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Figure 5.1.5. ESI-MS of [(L2.1)2Cu2(H2PO4)](trif)3 with the obtained isotope pattern (inset top) and 

calculated (inset bottom) for m/z 1282 {[(L2.1)2Cu2(H2PO4)](trif)2}
+ 

Figure 5.1.6. ESI-MS of [(L2.1)3Cu3(O3POBF3)](BF4)3 with the obtained isotope pattern (inset top) and 

calculated (inset bottom) for m/z 1668 {[(L2.1)3Cu3(O3POBF3)](BF3)2}
+. 

Figure 5.1.7. 1H NMR of benzoylated thiourea product (1) a = water impurity and b = (CD3)(CHD2)SO. 

Figure 5.1.8. 1H NMR of the bis-thiourea product (2) a = water impurity and b = (CD3)(CHD2)SO. The 

expansion shows the absence of amide peaks at ~ 11 ppm. 

Figure 5.1.9. 1H NMR of ligand L2.2 a = water impurity and b = (CD3)(CHD2)SO. 

Figure 5.1.10. ESI-MS of [(L2.2)2Cu2](trif)4 with the obtained isotope pattern (inset top) and calculated 

(inset bottom) for m/z 1391 {[(L2.2)2Cu2](trif)3}
+. 

Figure 5.1.11. ESI-MS of [(L2.2)2Cu2(HPO4)](trif)2 with the obtained isotope pattern (inset top) and 

calculated (inset bottom) for m/z 1339 {[(L2.2)2Cu2(H2PO4)](trif)2}
+. 

Figure 5.1.12. ESI-MS of [(L2.2)2Cu2(O3POBF3)](trif)2 with the b) obtained isotope pattern and a) 

calculated  for m/z 1107 {[(L2.2)2Cu2(O3POBF3)]}+. 

Figure 5.1.13. 1H NMR of bis-benzoylated thiourea product (1) a = water impurity and b = 

(CD3)(CHD2)SO. 

Figure 5.1.14. 1H NMR of the bis-thiourea product (2) a = water impurity and b = (CD3)(CHD2)SO. 

Figure 5.1.15. 1H NMR of ligand L2.3 a = water impurity and b = (CD3)(CHD2)SO. 
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Figure 5.1.16. ESI-MS of [(L2.3)2Cu2](trif)4 with the obtained isotope pattern (inset top) and calculated 

(inset bottom) for m/z 1389 {[(L2.3)2Cu2](trif)3}
+. 

Figure 5.3.1. 1H NMR of the benzoylated urea derivative (1) 

Figure 5.3.2. 1H NMR of the trithiourea compound (2) 

Figure 5.3.3. 1H NMR of ligand L4.1. 

Figure 5.4.1. UV-Vis absorption spectra of [(L4.1)2Cu3](trif)6; [(L4.1)2Cu3](trif)6 after 1 and 3 hrs giving 

[(L4.1)2Cu3(CO3)](trif)4; [(L4.1)2Cu3(CO3)](trif)4 plus one equivalent of Bu4NH2PO4 giving 

[(L4.1)2Cu3(PO4)](trif)3. [(L4.1) 2Cu3]
6+ 1.33 x 10-3 M. 

Figure 5.4.2. UV-Vis absorption spectra of [(L4.1)2Cu3](trif)6; [(L4.1)2Cu3](trif)6 plus 1 equiv. NaReO4; 

[(L4.1)2Cu3](trif)6 plus 1 equiv. NaReO4 after 3 hrs giving [(L4.1)2Cu3(CO3)](trif)4; [(L4.1)2Cu3]
6+ 1.33 x 10-3 

M. 

Figure 5.5.1. IC calibration cure of 10 - 200 ppm solutions of Bu4NH2PO4. 

Figure 5.5.2 Blank Solution. 

Figure 5.5.3 10 ppm Phosphate Standard. 

Figure 5.5.4 Sample Solution. 

Figure 5.5.5 Expanded Sample Solution. 

Figure 5.5.6 Spiked Sample Solution. 

Figure 5.5.7 Expanded Spiked Sample Solution. 
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Figure 6.3.1.  X-ray structure of [(L4.1)2Cu3(PO4)](NO3)3. Thermal ellipsoids shown at the 50% probability 

level. Selected hydrogen atoms and anions omitted for clarity. X-ray structure described but not shown in 

4.4. 
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Abstract 

This thesis is concerned with the synthesis of ditopic ligands than can both coordinate transition metal ions 

and interact with anions. All the ligands contained two or more bidentate thiazole-pyridyl N-donor 

coordination domains and two or more secondary amine units which have shown to interact well with 

anions. 

In Chapter 2 the bidentate thiazole-pyridyl ligands (L2.1, L2.2 and L2.3) were synthesised in moderate yields 

via diamine starting materials following a simple three step procedure. This involved, benzoyl-

isothiocyanation, base hydrolysis and finally a Hantzsch thiazole ring closure reaction. Each of the three 

ligands have the same basic functionality with two thiazole-pyridyl domains separated by a spacer unit. L2.1 

contains a diamino 1,2-ethyl central spacer unit, L2.2 a diamino 1,4-butyl central spacer unit and  L2.3 a 

diamino cis-1,4-but-2-ene central spacer unit. The coordination chemistry of L2.1, L2.2 and L2.3 with Cu(II) 

metal salts (usually as the ClO4
-, BF4

- and triflate salts) was examined, as well as other selected counter 

anions. For L2.1 six different helicate architectures were determined by single crystal X-ray diffraction as 

well as being confirmed in the gas phase by ESI-MS for the systems concerning. These included the 

dinuclear double helicates; [(L2.1)2Cu2(trif)2]2+, [(L2.1)2Cu2(H2O)2(NO3)4], [(L2.1)2Cu2]2+, 

[(L2.1)2Cu2(OSe(OMe)2)]2+ and [(L2.1)2Cu2(H2PO4)(trif)]2+. In addition to this the trinuclear helicate 

[(L2.1)3Cu3(PO4BF3)]3+ was also isolated, where the coordinated dihydrogen phosphate underwent reaction 

with the tetrafluoroborate anion. For ligand L2.2 two different dinuclear double helicate structures were 

formed which included [(L2.2)2Cu2(H2PO4)(trif)2]2+ and [(L2.2)2Cu2(PO4(BF3)2)]+ with the latter species 

arising from reaction of dihydrogen phosphate with the tetrafluoroborate anion. For the alkene-containing 

ligand L2.3 two isomeric helicate structures were obtained with Cu(trif)2 that differ in the coordination of 

the triflate anion. 

A similar synthesis route was used to produce the bis-bidentate ligand L3.1 which comprised of a 2,2’-

phenylene central spacer unit linking the two thiazole-pyridyl domains. Again, L3.1 was reacted with a series 
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of Cu(II) metal salts and the resulting structures determined by single crystal X-ray diffraction as well as 

being confirmed in the gas phase by ESI-MS. Two different structures were observed for this system, the 

mono-nuclear [(L3.1)Cu](ClO4)2 and the tetranuclear circular head-to-tail helicate [(L3.2)4Cu4](trif)8. In the 

latter the ligand was observed to undergo a reaction at one of the two amine units with a molecule of the 

acetonitrile solvent to give a new amidine-containing R2N-C=NH(CH)3 unit. This resulted in the ligand 

system re-programming itself to give the unsymmetrical bidentate/tridentate ligand L3.2 and consequently 

forming the tetranuclear head-to-tail circular helicate [(L3.2)4Cu4]8+.  

The final chapter is concerned with the tripoidal ligand L4.1 which was synthesised in a similar fashion to 

the previous ligands. However, the ligand contained three bidentate thiazole-pyridyl domains linked by a 

tris-(aminoethyl)amine (tren) central spacer unit. L4.1 was reacted with a series of Cu(II) metal salts ((ClO4
-

, BF4
- and triflate) and the resulting structures were determined by single crystal X-ray diffraction as well 

as being confirmed in the gas phase by ESI-MS. Sixteen different anion containing crystal structures were 

obtained for this system, where 13 of which adopted the [(L4.1)2Cu3A]n+ trinuclear capsule type motif (i.e. 

BF4ˉ, Brˉ, Iˉ, CO3
2ˉ, SiF6

2ˉ, VO4
3ˉ, WO4

2ˉ, CrO4
2ˉ, SO4

2ˉ, AsO4
3ˉ, SeO4

2ˉ, SeO3
2ˉ and PO4

3ˉ). The larger 

octahedral iodate anion gave the expanded tetranuclear species [(L4.1)2Cu4(IO6)(H2O)2]4+ and dependant on 

stoichiometry the third row chalcogenide selenite gave the remarkably different [(L4.1)4Cu8(SeO3)4]8+ cage 

type assembly. UV-Vis experiments showed that the self-assembled host ([(L4.1)2Cu3]6+) displayed a high 

degree of selectivity to shape, size and charge of the guest anion, with the highly charged phosphate anion 

encapsulated in preference to most common anions. Importantly, gravimetric and ion chromatography 

experiments showed that the [(L4.1)2Cu3]6+ host system is capable of both forming and encapsulating 

phosphate anions in a competitive aqueous solvent (i.e. water) and removing them in a virtually 

stoichiometric manner resulting in concentrations < 0.1 ppm. 
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1. Introduction 

1.1 Supramolecular Chemistry 

Conventional synthesis is the formation of molecules via making and breaking covalent bonds usually using 

chemical reagents (e.g. catalyst, reductant, oxidant, base, acid). The production of compounds is usually 

achieved by an iterative process with each step involving breaking bonds or producing a new bond (or 

handful of bonds). Clearly this methodology has been extensively studied and used to produce almost all 

of the important and useful synthetic compounds in use today. However, the processes associated with this 

methodology are limited as it can often be time consuming and require multiple steps even to make 

relatively small molecules. These difficulties make the preparation of large and complex molecules almost 

inaccessible as the potential synthetic routes can be laborious and even inaccessible. An alternative to this 

process is the use of self-assembly. Self-assembly is a chemical process in which a system of smaller 

components spontaneously forms an organized molecular structure as a consequence of chemical 

programming among the individual components, without external direction.1–6 

Self-assembly is a sub-field of supramolecular chemistry itself a subject that does not rely on the traditional 

formation of chemical bonds but programmed information contained within chemical sub-units whose 

information can be chemically expressed. Since the important early discoveries throughout the late 20th 

century by the likes of Pedersen, Lehn and Cram, supramolecular chemistry has since been recognised to 

have huge relevance to modern day science.7 Applications of this field include biological, environmental 

and materials science as well as newly emerging field of nanotechnology.8–16 Indeed, in recognition of the 

importance of this field the 2016 Nobel prize was awarded to Sauvage, Stoddart and Feringa, for their 

ground-breaking research into molecular machines (Fig 1.1.1).17 
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Figure 1.1.1. Computationally derived view of a nano car derived from the work of Feringa et. al. 18 

Supramolecular chemistry is a vast, multidisciplinary field, which considers both the design and formation 

of large structural assemblies from what are, relatively small and simple pre-programmed sub-units. Such 

covalently bonded sub-units are held together in the assembly by a combination of various bonds/interaction 

such electrostatic interactions, metal coordination, hydrogen bonding, anion coordination, charge transfer, 

π-π stacking, induction/dispersion forces (van der Waals forces) and hydrophobic effects.19 Importantly 

these interactions are reversible which allows for self-correction in the assembly process allowing the 

production of the most thermodynamically stable species.1,20,21 With careful consideration of all these 

principles, the modern-day chemist can gain access to molecules that can self-recognise, and self-organise 

to form a vast array of architectures, that would otherwise not be possible or viable by using conventional 

organic synthesis techniques. 

One sub-area of supramolecular chemistry is metallo-supramolecular chemistry which is the self-assembly 

of structurally complex architectures from the coordination of suitably instructed ligand strands and metal 

ions. This field has given rise to many interesting and novel self-assembled species such as cages, racks, 

ladder, grids, helicates (both linear and circular) as well as other elaborate molecular architectures. 22–27 

One of the simplest and most widely studied metallo-supramolecular assembly is the linear helicate. These 

systems involve suitably programmed ligand chains that contain two or more distinct binding domains that 

react with suitable metals ions to form assemblies of the type [LxMx]n+ (where x ≥ 2).3 The assembly is 
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controlled by the use of an instructed ligand strand which contains two potential binding domains separated 

in some fashion by a spacer/bridge that prevents the domains coordinating a single metal ion producing the 

entropically favoured mononuclear species. As a result the two domains coordinate two different metal ions 

and this is the supplemented by coordination of a different ligand strand such that the assembly contains 

two or more ligands and metal ions to give the [M≥2L≥2]n+ type motif. 

Whilst mononuclear helicates are acknowledged, the process in which they are formed is generally not 

recognised to be self-assembly – a process which generally requires two or more ligands and metal ions. 

Polynuclear linear helicate systems are diverse and to date many examples are known. Furthermore, helicate 

systems have been sufficiently instructed within the base unit design so that heterometallic (mixed metal), 

heteroleptic (mixed ligand), head-to-tail (directional), mesocate (non-chiral) can be formed.28–33 Also, the 

binding domains along the ligand strand can be different in nature so that transition metal helicates can 

incorporate anions and s-block metal ions.23,34–37 

Figure 1.1.2. Mixed lanthanum and siliver metal triple helicate [(L1.10)3(La)2(Ag)2]8+. 29 
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Figure 1.1.3. Crystal structures of a) dinuclear double helicate complex [(L1.11)2Fe2]4+and b) dinuclear double mesocate 

complex [(L1.12)2Fe2]4+.38 

 

 

Figure 1.1.4. a) Dinuclear double mesocate [(L1.13)2Fe2]6+, b) dinuclear double mesocate [(L1.14)2Fe2]6+, c) solid-state 1-

dimentional polymer chain of dinuclear double mesocates [(L1.13)2Fe2(L1.14)2Fe2]n
12+ d) space filling view of the solid-state 1-

dimentional polymer chain of dinuclear double mesocates [(L1.13)2Fe2(L1.14)2Fe2]n
12+. 39 

 

b) 

d) 

a) 

c) 
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One example of a “mixed species” helicate system is the self-assembly of 1-dimensional chain containing 

different dinuclear mesocates. In this example a mesocate is formed with a bis-tridentate ligand which 

contains a protonated ammonium unit (L1.13, Fig. 1.1.4a) and the same assembly is observed when an 

ethylene glycol is included within the mesocate assembly (L1.14, Fig. 1.1.4b). Mixing these two species 

shows that in the solid-state the ammonium unit and the glycol unit form hydrogen bonds between one 

another (Fig. 1.1.4c) so that a 1-dimensional chain of alternating mesocates is produced (Fig. 1.1.4d).39    

It is possible for dinuclear double helicate polymer assemblies to display higher order levels of self-

assembly. An interesting example of this has been described in a 2012 publication by Ward and 

Stephenson.40 In this report a dinuclear double helicate complex was produced by reaction of a bis-bidentate 

dimethylene benzophenone bridged pyrazolyl-pyridine ligand (L1.15) with Ag(I) perchlorate. The resulting 

[(L1.15)2Ag2]2+ complex (Fig 1.1.5) was observed to then form further argentophilic coordination bonds to 

further dinuclear double helicate fragments to form an infinite one-dimensional polymer chain of the type 

[(L1.15)2Ag2]n
n+ (Fig 1.1.6). Most interestingly, three of these polymer chain units were then observed to 

form weak ligand-ligand and ligand-perchlorate interactions whereby each of the three dinuclear double 

helicate polymer strands twists around one another to produce (in the solid state) a triple helical array (Fig 

1.1.7). Each of the interactions involved in the formation of this architecture (i.e ligand-metal, Ag–Ag, 

ligand-ligand and ligand-anion) are well known and documented in past literature. However, what is most 

unique is the combination of all these interactions being displayed in one system which yields the formation 

of this higher order architecture.     
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Figure 1.1.5. Crystal structure of the single dinuclear double helicate unit [(L1.15)2Ag2]2+.40 

 

 

 

Figure 1.1.6. Two different wire-frame views of the dinuclear double helicate polymer chain where each chain is coloured red or 

blue for clarity. a) [(L1.15)2Ag2]2
4+ b) [(L1.15)2Ag2]6

12+.40 

 

 

 

 

a) 

b) 
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Figure 1.1.7. Three different views of the triple helical array where each of dinuclear double helicate polymer strands are 

coloured differently for clarity a), b) Space-filling view, c) Wire-frame end-on view displaying the molecules central ClO4
- 

containing channel.40 

 

Another well-known type of metallosupramolecular assembly is the circular helicate. This is similar to the 

structure of a linear helicate in that a ligand is used that contains two remote binding sites each of which 

coordinated a different metal ion. However, whist retaining the “over-and-under” ligand geometry these 

are cyclic oligomers of the formula [Mn(L)n]x+ (n > 2). However, the formation of the cyclic helicate, is less 

well understood than the linear counterpart. One of the issues in the formation of cyclic helicates is that the 

self-assembly rules that apply to helicate formation, i.e. using a ligand that contains two distinct binding 

domains that coordinate different metal ions, applies to the formation of cyclic helicates. One problem with 

cyclic helicate formation is that the linear form is entropically favoured and to stop this forming some form 

of interaction (either attractive or repulsive) has to be employed. This can take the form of templating by 

anions or by attractive/favourable intramolecular interactions which forms of the cyclic species relative to 

its linear alternative.24,35,41,42 

a) 

b) c) 
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Figure 1.1.8. Pentanuclear circular helicate [(L1.16)5Zn5]10+.43 

 

The research laboratory of Rice and co-workers has reported several different examples of the formation of 

circular helicate assemblies. A 2010 study by this group demonstrated how a collection of three different 

1, 3-disubstituted phenyl centred ligand strands could be reacted with Cu(II) ions to produce a series of 

different pentanuclear circular helicates. The ligand strands themselves compromised of one bis-tridentate 

thiazole-bipyridene strand L1.170, one bis-bidentate thiazole-pyridyl strand L1.171 and one unsymmetrical 

multidentate ligand which comprised of one tridentate thiazole-bipyridyl domain as well as one bidentate 

thiazole-pyridyl domain L1.172. Firstly, it was observed that when L1.172 was reacted with Cu(II) in a 1:1 

ratio a head-to-tail pentanuclear circular helicate was produced. In this structure each of the metal centres 

formed five N-donor coordination bonds from the ligand strands (1.936(9) – 2.327(9) Å). This binding 

configuration arose from a tridentate thiazole-bipyridyl unit from one ligand strand and a bidentate thiazole-

pyridyl unit from a different ligand to yield the head-to-tail motif (Fig. 1.1.9.) a). Secondly, a 1:1 mixture 

of L1.170 and L1.171 was reacted with Cu(II) ions (1:1). Interestingly, this gave a pentanuclear heteroleptic 

circular helicate complex (Fig. 1.1.9. b, c). In this structure the metal centres retained the five-coordinate 

geometry as seen in the previous example but it was formed from coordination of different bidentate and a 

tridentate ligands, forming a homoleptic assembly.44  
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Figure 1.1.9. a) Head-to-tail pentanuclear circular helicate[(L1.172)5Cu5]10+ b) Heteroleptic mixed ligand pentanuclear circular 

helicate. [(L1.170)3(L1.171)2Cu5]10+, c) Space filling view of the crystal structure of the heteroleptic mixed ligand  pentanuclear 

circular helicate [(L1.170)3(L1.171)2Cu5]10+.44 

b) 

c) 

a) 

https://wol-prod-cdn-literatumonline-com.libaccess.hud.ac.uk/cms/attachment/908d3a04-afa5-45b0-ae2f-77a29e09e74d/mcontent.jpg
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In recent work (2013) from Ward et al, a highly unusual example of a heterometallic cyclic helicate 

architecture has been produced.45 Described by this study was the synthesis of an unsymmetrical 

heteroleptic catecholate pyrazolyl-pyridine based ligand (L1.18) which was then reacted with a mixture of 

Zn(II) and Ti(IV) salts in a methanol/triethylamine solvent mixture. This resulted in the formation of the 

octanuclear circular helicate assembly [(L1.18)8(µ-OMe)8Zn4Ti4] (Fig. 1.1.10.). The resulting mixed metal 

structure can be broken down into a collection of four separate dinuclear double helicates of the form 

{(L1.18)2(µ-OMe)4ZnTi}. Each of these two ligands adopt a head-to-tail arrangement whereby the 

catecholate domains fully deprotonate and coordinate a single Ti(IV) metal ion (1.924(6) – 2.031(6) Å) 

while the pyrazolyl-pyridine domain coordinate a single Zn(II) metal ion (2.094(6) – 2.207(5) Å) (Fig. 

1.1.11.). This coordination geometry is further supplemented by the interaction of each metal centre with a 

pair of methoxide bridging molecules. This assembly is controlled via the hardness of the two binding 

domains; with the Ti(IV) coordinated via the hard ArO- domains and the Zn(II) coordinated buy the 

relatively softer N-donor domains. This combination of interactions leads to four of these dinuclear 

fragments being held together in the resulting square cyclic array. 

 

Figure 1.1.10. Crystal structure wire frame view of the mixed metal octanuclear circular helicate [(L1.18)8(µ-OMe)8Zn4Ti4].45 
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Figure 1.1.11. Crystal structure of the dinuclear double helicate fragment {(L1.18)2(µ-OMe)4ZnTi} a) wireframe view, b) space 

filling view.45 

 

1.2 Anion binding 

Due to their vital role in both biological and ecological systems, the sensing of anions and selectively 

sequestering them is a highly important area of chemical research. As a result, the interests concerning the 

ability of a system to interact and bind anionic guest molecules has become a vast area of research for 

chemists over recent decades. For example, by careful considerations in both the molecular design and 

structure of a host molecule, systems can be functionalised to undergo processes such as sensing and/or the 

sequestering of anionic species, anion transportation (lipid layers), catalytic processes as well as aiding the 

formation of interesting molecular assemblies.46–50 There have been many reported examples of organic 

molecules that have been synthesised that can act as anion hosts. These compounds generally contain one 

or more hydrogen bond donor groups (amines, amides, phenols and carboxylic acids amongst others) which 

are arranged in a convergent manner so that they act as a host to anionic guests.46,51–54  

 

 

a) 

b) 
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One such example, by Wu and co-workers, illustrates how phosphate anions can be encapsulated using a 

series of ortho-phenylene linked tris-urea based ligands L1.21 (Fig. 1.2.1). It was observed that these ligands 

had a high affinity for both sulphate and phosphate anions, with phosphate been the greatest of the two. 

Examination of the L1.21 phosphate containing crystal structure confirmed the inclusion of the fully 

deprotonated PO4
3- anion within the 2:1 [(L1.21)2 PO4]3- complex, where the central guest anion received a 

total of 12 hydrogen bonding interactions from the ligand’s urea hydrogen atoms (N···O 2.871(6) - 2.986(6) 

Å). Further investigation and structural analysis were performed on a similar system which incorporated a 

mixed urea/thiourea based ligand (L1.22) together with phosphate. However, in this example the assembly 

was observed to adopt a different 2:2 [(L1.22)2(HPO4)(H2PO4)]3- complex (N···O 2.916 Å, (O···O 2.469(6) 

– 2.579(5) Å)). Interestingly, ligand L1.23 (thiourea only) was not seen to produce an anion containing 

complex with basic anions and the addition of phosphate to this system only resulted in deprotonation of 

the ligand thiourea units.55  

 

 

 

 

 

 

 

 

 

Figure 1.2.1. a) Wu et. al. trisurea based anion receptor ligand where L1.21 X = Y = O, L1.22 X = S, Y = O and L1.23 X = Y = S b) 

crystal structure of the [(L1.21)2PO4]3- complex c) crystal structure of the [(L1.22)2(HPO4)(H2PO4]3- complex.55 

 

b) 

a) 

c) 
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Cryptand type molecules have historically been employed as anion binding hosts.50 From the early work of 

Park and Simmons56,57 in their development of halide binding diazobicyclic kanapinand system as well as 

that of Lehn and co-worker’s58,59 development of polyether and polyaza cryptands (known as 0-bistren) in 

binding studies with halides as well as poly-atomic anions such as azide.  

 

Figure 1.2.2. Structural representation of Lehn and co-workers O-bistren halide complexes.50 

 

Displaying strong similarities to their cationic metal binding counterparts, this type of anion host molecule 

has an internally sited binding cavity. The guest anions are held within the cavity mostly via multiple -

NH2
+···anion hydrogen bonding interactions and the selectivity of these systems is dependent on how well 

the guest species shape/size fits the hosts internal cavity. The main drawback with this type of system is 

that they are generally very sensitive to pH changes and the initial synthesis required to produce the host 

molecule can be challenging. 

Work undertaken by Fletcher et. al. investigated the strength of anion binding towards inert dirhenium(I) 

complexes.60 In this study a series of thiourea containing bis-2,2’-bypyridine ligands were synthesised, 

namely ligand L1.24, and reacted to give the bis(fac-tricarbonylrhenium(I)) complexes (Fig. 1.2.3.). 1H NMR 

studies confirmed that the complexes underwent binding of both acetate and dihydrogen phosphate anions. 

Further investigations via UV-Vis and emission spectra showed that the simple single thiourea bridged bis-

2,2’-bypyridine ligand showed a high level of selectivity towards the dihydrogen phosphate anion. In fact, 

it was concluded that this complex had an affinity to bind two dihydrogen phosphate anions via O···HO 
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hydrogen bonding interactions between the anions themselves as well as the carbonyl groups on the rhenium 

metal centres. Interestingly, it was proposed that the binding of this second dihydrogen phosphate anion 

increased the binding strength of the first adduct. 

 

 

Figure 1.2.3. Three binging modes of the dimethylene thiourea bridged 2, 2’-bipyridine ligand. a) [L1.24(O2CMe]- , b) 

[L1.24(H2PO4)2]2-, c) [L1.24Re2(CO)6Br2(H2PO4)2]2-.60 

 

 

 

 

a) 

b) 

c) 
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1.3 Self-assembled metal complexes as anion receptors 

The use of self-assembled metallic complexes as anion binding hosts has become a major area of interest 

for the supramolecular chemist.  

Metallo-helicate assemblies offer good potential to act as anion host molecules. In many examples, the 

nature in which these architectures are formed is that a central cavity develops within the molecules 

structure that can accommodate an anion guest molecule (Fig 1.3.1.). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3.1. Illustration of four different helicate type assemblies and their internal central cavity.61 

 

In a study by Cronin et. al. a bis bipyridine ligand bridged by a dimethyl imidazole spacer unit (L1.31) was 

synthesised and reacted with Fe(II) metal ions to produce a dinuclear triple helicate complex. This dinuclear 

complex featured a central cavity that was capable of the encapsulation of anions. In this study it was found 

that the resulting {L3M2} type architecture could interchange between a traditional S-type helicate and a C-

cavity 
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type mesocate motif. This rearrangement was a result of the interaction between the ligand’s imidazole 

spacer unit and the guest anion that was included within the complexes central cavity. It was found that 

spherical and trigonal planar anionic species yielded the formation of the helicate and larger tetrahedral 

anions influenced an expansion of the central cavity to yield the formation of the mesocate.62  

 

 

 

Figure 1.3.2. Two crystal structures from the mentioned work of Cronin et. al. Where, a) the addition of spherical or trigonal 

anions to the system yields a dinuclear triple helicate and b)the addition of lager tetrahedral anions to the system yields a 

dinuclear triple mesocate.62 

 

An interesting report by Leigh et. al. which used 1H NMR titration experiments to probe the affinity of 

previously reported multinuclear Fe(II) architectures to bind halide anions.63 These included double 

(Solomon Link) and triple (Star of David) catenanes as well as a pentafoil knot (Fig 1.3.3). All the three 

host structures produced different sized central cavities that were observed to bind a single halide anion via 

a combination of -CH···A- hydrogen bonding interactions and long-range Fe···A- electrostatic interactions. 

Halide anions included chloride, bromide and iodide, where the Solomon linked catenane (Fig 1.3.3a) was 

found to bind all three anions with both chloride and bromide being the most preferred (Cl−, K1 = (3.0 ± 

2.5) × 108  M−1; Br−, K1 = (1.0 ± 0.5) × 107 M−1). Whilst this is a strong interaction it is several orders of 

a) Helicate b) Mesocate 
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magnitude weaker than that seen for the smaller cavity of the pentafoil knot (Fig 1.3.3b) (Cl−, K1 = (3.6 ± 

0.2) × 1010  M−1; Br−, K1 = (1.7 ± 0.5) × 1010 M−1). The larger cavity of the Star of David catenane (Fig 

1.3.3c) was only found to show a preference for the larger iodide anion (I−, K1 = (1.2 ± 0.1) × 104  M−1) but 

this was comparably weaker than that seen in the previous Solomon linked catenane anion (I−, K1 = (2.1 ± 

0.2) × 105  M−1) and the pentafoil knot (I−, K1 = (5.8 ± 1.3) × 105  M−1). This work successfully illustrates 

that complex linked and knotted structures, produced from circular metal double helicates can bind anions. 

Interestingly, examples such as the pentafoil knot showed the strongest reported affinity towards the 

chloride anion, being comparable to that of silver salts. 

 

 

 

Figure 1.3.3. Series of Fe(II) assembled halide host molecules a) Solomon Linked catenane, b) Pentafoil knot, c) Star of David 

catenane.63 

Whilst some excellent examples of anion host/sensors have been produced in the last 10 years, and the 

chemist’s ability to recognise anions has significantly advanced. However, there are some limitations in 

this field of chemistry as many receptors are complex to prepare, require multi-step synthesis and are 

generally limited to non-aqueous environments, Furthermore, most anion receptors only work in non-

aqueous environemts and there are only a limited number of reported examples of receptors that recognize 

  

b) a) c) 
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anions in water. Clearly this limits the ability of these systems to be practically useful as in the vast majority 

of scenarios such as anion recognition/sensing/sequestering will involve aqueous systems. One method to 

circumvent complex synthetic procedures is to generate anion receptors from self-assembly, where the 

receptor is not synthesized in the conventional sense but is rather assembled in solution, generating a 

complex architecture from smaller pre-programmed chemical fragments.5,6 Using this functionality large 

and complex systems that contain a multitude of species (e.g. –NH, -CONH, -OH, Mn+ etc) capable of 

interaction with anions can be included within a small molecule which upon self-assembly generates a large 

complex molecule negating the need for complex synthetic procedures. As a consequence, the possibilities 

of anion encapsulation by self-assembled cationic cage type assemblies has become a rapidly growing area 

of interest for the supramolecular chemist.  

A good example of this type of behaviour has been demonstrated by a recent review by Custelcean 

highlighting the effectiveness of these assemblies in capturing anionic molecules.64 In one such study, Custelcean 

et. al. synthesised a urea functionalised bis-bipyridine ligand (L1.320) that was capable of encapsulating high charge 

density oxo-anions from aqueous methanol solvent systems. When this ligand was reacted with Ni2+ or Zn2+ in 

the presence of a tetrahedral anion EO4
n- (where E = P, Cr, S, Se, Mo and W) a M4L6 tetranuclear cage was 

observed to have formed (Fig. 1.3.4, Fig. 1.3.5).  

 

 

 

 

 

 

 

 

Figure 1.3.4. a) Schematic of the reaction of L1.320 to form the {L6M4(EO4)} cage assembly where R = H, tBu; M = Zn, Ni; E = S, 

Se, Mo, W, Cr (n = 2) and P (n = 3).65 

      4 M2+ 

      EO4
n- 

 

MeOH/H2O  
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Figure 1.3.5. a) Crystal structure of the {L6M4(EO4)} cage assembly (selected atoms omitted for clarity) and c) b) view of the 

anion/urea interactions of the {L6M4(EO4)} cage assembly(selected atoms omitted for clarity)65 

 

The self-assembled M4L6 tetranuclear cage contains a total of six urea functional groups that can point inwards to 

a central cavity and contained within this is an oxo-anion. The anion is held within the structure by a total of 

twelve –NH····A hydrogen bonding interaction from the ligands inward facing urea units (NH···O 2.04 – 2.08 

Å). 77Se NMR spectroscopy was used to access the selectivity trend of the complex towards these anions, 

this showed it to be PO
4

3–
 >> CrO

4

2–
 > SO

4

2–
 > SeO

4

2–
 > MoO

4

2–
 > WO

4

2–
. This selectivity profile was 

attributed to a combination of the charge, size, basicity, hydration and hydrogen bond acceptor 

characteristics of the anion. It is worth noting that in this example, the formation of the M4L6 motif was 

dependant on the templating effects of the shape of the anion and the self-assembly is a result of the anion rather 

than self-assembly of an anion binding species.65 

In a different study, Custelcean et. al. employed a different method of encapsulating oxo-anions from aqueous 

solutions using a potentially tripodal tris(2-aminoethyl)amine (tren) based ligand (Fig. 1.3.6). This tripodal motif 

featured three separate amide urea groups which are well known to interact strongly with oxo-anions such as 

phosphate or sulfate.66 It was observed that upon reaction of this ligand (L1.321) with Ag2SO4 in aqueous acetone, 

the SO4
2- anion became encapsulated by two separate ligand strands. In the solid state, each ligand was seen to 

donate six hydrogen bonding interactions via there three urea amide protons to give a total of twelve interactions 

a) b) 
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to the encapsulated SO4
2- molecule (NH···O 2.14 – 2.23 Å). Whilst the Ag(I) metal ions were observed to form 

coordination bonds to the ligand’s amide oxygen atom as well as the nitrogen atom of the ligands Ar-CN 

substituents. This facilitated the capsule to assemble into a one-dimensional coordination polymer of the type 

[(L1.321)2(SO4)Ag2]n in the solid state (Fig 1.3.7 c).67 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3.6. Schematic of the reaction of L1.321 to form the [(L1.321)2(SO4)Ag2] anion capsule assembly.67 
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       H2O/acetone 
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Figure 1.3.7. a) Crystal structure of the [(L1.321)2(SO4)Ag2] anion capsule assembly (dashed lines showing the twelve anion/urea 

hydrogen bonding interactions), b) Crystal structure of the [(L1.321)2(SO4)Ag2]  anion capsule assembly where each of the two 

ligands are individually highlighted and the disorder of the encapsulated  SO4
2- molecule is shown, c)  Crystal structure of the 

[(L1.321)2(SO4)Ag2]n anion capsule 1D coordination polymer assembly with respective CN···Ag coordination bonds. Selected 

atoms omitted for clarity.67 

 

A different study using a second tripoidal ligand of very similar structure to that described above but 

containing a pyridyl rather than phenyl substituent was employed (L1.322). This system was used to 

investigate the potential of removal of SO4
2- anions in the remediation processes associated with 

contaminated water from nuclear waste (Fig. 1.3.8). In this study, no additional metal ions were used (e.g. 

Ag(I)), instead this system was selectively precipitated from the solution using only the available metal ions 

that were present e.g. M2SO4·XH2O (where M+ = Na, K) and MSO4·XH2O (M2+ = Ca, Mg). It was observed 

that in the solid state the anions form hydrogen bonding interaction to the urea functional groups on the 

a) b) 

c) 
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ligand chain. This interaction is supplemented by hydrogen bonding interaction between the pyridyl 

nitrogen atom and the coordinated water molecules on the hydrated metal cation. All these interactions (e.g. 

urea····anion and -C5H4N····H2O-Mn+) resulted in a polymeric array and resulted in precipitation of the 

M2SO4·XH2O (where M = Na, K) and MSO4·XH2O (M = Ca, Mg, Cd) salts upon addition of the ditopic 

host. The conclusions gained from this work were such that the system performed exceptionally under the 

harsh, basic (~ pH 14) and high ionic strength conditions that are common to this type of application.68 

 

 

 

Figure 1.3.8. Diagram illustrating the solid-state crystallisation products of the Custelcean et. al. TREN based SO4
2- capsule with a) 

[Mg(H2O)6]2+, [Ca(H2O)6]2+, [Cd(H2O)6]2+ b) Na2(H2O)4]2+ c) K2(H2O)4]2+.68 

 

[(L1.322)2SO

4]2- 
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The group of Ward and co-workers have produced various examples which feature the formation of self-

assembled anion encapsulating cages of the type [M4L6]n+. In the most part these studies involved the 

synthesis of different bis-pyrazolyl-pyridine ligands with various methylene linked aromatic spacer units 

(Fig. 1.3.9.). It was found that when this type of ligand species was reacted with metal salts (e.g. Co(II), Zn 

(II), Cd(II)) a [M4L6]n+
 tetragonal type cage was formed that featured an internal central cavity which was 

in turn occupied by an anion guest. In all these examples the encapsulate anion species was bound within 

the complex’s central cavity via multiple hydrogen bonding interaction between the anion and the ligands 

inward facing methylene (-CH2-) protons. In this work it was demonstrated that the formation of the cage 

was independent of the anion and therefore did not rely on formation mechanisms that involved guest 

species templating effects. Each of the ligands that were produced formed a different size/shaped central 

cavity which was dependant on the size/shape of the ligand’s central spacer unit. As a result, the selectivity 

of all the produced cage assemblies was attributed to both the shape and size of the anion and how this 

matched the central cavity of the complex. 11B and 19F NMR studies were undertaken on each of the 

assemblies which also supported the previously observed selectivity.69–74 

 

 

 

  

  

 

 

Figure 1.3.9. Bis-pyrazolyl-pyridine ligands L1.330, L1.331, and L1.332 synthesised by Ward et. al.64 

 

 

   
L1.330 L1.331 L1.332 



47 

 

 

Figure 1.3.10. Crystal structures of Ward et. al. {L6M4} cages, a) L1.330 and BF4
-, b) L1.331 and SiF6

2-, c) L1.332 and PF6
-.64 

 

For example, the ligand L1.330 which contains a 1,2-phenylene spacer forms the [(L1.330)6Co4]8+ assembly 

and inside the central cavity is a ClO4
- anion. Whereas the ligand containing the larger 3,3’-disubstituted-

2,2’-diphenylene spacer forms [(L1.331)6Co4]8+ which acts as a host to the larger PF6
- anion.69,70 Ward et. al. 

has since gone onto use this building block for the self-assembly of a large number of different host cavities, 

some of which contain neutral guests including nerve agent mimics.75–80  

One such example of anion binding has been demonstrated within the Rice et. al. laboratory (Fig. 1.3.11.). 

In this system, the reaction of the bis-bidentate ligand L1.340 with Co2+ resulted in the formation of a 

dinuclear triple helicate e.g. [(L1.340)3Co2]4+. However, the ligand also contains amide “arms” at each end 

of the ligand strands and the self-assembly of the helicate structure, in turn, produces two cavities that 

contain three –NH hydrogen bond donor units, which in this example, are ideally suited to bind perchlorate 

anions.  

(a) (b) (c) 
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L1 R = S CONHCH(CH(CH3)2)CO2Me  

Figure 1.3.11. Schematic of the reaction of Ligand L1.340 (where R = S CONHCH(CH(CH3)2)CO2Me) with Co(II) perchlorate to 

give the dinuclear triple helicate showing the binding of perchlorate anions.81 

 

Reaction of [(L1.340)3Co2(ClO4)2]2+ with two equivalents of NO3- results in the “bound” perchlorates being 

displaced and a nitration anion forming hydrogen bonds to the three amide arms. Rice et. al. attributed the 

observed displacement of the perchlorate anion to the stronger hydrogen bonding interactions between the 

nitrate and amide units.81 

 

Figure 1.3.12. Crystal structure of the NO3
- containing dinuclear triple helicate assembily [(L1.340)3Co2(NO3)2]2+. Selected atoms 

omitted for clarity.81 
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In a similar system ligand L1.341 contains a tetradentate N-donor chain and contains an amide arm at the one 

end of the strand, making the ligand unsymmetrical.  Reaction of this ligand with Co(ClO4)2 gives a 

dinuclear triple helicate e.g. [(L1.341)3Co2]2+ but due to the unsymmetrical nature of the ligand this gives a 

mixture of isomers. As the ligand contains the amide substituent on only one of the pyridyl aromatic ring 

the ligand can be considered to have a “head” and a “tail” and as a result in the triple helicate complex  

“head-to-head-to-head” and “head-to-head-to-tail” isomers are present in a ratio of 1:3. However, upon 

addition of nitrate anions this distribution of isomers changes with only the “head-to-head-to-head” isomer 

present. This is attributed with the interaction of the amide hydrogen bond donors and the nitrate anions 

(which in the previous example are shown to interact strongly) which, as a result, orders the system.82 

 

 

Figure 1.3.13. Schematic of the reaction of L1.341 (where R = CONHCH(CH(CH3)2)CO2Me) with Co(II) and NO3
- to give the 

NO3
- encapsulated HHH dinuclear triple helicate assembly.82 
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In a 2014 publication by Rice et. al., a ligand (L1.342) featuring two thiazole-pyridyl units and two -NH 

hydrogen bond acceptor groups, partitioned by a 1,3-phenyl unit was synthesised (Fig. 1.3.14.). In this 

study, L1.342 was reacted with Cu(II) ions together with a series of different anions in organic media. The 

solid-state structures of the resulting self-assembled complexes were analysed, and it was seen that the 

interactions between the ligands -NH units, and the included anion influenced both subtle and dramatic 

changes in the resulting structural geometry of the self-assembled complexes.83 

 

NN

H H

N
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N
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Figure 1.3.14. Ligand L1,342 

 

Firstly, L1.342 was reacted with one equivalent of either Cu(II) perchlorate or Cu(II) tetrafluoroborate to 

produce a dinuclear double helicate (e.g. [(L1.342)2Cu2]4+). In this complex, each of the ligand’s thiazole-

pyridyl units partitioned into two separate bidentate binding domains which coordinate two separate Cu(II) 

metal ions to give four-coordinate metal centres (N···M 1.991(4) – 1.973(4) Å). This structural 

configuration resulted in the formation of a ‘pocket’ within the centre of the complex, which was seen to 

be occupied by a single anion to give [(L1.342)2Cu2A]3+ (where A is either perchlorate or tetrafluoroborate). 

This guest anion was observed to receive a total of four hydrogen bonding interactions from the complex 

arising from interaction between two -NH and two –Ar-H donors (one from each ligand, average distance 

of 2.847 Å) (Fig. 1.3.15.). 
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Figure 1.3.15. Solid state structure of a) [(L1342)2Cu2](BF4)3+. Thermal ellipsoids shown at the 50% probability level and the 

remaining anions omitted for clarity.83 

 

However, when the [(L1.342)2Cu2]4+ complex was reacted with half a molar equivalent of dihydrogen 

phosphate, the dinuclear stoichiometry was retained. However, in this example the central pocket of the 

complex is occupied by a single phosphate anion, this forms both hydrogen bonding interactions to the 

ligands -NH units (average N···O of 2.745 Å), as well as bridging the two metal centres via a single O···Cu 

coordination bond (1.978(4) – 2.008(4) Å) to each Cu(II) metal ion to give an unsaturated dinuclear double 

helicate [(L1.342)2Cu2(OPO3H2)]3+. (Fig. 1.3.16.) 

 

 

Figure 1.3.16. Solid state structure of [(L1.342)2Cu2(OPO3H2)]3+. Thermal ellipsoids shown at the 50% probability level and the 

remaining anions omitted for clarity.83 
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Interestingly, upon the addition of an additional half a molar equivalent of dihydrogen phosphate to the 

[(L1.342)2Cu2(OPO3H2)]3+ system the overall structural geometry of the complex undergoes dramatic 

changes to yield a trinuclear circular helicate. This higher order assembly involved the inclusion of three 

phosphate anions within the centre of the complex to give [(L1.342)3Cu3(OPO3H2)3]3+. Each of the three 

phosphate guest anions was observed to be bound within the structure via a combination of both O···Cu 

coordination bonds as well as a complex network of hydrogen bonding interactions. Each of the phosphate 

anions formed one coordination bond to a single Cu(II) metal ion (1.988(5) – 2.008(4) Å), one hydrogen 

bonding interation to one of the ligands NH- amine units (N···O 2.890 – 3.053 Å) and one intra-molecular 

hydrogen bonding interaction to the neighbouring phosphate anion (2.546 – 2.605 Å) within the formed 

cavity (Fig 1.3.17.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3.17. Crystal structure of [(L1.342)3Cu3(OPO3H2)3]3+. a) top view of the trinuclear circular helicate. b) view of the three 

dihydrogen phosphate anions. c) view of the six dihydrogen phosphate anions involved in both inter and intra-molecular 

hydrogen bonding.83 

a) 

b) c) 
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Furthermore, the most interesting feature of this system is that the three central phosphate anions form a 

further three P=O···HO-P inter-molecular hydrogen bonding interactions (2.603 – 2.680 Å) to a second 

circular helicate complex, giving rise to a dimer of circular helicates i.e. [(L1.342)3Cu3(OPO3H2)3]2
6+ (Fig. 

1.3.18.).   

 

 

Figure 1.3.18. Crystal structure of ([(L1.342)3Cu3(OPO3H2)3])2
6+. a) side view of the dimeric structure. b) space-filling view of the 

dimer. c) top view of the circular helicate dimer showing the intra-molecular hydrogen bonding.83 

 

 

a) b) 

c) 
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This study successfully highlights how the inclusion of amine -NH units within a ligand chain can result in 

a system that can adopt different coordinated molecular species dependent upon the anion and its 

stoichiometry. Furthermore, it is clear to see that the position of the hydrogen bonding units is vitally 

important. Inclusion of hydrogen bond donors at the end of a ligand chain can produce self-assembled 

species that act as a host for anions – but the overall self-assembly does not change. However, inclusion of 

hydrogen bond donors within the ligand chain can give systems that change shape / geometry on the 

addition of specific anions.  

Drawing on the conclusions of this previous research, the work in this thesis focuses upon the synthesis of 

a series of ligands that contain –NH hydrogen bond donors within the ligand chain as well as the 

investigation of their properties both upon coordination of metal ions and interaction with a variety of 

different anions.  
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2. Carbon-carbon chain Ligands 

2.1 Synthesis of L2.1 

The ligand L2.1 was synthesised in good yield from readily available materials as illustrated by the three-

step procedure below (Scheme 2.1.1). 

 

 

Scheme 2.1.1. Synthesis of ligand L2.1 

 

The benzoylated bis-thiourea (1) was produced by a nucleophilic addition reaction of ethylenediamine with 

2.1 equivalents of benzoyl isothiocyanate. The resultant yellow solid was isolated via filtration, and the 

crude product was then washed with methanol and dried to give the colourless powder intermediate (1). 1H 

NMR showed the characteristic signals that are expected for this compound, i.e. two singlets at ~ 11 ppm 

corresponding to the unsymmetrical urea unit as well as three aromatic benzoyl and one aliphatic signal 

corresponding to the symmetrical 1, 2-ethyl bridging unit (Fig. 2.1.1). 13C NMR showed the expected 9 

signals and mass spectroscopic analysis gave an ion at m/z = 386 corresponding to the desired compound 

(e.g. {M + H}+).  
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Figure 2.1.1. 1H NMR of benzoylated thiourea product (1) a = water impurity and b = (CD3)(CHD2)SO. 

The benzoylated bis-thiourea (1) was then hydrolysed by treatment with 6.2 equivalents of sodium 

hydroxide (3.1 equivalents for each unit) in water to remove the benzoate units to give the bis-thiourea 

intermediate product (2). 1H NMR for this product was broad and difficult to assign as the spectra displayed 

only 2 board signals (Fig. 2.1.2). Further analysis by 13C NMR showed 2 signals with a signal at 183.9 ppm 

corresponding to the (NH)2C=S unit and an ion was observed in the ESI-MS at m/z = 179 corresponding to 

the desired compound (e.g. {M + H}+). As the molecule contains both hydrogen–bond acceptor and donor 

units, interactions between these could result in restricted rotation, which would lead to broad signals in the 

1H NMR. However, with no aromatic signals from the benzoylated urea groups observed and the 13C NMR 

and MS is as would be expected we assume that this is the correct product and it undergoes the expected 
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reactions. The formation of these intra- and inter-molecular hydrogen bonding interactions are confirmed 

by solid-state analysis (see Chapter 4) 

 

Figure 2.1.2. 1H NMR of the bis-thiourea product (2) a = water impurity and b = (CD3)(CHD2)SO. 

 

The final synthetic step involved a Hantzsch thiazole synthesis type reaction of the bis-thiourea (2) with 

2.1 equivalents of α-bromoacetylpridine, this was followed by neutralisation of the resulting hydrobromide 

salt with excess ammonia and gave the targeted bis-bidentate ligand (L2.1). The formation of this ligand was 

confirmed by 1H NMR (Fig. 2.1.3) which gave the signals that are indicative of this compound i.e. four 

aromatic mono-substituted pyridyl signals, one thiazole singlet, one amine (broad singlet at 6.96 ppm) and 

one aliphatic signal corresponding to the central 1,2-ethyl spacer unit. This was again supported by 13C 

NMR which showed at total of 8 aromatic signals and one aliphatic signal. Further confirmation was given 
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by ESI-MS where an ion was observed at m/z = 381 corresponding to the desired compound (L2.1) (e.g. {M 

+ H}+). 

 

Figure 2.1.3. 1H NMR of ligand L2.1 a = water impurity and b = (CD3)(CHD2)SO. 

 

The ligand L2.1 contains two pyridyl-thiazole domains bridged by a simple 1,2-ethyl spacer group. The two 

pyridyl-thiazole donor units have been previously shown to act as an excellent bidentate binding chelate to 

a variety of different metal ions.84 Furthermore, also contained within the ligand strand are two secondary 

amine units, which are well known to act as hydrogen bond donors to anions.83 This method of reacting 

diamines with benzoyl isothiocyanate, hydrolysis and reaction with α–bromoacetyl pyridine is very robust, 

can be applied to a variety of systems and generally works well with moderate to good yields. 
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2.2 Coordination Chemistry of L2.1 

Reaction of L2.1 with Cu(trif)2 in MeNO2 gave a tan solution and analysis by ESI-MS gave an ion at m/z 

1335 corresponding to {[Cu2(L2.1)2](trif)3}+ as well as an ion at m/z 593 corresponding to 

{[Cu2(L2.1)2](trif)2}2+ indicating the formation of a dinuclear assembly.  A dark tan crystalline material was 

deposited upon slow diffusion of diisopropylether.  Single-crystal X-ray diffraction analysis confirmed that 

in the solid state a dinuclear assembly compromising of two ligand strands, two Cu(II) ions and two triflate 

anions had formed (Fig. 2.2.1). In this structure each of the ligand strands are not intertwined as expected 

of the ‘helicate’ architecture so the [(L2.1)2Cu2(trif)2]2+ complex can therefore be classified as a mesocate as 

in this structure both metal ions display the same chirality. In this complex each of the two Cu(II) metal 

ions display a typical 5-coordinate geometry which compromises of four N···Cu coordination bonds from 

one of each ligand strands chelating pyridyl-thiazole units as well as receiving a O···Cu coordination bond 

from a triflate counter ion. This complex to anion interaction is further supplemented by hydrogen bonding 

interactions with the ligand strands –NH units, one to each oxygen atom from each of the two amine –NH 

unit of the same ligand strand (Fig. 2.2.1). 
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Figure 2.2.1. X-ray structure of three different views of the X-ray structure of the major component of [(L2.1)2Cu2(trif)2]2+ 

showing the coordination and hydrogen bonding of the triflate anion. Thermal ellipsoids shown at the 50% probability level. 

Selected hydrogen atoms and anions omitted for clarity. 
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Reaction of [(L2.1)2Cu2]4+ with four equivalents of Bu4NNO3 in MeNO2 resulted in the solution displaying 

a colour change from blue to dark green. Slow diffusion of diispropyl ether yielded a mass of large green 

crystals which were analysed by single crystal X-ray diffraction. In the solid state it was found that the 

dinuclear assembly persists but in this example each of the Cu(II) ions is coordinated by the ligand strands 

two bidentate pyridyl-thiazole domains as well as a single water molecule. Furthermore, within the complex 

there are four individual nitrate anions which are bonded to the assembly via a complex hydrogen bonding 

array involving a total of 15 interactions. In all four cases, the nitrate anion is bound by one –OH···O 

hydrogen bonding interaction (from the water molecule) and one –NH···O hydrogen bonding interaction 

from each of the ligand strands amine units (Fig. 2.2.2). Interestingly in this example each of the ligand 

strands displays a distinctive twist to give a helicate motif (as opposed to mesocate with the triflate anion). 

As a result, this highlights that in this system the binding of nitrate anions does change the structural 

assembly in the solid state, albeit subtly. The poor solubility of this complex in either MeNO2 or MeCN 

precluded analysis by ESI-MS. 
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Figure 2.2.2. Three different views of the X-ray structure of [(L2.1)2Cu2(H2O)2(NO3)4] showing the coordination and hydrogen 

bonding of the nitrate anion. Thermal ellipsoids shown at the 50% probability level. Selected anions omitted for clarity. 
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Reaction of [(L2.1)2Cu2]4+ with two equivalents of Bu4NI in MeNO2 results in the colour of the solution 

initially changing from blue to red and eventually forming a dark green solution. Again, in the solid state a 

dinuclear species was seen to have formed. However, in this system each of the Cu(II) metal ions are 

coordinated by two pyridyl-thiazole units (as seen in the previous examples) and the bonding is further 

supplemented by an amine nitrogen atom resulting in five-coordinate metal centres (Fig. 2.2.3). The 

geometry of the amine and the observation that only two triflates are present per helicate assembly (e.g. 

[(L2.1)2Cu2]2+) indicates that the –NH unit has deprotonated. It seems reasonable to assume that this has 

occurred as iodide can act as a weak base (relative to triflate, perchlorate and tetrafluoroborate) which 

would not occur in the triflate as this is a much weaker base. Interestingly, nitrate is a stronger base than 

iodide but the nitrate-containing structure is presumably stabilised by the network of intramolecular 

hydrogen bonding interactions which prevent the deprotonation of the amine –NH units. The poor solubility 

of this complex in either MeNO2 or MeCN precluded analysis by ESI-MS. 
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Figure 2.2.3. Three different views of the X-ray structure of [(L2.1)2Cu2]2+ showing the Cu(II) coordination. Thermal ellipsoids 

shown at the 50% probability level. Selected anions omitted for clarity. 
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Reaction of [(L2.1)2Cu2]4+ with half a molar equivalent of Na2SeO3 in MeNO2 (containing a few drops of 

MeOH to aid dissolution) resulted in the colour of the solution changing from dark blue to lime-green. 

Single-crystal X-ray analysis determined that in the solid-state an anion-containing [(L2.1)2Cu2]2+ dinuclear 

double helicate assembly was present (Fig. 2.2.4). As been observed previously a dinuclear double helicate 

is formed and each of the two Cu(II) metal centres formed four N···Cu coordination bonds from one of the 

bidentate thiazole-pyridyl binding domains from each of the two ligands. However, in this example both 

Cu(II) metal centres were seen to adopt a 6-coordinate octahedral binding geometry with each of the two 

selenite anions bridging the Cu(II) ions to give a total of four O···Cu bonds (two for each Cu(II) ion). The 

bonding of the included anions within the complex was then further complemented by the formation of four 

-NH···O hydrogen bonding interactions, where each anion has two interactions from the ligand’s amine 

units. Interestingly, on closer examination of the included selenite anions it was seen that both bridging 

anions have reacted to form a new -OMe bond to give the methyl ester of the selenite anion e.g. (O2SeOMe)-

. This reaction is not that unusual as methanol was included within the reactions solvent system and it is 

known that selenite esters can be formed. However, this type of esterification reaction usually requires more 

forcing conditions (e.g. heat, alcohol as solvent) and as this esterification occurs at room temperature (and 

with limited MeOH) it seems likely that coordination of the selenite by Cu(II) increases its reactivity to 

nucleophiles.  
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Figure 2.2.4. Three different views of the X-ray structure of [(L2.1)2Cu2(O2SeOMe)]2+ showing the coordination and hydrogen 

bonding of both the phosphate and triflate anions. Thermal ellipsoids shown at the 50% probability level. Selected anions and 

atoms omitted for clarity. 
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Reaction of [(L2.1)2Cu2]4+ with half a molar equivalent of Bu4N(H2PO4) in MeNO2 resulted in the colour of 

the solution changing from dark blue to pale green. Single-crystal X-ray analysis determined that in the 

solid-state the mixed anion containing [(L2.1)2Cu2(H2PO4)(trif)]2+ dinuclear double helicate assembly was 

present (Fig. 2.2.5). In this example, it was found that a single phosphate anion bridges the two Cu(II) metal 

centres. The O···Cu coordination bonding is further complimented by -NH···O hydrogen bonding 

interactions from two amine units, one from each ligand. The dihydrogen phosphate anion can be 

determined to be singly deprotonated (e.g. [(L2.1)2Cu2(H2PO4)](trif)3). The two -OH units from the 

dihydrogen phosphate anion are both orientated pointing outward of the structure and intern form further -

OH···O hydrogen bonding interactions to a single triflate counter anion (via the oxygen atom of the triflate). 

The structure also was found to persist in the gas phase with ESI-MS analysis giving ions at m/z 1282 and 

492 corresponding to {[(L2.1)2Cu2(H2PO4)](trif)2}+ and {[(L2.1)2Cu2(HPO4)]}2+. 
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Figure 2.2.5. Three different views of the X-ray structure of [(L2.1)2Cu2(H2PO4)(trif)]2+ showing the coordination and hydrogen 

bonding of both the phosphate and triflate anions. Thermal ellipsoids shown at the 50% probability level. Selected anions and 

atoms omitted for clarity. 
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Reaction of [(L2.1)2Cu2](BF4)4 with one equivalent of Bu4N(H2PO4) in MeNO2 results in the colour of the 

solution changing from dark-blue to emerald-green. Slow diffusion of diisopropyl ether into the solution 

gave a homogenous mass of crystals that were to a sufficient standard to be analysed by single-crystal X-

ray diffraction. This showed that in the solid state the dinuclear assembly was not present, instead a 

trinuclear circular helicate ([(L2.1)3Cu3]6+) structure had formed (Fig. 2.2.6). In this structure there are three 

Cu(II) ions and three ligand strands where each of the ligand strands display different individual twist 

geometries. Each of the three Cu(II) metal ions are coordinated by two bidentate pyridyl-thiazole unit from 

different ligand strands where each gain four N···Cu coordination bonds. However, in this example each 

of the three Cu(II) metal ions is coordinated by one of the three oxygen atoms of a single central phosphate 

anion which is held within the centre of the complex. The binding of the central phosphate oxygen atoms 

to the Cu(II) metal ions is further supplemented by three -NH···O hydrogen bonding interaction with one 

of the –NH units from each ligand strand (Fig 2.2.6 c).  However, the most interesting feature of this 

structure is the fourth, uncoordinated, phosphate oxygen atom points outward of the structure and has 

reacted with a single molecule of tetrafluoroborate to give the molecule [O3PO-BF3]3-
 (Fig. 2.2.6 d). The 

reason a trinuclear circular helicate is formed is due to the acidity of the [HO3PO-BF3]2-
 unit which contains 

an electron withdrawing –OBF3 group. This unit, although negatively charged, will increase the acidity of 

the POH bond and this increased acidity allows the triple deprotonation of the phosphate anion and 

coordination of all the oxygen atoms with the Cu(II) ions. However, the reason why tetrafluoroborate reacts 

with the phosphate anion is not clear. There are no previous reports of the phosphate anion reacting with 

tetrafluoroborate, indeed tetrafluoroborate is thought to be an inert molecule (apart from in very basic 

solutions) although BF4 can be hydrolysed to F3BOH with reactive low-valent transition metal ions and 

H3PO4 can react with B(OH)3 under forcing conditions.85–88 Close examination of the 

[Cu2(L2.1)2(H2PO4)(trif)]2+ structure (Fig. 2.2.5) shows that in this structure the triflate anion is strongly 

hydrogen bonded to the phosphate anion via two hydrogen bonds from the -OH units. It is therefore likely 

that this would occur in the tetrafluoroborate derivative and in bringing these two molecules in close 
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proximity would promote the reaction between the two anions. The formation of this molecule was further 

supported by ESI-MS which gave an ion at m/z 1668 corresponding to {[(L2.1)3Cu3(O3POBF3)](BF3)2}+. 

 

 

 

Figure 2.2.6. Four different views of the X-ray structure of [(L2.1)3Cu3(PO4BF3)]3+ showing the coordination and hydrogen 

bonding of the anion. Thermal ellipsoids shown at the 50% probability level. Selected anions and atoms omitted for clarity (a-b). 

Partial view of the X-ray structure showing the O3POBF3 unit (d) and its bonding interactions (c). 

a) b) 

c) d) 
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2.3 Coordination Chemistry of L2.2 

This reaction of tetrafluoroborate with phosphate is very unusual but it is not only limited to this 

[(L2.1)3Cu3(PO4BF3)]3+ system. Ligand L2.2 which is analogous to L2.1 but contains 1,4-butyl as opposed to 

1,2-ethyl spacer and was synthesised in an analogous fashion.  

 

N
N

H

N

S NH

N

SN
 

Figure 2.3.1. Ligand L2.2 

 

Figure 2.3.2. 1H NMR of ligand L2.2 a = water impurity and b = (CD3)(CHD2)SO. 

b a 
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The ligand L2.2 is similar to L2.1 but contains a butyl spacer between the two amine-bidentate domains. 

Reaction of L2.2 with Cu(trif)2 in MeNO2 gives a tan coloured solution which analysis by ESI-MS gives and 

ion at m/z 1391 and 620 which corresponds to {[(L2.2)2Cu2](trif)3}+ and {[(L2.2)2Cu2](trif)2}2+  respectively. 

Although we were unable to successfully grow crystals of this species the ESI-MS data, coupled with 

comparison with L2.1, it seems likely a dinuclear species has been formed. Ligand L2.2 reacts with Cu(trif)2 

and half a molar equivalent of phosphate to give a dinuclear double helicate with a central phosphate anion 

that bridges the two CuII metal centres (Fig. 2.3.3). In this structure the phosphate is bound by both metal 

ions as well as two –NH···O hydrogen bonding interactions, one from each ligand. Furthermore, in this 

assembly two triflate anions form hydrogen bonding interactions to both –OH units from the Cu(II) bridging 

phosphate anion as well as forming -NH···O hydrogen bonding interactions to the ligands amine units. The 

formation of this assembly was again supported by ESI-MS, giving ions at; m/z 1339 

{[(L2.2)2Cu2(H2PO4)](trif)2}+ m/z 1189 {[(L2.2)2Cu2(HPO4)](trif)}+ m/z 520 {[(L2.2)2Cu2(HPO4)]}2+  as well 

as lower molecular weight species such as m/z 620 {[(L2.2)2Cu](trif)}+ and 470 {[(L2.2)2Cu]}+. 
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Figure 2.3.3. Three different views of the X-ray structure of [(L2.2)2Cu2(H2PO4)(trif)2]2+ showing the coordination and hydrogen 

bonding of both the phosphate and triflate anions. Thermal ellipsoids shown at the 50% probability level. Selected anions and 

atoms omitted for clarity 

Reaction of Cu(BF4)2 with L2.2 and half an equivalent of Bu4NH2PO4 in MeNO2 resulted in a green solution 

from which a crystalline material was formed upon slow diffusion of diethyl ether. It was found by X-ray 

diffraction that in the solid state the structure is still a dinuclear double helicate with a phosphate anion 

bridging the two Cu(II) metal ions (Fig. 2.3.4). However, in this example two tetrafluoroborate anions have 

reacted with the bound phosphate via a P-O-B bond (Fig. 2.3.5). It is probable that in this example the 

dinuclear assembly is retained (as opposed to the trinuclear circular structure as with 

[Cu3(L2.1)3(PO4BF3)]3+) as the butyl spacers add sufficient flexibility and can accommodate the steric bulk 

of the [(F3B-O)PO2]3- unit. This allows the formation of the entropically favoured dinuclear assembly. 

Examination of this material by ESI-MS showed ions at m/z 1175 and m/z 1107 

{[(L2.2)2Cu2(O2P(OBF3)2)]}+ and {[(L2.2)2Cu2(O3POBF3)]}+ respectively. Also present are smaller ions at 
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19 mass units higher at m/z 1195 and 1127 corresponding to {[(L2.2)2Cu2(HO3P(OBF3))](BF4)}+ and 

{[(L2.2)2Cu2(HPO4)](BF4)}+ which we attribute to artefacts of the mass spectrometry process. 

 

 

Figure 2.3.4. X-ray structure of [(L2.2)2Cu2(PO4(BF3)2)]+ showing the coordination and hydrogen bonding of the anion. Thermal 

ellipsoids shown at the 50% probability level. Selected anions and atoms omitted for clarity. 

 



75 

 

 

 

 

Figure 2.3.5. Three different views of the X-ray structure of [(L2.2)2Cu2(PO4(BF3)2)]+ showing the coordination and hydrogen 

bonding of the anion. Thermal ellipsoids shown at the 50% probability level. Selected anions and atoms omitted for clarity (a). 

Partial view of the X-ray structure of showing the {PO4(BF3)2} unit (c) and its bonding interactions (b). 

 

Again, this is very unusual, but it has been found that in the triflate analogue the phosphate anion forms 

hydrogen bonds to two triflate counter anions demonstrating that there is sufficient room in the assembly 

(provided by the long butyl arms) for the bridging phosphate anion to interact with two tetrafluoroborate 

anions. 

 

 

a) 

b) c) 
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2.4 Coordination Chemistry of L2.3 

Ligand L2.3 which is analogous to L2.2 but contains cis-1,4-but-2-ene spacer unit as opposed to the 1,4-butyl 

spacer incorporated in L2.2 and was again synthesised in an analogous fashion. 

 

Figure 2.4.1. Ligand L2.3 

 

Figure 2.4.2. 1H NMR of ligand L2.3 a = water impurity and b = (CD3)(CHD2)SO. 

 

a b 
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Reaction of L2.3 with Cu(trif)2 in MeNO2 gave a tan coloured solution from which a dark brown crystalline 

material was deposited upon slow diffusion of diisopropylether.  Single-crystal X-ray diffraction analysis 

revealed that in the solid state a dinuclear assembly compromising of two ligand strands, two Cu(II) ions 

and two triflate anions had formed (Fig. 2.4.3). In this structure each of the ligand strands are not seen to 

intertwine as expected of the ‘helicate’ architecture so the [(L2.3)2Cu2(trif)2]2+ complex can therefore be 

classified as a mesocate as seen previously in the [(L2.1)2Cu2(trif)2]2+ example (Fig 2.4.3). However, in this 

complex each of the two Cu(II) metal ions display a 6-coordinate geometry which compromises of four 

N···Cu coordination bonds from one of each ligand strands chelating pyridyl-thiazole units as well as two 

O···Cu coordination bonds, one from each bridging triflate anion. In this complex the anion interaction is 

further supplemented by hydrogen bonding interactions with the ligand strands amine units, one to each 

oxygen atom from each of the two amine –NH unit of the same ligand strand (Fig. 2.4.3). It is worth noting 

that in a repeat solid-state study of this reaction undertaken in identical reaction conditions similar dark 

blue crystal were analysed by single-crystal X-ray diffraction. The expected [(L2.3)2Cu2(trif)2)]2+complex 

was again confirmed although proved to have subtle differences when compared with the previous structure 

(Fig. 2.4.4). In this example the two triflate anions incorporated within the structure were not seen to bridge 

the two Cu(II) ions, intern giving the metal centres a 5-coordinate geometry which compromises of four 

N···Cu and one O···Cu coordination bond. However, this is a timely reminder that a crystal structure is a 

“snap-shot” of the molecular structure and that certainly the coordination of weakly binding anions (trif, 

BF4 and ClO4) should be treated with caution.    
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Figure 2.4.3. The X-ray structure of [(L2.3)2Cu2(trif)2)]2+showing the coordination and hydrogen bonding of the triflate anions. 

Thermal ellipsoids shown at the 50% probability level. Selected anions and atoms omitted for clarity. 

 

Figure 2.4.4. The X-ray structure of [(L2.3)2Cu2(trif)2)]2+showing the coordination and hydrogen bonding of the triflate anions. 

Thermal ellipsoids shown at the 50% probability level. Selected anions and atoms omitted for clarity. 
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2.5 Conclusion 

In this work we have shown that diamines, by a simple three step synthesis procedure, can be used to 

produce a series of bis-bidentate ligands L2.1, L2.2 and L2.3 and these form a variety of different helicate 

species with Cu(II). Incorporated within each of the ligand’s central spacer group are two secondary amine 

domains which were shown to interact with a variety of different anion species via hydrogen bonding 

interactions. As a result of the nature of these interactions with different anions as well as the length of the 

ligands central spacer unit a different array of helicate type structures can be formed i.e. helicate, mesocate, 

circular helicate.  

Interestingly, it was also found that the examples which incorporated the use of Cu(BF4)2 salts together 

with phosphate anion underwent a further reaction whereby a complexed phosphate anion formed O4-nP(-

O-BF3)n (where n = 1 or 2) bond(s) with surrounding the tetrafluoroborate counterion(s). Specifically, it 

was observed that ligand L2.1 formed a trinuclear circular helicate motif which contained a central phosphate 

anion that had formed a P-O-B covalent bond with a single tetrafluoroborate anion to give 

[(L2.1)3Cu3(PO4BF3)]3+. The longer and more flexible butyl spacer unit contained within ligand L2.2 

provided greater flexibility and resulted in a dinuclear mesocate complex which allowed the formation of 

two P-O-B bonds with two separate tetrafluoroborate anions to give [(L2.2)2Cu2(PO4(BF3)2)]+.  Quite why 

this unprecedented reaction is observed is difficult to rationalise. However, it is possible that the 

tetrafluoroborate anions are brought into close proximity to the phosphate anion by coordination to the 

Cu(II) ion and this close proximity facilitates reaction between the phosphate oxygen atom and the 

tetrafluoroborate anion. This is supported by the product complex [(L2.2)2Cu2(PO4(BF3)2)]+ which contains 

coordination bonds between the fluoride atom and Cu(II).89 
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3. 2, 2-Diphenyl bridged Ligand L3.1 

3.1. Synthesis of Ligand L3.1 

The ligand L3.1 was synthesised in good yield from readily available materials as illustrated by the four-step 

procedure below (Scheme 3.1.1). 

 

 

Scheme 3.1.1. Synthesis of ligand L3.1 

 

The diamino-biphenyl precursor (1) was produced via hydrogenation of 2,2’-diamino-1,1’-biphenyl under 

a hydrogen gas atmosphere in absolute ethanol in the presence of a palladium on carbon catalyst. After 24 

hours the absence of the staring material indicated that the reaction was complete, and the remaining 

insoluble catalyst was removed from the mixture by filtration and the remaining solution was reduced to 

dryness in vacuo. The resultant crude pale brown oil (1) showed the characteristic1H NMR signals that are 

expected for this compound (i.e. two multiplets at ppm respectively) and the purity was deemed sufficient 

for the product (1) to be used in the following reaction step without further purification. 
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The benzoylated bis-thiourea (2) was produced by reaction of crude 2,2’-diamino-1,1’-biphenyl90 with 2.1 

equivalents of benzoyl isothiocyanate. The resultant solid was filtered, and the crude product was then 

washed with methanol and dried to give intermediate (2). 1H NMR showed the characteristic signals that 

are expected for this compound, i.e. two singlets at ~ 11 ppm corresponding to the unsymmetrical urea unit 

as well as three aromatic benzoyl and four aromatic phenyl signals (Fig. 3.1.1). Mass spectroscopic analysis 

gave an ion at m/z = 511 corresponding to the desired compound (e.g. {M + H}+).  

 

 

Figure 3.1.1. 1H NMR of benzoylated thiourea product (1) a = water impurity and b = (CD3)(CHD2)SO. 

 

a b 
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The benzoylated bis-thiourea was then hydrolysed by treatment with 6.2 equivalents of sodium hydroxide 

in water to give the bis-thiourea (3). 1H NMR for this product was broad and difficult to assign (as with 

similar thiourea compounds described earlier) and the spectra displayed only 2 board signals (Fig. 3.1.2). 

This is possibly a result of restricted rotation influenced by inter-molecular and possibly intra-molecular 

hydrogen bonding as discussed previously. Furthermore, no aromatic signals corresponding to the benzoyl 

units or signals from the benzoylated urea groups were observed. Further analysis by ESI-MS observed an 

ion at m/z = 303 corresponding to the desired compound (e.g. {M + H}+).  

 

 

 

Figure 3.1.2. 1H NMR of the tris-thiourea product (2) a = water impurity and b = (CD3)(CHD2)SO. 

 

 

b a 
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The final step involved a Hantzsch thiazole type reaction of the bis-thiourea intermediate (3) with 2.1 

equivalents of α-bromoacetylpridine followed by neutralisation of the resulting hydrobromide salt with 

excess ammonia and gave the targeted bis-bidentate ligand (L3.1). The formation of this ligand was 

confirmed by 1H NMR (Fig. 3.1.3) which gave the signals that are expected for this compound i.e. four 

aromatic mono-substituted pyridyl signals, one thiazole singlet, one amine (broad singlet at 6.96 ppm) and 

four aromatic signals corresponding to the central biphenyl spacer unit. This was again supported by 13C 

NMR which showed at total of 14 aromatic signals and an ion was observed in the ESI-MS at m/z = 505 

corresponding to the desired compound (e.g. {M + H}+). 

 

Figure 3.1.3. Aromatic region of the 1H NMR (CDCl3) of ligand L3.1. 

 

 The ligand L3.1 contains two pyridyl-thiazole domains bridged by a 3,3’-diamino-2,2’-biphenyl spacer 

group. Furthermore, the two pyridyl-thiazole donor units have been previously shown to act as an excellent 

bidentate binding chelate to a variety of different metal ions.84 Also contained within the ligand strand are 

two secondary amine units, which are well known to act as hydrogen bond donors to anions.8 
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3.2 Coordination Chemistry of L3.1 

Reaction of L3.1 with one equivalent of Cu(ClO)4 in MeCN gave a pale blue solution from which was 

deposited a homogeneous blue crystalline material upon slow diffusion of diisopropyl ether. The solid-state 

structure was determined by single-crystal X-ray diffraction. In the solid-state a simple mono-nuclear 

complex is formed (i.e. [(L3.1)Cu]2+ with the ligand acting as a simple tetradentate donor coordinating the 

Cu(II) ion via four nitrogen donor atoms from the two bidentate pyridyl-thiazole domains. In the ligand 

strand there is a substantial twist about the central biphenyl spacer unit allowing the ligand to act as a donor 

to a single metal ion (Fig. 3.2.1). The Cu(II) metal ion adopts a distorted tetrahedral geometry with the 

Cu···N bonds ranging from 1.974(4) - 1.988(4) Å. The ligand’s two amine units both point away from the 

complex and form -NH···O hydrogen bonding interactions with adjacent perchlorate counter anions. As 

has been described earlier, this type of behaviour is to be expected as ligands containing this type of amine 

unit have previously been shown to interact to both perchlorate and tetrafluoroborate anions.83 Interestingly, 

it is worth noting that the interaction with the perchlorate anions results in the complex forming a 1-

dimensional polymer chain in the solid-state (Fig 3.2.2). 

 

Figure 3.2.1. X-ray structure of [(L3.1)Cu]2+. Thermal ellipsoids shown at the 50% probability level. Selected hydrogen atoms 

and anions omitted for clarity. 
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Figure 3.2.2 X-ray structure of the interaction of a perchlorate anion with [(L3.1)Cu](ClO4)2
 resulting in a 1-dimensional 

polymer. Thermal ellipsoids shown at the 50% probability level. Selected hydrogen atoms omitted for clarity. 

 

Reaction of ligand L3.1 with one equivalent of Cu(trif)2 initially gives a similar blue colour to the perchlorate 

derivative but this significantly lightens over a period of 48 hrs. Slow diffusion of disiopropyl ether 

deposited a homogenous mass of light blue crystals which were examined by single crystal X-ray diffraction 

to reveal the structure as [(L3,2)4Cu4]8+. In the solid-state this structure contains four ligand strands and four 

Cu(II) metal ions with the ligand partitioning into two donor domains each of which coordinates a different 

metal ion producing a tetranuclear circular helicate (Fig. 3.2.3 a-c). The most interesting feature of this 

structure is that one of the amine units present on the ligand strand has reacted with a molecule of 

acetonitrile solvent giving a new amidine-containing R2N-C=NH(CH)3 unit. This amidine unit is 

incorporated within the ligand chain producing an unsymmetrical strand containing both a bidentate 

pyridyl-thiazole and a tridentate amidine-pyridyl-thiazole binding domains (i.e. L3.2 see Fig 3.3 d). In the 

crystal the copper ions are coordinated by a tridentate domain from one ligand and a bidentate domain for 

a different ligand giving a 5-coordinate metal centre which is a common coordination geometry for this 

metal ion (with the Cu – N bond lengths ranging from 1.926 (3) - 2.249 (4) Å). Due to the unsymmetrical 

nature of the ligand chain it can be considered to contain both a head and a tail and due to the copper ions 

preference for five coordinate geometry directional control over ligand alignment is achieved and a head-

to-tail tetranuclear circular helicate is formed. 
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Figure 3.2.3. Single-crystal X-ray structure of (a) – (c) [(L3,2)4Cu4]8+ and (d) view of the bidentate and tridentate domains on the 

ligand strand. Anions and selected hydrogen atoms omitted for clarity. Thermal ellipsoids shown at the 50% probability level. 

a) b) 

c) 

d) 
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Examination of the ESI-MS of the reaction of Cu(ClO4)2 with L2 shows an ion at m/z = 669 corresponding 

to mononuclear complex {[(L3.1)Cu](ClO4)}+ consistent with the solid-state observations (Fig. 3.2.4 and 

3.2.5). However, also present in the ESI-MS are ions at m/z 1433, 2201 and 2969 which correspond to 

{[(L3.1)2Cu2](ClO4)3}+, {[(L3.1)3Cu3](ClO4)5}+ and {[(L3.1)4Cu4](ClO4)7}+. This indicates that the ligand is 

sufficiently flexible to adopt a number of conformations allowing a variety of polynuclear species to be 

accessible and in the gas phase, with the double helicate as well as the tri- and tetra- nuclear circular helicate 

observed. However, as would be expected due to entropic reasons, only the mononuclear species is 

observed in the solid-state. 

Reaction of Cu(trif)2 with L3.1 shows initially shows an ion at m/z 716 corresponding to  {[(L3.1)Cu](trif)}+ 

as well as ions corresponding to the higher oligomers e.g. {[(L3.1)2Cu2](trif)3}+, {[(L3.1)3Cu3](trif)5}+ and 

{[(L3.1)4Cu4](trif)7}+ in an analogous fashion to the perchlorate derivative (see Fig. 3.2.6). However, over 

the period of 48 hrs a new set of peaks, 41 mass units higher for each ligand strand, are observed in the 

ESI-MS indicating that the ligand has reacted with the acetonitrile solvent producing L3.2 (e.g. m/z 3479 

corresponding to {[(L3.2)4Cu4](trif)7}+) (Fig. 3.2.7). The most predominate peak is at m/z 1665 

corresponding to both the singly charged dinuclear assembly {[(L3.2)2Cu2](trif)3}+ and the doubly charged 

tetranuclear assembly (e.g. {[(L3.2)4Cu4](trif)6}2+ (see Fig. 3.2.8). Monitoring the perchlorate derivative 

over a similar period of time shows no such change with all the ions corresponding to complexes containing 

L3.1, indicating that no reaction with acetonitrile observed (see Fig. 3.2.5). 
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Figure 3.2.4. ESI-MS of the reaction of Cu(ClO4)2 and L3.1 (sample time 10 minutes). 

 

Figure 3.2.5. ESI-MS of the reaction of Cu(ClO4)2 and L3.1 (sample time 48 hrs). 
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Figure 3.2.6. ESI-MS of the reaction of Cu(triflate)2 and L3.1 (sample time 10 minutes). 

 

Figure 3.2.7. ESI-MS of the reaction of Cu(triflate)2 and L3.2 in MeCN (sample time 48 hrs). 
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Figure 3.2.8. ESI-MS of the reaction of Cu(triflate)2 and L3.1 (sample time 48 hrs) showing the isotope pattern for the ion at m/z 

1665 corresponding to both the singly charged {[(L3.2)2Cu2](trif)3}+ ion and the doubly charged {[(L3.2)4Cu4](trif)6}2+ ion. 

3.3 Conclusion 

Thus, upon reaction of L3.1 with Cu(ClO4)2 the ligand acts as a simple tetradentate donor and produces a 

mononuclear species [(L3.1)Cu](ClO4)2. However, upon coordination with Cu(trif)2 the ligand undergoes 

reaction with the acetonitrile solvent producing the ligand L3.2 that contains both a bidentate and tridentate 

donor set. This ligand cannot now act as a simple pentadentate donor which forms the simple mononuclear 

complex as due to steric constraints all five N-donor units are unable to coordinate the same metal ion. 

Instead the tetranuclear head-to-tail circular helicate [(L3.2)4Cu4]8+ is produced. Effectively the ligand chain 

re-programmes itself by reaction with one equivalent of the acetonitrile solvent changing it from a 

tetradentate donor to one that contains both a bidentate and tridentate donor set. Exactly why the reactivity 

of the ligand’s amine unit is anion dependant is not immediately obvious. However, we have shown that 

metallosupramolecular complexes that contain similar amine units strongly interact with both perchlorate 

and tetrafluoroborate anions and it is possible that, in forming hydrogen bonding interactions, the sp2 

hybridized nitrogen atom is stabilised reducing its nucleophilicity. Regardless, it is clear from both the mass 

spectrometry and X-ray studies that this reaction only occurs in the presence of the triflate anion and does 

not occur in the presence of perchlorate anions. 
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Bond Length (Å) 

Cu1···N7 1.974 (3) 

Cu1···N8 1.982 (3) 

Cu1···N10 1.985 (3) 

Cu1···N12 1.990 (3) 

Table 3.3.1. Cu(II) bond lengths for [(L3.1)Cu]2+ 

 

Bond Angle (Å) 

N8···Cu···N7 108.00 (11) 

N10···Cu1···N7 157.67 (12) 

N10···Cu1···N8. 82.29 (12) 

N12···Cu1···N7 83.51 (11) 

N12···Cu1···N8 144.58 (11) 

N12···Cu1···N10 99.61 (12) 

Table 3.3.2. Cu(II) bond angles for [(L3.1)Cu]2+ 

 

Bond Length (Å) 

Cu1···N6 1.992 (3) 

Cu1···N7 2.249 (4) 

Cu1···N8 2.052 (3) 

Cu1···N9 1.926 (3) 

Cu1···N11 1.971 (3) 

Cu2···N1 2.048 (3) 

Cu2···N2 1.929 (3) 

Cu2···N4 1.961 (3) 

Cu2···N12 2.005 (3) 

Cu2···N13 2.245 (4) 

Table 3.3.3. Cu(II) bond lengths for [(L3.2)4Cu4]8+ (half of the molecule is generated by symmetry) 
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Bond Angle (Å) 

N7···Cu1···N6 78.57 (14) 

N8···Cu1···N6 96.15 (12) 

N8···Cu1···N7 98.14 (12) 

N9···Cu1···N6 174.72 (13) 

N9···Cu1···N7 105.85 (13) 

N9···Cu1···N8 80.49 (12) 

N11···Cu1···N6 95.75 (13) 

N11···Cu1···N7 97.81 (13) 

N11···Cu1···N8 161.70 (14) 

N11···Cu1···N9 86.57 (13) 

N2···Cu2···N1 80.79 (13) 

N4···Cu2···N1 163.25 (13) 

N4···Cu2···N2 86.71 (12) 

N12···Cu2···N1 98.94 (13) 

N12···Cu2···N2 176.55 (13) 

N12···Cu2···N4 92.87 (12) 

N13···Cu2···N1 90.00 (13) 

N13···Cu2···N2 104.74 (13) 

N13···Cu2···N4 104.00 (13) 

N13···Cu2···N12 78.69 (13) 

 

Table 3.3.4. Cu(II) bond angles for [(L3.2)4Cu4]8+ (half of the molecule is generated by symmetry). 
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4. Tripodal ligand L4.1   

4.1 Synthesis of L4.1 

The tripodal ligand L4.1 was synthesised in good yield from readily available materials as illustrated by the 

three-step procedure below (Scheme 4.1.1).  

 

Scheme 4.1.1 Synthesis of ligand L4.1 

The benzoylated tris-thiourea (1) was produced by reaction of tris-(aminoethyl)amine with 3.2 equivalents 

of benzoyl isothiocyanate. The resultant solid was filtered, and the crude product was then washed with 

methanol and dried. 1H NMR showed the characteristic signals that are indicative for this compound, i.e. 

two singlets at ~ 11 ppm corresponding to the unsymmetrical urea unit as well as three aromatic and two 

aliphatic signals (Fig. 4.1.1). 13C NMR showed the expected 8 signals and mass spectroscopic analysis gave 

an ion at m/z = 636.1882 corresponding to the desired compound (e.g. {M + H}+).  

L4.1 

(1) (2) 
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Figure 4.1.1 1H NMR of benzoylated thiourea product (1) a = water impurity and b = (CD3)(CHD2)SO. 

The benzoylated tris-thiourea was then hydrolysed by treatment with 10 equivalents of sodium hydroxide 

in water to give the tris-thiourea (2). 1H NMR for this product was broad and difficult to assign (as with 

similar thiourea compounds described earlier) and the spectra displayed only four board signals (Fig. 4.1.2). 

This is possibly a result of restricted rotation caused by inter-molecular and intra-molecular hydrogen 

bonding as discussed in previous chapters. This is confirmed by single-crystal X-ray analysis, as in the 

solid-state an array of both intra and inter-molecular hydrogen-bonding interactions are observed (Fig 4.13). 

Furthermore, no aromatic signals corresponding to the phenyl unit or signals from the benzoylated urea 

groups were observed. Further analysis by 13C NMR showed 3 signals with a signal at 183.5 ppm 

corresponding to the (NH)2C=S unit and an ion was observed in the ESI-MS at m/z = 324.1089 

corresponding to the desired compound (e.g. {M + H}+).  
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Figure 4.1.2. 1H NMR of the tris-thiourea product (2) 

 

Figure 4.1.3. Two different views of the X-ray structure of the tris-thiourea product (2) showing the (a) intermolecular and (b) 

intramolecular hydrogen bonding of the compounds thiourea groups. Thermal ellipsoids shown at the 50% probability level. 

Selected atoms and anions omitted for clarity. 

b) 

a) 
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 The final step involved a Hantzsch type reaction where the tris-thiourea intermediate was reacted with 3.1 

equivalents of α-bromoacetylpridine followed by neutralisation of the resulting hydrobromide salt with 

excess ammonia gave the targeted tripoidal ligand (L4.1). Formation of this ligand was confirmed by 1H 

NMR (Fig. 4.1.4) which gave the signals that are expected for this compound i.e. four aromatic mono-

substituted pyridyl signals, one thiazole singlet, one amine (triplet at 7.65 ppm) and two aliphatic methylene 

signals. This was again supported by 13C NMR which showed at total of 8 aromatic and 2 aliphatic signals 

and an ion was observed in the ESI-MS at m/z = 627.1881 corresponding to the desired compound (e.g. 

{M + H}+). 

 

 

Figure 4.1.4. 1H NMR of ligand L4.1 

The ligand L4.1 contains three pyridyl-thiazole domains linked by a single nitrogen atom bridged via three 

separate amino-ethyl chains. To a degree the ligand can be thought of as ditopic as it contains three pyridyl-

thiazole domor units which have been shown previous shown to act as excellent bidentate binding chelate 

to a variety of different metal ions.  Furthermore, it also contains three amine units which are well known 

to act as hydrogen bond donors to anions. 
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4.2 Coordination chemistry of L4.1 in organic solvents 

Reaction of ligand L4.1 with 1.5 equivalents of Cu(BF4)2 in nitromethane resulted in a blue coloured solution. 

ESI-MS analysis of the solution gave an ion at m/z 1877 corresponding to the formation of the trinuclear 

assembly {[(L4.1)2Cu3](BF4)5}+. Upon slow diffusion of diisopropyl ether blue crystals were deposited from 

the solution and analysis by single-crystal X-ray diffraction confirmed the formation of the [(L4.1)2Cu3]6+ 

species in the solid state (Fig. 4.2.1). In this structure each of the three bidentate pyridyl-thiazole binding 

domains from the same ligand coordinate to three individual copper metal ions. Each copper ion is 

coordinated by a total of four N-donor atoms, two from a bidentate pyridyl-thiazole domain from each 

ligand strand. Within the centre of the complex a cavity is formed and is occupied by a single BF4ˉ anion 

(Fig. 4.2.1 a and b). The encapsulated tetrahedral anion is held in place by three Cu····F coordination bonds 

as well as a further three -NH···F hydrogen bonding interactions from one of the ligands amine units below 

the tri-metallic plane (Fig. 4.2.1 c). The three remaining amine units of the ligand above the tri-metallic 

plane form hydrogen bonding interactions with the BF4ˉ anion.      

It is worth noting that in this complex the encapsulated BF4ˉ anion is substitutionally disordered with a Clˉ 

anion (Fig. 4.2.2) and the BF4ˉ anion had to be restrained using SADI, SIMU, DELU, and ISOR in the least-

squares refinement. This disorder refined well and converged with an occupancy of 0.34 Cl and 0.66 BF4. 

The chloride anion could arise from the original Cu(II) salt or some impurity and despite the disorder the 

change balance will remain the same e.g. Anion1ˉ. 
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Figure 4.2.1. a) Three different views of the X-ray structure of the major component [(L4.1)2Cu3(BF4)0.66(Cl)0.34]5+ showing the 

coordination and hydrogen bonding of the tetrafluoroborate anion b) Thermal ellipsoids shown at the 50% probability level. 

Selected hydrogen atoms and anions omitted for clarity. 
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Figure 4.2.2.  The single-crystal X-ray structure of the minor Cl- guest of the disordered [(L4.1)2Cu3(BF4)0.66(Cl)0.34]5+ molecule. 

 

The cavity formed by the [(L4.1)2Cu3]6+ species is capable of encapsulating other anions. Reaction of the 

trinuclear self-assembly with half a molar equivalent of Et4NBr in nitromethane also resulted in a dark blue 

solution that, when subjected to slow diffusion with diisopropyl ether, yielded a homogeneous mass of large 

blue crystals. Single-crystal X-ray analysis revealed that an isostructural [(L4.1)2Cu3]6+ motif had formed 

but, in this molecule, the encapsulated BF4ˉ anion within the core cavity had been displaced by a bromide 

anion to give [(L4.1)2Cu3(Br)]5+ (Fig. 4.2.3). The comparably smaller radii of the bromide anion results in 

the anion being positioned to one side of the formed cavity. Therefore, this anion is unable to simultaneously 

form coordination bonds to all three copper ions and only coordinates to two of the metals (Cu···Br 

coordination distance = 2.8842(9) Å and remaining Cu···Br distance = 3.414 Å). Again, in this molecule 

the bonding of the anion is supplemented by hydrogen bonding interactions from the ligand’s amine units. 

However, in this complex two of the amine units from both ligands (above and below the tri-metallic plane) 

form interactions to the anion.   
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Figure 4.2.3. Three different views of the X-ray structure of [(L4.1)2Cu3(Br)]5+ showing the coordination and hydrogen bonding 

of the anion. Thermal ellipsoids shown at the 50% probability level. Selected hydrogen atoms and anions omitted for clarity. 
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The cavity formed within the [(L4.1)2Cu3]6+ complex does not exclusively act as a host to tetrahedral and 

spherical anions. Upon reaction with one equivalent of Na2SiF6 in nitromethane resulted in a dark taupe 

coloured solution after a period of 24 hrs. When exposed to slow diffusion of diisopropyl ether, a 

homogeneous mass of large, dark brown crystals was deposited. Analysis by single-crystal X-ray diffraction 

revealed the octahedral divalent SiF6
2ˉ anion was encapsulated within the central cavity to give 

[(L4.1)2Cu3(SiF6)]4+ (Fig. 4.2.4). In this complex three of the hexafluorosilicate fluorine atoms point upward 

and are above the tri-metallic plane and three point downward below the tri-metallic plane. Again the anion 

is bound within the cavity by both Cu····F coordination bonds as well as -NH···F hydrogen bonding 

interactions. Each of the three copper metal ions forms two coordination bonds with two of the anions 

fluorine atoms, resulting in the copper metal centres being six-coordinate. In this complex all three amine 

units from both ligands provide hydrogen bonding interactions to the anion resulting in the SiF6
2ˉ anion 

receiving a total of six Cu····F coordination bonds and six -NH···F hydrogen bonding interactions. 

 

Complex [(L4.1)2Cu3(BF4)]5+ [(L4.1)2Cu3(Br)]5+ [(L4.1)2Cu3(SiF6)]4+ 

Cu····N bond length (Å) 1.947(4) - 2.020(4)a 1.934(4) - 2.079(4)a 1.948(4) - 2.072(4)a 

Cu····Anion bond length (Å) 2.365(4)b 2.8842(9)b 2.386(3) - 2.430(3)c 

-NH····Anion bond length (Å) 2.373-2.531c 

2.274-2.302d 

3.156c 

2.894-2.869d 

2.219-2.253c 

2.239-2.304d 

Table 4.2.1. Bond lengths of a series of encapsulation products of trimetallic host [(L4.1)2Cu3]6+. 

a = range of bond lengths;  b = average of the bond lengths; c = average bond length above the Cu3 plane; d = average bond 

length below the Cu3 plane 
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Figure 4.2.4. Three different views of the X-ray structure of [(L4.1)2Cu3(SiF6)]4+ showing the coordination and hydrogen bonding 

of the anion. Thermal ellipsoids shown at the 50% probability level. Selected hydrogen atoms and anions omitted for clarity. 
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4.3 Coordination chemistry in aqueous media. 

Most interestingly, the self-assembled [(L4.1)2Cu3]6+ species will form and have the capability to encapsulate 

a range of different anions in competitive aqueous media. When assembled these systems display a variety 

of different coloured solutions (Fig. 4.3.1 a). For example, it was seen that when two equivalents of L4.1 

was reacted with three equivalents of Cu(ClO4)2.6H2O in MeCN/H2O (1:4) a pale brown/tan solution was 

formed. However, on addition of one molar equivalent (per [(L4.1)2Cu3]6+ unit) of Bu4NH2PO4 to this system 

resulted in an intense lime coloured solution. This solution was slowly allowed to reduce (i.e. evaporation 

of the organic solvent) which resulted in a large homogenous mass of lime green crystals and a colourless 

solution. 

 

Figure 4.3.1. Aqueous solutions of the [(L4.1)2Cu3]6+species with a variety of different anions displaying the variety of colours 

(a). A solution of [(L4.1)2Cu3]6+ which was reacted with (b) HSO4ˉ and (c) H2PO4ˉ and deposits brown and green crystals 

respectively. 

Analysis by single-crystal X-ray diffraction confirmed the formation of the [(L4.1)2Cu3]6+ species, however 

this example featured a single phosphate anion encapsulated within the central cavity to give 

[(L4.1)2Cu3(PO4)]3+ (Fig. 4.3.2). The structure of this complex is analogous to that seen previously with the 

tetrafluoroborate anion with Cu···O coordination bonds and -NH···O hydrogen bonding interactions. It is 

worth noting that the reaction was carried out using mono basic Bu4NH2PO4 and the anion has undergone 

full deprotonation to form the tri-basic species. This was confirmed by the presence of three perchlorate 

counter ions in the solid-state structure e.g. [(L4.1)2Cu3(PO4)](ClO4)3. 

a b c 
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Figure 4.3.2. Three different views of the X-ray structure of [(L4.1)2Cu3(PO4)]3+ showing the coordination and hydrogen bonding 

of the anion. Thermal ellipsoids shown at the 50% probability level. Selected hydrogen atoms and anions omitted for clarity. 
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In addition to the [(L4.1)2Cu3(PO4)]3+ complex other examples of encapsulated tetrahedral anions have also 

been observed to form in aqueous solutions. These included VO4
3ˉ, WO4

2ˉ, CrO4
2ˉ, SO4

2ˉ and AsO4
3ˉ (Fig. 

4.3.3 – Fig. 4.3.7). The listed complexes were prepared in an identical fashion by the addition of one molar 

equivalent of counter ion to one molar equivalent of the [(L4.1)2Cu3]6+ complex. All these EO4
nˉ complexes 

displayed isostructural anion encapsulation motifs to the [(L4.1)2Cu3(PO4)]3+ species i.e. three Cu···Anion 

coordination bonds and three -NH···Anion hydrogen bonds. In all these examples similar solubility 

characteristics were observed when the solutions were prepared in MeCN/H2O (1:4). Upon slow 

evaporation of the organic solvent crystalline material was deposited within a matter of minutes or days 

depending on what counter ion and/or concentration was used. 

 

 

 

 

Figure 4.3.3. Two different views of the X-ray structure of [(L4.1)2Cu3(VO4)]3+. Thermal ellipsoids shown at the 50% probability 

level. Selected hydrogen atoms and anions omitted for clarity. 
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Figure 4.3.4. X-ray structure of [(L4.1)2Cu3(WO4)]4+. Thermal ellipsoids shown at the 50% probability level. Selected hydrogen 

atoms and anions omitted for clarity. 

 

 

 

Figure 4.3.5. Two different views of the X-ray structure of [(L4.1)2Cu3(CrO4)]4+. Thermal ellipsoids shown at the 50% probability 

level. Selected hydrogen atoms and anions omitted for clarity. 
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Figure 4.3.6. Two different views of the X-ray structure of [(L4.1)2Cu3(SO4)]4+. Thermal ellipsoids shown at the 50% probability 

level. Selected hydrogen atoms and anions omitted for clarity. 

 

 

 

 

 

 

 

Figure 4.3.7. Two different views of the X-ray structure of [(L4.1)2Cu3(AsO4)]3+. Thermal ellipsoids shown at the 50% probability 

level. Selected hydrogen atoms and anions omitted for clarity. 
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However, the inclusion of the tetrahedral IO4ˉ anion to the [(L4.1)2Cu3]6+ system resulted in a different 

encapsulation motif as the trinuclear assembly is replaced with a tetranuclear species e.g.  “[(L4.1)2Cu4]8+”. 

When one molar equivalent of NaIO4 was reacted with one molar equivalent of the [(L4.1)2Cu3]6+ complex, 

the anion undergoes hydrolysis to form the octahedral IO6
2ˉ anion which is encapsulated within a 

tetranuclear [(L4.1)2Cu4(IO6)(H2O)2]4+ assembly (Fig. 4.3.8).91,92 In this structure two of each ligand’s 

bidentate pyridyl-thiazole binding domains coordinate two copper metal ions as seen in the previous 

[(L4.1)2Cu3]6+ complexes. Whilst, the remaining pyridyl-thiazole bidentate domain from each ligand 

coordinates its own copper metal ion as well as a molecule of water on each completing the five-coordinate 

motif. The central encapsulated IO6
2ˉ anion is held within the self-assembled cavity via all four copper ions 

providing Cu···O coordination bonds to two separate oxygen atoms. This is again further complimented by 

the formation of six -NH···O hydrogen bonding interactions (three above and three below the tri-metallic 

plane). In this structure the inner cavity of the complex has significantly expanded when compared with the 

previous examples c.f. [(L4.1)2Cu3(SiF6)]4+. This increase in the cavity volume is a consequence of the 

complex accommodating the larger anion and displays that the flexibility within the ligand allows such a 

change in the self-assembly process to take place.    
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Figure 4.3.8. Three different views of the X-ray structure of [(L4.1)2Cu4(IO6)(H20)2]4+ showing the coordination and hydrogen 

bonding of the anion. Thermal ellipsoids shown at the 50% probability level. Selected hydrogen atoms and anions omitted for 

clarity. 
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As previously seen in organic media, the [(L4.1)2Cu3]6+ molecule is also capable of encapsulating halide 

anions in a competitive aqueous solvent. Reaction of [(L4.1)2Cu3]6+ with one molar equivalent of Et4NI in 

MeCN/H2O (1:4) produced a dark blue solution that when subject to slow evaporation yielded a colourless 

solution and a mass of homogeneous dark blue crystals. The [(L4.1)2Cu3(I)]5+ structure was again determined 

by single-crystal X-ray diffraction (Fig. 4.3.9). In this example the molecules structure is analogous to the 

[(L4.1)2Cu3(Br)]5+ complex with the substitution of the bromide anion for an iodide anion. The 

[(L4.1)2Cu3(I)]5+ complex differs from the prior halide example in that the larger atomic radii of the iodide 

anion enables the anion to occupy a more central position within the molecules cavity and therefore gaining 

coordination bonds from all three Cu(II) ions. However, the spherical geometry of the anion limits it to 

only gaining four hydrogen bonding interactions with the ligands -NH donor units (two from each ligand 

as seen in the [(L4.1)2Cu3(Br)]5+ complex) (Fig. 4.3.5 c).  
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Figure 4.3.9. Three different views of the X-ray structure of [L4.1
2Cu3I]5+ showing the coordination and hydrogen bonding of the 

anion. Thermal ellipsoids shown at the 50% probability level. Selected hydrogen atoms and anions omitted for clarity. 
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In an effort to examine if the host would encapsulate mono-anionic third-row oxoanions, two equivalents 

of L4.1 and three equivalents of Cu(trif)2 were combined with one equivalent Bu4NHReO4 in MeCN/H2O 

(1:4). Upon slow evaporation over 48 hours dark blue crystals were deposited and analysed by single-crystal 

X-ray diffraction. Again, the expected [(L4.1)2Cu3]6+ motif was observed. However, in this system ReO4 

was not found to be encapsulated within the [(L4.1)2Cu3]6+ cavity but was only present as a simple counter 

ion. In this example a single CO3
2ˉ anion was found to be present within the assembly’s central cavity giving 

[(L4.1)2Cu3(CO3)]4+. In this system the central CO3
2ˉ anion was orientated pointing upward, perpendicular 

to the tri-metallic plane and receiving two Cu···O coordination bonds from two of the Cu(II) ions. This was 

intern supplemented by six -NH···O hydrogen bonding interactions to all the ligands -NH donor units. It is 

worth noting that a virtually identical species is observed from a system prepared from two equivalents of 

L4.1 with three equivalents of Cu(trif)2 in MeCN/H2O (1:4) when allowed to stand for 48 hours. It seems 

likely to suggest that the inclusion of the CO3
2ˉ anion arose from the presence of CO2 within the aqueous 

media which undergoes hydrolysis and is encapsulated within the [(L4.1)2Cu3]6+ molecule. This type of 

behaviour is not unique to this system and has previously been observed in other supramolecular systems.93–

96 It is worth noting that UV-Vis studies have shown that when one equivalent of dihydrogen phosphate is 

added to a [(L4.1)2Cu3CO3]4+ sample the carbonate anion is displaced in favour of the tri-anionic guest (Fig. 

4.3.10).  Reactions with CO2 are not observed with the tetrafluoroborate salt and we attribute this to the low 

solubility of CO2 in MeNO2 (the solvent from which the crystals were deposited) rather than a strong 

interaction between the BF4ˉ anion and the host.  
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Figure 4.3.10. Three different views of the X-ray structure of [(L4.1)2Cu3CO3]4+ showing the coordination and hydrogen bonding 

of the anion. Thermal ellipsoids shown at the 50% probability level. Selected hydrogen atoms and anions omitted for clarity. 
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Table 4.3.1. Bond lengths of a series of encapsulation products of trimetallic host [(L4.1)2Cu3]6+. 

a = range of bond lengths;  b = average of the bond lengths; c = average bond length above the Cu3 plane; d = average bond 

length below the Cu3 plane e = remaining Cu ···· anion bonds generated by symmetry. 

 

Table 4.3.2. Bond lengths of a series of encapsulation products of trimetallic host [(L4.1)2Cu3]6+. 

a = range of bond lengths;  b = average of the bond lengths; c = average bond length above the Cu3 plane; d = average bond 

length below the Cu3 plane. 

 

 

 

 

Complex [(L4.1
2Cu3(PO4)]3+ [L4.1

2Cu3(VO4)]3+ [L4.1
2Cu3(WO4)]4+ [L4.1

2Cu3(CrO4)]4+ [L4.1
2Cu3(SO4)]4+ 

Cu····N 

bond length 

(Å) 

1.967(3) – 

2.233(3)a 

1.969(2) – 

2.220(2)a 

1.942(6) – 

2.120(6)a 

1.955(3) – 

2.116(3)a 

1.951(4) – 

2.100(4)a 

Cu····Anion 

bond length 

(Å) 

1.945a 1.953b 2.117b 2.092b 2.138b 

NH····Anion 

bond length 

(Å) 

2.001c 

2.190d 

1.999c 

2.160d 

2.148c 

2.274d 

2.206c 

2.239d 

2.270c 

2.271d 

Complex [L4.1
2Cu3(AsO4)]3+ [L4.1

2Cu4(IO6)(H20)2]4+ [L4.1
2Cu3I]5+ [L4.1

2Cu3CO3]4+ 

Cu····N bond 

length (Å) 

1.972(3) – 2.194(3)a 1.923(7) – 2.230(6)a 1.938(3) – 2.005(4)a 1.958(3) – 2.195(3)a 

Cu····Anion bond 

length (Å) 

1.956b 1.971b 3.0383(7)e 1.963b 

-NH····Anion 

bond length (Å) 

1.946c 

2.266d 

2.200c 

2.200d 

3.088c 

3.104d 

2.156c 

2.082d 



115 

 

Unsymmetrical tetrahedral anions can also be included within the self-assembled cavity. For example, when 

the [(L4.1)2Cu3]6+ system was reacted with half a molar equivalent of S2O3
2ˉ the expected [(L4.1)2(A)Cu3]n+ 

capsulation motif was observed (Fig.4.3.11). Interestingly, in this example the central anion orientated itself 

in fashion where the sulphur atom lies along the Cu(II) plane forming a coordination bond to one of the 

Cu(II) metal centres and one hydrogen bonding interaction with the lower ligands -NH- unit. This results 

in the remaining two Cu(II) centres being coordinated by two separate oxygen atoms whilst the third oxygen 

atom points upward of the metallic plane forming three hydrogen bonding interactions with the upper 

ligands -NH- units.  The formation of this encapsulated geometry is due to the localisation of the negative 

charge on the sulphur atoms which results in it coordinating the Cu(II) cation, as opposed to hydrogen 

bonding to the amine atoms. 

 

 

Figure 4.3.11. Three different views of the X-ray structure of [(L4.1)2Cu3(S2O3)]4+ showing the coordination and hydrogen 

bonding of the anion. Thermal ellipsoids shown at the 50% probability level. Selected hydrogen atoms and anions omitted for 

clarity. 
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4.4 Solution state studies and phosphate sequestering 

Analysis by ESI-MS of the [(L4.1)2Cun(A)]n+ complexes was undertaken and this demonstrated that the 

anion encapsulated structures observed in the solid state were also present in the gas phase. For example, 

the ESI-MS of complexes containing the sulphate anion (Fig. 4.4.1) gave an ion at m/z 1839 which 

corresponds to {[(L4.1)2Cu3(SO4)](ClO4)3]+} as well as the phosphate containing species which gave an ion 

at m/z 1838. Similar data was collected for the VO4
3ˉ, WO4

2ˉ and SiF6
2ˉ examples. Importantly, the 

carbonate containing example was also analysed by ESI-MS and gave an ion at m/z 1952 which corresponds 

to {[(L4.1)2Cu3(CO3)](trif)3]+} confirming the CO3
2ˉ observed in the solid state analysis (Fig. 4.4.3). 

Examples such as the halide containing complexes gave much less simple spectra. The iodide encapsulated 

species gave ions at m/z 1967 for {[(L4.1)2Cu3(I)](ClO4)4]+} as well as at m/z 1940 for 

{[(L4.1)2Cu3(I)](ClO4)4]+} (Fig. 4.4.4). This highlights that when in the gas phase the spherical monoanionic 

iodide anion can be easily displaced. Spectra obtained for the complexes containing both IO6ˉ and CrO4ˉ 

gave complicated signals that proved difficult to assign. This can possibly be a result of the reactive nature 

of these anions interfering with the mass spectroscopic process. 

 

Figure 4.4.1. ESI-MS of [(L4.1)2Cu3(SO4)](ClO4)4 
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Figure 4.4.2. ESI-MS of [(L4.1)2Cu3(WO4)](ClO4)3]. 

 

Figure 4.4.3. ESI-MS of [(L4.1)2Cu3(CO3)](trif)3] 
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Figure 4.4.4. ESI-MS of [(L4.1)2Cu3(I)](trif)5] 

UV-Vis spectroscopy studies were also carried out for the different anion containing complexes by reaction 

of L4.1 with the appropriate equivalents of Cu(II) (either BF4ˉ, ClO4ˉ or triflate salts) in aqueous media 

(MeCN/H2O, 1:1 v/v to avoid precipitation). This basic system (e.g. of [(L4.1)2Cu3](A)6) resulted in a pale 

tan colour and gave a λmax absorption at 810 nm. Upon the addition of a variety of different anions to this 

system a change to the UV-Vis spectrum occurred which was mirrored in the solutions colour/intensity 

changes (Fig. 4.3.1). For example, the addition of iodide induced a dramatic increase in the λmax absorption 

whereas the addition of H2PO4 resulted in the λmax absorption undergoing a blue shift to higher energies 

(740 nm). These changes to the systems UV-Vis spectra highlight that the coordination of the encapsulated 

anion to the Cu(II) metal ions modulates the response of the complexes chromogenic ion. It is also worth 

noting that on addition of the nitrate ion, no changes in the UV-Vis spectra occurred indicating that this 

anion was not encapsulated in aqueous media. 
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Figure 4.4.5. UV-Vis absorption spectra of [(L4.1)2Cu3]6+; [(L4.1)2Cu3]6+ plus one equivalent of phosphate. [(L4.1)2Cu3]6+ 1.33 x 

10-3 M. 

 

 

 

Figure 4.4.6. UV-Vis absorption spectra of [(L4.1)2Cu3]6+; [(L4.1)2Cu3]6+ plus one equivalent of iodide; [(L4.1)2Cu3(I)]6+ plus one 

equivalent of hydrogen phosphate. [(L4.1)2Cu3]6+ 1.33 x 10-3 M. 
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Figure 4.4.7. UV-Vis absorption spectra of [(L4.1)2Cu3]6+; [(L4.1)2Cu3]6+ plus one equivalent of nitrate; [L2Cu3]6+ plus one 

equivalent of nitrate and then one equivalent of hydrogen phosphate. [(L4.1)2Cu3]6+ 1.33 x 10-3 M. Notice that there is no change 

in the UV-Vis spectrum upon addition of nitrate 1.33 x 10-3 M. 

 

In addition to the initial UV-Vis spectroscopy studies a series of competitive experiments were undertaken. 

In these each of these cases, a series of [(L4.1)2Cu3] complexes were again prepared in aqueous media 

(MeCN/H2O, 1:1 v/v) with the addition of one equivalent of Clˉ, Brˉ, Iˉ, NO3ˉ and SO4
2ˉ and the UV-Vis 

spectra was obtained. To each of these samples was added one equivalent of H2PO4ˉ which in the cases of 

Brˉ, Iˉ and NO3ˉ resulted in a colour change from their original colour to lime-green. The UV-Vis spectra 

were then obtained and gave an almost identical response to that of the initial PO4
3ˉ encapsulated complex. 

Interestingly, in the case of addition of H2PO4ˉ to the sulphate containing complex no colour change or 

change in the UV-Vis spectra occurred. This indicates that in this case the SO4
2ˉ anion was not displaced. 

However, when a similar sulphate containing solution was treated with one equivalent of HPO4
2ˉ the 

solution underwent the characteristic colour change to lime-green and the obtained UV-Vis spectra also 

showed a similar blue shift in λmax absorption to that was witnessed for the initial PO4
3ˉ encapsulated 

complex. This suggests that at a higher pH the complex is selective to the phosphate anion.      

[(L4.1)2Cu3]
5+ + H2PO4ˉ 

[(L4.1)2Cu3]
6+ + NO3ˉ  

[(L4.1)2Cu3]
6+ 
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Rationalizing the selectivity of the complex’s inner cavity towards different guest anions can be considered 

in terms of both the shape and charge of the guest species. Monoanionic spherical, trigonal planar and 

tetrahedral are easily displaced due to the low charge density of the anion species with the trigonal planar 

NO3ˉ anion not encapsulated within the complex at all. Whereas all di-anionic guests, including the trigonal 

planar CO3
2ˉ (c.f. NO3ˉ) species as well as all di-anionic tetrahedral anions are readily encapsulated by the 

[(L4.1)2Cu3]
6+ complex and both tri-anionic PO4

3ˉ species displacing all other low-charged examples. 

However, the selectivity between sulfate and phosphate is not as clear cut. Both examples are polyprotic 

tetrahedral anions, but the selectivity of the cavity prefers HSO4ˉ over H2PO4ˉ, whereas the selectivity is 

reversed for SO4
2ˉ over HPO4

2ˉ, with the cavity now preferring the phosphate guest.  This behavior can be 

rationalized in terms of the pH dependency of the anion. The acidity of the HSO4ˉ mono-ion (pKa = 1.81) 

is significantly more acidic than the H2PO4ˉ mono-ion (pKa = 7.21) and the HSO4ˉ anion is therefore 

deprotonated much more readily than the H2PO4ˉ anion and in turn will occupy the cavity. However, when 

HPO4
2ˉ is used initially the charge of the guests are matched. In this case the phosphate anion only requires 

a single deprotonation to achieve the tri-anionic PO4
3ˉ species and this increase in charge density of the 

anion leads to the di-anionic SO4
2ˉ being easily displaced. 
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Figure 4.4.8. UV-Vis absorption spectra [(L4.1)2Cu3](trif)6 plus one equivalent of Clˉ, Brˉ, Iˉ, VO4
3ˉ, WO4

2ˉ, CrO4
2ˉ, HSO4ˉ and 

H2PO4ˉ. All experiments were carried out in MeCN/H2O (1:1 v/v to avoid precipitation) with the concentration of 

[(L4.1)2Cu3](trif)6 = 1.33 mM. 

 

Figure 4.4.9.  UV-Vis absorption spectra of [(L4.1)2Cu3](trif)6 plus one equivalent of HSO4ˉ and then H2PO4ˉ. 
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Figure 4.4.10. UV-Vis absorption spectra of [(L4.1)2Cu3](trif)6 plus one equivalent of Na2SO4 and then Na2HPO4. 

The preparation of these complex is not limited to only perchlorate, triflate and tetrafluoroborate Cu(II) 

salts, [(L4.1)2Cu3(PO4)](NO3)3 from which the “[(L4.1)2Cu3]6+” unit was initially prepared from reaction of 

two equivalents of L4.1 and three equivalents of Cu(NO3)2 has been isolated in both the solid and gas phase 

(Appendix, 6.3). Furthermore, complexes prepared from Cu(OAc)2 and CuCl2 with Na2HPO4 result in the 

same characteristic lime green solution that gives the expected λmax absorption at 740 nm in the UV-Vis 

spectra. However, to date, solid state characterisation of these complexes has not been obtained due to the 

observed increase in solubility of the complex that arises from the use of OAcˉ and Clˉ counter ions.  
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Figure 4.4.11. UV-Vis absorption spectra of [(L4.1)2Cu3](NO3)6; [(L4.1)2Cu3](NO3)6 plus one equivalent of Bu4NH2PO4; giving  

[(L4.1)2Cu3(PO4)](NO3)3. [(L4.1)2Cu3]6+ 1.33 x 10-3 M. 

 

 

Figure 4.4.12. UV-Vis absorption spectra of  [(L4.1)2Cu3](OAc)6; [(L4.1)2Cu3](OAc)6 plus one equivalent of Bu4NH2PO4; giving  

[(L4.1)2Cu3(PO4)](OAc)3. [(L4.1)2Cu3]6+ 1.33 x 10-3 M. 
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Figure 4.4.13. UV-Vis absorption spectra of [(L4.1)2Cu3](Cl)6; [(L4.1)2Cu3](Cl)6 plus one equivalent of Bu4NH2PO4; giving  

[(L4.1)2Cu3(PO4)](Cl)3. [(L4.1)2Cu3]6+ 1.33 x 10-3 M. 

Finally, an ion chromatography (IC) study was undertaken to investigate to what amount of the phosphate 

anion could be removed from a solution by the [(L4.1)2Cu3]6+ complex. The procedure involved a 1000 ppm 

solution of HPO4
2ˉ in water to which was added one equivalent of [(L4.1)2Cu3](ClO4)6 in acetone (~ 1 mL) 

and the solution was allowed to stand for 48 hours during which time a lime-green crystalline precipitate 

was formed. Analysis of the remaining colourless solution by IC revealed that the initial phosphate 

concentration had significantly reduced to ˂ 0.1 ppm. An identical system was set up in tandem produced 

a similar lime-green precipitate that when isolated and dried showed a ~99% recovery of the 

[(L4.1)2Cu3(PO4)](ClO4)3 complex. These two procedures indicate that the [(L4.1)2Cu3]6+ can achieve a near 

quantitative removal and recovery of the phosphate anion from a solution of water. In a competitive 

experiment, a solution containing 50 ppm of each of chloride, nitrate, sulphate and phosphate anions was 

reacted with one equivalent of [(L4.1)2Cu3](trif)6 and the solution allowed to stand for 1 week during which 

time a green crystalline precipitate formed. The solution was then analysed by ion chromatography and it 

was found to contain 47 ppm of chloride, 46 ppm nitrate, 41 ppm sulfate and 10 ppm phosphate. This 

[(L4.1)2Cu3](Cl)6  

[(L4.1)2Cu3(PO4)](Cl)3
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demonstrates that the complex is highly selective to phosphate, in the presence of a series of common anions 

in aqueous media, removing ~80% of this anion. 

Figure 4.4.14. IC experimental data a) 50 ppm solution of each of chloride, nitrate, phosphate and sulfate exposed to 

[(L4.1)2Cu3](trif)6 and b) 50 ppm standard. 

4.5 Conclusion  

In this work we have shown that a simple three step synthesis procedure can be used to produce a tripodal 

ligand L4.1 that forms a trinuclear species with Cu(II). Incorporated within the trinuclear structure 

[(L4.1)2Cu3]6+ a central cavity is formed and can act as a host to a variety of different anions. The trinuclear 

host can form up to a total of three Cu···An- coordinate bonds and six -NH··· An- hydrogen bonding 

interactions within the cavity. This behaviour of forming nine bonding interactions in a 3-dimensional 

manner which is like that of the thoroughly documented cation binding cryptate ligand, although in this 

example the charge of the guest is reversed, resulting in an anti-cryptate. UV-Vis experiments have shown 

that the self-assembled host displays a high degree of selectivity to shape, size and charge of the guest, with 

the highly charged phosphate anion being of preference to the system. Importantly, this study has shown 

that the [(L4.1)2Cu3]6+ host system is capable of both forming and encapsulating phosphate anions in a 

competitive aqueous solvent (i.e. water) and removing them in a stoichiometric manner even at low 

concentrations. With these characteristics in mind, this system and other similar architectures could prove 

chloride 

nitrate sulphate 

phosphate 

a) b) 
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useful in the remediation and removal of phosphate anion in aquatic system and will be of definite interest 

for further study.97     

 4.6 Encapsulation of third row chalcogenides 

Third row chalcogenides can also be encapsulated within the self-assembled host. For example, reaction of 

two equivalents of L4.1 and three equivalents of Cu(ClO4)2 were reacted with half an equivalent of Na2SeO3 

in MeCN/H2O (1:4). Upon slow evaporation over 24 hours light green crystals were deposited and analysed 

by single-crystal X-ray diffraction. Surprisingly, in this system the expected [(L4.1)2Cu3A)]n+ encapsulating 

motif was not observed but instead the system had formed a substantially different  octanuclear assembly 

e.g. [(L4.1)4Cu8(SeO3)4]8+ (Fig. 4.6.1).  

In this octanuclear complex each of the four L4.1 ligand strands adopt a under and over motif and coordinate 

three different Cu(II) metal ions via each of the three bidentate pyridyl-thiazole binding domains to form a 

three by three octanuclear Cu(II) grid-type architecture. This results in the formation of a large central 

cavity within the structure which is host to a total of four SeO3
2ˉ guest anions. In this complex each of the 

Cu(II) metal centres are again five-coordinate but four of the eight receive four N···Cu coordinate bonds 

from two separate ligand strands as well as one O···Cu coordinate bond from a SeO3
2ˉ guest anion. Whilst 

the remaining four Cu(II) ions form only two N···Cu coordination bonds from one of each ligands bidentate 

pyridyl-thiazole binding domains and a total of three O···Cu coordination bonds from a SeO3
2ˉ guest anion. 

The central four SeO3
2ˉ guest anions are held within the central cavity by a combination of four O···Cu 

coordinate bonds (two from a single Cu(II) ion and two to two separate Cu(II) ions) as well as three -

NH···O hydrogen bonding interactions (two from one ligand strand and one from a separate ligand strand). 
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Figure 4.6.1. Four different views of the X-ray structure of [(L4.1)4Cu8(SeO3)4]8+(a - b) showing the coordination and hydrogen 

bonding of the anion (c – d). Thermal ellipsoids shown at the 50% probability level. Selected hydrogen atoms and anions omitted 

for clarity 
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c) d) 

a) 
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However, as similar reaction to that discussed about but where Cu(BF4)2 is used instead of Cu(ClO4)2 results 

in a different structure and this gave the expected tri-nuclear [(L4.1)2Cu3)]6+ complex and this incorporated 

the SeO3
2ˉ anion giving [(L4.1)2Cu3(SeO4)]4+ (Fig. 4.6.2). In this example the two ligand strands and three 

Cu(II) ions adopt a similar geometry to what was seen previously described with other oxoanions. The 

central SeO3
2ˉ anion guest is held within the cavity in a similar manner to that of the CO3

2ˉ example where 

by the anion forms a total of two Cu···O coordination bonds and five -NH···O hydrogen bonding 

interactions.  

It is worth noting that the trimetallic species [(L4.1)2Cu3(SeO4)]4+ is formed as a minor component with only 

one or two crystals (which were dark green – allowing differentiation between the bulk material) were 

observed in the crystallisation process but in both the BF4ˉ and ClO4ˉ reactions the octanuclear species 

(light-green crystals) were present as by far the major product. A possible explanation of why the 

octanuclear complex is the preferred self-assembled species is due to the combination of the coordination 

bonds and hydrogen bonding interactions between the ligand/copper host complex with the guest anion. In 

[(L4.1)2Cu3(SeO4)]4+ the selenite anion coordinates two copper atoms and these two coordination bonds are 

supplemented by –NH interactions by the adjacent amine units. The oxygen atom of the SeO3
2ˉ anion 

(which point upward of the Cu3 core) also interacts with the three –NH bonds (in a similar manner to all 

the other oxoanion hosts). However, one of the Cu(II) ions is not coordinated via the anion and no hydrogen 

bonding is observed with the adjacent amine unit. In [(L4.1)4Cu8(SeO3)4]8+ all of the Cu(II) atoms are 

coordinated to either one or two anion oxygen atoms and all the amine units form –NH···anion interactions. 

As a result, the octanuclear species is formed preferentially as all Cu(II) atoms are five-coordinate (formed 

from either 4 N- and 1 O-donor or 2 N- and 3 O-donor units) and all the amine units form hydrogen bond 

interactions to oxygen atoms. The small amount of [(L4.1)2Cu3(SeO4)]4+ is possibly a consequence of the 

stoichiometry of the reaction.  
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Figure 4.6.2. Three different views of the X-ray structure of [(L4.1)2Cu3(SeO3)]4+ showing the coordination and hydrogen 

bonding of the anion. Thermal ellipsoids shown at the 50% probability level. Selected hydrogen atoms and anions omitted for 

clarity. 
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5. Experimental 

5.1 Experimental 

Chemicals were purchased and used without further purification. 1H and 13C NMR spectra were recorded 

on a 400MHz Bruker Avance DP X400. Mass spectra were obtained on an Agilent 6210 TOF MS for the 

organic species with the metal complexes run on a Bruker MicroQTOF LC. 

5.11 L2.1 

 

Scheme 5.1.1. Synthesis route of ligand L2.1 

 

To a 250 mL RBF charged with ethylenediamine (1 mL, 0.9 g, 15 mmol) and MeCN (50 mL) was added a 

solution of benzoyl isothiocyanate (5 mL, 6.1 g, 37.5 mmol) in MeCN (50 mL) slowly over 30 mins with 

constant stirring. The reaction mixture was then stirred at RT for a further 12 hrs during which time a heavy 

white precipitate was formed. The resulting mixture was the added dropwise, whilst stirring, to deionised 

water (300 mL) to yield a white/yellow precipitate which was then isolated via vacuum filtration. The solid 

was then suspended in MeOH (50 mL) in a 100 mL conical flask and sonicated (5 mins). The white/yellow 

suspension was then once again filtered under vacuum to yield a fine white solid which was washed with 

further portions of MeOH (3 x 10 mL) to give the pure bis-benzoylated thiourea (1) as a fine white powder 
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(3.5 g, 60 %). 1H NMR (400 MHz, (CD3)2SO) δ (ppm) 11.45 (s, 2H, NH), 11.03 (s, 2H, NH), 7.98 (d, J = 

7.5, 4H, Ph), 7.64 (dt, J = 7.5, 1.0, 2H, Ph), 7.64 (t, J = 7.5, 4H, Ph), 4.04 (s, J = 2.4 Hz, 4H, -CH2-). 13C 

NMR [400 MHz, DMSO-d6]: δC = 183.5 (C=S), 168.4 (C=O), 133.4 (CH), 132.7 (Q), 129.0 (CH), 128.9 

(CH), 128.7 (CH), 127.6 (CH), 44.8 (CH2), 25.6 (CH2). ESI-MS m/z 386 (M + H+), HR ESI-MS found 

387.0927 C18H18N4S2O2 requires 387.0944 (error 4.5 ppm). Whilst the ESI-MS analysis did give an accurate 

ion the compound did decompose rapidly in the ESI MS process and only a small M+ ion was observed. 

This behaviour is common to all the aliphatic bridged disubstituted thioamines and their derivatives. 

 

 

Figure 5.1.1. 1H NMR of benzoylated thiourea product (1) a = water impurity and b = (CD3)(CHD2)SO. 

 

a b 
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In a 100 ml RBF was combined the bis-benzoylated dithiourea (1 g, 2.6 mmol), deionised water (30 mL) 

and a magnetic stir bar. A solution of NaOH (0.63 g, 15.8 mmol) in H2O (15 mL) was then added to the 

reaction mixture whilst stirring at 60°C. After 12hrs the resulting colourless solution was then cooled to RT 

during which time a fine white precipitate was formed. The precipitate was then collected via vacuum 

filtration and then washed with ice cold deionised water (3 x 5 mL). To give the bis-thiourea (2) as a fine 

white powder (0.43 g, 93 %). The 1H NMR gives four broad signals in the aromatic region and two broad 

signals at ~ 3.5 ppm. It is suspected that intra-molecular hydrogen bonding is inducing broad peaks in the 

1H NMR. However, both the 13C and ESI-MS are exactly as expected. 13C NMR [400 MHz, DMSO-d6]: δC 

= 183.9 (C=S), 43.7 (CH2). ESI-MS m/z 179 (M + H+). HR ESI-MS found 179.0415 C4H10N4S2 

requires 179.042 (error 2.61 ppm). 

 

Figure 5.1.2. 1H NMR of the bis-thiourea product (2) a = water impurity and b = (CD3)(CHD2)SO. The expansion shows the 

absence of amide peaks at ~ 11 ppm. 

a b 
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A 25 mL RBF was charged with dithiourea (228 mg, 1.3 mmol), EtOH (10 mL) and magnetic stir bar. The 

mixture was then heated to 60 °C and to this was added α-bromoacetyl pyridine (540 mg, 2.7 mmol) as a 

solution in EtOH (2 mL). Heating was continued for a further 8 hrs during which time a heavy yellow 

precipitate was formed. This was then isolated via vacuum filtration and the filtrand washed with equal 

portions of EtOH (3 x 2 mL) to give the protonated product.  The free-base ligand was then isolated by 

suspending in concentrated ammonia (15 mL) for 24 hrs. The resulting colourless suspension was then 

sonicated (5mins) and was filtered under vacuo and the solid washed with equal portions of deionised water 

(5 x 2 mL), giving the product (L2.1) as a fine off-white powder (402 mg 81 %). 1H NMR (400 MHz, 

(CD3)2SO) δ (ppm) 8.55 (d, J = 4.7, 2H, py), 7.90 (m, overlapping, 4H, py and -NH), 7.79 (dt, J = 7.8, 1.8, 

2H, py), 7.31 (s, 2H, tz), 7.26 (dd, J = 4.8, 1.1, 2H, py), 3.60 (t, J = 2.5 Hz, 4H, -CH2-). 13C NMR (100 

MHz d6-DMSO) δ 169.0, 152.9, 150.7, 149.7, 137.4, 122.8, 120.8, 105.4 and 44.1 ppm. ESI-MS m/z 381 

(M + H+). HR ESI-MS found 381.0934 C18H17N6S2 requires 381.0951 (error 4.79 ppm). 
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Figure 5.1.3. 1H NMR of ligand L2.1 a = water impurity and b = (CD3)(CHD2)SO. 

 

 

 

 

 

 

 

a b 



136 

 

Synthesis of [(L2.1)2Cu2(trif)2](trif)2  

To a solution of Cu(trif)2·6H2O (10 mg. 0.027 mmol) in MeNO2 (1 ml) was added a suspension of ligand 

L2.1 (9.5 mg, 0.025 mmol) in MeNO2 and the reaction warmed and sonicated until a clear dark blue solution 

had formed. Di-isopropyl ether was slowly allowed to diffuse into the solution resulting in dark blue block-

like crystals after several days. Filtration and washing with diisopropyl ether (1 ml) and diethyl ether (1 ml) 

gave dark blue crystals which lost solvent rapidly (yield = 46%).  

 

Synthesis of [(L2.1)2Cu2(H2O)2(NO2)4]  

To a solution of Cu(trif)2·6H2O (10 mg. 0.027 mmol) in MeNO2 (1 ml) was added a suspension of ligand 

L2.1 (9.5 mg, 0.025 mmol) in MeNO2 and the reaction warmed and sonicated until a clear dark blue solution 

had formed. To this was added a solution of Bu4NNO3 (7.6 mg, 0.025 mmol) in MeNO2 (0.5 ml) during 

which the colour changed from dark blue to dark green.  Diisopropyl ether was slowly allowed to diffuse 

into the solution resulting in dark green needle-like crystals after several days. Filtration and washing with 

diisopropyl ether (1 ml) and diethyl ether (1 ml) gave dark green crystals which lost solvent rapidly (yield 

= 38%).  

 

Synthesis of [(L2.1)2Cu2](trif)4.  

To a solution of Cu(trif)2·6H2O (10 mg. 0.027 mmol) in MeNO2 (1 ml) was added a suspension of ligand 

L2.1 (9.5 mg, 0.025 mmol) in MeNO2 and the reaction warmed and sonicated until a clear dark blue solution 

had formed. To this was added a solution of Bu4NI (4.4 mg, 0.012 mmol) in MeNO2 (0.5 ml) during which 

the colour changed from dark blue to dark red and after a 24 hrs dark green.  Diisopropyl ether was slowly 

allowed to diffuse into the solution resulting in lime green needle-like crystals after several days. Filtration 

and washing with diisopropyl ether (1 ml) and diethyl ether (1 ml) gave dark red crystals which lost solvent 

rapidly (yield = 44%).  
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Synthesis of [(L2.1)2Cu2H2PO4(trif)2](trif).  

To a solution of Cu(trif)2·6H2O (10 mg. 0.027 mmol) in MeNO2 (1 ml) was added a suspension of ligand 

L2.1 (9.5 mg, 0.025 mmol) in MeNO2 and the reaction warmed and sonicated until a clear dark blue solution 

had formed. To this was added a solution of Bu4NH2PO4 (4 mg, 0.012 mmol) in MeNO2 (0.5 ml) during 

which the colour changed from dark blue to lime green.  Diisopropyl ether was slowly allowed to diffuse 

into the solution resulting in lime green needle-like crystals after several days. Filtration and washing with 

diisopropyl ether (1 ml) and diethyl ether (1 ml) gave lime green crystals which lost solvent rapidly (yield 

= 39%).  

Synthesis of [(L2.2)3Cu3(O3POBF3)](BF4)3.  

To a solution of Cu(BF4)2·6H2O (10 mg. 0.029 mmol) in MeNO2 (1 ml) was added a suspension of ligand 

L2.1 (10 mg, 0.026 mmol) in MeNO2 and the reaction warmed and sonicated until a clear dark blue solution 

had formed. To this was added a solution of Bu4NH2PO4 (4 mg, 0.015 mmol) in MeNO2 (0.5 ml) during 

which the colour changed from dark blue to lime green.  Diisopropyl ether was slowly allowed to diffuse 

into the solution resulting in lime green needle-like crystals after several days. Filtration and washing with 

diisopropyl ether (1 ml) and diethyl ether (1 ml) gave lime green crystals which lost solvent rapidly (yield 

= 37%). 
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Figure 5.1.4. ESI-MS of [(L2.1)2Cu2(trif)](trif)2 with the obtained isotope pattern (inset top) and calculated (inset bottom) for m/z 

1335 {[(L2.1)2Cu2](trif)3}+. 

 

Figure 5.1.5. ESI-MS of [(L2.1)2Cu2(H2PO4)](trif)3 with the obtained isotope pattern (inset top) and calculated (inset bottom) for 

m/z 1282 {[(L2.1)2Cu2(H2PO4)](trif)2}+ 
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Figure 5.1.6. ESI-MS of [(L2.1)3Cu3(O3POBF3)](BF4)3 with the obtained isotope pattern (inset top) and calculated (inset bottom) 

for m/z 1668 {[(L2.1)3Cu3(O3POBF3)](BF3)2}+. 
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5.12. L2.2 

 

 

Scheme 5.1.2. Synthesis route of ligand L2.2 

To a 100 mL RBF was charged with putrescine (butane-1,4-diamine) (0.35 g, 3.9 mmol) and MeCN (25 

mL) was added a solution of benzoyl isothiocyanate (1.3 mL, 1.59 g, 9.8 mmol) in MeCN (25 mL) slowly 

over 30 mins with constant stirring. The reaction mixture was then stirred at RT for a further 12 hrs during 

this time a heavy white precipitate was formed. The resulting mixture was the added dropwise whilst stirring 

to deionised water (100 mL) to yield a white/yellow precipitate which was then isolated via vacuum 

filtration. The solid was then suspended in MeOH (20 mL) in a 50 mL conical flask and sonicated (5 mins). 

The white/yellow suspension was then once again filtered under vacuum to yield a fine white solid which 

was washed with further portions of MeOH (3 x 5 mL) to give the bis-benzoylated thiourea (1) as a fine 

white powder (0.90 g, 55 %). 1H NMR (400 MHz, (CD3)2SO) δ (ppm) 11.30 (s, 2H, NH), 10.92 (t, J = 5.4, 

2H, -CH2NH-), 7.92 (d, J = 7.2, 4H, Ph), 7.64 (t, J = 7.4, 2H, Ph), 7.51 (t, J = 7.8, 4H, Ph), 3.68 (d, J = 5.4 

Hz, 4H, -CH2NH-), 1.72 (brs, 4H, -CH2CH2NH-). 13C NMR [400 MHz, DMSO-d6]: δC = 183.5 (C=S), 

168.4 (C=O), 133.4 (CH), 132.7 (Q), 129.0 (CH), 128.9 (CH), 128.7 (CH), 127.6 (CH), 44.8 (CH2), 25.6 

(CH2). ESI-MS m/z 415 (M + H+), HR ESI-MS found 415.1257 C20H22N4S2O2 requires 414.1184 (error 

0.49 ppm). Whilst the ESI-MS analysis did give an accurate ion the compound did decompose rapidly in 
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the ESI MS process and only a small M+ ion was observed. This behaviour is common to all of the aliphatic 

bridged dithioamines and their derivatives. 

  

 

Figure 5.1.7. 1H NMR of benzoylated thiourea product (1) a = water impurity and b = (CD3)(CHD2)SO. 

 

In a 50 ml RBF was combined the bis-benzoylated dithiourea (510 mg, 1.23 mmol), deionised water (10 

mL) and a magnetic stir bar. A solution of NaOH (290 mg, 7.4 mmol) solution in H2O (10 mL) was then 

added to the reaction mixture whilst stirring at 60°C. After 12 hrs the resulting colourless solution was then 

cooled to RT during which time a fine white precipitate was formed. The precipitate was then collected via 

vacuum filtration and then washed with ice cold deionised water (3 x 3 mL) giving the di-thiourea (2) as a 

a b 
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fine white powder (210 mg, 83 %). The 1H NMR gives three broad signals in the aromatic region and two 

broad signals at 3.0 and 1.4 ppm. As has been mentioned previously is suspected that intra-molecular 

hydrogen bonding is inducing broad peaks in the 1H NMR. However, the 13C and ESI-MS is exactly as 

expected. 13C NMR [400 MHz, DMSO-d6]: δC = 183.5 (C=S), 44.1 (CH2), 26.9 (CH2). ESI-MS m/z 207 

(M + H+). HR ESI-MS found 207.0735 C6H14N4S2 requires 207.0733 (error 1.48 ppm). 

 

Figure 5.1.8. 1H NMR of the bis-thiourea product (2) a = water impurity and b = (CD3)(CHD2)SO. The expansion shows the 

absence of amide peaks at ~11 ppm. 

 

 

 

a b 
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A 25 mL RBF was charged with the bis-thiourea (2) (150 mg, 0.73 mmol), EtOH (10 mL) and magnetic 

stir bar. The mixture was then heated to 60 °C and to this added α-bromoacetyl pyridine (0.30 mg, 1.5 

mmol) as a solution in EtOH (2 mL). Heating was continued for a further 8 hrs during which time a heavy 

yellow precipitate was formed. This was then isolated via vacuum filtration and the filtrand was then 

washed with equal portions of EtOH (3 x 2 mL) to give the protonated product.  The free-base ligand was 

then isolated by suspending in concentrated ammonia (15 mL) for 24 hrs. The resulting colourless 

suspension was then sonicated (5mins) and was filtered under vacuum and the solid washed with equal 

portions of deionised water (5 x 2 mL) giving the product (L3.2) as a fine off-white powder (180 mg 60 %). 

1H NMR (400 MHz, (CD3)2SO) δ (ppm) 8.53 (d, J = 4, 2H, py), 7.88 (d, J = 7.8, 2H, py),  7.79 (dt, 7.6, J 

= 1.7, 2H, py), 7.75 (t, J = 5.4, 2H, -NH), 7.28 (s, 2H, tz), 7.25 (dd, J = 5.7, 2H, py), 3.33 (brs, 4H, -CH2NH-

, overlapping with H2O), 1.71 (brs, 4H, -CH2CH2NH-). 13C NMR (400 MHz d6-DMSO) δ 169.2, 153.0, 

150.7, 149.7, 137.5, 122.8, 120.7, 104.9, 44.6 and 26.7 ppm. ESI-MS m/z 409 (M + H+), HR ESI-MS found 

409.1261 C20H20N6S2 requires 409.1264 (error 0.97 ppm). 
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Figure 5.1.9. 1H NMR of ligand L2.2 a = water impurity and b = (CD3)(CHD2)SO. 

 

 

 

 

 

 

 

 

a b 
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Synthesis of [(L2.2)2Cu2H2PO4(trif)2](trif).  

To a solution of Cu(trif)2·6H2O (10 mg. 0.029 mmol) in MeNO2 (1 ml) was added a suspension of ligand 

L2.2 (10 mg, 0.027 mmol) in MeNO2 and the reaction warmed and sonicated until a clear dark blue solution 

had formed. To this was added a solution of Bu4NH2PO4 (6.4 mg, 0.027 mmol) in MeNO2 (0.5 ml) during 

which the colour changed from dark blue to lime green.  Diisopropyl ether was slowly allowed to diffuse 

into the solution resulting in lime green needle-like crystals after several days. Filtration and washing with 

diisopropyl ether (1 ml) and diethyl ether (1 ml) gave lime green crystals which lost solvent rapidly (yield 

= 41%).  

 

Synthesis of [(L2.2)2Cu2(HO2P(OBF3)2](BF4).  

To a solution of Cu(BF4)2·6H2O (10 mg. 0.029 mmol) in MeNO2 (1 ml) was added a suspension of ligand 

L2.2 (10 mg, 0.027 mmol) in MeNO2 and the reaction warmed and sonicated until a clear dark blue solution 

had formed. To this was added a solution of Bu4NH2PO4 (6.4 mg, 0.027 mmol) in MeNO2 (0.5 ml) during 

which the colour changed from dark blue to lime green.  Diisopropyl ether was slowly allowed to diffuse 

into the solution resulting in lime green needle-like crystals after several days. Filtration and washing with 

diisopropyl ether (1 ml) and diethyl ether (1 ml) gave lime green crystals which lost solvent rapidly (yield 

= 38%).  
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Figure 5.1.10. ESI-MS of [(L2.2)2Cu2](trif)4 with the obtained isotope pattern (inset top) and calculated (inset bottom) for m/z 

1391 {[(L2.2)2Cu2](trif)3}+. 
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Figure 5.1.11. ESI-MS of [(L2.2)2Cu2(HPO4)](trif)2 with the obtained isotope pattern (inset top) and calculated (inset bottom) for 

m/z 1339 {[(L2.2)2Cu2(H2PO4)](trif)2}+. 
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Figure 5.1.12. ESI-MS of [(L2.2)2Cu2(O3POBF3)](trif)2 with the b) obtained isotope pattern and a) calculated  for m/z 1107 

{[(L2.2)2Cu2(O3POBF3)]}+. 
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5.13. L2.3 

 

Scheme 5.1.3 Synthesis route of ligand L2.3 

To a 250 mL RBF charged with cis-1,4-diamino-2-butene dihydrochloride (0.7 g, 4.4 mmol) and MeCN 

(40 mL) was added NaHCO3 (0.744 g, 8.8 mmol). The mixture was then sonicated (10 mins) followed by 

the addition of a solution of benzoyl isothiocyanate (1.3 mL, 1.58 g, 9.69 mmol) in MeCN (5 mL) slowly 

over 40 mins with constant stirring. The reaction mixture was then stirred at RT for a further 3 days during 

which time a heavy white precipitate was formed. The resulting mixture was the added dropwise whilst 

stirring to deionised water (300 mL) to yield a white/yellow precipitate which was then isolated via vacuum 

filtration. The solid was then suspended in MeOH (50 mL) in a 100 mL conical flask and sonicated (5 

mins). The white/yellow suspension was then once again filtered under vacuum to yield a fine white solid 

which was washed with further portions of MeOH (3 x 10 mL) to give the bis-benzoylated di-thiourea (1) 

as a fine white powder (1.16 g, 62 %). 1H NMR (400 MHz, (CD3)2SO) δ (ppm) 11.38 (s, 2H, NH), 10.95 

(t, J = 5.4, 2H, NH), 7.91 (d, J = 8.52, 4H, Ph), 7.66 (t, J = 7.44, 2H, Ph), 7.51 (t, J = 7.48, 4H, Ph), 5.72 (t, 

J = 4.36 Hz, 2H, =CH-), 4.42 (t, J = 5.12, 4H, -CH2-)). 13C NMR [400 MHz, DMSO-d6]: δC = 180.57 (C=S), 
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168.2 (C=O), 133.1 (CH), 132.7 (Q), 128.9 (CH), 128.6 (CH), 51.9 (CH2), 42.6 (CH2). ESI-MS m/z 413 

(M + H+), HR ESI-MS found 413.1111 C30H33N7S3O3 requires 413.1100 (error 2.66 ppm). Whilst the ESI-

MS analysis did give an accurate ion the compound did decompose rapidly in the ESI MS process and only 

a small M+ ion was observed. This behaviour is common to all the aliphatic bridged dithioamines and their 

derivatives. 

 

 

Figure 5.1.13. 1H NMR of bis-benzoylated thiourea product (1) a = water impurity and b = (CD3)(CHD2)SO. 

 

 

a b 
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In a 100 ml RBF was combined the benzoylated dithiourea (0.8 g, 1.94 mmol), deionised water (20 mL) 

and a magnetic stir bar. A solution of NaOH (0.47 g, 11.8 mmol) solution in H2O (5 mL) was then added 

to the reaction mixture whilst stirring at 60°C. After 12 hrs the resulting colourless solution was then cooled 

to RT during which time a fine white precipitate was formed. The precipitate was then collected via vacuum 

filtration and then washed with ice cold deionised water (3 x 5 mL) giving the dithiourea (2) as a fine white 

powder (0.35 g, 89 %). The 1H NMR gives one broad signal in the aromatic region and two broad signals 

at ~5.8 ppm and ~3.5 ppm. Again, it is suspected that intra-molecular hydrogen bonding is inducing broad 

peaks in the 1H NMR, however the 13C and ESI-MS is exactly as expected. 13C NMR [400 MHz, DMSO-

d6]: δC = 183.5 (C=S), 128.8 (CH), 41.7 (CH2).ESI-MS m/z 205 (M + H+). HR ESI-MS found 205.0581 

C6H12N4S2 requires 205.0576 (error 2.67 ppm). 

 

Figure 5.1.14. 1H NMR of the bis-thiourea product (2) a = water impurity and b = (CD3)(CHD2)SO. 

a b 
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Synthesis of L2.3 

 A 25 mL RBF was charged with dithiourea (0.2 g, 0.98 mmol), EtOH (10 mL) and magnetic stir bar and 

the mixture was then heated to 60 °C. To this was slowly added α-bromoacetyl pyridine (0.41 g, 2.1 mmol) 

in a solution in EtOH (2 mL). Heating was continued for a further 16 hrs during which time a heavy yellow 

precipitate was formed. This was then isolated via vacuum filtration and the filtrand was then washed with 

equal portions of EtOH (3 x 2 mL) to give the protonated product.  The free-base ligand was then isolated 

by suspending in concentrated ammonia (15 mL) for 24 h. The resulting colourless suspension was then 

sonicated (5mins) and was filtered under vacuum and the solid washed with equal portions of deionised 

water (5 x 2 mL). Giving the product (L2.3) as a fine off-white powder (0.33 g, 83 %). 1H NMR (400 MHz, 

(CD3)2SO) δ (ppm) 8.54 (dd, J = 4.0, 0.8, 2H, py), 7.90 (m, overlapping, 4H, py and -NH), 7.74 (dt, J = 7.8, 

1.6, 2H, py), 7.32 (s, 2H, tz), 7.26 (ddd, J = 5.7, 4.8, 0.8, 2H, py), 5.68 (t, J = 4.2, 2H, =CH-), 4.13 (t, J = 

4.9 Hz, 4H, -CH2-). 13C NMR (400 MHz d6-DMSO) δ 168.7, 152.9, 150.7, 149.7, 137.4, 129.0, 122.8, 

120.8, 105.5 and 41.9 ppm. ESI-MS m/z 407 (M + H+). HR ESI-MS found 407.1108 C20H18N6S2 

requires 407.1107 (error 0.29 ppm). 
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Figure 5.1.15. 1H NMR of ligand L2.3 a = water impurity and b = (CD3)(CHD2)SO. 

 

Synthesis of [(L2.3)2Cu2(trif)2](trif)2.  

To a solution of Cu(trif)2·6H2O (10 mg. 0.027 mmol) in MeNO2 (1 ml) was added a suspension of ligand 

L2.3 (10 mg, 0.025 mmol) in MeNO2 and the reaction warmed and sonicated until a clear dark tan solution 

had formed. Di-isopropyl ether was slowly allowed to diffuse into the solution resulting in dark brown 

needle-like crystals after several days. Filtration and washing with diisopropyl ether (1 ml) and diethyl ether 

(1 ml) gave brown crystals which lost solvent rapidly (yield = 51%). A similar isolation was carried out 

using CHCl3 as the anti-solvent (see discussion) (yield = 47%).  

a b 
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Figure 5.1.16. ESI-MS of [(L2.3)2Cu2](trif)4 with the obtained isotope pattern (inset top) and calculated (inset bottom) for m/z 

1389 {[(L2.3)2Cu2](trif)3}+. 

 

 

 

 

 

 

m/z 1389{[(L2.3)2Cu2](trif)3}+ 
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5.2 Experimental L3.1 

Chemicals were purchased and used without further purification. 1H and 13C NMR spectra were recorded 

on a 400MHz Bruker Avance DP X400. Mass spectra were obtained on an Agilent 6210 TOF MS for the 

organic species with the metal complexes run on a Bruker MicroQTOF LC. 
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Scheme 5.2.1. Synthetic route for ligand L3.1 

 

Synthesis of (2).  

To a solution of 1,1’-biphenyl-2,2’-diamine (1) (410 mg, 2.23 mmol) in acetonitrile (50 mL) was added 

benzoyl isothiocyanate (794 mg, 4.90 mmol) and the reaction stirred for 3 days at RT, during which time a 

colourless precipitate formed which was isolated by filtration, washed with MeCN (3 × 5 mL) and Et2O (3 

L3.1 
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× 5 mL) giving (2) as a while solid. Yield = 743 mg (65 %). 1H NMR (400MHz, DMSO-d6) δ (ppm) 12.2 

(s, 2H, -NH), 11.4 (s, 2H, -NH), 7.86 (d, 4H, J = 7.52), 7.74 (d, 2H, J = 7.8), 7.63 (t, 2H, J = 7.4), 7.50 (t, 

4H, J = 7.68), 7.43 (m, overlapping, 4H), 7.34 (t, 2H J = 7.38 Hz). ESI-MS m/z 511 (M + H+), HR ESI-MS 

found 511.1251 C28H22N4O2S2 requires 511.1257 (error 0.93 ppm). 

Synthesis of (3) 

The diurea derivative (2) (400 mg, 0.784 mmol) was suspended in water (20 mL) and NaOH (191 mg, 4.78 

mmol) added. The reaction was then heated to 60°C and MeOH slowly added dropwise until all the solid 

dissolved (1 ~ 2 mL). After 24 hrs the solution was allowed to cool to room temperature and then immersed 

in an ice bath, after which time a colourless solid precipitated. Isolation by filtration and washing with ice 

cold water (2 x 1 mL) gave the dithiourea (3) as a colourless solid. Yield = 140 mg (59 %). 1H NMR 

(400MHz, DMSO-d6) δ (ppm) 8.81 (s, 2H, -NH), 7.33 (m, broad, overlapping, 12H). ESI-MS m/z 303 (M 

+ H+), HR ESI-MS found 303.0732 C14H14N4S2 requires 303.0733 (error 0.41 ppm). 

 

Synthesis of L3.1.  

The dithiourea containing compound (3) (141 mg, 0.47 mmol) was suspend in EtOH (20 mL) and to this, 

α-bromoacetylpyridine hydrobromide (393 mg, 1.40 mmol) was added and the reaction heated at 80 °C 

overnight. During this time a yellow precipitate had formed which was isolated by filtration and washed 

with EtOH (2 x 1 mL) and Et2O (2 x 1 mL). This yellow solid was suspended in ammonia (sp. gr 0.88, 10 

mL) and stirred for 24 hrs. The solid was then filtered, washed with H2O (2 x 1 mL), EtOH (2 x 1 mL) and 

Et2O (2 x 1 mL) to give L3.1 as a cream solid. Yield = 120 mg (51 %).1H NMR (400MHz, DMSO-d6) δ 

(ppm) 8.56 (d, 2H, J = 4.32), 8.20 (d, 2H, J = 8.16), 7.89 (d, 2H, J = 7.92 Hz), 7.69 (td, 2H, J = 7.72, 1.6), 

7.53 (td, 2H, J = 7.81, 1.4 Hz), 7.33 (m, overlapping, 4H), 7.23 (t, 2H, J = 7.44), 7.18 (dd, 2H, J = 7.02, 

4.96 Hz), 6.96 (2H, br s, -NH). 13C NMR (500 MHz, DMSO-d6) δ (ppm) = 165.6 (Q), 151.7 (Q), 149.6, 
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139.2 (Q), 137.6, 131.9, 130.8 (Q), 129.5 (Q), 129.0, 123.9, 122.9, 122.0, 120.8, 107.2. ESI-MS m/z 505 

(M + H+), HR ESI-MS found 505.1256 C28H20N6S2 requires 505.1264 (error 1.24 ppm). 

Synthesis of [(L3.1)Cu](ClO4)2.  

To a solution of Cu(ClO4)2·6H2O (10 mg. 0.027 mmol) in MeCN (1 ml) was added a suspension of ligand 

L3.1 (13 mg, 0.026 mmol) in MeCN and the reaction warmed and sonicated until a clear light blue solution 

had formed. Diisopropyl ether was slowly allowed to diffuse into the solution resulting in blue plate-like 

crystals after several days. Filtration and washing with diisopropyl ether (1 ml) and diethyl ether (1 ml) 

gave blue crystals which lost solvent rapidly (yield = 52%). ESI-MS m/z 669 corresponding to 

{Cu(L3.1)(ClO4)}+ along with higher molecular species (see 3. Discussion, Fig. 3.2.4 and 3.2.5.).  

Synthesis of [(L3.2)4Cu4](trif)8.  

To a solution of Cu(trif)2 (10 mg. 0.028 mmol) in MeCN (1 ml) was added a suspension of ligand L3.1 (14 

mg, 0.026 mmol) in MeCN and the reaction warmed and sonicated until a clear light blue solution had 

formed. Diisopropyl ether was slowly allowed to diffuse into the solution resulting in pale blue block 

crystals after several days. Filtration and washing with diisopropyl ether (1 ml) and diethyl ether (1 ml) 

gave blue crystals which lost solvent rapidly (yield = 68%). ESI-MS m/z 3479 corresponding to 

{[Cu4(L3.2)4](trif)7}+), along with a ion at m/z 1665 corresponding to both the singly charged dinuclear 

assembly {[Cu2(L3.2)2](trif)3}+ and the doubly charged tetranuclear assembly (e.g. {[Cu4(L3.2)4](trif)6}2+). 

Found: C, 41.4; H, 2.6; N, 10.0%; C128H92N28S16Cu4F24O24 ·2H2O requires C, 41.9; H, 2.6; N, 

10.7%. 
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5.3 L4.1 Experimental 

Chemicals were purchased and used without further purification. 1H and 13C NMR spectra were recorded 

on a 400MHz Bruker Avance DP X400. Mass spectra were obtained on an Agilent 6210 TOF MS for the 

organic species with the metal complexes run on a Bruker MicroQTOF LC. UV-Vis spectra were run on 

an Agilent Cary 60 UV-Vis. Ion chromatography was run on a Metrohm 850 IC system. 

Synthesis of L4.1 

 

 

Scheme 5.3.1. Synthetic route for the synthesis of L4.1 

Synthesis of (1).  

To a solution of tris(2-aminoethyl)amine (0.5 g, 3.42 mmol) in acetonitrile (50 mL) was added benzoyl 

isothiocyanate (1.8 g, 11.3 mmol) and the reaction stirred for 4 days at RT, during which time a small 

amount of a yellow precipitate formed. The suspension was then slowly added to water (50 mL) which gave 

a heavy colourless precipitate which was isolated by filtration washed with acetone (3 × 5 mL) giving (1) 

as a white solid. Yield = 1.05 g (48 %). 1H NMR (400 MHz, DMSO-d6) δ (ppm) 11.20 (s, 3H, -NH), 11.0 

(t, 3H, J = 4.8, -CH2NH), 7.81 (d, 6H, J = 7.2, Ph), 7.56 (t, 3H, J = 7.4, Ph), 7.38 (t, 6H, J = 7.6, Ph), 3.75 

(q, 6H, J = 5.7, -CH2CH2NH), 2.89 (t, 6H, J = 6.0 Hz, -CH2CH2NH). 13C NMR [100 MHz, DMSO-d6]: δC 

= 180.5 (C=S), 168.2 (C=O), 133.1 (CH), 132.7 (Q), 128.9 (CH), 128.6 (CH), 51.9 (CH2), 42.6 (CH2). ESI-

MS m/z 636 (M + H+), HR ESI-MS found 636.1882 C30H33N7S3O3 requires 636.1880 (error 0.46 ppm). 

(1) (2) 

(L4.1) 
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Figure 5.3.1. 1H NMR of the benzoylated urea derivative (1) 

Synthesis of (2) 

The benzoylated urea derivative (1) (500 mg, 0.787 mmol) was suspended in water (20 mL) and NaOH 

(307 mg, 7.87 mmol) added. The reaction was then heated to 60 °C and MeOH slowly added dropwise until 

all the solid dissolved (1 ~ 2 mL). After 48 hrs the solution was allowed to cool to room temperature and 

then immersed in an ice bath, after which time a colourless solid precipitated. Isolation by filtration and 

washing with ice cold water (2 x 1 mL) gave the tri-thiourea (2) as a colourless solid. Yield = 120 mg (47 

%). 1H NMR (400 MHz, DMSO-d6) δ (ppm) 7.55 (brs, 3H, -NH), 7.08 (brs, 6H, -NH2), 3.44 (brs, 6H, -

CH2CH2NH), 2.58 (brs, 6H, -CH2CH2NH). 13C NMR [100 MHz, DMSO-d6]: δC = 183.5 (C=S), 52.9 (CH2), 

42.3 (CH2). ESI-MS m/z 324 (M + H+), HR ESI-MS found 324.1089 C9H21N7S3 requires 324.1093 (error 

1.03 ppm).  
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Figure 5.3.2. 1H NMR of the trithiourea compound (2) 

 

Synthesis of L4.1.  

The trithiourea containing compound (2) (100 mg, 0.31 mmol) was suspend in EtOH (20 mL) and to this 

α-bromoacetylpyridine (205 mg, 1.02 mmol) was added and the reaction heated at 80 °C overnight. During 

this time a yellow precipitate had formed which was isolated by filtration and washed with EtOH (2 x 1 

mL) and Et2O (2 x 1 mL). This yellow solid was suspended in ammonia (sp. gr 0.88, 10 mL) and stirred for 

24 hrs. The solid was then filtered, washed with H2O (2 x 1 mL), EtOH (2 x 1 mL) and Et2O (2 x 1 mL) to 

give L as a tan solid. Yield = 120 mg (62 %). 1H NMR (400MHz, DMSO-d6) δ (ppm) 8.52 (dd, 3H, J = 

4.0, 0.8, Py), 7.87 (d, 3H, J = 7.9, Py), 7.73 (td, 3H, J = 7.8, 1.7, Py), 7.66 (t, 3H, J = 5.4, -NH), 7.28 (s, 

3H, tz), 7.23 (ddd, 3H, J = 5.7, 4.8, 0.8, Py), 3.44 (q, 6H, J = 6.2, -CH2CH2NH), 2.83 (t, 6H, J = 6.4 Hz, -

CH2CH2NH). 13C NMR [100 MHz, DMSO-d6]: δC = 169.1 (Q), 152.9 (Q), 150.7 (Q), 149.7 (CH), 137.4 

(CH), 122.7 (CH), 120.7 (CH), 105.2 (CH), 53.3 (CH2), 43.2 (CH2). ESI-MS m/z 627 (M + H+), HR ESI-

MS found 627.1881 C30H30N10S3 requires 627.1890 (error 0.16 ppm). 

 

        

 

 

 



161 

 

 

Figure 5.3.3. 1H NMR of ligand L4.1. 

Synthesis of [(L4.1)2Cu3(BF4)](BF4)5.  

To a solution of Cu(BF4)2·6H2O (10 mg. 0.029 mmol) in MeNO2 (1 ml) was added a suspension of ligand 

L4.1 (27 mg, 0.043 mmol) in MeNO2 and the reaction warmed and sonicated until a clear slate blue solution 

had formed. Diethyl ether was slowly allowed to diffuse into the solution resulting in blue block-like 

crystals after several days. Filtration and washing with diethyl ether (1 ml) and diethyl ether (1 ml) gave 

blue crystals which lost solvent rapidly (yield = 52%).  

The bromide [(L4.1)2Cu3(Br)](BF4)5 and hexafluorosilicate [(L4.1)2Cu3(SiF6)](BF4)4 complexes were all 

made in an analogous fashion but a half of an equivalent of Et4NBr and Na2SiF6 was added (w.r.t ligand 

L4.1 i.e. 0.022 mmol) to the nitromethane solution. In the case of hexafluorosilicate the solution was allowed 

to stand for 24 hrs to allow dissolution of the anion and then exposed to ethyl acetate. 

[(L4.1)2Cu3(PO4)](ClO4)3. Cu(ClO4)2·6H2O (11 mg. 0.029 mmol) was dissolved in MeCN (0.25 ml) and 

added to ligand L4.1 (12.1 mg, 0.019 mmol) and the reaction sonicated until all the ligand has dissolved. To 

this was added a solution of Bu4NH2PO4 (3.2 mg, 0.009 mmol) in water (0.5 ml) during which the colour 
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changed from blue to lime green. The reaction was then allowed to stand and after between 1 – 2 hrs lime 

green plate-like crystal were formed. Filtration and washing with water (1 ml) gave lime-green crystals 

which were dried under vacuum overnight. (yield = 99%). Found: C, 38.47; H, 3.24; N, 14.91%; 

C60H60N20S6Cu3PCl3O16·H2O requires C, 38.84; H, 3.37; N, 15.10%. 

The remaining structures were all prepared in an identical manner using Et4NI, NaIO4, Na3VO4, Na2WO4, 

Na2CrO4, Et4NHSO4, NaReO4 and NaH2AsO4 and either Cu(ClO4)2·6H2O, Cu(BF4)2·6H2O, Cu(triflate)2 or 

Cu(NO3)2·2H2O were used (see crystal data table). For [(L4.1)2Cu3(CO3)](CF3SO3)4 no secondary anion was 

added but the solution was allowed to concentrate over 36 hrs. 

[(L4.1)2Cu3(CrO4)](ClO4)4. Yield = 78%. Found: C, 35.42; H, 2.99; N, 13.59%; 

C60H60N20S6Cu3CrCl4O20·3H2O requires C, 35.82; H, 3.31; N, 13.92%. 

[(L4.1)2Cu3(SO4)](ClO4)4. Yield = 76%. Found: C, 36.19; H, 3.03; N, 13.89%; C60H60N20S7Cu3Cl4O20·2H2O 

requires C, 36.5; H, 3.27; N, 14.19%. 

(L4.1) [2Cu3(CO3)](ReO4)(trif)3. Yield = 53%. Found: C, 34.88; H, 2.97; N, 13.21%; C64H60N20S9Cu3O16F9Re 

requires C, 34.91; H, 2.75; N, 12.72%. 

[(L4.1)2Cu3(VO4)](ClO4)3. Yield = 70%. Found: C, 36.58; H, 3.23; N, 13.58%; 

C60H60N20S6Cu3VCl3O16·6H2O requires C, 36.66; H, 3.69; N, 14.25%. 

[(L4.1)2Cu4(IO6)(H2O)2](ClO4)5. Yield = 70%. Found: C, 32.79; H, 3.03; N, 12.76%; C60H64N20S6Cu4ICl5O26 

requires C, 32.29; H, 2.89; N, 12.55%. 

[(L4.1)2Cu3(AsO4)](trif)3. Yield = 81%. Found: C, 36.90; H, 2.98; N, 13.60%; C63H60N20F9S9Cu3AsO13 

requires C, 37.27; H, 2.98; N, 13.80%. 

[(L4.1)2Cu3(I)](ClO4)5.  Yield = 77%. Found: C, 34.06; H, 3.23; N, 12.72%; C60H60N20S6Cu3ICl5O20·3H2O 

requires C, 33.95; H, 3.13; N, 13.20%. 
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[(L4.1)2Cu3(WO4)](ClO4)4.  Yield = 77%. Found: C, 34.43; H, 2.89; N, 13.16%; C60H60N20S6Cu3WCl4O20 

requires C, 34.48; H, 2.89; N, 13.40%. 

[(L4.1)2Cu3(SiF6)](ClO4)4.  Yield = 69%. Found: C, 35.61; H, 2.98; N, 13.58%; 

C60H60N20S6Cu3SiF6Cl4O16·2H2O requires C, 35.67; H, 3.19; N, 13.87%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



164 

 

5.4 UV-Vis studies. 

Solutions were prepared by dissolving ligand L4.1 (6.26 mg, 0.01 mmol) and Cu(ClO4)2·6H2O (5.56 mg. 

0.015 mmol) in 1:1 MeCN/H2O (1 ml) and adding the relevant anion (0.5 equiv w.r.t. ligand) as a solution 

in the same solvent (1 ml) the solvent was then adjusted to 3 ml giving 1.66 x 10-3 M solutions of 

[(L4.1)2Cu3](ClO4)6 or [(L4.1)2Cu3](trif)6 . 

 

 

Figure 5.4.1. UV-Vis absorption spectra of [(L4.1)2Cu3](trif)6; [(L4.1)2Cu3](trif)6 after 1 and 3 hrs giving [(L4.1)2Cu3(CO3)](trif)4; 

[(L4.1)2Cu3(CO3)](trif)4 plus one equivalent of Bu4NH2PO4 giving [(L4.1)2Cu3(PO4)](trif)3. [(L4.1) 2Cu3]6+ 1.33 x 10-3 M. 

[(L4.1)2Cu3](trif)6
 after 3 hrs 

[(L4.1)2Cu3](trif)6
  

[(L4.1)2Cu3(CO3)](trif)4 + Bu4NH2PO4
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Figure 5.4.2. UV-Vis absorption spectra of [(L4.1)2Cu3](trif)6; [(L4.1)2Cu3](trif)6 plus 1 equiv. NaReO4; [(L4.1)2Cu3](trif)6 plus 1 

equiv. NaReO4 after 3 hrs giving [(L4.1)2Cu3(CO3)](trif)4; [(L4.1)2Cu3]6+ 1.33 x 10-3 M. 

 

5.5. Quantitative yield and ion chromatography experiments. 

Cu(ClO4)2·6H2O (11.5 mg. 0.021 mmol) was dissolved in MeCN (0.25 ml) and added to ligand L (13 mgs, 

0.021 mmol) and the reaction sonicated until all the ligand has dissolved. To this was added a 1000 ppm 

solution of NaH2PO4·2H2O (prepared from 0.164 g in 100 ml water = 1000 ppm of H2PO4ˉ) in water (1 ml 

= 0.01 mmol of phosphate) upon which a lime-green coloured solution was formed (more MeCN was added 

if a precipitate formed ~ 0.1 ml) and the organic solvent was allowed to evaporate over two days. The 

solution was carefully removed, and the precipitate washed with water and the aqueous solvent collected 

and the volume adjusted to 2 ml by the addition of water if necessary. The phosphate concentration was 

then examined by IC. 

 

 

[(L4.1)2Cu3](trif)6
 + NaReO4 after 3 hrs. 

[(L4.1)2Cu3](trif)6
 + NaReO4 

[(L4.1)2Cu3](trif)6
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IC 

Instrument Metrohm 850 IC system 

Column Metrohm A Supp 5 column (150 mm x 4.6 mm) 

Oven (ºC) 30oC 

Pump Mobile Phase A 5.0 mM Sodium Carbonate 

Mobile Phase B N.A. 

Flow (mls/min) 0.70 

Isocratic/Gradient Isocratic 

Runtime (mins) 30 

Injector Volume ( l) 10 

Suppressor Regenerant 

Solution 

0.1 M Oxalic acid / 0.1 M Sulfuric acid in 10% acetone 

Detector Conductance / 

PAD 

Conductance 

Table 5.5.1 Ion Chromatography; Conditions and Instrumentation. 
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[Phosphate]/ppm Phosphate Peak Area 

10 0.477 

25 1.136 

50 2.302 

100 4.943 

200 10.12 

Table 5.5.2 Phosphate calibration. 

 

Figure 5.5.1. IC calibration cure of 10 - 200 ppm solutions of Bu4NH2PO4. 

 

The sample was analysed, and no phosphate was detected. A spiked sample (~10 ppm) was analysed 

immediately after spiking with phosphate (injected ~10 mins after spike) which confirmed phosphate could 

be detected in the sample matrix, however, the peak shape was significantly broader than the standard 

solutions. This may be due to the low pH of the sample. Example chromatograms are detailed below. 
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Figure 5.5.2 Blank Solution. 

 

Figure 5.5.3 10 ppm Phosphate Standard. 

 

Figure 5.5.4 Sample Solution. 
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Figure 5.5.5 Expanded Sample Solution. 

 

Figure 5.5.6 Spiked Sample Solution. 

 

Figure 5.5.7 Expanded Spiked Sample Solution. 
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Figure 5.5.8 IC experimental data. 

In an identical experiment to that above the phosphate containing complex ([(L4.1)2Cu3(PO4)](ClO4)3) was 

isolated by filtration and washed with water and dried for several days in a desiccator giving 19.1 mgs of 

sample (99% yield). Theoretical yield = 19.3 mgs based on a molecular weight of 1855.616 from the 

elemental analysis (see above) which suggested the monohydrate e.g. C60H60N20S6Cu3PCl3O16·H2O. This 

was repeated four times and the yield was similar in each case.  

5.6 Ion Chromatography Competitive Experiment 

To a 10 ml solution of chloride, nitrate, phosphate and sulfate (50 ppm of each) was added a solution of 

[(L4.1)2Cu3](trif)6 (prepared from 6.59 mgs L4.1 and 5.71 mg Cu(trif)2 i.e. enough to encapsulate and 

precipitate one of the anions) in acetone (2 ml) and the solution allowed to stand over ~ 1 week during 

which time a lime-green precipitate formed. The solution was then filtered, the solid washed with water 

and the volume of the pooled aqueous fractions was carefully adjusted to 10 ml. Examination by IC gave 

values of 47 ppm of chloride, 46 ppm nitrate, 41 ppm sulfate and 10 ppm phosphate. It is worth noting that 

repeats of this experiment show that fast precipitation (1 ~ 2 days) of the anion reduces the selectivity and 

we attribute this two to factors: firstly, the selectivity of the cavity, which upon fast precipitation doesn’t 

allow sufficient time to selectively form the thermodynamic product i.e. [(L4.1)2Cu3(PO4)](trif)3. Secondly, 

anions may precipitate as counter anions e.g. [(L4.1)2Cu3(PO4)](trif)2(NO3) or [(L4.1)2Cu3(PO4)](trif)2Cl etc. 

as a result it is possible that further optimisation of the precipitation may increase the amount of phosphate 

removed. 
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6. Appendix 

6.1 Crystal Data L2.1, L2.2 and L2.3 

Single crystal X-ray diffraction data was collected at 150(2) K on a Bruker D8 Venture diffractometer 

equipped with a graphite monochromated Mo(K) radiation source and a cold stream of N2 gas. Solutions 

were generated by conventional heavy atom Patterson or direct methods and refined by full-matrix least 

squares on all F2 data, using SHELXS-97 and SHELXL software respectively.A1 Absorption corrections 

were applied based on multiple and symmetry-equivalent measurements using SADABS.A2 

The crystal structures [(L2.1)2Cu2(trif)2](trif)2 and [(L2.1)2Cu2(H2O)2(NO3)4] were treated as standard. 

[(L2.1)2Cu2](trif)2 [(L2.1)2Cu2(H2PO4)(trif)](trif)2, [(L2.3)2Cu2(trif)2](trif)2 (bridging triflate) had either 

disordered solvent molecule and/or counter anions. There were modelled over two positions and assigned 

their own free variable. In most cases DELU, SIMU and ISOR were used to constrain the adp’s in the lest-

squares refinement. The remaining structures contained further disorder which was modelled over two 

positions. However, also present was solvent disorder that despite attempts could not be successfully 

modelled and as a result the diffuse electron density was removed using the solvent mask facility in Olex2, 

resulting in voids in the crystal structure.3 [(L2.1)3Cu3(O3P(OBF3)](BF4)3 contained voids of 2515 Å3 (629 

Å3 or 227 electrons per circular helicate which corresponds to one BF4 anion and 6 MeNO2 molecules). 

[(L2.2)2Cu2(H2PO4)(trif)2](trif)2 contained voids of 1176 Å3 which corresponds to 545 electrons. This 

accounts for 5 molecules of DIPE per asymmetric unit. [(L2.2)2Cu2(O2P(OBF3)2](BF4) contained voids of 

335 Å3 which corresponds to 131 electrons. This accounts for 2 molecules of MeNO2 per asymmetric unit. 

[(L2.3)2Cu2(trif)2](trif)2 (non-bridging triflate) contained voids of 1036 Å3 which corresponds to 82 electrons, 

this accounts for 1 molecule of MeNO2 per asymmetric unit. 
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Compound [(L2.1)2Cu2(trif)2](trif)2 [(L2.1)2Cu2(H2O)2(NO3)4] [(L2.1)2Cu2](trif)2 [(L2.1)2Cu2(H2PO4)(trif)](trif)2 

Formula C40H32Cu2F12N12O12S8 C37H39Cu2N17O16S4 C84H70Cu4F12N24O15S12 C40H34Cu2F9N13.858O15.743PS7 

M 1484.33 1233.18 2522.52 1514.22 

Crystal system triclinic triclinic triclinic triclinic 

Space group P -1 P -1 P -1 P -1 

a (Å) 9.7479(10) 11.6824(7) 13.0430(9) 11.358(4) 

b (Å) 10.8987(11) 12.4937(7) 13.5163(10) 16.280(5) 

c (Å) 14.1786(14) 18.6876(11) 17.0569(13) 16.681(7) 

α (˚) 67.525(3) 104.3388(18) 79.424(2) 99.030(16) 

β (˚) 73.066(3) 90.974(2) 71.004(2) 108.218(16) 

γ (˚) 83.669(3) 112.5228(18) 61.611(2) 92.693(12) 

V (Å3) 1331.6(2) 2421.9(3) 2499.8(3) 2878.4(18) 

Z 1 2 1 2 

ρcalc (Mg cm-1) 1.851 1.6909 1.676 1.7470 

F(000) 746 1262.9016 1278 1530.0797 

Crystal dimensions (mm) 0.15, 0.1, 0.1  0.1, 0.1, 0.05 0.25, 0.2, 0.1 

Reflections measured 22989 66816 55348 80975 

Range 2.072 ≤ θ ≥ 30.578 1.84 ≤ θ ≥ 30.57 2.34 ≤ θ ≥ 30.50 1.92 ≤ θ ≥ 30.69 

hkl range indices -13 ≤ h ≥ 13, -15 ≤ k ≥ 15, 

-20 ≤ l ≥ 15 

-16 ≤ h ≥ 16, -17 ≤ k ≥ 17, -26 ≤ 

l ≥ 26 

-18 ≤ h ≥ 18, -19 ≤ k ≥ 19, -

24 ≤ l ≥ 24 

-16 ≤ h ≥ 16, -23 ≤ k ≥ 23, -23 ≤ l 

≥ 23 

No independent reflections 8122 14798 15337 17674 

Reflections with I > 2σ(I) 5735 10583 9889 11284 

Rint 0.0692 0.0743 0.0765 0.0829 

Final R1 values 0.0498 0.0580 0.0680 0.0744 

Final wR(F2) values 0.1146 0.1286 0.1575 0.1587 

Final R1 values (all data) 0.0846 0.0954 0.1193 0.1299 

Final wR(F2) values (all data) 0.1288 0.1524 0.1854 0.1923 

GOF 1.034 1.0811 1.052 1.0732 

Refined parameters 388 687 693 886 

Restraints 0 70 29 66 

Largest peak and hole (e Å-3) 0.942, -0.779 1.1342, -1.6015 1.102, -1.354 1.6254, -2.0257 
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Compound [(L2.1)3Cu3(PO4BF3)](BF4)3 [(L2.1)2Cu2(OSe(OCH3)2)]

(trif)2 

[(L2.2)2Cu2(H2PO4)(trif)2](trif)2 [(L2.2)2Cu2(PO4(BF3)2)](BF4) 

Formula C114H114B5Cu6F18N42O20P2S12 C42H44Cu2F6N14O16S6Se2 C43H42Cu2F9N12O13PS7 C40H40B4Cu2F14N12O4PS4 

M 3616.55 1592.27 1488.40 1348.45 

Crystal system triclinic monoclinic triclinic tetragonal 

Space group P -1 P2 1/n P -1 I -4 2 d 

a (Å) 12.3871(8) 11.768(4) 14.629(5) 22.4423(11) 

b (Å) 24.199(2) 20.392(7) 15.453(6) 22.4423(11) 

c (Å) 32.271(4) 12.836(4) 17.397(6) 20.6438(10) 

α (˚) 78.661(7) 90 93.102(18) 90 

β (˚) 85.813(9) 110.219(11) 103.018(14) 90 

γ (˚) 78.326(7) 90 95.287(15) 90 

V (Å3) 9283.1(15) 2890.5(18) 3804(2) 10397.4(9) 

Z 2 2 2 8 

ρcalc (Mg cm-1) 1.2937 1.829 1.2994 1.7227 

F(000) 3666.8836 1596 1512.1201 5445.3322 

Crystal dimensions 

(mm) 

0.1, 0.1, 0.1 0.15, 0.1, 0.03 0.2, 0.1, 0.1 0.25, 0.2, 0.2 

Reflections measured 132190 22174 114289 27338 

Range 2.80 ≤ θ ≥ 68.32 2.097≤ θ ≥30.582 1.85 ≤ θ ≥ 30.44 2.26 ≤ θ ≥ 27.66 

hkl range indices -14 ≤ h ≥ 14, -28 ≤ k ≥ 29, 0 ≤ 

l ≥ 38 

-16≤ h ≥14, -24≤ k ≥29, -18≤ 

l ≥17 

-20 ≤ h ≥ 20, -21 ≤ k ≥ 21, -24 ≤ l ≥ 24 -22 ≤ h ≥ 32, -25 ≤ k ≥ 31, -21 ≤ 

l ≥ 29 

No independent 

reflections 

33538 22174 22936 7905 

Reflections with I > 

2σ(I) 

23849 5847 13386 4757 

Rint 0.1127  0.0777 0.0675 

Final R1 values 0.0997  0.0762 0.0682 

Final wR(F2) values 0.2929 0.0516 0.1957 0.1805 

Final R1 values (all data) 0.1337 0.0977 0.1334 0.1330 

Final wR(F2) values (all 

data) 

0.3299 0.1040 0.2317 0.2259 

GOF 1.2535 1.018 1.1000 1.0471 

Refined parameters 2014 399 858 384 

Restraints 121 0 87 62 

Largest peak and hole (e 

Å-3) 

1.8506, -1.6788  2.6065, -2.0660 1.1473, -1.9238 
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Compound [(L2.3)2Cu2(trif)2](trif)2 [(L2.3)2Cu2(trif)2](trif)2 

Formula C44H36Cu2F12N12O12S8 C48H42Cu2F12N16O20S8 

M 1536.45 1774.57 

Crystal system monoclinic monoclinic 

Space group P2(1)/c P2(1)/c 

a (Å) 15.2352(10) 10.7478(6) 

b (Å) 15.9447(11) 16.4590(9) 

c (Å) 15.9611(11) 20.156(1) 

α (˚) 90 90 

β (˚) 104.958(2) 90.9567(19) 

γ (˚) 90 90 

V (Å3) 3745.9(4) 3565.1(3) 

Z 2 2 

ρcalc (Mg cm-1) 1.3621 1.6530 

F(000) 1552.2483 1796.4518 

Crystal dimensions (mm) 0.25, 0.2, 0.05 0.2, 0.1, 0.1 

Reflections measured 25925 42285 

Range 2.50 ≤ θ ≥ 30.60 2.37 ≤ θ ≥ 33.17 

hkl range indices -21 ≤ h ≥ 20, -22 ≤ k ≥ 22, -22 ≤ l ≥ 

19 

-15 ≤ h ≥ 15, -20 ≤ k ≥ 24, -24 ≤ l ≥ 29 

No independent reflections 11303 11836 

Reflections with I > 2σ(I) 7086 8835 

Rint 0.0551 0.0450 

Final R1 values 0.0827 0.0489 

Final wR(F2) values 0.1797 0.1223 

Final R1 values (all data) 0.1269 0.0755 

Final wR(F2) values (all data) 0.2022 0.1363 

GOF 1.0313 1.0527 

Refined parameters 443 498 

Restraints 48 80 

Largest peak and hole (e Å-3) 1.9170, -2.0427 0.9186, -0.7389 
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6.2. Crystal Data L3.1 and L3.2 

Crystal for [(L3.1)Cu](ClO4)2. The structure contained a rotationally disordered perchlorate counter ion and 

it was modelled in two positions using the PART instruction. For the three disordered atoms SIMU, SADI 

and ISOR constrains were used in the lest-squares refinement. 

Crystal for [(L3.2)4Cu4](trif)8. The structure contained an acetonitrile and a water molecule disordered over 

two sites and they were modelled in two positions using the PART instruction with SIMU, SADI and ISOR 

constrains used in the lest-squares refinement. Furthermore, the structure contained disorder that could not 

be satisfactorily modelled and as a result the diffuse electron density was removed using the solvent mask 

facility in Olex2, resulting in voids in the crystal structure.A3 The solvent mask removed a total of 133.1 

electrons in the unit cell which corresponds to six molecules of acetonitrile in the unit cell. 

Compound [Cu(L3.1)](ClO4)2 [Cu4(L
3.2)4](trif)8 

Formula C30H23Cl2CuN7O8S2 C136H104Cu4F24N32O25S16 

M 808.14 3809.77 

Crystal system monoclinic Monoclinic 

Space group P21/c C2/c 

a (Å) 11.3597 (9) 40.4596 (19) 

b (Å) 40.568 (3) 17.1105 (8) 

c (Å) 7.2878 (6) 23.5882 (12) 

α (˚) 90 90 

β (˚) 106.143 (3) 95.1214 (18) 

γ (˚) 90 90 

V (Å3) 3226.1 (4) 16264.5 (14) 

Z 4 4 

ρcalc (Mg cm-1) 1.666 1.5557 

F(000) 1648.2 7745.6093 

Crystal dimensions (mm) 0.21, 0.1, 0.01 0.2, 0.2, 0.08 

Reflections measured 29209 80137 

Range 2.121 ≤ θ ≥ 30.034˚ 2.13 ≤ θ ≥ 30.59˚ 
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hkl range indices -15 ≤ h ≥ 13, -57 ≤ k ≥ 56, -8 ≤ l ≥ 

10 

-57 ≤ h ≥ 57, 0 ≤ k ≥ 24, 0 ≤ l ≥ 33 

No independent reflections 8541 24779 

Reflections with I > 2σ(I) 6328 15281 

Rint 0.0744 0.0531 

Final R1 values 0.0848 0.0753 

Final wR(F2) values 0.1359 0.1820 

Final R1 values (all data) 0.1537 0.1297 

Final wR(F2) values (all data) 0.1536 0.2180 

GOF 1.0838 1.0765 

Refined parameters 480 1096 

Restraints 30 32 

Largest peak and hole (e Å-3) 1.280, -0.835 1.5233, -1.6240 
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6.3. Crystal Data L4.1 

A variety of disorder in all the crystal structures was observed apart from [(L4.1)2Cu3(CrO4)](BF4)4. 

Structures [(L4.1)2Cu3(SiF6)](BF4)4, [(L4.1)2Cu3(Br)](BF4)5, [(L4.1)2Cu3(PO4)](ClO4)3, and 

[(L4.1)2Cu3(I)](ClO4)5 contained disorder with the counter anion and / or solvent molecules. This disorder 

was modelled over two sites using the PART instruction and assigned their own free variable. Disordered 

atoms/molecules were restrained with DELU, and SIMU and in some cases ISOR in the lest-squares 

refinement, apart from [(L4.1)2Cu3(PO4)](ClO4)3 and [(L4.1)2Cu3(VO4)](ClO4)3 for which restrains were not 

required. The remaining structures contained disorder which could not be successfully modelled and were 

treated differently: 

[(L4.1)2Cu3(BF4)](BF4)5. In this molecule the anion guest contained in the cavity was significantly 

disordered and had to be restrained with DELU, SIMU, ISOR and SADI in the lest-squares refinement. 

Furthermore, significant electron density present within the core suggested that the encapsulated BF4ˉ was 

substitutionally disordered with a chloride anion and this was modelled over two sites using the PART 

instruction and assigned their own free variable. Also present was solvent disorder that despite attempts 

could not be successfully modelled and as a result the diffuse electron density was removed using the 

solvent mask facility in Olex2, resulting in voids in the crystal structure.A3 The solvent mask removed a 

total of 136 electrons in the unit cell which corresponds to two molecules of nitromethane and one molecule 

of diethyl ether in the unit cell. 

[(L4.1)2Cu3(WO4)](ClO4)4. This structure contained positional disorder of two perchlorate anions which was 

modelled over two sites using the PART instruction and assigned their own free variable. These anions had 

to be restrained with DELU, SIMU, ISOR and SADI in the lest-squares refinement. Also present was solvent 

disorder that despite attempts could not be successfully modelled and as a result the diffuse electron density 

was removed using the solvent mask facility in Olex2, resulting in voids in the crystal structure.A3 The 

solvent mask removed a total of 303 electrons in the unit cell which corresponds to fourteen molecules of 

MeCN in the unit cell (3 ~ 4 per asymmetric unit). 
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 [(L4.1)2Cu3(SO4)](ClO4)4. In this molecule the sulfate anion was disordered (pointing “up and down” with 

respect to the “Cu3” plane).  This disorder was modelling over two sites using the PART instruction and 

assigned its own free variable and the need for any other restrains was not required. However, the disorder 

of the perchlorate anions was more significant and the PART instruction along with DELU, SIMU and ISOR 

restrains was used in the lest-squares refinement.  

[(L4.1)2Cu4(IO6)(H2O)2](ClO4)4. In this molecule all the perchlorate anions were either rotationally and 

positionally disordered and these were modelled over two sites using the PART instruction and assigned 

their own free variable. These anions had to be restrained with DELU, SIMU, ISOR and SADI in the lest-

squares refinement. Also present was solvent disorder that despite attempts could not be successfully 

modelled and as a result the diffuse electron density was removed using the solvent mask facility in Olex2, 

resulting in voids in the crystal structure.A3 The solvent mask removed a total of 397 electrons in the unit 

cell which corresponds to twelve molecules of MeCN and H2O in the unit cell (~ 2 per asymmetric unit). 

[(L4.1)2Cu3(CO3)](ReO4)(CF3SO3)3. In this structure one of the triflate anions displayed disorder and these 

were modelled over two sites using the PART instruction and assigned their own free variable. These anions 

had to be restrained with DELU, SIMU, ISOR and SADI in the lest-squares refinement. Also present was 

solvent disorder that despite attempts could not be successfully modelled and as a result the diffuse electron 

density was removed using the solvent mask facility in Olex2, resulting in voids in the crystal structure.A3 

The solvent mask removed a total of 92 electrons in the unit cell which corresponds to four molecules of 

MeCN in the unit cell (1 per asymmetric unit). 

[(L4.1)2Cu3(CO3)](CF3SO3)4. In this molecule the carbonate anion was disordered (pointing “up and down” 

with respect to the “Cu3” plane).  This disorder was modelling over two sites using the PART instruction 

and assigned its own free variable and the need for any other restrains was not required. Furthermore, two 

of the triflate anions displayed disorder and these were modelled over two sites using the PART instruction 

and assigned their own free variable. These anions had to be restrained with DELU, SIMU, ISOR and SADI 
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in the lest-squares refinement. Also present was solvent disorder that despite attempts could not be 

successfully modelled and as a result the diffuse electron density was removed using the solvent mask 

facility in Olex2, resulting in voids in the crystal structure.A3 The solvent mask removed a total of 83 

electrons from the unit cell which corresponds to four molecules of MeCN in the unit cell (1 per asymmetric 

unit). 

[(L4.1)2Cu3(PO4)](NO3)3. In this molecule the four nitrate anions were extensive disordered compounded by 

the high symmetry of the structure (tetragonal R-3c with the anions lying on special positions) despite 

attempts, modelling of this disorder was unsuccessful. As a result, the diffuse electron density was removed 

using the solvent mask facility in Olex2, resulting in voids in the crystal structure.A3 The solvent mask 

removed a total of 1369 electrons from the unit cell which corresponds to two nitrate counter ions and four 

molecules of MeCN in the asymmetric unit. 

[(L4.1)2Cu3(AsO4)](ClO4)3. In this molecule one of the perchlorate anions was disordered over two positions 

and was modelled over two sites using the PART instruction and assigned its own free variable. This and 

other anions were constrained using DELU, SIMU, ISOR and SADI in the lest-squares refinement. It also 

contained several poorly defined acetone and water molecules which were constrained using the same 

commands. Also present was solvent disorder that despite attempts could not be successfully modelled and 

as a result the diffuse electron density was removed using the solvent mask facility in Olex2, resulting in 

voids in the crystal structure.A3 The solvent mask removed a total of 174 electrons from the unit cell which 

corresponds to four molecules of Me2CO and H2O in the unit cell. 

[(L4.1)2Cu3(SeO3)](BF4)4. In this molecule some of the anions and acetonitrile molecules showed minor 

disorder and were constrained with DELU, SIMU, ISOR and SADI in the lest-squares refinement. Also 

present was solvent disorder that despite attempts could not be successfully modelled and as a result the 

diffuse electron density was removed using the solvent mask facility in Olex2, resulting in voids in the 
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crystal structure.A3 The solvent mask removed a total of 173 electrons from the unit cell which corresponds 

to five molecules of MeCN and H2O in the unit cell. 

[(L4.1)4Cu8(SeO3)4](ClO4)8. This molecule showed extensive disordered compounded by the high symmetry 

of the structure (tetragonal P-4n2 with the anions lying on special positions) despite attempts, modelling of 

this disorder was unsuccessful. As a result, the diffuse electron density was removed using the solvent mask 

facility in Olex2, resulting in voids in the crystal structure.A3 The solvent mask removed a total of 450 

electrons from the unit cell which corresponds to four perchlorate counter ions and sixteen molecules of 

MeCN in the unit cell. Furthermore, DELU, SIMU and ISOR constraints were applied to most of the atoms 

in an effort to make the thermal ellipsoids acceptable.  

In the above molecules the solvent mask was only applied once the gross structure had been determined, 

refined. made anisotropic and hydrogen atoms added. Despite the removal of diffuse electron density, the 

gross molecular connectivity can be established and the structures (and their hosts) are also confirmed by 

ESI-MS. 

Compound [(L4.1)2Cu3(BF4)](BF4)5·3.

5 MeNO2 

[(L4.1)2Cu3(Br)](BF4)5·4 

MeNO2 

[(L4.1)2Cu3(SiF6)](BF4)4·0.

52 (C4H8O2), 1.48(C 

H3NO2) 

[(L4.1)2Cu3(PO4)](ClO4)3·4 

MeCN 

[(L4.1)2Cu3(VO4)](ClO4)3·

4 MeCN 

Formula C63.5H60B5.65Cl0.34Cu3F22.34 

N23.5 O7 S6 

C64H72B5BrCu3F19N24O8 

S6 

C63.56H68.61B4Cu3F22N21.47 

O4S6Si 

C68H60Cl3Cu3N24O16PS6 C68H66Cl3Cu3N24O16S6V 

M 2145.26 2183.47 2069.87 1989.70 2015.77 

Crystal system Triclinic Monoclinic Triclinic Triclinic Triclinic 

Space group P -1 C2/c P -1 P -1 P -1 

a (Å) 13.156(5) 25.334(8) 14.9489(13) 14.9477(11) 14.953(4) 

b (Å) 15.680(6) 22.176(6) 15.1172(13) 16.0425(13) 16.095(5) 

c (Å) 24.086(10) 15.524(4) 21.1264(19) 19.8313(15) 19.853(7) 

α (˚) 75.379(17) 90 88.987(3) 79.370(3) 79.521(12) 

β (˚) 81.832(17) 103.559(15) 89.129(3) 81.053(2) 81.124(16) 

γ (˚) 77.762(11) 90 62.359(2) 62.975(2) 63.092(9) 

V (Å3) 4678(3) 8478(4) 4228.6(7) 4149.6(6) 4176(2) 

Z 2 4 2 2 2 
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ρcalc (Mg cm-1) 1.5229 1.7104 1.6255 1.592 1.6032 

F(000) 2164.3088 4416.2861 2099.5673 2026 2059.7709 

Crystal 

dimensions 

(mm) 

0.18, 0.16, 0.12 0.15, 0.15, 0.1 0.2, 0.15, 0.1 0.21, 0.15, 0.02 0.25, 0.15, 0.05 

Reflections 

measured 

111659 54547 125042 130503 107901 

Range 1.96 ≤ θ ≥ 28.43˚ 2.28 ≤ θ ≥ 30.10˚ 2.44 ≤ θ ≥ 29.13˚ 2.362 ≤ θ ≥ 33.179˚ 2.36 ≤ θ ≥ 29.67˚ 

hkl range 

indices 

-17 ≤ h ≥ 13, -20 ≤ k ≥ 20, 

-32≤ l ≥ 39 

-35 ≤ h ≥ 35, -21  ≤ k ≥ 

31, -21 ≤ l ≥ 21 

-20 ≤ h ≥ 20, -20  ≤ k ≥ 

20, -20 ≤ l ≥ 28 

-22 ≤ h ≥ 22, -24  ≤ k ≥ 

24, -30 ≤ l ≥ 30 

-20 ≤ h ≥ 20, -22  ≤ k ≥ 

22, -27 ≤ l ≥ 27 

No independent 

reflections 

23323 12426 22638 31584 23313 

Reflections 

with I > 2σ(I) 

12498 9547 15471 19141 16126 

Rint 0.1048 0.0733 0.0711 0.0858 0.0843 

Final R1 values 0.0789 0.0782 0.0768 0.0693 0.0509 

Final wR(F2) 

values 

0.1912 0.2008 0.1987 0.1315 0.1141 

Final R1 values 

(all data) 

0.1635 0.1025 0.1207 0.1362 0.0903 

Final wR(F2) 

values (all data) 

0.2278 0.2160 0.2280 0.1540 0.1328 

GOF 1.2094 1.0632 1.0915 1.031 1.0607 

Refined 

parameters 

1320 638 1269 1109 1111 

Restraints 197 54 160 0 0 

Largest peak 

and hole (e Å-3) 

3.3750, -2.4807 2.4970, -1.3947 1.7354, -1.2316 1.266, -1.021 1.6442, -1.3546 
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Compound [(L4.1)2Cu3(WO4)](ClO4)4 [(L4.1)2Cu3(CrO4)](BF4)4·3 

MeCN 

[(L4.1)2Cu3(SO4)](ClO4)4·4

.5 MeCN·0.85H2O 

[(L4.1)2Cu4(IO6)(H2O)2] 

(ClO4)4 

[(L4.1)2Cu3(I)](ClO4)3·4 

MeCN 

Formula C60H60Cl4Cu3N20O20S6W C66H66B4CrCu3F16N23O4S6 C69.09H65.25Cl4Cu3N24.55 

O20.85 S7 

C60H64Cl4Cu4IN20O24S6 C68H60Cl5Cu3IN24O20S6 

M 2089.95 2027.71 2130.01 2139.64 2220.58 

Crystal system Monoclinic Triclinic Monoclinic Monoclinic Triclinic 

Space group P 21/c P -1 P 21/n C 2/c P -1 

a (Å) 25.855(2) 14.921(6) 15.2049(11) 33.708(9) 14.7974(11) 

b (Å) 23.7175(17) 15.106(5) 23.4075(18) 14.206(5) 15.4462(11) 

c (Å) 15.1389(12) 20.643(7) 25.936(2) 35.38(1) 20.6490(15) 

α (˚) 90 87.552(17) 90 90 78.763(2) 

β (˚) 104.216(3) 88.69(2) 104.615(3) 97.321(10) 73.428(2) 

γ (˚) 90 62.396(14) 90 90 74.487(2) 

V (Å3) 8999.1(12) 4120(3) 8932.2(12) 16804(9) 4322.7(6) 

Z 4 2 4 8 2 

ρcalc (Mg cm-1) 1.5425 1.6345 1.5838 1.7110 1.7059 

F(000) 4188.3112 2057.1597 4353.4212 8733.7297 2239.0228 

Crystal 

dimensions 

(mm) 

0.18, 0.15, 0.05 0.21, 0.15, 0.12 0.2, 0.2, 0.08 0.16, 0.12, 0.08 0.15, 0.1, 0.05 

Reflections 

measured 

125553 105202 147655 74822 129016 

Range 1.9 ≤ θ ≥ 30.03˚ 1.84 ≤ θ ≥ 32.60˚ 1.77 ≤ θ ≥ 30.65˚ 1.9 ≤ θ ≥ 29.16˚ 1.76 ≤ θ ≥ 29.57˚ 

hkl range 

indices 

-36 ≤ h ≥ 36, -33  ≤ k ≥ 

21, -21 ≤ l ≥ 21 

-22 ≤ h ≥ 22, -22  ≤ k ≥ 

22, -31 ≤ l ≥ 31 

-21 ≤ h ≥ 21, -33  ≤ k ≥ 

33, -37 ≤ l ≥ 37 

-46 ≤ h ≥ 38, -19  ≤ k ≥ 

19, -47 ≤ l ≥ 48 

-20 ≤ h ≥ 20, -21  ≤ k ≥ 

21, -28 ≤ l ≥ 28 

No independent 

reflections 

26280 29883 27469 22567 24252 

Reflections 

with I > 2σ(I) 

17123 21846 18054 13664 16099 

Rint 0.0542 0.0572 0.0747 0.0906 0.0892 

Final R1 values 0.0715 0.0746 0.0890 0.0914 0.0582 

Final wR(F2) 

values 

0.1959 0.1870 0.1727 0.1748 0.1264 

Final R1 values 

(all data) 

0.1116 0.1054 0.1403 0.1561 0.1063 

Final wR(F2) 

values (all data) 

0.2392 0.2053 0.1964 0.2004 0.1502 

GOF 1.0959 1.0736 1.0956 1.0778 1.0685 
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Refined 

parameters 

1110 1110 1341 1186 1163 

Restraints 143 116 122 271 109 

Largest peak 

and hole (e Å-3) 

5.6704, -1.7987 4.4765, -1.5728 1.6572, -2.1582 2.8289, -3.6428 1.4330, -1.8615 

Compound [(L4.1)2Cu3(CO3)](ReO4)(

CF3SO3)3·MeCN·1.63H2O 

[(L4.1)2Cu3(CO3)](CF3SO3

)4·MeCN·2H2O 

[(L4.1)2Cu3(PO4)](NO3)3 [(L4.1)2Cu3(AsO4)](ClO4)3·

2.5 Me2CO·2.5H2O 

[(L4.1)2Cu3(SeO3)](BF4)4 

Formula C66H62Cu3F9N21O17.63ReS9 C67H67Cu3F12N21O17S10 C60H60Cu3N20O4PS6 C67.5H60AsCl3Cu3N20 

O20.4S6 

C60H60Cu3N20O3S6Se 

M 2267.82 2177.69 1539.27 2042.36 1951.19 

Crystal system Monoclinic Monoclinic Trigonal monoclinic triclinic 

Space group P 21/c P 21/c R -3 c C2/c P -1 

a (Å) 13.839(3) 14.087(4) 20.5142(11) 28.317(7) 15.161(6) 

b (Å) 30.189(7) 30.726(8) 20.5142(11) 21.627(5) 16.932(6) 

c (Å) 21.106(4) 20.559(6) 76.264(5) 29.605(7) 17.887(7) 

α (˚) 90 90 90 90 85.721(16) 

β (˚) 100.683(7) 100.050(12) 90 109.323(10) 77.024(18) 

γ (˚) 90 90 120 90 80.146(14) 

V (Å3) 8665(3) 8762(4) 27795(3) 17109(7) 4405(3) 

Z 4 4 12 8 2 

ρcalc (Mg cm-1) 1.7382 1.6507 1.1035 1.5857 1.471 

F(000) 4539.2631 4439.3135 9504.8186 8304.2087 1969.3 

Crystal 

dimensions 

(mm) 

0.2, 0.18, 0.09 0.2, 0.17, 0.15 0.2, 0.15, 0.05 0.1. 0.1, 0.05 0.1, 0.15, 0.05 

Reflections 

measured 

88102 147367 61331 93578 23591 

Range 2.05 ≤ θ ≥ 32.54˚ 2.10 ≤ θ ≥ 31.51˚ 2.14 ≤ θ ≥ 28.38˚ 2.27 ≤ θ ≥ 30.58˚ 1.86 ≤ θ ≥ 29.13˚ 

hkl range 

indices 

-20 ≤ h ≥ 19, -45  ≤ k ≥ 

45, -31 ≤ l ≥ 29 

-20 ≤ h ≥ 20, -45  ≤ k ≥ 

45, -30 ≤ l ≥ 28 

-19 ≤ h ≥ 27, -27  ≤ k ≥ 

20, -102 ≤ l ≥ 78 

-40 ≤ h ≥ 40, -30  ≤ k ≥ 

27, -42 ≤ l ≥ 37 

-20≤ h ≥20, -23≤ k ≥23,  -

24≤ l ≥24 

No independent 

reflections 

31266 29162 7715 26160 23591 

Reflections 

with I > 2σ(I) 

19608 17712 5317 16477 14480 

Rint 0.0519 0.0786 0.0971 0.0671 0.0823 

Final R1 values 0.0659 0.0715 0.0578 0.0631 0.0785 
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Final wR(F2) 

values 

0.1572 0.1522 0.1468 0.1421 0.2040 

Final R1 values 

(all data) 

0.1171 0.1312 0.0863 0.1178 0.1315 

Final wR(F2) 

values (all data) 

0.1835 0.1798 0.1630 0.1683 0.2361 

GOF 1.0452 1.0673 1.0353 1.0724 1.0765 

Refined 

parameters 

1184 1316 283 1150 1073 

Restraints 160 121 0 109 75 

Largest peak 

and hole (e Å-3) 

3.9184, -2.7441 2.6514, -1.5291 0.8145, -0.8660 1.4184, -1.1571 2.9130, -1.2638 

Compound [(L4.1)4Cu8(SeO3)4](ClO4)8 [(L4.1)2Cu3(S203)](ClO4)4 Tris-thiourea (2) 

Formula C120H120Cu8N40O12S12Se4 C68H57Cl4Cu3N24O19S8 C9H21N7S3 

M 4088.25 2103.34 323.51 

Crystal system tetragonal triclinic monoclinic 

Space group P -4 n 2 P -1 P 21/c 

a (Å) 18.797(6) 14.656(7) 16.8002(10) 

b (Å) 18.797(6) 15.429(6) 9.2255(7) 

c (Å) 25.951(8) 22.006(8) 9.8307(6) 

α (˚) 90 87.120(13) 90 

β (˚) 90 75.47(2) 102.387(2) 

γ (˚) 90 71.956(16) 90 

V (Å3) 9170(5) 4578(3) 1488.19(17) 

Z 2 2 4 

ρcalc (Mg cm-1) 1.481 1.5257 1.444 

F(000) 4119.0 2142.0018 688 

Crystal 

dimensions 

(mm) 

0.15, 0.12, 0.05 0.1, 0.1, 0.05 0.2, 0.2, 0.15 

Reflections 

measured 

47003 127949 10664 

Range 2.19 ≤ θ ≥ 27.02 2.30 ≤ θ ≥ 29.12 2.53 ≤ θ ≥ 30.46 

hkl range 

indices 

-25≤ h ≥24, -22≤ k ≥22,  -

29≤ l ≥34 

-20≤ h ≥20, -21≤ k ≥21, -

30≤ l ≥30 

-22≤ h ≥22, -10≤ k 

≥12, -11≤ l ≥13 
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Figure 6.3.1.  X-ray structure of structure of [(L4.1)2Cu3(PO4)](NO3)3. Thermal ellipsoids shown at the 50% probability level. 

Selected hydrogen atoms and anions omitted for clarity. X-ray structure described but not shown in manuscript. 

 

No independent 

reflections 

11299 24532 3994 

Reflections 

with I > 2σ(I) 

6380 16573 2832 

Rint 0.0865 0.0664 0.0619 

Final R1 values 0.0757 0.0591 0.0624 

Final wR(F2) 

values 

0.1811 0.0987 0.0951 

Final R1 values 

(all data) 

0.1488 0.1357 0.1809 

Final wR(F2) 

values (all data) 

0.2147 0.1552 0.1605 

GOF 1.1714 1.0615 1.077 

Refined 

parameters 

506 1163 172 

Restraints 327 12 0 

Largest peak 

and hole (e Å-3) 

-1.0092, 1.3074 -1.3199, 2.4711 -0.759, 0.839 
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