model as shown in figure 6.2. The 

best networks were therefore chosen based on results from the direct validation as 

explained in section 6.1.3. The best five networks under each category (for the 

prediction of Sa, Sq and Sal) are tabulated in table 6.3, table 6.4 and table 6.5 

respectively. 
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Table 6.4:  Best Networks for the prediction of only Sq 

 

 Model Name / 

architecture 

Training 

algorithm 

Learning 

algorithm 

Hidden 

Layer 1 

Hidden 

Layer 2 

Output 

Layer 

 
RM SE 

Network with 1 hidden Layer; 3 − X1 − 1 

1 net1107 3-6-1 Trainlm Learngdm logsig  tansig 0.3455 

2 net471 3-9-1 Trainlm Learngd tansig purelin 0.3840 

3 net633 3-9-1 Trainscg Learngd tansig purelin 0.3766 

4 net459 3-6-1 Trainlm Learngd logsig tansig 0.3605 

5 net624 3-7-1 Trainscg Learngd tansig purelin 0.2619 

Network with 2 hidden Layer; 3 − X1 − X2 − 1 

1 net19575/3-1-9-1 Trainlm Learngdm tansig logsig purelin 0.3730 

2 net19758/3-3-10-1 Trainlm Learngdm logsig tansig purelin 0.5671 

3 net8046/3-3-7-1 Trainlm Learngd tansig logsig purelin 0.3640 

4 net8550/3-9-9-1 Trainlm Learngd logsig logsig purelin 0.3778 

5 net20352/3-10-7-1 Trainlm Learngdm logsig tansig purelin 0.4266 

 
 

Table 6.5: Best Networks for the prediction of only Sal 
 

 Model Name / 

architecture 

Training 

algorithm 

Learning 

algorithm 

Hidden 

Layer 1 

Hidden 

Layer 2 

Output 

Layer 

 
RM SE 

Network with 1 hidden Layer; 3 − X1 – 1 

1 net1183/3-10-1 Traingda Learngdm purelin  purelin 0.9385 

2 net247/3-7-1 Traincgp Learngd purelin logsig 0.9176 

3 net1138/3-1-1 Traingda Learngdm purelin tansig 0.9113 

4 net993/3-6-1 Traincgp Learngdm tansig purelin 0.9094 

5 net1327/3-7-1 Trainoss Learngdm purelin purelin 0.9082 

Network with 2 hidden Layer; 3 − X1 − X2 – 1 

1 net29152/3-6-6-1 trainlm Learngdm tansig tansig purelin 0.0026 

2 net9566/3-10-1-1 Traincgp Learngd logsig logsig purelin 0.0035 

3 net29371/3-7-10-1 Trainbr Learngdm logsig tansig purelin 0.0062 

4 net1359/3-6-6-1 Trainlm Learngd logsig logsig purelin 0.0172 

5 net12498/3-7-9-1 Trainlm Learngd tansig purelin purelin 0.0453 

 

 

6.3 Validation of chosen models 
 

Table 6.6 shows the cutting parameters which were used as the input data for cross- 

validation purpose. A comparison between table 5.4 and 6.6 clearly shows the cutting 

parameters outline in table 6.6 is acceptable for cross-validation of the model. In 
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otherwords, they (the parameters outlined in table 6.6 ) cannot be found in the dataset 

used for training the models (dataset from table 5.4). This is important because it is quite 

easy to get good results with standard ANN validation using a percentage of the training 

data set. This validation which does not use any of the training datasets ensure we have 

a robust model suitable for making predictions on dataset not seen before. 

 

Table 6.6: Cross-verification cutting parameter 
 

 Speed 

(RPM) 

Feed Rate 

(mm/min) 

DoC 

(mm) 

1 3500.00 800.00 0.30 

2 4000.00 700.00 0.40 

3 5500.00 1300.00 1.00 

4 6200.00 1400.00 1.80 

5 7000.00 1900.00 2.00 

6 7000.00 2100.00 1.00 

7 5000.00 650.00 1.30 

8 6400.00 650.00 2.10 

9 8200.00 1200.00 0.50 

10 8300.00 1300.00 0.80 

 

 

The models selected in the earlier section are validated in this section using correlation 

coefficient (R) as the performance criterion. Cross-validation was performed on the 

models since the parameters in table 6.6 was considered. The results are tabulated in 

table 6.7 and 6.8. Table 6.7 and 6.8 also presents direct validation using R as the 

performance criterion. 

From table 6.7, the best conventional ANN model to predict all the three surface areal 

parameters is net19764 which had a network architecture of 3−3−10−3. This is because 

it has the highest mean value (0.90). The training algorithm used was the Levenberg-

Marquardt backpropagation and the transfer functions were tansig, logsig and purelin 

for the 1st and 2nd hidden layers and the output layer respectively. The values obtained 

from averaging R of both direct and cross validation under each areal parameters where 

Sq (0.93), Sal (0.83) and Sa (0.92). 
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Table 6.7: Performances of selected conventional model for prediction of surface 

texture parameters 
 Coefficient of correlation (R) Average 
Model Name Direct Validation Cross-Validation 

 Sq Sal Sa Sq Sal Sa  
Models with 1 hidden Layer; 3 − X1 − 1  
Net534 

Net1206 

0.94 

0.75 

0.95 

0.63 

0.93 

0.67 

0.27 

0.84 

0.92 

0.67 

0.06 

0.86 

0.68 
0.74 

Models with 2 hidden Layer; 3 − X1 − X2 − 1  
Net19764 

Net7887 

0.97 

0.80 

0.89 

0.93 

0.98 

0.83 

0.89 

0.73 

0.77 

0.93 

0.87 

0.79 

0.90 
0.84 

 
 
Table 6.8: Performances of selected networks for Enclosed multiple network Model 

for prediction of surface texture parameters 

Model 
Name 

Coefficient of correlation  
Average 

 Direct Validation Cross Validation 
Conventional Model - Sa hidden Layer; 3 − X1 − 1  
Net1206 

Net522 

0.95 

0.94 

-0.27 

0.52 

0.34 
0.73 

Conventional Model - Sa hidden Layer; 3 − X1 − X2 − 1  
Net21684 

Net8823 

0.98 

0.94 

0.93 

0.63 

0.95 
0.79 

Conventional Model - Sal hidden Layer; 3 − X1 − 1  
Net1183 

Net247 

0.91 

0.87 

0.96 

0.96 

0.94 
0.92 

Conventional Model - Sal hidden Layer; 3 − X1 − X2 − 1  
Net9566 

Net29152 

0.98 

0.98 

0.99 

0.98 

0.99 
0.98 

Conventional Model - Sq hidden Layer; 3 − X1 − 1  
Net624 

Net459 

0.81 

0.86 

0.92 

0.83 

0.87 
0.85 

Conventional Model - Sq hidden Layer; 3 − X1 − X2 − 1  
Net20352 

Net8550 

0.99 

0.99 

0.93 

0.87 

0.96 
0.93 

 

 

An enclosed multiple network model was also built using the networks in table 6.8. 

Net20352 was used to predict Sq which had R of 0.96. Net9566 for Sal with R of 0.99 

and net21684 with R of 0.95 for prediction of Sa. It should be mentioned that the average 

coefficient of correlation is used.. Net 20352 had the architecture of 3 − 10 − 7 − 1 whilst 

net 9566 and net 21684 had an architecture of 3 − 10 − 1 − 1 and 3 − 3 − 10 − 1 
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respectively. 

It is worth mentioning that a high correction coefficient does not mean the two 

measurements agree. In other words, a model with a correction coefficient of 1 does not 

mean the model can predict with 100% accuracy. The reasons for further comparison 

between the two chosen models and the real responses using other methods are as 

follows: 

 

1. The correlation coefficient measures the strength of a relation between two 

variables. Results obtained from correlation cannot give any insight about the 

agreement between the measured valued and the predicted value. 

2. A change in scale of measurement does not affect correlation values. Hence, high 

correlation such as 1 does not mean the model can predict with 100% accuracy. 

However, the scalar error can easily be compensated if it exist. 

3. Correlation depends on the range of the samples used. Two datasets over a wider 

sample range (for example 20 samples) will turn to have a totally different 

correlation compared to the same datasets but using only a smaller sample range 

(for examples 5 samples). Since there are no clear rules about the number of 

samples required for validation of a model when using correlation, the correlation 

coefficient will vary when different number of samples are used. Hence, 

correlation cannot be the single measure to fully determine the accuracy of a 

models. 

 

6.4 Comparison of results for models with 

measured results 

In this section, the two selected models are compared again by generated graphs that 
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depict their percentage deviation from the original measurement. This approach of 

comparing two models is referred to as Bland-Altman analysis. The samples used were 

machined using the same cutting parameters tabulated in table 6.6. Hence, ten samples 

were used. In order to understand the error associated with using the predictive models 

as well as the relationship between the samples; the percentage deviation of the predicted 

values from the measured values is used. 

Figures 6.3, 6.4 and 6.5 show the Bland Altman Plot which illuminate the percentage 

deviation of the predicted values for both conventional model and EMN model.  

 

Figure 6.3: Bland-Altman plot for the chosen models against measured Sa value 

 

 

 
 

Figure 6.4: Bland-Altman plot for the chosen models against measured Sal value 
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Figure 6.5:  Bland-Altman plot for the chosen models against measured Sq value 

 

 

It is worth mentioning that figure 6.5 has a contracted x-axis for clarity purposes. The 

following can be deduced from the above plots: 

1. Majority of the predictions made by the EMN model falls within 85% interval 

confidence margin, unlike the prediction from the conventional model which is 

sporadic in nature. For example, a typical face-milled surface of Sa (1.5 µm) which 

is commonly produced on a precision manufacturing shop floor; the conventional 

model predicted with a percentage deviation of 16 % which is equivalent to 0.24 

µm whiles the EMN model predicted with a percentage deviation of 4 %, 

equivalent to 0.06 µm . The deviations in the conventional model is too high and 

will not fall into any acceptance tolerance on a typical precision manufacturing 

shop floor. 

2. Another keen observation that can be deduced from the plots is that the prediction 

of fine machined surfaces were very challenging for both models and accumulated 

high errors compared to rough machined surfaces. This trend was expected 

because the noise in the measurements increases when measuring fine surfaces 

with optical instruments. However, the results are still suitable for assisting with 
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predicting process parameters. 

 

 

6.5 Summary of chapter 
 

In this chapter, the possibility of using AI to assist in increasing the productiveness on 

a typical shop floor has been explored. This involved developing a novel neural network 

model which has the ability to predict areal surface parameters using cutting conditions 

as implementation of the developed model on a shop floor will increase right first-time 

machining. 

Out of over 55,000 models, the EMN-ANN model comprising of net-9566 with structure 

3 − 10 − 1 − 1, net-21684 with structure 3 − 3 − 10 − 1 and net-20352 with structure 

3 − 10 − 7 − 1 for prediction Sal, Sa and Sq respectively emerged to be the best model 

for this application (prediction of surface areal parameters using machining conditions) 

based on the results. 

The result of the average percentage deviation of the developed EMN-ANN model for 

Sq, Sal, and Sa in figure 6.3, 6.4 and 6.5 were 9 %, 7 %, and 9 % respectively.  This 

means that the EMN-ANN model could predict surface areal parameters with an 

accuracy of Sq (91 %), Sal (93 %) and Sa (91 %). 

The error deviation can be further reduced by increasing the number of training trails. 

The ANN training performed in this thesis was only for testing (64 trails were used as 

stated in section 6.2) and more trials would be required to properly train an ANN for 

such purpose. 
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Chapter 7 
 
 

Conclusion and future works 
 
 

This chapter presents the summary of the thesis and the major contributions of the 

research preformed. Followed by future research that may be conducted in relation to 

this research area. 

 

 

7.1 Thesis summary 
 

One of the challenges faced on a typically manufacturing shop floor is the ability to 

ensure that the quality of manufactured parts is not compromised over quantity as the 

demand of manufacturing products arises. Post-process inspection of parts has been the 

keen approach to access the quality of products in most industries, however, its 

disadvantages, which includes, increasing the idle time in the manufacturing process 

and also difficulties associated with re-aligning products back on the workspaces if re- 

machining is required, outwards its benefits. 

The main aim of this thesis was described in chapter 1 as, 

 
“to employ advanced techniques for increasing the quality of face-milled parts on a 

typical shop floor using areal surface roughness parameters as indicators” 

 

In order to achieve this aim, seven objectives were created. For an effective way of 
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summarizing this thesis, the objectives are outlined and under each objective, a summary 

of the work and the key results obtained from this thesis are presented. 

 
1. To investigate into available surface metrology technique suitable for 

on-machine surface metrology for face milling. 

The intensive literature review presented in chapter 2 on surface metrology 

instruments resulted in the identification of the Keyence LV 7020k as a potentially 

suitable candidate for the task of rapid large area surface measurement. This 

instrument had never been used in such capacity before, but its specifications were 

appropriate for the machining tasks within the scope of this thesis. Several 

publications reviewed also supported this decision by proving the robustness of 

the instrument for on-machine measurement in other metrology branches such as 

form and dimension metrology. The technique which is employs by the instrument 

is laser triangulation. Which is also known to be very robust and less costly 

compared with other techniques such as WSI and FV. 

The instrument can be used to measure an area of 8 mm x “L” mm with resolution 

10 x “s” µm2. where “L” is the length which the instrument moves during the 

measurement and “s” is its resolution which is mainly dependent on the sampling 

frequency and the speed of travel during the measurement. The variable axis of the 

instrument is due to its operating principle, providing it with a time axis in its 

measurements. Different sampling frequencies and speeds were considered in 

chapter 3. And it was revealed that setting the sampling frequency at 100 Hz and 

measuring at the speed of 18 mm/min provided stable and more reliable results 

appropriate for this research i.e. measurement of surface topography at the micro-

scale level.  

The main consideration for this decision was the level of noise induced into the 

measurement data by the measurement process. However, by measuring the 

surface of a part at the stated speed and frequency, the results obtained are 

subjected to reduced noise and a lateral resolution of 10 µm x 3 µm is also 



152 

 

 

 

achieved. It should be mentioned that the vertical resolution of the instrument 

used was 0.1 µm which was also confirmed from the manufacturer as it was not 

clearly stated in the attached instrument specification (see Appendix B). Even 

though the desired evaluation area stated in chapter 1 is easy to achieve using 

the chosen instrument, achieving the targeted resolution in the lateral scale will 

require enhancement of the measuring sequence. 

 

2. Develop a novel method to enhance the measurements captured by 

the selected instrument. 

Chapter 3 describes a novel methodology, which enhances the lateral resolution of 

the captured dataset and enables reduction in measurement noise. This technique 

was referred to as multidirectional scanning (MDS) technique in this thesis. MDS 

has the ability to increase the lateral resolution of the captured dataset to 3 µm x 3 

µm. It also reduces the impact of environmental noise tremendously by exploiting 

the very high scan rate of the instrument. MDS technique operates based on 

averaging of two capture datasets of the same area, obtained in the same 

environment and measurement conditions. However, the scans are performed 

perpendicular to each other in relation to their profile data. 

Due to the mismatch of lateral resolution in both captured datasets (10 µm x 3 µm 

and 3 µm x 10 µm), in other words, same but opposite lateral resolutions, the 

merging process ends up with a dataset with high and uniform lateral resolution (3 

µm x 3 µm). This is achieved by enriching the profile axis resolution which is 10 

µm, using data obtained from the time axis of the secondary dataset which has a 

resolution of 3 µm. 

Also, since the scan is very fast i.e > 32 µs per profile, merging the two datasets also 

reduces noise the affected each scan. 

Simulations were performed in chapter 3 to confirm the above claim. Which 

included the simulation of the impact of environmental noise on the dataset 
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obtained from the MDS technique. It was considered that the amplitude of 

environmental noise arbitrarily ranges from 0 to 0.25 µm on a typical shop floor 

based on experimental results. And the surface finish of a typical milling process 

has Rz ranging between 0.5 to 8 µm, which was confirm from a renowned precision 

manufacturing industry. 

It was discovered that, smooth surfaces, Rz of 0.5 µm, are very sensitive to the 

shop floor noise, and the MDS could not complete eliminate the noise but was able 

to reduce the impact of the noise by at least 50% when compared with datasets 

obtained from single measurement for the chosen instrument. Also, for very rough 

surface finish, say Rz of 8 µm, it was possible to completely eliminate any induced 

errors which is introduced by the environmental noise within the stated range. 

 

3. To validate the measurement technique for the on-machine surface 

measurement to establish traceability. 

For the purpose of traceability of the developed on-machine technique, chapter 4 

presented investigations which utilised artefacts such as step height blocks, optical 

flat, and cross-grating artefacts to obtain the metrological characteristics (MCs) of 

the MDS technique. The following MCs were deduced: measurement noise, 

residual flatness, amplification coefficient, linearity deviation and 

perpendicularity deviation. The results exposed the possibility of MDS for micro-

scale surface metrology. In that absence of an existing artefact suitable for MDS, 

a locally manufactured and calibrated artefact, using NPL primary instruments, 

was created. 

A secondary traceability analysis was considered which involved the comparison 

(both visually and parametrically) of results captured by the MDS technique and a 

laboratory-based focus variation instrument. The results also demonstrated the 

potential of MDS to be used for on-machine detection of surface imperfections 

such as scratches. 
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After an in-depth review of predictive models for surface roughness in chapter 2, 

it was discovered that no attempt has been made to develop an AI model that 

predicts areal surface roughness parameters for face milling process. There has 

only been attempts to develop AI models for profile surface roughness parameters 

(parameters obtained from 1-dimensional scan of a line on the surface). In 

accordance with ISO 25178-3, it is not recommended to use the measured values 

from an equivalent areal parameter to compare with profile tolerance specifications. 

Generally, the measured values from equivalent profile and areal parameters are 

correlated, but are not directly comparable in an absolute sense, with areal 

parameters describing the quality of a manufactured surface more completely. 

Hence, the subsequent objectives are geared towards a secondary aim, which is “to 

predict areal surface roughness parameters on face milled surfaces from machine 

conditions using intelligent techniques”. The intelligent technique considered in 

this thesis was a feed-forward back propagation neural network. The following 

objective were followed to develop a very robust model suitable for the task at hand. 

 

 
4. Investigate the appropriate areal surface parameters suitable to 

represent face-milling process. 

The issue that drove an initial investigation of appropriate areal surface parameters 

suitable to be used to represent face-milling process was the availability of many 

areal surface roughness parameters (See Appendix A). In this thesis, the 

software used for computing the areal surface parameter is called SURFSTAND. 

The software package has the ability to compute for twenty-four areal surface 

roughness parameters. Using all the twenty-four areal surface roughness 

parameters as output of the predictive model will require a complex architectural 

structure which is out of the scope of this research. It was therefore needful to 

select a few areal surface roughness parameters that can be used to represent the 

surface topography of a milled surface. 
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In chapter 5, a statistical approach was considered which employed cross 

correlation coefficients and the significance of each parameter to determine the 

most appropriate parameters. The results were solely based on the ability of the 

parameter to distinguish between fine and rough face milled samples. 

The areal surface parameters that came out as the best in order of performance 

were Sa, Sq, Spk, Vvc, Vmc, and Sal. The others had significance of less than 1, 

this demonstrated their inability to clearly differentiate between fine and rough 

face milled samples. Sa, Sq and Sal were finally selected to be considered in this 

thesis as the suitable surface roughness parameters to represent the surface 

topography of a face milled sample. 

Spk was not considered because it is a height related parameter just as Sa and Sq 

and it is reviewed in chapter 2 that all height related parameters turned out to have 

a very strong relation with either Sa or Sq. Hence it was not expedient to consider 

all three height related parameters as output of the predictive model. 

Sal was also chosen over Vvc and Vmc because apart from the fact the Sal is a 

spacing parameter; it is also frequency dependant, making it a key parameter for 

easier indication of milling machine problems such as chatter. 

 

 
5. To investigate the relationship between machining conditions and the 

selected areal surface parameters. 

During chapter 2, it was deduced from the reviewed literature that the machining 

parameters that have great influence on profile surface roughness are depth of cut, 

cutting speed and feed rate. In order to enlighten the reader about the influence 

these machining parameters have on areal surface roughness parameters in a 

typical milling process, an investigation (presented in Chapter 5) was conducted 

to understand the relationship pattern between the input and output of the model 

to be developed. 

The aims of this investigation were first, to understand the degree to which the 
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cutting parameters affect the selected areal parameters and secondly to identify the 

most significant cutting parameters for each of the chosen areal surface 

parameters. This investigations were carried out with assistance from tools such 

as analysis of variance (ANOVA) and Taguchi’s L’16 design of experiment. 

From the results, it was discovered that for Sq and Sal of a machined surface, the 

feed rate is the most significant parameters. However, Sa value had no dominant 

cutting parameter the influence its value. Also, apart from the depth of cut, the 

other cutting parameters; cutting speed and feed rate has a linear relationship with 

the chosen surface roughness parameters. 

Other preliminary investigations conducted that deemed relevant to the 

development of the model were as follows. 

• Identification of the right area on a face milled surface to represent the entire 

surface topography. 

• Effective ways to reduce tool degradation during machining process for 

training samples of the model. 

The above investigations have been successfully conducted and presented in 

chapter 5 of this thesis. 

 

6. To develop different neural network models with different training 

algorithms, learning algorithms, transfer functions for each layer and 

network architectures. 

The challenge when developing of neural network models involve taking decisions 

on the appropriate network architectural structure and the number of neurons in 

each layer in order to avoid generalisation of the model. In addition, identifying 

the appropriate transfer functions, training and learning algorithms to employ for 

a more reliable and robust model. There is no clear guidance on how to select these 

parameters, making it a difficult task. Majority of publication on this subject turn 

to use a trial and error approach to select these influential parameters for 
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developing a model. 

The earlier sections of chapter 6, present a novel technique for making these 

decisions faster and easier. The technique employs a computing algorithm, which 

develops multiple models by considering all possible combinations of the 

influential parameters. After which a graph is plotted with information about the 

RMSE obtained from direct validation procedure of all the developed models. The 

RMSE value was used as the performance criterion for all the models. Based on the 

graph, the best influential parameters for developing the models for the application 

at hand can be easily selected. 

Also, regarding the architectural structure of the models, two different classes of 

models were considered in this thesis. They were referred to as the conventional 

model and enclosed multiple network (EMN) model. The conventional models 

comprise of a single network with three input and three output.  EMN models on 

the other hand were made up of three networks with each network having a unique 

output but all networks had the same three inputs. In total 28,728 models where 

developed under each category by using the developed computing algorithm. 

Based on the performance criterion graph presented by the computing algorithm, 

the best five models under each category were selected for cross validation 

procedure. 

 

7. To identify the best model for the prediction of areal surface roughness 

parameters of face milled parts using cutting conditions. 

In order to select the best model, a different performance criterion, correlation (R) 

was utilised for cross validation using a new set of machined and measured dataset, 

which was not part of the training dataset of the models. This was done in order to 

avoid selecting an over fitted model.  Over fitted model can predict only dataset 

that it has seen before (dataset used for training the model). The cross validation 

process was presented in chapter 6 as well. 
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Finally, t wo models; one conventional and the other EMN model were considered 

for further comparison using Bland-Altman analysis. It was concluded that the 

level of errors in the conventional model was larger and sporadic in nature whiles 

the predictions from the EMN model fell within 85% interval confidence margin 

when compared with the real measured results. 

The result of the average percentage deviation of the developed EMN-ANN model 

for Sq, Sal, and Sa were 9%, 7%, and 9% respectively. This means that the EMN- 

ANN model could predict surface areal parameters with an accuracy of Sq (91%), 

Sal (93%) and Sa (91%). 

 

 

7.2 Contribution and novelty 
 

This section summarises the novel solutions and contributions to knowledge. 

 

 
1. Multidirectional Scanning (MDS) technique; this is a novel approach developed in 

this thesis which utilises a low-cost laser line scanner to obtain on-machine surface 

metrology dataset with high resolution and fast measurement suitable for micro-

scale level metrology in advanced precision manufacturing industries. 

2. Calibration of the MDS using artefacts; results obtained from the calibration of 

MDS expands the frontiers of knowledge. Other surface metrology techniques 

have been calibrated using the same procedures. The attempt to calibrate the MDS 

for surface metrology confirms the possibility to use laser triangulation for surface 

metrology and not only forms and dimensional metrology. It also increases the 

confidence of using laser triangulation on a typical manufacturing shop floor. 

3. Developed an artefact (cross - grating artefact) suitable for obtaining the following 

metrological characteristics of MDS; the lateral amplification coefficient, linearity 

deviation and perpendicularity deviation. 
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4. Identified appropriate areal surface parameters for describing difference face-

milled surfaces and established the relationship between face-milling parameters 

and areal surface parameters of face-milling parts. 

5. Developed a new algorithm for the selection of optimised parameters for the 

development of a robust neural network model. 

  
6. Developed a neural network model to predict areal surface parameters using cutting 

parameters. This is a novel model as there is AI model that can predict areal surface 

parameters for face milling process was not existing at the time of writing this 

thesis. 

 

 

7.3 Future works 

 
1. Recalibration of MDS after full publication of ISO standards 23168  

At the active period of this research, the ISO TC 213 committee was still debating the ISO 

standards for the procedure for calibration of surface metrology instruments as well as the 

rules of comparison between different instruments. The work presented in this thesis were 

based on the proposed ISO draft and other publications in the field. Henceforth, in future 

after the standards have been finalized and published, the MDS technique need to be 

calibrated as well as its results compared with other instruments. Also, since the uncertainty 

estimation presented in this thesis only covers the contributions associated with the 

instrument-surface interaction. To obtained the total combined uncertainty budget which 

considers the contribution of the software algorithm should be investigated as well. 

 

2. Automation of Delivery 

During this research, the measurement head of the blue line scanner was mounted on the 

spindle of the machine tool. This technique was improvised due to the absence of an 

adequate, robust and stable delivery system. Further investigation should be conducted on 
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the feasibility of integrating automated, possibly robotic, delivery of the measurement 

procedure in order to eliminate this challenge and increase efficiency. 

In the current delivery technique, the simple needs to be removed from the worktable after 

machining to allow easy retrofitting of the measurement head of the sensor onto the spindle 

of the machine tool. The sample is placed back on the worktable of the machine tool after 

the measurement head has been setup before carrying out the MDS technique. By improving 

the delivery technique, issues such as tilting of the surface which is bound to occur if the 

simple is removed during the current delivery technique will be completely eliminated.  

 Due to the nature of the laser instrument employed, it may also be possible to repackage it to 

fit inside a machine tool change system so that it could loaded automatically by the machine. 

Additional work on the robustness to high G-forces and coolant ingress would also be 

needed. 

 

 

3. Modelling 

This thesis focused on the use of neural networks for the surface prediction modelling. Other 

AI models may be capable of providing higher accuracy. Hence, other AI models should be 

considered and proper comparison between the models should be considered in further works. 

Also, a theoretical model and increasing the scope of input parameters could be considered. 

 

4. User-interface for models 

Further work would require developing a user-friendly interface for the developed model, 

which can be employed by a machinist to determine the right cutting parameters, required 

to achieve a unique or high quality face-milled surface for convenient right first time 

production or process improvement.
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Appendices 

Appendix A  Surface Metrology Parameters 

 A.1   Profile Parameters 

There are three types of surface profile parameters currently defined in the ISO standards (ISO 

4287:1998+A1:2009). The classification is based on the filtration used, to obtain either, the form, 

waviness or roughness parameters. Below are commonly used profile roughness parameters. 

Table A.1   - Common profile parameters - name, definition and formula. Reproduced from 

Keyence [162]. 

 
Name Definition Mathematical 

Formula  

1 Ra 

Arithmetical 

mean 

deviation of 

the assessed 

profile 

Arithmetic mean of the absolute 

ordinate values z(x) within a 

sampling length; l.  

Where z(x) is the height of the 

assessed profile at any position 

x and l, is the length in the 

direction of the x-axis use for 

identifying the irregularities 

characterizing the profile under 

evaluation 

 

 

 

Ra =  
1

l
∫ |z(x)|dx

1

0

 

2 Rq  

Root mean 

Square 

deviation of 

the assessed 

profile  

 

Root mean square value of the 

ordinate values z(x) within a 

sampling length, l. 

 

Rq =  √
1

l
∫ Z2(x) dx

1

0
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3 Rsk 

Skewness of 

the assessed 

profile 

Quotient of the mean cube value 

of the ordinate values z(x) and 

the cube of Rq within a 

sampling length  

Rsk

=  
1

Rq3
[
1

l
∫ Z3(x) dx

l

0

] 

4 Rku 

Kurtosis of 

the assessed 

profile  

Quotient of the mean quartic 

value of the ordinate values z(x) 

and the fourth power of Rq 

within a sampling length 

Rku

=  
1

Rq4
[
1

l
∫ Z4(x) dx

l

0

] 

5 Rp 

Maximum 

profile peak 

height  

Largest profile peak height( 

Zpj)within a sampling length 

Rp =  Zpj1≤j≤m
Max  

Where m is the number 

of profile peaks  

6. Rv 

Maximum 

profile valley 

depth height  

Largest profile valley height( 

Zvj)within a sampling length 

Rv =  Zvj1≤j≤m
Max  

Where m is the number 

of profile peaks  

7 Rz 

Maximum 

height of the 

assessed 

profile 

Sum of height of the largest 

profile peak height Zp and the 

largest profile valley depth Zv 

within a sampling length. 

 

Rz = Rp + Rv 

8 Rt 

Total height 

of the 

assessed 

profile 

Sum of height of the largest 

profile peak height Zp and the 

largest profile valley depth Zv 

within an evaluation length. 

 

Rz = Rp + Rv 
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9 Rc 

Mean height 

of profile 

elements of 

the assessed 

profile 

Mean value of the profile 

elements heights Zt within a 

sampling length.  

Where Ztj is the height of the jth 

profile element within the 

length. 

Rc =  
1

m
∑ Ztj

m

j=1

 

10 RSm 

Mean width 

of profile 

elements of 

the assessed 

profile  

 

Mean value of the profile 

element widths Xs within a 

sampling length 

 

RSm =
1

m
∑ Xsj

m

j=1

  

 

 A.2  Surface texture Areal Parameters 

The ISO 25178 series is dedicated to standardizing areal surface texture measurement. Below are 

the most commonly used areal surface texture areal parameters. The content in this appendix was 

extracted from [163]. This includes definitions of parameters and diagrams illustrating parameters. 

 

A.2.1  Height Parameters 

1. Sa (arithmetical mean height) 

Sa is the extension of Ra (arithmetical mean height of a line) to a surface. It expresses, as an 

absolute value, the difference in height of each point compared to the arithmetical mean of the 

surface. This parameter is used generally to evaluate surface roughness. 
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Figure  A.1 Arithmetical Mean Height. Reproduced from Keyence [162]. 

2. Sz (Maximum height) 

Sz is defined as the sum of the largest peak height value and the largest pit depth value within the 

defined area. 

 

 

Figure A.2 Maximum Height. Reproduced from Keyence [162] 

3. Sp (Maximum peak height) 

Sp is the height of the highest peak within the defined area. 

 

4. Sv (Maximum pit height) 
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Sv is the absolute value of the height of the largest pit within the defined area. 

 

5. Sq (Root mean square height) 

Sq represents the root mean square value of ordinate values within the definition area. It is 

equivalent to the standard deviation of heights. 

 

 

Figure A.3 Root Mean Square Height. Reproduced from Keyence [162] 

6. Ssk (Skewness) 

Ssk values represent the degree of bias of the roughness shape (asperity). 

 

Ssk<0: Height distribution is skewed above the mean plane. 

Ssk=0: Height distribution (peaks and pits) is symmetrical around the mean plane. 

Ssk>0: Height distribution is skewed below the mean plane.  
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Figure A.4 Skewness. Reproduced from Keyence [162] 

7. Sku (Kurtosis) 

Sku value is a measure of the sharpness of the roughness profile. 

 

Sku<3: Height distribution is skewed above the mean plane. 

Sku=3: Height distribution is normal. (Sharp portions and indented portions co-exist.) 

Sku>3: Height distribution is spiked. 

 

Figure A.5 Kurtosis. Reproduced from Keyence [162] 

A.2.2  Spatial Parameters 

1. Sal (Auto-correlation length) 

Sal represents the horizontal distance in the direction in which the auto-correlation function decays 
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to the value[s] (0.2 by default) the fastest. 

2. Str (texture aspect ratio) 

Str is a measure of uniformity of the surface texture. The value is obtained by dividing the 

horizontal distance in the direction in which the auto-correlation function decays to the value[s] 

(0.2 by default) the fastest (equivalent to Sal) by the horizontal distance in the direction of the 

slowest decay of auto-correlation function to the value[s]. 

 

Figure A.6 Procedure to calculate Sal and Str. Reproduced from Keyence [162]. 

A.2.3  Hybrid Parameters 

1. Sdq (Root mean square gradient) 

Sdq is calculated as a root mean square of slopes at all points in the definition area. 
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Figure A.7 The Sdq of a completely level surface is 0. Reproduced from Keyence [162]. 

 

When a surface has any slope, its Sdq value becomes larger. The surface below is a plane with 

gradient components of 45 degrees and has an Sdq value of 1. 

 

Figure A.8 The Sdq of plane at 45 degrees. Reproduced from Keyence [162]. 

2 Sdr (Developed interfacial area ratio) 

This parameter is expressed as the percentage of the definition area's additional surface area 

contributed by the texture as compared to the planar definition area. 
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Figure A.9 The Sdr of a completely level surface is 0. Reproduced from Keyence [162]. 

 

When a surface has any slope, its Sdr value becomes larger. The surface below is a plane with 

gradient components of 45 degrees and has an Sdr value of 0.414. 

 

Figure A.10 The Sdr of plane at 45 degrees. Reproduced from Keyence [162]. 

 

A.2.4  Functional Parameters 

1. Smr(c) (Areal material ratio) 

The areal material ratio curve of an area is a curve representing heights at which the areal material 

ratio changes from 0% to 100%. 
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An areal material ratio represents the area with a specific height c or higher. The areal material 

ratio at height c corresponds to Smr(c) in the figure below. 

 

Figure A.11 Areal material ratio curve. Reproduced from Keyence [162]. 

 

When a secant line of an areal material ratio curve, which covers 40% of the difference in the areal 

material ratio, is shifted from the areal material ratio of 0% the position at which the secant line 

has the smallest gradient is called the center portion of the areal material ratio curve. 

The equivalent line is the line where the sum of the squared deviation in the vertical-axis direct is 

the smallest in the center portion. 

The section of the equivalent line between the two height positions where the areal material ratio 

is 0% and 100% is called the core surface. The peaks with a height above the core surface are 

called reduces peaks, while the valleys below the core surface are called reduced vallesy. 

The core surface represents the height of the area that makes contact with other objects after initial 

abrasion. 
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2. Smc(mr) (Inverse areal material ratio) 

Smc(p) (inverse areal material ratio), is the height [c] that gives the areal material ratio p%. 

 

3. Sk (Core roughness depth) 

Sk (core roughness depth) is calculated as the difference of heights at the areal material ratio values 

0% and 100% on the equivalent line; specifically, it is a value obtained by subtracting the minimum 

height from the maximum height of the core surface. 

 

Figure A.12 Core roughness depth. Reproduced from Keyence [162]. 

Sk represents the height of the core surface, Smr1 represents the areal material ratio that divides 

the reduced peaks from the core surface, and Smr2 represents the areal material ratio that divides 

the reduced valleys from the core surface. 

 

The reduced peaks are the areas that are removed by initial abrasion. Spk represents the average 

height of the reduced peaks. 
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The reduced valleys are the areas that hold liquid applied on the surface in order to improve 

lubricity. Svk represents the average depth of the reduced valleys. 

 

4. Spk (Reduced peak height) 

Spk (reduced peak height) represents the mean height of peaks above the core surface. 

 

Figure A.13 Reduced peak height. Reproduced from Keyence [162]. 

 

5. Svk (reduced dale height, reduced valley depth) 

Svk (reduced valley depth) expresses the arithmetical mean of the reduced valley depth of the areal 

material ratio curve. Essentially, this is a measure of the valley depth below the core roughness. 

This indicates the depth of the area in which fluid applied to the surface accumulates, which is 

information that can be used to improve the lubricating properties of the surface. 
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Figure A.14 Reduced dale height, reduced valley depth. Reproduced from Keyence [162] 

 

6. Smr (Peak material portion, percentage of material that comprises the peak structures 

associated with Spk) 

Smr (peak material portion) is the percentage of material that comprises the peak structures 

associated with Spk. 

 

Figure 9.15 Peak material portion. Reproduced from Keyence [162]. 

Sk represents the height of the core surface, Smr1 represents the areal material ratio that divides 
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the reduced peaks from the core surface, and Smr2 represents the areal material ratio that divides 

the reduced valleys from the core surface. 

The reduced peaks are the areas that are removed by initial abrasion. Spk represents the average 

height of the reduced peaks. 

The reduced valleys are the areas that hold liquid applied on the surface in order to improve 

lubricity. Svk represents the average depth of the reduced valleys. 

 

7. Smr2 (Valley material portion) 

Smr2 (valley material portion) is the percentage of the measurement area that comprises the deeper 

valley structures associated with Svk. 

 

Figure A.16 Valley material portion. Reproduced from Keyence [162] 

 

Sk represents the height of the core surface, Smr1 represents the areal material ratio that divides 

the reduced peaks from the core surface, and Smr2 represents the areal material ratio that divides 

the reduced valleys from the core surface. 
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The reduced peaks are the areas that are removed by initial abrasion. Spk represents the average 

height of the reduced peaks. 

The reduced valleys are the areas that hold liquid applied on the surface in order to improve 

lubricity. Svk represents the average depth of the reduced valleys. 

 

8. Sxp (Peak extreme height) 

Sxp (peak extreme height) is the difference of heights at the areal material ratio values p% and 

q%. The areal material ratio curve is used for the calculation of Sxp. 

 

Sxp represents the difference in the height between the average plane and peaks on the surface 

after especially high peaks on the surface are removed. By default, it is the height difference 

between the areal material ratio values 2.5% and 50%. 

 

Figure A.17 Peak extreme height. Reproduced from Keyence [162]. 

 



187 
 

 

 

9. Vvv (Dale void volume) 

Vvv (dale void volume) represents the void volume of dale at the areal material ratio p%. It can 

also be used to quantify the magnitude of the core surface, reduced peaks, and reduced valleys 

based on volume parameters. 

Vmp, Vmc, Vvc, and Vvv represent the volumes of the reduced peaks, core material, core void, 

and valley void respectively. 

To use volume parameters, the areal material ratio values that divide the reduced peaks and 

reduced valleys from the core surface must be specified. By default, 10% and 80% are used. 

 

10. Vvc (Core void volume) 

Vvc (core void volume) represents the difference between the void volume at areal material ratio 

p% and the void volume at areal material ratio q%. It can also be used to quantify the magnitude 

of the core surface, reduced peaks, and reduced valleys based on volume parameters. 

Vmp, Vmc, Vvc, and Vvv represent the volumes of the reduced peaks, core material, core void, 

and valley void respectively. 

To use volume parameters, the areal material ratio values that divide the reduced peaks and 

reduced valleys from the core surface must be specified. By default, 10% and 80% are used. 

 

11. Vmp (Peak material volume) 

Vmp (peak material volume) represents the volume of material at areal material ratio p%. It can 

also be used to quantify the magnitude of the core surface, reduced peaks, and reduced valleys 

based on volume parameters. 
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Vmp, Vmc, Vvc, and Vvv represent the volumes of the reduced peaks, core material, core void, 

and valley void respectively. 

To use volume parameters, the areal material ratio values that divide the reduced peaks and 

reduced valleys from the core surface must be specified. By default, 10% and 80% are used. 

 

12. Vmc (Core material volume) 

Vmc (core material volume) represents the difference between the material volume at areal 

material ratio q% and the material volume at areal material ratio p%. It can also be used to quantify 

the magnitude of the core surface, reduced peaks, and reduced valleys based on volume 

parameters. 

Vmp, Vmc, Vvc, and Vvv represent the volumes of the reduced peaks, core material, core void, 

and valley void respectively. 

To use volume parameters, the areal material ratio values that divide the reduced peaks and 

reduced valleys from the core surface must be specified. By default, 10% and 80% are used. 

 

Figure A.18 Material Volume. Reproduced from Keyence [162] 
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A2.5 Feature  

1. Spd (Density of peaks) 

Spd (density of peaks) represents the number of peaks per unit area. A large number indicates 

more points of contact with other objects. 

 

Figure A.19 Density of peaks. Reproduced from Keyence [162] 

 

2. Spc (Arithmetic mean peak curvature) 

Spc (arithmetic mean peak curvature) represents the arithmetic mean of the principal curvature of 

the peaks on the surface. A smaller value indicates that the points of contact with other objects 

have rounded shapes; a larger value indicates that the points of contact with other objects have 

pointed shapes. 
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Figure A.20 Arithmetic mean peak curvature. Reproduced from Keyence [162]. 

 

S10z (Ten-point height) / S5p (Five-point peak height) / S5v (Five-point pit height) / Sda(c) (Mean 

dale area) / Sha(c) (Mean hill area) / Sdv(c) (Mean dale volume) / Shv(c) (Mean hill volume) 

Segmentation 

 

3. Watershed algorithm 

The watershed algorithm is employed to partition regions, which are used in the calculation of 

feature parameters.  

Water is poured into the surface landscape and runs along the surface shape and reaches the pit. 

As more water continues to pour, the water surfaces of water filling different pits make contact 



191 
 

 

 

with each other. The set of these contact points is the ridge line that partitions the dale region. The 

same approach can be applied to the hill region by vertically inverting the process. 

4. Wolf pruning 

Peaks and pits merely need to be higher or lower than other points in their respective 

neighborhoods. For this reason, a surface with fine asperity can have a vast number of peaks and 

pits. Applying the watershed algorithm to such surfaces can result in meticulous segmentation into 

minute peak and valley regions. In order to suppress this over-segmentation, the wolf pruning 

method is used to remove regions below a certain height/depth threshold.  

The threshold is provided as a percentage of the maximum height (Sz) of the surface. The default 

value is 5%. 

 

Figure A.21   Wolf pruning. Reproduced from Keyence [162] 

 

5 Closed area, Open area 
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Figure A.22  Closed area, Open area. Reproduced from Keyence [162] 

A region that is in contact with the boundary of the definition area at the material height c is called 

an "open area," while a region that is not is called a "closed area." Height c is given in areal material 

ratio and the default value is 50%. 
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Appendix B  Data sheet of Keyence LJ-V7020K sensor head 

The content in this appendix was extracted from [119]. 

B.1 Specifications LJ-V7020K sensor head 
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B.2 Dimensions of LJ-V7020K sensor head. Reproduced from 

Keyence [119]. 
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Appendix C Results from Optiv_Classic CMM 

C.1 Results obtained from measuring distance between groove  

features on cross-grating 



196 
 

 

 

 



197 
 

 

 

 



198 
 

 

 

 



199 
 

 

 

 



200 
 

 

 

C.2 Results obtained from measuring the optical dimensional 

standard  
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Appendix D Images and topologies  

D.1 Mitutyo SFM 001 

Figure D.1.1 Image from camera  

 

 

 
Figure D.1.2    Topology from MDS 
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Figure D.1.3  Topology from Alicona 

 

D.2 Rough sample face milled surface 

Figure D.2.1  Image from camera 
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Figure D.2.2  Topology from MDS 

 

 

 

 
Figure D.2.3  Topology from Alicona  
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D.3 Smooth sample face milled surface   

 
 

Figure D.3.1  Image from camera 

 

 

 
Figure D.3.2  Topology from MDS 
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Figure D.3.3  Topology from Alicona
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Appendix E     Cross-correlation table 

 Table E.1:  Average and standard deviation method  

 Parameters 

Mean, µR 

Standard 

Deviation, σR 

95% Confidence 

Interval for 

Rough samples Mean, µF 

Standard 

Deviation, σF 

95% Confidence 

Interval for fine 

Samples 

1 Sq(µm) 2.83 0.04 ± 0.07 0.36 0.02 ± 0.03 

2 Ssk 0.20 0.15 ± 0.29 -0.37 0.13 ± 0.26 

3 Sku 2.30 0.07 ± 0.15 3.70 0.15 ± 0.30 

4 Sp(µm) 8.40 0.26 ± 0.52 1.72 0.27 ± 0.55 

5 Sv(µm) 5.67 0.15 ± 0.30 1.58 0.07 ± 0.14 

6 Sz(µm) 14.07 0.35 ± 0.69 3.30 0.27 ± 0.54 

7 Sds(mm-2) 287.63 263.65 ± 527.30 5071.75 1312.83 ± 2625.66 

8 Str 0.08 0.06 ± 0.11 0.08 0.01 ± 0.03 

9 Sal(mm) 0.12 0.004 ± 0.007 0.03 0.002 ± 0.004 

10 Sdq 0.05 0.001 ± 0.002 0.08 0.01 ± 0.02 

11 Ssc(µm-1) 0.009 0.0006 ± 0.001 0.07 0.03 ± 0.06 

12 Sdr(%) 0.14 0.003 ± 0.005 0.37 0.10 ± 0.21 

13 Vmp(103 µm3/mm2) 61.41 5.27 ± 10.55 14.38 2.48 ± 4.96 

14 Vmc(104 µm3/mm2) 155.10 6.81 ± 13.63 30.54 1.61 ± 3.22 

15 Vvc(104 µm3/mm2) 187.96 4.49 ± 8.97 39.86 1.71 ± 3.42 

16 Vvv(103 µm3/mm2) 62.92 10.30 ± 20.60 46.84 1.24 ± 2.48 

17 Spk(µm) 2.52 0.13 ± 0.26 0.28 0.05 ± 0.10 

18 Sk(µm) 6.70 0.7 ± 1.40 0.90 0.05 ± 0.09 

19 Svk(µm) 1.73 0.84 ± 1.67 0.49 0.04 ± 0.07 

20 Smr1(%) 9.93 1.00 ± 2.00 8.23 0.54 ± 1.09 

21 Smr2(%) 78.20 7.28 ± 14.56 90.20 0.68 ± 1.37 

22 Std(deg) 0.00 0.00 0.00 -3.00 6.00 ± 12.00 

23 S5z(µm) 13.14 0.37 ± 0.73 3.20 0.25 ± 0.50 
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Appendix F   Cutting Parameters, corresponding surface Roughness, and Their S/N 

 Speed (RPM) Feed (mm/sec) DOC (mm) Sq (µm) Sal (µm) Sa (µm) S/N-Sq S/N-Sal S/N-Sa 

1 4000.00 750.00 0.20 0.61 0.022 0.46 4.29 33.11 6.74 

2 4000.00 1165.00 0.70 1.67 0.097 1.00 -4.45 20.23 0.00 

3 4000.00 1580.00 1.20 1.67 0.126 1.10 -4.45 18.03 -0.83 

4 4000.00 2000.00 1.70 2.28 0.196 0.94 -7.16 14.17 0.54 

5 5300.00 750.00 0.70 0.49 0.065 0.41 6.20 23.70 7.74 

6 5300.00 1165.00 0.20 0.71 0.144 0.52 2.97 16.83 5.68 

7 5300.00 1580.00 1.70 1.24 0.172 0.34 -1.87 15.31 9.37 

8 5300.00 2000.00 1.20 2.09 0.240 1.31 -6.40 12.39 -2.35 

9 6600.00 750.00 1.20 0.83 0.110 0.58 1.62 19.18 4.73 

10 6600.00 1165.00 1.70 1.51 0.187 0.50 -3.58 14.58 6.02 

11 6600.00 1580.00 0.20 1.21 0.212 0.68 -1.66 13.48 3.35 

12 6600.00 2000.00 0.70 1.72 0.282 0.95 -4.71 10.99 0.45 

13 8000.00 750.00 1.70 0.72 0.154 0.50 2.85 16.27 6.02 

14 8000.00 1165.00 1.20 0.83 0.234 0.68 1.62 12.62 3.35 

15 8000.00 1580.00 0.70 0.61 0.263 0.47 4.29 11.61 6.56 

16 8000.00 2000.00 0.20 1.00 0.331 0.65 0.00 9.59 3.74 
 


