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ABSTRACT 

Machine monitoring in industries such as chemical process plants, petroleum refineries and 

pulp and paper industries has significantly increased over the years, mainly because of the 

economic impact associated with the breakdown of a piece of equipment. With downtime 

sometimes costing up to 100,000 USD a day (Wachel, N.D), industrial organisations have made 

it mandatory to put in place systems for monitoring the condition of critical machines used for 

production purposes to prevent unforeseen machine breakdown. Reciprocating compressors 

are one of the widely used compressor types in diverse fields of application particularly in the 

oil and gas industry or chemical industry. In these industries, reciprocating compressors are 

mainly used to deliver high-pressure gas from one location to another. Due to the importance 

of these machines in delivering high-pressured air and sometimes toxic gases safely, their 

reliability has gained widespread interest over the years. 

To improve reciprocating compressor operational performance and reliability, this research 

focuses on investigating the characteristics of vibro-acoustic signals from a reciprocating 

compressor based on a comprehensive analysis of non-intrusive vibration measurement and 

discharge gas oscillations (pulsations). This study will provide more knowledge on using two 

techniques (vibration and gas pulsations) for online monitoring and diagnosing of reciprocating 

compressor faults. Other monitoring techniques such as in-cylinder pressure, instantaneous 

angular speed (IAS), airborne acoustic as well as vibration are previously reported in literature, 

however, it is believed that no information for condition monitoring of discharge gas pulsation 

of a reciprocating compressor has been explored. 

To fulfil this study, in-depth modelling and an extensive experimental evaluation for different 

and combined faults common to reciprocating compressor systems are explored for a wide 

discharge pressure range to better understand the vibro-acoustic sources. Three common faults 

including discharge valve leakage, intercooler leakage, discharge pipeline leakage and two 

combined faults: discharge valve leakage and intercooler leakage, discharge valve leakage and 

discharge pipeline leakage under various discharge pressures are studied in this thesis. The 

simulation of compressor performance with and without faults for several discharge pressures 

were in good agreements with the corresponding experimental evaluations, and was used to 

understand the compressor dynamics. Furthermore, a preliminary study on the effectiveness of 

conventional methods such as time-domain and frequency-domain analysis of both vibration 

and gas pulsation measurements were investigated. Results show that, these traditional 
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methods were insufficient in revealing fault characteristics in the vibration signal due to the 

usual noise contamination and nonstationary nature of the signal. Although, with the gas 

pulsation signal, waveform patterns and resonant frequencies varied with faults at several 

discharge pressures, nevertheless, effective band pass filtering needed to identify the best 

frequency band that can represent the characteristic behaviour of gas pulsation signals proofed 

difficult and time consuming. 

Amongst several advanced signal-processing approaches reviewed such as wavelet transform, 

time synchronous average, Hilbert transform, and empirical mode decomposition; wavelet 

packet transform is regarded as the most powerful tool to describe gas pulsation and vibration 

fault signals in different frequency bands. A combination of wavelet packet transform (WPT) 

and Hilbert transform (envelope analysis) is proposed to achieve optimal and effective band 

pass filtering for resonance band identification in gas pulsation signals, and WPTs de-noising 

property, which can effectively reduce excessive noise revealing key transient features in 

vibration signals. 

Optimal band selection for vibration signal was achieved using entropy computation. The band 

with the highest entropy was used to reconstruct the signal and the envelope of the new 

vibration signal was used for classification. The fundamental frequency and its harmonics were 

used as a tool for fault classification. All fault conditions were clearly separated using the 

fundamental frequency and its third (3X) harmonic.  

Regarding gas pulsation signals, the optimal band was selected by computing the root mean 

square (RMS) values of all eight enveloped band signals for several discharge pressures and 

faults. The band with the best RMS separation trend was selected for further classification 

using two main diagnostic features: the kurtosis and entropy of optimal band. The plot of 

kurtosis against entropy as a diagnostic tool showed good valve fault classification across a 

wide discharge pressure range. 

Although the analysis of vibration signal using the proposed methods gave more reliable results 

for reciprocating compressor fault detection and diagnosis compared to the gas pulsation 

results, analysis of gas pulsation signals gave a better result on the optimal frequency band 

selection that can represent the behaviour of reciprocating compressor (RC) valve fault. 

Therefore, it can be deduced that analysis of the RC vibration signal together with the gas 



CHARACTERISING VIBRO-ACOUSTIC SIGNALS OF A RECIPROCATING 

COMPRESSOR FOR CONDITION MONITORING 

 

5 
DEGREE OF DOCTOR OF PHILOSOPHY (PHD) 

pulsation signal has a promising potential to be used for condition monitoring and fault 

diagnostics of reciprocating compressors online. 
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 CHAPTER ONE 

1   INTRODUCTION 

This chapter presents a general introduction to condition monitoring of machines by outlining 

the relevance of monitoring machines, monitoring strategies available in industry. Finally, the 

aims and objectives of this research are given, and the chapter ends by describing the layout 

of the thesis. 
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1.1 Background and Research Motivation 

Reciprocating piston compressors are one of the most common equipment that makes up 

process plants in several industries including oil and gas refineries, petrochemical industries, 

chemical plant industries, and many more (Grib & Zhukov, 2001). Compressed air or gases are 

used throughout production operations, and up to 90 percent of compressed air is lost either in 

the form of reusable heat, friction, misuse or noise (US Department of Energy, 2003). Also, 

research has shown that reciprocating compressors are not reliable enough because of the 

constant collision of mechanical parts, which increase noise levels, cause vibrations, and 

intensifying degradation of significant machine components (Grib & Zhukov, 2001), (Zheng, 

2005). Therefore, it is vital that compressors are carefully monitored and maintained to improve 

its efficiency in industrial plants.  

Monitoring is not restricted to only compressors; it has become exceedingly relevant to know 

the condition of all major machines, because machine components have reduced service life 

when subjected to process effects, defected, and are overused. Figure 1.1 highlights the 

percentage of maintenance costs for several compressor components according to results from 

a worldwide questionnaire by (Leonard, 1996). 
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FIGURE 1.1: PRIMARY CAUSES OF UNSCHEDULED RECIPROCATING COMPRESSOR 

SHUTDOWN 

Findings from the worldwide questionnaire, which involved ten countries including: United 

States, France, Germany, Canada, United Kingdom, China, Singapore, Belgium, Norway, 

Kuwait and the United Arab Emirates, revealed back in the 90s that compressor valves cost the 



CHARACTERISING VIBRO-ACOUSTIC SIGNALS OF A RECIPROCATING 

COMPRESSOR FOR CONDITION MONITORING 

 

32 
DEGREE OF DOCTOR OF PHILOSOPHY (PHD) 

most in maintenance because they are actually the heart of the machine and are always 

subjected to high-pressured air. 

A more recent survey carried out by Prognost in 2009 also showed that valve failures are one 

of the leading causes of unscheduled compressor shutdown (Daniel, 2014). The study was 

based on records of 524 compressor damages from 72 different plants (see Figure 1.2 below). 

 

FIGURE 1.2: PROGNOST COMPRESSOR SYSTEM FAILURE MODE SURVEY 2009 

Managers, engineers, maintenance personnel and even manufacturers are increasingly 

becoming interested in both the historical and present state of machinery in their industries 

because the condition of a machine has significant cost effect on the business with regards to 

maintenance and fault development. According to the investigation by Leonard, one of the 

factors, which increase reciprocating compressors’ reliability, in hydrogen, services, for 

instance, is an unscheduled shutdown of reciprocating compressors. It was revealed that an 

unplanned shutdown of reciprocating compressors results in up to USD 100,000 per day in lost 

production revenue (Leonard, 1996). Therefore, there is a need to increase the reliability of 

reciprocating compressors to ensure continuous operation without unscheduled shutdown. 

1.2 Relevance of Monitoring Machinery 

Maintenance is a word closely associated with monitoring, and the reason is that machines can 

either fail early (shortly after installation) or later (within or after its lifespan expectancy). 
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Therefore, industrial professionals and maintenance specialists have realised from experience 

and years of research, that active monitoring of machines allow for the prediction of the 

inevitable maintenance requirement of a machine, which goes a long way in enabling its 

reliability (Williams, Davies, & Drake, 1994). The performance of any machine would 

deteriorate over time because of the effects on operating conditions (load, harsh environment, 

human errors, etc.), and the cost of maintenance is a major setback for managers in industry. 

However, studies have shown that the cost of machine failure or breakdown dramatically 

outweighs the cost of machine maintenance (Pascual, Meruane, & Rey, 2008); (Komonen, 

2002); (Komonen, 1998).  

To reduce the cost of unscheduled maintenance resulting from failed key machine components, 

an effective maintenance strategy is required, which ensures a satisfactory level of machine 

reliability is achieved throughout its service life. The primary focus of this study is to use 

vibration and gas pulsation measurements for condition monitoring of reciprocating 

compressors; however, a brief discussion on maintenance strategies is presented to introduce 

condition based monitoring/maintenance (CBM). 

Corrective maintenance, emergency maintenance, preventive maintenance scheduled 

maintenance, and condition-based maintenance are some of the widely implemented 

maintenance practices used in industries (Williams, Davies, & Drake, 1994). These 

maintenance strategies are classified into two main categories: planned maintenance and 

unplanned maintenance. Figure 1.3 gives a detailed outline of the two main classes of 

maintenance strategies.  

 

FIGURE 1.3: CLASSIFICATION OF MAINTENANCE STRATEGIES (WILLIAMS, DAVIES, & 

DRAKE, 1994) 
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These are all good maintenance practices; however, one or two of these strategies have proven 

to be more effective and have greater economic advantage over the others. Preferences can be 

made depending on the size of the equipment being maintained. Unplanned maintenance 

strategy, which is applied when a failure has already occurred, would be most suitable if the 

equipment in question is significantly small and the cost of replacement is frugal, with the 

exception of this, it would be economically unwise to adopt this strategy for large and 

expensive equipment. Preventive and conditioned based maintenance under planned 

maintenance strategies are most commonly adopted in industries that use large and very 

expensive hi-tech equipment. This is because the cost of replacing the entire unit in the event 

of a problem or even the cost of shutting down the system to detect and diagnose a problem 

that has no monitoring history would have a great effect on the productivity of the business as 

a whole (Bentley, 1993). Already business owners and machine manufacturers have taken to 

condition based monitoring as a viable technique for early detection and diagnosis of machine 

faults. Early detection of faults and potential problems have proven to result in the following:  

 Improved plant performance 

 Machine reliability 

 Prevents unpredicted shutdown 

 Improves Operating efficiency of the machine, and 

 Reduced maintenance cost 

(Bentley, 1993) 

Condition-based maintenance (CBM) also known as on-condition maintenance involves 

regular or continuous monitoring of the machine to detect particular components within the 

system that develop faults for appropriate actions to be taken immediately (depending on the 

degree of effect the problem could cause) to prevent failure or total process shutdown. 

Condition-based monitoring ensures maintenance action is taken only when the normal 

operating state of monitored machines change due to a developing fault. Some of the widely 

adopted condition based monitoring techniques for machine monitoring are: 

 Wear debris analysis 

 Visual inspection 

 Lubrication analysis 

 Vibration based monitoring 
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 Airborne acoustic monitoring 

 Gas Pulsation monitoring 

 Current monitoring 

(Rao, 1998; Williams, Davies, & Drake, 1994) 

This study focuses particularly on the employment of vibration and gas pulsation monitoring 

to determine the condition of a reciprocating compressor. Detailed discussion on key condition 

monitoring techniques are presented in Chapter three of this thesis. 

1.3 Problem Statements 

Although several monitoring techniques are available, there are still gaps in the efficiency and 

effectiveness of some of these available techniques to accurately detect faults, and lead to the 

prevention of an unplanned shutdown of the reciprocating compressors. These gaps are extant 

because of the harsh and inevitable operating conditions these machines are subjected to in 

industrial settings. Therefore, there is a call for researchers to investigate and source new and 

improved ways of monitoring to improve the efficiency of these industrial machines exposed 

to ineluctable harsh working conditions. 

1.4 Research Aim 

To determine the characteristics of faults detected using vibro-acoustic signals from a two-

stage single acting reciprocating compressor. This would lead to the discovery of the 

characteristics and effectiveness of gas pulsation signals and vibration signals for condition 

monitoring purposes. 

1.5 Research Objectives 

One: To set up a comprehensive reciprocating compressor test rig, and to develop experimental 

procedures for condition monitoring of the two-stage reciprocating compressor. This will allow 

condition monitoring using gas pulsation and vibration sensors, and will allow specific 

compressor faults to be seeded into the compressor: valve leakage, intercooler leakage, and 

pipeline discharge leakage. 

Two: To review various condition based monitoring techniques presently adopted in industry, 

and to assess the performance of crucial monitoring techniques suitable for early fault 

detection. 
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Three: To develop a mathematical model of the two-stage reciprocating compressor, which 

includes the gas pulsation behaviour to aid in understanding the physical properties of the 

reciprocating compressor.  

Four:  To validate the mathematical model developed by correlating measured and simulated 

results. 

Five: To determine the characteristics of gas pulsation and vibration measurements from the 

reciprocating compressor using traditional signal processing methods.   

Six: To analyse and examine the nonstationary vibration and gas pulsation signatures by the 

application of advanced signal processing techniques, such as Hilbert transform based 

convolution and wavelet packet transform.     

Seven: To provide guidelines for future research in this field based on the investigations 

conducted. 

1.6 Thesis Outline 

Chapter 1: The motivation and background of this research work are presented in this chapter. 

Also, a brief discussion on maintenance strategies, which leads to the introduction of machinery 

condition monitoring, is given, and finally the aims, objectives and thesis outline are presented. 

Chapter 2: This chapter reviews several compressor types and their typical applications. Then 

the failure mode and effects analysis (FMEA) of the compressor types discussed is presented 

following some detailed discussion on crucial reciprocating compressor components.  

Chapter 3: This chapter surveys the literature on signal processing techniques used for 

condition monitoring of machines such as reciprocating compressors. Relevant methods are 

discussed briefly to help understand the results presented in Chapters 7 to 10. 

Chapter 4: This chapter describes the test rig and supporting facilities, which includes all 

transducers used for the experiment, the hardware (data acquisition system) and software 

(MATLAB) used for data processing. Finally, common reciprocating compressor faults seeded 

on the machine are described. 

Chapter 5: The mathematical model of the reciprocating compressor developed and modified 

is presented in this chapter. The model gives the In-cylinder pressure, valve dynamics and 
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discharge chamber waves of the reciprocating compressor. The experimental signatures are 

used to validate the model predictions. 

Chapter 6: This chapter verifies the accuracy of the developed model by comparing in-cylinder 

pressure, valve displacement and gas pulsations (at the discharge chamber) predictions with 

trends from the experimental study under normal conditions. More so, the prediction trends for 

the fault simulations are also compared with experimental fault measurements. 

Chapter 7: To investigate the characteristics of vibration signals from the reciprocating 

compressor cylinder heads, traditional signal processing techniques such as time domain and 

frequency domain methods are explored in this chapter. 

Chapter 8: This chapter investigates the characteristics of second-stage gas pulsation signals 

from the discharge chamber of the reciprocating compressor by applying traditional signal 

processing techniques such as time domain and frequency domain methods. In addition, the 

effectiveness of these techniques are investigated when three common reciprocating 

compressor faults are present (valve leakage, intercooler leakage and discharge pipeline 

leakage). 

Chapter 9: This chapter presents the analysis of vibration signal using advanced signal 

processing technique wavelet packet transform for detecting two common reciprocating 

compressor faults (valve leakage and intercooler leakage) including the effects of the two faults 

combined. 

Chapter 10: This chapter presents the analysis of gas pulsation signal using advanced signal 

processing technique wavelet packet transform for detecting common reciprocating 

compressor faults (valve leakage, intercooler leakage, and discharge pipeline leakage) 

including the effects of valve leakage and discharge leakage simultaneously. 

Chapter 11: In this chapter, the research objectives and achievements are reviewed. 

Furthermore, a summary of the novel features and contribution to knowledge regarding this 

research are detailed, and finally, recommendations for future work are presented. 
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CHAPTER TWO 

2 RECIPROCATING COMPRESSORS AND COMMON 

FAILURE MODES 

This chapter briefly reviews different types of compressors and their applications. Then the 

operating principles of reciprocating compressors are presented for single-stage and double-

stage compressors. Failure mode and effects analysis (FMEA) of the positive displacement 

type compressors are carried out, and finally, key components of the reciprocating piston 

compressors are reviewed.  
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2.1 Introduction 

Compressors are used to move gases or other fluids with pressures as low as 35psi (pound per 

square inch) from one location to a different location at an increased pressure of about 65000 

psi in extreme cases (Heinz & John, 1996). These machines are one of the oldest and most 

popular devices widely used in refineries, chemical plants, and oil production facilities. 

Compressor history dates as far back as the 1850s and was very popular for its design simplicity 

and ability to provide very high pressures under variable loading. 

The following sections give a brief overview of several compressor types (see Figure 2.1) to 

provide an elementary understanding of all compressor concepts and their functions. The 

ability to identify and understand several compressor types and their application can 

significantly reduce the extra cost accrued from unplanned maintenance, or compressor failure 

(Robison & Beaty, N.d). 

2.2 Compressor Types 

Compressors vary in sizes, operation mechanism and application range (power requirement, 

stage requirement, pressure ratios etc.). Based on the compression mode, compressors can be 

subdivided into two primary modes or types namely: 

• Intermittent – Meaning that compression takes place in cycles or phases and 

compression can only continue after a cycle is completed. 

• Continuous – This means that compression of the gas is not interrupted at any time until 

the whole process is completed. 

These two modes of compression, intermittent and continuous are further grouped into positive 

displacement and dynamic compressors. The positive displacement compressor types have the 

needed volume of gas enclosed in a space and displaced at a higher pressure, mechanically 

changing the volume of the enclosed gas. On the other hand, the dynamic compressors make 

use of a rotating element to continuously move gas in and out of the device (Brown, 2005). 

Figure 2.1 presents a brief listing of different types of compressors classified according to the 

compression modes discussed. 
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FIGURE 2.1: COMPRESSOR CLASSIFICATION 

2.2.1 Dynamic Compressors 

Dynamic compressors are of the continuous flow class; they mainly transport suction fluid into 

a diffuser through a high-velocity steam jet (Boyce, 2009). The two main types of dynamic 

compressors are briefly described in the following subsections (2.2.1.1 and 2.2.1.2). 

2.2.1.1 Centrifugal Compressors 

A centrifugal compressor is a dynamic machine that typically functions using impellers 

continuously accelerating gas through a diffuser and out of the compressor chamber. As seen 

in Figure 2.2, the diffuser consists mainly of vanes, which are tangential to the impeller. These 

type of compressors use three acting forces – centrifugal, aerodynamic, and change in velocity 

to produce an increased discharge pressure higher than the initial suction gas pressure. 

Centrifugal compressors are mainly used in petrochemical industries because of their smooth 

operation process and high reliability compared to other compressor types (Boyce, 2009).  
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FIGURE 2.2: A CENTRIFUGAL COMPRESSOR (BOYCE, 2009) 

2.2.1.2 Axial Compressors 

The axial compressor, like the centrifugal counterpart, is a dynamic machine mostly used in 

large gas turbines. Compression is achieved by applying inertia forces through rotors to 

increase the speed of the fluid. The fluid is diffused by another row of stationary blades called 

stator, to increase fluid pressure (Boyce, 2009); (Giampaolo, 2010). Figure 2.3 shows a typical 

schematic of the axial compressor. The axial compressors are usually of higher efficiency, but 

when it comes to large operating region and cost, the centrifugal type is preferred. 

 

FIGURE 2.3: AN AXIAL COMPRESSOR (GIAMPAOLO, 2010) 
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2.2.2 Ejectors 

Ejectors are continuous compression flow machines; however, unlike the dynamic 

compressors, which also exhibit the same flow mechanism, they have no moving parts as seen 

from the schematics in Figure 2.4 (Brown, 2005).  

 

FIGURE 2.4: TYPICAL EJECTOR (BROWN, 2005) 

2.2.3 Rotary Positive Displacement Compressors 

Rotary positive displacement compressors are compressors that function by using a rotary 

device - blade or impeller to push the fluid (gas or liquid) from one place to another increasing 

its pressure as it moves. This group of compressors are compact, relatively low-priced, and 

require very little maintenance (Mobley, Root Cause Failure Analysis: Plant Engineering 

Maintenance Series, 1999). They can be categorised into three main types. 

2.2.3.1 Sliding Vane Compressors 

The essential elements of the sliding vane are the cylindrical housing and the rotor assembly. 

Sliding vane compressors have blades embedded within an eccentrically fitted cylinder located 

in a tube that rotates. The major difference between a reciprocating compressor and the sliding 

vane is the absence of spring-loaded valves, which are present in reciprocating compressors 

and not in sliding vane compressors (Mobley, 1999). 
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FIGURE 2.5: SCHEMATICS OF A TYPICAL SLIDING VANE COMPRESSOR (CIPOLLONE, 

2016) 

2.2.3.2 Helical Lobe Compressors 

The Helical lobe compressor is also known as a rotary screw compressor. It works by using 

two inter-meshing screws (one male and the other female) rotating towards each other causing 

the gas to be trapped in the centre cavity and finally discharging the gas through the outlet, 

creating a higher gas pressure (Mobley, 1999). Two primary characteristics of the helical lobe 

are:  

1. Variable pressure,  

2. Constant volume. 

Failure of these machines is prevented via control measures, which entail setting the relief 

valves and safety valves within 10 percent of absolute discharge pressure (Mobley, 1999). 

These compressors can handle moderate amount of liquid, dirty gases, and do not encounter 

pulsating flow. 
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FIGURE 2.6: HELICAL LOBE COMPRESSOR (ORMER, 2002) 

2.2.3.3 Liquid-Seal Ring Compressors 

The liquid ring is also called liquid-piston and consist of a rotor with several forward-turned 

blades, rotating about the middle cone, which has suction and discharge ports as seen in Figure 

2.7. The liquid ring though similar to sliding vane type differs from the sliding vane compressor 

as both liquid and gas are introduced to the chamber for compression; the liquid is separated 

from the compressed gas with the aid of a conventional baffle or a centrifugal separator 

(Mobley, 1999). 

 

FIGURE 2.7: A TYPICAL LIQUID RING COMPRESSOR (AL-QATTAN, 2007) 
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2.2.4 Reciprocating Piston Compressors 

The reciprocating compressor is an intermittent flow, positive displacement machine that 

functions by the forward and backwards (reciprocating) movement of a piston in a cylinder to 

deliver fixed volume gas at a higher pressure. They are one of the most efficient compressor 

types according to Mobley (1999) and can be used for applications that require high-pressure 

at a low flow rate. However, because of the high number of components within the 

reciprocating machine which require maintainenance, these compressor types are considered 

unreliable (Brown, 2005). The primary components of this compressor type are labelled in 

Figure 2.8. 

Depending on the compression ratio required for a particular application, the reciprocating 

piston compressors can be single-stage or multi-stage; Also, for refrigeration services and 

smaller air compressors, single-acting cylinders are employed. However, for process services 

and larger air compressors, double-acting configuration is usually used (Brown, 2005). Double-

acting construction uses both sides of the piston for compression, and two piston strokes are 

present in one revolution, while with the single-acting configuration, only one side of the piston 

is used for air compression. 

 

FIGURE 2.8: CROSS-SECTION OF A TYPICAL SINGLE-ACTING RECIPROCATING 

COMPRESSOR (AL-QATTAN, 2007) 
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2.2.4.1 Operating Principle of a Reciprocating Compressor 

Figure 2.9a illustrates the piston movement and valve behaviour of a reciprocating compressor, 

and Figure 2.9b shows an actual pressure-volume diagram for one compression cycle for a 

single-acting reciprocating compressor. The typical operating principle of a single-acting, 

single-stage reciprocating compressor often begins with both suction and discharge valves 

closed, then the piston travelling in the opposite direction from the cylinder head causing a 

pressure drop in the cylinder, which opens the suction valve allowing gas to enter into the 

cylinder. This process is illustrated in Figure 2.9a POSITION A. Once the pressure in the 

cylinder is equal to the suction-line pressure, the suction valve closes, and by this time or crank 

angle, the piston is at bottom dead centre (BDC) as seen in POSITION B. The crankshaft 

rotation causes the piston to move in the reverse direction travelling back towards the cylinder 

head at top dead centre (TDC), compressing the suctioned gas and increasing the cylinder 

pressure (POSITION C). The discharge valve opens as soon as the valve spring force is 

overcome and the cylinder pressure is higher than the discharge-line pressure; this takes place 

in POSITION D of Figure 2.9a. The discharge valve closes when the gas is equal to volumetric 

clearance, which is when the piston reaches TDC. This process is repeated as the piston moves 

back towards the BDC of the cylinder because of crankshaft movement (Arnold & Stewart, 

1999); (Brown, 2005). These compression steps are illustrated in the p-v diagram (see Figure 

2.9b), which helps to identify the condition of the reciprocating compressor at each process of 

the compressor cycle. 
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FIGURE 2.9: SINGLE-ACTING COMPRESSION STEPS OF A COMPRESSOR CYLINDER B) 

ACTUAL P-V DIAGRAM OF SINGLE STAGE COMPRESSION CYCLE  

2.3 Typical Compressor Application 

This section reviews some typical compressor applications. The choice of what compressor to 

use for any particular application depends on three main factors: the flow rate, pressure required 

and characteristics of the fluid to be compressed. Table 2.2 gives a list of some applications 

and several compressor types used in industries; also, Figure 2.10 shows a graphical illustration 

of flow ranges for various compressor types used in refineries, chemical and gas processing 

industries. 

Centrifugal compressors have the broadest application range; while the reciprocating 

compressors can compress lower volumes compared to the centrifugal type and are most 

suitable for very high-pressure applications. Axial compressors are best for applications 

requiring high capacity, whereas, the rotary types (including sliding vane, helical lobe, and 

liquid ring) are chosen for reasons not relating to pressure and capacity range.  
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TABLE 2.1: COMPRESSOR APPLICATIONS 

INDUSTRY APPLICATION/SERVICES COMPRESSORS USED 

 

 

Oil and Gas 

 

 

Booster Centrifugal and/or 

Reciprocating 

compressors 

Gas Lift Centrifugal Compressors 

Flash Gas Centrifugal, Screw 

Compressors 

Vapour Recovery Sliding Vane/ or Screw 

Compressors 

Overhead or flare Gas compression Reciprocating 

compressors 

Gas transmission applications Reciprocating 

compressors 

 

 

Refineries 

Fluid Catalytic Cracking air blower Axial Compressors,  

In chemical processes that require high 

capacity air compression 

Axial and Reciprocating 

Compressors 

Combustion Gas turbines Axial Compressors 

Processing unit hydrogen make-up Reciprocating 

Compressors 

Petrochemical 

Industry 

Flammable and hazardous gas services Reciprocating 

Compressors 

 Freon  and Ammonia refrigeration   
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LPG Plant air, some wet services, and 

services with vacuum suction 

conditions 

Rotary Compressor types 

Other Services  Smaller Air Compression Services Reciprocating 

Compressors 

 

FIGURE 2.10: COMPRESSOR TYPES AND THEIR APPLICATION RANGE BASED ON 

PRESSURE AND FLOW (BROWN, 2005) 

2.4 Compressor Problems 

No proper operating process can remain in the same condition without appropriate maintenance 

and checks being carried out from time to time or at a scheduled time. This is because, on 

constant or continuous use, components within any system would deteriorate over time and 

eventually lead to unwanted failure. Appendix I presents some common problems and their 

causes often associated with positive displacement compressors according to Mobley, (2004). 

Valve failure, pulsations and imbalance are the most common problems that occur with the 

positive displacement compressors. These problems are heavily associated with the inherent 

nature and vibrations from the system. Extensive variations in molecular weight and specific 

heat of gas, temperature, and pressure results in the following problems:   

 The available driver power could be exceeded 
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 Failure to meet the required throughput. 

 The required discharge pressure will not be achieved and the inability to achieve the 

desired discharge pressure would cause the operation to shut down 

(Giampaolo, 2010) 

2.5 Reciprocating Compressor Components  

2.5.1 Compressor Valves 

The compressor valves also known as check valves, are used to control the inlet (suction) flow 

and discharge flow of gas within the compressor cylinder. They are known to be the key 

component in a reciprocating compressor because valve fault would directly affect the 

efficiency (capacity and horsepower) and reliability of the compressor (Hanlon, 2001).  

The opening and closing of check valves are due to the differential pressure of the substance 

being compressed; however, in certain conditions, the springs could be used in addition to the 

differential pressure of the gas to aid opening and closing. The valve displacement must be 

large enough to allow the required amount of gas into the system for every revolution of the 

crankshaft. Compressor efficiency would increase with smaller valve displacement because 

less energy will be needed to open the valve. Furthermore, a lower valve displacement would 

result in smaller impact velocities of the valve body on its seat, reducing fatigue, noise, and 

failure of valves. Table 2.5 outlines common valve types used in compressors. 

TABLE 2.2: COMPRESSOR VALVES (BROWN, 2005; O'NEILL, 1993) 

VALVES DESCRIPTION ADVANTAGES 

Poppet 

valves 

These valves are commonly used 

for low compression ratio and low 

speed compressors. 

They are sturdy and have a high 

resistance level. 

They are tolerant to rust, dirt etc. 

Poppet valves made of polymer is 

used for systems with higher 

compression ratios 
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Mini-

poppet 

Valves 

They are common poppet valves with a much smaller poppet and valve 

seat hole, used mostly for high compression ratio compressors. 

Reed 

valves 

Sufficient pressure from the gas in 

the appropriate direction 

overcomes the spring force of the 

reed and causes it to bend allowing 

gas flow. 

They are used in high-performance 

two-stroke engines. 

These valve types are very flexible, 

allowing both suction, and discharge 

valves to be incorporated into one 

valve plate. 

Channel 

valve 

These valves have a series of 

straight slots in the valve body for 

gas to pass through. They are 

generally applied to industrial air 

machines 

They are durable 

Concentric 

Ring 

Valves 

These valves are made up of one or 

more relatively narrow rings 

arranged concentrically about the 

centreline of the valves 

They are commonly used valves in 

air and gas compressors. 

It has a high tolerance for impacts. 

Ported 

Plate 

valves 

They are similar to concentric ring 

valves, but the rings of the ported 

plate valves are joined into a single 

element 

Easy to control flow because the 

valve has a single element; impact 

on the valve is reduced due to the 

single element 

Feather 

Valve  

These valves are mostly applied to 

industrial air machines and are 

made up of rectangular elements 

 

Poppet valves, ring valves, and plate valves, rectangular element (feather, channel and reed 

valves) are four common valve configurations used in reciprocating compressors (Arnold & 



CHARACTERISING VIBRO-ACOUSTIC SIGNALS OF A RECIPROCATING 

COMPRESSOR FOR CONDITION MONITORING 

 

52 
DEGREE OF DOCTOR OF PHILOSOPHY (PHD) 

Stewart, 1999; Brown 2005). Some of the valves described above are seen in Figures 2.11 and 

2.12. 

 

FIGURE 2.11: CHANNEL VALVE (FORSTHOFFER, 2017, P. 119) 

 

FIGURE 2.12: PLATE VALVE (FORSTHOFFER, 2017, P. 120) 
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FIGURE 2.13: ACTUAL PLATE VALVE USED FOR THIS RESEARCH 

2.5.2 Elements of a Compressor Valve 

Four essential components of a compressor valve are: valve seat, sealing element(s), lift 

constraint (guard), and spring(s). To calculate the dynamics of a valve, the difference in 

pressure across the force area of the valve plate Av; the springing of the valve and the 

contribution made by the viscous forces during the initial stages of the valve opening are three 

factors to be considered together with the resulting force in the equation (2.1) below: 

    
¨

1  2 1 v v v v adhm x p p A k x l F       (0.1) 

Where:  

𝑚𝑣 = Mass of Valve plates 

𝑘 𝑎𝑛𝑑 𝑙1   = the stiffness of springing and initial deflection of the springs 

𝑝1 𝑎𝑛𝑑 𝑝2 = pressure in front of the valve and pressure behind the valve respectively 

𝐹𝑎𝑑ℎ = adhesion force and is determined by the equation  

 
3

˙

1    v
adh

v

x
F f

x
   (0.2) 

The type of compressor valve used in this study is the annular ring valve See Figure 2.13. This 

valve consist of concentric rings held against ring springs. These annular ring valves are 
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suitable for corrosive environments, also, its design allows for easy fitting and removal of valve 

components for maintenance purposes. 

2.5.3 Compressor Cylinder  

The compressor cylinder is a vessel used to keep the gas during compression (SPE 

International, 2013; Arnold & Stewart, 1999). As mentioned above, the cylinder can be either 

single or double acting type. 

It is also worth mentioning that according to the reports from SPE International (2013), the 

maximum allowable working pressure (MAWP) for any cylinder should be at least 10% higher 

than the design discharge pressure or a minimum of 25 psi.  

2.5.4 Compressor Cylinder Liner 

These are usually included in the cylinder composition to make the cylinders last longer, and 

these liners can be easily replaced if damaged as a result of heat or piston action. 

However, one disadvantage of having these liners is that they increase the clearance between 

the valve and piston thereby lowering the capacity and efficiency of the cylinder. 

2.5.5 Compressor Crankshaft 

The crankshaft revolves around the centre of the frame, causing the crosshead connected to the 

rod to rotate. The piston rod and piston is driven by the linear reciprocating motion of the 

crankshaft (Arnold & Stewart, 1999; SPE International, 2013). (Arnold & Stewart, 1999) 

Material specification for compressor crankshafts: 

o For large compressors (above 150 to 200 horsepower) – forges steel crankshafts 

o For medium size compressors – cast crankshafts 

2.5.6 Compressor Piston 

The piston prevents the gas from spreading through to unwanted areas within the cylinder, and 

is situated at the end of the piston rod. Aluminium and cast iron are two common lightweight 

materials that the piston is made of and damages to the piston are prevented by using wear 

bands and piston rings (SPE International, 2013; Arnold & Stewart, 1999). 
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2.5.7 Compressor Bearings  

Bearings are located in several areas within the reciprocating compressor system. For instance, 

the main bearing is located between the crankshaft and frame (Arnold & Stewart, 1999). 

Bearings are mainly used to tightly secure the crankshaft, connecting rod, and crosshead within 

the compressor frame to ensure proper positioning. 



CHARACTERISING VIBRO-ACOUSTIC SIGNALS OF A RECIPROCATING 

COMPRESSOR FOR CONDITION MONITORING 

 

56 
DEGREE OF DOCTOR OF PHILOSOPHY (PHD) 

CHAPTER THREE 

3 REVIEW OF CONDITION-BASED MONITORING (CBM) 

This chapter presents a critical review of common machine monitoring methods and techniques 

applicable to reciprocating compressors and their limitations. The second part of this chapter 

reviews possible statistical parameters and features for fault detection of industrial machinery. 
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3.1 Introduction 

Condition monitoring is a practice that has been in existence since the late 70s; In a general 

sense of understanding, condition based monitoring or maintenance (CBM) can be seen as 

practices that enable long term reliability and sustainability of assets (Scott, 2011). Various 

components within a machinery have limited lifespans, and frequent use may cause these 

components to wear before reaching its service life. There is a need to assess the condition of 

process machinery to prevent unexpected failures, which can disrupt industrial operations. By 

consistent monitoring of measurable parameters, changes that result from the continuous use 

of machines are detected and 10 to 20% catastrophic failures in unmonitored reciprocating 

compressors can be prevented according to finding by Schultheis, Lickteig, and Parchewsky 

(2007). 

Machine monitoring and diagnostics allow for early detection of faults, and these faults can 

develop into severe problems if not managed in time. Monitoring also allows for effective 

analysis of information retrieved from measuring instruments to give an appropriate diagnosis 

of system-generated issues. Furthermore, production capacity, product quality, and the 

effectiveness of production plants can be massively improved by implementing an effective 

monitoring system (Rao B. K., 1998). Some of the most popular techniques suitable for 

condition monitoring of reciprocating compressors include visual inspection, cylinder pressure 

monitoring, instantaneous angular speed, air-borne acoustic (gas pulsation) monitoring, and 

vibration monitoring are briefly discussed. 

3.2 Visual Inspection 

Visual inspection is one of the simplest and oldest traditional condition monitoring techniques; 

it requires the human senses such as sight, touch, and sound to detect abnormalities on the 

reciprocating compressor. It is cost effective but requires the assessor to have basic knowledge 

or some experience on condition monitoring of the machine for an accurate assessment. Visual 

inspection is often used for detection of cracks, corrosion, excessive noise, excess leakage and 

heavy vibrations. However, this technique is usually supported by other monitoring techniques 

for a reliable and valid assessment. 

3.3 Cylinder Pressure Monitoring 

Cylinder pressure monitoring is an effective way to determine the overall condition of a 

reciprocating compressor. Valuable information on the compressor capacity and power, piston 
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rings, suction and discharge valves can be obtained from the dynamic cylinder pressure 

measurement. Figure 3.1 shows a typical one revolution pressure measurement from a two-

stage reciprocating compressor.  

 

FIGURE 3.1: PRESSURE MEASUREMENT FROM A TWO STAGE RECIPROCATING 

COMPRESSOR 

The dynamic cylinder pressure profile is of great value because it provides the ability to 

correlate events from noisy vibration measurements with events in the pressure plots (Caie & 

Bickmann, 2017). However, the pressure-volume diagram which was a popular visualisation 

indicator used for monitoring the condition of reciprocating compressors with slow speeds is 

no longer practical when used on machinery with increased speed according to (Goldman, 

1984). Also, it might not always be feasible to physically mount a pressure sensor directly 

inside the cylinder of a reciprocating compressor due to mechanical and sensor safety reasons. 

This is why non-destructive means are often preferred for condition monitoring of 

reciprocating compressors. 

Several approaches have been explored using pressure signals to detect faults on the 

reciprocating compressor. Pichler and his colleagues used the pressure-volume diagram (PV 

diagram) to detect leaks from the reciprocating compressor valves. Their study revealed that 

the shape of the P-V diagram is distorted when there are leaks on the valves especially when 

the valves are closed (Pichler, et al., 2013). Whereas, Wang, et al., used pressure-volume 
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diagram together with a support vector machine (SVM) for fault diagnosis of reciprocating 

compressor valves (Wang, Song, Zhang, & Li, 2010). Elhaj, et al. developed the numerical 

simulation of a two-stage reciprocating compressor to show the effects of several operating 

conditions and fault conditions on the pressure and instantaneous angular speed (IAS) 

waveform. The simulation study showed that the two techniques used can show waveform 

fluctuations, which can be used to identify different valve faults on the suction and discharge 

valve plates. Although the pressure measurements presented clear detection features, it was 

acknowledged that this technique was difficult to implement due to its intrusive installation 

means (Elhaj, et al., 2008). 

3.4 Instantaneous Angular Speed 

The instantaneous angular speed (IAS) measurement is also an effective method for condition 

monitoring of reciprocating compressors, mostly because the speed contains relevant 

information about the cylinder pressure and has been successfully employed in fault detection 

of valve leakage and worn valve spring on the reciprocating compressor (Elhaj, et al., 2008); 

(Al-Qattan, Al-Juwayhel, Elhaj, Ball, & Gu, 2009). To apply this method, an encoder fitted to 

the crankshaft of the flywheel is required to measure the angular speed at any instant in radians 

per second or revolution per second. Processing of the encoder signal is done by counting the 

number of pulses in a given period and measuring the elapsed time for one cycle of the encoder 

signal (Li, et al., 2005). 

Machine monitoring via IAS measurement has been studied widely in recent years because 

IAS signals have less noise contamination and are closely related to the machine dynamics 

compared to other traditional methods such as vibration and airborne acoustics, and it is less 

intrusive than monitoring using pressure measurement. Figure 3.2 shows a typical one 

revolution IAS signal from a reciprocating compressor under normal operating condition.  
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FIGURE 3.2: ONE CYCLE OF IAS MEASUREMENT FROM A RECIPROCATING 

COMPRESSOR 

3.5 Airborne Acoustics 

Structure-borne and air-borne analyses are two main approaches used for sound monitoring. 

The air-borne approach captures radiated sound waves above the human hearing range (above 

20kHz) using contactless microphones or sound transducers whereas the structure-borne 

approach captures structural vibration through sensors mounted on the surface of the system. 

Compared to the structural vibration approach, airborne acoustic transducers are easier to 

install; can detect low and high frequency range; allow more sensitive detection and the signals 

are easier to analyse (Scruby, 1987); (Liebetrau & Grollnisch, 2017). However, one major 

drawback of this technique is in its susceptibility to environmental acoustics and intrusive 

background noise.  

The effectiveness of acoustic sensors in condition monitoring of machines, particularly diesel 

engines have been the widely studied by scholars, and from literature it has been established 

that an appropriate filter technique is required to extract useful information from the 

contaminated acoustic signals. For instance, due to high environmental influences on acoustic 

data, Gu, Ball, & Li, highlighted the need to extract foreign noise generated together with 

wanted sound signals before the exact characteristics of sound signals could be used to 

diagnose faults (Ball, Gu, & Li, 2000). Another study carried out by Albarbar, Gu, Ball, & 

Starr, used adaptive filtering techniques to remove unwanted noise from the signal generated 

from acoustic monitoring of diesel fuel injection needle (Albarbar, Gu, Ball, & Starr, 2010). 

Furthermore, Jiang, et al., introduced the use of acoustic one-port source theory and the use of 
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exhaust acoustic measurements to effectively monitor diesel engine combustion. Their research 

showed that despite the harsh operating conditions these machines function under, a two-load 

acoustic method could accurately detect and diagnose abnormalities caused by faults (Jiang, et 

al., 2008). The acoustic condition monitoring of diesel has gained massive attraction over the 

years; however little work has been performed on RC noise characteristics or the use of gas 

pulsation from the reciprocating compressor for early fault detection. 

Several studies by (Brablik J. , 1972), (Stiaccini, Galoppi, Ferrari, & Ferrara, 2016), (Zhou, 

Kim, & Soedel, 2001), and (Zhan, Cheng, & Quanke, 2015) exist on modelling philosophies 

to accurately predict pulsations on reciprocating compressors. Furthermore, Pan and Jones 

investigated airborne sound transmission in a spherically shaped reciprocating compressor, 

using simulation predictions and experimental results to understand the relationship between 

gas pulsations inside the cavity and noise radiation from the compressor (Pan & Jones, 1999). 

Glen and Eugen focused on the use of acoustic signals to predict pressure and mass fluctuations 

from a reciprocating compressor (Glen & Eugene, 1989). As a result of Glen and Eugen’s 

investigations, they concluded that vibration analysis is not very sensitive to high –frequency 

noise emitted by fluid mechanical motion. Salah et al. proposed an automatic diagnosis of 

reciprocating valve condition by adopting support vector machine based on acoustic emission 

(AE) parameters. Their generated model could accurately diagnose valve condition in a single-

stage reciprocating compressor (Salah, Hui, Hee, & Salman, 2018). The AE signal together 

with simulated valve motion was used by Wang and his colleagues to diagnose reciprocating 

compressor valve faults including valve leakage, valve flutter, delayed closing, and improper 

valve lift (Wang, Gao, Zheng, & Peng, 2015). Their technique has an advantage of distinctly 

extracting valve fault features without applying complex signal processing techniques.  

The amplitude of a sound wave is expressed as sound intensity or sound pressure level. The 

total acoustic power emitted by the sound source is given by the Sound power, which is defined 

as the power per unit area per unit time of the sound wave ( 2Watt / m ). The sound pressure 

level (SPL) is calculated as per Equation (3.1) and expressed in decibels (dB). 

 1020log
ref

p
SPL

p

 
   

 
  (3.1) 

Where p  is the root mean square amplitude of the pressure wave and refp  is the reference 

sound pressure (Mohanty, 2015). 
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Analysing emitted sound waves from the reciprocating compressor allows for the detection of 

system defects such as leak detection, crack detection, and provides access to the general 

condition of the machine. Under normal operating conditions, most machines emit consistent 

sound patterns, but with the development of component defects, regular patterns are distorted. 

Figure 3.3 gives a typical airborne acoustic waveform with key characteristic features 

according to Yan, et al., 2015. 

 

FIGURE 3.3: SIMPLIFIED WAVEFORM PARAMETERS OF AIRBORNE ACOUSTIC SIGNAL 

(YAN, ET AL., 2015) 

3.6 Vibration Monitoring 

Vibration signals from a machine contains vital information needed to determine and predict 

the condition of the machine. Vibration-based techniques are the most common and widely 

established monitoring technique used in industries (Gu, Li, Ball, & Leung, 2000). This is 

because almost all machines vibrate, and these vibrations can be measured easily and 

interpreted to determine the state of a machine. Imbalances in forces acting in the upwards, 

downwards, or side to side direction of the mechanical system prevent a smooth flow of energy 

thereby causing the system to vibrate. Factors such as overload due to stress on a machine, little 

or no maintenance of mechanical components, and lifespan exhaustion of mechanical parts can 

cause mechanical systems to vibrate excessively. The vibration levels can be monitored using 

appropriate sensors and microphones can be used to detect noise levels resulting from excessive 

machine vibration. 

The characteristic features of vibrations from a reciprocating compressor are very complicated 

because they include excitations from valve impacts, time-varying properties, and non-

stationary responses, which make it difficult to adequately analyse the vibration signal and 
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diagnose faults (Geng, Jin, & Hull, 2003). A typical vibration signal from a two-stage 

reciprocating compressor is presented in Figure 3.4. 

The interpretation of vibration data from the reciprocating compressor is one area that has 

attracted lots of research attention. For instance, Gu & Ball experts in machine condition 

monitoring conducted a study using smooth pseudo-Wigner–Ville distribution to interpret 

vibration data from reciprocating compressors (Gu & Ball, 1995). Naid, Gu, & Ball more 

recently, carried out a study introducing the use of kurtosis to develop a diagnostic method for 

differentiating valve leakage, intercooler leakage and loose drive belt on a reciprocating 

compressor after proofing that the conventional bispectrum is not so effective in analysing 

amplitude modulation current signals (Naid, Gu, & Ball, 2007). Some studies suggest that 

vibration monitoring together with other monitoring techniques should be used to give a full 

monitoring condition of reciprocating machinery (Rao B. K., 1998); (Dong, 2012). 

 

FIGURE 3.4: VIBRATION SIGNAL FROM A TWO STAGE RECIPROCATING COMPRESSOR 

Several approaches have been implemented by analysing vibration signals for fault diagnosis. 

However, fault diagnosis of compressor valves based on the vibration and acoustic emission 

signals is considered more efficient because it can be accomplished non-intrusively (Wang, 

Xue, Jia, & Peng, 2015). 

3.7 Signal Processing for Machine Monitoring 
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Data collected from measuring instruments used for condition monitoring needs to be analysed 

and interpreted to reveal critical information and machine characteristics (Smith, 1999). 

Effective condition monitoring of machines often depends on the use of an appreciate signal 

processing method or a combination of two or more methods. There are three most popular 

methods used for signal processing, and they include: 

 Time domain analysis 

 Frequency domain analysis 

 Time-frequency analysis 

(Norton & Karczub, 2003). 

Figure 3.5 shows a list of some common signal processing methods used for condition 

monitoring. 

 

FIGURE 3.5: SIGNAL PROCESSING TECHNIQUES 

3.7.1 Time Domain 

Time domain signal representation contains useful information for understanding machine 

condition, and the signal is represented as a function of time, which is a plot of the amplitude 

against time. Characteristic features of a signal in the form of statistical methods such as root 

mean square (RMS), the peak value (PK), crest factor (CF), kurtosis (KT), skewness (SK), 

probability density, and variances are used to summarise the data obtained and to draw suitable 

Time 
Domian

• Statistical Parameters

• Synchronous Average

• Empirical Mode Decomposition

• Entropy Spectrum

Frequency 
Domain

• Statistical Parameters

• Discrete Fourier Transform

• Fast Fourier Transform

Time-
frequency 
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conclusions. Some of these techniques would be used when analysing the vibration and gas 

pulsation signals collected from the Broom Wade TS9 reciprocating compressor in chapters 

seven and eight. 

The two most widely used statistical parameters are the root mean square (RMS), which is a 

measure of the signals strength or power. The peak value describes the maximum absolute 

value of a signal. 

3.7.1.1 RMS 

RMS is used to evaluate the overall condition of the machine and to track general fault 

progression rather than early incipient fault (Zhu, Nostrand, Spiegel, & Morton, 2014). For a 

set of data, 1 2 3, , ,..., ,N rmsX X X X X  is defined as (Zhu, Nostrand, Spiegel, & Morton, 2014): 

 2

1

1 N

rms i

i

X X
N 

    (3.2) 

Where, rmsX  is the root mean square value of the data set X  at every instant i , and N  is the 

number of data points. 

3.7.1.2 Peak Value 

For a set of data, 1 2 3, , ,..., ,NX X X X the peak value (PK) is expressed as (Zhu, Nostrand, 

Spiegel, & Morton, 2014): 

 max( )PKX X   (3.3) 

where, X  is the absolute value. 

3.7.1.3 Crest Factor (CF) 

Creak factor (CF) is another common statistical feature used in time domain analysis to 

determine the repeated impulses of a signal; it is the measure of the number and sharpness of 

the peaks of a signal. CF is expressed as the ratio of the peak value ( PKX ) to the RMS value (

rmsX ) of the time domain waveform (Zhu, Nostrand, Spiegel, & Morton, 2014): 

 
PK

rms

X
CF

X
   (3.4) 
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The crest factor is used in condition monitoring to detect changes in signal pattern due to 

impulsive vibration sources. A high crest factor value is an indication of possible component 

deterioration. 

3.7.1.4 Skewness 

Skewness (SK) is a measure of the lack of symmetry in the data distribution, and this is 

expressed in the following equation: 
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  (3.5) 

Where, X  is the mean of the data set 1 2 3, , ,..., ,NX X X X and S  is the standard deviation of the 

distribution given as: 
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  (3.6) 

A time series is positively skewed (right tail) with a positive SK value, if it has many small 

values and a few large values, while a negative SK value signifying a negatively skewed (left 

tail) time series is obtained when a lot of large values and a few small values are present (Zhu, 

Nostrand, Spiegel, & Morton, 2014). 

3.7.1.5 Kurtosis 

Kurtosis describes how sharp (peaked) or flat the distribution is. Kurtosis value is given by the 

following equation (Raharjo, 2013): 
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  (3.7) 

A negative kurtosis value indicates that the distribution is flatter than the Gaussian, while a 

positive value means its distribution is more peaked than a Gaussian (Raharjo, 2013). 

3.7.1.6 Probability Density Function  

Sharma and Parey used the improved RMS probability density function and entropy 

measurement to detect gear faults with initial and advanced cracks for different speed profiles. 
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They found that initial cracks were detectable using percentage increase in entropy values for 

RMS PDF compared to advanced cracks (Sharma & Parey, 2016). Experiments by Zhuang and 

his colleagues revealed that the probability density method based on Parzen window was able 

to detect motor air gap eccentricity and ball cage broken bearing faults on vibration signals 

(Zhuanga, Li, & Wei, 2012). Toyota, Niho, Chen, & Komura proposed a new method based 

on rotating angle density function of vibration signal and its normalised power density function 

because of the drawbacks of PDF analysis in time-domain and frequency-domain, which are 

insensitivity of signal pulse phase shifting and small local change in amplitude (Toyota, Niho, 

Chen, & Komura, 2001) 

A study conducted by Yang, Hwang, Kim, and Chit tan suggests that not all features extracted 

from time domain are useful for effective detection and diagnosis of reciprocating compressor 

faults (Yang, Hwang, Kim, & Chit Tan, 2005). Some advanced time domain signal processing 

techniques using dynamic time warping (Zhen, Alibarbar, Zhou, Gu, & Ball, 2011), empirical 

mode decomposition (EMD) (Muo, Madamedon, Gu, & Ball, 2017), (Yongbo, Xu, Wei, & 

Huang, 2014), and entropy spectrum (Ogbulafor, Guojin, Mones, Gu, & Ball, 2017) amongst 

others have been proposed because they are suitable for processing nonlinear and non-

stationary time series of reciprocating compresssor signals. 

3.7.2 Frequency Domain Analysis 

Frequency domain analysis is another technique for signal processing; it represents signal data 

in the form of a spectrum. Spectrum analysis is a measure of signal amplitude as a function of 

frequency. In many machineries, especially rotating types, components within the system have 

a specific operating frequency, which is related to the dynamics of its operation and can be 

used for condition monitoring purposes (Rao S. S., 2004); (Thobiani, 2011); (Robinson, 1990). 

This technique is prevalent in analysing vibration response. The most basic frequency domain 

tool is the Fast Fourier Transform (FFT), which enables the conversion of the time domain 

signal to frequency domain or spectrum. The central concept of frequency domain analysis is 

either to look at the entire spectrum, or to closely analyse specific frequency components 

(Jardine, Lin, & Banjevic, 2005), (Dong, 2012).  

Frequency domain analysis has several advantages in machine condition monitoring and 

decades of practical applications have confirmed the effectiveness of this technique in 

identifying frequency components, which indicate the development of certain faults (Albarbar, 
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Elhaji, Gu, & Ball, 2004); (Elhaji, Gu, Shi, & Ball, 2001); (Bradley, Ball, & Gu, 2000); 

(Staszewski W. , 1994); (Yesilyurt, 1997); (Braun, 1986); (Collacott, 1977). 

However, some limitations such as aliasing, spectral leakage and picket-fence affect its 

practical application and lead to errors in spectrum estimation (Dong, 2012). Moreover, in 

reality, signals from rotating machinery are often non-stationary, that is, the spectra vary with 

time and the FFT cannot depict the changes in signals that have time-varying features (Goyal 

& Pabla, 2016).  

3.7.3 Time-Frequency Domain Analysis 

The limitations of time domain and frequency domain analysis has caused the application of 

time-frequency analysis. Frequency spectrum analysis is unable to diagnose faults from non-

stationary waveform signals accurately and can only represent the signals’ energy in one-

dimensional function (frequency), whilst time domain waveform only presents the signals time 

information. Therefore, the time-frequency domain analysis, which shows signal information 

in two-dimensional functions (time and frequency) has been exploited and found useful for 

fault diagnosing. Particularly, with non-stationary signals. There are several time-frequency 

techniques used in analysing non-stationary signals for condition monitoring purposes. 

However, three of the most popular methods according to Jardine, Lin, & Banjevic (2005) are 

the short-time Fourier transform (STFT) also known as spectrograms, Wigner-Ville 

distribution (WVD) and wavelet transform (WT). 

3.7.3.1 Short-Time Fourier Transform (STFT)  

STFT works by dividing the whole waveform signal into segments with short-time window 

and applying Fourier transform to each segment. The problem with this technique come about 

when acquiring a more accurate frequency resolution because the window size used along the 

time axis of the signal does not always coincide with the stationary timescales for non-

stationary signals with fast changes in dynamics (Jardine, Lin, & Banjevic, 2005). In other 

words, to get an accurate time representation, the frequency resolution would have to be less 

precise, and for an accurate frequency representation the reverse is the case, this is known as 

the uncertainty principle. 

3.7.3.2 Wigner-Ville Distribution (WVD) 

WVD was created to solve the uncertainty principle problem associated with the short-time 

Fourier transform by giving excellent resolutions in both domains. This technique has proven 
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successful in many studies, for instance, it was applied by (Wu & Chiang, 2009), to analyse 

non-stationary sound emission signals combined with the probability neural network for fault 

diagnosis of an internal combustion engine. They concluded that their proposed approach could 

improve the cost of the fault diagnosis system and reduce mistaken recognition. Then 

Staszewski and Worden investigated the characteristics of gearbox vibration signals and found 

that the Wigner-Ville distribution is capable of detecting local tooth faults in spur gears 

(Staszewski & Worden, 1997). A more recent study carried out by Albarbar et al., successfully 

extracted non-stationary air-borne acoustic features from a diesel engine by using the Wigner-

Ville distribution technique (Albarbar, Gu, Ball, & Starr, 2010). However, the drawback of 

Wigner-Ville distribution according to Jardine, Lin, & Banjevic (2005), is in the interference 

terms (generation of spurious frequency not contained in the initial signal) formed by the 

transformation itself, although, improved transforms such as Choi-Williams distribution can 

be applied to counter these interference terms.  

3.7.3.3 Wavelet Transform (WT) 

Jean Morlet introduced wavelets in 1982 to achieve the best balance between time resolution 

and frequency resolution. However, wavelet transform only became very popular in condition 

monitoring of non-stationary signals in the last fifteen years (Loutas & Kostopoulos, 2017). 

Unlike other time-frequency techniques that use complex cosines and sine functions to graph 

the signal into a two-dimensional function, wavelet transform consists of a family of simple 

time functions that are dilated and shifted independently to represent the signal in both time 

and frequency domain (Goyal & Pabla, 2016).  

There are several ways of calculating the wavelet transform of a signal, but the three common 

methods are the continuous wavelet transform (CWT), the discrete wavelet transform (DWT) 

and the wavelet packet transform (WPT). Wavelet transform has been  used extensively in 

several fields such as biomedical engineering (Manea, Mihaela, & Mutihac, 2018), 

transportation engineering, mechanical engineering (Ogbulafor, Guojin, Mones, Gu, & Ball, 

2017), (Kumar, Srinivasa, Sriram, & Vijay, 2014), (Peng & Chu, 2004), power engineering 

(Gursoy, Yilmaz, & Ustun, 2018), image processing (Khan, 2018) and many more. It has the 

advantages of noise elimination, data compression and it is computationally very efficient. 

Irrespective of some of the problems associated with the wavelet transform, it is currently one 

of the best available technique for analysing non-stationary signals. In this research work, 
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wavelet packet transform is employed to determine the characteristics of vibration and gas 

pulsation signals for condition monitoring of the reciprocating compressor. 

3.8 Summary 

The increasing demand for quality products, machine sustainability, and improved human 

safety have created a requirement for more revealing diagnostic information from machines 

through condition monitoring and signal processing techniques. A wide range of novel 

monitoring techniques has been investigated by several scholars, with some proving more 

successful than others. Analysis of vibration signals from mechanical systems has proven to be 

the most widely used and most promising due to its non-intrusive nature and the rich signal 

information. 

Therefore, a combination of two or more signal processing techniques have been strongly 

encouraged to accurately determine the characteristics of vibro-acoustic signals generated from 

a two-stage reciprocating compressor for condition monitoring purposes. 
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CHAPTER FOUR 

4 DESIGN AND CONSTRUCTION OF TEST-RIG FACILITY  

This chapter presents the design and construction of the test rig used to carry out all 

experiments including measurement parameters associated with condition monitoring of the 

double-stage, single-acting reciprocating compressor. Details of relevant transducers and 

data acquisition system used to carry out this study is also described within this chapter. First 

a detailed setup description of the two-stage reciprocating compressor is presented, followed 

by brief descriptions and specifications of the measurement instruments and data acquisition 

system used for the entire study. Also, the manner in which data is collected and processed is 

described, and finally fault simulation strategies are described and repeatability analysis of 

signals for healthy and fault conditions are presented. 
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4.1 Introduction 

This chapter is aimed at developing a reciprocating compressor test rig suitable for the 

investigation of condition monitoring signatures such as pressure, vibration, instantaneous 

speed and the newly investigated pressure pulsation waves in the discharge chamber, which 

will be used to ascertain the working condition and investigated fault conditions on the two-

stage reciprocating compressor. Furthermore, relevant experimental signatures are used to 

verify the improved mathematical model presented in chapter five of th36is study. A 

reciprocating compressor was chosen as the test machine because of its long-standing relevance 

in several industries, particularly in the oil and gas sector and chemical production industries. 

Advances in condition monitoring of such machines would help in maintenance cost reduction 

and further prolong the life of the machine.  

First, a detailed description of the test rig and specifications are given. Secondly, each 

measurement instrumentation used to collect relevant data is described; the data acquisition 

system and measurement practice are explained. Finally, the common reciprocating 

compressor faults investigated are described, and the repeatability of signals used for this 

research study are analysed. 

4.2 Test Rig Facility 

4.2.1 The Broom Wade TS-9 Reciprocating Compressor 

The experiment is carried out on a previously existing two-stage single acting reciprocating 

compressor identified as the Broom Wade TS9 in Figure 4.1 below. This machine was used to 

provide compressed air for the School of Computing and Engineering at the University of 

Huddersfield. It has proven suitable for condition monitoring purposes over the years as it 

allows for practical investigations and measurement of real-life working conditions and faults 

applicable to many industrial fields to be effectively implemented.  

The V-shaped reciprocating compressor is made up of two cylinders positioned at an angle of 

90° to each other giving it the V-shape (see Figure 4.1 and 4.2). These cylinders are tailored to 

deliver compressed air between 1 bar (0.1 MPa) to 8.3 bar (0.83 MPa) to a 13.8 bar (1.38MPa) 

capacity storage tank. An intercooler coil connecting the first-stage cylinder (after discharge) 

to the second-stage cylinder (before suction) is used to cool down the temperature of the gas 

from the first stage for improved compressor efficiency. The compressor is powered by a 
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2.5KW squirrel cage, three-phase induction motor, which transfers electrical current to the 

compressor pulley to mechanical move the crankshaft causing the pistons to move up and down 

within the cylinders.  

 

FIGURE 4.1: PICTORIAL REPRESENTATION OF TWO- STAGE RECIPROCATING 

COMPRESSOR (BROOM WADE TS9) 
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FIGURE 4.2: SCHEMATIC DIAGRAM OF THE TEST RIG SYSTEM 

4.3 Measurement Instruments 

A variety of sensors including accelerometers, pressure transducers, thermocouples and an 

angular speed encoder were fitted on specific areas of the reciprocating compressor system to 

enable data collection for experimental purposes. The main parameters to be investigated for 

this study are vibration and airborne acoustics (acoustic wave propagation), however, other 
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parameters such as temperature, pressure and shaft speed are obtained to support the vibration 

and airborne acoustic measurements; and also gives an added understanding of the dynamic 

system of the reciprocating compressor. 

4.3.1 Accelerometers 

Two accelerometers, Bruel & Kjaer type 4384 mounted on the surface of each cylinder head 

of the reciprocating compressor are used to detect surface vibrations. These piezoelectric 

transducers are robust and suitable for most applications including rough industrial field 

conditions. The specifications for the accelerometers used are listed in Table 4.1. 

The accelerometer is attached by bonding a screw-threaded brass stud with ceramic cement to 

the compressor casing; Figure 4.3 shows the configuration and data processing flow diagram 

for obtaining raw vibration signals from the reciprocating compressor. Piezoelectric 

accelerometers are known for their high output impedance and weak signals (Barber, 1992), 

therefore, a charge amplifier is used to reduce the impedance value and amplify the signal. 

 

FIGURE 4.3: VIBRATION MEASUREMENT FLOW CHAT 

TABLE 4.1: ACCELEROMETER SPECIFICATIONS 

Features Specifications 

Type TD-5-2 

 Accelerometer Installation

Charge 

Amplifier
Data Acquisition System

Online Vibration Data Collection 

and Storage

Processed Vibration Data Using MatLab
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Frequency range 15kHz 

Acceleration  2000 ms-2 

Temperature range Up to 150°C 

Sensitivity 45mv/ms2 

4.3.2 In-Cylinder Pressure Sensor 

For In-cylinder pressure measurement, a pressure transducer is installed on the head of each 

cylinder by drilling a small duct for the sensor to be fitted as seen in Figure 4.4. The GEMS 

type 2200 strain gauge pressure transducers with an output of 100mV for full pressure range 

were chosen because of their low cost, and temperature compatibility features. Furthermore, 

no amplification of the collected pressure signal was required, so the sensors are directly 

connected to the data acquisition system for signal processing as seen in the flow diagram 

below. Other specifications of the pressure transducer are listed in Table 4.2. 

 

FIGURE 4.4: DYNAMIC-PRESSURE MEASUREMENT FLOW CHAT 

TABLE 4.2: IN-CYLINDER PRESSURE SENSOR TECHNICAL SPECIFICATIONS 

Features Specifications 

Type GEMS type 2200 strain gauge  

 In-cylinder Pressure 

Transducer

Data Acquisition System

Online Raw Pressure Data Collection 

and Storage

Processed In-cylinder Pressure Data 

Using MatLab
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Output 100mV 

Power supply 10Vdc 

Pressure range 4Mpa (600psi) 

Frequency limit 4kHz 

4.3.3 Airborne Acoustic Sensor 

Acoustic Pressure waves at the discharge chamber of the second stage cylinder are obtained by 

means of a CY-YD-212 piezoelectric pressure transducer. This sensor is placed within an 

adaptor with a small duct fitted on the head of the valve chamber allowing air to travel from 

the chamber just after the valve to the sensor. The CY-YD-212 piezoelectric pressure 

transducer is small-sized, lightweight and particularly suitable for testing cylinder pipeline 

pressure & explosion pressure and has a wide frequency response range of over 100 kHz. 

Figure 4.5 shows the flow diagram for acoustic discharge pressure-wave signal collection and 

sensor installation on the compressor.  

 

FIGURE 4.5: ACOUSTIC PRESSURE MEASUREMENT FLOW CHAT 

 Acoustic Pressure 

Transducer Installation

Data Acquisition 

System

Online Raw Acoustic Pressure Data 

Collection and Storage

Processed Acoustic Pressure Data Using MatLab

Piezoelectric 

Pressure 

Transducer 

Adaptor housing 

for acoustic 

pressure sensor 

Charge 

Amplifier
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4.3.4 Static Pressure Sensor 

A Gem type PS20000 static pressure sensor used to trigger data collection at pre-set pressures 

and to automatically switch the motor off at cut-off pressure is installed on the air storage tank 

(see Figure 4.6). Its operating range is from 0 to 1.35MPa (200Psi), with a maximum output of 

100mV when the supply voltage is 15V; operating temperature range is between –20°C to 

+105°C. Knowing the pressure delivered to the storage tank allows the efficiency of the 

compressor to be calculated. 

 

FIGURE 4.6: STATIC TANK-PRESSURE FLOW CHAT 

4.3.5 Temperature Sensors 

The K-type thermocouples with a linear response of -20°C to 220°C are used to measure the 

temperature readings of the discharge pressure for both cylinders. These thermocouples have 

the following advantages: fast response time, affordable cost, wide industry application range, 

relative accuracy and durability. The thermocouple is made up of two metal wires connected 

in one end known as the measurement junction, and the other end of each of the wires is 

connected to the reference junction, which has the same wire type on a PCB (Printed Circuit 

Board) and is connected to the DAQ. Figure 4.7 shows the thermocouple installation on the 

cylinder and the data monitoring processes to ensure safe machine condition. 

 

Charge 

Amplifier

Gem (PS20000) Static Pressure 

Sensor Installation

Online Tank Pressure 

Sensor Output at 51.91 psi
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FIGURE 4.7: K TYPE, CR-AL THERMOCOUPLE INSTALLATION AND TEMPERATURE 

MONITORING PROCESS 

4.3.6 Shaft Encoder 

Encoders are sensors used to measure the angular speed of a rotating device; for the purpose 

of this study, the optical pulse high-resolution shaft encoder, which produces a pulse for a unit 

of angular distance when the crankshaft rotates is fitted as seen in Figure 4.9 through a spindle 

adapter attached to the compressor crankshaft end. The encoder converts the rotary 

displacement of the crankshaft into 360 equally spaced pulse signals per revolution. The TDC 

trigger marker in Figure 4.8 represents the start of every revolution. The encoder is directly 

connected to the computer via the data acquisition system hence; no amplification of the 

measured instantaneous speed signal (IAS) is needed.  

 

K-type Thermocouple Wire 

Installation

Low Pressure Cylinder 

Discharge Temperature

High Pressure Cylinder 

Discharge Temperature

Data Acquisition System

K- type thermocouple and 

printed circuit board 

support

Online Thermocouple Digital Output
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FIGURE 4.8: OPTICAL PULSE SHAFT ENCODER AND DATA COLLECTION FLOW CHAT 

4.4 Data Acquisition System (DAQ) 

The Cambridge Electronic Design CED Power1401 high-performance data acquisition system 

is used to capture experimental data from installed sensors on the reciprocating compressor. It 

records waveform data, digital event and marker information for real-time data processing and 

data storage through a 1 GHz Marvell processor with up to 2GB on board memory (Cambridge 

Electronic Design Limited, 1991). There are eight channels of 16-bit waveform input on the 

front panel of the hardware labelled ADC Inputs as seen in Figure 4.9a), and another eight 

through the rear panel (Analogue Expansion) D-socket as seen in Figure 4.9b). 

 

FIGURE 4.9A) FRONT AND B) REAR VIEW PANEL OF THE CED POWER1401 DAC 

 

Data Acquisition 

System

Online Raw Encoder DataOptical Encoder

360 pulses per 
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4.4.1 Software: LabWindows TM/CVI Version 5.5 

The data acquisition software is a National Instruments Lab Windows TM/CVI Version 5.5. It 

is an interactive development environment written in the programming language C (National 

Instrument Company, 2003). This program includes data acquisition, analysis, user interface 

and a large set of run-time libraries for instrument control. Compared to other programming 

software’s, the Lab Windows TM/CVI provides an inbuilt graphical user interface (GUI) editor 

which contains many measurement specific features that allow easy C based programming. 

The Data Acquisition software enables multiple channels of dynamic data (e.g. IAS, vibration, 

dynamic, pressure, motor current, sound and temperature) to be acquired simultaneously at 

different rates and data lengths. Also, the sampling frequency and sample data length are 

manually adjusted to ensure an optimal dataset is collected for subsequent off-line analysis. 

Figure 4.10 below presents the configuration-setting panel of the software and Figure 4.11 

displays the data acquisition process. 

 

FIGURE 4.10: LAB WINDOWS TM/CVI CONFIGURATION SETTING PANEL SCREEN 

The maximum sampling frequency is set at 49019Hz to obtain high frequencies associated with 

transient events such as valve impacts; the data length is set at 64,722 samples per 1.3203 

seconds. The following equation calculates the time duration: 

 (sec ) (number of samples) (sampling frequency)t onds Nsamples Fs    (4.1) 
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FIGURE 4.11: DATA ACQUISITION PROCESS 

Numerical values of monitored parameters including temperature, compressor speed, tank 

pressure etc. are displayed in the data acquisition panel for compressor monitoring. A trigger 

signal is used to automatically set the start time of data collection when the piston is at top dead 

centre (TDC), this ensures that data is collected at the same crank position every time for 

accurate time domain averaging of data segment during analysis. Data files were saved in 

binary format and analysed offline using MATLAB, which provides an easy platform for data 

analysis. 

4.5 Data Measurement Practice 

A standard test procedure was developed and followed to ensure proper and safe measurement 

practice. The procedures are as follows: 

 First, the machine is checked to determine its safety status 

 Then all wires and connections are traced to ensure proper connections 

 The drain valve connected to the receiver is closed after the compressed air has been 

released. 

 The monitor and central processing unit are switched on together with the data 

acquisition unit. 

 The data acquisition software application is opened on the monitor 

 The CED setup tab/icon is clicked taking the user to the configuration channel and 

sampling rate page where the user checks that all channels are checked/on; and also 

ensures that the Trigger  E4, if off is clicked on. 
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 The ‘apply’ button is clicked for the system to effect the instruction given by the user. 

 Click on the data file tab to check that the correct settings are set; then the ACQ mode, 

which takes the user to the measurement task page, is changed to automatic and the data 

file head name is changed to the users’ preference name. 

 The operating button/tab is clicked-on to display the operating conditions of the sensors 

installed on the reciprocating compressor. 

 Finally, the acquire tab is selected as the compressor power is turned on to begin data 

collection. 

The diaphragm pressure switch automatically stops the electric motor from powering the 

reciprocating compressor when the maximum working pressure (1.38MPa) is reached. After 

the experiment is completed and sufficient data are collected, the drainage valves are opened 

until the pressure switch goes back on or until all the compressed air in the storage tank is 

released. Then the compressor and all the monitoring systems are switched off. 

4.6 Fault Seeding 

Two common faults; discharge valve leakage and intercooler leakage (see Figures 4.12 and 

4.13) were seeded on the reciprocating compressor. These two faults were investigated 

separately, and then together presenting a combined fault condition. For convenience, the 

simulations of stated defects were done under controlled conditions in the laboratory, unlike 

practical industrial situations where faults would have to be sort. The experimental 

investigations were carried out as follows: 

o a healthy compressor operating under normal conditions, 

o a leaky discharge valve on the second stage valve discharge system, 

o a non-intrusive leak on the intercooler coil. 

The reciprocating compressor is examined by a qualified technician to ensure the compressor 

is operating normally. On this note, the baseline signature is recorded, then each fault is seeded 

onto the compressor, and their signatures are recorded. The healthy and faulty signals from 

specific transducers are compared, and deviations from normal operations are recorded for 

condition monitoring purposes. 
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4.6.1 Valve Leakage Simulation 

The discharge valve leakage is simulated by drilling a hole of 2mm diameter on the valve plate 

increasing the cross-sectional area by 2 percent. As stated in section 1.1, the reciprocating 

compressor valves are the most common components to fail. The leakage allows air in and out 

of the cylinder irrespective of whether the valve is closed or open; this leads to reduced 

compressor efficiency. 

 

FIGURE 4.12: SECOND STAGE VALUE PLATE A) WITH LEAKAGE AND B) WITHOUT 

LEAKAGE 

4.6.2 Intercooler Leakage Simulation 

It is common to have leakages at the joints of pipelines carrying process gas from the first stage 

to the second stage or from the second stage to the storage tank. For the intercooler leakage 

simulation, a loose intercooler joint is seeded by untightening the pipeline screw nut pictured 

in Figure 4.13. This simulation is considered realistic; however, it was difficult to quantify the 

leak as a proportion of the cross-sectional flow area. 

  

FIGURE 4.13: INTERCOOLER LEAK SIMULATION 

 2mm 

hole
a) b)

 

Intercooler 

Screw Joint

Intercooler
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4.7 Repeatability of Measured Signals 

The repeatability of the experimental results is an important analysis to assess the reliability of 

the measurement data collected; repeatability evaluation ensures signal reliability. This section 

investigates the reliability of second stage pressure signals, airborne acoustic wave signals, and 

second stage vibration signals collected from the two-stage reciprocating compressor. Each 

experiment is run three times under four different discharge pressures (0.0069 MPa, 0.276 

MPa, 0.552 MPa, and 0.827 MPa) and three operating conditions (baseline, discharge valve 

leakage and intercooler leakage).  

 The repeatability evaluation is divided into three subsections based on the results from each 

operating condition listed above. In each subsection, the waveform of the three repeated tests 

for each parameter (cylinder pressure, airborne acoustic waves, and vibration) are presented. 

Also, results from the one-way analysis of variance (ANOVA) of the root mean square values 

and the correlation coefficient results of the repeated signals for all conditions and discharge 

pressures investigated are used to determine the relationship between the repeated test signals. 

4.7.1 Baseline 

The experiments are carried out when the two-stage reciprocating compressor is working under 

normal conditions, that is, no faults seeded. The data is collected for three measurements 

including In-cylinder pressure, airborne acoustics (pressure pulsations), and vibration. 

4.7.1.1 Second Stage In-Cylinder Pressure 

Figure 4.14 presents the time domain In-cylinder pressure waveform for several discharge 

pressures repeated three times (Test1, Test2 and Test3). It can be observed that for each 

discharge pressure investigated there are no visible significant difference between repeated 

measurements (Test1, Test2 and Test3). The root mean squared values for each of the repeated 

experiments are computed and used for ANOVA investigation.  
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FIGURE 4.14: REPEATED IN-CYLINDER WAVEFORMS AT SEVERAL DISCHARGE 

PRESSURES 

The One-way ANOVA null hypothesis states that all means are equal and analysis was done 

specifying 95 per cent level of confidence, which is 5 per cent level of significance. From Table 

4.3, the P-value of the ANOVA of repeated pressure tests is higher than 0.05, so the null 

hypothesis is accepted. However, the ANOVA table for several discharge pressures in Table 

4.4 shows that the P-value is less than 0.05; therefore, we reject the null hypothesis because at 

least one of the group is different. Figure 4.15 presents the interaction plots for repeated tests 

and several discharge pressures. An increasing linear trend is observed with increasing 

discharge pressures; also, it can be seen that the differences between means of several discharge 

pressures are significantly different with ph_BL4 (0.83 MPa) having the highest means value. 

On the other hand, the differences in mean values of the repeated pressure tests are not so 

different for each discharge pressure case. 

TABLE 4.3: ANALYSIS OF VARIANCE FOR REPEATABILITY OF PRESSURE SIGNALS 

Source Degrees of 

Freedom(DF) 

Adjusted (Adj) 

Sum Squares 

Adjusted (Adj) 

Mean Squares 

F-Value P-Value 

 
a) b)

c) d)
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Repeated 

Pressure 

Tests 

2 0.000291 0.000145 0.00 0.997 

Error 9 0.500024 0.055558       

Total 11 0.500315          

 

TABLE 4.4: ANALYSIS OF VARIANCE FOR SEVERAL DISCHARGE PRESSURES 

Source DF Adj Sum Squares Adj Mean Squares F-Value P-Value 

Discharge Pressure 3 0.499992 0.166664 4134.90 0.000 

Error 8 0.000322 0.000040       

Total 11 0.500315          

 

 

FIGURE 4.15: INTERACTION PLOT OF RMS AND SEVERAL DISCHARGE PRESSURES FOR 

PRESSURE SIGNALS 

The Pearson correlation coefficient is computed as an additional statistical analysis to 

determine the strength of the similarity between the three test signals (Test1, Test2, and Test3) 

within several discharge pressures. The strength of the correlation coefficient is given by r, 

which ranges from -1 to +1. Large r values means there is a strong relationship between the 

signals while small r values indicates little to no relationship between signals. The significance 

of the relationship is expressed in probability levels p. A small p level usually less than 5% 
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means the relationship is statistically significant while a large p level (greater than 5%) means 

the correlation r is not statistically significant.  

The Pearson correlation coefficient r is given as (Maurice, Kendall, & Alan, 1961): 

  
1

1
,

1

rN

i A i B

ir A B

A B
A B

N

 


 

   
   

   
   (4.2) 

 
   

   

, ,

, ,

A A A B
r

B A B B

 

 

 
  
 

  (4.3) 

where ,A B  and ,A B  are the mean and standard deviation of &A B , respectively, rN  is the 

number of pairs of the variables  and A B . 

TABLE 4.5: CORRELATION COEFFICIENT AND PROBABILITY LEVEL OF BASELINE TEST 

PRESSURE SIGNALS 

0.007MPa 0.276MPa 0.552MPa 0.83MPa

Test 1 1 1 1 1

Test 2 0.9489 0.9988 0.9999 0.9996

Test 3 0.9443 0.9983 0.9999 0.9973

Test 1 1 1 1 1

Test 2 0 0 0 0

Test 3 0 0 0 0

Baseline

Correlation Coefficients r

Probability Level p

 

Table 4.5 shows the correlation coefficients and the probability level of the baseline second-

stage pressure test signals (Test1, Test2, and Test3) for several discharge pressures. For a 

particular discharge pressure say 0.007MPa, the r and p values are computed to establish the 

relationship between the repeated test signals (Test1, Test2, and Test3).  It can be concluded 

that the test signals within each discharge pressure condition are very similar since the 

correlation coefficient values r  are close to 1 and the p values are less than 0.05. This tells us 

that there is a strong linear relationship between the repeated test signals. 

4.7.1.2 Airborne Acoustic (pressure pulsation) Waves 

Figure 4.16 presents the time domain airborne acoustic waves in the cavity of the second-stage 

cylinder at discharge pressures mentioned earlier. The experiment is repeated three times 
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(Test1, Test2, and Test3), and no significant statistical differences can be seen between 

repeated tests for each discharge pressure investigated.  

Table 4.6 presents the ANOVA summary for repeatability of airborne acoustic signals. The P-

value is higher than 0.05, so the null hypothesis is accepted, and the P-value for variances 

between discharge pressures less than 0.05, therefore, the null hypothesis is rejected because 

at least one of the group is different. The interaction plot is presented in Figure 4.17, and it can 

be seen clearly from the top right subplot that means of the higher discharge pressures AA_BL3 

and AA_BL4 (0.552 MPa and 0.827 MPa) are different. The variances between the lower 

discharge pressures AA_BL1 and AA_BL2 (0.0069 MPa and 0.276 MPa) are not statistically 

significant enough. 

 

FIGURE 4.16: REPEATED AIRBORNE ACOUSTIC WAVE SIGNALS AT SEVERAL DISCHARGE 

PRESSURES 

 Baseline
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TABLE 4.6: ANALYSIS OF VARIANCE FOR REPEATABILITY OF AIRBORNE ACOUSTIC 

SIGNALS 

Source DF Adj Sum 

Squares 

Adj Mean 

Squares 

F-Value P-Value 

Repeated Airborne 

Acoustic Tests 

2 0.000059 0.000030 0.00 0.999 

Error 9 0.304548 0.033839       

Total 11 0.304608          

 

TABLE 4.7: ANALYSIS OF VARIANCE FOR SEVERAL DISCHARGE PRESSURES 

Source DF Adj Sum Squares Adj Mean Squares F-Value P-Value 

Discharge Pressure 3 0.303821 0.101274 1029.47 0.000 

Error 8 0.000787 0.000098       

Total 11 0.304608          

 

 

FIGURE 4.17: INTERACTION PLOTS OF RMS AND SEVERAL DISCHARGE PRESSURE FOR 

AIRBORNE ACOUSTIC SIGNALS 

Table 4.8 shows the correlation coefficients and the probability level of the baseline airborne 

acoustic wave test signals (Test1, Test2, and Test3) at several discharge pressures. It can be 

concluded that the test signals are very similar since the correlation coefficient values r  are 

close to 1 and the P values are less than 0.05. 
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TABLE 4.8: CORRELATION COEFFICIENT AND PROBABILITY LEVEL OF BASELINE TEST 

AIRBORNE ACOUSTIC WAVE SIGNALS 

0.007MPa 0.276MPa 0.552MPa 0.83MPa

Test 1 1 1 1 1

Test 2 0.7825 0.9666 0.9866 0.9614

Test 3 0.7569 0.9325 0.9771 0.7903

Test 1 1 1 1 1

Test 2 0 0 0 0

Test 3 0 0 0 0

Correlation Coefficients r

Baseline

Probability Level p

 

4.7.1.3 Second Stage Vibration 

Figure 4.18 presents the time-domain vibration signals from the second-stage cylinder at 

discharge pressures 0.0069 MPa, 0.276 MPa, 0.552 MPa, and 0.827 MPa. The baseline 

experiment is repeated three times (Test1, Test2 and Test3) to determine the reliability of the 

vibration signal. It can be observed that, for each discharge pressure investigated, there are no 

significant statistical differences between repeated measurements (Test1, Test2 and Test3); 

however, reliable analysis of the signal is required to prove this.  

The one-way ANOVA is used to verify findings. Table 4.9 presents the ANOVA summary for 

repeatability of vibration signals. The P-value is higher than 0.05, so the null hypothesis is 

accepted, and the P-value for variances between discharge-pressures is less than 0.05 (see Table 

4.8); therefore, the null hypothesis is rejected because at least one of the discharge pressure 

RMS value is different. The interaction plot is presented in Figure 4.19, and a random trend 

can be seen in the RMS values at several discharge pressures, and although there is a slight 

difference in the RMS values of repeated signals at Vh-BL4 (0.827 MPa), the variances are not 

statistically significant enough as seen in the top right subplot. 

The correlation coefficients and the probability level of the baseline vibration test signals 

(Test1, Test2, and Test3) at several discharge pressures are presented in Table 4.11. From the 

results, there is inconclusive evidence about the significance of the relationship between the 

vibration test signals at certain discharge pressures (0.007MPa and 0.552MPa) as their p values 

are greater than the significance level of 0.05.  
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FIGURE 4.18: REPEATED VIBRATION SIGNALS AT SEVERAL DISCHARGE PRESSURES 

TABLE 4.9: ANALYSIS OF VARIANCE FOR REPEATABILITY OF VIBRATION SIGNALS 

Source DF Adj Sum 

Squares 

Adj Mean 

Squares 

F-Value P-Value 

Repeated Vibration 

Tests 

2 0.000167 0.000083 0.06 0.946 

Error 9 0.013463 0.001496       

Total 11 0.013630          

TABLE 4.10: ANALYSIS OF VARIANCE FOR SEVERAL DISCHARGE PRESSURE 

Source DF Adj Sum Squares Adj Mean Squares F-Value P-Value 

Discharge pressure 3 0.013060 0.004353 61.06 0.000 

Error 8 0.000570 0.000071       

Total 11 0.013630          

 

 

a) b)

c) d)

Baseline
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FIGURE 4.19: INTERACTION PLOTS OF RMS AND SEVERAL DISCHARGE PRESSURES FOR 

VIBRATION SIGNALS 

TABLE 4.11: CORRELATION COEFFICIENT AND PROBABILITY LEVEL OF BASELINE TEST 

VIBRATION SIGNALS 

0.007MPa 0.276MPa 0.552MPa 0.83MPa

Test 1 1 1 1 1

Test 2 -0.0036 0.0595 0.0064 0.00463

Test 3 -0.0039 -0.0098 -0.0118 0.00547

Test 1 1 1 1 1

Test 2 0.4649 0 0.2007 0

Test 3 0.4356 0.0486 0.0179 0

Correlation Coefficients r

Baseline

Probability Level p

 

4.7.2 Discharge Valve Leakage 

The experiments are carried out when there is a discharge valve leakage seeded on the two-

stage reciprocating compressor. The data is collected for three measurements including In-

cylinder pressure, airborne acoustics, and vibration. 

4.7.2.1 Second Stage In-Cylinder Pressure 

Figure 4.20 presents the time domain In-cylinder pressure waveform for several discharge 

pressures under the discharge valve fault condition. The experiment is repeated three times 
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(Test1, Test2 and Test3) to analyse the repeatability of the signal. Some slight variations are 

observed in the waveform representation during the discharge process. However, an analysis 

of variance (ANOVA) of the repeated tests for each discharge pressure is computed for robust 

conclusions. 

Table 4.12 presents the ANOVA summary for repeatability of In-cylinder pressure signals. The 

P-value is higher than 0.05, which means there is no significant statistical difference in the 

repeated tests, so the null hypothesis is accepted. The P-value for variances between discharge 

pressures is less than 0.05, which implies that the RMS values of the discharge pressures are 

significantly different (see Figure 4.21).  

 

FIGURE 4.20: REPEATED IN-CYLINDER PRESSURE WAVEFORMS AT SEVERAL 

DISCHARGE PRESSURE 

 Discharge Valve Leakage Fault
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TABLE 4.12: ANALYSIS OF VARIANCE FOR REPEATABILITY OF IN-CYLINDER PRESSURE 

SIGNAL UNDER DISCHARGE VALVE FAULT CONDITION 

Source DF Adj Sum 

Squares 

Adj Mean 

Squares 

F-Value P-

Value 

Repeated (DVL) 

Pressure Tests 

2 0.000291 0.000145 0.00 0.997 

Error 9 0.500024 0.055558       

Total 11 0.500315          

TABLE 4.13: ANALYSIS OF VARIANCE FOR SEVERAL DISCHARGE PRESSURES UNDER 

DISCHARGE VALVE FAULT CONDITION 

Source DF Adj Sum 

Squares 

Adj Mean 

Squares 

F-Value P-Value 

Discharge Pressure 3 0.556493 0.185498 1181.82 0.000 

Error 8 0.001256 0.000157       

Total 11 0.557749          

 

 

FIGURE 4.21: INTERACTION PLOTS OF THE RMS VALUES FOR SEVERAL DISCHARGE 

PRESSURES AND REPEATED PRESSURE SIGNALS 

Table 4.14 shows the correlation coefficients and the probability level of the discharge valve 

leakage fault test signals (Test1, Test2, and Test3) at several discharge pressures. It can be 
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concluded from the results that the test signals are very similar since the correlation coefficient 

values of Test 2 and 3 are close to 1 and the P values are less than 0.05. 

TABLE 4.14: CORRELATION COEFFICIENT AND PROBABILITY LEVEL OF BASELINE TEST 

PRESSURE SIGNALS 

0.007MPa 0.276MPa 0.552MPa 0.83MPa

Test 1 1 1 1 1

Test 2 0.8959 0.9957 0.9991 0.9978

Test 3 0.8647 0.9807 0.9955 0.9975

Test 1 1 1 1 1

Test 2 0 0 0 0

Test 3 0 0 0 0

Discharge Valve Leakage (DVL)

Probability Level p

Correlation Coefficients r

 

4.7.2.2 Airborne Acoustic Waves 

Figure 4.22 presents the time domain airborne acoustic waves in the cavity of the second-stage 

cylinder for several discharge pressures under leaking discharge valve condition. The 

experiment is repeated three times (Test1, Test2, and Test3), and from the subplots, it is quite 

difficult to see the differences between the three repeated tests for all discharge pressure cases. 

Again, the ANOVA test is computed and the summary of the investigations are presented in 

Tables 4.15 and 4.16. 

Table 4.15 shows a P-value higher than 0.05, which means there are no significant differences 

in the repeated tests, so the null hypothesis is accepted. The P-value for variances between 

discharge pressures is less than 0.05, which implies that the RMS values of the discharge 

pressures are significantly different (see Table 4.16).  

The RMS interaction plots between several discharge pressures and the repeated airborne 

acoustic signals are presented in Figure 4.23. The RMS values of the discharge pressure subplot 

show an increasing linear trend as the discharge pressure increases (AA_DVL1, AA_DVL2, 

AA_DVL3, and AA_DVL4, which represents 0.0069 MPa, 0.276 MPa, 0.552 MPa and 0.827 

MPa respectively). The variances between the RMS values of the repeated signals show no 

significant statistical difference (see the top right subplot). 

Table 4.17 shows the correlation coefficients and the probability level of the discharge valve 

leakage airborne acoustic wave test signals (Test1, Test2, and Test3) at several discharge 
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pressures. It can be concluded that the test signals are very similar since the correlation 

coefficient values r  are close to 1 and the P values are less than 0.05. 

 

FIGURE 4.22: REPEATED AIRBORNE ACOUSTIC WAVEFORMS AT SEVERAL DISCHARGE 

PRESSURES 

TABLE 4.15: ANALYSIS OF VARIANCE FOR REPEATABILITY OF AIRBORNE ACOUSTIC 

SIGNALS UNDER DISCHARGE VALVE FAULT CONDITION 

Source DF Adj Sum 

Squares 

Adj Mean 

Squares 

F-Value P-Value 

Repeated (DVL) 

Airborne Acoustic  Tests 

2 0.000127 0.000064 0.01 0.990 

Error 9 0.057223 0.006358       

Total 11 0.057350          

 

 Discharge Valve Leakage Fault
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TABLE 4.16: ANALYSIS OF VARIANCE FOR SEVERAL DISCHARGE PRESSURES UNDER 

DISCHARGE VALVE FAULT CONDITION 

Source DF Adj Sum 

Squares 

Adj Mean 

Squares 

F-Value P-Value 

Discharge Pressure 3 0.054272 0.018091 47.02 0.000 

Error 8 0.003078 0.000385       

Total 11 0.057350          

 

 

FIGURE 4.23: INTERACTION PLOTS OF THE RMS VALUES FOR SEVERAL DISCHARGE 

PRESSURES AND REPEATED AIRBORNE ACOUSTIC SIGNALS 

TABLE 4.17: CORRELATION COEFFICIENT AND PROBABILITY LEVEL OF DISCHARGE 

VALVE LEAKAGE TEST AIRBORNE ACOUSTIC SIGNALS 

0.007MPa 0.276MPa 0.552MPa 0.83MPa

Test 1 1 1 1 1

Test 2 0.6669 0.8145 0.9394 0.7875

Test 3 0.5179 0.4776 0.7708 0.7861

Test 1 1 1 1 1

Test 2 0 0 0 0

Test 3 0 0 0 0

Correlation Coefficients r

Discharge Valve Leakage (DVL)

Probability Level p
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4.7.2.3 Second Stage Vibration 

Figure 4.24 presents the time-domain vibration signals from the second-stage cylinder for 

several discharge pressures under the leaking discharge valve condition. From the subplots, it 

is impossible to see the differences between the three repeated tests for all discharge pressure 

cases. Therefore, the ANOVA test is computed, and the summary of the investigations are 

presented in Tables 4.18 and 4.19. 

Table 4.18 shows a P-value higher than 0.05, which means there is no significant differences 

in the repeated tests, so the null hypothesis is accepted. The P-value for variances between 

discharge pressures is 0.046, which is very close (due to the randomness of vibration signals) 

but still less than the significance level (0.05). Therefore, it can be concluded that the RMS 

values of the discharge pressures are significantly different (see Table 4.19).  

 

FIGURE 4.24: REPEATED VIBRATION SIGNALS AT SEVERAL DISCHARGE PRESSURES 

 Discharge Valve Leakage Fault
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TABLE 4.18: ANALYSIS OF VARIANCE FOR REPEATABILITY OF VIBRATION SIGNALS 

UNDER DISCHARGE VALVE FAULT CONDITION 

Source DF Adj Sum 

Squares 

Adj Mean 

Squares 

F-Value P-Value 

Repeated (DVL) 

Vibration Tests 

2 0.000173 0.000087 0.17 0.843 

Error 9 0.004485 0.000498       

Total 11 0.004658          

 

TABLE 4.19: ANALYSIS OF VARIANCE FOR SEVERAL DISCHARGE PRESSURES UNDER 

DISCHARGE VALVE FAULT CONDITION 

Source DF Adj Sum 

Squares 

Adj Mean 

Squares 

F-Value P-Value 

Discharge Pressure 3 0.002852 0.000951 4.21 0.046 

Error 8 0.001806 0.000226       

Total 11 0.004658          

 

 

FIGURE 4.25: INTERACTION PLOTS OF THE RMS VALUES FOR SEVERAL DISCHARGE 

PRESSURES AND REPEATED VIBRATION SIGNALS 

The correlation coefficients and the probability level of the discharge valve leakage fault test 

signals (Test1, Test2, and Test3) at several discharge pressures are presented in Table 4.20. 
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From the results, there are inconclusive evidence about the significance of the relationship 

between the vibration test signals at certain discharge pressures (0.007MPa, 0.276MPa and 

0.83MPa) as their p values are greater than the significance level of 0.05. The results for test 

signals at 0.552MPa, show that the signals (Test 2 and 3) have a positive but significantly weak 

relationship between Test 1. 

TABLE 4.20: CORRELATION COEFFICIENT AND PROBABILITY LEVEL OF DISCHARGE 

VALVE LEAKAGE TEST VIBRATION SIGNALS 

0.007MPa 0.276MPa 0.552MPa 0.83MPa

Test 1 1 1 1 1

Test 2 -0.0055 0.0234 0.0472 0.0216

Test 3 -0.0021 -0.0086 0.0379 0.0019

Test 1 1 1 1 1

Test 2 0.2703 0 0 0

Test 3 0.6789 0.0845 0 0.7042

Correlation Coefficients r

Discharge Valve Leakage (DVL)

Probability Level p

 

4.7.3 Intercooler Leakage 

The experiments are carried out when there is an intercooler leakage seeded on the two-stage 

reciprocating compressor. The data is collected for three measurements including In-cylinder 

pressure, airborne acoustics, and vibration. 

4.7.3.1 Cylinder Pressure 

Figure 4.26 presents the time domain In-cylinder pressure waveform for several discharge 

pressures under a leaking intercooler condition. The experiment is repeated three times (Test1, 

Test2 and Test3) to analyse the repeatability of the signal. Some slight variations are observed 

in the waveform representation during the discharge process. However, an analysis of variance 

(ANOVA) of the repeated tests for e ach discharge pressure is computed. 

Table 4.21 presents the ANOVA summary for repeatability of In-cylinder pressure signals. The 

P-value is higher than 0.05, which means there is no significant difference in the repeated tests, 

so the null hypothesis is accepted. The P-value for variances between discharge pressures is 

less than 0.05, which implies that the RMS values of the discharge pressures are significantly 

different (see Table 4.22 and Figure 4.27).  
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FIGURE 4.26: REPEATED PRESSURE SIGNALS AT SEVERAL DISCHARGE PRESSURES 

TABLE 4.21: ANALYSIS OF VARIANCE FOR REPEATABILITY OF IN-CYLINDER PRESSURE 

SIGNALS UNDER INTERCOOLER FAULT CONDITION 

Source DF Adj Sum 

Squares 

Adj Mean 

Squares 

F-Value P-Value 

Repeated (ICL) 

Pressure Tests 

2 0.000554 0.000277 0.00 0.995 

Error 9 0.498331 0.055370       

Total 11 0.498885          

 

TABLE 4.22: ANALYSIS OF VARIANCE FOR SEVERAL DISCHARGE PRESURES UNDER 

INTERCOOLER FAULT CONDITION 

Source DF Adj Sum 

Squares 

Adj Mean 

Squares 

F-Value P-Value 

Discharge Pressure 3 0.498327 0.166109 2382.41 0.000 

Error 8 0.000558 0.000070       

Total 11 0.498885          

 

 

a) b)

c) d)

Intercooler leakage Fault 
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FIGURE 4.27: INTERACTION PLOTS OF RMS VALUES FOR SEVERAL DISCHARGE 

PRESSURES AND REPEATED PRESSURE SIGNALS 

Table 4.23 shows the correlation coefficients and the probability level of the baseline second-

stage pressure test signals (Test1, Test2, and Test3) at several discharge pressures. It can be 

concluded that the test signals are very similar since the correlation coefficient values r  are 

close to 1 and the P values are less than 0.05. 

TABLE 4.23: CORRELATION COEFFICIENT AND PROBABILITY LEVEL OF INTERCOOLER 

LEAKAGE TEST OF PRESSURE SIGNALS 

0.007MPa 0.276MPa 0.552MPa 0.83MPa

Test 1 1 1 1 1

Test 2 0.9413 0.9923 0.9992 0.999

Test 3 0.9091 0.9841 0.9977 0.997

Test 1 1 1 1 1

Test 2 0 0 0 0

Test 3 0 0 0 0

Correlation Coefficients r

Intercooler Leakage (ICL)

Probability Level p

 

4.7.3.2 Airborne Acoustic Waves 

Figure 4.28 presents the time domain airborne acoustic waves in the cavity of the second-stage 

cylinder for several discharge pressures under a leaking intercooler condition. The experiment 
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is repeated three times (Test1, Test2, and Test3). From the subplots, it is difficult to see the 

differences between the repeated tests in all discharge pressure cases. Again, the ANOVA test 

is computed, and the summary of the investigations are presented in Tables 4.24 and 4.25. 

From the two tables it can be concluded that there are no significant statistical differences in 

the repeated tests, and the RMS values of the discharge pressures are significantly different. 

The interaction plots in Figure 4.29 show the differences.  

 

FIGURE 4.28: REPEATED AIRBORNE ACOUSTIC SIGNALS AT SEVERAL DISCHARGE 

PRESSURES 

TABLE 4.24: ANALYSIS OF VARIANCE FOR REPEATABILITY OF AIRBORNE ACOUSTIC 

SIGNALS UNDER INTERCOOLER FAULT CONDITION 

Source DF Adj Sum 

Squares 

Adj Mean 

Squares 

F-Value P-Value 

Repeated (ICL) 

Airborne Acoustic Tests 

2 0.000030 0.000015 0.00 1.000 

 
Intercooler Leakage Fault 
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Error 9 0.307923 0.034214       

Total 11 0.307953          

 

TABLE 4.25: ANALYSIS OF VARIANCE FOR SEVERAL DISCHARGE PRESSURES UNDER 

INTERCOOLER FAULT CONDITION 

Source DF Adj Sum 

Squares 

Adj Mean 

Squares 

F-Value P-Value 

Discharge Pressure 3 0.307776 0.102592 4652.85 0.000 

Error 8 0.000176 0.000022       

Total 11 0.307953          

 

 

FIGURE 4.29: INTERACTION PLOTS OF THE RMS VALUES FOR SEVERAL DISCHARGE 

PRESSURES AND REPEATED AIRBORNE ACOUSTIC SIGNALS 

Table 4.26 shows the correlation coefficients and the probability level of the ICL fault test 

signals (Test1, Test2, and Test3) at several discharge pressures. It can be concluded that the 

test signals are very similar since the correlation coefficient values r  are close to 1 and the P 

values are less than 0.05. However, the r values for 0.007MPa and 0.276MPa Test 3 signals 

show that there is a weak but weak and moderate linear relationship respectively. 
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TABLE 4.26: CORRELATION COEFFICIENT AND PROBABILITY LEVEL OF INTERCOOLER 

LEAKAGE TEST OF AIRBORNE ACOUSTIC WAVE SIGNALS 

0.007MPa 0.276MPa 0.552MPa 0.83MPa

Test 1 1 1 1 1

Test 2 0.6113 0.7705 0.9452 0.9933

Test 3 0.1846 0.5009 0.8156 0.7886

Test 1 1 1 1 1

Test 2 0 0 0 0

Test 3 0 0 0 0

Correlation Coefficients r

Intercooler Leakage (ICL)

Probability Level p

 

4.7.3.3 Surface Vibration 

Figure 4.30 presents the time-domain vibration signals from the second-stage cylinder for 

several discharge pressures under a leaking intercooler condition. Again, it is difficult to assess 

the repeatability of the signal by merely observing the signatures. Therefore, the ANOVA test 

is computed, and the summary of the investigations are presented in Tables 4.26 and 4.27. 

From the two tables, it can be concluded that there are no significant differences in the repeated 

tests since the P-value is higher than 0.05 and the RMS values of the discharge pressures are 

significantly different as the P-value is zero. The interaction plot in Figure 4.31 shows the 

relationship between the RMS values of the repeated tests and all discharge pressures 

investigated.  
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FIGURE 4.30: REPEATED VIBRATION SIGNALS AT SEVERAL DISCHARGE PRESSURES 

TABLE 4.27: ANALYSIS OF VARIANCE FOR REPEATABILITY OF VIBRATION SIGNALS 

UNDER INTERCOOLER FAULT CONDITION 

Source DF Adj Sum 

Squares 

Adj Mean 

Squares 

F-Value P-Value 

Repeated (ICL) 

Vibration Tests 

2 0.000147 0.000073 0.10 0.907 

Error 9 0.006685 0.000743       

Total 11 0.006832          

 

TABLE 4.28: ANALYSIS OF VARIANCE FOR SEVERAL DISCHARGE PRESSURES UNDER 

INTERCOOLER FAULT CONDITIONS 

Source DF Adj Sum 

Squares 

Adj Mean 

Squares 

F-Value P-Value 

Discharge Pressure 3 0.006301 0.002100 31.63 0.000 

Error 8 0.000531 0.000066       

Total 11 0.006832          

 

 Intercooler Leakage Fault 

a) b)

c) d)
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FIGURE 4.31: INTERACTION PLOTS OF THE RMS VALUES FOR SEVERAL DISCHARGE 

PRESSURES AND REPEATED VIBRATION SIGNALS 

Table 4.29 shows the correlation coefficients and the probability level of the ICL fault vibration 

test signals (Test1, Test2, and Test3) at several discharge pressures. It can be concluded from 

the results that there are inconclusive evidence about the significance of the relationship 

between the vibration test signals at all discharge pressures except those whose r values are 

written in red.  

TABLE 4.29: CORRELATION COEFFICIENT AND PROBABILITY LEVEL OF INTERCOOLER 

LEAKAGE TEST OF VIBRATION SIGNALS 

0.007MPa 0.276MPa 0.552MPa 0.83MPa

Test 1 1 1 1 1

Test 2 -0.0074 0.0041 -0.0195 0.0236

Test 3 0.0031 -0.0029 0.0033 0.0215

Test 1 1 1 1 1

Test 2 0.1354 0.4047 0.0001 0

Test 3 0.538 0.563 0.5012 0

Correlation Coefficients r

Intercooler Leakage (ICL)

Probability Level p

 



CHARACTERISING VIBRO-ACOUSTIC SIGNALS OF A RECIPROCATING 

COMPRESSOR FOR CONDITION MONITORING 

 

109 
DEGREE OF DOCTOR OF PHILOSOPHY (PHD) 

4.7.4 Summary 

To ensure that correct results are obtained every time an experiment is run, the repeatability of 

the signals for the three measurement signals including In-cylinder pressure, airborne acoustics 

(pressure pulsations), and surface vibration under healthy and fault conditions for several 

discharge pressures are analysed. 

One-way analysis of variance (ANOVA) is used to check if the differences in RMS values of 

repeated signals and several discharge pressures are significantly substantial. Findings showed 

that there were no significant changes in the RMS values of the repeated signals for all 

measurements and conditions. In addition, the differences in RMS values of several discharge 

pressures were investigated for all measurements and conditions. The P-values were zero, 

strongly indicating that there is at least one or two discharge pressure signals are different as 

expected. 



CHARACTERISING VIBRO-ACOUSTIC SIGNALS OF A RECIPROCATING 

COMPRESSOR FOR CONDITION MONITORING 

 

110 
DEGREE OF DOCTOR OF PHILOSOPHY (PHD) 

CHAPTER FIVE 

5  DYNAMIC MODELLING OF A DOUBLE-STAGE, 

SINGLE-ACTING RECIPROCATING COMPRESSOR  

The chapter presents various mathematical models developed for the simulation of the double-

stage, single-acting reciprocating compressor used for this research. A number of physical 

processes including: mechanical, thermal, flow and electric-magnetic processes involved with 

the compressor have been redeveloped to fully understand the dynamics of the machine and 

corresponding fault models are developed simultaneously. The model developed based on the 

first principles consists of three main equations: crankshaft motion, two cylinder pressure 

equations and, four valve motion equations. In addition, the second-stage discharge chamber 

pressure is incorporated into the model. 
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5.1 Introduction 

The main principle of the reciprocating compressors’ operation is the conversion of mechanical 

rotational motion of the crankshaft into linear motion. The crankshaft is powered by an 

electrical motor, which translates this motion by means of the connection rod to linear motion 

as illustrated in Figure 5.1. The connecting rod moves the piston linearly within the cylinder 

bore to deliver the desired high-pressure air. The piston proceeds downwards from top dead 

centre (TDC) to bottom dead centre (BDC), pressure decreases, and the suction valve opens by 

means of pressure difference over the valve head. Furthermore, just as the piston reaches BDC 

and starts to return to TDC, air in the cylinder is compressed. Once the in-cylinder pressure is 

greater than the plenum pressure (pressure after the valve), the valve is forced open allowing 

high-pressure air out of the cylinder. The process described above forms the foundation for the 

model simulation of in-cylinder pressure, discharge chamber pressure and vibration of the 

cylinders. 

Reciprocating compressors are high priced and complicated machines, and understanding the 

dynamic process is paramount for design modification, and fault prediction. Modelling of the 

reciprocating compressor has received a great deal of research attention over the years. Much 

of this fame is attributed to the prospects of numerical models being used for real time 

applications such as machine condition and fault diagnostics. In addition, some underlying 

benefits include improved machine efficiency, reduced maintenance cost and improved 

machine reliability.  

This chapter describes the developed mathematical model of several distinct but interactive 

components of the reciprocating compressor such as the crank mechanism, the cylinder, and 

the valve and discharge systems of double-stage single-acting reciprocating compressor and 

effects of specific faults on the compressor. This model has previously been developed by 

fellow scholar Elhaj Mohamed in 2005 (Elhaj M. A., 2005), however, as an addition, the 

discharge chamber (plenum) is incorporated into the already existing model to simulate the 

effects of gas pulsations on the system. 
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FIGURE 5.1: COMPLETE RECIPROCATING COMPRESSOR MODEL 

The key modelling assumptions are: 

 One-dimensional incompressible flow 

 Isentropic process (reversible adiabatic) 

 Valves with one degree of freedom 

5.2 A Brief Review of Previous Reciprocating Compressor Modelling 

The first mathematical model for a reciprocating compressor was developed based on a one 

degree-of-freedom reed valve dynamics (Costagliola, 1950). A couple of years later in 1966, 

Wasmbasganss modelled a high-speed hermetically sealed compressor similar to that of 

Costagliolas’ but focused of modelling more than one degree of freedom of the reed valve 

dynamics (Wasmbasganss, 1966). Advances in the use of digital computers to simulate valve 

dynamics were later achieved by several scholars (McLaren & Kerr, 1968); (Padilla, 1971); 

(Schwerzler, 1971). Hamilton went a step further by accounting for friction, heat transfer and 
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real gas properties to obtain a better representation of the model (Hamilton, 1974). The main 

objectives of these studies were to develop a mathematical model, which would help in 

understanding the working principles of the compressor for appropriate design changes to be 

implemented for improved machine performance.  

Various faults were incorporated into the compressor model by Manepatil, Yadava, and Nakra 

to determine their effects on parameters such as pressure signals for performance monitoring 

(Manepatil, Yadava, & Nakra, 2000). Furthermore, Liang, Gu and Ball developed a procedure 

for detecting and diagnosing valve faults by analysing the analytically modelled valve impacts 

(Liang, Gu, & Ball, 1996). 

For a while, the modelling trend for reciprocating compressors was based on simulating the 

cylinder processes without accounting for discharge/suction system and line oscillations. Singh 

suggests that both cylinder process and discharge or suction systems of the reciprocating 

compressor should be modelled together to account for the strong interaction mechanisms 

between them (Singh, 1975). He also strongly suggests that for an accurate prediction of 

pressure distribution, mass flow rate and valve responses, the line pulsations should be included 

in the computer simulation. This is because the valves interact strongly with the suction and 

discharge flows, and the valve dynamics and mass flow rates are heavily dependent on the 

pressure differentials across the cylinder and the discharge chamber (Singh, 1975); (Maclaren 

, Kerr, Tramschek, & Sanjines, 1974). 

Brablik was one of the first to couple compressor and piping models; based on his findings, he 

advised that the cylinder thermodynamics, valve flow and fluid motion in the lines should be 

simulated concurrently for precise and realistic pulsation predications (Brablik J. , 1969); 

(Brablik J. , 1972). 

A complete model of the reciprocating compressor as seen in Figure 6.1, which includes the 

discharge chamber and piping system are incorporated into the compressor model to determine 

their influence on the valve system. 

5.3 Crankshaft Dynamic Model –Piston Kinematics 

5.3.1 Mechanism of Crank shaft and Connecting Rod  

The schematic diagram of a typical piston-cylinder mechanism of a reciprocating compressor 

with indications of forces acting on it is given in Figure 5.2. The piston inside the cylinder 
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moves in a reciprocating motion by means of the crankshaft, which is driven by the induction 

motor. The interaction between the crankshaft and the conecting rod changes the direction of 

the normal force between the piston and the cylinder (Soedel, 2007). The entire simulation is 

based as a function of the crankshaft angle represented as (𝜃), therefore, the conversion of time 

to crankshaft angle is given by the following equation: 

   2 *        
60

N
t t      (5.1) 

Where; 

N = revolutions per minute (RPM), 

t = time. 

The cycle starts at TDC where   0   and ends at the same point with θ = 360° after one 

revolution of the crankshaft. The gas pressure exerts a force F  against the piston when the 

suction valve opens. In Figure 5.2 the action of the force F can be countered by the magnitude 

cosF    induced by the torque tM  and the magnitude tanF   acting in the ZY direction (Ball 

A. D., 2000).  

Because the crankshaft has no translational movement, the bearings of the crankshaft exerts 

forces F in the vertical (ZX) and tanF   in the horizontal (ZY) directions.  

The displacement dpx  of the piston is calculated in terms of the crank angle 𝜃 as; 

 1 cos cos       dp

l l
x r

r r
 

    
       

    
  (5.2) 

Where;  

𝑥𝑑𝑝 = downward displacement of the piston from TDC, 

𝜃 = the crank angle from TDC, 

𝑙 = length of the connecting rod 

𝑟 = radius of the crank (= stroke/2). 

Considering the geometry and connecting rod, 
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FIGURE 5.2: PISTON MECHANISM OF A RECIPROCATING COMPRESSOR WITH ACTING 

FORCES 

Substituting Equation. (5.6) into Equation. (5.2), gives 

    2 2sin cos  1  dpx r nn      
  

   (5.7) 

Equation (5.7) is then differentiated to obtain the expressions for velocity and the acceleration 

of the piston in Equation (5.8 and 5.9). 

 
sin 2

  sin      
2

dpx r
n


 

 
  

 
  (5.8) 

xdp

x

y

Z

cosF 

tanF 

cosF 
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F

tanF 
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Assuming (
𝑟2

𝑙2 ) 𝑠𝑖𝑛2𝜃 ≪ 1 then the expression for the acceleration may be written as: 

 
¨

2 2
       dp

cos
x r cos

n


 

 
  

 
  (5.9) 

The model equations given above is for a single-stage reciprocating compressor, however, this 

experimental study is based on a two-stage single acting reciprocating compressor and the 

mathematical model for this is given as: 

 
 

2
2

2
1 sin   

  

dpL

l l
x r cos

r r
 

 
     

 
    (5.10) 

 

2
2

2
1 sin   

2 2
dpH

l l
x r cos

r r

 
 

     
                   

  (5.11) 

Where; 

 𝑥𝑑𝑝𝐿 is the piston displacement for the first cylinder (stage) and 𝑥𝑑𝑝𝐻 represents piston 

displacement for the second cylinder (stage). 

 

FIGURE 5.3: SIMPLIFIED MODEL OF THE V-SHAPED DOUBLE-STAGE RECIPROCATING 

COMPRESSOR (ELHAJ M. A., 2005) 

 

dpL

x

dp
H

x
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The velocity �̇�𝑑𝑝𝐿,𝐻  and acceleration �̈�𝑑𝑝𝐿,𝐻 of the first and second stage pressure cylinders are 

given after differentiation as: - 

 
sin 2

       
2

dpLx r sin
n


 

 
  

 
  (5.12) 

 
sin 2( )

2 
2 2

dpHx r sin
n





 

 
  

    
  

 

  (5.13) 

 
2   2   dpL

r
r cos cosx

l
  

  
  

 
  (5.14) 

 
¨

2   2  
2 2

dpH

r
x r cos cos

l

 
  

    
       

    
  (5.15) 

The configuration of the Broom Wade TS-9 compressor is such that, the displacement of the 

piston in the second stage leads the displacement of the first stage by 𝜋 2⁄ . Which is why 𝜋 2⁄  is 

added in all the equations concerning second stage pressure cylinder. 

The systems of equations given above allows for the evaluation of the piston displacement, 

crank angle acceleration, angular velocity and crank angle position. The cylinder volume is 

then calculated based on the crank angle position and the piston displacement. 

5.4 Cylinder Volume 

The volume of a cylinder is the area of one side of the cylinder multiplied by its height. This is 

expressed mathematically by the equation below: 

 2  cylV r h   (5.16) 

Where r is the radius and h is the height of the cylinder. 

The volume of the first and second cylinders is determined using the equation below: 

  , , , ,cL H coL H pL H dpL Hv t s x    (5.17) 

Where; 
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 𝑣𝑐𝑜𝐿,𝐻 is the clearance volume for both first and second stage respectively in 𝑚3, 𝑠𝑝𝐿,𝐻 =

𝜋

4
𝐷   𝐿,𝐻

2  is the cross sectional area of the piston in [𝑚3], �̇�𝑑𝑝𝐿,𝐻 is the piston displacement in [𝑚], 

and 𝐷𝐿,𝐻is the piston diameter for first and second stages also in [𝑚] (Jiangming & Weirong, 

2012); (Elhaj M. A., 2005). 

Substituting the equation for displacement given in equation 5.10 and 5.11, the total volume of 

the cylinder for first and second stage becomes: 

    
2

2

2
  1 sin   cL coL pL

l l
v t s r cos

r r
  

 
      

 
 

  (5.18) 

  
2

2

      2
  1 sin   

2 2
c H co H p H

l l
v t s r cos

r r

 
  

     
                    

  (5.19) 

5.5 Equation of Motion 

According to the model given above, the equation of crank motion is derived from Newton’s 

second law as: 

 
, ,

¨

L H L Hm pm fJ T T T      (5.20) 

The crankshaft angle 𝜃 is a function of time 𝑡, 𝐽 is the equivalent inertial moment of the 

compressor system. 𝑇𝑚  is the driving torque from the electric motor and would be described 

further shortly; 𝑇𝑝𝑚𝐿,𝐻
is the resultant torque due to air pressure inside the cylinder and the 

unbalanced inertial force of the piston and the connecting rod of both first and second stage 

(Elhaj M. A., 2005). 𝑇𝑓𝐿,𝐻 is the friction torque of the two pressure cylinders. 

5.5.1 Calculating the Torques  

Torque is a force applied to the shaft of a compressor system causing it to rotate about the axis 

of the arm length. The torque is mathematically defined as the cross product of the force vector 

𝐹 and the position vector 𝑟 (Danielson, 2003). 
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FIGURE 5.4: TORQUE APPLIED TO A SHAFT 

The torque generated by the gas pressure in both cylinders is a result of the vertical unbalanced 

inertial force on the two-stage compressor and the driving load torque of the power unit device. 

The driving torque from the torque, which is used to calculate the equation of motion, is given 

as: 

      w
m r

s

P
T B


   (5.21) 

Where 𝑃𝑤 is the motor power in watts, 𝐵𝑟 is the transmission ratio = 3, and 𝜔𝑠 is the motor 

speed in rad/sec. The resultant torque due to air pressure inside the cylinder  𝑇𝑝𝑚𝐿,𝐻
(𝑡) is 

expressed as the effective radius of the crankshaft 𝑅𝑒𝐿 &  𝑅𝑒𝐻 for first and second stage 

respectively, multiplied by the force produced by the air pressure in both cylinders 𝑓𝑝𝐿 𝑎𝑛𝑑 𝑓𝑝𝐻, 

plus inertial force of the reciprocating mass 𝑓𝑚𝐿  𝑎𝑛𝑑 𝑓𝑚𝐻. This expression is presented in 

equation (5.22) below (Elhaj M. A., 2005): 

  
, , , ,      

L Hpm pL H mL H L HT f f Re    (5.22) 

 

 sin
    

   

 
   

LRe r
cos

sin cos cos sin
r

cos

cos sin
r sin r

cos

 



   



 










 

  (5.23) 

 sin
 sin

r

l


    (5.24) 

Therefore, substituting 𝑠𝑖𝑛∅ into equation (5.23) gives: 

 

2    
        L

r cos sin
Re r sin

l cos

 



 

  (5.25) 

 

r

F

ω
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2 2

2

2

 
    2 / 1  

2
L

r r
Re r sin sin sin

l l
       (5.26) 

The effective crankshaft radius for the second stage pressure cylinder is given as: 

 
2 2

2

2

 
 sin   2 / 1    

2 2 2 2
H

r r
Re r sin sin

l l

  
  
     

          
     

  (5.27) 

Also, the forces produced by the air pressure in both cylinders can be expressed as equation 

(5.28) 

 , , ,  pL H cL H cL Hf p s   (5.28) 

Where 𝑠𝑐𝐿,𝐻 = 0.25𝜋𝑑𝐿,𝐻
2  is the cross-sectional area for the first and second stage cylinders 

and 𝑑𝐿,𝐻  is the bore diameter for both cylinders. Then finally, the force produced by the vertical 

inertial force for both cylinders becomes: 

 
¨

, , ,   mL H recL H dpL Hf m x    (5.29) 

The reciprocating inertial mass of both stages 𝑚𝑟𝑒𝑐𝐿  and 𝑚𝑟𝑒𝑐𝐻 are calculated from the 

equation below: 

 ,   , ,  0.5recL H pL H crL Hm m m    (5.30) 

Where 𝑚𝑝𝐿 𝑎𝑛𝑑 𝑚𝑝𝐻 are the piston mass of both first and second stage cylinders; 𝑚𝑐𝑟𝐿  𝑎𝑛𝑑 

𝑚𝑐𝑟𝐻 are the connecting rod mass for both cylinders. 

5.6 Cylinder Pressure Models 

Filtered gas (in this case air), enters the first stage (low) cylinder through the suction port and 

into the suction chamber as seen in the complete model description in Figure 5.1. As the piston 

moves back up to TDC, it starts to compress the collected air until the pressure of the air is 

greater than the intercooler pressure just outside the discharge valve causing the air to discharge 

into the intercooler pipe/coil. As the air passes through the intercooler, heat is lost. The cooled 

air enters the second stage (high) cylinder and the process is repeated for the second stage 

cylinder, but the compressed air is discharged at a higher pressure into the air receiver tank. 
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The first law of thermodynamics is used to derive the equation of instantaneous cylinder 

pressure in both cylinders as. 

 
2 2

, , , , , ,

,

,

1
  dLcL H iL H viL H vdL H cL H cL H

cL H

Hp c m c m p v


       (5.31) 

Where; 

�̇�𝑣𝑖𝐿,𝐻 𝑎𝑛𝑑 �̇�𝑣𝑑𝐿,𝐻 are the inlet and discharge flow through the valves respectively, the specific 

heat ratio for air 𝛾 is 1.4, 𝑐𝑖𝑙,ℎ = √(𝛾𝑅𝑇𝑖𝐿,𝐻) is the speed of sound in the inlet plenum, and 

𝑐𝑑𝐿,𝐻 = √(𝛾𝑅𝑇𝑑𝐿,𝐻) is the speed of sound in the cylinder, 𝑅 is the gas constant at 

287𝑚2𝑠−2𝐾−1 for air. The absolute temperature of the gas in the cylinder is calculated using 

the following equation: 

 

1

,

, ,

,

    
cL H

cL H iL H

iL H

p
T T

p





 
   

 
  (5.32) 

𝑝𝑐𝐿,𝐻  𝑎𝑛𝑑 𝑝𝑖𝐿,𝐻 represents the internal cylinder pressure and the inlet pressure respectively, 

and 𝑇𝑖𝐿,𝐻  is the average absolute temperature of the inlet air (atmospheric temperature℃ +

273Κ).  

5.7 Mass Flow Models 

Mass flow through the suction and discharge valves are represented by �̇�𝑣𝑖𝐿,𝐻 𝑎𝑛𝑑 �̇�𝑣𝑑𝐿,𝐻  

respectively. In order to avoid any confusions, the mass flow models are presented in two parts. 

First, the expression for suction mass flow model would be given in subsection 5.7.1, then the 

discharge mass flow model in subsection 5.7.2. 

5.7.1 Suction Mass Flow Model 

The mass flow rate (�̇�𝑣𝑖𝐿,𝐻) of air through the suction valve is mathematically expressed as: 

   ,

,   , , ,

, ,

2
  .    

cL H

viL H iL H diL H fiL H e

iL H cL H

m c A
P P


 


  (5.33) 

Where; 
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𝛽𝑖𝐿,𝐻 = 𝑠𝑖𝑔𝑛 (𝑃𝑖𝐿,𝐻
𝑒 − 𝑃𝑐𝐿,𝐻), the sign would be +1 for normal flow and -1 for backflow, 𝑃𝑖𝐿,𝐻

𝑒  

is the pressure in the inlet plenum, 𝑃𝑐𝐿,𝐻 is the cylinder pressure while,

 
,

,

, 0.42    

L H

L H

diL H

max

c





 . 

𝐴𝑓𝑖𝐿,𝐻 = 2𝜋𝑟𝐿,𝐻. 𝑑𝑖𝑓𝑓 is the flow area around the valve plate and 𝑑𝑖𝑓𝑓 is the distance between 

the outer edge of the valve plate and the inner wall of the valve chamber. 𝜌𝑐𝐿,𝐻 is the density 

of air in both first and second stage cylinders for mass flow through the suction valve. 

 

1

      iH
iH dL

dL

P

P



 
 

  
 

  (5.34) 

Where 𝜌𝑖𝐿,𝐻 is the density of air at intake of the two cylinders, 𝜌𝑑𝐿 is the density of air at 

discharge of first stage, and the air density 𝜌𝑖 = 1.177𝑘𝑔/𝑚3. 

5.7.2 Discharge Mass Flow Model 

The mass flow rate (�̇�𝑣𝑑𝐿,𝐻 ) of air out of the discharge valve is mathematically expressed as: 

   ,

,   , , ,

, ,

2
  .  

cL H

vdL H dL H ddL H fdL H e

cL H dL H

m c A
P P


 


  (5.35) 

𝑐𝑑𝑑𝐿,𝐻(𝜒) is a variable discharge coefficient mathematically expressed as follows: 

   ,

,

max , 

0.35   
dpL H

ddL H

L H

c





   (5.36) 

𝜒max 𝐿,𝐻 is the maximum valve plate displacement. The discharge valve for the first and second 

stage have the same maximum displacement and the two suction valves have the same 

displacement. 𝐴𝑓𝑑𝐿,𝐻 is the maximum flow area of discharge valve. The flow coefficients are 

adopted from (Price & Botros, 1992), who took measurements on similar valves. To allow for 

the probability of backflow, the absolute value of the pressure differential across the valve is 

taken. The pressure in the discharge plenum is 𝑃𝑑𝐿,𝐻
𝑒 . 

 𝛽𝑑𝐿,𝐻 = 𝑠𝑖𝑔𝑛 (𝑃𝑐𝐿,𝐻 − 𝑃𝑑𝐿,𝐻
𝑒 ) is +1 for normal flow and -1 for backflow, 
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1

  ,

, ,

  ,

     
cL H

cL H iL H

iL H

P

P



 
 

   
 

  (5.37) 

Here 𝜌 𝑐𝐿,𝐻 is the density of air in the cylinders and 𝜌𝑖𝐿,𝐻 is the density of air in the plenum. 

 

1

  ,

, ,

  ,

        
dL H

dL H iL H

iL H

P

P



 
 

   
 

  (5.38) 

In Equation (5.38), 𝜌 𝑑𝐿,𝐻 is the density of air in the discharge valves while 𝜌𝑖𝐿,𝐻 is the density 

of air in the suction valves. 

5.8 Valve Dynamics 

This section covers the equations for the dynamic behaviour of the suction and discharge valves 

of the Broom Wade TS9 reciprocating compressor used for this experimental study. Each valve 

is made up of a valve plate, spring and a pneumatic chamber. Figure (5.5) shows the motion of 

the valve plate as a single-degree-of-freedom, and is therefore modelled in this section as a 

simple mass, spring and damper system. 

 

FIGURE 5.5: SINGLE DEGREE OF MOTION OF A RECIPROCATING COMPRESSOR VALVE 

(ELHAJ M. A., 2005) 

The suction and discharge mass flow rates are functions of the distance between valve plate 

and seating (valve lift). Forces acting on the valve plate causes it to move up and down. These 

forces result from three contributing factors: The spring, the pressure difference across the 

valve, and resistance forces in the initial stages of valve opening. Due to the numerous 

equations for both suction and discharge valve motion equation, this section would be sectioned 
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in two; one to describe the equations and expressions for suction valve motion and the second 

for discharge valve motion to prevent any confusions.  

5.8.1 Suction Valve Motion 

The equation of motion of the suction valve is based on Newton’s second law: 

 
¨

, ,, , , , , vsL H vsL HvsL H sL H vsL H vsL H vsL Hm x k xc x f


     (5.39) 

The equation of motion for suction valve changes slightly when the valve plate is in contact 

with the valve seats causing the valve to be completely open or closed. This is represented in 

equation (5.40) below as: 

 
¨

, ,, , , , ,     vsL H vsL HvsL H csL H csL H vsL H vsL Hm xkx fxc


     (5.40) 

Where; 

,

,

,

,

,

 valve plate mass (see equation 5.39),

c  damping coefficient,

c  damping coefficient when valve is fully open/closed,

k  non-linear spring stiffness,

k  contact stiffness when v

vsL H

sL H

csL H

vsL H

csL H

m 







 alve is fully open/closed,

  

The valve acceleration, velocity and displacement are denoted as �̈�𝑣𝑠𝑙,ℎ , �̇�𝑣𝑠𝑙,ℎ and 

𝜒𝑣𝑠𝐿,𝐻 respectively; ∑ 𝑓𝑣𝑠𝐿,𝐻 is sum of all the forces acting on the valve plate. For simplicity, 

the subscripts L, H representing first, and second stages would be omitted from this point on 

ward. However, the equations that would be described are applicable to both stages.  

 
,

1   
3vs d plate springm m m    (5.41) 

 
   , , ,

2     s d v s d v s d
c k m   (5.42) 

Where 𝜉 is the damping ratio of the valve unit, and is calculated as follows: 

 
2  1 2  

n

 


    (5.43) 
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,

,

    
s d

n

v s d

k

m


    (5.44) 

Here, 𝜔𝑣 is the valve unit frequency and 𝜔𝑛 is the natural frequency of the valve unit. The total 

forces acting on the valve plate is given by the following equation: 

 ,  vsL Hf fvs fgs fso      (5.45) 

Bearing in mind, this equation covers both first and second pressure cylinders.  

The weight of the suction valve plate for both cylinders is𝑓𝑔𝑠 = (−𝑚𝑔), 𝑓𝑠𝑜 is the pre-set 

spring, and𝑓𝑣𝑠 = 𝑐𝑓𝑠. 𝑆𝑣 (𝑝𝑖 − 𝑝𝑐).  

Where, 

force  coefficientcfs    

slot area for a single channelSv    

pressure in the suction plenum for both cylinderspi    

the cylinder pressurepc    

5.8.2 Discharge Valve Motion 

The equations given and described for suction valve motion equation is the same for discharge 

valve motion. For this reason, the motion equation for the discharge valve would not be fully 

described. For full mathematical expressions and explanation, see suction valve motion section 

5.8.1. 

 
¨

, ,, , , , , vdL H vdL HvdL H dL H vdL H vdL H vdL Hxm c k fx x


     (5.46) 

When the valve plate is completely open and closed, the equation of motion becomes: 

 
¨

, ,, , , , , vdL H vdL HvdL H dL H cdL H vdL H vdL Hxm c k fx x


     (5.47) 

5.9 Discharge Plenum Pressure  
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In this study, the discharge plenum pressure for only the second-stage cylinder is simulated and 

experimentally investigated. The discharge plenum is made up of two cavities as seen in Figure 

5.6. The pressure in these cavities are given as: 

  2 2

1 1 1

2

2 1

1

1
 1  cv vdH cv vdHH cv cv

cv

p cc m cc p x cvm r



 




  


 
 

  (5.48) 

   2

2 2 1 1

2

2

1
 vdHvdH cv pcv cv d cv p

cv

p A cc mx x c mA


 


  
    

  
  (5.49) 

Where, 

1,2cv Hv  is the volume of cavity one and two chambers; 

1cvm is the mass flow rate of cavity one; 

2cvA  is the cross-sectional area of cavity two chamber; 

2

1,2cvcc  is the speed of sound in cavity one and two chambers; 

1,2cvp  is the initial pressure in cavity one and two; 

1cv r  is the radius of cavity one; 

pc  is the speed of sound in the pipeline; 

pm


 is the mass flow in the pipeline. 
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FIGURE 5.6: DISCHARGE PLENUM AND PIPING SYSTEM 

5.10 Fault Simulation 

Second-stage discharge valve leakage and intercooler leakage are the two main faults simulated 

in this study. The simulation if accurately done should predict the signatures for the above 

faults when examined experimentally. 

5.10.1 Second Stage Discharge Valve Leakage 

Leaking discharge valves are modelled as an added flow through an orifice in-line with the 

usual valve flow. The mass flow rate of the discharge leakage is �̇�𝑣𝑖𝐿,𝐻 > 0 when the discharge 

plenum pressure ( )e

dHp  is greater than the cylinder pressure (p )cH , That is during expansion, 

suction, and compression. Equation 5.50 was used to determine the mass flow rate for gas flow 

through the discharge valve orifice. 

   

2
  . dH

vdH dH dH lk e

dH cH

m c A
P P


 


  (5.50) 

Where; 𝐴𝑙𝑘 is the size of leakage on the discharge valve and 𝑐𝑑𝐻(𝜒) is a variable discharge 

coefficient. 𝑃𝑑𝐻 
𝑒  is the pressure in the discharge plenum and 𝛽𝑖𝐿,𝐻 = 𝑠𝑖𝑔𝑛 (𝑃𝑖𝐿,𝐻

𝑒 − 𝑃𝑐𝐿,𝐻). 
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5.10.2 Intercooler leakage 

For there to be a small leakage in the intercooler of the two-stage reciprocating compressor 

Equation 5.51 is used. 

 2 2 21
               ic iL vdL lH viH lc ic

ic

p c m c m c m


       (5.51) 

The faulted intercooler mass flow rate is given by Equation 5.52 below. 

   

0

2
  .     ic

ic ic ic ic

ic

m c A
P P


 


  (5.52) 

Where; 

𝐴𝑖𝑐 = 2𝜋𝑟𝐿,𝐻𝑥 is the leakage flow area allowing gas to escape from the intercooler, 

𝛾 is the specific heats of the process gas of sound in the 1.4 for air and 𝛽𝑖𝑐 = 𝑠𝑖𝑔𝑛 (𝑃𝑖𝑐 − 𝑃0). 
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CHAPTER SIX 

6 MODEL VALIDATION 

This chapter verifies the accuracy of the models developed in chapter five using several 

parameters including in-cylinder pressure, valve motion, and discharge chamber pressure of 

a healthy two-stage reciprocating compressor. The mathematical equations are solved 

numerically in MATLAB programming environment and the predicted results are compared 

with the corresponding results from the experimental measurements. More so, the prediction 

trends of the two fault simulations, second-stage discharge valve leakage and intercooler 

leakage are also compared with corresponding experimental fault measurements. The 

prediction and measurement trends show good agreement, which means the model and fault 

simulations are accurate and can be used for further simulation studies. 
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6.1 Introduction 

The fundamental purpose of condition monitoring of the reciprocating compressor is to 

determine the current and future working condition of a machine while in operation. In order 

to fulfil this purpose, vibration analysis is employed to obtain vital information about the 

internal condition of the compressor for fault detection. Vibration analysis is frequently used 

for condition monitoring of machines including reciprocating compressors because changes to 

the system can be detected immediately and it can indicate the actual cause of fault from signals 

with great noise. 

Chapter Five presents the developed mathematical model of the two-stage reciprocating 

compressor to predict healthy and common fault signatures. The model is validated by 

comparing predicted results from the model with measured experimental results for all test 

cases starting with the compressor working under normal condition (Baseline), then comparing 

the two faults cases: second stage discharge valve leakage, and intercooler leakage. The 

comparative analysis is done for in-cylinder pressure, vibration signals, and the new developed 

discharge chamber pressure from the second-stage cylinder.  

6.2 Model Analysis 

6.2.1 Physical Parameters and Constants 

The physical parameters used to model the dynamics of the reciprocating compressor are 

obtained mostly from the manufacturer or were measured in the laboratory. Table 6.1 presents 

the parameters used. 

TABLE 6.1: PHYSICAL PARAMETERS OF THE TWO-STAGE RECIPROCATING COMPRESSOR 

(BROOM WADE, 1964; COMP AIR UK LTD, 2002) 

Broom Wade TS9 Two-Stage Reciprocating Compressor System 

Components Low Pressure 

Cylinder 

High Pressure 

Cylinder 

Piston mass (kg) 1.78 0.89 

Piston head diameter (mm) 93.6 55.6 

Cylinder bore (mm) 101.6 63.5 
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Suction pressure (kPa/psi) 100/14.7 220/32.2 

Discharge pressure (kPa/psi) 270/39.7 816/120 

Suction temperature (⁰C) 21 41 

Discharge temperature (⁰C) 50 80 

Mass of valve plate (g) 2.3 2.1 

Mass of valve spring  1.0 2.0 

Outer radius valve plate 21.0 14.0 

Inner radius valve plate 12.5 10.5 

Number of cylinders 2 (90⁰ opposed) 

Compressor speed (rpm) 425 

Motor speed (rpm) 1450 

Motor power (KW) 2.2 

Flywheel ratio % 3 

Tank capacity (litres) 272 

Piston stroke (mm) 76.2 

Connection rod length (mm) 171.6 

Crank radius (mm) 38.1 

Maximum suction valve lift (mm) 1.5 

Maximum discharge valve lift (mm) 1.5 
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6.3 Healthy Simulation Results 

6.3.1 In-Cylinder Pressure Signal  

Figure 6.1 shows the predicted in-cylinder pressure readings from the model at different tank 

pressures 0.138MPa, 0.276MPa, 0.552MPa, and 0.837MPa  (20, 40, 80, and 120 Psi 

respectiveely) for first stage and second stage.  

 

FIGURE 6.1: PREDICTED HEALTHY PRESSURE SIGNALS AT DIFFERENT TANK 

PRESSURES: A) FIRST STAGE B) SECOND STAGE 

From Figure 6.1 above, the in-cylinder pressure increases as the load increases for both first 

stage and second stage. This is in accordance with the findings of experimentally measured 

healthy in-cylinder pressure signals for the same tank pressure levels in Figure 6.2 below. 

A comparative representation of the predicted and measured healthy in-cylinder pressure 

waveforms of first and second stage tank pressure at 0.827 MPa (120 Psi) is given in Figure 

6.3 for validation purposes. It can be seen that the degree of discrepancy between the predicted 

and measured results are minimal in both stages. The minor discrepancies can be attributed to 

the age of the compressor and inability to contact the (terminated) manufacturing company for 

verification of some of the compressor parameters used for modelling.  

The close match between the predicted and measured waveforms is an indication that the model 

is reliable and accurately represents the compressor dynamics. 



CHARACTERISING VIBRO-ACOUSTIC SIGNALS OF A RECIPROCATING 

COMPRESSOR FOR CONDITION MONITORING 

 

133 
DEGREE OF DOCTOR OF PHILOSOPHY (PHD) 

 

FIGURE 6.2: EXPERIMENTAL HEALTHY PRESSURE SIGNALS AT DIFFERENT TANK 

PRESSURES: A) FIRST STAGE B) SECOND STAGE 

 

FIGURE 6.3: PREDICTED AND MEASURED IN-CYLINDER PRESSURE SIGNALS AT 0.827 

MPA (120PSI) FIRST STAGE AND SECOND STAGE 
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6.3.2 Valve Displacement and Vibration Signals  

Suction and discharge valve displacements for both cylinders have been modelled to predict 

the valve opening and closing times. Figures 6.4 and 6.5 shows the opening and closing times 

for first and second stage cylinders under healthy compressor working cycle. The opening and 

closing of the values depend on the in-cylinder pressure, which is a function of piston position.  

 

FIGURE 6.4: PREDICTED SUCTION AND DISCHARGE VALVE MOTIONS FOR FIRST STAGE 

CYLINDER AT 0.827 MPA (120 PSI) 

 

FIGURE 6.5: PREDICTED SUCTION AND DISCHARGE VALVE MOTIONS FOR SECOND 

STAGE CYLINDER AT 0.827 MPA (120 PSI) 

Figure 6.6 presents the measured healthy vibration signals for the first and second stage 

cylinder heads for one compressor cycle. The vibration signals consists of noise and several 

transient events including valve and flow-induced impacts, which are difficult to identify 

without the dynamic modelling and a good understanding of the reciprocating compressor unit. 

 

SVO SVC DVO DVC

177.2
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Four significant valve events including suction valve opening (SVO), suction valve closing 

(SVC), discharge valve opening (DVO), and discharge valve closing (DVC) have been 

identified in Figure 6.6 based on the opening and closing times of the predicted valve motions 

presented in Figures 6.4 and 6.5 for first and second stage cylinders respectively. 

The valve opening and closing times predicted in this study are consistent with those from 

Elijahs research; a fellow scholar who used a similar compressor to reveal the valve operating 

times (Elhaj M. A., 2005). It can be seen that the predicted valve opening and closing times are 

in good agreement with the measured vibration signal from the first and second stage cylinders.  

 

FIGURE 6.6: MEASURED VIBRATION SIGNALS AT 0.827 MPA (120PSI) FOR A) FIRST 

STAGE CYLINDER AND B) SECOND STAGE CYLINDER 

6.3.3 Discharge Chamber Pressure 

The discharge chamber pressure for the second cylinder is composed of two cavity chambers 

illustrated in Chapter Five (see Figure 5.6). Two equations for the discharge cavity pressures 

were described in the previous chapter. Figure 6.7 shows the plots of in-cylinder, cavity one 

and cavity two pressure predictions during discharge period at 0.827MPa. It can be seen that 

the two cavity waveforms accurately predicts the valve opening angle and shows the valve 
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flutter. Moreover, both cavity pressure predictions show the effects of delayed valve opening 

angle with increasing tank pressure in Figure 6.8. 

 

FIGURE 6.7: PREDICTED PLOT OF IN-CYLINDER, CAVITY ONE, AND CAVITY TWO 

PRESSURE AT DISCHARGE PERIOD 

 

FIGURE 6.8: A) CAVITY ONE B) CAVITY TWO PRESSURE PREDICTIONS AT DIFFERENT 

TANK PRESSURES 

6.4 Discharge Valve Fault Simulation Results 

6.4.1 In-Cylinder Pressure Fault Signal  

Predicted in-cylinder pressure and valve motion waveforms simulated under second-stage 

discharge-valve compressor fault condition is presented in this section. The discharge valve in-

cylinder pressure prediction at 0.827 MPa (120psi) is compared with the experimental in-

cylinder pressure waveform under the same fault condition. Figures 6.9 shows the first and 
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second stage results comparing the predicted in-cylinder fault signature with that of 

experimental, and from the plots, it can be seen that the predicted and experimental waveforms 

for discharge valve fault condition are in good agreement with some minor differences. 

 

FIGURE 6.9: PREDICTED AND EXPERIMENTAL SECOND STAGE DISCHARGE VALVE FAULT 

WAVEFORMS FOR FIRST AND SECOND STAGE IN-CYLINDER PRESSURE AT 0.823 MPA 

6.4.1.1 Baseline and Discharge Valve Leakage 

The predicted waveform for the discharge valve leakage is labelled DVF-Fault and it is plotted 

with that of predicted heathy signal in Figure 6.10; furthermore, the same conditions (healthy 

and faulty) for the experimental smeasurement are also presented for comparison with the 

predicited results. The discharge valve leakage is carried out as explaned in section (4.6.1)  

From the subplots of Figure 6.10, it can be seen that the waveform patterns for the predicted 

first-stage in-cylinder pressure of healthy and faulty conditions are very similar to those from 

the experimental measurement.  

Moreover, the waveform for the predicted second-stage in-cylinder pressure of healthy and 

faulty conditions are also very similar to those from the experimental measurements as seen in 

Figure 6.11. When there is a discharge valve leakage on the second-stage cylinder, the valve 

opens earlier as seen from the plot and the discharge process takes a longer time to complete. 

These resulting effects are due to high-pressure air from the pipeline leaking into the cylinder, 
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which causes an earlier pressure differential time across the valve and a longer discharge 

process. 

 

FIGURE 6.10: PREDICTED AND EXPERIMENTAL FIRST STAGE IN-CYLINDER PRESSURE 

WAVEFORMS FOR HEALTHY AND DVL-FAULT CONDITIONS 

 

FIGURE 6.11: PREDICTED AND EXPERIMENTAL SECOND STAGE IN-CYLINDER PRESSURE 

WAVEFORMS FOR HEALTHY AND DVL-FAULT CONDITIONS 

Therefore, because of these similar behaviourial patterns between predicted results and 

experimental results, it can be concluded that the in-cylinder pressure from the reciprocating 

compressor can be used for leaking discharge valve fault detection and diagnosis. 
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6.4.2 Valve Displacement and Vibration Fault Signals  

Figure 6.12 shows the effects of leaks on the second stage valve plate via the first stage valve 

displacement waveform. From the plot, it is observed that in the event of a leak, the suction 

and discharge valves open later than normal. This is because the leaks from the second stage 

delays the time at which pressure in the cylinder would be high enough to overcome the 

pressure in the intercooler. This effect is also seen in the predicted healthy and faulty in-

cylinder traces presented in Figure 6.10.  

Figure 6.13 shows the measured first stage vibration signature for healthy and discharge valve 

leakage conditions. There is a slight delay in the suction valve opening  angle 20.72° for DVL 

(Faulty) vibration signature compared to heathy vibrations, which opens at 17.87°. The 

discharge valve for healthy vibration signal opens at 275.9°, while that of fault condition opens 

at 289.5° about 14° delay. Moreso, the introduction of leaks causes high levels of vibration 

amplitude. 

 

FIGURE 6.12: FIRST STAGE VALVE DISPLACEMENT COMPARISON OF HEALTHY AND 

VALVE LEAKAGE FAULT PREDICTIONS 
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FIGURE 6.13: MEASURED FIRST STAGE VIBRATION SIGNALS FOR HEALTHY AND 

DISCHARGE VALVE FAULT CONDITIONS 

The second stage suction and discharge valve displacements are presented in Figure 6.14 for 

both healthy and fault conditions. The healthy and faulty valve displacement comparision 

shows a significant difference in second stage suction valve closing, opening, and discharge 

valve opening times (crank angles). When there are leaks on the second stage discharge valve, 

the suction valve opens 38° earlier than normal and the valve displacement amplitude is 

significantly reduced. Moreso, the discharge valve for the faulty condition opens earlier 

(167.3°) than normal (198.9°) with a difference of 31.6° in crack angle. Furthermore, the 

suction valve opens later than normal when there is a discharge valve leakage on the second 

stage; with a delay of 17°. From Figure 6.15, it can be observed that, the introduction of leaks 

through the second stage discharge valve causes increased vibrations that make it difficult to 

determine the valve opening and closing times on the vibration signal. 

From the above analysis, it can be concluded that careful analysis of the vibration signal can 

be used to determine the presence of discharge valve leaks on the second stage cylinder. The 

level of vibration increases particularly during discharge valve closing times (angles). 
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FIGURE 6.14: SECOND STAGE VALVE DISPLACEMENT COMPARISON OF HEALTHY AND 

VALVE LEAKAGE FAULT PREDICTIONS 

 

FIGURE 6.15: MEASURED SECOND STAGE VIBRATION SIGNALS FOR HEALTHY AND 

DISCHARGE VALVE FAULT CONDITIONS 
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6.5 Intercooler Fault Simulation Results 

6.5.1 In-Cylinder Pressure Fault Signal  

Predicted in-cylinder pressure and valve motion simulated under leaking intercooler fault are 

presented in this section. The predicted intercooler leakage result at 0.827 MPa (120psi) is 

compared with experimental measurement when the compressor is working under the same 

fault condition. Figures 6.16 shows the first and second stage results comparing the predicted 

in-cylinder waveform trends with that of experimental, and from the plots, it can be seen that 

the predicted and experimental waveforms for intercooler leakage are in good agreement with 

the exception of some minor differences at first stage pressure plot. 

 

FIGURE 6.16: PREDICTED AND EXPERIMENTAL INTERCOOLER LEAKAGE TRENDS FOR 

FIRST AND SECOND STAGE IN-CYLINDER PRESSURE AT 0.823 MPA 

Figures 6.17 shows the comparison graph of healthy and intercooler fault (ICL-Fault) for first 

stage predicted and measured in-cylinder pressure signals. The first stage discharge valve 

opens slightly early when there is a leakage on the intercooler coil, and the suction valve also 

opens slightly earlier when there are leaks on the intercooler pipeline. These effects are evident 

in the predicted plot as well as the measured results. 

Also in the second stage healthy and faulty comparision graphs (Figure 6.18), the discharge 

valve opens slightly earlier under fault conditions for both predicted and experimental 

measurements. However, it is noted that this change is not significant enough due to the 
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quantity of leaks seeded on the intercooler pipeline and simulated mathematically. Moverover, 

the intercooler fault carried out in this study does not appear to have an adverse effect on the 

in-cylinder pressure signatures of the reciprocating compressor  

 

FIGURE 6.17: PREDICTED AND EXPERIMENTAL FIRST STAGE IN-CYLINDER PRESSURE 

WAVEFORMS FOR HEALTHY AND ICL-FAULT CONDITIONS 

 

FIGURE 6.18: PREDICTED AND EXPERIMENTAL SECOND STAGE IN-CYLINDER PRESSURE 

WAVEFORMS FOR HEALTHY AND ICL-FAULT CONDITIONS 
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6.5.2 Valve Displacement and Vibration Fault Signals  

Figure 6.19 shows the first stage valve displacement trends when there are leaks on the 

intercooler pipeline. From the graph, there are no significant changes between the healthy and 

faulty predicted trends for both suction and discharge valve motion.  

 

FIGURE 6.19: FIRST STAGE VALVE DISPLACEMENT COMPARISON OF HEALTHY AND 

INTERCOOLER FAULT PREDICTIONS 

 

FIGURE 6.20: MEASURED FIRST STAGE VIBRATION SIGNALS FOR HEALTHY AND 

INTERCOOLER FAULT CONDITIONS 
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Figure 6.20 shows the measured first stage vibration signature for healthy and faulty 

intercooler. The delays in valve opening and closing times are not apparent from the graphs 

However, it is observed that the introduction of leaks on the intercooler pipeline causes high 

levels of vibration amplitudes, particularly when the discharge valve closes about 352°. 

The second stage suction and discharge valve displacements are presented in Figure 6.21 for 

healthy and faulty conditions. The healthy and faulty valve displacement comparision shows 

no significant difference in suction and discharge valve opening and closing times (crank 

angles). Also, from Figure 6.22, which presents the measured vibration trends when intercooler 

leaks are introducted to the system, it is difficult to point out the differences in valve event 

times (angles) between healthy and intercooler fault vibration signatures.  

From the above analysis, it can be concluded that the degree of intercooler leakage seeded and 

mathematically simulated in this study does not show any notable trend differences compared 

with heathy trends. However, it is worth noting that, increased levels of leaks on the intercooler 

system do have adverse effects on the compressor efficiency (Zheng, 2005). 

 

FIGURE 6.21: SECOND STAGE VALVE DISPLACEMENT COMPARISON OF HEALTHY AND 

INTERCOOLER FAULT PREDICTIONS 
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FIGURE 6.22: MEASURED SECOND STAGE VIBRATION SIGNALS FOR HEALTHY AND 

INTERCOOLER FAULT CONDITIONS 

6.6 Discharge Chamber Fault Simulation Results 

The effects of four fault conditions namely; second stage discharge fault (DVL), intercooler 

fault (ICL), reservoir pipeline fault (PPL), and combined fault of DVL and PLL on the 

discharge chamber have been simulated. The experimental results of all four fault conditions 

are compared with healthy signal at 0.82MPa as seen in Figure 6.23. The effects of the 

experimental results in Figure 6.23 are correlated with the fault predictions in Figure 6.24. 

From the experimental results it can be seen that the intercooler fault (ICL) cannot be detected 

from the gas pulsation signal and this effect is identical to the predicted intercooler fault 

simulation. Very little almost insignificant effect is observed from the experimental reservoir 

pipeline fault where the gas pulsation amplitude of the faulty signal is slightly higher than that 

of the healthy signal. Also, this effect can be seen in the corresponding fault simulation (PLL). 

The discharge valve fault and combined fault experimental signals had the greatest effect on 

the gas pulsation signal with a significantly reduced amplitude of fault signals and visible 

deformed waveform at the discharge opening times. Also, the discharge valve opens slightly 

earlier with the two fault conditions. All three effects described are present in the simulated 

results. From the results, it can be concluded that  the model is reliable and accurately represents 
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the fault effects on the gas pulsation signal from the second-stage cylinder discharge chamber 

of a reciprocating compressor.  

 

FIGURE 6.23: EXPERIMENTAL COMPARISON OF HEALTHY AND FOUR FAULT 

CONDITIONS OF DISCHARGE CHAMBER SIGNAL AT 0.83MPA 
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FIGURE 6.24: PREDICTED COMPARISON OF HEALTHY AND FOUR FAULT CONDITIONS OF 

DISCHARGE CHAMBER SIGNAL AT 0.83MPA 
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CHAPTER SEVEN 

7 CHARACTERISTICS OF VIBRATION SIGNALS FROM A 

RECIPROCATING COMPRESSOR  

This chapter describes the characteristics of vibro-acoustic signals from the reciprocating 

compressor based on vibration measurement. Time domain and frequency domain signal 

processing techniques are used to find features due to specific faults (valve and intercooler 

leaks) common to the reciprocating compressor. It was revealed that frequency domain 

analysis is better at detecting the investigated faults compared to using key time domain 

statistical features studied, however, an advance signal processing tool is needed for a more 

robust diagnostic. 
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7.1 Introduction 

Vibration analysis is the most widely used signal processing technique for machine monitoring 

and early fault diagnosis of most mechanical systems including reciprocating compressors 

(RC). In this chapter, fundamental vibration techniques are used to detect common 

reciprocating compressor faults before the faults become catastrophic. The vibration signals 

are measured from the head of the two-stage (first and second) compressor cylinders (see 

section 4.2.1). Figure 7.1 shows typical one cycle vibration signals from the two RC cylinder 

heads. 

 

FIGURE 7.1: MEASURED VIBRATION SIGNAL AT 0.82 MPA A) FIRST CYLINDER, AND B) 

SECOND CYLINDER 

The vibration signal from the compressor cylinder head is composed of flow-induced and 

impact induced excitations. The flow-induced excitations are caused by air interactions with 

valves resulting in periodic flow oscillations; while impact induced excitations are caused by 

the effects of the valve plate hitting the seat when opening and closing. 

In vibration analysis, time domain and frequency domain analysis are fundamental techniques 

for interpreting data. Changes in machine condition can be detecting by analysing time-domain 

statistical parameters such as root-mean-square, crest factor, peak level, kurtosis etc. The 

frequency domain analysis is used to show individual frequency components within the signal, 
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which can identify fundamental characteristics of the machine and detect sources of defects 

within the system. 

In this chapter, time domain and frequency domain analysis are applied to the measured 

vibration signal from the reciprocating compressor cylinder-head to extract useful information, 

which will aid effective condition monitoring of the machine. A wide range of tank pressures 

(0.01Mpa to 0.82MPa) are investigated and three common reciprocating compressor faults 

including second-stage discharge valve leakage, intercooler leakage, and a combination of the 

two faults are studied for fault detection purposes. Sources of vibration from the reciprocating 

compressor are discussed and the application of time-domain and frequency-domain methods 

are employed to determine the compressors’ condition. 

7.2 Time Domain Analysis of Vibration Signal 

In this section, vibration signatures from the cylinder head of the two-stage reciprocating 

compressor are examined at all tank pressures. Three statistical parameters including Root 

Mean Square (RMS), and kurtosis are presented and results for healthy and faulty compressor 

conditions are analysed. 

Figures 7.2 and 7.3 show the raw vibration signals from the first stage and second stage 

compressor cylinder heads at all tank pressures. The plots of vibration signals presented in 

Figure 7.2 shows the complexity and impulsive nature of the vibration signals from the 

compressor. There are some differences between waveforms at several tank pressures; for 

instance, at 0.13 seconds, high amplitudes can be observed for low to mid tank pressure range 

(0.01MPa to 0.55MPa) as a result of low resistance in the form of pressure build-up in the 

discharge plenum of the first-stage cylinder. However, other differences are not so obvious 

from the waterfall plot. In Figure 7.3, significant impacts at 0.1 seconds are observed from mid 

to higher tank pressure range (0.48MPa to 0.82MPa) and they occur at the discharge valve 

closing (DVC) time for the second-stage cylinder. These high amplitude impacts result from 

high pressure air acting as a resistant force in the discharge plenum of the cylinder causing the 

valve to close harshly. This shows that changes in tank pressure influences vibration signatures 

from the reciprocating compressor. Furthermore, the overall vibration amplitudes from the 

second-stage cylinder head are greater than those from the first-stage RC cylinder head, 

because the second-stage cylinder compresses gas at a higher pressure. 
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Figures 7.4 and 7.5 presents the healthy and faulty vibration signatures from the first-stage 

cylinder head at 0.82MPa (maximum tank pressure).  

 

FIGURE 7.2: FIRST STAGE VIBRATION SIGNATURES OVER A WIDE PRESSURE RANGE 

UNDER NORMAL (HEALTHY) COMPRESSOR CONDITION 

 

FIGURE 7.3: SECOND STAGE VIBRATION SIGNATURES OVER A WIDE PRESSURE RANGE 

UNDER NORMAL (HEALTHY) COMPRESSOR CONDITION  



CHARACTERISING VIBRO-ACOUSTIC SIGNALS OF A RECIPROCATING 

COMPRESSOR FOR CONDITION MONITORING 

 

153 
DEGREE OF DOCTOR OF PHILOSOPHY (PHD) 

The differences in healthy and faulty signal amplitudes for the two stages are not very clear 

and can be quite misleading as the general amplitude of the healthy vibration signatures (BL) 

are high compared to discharge valve leakage (DVL) and combined fault (DVL+ICL) 

signatures in Figure 7.4. Furthermore, in Figure 7.5, the normal (BL) vibration amplitude is 

also higher than those of fault signatures at 0.82MPa maximum tank pressure. 

 

FIGURE 7.4: HEALTHY AND FAULTY VIBRATION SIGNATURES FROM FIRST STAGE 

CYLINDER HEAD AT 0.82MPA 

 

FIGURE 7.5: HEALTHY AND FAULTY VIBRATION SIGNATURES FROM SECOND STAGE 

CYLINDER HEAD AT 0.82MPA 
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7.2.1 RMS  

Root Mean Square (RMS) measures the overall changes in the system; it is computed to 

understand the signals more accurately and to identify healthy and faulty signals clearly under 

a wide pressure range. The result in Figure 7.6 shows how the RMS values for first and second 

stage vibration signals vary with increasing tank pressure. It is observed that the RMS values 

for the first stage vibration measurement are generally lower than the RMS values for second 

stage vibration measurement from mid to high tank pressure range; also, the second stage RMS 

values show an increasing linear trend for mid to high tank pressure ranges. 

Figure 7.7 presents a comparison of healthy and faulty RMS values for first stage vibration 

signals at several tank pressures. The random trends over the wide tank pressure range 

(0.01MPa - 0.82MPa) observed in all cases do not provide significant information concerning 

the condition of the RC, and therefore, cannot be used as a fault indicator. 

 

FIGURE 7.6: FIRST AND SECOND STAGE VIBRATION RMS VALUES FOR SEVERAL TANK 

PRESSURES 

In Figure 7.8, the second-stage vibration measurement RMS under healthy and all fault cases 

are presented. Here, it is seen that the mid to high tank pressure RMS values increase linearly 

for all cases, however, there are very little variances between the healthy and faulty RMS 

values, which shows it is not a suitable fault indication means. 
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FIGURE 7.7: HEALTHY AND FAULTY FIRST STAGE VIBRATION RMS VALUES AT 

SEVERAL TANK PRESSURES 

 

FIGURE 7.8: HEALTHY AND FAULTY SECOND STAGE VIBRATION RMS VALUES FOR 

SEVERAL TANK PRESSURES 

7.2.2 Kurtosis 

The fourth statistical moment popularly known as kurtosis is a widely used statistical feature 

in condition monitoring. Figure 7.9 shows the kurtosis for the first and second stage vibration 

signal across a wide tank pressure range. The results for both first and second stage kurtosis 

plots do not exhibit any reliable trends with increasing tank pressure. However, the kurtosis 

values for low to mid (0.01MPa to 0.41MPa) tank pressure range of first-stage vibration 
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measurements are higher than the corresponding tank pressure range of second-stage vibration 

measurements. This means that the first-stage vibration signals have more infrequent extreme 

deviations (or outliers) compared to those from the second-stage.  

The kurtosis results for healthy and fault cases are compared for first stage vibration signals in 

Figure 7.10 and second stage vibration signals in Figure 7.11 across all tank pressure range. 

The results reveal no significant variance across the entire pressure range for healthy and faulty 

results but rather a very random trend with increasing tank pressures, which means that the 

time-domain kurtosis results cannot be used to give accurate diagnosis of the RCs’ condition. 

 

FIGURE 7.9: KURTOSIS VALUES FOR FIRST AND SECOND STAGE VIBRATION SIGNALS AT 

SEVERAL TANK PRESSURES 

 

FIGURE 7.10: HEALTHY AND FAULTY KURTOSIS RESULTS FOR FIRST STAGE VIBRATION 

SIGNALS AT SEVERAL TANK PRESSURES 
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FIGURE 7.11: HEALTHY AND FAULTY KURTOSIS RESULTS FOR SECOND STAGE 

VIBRATION SIGNALS AT SEVERAL TANK PRESSURES 

In summary, due to the randomness and non-linear nature of statistical features from the 

measured first and second stage vibration signals across a wide range of pressure, it is difficult 

to detect and monitor common faults developed on the reciprocating compressor using the 

investigated traditional time domain analytical methods.    

7.3 Frequency Domain Analysis 

The previous section revealed that the considered time-domain statistical parameters were not 

able to detect the presence of common reciprocating compressor faults for a wide tank pressure 

range. Therefore, frequency domain analysis is investigated in this section for condition 

monitoring of the machine. 

The vibration spectra for healthy first-stage and second-stage vibration measurements from the 

reciprocating compressor are presented in Figure 7.12a and 7.12b respectively. From the plots, 

it can be observed that the low frequencies have the greatest amplitude in both spectra, and the 

magnitude of the second stage spectra is generally greater than that from the first-stage cylinder 

head. 
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FIGURE 7.12: ONE SIDED VIBRATION SPECTRA FOR HEALTHY A) FIRST STAGE AND B) 

SECOND STAGE VIBRATION MEASUREMENTS AT 0.82MPA 

Figures 7.13 and 7.14 shows the changes in vibration spectra with increasing tank pressure for 

first and second-stage vibration signals respectively. From the healthy first-stage vibration 

spectra plot, it can be observed that there are no significant changes in amplitudes with 

increasing tank pressure. However, for the healthy second-stage vibration spectra, at high 

frequency range between 12 kHz to 17 kHz particularly, high frequency amplitudes are present 

from mid to high tank pressure range. Figure 7.14 show that increasing tank pressure does have 

some significant effect on the spectrum amplitude of the second-stage vibration measurements.  

Figure 7.15 shows the waterfall plots of first-stage vibration spectrum for all tank pressure 

range under healthy and fault conditions. At lower frequencies, high frequency amplitudes are 

seen in the plots of all three fault cases at certain tank pressures, while the healthy signal (BL) 

has relatively low amplitude. Introducing leaks (DVL and ICL) increases the amplitude of the 

vibration spectra. 

The vibration spectra from the second-stage measurements have greater amplitudes than those 

from the first-stage cylinder for all cases studied including healthy signals. The increased 

amplitude is a result of the greater discharge pressure from the second-stage cylinder. 

 



CHARACTERISING VIBRO-ACOUSTIC SIGNALS OF A RECIPROCATING 

COMPRESSOR FOR CONDITION MONITORING 

 

159 
DEGREE OF DOCTOR OF PHILOSOPHY (PHD) 

 

FIGURE 7.13 : HEALTHY FIRST STAG VIBRATION SPECTRA FOR SEVERAL TANK 

PRESSURES 

Figure 7.16 presents the waterfall plots of second-stage vibration spectra for all tank pressures 

under healthy and the three fault conditions. In the combined fault (DVL+ICL) plot, increased 

amplitudes are observed in the 5 kHz to 13 kHz frequency range at high tank pressure levels 

compared to other fault conditions including healthy case. The greatest peak is seen at 5646 

Hz. The intercooler fault spectral plot has the lowest overall amplitude compared to the other 

cases. 

 

FIGURE 7.14: HEALTHY SECOND STAGE VIBRATION SPECTRA FOR SEVERAL TANK 

PRESSURES 
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FIGURE 7.15: WATERFALL PLOTS OF FIRST STAGE VIBRATION SPECTRUM FOR 

HEALTHY AND ALL FAULT CASES 

The spectrum analysis of the measured vibration signals for healthy and fault conditions show 

that the spectral amplitudes are important indicators for detecting common reciprocating 

compressor faults particularly, when there is a discharge valve leakage. 
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FIGURE 7.16: WATERFALL PLOTS OF SECOND STAGE VIBRATION SPECTRUM FOR 

HEALTHY AND ALL FAULT CASES 

7.4 Summary 

In this chapter, three common fault cases including second-stage discharge valve leakage, 

intercooler leakage and a combination of the two faults are investigated experimentally. Time 

domain and frequency domain analyses are used to determine vibration characteristics of the 

signals from the first-stage and second-stage cylinder heads. The time-domain signal waveform 

revealed several impacts and corresponding magnitudes caused by the valve and gas flow, two 

key time domain statistical parameters were unable to clearly differentiate fault features from 

that of healthy signal for a wide tank pressure range. Therefore, it can be concluded that time 

domain statistical features cannot be used as an effective fault detection tool for condition 

monitoring of the two-stage reciprocating compressor. 

The frequency domain analysis revealed, that spectral amplitudes present significant variations 

at high tank pressure range, particularly, for second-stage vibration signals. Moreover, spectral 

amplitudes of fault cases increase, mostly at high tank pressure range over a certain frequencies 

(5 kHz to 14 kHz) for the second-stage vibration signals. Conventional signal processing (time-
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domain and frequency-domain) methods are often used for early fault detection, however, the 

diagnostic features investigated in this chapter were ineffective as a diagnostic tool because of 

the wide variety of operating conditions (tank pressures) and the complex impulsive nature of 

the vibration signals. 
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CHAPTER EIGHT 

8 CHARACTERISTICS OF DISCHARGE GAS PULSATION 

FROM A RECIPROCATING COMPRESSOR 

This chapter presents a practical approach to condition monitoring of reciprocating 

compressors based on gas pulsation signals from the compressor valve discharge chamber 

(plenum) for the detection of common reciprocating compressor faults (second-stage discharge 

valve plate leakage, intercooler pipe leakage, and discharge-to- reservoir pipe leakage). The 

noise characteristics from the measured pulsation signals are investigated using conventional 

time domain and frequency domain methods.  

It is concluded that the pulsation waves can provide accurate representation of the valve 

opening times and any delays that may occur with increasing discharge/tank pressure. 

However, statistical features of the time-domain analysis were insufficient for fault detection. 

Furthermore, several resonances were present in the gas pulsation spectrum, but challenges 

were encountered in accurately selecting the optimal resonance band, to effectively 

characterise the investigated faults across several discharge/tank pressure range. Finally, 

using the 1/3rd octave band analysis, band 22 and 23, which corresponds to centre frequency 

500Hz and 630Hz gave the best fault separations from the baseline (healthy) signal. 
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8.1 Experimental Setup  

The experimental setup of the reciprocating compressor is described in chapter four section 

4.2.1. Figure 8.1 presents a schematic of the reciprocating compressor rig setup with 

specifications of supporting components listed in Table 6.1. 

The gas pulsation signal is collected via a piezoelectric dynamic pressure transducer (CY-YD-

212) installed on the head of the second-stage discharge system. The transducer has a frequency 

range of more than 100 kHz, operating range of 0 to 10MPa, a temperature range of - 40°C to 

+150°C, and sensitivity of 100pC/MPa. In addition to the acoustic measurement acquired by 

the dynamic pressure transducer, eight transducers were installed on the test rig to acquire 

additional data on vibration, in-cylinder pressure, temperature, instantaneous angular speed and 

current signals. These signals were collected using the following transducers: 

 Accelerometers (two) 

 Static pressure sensors (two) 

 Thermocouples (two) 

 An optical encoder 

 A hall effect current transducer 

8.1.1 Test Procedure 

The data acquisition system was set to collect 40384 samples of data at a sampling frequency 

of 49019 Hz. The 40384 samples collected make up six cycles of data collected at several 

discharge pressure levels including 0.275 MPa, 0.413 MPa, 0.62, and 0.827 MPa. Five different 

cases were investigated: baseline (BL), second-stage discharge valve leakage (DVL), 

intercooler leakage (ICL), discharge to tank storage pipeline leakage (PLL), and a combined 

fault of the discharge valve and pipeline leakage (DVL&PLL) under the tank pressure levels 

specified above. 
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FIGURE 8.1:  A) EXPERIMENTAL TEST RIG SETUP OF THE RECIPROCATING COMPRESSOR 

B) HIGH-PRESSURE CYLINDER WITH SENSOR INSTALLATIONS, C) SCHEMATIC OF 

ACOUSTIC SENSOR INSTALLATION 

The DVL and ICL faults have been described in chapter four section 4.6. PLL is seeded by 

loosening the nut connecting the second-stage discharge chamber to the tank air receiver. While 

the combined fault (DVL+PLL) data is collected when the two faults are in effect. 

8.2 Time Domain Analysis 

A typical one-revolution time domain analysis of the gas pulsation signal from the second-

stage discharge chamber of the reciprocating compressor used for this study is shown in Figure 

8.2a). It is difficult to determine the four compression process (suction, compression, discharge, 

and expansion) from this plot; therefore, the gas pulsation signal is plot against the In-cylinder 

pressure signal in Figure 8.2b).  

The four processes, which are triggered by valve events namely: suction valve opening (SVO) 

and closing (SVC), discharge valve opening (DVO) and closing (DVC) are not easily 

discernible from the airborne (gas) acoustic signal. The only clear process is the discharge 

process, which has significantly high amplitudes.  

Figure 8.3 shows the time domain waveforms of raw pulsation signals from the reciprocating 

compressor operating under normal conditions at several tank pressures (0.275 MPa, 0.413 

MPa, 0.620, and 0.827 MPa). This waterfall plot presents a clearer view of the pressure acoustic 
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signal for one cycle. The most apparent difference in this graph is the increases in peak 

amplitudes as the discharge pressure increases. Furthermore, delays in the discharge valve 

opening times for different discharge pressures are clearly shown in red. These delays in 

discharge valve opening times are due to increasing pressure difference across the valve as the 

storage tank pressure increases. Furthermore, it is observed that for lower tank pressures (0.275 

MPa and 0.413 MPa), the second ring count has the highest amplitude while for the other two 

high tank pressures (0.62 MPa and 0.827 MPa); the first ring count has the highest amplitude.  

 

FIGURE 8.2: HEALTHY A) TIME DOMAIN OF GAS PULSATION SIGNAL, B) GAS PULSATION 

AND IN-CYLINDER WAVEFORMS, IDENTIFYING THE FOUR COMPRESSOR PROCESSES. 
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FIGURE 8.3: ONE CYCLE WAVEFORM OF GAS PULSATION SIGNALS AT SEVERAL TANK 

PRESSURES 

8.2.1 Gas Pulsation Time Domain Waveform for Fault Cases 

The waveform of the four fault cases and healthy case studied are compared in the waterfall 

plots for each discharge pressure range investigated. Table 8.1 summarises the observed 

differences between healthy condition and fault cases for all studied discharge pressure ranges. 

From the observations, it can be concluded that the differences between healthy and fault, 

although evident by comparing waveforms, are not sufficient and clear enough to confidently 

detect the common reciprocating compressor faults studied across the wide discharge pressure 

range. 
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FIGURE 8.4: GAS PULSATION WAVE COMPARING NORMAL AND FAULT CONDITIONS AT 

SEVERAL DISCHARGE PRESSURES 

TABLE 8.1: SUMMARY OF DIFFERENCES BETWEEN NORMAL AND FAULT CASES OF 

AIRBORNE ACOUSTIC WAVEFORM AT SEVERAL TANK PRESSURES 

Cases Discharge Pressure at 0.28MPa 

BL The second pulse from the discharge valve opening time has the greatest 

amplitude (0.252). The discharge valve opens at 0.044 seconds for BL case. 

DVL The amplitude of the second pulse from the discharge valve opening time 

is almost the same as BL (0.264). The discharge valve opens at 0.043 

seconds. Two short impulsive events are seen just before the discharge 

valve closes at 0.1 seconds.  

ICL The second pulse from the discharge valve opening time has the greatest 

amplitude of 0.245. The discharge valve opens at 0.043 seconds. 

PLL The waveform of PLL is significantly different from the other cases at the 

second count (pulse) from the discharge valve opening time. In addition, 

the amplitude of the second count is lower (0.196) compared to other cases. 

The discharge valve opens at 0.039 seconds. 
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DVL&PLL The second pulse from the discharge valve opening time also has the 

greatest amplitude of 0.254. The discharge valve opens at 0.041 seconds, 

and two small impulsive events are evident at the end of discharge process. 

 Discharge Pressure at 0.41MPa 

BL The second pulse from the DVO time has the greatest amplitude (0.374). 

The waveform seems to have less noise and appears smoother compared to 

fault cases. 

The DVO time for BL is at 0.055 seconds 

DVL The amplitude of the second pulse from the DVO time is the same as that 

of BL at 0.374. However, two short impulsive events are present just before 

the discharge valve closes. These events are caused by the discharge valve 

impact on the valve seat as the process comes to an end. The DVO time for 

DVL is at 0.052 seconds slightly earlier than BL 

ICL The amplitude of the second pulse from the DVO time has the greatest 

overall amplitude at 0.392 compared to other cases. Like the DVL fault 

case, two short impulsive events can be seen during discharge valve closing 

times but of a smaller magnitude. The DVO time for ICL is at 0.053 seconds 

again slightly earlier than BL 

PLL The amplitude of the second pulse from the DVO time decreased somewhat 

for PLL fault case (0.3575) compared to normal (BL). The DVO time for 

PLL is at 0.050 seconds noticeably earlier than BL 

DVL&PLL The amplitude of the first pulse from the DVO time has the greatest peak 

rather than the second count, which has been observed for other cases. The 

DVO time is at 0.054 seconds 

 Discharge Pressure at 0.62MPa 

BL The first pulse from the DVO time has the greatest peak value at 0.525. 

DVL The DVO time amplitude is 0.682, slightly higher than the healthy case. A 

short impulsive event can be observed on the waveform during the 

discharge valve closing time. 

ICL The DVO time amplitude of 0.536 is almost the same level as BL case. 

PLL The DVO time amplitude at 0.516 reduced slightly for PLL fault case. 

DVL&PLL The peak DVO time for the combined fault is at 0.673, slightly higher than 

BL. 

In addition, a short burst of impulse can be observed on the waveform 

during the discharge valve closing time. 

 Discharge Pressure at 0.83MPa 
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BL The peak DVO amplitude at 1.25MPa occurs at 0.07 seconds during normal 

condition (BL) 

DVL The highest DVO amplitude reduces to 0.61MPa and occurs 0.01 seconds 

earlier at 0.06 seconds than BL. Furthermore, the pressure levels decrease 

significantly after the peak count. Moreover, two short impulsive events are 

present during valve closing time. 

ICL The highest DVO amplitude at 1.23MPa occurs at 0.07 seconds. 

PLL The maximum DVO amplitude of 1.27MPa is slightly higher than BL case 

and opens at 0.07 seconds. 

DVL&PLL The maximum DVO amplitude reduces to 0.7MPa and occurs 0.01 seconds 

earlier at 0.06 seconds than BL. The waveform is very similar to that of 

DVL. 

 

8.3 Conventional Statistical Measures from Time Domain Signal 

8.3.1 Probability Density Function 

Figure 8.5 shows the Probability Density Function (PDF) of the gas pulsation signal for several 

discharge pressures under normal (BL) condition. It is clear from the plot that the PDF 

amplitudes reduces and broadens as the pressure increases following a linear trend. However, 

in Figure 8.6 where the PDF curves of each discharge pressure (DP) range is plotted for all 

fault cases and healthy case (BL), the peaks for signals measured at maximum DP (0.82MPa) 

had the most visible significant variance compared to other DP levels. 

Figures 8.7 shows the comparison of healthy and all fault PDF peak values at several discharge 

pressures. From the plot, it can be concluded that PDF peak is not a suitable fault indication 

tool for the reciprocating compressor faults examined, as there is no apparent trend in PDF 

peak values across the discharge pressure range for all faults studied.  
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FIGURE 8.5: PDF CURVE OF NORMAL (BL) GAS PULSATION SIGNAL FOR DIFFERENT 

DPS 

 

FIGURE 8.6: PDF FAULT COMPARISON CURVES FOR GAS PULSATION SIGNALS AT 

SEVERAL DPS 
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FIGURE 8.7: COMPARISON OF HEALTHY AND FAULT PDF PEAKS FOR SEVERAL 

DISCHARGE PRESSURES 

8.3.2 Root Mean Square and Kurtosis  

Figures 8.8 and 8.9 show the RMS and kurtosis plots respectively, for the different discharge 

pressures; comparing results of all fault cases including healthy (BL) signal. It is observed from 

Figure 8.8 that the RMS values increase gradually with increasing discharge pressure at 

0.28MPa, 0.41MPa, and 0.62MPa for all cases. However, at 0.83MPa, there is a slight fall in 

the RMS values for DVL and DVL&PLL. Moreover, there are no clear variances in the RMS 

values of healthy and faulty cases across all discharge pressures. 

 

FIGURE 8.8: RMS OF GAS PULSATION SIGNAL AGAINST FAULT CASES AT SEVERAL 

DISCHARGE PRESSURES 
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FIGURE 8.9: KURTOSIS OF GAS PULSATION SIGNAL AGAINST SEVERAL DISCHARGE 

PRESSURES FOR ALL CASES 

Observing Figure 8.9, the kurtosis of the signals for all cases are greater than the normal 

Gaussian distribution, which is 3 (Kwok, 2018), and are therefore classed as heavily tailed. The 

kurtosis values are randomly distributed and do not show any trend distinguishing the healthy 

case from fault cases. 

8.4 Frequency Domain Analysis 

Figure 8.10 shows the differences between frequency components from the acoustic pressure 

pulsations of the reciprocating compressor under several Discharge Pressures (DP). The 

spectrum is characterised by discrete components and broadband noise. For the reciprocating 

compressor, the fundamental frequency usually corresponds to the rotational speed of the 

compressor at 7.28Hz, and its harmonics make up the discrete components in the spectrum. 

The acoustic wave energy is concentrated in the low-frequency regions seen in Figure 8.10. 

Therefore, the frequency analysis is tailored to low frequency region (0 to 2500Hz). 

The waterfall plots of healthy and fault frequency spectra of each DP are presented in Figures 

8.11. The differences in sound pressure levels are not very obvious from these waterfall plots. 

However, several resonant modes can be seen. The most obvious is at the maximum discharge 

pressure (0.82MPa). In order to analyse the source of sound waves generated at the compressor 

head, a scale of one-third octave bands are developed to split the spectrum into specific range 

of frequencies giving a more detailed view of the sound spectrum compared to the 1/1 octave 



CHARACTERISING VIBRO-ACOUSTIC SIGNALS OF A RECIPROCATING 

COMPRESSOR FOR CONDITION MONITORING 

 

174 
DEGREE OF DOCTOR OF PHILOSOPHY (PHD) 

band splitting. The root mean square powers of each centre frequency is computed and 

presented in Figure 8.12 for all discharge pressures. The sound pressure level (SPL) is 

determined by the following equation: 

 020log(P/ P )dBSPL    (8.1) 

Where P is the sound pressure in Pascal and 0P  is the reference sound pressure of 0.00002 

Pascal which is equivalent to 0dB. 

The RMS power of each band is defined as the sum of the absolute square of the centre 

frequency band signals divided by the signal length. 

 

FIGURE 8.10: SOUND PRESSURE LEVEL OF GAS PULSATION SIGNALS UNDER NORMAL 

CONDITION (BL) FOR SEVERAL DISCHARGE PRESSURES 

Table 8.2 presents the full 1/3rd octave bands with lower, centre and upper frequency values. 

The comparison of healthy and all fault RMS power level values at several discharge pressures 

are presented in Figure 8.13. In Figure 8.13, it can be seen that band 22 and 23 (corresponding 

to frequency 500 Hz and 630 Hz) gives the best separation, where the RMS power level of 

DVL and DVL&PLL fault cases are well above that of healthy case as seen in Figure 8.14. The 

RMS power levels for ICL and PLL fault cases do not vary significantly from healthy (BL) 

case. The one-third octave band analysis can be used as a possible fault indication tool, 

however, a more robust technique is needed for better understanding and efficient fault 

classification of the gas pulsation spectrum. 
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FIGURE 8.11: WATERFALL PLOT OF HEALTHY AND FAULT FREQUENCY SPECTRUM AT 

SEVERAL DISCHARGE PRESSURES 

 

FIGURE 8.12: 1/3 OCTAVE BAND SPECTRA OF HEALTHY AND ALL FAULT CASES AT 

SEVERAL DISCHARGE PRESSURES 
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TABLE 8.2: 1/3RD OCTAVE BAND FREQUENCIES 

Band 

No.

Low 

Frequency

Centre 

Frequency

High 

Frequency

Band 

No.

Low 

Frequency

Centre 

Frequency

High 

Frequency

1 3.55 4 4.45 16 110 125 140

2 4.45 5 5.6 17 140 160 180

3 5.6 6.3 7.1 18 180 200 225

4 7.1 8 8.9 19 225 250 280

5 8.9 10 11 20 280 315 355

6 11 12.5 14 21 355 400 445

7 14 16 18 22 445 500 560

8 18 20 22.5 23 560 630 710

9 22.5 25 28 24 710 800 890

10 28 31.5 35.5 25 890 1000 1100

11 35.5 40 44.5 26 1100 1250 1400

12 44.5 50 56 27 1400 1600 1800

13 56 63 71 28 1800 2000 2250

14 71 80 89 29 2250 2500 2800

15 89 100 110
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FIGURE 8.13: HEALTHY AND FAULT COMPARISON OF 1/3RD OCTAVE BAND RMS POWER 

AT SEVERAL TANK PRESSURES 
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FIGURE 8.14: OCTAVE BANDS WITH BEST FAULT SEPARATION 

 

a)

b)
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CHAPTER NINE 

9 ANALYSIS OF VIBRATION SIGNAL USING WAVELET 

PACKET TRANSFORM WITH ENVELOPE ANALYSIS  

This chapter presents the analysis of vibration signal from a two-stage reciprocating 

compressor using wavelet packet transform and envelope analysis. Vibration signal from a 

reciprocating compressor are non-stationary and consists of impulsive events, which are 

mostly from high turbulent flow excitations, and mechanical valve impacts. This is why 

conventional signal processing techniques are unsuitable for condition monitoring of vibration 

signals from a reciprocating compressor. Therefore, wavelet packet transform is used to 

extract the time-frequency information of the signal and envelope analysis of the reconstructed 

signal is computed for fault classification of three common reciprocating compressor fault 

cases (second-stage discharge valve leakage, intercooler leakage, and a combination of the 

two faults) using the fundamental frequency and the its third harmonic frequency. 
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9.1 Theoretical Background of Wavelet Transform 

Wavelet transform is the stretching and compressing of a short wavy function over a given 

signal to obtain its frequency and time information in one domain for monitoring purposes 

wavelet packet transform (WPT). The wavelet transform has an adaptive and multi-resolution 

capability, which makes it a powerful mathematical and signal processing tool for determining 

the operating conditions of several machines. Wavelet transform is applicable to areas such as 

image processing, pattern recognition, computer graphics, submarine detection, medical image 

technology and many more. 

9.1.1 Continuous Wavelet Transform (CWT) 

Continuous wavelet transform (CWT) was developed to correct the noted failures of the Fourier 

analysis as described in the introduction section (9.1). However, because the wavelet 

coefficients at every scale is calculated, a lot of repetitive information as generated causing a 

longer computational time (Al-Badour, Sunar, & Cheded, 2011). The term scale is used instead 

of frequency and translation instead of time. Continuous wavelet transform of a given signal 

(t)s  is given as (Peng & Chu, 2004): 

 
1/2(a,b; ) s(t)

t b
CWT a dt

a
    

  
 

   (9.1) 

𝑎 represents the scaling parameter, 𝑏 is the translation parameter, (t)  is the mother wavelet, 

and * is the complex conjugate of the mother wavelet.  

9.1.2 Discrete Wavelet Transform (DWT) 

Mallat used the conjugate quadratic filters (CQF) to create the algorithm for DWT. The 

application of DWT faster than CWT and has fewer parameters. DWT has a better time-

frequency resolution, and the frequencies are localised accurately in time. DWT is achieved by 

the discretisation of CWT; the given signal (t)s  is decomposed into low-pass approximation 

coefficients and high-pass detail coefficients, and then on next levels only the approximation 

coefficients are decomposed into low-pass approximation and the high-pass details keeping the 

high-pass coefficients on subsequent levels as presented in Figure 9.1. The discretisation of the 

scale a  and translation b  parameters are as follows: 

 
00 0,  n n

da a b m b    (9.2) 
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Where  and n m  are integers, therefore the continuous wavelet function in equation (9.1) 

becomes the discrete wavelets and the discretisation of the scale and time parameter gives the 

DWT in equation (9.2) below 

 /2

0 0 0( , ; ) ( ) ( )m mDWT m n a s t a t nb dt       (9.3) 

The disadvantage of DWT is that the high-frequency information which might contain fault 

features is lost because subsequent detail coefficients are not decomposed.  

 

FIGURE 9.1: THREE LEVELS DISCRETE WAVELET DECOMPOSITION TREE 

9.1.3 Wavelet Packet Transform (WPT) 

Coifman, Meyer, and wickerhauser extended the DWT to Wavelet packet transform in 1992. 

WPT has been found to be a more efficient tool because both low and high frequency 

components are decomposed on every level of the decomposition tree (Bendjama, Bouhouche, 

& Boucherit, 2012). Figure 9.2 illustrates a 3-level WPT decomposition tree with L 

representing the low-frequency approximation coefficients and H high-frequency detail 

coefficients. The original signal ( )s t is convoluted with both low and high pass filters and 

down-sampled by two to give approximate coefficients (1,0),  and L detail coefficients 
(1,1)H with 

 

Level 1

Level 2

Level 3

(1,0)L
(1,1)H

(2,0)LL
(2,1)LH

(3,0)LLL (3,1)LLH
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length half the size of the original signal. The low pass and high pass filters are applied again 

to the decomposed signal in level two to give four sub-bands (2,0) (2,1) (2,2) (2,3)( , , , )LL LH HL HH  

of decomposed signals with one-fourth the signal length (Saleh & Rahman, 2005). The process 

is repeated until all levels are decomposed. The wavelet packet has three integers , ,  and mi n , 

which represent the modulation, scale and translation parameters respectively. The wavelet 

functions are determined from the recursive equations given below (Rafiee, Tse, Harifi, & 

Sadeghi, 2009) 

  2 ( ) 2 ( ) 2n it h m t m 




    (9.4) 

  2 1( ) 2 ( ) 2n it g m t m 






    (9.5) 

The original signal ( )s t  after n  level of decomposition is defined as:  

  
2

1

( )
n

i

n

i

s t s t


   (9.6) 

While the wavelet packet signal is given as follows: 

   , ,( ) ( )i i i

n n m n m

m

s t c t t




    (9.7) 

Where the wavelet packet coefficients , ( )i

n mc t  are calculated by (Rafiee, Tse, Harifi, & 

Sadeghi, 2009): 

   ,( ) ( )i i

n n mc t s t t dt



    (9.8) 
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FIGURE 9.2: ILLUSTRATION OF THREE LEVEL WAVELET PACKET TRANSFORM 

DECOMPOSITION TREE 

9.2 Selecting Mother Wavelet 

There are several types of mother wavelets used for signal transformation and they are 

classified as either orthogonal, biorthogonal, or nonorthogonal (chui, 1997). The orthogonal 

wavelet families include Daubechies, Coiflet, and Symlet, while B-Spline is classed as 

biorthogonal wavelet. Morlet and Mexican Hat fall under the non-orthogonal wavelet class 

(chui, 1997); (Zaman, 2003). Until date, there are no standardised guidelines for selecting the 

best mother wavelet or scale level for any particular application (Chrfi, ALHaddad, & Franqois 

, 2004). Charfi et al. used Daubechies (db4) to investigate the characteristics of an incipient 

fault in a three-phase induction motor drive after analysing several mother wavelets (Chrfi, 

ALHaddad, & Franqois , 2004). Bendjama et al. found Daubechies_4 (Db4) to be more 

effective for diagnosing faults from vibration signals (Bendjama, Bouhouche, & Boucherit, 
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2012); also, findings by Al-Badour et al., found that Daubechies and Meyer to be the best 

mother wavelets for transient vibration signals (Al-Badour, Sunar, & Cheded, 2011).  

It is important to choose the optimal mother wavelet for any particular application because 

studies have found that the choice of mother wavelet will affect results obtained by the wavelet 

packet transform (Chrfi, ALHaddad, & Franqois , 2004). Kumar and Sriram mentioned in their 

study on selecting optimal mother wavelet that scholars’ (Yan R. , 2007), and (Gao & Yan, 

2011) employed two approaches when selecting the best wavelet basis (Kankar, Satish, & 

Harsha, 2011). A qualitative approach, which is based on the properties of the mother wavelet 

(such as orthogonality, compact support, symmetry, and vanishing moment) and the signal 

shape similarity to the chosen mother wavelet. The second approach is based on quantitative 

means, which is much easier to implement compared to visual matching of signal shape to 

mother wavelet (Kumar, Srinivasa, Sriram, & Vijay, 2014). In recent years, several researchers 

have studied quantitative means greatly. For instance, Ruqiang used energy to entropy ratio 

and mini-max information criterion to choose an optimal wavelet basis for bearing vibration 

signal. Kumar and his colleagues used minimum Shannon entropy criteria with maximum 

energy to Shannon entropy ratio criterion to determine the optimal mother wavelet for bearing 

vibration signal (Kumar, Srinivasa, Sriram, & Vijay, 2014). 

For this study, Daubechies, Coiflet, Symlet, B-Spline and discrete Meyer wavelets were studied 

intensively based on trial and error. The Coiflet wavelet function with one vanishing moment 

(Coif1) was chosen because it gave the best fault separation result. Four levels of 

decomposition were implemented on the reciprocating compressor vibration signal using 

Coiflet wavelet. Level 4 decomposition was appropriate because higher levels did not give 

good time localisation and lower levels gave poor frequency resolutions. Care was taken in 

choosing the best wavelet packet node (frequency band); after several investigations the 

percentage energy was used to choose the best wavelet packet node, which offered maximum 

feature separation (Yen & Lin, 2000). 

9.3 Envelope Analysis 

Envelope analysis is a useful signal processing tool for monitoring machine condition. It is 

based on Hilbert transform
^

( )s t , which creates a special analytical signal of a complex function. 

Envelope analysis is achieved by first band pass filtering of the signal, then envelope extraction 

of the filtered signal using Hilbert transform is performed, and finally spectrum extraction of 
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the enveloped signal using Fast Fourier Transform (FFT) (Tse, Peng, & Yam, 2001); (Yaqub, 

Gondal, & Kamruzzaman, 2011). Hilbert transform equation of a given signal ( )s t  can be 

defined as follows (Wang X. , 2006): 

 
 1 1

(t) ( )
s

s s t d
t t




  





 
   

 
   (9.9) 

It can be seen from equation (9.9) above that, the Hilbert function is a convolution with an 

impulse function  1 ( )t . Envelope analysis is applied to the selected wavelet packet node to 

extract the characteristic features for fault classification of the vibration signal. 

9.4 Experimental Setup 

The experimental setup of the reciprocating compressor is described in chapter four section 

4.2.1. Figure 8.1 presents a schematic of the reciprocating compressor rig setup with 

specifications of supporting components listed in Table 6.1. 

Seven main sensors including two pressure transducers, two accelerometers, two 

thermocouples and an encoder are used for collecting vital data from this machine. One 

pressure transducer is seeded into each cylinder, one accelerometer mounted on each cylinder 

head, one thermocouple on each cylinder body and an encoder on the flywheel. 

9.5 Test Procedure 

The reciprocating compressor piston in the first cylinder travels from top-dead centre (TDC) 

to bottom-dead centre (BDC), atmospheric air is collected and filtered into the cylinder, as the 

piston moves back up to TDC the filtered air is compressed and eventually discharged into the 

intercooler when the pressure of the compressed air exceeds that in the intercooler. The high-

pressured air released into the intercooler is cooled before entering the suction chamber of the 

second-stage cylinder, and as the piston of this cylinder travels back up to TDC, compressed 

air is discharged into the tank receiver once its pressure exceeds that in the receiver. The tank 

receiver stores the compressed air until the maximum pressure capacity is reached then the 

system shutdowns automatically if not stopped manually.  

The sampling frequency is set at 49,019 Hz, and 32768 data samples are collected for five 

discharge pressures (0.55MPa, 0.83MPa). Vibration signal is only collected from the second-

stage (high-pressure) cylinder because previous findings have found that the fault effects are 

more prominent from the high pressure cylinder. The cases investigated are: baseline (BL), 
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second-stage discharge valve leakage (DVL), intercooler leakage (ICL), and a combined fault 

of the second-stage discharge valve and intercooler leakages (DVL+ICL).  

9.6 Results and Discussion 

9.6.1 Traditional Time Domain and Frequency Domain Analysis 

The RMS value is a popular statistical tool for identifying changes in machine condition. 

However, in cases where the signal contains information from multiple components, RMS 

computation might not be very efficient in detecting faults in certain cases as can be seen in 

Figure 7.7. Amplitude trends for investigated cases and tank pressures are random and therefore 

unsuitable for effective condition monitoring. 

The vibration spectrum in Figure 9.3b and 9.4b, presents a broad picture of the frequency 

content of each signal. Individual frequency components and noise levels of the signal can be 

identified and tracked. Although, a simple spectrum analysis is not a very suitable technique 

for effectively analysing faults on a reciprocating compressor because of its non-stationary 

signal characteristics and high noise levels. However, useful information about the compressor 

dynamics can be obtained by examining the signal frequency content. 

 

FIGURE 9.3: TIME WAVEFORM AND B) FREQUENCY SPECTRUM OF NORMAL (BL) 

VIBRATION SIGNAL AT 0.83MPA TANK PRESSURE 
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FIGURE 9.4: TIME WAVEFORM AND B) FREQUENCY SPECTRUM OF ALL CASES AT 

0.83MPA TANK PRESSURE 

9.6.2 Wavelet Packet Transform and Wavelet Packet Energy 

As a pre-processing phase to wavelet packet application, the original vibration signal is 

resampled to reduce the decomposition levels required. Therefore, 10953 data points were 

collected for five cycles of vibration signal at a reduced sampling rate of 16384Hz. The 

resampled signal is decomposed as explained in section 9.2.3 using Coiflet 1 mother wavelet 

up to four levels. Level 4 gave the best result as higher levels required more computational 

time and gave poor time resolution as seen in Figure 9.5.  
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FIGURE 9.5: DECOMPOSED VIBRATION SIGNAL AT LEVEL 4 AND LEVEL 6 

Sixteen terminal (last) nodes are obtained from the four-level decomposition and the frequency 

range of each terminal node is presented in Table 9.1. 

Figure 9.6 presents the time-frequency plots, which shows information about changes in the 

spectral content of the signals with time. It can be observed that high energy is present mostly 

when the valve closes at about 0.1 seconds. From the plots of all four cases presented, it can be 

observed that, the amplitudes of DVL and DVL+ICL are greater than those of BL and ICL.  
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TABLE 9.1: TERMINAL NODE FREQUENCY RANGE 

 

The percentage energy of coefficients for terminal nodes are computed using Equation (9.10) 

  2 2( ) 100 TE T c s      (9.10) 

Where 
2

Tc  is the energy of each terminal node and 
2s  is the energy of the original signal. 

Figure 9.7 shows the percentage energy of all terminal nodes for all cases and tank pressure 

ranges studied. The first node (4.0), which has the highest overall energy is reconstructed and 

used for envelope analysis. Envelope analysis of the vibration signal is computed as stated in 

section 9.4. 

 

 

Terminal 

Nodes 

Nodes Frequency 

Range (Hz) 

Terminal 

Nodes 

Node Frequency 

Range (Hz) 

1 (4, 0) 0-512 9 (4, 8) 4096-4608 

2 (4, 1) 512-1024 10 (4, 9) 4608-5120 

3 (4, 2) 1024-1536 11 (4, 10) 5120-5632 

4 (4, 3) 1536-2048 12 (4, 11) 5632-6144 

5 (4, 4) 2048-2560 13 (4, 12) 6144-6656 

`6 (4, 5) 2560-3072 14 (4, 13) 6656-7168 

7 (4, 6) 3072-3584 15 (4, 14) 7168-7680 

8 (4, 7) 3584-4096 16 (4, 15) 7680-8192 
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FIGURE 9.6: SPECTROGRAM OF ALL CASES AT 0.83 MPA 

 

FIGURE 9.7: PERCENTAGE ENERGY OF WAVELET PACKET TERMINAL NODES FOR ALL 

CASES AND TANK PRESSURE RANGES 
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9.6.3 Fault Classification Using Harmonic Changes 

The fundamental frequency and its harmonics are used for fault classification of the vibration 

signal. Figure 9.8 shows how the frequency amplitudes vary with increasing tank pressure (0.55 

to 0.83MPa) for all cases investigated. From the fundamental frequency plot, it can be seen that 

the amplitude increases when a fault is present, and the discharge valve leakage fault had the 

highest amplitude. The amplitude of the fundamental frequency at 0.55MPa does not give very 

good fault separation as seen from the first plot in Figure 9.8, therefore it was not used for 

further classification. 

Furthermore, the fundamental frequency and each of its harmonics for the remaining four tank 

pressures (0.62MPa, 0.69MPa, 0.76MPa, and 0.83MPa) are used for further classification. The 

classification using the fundamental frequency values and the third harmonic frequency gave 

the best results as seen in Figure 9.9. 

 

FIGURE 9.8: FUNDAMENTAL FREQUENCY AND ITS HARMONICS PLOTS OF THE SIGNAL 

FOR ALL CASES AT ALL TANK PRESSURE RANGE INVESTIGATED 

9.7 Conclusions 

Vibration signal from a reciprocating compressor are non-stationary and transient in nature, 

which makes processing using traditional signal processing techniques very difficult. 

Therefore, this chapter investigated the application of time-frequency signal processing 
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technique (wavelet packet transform) together with envelope analysis of the vibration signal 

for fault detection and diagnosis. The results showed that the decomposition of the signal using 

Coiflet mother wavelet with one vanishing moment up to four levels revealed significant 

amplitude variations of all fault cases studied. From the spectrogram, it was observed that the 

amplitudes of fault signals were greater than that of normal (BL) signal, particularly, the 

discharge valve leakage fault signal, which had the greatest overall frequency amplitude at the 

valve closing times. 

 

FIGURE 9.10: FAULT CLASSIFICATION RESULTS (A) 3RD HARMONIC AND FUNDAMENTAL 

FREQUENCY (B) RESIDUAL AND FUNDAMENTAL FREQUENCY 

Furthermore, reconstruction of the signal using coefficients from the first terminal node (4, 0), 

which had the highest percentage energy and employing envelope analysis of the signal could 

effectively detect the three common reciprocating compressor faults seeded for the purpose of 

this research study. Classification using the fundamental frequency and its third harmonic gave 

good separation results between normal (BL) signals and the three fault signals. 
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CHAPTER TEN 

+ 

10 ANALYSIS OF DISCHARGE GAS PULSATIONS USING 

WAVELET PACKET TRANSFORM WITH ENVELOPE 

ANALYSIS  

This chapter presents the analysis of gas pulsation signal from a two-stage reciprocating 

compressor using wavelet packet transform and envelope analysis. Gas pulsation signals from 

a reciprocating compressor are non-stationary in nature and consists of resonance 

frequencies, which can be detrimental to the system if significantly high in amplitude. Wavelet 

packet decomposition is used to divide the signal into bands before de-nosing individual bands 

using an adaptive hard threshold based on standard deviation. Furthermore, envelope analysis 

of the reconstructed signal is computed for each band and the band with the best root mean 

square fault variation is used for classification by means of statistical features (kurtosis and 

entropy plot). 

The results show wavelet packet decomposition allows for easy band-pass filtering for further 

analysis on the chosen band of interest aiding fault detection and condition monitoring of 

reciprocating compressors. I also shows that gas pulsation signals can be used to identify the 

systems resonance but the main difficulty is in identifying the source of resonance. 
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10.1 Gas Pulsation Source and Resonance Assessment  

The flow of gas through the discharge chamber and piping system of the reciprocating 

compressor are unsteady and contains time varying pulses superimposed on the steady 

(average) flow. Figure 10.1 shows a typical flow pulsation signal through the valves of the 

reciprocating compressor cylinder head indicating the compressor process within a cycle and 

the valve opening and closing times. These pulses are made-up of the geometrical, physical 

and mechanical characteristics of the compressor (Shejal & Desai, 2014).The frequencies of 

the signal are functions of the mechanical features of the compressor, while the acoustical 

response in the discharge chamber and piping systems are functions of the mechanical and fluid 

characteristics of the compressor, also it is hugely a function of the acoustical network by the 

adjoining discharge chamber, piping systems and, storage units/or dampeners. 

Figure 10.2 lists the sources of gas pulsation from a reciprocating compressor.  

 

FIGURE 10.1: GAS PULSATIONS WAVES FROM THE DISCHARGE CHAMBER OF A 

HEALTHY R.C AT 0.827MPA 
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FIGURE 10.2: SOURCES OF RECIPROCATING COMPRESSOR GAS PULSATIONS 

10.1.1 Simplified Resonance Assessment of the System 

 Resonances (dynamic pressure amplification) occur when a harmonic of the compressor 

running speed matches or is close to the acoustical natural frequency of the dampener. These 

resonances are either simple organ-pipe resonances or of complex modes involving the 

discharge chamber and the piping system. Resonances are detrimental to the system because 

they create unbalanced forces that amplify vibrations causing high levels of noise and 

shortening compressor valve life if not avoided or controlled (Shejal & Desai, 2014); (Enzo, 

Marco, Matteo , & Stefano , 2006). 

10.1.1.1 Quarter-Wavelength Resonance 

The pipe lengths determine the acoustic natural frequencies depending on the boundary 

conditions (open and/ or closed ends) illustrated in Figure 10.3. If the natural frequency of the 

compressor occur at integer multiple of half or a quarter of the wavelength of the piping system, 

an acoustical resonance can be excited (Greenfield, & Luis de la Roche, 2018). 
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FIGURE 10.3: A) MODE SHAPE OF HALF WAVE RESPONSE B) MODE SHAPE OF QUARTER 

WAVE RESPONSE 

The formulas for half wave resonance ( hwf ) and quarter wave resonance ( qwf ) are given by 

the following respective equations (Schwartz & Nelson, 1984) :  

 
2

hw

p

a
f n

L
   (10.1) 

 (2 1)
2

qw

p

a
f n

L
    (10.2) 

Where a  is the speed of sound in air, pL  is the pipe length, and (1,2,3,...)n harmonic . The 

discharge chamber-pipe configuration of the reciprocating compressor is analysed as an open-

closed end system and therefore Equation 10.2 is used to calculate its quarter wave resonance 

frequency and eight harmonics of the simplified system presented in Figure 10.4. The speed of 

sound a  in the discharge plenum of the reciprocating compressor (RC) is calculated using 

equation 10.3 for several discharge pressures are presented in Figure 10.5. For this study, four 

discharge pressure ranges are investigated (0.28MPa, 0.42MPa, 0.62MPa and, 0.83MPa) and 

their acoustic natural frequencies based on the quarter-wave length Equation 10.2 are presented 

in Table 10.1. These values presented in Table 10.1 constitute the excitation frequencies where 

resonances are expected for the respective discharge pressures. 

  a RT   (10.3) 

a) b)

1f

2f

3f

Pipe close at both ends Pipe open  at both ends
 Pipe open at one end and closed 

end at other end
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Where   is the specific heat ratio for air 𝑎𝑡 1.4, 𝑅 is the gas constant at 287𝑚2𝑠−2𝐾−1 for air 

and T  the absolute temperature of the gas in the cylinder is calculated using equation 5.30 in 

chapter five. 

When analysing the effects of pulsations in a reciprocating compressor system, it is important 

to determine the maximum pulsation. This is obtained using the wavelength, speed of sound 

and, frequency relations described below (Greenfield, & Luis de la Roche, 2018): 

 
qw

a
f

    (10.4) 

 

FIGURE 10.4: SIMPLIFIED MODEL OF THE DISCHARGE CHAMBER AND STORAGE TANK 

PIPE CONFIGURATION WITH DIMENSIONS IN [MM] 

 

FIGURE 10.5: SPEED OF SOUND IN GAS FOR SEVERAL DISCHARGE PRESSURES OF THE 

RC 
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The quarter wave frequency, which gives a wavelength equal to the maximum pipeline length 

of the compressor (0.3662m), is the fourth harmonic frequency (4X). For the reciprocating 

compressor used in this research, the compressor speed is within the range 420–460 RPM (7-

7.6 Hz), therefore, based on the wavelength calculation, the maximum quarter wave resonance 

will occur at the hundred and fortieth harmonic (140X) of the compressor running speed.  

TABLE 10.1: ACOUSTIC NATURAL FREQUENCY AND HARMONICS OF THE DISCHARGE PIPE 

Discharge 

Pressures 

[MPa] 

Speed 

of 

Sound 

in Gas 

[m/s] 

Quarter-Wave Acoustical Frequencies [Hz] 

1X 2X 3X 4X 5X 6X 7X 8X 

0.28 353 241 482 723 964 1205 1446 1686 1927 

0.42 364 248 496 745 993 1241 1489 1737 1986 

0.62 369 252 504 755 1007 1259 1511 1763 2014 

0.83 371 253 507 760 1013 1227 1520 1773 2027 

10.1.1.2 Filter Resonance 

The system presented in Figure10.4 could also act as an acoustic filter, and the lowest resonant 

frequency of an acoustic filter (Helmholtz frequency) is given by (API STANDARD 618, 

2007):  

1
2

2 1
H

c
f

Vc Vt

 



 
  

 
  (10.5) 

Where 

c  is the speed of sound of gas (meters per second); 

1Vc  is the volume of gas in the chamber (cubic meters); 

Vt  is the volume of gas in the storage tank (cubic meters); 

  is the acoustic conductivity (meters). 

The acoustic conductivity is described as: 

 
0.6p p

A A

L D L
  


  (10.6) 
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Where 

A  is the internal cross-sectional area of the chamber (square meters); 

pL  is the actual length of the pipe (meters); 

L  is the acoustic length of the pipe (meters); 

pD  is the diameter of the pipe (meters). 

The calculated Helmholtz frequencies of the simplified model of the discharge chamber 

pipeline at several discharge pressures are presented in Table 10.2. Since the Helmholtz 

frequencies are very close to the calculated quarter wave frequencies, it can be assumed that 

the system in Figure 10.4 acts also as a Helmholtz resonator. 

TABLE 10.2: HELMHOLTZ RESONANT FREQUENCIES OF THE RC AT SEVERAL TANK 

PRESSURES 

Discharge 

Pressures 

[MPa] 

Speed 

of 

Sound 

in Gas 

[m/s] 

Helmholtz Frequencies [Hz] 

1X 2X 3X 4X 5X 6X 7X 8X 

0.28 353 235 450 705 939 1174 1409 1644 1879 

0.42 364 242 484 726 968 1210 1452 1694 1936 

0.62 369 246 491 736 982 1227 1473 1718 1964 

0.83 371 247 494 741 988 1235 1482 1729 1976 

10.1.2 Gas Pulsation Propagation Simulation 

Pressure and flow waves caused by a reciprocating compressor are modelled as one-

dimensional waves. The computer programs used in simulating pressure pulsations can be 

classified into two groups, namely; frequency domain programs and time domain programs 

(Ghanbariannaeeni & Ghazanfarihashemi, 2014). 

The simpler frequency domain programs are based on acoustic plane wave theory and do not 

include nonlinearities unlike the time domain programs which also account  for time-varying 

boundary conditions at the valves (Ghanbariannaeeni & Ghazanfarihashemi, 2014). Several 

studies have shown that the time domain models are more accurate than the older frequency 
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domain models although, the program requires longer solution time (Ghanbariannaeeni & 

Ghazanfarihashemi, 2014), (Brejaud, Higelin, Charlet, & Chamaillard, 2011). Characteristics 

method and finite difference method are two of the most popular time-domain model programs 

used to predict piping acoustics.  

The continuity equation, momentum and energy equations are the three conservation laws that 

govern gas pulsation propagation through a medium. Gas pulsation propagation simulation is 

beyond the scope of this research and therefore would not be investigated. For more detailed 

on gas pulsation propagation simulation refer to Brejaud, Higelin, Charlet, & Chamaillard, 

2011, Benson, 1982, and Winterbone , Pearson, & Horlock, 2000. 

10.2  Application of Wavelet Packet Transform 

Several signal processing techniques including wavelet transform (Ogbulafor, Guojin, Mones, 

Gu, & Ball, 2017), empirical mode decomposition (Muo, Madamedon, Gu, & Ball, 2017), (Lei, 

Lin, He, & Zuo, 2013), Wigner-Ville distribution (Baydar & Ball, 2001), and singular value 

decomposition (Yang & Tse, 2003) have been explored for feature extraction, signal de-

noising, enhancing weak feature extraction, signal decomposition and many more. Among 

these signal-processing methods, wavelet transform is most commonly used for analysing non-

stationary signals. Wavelet transform provides a platform whereby the signal can be 

represented in both time and frequency domain. The principle of wavelet transform and the 

three common wavelet transform categories are discussed in chapter nine. 

The wavelet packet transform is employed in this study to decompose the gas pulsation signal 

from the compressor into low and high frequency bands because of its excellent high-frequency 

resolution property. The gas pulsation analysis in time-frequency domain gives robust 

information about the signal compared to time domain and frequency domain analysis 

separately. By employing wavelet transform, it is possible to understand the effects of several 

frequency bands of the gas pulsation signal. 

The combination of wavelet packet transform and envelope analysis is proposed for detection of 

common reciprocating compressor faults in several frequency bands. The flow chart in Figure 10.6 

shows the diagnostic approach to faults on a reciprocating compressor through the gas pulsation 

signals from the discharge chamber. 
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10.2.1 Selection of Base Wavelet 

An appropriate base wavelet can be chosen by visually matching the shape of the gas pulsation 

signal from the reciprocating compressor to the base or mother wavelet. An alternative and 

more efficient way of selecting the best base wavelet is by employing quantitative measures 

such as energy and Shannon entropy measures, similarity measures (correlation coefficient), 

and information theoretic measures (such as joint entropy, conditional entropy and mutual 

information) (Yan R. , 2007). In this study, the maximum energy to Shannon entropy ratio 

criterion, maximum correlation coefficient, and minimum Shannon entropy criterion have been 

employed for selecting the optimum base wavelet for the reciprocating compressor gas 

pulsation analysis.  

10.2.1.1 Minimum Shannon Entropy Criterion 

The Shannon entropy of the wavelet coefficients is given by (Yan R. , 2007): 

 2

1

( ) .log
N

entropy i i

i

E s p p


    (10.7) 

Where  
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The mother wavelet, which minimises the computed entropy of the wavelet coefficients, 

represents the best wavelet for analysing the signal. 

10.2.1.2 Maximum Energy to Shannon Entropy Ratio Criterion  

The maximum energy to Shannon entropy ratio is a combination of two qualitative measures. 

The criterion involves extracting the maximum energy content and minimum Shannon entropy 

of the corresponding wavelet coefficients is described as (Yan R. , 2007): 
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( )
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E s
R s

E s
   (10.9) 

The amount of energy content in wavelet coefficients of a given signal is expressed as: 
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2

( , )energyE wt s t dsd    (10.10) 

The base wavelet with the greatest energy to Shannon entropy ratio is chosen as the best 

wavelet for analysing the gas pulsation signals from the reciprocating compressor. 

10.2.1.3 Maximum Correlation Coefficient 

The signal similarity is described by the correlation coefficient of the original signal and the 

reconstructed wavelet signal. The degree of similarity between two signals X and Y for instance 

is described as (Yan R. , 2007): 

 ( , ) XY

X Y

C
C X Y

 
   (10.11) 

Where X  and Y are the standard deviation of the data sequences  and X Y , respectively. The 

symbol XYC  represents the covariance. 

Thirty base wavelets are pre-selected from six wavelet families. The maximum energy to 

entropy ratio, maximum correlation measure, and the minimum Shannon entropy values for 

the pre-selected base wavelets applied to the original gas pulsation signal are listed in Table 

10.3. The reverse bi-orthogonal mother wavelet has the highest maximum energy to entropy 

ratio, maximum correlation measure, and the minimum Shannon entropy values, and is 

therefore, considered as the optimal wavelet for the signal. 



CHARACTERISING VIBRO-ACOUSTIC SIGNALS OF A RECIPROCATING 

COMPRESSOR FOR CONDITION MONITORING 

 

203 
DEGREE OF DOCTOR OF PHILOSOPHY (PHD) 

TABLE 10.3: REAL-VALUED QUANTITATIVE MEASURES FOR OPTIMAL BASE WAVELET 

SELECTION 

 

10.3  Proposed Methodology 

The experimental test rig of the reciprocating compressor used for the gas pulsation analysis is 

presented and described in chapter eight (section 8.3). Dynamic (acoustic) pressure transducers 

are used for the acquisition of gas pulsation measurement data. The raw gas pulsation signal is 

pre-processed by resampling the signal from 49019Hz to 4092 Hz. In chapter eight, it was 

discovered that lower frequency range (< 2000Hz) of the pulsation signal had resonances with 

higher amplitudes (greater than 40dB) compared to high frequency range (>2000Hz). For this 

reason, the signal pre-processing stage is necessary to exclude high frequencies, which would 

require more decomposition levels if included in the wavelet packet decomposition process. 

Figure 10.6 illustrates the flow chat process of the proposed method employed for fault 

detection of the gas pulsation signals. 

A new reduced data length of 3375 samples for six cycles is obtained as a result of signal 

resampling and several tank pressures are investigated including 0.275 MPa, 0.413 MPa, 0.62, 

and 0.827 MPa. Baseline (BL), second-stage discharge valve leakage (DVL), intercooler 

leakage (ICL), discharge to tank storage pipeline leakage (PLL), and a combined fault of the 

discharge valve and pipeline leakage (DVL&PLL) are the five cases investigated under the 

tank pressure range specified above. The pipeline fault (PLL) is seeded by untightening the 

Mother 

Wavelet

Maximum 

Energy-to-

Entropy 

Ratio

Maximum 

Correlation 

Measure

Minimum 

Shannon 

Entropy

Mother 

Wavelet

Maximum 

Energy-to-

Entropy 

Ratio

Maximum 

Correlation 

Measure

Minimum 

Shannon 

Entropy

Sym2 0.2255 0.0240 440.389 Coif4 0.2246 0.0246 444.360

Sym3 0.2263 0.0243 440.266 Coif5 0.2241 0.0246 445.325

Sym4 0.2258 0.0245 441.648 Haar 0.2222 0.0228 441.768

Sym6 0.2256 0.0245 442.330 Bior1.3 0.2227 0.0253 442.475

Sym8 0.2253 0.0246 443.025 Bior2.4 0.2270 0.0243 444.607

Sym10 0.2249 0.0246 443.718 Bior2.6 0.2266 0.0245 445.315

Db2 0.2255 0.0240 440.389 Bior4.4 0.2248 0.0244 439.805

Db4 0.2264 0.0245 440.638 Bior5.5 0.2231 0.0245 435.348

Db6 0.2258 0.0245 442.162 Bior6.8 0.2257 0.0246 444.215

Db8 0.2254 0.0246 442.844 rBio1.3 0.2252 0.0237 442.475

Db10 0.2255 0.0246 442.715 rBio2.4 0.2238 0.0245 444.607

Db20 0.2236 0.0246 446.475 rBio2.6 0.2238 0.0244 445.315

Coif1 0.2251 0.0240 441.256 rBio4.4 0.2264 0.0246 439.805

Coif2 0.2255 0.0245 442.227 rBio5.5 0.2288 0.0246 435.348

Coif3 0.2251 0.0245 443.300 rBio6.8 0.2246 0.0246 435.348
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connection between the second-stage discharge chamber and the air receiver storage tank. 

While the combined fault (DVL+PLL) is implemented by running the compressor when the 

two faults are in effect. 

Based on the optimal base wavelet criterion presented earlier, the reverse bi-orthogonal mother 

wavelet is used to decompose the signal into three levels (corresponding to 32 8  terminal 

nodes). The wavelet packet transform acts as a band-pass filter and Table 10.4 presents the 

respective frequency range covered by each terminal node for the entire sampling frequency 

(4092 Hz). It should be noted that, the frequency ordering of wavelet packet coefficients is in 

Gray code order rather than successive order. This is because the output of every level is the 

result of both low/high pass filtering followed by down sampling as seen in the previous chapter 

(Figure 9.9.2). Thereby switching the order of low and high pass components in subsequent 

decompositions.  

A hard threshold based on the standard deviation of each terminal node is applied to the 

coefficients before reconstructing the de-noised signal. Then, envelope analysis (see Section 

9.4) of the eight reconstructed wavelet packet coefficients are computed. The results present a 

new time domain signal of each of the eight reconstructed coefficients consisting of their 

respective frequency bands. The RMS values of all bands are compared and used to eliminate 

bands with insufficient faults variations. Subsequently, two key statistical features, kurtosis 

and entropy values of the enveloped signals are computed and used for fault classification.  



CHARACTERISING VIBRO-ACOUSTIC SIGNALS OF A RECIPROCATING 

COMPRESSOR FOR CONDITION MONITORING 

 

205 
DEGREE OF DOCTOR OF PHILOSOPHY (PHD) 

 

FIGURE 10.6: FLOW CHART FOR FAULT DIAGNOSIS USING GAS PULSATION SIGNAL 

TABLE 10.4: FREQUENCY RANGE FOR EACH TERMINAL NODE UNDER 4092 HZ SAMPLING 

FREQUENCY IN GRAY CODE SEQUENCE 

Terminal Nodes Frequency Range 

(Hz) 

Terminal Nodes Frequency Range 

(Hz) 

1 0-256 5 1792-2048 

2 256-512 6 1536-1792 

3 768-1024 7 1024-1280 

4 512-768 8 1280-1536 

10.4 Experimental Results and Discussion 

 The reciprocating compressor runs at speed of 420-460 RPM, which means the 

fundamental order of excitation occurs between 7-7.6 Hz. From Table 10.1, which shows the 

quarter wave resonant frequency and its harmonic for the simplified plenum system, the fourth 

harmonic (4X) resonance frequency at 1013 Hz is very close to the 141st harmonic (1019 Hz) 

of the average compressor shaft frequency 7.282Hz. Also, from the spectrum, it can be seen 

that the broadest resonance occurs at this frequency (1019Hz). Resonance is greatly affected 
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by the operating condition of the gas pulsation signal; therefore, for the different discharge 

pressure range investigated, the resonant frequencies would vary.  

Resonance frequencies of the pulsation signal at several tank pressures studied are presented 

in Figure 10.8. Several low frequency acoustic resonances are excited at different tank 

pressures. The pulsation frequencies at 1X, 2X, 3X, and 4X resulting from equation (10.2) for 

several tank pressures are nearly coincident with standing resonances in Figure 10.8. Pulsations 

and hence unbalanced forces are generated at the resonance frequencies causing vibration problems 

at several harmonics. 

 

FIGURE 10.7 A) TIME DOMAIN AND B) FREQUENCY DOMAIN ANALYSIS OF GAS 

PULSATION SIGNAL AT 0.827MPA 
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FIGURE 10.8: ACOUSTIC RESONANCES FOR SEVERAL TANK PRESSURES UNDER NORMAL 

CONDITIONS 

10.4.1 WPT Analysis of the Discharge Chamber Gas Pulsations 

Wavelet packet transform is used as a powerful tool to decompose the gas pulsation signal in 

the entire frequency domain. The wavelet packet transform is implemented on the gas pulsation 

signal for all conditions (healthy and faulty) and several tank pressures. Figure 10.9 shows the 

time-frequency representation of healthy and all fault conditions at the highest tank pressure 

(0.83MPa). Key differences between the healthy (BL) spectrogram and the spectrogram of each 

fault condition investigated are outlined in Table 10.5. 

The wavelet decomposition for three levels gives eight terminal nodes of several frequency 

bands (see Table 10.4). Each terminal node is de-noised using an adaptive hard threshold based 

on the standard deviation of individual terminal node coefficients. Figure 10.10 shows the 

reconstructed signals for each band after de-noising with its corresponding frequency spectrum.  
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FIGURE 10.9: SPECTROGRAM OF HEALTHY AND FAULTY GAS PULSATION SIGNALS AT 

0.827MPA 

TABLE 10.5: SUMMARISED DIFFERENCES BETWEEN HEALTHY AND ALL FAULTY 

SPECTROGRAMS 

FAULT CONDITIONS  OBSERVATIONS 

Discharge Valve Leakage 

(DVL) 

Decreased peak pressure energy during DVO time 

compared to baseline (BL) spectrogram within the lower 

frequency range (0-256Hz). 

High-energy present at all four pulses during discharge 

period (0.07 to 0.075 seconds) compared to baseline, 

which has most of the energy concentrated at the first 

discharge opening pulse (0.07) again within lower 

frequency range. 

At mid frequency range (768-1500Hz), it is difficult to 

differentiate between the low energy seen at healthy and 

on the faulty spectrum. 

Intercooler Leakage (ICL) The spectrogram for ICL shows little to no difference 

from that of baseline (BL), this is because pulsations do 

not travel through cylinders. 
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Discharge Line Pipe Leakage 

(PPL) 

Increased peak pressure energy during DVO time 

compared to the baseline (BL) spectrogram within the 

lower frequency range (0-256Hz). 

Low energy within the mid frequency range (768-

1500Hz) seen in baseline (BL) spectrogram are not 

present in the PLL spectrogram. 

Combined Leakage 

(DVL&PLL) 

Decreased peak pressure energy during DVO time 

compared to baseline (BL) spectrogram within the lower 

frequency range (0-256Hz). 

High-energy concentration spread across the discharge 

period; also, within the lower frequency range. 

At mid frequency range (768-1500Hz), it is difficult to 

differentiate between the low energy seen at healthy and 

on the faulty spectrum 



CHARACTERISING VIBRO-ACOUSTIC SIGNALS OF A RECIPROCATING 

COMPRESSOR FOR CONDITION MONITORING 

 

210 
DEGREE OF DOCTOR OF PHILOSOPHY (PHD) 

 

FIGURE 10.10: RECONSTRUCTED TERMINAL NODE WAVEFORMS AND CORRESPONDING 

SPECTRUM FOR GAS PULSATION SIGNAL AT 0.827MPA 

10.4.2 Envelope Analysis and Feature Extraction of Discharge Chamber Gas Pulsations 

The envelope of gas pulsation signals in different frequency-bands is calculated using Hilbert-

transform (Cizek , 1970). Chapter Nine (section 9.4) of this thesis already presents a brief 

description of envelope analysis; however, a thorough review of the technique may be found 

in (Wang X. , 2006). 

The root-mean-square (RMS) of the enveloped signal for each frequency band is calculated to 

detect the best band-pass filter, which gives the optimal fault separation seen in Figure 10.11 

as terminal node 4 (512-768Hz) and terminal node 6 (1536-1792Hz) respectively. The 

envelope and envelope spectrum of terminal nodes 4 and 6 seen in Figure 10.12 and Figure 
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10.13 are used for fault classification. The envelope of terminal nodes 4 and 6 can be used to 

detect the investigated faults, as there are clear differences between healthy and faulty plots 

 

FIGURE 10.11: RMS OF ALL TERMINAL NODES FOR ALL CONDITIONS AND TANK 

PRESSURES 

 

FIGURE 10.12: ENVELOPE AND B) ENVELOPE SPECTRUM OF TERMINAL NODE 4 FOR 

ALL CONDITIONS AT 0.827MPA 

b)
a)
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FIGURE 10.13: ENVELOPE AND B) ENVELOPE SPECTRUM OF TERMINAL NODE 6 FOR ALL 

CONDITIONS AT 0.827MPA 

10.4.3 Fault Classification using Statistical Features  

The kurtosis and entropy values of the enveloped gas pulsation signals are used for fault 

classification. As mentioned in chapter 7 the kurtosis characterises the relative peakedness or 

flatness of the signal (Dyer & Stewart, 1978). A high kurtosis value means the signal is sharply 

peaked and has a longer tail while a low kurtosis value indicates that the signal has smoothened 

peaks and thinner tail. Shannon entropy measures the amount of randomness and sparseness of 

a signal. Therefore, a signal with minimum entropy has the greatest signal-to-noise ratio. 

In this study, a combination plot of kurtosis and entropy values of the enveloped signal is used 

as a tool for classification of common faults through gas pulsation signals from the discharge 

chamber of a reciprocating compressor. Figure 10.14 presents the result for classification using 

the aforementioned tool for terminal node 4 and Figure 10.15 presents that for terminal node 

6. 

For terminal node 4 band, it can be seen that pipe leakage faults (intercooler (ICL) and 

discharge line (PLL)) do not show good separation from the baseline values, whereas, the valve 

faults (DVL and DVL&PLL) are clearly separated from the baseline and are above boundary 

line. Particularly, the intercooler fault (ICL) because pulsations do not travel through the 

cylinders as the intercooler pipe connects first-stage cylinder to second-stage cylinder and the 

suction and discharge valves do not open at the same time for the transducer located at the 

discharge chamber of the second cylinder to detect the intercooler fault. Therefore, the 

intercooler-fault signal results are in line with expectations. 

a)

b)
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Results from Figure 10.15, although slightly similar to that of Figure 10.14 gives a better result, 

in that, values for the valve faults (DVL and DVL&PLL) are well above the boundary line. 

From the plot, it can be observed that the valve faults have high entropy values compared to 

other cases, which means that the noise level for these fault are significantly high. Based on 

the results from the classification, it is concluded that terminal node 6 is best at classifying the 

investigated faults on a reciprocating compressor using gas pulsation signals from the discharge 

chamber. 

 

FIGURE 10.14: FAULT CLASSIFICATION USING ENTROPY AGAINST KURTOSIS PLOT OF 

TERMINAL NODE 4 ENVELOPED SIGNAL 
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FIGURE 10.15: FAULT CLASSIFICATION USING ENTROPY AGAINST KURTOSIS PLOT OF 

TERMINAL NODE 6 ENVELOPED SIGNAL 

10.5 Conclusion 

Gas pulsations from the discharge chamber of a reciprocating compressor can be problematic 

if the chamber or piping frequencies correspond to multiples of the compressor running 

frequency or its harmonics. Moreover, these gas pulsation signals are non-stationary in nature 

making it challenging to use time domain and frequency domain analysis for fault detection 

and diagnosis. Therefore, in this chapter, wavelet packet transform and envelope analysis are 

adopted for condition monitoring of gas pulsation signals from the reciprocating compressor. 

The optimal wavelet basis is selected based on Shannon to entropy ratio criteria and cross 

correlation and three levels of the wavelet packet decompositions are performed to give eight 

band-pass filters (terminal nodes). An adaptive hard threshold using standard deviation of each 

band coefficients is applied and the coefficients of each band is reconstructed. Furthermore, 

envelope analysis of each band (reconstructed terminal node coefficients) is computed and the 

root mean square values are used to select the optimal band that gives the best fault separation. 

Finally, the optimal terminal nodes (4 and 6) where used for classification by plotting their 

kurtosis values against entropy values. Terminal node 6 (1536-1792Hz) gave a more superior 

valve fault separation when used for classification compared to terminal node 4 (512-768Hz). 
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CHAPTER ELEVEN 

11 CONCLUSIONS AND RECOMMENDATIONS FOR 

FURTHER WORK 

This chapter summarises the achievement of the research described in this thesis and relates 

them to the objectives defined in Section 1.5. Conclusions are drawn from key findings on the 

study of condition monitoring of a two-stage single-acting reciprocating compressor with 

common faults seeded for research purposes at the university of Huddersfield diagnostics 

laboratory. Furthermore, five relevant contributions to study have been outlined and 

suggestions for future work are presented. 
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11.1 Review of Thesis Objectives and Achievement 

The major achievements and new contributions made by this research are discussed. This study 

focused on determining the characteristics of vibro-acoustic signals from a reciprocating 

compressor for condition monitoring purposes.  

Theoretical analysis and experimental works were carried out, and several signal processing 

methods and techniques were employed to study the characteristics of vibration and gas 

pulsation signals measured under normal and common RC fault conditions. 

The set out thesis objectives are carefully correlated to the key achievements of this research 

study. 

 Objective 1: To set up a comprehensive reciprocating compressor test rig, and to 

develop experimental procedures for condition monitoring of the two-stage 

reciprocating compressor. This will allow condition monitoring using gas pulsation and 

vibration sensors, and will also allow specific compressor faults to be seeded onto the 

compressor: valve leakage, intercooler leakage, and discharge pipeline leakage. 

 Achievement 1: A suitable reciprocating compressor test rig facility was developed 

and data acquisition system, relevant measurement sensors were purchased and used to 

aid condition monitoring as presented in Chapter four of this thesis. The Broom Wade 

TS9 reciprocating compressor is a V-shaped, two-cylinder, single acting machine with 

a horizontal air receiver tank used for this research. The research environment in which 

measurements were conducted was similar to an industrial environment with real 

applications. The rig was used to determine compressor performance under normal and 

faulty conditions and the results were used to validate the developed mathematical 

model of the two-stage reciprocating compressor. 

 Objective 2: To review various condition-based monitoring techniques presently 

adopted in industry and to assess the performance of crucial monitoring techniques 

suitable for early fault detection. 

 Achievement 2: Of the many condition-monitoring techniques reviewed and 

investigated in chapter three of this thesis, it was discovered that with reciprocating 

compressors, most works were concerned with detection of valve faults using vibration 

and in-cylinder pressure signals whilst adopting conventional signal processing 

techniques and a few on advanced signal processing techniques such as continuous 

wavelet transform. To the best of this researcher’s knowledge, no work has been done 
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on the use of advanced signal processing techniques (wavelet packet transform and 

envelope analysis) for diagnosing faults using gas pulsation signals from the discharge 

chamber of the reciprocating compressor. Most studies are rather focused on the 

modelling and effectiveness of installed dampeners on the reciprocating compressor. 

 Objective 3 and Objective 4: To develop a mathematical model of the two-stage 

reciprocating compressor, which includes the gas pulsation behaviour to aid in 

understanding the physical properties of the reciprocating compressor; to validate the 

mathematical model developed by correlating measured and simulated results. 

 Achievement 3 and Achievement 4: In chapter five, a thermodynamic model was 

developed using the design parameters of the Broom Wade TS9 reciprocating 

compressor. The model consists of a crankshaft equation, two in-cylinder pressure 

equations, four equations to represent the valve motion, and an equation for second-

stage discharge gas pulsation. In particular, the introduction of second-stage discharge 

gas pulsations simulations into the model required substantial adjustments of the mass 

flow equations and subsequent changes to the in-cylinder pressure equations for second 

stage (see section 5.9). Furthermore, valve and pipeline fault simulations are also 

included in the model. The model predications show good agreement with measured 

results. 

 Objective 5: To determine the characteristics of gas pulsation and vibration 

measurements from the reciprocating compressor using traditional signal processing 

methods.  

 Achievement 5: Several signal-processing methods were applied to the collected data 

from gas pulsation and vibration transducers. Data was examined using time domain 

and frequency domain analysis. The effectiveness of these methods in detecting 

common reciprocating compressor faults were investigated for the two condition 

monitoring techniques (vibration and gas pulsation). The results from the two 

techniques are presented in Chapters seven and eight. 

 Objective 6: To analyse and examine the nonstationary vibration and gas pulsation 

signatures by the application of advanced signal processing techniques, such as Hilbert 

transform (envelope analysis) based convolution and wavelet packet transform.   

 Achievement 6: It was discovered that conventional signal processing methods (time 

domain and frequency domain) on vibration signals from the reciprocating compressor 

were unsuitable for effectively detecting the common faults investigated. Therefore, 
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advanced means for signal processing using wavelet packet transform together with 

Hilbert transform was used to give a more robust fault classification in Chapter nine. 

Time-domain and frequency-domain analysis of the gas pulsation signals were useful 

in detecting faults and identifying resonance frequencies of the piping system. 

However, Chapter ten, which presents the application of wavelet packet transform and 

Hilbert transform on gas pulsation signals proofed to be a more superior and effective 

means for band pass filtering of acoustical resonances and fault detection of valve faults 

on the reciprocating compressor.  

 Objective 7: To provide guidelines for future research in this field based on the 

investigations conducted. 

 Achievement 7: Some suggestions are provided for future work on condition 

monitoring of multi-stage reciprocating compressors using different faults in Section 

11.4 below. 

11.2 Conclusion on Condition Monitoring of Vibro-acoustic Signals 

from a Reciprocating Compressor 

Early detection of failure is of prime importance and the use of vibration and gas pulsation 

based monitoring techniques are suitable for condition monitoring of reciprocating 

compressors. Based on the theoretical and experimental analysis of vibro-acoustic signals from 

the RC, the following conclusions are drawn: 

 Conclusion 1: Based on the repeatability experiments carried out in section 4.7, it is 

concluded that the overall repeatability of the measurements is acceptable, although 

there were slight differences particularly for repeated vibration measurements; the one-

way ANOVA null hypothesis of the repeated vibration measurement is accepted 

because the computed P-value was less than the 5 percent significance level set. Hence, 

validating the repeatability of the vibration signal. 

 Conclusion 2: There were some positive correlations between the discharge pressure 

and the RMS and Kurtosis of the vibration signals, however, the influence of studied 

faults on both statistical features did not follow any particular pattern and were highly 

inseparable for second-stage vibration measurements across a wide pressure range.  

 Conclusion 3: Pulsation waves could provide an accurate representation of the 

discharge valve opening (DVO) times and any delays that may occur with increasing 

discharge pressure. However, there were no positive correlation between the discharge 
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pressure and the RMS and Kurtosis of pulsation waves. The influence of studied faults 

on both statistical features and PDF values were very close together and showed a 

random pattern across a wide pressure range. 

 Conclusion 4: The frequency domain analysis revealed, that spectral amplitudes show 

significant variations at high tank pressures especially for second stage vibration 

signals; also spectral amplitudes of fault cases increase mostly at high tank pressure 

ranges over a particular frequency range (5kHz to 14kHz) for second-stage vibration 

signals 

 Conclusion 5: The spectrum of the acoustic (gas) pulsations revealed several 

resonances, which varied with discharge pressure. However, challenges were 

encountered in accurately selecting the optimal resonance band that would effectively 

characterise the investigated faults across several discharge pressures. Finally, using 

the 1/3rd octave band analysis, band 22 and 23 with centre frequencies 500Hz and 

630Hz respectively gave the best valve leakage and combined fault separations from 

the baseline signals. 

 Conclusion 6: The application of WPT and envelope analysis on the vibration signal 

showed that WPT decomposition using Coiflet mother (base) wavelet with one 

vanishing moment for four levels gave the best separation for fault detection results 

across a wide discharge pressure range. From the spectrogram, it was observed that the 

amplitudes of fault signals were greater than those of normal (BL) signal, particularly, 

the discharge valve leakage fault signal, which had the greatest overall frequency 

amplitude at the discharge valve closing (DVC) times. Furthermore, reconstruction of 

the signal using coefficients from the first terminal node (4, 0), which had the highest 

percentage energy and application of envelope analysis could effectively detect the 

three common reciprocating compressor faults seeded. Finally, classification using the 

fundamental frequency and its third harmonic gave good separation results between 

normal (BL) signals and the three fault signals. 

 Conclusion 7: The application of WPT and envelope analysis on the gas pulsation 

signals from the reciprocating compressor provides accurate monitoring information 

for the RC. The optimal wavelet basis is selected based on maximum Shannon to 

entropy ratio criteria, maximum cross correlation, and minimum Shannon entropy. 

Three levels of the wavelet packet decompositions are performed to give eight band-

pass filters (terminal nodes). An adaptive hard threshold using standard deviation of 
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each band coefficients is applied and the coefficients of each bands are reconstructed 

to reveal the de-noised signal. Then envelope analysis of each band (reconstructed 

terminal node coefficients) is computed and the root mean square values are used to 

select the optimal band that gives the best fault separation. Finally, the optimal terminal 

nodes (4 and 6) were used for classification by plotting its kurtosis values against 

entropy values. Terminal node 6 (1536-1792Hz) gave a more superior valve fault 

separation when used for classification compared to terminal node 4. 

 Conclusion 8: Condition monitoring using vibration measurement still remains a more 

superior technique compared to other signal processing types and indeed gas pulsation 

measurement. From this study, using proposed methods, vibration measurements could 

classify all faults investigated (valve and pipeline related faults); however, the gas 

pulsation measurement was more effective at identifying valve related faults compared 

to pipeline leakages. Nevertheless, the author highly recommends the use of both 

vibration and gas pulsation measurement to better characterise the vibro-acoustic 

signals from a reciprocating compressor. The key characteristics of a reciprocating 

compressor have been summarised in Figure 11.1 below.  
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FIGURE 11.1: CHARACTERISTICS OF VIBRO-ACOUSTIC SIGNALS FROM A 

RECIPROCATING COMPRESSOR 

11.3 Contribution to Knowledge 

The main contributions to knowledge made by this research are: 

 Contribution 1: The author of this thesis believes that the processing of gas pulsation 

signals for detection and diagnosis of reciprocating compressor faults such as discharge 

valve leakage, intercooler leakage, and discharge pipeline leakage is novel (Chapter 8 

and 9). Prior to this study, no work has been found in literature that describes the 

characteristics of gas pulsation signals using time-domain, frequency-domain and time-

frequency domain analysis for condition monitoring of a double-stage RC. 

 Contribution 2: The model predictions of the pressure in the discharge chamber of a 

two-stage reciprocating compressor has not been simulated numerically (Section 5.9). 

 Contribution 3: The author believes that the application of WPT for analysis of 

vibration and gas pulsation signals for condition monitoring of a reciprocating 
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compressor is novel as no reports in literature uses the combination of the two methods 

applied in this thesis for fault detection and diagnosis of RCs. 

 Contribution 4: It shows that vibro-acoustic signal analysis by the wavelet packet 

transform and envelope methods are able to diagnose changes in reciprocating 

compressor behaviours. The classification tool using the fundamental frequency and 

third harmonic of the transformed envelope vibration signal showed changes between 

healthy and all fault conditions monitored across a wide pressure range. 

 Contribution 5: Finally, the achievements have provided sufficient experimental 

supports to show that vibration and gas pulsation signals along with the proposed 

advanced signal processing methods can be an effective technique for on-line 

monitoring of reciprocating compressors. 

11.4 Recommendation for Future Work  

1. It is recommended that further research be conducted on the gas pulsation signals in the 

first-stage discharge chamber to investigate possible resonances from the intercooler 

pipeline, and the effects of common faults on the system. 

2. It is recommended that further academic research be conducted on other valve related 

faults such as faulty valve spring to determine their effects on gas pulsation signals 

from the reciprocating compressor. 

3. To develop faster algorithm to achieve optimal mother (base) wavelet selection so that 

vibration and gas pulsation-based analysis can be implemented more efficiently online. 

4. To directly extend this study by using intelligent algorithms (neural networks, fuzzy 

logics, genetic algorithms, etc.) to examine the combination of features such as entropy, 

kurtosis, crest factor, PDF values etc. from all terminal nodes of the transformed 

vibration and gas pulsation signals to optimise recognition of common reciprocating 

compressor faults 

5. To carry out complex mode analysis of the discharge pipeline system to verify sources 

of low frequency resonance present in the gas pulsation signals. Also, this would require 

coupling of the one-dimensional flow model of the pipe to the already existing 

compressor model to give a complete representation of the reciprocating compressor 

system. 
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12 APPENDIX 1 

 

TABLE 12.1: FAILURE MODES OF POSITIVE DISPLACEMENT ROTARY COMPRESSORS 
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TABLE 12.2: FAILURE MODES OF RECIPROCATING POSITIVE DISPLACEMENT 

COMPRESSORS 
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