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Abstract 

Classification is an important process in image processing applications, and image texture is the 

preferable source of information in images classification, especially in the context of real-world 

applications. However, the output of a typical texture feature descriptor often does not represent a 

wide range of different texture characteristics. Many research studies have contributed different 

descriptors to improve the extraction of features from texture. Among the various descriptors, the 

Local Binary Patterns (LBP) descriptor produces powerful information from texture by simple 

comparison between a central pixel and its neighbour pixels. In addition, to obtain sufficient 

information from texture, many research studies have proposed solutions based on combining 

complementary features together. Although feature-level fusion produces satisfactory results for 

certain applications, it suffers from an inherent and well-known problem called “the curse of 

dimensionality’’.  Feature selection deals with this problem effectively by reducing the feature 

dimensions and selecting only the relevant features. However, large feature spaces often make the 

process of seeking optimum features complicated.   

This research introduces improved feature extraction methods by adopting a new approach based 

on new texture descriptors called Local Zone Binary Patterns (LZBP) and Local Multiple Patterns 

(LMP), which are both based on the LBP descriptor. The produced feature descriptors are 

combined with other complementary features to yield a unified vector. Furthermore, the combined 

features are processed by a new hybrid selection approach based on the Artificial Bee Colony and 

Neighbourhood Rough Set (ABC-NRS) to efficiently reduce the dimensionality of the resulting 

features from the feature fusion stage.    

Comprehensive experimental testing and evaluation is carried out for different components of the 

proposed approach, and the novelty and limitation of the proposed approach have been 

demonstrated. The results of the evaluation prove the ability of the LZBP and LMP texture 

descriptors in improving feature extraction compared to the conventional LBP descriptor. In 

addition, the use of the hybrid ABC-NRS selection method on the proposed combined features is 

shown to improve the classification performance while achieving the shortest feature length. The 

overall proposed approach is demonstrated to provide improved texture-based image classification 

performance compared to previous methods using benchmarks based on outdoor scene images. 
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These research contributions thus represent significant advances in the field of texture-based image 

classification.  
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Chapter 1 

Introduction 

1.1 Overview and Motivation 

Image classification is one of the most important topics in the computer vision field. Classification 

of images can be applied based on features corresponding to colours, shapes, or textures. However, 

texture-based image classification is more valuable in real-world applications and for processing 

natural images (Turtinen & Pietikäinen, 2006). For instance, in a natural or outdoor scene such as 

a jungle, it is difficult to distinguish a particular creature (e.g. a tiger) that is hiding behind a tree; 

or discriminate between different creatures (e.g. tigers and leopards) based on their colours or 

shapes. In addition, colour-based classification has several shortcomings, such as its inapplicability 

with infrared cameras images and night vision settings, as well as its sensitivity to varying 

illumination conditions (Castano, Manduchi, & Fox, 2001). The shape property is only appropriate 

when the scene contains regular objects, which represents a major limitation as most outdoor 

scenes of real-world applications contain shapes of a random nature. In the aforementioned 

situations, a texture-based approach can be more robust than other image features when used in 

the context of image classification.   

For decades, texture-based features have been receiving considerable attention in image 

classification applications (Majid & Xianghua, 2008). The challenge of depending on texture for 

classification is that the texture in natural images is mostly random with a large number of 

variations in the visual appearance. Fig 1.1 shows samples from a wide variety of texture patterns 

that range between regular and stochastic. However, although a textured image usually involves 

complicated characteristics, most of these characteristics can be categorised as coarseness, 

contrast, or directionality of repetitive patterns, where such properties are required to identify most 

textures.  

There are many problems that can disturb the texture of the image, such as changes in scales or 

orientations, non-uniform illumination, or the noise and blur in the image. These can be caused by 

many reasons, such as changes in the lighting conditions which results different illumination 

settings, or changes in camera position which results in different orientations, viewpoints or scales, 
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or lack of focus which results in blur. These problems increase the difficulty of finding appropriate 

and distinctive texture features, which in turn degrades the performance of image classification 

systems. 

 

 

Figure 1.2 shows a typical classification process, which consists of a feature extraction stage and 

a classification stage (Di Cataldo & Ficarra, 2017). Features are obtained from texture samples 

using methods called feature extractors or descriptors, which convert these samples into features. 

In classification, the samples of images are categorised according to their features, which is done 

by introducing the features to a learning algorithm or classifier. The ability to classify different 

types of textures is the aim of classification systems. Good quality features and powerful classifiers 

should therefore be available to make that possible. The descriptors’ aim is to extract powerful 

features that are distinctive enough to discriminate between different textures. Indeed, in texture 

classification, most researches pay significant attention to extracting powerful features in order to 

improve the overall classification results (L. Liu, Long, Fieguth, Lao, & Zhao, 2014). This research 

focuses on improving the feature extraction stage, as without investigating and developing suitable 

methods to produce discriminative features from texture, the outcome of classification is often 

unsatisfactory.  

 

Fig. 1. 1 Textures arranged according to the regularity of their structural variations 

(texture spectrum).  



20 

 

 

 

Numerous feature extraction methods have been introduced based on texture (Majid & Xianghua, 

2008). The Local Binary Patterns (LBP) method has emerged as one of the most effective 

descriptors in texture classification (Ojala, Pietikäinen, & Harwood, 1996). This method has 

shown outstanding performance with exceptional speed and powerful discriminative features. 

Furthermore, LBP has been utilised in many real-world texture analysis applications (Mäenpää & 

Pietikäinen, 2005; Ojala, Pietikainen, & Maenpaa, 2002). Motivated by the local binary patterns 

concept, this research proposes new texture descriptors. These descriptors aim to extract improved 

features from texture patterns in the context of image classification systems. 

Identifying different textures is the ultimate goal of texture description systems. Extracting specific 

features from a single descriptor is usually inadequate in recognising different types of texture 

(Bashar & Ohnishi, 2002). Several limitations of texture applications can be overcome by 

integrating multiple features. The LBP descriptor has been utilised as a complementary tool with 

other feature extraction methods. LBP joined with local extension methods based on the LBP 

approach can provide improved features compared to using LBP separately (Ojala, Pietikainen, et 

al., 2002). Since LBP is considered a micro-texton, its features are used as complementary features 

with macro-texton of Gabor Filter (GF) (Liao, Law, & Chung, 2009). In a several studies, Gabor 

filter have shown excellent performance and have often outperformed other texture analysis 

methods. The main problem of Gabor filters is the fact that they are very computationally 

demanding (Randen & Husoy, 1999).  

Integrated features result from concatenation between the features of the participating descriptors. 

The extracted features by different descriptors often have high feature dimensions, which makes 

integrating between these features result in a large feature space.  In addition, part of features from 

this fusion process happens to be irrelevant, which can therefore have a negative effect and reduce 

the quality of the overall extracted features (Zhao, Sinha, & Ge, 2009). In general, depending on 

Fig. 1. 2 Texture-based image classification system.  
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a large features size degrades the performance of image classification, where this problem is 

referred to as ‘the curse of dimensionality’ (Gheyas & Smith, 2010). To address this, a feature 

selection step is essential for reducing the features space and improving the quality of the extracted 

feature at the same time. However, effective feature selection that yield optimal set of features is 

not a trivial task, since the search space grows exponentially with the features length, which can 

make feature selection infeasible in some cases (A. L. Blum & Langley, 1997).  

To select optimal or near-optimal features from the original feature space, a number of feature 

selection methods can be utilised, which are typically categorised into either wrapper methods or 

filter methods (Dash & Liu, 1997; Kohavi & John, 1997). Swarm intelligence algorithms are a 

type of wrapper methods, where the Artificial Bee Colony (ABC) algorithm is an example of 

swarm algorithms. ABC has recently gained more attention as modern feature selection method 

and has been proposed for many feature selection problems (Karaboga & Basturk, 2008). In 

contrast, the Rough Set (RS) is one of the filter methods, which has also been successfully applied 

for reducing features dimensionality (Pawlak, 2012). Based on a number of research studies, filter 

approaches have been shown to be computationally effective with limited feature numbers, 

whereas wrappers have usually outperform filters methods in terms of classification performance 

(A. L. Blum & Langley, 1997; Hoque, Bhattacharyya, & Kalita, 2014).    

Finding an effective feature selection approach is essential in this research. Recently, some authors 

have proposed hybrid approaches to exploit advantages of both techniques (i.e. wrapper and filter) 

and yield an effective feature selection method (Gheyas & Smith, 2010). This approach has been 

adopted in this research by proposing and developing hybrid selection tool based on the ABC and 

Rough Set (RS) methods to process the features resulting from the proposed feature fusion stage.  

1.2 Problem Statement 

From the previous section, it is clear that the description of different texture characteristics is a 

difficult task, since textures exist in a wide variability and complexity. This research focuses on 

improving texture classification by utilising powerful and distinctive features. This section 

summarises the main problem statement of this research, which includes the following three 

points: 

1. The most significant challenge in texture classification is the extraction of powerful 

features (L. Liu et al., 2014).  LBP is one of the most effective texture descriptors due to 
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its simplicity and good performance, where it relies on the relationship of neighbouring 

pixels with the centre pixel (Ojala, Pietikainen, & Harwood, 1994; Ojala et al., 1996). 

However, texture descriptors like LBP do not efficiently exploit rich information from 

texture patterns, which reflects on the accuracy of texture classification. The challenge is 

to improve discriminative feature extraction power of the LBP method by efficiently 

exploiting the intensity values of texture patterns.    

 

2. Texture surfaces contain a wide variety of characteristics, which is what makes extracting 

suitable texture features for images classification applications challenging (W.-C. Lin, 

Hays, Wu, Kwatra, & Liu, 2004). It is difficult, if not impossible, to develop one single 

method that has the ability to extract optimum information from different texture 

characteristics (Bashar & Ohnishi, 2002; Turtinen, 2007). In order to obtain more 

distinctive and powerful features from texture and thus improve the performance of image 

classification, one can combine features from different descriptors (Clausi & Deng, 2005; 

Ojala et al., 1996). However, the main problem with improving feature extraction through 

this fusion strategy is the resulting large feature space, which usually negatively affects the 

classification performance. 

 

3. In general, the highest possible classification accuracy comes from longest feature length 

because there is a rich set of information collected from the image. However, combining 

features from different methods often results in irrelevant or redundant features that mostly 

have a negative effect on the classification performance. Irrelevant features not only 

increase the computation cost of the classifier, but also harm the relevant features and lead 

to a negative effect on the quality of the complete feature set, and in turn a reduced 

classification accuracy (Zhao et al., 2009). This problem, which results from combining a 

large number of features by different descriptors is referred to as “the curse of 

dimensionality” in image classification (Clausi & Deng, 2005). As such, to increase the 

quality of the features resulting from combining different feature descriptors, one must 

select only the relevant features from the complete feature set (Kohavi & John, 1997).  The 

resulting features from the selection stage have a shorter feature length, which leads to 

improving the accuracy of the classifier and its processing time (Gheyas & Smith, 2010). 

However, feature selection is usually a challenging task, and many methods lack an 

effective strategy for selecting optimum features. 
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1.3 Research Questions  

Following the declaration of the problem statement in the previous section, the focus of this thesis 

will now be dedicated to how to improve texture classification by extracting distinctive and 

powerful features efficiently. The proposed approach to achieve this aim is to integrate the 

developed discriminative features with other complementary features and efficiently select the 

relevant features from the complete feature set. The following research questions, associated with 

this strategy, will be investigated:    

1. How can the features of the LBP method be improved by utilising intensity values of 

texture patterns? 

2. How can the improved features obtained from the enhancement of the LBP method be 

combined with other suitable features to produce powerful features without the negative 

impact of a large feature space? 

3. Can the feature space of the combined features be reduced effectively by depending on 

only the relevant features using a well-organised feature selection method that result an 

improved classification performance? 

1.4 Research Aim and Objectives  

The research questions explain the main purpose of this research, which is to develop distinctive 

texture-based features for image classification applications. This will be done by extracting the 

discriminative features from the texture in the image, followed by combining those features with 

other complementary features, and selecting only the relevant features from original feature set.  

In particular, this approach depends on two main stages, which are: (i) extracting features from the 

texture by the new improved descriptors, which will then be combined with other complementary 

features, and (ii) selecting only the relevant features to avoid the curse of dimensionality. The goal 

of this approach is to increase the accuracy of images classification by extracting a diverse set of 

features from texture, then using the proposed selection method, dispose of irrelevant features, 

which have a negative effect on the classification performance. Based on this aim, the objectives 

of this research can be defined as follows:  
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1. To develop novel texture descriptors that are motivated by the LBP descriptor, where the 

power of LBP in texture classification will be harnessed for developing descriptors that 

have the ability to extract more distinctive and powerful features. 

2. To implement an efficient approach for texture-based images classification through 

integrating a diverse set of features. These feature will be based on combining the features 

extracted by the newly developed descriptors with others complementary features to 

improve the classification performance. 

3. To develop and implement a new hybrid feature selection method. This method will be 

based on the wrapper method using the ABC algorithm and the filter method using NRS, 

and will target the selection of only the relevant features from involved combined 

descriptors in order to avoid the curse of dimensionality and reduce the classifier’s 

processing time.     

1.5 Thesis Contributions 

This thesis presents novel feature descriptors that are capable of extracting distinctive features 

from different texture characteristics in image classification applications. The research 

methodology is based on utilising the local binary pattern method for developing new feature 

descriptors, then using a new selection approach based on the ABC and NRS methods to process 

the features resulting from the suggested feature fusion process. 

1. Developing novel texture descriptors, called LZBP and LMP, for extracting local 

features  

These texture descriptors have been developed based on addressing the limitation of the 

LBP descriptor. LBP does not always extract the important local feature from texture by 

binary thresholding for different intensity values of pixels. This means that LBP may fail 

to classify different texture characteristics. The developed descriptors have the ability to 

extract richer local features than LBP, where LZBP and LMP are superior in considering 

the intensity values of pixel in TUs through different quantization zones. The new 

descriptors have been tested using different benchmarks, which included a number of 

textures databases, and compared with well-known feature extraction methods. The 

reported results from several evaluation experiments demonstrate the suitability and 

competitiveness of the new descriptors to other feature extraction methods.  
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2. Developing a hybrid feature selection method based on ABC and NRS to deal 

effectively with the high dimensionality of features  

There are few research studies on using hybrid wrapper approaches based on filter feature 

selection. Many previous studies are based on using the wrapper approach exclusively, 

which is expensive in terms of computation when evaluating potential optimum features. 

In our work, hybridization of ABC as a wrapper approach with the NRS filter method is 

introduced to process the proposed combined feature set. The process of using the hybrid 

method on the proposed feature fusion involves utilising the NRS filter method to produce 

a pool of selected features, then using the ABC algorithm as a wrapper method to find the 

optimal part of features from this pool of selected features. In assessment results of the 

overall classification system performance, it was found that the proposed hybrid selection 

method can provide a good balance between accuracy and computation cost. 

3. Implementing feature fusion between the LZBP and LMP descriptors and the contrast 

of the texture image 

In evaluation results of the LZBP and LMP descriptors, an improved classification 

performance was achieved. However, these descriptors were more effective with specific 

databases than others. Supporting LZBP and LMP by the contrast of the texture image in 

a feature-level fusion stage, applied with a multi-scale analysis, yielded better results for a 

diverse set of texture characteristics. The resulting large feature space was reduced to an 

acceptable feature length using the proposed hybrid ABC-NRS selection approach. The 

new hybrid selection approach was applied on LBP, LZBP and LMP after combining these 

descriptors with contrast measure as complementary features. The experimental results 

prove the ability and effectiveness of the Rough Set method to reduce the feature length of 

the histogram resulting from the multi-scale LBP, LZBP and LMP descriptors.  

4. I Implementing feature fusion between the local features of LZBP and LMP and the 

global feature of GF  

In previous studies, integrating the features of LBP and GF produced better result than if 

either of them was applied separately. In this work, GF and multiscale LBP were integrated 

using the new hybrid feature selection method to select optimum feature with the least 

computational cost. ABC was applied on GF to select the relevant features by selecting the 

optimal filters, whereas NRS was used to achieve feature reduction of the multiscale LBP. 
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The new LZBP and LMP descriptors were also combined with complementary GF features. 

The results of the integrating these local descriptors with GF as global descriptor using 

hybrid selection methods improved both the classification performance and feature length. 

In addition, LZBP and LMP were also found to be suitable as complementary features to 

GF. The results from experiments demonstrate the suitability of the ABC algorithm for 

selecting the optimum feature resulting from a set of Gabor filters.    

1.6 Thesis Layout  

This thesis is divided into seven chapters, followed by two appendices.  

Chapter 1 presents an introduction of this research, which includes an overview of the topic and 

motivation, the problem statement, the main aim of the research and the major objectives, and 

original contributions of the research.  

Chapter 2 is the literature review chapter, where a general review of texture-based image 

classification is provided, including a discussion of texture characteristics, texture analysis 

methods, and texture tasks. The main studies related to texture-based image classification is then 

provided, including an overview of the most common texture descriptors, feature fusion 

approaches, and feature selection methods. 

Chapter 3 discusses the research methodology, including the main contributions of the research, 

which focuses on developing new improved texture-based feature extraction and selection 

methods for images classification applications. The chapter includes a description of the new 

descriptors that are used to extract features from texture, as well as description of the new hybrid 

selection approach. 

Chapter 4 is the design and implementation chapter, which begins by discussing the 

implementation of the proposed methods to improve feature extraction and selection. This includes 

a discussion of the process used by the new feature extraction methods and the new feature 

selection algorithms.  

Chapter 5 presents the results of the experiments investigating the validity of the proposed feature 

descriptors, feature fusion, and selection method using two different models. This is achieved by 

conducting an extensive set of experiments on texture-based image classification. 



27 

 

Chapter 6 is the evaluation chapter, which presents the evaluation of the results of the new feature 

extraction methods and the proposed feature selection strategies targeting the feature fusion stage. 

The evaluation is done through comparing the proposed methods with other classical methods in 

order to measure and analyse the level of performance achieved by the proposed approach. 

Chapter 7 presents a conclusion of this thesis, where a summary of the contributions of thesis, the 

achievements of this research, and suggestions for possible future work directions is given. 

Appendix A contains a comparison of the Confusion Matrix results of the proposed descriptors 

with other common texture descriptors.   

Appendix B contains a comparison of the Confusion Matrix results of proposed feature fusion 

approach and other common texture descriptors.    
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Chapter 2 

Literature Review 

In images processing, texture-based images classification is an active research topic that is still 

being developed by researchers. Texture is an important source that provides useful information 

about the image. The importance of texture properties appears clearly in natural images, where 

they are used for classification between images containing sky, sea, leaves and grass, which are 

hard to classify by other sources of information.   

Textures classification depends on the extracted features. However, extracting powerful features 

based on texture is a real challenge due to the wide diversity of texture characteristics. There are 

different descriptors or analysis methods of texture that have been developed to deal with different 

texture characteristics. This chapter starts by introducing the concept of texture definition and 

characteristics, after which a literature-based introduction of common and widely used descriptors 

is provided. A significant attention is paid to the LBP descriptor in this research, in order to utilise 

it to develop new texture descriptors.    

Feature fusion is also important step in order to improve features when dealing with different 

texture characteristics. However, this step results in a common problem on a feature level, called 

the ‘‘curse of dimensionality’’. Therefore, adopting feature fusion by an effective features 

selection method for relevant features is required to deal with this problem. This thus acts as a 

motivation to provide a detailed literature review on the available feature selection approaches.  

2.1 Texture Overview  

2.1.1 Texture Definition  

There is no agreement on a specific definition on texture, although it is possible to recognise 

textures visually or by touching (Fan & Xia, 2003). Nevertheless, there have been many efforts to 

define texture, where Haralick and Shanmugam (1973) is considered to be the first researcher who 

recognised the importance of finding a definition of texture. Although there are numerous 

definitions of texture, which are either mentioned in the dictionaries or other sources, it is still 

currently difficult to define a specific formal definition of texture (Karu, Jain, & Bolle, 1996).  
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Texture is recognised by a local-neighbourhood property, as colour is recognized by a point 

property (Belongie, Carson, Greenspan, & Malik, 1998). Texture is a set of elements or primitives 

that may appear clearly, or sometimes hardly, on a surface of any substance. These primitives 

consist of a set of pixels with internal properties such as intensity values, which refer to tone. The 

relationship between these pixels of intensity values under conditions of the same tone constitute 

the structure of the texture.                                          

Tiny sized elements such as grains of sand, or large scale elements such as a group of stars in the 

sky, may reflect the surface of the texture. However, the elements in the texture should be large 

enough not to resemble noise, and should not be too large to be seen as objects by themselves 

(Karu et al., 1996). In the universe, texture may appear in many things if viewed from a specific 

distance, as the scale or resolution is important for perception of texture. In (Chaudhuri, Sarkar, & 

Kundu, 1993), the authors state that an essential characteristic of texture is that “texture regions 

give different interpretations at different distances, and at different degrees of visual attention”. 

Fig 2.1 (a) from near distance appears to be single star, which is not a texture, whereas if the 

viewing distance is increased, as in Fig 2.1 (b), the picture appears to a group of stars, which might 

show texture.   

 

The spatial variation of the textured surface is important for recognising and classifying the 

different textures. Special properties of texture can be recognised in our minds at the time we touch 

or see the picture. The perception of the person depends on the variations of pixels in a texture, 

which are used to discriminate between surface types in the image. One rather simple method for 

categorising the textures, is to divide them into stochastic or deterministic texture surface types, 

as demonstrated in the Fig 2.2, where in Fig 2.2(a), the first elements are regular with strictly 

Fig. 2. 1 Same primitive with different scales appearing in 

two images. (a) An image categorised by object shape. (b) 

An image categorised by texture. 
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deterministic nature, and mostly exist in synthetic texture, whereas in in Fig 2.2(b), the second set 

of elements are irregular or uncorrelated, and mostly found in natural texture.   

 

 

Other researchers have used different categorisation for describing texture, which provides more 

details on its special properties. According to (Haralick & Shanmugam, 1973), texture is grouped 

into fine, coarse, or smooth; or rippled, molled, irregular, or lineated categories. In (Tamura, Mori, 

& Yamawaki, 1978), texture is divided and extended into groups of coarseness, contrast, 

directionality, line-likeness and regularity properties.   

Coarse versus fine: When elements of the texture are far away in space and large in size, the texture 

is coarse, whereas, in contrast, a fine texture in one where elements of the texture are close in space 

and tiny in size.  

High contrast versus low contrast: Contrast defines the variety in pixel value scale in the image 

between pixels with high values and those with low values. Depending on the structure of the 

texture, contrast is affected by numerous factors such as edges, sharpness and periods of repeating 

patterns. For example, if the image has sharp edges, it is considered to be of higher contrast. 

Directional versus non-directional: This categorisation includes primitive shapes and the 

placement rule.   

Line-like versus blob-like: This categorisation involves only primitive shapes of a texture, where 

a texture may take a line shape or a blob one.  

Regular versus irregular: If there are no variations of elements in the texture by the placement rule, 

then the texture would be described as regular, whereas, big variations of elements in the placement 

rule would result in the texture being observed as irregular.  

Fig. 2. 2 A texture with (a) clear elements (regular), (b) 

unclear elements (irregular). 
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In a recent study by Rao and Lohse (1993), additional important classes were added, which are 

more understood by the perception of texture by humans. The groups included the classes and their 

opposites, such as repetitiveness versus irregularity, directional versus non-directional, and 

structurally complex versus simple. Laws (1980) defined other texture properties which play an 

important role in classifying textures, such as uniformity, density, coarseness, roughness, 

regularity, linearity, directionality, frequency and phase. From this wide range of categorisation of 

texture characteristics, without doubt, it is difficult for one method to be adequate for texture 

representation. 

2.1.2 Texture Analysis Approaches 

A wide variety of texture analysis methods have been invented to deal with different texture 

properties. These methods, which are used for extracting features from texture, have been divided 

into groups. Sonka, Hlavac, and Boyle (2014), mentioned two main approaches to texture analysis, 

which are the structural approach and the statistical approach. The structural methods are used to 

extract features from regular textures. Statistical methods are more appropriate to deal with 

irregular (random) textures. M Tuceryan and Jain (1998) introduced an extension to the texture 

analysis approaches, which included statistical, structure, model-based, and signal processing 

approaches.  

2.1.2.1 Structural Approach  

Structural methods based on geometric properties such as size and shape of primitives, or elements 

of texture, are called texels or texton (Karu et al., 1996; Zhu, Guo, Wu, & Wang, 2002). Here, 

texels are the smallest elements in the image, where together they reflect the impression about the 

region of texture. Structural methods consider some attributes that are constructed from the spatial 

distribution of primitives, such as repetition of the texture surface. They apply the placement rule 

for the spatial relationship of primitives (Haralick, 1979).  For example, if the image was a brick 

wall, then the primitive in the texture is the brick, whereas the placement rule is performed on the 

bricks to detect their arrangement in space. Structural methods classify textures into classes, or 

segments of one image into different regions, based only on the good structure of primitives in the 

image (Murray, Lucieer, & Williams, 2010).  

Among the methods based on the good structure of the image is that by (Huet & Mattioli, 1996), 

which applies morphology operations for determining the elements that constitute the texture, and 
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that by (Mihran Tuceryan & Jain, 1990), which uses Voronoi tessellation to describe the shape 

properties of the texture elements.  

2.1.2.2 Statistical Approach  

Statistical methods are well known within the computer vision field, beginning from the earliest 

methods used to analyse grey texture images (M Tuceryan & Jain, 1998). Statistical methods 

replace placement rules for describing the texture with a general set of statistical tools, which are 

based on spatial distribution of the intensity values. Based on existing correlation between pixels 

in the spatial domain of complete or specific regions of the image, the methods are divided into 

first-order statistical methods and second-order statistical methods.    

First-order statistical methods extract features from textures through the effectiveness of pixels as 

individual values, without considering the sets around the pixels. The grey-level histogram is one 

of these methods, which is based on calculating the intensity value of complete images (William 

H Nailon, McLaughlin, Spencer, & Ramo, 1996). Texture features derived from this method 

include the mean, standard deviation, variance, and average energy, which are mostly not 

sufficient to discriminate between different textures. These methods are statistically invariant to 

any rearrangement of pixels in the image (William Henry Nailon, 2010).     

Second-order statistical methods consider more meaningful features from textures by utilising the 

intensity of the pixels and the interaction with the neighbouring pixels. They depend on measuring 

the distribution of grey-level values of pixels relative to each other in the spatial domain, which 

make such methods suitable for achieving higher discrimination of features, especially within 

random textures.  There is supposed to be a correlation between pair of pixels in the grey-level of 

an image at random distances and orientation, and such correlation depends on the power of the 

method used (William Henry Nailon, 2010).  

2.1.2.3 Signal Processing Approach  

Signal processing is a modern approach in dealing with texture, which usually extracts the features 

by applying a set of filters to record the responses from the image. It utilises responses of these 

filters to create texture features by a multi-scale analysis, relying on multiple spatial filters with 

different frequency characteristics to perform the analysis (Majid & Xianghua, 2008). The benefit 

of the multi-scale methods is that they are capable of reaching the appropriate scales for different 

textures. Scale is the main challenge with texture analysis, and it is important to define the 
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characteristics of texture with multi-resolution. The filter method processes the scale problem in 

the image by zooming into appropriate scales using different values of frequency.    

Extracted features in filtering methods can be carried out in the spatial, frequency, or the 

spatial/spatial-frequency domain. Spatial domain methods, such as Laws masks, usually use the 

convolution operation between certain masks and the image (Laws, 1980). These masks directly 

extract properties of texture features such as edges, lines, and isolated dots (Xie, 2008). In the 

frequency domain, the process starts by transforming the image into the Fourier domain, before 

convolving it with a filter function. Joint spatial/spatial-frequency methods localise defective 

regions in the spatial domain by a window function. Fourier coefficients cannot localise specific 

regions in the image unless a window function is used. If the window function is Gaussian, it 

results in the Gabor transform, which is suitable in spatial and frequency domains localisation 

(Xie, 2008). Although, the Fourier spectrum was the first method to be developed and has been 

extensively applied with texture (William Henry Nailon, 2010), Gabor outperformed others in 

analysing texture (Majid & Xianghua, 2008). Gabor has thus emerged as one of the most popular 

filter methods to characterise texture using multi-scale channels with different frequencies to 

analyse different scales (Manjunath & Ma, 1996).    

2.1.2.4 Model-based Approach 

A model-based approach is essential for describing texture. Texture is described using a parametric 

approach, where these parameters are used as features for a specific texture analysis. There are 

different parametric methods used with texture. Random models such as the Gaussian Markov 

Random Fields (GMRF) or the Markov Random Fields (MRFs) models are mostly used for 

capturing information from texture. There are also other methods such as the fractal models, 

autoregressive models, and random field models (Majid & Xianghua, 2008). However, model-

based methods are more suitable for synthesised textures, as their achievement is limited with 

random images of real applications (Xie, 2008).  

2.1.3 Texture Applications  

Extracted features from textures by any texture analysis algorithm is the pre-processing step for 

any application of computer vision, like texture segmentation and texture classification.   

2.1.3.1 Texture Segmentation 

The segmentation of texture involves partitioning an image that contains differences in texture 

characteristics into a number of regions as show in Fig 2.3. In texture segmentation, there is no 
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previous knowledge about the property of texture regions that constitute the image. Segmentation 

happens if there are two or more different textures in the image, and usually the regions of the 

different textures are adjacent. There are two techniques to apply segmentation on the image based 

on the texture. One technique is based on the texture region, while the other is based on the 

boundary (A. Song & Ciesielski, 2003).  A region-based approach determines the uniform regions 

of texture, which are the local regions consisting of a set of pixels with the same texture 

characteristic in the image. In this method, if the adjacent regions of texture are close to each other, 

the regions will be segmented carefully. The main problem with this method is that the local 

properties of the image that intended to be split into sub-regions usually depends on the 

homogeneousness of the texture regions (Y. Deng & Manjunath, 2001).      

The boundary-based approach looks for changes in texture properties from any of neighbouring 

regions, which determines the border of the texture region. As a result, this method does not pay 

attention to the number of regions in the image. The boundary-based approach faces a problem if 

there is space between two regions, and such space was not determined as an adjacent region too 

(Sklansky, 1978; A. Song & Ciesielski, 2003).  

 

 

2.1.3.2 Texture Classification 

In the classification task, a group of unknown images are classified into a number of predefined 

classes, where each image in the group belongs to one of classes (see Fig 2.4) (Duda, Hart, & 

Stork, 2012). Fig 2.4 shows five classes, and a sample image that is supposed to belong to class 4. 

In classification, the images are supposed to be in the most appropriate class, and in the best 

classification results, every image is classified into the correct class. However, perfect 

classification is a difficult task.  

Fig. 2. 3 Sample image of five texture regions for 

segmentation. 
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In this work, significant attention is paid to textures classification, as texture has been utilised in 

several applications of image classification. Haralick and Shanmugam (1973) analysed textural 

features from different sources of images to classify a terrain of land. The classification was based 

on number of decision rules, and its ability depended on the different source images. Dell'Acqua 

and Gamba (2003) used SAR images to apply texture analysis by co-occurrence methods for 

determining the construction inside a city. The classification of buildings was based on some 

measurements like the length of windows. Siew, Hodgson, and Wood (1988) employed a number 

of matrices for texture features to classify different carpets. The matrices were the neighbouring 

Grey-level Dependence Matrix, the Grey-level Difference Method, and the Grey-level Run Length 

Method, where these matrices had the ability to discriminate between different textures in the 

carpets. For classification of wood texture images, Khalid, Yusof, and Meriaudeau (2010) applied 

a number of texture features methods, namely: Gary-Level Co-occurrence Matrix, Local Binary 

Patterns, Wavelet, Ranklet, Granulometry, and Laws’ Masks. He also reported superior results by 

the Local Binary Patterns methods over the other methods. 

In classification, the group of images to be classified is presented with feature vectors. These 

feature vectors result from one or more texture extractors, which describe the characteristics of 

images. The feature vectors are introduced into a classifier or a predictor, such as the Back 

Propagation Neural Network (BPNN) or the Support-Vector Machine (SVM), to be trained as 

inputs and determine an output, which predicts or classify the unknown images.  

(1) Back Propagation Neural Network    

A neural network is a learning method that is widely used in images processing applications (Park, 

Lee, & Kim, 2004; Tou, Tay, & Lau, 2009). Here, a simple explanation is given about a neural 

network, which is categorised as a common supervised machine. Fig 2.5 depicts a sketch of a 

Fig. 2. 4 For a texture classification system, the sample on the bottom 

left needs to be classified to one of the five classes at the top. 
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neural network, which consists of a number of layers; an input layer, single or many hidden layers, 

and an output layer. The input layer is connected to the hidden layers by a set of weights, and the 

hidden layers are connected to the output by another set of weights. In image classification, the 

vector of extracted features from the image is connected to the input layer, and is match with the 

desired class labels in the output layer. 

 

 

The layers in a neural network consist of a number of nodes (neuron), where each node connects 

to the weights from the input layer by summation, and is compared with a threshold (or bias). 

Subsequently, it is converted to the output by a transfer function (2-1) (Zupan, 1994). 

 

𝑦 = 𝑓 (∑𝑤𝑖𝑥𝑖 − 𝛽

𝑁

𝑖=1

) (2-1) 

 

where y is the output of the node, 𝑥𝑖 is the 𝑖𝑡ℎ input, 𝑤𝑖 the weight of the 𝑖𝑡ℎ connection, β is the 

threshold, and 𝑓(. ) is the activation function. The activation function can be a step function or a 

sigmoid function (2-2). 

 
𝑓(𝑥) =

1

1 + 𝑒−𝑥
 

(2-2) 

 

Fig. 2. 5 Model of MLP with one hidden layer. 



37 

 

The weights adjusted by the real output, using a common training algorithm call back propagation, 

are very close to the desired output. The adjustment or modification of the weights occurs in the 

training stage, where such stage commences with random weights. The modification of the weights 

is done layer-by-layer, starting from the output layer by calculating the error using the Mean 

Square Error (MSE), and then going backward in the hidden layer to change the weights. The MSE 

is calculated from expected and actual output vectors. This leads to a decreasing MSE when the 

procedure is repeated many times, resulting in new weights (Tu, 1996; Zupan, 1994). 

(2) Support-Vector Machine 

Support-vector machine is one of  learning algorithms that has been applied in different 

applications of image classification (K. I. Kim, Jung, Park, & Kim, 2002; Rajpoot & Rajpoot, 

2004). SVM is a more recent classifier than BPNN, where the last has a problem of  

over-fitting, while the former provides better results with data of short length (Candade & Dixon, 

2004). 

SVM relies on statistical learning for separating between different sets of data (Evgeniou, Pontil, 

& Poggio, 2000). SVM is designed for separating two classes of data in the classification stage, 

where the separation between the two classes of data is done by hyperplane. The hyperplane is 

supposed to separate between these different classes of data by maximal margin, such as desirable 

classes and undesirable classes of dataset.  The operation starts by mapping training samples of 

feature vectors into a space of a higher dimensionality, which is called the feature space. In higher 

dimensional feature space, applying linear separation between different classes is possible. Then, 

the margin of separation between classes in the higher dimensional space of training samples is 

determined. The resulting optimal margin should be of as large width as possible between the two 

different classes. Fig 2.6 illustrates two different samples of data from the desirable class (+), and 

three samples from the undesirable class (o). These samples of (+) and (o) are determined by 

hyperplanes L1 and L2, respectively. There are points of data in the border of hyperplanes L1 with 

three points of sign (+) and L2 based on two points of signs (o), where these are called support 

vectors (Cortes & Vapnik, 1995).   
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The following equation defines the form of the hyperplane: 

 𝑤. 𝑥𝑖 +  b =  0 

where 𝑥𝑖 is the attribute set for the 𝑖𝑡ℎ training data, which belong to one of the two classes, (+) or 

(o). This training set of samples should find a linear classifier that separates all training data 

samples. In the training stage, the SVM of a couple of lines will search for the widest margin that 

separate between different classes of samples that are shared in training, such that:   

w 𝑥𝑖 + b = 0 separates between different samples. The first class of samples belongs to  

w. 𝑥𝑖 + b > 0, and that determines the hyperplane L1, whereas the second class of samples belongs 

to w. 𝑥𝑖 + b < 0, which determine the hyperplane L2. The width between the hyperplanes is (𝑤) 

(Ivanciuc, 2007).  For more than two classes  (i.e. a multi-classes problem), the classification is 

performed by a one-against-others approach using multi-class SVM (Hsu & Lin, 2002) .     

2.2 Texture Feature Description  

The purpose of texture descriptors is to extract information from the texture, in the form of 

numerical numbers called ‘‘features’’. This stage is critical for any texture application to capture 

significant properties of texture (Chellappa, Kashyap, & Manjunath, 1993). It is possible to find 

that features from a certain descriptor work better on particular applications; however, there is not 

a certain feature that is appropriate for different applications (W.-C. Lin et al., 2004). For 

discriminating features from texture, it is important to define which features are required to be 

computed, and what kind of processing of these features is needed, both of which depend on 

selecting the proper descriptor (Chellappa et al., 1993). Here, only the statistical and signal 

processing methods are reviewed, which are appropriate for real images.  

Fig. 2. 6 Linear SVM for two classes of data. 
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2.2.1 Statistical Descriptors 

In statistical mode, first order statistics are not suitable for defining properties of a texture. In this 

mode, the descriptors for texture tend to use higher order statistics such as Autocorrelation, Grey-

level Run Length, Grey-level Co-occurrence Matrix, Grey-level Difference Matrix, and Local 

Binary Patterns.  

2.2.1.1 Autocorrelation 

Autocorrelation (AC) is used for assessment of the percentage of regularity in the texture using  

equation (2-3). AC describes the spatial organisation of texture by the correlation coefficient, 

which evaluates linear spatial relationships between texture primitives (Mihran Tuceryan & Jain, 

1993). For example, to compare between fineness and coarseness of the texture, the AC function 

drops off quickly with fineness textures, whereas it drops off slowly with coarseness textures. 

Although AC can be applied for different texture characteristics, the features from the AC function 

are not effective enough for texture classification, especially with natural images (Pratt, 1991).  

 

 
𝐴𝐶∆𝑢,∆𝑣 (𝑥) =

∑ ∑ 𝑥(𝑢, 𝑣)𝑥(𝑢 + ∆𝑢 , 𝑣 + ∆𝑣)
𝑀
𝑣=1

𝑀
𝑢=1

∑ ∑ 𝑥2𝑀
𝑣=1

𝑀
𝑢=1  (𝑢, 𝑣)

 (2-3) 

where 𝑥 is the 𝑀 ×  𝑀 image, and ∆𝑢, ∆𝑣 are horizontal and vertical displacements. 

2.2.1.2 Grey-level Run Length 

Grey-level run length (GLRL) was introduced by Galloway (1974) as a means  for extracting the 

properties of texture statistically. It calculates the features in the same line that has the same grey 

level value. GLRL can be applied in different directions, but is usually used with directions 0o, 

45o, 90o and 135o (see Fig 2.7 for 0o and 45o).   

 

 

For characteristic features, usually a number of measurement is taken instead of depending on 

produced run length matrices. For instance, short run emphasis, long run emphasis, grey-level non-

Fig. 2. 7 Sample of pixels’ values, and GLRL matrices at 0o and 45o.  
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uniformity, run length non-uniformity, and run percentage have all been used as feature extractors 

from texture. A longer run-length is used for describing a coarser texture, whereas a short run-

length is used for fine texture. For differences between random and non-random textures, the result 

of GLRL is more uniformly distributed with a random texture.  It is clear that feature extraction 

by GLRL is not difficult in calculation, however, the reported results from this method are not 

encouraging (Conners & Harlow, 1980).   

2.2.1.3 Grey-Level Co-occurrence Matrix  

The Grey Level Co-occurrence Matrix (GLCM) was introduced by Haralick in 1973 (Haralick & 

Shanmugam, 1973). Texture features can be calculated by GLCM, which is one of oldest statistical 

methods used for the analysis of texture. It creates a new matrix that is dependent on  

grey-level values of the original image matrix. The number of rows and columns in the original 

image is equal to the grey tones of the new matrix. The GLCM method provides information about 

the type of texture in the image from the relationship between pairs of pixels. The values inside 

the new matrix take two parameters into consideration: distance and angle, as in Fig 2.8. 

 

 

The grey-level intensity values of two pixels with a particular spatial relationship compute the 

distance of GLCM. Angles determine the direction of the relationship between two pixels of the 

same grey-level, which can be horizontal, vertical or diagonal. Fig 2.9 explains the creation of the 

co-occurrence matrix (C-M) from the simple pixels’ values of the image matrix (Im-M). GLCM 

determines differences between surface textures through the collection of elements around a 

diagonal in the matrix. For example, rough and smooth surfaces will be different, and can easily 

be classified using GLCM (Al-Janobi, 2001). The dimensions of GLCM are calculated by the 

grey-level of the image. More levels provide more accuracy in extracting the information from the 

texture, at cost of increasing computational complexity (Soh & Tsatsoulis, 1999).  

Fig. 2. 8 Eight directions of adjacency in GLCM. 
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2.2.1.4 Grey-level Difference   

The grey-level difference method extracts local features by calculating absolute differences 

between pairs of grey-level pixels (2-4) (Weszka, Dyer, & Rosenfeld, 1976). The method follows 

nearly the same strategy of GLCM, which calculates statistical features by considering the 

distribution of local contrast in different directions. After producing the matrix, a number of 

measurement are applied to extract the features, including the mean, entropy, contrast, and angular 

second moment. 

 𝑓 (∆𝑥 , ∆𝑦) = |𝑓(𝑥, 𝑦) − 𝑓(𝑥 + ∆𝑥 , 𝑦 + ∆𝑦)| (2-4) 

where 𝑥 𝑎𝑛𝑑 𝑦 is the position of pixel, ∆𝑥 𝑎𝑛𝑑 ∆𝑦 is the displacement in 𝑥 𝑎𝑛𝑑 𝑦 direction. 

2.2.1.5 Feature-based Texture Units  

The aforementioned methods are among the first and common statistical methods used with 

texture. These co-occurrence methods estimate grey-level pixels by a displacement vector in 

specific directions. However, such methods do not produce sufficient information from different 

textures (He & Wang, 1990). For more effective extraction of information from the texture of the 

image, He & Wang used a method based on Texture Units (TUs), which is the smallest complete 

unit of image (He & Wang, 1990). In images, each pixel (central pixel) is surrounded by a number 

of pixels, called neighbour pixels. The relationship between any central pixel and its neighbours 

can be represented by eight directions surrounding the centre pixel (the horizontal, vertical, 

diagonal, and anti-diagonal pixels), where the smallest complete unit in the image is called the 

Texture Unit. The researchers applied texture spectrum (TS) on a set of produced TUs of features.    

Fig. 2. 9 Images matrix of pixels’ values converted into GLCM.  
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In TS, each element in the texture unit is replaced by one of three values (0, 1, 2), as explained in 

(2-5), which is the relationship between the surrounding 3 × 3 pixels with the pixel in the middle.  

 

 

𝑎𝑖 = {

2,   𝑖𝑓 𝑝𝑖 > 0
1,   𝑖𝑓 𝑝𝑖 = 0
0,   𝑖𝑓 𝑝𝑖 < 0

        𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑖 ≤ 8 (2-5) 

 

The texture spectrum is calculated using a histogram based on TUs, which is used as the features 

of the image. However, before using the histogram, every centre pixel in TUs is replaced by a 

summation of neighbour pixels from functions of logical operators and a product of their weighted, 

using equation (2-6). The result is 38= 6561 possible units of texture, which describe the spatial 

three-level patterns of neighbourhood pixels of TUs. 

 

𝑁𝑇𝑈 =∑𝑎𝑖  . 3
𝑖−1      

8

𝑖=1

 (2-6) 

where 𝑁𝑇𝑈 represents the texture unit number, and 𝑎𝑖 is the 𝑖𝑡ℎ element of texture unit.  

The rest of this section introduces one of the most significant methods based on TUs for extracting 

features from texture (Local Binary Patterns - LBP), before subsequently introducing other 

extension methods based on this method.  

(1) Local Binary Pattern  

The histogram size from TS is unpractical, because the feature length is very long. To reduce the 

large value resulting from texture units by TS, Ojala et al. (1994) used TU for binary coding of 

texture patterns, which is called Local Binary Patterns (LBP). LBP replaced the quantization 0,1, 

and 2 in TS by only 0 and 1 (equation (2-7)), and as such, there are only 256 possible TUs (from 

28, as explained in equation (2-8)).  

 

 
𝑎𝑖 = {

1  , 𝑝𝑖 ≥ 0
0  , 𝑝𝑖 < 0

       𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑖 ≤ 8 (2-7) 
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𝐿𝐵𝑃𝑃,𝑅(𝑥, 𝑦) =∑𝑎(𝑔𝑖 − 𝑔𝑐)2

𝑖−1 

𝑛

𝑖=1

 (2-8) 

 

where 𝑔𝑖 and 𝑔𝑐 are the grey-level values at a neighbouring pixel and the centre pixel, respectively. 

The number of the pixels in the circular neighbourhood is denoted by 𝑛, and  𝑎(. ) is a binary 

quantisation of intensity value of patterns  

Figure 2.10 explains in steps how the centre pixel in TUs is replaced by summation of neighbour 

values that result from the binary coding with corresponding weights.  

 

 

LBP has emerged as the most effective method used with textures classification, with a very low 

computational cost. In addition, LBP, with its invariance against luminance change, ensures that 

no effect takes place on signed differences between the middle pixel and the other surrounding 

pixels, which makes LBP invariant to grey-level shifting. We will utilise LBP later for developing 

new features for texture classification.  

(2) Extensions of feature methods based on LBP  

Conventional LBP descriptors define a small area in the image using a 3x3 window. However, this 

limited window is not effective for capturing enough structural information that can take place at 

wider scales. Ojala, Pietikainen, et al. (2002) modified the conventional LBP descriptor to be an 

invariant method to rotation and grey-scale. To accomplish different scale analysis, for the 

neighbourhood pixels surrounding the centre pixel, any number of neighbour samples (P) can be 

selected from the circular perimeter at any scale (R). However, a multi-scale analysis can be 

executed in a circular or square shape of neighborhood, which is appropriate in some applications 

that are not affected by rotation (Pietikäinen, Hadid, Zhao, & Ahonen, 2011).  LBP with multi-

Fig. 2. 10 Computing LBP from sample of TU. 
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resolution analysis usually improves the discriminative capability of feature, and in turn, the 

accuracy of texture classification.  

The feature length of LBP is 256, resulting from the number of patterns being equal to eight. When 

depending on multi scale analysis, the size of the histogram grows rapidly by 2n. For example, 

with n= 16 neighbour samples, the size of the histogram would be 216. Increasing in the number 

of neighbour samples makes the LBP impractical for use in real applications. 

The modified method compares pairs of pixels which are center-symmetric with each other. Such 

method produces 16 (24) rather than 256 (28) different binary patterns (Heikkilä, Pietikäinen, & 

Schmid, 2009). 

In order to reduce the feature length resulting from the histogram with multi-scale, Ojala, 

Pietikainen, et al. (2002) utilised uniform patterns instead of complete neighbour patterns. In every 

scale, there is a limited number of transitions of the pattern.   

One of the important methods extended from LBP is the Local Ternary Patterns (LTP) method. 

Tan and Triggs (2010) introduced LTP in order to process the sensitivity to noise in the 

conventional LBP, as LTP was intended for use in face recognition. LTP is less sensitive against 

noise in uniform regions, and it also usually provides more discriminative features. LTP has 3-

valued codes, the ones above (±t) are equal to 1, those below (±t) are equal to -1, which are then 

replaced by 1 in a further process to reduce the size of resulting histogram, whereas those between 

(±t) are always equal to zero (2-9).  

 

 

𝑎𝑖 = {

1,                    𝑖𝑓 𝑝𝑖 > 𝑐 + 𝑡
0,   𝑖𝑓 c − 𝑡 ≤ 𝑝𝑖 ≤ 𝑐 + 𝑡
−1,                      𝑖𝑓 𝑝𝑖 < 𝑐 − 𝑡

          𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑖 ≤ 8     (2-9) 

 

For analysing medical images and for more information from the texture, the author extended the 

LBP method into Local Quinary Patterns (LQP) encoding by adding two values of threshold (t1 

and t2) for texture patterns to be divided into four binary patterns, as explained in equation (2-10) 

(Nanni, Lumini, & Brahnam, 2010).  
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𝑎𝑖 =

{
 
 

 
 

2,                         𝑖𝑓 𝑝𝑖 > 𝑐 + 𝑡2
1,      𝑖𝑓 𝑐 + 𝑡1 ≤ 𝑝𝑖 < 𝑐 + 𝑡2
0,      𝑖𝑓 𝑐 − 𝑡1 ≥ 𝑝𝑖 < 𝑐 + 𝑡1

−1, 𝑖𝑓 𝑐 − 𝑡2 ≤  𝑝𝑖 < 𝑐 − 𝑡1
−2,                                 𝑝𝑖 < 𝑐 + 𝑡2

          𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑖 ≤ 8     (2-10) 

 

It can be seen that, LBP improves the TS method by effective binary quantisation of intensity 

values of neighbour pixels, whereas LTP and LQP are used for extracting better features than LBP 

from TUs by considering more intensity values of the neighbourhood pixels.  

2.2.2 Signal Processing Descriptors 

Signal processing methods, also called filter methods, are applied for filtering images to capture 

relevant information. They have the ability to deal with different texture characteristics, such as 

developing a multiscale approach for the scale problem in the texture, which is the main property 

of these methods. Signal processing schemes are more modern methods than statistical methods. 

2.2.2.1 Fourier Transform  

Joseph Fourier introduced the Fourier transform (FT) method in 1807, which is a periodic function 

of an infinite sum of complex exponentials. Fourier analysis, as other spectrum methods, has the 

ability to study texture properties using the power spectrum, which provides information about 

texture properties, such as distinguishing between coarseness and fineness, or between directional 

and non-directional textures (William Henry Nailon, 2010).   

Through signal processing, FT produces a global frequency without referring to the time, which is 

the main problem of FT. This is addressed by using the Short Time of Fourier transform (STFT), 

which processes the signal by a window function. Using a window of Gaussian function, and 

multiplying the input signal by the window produces the Gabor transform. 

 

 

𝐹(𝑢, 𝑣) =
1

𝜔2
 ∑∑𝑓(𝑥, 𝑦)𝑒

−2𝜋 𝑗 
𝜔

 (𝑢𝑥+𝑣𝑦)

𝑀

𝑦=1

𝑀

𝑥=1

 (2-11) 
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The complex FFT represents magnitude (|F|), which is the absolute value or power spectrum 

density, and phase (𝜃) information of the signal in the frequency domain. As previously mentioned, 

the power spectrum density (PSD) represent the contents of an image using global frequency, 

which is directional and symmetric, where FFT is used to obtain high performance textural 

features. Zhou, Feng, and Shi (2001) studied texture classification and texture retrieval by local 

Fourier analysis. He proposed features extraction based on a histogram that resulted from 

describing Fourier coefficients of the local similarity of texture.   

2.2.2.2 Gabor Filter  

According to studies on the Human Visual System (HVS), textures depend on three primary 

characteristics, which are: frequency, orientation, and complexity. A Gabor filter (GF) mimics this 

system, because it can localise frequency and orientation characteristics of images by decomposing 

the images into different spatial frequencies and directions, and as such, GF is categorised under 

Multi Scales Multi Directions (MSMD) methods (Clausi & Jernigan, 2000).  

The Gabor function was introduced by Dennis Gabor, who later won the Nobel-prize (Gabor, 

1946).  The main purpose of his study was the analysis of information and its transmission to 

speech. The signal was analysed symmetrically in the time and frequency domains. The 

development of GF was made by Daugman, who applied GF for two-dimensional (2D) signals, 

and found that the 2D Gabor filter gave good description for cells in an animal visual cortex 

(Daugman, 1985).   

The extracted features from the texture by Gabor filters shows high discrimination. Since 

introduced, GF has seen widespread use in many applications, such as texture segmentation, image 

retrieval, and image classification (Idrissa & Acheroy, 2002; A. K. Jain & Farrokhnia, 1991; 

Manjunath & Ma, 1996). It is an unsupervised texture classification method that uses different 

frequencies and orientations of the Gabor filter, performed together with fuzzy clustering 

algorithm. Gabor filters are used to extract features for texture classification. The weakness of this 

method is that the numbers of clusters need to be specified in advance (Idrissa & Acheroy, 2002). 

A similar study (Kamarainen, Kyrki, & Kälviäinen, 2002) shows the invariant nature of Gabor 

filters to rotation and translation in image recognition. The fundamental frequencies of Gabor 

filters are used to represent the object shape for classification. Even symmetric Gabor filters are a 

robust method for rotation invariance. The classification rate on rotated textures of the Brodatz 

database with different directions reach just above eighty per cent (Manthalkar, Biswas, & 

Chatterji, 2003). Furthermore, Gabor filters are used in texture feature extraction, and are often 
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compared with other techniques of texture analysis. This comparison takes into consideration both 

the filter’s characterization and the feature extraction, based on the filter’s outputs (Clausi & 

Jernigan, 2000).  

Gabor filters are utilised in spatial and frequency domains. In the spatial domain (Equation (2.12)), 

they are a sinusoid wave modulated by a Gaussian envelope, where the bandwidth of the filter is 

determined by the standard deviation of the Gaussian envelope, and the direction and frequency 

of the sinusoid signal refer to the direction and frequency of the pass band of the filter. 

 

 
   𝛹(𝑥, 𝑦; 𝑓0, 𝜃  ) =

𝑓0
2

𝜋𝛾𝜂
 𝑒
−
𝑓0
2

𝛾2
𝑥′2+

𝑓0
2

𝜂2
𝑦′2

𝑒𝑗2𝜋 𝑓0𝑥
′
           

(2-12) 

𝑥′ = 𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛     

     𝑦′ = −𝑥𝑠𝑖𝑛𝜃 + 𝑦𝑐𝑜𝑠𝜃        

 

where 𝑓0 is the central frequency of the filter, 𝜃 is the angle between the sinusoidal wave direction 

and the x-axis,  𝛾 and 𝜂 are Gaussian envelope’s values in the wave direction of major axis and 

orthogonal to the wave direction (the minor axis), respectively.  

In the frequency domain (Equation (2-13)), Gabor filters are Gaussian bell-shape filters in various 

orientations, and of different horizontal and vertical central frequency: 

 
                 ѱ(𝑢, 𝑣; 𝑓0, 𝜃 ) = 𝑒

−𝜋2
𝑢′−𝑓0
𝛼2

+
𝑣′

𝛽2        (2-13) 

𝑢′ = 𝑢𝑐𝑜𝑠𝜃 + 𝑣𝑠𝑖𝑛𝜃                       

   𝑣′ = −𝑢𝑠𝑖𝑛𝜃 + 𝑣𝑐𝑜𝑠𝜃                       

 

For utilising GF in classification, it is necessary to apply a number of them (filter bank) on the 

image. To elaborate, a filter bank contains a set of filters with different parameters, and these 

parameters should be taken into consideration when designing the filter bank. To construct Gabor 

features, it is common to calculate Gabor filter response over the input image for a set of filters, 

called wavelet, which are tuned to various orientations and frequencies. This is to ensure that 
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objects within an image can be categorised at different orientations, scales and translations (Kyrki, 

Kamarainen, & Kälviäinen, 2004).  

Determining different frequencies is done via equation (2-14), which represents the scale 

invariance property of Gabor filters. The frequency values 𝑓𝑢 are based on 𝑓𝑚𝑎𝑥, which describes 

the maximum central frequency, and the spacing factor between the different central frequencies 

𝜆, which is normally set to √2 .  

 
𝑓𝑢 =

𝑓𝑚𝑎𝑥
𝜆𝑢

, 𝑢 = {0,… , 𝑢 − 1},   (2-14) 

where 𝑢 is the scale size. The selection of discrete rotation angles is done via equation (2.15), 

which space the orientations uniformly.  

 𝜃𝑣 =
𝜋𝑣

𝑉
 , 𝑣 = {0,… , 𝑉 − 1} (2-15) 

These parameter values are used to cover the frequencies and orientations of interest for a Gabor 

wavelet, as shown in Fig 2.11, which illustrates five scales and eight orientations.  

 

The Gabor feature matrix is created by convolving the image with a particular Gabor filter. Here, 

a filter response that represents the amount of overlap between the filter and the texture in the 

image is obtained. 

For multi-resolution methods, Gabor filters and wavelet transform are the most utilised methods 

of images decomposition. However, Gabor filters is the preferred approach for texture. The 

wavelet transform decomposes the image into three directions, namely 0◦, 45◦ and 90◦ , which are 

Fig. 2. 11 Gabor filter consisting of five frequencies and eight orientations. 
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limited to the horizontal, diagonal and vertical sub-bands (Arivazhagan, Ganesan, & Priyal, 2006). 

Gabor filters, defined by equation (2-15), have the ability to decompose the image into multiple 

orientations.   

Many comparison studies of wavelet transform methods of texture characteristics found that Gabor 

filters are more appropriate others. In (Ahmadian & Mostafa, 2003), the authors compared Gabor 

wavelets and dyadic wavelets as texture feature extraction methods. Dyadic wavelets are a wavelet 

transform, which applies two 1D transforms separately to reduce the complications of applying a 

2D wavelet transform. In the context of texture classification, Gabor wavelets offer more 

discrimination of features from textures, and produce a higher accuracy.  In another study (S. Li 

& Shawe-Taylor, 2005), authors compared multiscale several spectrum methods, namely dyadic 

wavelet, wavelet frame, Gabor wavelet, and steerable pyramid. They found that the steerable 

pyramid and Gabor wavelet achieved higher classification rate, whereas dyadic wavelet obtained 

the least accuracy, as it has a problem with translation invariance. The improved wavelet method 

obtained better results, but still lagged behind the steerable pyramid and Gabor wavelet in terms 

of performance. In another related work by Ma and Manjunath (1995), different wavelet transform 

methods were applied,  such as the Orthogonal Wavelet Transforms (OWTs), Bi-orthogonal 

Wavelet Transforms (BWTs), and tree-structured decomposition (using orthogonal filter tree-

structure decomposition and bi-orthogonal filter), and Gabor Wavelet Transforms (GWTs). The 

Gabor feature outperformed others, however, it was computationally complex, which is the main 

problem arising in its applications.  

Supervised and unsupervised methods are the two sets of methods used to employ GF for texture 

applications (Clausi & Jernigan, 2000). Unsupervised methods are based on a set of filters with 

different frequencies and orientations in the bank, and are used without advance information about 

the texture in the image. Although they are more popular, the computational cost is expensive, 

especially with a large set of filters (Randen & Husoy, 1999). On the contrary, supervised methods 

are based on a particular filter or number of filters for a given problem. To achieve a more effective 

approach in texture applications, the objective of these supervised methods are to identify textural 

boundaries using only a minimum number of filters. Here, the parameters of filters are taken into 

consideration when finding the appropriate filters, which is applied as a solution to the high 

computational costs of GF (Bianconi & Fernández, 2007).  

Parameters optimisation is the main challenge associated with GF. The optimum parameter values 

of a filter, where the filter has the highest sensitivity to the texture’s patterns of the image, are 
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different for each of the filters in the bank. Thus, exploring the influence of the parameters on the 

filter performance is important. In (L. Chen, Lu, & Zhang, 2004), the authors examined the 

influence of Gabor filter parameters, such as the number of scales, number of orientations and the 

filter mask size, on image retrieval. They found that an appropriate filter mask size and a suitable 

mixture of numbers of scales and orientations have a substantial impact on the performance and 

the computational cost of the process. In addition, Gabor filter parameter selection is influenced 

by the characteristics of the textures in the database. Another study showed the importance of the 

smoothing parameter (standard deviation of the Gaussian envelope) in Gabor filters, and that the 

relationship of frequencies and orientations of the filter had less impact on the classification results 

(Bianconi & Fernández, 2007).    

In a bank of filters, not all created filters have the same significance, where only a number of the 

filters might be used, while the others may be redundant or not useful (W. Li, Mao, Zhang, & Chai, 

2010). For features with discriminative power, the appropriate values of GF parameters should be 

set. However, based on experience, this becomes increasing challenging when faced with a large 

set of parameters.  

Many optimisation methods have been employed for determining the optimum parameter values 

of GF. Genetic algorithm (GA) have been applied to GF parameters successfully in numerous 

optimisation tasks. The parameters were selected based on every image set in a database (Afshang, 

Helfroush, & Zahernia, 2009). A genetic method utilising a clustering algorithm was used for filter 

selection, where the clustering algorithm groups the filters to remove redundant information from 

similar filters (Sun, Bebis, & Miller, 2003). Another study was conducted using a genetic 

algorithm for the selection of a suitable value set of filter parameters, which included smooth 

parameters of a Gaussian envelope, as well as orientations and frequency values. The accuracy 

ranged from 97.5% to 96.9% for 16 and 6 filters, respectively (Pakdel & Tajeripour, 2011). In 

(Zavaschi, Britto Jr, Oliveira, & Koerich, 2013), the authors introduced a new method using a 

genetic algorithm that supports the vector machine used for recognition of facial expression, where 

Local Binary Patterns and a Gabor filter were used as an integrated method for feature extraction.  

Particle Swarm Optimization (PSO) is a swarm method used for selecting a subset of features from 

the original features, where in (Kumar, Patidar, Khazanchi, & Saini, 2016), the features were 

extracted from a leaf image by Gabor filter for leaves classification. For iris recognition, the 

optimized Gabor filter can be used for decomposing iris images. Particle Swarm Optimization is 

also utilised for optimization of Gabor parameters values (Tsai, Taur, & Tao, 2009). 
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2.3 Texture Feature Fusion  

2.3.1 Overview of Feature-level Fusion  

Feature level fusion is one of the most common methods of integrating multiple features from 

different descriptors. It is based on the assumption that the existing features can be improved when 

combined with other features, which can be used as complementary features.   

Images classification, especially by texture, is a major challenge, due to the wide diversity of 

different characteristics (refer to Section 2.1.1). The ability to classify different texture types is no 

longer sufficient using a single descriptor. This is because it is difficult to capture different 

characteristics of textures using any single descriptor (Bashar & Ohnishi, 2002). Most texture 

description methods in Section 2.2 are highly dependent on the particular type of texture. The 

applied descriptor is usually appropriate for a particular class of texture images, where its ability 

degrades and renders it unsuitable for other texture classes.  

In order to improve the strength of feature extraction, the current trend involves combining the 

descriptors with each other (Solberg, 1996; Solberg & Jain, 1997). An appropriate combination of 

different features is required, which provides diversity of information for the problem. Successful 

fusion is based the complementary features of the combined methods. The complementary features 

are used for exploiting the diversity between features from the shared methods. Depending on the 

many resources used together for extracting information, the ability to recognise images from an 

environment can be enhanced. The integration of feature descriptors produces highly 

discriminative and effective features, which are robust to changes in imaging effects, such as 

random noise or blurring of the image (R. S. Blum & Liu, 2005).  

The classification system has two main stages, which are the feature extraction stage and the 

classification stage. Therefore, fusion can be performed at the feature-level or at the  

decision-level of classification. Fusion at the feature-level is referred to as a pre-mapping, whereas 

fusion at the decision level is referred to a post-mapping fusion (Pohl & Van Genderen, 1998). 

The features are extracted by descriptors independently, and then combined in the feature level, 

where this is performed before the assessment of features by the classifier. 

Feature level fusion is applied by directly concatenating several of the shared features, where the 

simplicity in implementation is main advantage of this method. Fusion between different features 

from different descriptors produces more discriminative features, and achieves robustness and 
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accuracy (Bashar & Ohnishi, 2002). On the other hand, concatenation may increase the cost of 

computation from the resulting high feature dimensionality, which is the main drawback of 

combining different features. In concatenation of feature descriptors, if the number of descriptors 

is set by N and M-dimensions of extracted information from each descriptor, that dimensionality 

of the concatenated of participated descriptor will be M × N, which will increase the burden of 

computation.   

2.3.2 Feature-level Fusion – Related Work  

Because there are a wide variety of texture feature extraction methods, there have been real efforts 

by researchers to compare such methods to evaluate their performance separately, or when 

integrated together.  

S. Li and Shawe-Taylor (2005) compared four spectrum methods, which are the dyadic wavelet, 

wavelet frame, Gabor wavelet, and steerable pyramid. In the experimental results, the steerable 

pyramid and Gabor wavelet achieved higher classification rates, and the combination of the two 

methods achieved better results than applying any one of them separately.   

Barley and Town (2014) applied statistical and filter-based methods, which included the grey-

level co-occurrence matrix, Gabor wavelets, and steerable pyramids. The results proved that fused 

features from two methods provide a higher classification accuracy.    

In a similar study on a mix of statistical and spectrum-based methods, M. Singh and Singh (2002) 

examined the performances of the co-occurrence matrices, edge frequency, Laws’ masks, run 

length, binary stack, texture operators, and texture spectrum methods. In general, they concluded 

that using combined methods followed by feature selection improved texture recognition.  

In another related work (Ojala et al., 1996), the author compared a number of common feature 

methods that had been used before and new ones for texture classification. The compared methods 

included the grey-level difference method, Laws' texture measures, centre-symmetric covariance 

measures, and local binary patterns. The local binary patterns method was found to be more 

effective when combined with a contrast of texture measures for powerful feature detection. Local 

contrast was used as complementary approach to sign features of LBP. The patterns in the image 

and the greyscale image provide different information about texture. Integrating the conventional 

LBP with contrast measures from image texture was thus shown to enhance the accuracy of LBP 



53 

 

significantly. LBP is an invariant to grey-scale, and can be integrated with other methods to be 

effective.   

LBP produces powerful features with its simplicity, however, its application is often restricted to 

dealing with low discriminative types of texture, and there are efforts to make LBP a more 

discriminative texture extraction method (Ojala et al., 1996). LBP integrated with various other  

feature detection methods can be categorised into, fusion LBP with other similar features of LBP 

code, and fusion LBP with different descriptors features (L. Liu, Fieguth, Guo, Wang, & 

Pietikäinen, 2017).    

In (Z. Guo, Zhang, & Zhang, 2010a), Completed LBP (CLBP) was the first attempt in integrating 

various features of LBP style. The integrated features included three different components. The 

first and second components are the results of the local differences between a centre pixel and its 

neighbours, which are the signs (CLBP_S) and the magnitudes (CLBP_M). These components 

work as complementary features to each other, where CLBP_M works as alternative features of 

contrast. The last component, CLBP_C, is used for global thresholding to obtain more 

discriminative information.  

In (Ahmed, Hossain, Bari, & Shihavuddin, 2011), to obtain more discriminative features, the 

authors applied the same components of CLBP, with the exception of using two bits with 

neighbour pixels for both the sign and the magnitude components. The main reason for carrying 

out this approach was to obtain more discriminative information, and to avoid the long 

dimensionality of features the 16-bit pattern divided into two parts 8-bit pattern.  

In (Y. Guo, Zhao, & PietikäInen, 2012), a learning model with CLBP components was applied for 

more discriminative features. The sign and magnitude components were selected to be invariant 

to rotation, and a threshold value was then defined from taking the average values of distance 

between the values of neighbours from the whole image to produce disCLBP.  

In (L. Liu, Zhao, Long, Kuang, & Fieguth, 2012), features based on the radial-difference (RD) and 

angular-difference (AD) were extracted to be combined with two components from the intensity 

of the central pixel (CI) with its neighbours (NI). 

In (L. Liu, Lao, et al., 2016), the authors proposed a Median Robust Extended LBP (MRELBP) 

method for extracting global information to deal with the noise in the image, which is main 

problem facing the conventional LBP method. In MRELBP, instead of depending on the intensity 

values of pixels, the method calculates medians from the regional image rather than the raw image 
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intensities. This method applies the median approach efficiently on multi-scales with combined 

microstructure and macrostructure features. 

For dealing with noise, the Adjacent Evaluation Local Binary Patterns (AELBP) method was 

introduced in (K. Song, Yan, Zhao, & Liu, 2015) for texture classification. It replaces the central 

pixel as the threshold pixel in LBP by an adjacent evaluation window. Furthermore, it sets an 

evaluation centre (ap) as the new threshold by a window that contains neighbours of the 

neighbourhood of centre (gc). This method has the ability to be combined with the Completed 

Local Binary Pattern (CLBP) or Local Ternary Pattern (LTP) methods. 

LBP may classify different patterns to the same class as a result of the same LBP code. To obtain 

more discriminative features, the Local Structure Patterns (LSP) method was introduced in 

(Shrivastava & Tyagi, 2014). The patterns in the method are thresholded from a summation of 

centre pixel values and the average local differences. This provides more accurate classification 

results of textural structures by utilising local and global information. Furthermore, to improve the 

classification performance, LSP can be converted into Completed Local Structure Pattern (CLSP) 

by combining the conventional LBP method and centre pixel component.  

LBP features can be combined with other descriptors that work as complementary features 

extractors, in order to improve the accuracy of the features detection. In (Z. Guo, Zhang, Zhang, 

& Zhang, 2010), LBP histogram was joined with an absolute difference of pixels method. The 

features used for directional information extracted from the texture were ignored from LBP. This 

made LBP invariant against rotation. The statistical information from absolute difference of pixels 

were extracted by the mean and standard deviation values.  

In (Liao et al., 2009), to achieve an rotation-invariant LBP method, the Dominant Local Binary 

Patterns (DLBP) method was combined with a circularly symmetric Gabor filter. The DLBP 

method detected the frequently patterns occurring from the texture, whereas global directional 

features from the texture were obtained by Gabor filter.  

A new approach proposed by (Xiaoyu Wang, Han, & Yan, 2009) involved combining LBP with 

the Histograms of Oriented Gradients (HOG) method for detection of human objects, whereas, in 

(Hussain & Triggs, 2010), LTP was added to LBP and HOG to detect more visual features. 

In (Khellah, 2011), global image features were extracted by the Dominant Neighbourhood 

Similarity (DNS) method, and fused with local features detected by LBP for texture classification. 

Global dominant information is captured from calculating the average representation of the texture 
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from specific windows, where every window calculates the similarity between an intensity pixel 

with its neighbours.   

In (Satpathy, Jiang, & Eng, 2014), LBP was proposed as a solution for distinguishing between 

bright an object and its dark background. The LBP method and its complement were concatenated 

via their histogram.  

A new approach introduced in (Z. Guo, Zhang, & Zhang, 2010b) involved combining contrast 

information with the LBP Variance (LBPV) method. The principal orientations of the texture were 

firstly extracted, then concatenated with the LBP histogram.   

Integrating between different feature extraction method mostly increase the feature size. There are 

different approaches to overcome the dimensionality of LBP when it is integrated with other 

descriptors. In (Shan & Gritti, 2008), AdaBoost was used for improving the discrimination 

capability of LBP histogram by removing unnecessary LBP bins. The resulting features were used 

in facial expression recognition. The AdaBoost approach had also used for selecting Gabor wavelet 

features.  

There are different methods used for projecting high-dimensional feature methods into a lower 

dimensional one. The Principal Component Analysis (PCA) is applied frequently with high-

dimensional feature methods, and is one of the most common methods used with the LBP 

histogram. In (Tan & Triggs, 2007), PCA was applied with the combined features of LBP and GF 

in face recognition application. The features of LBP and GF are of high dimensionality, thus, they 

were reduced by PCA separately before integrating the reduced features together. On the other 

hand, in (Chan, Kittler, & Messer, 2007),  the high dimensionality resulting from the Multi-Scale 

LBP features was dealt with via Linear Discriminant Analysis (LDA). LDA was adopted to project 

the features into lower size.  

In (Hussain & Triggs, 2010), three different types of features, Histogram of Oriented Gradient 

HOD, LBP, and LTP, were proposed as complementary feature detection methods for improving 

object detection. The dimensionality problem from combining the aforementioned methods was 

addressed by the Partial Least Squares (PLS) approach. The aim was to extract fast and more 

discriminative features. 

The next section is devoted to features background selection approaches, which are suggested for 

addressing the feature fusion problem. The purpose is to improve feature detection without 

suffering from the high dimensionality drawback. 
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2.4 Texture Feature Selection  

2.4.1 Feature Selection – Overview 

Dimensionality reduction in image classification is introduced as a solution for the high 

dimensionality problem ‘‘curse-of-dimensionality’’. Dimensionality reduction occurs by feature 

extraction methods and feature selection methods (A. K. Jain, Duin, & Mao, 2000; Solberg & Jain, 

1997). Feature extraction methods refer to the methods that generate new features by a set of 

transformations. This happen by projecting the feature into a space having fewer dimensions 

(Solberg & Jain, 1997). However, feature transformation methods produce different representation 

of original data, by changing the semantic of features (Shang & Shen, 2008).     

Feature selection is also employed for reducing the dimensionality of features by selecting part of 

the features, called relevant features, from the original features (A. L. Blum & Langley, 1997). 

The selected part of features should be adequate to describe the images with the same or better 

ability than the original features. In many applications, preserving the meaning of data is important 

when selecting part of data  (Guyon & Elisseeff, 2003). The advantage of feature selection do not 

occur in features construction, where the selected features preserve the meaning of original 

features (Jensen & Shen, 2007).    

Feature selection is usually essential to carry out after fusing between different features, as part of 

the relevant features become irrelevant, which can negatively affect other relevant features (A. 

Jain & Zongker, 1997). Removing irrelevant feature reduces the size of features, as well as usually 

improves the quality of features when compared with the original features (Deogun, Choubey, 

Raghavan, & Sever, 1998). 

Supposing that the feature selection problem is defined by selecting a subset of features with size 𝑋 

from a given set of original features with size  𝑌, such that 𝑋 ⊆ 𝑌. The classification accuracy 

resulting from the subset of features (𝑋) is relevant if it is the same or better than depending on the 

original features. In such a case, 𝑋 represents the optimal features, which are the most suitable 

features for classification that result in the highest possible accuracy.  

In practice, finding the optimal features is a difficult and expensive task (Jensen & Shen, 2007). 

Feature selection is an interesting research area, and various strategies have been develop to deal 

with the associated challenges (Dash & Liu, 1997). The main problem encountered when selecting 

optimal features is that the relations between feature items are mostly complicated. It is generally 
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not a good solution to rank the features items as individual items based on the best quality, then 

selecting the first subset of features that are sufficient for improving the classification accuracy. 

Feature items may individually produce reasonable results from a fitting function, whereas they 

produce less effect results when combined with other items. In other situations, items may produce 

better results when connected with other items than if applied individually, as they depend strongly 

on each other, which has positive interaction effects. The only solution for this problem is; instead 

of estimating each feature items individually, the search for optimal subsets is applied between 

different combinations of feature items. This means that if the number of feature items is (m), the 

possible number of combinations of candidate items for optimal features is equal to 2m. As such, 

an increase in the number of items in the feature set makes the number of possible combinations 

grow exponentially. This make searching among all possible combinations of items for selecting 

optimal features is the main challenge of feature selection strategies (A. L. Blum & Langley, 1997). 

It is difficult to guarantee that the selected items are the optimal ones without an exhaustive search 

process of all different combinations of items. There are different selection approaches devoted 

for searching the optimal or near optimal features that produce acceptable results (Dash & Liu, 

1997).  

2.4.2 Feature Selection Approaches  

Feature selection approaches have been divided into filter methods and wrapper methods (Dash & 

Liu, 1997). The wrapped feature selection methods conduct a search for optimal or near optimal 

feature parts. Such methods start by selecting the first parts of features from the original features, 

where the original features are supposed to consist of big sized of feature parts. The selected feature 

parts are evaluated in terms of performance by a learning algorithm, which is one of the common 

classifiers. The wrapper method depends on the results of learning algorithm for selecting feature 

parts as optimal features, where optimal features are feature parts with the highest score from the 

evaluation of the learning algorithm. The resulting score from the learning algorithm or classifier 

is either classification error or classification time (Kohavi & John, 1997).  Fig 2.12 shows a wrapper 

feature selection method, where the learning algorithm and feature selection algorithm wrap 

together in the same block. The last step is devoted to validation, as the optimal features emerging 

from the search are tested independently via the learning algorithm.  



58 

 

 

 

Filter methods conduct a search for optimal feature parts independently from learning algorithms 

or classifiers, and without requiring additional information (R. Li & Wang, 2004). In filter 

methods, the evaluation of selected feature parts is based on measurements that utilise the features 

themselves. These measurements include distance, information, and consistency measurements 

(Dash & Liu, 1997). As Fig 2.13 depicts, the evaluation process is conducted on selected features 

without interfering with or waiting for the results from a learning algorithm. In fact, there is no 

learning algorithm enveloped within the feature search method in the block diagram. In the filter 

model, the optimal selected features are also tested independently via the learning algorithm for 

validation. 

 

For comparison between the wrapper methods and filter methods in terms of seeking optimal 

features, each technique has its own advantages with respect to the other. The advantage of 

Fig. 2. 12 A wrapper feature selection algorithm. 

Fig. 2. 13 A filter feature selection algorithm. 
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wrapper selection methods is that the performance of optimal feature parts is usually better than 

the performance of optimal feature part resulting from filter methods. The reason is that; through 

the feature searching process, the selected optimal features are evaluated by the learning algorithm. 

On the other hand, using a learning algorithm in wrapper methods results in some disadvantage 

compared to filter methods. The wrapper methods are often computationally expensive, the extent 

of which depends on the learning algorithm used for selecting candidate feature parts  (Dash & 

Liu, 1997; Langley, 1994). Therefore, this makes filter methods less computationally intensive in 

comparison.  

The General Process of Feature Selection Algorithms  

Generally, the selection methods from either the wrapper and filter approach follow same process 

for searching the optimal features parts, as explained in the following steps (A. L. Blum & Langley, 

1997; Dash & Liu, 1997; H. Liu & Yu, 2005). 

1. Search initialisation:  

The start of the search can take one of three states: without features, with the entire features, or 

with random features part. These options affect the search direction of the algorithm. The first and 

second states are opposite to one another, as starting with no features leads the algorithm to collect 

or sequentially add feature parts, which is called forward searching, whereas starting with all 

features needs to remove parts of the features each time (backward searching). The last state, 

involves starting the search in the middle point of features and moving out.   

2. Search organisation: 

This stage involves a number of different search strategies, such as exhaustive search, which 

guarantees finding the optimal features, and is appropriate when the number of features is not too 

large. Random or Heuristic search strategies are applied when the number of features is large since 

they are more practical than exhaustive search, can be used to find the optimal or near optimal 

features.   

3. Evaluation: 

Evaluation is done via a function used to determine the importance of the selected parts of features. 

This stage of the search differs between the wrapper strategy and the filter strategy, where the 

former needs a classifier for the evaluation process, whereas the latter does not. 
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4. Stopping the search option:  

This step is critical for avoiding exhaustive searching, which is especially important for a huge 

feature size. There are numerous options for stopping the continue for searching that can be used 

with the algorithm, such as determining the number of iterations, and the number of repeated 

features parts in evaluation (Dash & Liu, 1997). These mentioned options can be used for acquiring 

the optimal feature parts based on predefined evaluation, or indicate when there is no improvement 

from continuing further iterations, otherwise the algorithm will continue to find other feature parts 

and compare them with previous best ones.  

A validation procedure is applied to the optimal feature parts in order to check of they are valid. 

The results of validation process are compared with the results of optimal features obtained from 

the search.  

2.4.3 Wrapper Feature Selection 

2.4.3.1 Metaheuristics Algorithms  

Feature selection using a heuristic approach follows a blind search, which often fails to find the 

optimal reduction solution, especially in a high dimensionality problem (Brownlee, 2011). These 

types of methods are more appropriate to deal with a small features dimension (Deogun et al., 

1998; K. Hu, Lu, & Shi, 2003). 

Alternative methods, called metaheuristic methods, have been developed from natural phenomena, 

and are less complicated than previous solutions such as heuristic methods. Metaheuristic solutions 

have emerged as popular methods due to the fact that they result in acceptable solutions for 

addressing the complexity of different problems (Biswas, Mishra, Tiwari, & Misra, 2013). The 

metaheuristics algorithm includes a heuristic algorithm strategy, with repeated exploring of the 

search space, where the algorithm depends on two operations for discovering an optimal solution, 

which are exploring and exploiting (C. Blum & Roli, 2003).   

These types of methods have replaced mathematical methods in solving parameter identification, 

because of the difficulties involved in dealing with real applications using mathematical methods. 

The metaheuristic optimization methods are used to identify the possible optimum values of 

parameters by minimising the difference value between real and numerical data (Talatahari, 

Mohaggeg, Najafi, & Manafzadeh, 2014). Furthermore, metaheuristic algorithms can be 

categorised into population-based search or single point search (C. Blum & Roli, 2003).  
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The population-based methods can offer a number of possible solutions to the problem, which are 

based on the information of their fitness (objective function) (Dervis Karaboga & Bahriye Akay, 

2009). The population algorithms have been invented for optimisation problems, and can be 

divided into evolutionary algorithms and swarm intelligence algorithms (Karaboga & Basturk, 

2007).  

2.4.3.1.1 Evolutionary Algorithms  

Evolutionary algorithms (EAs) are inspired by biological evolution. These algorithms perform 

some mechanisms such as reproduction, mutation, recombination, and selection, which are all 

derived and inspired from biological phenomena.  One of the well-known evolutionary algorithms 

type is Genetic Algorithm (GA) (Holland, 1992). GA, introduced by John Holland, is inspired by 

natural selection of the Darwinian evolutionary theory (Rahmat-Samii, 2007).  

GA solve the problem by starting with generating a population of chromosomes of a fixed-length 

binary strings, where these chromosomes refer to candidate solutions of the problem. To search 

for the optimal solution, evolution takes place on these population of chromosomes. During the 

generation process, the chromosomes with the highest fitness always continue for next stage of 

population. New generations are produced from performing crossover and mutation operations on 

chromosomes. These operations apply an exchange process between two parents to create 

substrings, and to increase the diversity of the offspring. The new solutions, which will continue 

with the next generation, will be selected by the selection operator (Digalakis & Margaritis, 2002).  

2.4.3.1.2 Swarm Intelligence Algorithms   

The first use of the expression ‘‘swarm intelligence - (SI)’’ was in the context of cellular robotic 

systems, which apply self-organising procedures of simple agents through nearest neighbour 

interactions. Subsequently, this meaning of swarm intelligence was extended to include solving 

any problem by an algorithm motivated by the behaviour of a collection of insects or animals 

(Bonabeau, Marco, Dorigo, Théraulaz, & Theraulaz, 1999). Referring to Bonabeau, swarm 

intelligence refers to ‘‘any attempt to design algorithms or distributed problem-solving devices 

inspired by the collective behaviour of social insect colonies and other animal societies” 

(Bonabeau, Dorigo, & Theraulaz, 1999).  

One of the important observations of these groups is the ability to self-organisation without a 

centralised control system. Self-organisation is a set of guidelines that clearly determine 

communications between different components in the colony (Karaboga, 2005). Another 
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important feature in SI is the division of labour, which guarantees the survival of the colony. The 

swarm consists of specialised individuals that perform their tasks in a simultaneous manner, which 

keeps the colony functioning efficiently (Bonabeau, Theraulaz, & Deneubourg, 1996). Collective 

knowledge among the individuals or agents occur by exchanging information, which determines 

if the agent has to continue a specific job, or change to another job (Bonabeau et al., 1996; 

Robinson, 1992).    

A swarm is a population of interacting individuals or agents, which aim to optimise global 

objectives. Such as agents include ants, which inspired the Ant Colony Optimization (ACO) 

algorithm, birds, which inspired the Particle Swarm Optimization (PSO) algorithm, and Bees, 

which inspired the Artificial Bee Colony (ABC) algorithm.   

(1) Ant Colony Optimisation  

The Ant Colony Optimisation (ACO) algorithm is inspired by ants’ behaviour when they seek 

food sources, where they attempt to find shortest path from the nest to the food source (Dorigo & 

Birattari, 2010). During travel, the ants deposit pheromone on the ground which is done in order 

to facilitate the navigation from the nest to the food source. In future, other ants of the colony 

follow the same paths based the released pheromone. Over time, the best path becomes the most 

followed path, as it will have the strongest pheromone due to the larger number of ants travelling 

through it over time.  

(2) Particle Swarm Optimisation  

The Particle Swarm Optimisation (PSO) algorithm is inspired by the social behaviour of birds 

flocking (Eberhart & Kennedy, 1995). The algorithm consists of particles, which search for the 

optimal solution. During the search process, each particle has memory of the best discovered place 

as of yet, and the best global place. The best global place is obtained through an exchange (or 

update) of information with other neighbours.  

(3) Artificial Bee Colony Optimisation  

The Artificial Bee Colony (ABC) algorithm was introduced by Karaboga in 2005, and is more 

recent algorithm than the particle swarm method (Karaboga, 2005). ABC is inspired from the daily 

behaviour of swarms of honey bees when collecting their food. During the search process, the food 

sources are candidate solutions. The bee swarm consists of three types of bees, which are employed 

bees, onlooker bees, and the scout bees. These bees perform efficient division of labour between 

them through self-organisation when collecting nectar from fields. The colony is divided equally 
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between employed bees and onlooker bees. Every employed bee follows one food source, such 

that the number of food sources is equal to half the colony. The employed bees exchange 

information about the quality of food sources, based on the nectar amount, with onlooker bees, 

through a special dance called a waggle. The waggle gives onlooker bees information about the 

available food sources, including the direction, distance, and quantity. It is probable that the largest 

number of onlooker bees will visit the food source with the richest nectar. If the food source is 

exhausted, the employed bees are converted into scout bees, where they memorise the visited food 

sources with the highest nectar. In the colony, the employed and the onlooker bees have advanced 

information about the food sources, whereas the scout bees continue to look for other food sources 

randomly (Karaboga, 2005; Karaboga & Basturk, 2008). Further details about ABC algorithm is 

dedicated in next subsection.  

2.4.3.2 The Artificial Bee Colony Algorithm 

The ABC algorithm utilises a population of artificial bees. The model is adapted based on honey 

bees searching for food (forage selection). The bees in the model are employed bees, onlooker 

bees and scout bees, where the algorithm steps are based on these types of bees (for more 

information refer to (Bansal, Sharma, & Jadon, 2013; Karaboga & Basturk, 2008; Ozkan, Ozturk, 

Sunar, & Karaboga, 2011)). 

In the ABC algorithm, the colony is divided equally between the employed bees and the onlooker 

bees, where the number of employed bees is equal to number of onlooker bees, which are equal to 

the number of food sources or solutions (𝑝 = 1,2, …… . , 𝑛𝐸𝑏), where 𝑝 is the population size, and 

𝑛𝐸𝑏 is number of employed bees. 

Specific number of food sources are selected using equation (2-16). The food sources are 

considered as the population, and are selected randomly based on a numbers of parameters to be 

optimized (𝑑 = 1,2, ……𝑛𝑝), where 𝑑 is the dimension vector, which contains the number of 

parameters (𝑛𝑝).   

 

 𝑥𝑖
𝑗𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

= 𝑥𝑖
𝑗𝑚𝑖𝑛

+ 𝑟𝑎𝑛𝑑(𝑢)(𝑥𝑖
𝑗𝑚𝑎𝑥

− 𝑥𝑖
𝑗𝑚𝑖𝑛

)                    (2-16) 

where 𝑥𝑖
𝑗 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

  is the selected solution from 𝑗 parameters out of 𝑖 solutions,  𝑥𝑖
𝑗𝑚𝑎𝑥

𝑎𝑛𝑑 𝑥𝑖
𝑗𝑚𝑖𝑛

  

are the maximum and minimum value of the parameters (𝑗) of solution number (𝑖), respectively, 

and (𝑢) here is [0,1].   
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The initial food sources are changed depending on the quantity of nectar existing at every source. 

The employed bees start a local search in adjoining areas of discovered initial places of solutions. 

This process is described by equation (2-17). The places in neighbourhood will be memorised 

instead of previous places if they contain a higher amount of nectar.  

 

 𝑥𝑖𝑗
𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑

= 𝑥𝑖𝑗
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 + 𝑟𝑎𝑛𝑑(𝑣)(𝑥𝑖𝑗

𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 − 𝑥𝑘𝑗
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔

)               (2-17) 

where, 𝑥𝑖𝑗
𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑

 is the 𝑖𝑡ℎ selected modified solution of the 𝑗𝑡ℎ parameter, 𝑥𝑘𝑗
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟

 is the 

neighbouring parameter value, with a space equal to 𝑘, from the previous selected parameter value 

(𝑥𝑖𝑗
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠), where   𝑘 ≠  𝑖  𝑎𝑛𝑑 𝑏𝑜𝑡ℎ ∈ {1,2, … . . , 𝑛𝐸𝑏}, and 𝑣  is [−1,1].  

When the employed bees complete the search, they share the information about the discovered 

places of nectar with onlooker bees, which wait in in the hive area, through a special dancing 

routine. The onlookers’ role is to evaluate the quantity of nectar in the discovered places to choose 

the place with highest probability for optimum solution (equation (2-18)).    

 

 
Pr(𝑖) =

f(𝑖)

∑ f(𝑖)
𝑛𝐸𝑏
𝑖=1

                   (2-18) 

where Pr (𝑖)  is the probability of fitness f(𝑖) of solution 𝑖, and 𝑛𝐸𝑏 is the total number of employed 

bees or food source places. 

Subsequently, the onlookers apply the same employed bees’ procedure on elected places by 

probability to deduce the place with the highest nectar amount. Onlookers search in neighbourhood 

of such place, which will be replaced if a new place containing a higher amount of nectar than the 

previous place is found.  

This sequence is repeated until one of search places is exhausted. The employed bees in the 

searched places become scouts, where they repeat exploring other places randomly (following 

equation (2-16)), which may possibly be better than previously known places.  

This procedure can be employed for feature selection, where the bees select a number of feature 

parts randomly, and calculate the fitness for these parts to find the best feature part in each iteration. 
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This previous process can be controlled by the number of iterations, which is based on the size of 

features, and guarantees obtaining the optimal feature parts.  

2.4.3.3 ABC-based Wrapper Feature Selection 

Numerous evolutionary and swarm algorithms have been applied for different applications. Since 

the wrapper approach for feature selection is involved in this work through the ABC algorithm, a 

review of related work to the ABC method is presented in this subsection. This section justifies 

the preference of ABC to other wrapper optimization algorithms. It starts by comparing ABC to 

other population optimization algorithms, and justifies the selection of the ABC method as the 

proposed method for feature selection. The section then reviews a number of different applications, 

where ABC algorithm is used as an optimization method.    

(1) ABC Algorithm Compared to Other Optimization Algorithms   

Karaboga and Basturk (2007) compared ABC with the most well-known population evolutionary 

and population swarm optimization algorithms, which are the Genetic Algorithm (GA), the 

Particle Swarm Algorithm (PSO), and the hybrid Particle Swarm Inspired Evolutionary Algorithm 

(PS-EA). The aforementioned algorithms were tested using a benchmark based on high 

dimensional numerical functions. The main purpose was to evaluate the performance of ABC 

against these algorithms. In general testing, the ABC algorithm outperformed others by obtaining 

a local minimum, with the ability to deal with multivariable, multimodal function optimisations.  

In another study, Karaboga and Basturk (2008) evaluated the performance of the ABC algorithm 

against other previous optimisation algorithms. The ABC algorithm outperformed other 

algorithms, which are the differential evolution (DE) particle swarm optimization (PSO) 

algorithm, and the evolutionary algorithm (EA). The testing was conducted on multi-dimensional 

numerical problems. The comparison was applied on different control parameter values, such as 

the population size (colony size) and limit values. The evaluation results showed that the 

performance of ABC was better than the aforementioned algorithms, and that the ABC algorithm 

has the ability to be used with high dimensional engineering problems.  

A. Singh (2009) applied ABC as new optimization method for Leaf-Constrained Minimum 

Spanning Tree (LCMST), and compared it with other population approaches such as the genetic 

algorithm, the ant-colony optimization approach, and the Tabu search (TS) approach. The average 

solution of ABC reported superior results to others, except in one case, where the Tabu search 

approach provided average solutions of better quality. In addition, the execution time of ABC was 
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faster than others. Thus ABC-LCMST achieved a better performance than others in terms of both, 

results quality and execution time.  

Tahooneh and Ziarati (2011) adapted ABC to deal with the Resource Constrained Project 

Scheduling (RCPSP) problem. In the literature, other optimisation methods such as the genetic 

algorithm have been used for this problem to reduce the project duration, where choice is based 

randomly, as it is difficult to know in advance. ABC demonstrated its ability to provide better 

diversity and improve the quality of solutions, thus proving that it was more efficient than other 

algorithms for addressing this problem. 

Gozde, Taplamacioglu, and Kocaarslan (2012) proposed ABC as an optimisation algorithm for 

tuning parameters of PI and PID controllers that are used in thermal power system for Automatic 

Generation Control (AGC). Furthermore, the authors compared the performance of ABC with the 

Particle Swarm Optimization (PSO) approach. The results showed that ABC was more effective 

than PSO for AGC problems.  

Z. Deng, Gu, Feng, and Shu (2011) compared the performance of ABC with the genetic algorithm 

and the Max-Min Ant System (MMAS) in energy-aware mapping optimisation in Network-on-

Chip (NoC) designs. The results showed that ABC performed better than GA and MMAS. 

Furthermore, the ABC results recorded lower energy consumption with a higher convergence rate. 

Atasever, Özkan, and Sunar (2011) applied a number of optimization methods with unsupervised 

classification for remote sensing of images. The applied optimization methods were Genetic 

Algorithm (GA), Particle Swarm Optimization (PSO), Differential Evolution (DE) and Artificial 

Bee Colony (ABC). Previous optimization methods relied on manually determining the number of 

clusters centres of K-means (KM) and Fuzzy C-means (FCM). In comparison, the ABC method, 

which is most modern optimization method, is more stable with initial conditions and is not 

influenced by changes in the parameters values.   

(2) ABC Algorithm for Optimized Applications  

ABC has recently been utilized in different optimization applications, where some of these 

applications were based on feature selection problems. Generally, in these applications, the ABC 

demonstrated effective performance.   

Y. Zhang, Wu, and Wang (2011) applied hybrid forward neural network (FNN) and modified ABC 

for brain image classification into as normal or abnormal classes, where the images had been 

produced by magnetic resonance (MR). The ABC method was modified by fitness scaling and 
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chaotic theory and was used for optimizing the parameters of FNN. Discrete wavelet transform 

was used to extract the features from the brain images before such features were reduced by the 

principle component analysis (PCA). The modified ABC was also shown to outperform other 

methods in optimizing FNN, such as the genetic algorithm, simulated annealing, and ABC itself.   

Sathya and Geetha (2013) used the ABC algorithm to optimize a three-layer neural network for 

breast cancer classification. The main purpose was to improve the classification of the images 

based on the disease into malignant and benign lesions at the early stage of disease. The optimized 

neural network classifier based on ABC resulted in an improved detection accuracy of seven 

features, which were extracted from the target images of benign or malignant lesions.      

Uzer, Yilmaz, and Inan (2013) used ABC for feature selection and to avoid redundant features 

from liver images. The selected features were sent into SVM for diagnosing diabetes in the liver. 

The results of testing based on UCI database yielded a classification accuracy of 94.92% for 

hepatitis, 74.81% for disorders, and 79.29% for diabetes.   

Banerjee, Bharadwaj, Gupta, and Panchal (2012) used the most recent optimization method of 

ABC with Remote Sensing classification. The purpose of using ABC was to improve the image 

classification rate from satellite data of the earth land. The results from this application were 

compared with other techniques such as the biogeography-based optimization (BBO), maximum 

likelihood classifier (MLC), minimum distance classifier (MDC), and Fuzzy classifier. The results 

proved the suitability of ABC as new optimization method for this type of application.     

Jayanth, Koliwad, and Kumar (2015) also applied ABC in a new method based on combining 

spectral variance with spatial distribution of the pixels in satellite images of earth land. Previous 

methods were, in comparison, based only on spectral variance. ABC was applied for extracting 

the features and to avoid the issues related to band correlation. The results of multi-class 

classification was improved by different classifiers such as Artificial Neural Network and Support 

Vector Machine.    

Schiezaro and Pedrini (2013) proposed a selection algorithm based on wrapper ABC and SVM for 

feature selection based on UCI datasets. The results, based on Weka programming, showed the 

effectiveness of this method in removing irrelevant features by returning the lowest number of 

features. Furthermore, the method was compared against other relevant approaches, where the 

experimental results showed that the algorithm produced better performance than ACO, PSO and 
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GA. The ABC algorithm outperformed others in the context of least selected feature size, but with 

a slightly reduced accuracy.    

Shanthi and Bhaskaran (2014) also proposed a wrapper algorithm for feature selection, which used 

a modified ABC algorithm and a Self-adaptive Resource Allocation Network (SRAN). The 

method was used for medical diagnosis to discover the prior signs of breast cancer. The selection 

was based on different features methods, which participated in detecting a set of features from a 

mammography image. The features were extracted by Gabor filters, fractal analysis, directional 

analysis, and the multiscale surrounding region dependence method. Detecting abnormality of 

mammogram images using a huge number of features was difficult, so a Modified Artificial Bee 

Colony based Feature Selection (MABCFS) was proposed to select the relevant features. The 

results of classification were improved by MABCFS when compared with previous selection 

methods (GA and PSO), as it recorded the best overall results.    

Mohammadi and Abadeh (2014) proposed ABC as a wrapper selection method, which was applied  

with classifiers such as the Naïve Bayes (NB) classifier and the k-Nearest Neighbour (KNN) 

classifier, to evaluate feature subsets for steganalysis. The method was used for collecting features 

to experiment with hidden messages, which consisted of images, videos and audios files. The 

selected features were used for the steganalysis problem through detecting stego images used as 

secret messages. The applied method got superior results over GA, which had been used before 

for the same problem.  

Duan, Deng, Wang, and Xu (2013) applied ABC for filtered feature selection as a way to remove 

noise. The method was used to reduce calculations when the selected regions contained salient 

objects. The results of this method were compared with PSO results, demonstrating that ABC 

achieved a superior performance to PSO in terms of the classification accuracy.  

The previous studies highlight and justify the predilection for the ABC algorithm to be adopted in 

this research as a means for optimizing feature extraction methods in texture-based image 

classification applications.  

2.4.4 Wrapper-based Filter Feature Selection 

In Section 2.4.2, feature selection methods were categorised into two broad techniques. Generally, 

wrapper methods produce better results in feature selection applications than filter methods. 

However, wrapper methods are more demanding in terms of computation than filter methods. This 
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is because evaluation is carried out using a learning algorithm for each time the method selects a 

candidate part of the relevant feature, which increases the computational cost. Recently, numerous 

hybrid approaches have been proposed by researchers, which look for advantages in filter and 

wrapper methods. Rough Set (RS) is one of the common filter methods that has been applied 

effectively for feature selection. This section presents a review of the work involving combining 

RS with other wrapper methods. The concepts of RS theory and Neighbourhood Rough Set are 

then introduced, where the latter is employed in continuous data.  

2.4.4.1 Rough Set Theory-based Approaches 

Many previous researchers have introduced several approaches of feature selection by RS 

algorithms, either in single operation, or combined with swarm algorithms. 

Q. Wang, Li, and Liu (2008) investigated the effectiveness of the RS theory in identifying 

important features of texture for classification applications. The RS theory was used to select the 

features resulting from applying a wavelet packet. Empirical results were based on thirteen datasets 

from Brodatz textures. The results indicated that removing the redundancy of features by the RS 

had an effect on improving the classification performance due to the fewer number of features 

used.  

H. Lin, Wang, and Liu (2010) presented a novel RS feature selection method for classification. 

The method was used to find the relevant features from texture, which were extracted by the Gray 

level Co-occurrence Matrix (GLCM). The reduced features were used for classification of images 

related to mine rules. The testing applied to images containing a decorative stone.  

In (T.-S. Li, 2009), the author proposed a feature selection method based on rough sets, wavelet 

transform, and the SVM classifier, where the method was used for selecting the optimal parts of 

features. The RS was used for selecting the features.  The extracted features, which were based on 

a number of wavelet decomposition levels, were obtained from smooth sub-image of 

homogeneous Copper Clad Laminate (CCL) surfaces. Experimental results demonstrated the 

efficiency of the proposed method in improving classification quality, especially when the results 

were compared with the BPNN classifier.   

There are a variety of hybrid methods that been developed based on swarm algorithms with rough 

sets for feature selection applications. In (Xiangyang Wang, Yang, Teng, Xia, & Jensen, 2007), 

the author presented a hybrid filter with wrapper feature selection method using PSO and the RS 

algorithm. The RS strategy was based on completing a search for an optimal solution, which is 
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only appropriate for small-sized datasets, as such an approach does not otherwise guarantee finding 

the optimal solution. PSO is a promising selection method for RS reduction because it works 

within the subset space. The experiment was carried out on number of datasets from UCI, and the 

results were compared with GA. The results of the hybrid method showed that the computation 

was less expensive than GA, and that the results were better than the RS reduction algorithm.  

For the same purpose, Ke, Feng, and Ren (2008) used the Ant Colony Optimization (ACO) 

algorithm with RS theory (resulting in the ACORS algorithm) to avoid the NP-hard problem. The 

experiment used to prove the effectiveness of the ACORS algorithm was based on different sized 

numerical datasets with other gene expression datasets. The accuracy of the proposed method was 

reasonable, where it achieved slightly inferior performance than previous methods.  

Y. Chen, Miao, and Wang (2010) also proposed a hybrid approach between the ACO algorithm 

and RS. ACO has the ability to quickly converge, which justified its use with RS for finding the 

optimal solution for the same problem. However, in this hybrid method, the ACO algorithm was 

based on resulted feature from RS as random feature, then continued searching for optimal features 

through the rest of feature dimensionality. UCI datasets were used in the experiment, where the 

results proved that the method has the ability find a minimal subset of the features when compared 

with using the RS method alone. 

In (Bae, Yeh, Chung, & Liu, 2010), for a large number of attributes, the authors proposed the 

Intelligent Dynamic Swarm (IDS) approach, which was used to convert a problem of discrete 

variables to continuous variables. IDS was combined with RS to produce the IDSRSFS algorithm, 

which was used for improving the performance of feature selection applications. In the experiment, 

the algorithm was tested on different UCI datasets, and compared with the hybrid PSO and RS 

(PSORSFS) approaches. The results showed that IDS was faster than PSO in finding the minimal 

reductions of features, due to its low computation cost.  

2.4.4.2 Rough Set Theory  

The Rough Set Theory (RST) is one of the filter methods introduced by Pawlak (Pawlak, 1982). 

The RS approach has been proven to be an efficient feature selection tool. The general 

characteristics of the data are used to evaluate the selected subset in filter methods based on certain 

statistical criteria. The RS method processes the uncertainty and vagueness of certain data 

mathematically, without additional knowledge. It achieves this by extracting the dependency rules 

directly from the data itself, to obtain further information about the data.  
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The data in information systems is distributed as a table which is categorised into universe and 

attributes, such that 𝐼𝑆 = (𝑈, 𝐴). The rows represent the universe (𝑈), which consists of a set of 

objects, whereas the columns represent the attributes (𝐴). The decision table is generated by 

dividing the attributes in the information table into condition attributes and decision attributes, to 

become 𝐼𝑆 = (𝑈, 𝐶 𝑈 𝐷) (M. Zhang & Yao, 2004).  

Feature reduction is one of the basic tasks of the rough sets theory beside classification. It is 

effectively exploited in selecting the number of attributes contained in a dataset through the 

dependencies of data. Whilst reducing the number of attributes, it is adequate for retaining the 

unique properties of the decision table (Yao & Zhao, 2008).   

 The reduction in the RS method is based on the granularity structure of the data as a result of 

indiscernibility, which is the main concept in RS theory. Indiscernibility occurs between objects 

if a number of them have the same information, which is referred to as equivalence or an 

elementary set. 

If the 𝐵 subset is an attribute of 𝐴, that means 𝐵 ⊆  𝐴 and 𝑎 ∈  𝐴, and the equivalence relation 

(R-indiscernibility) can be expressed as follows: 

 𝐼𝑁𝐷(𝐵) = {(𝑖, 𝑗) ∈  𝑈2, Ѵ𝑎  ∈ 𝐵, 𝑎(𝑖) = 𝑎(𝑗)}       (2-19) 

where 𝑎(𝑖)  is the attribute value 𝑎 of object  𝑖 , and 𝑎(𝑗)  is the attribute value 𝑎 of object  𝑗. 

When applying the indiscernibility on the universe, the objects will be split into groups called 

elementary sets. If  (𝑖, 𝑗)  ∈  𝐼𝑁𝐷(𝐵) , 𝑖 and 𝑗 are said to be indiscernible with respect to 𝐵. The 

indiscernibility splits the objects into a family of equivalence classes, and if all objects in the group 

are equivalence classes of 𝐼𝑁𝐷(𝐵), they are denoted by 𝑈/ 𝐼𝑁𝐷(𝐵).  

As a result of indiscernibility, the attributes are approximated based on their relevance, and divided 

into a pair of sets, called lower approximation and upper approximation.  

The lower approximation 𝐵−(𝑡) is defined as follows:    

 𝐵−(𝑡) = {𝑡 ∈ 𝑈: 𝐵(𝑡) ⊆  𝑇}      (2-20) 

The lower approximation of 𝑇 is the set of elements of 𝑈 that are absolutely classified as elements 

of 𝑇 . 

The upper approximation 𝐵−(𝑡)  is defined as follows:    
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𝐵−(𝑡) = {𝑡 ∈ 𝑈: 𝐵(𝑡) ∩  𝑇 ≠  Ø}         (2-21) 

The upper approximation of 𝑇 is the set of elements of 𝑈 that are probably classified as belonging 

to the set 𝑇. 

If 𝑃, 𝑄 ⊆  𝐴 are equivalence relations over 𝑈, the method defines three regions, which are positive, 

boundary, and negative regions as follows.  

The positive region 𝑃𝑂𝑆𝑝(𝑄), includes the objects of 𝑈 which definitely belong to the relevant set 

of features.  

 𝑃𝑂𝑆𝑝(𝑄) = U𝑥𝛜𝐔І𝐐𝐵−(𝑡) (2-22) 

The negative region 𝑁𝐸𝐺𝑝(𝑄), is the set of all objects of 𝑈 that cannot belong into a relevant set 

of features.  

 

  
𝑁𝐸𝐺𝑝(𝑄) = 𝑈 − U𝑥𝛜𝐔І𝐐𝐵

−(𝑡) (2-23) 

The boundary region (𝐵𝑁𝑠 (𝑡)) is the distance between the upper and lower approximations, which 

holds the objects that are probably relevant features.   

   𝐵𝑁𝑠 (𝑡) =  𝐵
−(𝑡) −  𝐵−(𝑡) (2-24) 

Based on the boundary region, the crisp state occurs when this region is empty (𝐵−(𝑡) = 𝐵−(𝑡)), 

whereas the opposite case, which is the rough state, occurs when the region is not empty 

(  𝐵𝑁𝑠 (𝑡) ≠ ∅) (M. Zhang & Yao, 2004).   

The degree of dependency (𝑘) is used for discovering dependencies between attributes, which are 

either totally, partially or not dependent.  

For  P, Q ⊂ A, the degree of dependency is calculate by following relation:  

 
k =  ℽ𝑝(Q) =

|𝑃𝑂𝑆𝑝(𝑄)| 

|𝑈|
 (2-25) 

The dependence is partial when some value from attributes P depends on other attribute values of 

Q (P → Q) in a degree (0 ≤ 𝑘 ≤ 1). The dependence is total between two attributes  
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(P → Q), when all values of attribute Q are uniquely determined by values of attributes P, which 

means (𝑘 = 1). Otherwise, (𝑘 = 0) means that Q  does not depend on P .   

The reduction is applied on the set of attributes after comparison based on equivalence relations is 

conducted between them. The quality of classification is expected to be the same before and after 

removing attributes as a result of equivalence.  

From the decision table, which consists of set of condition attribute 𝐶 and a set of decision attribute 

𝐷, the equality of approximation of classification ℽ
𝑅
(D) determines the degree of dependency 

between condition and decision features, which result from the set of decision features (Pawlak, 

1997). 

A reduction is defined as a subset 𝑅 of the conditional attribute set 𝐶, such that (𝑅 ⊆  𝐶) if 

ℽ
𝑅
(D)= ℽ

𝐶
(D): 

 𝑅𝑒𝑑 = {𝑅 ⊆  𝐶| ℽ𝑅(D) = ℽ𝐶(D)}      (2-26) 

The RS model has proved its benefits in different applications with a wide range of techniques. 

RS is appropriate with discrete data, whereas Neighbourhood RS was developed based on RS for 

continuous data.   

 

2.4.4.3 Neighbourhood Rough Set Theory  

Depending on the equivalence relation of attributes, RS may not be suitable for continuous 

datasets. The Neighbourhood Rough Set (NRS) is used to deal with continuous data by distance 

function, which replace the equivalence approximation of RS. RS is only appropriate with for 

reduce discrete data. NRS substitutes equivalence spaces with topological spaces, which is more 

suitable for continuous data of real-world applications.  

Neighbourhood Decision System (NDS) 

In RS, the decision system is DS=(𝑈, 𝐶⋃𝐷), where 𝑈 is the universe and 𝐴 = 𝐶⋃𝐷, where 𝐶 

represents the sets of conditional attributes, and 𝐷 represents the decision attributes. On the other 

hand, in a neighbourhood decision system based on 𝜃(𝜃 > 0), the decision attributes will generate 

𝜃-neighborhood, and the result is NDS =(𝑈, 𝐶⋃𝐷, 𝜃) (Q. Hu, Yu, Liu, & Wu, 2008).   

Assuming 𝑥𝑖 ∈ 𝑈 and 𝐵 ⊆  𝐶, the neighbourhood 𝜃𝐵(𝑥𝑖) of 𝑥𝑖 in the subspace B is defined as:  
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 𝜃𝐵(𝑥𝑖) = {𝑥𝑖 ∈ 𝑈, 𝑥|𝑓(𝑥𝑖, 𝑥) ≤ 𝜃}       (2-27) 

where 𝑓 is a metric function, and 𝑥1, 𝑥2, 𝑥3  ∈  𝑈.  𝑓 satisfies: 

Non − negative: 𝑓(𝑥1, 𝑥2) ≥ 0; 

𝑓(𝑥1, 𝑥2) = 0; 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑥1 = 𝑥2;  

𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑦: 𝑓(𝑥1, 𝑥2) = 𝑓(𝑥2, 𝑥1); 

𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦: 𝑓(𝑥1, 𝑥3)  ≤ 𝑓(𝑥1, 𝑥2) + 𝑓(𝑥2, 𝑥3). 

The metric distance function can be applied by Euclidean distance equation (2-24) for a 𝜃-

neighborhood relation between samples (𝑥𝑖), which replaces the equivalence approximation in RS, 

and makes NRS capable of dealing with continuous data.   

 

𝑓(𝑥𝑖, 𝑥𝑗) = √∑(𝑥𝑖 − 𝑥𝑗)

𝑛

𝑘=1

 (2-28) 

where 𝜃(𝑥𝑖) is the neighborhood information granule cantered around sample 𝑥𝑖, and the size of 

the neighbourhood depends on the threshold 𝜃. Larger values of threshold (𝜃) mean more samples 

exist in the neighbourhood region, whereas (𝜃 = 0) refers to a case that is applicable to discrete 

data. 

With the same threshold 𝜃, the sizes of neighbourhoods with different norms are different, and we 

thus have (Q. Hu, Yu, & Xie, 2008): 

 

 𝜃1(𝑥) ⊆ 𝜃2(𝑥) ⊆ 𝜃∞(𝑥) (2-29) 

 

Neighbourhood Approximation Regions 

In 𝑁𝐷𝑆 = (𝑈, C⋃𝐷, 𝜃), 𝐵 is a subset of 𝐶 (𝐵 ⊆  𝐶) for an arbitrary 𝑋 ⊆  𝑈 construct, where the 

granules of lower approximation and upper approximation of 𝑋 in terms of the relation of  𝑁 with 

respect to 𝐵 are as follows:    

 𝑁B−(𝑋) = {𝑥i|𝜃B(𝑥i) ⊆ X, 𝑥i   ∈ 𝑈}    (2-30) 
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  𝑁B
−(𝑋) = {𝑥i|𝜃B(𝑥i)  ∩ X ≠  Ø, 𝑥i   ∈ 𝑈}         (2-31) 

 

The lower approximation is also called the positive region of the decision, denoted by 𝑃𝑂𝑆𝐵(𝐷), 

and the granules in this region consistently belong to one of the decision classes (Q. Hu, Yu, & 

Xie, 2008).  

The boundary region of 𝐷 with respect to attributes 𝐵 is defined as: 

 𝐵𝑁𝑅 (𝐷) =  𝑁B
−(𝑋) −  𝑁B−(𝑋) (2-32) 

For the set 𝑥 in the approximation space, the degree of roughness is represented by the size of the 

boundary region. It includes the set of samples which belong to different decision classes 

(uncertainty belong to any class). The boundary region controls the uncertainty decision by 

reducing it as little as possible. These set of samples cause classification confusion, because they 

cannot be determinately classified. The reduction aims to reduce the set of samples in this region 

in the decision-making process (Q. Hu, Yu, & Xie, 2008).  

 

2.5 Challenges Identification and Proposed Solutions  

This section summarises the main challenges facing this research and texture-based classification 

in general. This research studies texture features using feature descriptors, feature-level fusion, 

and feature selection.  

2.5.1 Effective Texture Descriptors  

Feature descriptors based on TUs proved to be more efficient than depending on a pair of pixels 

using co-occurrence methods. TS was the first method to be based on TUs. However, in addition 

to its long feature histogram, it has an unbiased quantisation function, as it assigns a binary one 

for only the intensity values of neighbour pixels that equal to the centre pixel. LBP addresses that 

by applying binary quantisation to reduce the feature length resulting from the histogram. LBP 

demonstrated its simplicity and power in comparison to previous statistical methods, as LBP 

features have been applied successfully in different texture applications. However, the LBP 

method may lose significant information from the intensity values of neighbourhood pixels. We 
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think that despite the discriminative features of LBP, LBP is used more for its simplicity than for 

its capability to collect information with binary quantisation of intensity values of neighbour 

pixels. Other applications needed to extend LBP into LTPs, and subsequently into LQPs, where 

these extension methods capture better features from the texture. The aim always is to collect as 

much as information from the intensity values of neighbour pixels as possible. Here, we target the 

development of new descriptors for extracting local features from TUs to improve local texture 

features, which affect the performance of textures classification. The proposed strategies 

concentrate on exploiting grey-level intensity values of texture patterns. This can be done by well-

designed quantisation functions, which can be utilised for discriminating between different texture 

patterns.  

2.5.2 Curse of Dimensionality 

There is a wide diversity of texture characteristics, which make depending on the single method, 

are usually not enough for dealing with texture. In order to obtain more distinctive and powerful 

features, features from different descriptors can be combined. These features should be 

complementary to capture good information from the texture. This was explained in Section 2.3, 

where a discussion was presented on how different descriptors techniques can be combined to 

represent features. LBP is one of the most common texture descriptors, which can be improved 

when combined with other complementary feature descriptors such as contrast measurements and 

GF. The most common problem with combining feature descriptors is the resulting large feature 

space, or what is referred to as the curse of dimensionality. This problem can be addressed by 

feature selection, which reduces the feature length.  

2.5.3 Efficient Selection of the Relevant Features  

The unified feature vector from different descriptors usually contains irrelevant or redundant 

features, where part of the relevant features of any descriptor may become irrelevant when 

combined with other features. In addition, the curse of dimensionality usually happens after 

combining different feature descriptors, as this often results in a large feature space. These 

problems have negative effect on the overall classification performance in terms of computation 

and classification accuracy.    

Referring to Subsection (2.4.1), the problem of dimensionality reduction can be addressed by 

feature selection or feature transformation. One of the most common methods used for reducing 
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the feature length of LBP is through the principle component analysis (PCA) (Tan & Triggs, 2007). 

However, PCA is a transformation method which reduces the feature length by changing the 

semantics of features. This is considered a drawback, as many applications need to save the 

meaning of features throughout the reduction operation (Shang & Shen, 2008). The rough set 

method (Subsection 2.4.4.2) is also utilised for feature selection, but offers to retain the meaning 

of features (Pereira & Sassi, 2012).   

GA is also used for feature selection, and is one of the most common wrapper methods. The 

method has been successful in many optimisation applications that involved with GF, as explained 

in Subsection 2.2.2.2. However, the Artificial Bee Colony (ABC), introduced in Subsection 

2.4.3.3,  is an alternative and more recent wrapper method than GA (Karaboga & Basturk, 2008). 

The ABC method is favoured over other optimization algorithms for performing feature selection 

(Dervis Karaboga & Bahriye Akay, 2009; Krishnanand, Nayak, Panigrahi, & Rout, 2009). One 

important advantage that can be obtained from applying the ABC algorithm is its flexibility, where 

the algorithm can be easily adapted according to the particular problem, which makes it suitable 

for various optimization problems. 

Furthermore, while GA can be used to optimize GF parameters in many applications, GA depends 

on complex evolution processes by crossover and mutation operations (Gheyas & Smith, 2010). 

On the other hand, the proposed optimisation method (ABC) depends on simple mathematical 

operations (Dervis Karaboga & Bahriye Akay, 2009).  

Finally, ABC, with its simplicity, follows an effective strategy that makes it converge more quickly 

to the optimal solution. ABC conducts two local search processes before converting into a global 

search when local searching is exhausted. All of these processes are executed in one cycle with 

few parameters, and provide good results even with high dimensional operations (D Karaboga & 

B Akay, 2009). 

The literature clearly shows that wrapper methods like ABC are more accurate for features 

selection applications. However, these methods require long computation time for evaluating the 

selected features by a learning algorithm. On the other hand, complete or exhaustive searching 

using RS is not effective with a large feature space (Ke et al., 2008; Xiangyang Wang et al., 2007). 

To obtain better results, it is thus recommended to utilise hybrid methods based on different 

techniques, as they are more efficient for feature selection applications. Exploiting the advantages 

of ABC and NRS for a proposed feature application may help in selecting the optimum features.     
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The main aim of this research is to tackle the aforementioned problems and challenges by obtaining 

optimum features that can improve texture-based classification. Our proposed approach 

accomplishes this by developing descriptors that are integrated with complementary features. 

Furthermore, adaptive hybrid selection methods are used to avoid the dimensionality problem that 

can result from integrating feature descriptors.  

2.6 Summary  

This chapter studied in detail the background of texture as an important source of feature for 

images classification, and provided a review of the most important research studies related to this 

topic. The chapter was organised as follows.  

Section 2.1 presented an overview of texture characteristics, analysis methods of texture, and 

texture applications. Any procedure used for improving feature extraction can directly impact the 

overall efficiency and accuracy of images classification by texture. The following sections then 

concentrated on the important issues associated with texture features, which included features 

descriptors, features fusion and feature selection. 

Section 2.2 introduced the common feature extraction methods, which were categorised into 

different groups. For random texture, which mostly exists in natural images, statistical and signal 

processing methods are more appropriate approaches. Among the various relevant feature 

extraction methods, LBP proved its simplicity and efficiency in extracting features from the texture 

units of an image. However, LBP does not always extract important information from different 

texture characteristics. This must be taken into consideration when attempting to realise better 

texture descriptors.  

In Section 2.3, an overview of feature-level fusion and its importance for improving extracted 

feature was provided. Work related to feature-level fusion was also reviewed. The feature-level 

fusion stage is usually required because single feature descriptors are not adequate due to the 

diversity of texture characteristics. Thus, fusion between different feature descriptors can improve 

the feature.  

In Section 2.4, the importance and major problems of feature selection were clarified. The 

approaches used for feature selection were investigated, the work associated with different feature 

selection algorithms was reviewed. Feature length reduction techniques are typically applied to 
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reduce the high feature dimensions. Thus, the efficient selection of the relevant features is an 

important stage after fusing the different features.  

Finally, Section 2.5 highlighted the major problems and challenges that face the research in 

improving texture-based feature for images classification. The challenges included texture 

descriptors, feature-level fusion, and feature selection methods. Based on previous studies, some 

of interesting points that have been established include:   

 Common texture descriptors do not usually effectively exploit information from texture 

patterns. 

 Most strategies are based on finding complementary features that can improve the 

performance of a single feature descriptor. However, such strategies usually suffer from 

the dimensionality problem.  

 The curse of dimensionality is a critical problem, and different strategies have been applied 

to reduce the feature length. However, current strategies usually deal with this problem 

inefficiently. 
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Chapter 3 

Research Methodology  

Extracting powerful features from texture is a significant challenge for images classification. The 

last chapter summarised the limitations and challenges associated with texture feature extraction 

for images classification. It also discussed the proposed possible solutions to improve texture 

features. This chapter introduces the research methodology of this study, including the main stages 

of the classification system, and the employed methods to accomplish the research objectives.  

The proposed methods for improving the texture features consist of new descriptors, termed LBZP 

and LMP. These descriptors are developed based on the LBP concept to extract distinctive features 

from TUs. As textures classification gets more challenging with the diversity of texture 

characteristics, the proposed feature descriptors are recommended to be combined with other 

complementary features descriptors. However, the common problem that faces feature-level fusion 

is either irrelevant features, or the resulting huge feature space, where the last call ‘‘curse of 

dimensionality’’. In our methodology, the feature space is reduced through a new hybrid selection 

method of ABC and NRS.   

This Chapter 3 is organised as follows. Section 3.1 introduces the classification system methods 

required in our methodology, while Section 3.2 discusses the pre-processing stage of feature 

extraction, which includes preparing texture images of datasets. Section 3.3 provides full details 

about the proposed methods for new improved features, while Section 3.4 discusses the post-

processing methods performed on the resulting improved feature. Finally, Section 3.5 concludes 

the chapter by providing a summary of the proposed methods for texture features.   

3.1 Employed Methods  

Here, an introduction to the employed methods used to improve features extraction in classification 

systems is presented. The complete classification system process is divided into pre-feature 

processing, feature processing and post-feature processing (see Fig 3.1).    

Pre-processing of features includes preparing image classes from the selected databases to be used 

as a benchmark for the proposed method.  On the other hand, feature processing involves the use 
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of the employed methods for improving the feature. The methods used in this process are either 

LZBP- or LMP-based methods. The new hybrid feature selection method based ABC and NRS 

are then employed as a way to fuse feature descriptors. The feature level fusion is done between 

the proposed local features descriptors (LZBP and LMP) and other complementary feature 

descriptors (contrast measure and GF).  Finally, the post-processing of features includes the 

classification of images by supervision classifiers, and the evaluation of classification results. 

 

 

3.2 Feature Pre-processing 

The datasets, which reflect the characteristics of textures, are processed by texture descriptors in 

order to extract the features to be classified by the classification algorithms. The utilised datasets 

in this work should be designed to be suitable for the classification task. These databases consist 

of a stationary texture image, where the image contains only a single type of texture. The texture 

covers the entire image, and the extracted feature by the descriptors are supposed to stem from the 

complete texture characteristics. The image samples used in this stage are different to the images 

used for segmentation task, where there are two or more types of texture in the same image, which 

is called a non-stationary texture image (Petrou & Sevilla, 2006).  

Texture databases are usually available from various websites (Lazebnik, Schmid, & Ponce, 2005; 

Mallikarjuna et al., 2006; Xu, Ji, & Fermüller, 2009). In multiclass classification, the involved 

databases consist of a number of classes, and each particular class has number of images. The 

database should have sufficient number of samples for supervised classifier, so that the results can 

Fig. 3. 1 The role of the employed methods used for improved feature detection in the overall classification system. 
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be assessed and evaluated (Ojala, Maenpaa, et al., 2002). In the pre-processing stage, a sufficient 

number of images can be obtained through dividing the images into sub images. Most of the 

databases that currently exist do not have the demanded number of images for classification. For 

example, the Brodatz database has one image of high resolution for each class (Brodatz, 1966). 

The procedure used with these datasets thus involves dividing the target image into number of (n) 

images, before randomly selecting the required number of images to be used by the feature 

extraction method. Random selection guarantees an unbiased process in the testing and evaluation 

stage of the feature extraction methods. The choice of the format of sub-images is also made. 

Instead of applying this procedure manually with target databases, a method has been developed 

to perform this task efficiently. In the end, the processed images are saved in specific folders, and 

can called by referring to the path that indicates their locations.    

3.3 Feature Processing 

In the texture classification system, it is crucial to extract features that can be used to represent the 

texture efficiently. This makes the feature processing stage a crucial one, as it involves improving 

the discriminative characteristics of the features extracted. In first stage of feature processing, the 

LZBP and LMP descriptors, which are developed based on the basic LBP method, are used. The 

second stage involves integrating the new feature descriptors with other complementary feature 

descriptors in order to improve the diversity of features extracted. To avoid the dimensionality 

problem arising from integrating complementary feature descriptors, a new hybrid feature 

selection approach is introduced based on the artificial bee colony and the neighbourhood rough 

set algorithms.  

3.3.1 Local Features Extraction from Texture Patterns  

3.3.1.1 TUs mapped for Integer Values  

One of the most effective and representative methods of extracting textural materials is the local 

binary pattern (LBP) method (Ojala et al., 1994; Ojala et al., 1996). LBP has achieved extensive 

success and widespread utilisation among other popular texture feature descriptors (Brahnam, Jain, 

Nanni, & Lumini, 2014; Pietikäinen et al., 2011).  

As explained in Section (2.2.1.5), the LBP-based procedure starts with using binary quantisation 

of grey-level intensity values of the texture pattern in each TU, based on equation (2-7). Then, 
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Equation (2-8) is utilised for weighting the results from the binary quantisation of the texture 

pattern. The sum of weighted (0, 1) of texture pattern is subsequently uniquely mapped to an 

integer value. This procedure guarantees to associate each unique texture pattern of different 

samples of TUs with an integer value.  

TS is the first method utilised the uniquely map the texture pattern of TU to an integer value (He 

& Wang, 1990). TS is carried out by ternary quantisation of grey-level intensity values for texture 

patterns in each TU, following Equation (2-5). Equation (2-6) is then used for weighting the results 

from ternary quantisation of the texture pattern (0, 1, 2). However, TS fails to be an efficient 

quantisation function of texture patterns due to its dependency on ternary coding.  

Compared to TS, the LBP method achieves better results in the context of texture classification 

through binary quantization using Equation (2-7), followed by Equation (2-8) for weighting the 

results from the binary quantization of TUs (0, 1). Furthermore, using Equation (2-9) and (2-10), 

LBP can be extended into the LTP and LQP methods respectively to obtain more information from 

texture patterns. However, due to its utilisation of simple binary quantisation, the LBP usually fails 

to recognise important texture patterns that may produce significant information from TUs.    

Applying binary quantisation for texture patterns in TUs usually results in a difficulty in 

distinguishing between different intensity values of texture patterns. For example, in a TU where 

neighbourhood intensity values are larger than the threshold value, majorly different values are 

both converted into code 1 as a result of binary quantisation of LBP.  

 

3.3.1.2 Discriminative Texture Descriptors Strategies  

Different strategies have been introduced for extracting features from TUs. The main purpose of 

this process is to gather as much as information from the texture patterns as possible, by distinctive 

recognition of the intensity values of the texture patterns.  

Motivated by LBP and TS, the proposed descriptors in this research are based on a weighing 

sequence progression of the quantised grey-level texture patterns to obtain an integer value that is 

unique to each texture pattern. If the weighing sequence is progressed regularly to produce integer 

values for unique texture patterns, the collected information from these texture patterns should be 

more discriminative, and be able to capture subtle differences between different texture patterns. 

To improve the discrimination of the features, two different descriptors are proposed, termed Local 

Zones Binary Pattern (LZBP) and Local Multiple Pattern (LMP). To effectively exploit the 
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intensity values of neighbour pixels and collect more information from texture patterns, every 

neighbour’s place is divided into a number of zones. This is applied to the neighbour places with 

intensity values larger than the threshold value (centre pixel), resulting in neighbour places with a 

set of zones in every place.  

In the proposed descriptors, the process starts by dividing the range or space from the centre pixel 

value to largest value among intensity values of neighbour pixels in TUs into zones. Given a set 

of intensity values of neighbourhood pixel g1, g2, … . . gp, a centre pixel intensity value of gc,  

Tmax = max(gc, g1, g2, … . . gp) , Tmin = gc ,  the number of required intervals or zones (n) can 

be expressed as: 

 

 
vn =

Tmax − Tmin
n

 (3-1) 

where 𝑣𝑛 is the interval or range of zones, Tmin  is the minimum value and is equal to the value of 

centre pixel, and Tmax is largest value among the intensity values of the TU.  

The zone number and the corresponding intervals or range of each zone are explained by Equation 

(3-2), where the zones are (1,2,3 …., n).  

 

𝑣(𝑥) =

{
 
 
 
 

 
 
 
 𝑛        𝑇𝑚𝑖𝑛 +

(𝑛 − 1) × (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)

𝑛
 < 𝑥 < 𝑇𝑚𝑖𝑛 +

𝑛 × (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)

𝑛…… .
…… .

3                  𝑇𝑚𝑖𝑛 +
2 × (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)

𝑛
 < 𝑥 < 𝑇𝑚𝑖𝑛 +

3 × (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)

𝑛

2                 𝑇𝑚𝑖𝑛 +
1 × (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)

𝑛
 < 𝑥 <  𝑇𝑚𝑖𝑛 +

2 × (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)

𝑛

1                𝑇𝑚𝑖𝑛 +
0 × (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)

𝑛
 < 𝑥 <  𝑇𝑚𝑖𝑛 +

1 × (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)

𝑛

 (3-2) 
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(1) Local Zones Binary Pattern (LZBP)  

After dividing the neighbourhood places into a number of zones via Equation (3.1), the resulting 

number of zones in the neighbour places can be mathematically expressed as in Equation (3-2).  

LZBP codes the intensity values of neighbour pixels using Equation (3-3), where values that exist 

in the zone or interval are converted into a binary 1, otherwise take a binary 0 value.    

 

𝑣(𝑥𝑝,𝑧) {
1       𝑖𝑓    𝑇𝑚𝑖𝑛 +

𝑧 − 1 × (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)

𝑛
 < 𝑥𝑧 < 𝑇𝑚𝑖𝑛 +

𝑧 × (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)

𝑛
     

0                                                                                                                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3-3) 

where 𝑛 is the number of zones, such that that 𝑧 = 1……𝑛, and 𝑚 is the number of neighbour 

places, such that that 𝑝 = 1……𝑚. 

After thresholding the intensity values of neighbours, an OR logic operation is applied on the coded 

values of neighbours that are in the same zone. This procedure guarantees a result of 0 or 1 from 

each zone.  

In LZBP, following the coding of the local image pattern, a unique local image pattern is replaced 

by an integer value of different samples (TUs), which is calculate by Equation (3-4). The calculated 

code replaces the centre pixel in the LZBP matrix. This is done by following a clockwise direction 

process, where every coded binary value is multiplied with its corresponding weight, before 

summing up the result. Here, the corresponding binomial weight is multiplied with resulting values 

from applying the OR logic operation.  

   

 
LZBP𝑶𝑹 =∑𝑣(𝑔𝑝,𝑧 − 𝑔𝑐)

𝑛

𝑧=0

× 2𝑧    (3-4) 

Where 𝑔𝑝,𝑧  and  𝑔𝑐  are the grey-level values at zone and centre pixel respectively and 𝑛 is the 

number of zones. 

Other information can be obtained from coding the intensity values of neighbour pixels using 

Equation (3-3). This is done by utilising the number of existing coded 1s in the same zone, which 

range from 1 to 8 (number of neighbour places). This information is obtained via Equation (3-5), 

where a unique local image pattern is replaced by an integer value of different samples (TUs).  
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LZBP𝒔𝒖𝒎 =∑2

∑ (𝑣(𝑔𝑝,𝑧−𝑔𝑐)) 
𝐦
𝒑=𝟎

𝑛

𝑧=0

       (3-5) 

where 𝑛 is the number of zones, and 𝑚 is the number of neighbour places. 

The complete set of features is obtained from the histogram of LZBP, which is acquired by 

concatenating the resulting LZBPOR histogram from Equation (3-4) and the resulted LZBPsum 

histogram from Equation (3-5).    

 

Example  

Given the set of intensity values of neighbourhood pixels, and the intensity value of the centre 

pixel shown below, then Tmax = 40, Tmin = 8 ,  and the number of required intervals or zones is 

(8). 

 

 

Based on Equation (3-1), the range of intervals in each zone (interval space) =
40−8

8
= 4 
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Fig. 3. 2 Coded neighbour value before used by equation (3-4) and (3-5) for integer value of TUs. 
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Based on the resulted from OR logic operation for calculating the LZBP𝑶𝑹 by equation (3-4): 

𝑢1 × 2
0 + 𝑢2 × 2

1 + 𝑢3 × 2
2 + 𝑢4 × 2

3 + 𝑢5 × 2
4 + 𝑢6 × 2

5 + 𝑢7 × 2
6 + 𝑢8 × 2

7 

1 × 20 + 1 × 21 + 1 × 22 + 0 × 23 + 1 × 24 + 0 × 25 + 1 × 26 + 1 × 27 

  

Based on the resulted from sum operation for calculating the LZBP𝒔𝒖𝒎 by equation (3-5): 

1 × 2𝑣1 + 1 × 2𝑣2 + 1 × 2𝑣3 + 1 × 2𝑣4 + 1 × 2𝑣5 + 1 × 2𝑣6 + 1 × 2𝑣7 + 1 × 2𝑣8 

1 × 22 + 1 × 21 + 1 × 21 + 1 × 20 + 1 × 21 + 1 × 20 + 1 × 21 + 1 × 21 

 

 

(2) Local Multiple Pattern (LMP) 

In LMP, the same procedure described by Equation (3-1) for dividing the neighbourhood places 

into number of zones is adopted. The LMP coding intensity values of neighbour pixels is 

performed based on Equation (3-6), where values that exist within the interval threshold are coded 

into corresponding the values of zones number (1,2 … n), otherwise they are coded a value of 0.    

 

𝑣(𝑥) =

{
 
 
 
 

 
 
 
 𝑛   𝑖𝑓    𝑇𝑚𝑖𝑛 +

(𝑛 − 1) × (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)

𝑛
 < 𝑥 < 𝑇𝑚𝑖𝑛 +

𝑛 × (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)

𝑛…… .
…… .

2     𝑖𝑓             𝑇𝑚𝑖𝑛 +
1 × (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)

𝑛
 < 𝑥 < 𝑇𝑚𝑖𝑛 +

2 × (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)

𝑛

1    𝑖𝑓             𝑇𝑚𝑖𝑛 +
0 × (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)

𝑛
 < 𝑥 <  𝑇𝑚𝑖𝑛 +

1 × (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)

𝑛
0                                                                                                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3-6) 

  

Followed the coding of the local texture pattern, a unique local image pattern is replaced by an 

integer value of different samples (TUs), which is calculated using Equation (3-7). The calculated 

integer number replaces the centre pixel of the LMP matrix. This is achieved by following 

clockwise direction process, where every thresholded value is multiplied with its corresponding 

weight, before summing up the result.   
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LMP =∑𝑣(𝑔𝑝 − 𝑔𝑐) × 2

𝑙∗𝑝     

𝐧

𝒑=𝟎

 (3-7) 

 

where 𝑙 is the number of levels, and its values range from 1 to m, resulting in a 𝑧 = 2𝑚 − 1 zones, 

and 𝑛 is the number of neighbour places.  

 

Example  

Given the set of intensity values of neighbourhood pixels, and the intensity value of the centre 

pixel shown below, then   Tmax = 15 and Tmin = 6.  

 

 

 

For two LMP levels (𝑙 =  2), the weights that take places of the neighbours are as follows:  

22∗p,   where p = 0,1,2… . .7    

The sequence wights are therefore 20, 22, 24, 26, 28, 210, 212, 214 

Every neighbour place is divided into 𝑛  zones, which are then converted or coded into intensity 

values of neighbour pixels by thresholding, as follows: 

n (number of zones) = 22 − 1 = 4 − 1 = 3 

20, 21, (20 + 21)  =  1,2,3 

The sequence weights 20, 22, 24, 26, 28, 210, 212, 214 will be distributed among the neighbour 

places (𝑝1, 𝑝2, … . . 𝑝8), whereas the values 1,2,3 will be distributed among the zones (𝑧1, 𝑧2, 𝑧3) 

as follows. 
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The difference 𝑣(𝑥) is encoded by the three values according to the corresponding thresholds as 

in (3-8): 

  

𝑣(𝑥) =

{
 
 
 

 
 
 3        𝑖𝑓       𝑇𝑚𝑖𝑛 +

2 × (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)

3
 < 𝑥 <  𝑇𝑚𝑖𝑛 +

3 × (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)

3

2       𝑖𝑓       𝑇𝑚𝑖𝑛 +
1 × (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)

3
 < 𝑥 <  𝑇𝑚𝑖𝑛 +

2 × (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)

3

1      𝑖𝑓       𝑇𝑚𝑖𝑛 +
0 × (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)

3
 < 𝑥 <  𝑇𝑚𝑖𝑛 +

1 × (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)

3
0                                                                                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3-8) 

 

This arrangement of sequence weights of neighbour places and zones will produce a different 

integer for the texture pattern via Equation (3-9), which is linked to where the neighbour value is 

related to the place and zone. 

The integer value from the texture pattern is calculated as follows:   

 

 

LMP =∑𝑣(𝑔𝑝 − 𝑔𝑐) × 2
2∗𝑝     

𝟕

𝒑=𝟎

 (3-9) 

 

From the aforementioned explanation, the TU is supposed to be divided into three zones in each 

neighbour place. As such, based on Equation (3-1), the range of intervals in each zone (interval 

space) =
15−6

3
= 3. Thus, the thresholding values of resulted zones are explained in (3-10). 

 

 

𝑣(𝑥) = {

3     𝑖𝑓      12 < 𝑥 <  15
2      𝑖𝑓       9 < 𝑥 <  12
1        𝑖𝑓       6 < 𝑥 <  9
0                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3-10) 

 

Based on dividing the TU into diagonal (plus) pattern and non-diagonal (cross) pattern the result 

is as follow: 
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Results of diagonal pattern of TU: 

 

 

Results of non-diagonal pattern of TU: 

 

 

3.3.1.3 The Effectiveness of LZBP and LMP  

The weight sequence should be in a progression that guarantees a unique integer value for texture 

patterns of different texture samples. The LBP method is based on binary quantisation of intensity 

values of neighbour pixels. It consists of a centre pixel surrounded by eight other pixels for each 

TU in the image. The weight sequence (20, 21, …… . 2𝑝) takes place around the centre pixel. 

Therefore, the total number of the distinct LBP representations is 2𝑝 , where 𝑝  is the number of 

neighbour pixels.  

In LZBP the weights sequence (20, 21, …… . 2𝑛−1), is assigned to zones (𝑧1, 𝑧2, … . . 𝑧𝑛), where 

every neighbour place is divided into number of zones, such that 20 is assigned to zone 1, 21 to 

zone 2 , 22 to zone 3, ….. , and 2n−1 to zone n. This will be repeated for 𝑚 neighbour place. The 

final LZBP form then involves concatenation between the histogram resulted from Equation (3-4) 

and the histogram resulted from Equation (3-5). This makes the total number of the distinct 

representations of this descriptor  2𝑛 + 2𝑝, where 𝑛  is the number of zones in each neighbour 

place, and (𝑝) is the number of neighbour places. 
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In LMP, the weight sequence progresses in such a way as to take in consideration both the 

neighbour places and constructed zones. The weights are arranged between 𝑚 neighbourhood 

places (𝑝1, 𝑝2, … . . 𝑝𝑚), and 𝑛 of zones in each place (𝑧1, 𝑧2, … . . 𝑧𝑛), as explained in Fig 3.3. 

Furthermore, in LMP representation, the total number of the distinct representations is  

 2n+1  ×  2(l×(p+1)), where  𝑛 is the number of zones, 𝑝 is the number of neighbour places, and 𝑙 

is number of levels.  

For extracting the local features from texture by the LZBP, LMP, which is similar to LBP, the 

following procedure is adopted:    

1. Convert the image into local texture patterns by thresholding the intensity values of pixels 

in each TU of the image. In thresholding, the intensity values of neighbourhood pixels are 

compared to the centre pixel.   

2. Compute the integer values of the descriptor that correspond to the local patterns from the 

previous stage. The statistics of resulting local textures take into account the thresholded 

intensity values of the corresponding weighing coefficients, then sum the resulting values 

in the neighbourhood places.   

3. Produce the histogram of resulting integer values of the descriptor, where each bin in the 

histogram records the number of occurrences of a unique local pattern of the descriptor in 

the image.      

 

Stage LBP LZBP LMP 

 (1) Binary threshold (0, 1) the 

upper and lower zones to 

quantize the intensity 

values of neighbours.  

Binary threshold the quantized 

intensity values based on the 

number (𝑚)  of zones, which 

are produced in each upper 

neighbour place.  

Multiple threshold (𝑛) of 

quantized intensity values based 

on the number of zones in each 

upper neighbour place, where 

(𝑛) corresponds to the number 

of zones.   

 (2) Weight sequence 

20, 21, . . . 2𝑛−1 progresses to 

take place in the 

corresponding neighbour 

places (𝑝1 , 𝑝2, … 𝑝𝑛).    

Weight sequence 20, 21, … 2𝑚−1 

progresses to take place in the 

corresponding number of zones 

(𝑧1, 𝑧2, … . . 𝑧𝑚).   

Weight sequence progresses to 

take place in both the in the 

corresponding neighbour places 

(𝑝1, 𝑝2, . . 𝑝𝑛) and zones 

(𝑧1, 𝑧2, … . . 𝑧𝑚). 

 (3) Feature length of the  

histogram depends on the 

number of neighbour 

places (2𝑛)    

Feature length of the  histogram 

depends on the number of 

zones  (𝑚) in neighbour 

places (𝑝) via the relation 
2𝑚 + 2𝑝 

Feature length of the  histogram 

depends on the number of 

zones 𝑛 in each neighbour 

place 𝑝 via the relation  
  2n+1  ×  2(l×(p+1)) 



93 

 

  

Fig. 3. 3 An explanation of how the values are assigned to zones for LMP.  
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3.3.2 Hybrid Selection Approach for Feature-level Fusion  

The challenge of classifying diverse texture characteristics stems from employing a single feature 

extraction method. A single feature extraction method is usually not efficient, and faces practical 

limitations when used with diverse texture characteristics (Bashar & Ohnishi, 2002). This makes 

utilising more than one feature extraction method a practical solution, as it provides better 

information about the spatial structure of textures, and produces better discriminative features 

(Ojala et al., 1994).    

To improve texture classification systems, integration between informative features from number 

of different texture description methods has been proposed. In the previous subsection, new texture 

descriptors were developed based on information that had not been utilised by the classical LBP 

method. In Section (2.3.2) of the literatures review, a discussion was presented of how the LBP 

method could be complemented with other feature descriptors to improve the discriminative 

capability of feature. 

In this research, different feature fusion strategies are proposed. The first feature fusion method is 

based on combining the developed LZBP and LMP descriptors with the contrast of texture patterns 

as a complementary feature descriptor. It is worth noting that the use of the contrast of the local 

image texture as complementary feature descriptor has already been demonstrated to improve the 

performance of LBP (Ojala et al., 1996). The second feature fusion approach involves combining 

the local features extracted by the LZBP and LMP descriptors with the global features extracted 

by a GF, which is the most common complementary feature descriptor used with LBP (Liao et al., 

2009).  We expect that the accuracy of feature fusion between the proposed descriptors and the 

suggested complementary feature descriptors will be better than if any of feature descriptors was 

employed separately.     

In this work, feature selection is an important part of the proposed feature descriptors. LZBP and 

LMP are utilised in a multiscale analysis, which is recommended before proceeding with LBP for 

extracting richer information from textures (Ojala, Pietikainen, et al., 2002). The overall features 

extracted from the multiscale descriptors are accomplished by concatenating histograms of 

different scales, which increases the feature space. In (Topi, Timo, Matti, & Maricor, 2000), the 

authors explained that the full LBP histogram may not be relevant or necessary, and that selecting 

part of the patterns encoded in LBP is more effective in producing higher classification rates 

compared to depending on a complete LBP histogram. The proposed complementary feature 
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descriptor based on a GF also results in effective feature selection. Referring into Subsection 

2.2.2.2, GF-based methods require long computation times when depending on complete filters 

without optimisation (Randen & Husoy, 1999).  

Feature selection is also a crucial stage for improving the features extracted by the proposed feature 

fusion methods. In feature fusion, part of the extracted features usually becomes irrelevant after 

the fusion operation (A. Jain & Zongker, 1997). In addition, different shared features usually 

produce a large feature vector, which results in what is referred to as the “curse of dimensionality”. 

In this case, the feature selection method selects the optimal set of features and removes the 

irrelevant features. The main task of feature selection methods is to decrease the feature length 

while retaining classification accuracy.  

Reducing the feature space and avoiding high dimensionality by finding an optimal set of features 

is not an easy task, as explained in Subsection 2.4.1. For achieve this task and realise effective 

feature-level fusion, a new wrapper feature selection approach is proposed by utilising a hybrid 

method based on the ABC and NRS algorithms (see Subsection 2.4.4).   

ABC is a recent and effective wrapper method, which is adopted in this research to improve feature 

extraction (see Subsection 2.4.3.3). ABC is proposed as a means of selecting the relevant features 

from feature-level fusion, where LZBP and LMP are combined with either contrast features or GF. 

The aforementioned methods are used as complementary feature descriptors to improve the texture 

classification rate. However, wrapper methods, of which ABC is one, are expensive since they 

consume significant computation time when evaluating the selected feature parts.     

In this research, improving feature extraction by multiscale LZBP and LMP increases the search 

space for optimal feature parts. While the filter method is a heuristic method (like RS) which has 

the ability to deal with specific feature lengths, it becomes inappropriate with increasing the feature 

space, resulting in increasing the difficulty to find the optimum features.  RS is proposed in this 

research to be applied on limited size features that result from the histogram of the multiscale 

LZBP and LMP descriptors. In the proposed procedure, the feature space of multiscale LZBP and 

LMP can be reduced by NRS by only selecting the relevant features before the  

feature-level fusion stage, where feature fusion takes place with other complementary features of 

contrast or GF.  
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Furthermore, in this research, an improved hybrid selection method is adopted as a more suitable 

means for selecting optimum features from the proposed feature descriptors. The proposed models 

for improving texture feature extraction for image classification are as follows:   

Hybrid ABC-NRS method for feature fusion of LZBP and LMP with Contrast feature  

Figure 3.4 illustrates the proposed wrapper method of ABC based on NRS is employed for 

extracting optimum features from combining the proposed feature LZBP and LMP descriptors 

with the image contrast measurement. NRS is used for selecting the relevant features from the 

multiscale descriptors. The ABC is subsequently utilised to select appropriate features from the 

reduced features of the multiscale LZBP or LMP descriptors and the reduced features of contrast, 

when combined together for the final improved features.   

 

 

 

Hybrid ABC-NRS method for feature fusion of LZBP and LMP with GF   

Figure 3.5 illustrates the proposed wrapper method of ABC based on NRS is employed for 

extracting optimum features from combining the proposed feature LZBP and LMP descriptors 

with the GF. Utilises NRS to reduce the size of multiscale LZBP and LMP features. In addition, 

GF bank consisting of a number of filters, which produce a set of features, is utilised. The most 

relevant features are selected using the ABC algorithm. Subsequently, further reduction of the 

combined feature dimension between the features of optimum filters and the reduced features of 

LZBP or LMP is achieved using the ABC algorithm to yield the final improved feature set.    

Fig. 3. 4 The proposed feature reduction using ABC-NRS for feature fusion between Contrast feature and LBP, 

LZBP and LMP descriptors.  
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3.4 Feature Post-Processing 

3.4.1 Supervised Classification Methods 

In texture classification systems, the process starts by feature extraction then classification using 

a learning algorithm (classifier). The learning algorithm is required in this work for the assessment 

features, which can result from single descriptors, combination of multiple texture descriptors, or 

for evaluating potential optimum features of wrapper method.  

Classifiers can be divided into supervised and unsupervised methods (Svozil, Kvasnicka, & 

Pospichal, 1997). The difference between the two approaches is that in the unsupervised 

classification, there is no information in advance about the number of object classes (Kohonen, 

1990). In the classification stage, the unsupervised classifiers are not relevant in this research. A 

successful categorisation of images by unsupervised classifiers, which require training samples, 

are more appropriate for enhancing the efficiency of classification (Olaode, Naghdy, & Todd, 

2014). One example application can be found in the context of image clusters that are mostly used 

in large databases, where such classifiers can provide a good overview about the database (Vailaya, 

Jain, & Zhang, 1998).     

In supervised classification methods, the objects are divided into classes based on 

labelling/assigning the objects into classes by values, where the value of each label matches with 

a class. Supervised classification starts by training samples (xi, yi), which contain a feature vector 

xi, and a corresponding class label yi. In classification methods (learning algorithm), the input is a 

feature extracted from the training samples of images by descriptors, whereas the output is the 

Fig. 3. 5 The proposed feature selection method using ABC-NRS for feature fusion between GF and LBP, LZBP, 

and LMP descriptors. 
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classification of these samples. The features are extracted by descriptors from the training samples 

of images, and the classifier is constructed by these features from descriptors, which are then (i.e. 

the features) evaluated using the classification system. 

In texture classification based on improved features from different feature processing methods 

(Section 3.3), supervised classifiers are employed to classify the resulting features. Different 

classifiers can be used such as the Back Propagation Neural Network (BPNN) classifier, or the 

Support Vector Machines (SVM) classifier (refer to Subsection 2.1.3.2 for details). However, 

classifier, is not the major part of this research. 

3.4.2 Evaluation of Classification Systems  

The implementation of the designed prototype of the proposed feature methods in a classification 

system will follow an organised approach. Before carrying out the evaluation, it is necessary to 

determine suitable procedures and choose appropriate tools for evaluation. Previous studies found 

specific benchmarks to be restricted to certain application areas. However, our work will depend 

on different available choices that are utilised in evaluating the improved features for image 

classification.  

Datasets Benchmarks  

The pre-processing stage (Section 3.2) involves preparing different texture datasets. These datasets 

consist of different texture characteristics, which are used as challenge of images classification by 

texture. It is essential that the performance of the proposed approaches is evaluated on well-known 

datasets. Furthermore, these datasets should be useful for evaluating classification methods 

through different texture characteristics. This demands selecting databases that reflect a variety of 

textures surfaces to be used as a benchmark for different texture extraction methods.   

This research is based on several datasets that contain a collection of texture surfaces. There are 

number of datasets of texture images that have been used to evaluate different methods that relate 

to enhancing texture feature extraction (Crosier & Griffin, 2008; Varma & Garg, 2007; Xu, Yang, 

Ling, & Ji, 2010; J. Zhang, Marszałek, Lazebnik, & Schmid, 2007). Recently, these datasets have 

been used to evaluate the developed methods that are based on LBP (L. Liu, Fieguth, Wang, 

Pietikäinen, & Hu, 2016). The targeted datasets provide the required diversity of texture 

characteristics and randomness required by texture feature analysis methods. The datasets consist 

of images that vary in scale, direction, viewpoint, and illumination, as well as images affected by 
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noise and blurring problems. These real images are mostly used for comparison between different 

feature extraction methods.    

Comparison Methods  

In order to evaluate the developed methods, it is necessary to compare said methods with other 

related methods. A new method can only be claimed successful or beneficial if its produced results 

can be validated as superior to those of existing methods.  

As we target improving the classification accuracy by utilising a hybrid feature selection method 

with least feature size (Subsection 3.3.2), the accuracy and feature length rates can be used to 

evaluate the results. For methods that are based improving texture features by feature selection, 

the comparison is mostly based on the accuracy and feature space of classification results (H. Liu 

& Motoda, 2007).  

Basic Metrics 

There are various measures to evaluate the performance of classification systems, such as the 

Confusion Matrix (CM), which is also referred to as the Error Matrix (Lu & Weng, 2007). CM is 

also appropriate for multi-class image classification. Measures or metrics such as accuracy, 

precision, recall, and F-score are calculated from CM, and are used to evaluate the classification 

system (Sokolova & Lapalme, 2009).   

In the classification process, the information in the CM is related to actual class and predicted 

class. Figure 3.6 illustrates this point for multi-class classification. When testing the data produced 

by a classification model, correct and incorrect samples from classifications of every class are 

counted and displayed in this table, where the table includes True Positive (TP) for each class and 

Error (E) of sample classes, where they belong to one of the classes but were incorrectly classified 

to other classes.   

Fig. 3. 6 The confusion matrix for multi-class classification. 
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3.5 Summary 

This chapter proposed a methodology for improving feature extraction for images classification 

systems based on the characteristics of texture. Mathematical methods based on LZBP and LMP 

were introduced as means of texture description. These texture descriptors aim to extract 

distinctive TUs features, and are developed based on the conventional LBP descriptor. 

Furthermore, the new feature descriptors are combined with two other complementary feature 

descriptors, which are contrast and GF. In addition, the proposed methodology takes into account 

the fact that any reliable classification system working with feature fusion should have the ability 

to select only the relevant features, and avoid curse of dimensionality. As such, a new hybrid 

feature selection approach is proposed by wrapper method based on ABC and NRS. The method 

is well equipped to deal with a huge feature size, and is capable of dealing with feature space 

efficiently.  

The developed approach is expected to result improved texture features for image classification. 

These methods will be experimentally evaluated based on a specific procedure that has been 

followed by previous classical methods. This will thus verify the effectiveness of this approach in 

the context of classification systems. 
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Chapter 4 

Design and Implementation  

This chapter introduces the proposed methods for achieving improved features extraction from 

textures, and which will be applied in a classification system. These methods are implemented 

through their algorithms, which was coded by a MATLAB program. MATLAB is utilised by many 

programmers because it provides a convenient environment for algorithm implementation. In 

addition, MATLAB has the capabilities required to implement the employed methods mentioned 

in previous methodology chapter.     

In this chapter, the developed prototypes of the methods intended to improve feature extraction 

are introduced in Section 4.1. Section 4.2 presents the implementation of the algorithms based on 

the new LZBP and LMP texture descriptors. Section 4.3 explains the process applied for improving 

feature extraction from texture, whereas Section 4.4 details the process of the algorithms based on 

the methods used to improve feature extraction in classification systems. The final section, Section 

4.5, provides a summary of this chapter.   

4.1 Design of the Developed Prototype 

The proposed classification system follows the basic workflow shown in Fig 1.2. In this work, the 

proposed design involves the components related to the feature process stage (see Fig 4.1). In 

classification, the process starts with the submission of a number of images to the system. The 

system then extracts the features of the image using the new improved feature extraction methods 

based on LZBP and LMP, whereas complementary features are extracted either through contrast 

measurements or a Gabor filter. Then the system integrates the features from involved texture 

descriptors into a unified vector. The next step involves applying feature selection for a subset of 

relevant features using the hybrid ABC-NRS algorithm. Finally, the classifier receives the results 

of the improved features to classify the images into a number of classes.  
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Fig. 4. 1 Prototype of the feature extraction process based on the methods used to improve 

feature extraction in a classification system. 
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4.2 Texture Feature Extraction by LZBP and LMP  

In texture-based classification systems, a set of visual features is extracted from target images. 

This is preferred to involving the entire data or pixels of the images. The feasibility of this depends 

on the visual features, however, collecting the sufficient features from the textures that reflect their 

characteristics is always of great importance (Amato & Di Lecce, 2008). 

As explained in the previous chapter, LZBP and LMP are based on the LBP method for collecting 

distinctive features from texture characteristics. LZBP and LMP employ more sophisticated 

quantisation functions for texture patterns to extract improved features compared to LBP. The 

procedure used by LZBP and LMP is suitable for texture patterns, especially for varying intensity 

values of patterns.   

4.2.1 Algorithms of the LZBP and LMP  

In developing new descriptors based on LZBP and LMP, the relationship between the central pixel 

value (threshold) with intensity values of neighbourhood pixels has been established. This 

procedure involves discriminating between patterns from different characteristics of texture, and 

collecting as much information as possible. In LZBP- and LMP-based texture descriptors, the 

process involves constructing a number of zones which quantise the intensity values of 

neighbourhood pixels (refer to Section 3.3.1).    

For coding the patterns in TUs, the LZBP and LMP methods establish:  

 A number of pixels in a neighbourhood (𝑝), which are surrounded by a grey-level value of 

the centre pixel.  

 A number of quantisation zones (𝑧) in the neighbourhood places. 

4.2.1.1 LZBP Algorithm  

Listing 4.1 shows the developed LZBP algorithm. The extracted visual feature vector is done via 

the relation between the threshold value of the central pixel and the other intensity values of 

neighbourhood pixels. However, in LZBP, the constructed number of zones are, which serve to 

quantise the intensity values of neighbourhood pixels, as show in line 7 by the FOR loop. The 

extracted features depend on the number of quantised zones (z), as this impact the recognition 

capability of intensity values of neighbourhood pixel.   
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In line 10, the WHILE loop determines the intensity values of the neighbourhood that exists in the 

same zone. The LZBP algorithm, based on the condition displayed in line 12, the texture pattern 

in the zone is converted into (1) (set_pattern=1) as show in line 13. Subsequently, different results 

from all neighbourhood intensity values are saved by 𝑆𝑒𝑡_ 𝑍𝑜𝑛𝑒𝑝𝑎𝑡𝑡𝑒𝑟𝑛, as show in line 15.    

The feature is calculated by the histogram, where an 𝑂𝑅 logic operation is applied on the resulting 

coded values saved by 𝑆𝑒𝑡_ 𝑍𝑜𝑛𝑒𝑝𝑎𝑡𝑡𝑒𝑟𝑛 following Equation (3-4), whereas the summation 

operation is applied on resulting coded values saved by 𝑆𝑒𝑡_ 𝑍𝑜𝑛𝑒𝑝𝑎𝑡𝑡𝑒𝑟𝑛 following Equation (3-

5).   

Listing 4.1: LZBP algorithm 

1.  𝑝𝑎𝑡𝑡𝑒𝑟𝑛 ← 0 

2. 𝐶𝑒𝑛𝑡𝑒𝑟_𝑣𝑎𝑙𝑢𝑒 ← 𝑆𝑎𝑚𝑝𝑙𝑒_𝑐𝑒𝑛𝑡𝑒𝑟 

 

3. 𝒇𝒐𝒓 𝑖 = 1 𝑡𝑜 𝑝 𝒅𝒐 

  

4.  𝑀𝑎𝑥_𝑣𝑎𝑙𝑢𝑒 ← 𝑀𝑎𝑥(𝑖) 

5.  𝑀𝑖𝑛_𝑣𝑎𝑙𝑢𝑒 ← 𝐶𝑒𝑛𝑡𝑒𝑟_𝑣𝑎𝑙𝑢𝑒 

6. 𝒆𝒏𝒅 

 

7. 𝒇𝒐𝒓 𝑗 = 1 𝑡𝑜 𝑧 𝒅𝒐 ∶ 𝒛 𝒊𝒔 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒛𝒐𝒏𝒆𝒔 

 

8.  𝑡𝑒𝑟𝑚_max (𝑗) ← 𝑀𝑖𝑛_𝑣𝑎𝑙𝑢𝑒 + 𝑗 × (𝑀𝑎𝑥_𝑣𝑎𝑙𝑢𝑒 −  𝑀𝑖𝑛_𝑣𝑎𝑙𝑢𝑒)  /𝑧  

9.  𝑡𝑒𝑟𝑚_min (𝑗) ← 𝑀𝑖𝑛𝑣𝑎𝑙𝑢𝑒 + (𝑗 − 1)  × (𝑀𝑎𝑥_𝑣𝑎𝑙𝑢𝑒 −  𝑀𝑖𝑛_𝑣𝑎𝑙𝑢𝑒)  /𝑧 

 

10.𝒘𝒉𝒊𝒍𝒆 𝑖 = 1 𝑡𝑜 𝑝 𝒅𝒐 ∶ 𝒑 𝒊𝒔 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒏𝒆𝒊𝒈𝒉𝒃𝒐𝒖𝒓 𝒑𝒂𝒕𝒕𝒆𝒓𝒏𝒔 

 

11.  𝑛𝑒𝑖𝑔ℎ𝑜𝑢𝑟_𝑣𝑎𝑙𝑢𝑒 ← 𝑆𝑎𝑚𝑝𝑙𝑒_𝑣𝑎𝑙𝑢𝑒(𝑖) 

 

12. 𝒊𝒇 (𝑛𝑒𝑖𝑔ℎ𝑜𝑢𝑟𝑣𝑎𝑙𝑢𝑒 > 𝐶𝑒𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑢𝑒& 𝑡𝑒𝑟𝑚max(𝑗) < 𝑛𝑒𝑖𝑔ℎ𝑜𝑢𝑟𝑣𝑎𝑙𝑢𝑒 < 𝑡𝑒𝑟𝑚min(𝑗))𝒕𝒉𝒆𝒏 
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13.  𝑆𝑒𝑡_ 𝑝𝑎𝑡𝑡𝑒𝑟𝑛(𝑖)  ← 1 

14. 𝒆𝒏𝒅 

 

15.  𝑆𝑒𝑡_ 𝑍𝑜𝑛𝑒𝑝𝑎𝑡𝑡𝑒𝑟𝑛(𝑖, 𝑗)  ← 𝑆𝑒𝑡_ 𝑝𝑎𝑡𝑡𝑒𝑟𝑛(𝑖) 

16. 𝒆𝒏𝒅 

17. 𝒆𝒏𝒅 

 

4.2.1.2 LMP Algorithm  

Listing 4.2 presents the developed LMP algorithm. The extracted feature vectors are still based on 

the relation between the threshold value of central pixel and the other intensity values 

neighbourhood pixels. The LMP algorithm use the same strategy for constructing a number of 

zones, which quantise the intensity values of neighbourhood pixels, as show in line 7 (the FOR 

loop). However, for resulting coded value, the LMP algorithm uses the condition in line 12, where 

the intensity values of neighbourhood that exist in the same zone are converted into the zone 

number (j) by (set_pattern=j), as shown in line 13. The result from set_pattern is then used by 

Equation (3-7), and is subsequently used by the histogram for the feature vector.     

Listing 4.2: LMP algorithm 

1.  𝑝𝑎𝑡𝑡𝑒𝑟𝑛 ← 0 

2. 𝐶𝑒𝑛𝑡𝑒𝑟_𝑣𝑎𝑙𝑢𝑒 ← 𝑆𝑎𝑚𝑝𝑙𝑒_𝑐𝑒𝑛𝑡𝑒𝑟 

 

3. 𝒇𝒐𝒓 𝑖 = 1 𝑡𝑜 𝑝 𝒅𝒐 

  

4.  𝑀𝑎𝑥_𝑣𝑎𝑙𝑢𝑒 ← 𝑀𝑎𝑥(𝑖) 

5.  𝑀𝑖𝑛_𝑣𝑎𝑙𝑢𝑒 ← 𝐶𝑒𝑛𝑡𝑒𝑟_𝑣𝑎𝑙𝑢𝑒 

6. 𝒆𝒏𝒅 

 

7. 𝒇𝒐𝒓 𝑗 = 1 𝑡𝑜 𝑧 𝒅𝒐 ∶ 𝒛 𝒊𝒔 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒛𝒐𝒏𝒆𝒔 

 

8.  𝑡𝑒𝑟𝑚_max (𝑗) ← 𝑀𝑖𝑛_𝑣𝑎𝑙𝑢𝑒 + 𝑗 × (𝑀𝑎𝑥_𝑣𝑎𝑙𝑢𝑒 −  𝑀𝑖𝑛_𝑣𝑎𝑙𝑢𝑒)  /𝑧  

9.  𝑡𝑒𝑟𝑚_min (𝑗) ← 𝑀𝑖𝑛_𝑣𝑎𝑙𝑢𝑒 + (𝑗 − 1)  × (𝑀𝑎𝑥_𝑣𝑎𝑙𝑢𝑒 −  𝑀𝑖𝑛_𝑣𝑎𝑙𝑢𝑒)  /𝑧 
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10.𝒘𝒉𝒊𝒍𝒆 𝑖 = 1 𝑡𝑜 𝑝 𝒅𝒐 ∶ 𝒑 𝒊𝒔 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒏𝒆𝒊𝒈𝒉𝒃𝒐𝒖𝒓 𝒑𝒂𝒕𝒕𝒆𝒓𝒏𝒔 

 

11.  𝑛𝑒𝑖𝑔ℎ𝑜𝑢𝑟_𝑣𝑎𝑙𝑢𝑒 ← 𝑆𝑎𝑚𝑝𝑙𝑒_𝑣𝑎𝑙𝑢𝑒(𝑖) 

 

12. 𝒊𝒇 (𝑛𝑒𝑖𝑔ℎ𝑜𝑢𝑟𝑣𝑎𝑙𝑢𝑒 > 𝐶𝑒𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑢𝑒& 𝑡𝑒𝑟𝑚max(𝑗) < 𝑛𝑒𝑖𝑔ℎ𝑜𝑢𝑟𝑣𝑎𝑙𝑢𝑒 < 𝑡𝑒𝑟𝑚min(𝑗))𝒕𝒉𝒆𝒏 

 

13.  𝑆𝑒𝑡_ 𝑝𝑎𝑡𝑡𝑒𝑟𝑛(𝑖)  ← 𝑗 

14. 𝒆𝒏𝒅 

15. 𝒆𝒏𝒅 

16. 𝒆𝒏𝒅 

 

4.2.2 Implementation of the LZBP and LMP  

In this section, an example of the implementation of the LZBP and LMP algorithms on sample 

TUs is presented and compared with the LBP algorithm. The TUs sample is from different classes 

of images, as shown in Fig 4.2 (a).    

TUs coding 

The first step involves the coding of the intensity values of neighbour pixels in TUs. Following 

Equation (2-7), LBP happens to produce the same binary code value from the relationship between 

threshold and intensity values of two different textures patterns. From Fig 4.2 (b), using LBP, both 

TUs are classified into the same class, when they in fact belong to different classes. LBP applied 

to TU Class 1 and TU Class 2 results in both being converted to ‘1 1 0 0 1 1 1 1’.  The repeated 

existence of these patterns in textures from different classes results in the histogram of the two 

classes being similar, which increases the probability of the two textures belonging to the same 

class. 

In the LZBP algorithm, the process starts by Equation (3-3), which is use for coding the intensity 

values of TUs. In the case of OR logic operation by (3-4) as in Fig 4.2 (c) (i), the intensity values 

of TU Class 1 are converted to ‘1 0 1 0 1 1 1 0’, whereas the intensity values of TU Class 2 are 

coded into ‘1 0 1 0 0 0 1 0 1’. In the case of sum operation by (3-5) as in Fig 4.2 (c) (ii), when 
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coding the same texture patterns, the coded TU Class 1 is equal to ‘1 0 2 0 1 1 1 0’, while the TU 

Class 2 is equal ‘2 0 2 0 0 1 0 1’. The coding of different samples of images results in different 

code numbers, and as such, it is expected to produce different features for Class 1 and Class 2. 

In the LMP algorithm, Equation (3-6) is used to code the intensity values of TUs with a  

three-level result, as in Fig 4.2 (d). For the first quantized zone of level 1, the result of the TU 

Class 1 is ‘0 1 0 0 0 0 1 1’ and the result of the TU Class 2 is 1 1 0 0 1 0 0 0’, whereas for the 

second quantized zone of level 2, the result of the TU Class 1 is ‘0 0 0 0 2 0 0 0’ and the result of 

the TU Class 2 is ‘0 0 0 0 0 0 0 2’. Finally, for the third quantized zone of level 3, the TU Class 1 

is converted into ‘3 0 0 0 0 3 0 0’, while the TU Class 2 is converted into ‘0 0 0 0 0 0 3 0’. The 

results of level 1, 2 and 3 of the algorithm thus produce different coding for Class 1 and Class 2.  

TU of Class 1 and TU of Class 2 are from different texture images. However, despite the TUs 

being from different classes, the LBP algorithm produced the same code values. On the other hand, 

the developed LZBP and LMP algorithms produced different coded values for different TUs 

classes. As such, this highlights the capability of the LZBP and LMP algorithms in discriminating 

between texture patterns. 
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Fig. 4. 2 Results of coding TUs from two different classes of images by LBP, LZBP and LMP. 
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Mapping TUs into integer values  

In this step, the two descriptors apply the sum of weighted coded values of neighbour places to 

uniquely map them to an integer value. Equation (3-4) and (3-5) of LZBP and Equation (3-7) of 

LMP are used to guarantee a texture pattern with a unique integer value for different TUs.  

Results of Class 1 TU:  

 

In LBP, the integer value is calculated by Equation (2-8):  

 

𝐿𝐵𝑃 = 27 × 1 + 26 × 1 + 25 × 0 + 24 × 0 + 23 × 1 + 22 × 1 + 21 × 1 + 20 × 1 

 

In LZBP, the integer value is calculated by Equations (3-4) and (3-5):  

  

𝐿𝑍𝐵𝑃_𝑂𝑅 =  27 × 1 + 26 × 0 + 25 × 1 + 24 × 0 + 23 × 1 + 22 × 1 + 21 × 1 + 20 × 0 

 

𝐿𝑍𝐵𝑃_𝑠𝑢𝑚 = 21 × 1 + 20 × 1 + 22 × 1 + 20 × 1 + 21 × 1 + 21 × 1 + 21 × 1 + 20 × 1 

 

𝐿𝑍𝐵𝑃 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝐿𝑍𝐵𝑃_𝑂𝑅, 𝐿𝑍𝐵𝑃_𝑠𝑢𝑚) 

 

 

In LMP, the integer value is calculated by Equation (3-7):  

 

𝐿𝑀𝑃_𝑐𝑟𝑜𝑠𝑠 = (26 × 1) × (1 × 3) + (26 × 1) × (0 × 2) + (26 × 1) × (0 × 1) +  

(24 × 1) × (0 × 3) + (24 × 1) × (0 × 2) + (24 × 1) × (0 × 1) + 

(22 × 1) × (0 × 3) + (22 × 1) × (1 × 2) + (22 × 1) × (0 × 0) + 

(20 × 1) × (0 × 3) + (20 × 1) × (0 × 2) + (20 × 1) × (1 × 1) + 

 

𝐿𝑀𝑃_𝑝𝑙𝑢𝑠 = (26 × 1) × (0 × 3) + (26 × 1) × (0 × 2) + (26 × 1) × (1 × 1) +  

(24 × 1) × (0 × 3) + (24 × 1) × (0 × 2) + (24 × 1) × (0 × 1) + 

(22 × 1) × (1 × 3) + (22 × 1) × (0 × 2) + (22 × 1) × (0 × 1) + 

(20 × 1) × (0 × 3) + (20 × 1) × (0 × 2) + (20 × 1) × (1 × 1) + 

 

𝐿𝑀𝑃 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝐿𝑀𝑃_𝑐𝑟𝑜𝑠𝑠, 𝐿𝑀𝑃_𝑝𝑙𝑢𝑠) 

 

Results of Class 2 TU:  

 

In LBP, the integer value is calculated by Equation (2-8):  

 

𝐿𝐵𝑃 = 27 × 1 + 26 × 1 + 25 × 0 + 24 × 0 + 23 × 1 + 22 × 1 + 21 × 1 + 20 × 1 

 

Results of coding TUs from two different classes of images by LBP, LZBP, and LMP. 
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In LZBP, the integer value is calculated by Equations (3-4) and (3-5):  

   

𝐿𝑍𝐵𝑃_𝑂𝑅 =  27 × 1 + 26 × 0 + 25 × 1 + 24 × 0 + 23 × 0 + 22 × 1 + 21 × 0 + 20 × 1 

 

𝐿𝑍𝐵𝑃_𝑠𝑢𝑚 =  22 × 1 + 20 × 1 + 22 × 1 + 20 × 1 + 20 × 1 + 21 × 1 + 20 × 1 + 21 × 1 

 

𝐿𝑍𝐵𝑃 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝐿𝑍𝐵𝑃_𝑂𝑅, 𝐿𝑍𝐵𝑃_𝑠𝑢𝑚) 

 

In LMP, the integer value is calculated by Equation (3-7):  

 

𝐿𝑀𝑃_𝑐𝑟𝑜𝑠𝑠 = (26 × 1) × (0 × 3) + (26 × 1) × (0 × 2) + (26 × 1) × (1 × 1) +  

(24 × 1) × (0 × 3) + (24 × 1) × (0 × 2) + (24 × 0) × (0 × 1) + 

(22 × 1) × (0 × 3) + (22 × 1) × (0 × 2) + (22 × 1) × (1 × 1) + 

(20 × 1) × (1 × 3) + (20 × 1) × (0 × 2) + (20 × 1) × (0 × 1) + 

 

𝐿𝑀𝑃_𝑝𝑙𝑢𝑠 = (26 × 1) × (0 × 3) + (26 × 1) × (0 × 2) + (26 × 1) × (1 × 1) +  

(24 × 1) × (0 × 3) + (24 × 1) × (0 × 2) + (24 × 1) × (0 × 1) + 

(22 × 1) × (0 × 3) + (22 × 1) × (0 × 2) + (22 × 1) × (0 × 1) + 

(20 × 1) × (0 × 3) + (20 × 1) × (1 × 2) + (20 × 1) × (0 × 1) + 

𝐿𝑀𝑃 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝐿𝑀𝑃_𝑐𝑟𝑜𝑠𝑠, 𝐿𝑀𝑃_𝑝𝑙𝑢𝑠) 

 

Table. 4. 1 The resulted integer values for LBP, LZBP and LMP from TU sample of class 1 and class 2.  

 TU Sample of Class 1 TU Sample of Class 2 

LBP 207 207 

LZBP 165/16 174/15 

LMP 193/194 75/75 

 

Feature histogram   

The aforementioned step (1) and step (2) procedure is repeated for every TU of the two classes of 

the target images. The histogram is then obtained by representing the local features by the 

descriptors. Fig 4.3 and 4.4 show the resulting histograms of image Class 1 and image Class 2, 

respectively, where subfigures labelled (a) represent the LBP histogram, subfigures labelled (b1) 

and (b2) represent the LZBP histograms resulting from 𝐿𝑍𝐵𝑃_𝑂𝑅 and 𝐿𝑍𝐵𝑃_𝑠𝑢𝑚, respectively, and 

subfigures labelled (c1) and (c2) represent the LMP histograms resulting from 𝐿𝑀𝑃_𝑐𝑟𝑜𝑠𝑠 and 

𝐿𝑀𝑃_𝑝𝑙𝑢𝑠, respectively. 
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Fig. 4. 3 The LBP, LZBP and LMP histograms of texture Class 1.  



112 

 

 

 

 

 

 

 

 

 

Fig. 4. 4 The LBP, LZBP and LMP histograms of texture Class 2.  



113 

 

4.3 The Improved Feature Extraction Process 

In previous section, new feature descriptors based on the LZBP and LMP methods were 

implemented. As explained in Fig 4.1, these new features descriptors will be combined with other 

complementary features descriptors to improve feature extraction from different texture 

characteristics. Feature selection of feature-level fusion output will then be applied to result in 

optimum features.  

4.3.1 Texture Descriptors  

The goal of texture descriptors is to create feature vectors consisting of meaningful information 

about the texture characteristics of an image. The implemented descriptors for extracting features 

from texture in the developed prototype are: 

Texture-based feature descriptors utilising the LZBP and LMP methods 

LZBP and LMP extract visual features from target images, where their implementation was 

discussed in the previous section. As previously explained, LZBP produces the features from 

concatenation of two histograms. The first is obtained from the histogram resulting from the OR 

logic operation (Equation (3.4)), whereas the second is obtained from the sum operation (Equation 

(3.5)).  

In LMP, the histogram is applied to the results of 𝐿𝑀𝑃 equation (Equation (3.7)). Applying all 16-

bits patterns results in a high feature dimension of 216. To reduce the huge feature vector size, LMP 

is applied by an 8-bit patterns using diagonal (plus) pattern and non-diagonal (cross) pattern 

(Heikkilä et al., 2009). As such, the LMP produces a couple of histograms, where concatenating  

𝐿𝑀𝑃_𝑐𝑟𝑜𝑠𝑠 and 𝐿𝑀𝑃_𝑝𝑙𝑢𝑠 results in a feature dimension of 512 (28+ 28).    

The feature vectors of the proposed LZBP and LMP feature descriptors are:  

The feature vector representing the LZBP extracted features is FLZBP = [F1 LZBP, F2 LZBP,….FM LZBP]  

The feature vector representing the LMP extracted features is FLMP = [F1 LMP, F2 LMP,  FM LMP] 

where M is the size of the feature vector.  
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Texture-based feature descriptors utilising complementary features of contrast and GF  

The contrast measure and GF are used throughout this project to extract complementary features 

to be combined with the extracted features from the LZBP and LMP methods. For further details 

on the contrast measure and GF descriptors, refer to Subsections 2.3.2 and 2.2.2.2.    

The complementary feature vectors of Contrast Feature (CF) and Gabor Filter (GF) are:  

The feature vector representing the CF extracted features is FCF = [F1CF, F2CF, … FMCF] 

The feature vector representing the GF extracted features is FGF= [F1GF, F2GF, … FMGF]. 

where M is the size of the feature vector.   

4.3.2 Feature-Level Fusion 

The extracted features from the texture image by the proposed LZBP and LMP feature descriptors 

and the complementary CF and GF are obtained separately. In the subsequent stage, the improved 

features are obtained by combining between these sets of features together. In feature-level fusion, 

the final feature vector is constructed by concatenating the involved features. 

Local LZBP and LMP features combined with complementary CF 

The LZBP and LMP methods, as well as CF, are applied to the target image to form a feature 

vector.  Then, LZBP features are concatenated with CF to obtain the fused LZBP and CF vector 

(Equation (4-1)). LMP features are also concatenated with CF to obtain the fused LMP and CF 

vector (Equation (4-2)).       

 FLZBP/CF = [Fl LZBP, F2 LZBP, … FMLZBP,  F1CF, F2CF, …, FMCF]   (4-1) 

 FLMP/CF = [Fl LMP, F2 LMP, … FM LMP, F1CF, F2CF, …, FMCF] (4-2) 

 

Local LZBP and LMP features combined with complementary GF  

The LZBP and LMP methods and the GF are applied on the target image to form a feature vector.  

Subsequently, LZBP and GF features are concatenated to obtain the fused LZBP and GF feature 

vector (Equation (4-3)). LMP features are also concatenated with GF features to obtain the fused 

LMP and GF feature vector (Equation (4-4)):   

 FLZBP/GF = [Fl LZBP, F2 LZBP, … FMLZBP, F1GF, F2GF, …, FMGF] (4-3) 

 FLMP/GF = [Fl LMP, F2 LMP, … FM LMP, F1GF, F2GF, …, FMGF] (4-4) 
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The previous fused feature vectors of Equations (4-1), (4-2), (4-3) and (4-4) are for single image. 

The previous operations will be repeated for the (N) images of the dataset, in order to obtain the 

feature fusion of the dataset. The complete feature size is therefore (M×N), where M is the feature 

size, and N is the number of images in the dataset.  

4.3.3 Selection Approach Based on the Hybrid ABC-NRS Algorithm 

Usually, in any texture-based classification system, selecting the optimum features produces better 

results compared to the complete set of feature. In this work, feature selection is essential for 

optimising the features, and is done by selecting a subset of features from the combined features 

of different descriptors. This involves removing irrelevant features while retaining the same rate 

of classification.  

Wrapper selection methods, such as the ABC method, take a long time to evaluate the potential 

optimum parts of features. To reduce the computation burden involved in searching the optimum 

parts of features, a hybrid selection approach was proposed in Subsection 3.3.2 for the proposed 

feature fusion of Subsection 4.3.2. This approach is based on using the ABC wrapper selection 

method based on the NRS method. Hybrid selection methods mostly produce good results when 

utilised for large feature space (Ke et al., 2008; Xiangyang Wang et al., 2007).   

Implementation Scheme  

The hybrid ABC-NRS feature selection method is applied to select the optimum features from the 

proposed feature-level fusion discussed in the previous subsection. The ABC algorithm is 

employed to select the relevant features from the LZBP and LMP extracted features that are 

combined with complementary contrast or GF features. However, multiscale LZBP and LMP 

produce a large feature space for ABC algorithm. The NRS method is an efficient tool extracting 

for optimum features from specific lengths of multiscale LZBP and LMP. In the proposed 

algorithm, explained in Fig 4.5, NRS reduces the features of multi-scale LZBP and LMP before 

said features are combined with the complementary features of CF and GF. The ABC algorithm is 

then applied to select optimum or improved features.   
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Fig. 4. 5 Hybrid feature selection method ABC-NRS for involved feature level fusion. 
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ABC-NRS Algorithm   

Listing 4.3 shows the hybrid wrapper ABC-NRS algorithm used for the feature-level fusion of the 

proposed LZBP and LMP feature descriptors and the complementary feature descriptors (CF and 

GF).  

Listing 4.3: Hybrid ABC-NRS algorithm 

Set of control parameters of the ABC algorithm: 

 Number of food sources 
 Maximum Cycle Number (MCN) 

 

𝐁𝐞𝐠𝐢𝐧𝐞 

 

𝑃𝐹 − 𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ← 𝑁𝑅𝑆 (𝐹𝑃 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 (𝑠)): 𝑓𝑜𝑟 𝐿𝑍𝐵𝑃 𝑎𝑛𝑑 𝐿𝑀𝑃 𝑤𝑖𝑡ℎ 𝑁𝑅𝑆 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 

𝐶𝐹 − 𝐶𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ← 𝐶𝐹 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 (𝑠): 𝑓𝑜𝑟 𝐶𝐹 𝑎𝑛𝑑 𝐺𝐹 

 

Bounded parameters values: 

 𝐹𝑉𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑚𝑖𝑛=[𝑉𝑃𝐹 𝑚𝑖𝑛  𝑉𝐶𝐹 𝑚𝑖𝑛] 

 𝐹𝑉𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑚𝑎𝑥=[𝑉𝑃𝐹 𝑚𝑎𝑥   𝑉𝐶𝐹 𝑚𝑎𝑥] 

 

𝐈𝐧𝐢𝐭𝐢𝐚𝐥 𝐩𝐞𝐫𝐢𝐨𝐝 

 

𝒇𝒐𝒓 𝑠 = 1 𝑡𝑜 𝐶𝑆 𝒅𝒐 

𝑃 − 𝑖𝑛𝑡𝑖𝑎𝑙 ( 𝑉𝑃𝐹 , 𝑉𝐶𝐹) ← 𝑅𝑎𝑛𝑑 (𝑉𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 ) ∶ 𝑅𝑎𝑛𝑑𝑜𝑚 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑖𝑛𝑔 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 

𝐹𝑉 − 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ( 𝑖𝑛𝑡𝑖𝑎𝑙) ← 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 (𝑃 − 𝑖𝑛𝑡𝑖𝑎𝑙 ( 𝑉𝑃𝐹 , 𝑉𝐶𝐹)) ∶  𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

𝒆𝒏𝒅 

 

𝑐𝑦𝑐𝑙𝑒 = 1; 

𝒘𝒉𝒊𝒍𝒆 𝑐𝑦𝑐𝑙𝑒 < 𝑀𝐶𝑁 𝒅𝒐 

 

𝐄𝐦𝐩𝐥𝐨𝐲𝐞𝐝 𝐛𝐞𝐞𝐬′ 𝐩𝐞𝐫𝐢𝐨𝐝 

 

𝒇𝒐𝒓 𝑠 = 1 𝑡𝑜 𝐶𝑆 𝒅𝒐 

𝑃 − 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑑 ( 𝑉𝑃𝐹, 𝑉𝐶𝐹) ← 𝑛𝑒𝑖𝑔ℎ (𝑃 − 𝑖𝑛𝑡𝑖𝑎𝑙 ( 𝑉𝑃𝐹 , 𝑉𝐶𝐹)) ∶ 𝐸𝑥𝑝𝑙𝑜𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 

𝐹𝑉 − 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ( 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑑 ) ← 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 (𝑃 − 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑑 ( 𝑉𝑃𝐹 , 𝑉𝐶𝐹)) ∶ 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑛𝑒𝑤 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

 

𝒊𝒇 𝐹𝑉 − 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ( 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑑 ) < 𝑉 − 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ( 𝑖𝑛𝑡𝑖𝑎𝑙 ) 𝒕𝒉𝒆𝒏 

𝑃 − 𝑠𝑎𝑣𝑒𝑑 ( 𝑉𝑃𝐹 , 𝑉𝐶𝐹) ← 𝑃 − 𝑖𝑛𝑡𝑖𝑎𝑙 ( 𝑉𝑃𝐹 , 𝑉𝐶𝐹) 
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𝐹𝑉 − 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ( 𝑠𝑎𝑣𝑒𝑑) ← 𝐹𝑉 − 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ( 𝑖𝑛𝑡𝑖𝑎𝑙 ) 

  

𝒆𝒍𝒔𝒆 

 

𝑃 − 𝑠𝑎𝑣𝑒𝑑 ( 𝑉𝑃𝐹 , 𝑉𝐶𝐹) ← 𝑃 − 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑑 ( 𝑉𝑃𝐹 , 𝑉𝐶𝐹) 

𝐹𝑉 − 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ( 𝑠𝑎𝑣𝑒𝑑) ← 𝐹𝑉 − 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ( 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑑 ) 

 

𝒆𝒏𝒅 

𝒆𝒏𝒅 

 

𝐎𝐧𝐥𝐨𝐨𝐤𝐞𝐫 𝐛𝐞𝐞𝐬′ 𝐩𝐞𝐫𝐢𝐨𝐝 

 

𝐹𝑉 − 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ( 𝑔𝑙𝑜𝑏𝑎𝑙 ) ← 𝐹𝑉 − 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ( 𝑠𝑎𝑣𝑒𝑑) ∶  𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑓𝑜𝑟 𝑜𝑛𝑙𝑜𝑜𝑘𝑒𝑟 𝑝𝑒𝑟𝑖𝑜𝑑 

𝑃 − 𝑔𝑙𝑜𝑏𝑎𝑙 ( 𝑉𝑃𝐹 , 𝑉𝐶𝐹) ←  𝑃 − 𝑠𝑎𝑣𝑒𝑑 ( 𝑉𝑃𝐹 , 𝑉𝐶𝐹) 

 

𝒇𝒐𝒓 𝑠 = 1 𝑡𝑜 𝐶𝑆 𝒅𝒐 

𝑃 − 𝑜𝑛𝑙𝑜𝑜𝑘𝑒𝑟 ( 𝑉𝑃𝐹 , 𝑉𝐶𝐹) ← 𝑛𝑒𝑖𝑔ℎ (𝑃 − 𝑔𝑙𝑜𝑏𝑎𝑙 ( 𝑉𝑃𝐹 , 𝑉𝐶𝐹)) ∶ 𝐸𝑥𝑝𝑙𝑜𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 

𝐹𝑉 − 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ( 𝑜𝑛𝑙𝑜𝑜𝑘𝑒𝑟 ) ← 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 (𝑃 − 𝑜𝑛𝑙𝑜𝑜𝑘𝑒𝑟 ( 𝑉𝑃𝐹 , 𝑉𝐶𝐹)) ∶ 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑛𝑒𝑤 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

 

𝒊𝒇 𝐹𝑉 − 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ( 𝑔𝑙𝑜𝑏𝑎𝑙 ) <  𝐹𝑉 − 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ( 𝑜𝑛𝑙𝑜𝑜𝑘𝑒𝑟 ) 𝒕𝒉𝒆𝒏 

𝑃 − 𝑠𝑎𝑣𝑒𝑑 ( 𝑉𝑃𝐹 , 𝑉𝐶𝐹) ← 𝑃 − 𝑜𝑛𝑙𝑜𝑜𝑘𝑒𝑟 ( 𝑉𝑃𝐹 , 𝑉𝐶𝐹) 

𝐹𝑉 − 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ( 𝑠𝑎𝑣𝑒𝑑) ← 𝐹𝑉 − 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ( 𝑜𝑛𝑙𝑜𝑜𝑘𝑒𝑟 ) 

  

𝒆𝒍𝒔𝒆 

 

𝑃 − 𝑠𝑎𝑣𝑒𝑑 ( 𝑉𝑃𝐹 , 𝑉𝐶𝐹) ← 𝑃 − 𝑔𝑙𝑜𝑏𝑎𝑙 ( 𝑉𝑃𝐹 , 𝑉𝐶𝐹) 

𝐹𝑉 − 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ( 𝑠𝑎𝑣𝑒𝑑) ← 𝐹𝑉 − 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ( 𝑔𝑙𝑜𝑏𝑎𝑙 ) 

 

𝒆𝒏𝒅 

 

𝑃 − 𝑚𝑒𝑚𝑜𝑟𝑖𝑧𝑒𝑑 ( 𝑉𝑃𝐹, 𝑉𝐶𝐹) ← 𝑚𝑎𝑥 (𝑃 − 𝑠𝑎𝑣𝑒𝑑 ( 𝑉𝑃𝐹 , 𝑉𝐶𝐹)) 

  

𝐒𝐜𝐨𝐮𝐭 𝐛𝐞𝐞𝐬′ 𝐩𝐞𝐫𝐢𝐨𝐝 

  

𝑃 − 𝑖𝑛𝑡𝑖𝑎𝑙 ( 𝑉𝑃𝐹 , 𝑉𝐶𝐹) ← 𝑃 − 𝑠𝑐𝑜𝑢𝑡 ( 𝑉𝑃𝐹 , 𝑉𝐶𝐹) ∶ 𝐸𝑥𝑝𝑙𝑜𝑟𝑖𝑛𝑔 𝑜𝑡ℎ𝑒𝑟 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 

𝐹𝑉 − 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ( 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ) ← 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 (𝑃 − 𝑠𝑐𝑜𝑢𝑡 ( 𝑉𝑃𝐹 , 𝑉𝐶𝐹)) 

 

𝑐𝑦𝑐𝑙𝑒 + +; 
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𝒆𝒏𝒅 

𝒆𝒏𝒅 

 

Explanation of algorithm:  

For any selection algorithm applied for optimisation, all parameters have to be carefully considered 

since they have an impact on the performance of optimisation. ABC has few control parameters 

compared to other selection algorithms, which are the maximum number of cycles (MCN), and 

the colony size (or population size). The population size is determined by the number of food 

sources (or the number of bees). (Karaboga & Basturk, 2007).  

To select the optimal features from the proposed LZBP and LMP feature descriptors combined 

with the complementary CF and GF feature descriptors, one can express the following:  

𝑆𝑁 = {𝑁𝑢𝑚_𝑃𝐹,𝑁𝑢𝑚_𝐶𝐹} 
 

𝐷 = {𝑃𝑎𝑟_𝑃𝐹, 𝑃𝑎𝑟_𝐶𝐹} 

 

where 𝑁𝑢𝑚_𝑃𝐹 & 𝑃𝑎𝑟_𝑃𝐹 are the feature parameters of the proposed feature descriptors, 

𝑁𝑢𝑚_𝐶𝐹 & 𝑃𝑎𝑟_𝐶𝐹 are the feature parameters of the complementary feature descriptors, SN denotes 

the size of the employed bees or onlooker bees, and D is the number of optimisation parameters. 

The ABC algorithm consists of a number of periods (or stages), which are the initial period, 

employed bees period, onlooker bees period, and scout bees period.   

(1) Initial period  

In Step 1, after preparing the feature vectors, the number of features values are selected randomly 

as an initial solution, using Equation (2.16). The initial period process starts by selecting the 

features that will submitted to the classifier. In our method, the parameter values that exceed the 

limited band in the random selection take the limit values.  

In Step 2, the objective function is used to evaluate the initial solutions of the parameter values. 

The algorithm iteratively generates the parameter values of the feature extraction methods for 

evaluation by the classifier as a possible optimum solution. 

(2) Employed bees period  

In Step 1, the employed bees start locally searching in the vicinity of the initial solutions, in order 

to obtain more important parameter values than the initial parameter values. These new parameter 
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values are calculated by randomly changing the values of one parameter and keeping the reminders 

unchanged according to Equation (2.17).  

In Step 2, the new possible solutions that result from the modified parameters values are also 

evaluated based on the classification accuracy results of classifier.  

In Step 3, these parameter values, which are possible solutions, are updated by greedy selection 

between initial parameter values and the discovered vicinity parameter values, based on whichever 

achieved the better classification accuracy.  

(3) Onlooker bees period   

In Step 1, following the greedy selection and finding new sets of local solutions, the highest 

probability is calculated using the Roulette Wheel Selection (RWS) equation. The equation 

extracts the global solution from previous sets of local solutions, which result from the greedy 

selection in the employed bees period. Equation (2.18) computes the highest probability of 

parameters by their image classification accuracy, where the probability of a selected parameter 

value being a possible solution increases by increasing its repeated accuracy.  

In Step 2, onlookers start searching in the vicinity of the parameter value with the highest 

probability, in order to find better optimum solutions (Equation 2.17).   

In Step 3, the new possible solutions that result from the modified values of parameters are also 

evaluated based on the classification accuracy results of the classifier.  

Finally, in Step 4, these parameter values, which are possible solutions, are updated by greedy 

selection between the initial parameter values and the discovered vicinity parameter values, based 

on whichever achieved the better classification accuracy.  

(4) Scout bees period  

In Step 1, the employed bees and onlookers continue exploiting the identified places, and if there 

is no further improvement, the final parameter values with the best classification accuracy can be 

saved (i.e. memorised).  

In Step 2, the employed bees in the abandoned places, which consist of dimensional parameter 

values, are converted into scout bees in order to explore other places without guidance, by 

randomly selecting and not repeating other parameter values from Equation (2.16). 
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4.4 Algorithm for Integrating Feature Components  

This section describes the general algorithm for integrating the components used in improving 

feature extraction in texture-based images classification (Fig 4.1). The discriminative feature 

extraction capability of LZBP and LMP is utilised and combined with complementary contrast 

measure and GF features, while only retaining the relevant features to provide powerful and 

descriptive features of texture.  

INPUT 

Group of images in grey-level. 

 

OUTPUT 

Classified images into a set of classes according to their similarity.  

 

FEATURE PROCESS COMPONENTS 

First component: feature extraction  

Step 1.a: Applying the proposed multiscale descriptors for (N) images in (M) classes.  

LZBP: Extracting features by Algorithm (4.1). 

                  Calculating the features through an LZBP histogram by Equations (3-4) and (3-5) 

LMP: Extracting features by Algorithm (4.2). 

                  Calculating the features through an LMP histogram by Equation (3-7) 

Step 1.b: Applying the complementary features of descriptors for (N) images in (M) classes. 

CF: Extracting features through a histogram. 

                   

GF: Extracting features by (2.12), then apply mean and standard deviation. 

Second component: feature-level fusion 

Step 2.a. Applying the feature-level fusion for LZBP with CF using Equation (4-1). 

               Applying the feature-level fusion for LMP with CF using Equation (4-2). 
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Step 2.b. Applying the feature-level fusion for LZBP with GF using Equation (4-3). 

               Applying the feature-level fusion for LMP with GF using Equation (4-4). 

Third component: feature selection 

Step 3.a: Applying feature-level selection by Algorithm (4.3) for Step 2.a.   

Step 3.b: Applying feature level selection by Algorithm (4.3) for Step 2.b.   

 

4.5 Summary  

This chapter presented the implementation of the designed system used to harvest improved 

features through a set of processes related to texture feature extraction methods. The 

implementation included the methods designed to improve feature extraction in texture 

classification. The applied LZBP and LMP algorithms were explained, where the purpose of these 

descriptors is to detect discriminative features before they are combined with other complementary 

features, where a unified vector is used to integrate between both feature sets. To avoid the high 

dimensionality problem resulting from the combined features, a new hybrid feature selection 

algorithm based on ABC-NRS was implemented. These methods are anticipated to work together 

to make the resulting features more powerful than those resulting from other classical methods. 

To verify such a hypothesis, the system will be tested and evaluated, which will be done in the 

next two chapters. 
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Chapter 5 

Experimental Results and Discussion  

This chapter reports the results of implementing the methods proposed in the previous chapter to 

improve features extraction. The robustness of the new LZBP and LMP feature descriptors are 

assessed through practical experiments. Furthermore, the new texture descriptors are also 

experimentally tested when integrated with other complementary feature descriptors, and the 

processed fused features are assessed using the new selection approaches. This chapter also 

discusses the improvement that the proposed methods contribute to texture feature extraction.   

Section 5.1 starts the chapter by introducing the test classification framework of the improved 

feature extraction methods. The first set of experimental results and a discussion of the proposed 

methods are presented in Section 5.2. The testing starts with evaluating the new LZBP and LMP 

texture feature descriptors, before testing the approaches developed to improve the result of 

texture-based image classification when dealing with a variety of texture characteristics. These 

approaches include integrating LZBP and LMP with the contrast measure of the image, or with 

GF. These approaches apply feature-level fusion, before extracting only the relevant features using 

the new selection methods. Finally, Section 5.3 concludes the chapter by providing a summary of 

its findings.    

5.1 Tests Framework  

In order to examine the performance of the new descriptors, as well as the proposed feature fusion 

approaches and the new feature selection method, different texture images are available from 

databases and can be therefore used as a benchmark (L. Liu, Fieguth, et al., 2016). In this research, 

image databases of varying complexity of texture surfaces were applied in the experiments, and 

some of these databases were prepared to be used for classification testing (see Section 3.2). The 

images in the databases were intended to be used to measure the robustness and performance of 

the developed methods when compared to other feature extraction methods on different 

classification challenges such as changes in rotation, scale, illumination, and viewpoint, and the 

robustness to against noise and blur problems. The proposed methods focus on improving the 

accuracy and feature length resulting from the extraction methods in classification systems.   
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The tested methods in this work are used to extract features from these databases, where the 

databases consist of a number of classes, and each class has a number of sample images. Table 5.1 

shows a summary of the parameter set of datasets used for texture classification, which are UIUC 

(Lazebnik et al., 2005), UMD (Xu et al., 2009), Brodatz (Laine & Fan, 1993), KTHTIP2b 

(Mallikarjuna et al., 2006) and Outex_TC11 (Ojala, Maenpaa, et al., 2002). They were prepared 

for conducting the experimental testing on the implemented feature components described in the 

previous chapter.   

 

      Table. 5. 1 A brief summary of databases benchmark parameters used in the experimental study. 

Database Benchmark UIUC UMD Brodatz KTHTIP2b Outex_TC11 

Number of images per class 40 40 40 100 40 

Number of classes  25 25 25 11 24 

Image resolution 640 × 480 640 × 480 256 × 256 200 × 200 128 × 128 

   

The classification is conducted by extracted features from the images. This methodology 

constitutes markedly less complexity and computation burden than depending on the original input 

data, where classification is conducted by measuring distances between features of the same class.   

BPNN and SVM are supervision classifiers that are used to evaluate the performance of feature 

extraction algorithms. These classifiers are also needed for wrapper approaches like the ABC 

algorithm, where they are essential for evaluating the selected subset of features through an 

evolutionary training process. For classifier testing, MATLAB tools implementing the BPNN and 

SVM classifiers were used.  In testing, BPNN had a single hidden layer, where the number of 

nodes in the hidden layer was chosen to be n = 80, which selected along with activation function 

after set of testing through designing the classifier. SVM is generally adopted to deal with  

multi-class texture classification problems through a one-class-against-others approach, and the 

parameters values of SVM are based on the best accuracy. The classification performance of 

BPNN and SVM is calculated through the Classification Accuracy (CA), where CA is the 

percentage of the correct classified samples divided by the total samples. 

In a classifier, the images samples in the dataset are divided into a training set and a testing set. 

For classifier evaluation, k-fold cross validation is an unbiased estimator that is employed to assess 

the statistical relevance of classifiers (Bengio & Grandvalet, 2004). k-fold cross validation is also 
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beneficial with a limited number of training sets and in avoiding overfitting problems (Tu, 1996). 

Feature selection also reduces the overfitting problem by reducing the features dimensionality 

(Guyon & Elisseeff, 2003) . In the k-fold cross validation, the features were chosen randomly. In 

the 5-fold cross validation, when a feature is extracted from n samples of texture images, (n×80%) 

of the samples are used for training, and (n×20%) of the samples are used for testing, whereas in 

the 10-fold cross validation, (n×90%) of the samples are used for training, and (n×10%) of the 

samples are used for testing. The 10-fold cross validation is more accurate, but takes a longer time. 

The average of accuracy of k-folds is used to assess the performance of the classifier.  

5.2 Results and Discussions   

5.2.1 LZBP and LMP Feature Descriptors       

LZBP and LMP, along with other common feature extraction methods, were tested on a number 

of databases using BPNN and SVM for the 5-fold cross-validation and 10-fold cross-validation. 

According to results displayed in Table 5.2, it can be observed that, for the 5-fold cross-validation, 

the LZBP descriptor produced the highest accuracy of 87.4%, followed by LMP with 82.3%, and 

GF with 72.1%, for the UIUC dataset. When testing on the UMD database, LMP gave the highest 

accuracy of 94.06%, followed by both LZBP and LBP with 93.72 % and 93.3%, respectively, and 

finally GF with 87.8 %. LMP again showed the highest accuracy of 87.526% for the KTHTIP2b 

dataset, thus confirming the high efficiency of the proposed descriptors. Methods such as GLDM, 

GLDM, and TS recorded the lowest accuracies of no more than 65% using BPNN. For the Brodatz 

dataset, which is less challenging compared to the previous databases, these methods recorded 

higher accuracy (over 80 %), but were still behind the accuracy of LBP, LZBP and LMP (over  

95 %).  
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      Table. 5. 2 Classification accuracy results of feature extraction methods that tested on a number of databases  

      using BPNN and SVM with 5-fold cross validation.   

Methods BPNN Classifier SVM Classifier 

UIUC UMD KTH Brodatz UIUC UMD KTH Brodatz 

Proposed TU: 

LZBP 87.4 93.72 74.145 95.52 89.58 94.38 74.363 95.86 

LMP 82.3 94.06 87.526 96.62 85.48 95.4 91.1086 96.4 

Co-occurrence:  

GLCM 63.54 68.94 63.126 85.94 70.4 75.52 64.2722 87.52 

GLDM 44.84 62.28 55.217 90.86 64.76 80 73.654 91.38 

Texture Unit: 

LBP 77.22 93.3 85.545 95.1 80.18 94.62 87.6722 94.92 

TS 58.2 77.08 61.799 87.6 58.82 78.76 64.9994 90.22 

Signal Processing: 

WT 64.5 71.3 56.727 82.3 68.3 74.6 64.0000 87.3 

GF 70.7 87.8 83.636 97.1 77.1 91.4 87.0909 97.4 

 

According to the results presents in Table 5.3, some improvement in the accuracy can be seen 

using the 10-fold cross-validation instead of the 5-fold cross-validation. However, the 10-fold 

cross-validation results in an increased computation cost. In the case of the 10-fold  

cross-validation, the performance of LBP and LZBP increased by 0.626% and 1.151%, 

respectively, using BPNN; and 0.903 % and 0.432 %, respectively, using SVM. The effect of the 

5-fold cross-validation is thus slightly smaller than the 10 fold cross-validation. The results also 

show that the ranking of the methods stay the same, where LZBP, LMP, LBP and GF outperformed 

other methods such as GLCM. GLDM and TS.  
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      Table. 5. 3 Classification accuracy results of feature extraction methods that tested on a number of databases  

      using BPNN and SVM with 10-fold cross validation.  

Methods BPNN Classifier SVM Classifier 

UIUC UMD KTH Brodatz UIUC UMD KTH Brodatz 

Proposed TU: 

LZBP 88.5 93.98 76.690 96.22 90.28 94.88 74.672 96.08 

LMP 84.94 95.7 88.890 97.26 87.18 96.4 91.363 96.96 

Co-occurrence:  

GLCM 66.42 70.22 64.163 86.56 71 76.98 64.435 88.06 

GLDM 47.2 66.36 55.345 91.48 66.48 81.32 73.781 92.34 

Texture Unit: 

LBP 78.38 93.84 85.690 95.76 81.88 95.18 88.726 95.22 

TS 59.4 78.18 62.799 88.76 59.64 79.48 65.363 90.68 

Signal Processing: 

WT 64.4 73.1 59.909 83.9 67.9 74.5 64.545 86.5 

GF 73.8 87.3 83.090 97.9 78.8 91.6 88.636 97.5 

 

Results of Multiscale LZBP and Multiscale LMP   

The proposed LZBP and LMP descriptors are based thresholding intensity values of neighbour 

pixels of the central pixel. In our experiment, the performance of multi-scale LZBP and LMP was 

compared with that of multi-scale LBP (Ojala, Pietikainen, et al., 2002). Multi-scale LBP is 

recommended in many applications for extracting more information from different scales of 

images.     

The classification results of the LZBP, LMP, and LBP methods on the utilised databases are 

presented in Table 5.4 for UIUC, Table 5.5 for UMD, Table 5.6 for KTHTIP2b, and Table 5.7 for 

Brodatz. The results show that LZBP and LMP outperformed the LBP descriptor. LZBP, LMP is 

affected by different values of radii in the scale analysis, as is the case with LBP, especially from 

one radii (8,1) to two radii (8,1+8,2). On average, using the UIUC, UMD, Brodatz, and KTHTIP2b 

datasets, an improvement of about 2.175 % for LZBP, 3.075 % for LMP, 3.375 % for LBP was 

obtained. Changing from two radii (8,1+8,2) to three radii (8,1, + 8,2, + 8,3) results in a reduced 

level of improvement, particularly for the LZBP.   
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   Table. 5. 4 Classification accuracy results for UIUC database of LBP/LZBP/LMP descriptors individually, when 

   combined with complementary contrast features (c), and when all features are combined together.     

Resolution C LBP LZBP LMP LBP-C LZBP-C LMP-C All-F 

8,1, 61.7 76.6 88.6 83.2 85.1 91.8 89.6 89.5 

8,2, 65.8 76.3 91.3 87.9 84.2 91.7 90.2 92.7 

8,3, 65.0 77.0 92.0 84.6 83.8 92.9 90.1 91.4 

8,1+8,2, 62.2 76.6 93.6 87 85.2 92.0 91.1 92.9 

8,2,+ 8,3, 64.6 80.0 93.4 87.3 86.6 92.2 90.4 93.3 

8,1,+8,3, 65.6 80.5 93.5 89.0 86.6 93.0 91.9 93.1 

8,1,+8,2,+ 8,3, 66.1 80.8 91.5 88.3 87.7 93.1 90.4 92 

Average 64.429 78.257 91.986 86.757 85.600 92.386 90.529 92.129 

 

   Table. 5. 5 Classification accuracy results for UMD database of LBP/LZBP/LMP descriptors individually, when 

   combined with complementary contrast features (c), and when all features are combined together.     

Resolution C LBP LZBP LMP LBP-C LZBP-C LMP-C All-F 

8,1, 67.7 91.9 95.1 94.5 94.9 94.3 95.0 97.3 

8,2, 71.2 93.0 94.8 94.3 95.4 95.4 95.9 98.0 

8,3, 69.1 94.5 96.2 95.8 96.1 96.1 96.8 97.0 

8,1+8,2, 68.6 95.5 96.3 96.8 97.4 96.4 96.3 97.9 

8,2,+ 8,3, 70.0 96.0 96.8 95.5 95.1 96.7 97.1 98.1 

8,1,+8,3, 70.3 96.8 96.9 97.1 96.6 96.0 97.6 98.1 

8,1,+8,2,+ 8,3, 67.5 97.3 97.5 97.6 96.7 95.7 96.8 98.2 

Average 69.2 95 96.23 95.943 96.03 95.8 96.5 97.8 
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   Table. 5. 6 Classification accuracy results for KTHTIP2b database of LBP/LZBP/LMP descriptors individually, 

   when combined with complementary contrast features (c), and when all features are combined together.    

Resolution C LBP LZBP LMP LBP-C LZBP-C LMP-C All-F 

8,1, 43.9 85.9 74.7 87.3 85.8 76.9 86.4 91.4 

8,2, 45.4 82.3 71.5 85.1 85.6 75.2 71.2 91.1 

8,3, 48.0 80.5 66.7 81.2 83.6 73.9 84.6 88.9 

8,1+8,2, 46.4 88.2 79.9 92.6 89.2 78.7 90.7 91.0 

8,2,+ 8,3, 47.1 86.0 72.9 84.9 82.0 76.9 88.3 91.1 

8,1,+8,3, 47.8 86.2 79.2 88.9 87.6 79.0 87.5 92.2 

8,1,+8,2,+ 8,3, 42.6 90.4 77.1 91.6 87.8 78.1 91.0 92.6 

Average 45.895 85.642 74.57 87.371 85.94 76.957 85.67 91.19 

 

   Table. 5. 7 Classification accuracy results for Brodatz database of LBP/LZBP/LMP descriptors individually,  

   when combined with complementary contrast features (c), and when all features are combined together.     

Resolution C LBP LZBP LMP LBP-C LZBP-C LMP-C All-F 

8,1, 81.90 94.50 96.50 96.400 97.40 97.3000 97.80 98.40 

8,2, 80.10 97.80 97.80 97.300 98.70 97.8000 98.60 99 

8,3, 81.70 96.10 97.60 97.100 98.70 98.8000 98.90 99.40 

8,1+8,2, 81.60 97.30 97.40 98.500 97.90 98.1000 98.60 99.20 

8,2,+ 8,3, 80.70 96.90 97 98.200 98.50 98.1000 98.90 99.10 

8,1,+8,3, 80 97.30 98.10 98.600 99.30 97.8000 98.60 98.40 

8,1,+8,2,+ 8,3, 80.10 98.20 97.60 98.400 98.90 98.2000 99.30 99.30 

Average 80.871 96.871 97.429 97.786 98.486 98.014 98.671 98.971 
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Figure 5.1 shows the average classification accuracy of the three multiscale descriptors over all 

datasets. The use of three radii shows less improvements over all datasets compared to the original 

multi-scale approach. This could be due to the high features dimensionality. The accuracy 

increased from 88.422 % to 91.642 % when applying two radii instead of one radii, and from 

91.642 % to 92.192 % when employing three radii. 

 

 

Subsequently, the performance of these descriptors was evaluated on each dataset separately. Fig 

5.2 shows the classification accuracy using the UIUC dataset. The data shows that LZBP 

outperformed the LBP and LMP descriptors in different multi-scales states. Fig 5.3 shows that the 

results of the UMD database are more affected by increasing the multi-scale levels. For instance, 

the highest possible accuracies obtained vary between LZBP and LMP in different multi-scales 

cases, with multi-scale LBP being consistently outperformed. Fig 5.4 shows the results of the 

KTHTIP2b database, where both LBP and LMP outperformed LZBP. Finally, Fig 5.5 show the 

accuracy results for the Brodatz database, where in single scale descriptors, LMP was markedly 

outperformed by the other two descriptors, whereas in multiscale, a significant improvement in 

the results of LMP was observed.  

 

Fig. 5. 1 The average classification accuracy value of multi scales LBP, LZBP and LMP when 

tested on a number of databases. 
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Fig. 5. 2 The classification accuracy value of multi scales LBP, LZBP, and LMP on the 

UIUC database. 

Fig. 5. 3 The classification accuracy value of multi scales LBP, LZBP, and LMP on the 

UMD database. 



132 

 

 

 

 

 

 

From testing, it can therefore be concluded that every texture database produces the highest 

possible accuracy for its own unique scale, and that no fixed radii can be uniformly and universally 

used to improve the accuracy. Applying these descriptors in multi scale analysis produced different 

Fig. 5. 4 The classification accuracy value of multi scales LBP, LZBP, and LMP on the 

KTHTIP2b database. 

Fig. 5. 5 The classification accuracy value of multi scales LBP, LZBP, and LMP on the 

Brodatz database. 
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results, where some descriptors improved their accuracy with multiscale more than others. 

Furthermore, the previous experimental results showed that every database matched with a specific 

descriptor can produce better image classification accuracies than others. This means that finding 

the appropriate descriptor along with a suitable scale is important for improving feature extraction, 

as this result in an effective classification performance when dealing with different texture 

characteristics.  

5.2.2 LZBP and LMP Combined with Contrast Measure  

This section starts by testing LZBP and LMP with a complementary feature descriptor based on 

contrast measure. This includes testing direct feature-level fusion, and the performance of the new 

feature selection approach, which is proposed for feature-level fusion and selecting only the 

relevant features from the extracted feature set.  Subsequently, a discussion of the results is 

presented, based on a comparing the improvement that these features methods bring to texture-

based image classification. In the experimental study, the accuracy and feature size are important 

when the feature length is reduced and compared to direct feature-level fusion. The tests also cover 

the performance of the methods when exposed to blurred and noisy images. 

5.2.2.1 Test Results  

Results of Features-level Fusion  

LBP has already been combined with feature contrast measurements to improve the discriminative 

feature extraction capability of LBP in texture classification applications, as the classification 

accuracy results are generally improved following such an approach (Ojala et al., 1996). Here, the 

effect of combining contrast features with the LZBP and LMP descriptors is investigated. In other 

words, the LBP, LZBP, and LMP features are combined together with contrast measure by feature-

level fusion to examine the possibility of achieving a classification rate improvement compared to 

applying each descriptor separately. In this approach, the total feature histogram is achieved by 

concatenating the different histograms resulting from different scales analyses.  

Large scale analysis is used to distinguish the different texture patterns, whereas conventional LBP 

works in a small window setting (Ojala et al., 1996). Regarding multi-scale analysis,  

Ojala et al. explored three LBP scales based on 1,2 and 3 radii (Ojala, Pietikainen, et al., 2002). 

Applying more than eight pixels results in a significant increase in feature length (29=512), since 

the feature length grows exponentially with the number of pixels. This can be avoided by 

depending on constant neighbouring pixels, which do not have much effect on the discrimination 
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of features (L. Liu et al., 2017). To reduce the computation cost in our testing, the same strategy 

was followed based on three scales with a constant number of neighbour pixels.   

The previous Tables (5.4 to 5.7) also represent the experimental results after combining the 

features of these descriptors with contrast features. For the UIUC database, difference in accuracy 

between applying LBP, LZBP, and LMP separately and combining them with texture image 

contrast was 8.5%, 3.2%, and 6.4%, respectively. However, combing all features of LBP, LZBP, 

LMP and contrast resulted in 2.3% less accuracy than LZBP-C.  For the UMD database, combining 

with contrast only improved the accuracy of LBP (by 3%) and LMP (by 0.5%), while reducing the 

accuracy of LZBP from 95.1 % to 94.3%. In the same database, combining different features of 

LBP, LZBP, LMP and contrast improved the accuracy by 2.4%, 3% and 2.3% in comparison to 

LBP-C, LZBP-C, and LMP-C, respectively. The results of the KTHTIP2b database demonstrate 

that combining with contrast only improved the LZBP descriptor from 74.7% to 76.9%, whereas 

combining all features also improved the accuracy by 5.6%, 14.5% and 5% on LBP-C, LZBP-C, 

and LMP-C, respectively.   

Once can notice that, despite the multiscale results being different, depending on all multiscale 

features produced more important results when taking into consideration different databases. We 

expect that the improvement from combining different features will be better by depending on a 

diverse set of features. However, with this approach, a solution to the huge feature size must be 

found.  

Results of Feature Selection  

In order to improve the classification performance, we depended on the diversity of information 

resulting from feature-level fusion. However, to avoid the problem of dimensionality, the proposed 

feature selection approaches were utilised to retain only the relevant features for classification.  

The combined features from multiscale descriptors were processed by ABC, which is the new 

wrapper selection method. ABC was applied for selecting the relevant features based on the 

appropriate descriptors and scales from the involved multiscale descriptors (see Subsection 5.2.1).  

The involved descriptors were applied at different scales based on three radii (1,2,3) and a fixed 

number of neighbour pixels (n=8), where the ABC selected a combination of appropriate scales 

from the involved different descriptors. According to the results presented in Table 5.8, in all cases, 

the ABC method was successful in improving the classification rate compared with joining all 

scales directly. For the UIUC dataset, using BPNN, the accuracy by relevant features compared to 



135 

 

complete feature of LBP-C, LZBP-C and LMP-C improved the accuracy by 1.6%, 1.8%, and 

2.4%, respectively. The least improvement was observed in the Brodaze dataset, which was only 

0.5 % for LBP-C and LMP-C, and 1% for LZBP-C. For the UMD dataset, higher improvement 

levels of 1.4% for LBP-C, 2.4% for LZBP-C, and 1.6% for LMP-C were obtained. Some of the 

highest overall improvement levels were seen using the KTHTIP2b dataset, where improvements 

of 5.62% for LZBP-C, 4.29% for LBP-C, and 1.18 % for LMP-C were achieved. The results of 

the SVM classifier were similar to those of BPNN.   

            Table. 5. 8 Classification accuracy and feature dimensionality results of applying ABC algorithm on  

            multiscale descriptors for selecting suitable features scales. 

Methods Dataset BPNN Classifier SVM Classifier 

Accuracy F-Dim Accuracy F-Dim 

LBP-C UIUC 89.3 1024 92.2 768 

 UMD 98.1 1280 97.9 1024 

 BRODAZE 99.4 1024 99 512 

 KTHTIP2b 92.09 1024 94.36 1024 

LZBP-C UIUC 94.9 802 96 1058 

 UMD 98.1 802 98 802 

 BRODAZE 99.2 620 99.4 620 

 KTHTIP2b 83.72 802 88.09 620 

LMP-C UIUC 92.8 1792 94.4 1792 

 UMD 98.4 1792 98.5 1792 

 BRODAZE 99.7 1280 99.1 1280 

 KTHTIP2b 92.18 1280 94.27 1792 

LBP-LZBP-LMP-C UIUC 95.2 1570 95.5 1826 

 UMD 99 1826 98.4 1826 

 BRODAZE 99.8 1206 99.4 1826 

 KTHTIP2b 94.4 1462 95.3 3106 

 

From the results, the ABC method clearly succeeded in selecting suitable scales from different 

multiscale descriptors. ABC improved the accuracy of classification compared to depending on 

different scales of descriptors by utilising a smaller feature size. The new hybrid wrapper ABC 
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algorithm based on the NRS filter method was subsequently tested, where NRS was used to select 

the relevant features from those selected by the ABC algorithm.  

Table 5.9 lists the results obtained from using the hybrid ABC-NRS method with multi scales 

features. As can be seen from the table, in most cases, the hybrid selection method improved the 

classification rate compared to directly combining features. For example, for the UIUC database, 

using BPNN, an accuracy improvement of 1.6%, 0.4% and 0.4% was obtained for LBP-C, LZBP-

C, and LMP-C, respectively. This improvement was reduced compared to using ABC only, as the 

hybrid selection method brought further improvement by reducing the feature length, as the results 

of Tables 5.5 and 5.6 testify. This occurred for almost all of the datasets tested.   

           Table. 5. 9 Classification accuracy and feature dimensionality results of applying ABC-NRS on multiscale  

           descriptors for selecting suitable features scales. 

Methods Dataset BPNN Classifier SVM Classifier 

Accuracy F-Dim Accuracy F-Dim 

LBP-C UIUC 89.3 432 91.5 428 

 UMD 97.1 321 98 319 

 BRODAZE 99 306 99.2 258 

 KTHTIP2b 90.72 335 92.82 471 

LZBP-C UIUC 93.5 186 95.9 190 

 UMD 97.9 208 97.6 208 

 BRODAZE 98.7 191 99.4 212 

 KTHTIP2b 83.27 182 87.72 217 

LMP-C UIUC 90.8 389 93.5 385 

 UMD 97.5 344 98 344 

 BRODAZE 99.4 307 99.3 303 

 KTHTIP2b 89.09 498 92.73 502 

LBP-LZBP-LMP-C UIUC 94.2 429 95.1 375 

 UMD 99 513 98.2 340 

 BRODAZE 99.8 648 99.6 613 

 KTHTIP2b 92.6 633 94.6 394 
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5.2.2.2 Discussion and Comparison of Results  

Figures 5.6 and 5.7 show a comparison of classification accuracy result vs. feature length. The 

comparison is based on the different feature methods that were applied in testing by the BPNN 

classifier. Several image databases were used for the tests, and the comparison was based on the 

average of the results of all databases. Figures 5.6 and 5.7 illustrate the various accuracy and 

feature length results obtained from applying the different descriptors separately, as well as from 

combining the participating feature descriptors together.   

When applying the LBP, LZBP, and LMP texture descriptors individually without combing with 

other features, LMP recorded the highest average accuracy on the tested datasets. However, 

although LMP was applied by 8-bit diagonal and non-diagonal patterns instead of the 16-bit 

patterns for a shorter feature length, it still had the longest feature length (see Fig 5.7). As such, 

comparatively, the descriptor with the longest feature length recorded the highest classification 

accuracy for the datasets used.   

In general, the classification accuracy of these local texture descriptors achieved improved feature 

extraction for texture classification. Furthermore, there were examples of each local descriptor 

performing well with a specific dataset, such as LZBP being more effective with UIUC, whereas 

LBP achieved much better results than LZBP for KTH database.  A further step to improve 

classification accuracy could be realised by combining the involved descriptors, where  

feature-level fusion might improve clarification accuracy. 

Direct fusing between different feature descriptors improved the classification accuracy against 

individual application of LBP, LZBP, and LMP by 3.85%, 4.6%, and 1.55%, respectively, where 

all shared features descriptors were based on three scales. While it is clear that there is a slight 

improvement, one should not ignore the fact that a major drawback of combining feature 

descriptors is the resulting redundant features, as it is possible that part of the relevant features 

before fusion become irrelevant after fusion with other feature descriptors.  

To address this, the proposed ABC-based feature selection method can be utilised to extract only 

the relevant features from the combined LBP, LZBP, and LMP feature descriptors. An 

improvement in the classification rate can be seen from Fig 5.6 when selecting parts of the features 

from the whole feature set using ABC. The difference in accuracy was 1.56591%. Furthermore, 

from Fig 5.7, the feature size was reduced from 3189 to 1516 as a result of applying ABC. The 

reduction in feature size resulted in an enhancement in classifier time. The feature length was 
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reduced by ABC by selecting a number of the shared histograms instead of concatenating all shared 

histograms of multiscale descriptors. However, it is clear that the reduced feature length is still not 

short enough to match the feature length of any individual descriptor (i.e. LBP, LZBP, or LMP). 

The ABC-based feature selection followed a strategy based on utilising the complete histogram 

from every selected scale of shared descriptors. In other words, ABC did not employ only the 

relevant features from the selected histograms. However, depending on the complete histograms 

of the selected descriptors may not yield a completely relevant set of features (Ojala et al., 1994).   

In the hybrid ABC-NRS method, depending on filter methods such as NRS results in a reduced 

computational cost for specific feature sizes. However, it must be noted that using filter methods 

alone with a long feature space is also not feasible (Xiangyang Wang et al., 2007). A hybrid 

method based on combining ABC with NRS is a more effective approach for reducing feature 

length, where NRS is applied to extract the relevant features from selected histograms. In this 

experiment, the feature length was indeed reduced by applying the hybrid selection method. The 

aim of the hybrid selection approach is to exploit the advantages of both ABC and NRS for feature 

selection to yield the best possible performance. In the hybrid method, NRS was applied to select 

the relevant features from the histograms of shared descriptors to produce pool of relevant features. 

The ABC as wrapper method was then applied to find the optimal subset of features from the 

relevant histogram features obtained by NRS. This makes feature selection faster since the filter 

method works under a specific feature length, which is the fixed histograms length resulting from 

the different combined multiscale descriptors.   

As can be seen from Fig 5.7, compared to the direct feature fusion, the hybrid selection method 

achieved a significantly improved feature length of the combined descriptors by selecting the 

optimum features. In other words, depending on the hybrid ABC-NRS method reduced the feature 

size of direct feature fusion. The maximum difference between the average feature size resulting 

from using ABC and using ABC-NRS is around 960, which reduced the processing time of the 

classifier. This was the shortest feature length compared to applying LBP, LZBP, and LMP 

separately. However, one can notice that a slight reduction in classification accuracy of 0.96% was 

observed from applying the hybrid ABC-NRS instead of depending on ABC alone for feature 

selection.  

From the comparison of the results, it is clear that utilising either ABC alone, or the hybrid ABC-

NRS method as feature selection methods reduced the feature length by selecting relevant features 

from LBP, LZBP, and LMP. Fig 5.6 shows that the hybrid ABC-NRS was more effective with 
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multi-scale feature length, at the expense of a slightly lower accuracy than the ABC performance. 

However, the proposed hybrid selection method (using ABC-NRS) still provided a better 

performance than direct fusion of different feature descriptors, as the former yielded a much 

smaller feature length. 

 

  

 

 

Fig. 5. 7 Comparison the classification feature size of LBP, LZBP, LMP, feature fusion of 

these descriptors, and relevant feature by ABC alone and hybrid ABC-NRS.    

Fig. 5. 6 Comparison the classification accuracy value of LBP, LZBP, LMP, feature fusion 

of these descriptors, and relevant feature by ABC alone and hybrid ABC-NRS.    
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 Here, further comparisons of the resulting relevant features by using ABC alone and in a hybrid 

fashion with NRS (ABC-NRS) are presented. The LZBP, LMP, and LBP descriptors combined 

with complementary contrast (C) features (yielding LBP\C, LZBP\C, and LMP\C), and combined 

all together (yielding LBP\LZBP\LMP\C). According to Fig 5.8, an improvement in the 

classification rate can be obtained by combining the different feature descriptors together rather 

than combining LBP, LZBP or LMP separately with complementary contrast features. From the 

figure, the average accuracy difference using ABC was 2.3682% 3.1091%, and 1.3205 % for 

LBP\C, LZBP\C, and LMP\C, respectively, whereas using the hybrid ABC-NRS method yielded 

an accuracy difference of 2.3682%, 3.0568%, and 2.2023% for LBP\C, LZBP\C, and LMP\C, 

respectively. Fig 5.9 shows that the feature size based on combining all different feature 

descriptors is somewhat larger than the feature sizes of the individual LBP\C, LZBP\C, and LMP\C 

methods, especially when using ABC alone as the selection method. However, utilising the hybrid 

ABC-NRS feature selection resulted in an improved feature size that was much closer to the feature 

sizes of the individual LBP\C, LZBP\C, and LMP\C methods.   

 

  

Fig. 5. 8 Comparison the classification accuracy value of LBP, LZBP, and LMP when 

combined with contrast feature separately, and when combining all features together. 
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5.2.2.3 Testing on Blurry and Noisy Images  

Blur or noise in images occurs as a result of acquisition. The blur problem results from the motion 

of the scene or from an incorrect focus of the source, whereas noise in the images results from a 

random noise source. Referring to Subsection 2.3.1 and (R. S. Blum & Liu, 2005), integration of 

features from different descriptors produces highly discriminative and effective features from 

images affected by these problems. 

A new approach for improving the features extracted from blurry and noisy images is proposed. 

LZBP and LMP are similar to LBP in that they depend on TUs. However, they are different in the 

strategy that adopt to extract features. To evaluate the noise tolerance properties of the proposed 

method, salt-and-pepper noise and image blurring was added to Outex_TC11n dataset, which has 

24 texture classes. Fig 5.10 shows these effect on the images. 

 

Fig. 5. 10 Based on the Outex-11dataset, the upper row texture images have had noise applied to them, 

with noise command values of 0.4, 0.3, 0.15 (from right to left), whereas the bottom row texture images 

have had blurring applied to them, with values of 1, 0.75, 0.5 (from right to left). 

Fig. 5. 9 Comparison the classification feature size of LBP, LZBP, and LMP when 

combined with contrast feature separately, and when combining all features together. 
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Results of the Blur Problem 

Most classification methods are negatively affected by blur problems. Fig 5.11 shows a 

comparison of the classification accuracy of LBP, LZBP, and LMP separately and when combined 

together to target blurry images. LBP was affected by increasing the blurring values in the image 

from 1.0 to 5.0. LZBP, on the other hand, improved its accuracy with blurring values from 0.75 to 

2.0, before dropping again with increasing blurring in the images. Of the various descriptors tested, 

LMP responded best to the blurring of images. Moreover, fusion between different feature 

descriptors did not result in a better accuracy than using LMP alone, which appears to be caused 

by the high dimensionality of the fused descriptors. Applying the feature selection method on the 

combined feature descriptors produced the best results, with only a slight degradation in accuracy 

for blurring values above 4.0. 

 

 

 

Results of the Noise Problem 

LTP was developed as an improvement to LBP for extracting features from noisy images (Tan & 

Triggs, 2010), as it provides more resistance to noise in the image. LZBP and LMP can be changed 

from binary patterns into ternary patterns by adding a specific value to the threshold.  
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Fig. 5. 11 Comparison the classification accuracy value of involved descriptors when 

applied on blurry images. 
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Our aim is combining these local ternary feature descriptors to test whether doing so provides an 

improvement against the noise problem. Enhancing the robustness of feature descriptors against 

noise is done by combining the different descriptors to achieve a diverse set of features. More 

discriminative features can be obtained from fusing the novel local ternary descriptors with LTP 

to tackle the noise problem. Furthermore, the proposed hybrid selection method can be used for 

combining the involved descriptors in order to select only the relevant features.   

Figure 5.12 shows that the LTP descriptor did not produce good results compared to the new LZBP 

and LMP descriptors. LMP produced more resistance to noise, and its effect from noise was small. 

The accuracy of LZBP was lower than that of LTP, however, LZBP was more stable against noise 

after value 0.3, where it outperformed LTP.  

From the figure, feature fusion of the combined descriptors provided an improvement compared 

when the feature descriptors were applied separately, except for a noise value of 0.5, where LMP 

performed better.  In addition, the figure shows that after applying our feature selection approach 

on the combined descriptors, a significant improvement in the accuracy was obtained across all 

noise values from 0 to 0.5. It is therefore clear that combining different feature descriptors and 

removing irrelevant features by the selection method provides more resistance to noise.  

 

 

Fig. 5. 12 Comparison the classification accuracy value of involved ternary descriptors 

when applied on noisy images. 



144 

 

5.2.3 LZBP and LMP Combined with GF  

This subsection follows the same procedure followed by the previous one, where tests of the 

performance of the LZBP and LMP descriptors combined with complementary features extracted 

by GF are conducted.  

5.2.3.1 Tests Results 

Results of Features-level Fusion  

The test results shown in the tables below correspond to the classification rates of LBP, LZBP, 

and LMP and GF when they are applied individually, and when the former three descriptors are 

combined directly with GF using the BPNN (Table 5.10) and SVM (Table 5.11) classifiers. In the 

experiments, the methods were tested on four datasets, which are UIUC, UMD, KTHTIP2b and 

Brodaze.    

According to the Table 5.10, the performance of GF when combined with any local feature 

descriptors (LBP, LZBP or LMP) outperforms any of them separately. Accuracy improvements of 

5.419 %, 6.975 %, and 3.494 % where obtained from combing GF with LBP, LZBP, and LMP, 

respectively, using the BPNN classifier. Table 5.11 depicts similar levels of improvement when 

the SVM classifier was utilised, where accuracy improvements of 4.563 % 6.419 %, and 2.319 % 

were obtained after combining GF with LBP, LZBP, and LMP, respectively. 

  

Table. 5. 10 Classification accuracy results using local LBP, LZBP, and LMP descriptor, GF, and feature fusion  

of local descriptors with GF using the BPNN classifier. 

Datasets  LBP LZBP LMP GF LBP-GF LZBP-GF LMP-GF 

UIUC 75.8 86.7 82.8 71.6 83.6 88.1 85.8 

UMD 93.7 92.9 94.2 85.1 96 96.4 96.5 

KTHTIP2b 86.2 73.3 85.8 79.5 90.5 87.8 90.9 

Brodaze 82.975 82.625 85.725 90.3 90.25 91.125 89.3 

Average 84.66875 83.88125 87.13125 81.625 90.0875 90.85625 90.625 
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Table. 5. 11  Classification accuracy results using local LBP, LZBP, and LMP descriptor, GF, and feature fusion  

of local descriptors with GF using the SVM classifier. 

Datasets LBP LZBP LMP GF LBP-GF LZBP-GF LMP-GF 

UIUC 81.1 90.1 85.8 77.4 85.2 90.9 87.9 

UMD 94.9 94.6 96.2 91 96.8 95.8 96.8 

KTHTIP2b 87.9 74.7 91.2 87.5 93.55 91 93.65 

Brodaze 85.175 84.875 87.875 91.65 91.775 92.25 92 

Average 87.26875 86.06875 90.26875 86.8875 91.83125 92.4875 92.5875 

 

Another set of experimental results is shown in Table 5.12 and Table 5.13. The results correspond 

to combining GF with the same features descriptors (i.e. LBP, LZBP, and LMP) in a multiscale 

analysis, where R= {1,2,3} and P=8. In this scenario, the increase in accuracy for LBP, LZBP, and 

LMP when combined with GF was 1.729 %, 4.171 %, and 1.425 %, respectively when the BPNN 

classifier was used; whereas the improvement was 2.136 %, 3.051 %, and 0.944 %, respectively 

when the SVM classifier was used.  

From these results, although there is an improvement from combining GF with other descriptors 

in multiscale over combining in a single scale, the improvement is not significant. In comparison, 

the difference in classification rate between combining a set of Gabor filters with LBP, LZBP, and 

LMP using single scales (1,8) and combining a set of Gabor filters with multiscale LBP, LZBP, 

and LMP (with R= {1,2,3} and P=8) was 1.077 %, 2.131 %, and 1.828 %, respectively using the 

BPNN classifier, and 1.069 %, 1.505 %, and 1.138 %, respectively using the SVM classifier. 

 

Table. 5. 12 Classification accuracy results using multiscale local LBP, LZBP, LMP descriptors, GF, and feature 

fusion of local descriptors with GF, using the BPNN classifier. 

Datasets LBP LZBP LMP GF LBP-GF LZBP-GF LMP-GF 

UIUC 81.8 92.2 87.6 70.7 83.9 92.8 88.4 

UMD 96.5 96.2 96.6 87.3 98.7 98.3 97.2 

KTHTIP2b 90.72 78.54 89.36 81.09 91.36 89 92.81 

Brodaze 88.725 88.325 90.55 90.275 90.7 91.85 91.4 

Average 89.43625 88.81625 91.0275 82.34125 91.165 92.9875 92.4525 
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Table. 5. 13 Classification accuracy results using multiscale local LBP, LZBP, LMP descriptors, GF, and feature 

fusion of local descriptors with GF, using the SVM classifier. 

Datasets LBP LZBP LMP GF LBP-GF LZBP-GF LMP-GF 

UIUC 83.3 93.8 89.5 77.4 86.5 94.9 90.6 

UMD 96.3 96.9 97 91.9 96.5 96.6 97.1 

KTHTIP2b 92.63 82.54 93 87.72 95.45 91.27 94 

Brodaze 90.825 90.525 91.625 91.525 93.15 93.2 93.2 

Average 90.76375 90.94125 92.78125 87.13625 92.9 93.9925 93.725 

 

Although there was improvement when combining LBP, LZBP, and LMP with different scales 

and set of filters in a Gabor bank, the classification performance can be further improved by 

selecting only the relevant features from the joined features, instead of depending on the complete 

set of combined features. The feature size of multiscale LBP, LZBP, LMP is given by 

concatenating the features of different shared scales, which increased the feature size in these tests 

by three times for R= {1,2,3} and P=8, whereas the feature size of the Gabor bank consists of a 

group of filters. This may have an effect on the classification accuracy as well as computation time 

as result of the huge feature size stemming from using different filters and LBP, LZBP, and LMP 

scales.    

Results of Feature Selection  

Next, an attempt to improve the classification performance was made by depending on diversity 

of information and avoiding the high dimensionality problem arising from feature-level fusion in 

the previous subsection. The proposed feature selection approaches were applied for multiscale 

LBP, LZBP, and LMP with complementary features extracted by GF. In the feature selection stage, 

the performance of classification is expected to be improved by depending on only the relevant 

features from the previous feature-level fusion, as explained in Section 3.3.2.  

In the first test, ABC was utilised for selecting the relevant features from combined set of features. 

ABC had the responsibility to select the optimum features, which involved selecting the optimum 

filters from Gabor bank and the relevant feature scales from the multiscale LBP, LZBP, and LMP 

descriptors.   

Table 5.14 shows for results corresponding to the BPNN classifier, whereas Table 5.15 shows 

those corresponding to the SVM classifier, where the classifiers were used to evaluate the selected 
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parts of features for the ABC wrapper method. From the results, combining the relevant features 

from different feature descriptors with the optimum GF resulted tiny very similar, which show 

improvement of GF on the classification accuracy of these descriptors. However, on average, 

combining LMP with GF achieved the best performance for most databases, recording a 

classification accuracy of 95.3675% using BPNN, and 95.8425% using SVM. It was also noticed 

that, on average, LZBP recorded a better classification rate of 95.2375% than LBP with 94.727%. 

Using the BPNN classifier, the largest accuracy difference was obtained using the UIUC database, 

where combining LZBP and GF outperformed combining LBP or LMP with GF by a difference 

of 7.8% and 3.6%, respectively. For the KTHTIP2b database, higher accuracies were obtained 

from combining LBP or LMP with GF compared with combining LZBP with GF, where the 

difference was 5.36% and 3.82%, respectively. For the UMD and Brodaze datasets, the differences 

in accuracy between different feature descriptors combination were very minor.    

        Table. 5. 14 Classification accuracy and feature dimensionality results using feature fusion and feature selection  

        from local feature descriptors and GF using ABC and the BPNN classifier. 

Methods Datasets Relevant features 
from fusion 

Relevant features 
from local features 

Relevant features 
from GF 

Accuracy F-Dim Accuracy F-Dim Accuracy F-Dim 

LBP-GF UIUC  86.5 572 79.1 512 49.1 60 

 UMD 98.3 816 96.9 768 78.1 48 

 KTHTIP2b 94.81 820 88.63 768 77.45 52 

 Brodaze 99.3 542 97.4 512 93.3 30 

 Average 94.727 687.5 90.507 640 74.487 47.5 

LZBP-GF UIUC  94.3 554 92.6 546 27.5 8 

 UMD 98.1 554 96.3 546 74.8 8 

 KTHTIP2b 89.45 434 76.90 364 81.09 70 

 Brodaze 99.1 214 98.4 182 94.4 32 

 Average 95.2375 439 91.05 409.5 69.4475 29.5 

LMP-GF UIUC  90.7 544 85.2 512 52.2 32 

 UMD 98.2 1568 97.9 1536 80.5 32 

 KTHTIP2b 93.27 1552 91.18 1536 54.18 16 

 Brodaze 99.3 1042 98.3 1024 89.7 18 

 Average 95.3675 1176 93.145 1152 69.145 24.5 
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        Table. 5. 15 Classification accuracy and feature dimensionality results using feature fusion and relevant feature  

        from local feature descriptors and GF using ABC and the SVM classifier.   

Methods Datasets Relevant features 
from fusion 

Relevant features 
from local features 

Relevant features 
from GF 

Accuracy F-Dim Accuracy F-Dim Accuracy F-Dim 

LBP-GF UIUC  88.2 588 84 512 74.4 76 

 UMD 98.29 826 97.5 768 81.7 58 

 KTHTIP2b 95.45 816 92.45 768 83.18 48 

 Brodaze 99.1 310 97.4 256 96.2 54 

 Average 95.26 635 92.837 576 83.87 59 

LZBP-GF UIUC  95.2 548 94.1 546 19.3 2 

 UMD 98 556 97.3 546 58.8 10 

 KTHTIP2b 90.63 616 83 546 85.09 70 

 Brodaze 99.2 260 97.9 182 97 78 

 Average 95.7575 495 93.075 455 65.0475 40 

LMP-GF UIUC  91.9 1544 91 1536 41.4 8 

 UMD 98 1584 97.6 1536 88 48 

 KTHTIP2b 94.27 1588 92 1536 83 52 

 Brodaze 99.2 1088 98.5 1024 96.7 64 

 Average 95.8425 1451 94.775 1408 77.275 43 

 

The second experiment served to test whether the feature length would be reduced by applying the 

hybrid ABC-NRS method, where ABC selects the optimum filters, and multiscale LBP, LZBP, 

and LZBP have their features reduced by NRS before combining with the optimum filters.   

Table 5.16 and Table 5.17 report the results obtained from applying the hybrid ABC-NRS selection 

method, where the former shows the results of using the BPNN classifier for wrapper method, 

whereas the latter shows those corresponding to using the SVM classifier. Here, the classification 

accuracy results of different combinations of LBP, LZBP, and LMP with GF was very similar as 

when depending on ABC only for feature selection, whereas the feature length compared to 

depending on entire feature was significantly reduced by the new hybrid selection method. The 
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number of features selected by ABC or the hybrid ABC-NRS method was less than the total 

number of features, where the hybrid ABC-NRS method offered a much lower total number of 

features. Furthermore, the average accuracy values using BPNN and selected features by ABC-

NRS was 94.2575%, 95.1275%, 94.565 % for LBP, LZBP, and LMP, respectively, whereas using 

the hybrid ABC-NRS method and the SVM classifier resulted in average accuracy values of 

95.32249%, 96.7575%, and 95.6725% for LBP, LZBP, and LMP, respectively. A detailed 

discussion of accuracy and feature length obtained from this experiment is provided in the next 

subsection.  

       Table. 5. 16 Classification accuracy and feature dimensionality results using feature fusion and relevant features 

       selection from local feature descriptors and GF using ABC-NRS and the BPNN classifier. 

Methods Datasets Relevant features 
from fusion 

Relevant features 
from Local Features 

Relevant features 
from GF 

Accuracy F-Dim Accuracy F-Dim Accuracy F-Dim 

LBP-GF UIUC  85.8 293 79 253 61 40 

 UMD 98.2 249 95.7 199 83.5 50 

 KTHTIP2b 93.63 422 89.54 358 77.36 64 

 Brodaze 99.4 225 97.9 167 95.8 58 

 Average 94.2575 297.25 90.535 244.25 79.415 53 

LZBP-GF UIUC  92.8 72 89.4 70 37 2 

 UMD 97.8 133 97.4 87 82.3 46 

 KTHTIP2b 90.81 168 80.45 104 79.54 64 

 Brodaze 99.1 62 97.4 32 93.7 30 

 Average 95.1275 108.7 91.1625 73.25 73.135 35.5 

LMP-GF UIUC  89 374 83.7 298 62 76 

 UMD 97.7 272 96.5 222 82.4 50 

 KTHTIP2b 92.36 431 87.54 385 76.45 46 

 Brodaze 99.2 196 97.9 168 92.2 28 

 Average 94.565 318.2 91.41 268.2 78.2625 50 
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       Table. 5. 17 Classification accuracy and feature dimensionality results using feature fusion and relevant features 

       selection from local feature descriptors and GF using ABC-NRS and the SVM classifier.  

Methods Datasets Relevant features 
from fusion 

Relevant features 
from Local features 

Relevant features 
from GF 

Accuracy F-Dim Accuracy F-Dim Accuracy F-Dim 

LBP-GF UIUC  88.5 407 85.9 341 74.6 66 

 UMD 98.19994 235 95.2 199 81.6 36 

 KTHTIP2b 95.09 252 91.18 222 78.81 30 

 Brodaze 99.5 81 96.9 51 94.5 30 

 Average 95.32249 243.7 92.295 203.2 82.3775 40.5 

LZBP-GF UIUC  95.5 123 94.7 99 61.3 24 

 UMD 98.5 103 98 87 79.2 16 

 KTHTIP2b 93.63 160 83.72 104 84.27 56 

 Brodaze 99.4 143 98.5 77 96.3 66 

 Average 96.7575 132.2 93.73 91.75 80.2675 40.5 

LMP-GF UIUC  91.2 316 90.8 298 61.4 18 

 UMD 98.2 162 96.5 138 84 24 

 KTHTIP2b 94.09 439 91.18 385 83.36 54 

 Brodaze 99.2 216 98.2 168 95.9 48 

 Average 95.6725 283.2 94.17 247.2 81.165 36 

 

5.2.3.2 Discussion and Comparison of Results  

In this research, features extracted by GF were used as complementary features for the proposed 

LZBP and LMP features descriptors. Features from GF and LBP have been as complementarily 

combined before, where the former extracts global features, and the latter extracts local features 

(Tan & Triggs, 2007). Furthermore, feature fusion has been tested to provide a diversity of features 

to improve the classification performance, and to overcome the dependence on a limited number 

of filters (M. Li & Staunton, 2008). 

GF have been used in many studies for texture classification and have reported high performance. 

In this research, GF were tested and evaluated against other common feature extraction methods 

(see Subsection 5.2.1). In our work, the proposed improved LZBP and LMP descriptors based on 
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LBP were tested with complementary GF features. There is no agreement in the literature on the 

number of filters needed for texture classification, where different resources report a number of 

frequencies ranging from three to seven, and a number of orientations ranging from four to eight 

(Bianconi & Fernández, 2007). In our tests, 40 filters from five frequencies and eight orientations 

were used, and the features by each filter from the image were based on calculating mean and 

standard deviation (Haghighat, Zonouz, & Abdel-Mottaleb, 2015).    

The tests were conducted on a number of different datasets. Fig 5.13 and 5.14 show a comparison 

of the average classification rate and feature size of different methods, respectively. The 

integration of features between GF and different local feature descriptors follows a number of 

cases. The direct combination of shared LBP, LZBP, and LMP features included single and  

multi-scales to improve feature extraction (Ojala, Pietikainen, et al., 2002). The other cases are for 

improved feature selection methods on the proposed combination of features. These cases can be 

explained in the context of testing as follows:   

Combining the feature vector of un-optimized GF directly with the LBP, LZBP, and LMP 

descriptors, where these local feature descriptors were applied with a single features scale (1,8).  

Combining the feature vector of un-optimized GF directly with the LBP, LZBP, and LMP 

descriptors, where these local feature descriptors were applied with three features scales, with R= 

{1,2,3} and P=8. 

Extracting only the relevant features from the multiscale local descriptors and Gabor filter banks 

using the ABC method.  

Extracting only the relevant features from the multiscale local descriptors and Gabor filter banks 

using the hybrid ABC-NRS method.   

From the results using BPNN or SVM classifiers, an improvement in the performance of image 

classification is noted from fusing GF with other local feature descriptors (LBP, LZBP, and LMP). 

Furthermore, it can be observed that the performance of any of the feature level fusion methods is 

superior to that of using the feature descriptors alone. Combining GF with LZBP resulted in the 

highest accuracy, followed by combining GF with LMP. However, a greater performance 

improvement was achieved by depending only on the relevant features in the different states of 

combination.   

The results by BPNN or SVM classifiers were similar in a number of different states of 

comparison, therefore the following discussion will be based on the results of the BPNN classifier. 
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Utilising only relevant features using the proposed feature selection methods, Fig 5.13 shows that 

higher classification accuracies were obtained from selecting the relevant feature from the fused 

vector of GF with LBP, LZBP, or LMP than applying direct feature fusion. Furthermore, Fig 5.14 

demonstrates that compared to direct feature fusion, the hybrid feature selection method reduced 

the feature size significantly by extracting only the relevant features for both GF and LBP, LZBP, 

and LMP. The feature size was the smallest among other states of comparison, and smaller than 

direct feature fusion of single scale LBP, LZBP, and LMP descriptors.  

In the feature selection stage, the relevant features of GF were selected automatically by the ABC 

method. In addition, ABC has the ability to select more relevant features from local feature 

descriptors, where it is usually applied with multiscale applications, which have high 

dimensionality. However, the hybrid ABC-NRS method can offer further feature length reduction 

for multi-scale LBP, LZBP, and LMP to match the original feature length.  

The selected features by the hybrid ABC-NRS method from the original set of features improved 

the classification performance over depending on the complete set of features. Although 

combining GF with LBP or LMP resulted in slightly less classification accuracies using the hybrid 

ABC-NRS method than using ABC alone, the results of the hybrid ABC-NRS were still superior 

to direct feature fusion. Taking into consideration accuracy vs. feature length, it is therefore clear 

that using the hybrid ABC-NRS method with combined features provides excellent performance 

results for textures classification. 

Fig. 5. 13 Comparison the classification accuracy value of feature fusion between local 

features descriptors (LBP, LZBP, and LMP) and GF using the BPNN classifier. 
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5.3 Summary 

The difficulty of producing satisfactory discriminative feature extraction tools for complicated 

texture characteristics is the main shortcoming in classification systems. Research has shown that 

the improving feature extraction, which will reflect on the overall classification system, can be 

achieved by improving the existing texture descriptors and feature selection methods. In this work, 

the proposed texture descriptors and feature-level fusion were intended to achieve more effective 

features, whereas the improved hybrid feature selection method was utilised for the proposed 

feature-level fusion models, which is more effective approach than depending on direct fusion 

only.  

An experimental testing has been carried out to investigate the proposed novel texture descriptors 

and improved hybrid selection methods. Although some limitations in the proposed methods were 

identified, the classification system demonstrated an outstanding performance.  

The experimental testing of the proposed feature extraction methods started by assessing the new 

LZBP and LMP texture features descriptors. The testing included commonly used statistical and 

signal processing methods for textures classification using two different classifiers: BPNN and 

Fig. 5. 14 Comparison the classification feature size of feature fusion between local features 

descriptors (LBP, LZBP, and LMP) and GF using the BPNN classifier. 
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SVM. The performance of texture features by LZBP and LMP compared to existing methods, 

where the new feature was found to be effective with improving in classification accuracy across 

different texture characteristics of the involved datasets tested.    

The experimental testing also included combining the proposed LZBP and LMP descriptors with 

complementary features based on contrast measure and GF. The results showed that feature fusion 

seems to be robust against different texture characteristics. However, although there is an 

improvement was seen when combining multiscale LZBP and LMP with the contrast of texture 

image or GF, a substantial further improvement in the classification performance can be achieved 

by selecting only relevant features instead of depending on the complete set of combined features. 

In this context, to obtain optimum features from the combined feature set, the experiments 

investigated two feature selection approaches. The main aim was to achieve an improvement in 

classification accuracy while maintaining the smaller feature space by depending on a diverse set 

of features. In contrast to the argument that wrapper methods like ABC are more expensive than 

filter methods, we found that depending on the ABC algorithm reduced the feature length and 

improving the classification accuracy. However, combining the NRS method with the wrapper 

feature selection method based on the ABC algorithm resulted in a further significant reduction in 

feature space. While the hybrid ABC-NRS selection method was more effective in feature length 

reduction, a small reduction in classification performance was noticed in comparison to using the 

wrapper ABC method alone. 
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Chapter 6 

Evaluation 

The previous chapter discussed the results of testing the new proposed strategies for improving 

texture feature extraction in image classification applications. The focus of this chapter is to 

evaluate the performance of the methods proposed for improving texture feature. By implementing 

the pre-processing and post-processing stages of the proposed improved feature extraction 

methods (as explained in the methodology chapter), one can expect to obtain an improved 

classification performance. In the evaluation, an investigation is conducted on whether an 

improvement in the overall classification system can be attained owing to success of the proposed 

feature extraction approaches.  

This chapter starts by evaluating the performance of the new LZBP and LMP feature descriptors 

in Section 6.1. In Section 6.2, the effect of combining these new feature descriptors with 

complementary image contrast features using the new hybrid ABC-NRS feature selection method 

is investigated. Section 6.3 adopts the same procedure of evaluation with GF serving as a 

complementary feature extraction method. Finally, Section 6.4 concludes the chapter by providing 

a summary of its main findings.  

6.1 LZBP and LMP Descriptors   

Various means were adopted in an attempt to evaluate the performance of proposed LZBP and 

LMP descriptors. The evaluation was based on comparing the results with other related methods 

used in texture classification applications. In addition, a number of public datasets were utilised to 

investigate the performance of the distinctive features extracted from the involved descriptors. For 

the texture classes of each dataset, the confusion matrix resulting from the classification was 

investigated.   

6.1.1 Performance Comparison with Competing Methods   

In general, the new methods can only be claimed successful if they produce results that can be 

validated to be superior to those obtained by existing methods. The performance of the proposed 

LZBP and LMP descriptors was compared to LBP, because these new LZBP and LMP texture 
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descriptors were developed based on LBP, as explained in Section 3.3.1. We also involved in the 

comparison the most well-known traditional texture descriptors, which proved their ability in 

texture feature extraction for image classification (see Section 2.2). This comparison was also used 

to verify and prove that the choice of LBP as the most important texture feature extraction method, 

and its use as a basis to develop descriptors with improved discriminative feature extraction. The 

other involved descriptors used in the comparison were based on the co-occurrence matrix, such 

as GLCM, which is one of earliest methods used for extracting features from texture and is still 

used by different image classification applications (Chaki, Parekh, & Bhattacharya, 2015), where 

the features extracted describe the homogeneity, contrast, and the presence of organised structures 

within the image (Haralick & Shanmugam, 1973). GLDM was also used in the comparison, which 

is an improved form of GLCM, and used frequently in different texture extraction applications (J. 

K. Kim & Park, 1999), where the extracted features describe the contrast, angular second moment, 

entropy, mean, and inverse difference moment of the image (Weszka et al., 1976). In  addition, the 

comparison included TS (He & Wang, 1990), which is an improved approach to co-occurrence 

methods that was developed to achieve better texture feature extraction from TUs. However, 

instead of using 6561 TUs, TS was enhanced by reducing the feature length to 15 units without 

significant loss in discriminating power (He & Wang, 2010). Finally, among the signal processing 

methods, GF and WT were included in the comparison, as they represent the most commonly used 

signal processing methods. GF with bi-dimensional Gaussian function of five scales and eight 

orientation were used, producing 40 filters, where from each filter, the mean and standard deviation 

were utilised for feature representation (Manjunath & Ma, 1996). For the WT method, the features 

were calculated by mean and standard deviation of approximation of sub-bands of three-level 

decomposed images by DWT (Zaid, Jadhav, & Deore, 2013).   

The results of evaluating the aforementioned descriptors are shown in Fig 6.1 and Fig 6.2, which 

illustrate the average results of images classification on number of datasets using the ANN and 

SVM classifiers, with 5-fold cross-validation and 10-fold cross-validation, respectively. These 

results are based on Table 5.2 and Table 5.3, respectively. Considering the average accuracy of 

each method achieved across all the databases tested, it is clear that the co-occurrence matrix 

methods, namely the GLCM and GLDM methods, produced the lowest accuracies, which prove 

their weakness compared to methods based on TUs quantisation. However, TS also displayed poor 

quantisation of texture patterns, as its accuracy was much lower than that of LBP. For signal 

processing methods, although WT’s results were acceptable compared to the aforementioned 
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methods, GF outperformed WT. The main problem with GF is their high computation time. From 

the figures, excluding the proposed methods, the competition for the highest accuracy was between 

LBP as a statistical method and GF as a signal processing method. LZBP and LMP demonstrated 

their capability in competing with LBP and producing better classification accuracies compared to 

their counterparts, which was the main aim of this stage of the evaluation. In further evaluation, 

we concentrate on comparing between the improved LZBP and LMP descriptors and against LBP.   

 

 

 

Fig. 6. 1 Comparison classification accuracy value between LZBP and LMP and other 

common texture descriptors using BPNN and SVM with 5-fold cross-validation. 

Fig. 6. 2 Comparison classification accuracy value between LZBP and LMP and other 

common texture descriptors using BPNN and SVM with 10-fold cross-validation. 
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6.1.2 Comparison of Performance on Different Datasets 

This research utilised public datasets for texture classification. These datasets were used to 

investigate the performance of distinctive feature extraction by the proposed LZBP and LMP 

methods. The datasets involve different types of texture characteristics, which makes to make 

texture classification a challenging process. Furthermore, each dataset divides the images into a 

number of classes.  

In the experiments, four public datasets were used, and their texture images are displayed in Fig 

6.3, Fig 6.4, Fig 6.5, and Fig 6.6.  The first set of images correspond to samples from the UIUC 

dataset (Lazebnik et al., 2005), which is one of the most modern datasets, designed with significant 

changes in strong viewpoints and different scales, with uncontrolled illumination conditions. The 

UMD texture images are also important (Xu et al., 2009), where the dataset shares the same 

number of classes as UIUC, with different rotations and scales. The Brodatz texture images are 

widely in texture classification. However, this dataset is one of oldest datasets, as it is non-

rotational and scale invariant (Laine & Fan, 1993). The KTHTIPS2b dataset is also a relatively 

new dataset, consisting of samples with three viewing angles, four illumination sources, and nine 

different scales (Mallikarjuna et al., 2006). For other parameters of these datasets, refer to Table 

5-1.  

 

 

 

Fig. 6. 3 Samples of texture images from the UIUC dataset. 

Fig. 6. 4 Samples of texture images from the UMD dataset. 



159 

 

 

  

 

Despite the good performance of LBP compared with other statistical methods, LZBP and LMP 

are proposed to process and cope with some limitations in LBP. The LZBP and LMP descriptors 

are designed to extract more distinctive features. Addressing the LBP limitations should result in 

a better performance of LZBP and LMP on different texture characteristics compared to LBP. This 

section thus represents a comparison of the performance of the proposed LZBP and LMP 

descriptors with that of the LBP descriptor, using the aforementioned datasets as benchmarks. 

These descriptors were applied in a multiscale analysis, with R= {1, 2, 3} and P =8. The 

performance of the descriptors using the involved datasets was compared in terms of the average 

classification accuracy on multi-scale state, as the mean or average classification accuracy is a 

widely accepted measure to evaluate a classifier’s performance.            

According to the experimental results of Fig 6.7, the highest accuracy recorded for the UIUC 

database corresponded to the LZBP descriptor, which outperformed both the LBP and LMP 

descriptors. For the UMD dataset, the LZBP also somewhat outperformed both LMP and LBP, 

whereas the LZBP descriptor recorded the lowermost accuracy levels compared to other 

descriptors for the KTHTIP2b database. For all of the three descriptors compared, the accuracy 

levels were obtained using the Brodatz database, where LMP provided a slightly higher average 

Fig. 6. 6 Samples of texture images from the Brodatz dataset. 

Fig. 6. 5 Samples of texture images from the KTHTIPS2b dataset. 
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classification accuracy than the other two descriptors. These differences in the results across 

different databases lead us to a more effective feature method that can deal with different texture 

characteristics, which can be achieved by integrating between different feature descriptors, while 

taking into consideration the issue of the resulting huge feature space.  

 

 

6.1.3 Comparison of Performance Using the Confusion Matrix 

The results of texture classification are commonly used to evaluate texture feature descriptors. The 

datasets in the previous section divide the images into a number of classes. For further 

investigation of the capabilities of the new improved feature descriptors on different classes of 

texture datasets, the confusion matrix is an appropriate tool. Based on the outcome of the BPNN 

classifier using the confusion matrix, the LZBP, LMP, and LBP descriptors were evaluated and 

compared on texture datasets classes. This serves to highlight the most suitable texture descriptor 

for each texture surface, and which classes of texture images of datasets are the most challenging 

to classify by these descriptors. 

Appendix 1 contains the results of the confusion matrix evaluation for the target descriptors in this 

comparison study. The results of confusion matrix evaluation were divided into four groups (A, 

B, C and D) for the involved datasets. 

Fig. 6. 7 Comparison the average of classification accuracy value of multiscale LBP, LZBP, 

and LMP descriptors based on different datasets. 
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Tables A.1 to A.3 show the confusion matrix results of the LBP, LZBP and LMP descriptors, 

respectively, when applied on the UIUC dataset. From Table A.2, it is evident that LZBP is more 

appropriate for dealing with the UIUC database compared to other descriptors. LZBP provided 

100% accuracy (40 out of 40) for four classes (7, 13, 17, 18), whereas its lowest number of 

correctly classified images was observed for Class 9, where a classification accuracy of 72.5 % 

(29 out of 40) was obtained. For LBP, the highest accuracy achieved was in classes 16 and 17, 

with 39 correct correctly classified images (97.5 %), whereas the lowest accuracy levels were 

recorded in four classes (3,4,6,25), with only 22 correctly classified images out of 40 (or 55%). 

Tables B.1 to B.3 show the confusion matrix results corresponding to the UMD dataset. LBP 

showed a 100% accuracy in only Class 15 (40 out of 40), whereas LZBP achieved 100% accuracy 

in 6 classes (5, 7, 14, 15, 16, 24). LMP correctly classified 12 classes out of 40 with 100% accuracy, 

which makes it the more appropriate descriptor for most classes of this dataset. 

Table C.1 to C.3 show the confusion matrix results corresponding to KTHTIPS2b dataset.  

In Table C.1, the highest accuracy achieved for LBP using this database was for the first class with 

98%, followed by Classes 9 and 10 with 96%, whereas LZBP did not record good classification 

accuracies in these classes. Table C.2 shows a big drop in the performance of the LZBP for each 

class, where the highest accuracy obtained was only 91%, and was achieved for the first class. The 

second highest accuracy (90%) was achieved for Class 4, whereas the lowest accuracy was 

achieved for Class 5 with 57 %. Table C.3 shows that LMP also recoded good results for the first 

class with 96% classification accuracy, putting it 2% behind LBP and 5% ahead of LZBP in terms 

of Class 1 classification performance. Other classes recording good classification with LMP are 

Class 10 with 97%, and Classes 4 and 9 with 92%. The lowest classification accuracy achieved by 

LBP was recorded for Class 3 with 72%. In compassion, LZBP recorded its lowest classification 

accuracy for Class 3 with only 42%, where LMP recorded its lowest for Class 5 with 69%.   

Table D.1 to D.3 show the confusion matrix results of the three descriptors when applied on the 

Brodatz dataset. In this dataset, the descriptors recorded the highest number of classes with perfect 

classification rates (i.e. 40 correctly classified images out of 40) compared with previous datasets. 

For instance, LBP obtained a 100% classification accuracy for 12 classes (2, 3, 5, 7, 8, 12, 13, 15, 

18, 19, 20, 21), while LZBP achieved the same feat for 11 classes (3, 4, 5, 8, 12, 13, 15, 16, 18, 

19, 22), and LMP for 15 classes (1, 2, 3, 5, 7, 8, 11, 13, 15, 16, 18, 19, 20, 21, 22). The lowest 

number of correctly classified images in one class among the different descriptors tested occurred 

for Class 25, where only 33 images out of 40 were correctly classified (82.5%). LBP recorded the 
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lowest classification rate on class 23 with 77.5%, whereas LZBP recorded 82.5% for class 23. In 

comparison, for the same class (class 23), LMP had also its lowest accuracy with 72.5% (29 images 

out of 40).  

By comparing the previous descriptors based on CM results, it can be noticed that LZBP 

outperformed LBP in most classes in the UIUC dataset. However, there are some classes where 

LBP produced the same results as LZBP, such as in Class 16. The same observation applied to the 

KTHTIPS2b dataset, where LBP outperformed LZBP in most classed, with the exception of  

Class 4, where both descriptors produced the same results.   

6.2 LZBP and LMP Combined with Contrast Features  

To improve the proposed LZBP and LMP descriptors, their features are suggested to be combined 

with the contrast of the texture image, where the same approach has been adopted before with LBP 

(Ojala et al., 1996). In the previous chapter, feature fusion between LZBP and LMP and contrast 

measure as a complementary feature was tested. In addition, new selection methods were tested 

on the fused features to reduce the feature space and depend only on the relevant features. In this 

part of the chapter, the performance of LZBP and LMP is evaluated after they are combined with 

contrast measure, and after the hybrid selection approach is utilised on the resulting fused features.   

6.2.1 Comparison of Feature Fusion Results on Different Datasets  

The results of the average classification accuracy of the different multiscale descriptors based on 

four texture databases are shown Table 5-4, where features contrast was used to enhance the 

accuracy of the descriptors. Fig 6.8 shows a comparison of the classification performance of the 

descriptors when applied on the UIUC dataset. The increase in classification accuracy of LBP, 

LZBP, and LMP as a result of being combined with the contrast features compared with using the 

descriptors separately was 7.343%, 0.4%, and 3.772%, respectively. Furthermore, in this dataset, 

the contrast features had a better effect on LBP and LMP than LZBP. However, despite the contrast 

features having little effect on LZBP, the accuracy of LZBP was still better than LBP\C and 

LMP\C. Fig 6.9 shows the performance of the descriptors when applied on the UMD dataset, 

where the contrast had a negative effect on LZBP, as its accuracy dropped by 0.43 %, whereas it 

slightly improved the performance of LBP and LMP by 1.03% and 0.557%, respectively. Fig 6.10 

shows the performance of the descriptors when used with the KTHTIP2b database, where the 
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contrast had a negative effect on the performance of LMP, as it reduced its accuracy by 1.701%, 

whereas it improved the accuracy of LZBP by 2.387%.  It can therefore be noted that the contrast 

features have a better effect on descriptors with already low classification accuracies. Fig 6.11 

show the results corresponding to the Brodatz database, where an increase in accuracy of 1.6%, 0. 

59%, and 0.9% was obtained for LBP, LZBP, and LMP, respectively, as a result of fusion with 

contrast features. Although LMP\C achieved the highest accuracy, the other two descriptors came 

very close after being combined with the contrast of the texture images. One can therefore 

conclude that, although different patterns of results were recorded for the tested descriptors when 

combined with contrast features on different texture characteristics, in general, fusing with contrast 

features results in a more positive impact in terms of improving the classification accuracy, 

especially for feature descriptors with already low classification performance. 

 

 

  

 

Fig. 6. 8 Comparison classification accuracy value of the LBP, LZBP, and LMP when 

combined with the contrast of the texture image based on the UIUC database. 
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Fig. 6. 9 Comparison classification accuracy value of the LBP, LZBP, and LMP when 

combined with the contrast of the texture image based on the UMD database. 

Fig. 6. 10 Comparison classification accuracy value of the LBP, LZBP, and LMP when 

combined with the contrast of the texture image based on the KTHTIP2b database. 
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In general, it is clear from Fig 6-8 to Fig 6-11 that combining LBP, LZBP and LMP with contrast 

features as complementary features gave rise to better results than if these descriptors were used 

without combining to contrast features. However, from Fig 6.12, which compares the average of 

accuracy from the different databases, combining LBP, LZBP and LMP altogether with contrast 

features gave rise to better results than if these descriptors were combined separately with contrast 

features. This may due to the fact that the shared descriptors of LBP, LZBP and LMP depend on 

a different procedure for extracting local features from texture.  

Fig. 6. 11 Comparison classification accuracy value of the LBP, LZBP, and LMP when 

combined with the contrast of the texture image based on the Brodatz database.  

Fig. 6. 12 Comparison classification accuracy value of the LBP, LZBP and LMP when 

combined with contrast features separately, and when all are combined together. 
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6.2.2 Performance Comparison with Competing Methods  

LZBP and LMP apply a different strategy to LBP for extracting features from texture. Feature 

fusion of complete feature set produced better results than using the feature set of each descriptor 

separately (see Fig 6.12). In addition, in the evaluation of the LZBP, LMP, and LBP descriptors 

in Subsection 6.1.3, it was noticed that these descriptors resulted in different results for different 

texture image classes. Furthermore, the proposed approach, feature fusion is processed by new 

selection methods to reduce feature length (see Subsection 5.2.2). The performance of local feature 

fusion with the proposed feature selection approach can be evaluated either by comparing the 

results before and after feature selection, or comparison with other related feature selection 

approaches (H. Liu & Motoda, 2007). The first type of comparison was conducted in the analysis 

of the results in Subsection 5.2.2.2, where it was found that the results obtained when using the 

relevant features of the combined feature descriptors offer significant improvement over those 

obtained using only single features or complete set of features by direct fusion with no feature 

selection.    

Here, the evaluation of the proposed methods is based on comparing them with relevant methods 

that were reported in Subsection 2.3.2, such as CLBP (Z. Guo, Zhang, et al., 2010a), CINIRD (L. 

Liu et al., 2012), DLBP (Liao et al., 2009), and LBPV (Z. Guo, Zhang, et al., 2010b). Table 6.1 

lists the results of the compared methods on the UIUC, UMD, and KTHTIP2b databases utilising 

the data in (L. Liu et al., 2017).  

Table 6.1 compare the proposed approach (feature fusion, relevant feature by ABC and relevant 

feature ABC-NRS) with aforementioned methods. From the table, one can observe that CLBP 

produced the best results on the UIUC database, with an accuracy of 95.75%, whereas the proposed 

approach using ABC was nearly the same with feature size 1814. Based on feature selection using 

the ABC algorithm produced the best overall results on the UMD database, with an accuracy of 

99%. The proposed approach obtained excellent result using the KTHTIP2b database when 

compared with the CLBP and CINIRD methods. In this context, CLBP used a huge feature size of 

3552 features, whereas CINIRD suffers from feature dimension problems when using the features 

for multiscale (L. Liu et al., 2012). The direct feature fusion of the proposed LZBP and LMP 

descriptors with complementary features of LBP and contrast also resulted in a long feature length 

of 3189. Furthermore, from this comparison, only LBPV produced an acceptable feature length of 

only 158.    



167 

 

Despite the high performance achieved by most of these methods, the long feature length increases 

the classification computation time. However, depending on only the relevant features through the 

use of the proposed ANC-NRS feature selection approach achieved good classification accuracies 

while maintaining the ability to reduce the feature dimensionality (see Table 5.9).   

 

   Table. 6. 1 Classification accuracy results of various methods when applied to a number of databases. 

Methods UIUC UMD KTHTIP2b Feature Dim 

CLBP  95.75 98.62 64.18 3552 

CINIRD  94.61 98.93 64.84 2200 

DLBP 93.58 83.71 61.72 14150 

LBPV 93.79 81.98 59.03 158 

Feature Fusion 92 98.2 92.6 3189 

Relevant feature by ABC  95.2 99 94.4 - 

Relevant feature ABC-NRS  94.2 99 92.6 - 

 

For evaluation on noise and blur problems, many methods designed to deal with noise and blur 

problems are based on MRELBP (L. Liu, Fieguth, Pietikäinen, & Lao, 2015), NTLBP (Fathi & 

Naghsh-Nilchi, 2012), or BRINT (L. Liu et al., 2014). The proposed approached was compared 

with the aforementioned methods by testing them all on the same Outex-11 database. Table 6.2 

compares the performance of the methods for salt and pepper noise, whereas Table 6.3 compares 

their performance on blurred images. The results of the two tables clearly demonstrate the give 

effectivity of the proposed method with these image problems. For blurred images, classification 

by the proposed approach was particularly superior to other methods for σ = 3.0 and above.  

 

   Table. 6. 2 Classification accuracy results of various classification methods when applied to noisy images. 

Method ρ = 0.05 ρ = 0.15 ρ = 0.30 ρ = 0.40 ρ = 0.50 

MRELBP  100.0 100.0 100.0 85.8 50.2 

NTLBP  74.4 22.1 4.8 5.0 6.3 

BRINT  30.8 7.1 6.0 4.4 4.2 

Hybrid ABC-NRS 100 100 99.6875 99.27083 98.75 
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Table. 6. 3 Classification accuracy results of various classification methods when applied to blurred images.  

Method σ = 0.5 σ = 0.75 σ = 1.0 σ = 2.0 σ = 3.0 σ = 4.0 σ = 5.0 

MRELBP 100.0 100.0 93.8 75.4 - - - 

NTLBP  96.3 49.0 33.1 19.4 - - - 

BRINT  100.0 97.1 80.4 44.6 - - - 

Hybrid ABC-NRS 100 100 100 100 100 99.583 98.646 

 

6.3 LZBP and LMP Combined with GF Features   

The LZBP and LMP descriptors were also tested when combined with complementary GF 

features. GF is the most successful and appropriate complementary features used with LBP in 

many applications (M. Li & Staunton, 2008). Feature-level fusion is processed by the new hybrid 

selection approach to avoid the high dimensionality problem of the resulting features. Thus, the 

evaluation of LZBP and LMP was conducted when they were combined with GF, before utilising 

the new hybrid selection approach on the proposed feature fusion to select the optimum features. 

6.3.1 Comparison of Feature Fusion Methods Based on the Confusion 

Matrix   

In the experimental testing (see Subsection 5.2.3), LBP was found to result in enhanced accuracies 

when combined with GF. Similarly, the LZBP and LMP descriptors also produced improved 

accuracies when combined with GF. The improvement in the accuracy of LBP, LZBP and LMP 

when combined with GF compared if applied without combining with GF. It is therefore clear that 

LZBP and LMP features can be combined with complementary GF features to yield improved 

results.  

For further investigation, the proposed methods (LZBP and LMP) where combined with GF and 

compared to combining LBP with GF on different databases. This was conducted based on the 

confusion matrix (refer to Appendix 2).   

Group A is for UIUC database, where Tables A.1 to A.3 show the confusion matrix results of 

combining GF with LBP, LZBP and LMP respectively. From A.2, it is evident that the combining 

GF with LZBP is the most appropriate approach to dealing with UIUC database images compared 
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to the other methods.  The highest performance accuracy was 100% (40 out of 40) for 5 classes (7, 

16, 17, 18, 22). This makes combining GF with LZBP more effective on UIUC classes than the 

conventional combination of GF with LBP, since the latter achieved its highest performance 

accuracy of only 97.5% (39 out of 40) for only 2 classes (16, 17). In contrast, the classes which 

the classification accuracy in this database when using GF with LZBP were Classes 4, 19, 23, and 

25, which all had a classification accuracy of 85% (34 out of 40). For the combined LBP and GF 

approach, the lowest classification accuracy achieved was for Class 23 with 57.5 % (27 and 40), 

Class 25 with 60% (24 and 40), and Class 6 with 70% (28 and 40).  

Group B (Tables B.1 to B.3) shows the results corresponding to the UMD database, where 

although the accuracy of GF with LBP, LZBP and LMP were 96%, 96.4% and 96.5% respectively 

(see Table 5.7), LBP with GF provided 100% accuracy for 18 classes, whereas combining LZBP 

with GF resulted in 14 classes with 100% accuracy, and which is five classes more than those 

classified using the conventional multi-scale LBP with 100% accuracy. LMP with GF provided 

100% classification accuracy for only 12 classes.  

In Group C, Tables C.1 to C.3 is for the KTHTIPS2b dataset, combining LBP with GF produced 

the highest possible accuracy of 100% for Class 1, followed by 9 classes with 98% classification 

accuracy. In comparison, combining LZBP with GF did not record good classification accuracies 

in these classes. The lowest classification accuracy for LBP with GF was obtained for Class 5, 

with 82%. Using LMP with GF, the first class had a good classification accuracy of 98%, which 

is 2% the classification accuracy achieved by LBP with GF. Other classes recording good 

classification accuracies with LMP were Class 10 with 97%, Class 4 with 96%, whereas the lowest 

was Class 5 with 80%.  

Analysing the results, one can conclude that, in general, LZBP with GF produced superior 

classification performance for the UIUC database to others, while for the KTHTIPS2b database, 

the accuracies of the LZBP with GF was somewhat worse compared to conventional LBP with 

GF. While LBP with GF was effective on most classes of the UMD databases, LMP with GF 

achieved high classification rate for a larger number of classes of the database together. 
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6.3.2 Comparison of the Hybrid Selection Approach with Other 

Related Methods  

Extracting only part of the features (or relevant features) from the complete set of features by the 

proposed wrapper ABC selection approach based on NRS was evaluated by a comparison with the 

Principal Component Analysis (PCA). PCA is the most successful reduction method used with 

LBP and GF features (Tan & Triggs, 2007).   

Using PCA with LBP starts by applying PCA on the LBP histograms, then selecting a limited 

number of features, which results in producing the highest accuracy. Here, PCA was applied 

directly on the LBP histograms, before combining LBP with complementary GF features. This 

approach was compared with the proposed hybrid ABC-NRS selection method, where, as 

explained before, NRS is applied to reduce the feature length of multiscale LBP, LZBP and LMP.  

To evaluate the performance according to the classification accuracy using the BPNN classifier, 

the three different LBP, LZBP and LMP feature descriptors were combined with GF after feature 

reduction. The implementation of PCA was coded by MATLAB, and the most important feature 

corresponding to 32 feature items were selected to be combined with GF features. For the proposed 

hybrid selection method, NRS was used to reduce the multiscale LBP, LZBP and LMP features, 

before combining with the optimum filters selected by ABC (see section 4.3.3.1). Comparing the 

performance of the two selection approaches, Fig 6.13 shows that the proposed hybrid ABC-NRS 

outperformed the reduction achieved by PCA for LBP, LZBP or LMP combined with GF features, 

where the difference in accuracy was 1.32%, 2.102%, and 1.348%, respectively. 

Fig. 6. 13 Comparison classification accuracy value of PCA and ABC-NRS performance 

for feature selection when applied on combined features of LBP, LZBP, and LMP with GF. 
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The proposed hybrid feature selection method combines the wrapper method (ABC) and the filter 

method (NRS). PCA also utilises the filter method, which is frequently applied for reducing the 

feature length of LBP and GF. For comparison, PCA replaced NRS in the hybrid ABC-PCA 

selection approach. Figure 6.14 shows the classification accuracy, where the proposed hybrid 

ABC-NRS outperformed the hybrid ABC-PCA for LZBP with GF features, whereas for LBP or 

LMP with GF features, the accuracy of ABC-PCA was only slightly higher than ABC-NRS. 

However, depending on PCA in the hybrid feature selection approach changed the semantics of 

the resulting feature, which do not exist in relevant features yielded by NRS (Guyon & Elisseeff, 

2003).  

 

 

6.4 Summary 

Evaluation the performance of improved feature extraction and selection methods was based on 

using the most appropriate methods and metrics that are commonly used in classification systems. 

The evaluation of new LZBP and LMP feature descriptors was based on using different datasets 

and the confusion matrix to investigate the effects of utilising these descriptors on the different 

texture characteristics and compare them with other related methods. Based on the BPNN and 

SVM classifiers, LZBP and LMP were found to improve the outcome of the classifiers compared 

Fig. 6. 14 Comparison classification accuracy value of hybrid ABC-NRS and ABC-PCA 

performance for feature selection when applied on combined features of LBP, LZBP, and 

LMP with GF. 
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to others texture descriptors. Furthermore, the results of the evaluation proved that the new 

descriptors improved the classification of features of most classes of texture characteristics that 

previous descriptors like LBP failed to classify.  

The next steps proposed towards improving feature extraction of different texture characteristics 

were feature fusion followed by feature selection approaches. The feature selection approaches 

usually supplement feature fusion. The performed evaluation demonstrated improved results of 

the proposed approaches through two types of comparison. Firstly, the LZBP and LMP descriptors 

were shown to have the ability to complement other features, such as those corresponding to 

contrast and GF. The new combined features improved the features by increase the classification 

performance when compared with outcome of the methods separately. Secondly, the goal of 

improving feature reduction was successfully achieved by developing a new hybrid selection 

method based on the wrapper ABC and NRS filter algorithms. This hybrid selection method 

produced the least relevant features space when compared with other commonly used feature 

reduction methods, where it outperformed traditional feature reduction algorithms and achieved 

better image classification performance.  

The advantage of the overall proposed approach is that it can extract powerful features by fusing 

the proposed feature descriptors with other complementary features, then processing the resulting 

features using the new feature selection method. The evaluation of the complete approach 

demonstrated its strength and the possible significant improvements in feature extraction that can 

be attained through adopting it in image classification applications. 
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Chapter 7 

Conclusion     

 

This research aimed to improve texture feature in image classification applications. At the 

beginning, this research stated several challenges associated with texture and its different 

characteristics. Furthermore, in this research, the research gap is defined as addressing the 

challenges faced by texture feature in order to improve texture-based image classification. While 

pursuing this line of research, it was observed that one of most effective ways to improve texture-

based image classification is through the extraction of powerful and distinctive features. 

Subsequently, further key issues associated with improving features from texture for overall 

classification performance were specified. All objectives stated in Chapter 1 have been met. 

Many studies have been conducted on texture features representation, and on addressing texture 

feature challenges. The best solutions that have been achieved so far included improving feature 

by either developing effective texture descriptors, feature-level fusion, and/or depending on only 

the relevant features using appropriate feature selection methods. All these procedures may 

participate together towards providing improved and powerful features from texture. An extensive 

review of the important related works was presented in Chapter 2. This included a discussion of 

the unique characteristics and properties of the most commonly used texture descriptors. 

Furthermore, our investigation studied the disadvantages and drawbacks of the current texture 

feature descriptors, and whether a single feature descriptor is satisfactory for extracting texture 

characteristics. Subsequently, an investigation was conducted of the problem resulting from 

combining a set of different features together, where such an approach results in increasing the 

feature space and giving rise to what is referred to by ‘‘curse of dimensionality’’.  
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7.1 Achievements and Novel Contributions 

In the following subsections, a short review of main achievements of this research is presented, 

followed by research novel contributions. 

7.1.1 Achievements 

The aim of this research was to find a solution for previous problems related to improving texture 

feature extraction. The proposed solution is fundamentally based on developing effective texture 

descriptors. Furthermore, for more discriminative texture features, the developed texture 

descriptors are combined with other complementary features. In addition, to avoid the curse of 

dimensionality problem that may result from the feature fusion process, an improved feature 

selection method is used. The achievements of this research therefore match its main objective, 

which is to improve texture features detection for image classification applications.  

Achievement 1: LZBP and LMP descriptors have been developed to extract texture features, 

where their development was motivated by the shortcoming of the LBP descriptor. The 

experimental results of Subsection 5.2.1 confirmed that LZBP and LMP are suited for effective 

textures classification, where these new feature descriptors usually show higher classification 

accuracies and improvements over the results of the LBP descriptor. The proposed new features 

descriptors were evaluated in Section 6.1 using a variety of benchmarks. The results of the 

evaluation revealed that LZBP and LMP are capable of yielding more distinctive texture feature 

characteristics than the majority of the most commonly used classical methods.  

Achievement 2: The effectiveness of feature extraction from different texture characteristics has 

been improved by combining the extracted features by LZBP and LMP with the extracted features 

from contrast image and GF. From the literature, contrast images and GF have been used as 

complementary features to LBP features. In the experimental results of Subsection 5.2.2 and 5.2.3 

and the evaluation in Subsection 6.2 and 6.3, it was indicated that integrating LZBP and LMP 

through the complementary features of contrast of the texture image or GF produced better results 

than applying these feature descriptors separately. The feature vector from the combined 

descriptors improved the accuracy of classification. However, the resulting feature length of the 

combined texture descriptors was long and computationally expensive.   

Achievement 3: A hybrid ABC-NRS method has been developed and applied to select only the 

relevant features from the proposed combined features. The hybrid selection method dealt 
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efficiently with resulting feature space of the combined texture descriptors. From the experimental 

results of Subsection 5.2.2 and 5.2.3, combining the proposed feature descriptors with 

complementary features, and subsequently processing the resulting features by the proposed 

selection approach produced a significantly improved classification performance. In the results of 

Subsection 5.2.2.3, the fusion approach involving combining LBP, LZBP and LMP with local 

image contrast proved to be tolerant to image problems such as blur and noise, providing better 

texture feature classification performance than other existing methods. Furthermore, in Subsection 

5.2.3.2 combining LZBP and LMP with complementary GF features, improved the extracted 

features with the least feature length. Overall, as show in sections 6.1 and 6.2, there are several 

methods were utilised throughout the development and evaluation process for proposed models to 

ensure an appropriate and fair assessment of the developed methods.   

7.1.2 Novel Contributions  

This research proposes novel texture descriptors and improved feature selection methods for 

images classification applications. The proposed texture descriptors represent a new way of 

extracting features from texture. In addition, according to the author’s knowledge, the following 

attributes of the improved feature extraction and selection methods have not been reported in the 

literature: 

Novel Local Texture Descriptors  

In this research, local texture descriptors, namely LZBP and LMP, have been developed as novel 

methods of feature extraction. These texture descriptors take more consideration of pixels’ 

intensity values in TUs than LBP. Similar to LBP, the extraction of features from the texture by 

LZBP and LMP is done via three steps, the first of which involves converting the original image 

into local texture patterns. This is done by constructing quantisation zones for thresholding the 

intensity values of pixels. Then, suitable weighting coefficients that correspond to the local 

patterns of descriptors are prepared, which are utilised in computing the matrices of LZBP and 

LMP. Finally, the statistics of local textures are computed by applying the histogram to the 

resulting matrices of LZBP and LMP. 

The mathematical details of the LZBP and LMP feature extraction processes can be found 

Subsection 3.3.1.2, while the implementation algorithms can be referred to in Subsection 4.2. 
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Improved Feature Selection Method   

The other contribution of this research is the improved feature selection approach. By the proposed 

hybrid ABC-NRS feature selection method, which takes advantages of wrapper and filter methods, 

the limitations of the previous feature selection methods can be overcome removing part of the 

feature space in order to reduce the computation cost and avoid the curse of dimensionality. 

Subsection 4.3.3 explained the implementation of the improved selection method for the proposed 

feature fusion. 

In Subsection 3.3.2, feature-level fusion models were presented. The proposed feature-level fusion 

models produced a distinctive feature vector, however, at same time, applying the concatenation 

style of feature-level fusion generated a large feature space, which required intensive 

computational power. A major part of the selection approach’s success is due to its capability to 

effectively remove the redundant features while retaining the distinctive and characteristic 

features, which thus reduce the feature length while maintaining excellent classification accuracy. 

The use of the Rough Set method was shown to reduce the feature length of the histogram resulting 

from the multi-scale LBP, LZBP and LMP descriptors, whereas the ABC algorithm was 

demonstrated to result in selecting the optimum features resulting from Gabor filter.  

7.2 Research limitations and Future Work   

While the proposed techniques have succeeded in producing valuable results, further proposals 

can be made to provide further improvement in the classification results.  

7.2.1 Research Limitations   

1. Feature extraction by LZBP and LMP mostly produces better information about different 

types of texture characteristics. Compared to LBP, the proposed texture descriptors extract 

this information by constructing more quantization zones for the intensity values of pixels 

in TUs. However, this results in longer feature length, especially for LMP, where the 

feature length is derived from the weights’ coefficients for the corresponding quantized 

intensity values of pixels. This may have negative impacts on the computation time for 

online applications, which was the main advantage of using LBP. 
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2. From the experimental results, the classification rate by the hybrid feature selection method 

is higher than that resulting from combining the features directly without feature selection. 

Although the hybrid ABC-NRS also produces the least feature length, the classification 

rate by the hybrid ABC-NRS is slightly lower than applying ABC alone for feature 

selection.      

7.2.2 Future Work    

1. Our approach relied on developing effective methods for improving feature extraction and 

selection. The proposed methods can be widely used in classification systems, or be applied 

in other applications such as feature selection to avoid the curse of dimensionality. 

Furthermore, the LZBP and LMP descriptors can be relied on wider variety of different 

image classification applications of other texture descriptors, such as the LBP descriptor 

(see Subsection 2.1.3.2). 

2. In context of the first limitation point; while LZBP and LMP offer outstanding feature 

extraction performance, the feature length of LMP is somewhat long, as it is increased by 

the zones in the neighbour places. In our implementation, for a shorter LMP histogram, the 

16-bit patterns resulting from TUs were divided into 8-bit diagonal patterns and 8-bit non-

diagonal patterns. However, there are other methods and approaches that can be utilised 

for a shorter histogram, such as the centre-symmetric LBP method (Heikkilä et al., 2009), 

or depending on ‘‘uniform’’ texture patterns (Ojala, Pietikainen, et al., 2002). These 

methods can be tested with LMP before combined its features with other complementary 

features and applying feature selection. This may also improve the performance of the 

feature selection method, as it would have to deal with a shorter feature space.  

3. In context of the second limitation point; the work based on the hybrid feature selection 

method was based on combining the ABC algorithm and the NRS method. The ABC 

algorithm was fully automated with initial parameters, whereas the NRS method required 

manual determination of the distance that replaces the equivalence neighbourhood relation 

in RS. Depending on a range of distances in different datasets that may improve the 

performance of the selected features by NRS. Thus, improving feature selection by NRS 

can be achieved by determining the appropriate distance automatically. Achieving this feat 

for the hybrid feature selection method could be result in improvements in the resulting 

classified features and classification performance.  
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Appendix 1 

Group A of Confusion Matrices for UIUC database 
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Group C of Confusion Matrices for KTHTIPS2b database 
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Group D of Confusion Matrices for Brodaze database 
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Appendix 2 

Group A of Confusion Matrices for UIUC database 
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Group B of Confusion Matrices for UMD database  
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Group C of Confusion Matrices for KTHTIPS2b dataset 
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