
University of Huddersfield Repository

Dutta, Dhrubajyoti

Estimation of Chaos Function for the Implementation of High-Resolution Measurement System

Original Citation

Dutta, Dhrubajyoti (2018) Estimation of Chaos Function for the Implementation of High-
Resolution Measurement System. Doctoral thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/34856/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Estimation of Chaos Function for the

Implementation of High-Resolution

Measurement System

Dhrubajyoti Dutta

A thesis submitted to the University of Huddersfield in

partial fulfilment of the requirements for

the degree of Doctor of Philosophy

May 2018

1

ABSTRACT

The use of chaotic maps as measurement system or as a signal quantisation unit

in analogue to digital converters (ADC) is a fairly modern approach. Compared

to existing ADC architectures, chaotic systems are advantageous because these

are simple mathematical functions and can be implemented physically involving

less components. Additionally, unique symbolic identities corresponding to an

input value (initial condition) can be generated iteratively through the dynamics,

thus simplifying the design complexities.

For the application of signal measurement system, the chaotic function tent map

(TM) is found to be the suitable candidate, as dense distribution of points within

the state-space can be realised from the dynamics. However, a significant issue

that may arise while implementing the TM electronically is that, it is difficult to

maintain the parameter of the map at the ideal value due to component

imprecisions. When the map parameter is reduced, the dynamics is distorted from

the ideal behaviour; hence estimating the initial condition from the symbols

become difficult. If the knowledge of the non-ideal parameter is available, then

the actual initial condition can be recovered. Hence, it becomes essential to

determine the non-ideal parameter from the available dynamics.

In this work, two different approaches have been proposed for the parameter

estimation of the TM. The first approach is realised from the symbolic dynamics

of the TM in which the sequence corresponding to the map maximum is searched

over a symbolic time series, and a difference equation is realised in terms of the

map parameter. The second method is based on the identification of the map

fixed-point through the noisy dynamics of the TM. It has been discovered that

unique crossovers appear within the noisy samples and the information of the

map fixed-point is preserved through those crossovers. The proposed methods

have been broadly analysed through mathematical simulations and graphical

results. The approaches deliver parameter estimates with errors below 1% and

using short length trajectories as low as 200 iterations. This development can

benefit accurate estimation of initial condition from the non-ideal dynamics and

therefore may be considered as a step forward in the development of chaos-based

measurement systems and chaotic ADCs. The study and the proposed estimation

methods can also be utilised in other areas of applications such as communication

and encryption, where parameter estimation of the chaotic functions is one of the

prime requirements.

2

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my supervisor Dr. Peter Mather

whose constant guidance and support, which was not always limited to

academics, has been priceless. His patience and encouragement have been

indispensable throughout the research as well as its documentation. I would also

like to thank Dr. Violeta Holmes for her support and advice throughout my time

at the university. Alongside my supervisors, Prof. Soumitro Banerjee of IISER,

Kolkata, has been an invaluable source of guidance and for that, I would like to

express my deepest gratitude and appreciation.

I have been lucky enough to work with some amazing people, including Dennis

Town, whose friendship has often extended beyond the call of duty, and I feel

truly blessed to have known him. Also, I am thankful to David Bray and Martin

Webster for being indispensable whenever I was toiling in the labs. I would also

like to thank Chris Sentance and everyone else at the Research Office for their

constant support during my PhD.

I would also like to thank my friends and colleagues who kept the spirits up

during this journey. In particular, I thank Rajlaxmi Basu, for the many hours

spent over crucial yet interesting discussions. I also thank David Upton, Jan

Berkenbusch and Michael Agolom for being the wonderful friends and

colleagues that they are. I thank Debkumar Basu for the banter, for being an

amazing friend in such a short time and for keeping me sane, especially over the

last couple of months. Finally, I would like to thank my parents, Tapan and

Swapna for keeping up with me and for their relentless support throughout, but

not limited to, the PhD.

3

TABLE OF CONTENTS
Abstract .. 1

Acknowledgement... 2

List of figures ... 7

List of tables ... 10

List of Publications ... 11

List of abbreviations and acronyms ... 12

1 Introduction ... 13

1.1 Chaotic Measurement System: An Overview 16

1.2 Aims & Objectives .. 20

1.2.1 Realising the Dynamics of TM Over Various Parameters 20

1.2.2 Realising Symbolic Correspondence with the TM Parameter 21

1.2.3 Studying the Behaviour of the TM Fixed Point 21

1.2.4 Investigating the Noisy Dynamics of TM 21

1.2.5 Determining the Methods to Estimate the Parameter 22

1.3 Original Contributions ... 22

1.4 Organisation .. 23

2 Background Literature Review .. 25

2.1 Measurement Theory ... 25

2.1.1 Accuracy, Precision and Resolution .. 26

2.2 Analogue to Digital Conversion... 28

2.3 Chaotic Dynamics and Definitions... 32

4

2.4 Chaotic Maps .. 35

2.4.1 Logistic Map .. 36

2.4.2 Bitshift Map ... 38

2.4.3 Tent Map .. 40

2.5 Properties of Tent Map .. 42

2.5.1 Maximum and Minimum of TM Trajectories 45

2.5.2 Symbolic Dynamics of TM ... 49

2.5.3 Symbolic Representation of the State Space.................................. 50

2.6 Symbolic Shifting Window .. 56

2.7 Kneading Theory: Symbolic Maximum and Minimum 58

3 Chaos based signal measurement ... 61

3.1 Basic Challenges ... 61

3.1.1 Parametric Reduction of the TM ... 62

3.1.2 Impact on Initial Condition Estimation ... 64

3.1.3 Dynamical Behaviour Affected by Noise 67

3.2 Parameter Estimation: Current Techniques & Limitations 74

4 Parameter Estimation Methods .. 78

4.1 Parameter Estimation: Kneading Sequence Approach 78

4.1.1 Proposed Kneading Sequence Search Algorithm 79

4.2 Parameter Estimation from Noisy Dynamics of TM 83

4.2.1 The Algorithm: Parameter Estimation from Noisy Trajectories 87

5

5 Results: Parameter Estimation ... 91

5.1 Results: Kneading Sequence Search Algorithm 92

5.2 Results: Parameter Estimation from Noisy Dynamics 100

6 Conclusion and Future Scopes ... 113

6.1 Future scopes ... 115

6.1.1 Chaotic Measurement System Implementation 116

6.1.2 Applications of Chaos in Encryption ... 119

References .. 121

Appendix 1: Publications .. 129

Appendix 1.1 ... 130

Appendix 1.2 ... 131

Appendix 2: MATLAB Codes ... 132

Appendix 2.1: Logistic Map (LM) ... 133

Appendix 2.2: LM Bifurcation Diagram .. 135

Appendix 2.3: Bitshift Map (BM) .. 136

Appendix 2.4: BM Bifurcation Diagram .. 138

Appendix 2.5: Tent Map (TM) .. 140

Appendix 2.6: TM Bifurcation Diagram .. 142

Appendix 2.7: TM Cobweb Diagrams ... 144

Appendix 2.8: GON for TM .. 147

Appendix 2.9: TM Shifting Window.. 150

6

Appendix 2.10: Kneading Sequence Method (single input) 154

Appendix 2.11: Kneading Sequence Method (full dataset) 158

Appendix 2.12: Crossover Method (single input) ... 163

Appendix 2.13: Crossover Method (full dataset) .. 167

7

LIST OF FIGURES

Fig. 1.1 Analogue signal detection using ADC ... 14

Fig. 1.2 Fundamental block diagram of chaotic ADC 17

Fig. 2.1 Reducing the step size improves resolution ... 29

Fig. 2.2 Logistic Map ... 36

Fig. 2.3 Bifurcation diagram of Logistic Map ... 37

Fig. 2.4 Bitshift Map .. 39

Fig. 2.5 Bifurcation diagram of Bitshift Map .. 39

Fig. 2.6 Tent Map... 40

Fig. 2.7 Bifurcation diagram of Tent Map .. 41

Fig. 2.8 Fixed point of the ideal TM ... 43

Fig. 2.9 𝑥𝑓 moves along the map diagonal as the parameter is altered 44

Fig. 2.10 Change of 𝑥𝑓 with respect to the parameter 45

Fig. 2.11 Cobweb diagram for µ = 0.8; 𝑥0 = 0.000124 46

Fig. 2.12 Cobweb diagram for µ = 0.8; 𝑥0 = 0.823 ... 47

Fig. 2.13 Maximum and minimum of a trajectory with μ = 0.8 47

Fig. 2.14 The dynamical attractor I′ for a parameter µ < 1 48

Fig. 2.15 Maximum and minimum over parameter ... 49

Fig. 2.16 Symbolic correspondence to the intervals of the state space 51

Fig. 2.17 Fractal structure of symbolic codes ... 54

Fig. 2.18 Shifting window mechanism and obtaining GON 57

Fig. 2.19 Trajectories recreated through GON of shifting window 58

Fig. 3.1 Altered dynamics due to reduction in parameter value 63

Fig. 3.2 Partitions get shifted generating asymmetrical intervals 63

file:///F:/PhD%20Chaos%202014-2018/Personal%20work/My%20work/1.%20Thesis/Corrections/Corrected%20versions/DD_Thesis_corrV5.docx%23_Toc532282334

8

Fig. 3.3 GON estimation with reduced parameter ... 65

Fig. 3.4 Noise affected TM iterations in a feedback mode 68

Fig. 3.5 Dynamics of TM affected by noise in every stage of iteration 69

Fig. 3.6 Divergent noisy trajectories of an initial condition 70

Fig. 3.7 Noisy trajectories with SNR = 30 dB ... 71

Fig. 3.8 Bifurcation diagrams of noise-free and noise affected tent map 72

Fig. 4.1 Operation of shifting window and determining GON of each shift 80

Fig. 4.2 Crossovers around xf = 0.6226 for µ = 0.825 84

Fig. 4.3 Crossovers around 𝑥𝑓 = 0.5745 for µ = 0.625 85

Fig. 4.4 Mapping within the state space .. 86

Fig. 4.5 Selection of the iterates to determine the intersections 88

Fig. 4.6 Assignment of coordinates to the selected samples 89

Fig. 5.1 The equation build-up: differences added to GON(𝒦) 95

Fig. 5.2 Estimated parameter values for different parametric conditions 96

Fig. 5.3 Percentage error in parameter estimation ... 97

Fig. 5.4 Estimated parameter for all initial conditions 98

Fig. 5.5 Relationship between estimation accuracy and window size 100

Fig. 5.6 Distribution of 𝑌𝑘solutions between n = 16 and 17 101

Fig. 5.7 Distribution of 𝑌𝑘 solutions between n = 20 and 21 102

Fig. 5.8 The mean 𝑌𝑛 of crossover points (black-square legend) 103

Fig. 5.9 Fixed point crossover estimates for SNR 30dB 104

Fig. 5.10 Estimated parameter error bar plot for µ = 0.95 106

Fig. 5.11 Estimated parameter error bar plot for µ = 0.90 106

Fig. 5.12 Estimated parameter error bar plot for µ = 0.85 107

Fig. 5.13 Estimated parameter error bar plot for µ = 0.80 107

9

Fig. 5.14 Estimated parameter error bar plot for µ = 0.75 108

Fig. 5.15 Estimated parameter for all inputs (SNR = 20 dB) 109

Fig. 5.16 Estimated parameter for all inputs (SNR = 25 dB) 110

Fig. 5.17 Estimated parameter for all inputs (SNR = 30 dB) 110

Fig. 6.1 Functional block diagram of the measurement system [24] 117

10

LIST OF TABLES

Table 2.1 Correspondence between intervals and symbolic sequence 52

Table 3.1 Sequences generated with µ = 1and µ < 1 .. 64

Table 5.1 Shifting window of 12-bit operated over symbolic sequence 93

Table 5.2 Obtaining Kneading sequence 𝒦 from 𝑆max.. 93

Table 5.3 Kneading sequence .. 94

11

LIST OF PUBLICATIONS

1. Parameter Estimation for 1D PWL Chaotic Maps Using Noisy Dynamics

Reference

Dutta, D., Basu, R., Banerjee, S., Holmes, V., & Mather, P. (2018). Parameter

estimation for 1D PWL chaotic maps using noisy dynamics. Nonlinear

Dynamics, 94(4), 2979-2993.

Personal contributions

• The effect of dynamical noise on discrete chaotic timeseries

• Immergence of crossovers within a collection of timeseries when linear

constructions were applied between consecutive iterates

• Correspondence between the crossovers and the chaotic map fixed point

• Statistical estimation of the crossover concentration from the collection of

sampled trajectories - to estimate the fixed point and map parameter

2. An Algorithmic Approach for Signal Measurement Using Symbolic

Dynamics of Tent Map

Reference

Basu, R., Dutta, D., Banerjee, S., Holmes, V., & Mather, P. (2018). An

Algorithmic Approach for Signal Measurement Using Symbolic Dynamics of

Tent Map. IEEE Transactions on Circuits and Systems I: Regular Papers , 65(7),

2221-2231.

Personal contributions

• Realising the behaviour of map maximum and minimum (dynamical

attractor) under varied parametric conditions

• Correspondence between the Kneading sequence and symbolic codes of map

maximum and minimum

• Application of the Kneading theory to determine the map parameter

12

LIST OF ABBREVIATIONS AND ACRONYMS

ΔΣ Delta Sigma

1D One dimensional

2D Two dimensional

3D Three dimensional

ADC Analogue to digital converter

AWGN Additive white Gaussian noise

BM Bitshift (Bernoulli) map

DAC Digital to analogue converter

GON Gray ordering number

LM Logistic map

LSB Least significant bit

MSB Most significant bit

PWL Piecewise linear

S/H Sample and hold

SAR Successive approximation register

SNR Signal to noise ratio

TM Tent map

Vdac DAC output voltage

Vin Input voltage

Vref Reference voltage

XOR Exclusive OR

13

1 INTRODUCTION

Measurement play a vital role in scientific disciplines to acquire better

understanding of the behaviour of nature and engineering systems. Collecting

observations from scientific experiments, monitoring and exercising control over

engineering applications, involve exhaustive measurement of some physical

quantity. Due to the growing needs of performance, it is a prerequisite for the

measurement systems to be capable of extracting information with greater levels

of accuracy. An efficient measurement system involves several precision

components and techniques that deliver the desired degree of accuracy.

The most salient stages of instrumentation that a standard measurement system

comprises are the sensing elements (sensors), signal conditioning stage and

analogue to digital converters (ADC) [1]. Sensors are typically used to detect

changes in physical quantities in the form of electrical signals, and range over

different types, catering to a number of different applications. To improve the

quality of the sensed signal, conditioning elements e.g. amplifiers and filters are

included in the intermediary stage between the sensor and ADC.

Data acquisition and instrumentation systems rely upon good quality ADCs to

digitise the sensor signal so that the measured information can be stored and

processed in the computation domain [1]. The ADC therefore, is regarded as a

significant component in a measurement system. Several essential stages are

involved in signal digitisation (illustrated in Fig. 1.1) that include detecting

(sampling) an input voltage signal and comparing it with a fixed known reference

which is often referred to as quantisation; the compared signal is then assigned a

digital value (binary: 1 or 0) depending on whether the input signal has crossed

14

certain reference threshold or not. This results in the successful conversion of an

analogue signal to its digital equivalent [2].

Fig. 1.1 Analogue signal detection using ADC

There are a wide range of ADCs available with different architectures that

depend on the performance need and the kind of application for which it is to be

dedicated. Flash [3], delta-sigma (ΔΣ) [4], successive approximation (SAR) [5],

pipelined [6], and modified flash [7] type ADCs are primarily the widely popular

architectures. None of these ADCs, however, completely outmatch the other,

since each type of architecture shows certain advantages over the other. As

reported by Walden et al. [8] there are many criteria relating to the accuracy,

speed, hardware complexity and power consumption that are applied to

benchmark the performance of ADCs. Bashir et al. have later summarised in [9],

that, there are certain trade-offs between performance, resource consumption and

cost that need to be considered while optimally choosing ADCs for different

applications. The complexity level of the ADC hardware varies from type to type

of the architectures chosen. As a result, when the ADC technologies are further

upgraded for better accuracy and resolution these trade-offs often come into play,

and therefore optimisation of performance to material cost, enhancement of

resource and power consumption is an ongoing process of development.

To optimise the accuracy and design factors of a measurement system, new

techniques are investigated. Application of chaotic functions as measurement

systems is one such new technique that was first proposed by Michael Peter

15

Kennedy in [10], where he established the significance of considering chaotic

functions as suitable quantisation units. The idea was broadly justified by the fact

that, chaotic systems are sensitive to initial conditions [11], and through a unique

correspondence to the dynamics, such systems can be utilised to realise a dense

set of points that are input to it [12], [13]. Even though the evolutionary

dynamics of chaotic functions in itself is very complex, the hardware assembly of

chaotic systems is believed to be fairly straightforward [14], [15], as such

systems are governed by simple mathematical equations and therefore

implementing these systems in hardware domain becomes resource-saving.

However successful implementation of a complete stand-alone chaotic

measurement system is still under investigation, as hardware implementation of a

mathematical function is subject to several non-idealities that affect the circuit

performance, such as noise, parameter anomalies due to drift and offsets of the

components used.

The primary issue that significantly affects the outcome of a chaos based

measurement system is with the inability to maintain ideal parametric conditions

in the implemented map function. Since the dynamical behaviour of a chaotic

system is strictly governed by the control parameter of the function [16], a slight

variation in the parameter can have a huge impact on the evolutionary dynamics

and therefore can be responsible for rendering non-ideal chaotic behaviour that

may affect the signal measurement utilising it, as was observed and stated by

Kapitaniak et al in [17] , Litovski et al in [18], and Sanjin Berberkic in [19]. This

work is therefore focussed on studying the dynamical behaviour of chaotic maps

with respect to the parametric dependencies, and investigating the methods of

estimating the non-ideal parametric value of the chaotic function such that issues

16

related to the map parameter can be addressed, and the idea of chaotic

measurement systems can be brought to reality. In the following section a brief

account of chaotic dynamics along with an overview of the measurement system

have been presented.

1.1 Chaotic Measurement System: An Overview

Chaotic dynamics is a widely studied area in the field of non-linear dynamical

and complex systems. The dynamical nature of a system can be described as time

evolution of various states under the influence of parameters that govern the

system behaviour [16]. Due to the iterative nature (feedback process) of the

evolution, the present and future states of a dynamical system depend on the

previous states, therefore a small amount of change in the initial condition or the

control parameters may lead to different outcomes and eventually causing the

dynamics to digress completely from the expected progression (set of outcomes).

Thus, the evolutionary time series (trajectories) of the system may appear to be

complex and random-like [11]-[13]. These systems are referred to as chaotic

systems which are special cases of dynamical systems that exhibit a pseudo-

random behaviour. Despite the apparent randomness, chaotic systems are

mathematically well defined and are therefore deterministic in nature. The

deterministic principles, hence, aid in estimating the past and future states from

the available information, collected over a period of time [13].

Chaotic systems have found use into various applications such as image [20] and

data [21] encryption in communication technologies where the chaotic dynamics

is used as an identifying signature corresponding to the information that is

intended to be encrypted, and can be deciphered only through the complete

17

knowledge of the chaotic function; that is, the initial condition and parameter

used as the cypher key. Also, as has been discussed earlier, chaotic dynamics

have found application in signal measurement and considered to be a pioneering

approach for analogue to digital conversion [10], [17]-[19]. The fundamental

block diagram of the envisioned chaotic ADC can be seen from Fig. 1.2.

Fig. 1.2 Fundamental block diagram of chaotic ADC

From the perspective of signal measurement, an unknown signal can be input to a

physically implemented chaotic function as the initial condition, and the

evolutionary dynamics can be generated iteratively by feeding back the outcome

of the previous time step as the input for the next iteration. Owing to the sensitive

dependence on initial conditions, the resultant dynamics produced by the chaotic

map (as an evolutionary time series) may be regarded as the evolutionary

footprint holding the key information of the corresponding originating point or

the initial condition. Also, when the dynamics is symbolically coded by assigning

binary symbols to each of the states of the time series, with respect to a defined

threshold, a unique correspondence is observed with the initial condition, as was

demonstrated by Metropolis et al. in [22].

For the digitisation of the measured signal, the symbolic sequences produced by

the chaotic functions can be of great advantage as the input signals can be

18

uniquely identified [23]. The iterative dynamics of a chaotic map may therefore

be utilised as a symbolic converter (or a quantiser). Determining an input signal

fed as an initial condition to a chaotic map is, theoretically, a straightforward

numerical exercise as long as the information regarding the dynamical time series

is available and mapping function of the chaotic system is known. However,

when chaotic maps are implemented in electronic hardware, the map parameters

are altered by the imprecision caused due to the offsets and drifts in the hardware

components and inherent noise in the electronic circuit [17], [18]. Such

parametric alterations may cause the dynamical time series to digress from the

ideal one; therefore, mapping back to the initial condition using the non-ideal

time series is difficult unless the operating map definition is fully determined in

terms of control parameter. Since a small change in the parameter value also

introduces great divergence in the dynamics, estimation of the system parameters

is necessary on the context of a measurement system.

The chaotic map that is preferred for the application of signal measurement is the

Tent Map (TM) [24]. Therefore, the parameter estimation of the TM is performed

in order to retrieve sufficient amount of information regarding dynamical

behaviour of the system, and hence is the main focus of this work. The mapping

property of TM within the state space show uniform distribution over a wide

range of parameter values, and dense collection of unique points within the state

space can be identified through the corresponding chaotic dynamics. Such

uniform chaotic distribution is established by the properties of robust chaos

described by Banerjee et al in [25].

19

Arroyo and Alvarez in [26] have proposed that the symbolic sequence produced

by the TM are Gray codes and described a straightforward technique that

involved converting the Gray codes to binary numbers and then to decimal

numbers to estimate the real valued initial condition from the generated symbolic

sequence. However, such techniques did not consider the effects of parametric

imperfections introduced by the physically implemented chaotic function.

In case of TM, when the parameter value is reduced the height of the map is

reduced causing the dynamics to digress from the desired or actual time series.

When Gray code sequences generated by the reduced height TM are directly

converted into the corresponding decimal values, it leads to an incorrect mapping

and therefore measurement accuracy is greatly affected, as observed in [18]. In

[27], some analysis has been presented on the theoretical context mentioning that

it is preferable to maintain the map parameter at ideal values. The inevitability of

the parametric reduction cannot be ignored when the map is implemented in

physical domain, as it is relevant for the case of a measurement system.

Kapitaniak et al. in [17] have also attempted to measure electrical signals in a

similar way and observed that the dynamics of the physically implemented TM is

greatly affected by the component tolerances and offsets. They have shown that,

when sequences generated by the physically implemented chaotic map are

converted to real values directly, without considering the non-idealities, the

estimated outcomes contained significant errors that prevented the outcomes to

map correctly to the actual initial condition.

Alternatively, Cong et al. in [28], have theoretically proposed that if the non-

ideal value of the map parameter is known, proper estimation of initial conditions

20

through backward tracking of the iterates over the time series can be performed

by operating inverse maps on the timeseries. A recent research [24] has also

discovered that a reduced height TM (due to non-ideal parameter) exhibits

asymmetric partitioning of the state space over the iterations and the intervals are

created in unequal sizes. It has been proposed that, in order to determine the

initial condition correctly, the non-ideal value of the parameter must be used to

determine the amount of shift in the partitions and correct interval for the initial

condition can be determined by accordingly reinstating the partitions: further

details regarding this phenomenon has been provided in Chapter 2. It is therefore

realised from the available literature that, when chaotic functions are

implemented physically, the deviation of the map parameter from the ideal values

is inevitable and must be determined in order to estimate the initial condition

with reasonable accuracy. In this work, methods have been devised to estimate

the control parameter value of the non-ideal TM that results from the physical

circuit implementation of the function. The aim of the research is detailed in the

following section, and it has been broken down into the following objectives,

which will be addressed in the upcoming chapters.

1.2 Aims & Objectives

The aim of the work is to determine the control parameter of the TM operated in

non-ideal or reduced parametric conditions. To determine the map parameter, the

following objectives must be achieved.

1.2.1 Realising the Dynamics of TM Over Various Parameters

The dynamical properties of the TM must be understood clearly over a range of

parameters. From the state space distribution of the chaotic dynamics, the

21

relationship between the map parameter and the dynamical limits namely

maximum and minimum should be observed and analysed, such that the limits

can be utilised as an indicator of the map parameter.

1.2.2 Realising Symbolic Correspondence with the TM Parameter

It is important to symbolically define the map trajectories and establish their

correspondence with the iterates and the map parameter. How partitions and

subintervals are created and shifting of partitions from the ideal positions in case

of reduced parameter should be observed in order to establish a relationship

between the symbolic sequences corresponding to the map maximum and the

minimum.

1.2.3 Studying the Behaviour of the TM Fixed Point

The non-zero fixed point of the map is where the 𝑥 = 𝑦 line intersects the map

whose value changes with the change in the parameter. As a result, identifying

the fixed point and quantifying its value can be related to the value of the map

parameter.

1.2.4 Investigating the Noisy Dynamics of TM

The dynamics of the TM needs to be further investigated considering noisy

conditions. The noisy trajectories interact uniquely with the map fixed point and

the information regarding the non-zero fixed point remains to be preserved

through the dynamics and therefore can be utilised to determine the map

parameter.

22

1.2.5 Determining the Methods to Estimate the Parameter

From the available knowledge of the TM dynamics (both symbolic and noisy

dynamics), suitable methods to estimate the map parameter must be formulated.

The proposed methods must be validated through numerical simulations and

detailed analysis of the results.

1.3 Original Contributions

In this work, a broad study has been conducted to estimate the dynamical

parameter of the tent map (TM). The observations, analysis and the estimation

methods along with the results are the original contributions made for the

development of this work and culminating into the thesis. Following are the key

contributions made in the field of dynamical systems and chaotic measurement:

• The parameter estimation method from the symbolic code of the

dynamical maximum (description published in Section IV of the article

[24]) using symbolic shifting window has been contributed.

• Further, a difference equation has been formulated from the code of the

map maximum that directly solves for the parameter. The equation is

based on the newly discovered relationship (or differences) between the

ideal and non-ideal symbolic codes in terms of the map parameter. This

contribution has been explicitly detailed in Section 4.1 of this thesis.

• Through the development of this work, the crossovers in the samples of

noisy time series have been first observed and presented in Section 3.1.3.

Also, the observations have been published in Section 3 of the article [29].

• It has also been established that the observed crossovers correspond with

the map fixed point and a method has been proposed to determine the

23

parameter from those crossovers (for details see Section 4.2). The method

has also been presented in Section 4 of the article [29].

• Original results have been produced using numerical simulations (through

MATLAB R2016b) and detailed analysis have been presented in Chapter

5. Where the estimated outcomes (parameters) proved to be promising,

using only 200 iterations (as the length of the trajectory), with errors

below 1%.

• In the noise oriented approach, the map parameter has been recovered

with such an accuracy for signal to noise ratio 15-30 dB and onwards.

1.4 Organisation

The work is organised as follows, in Chapter 2, Sections 2.1 – 2.9 the background

information regarding dynamical properties of TM have been described followed

by establishment of the symbolic dynamics and its correspondence to initial

conditions and subintervals. The chaotic distribution of the system states has

been studied in great detail and the definitions of map maximum and minimum

have been established along with the corresponding symbolic identities.

In Chapter 3, several challenges have been discussed that are encountered while

the map is implemented in physical hardware domain. The effect of parametric

reduction has been observed and studied from the perspective of initial condition

estimation. The impact of noise in the chaotic dynamics is explored and how the

properties of fixed point can still be useful for the extraction of meaningful

information have been discussed. The available knowledge regarding realising

the symbolic sequence in terms of the initial condition and parameter estimation

24

has been elaborately analysed and the inadequacies of the conventional

approaches have been identified.

In Chapter 4, some solutions to the parameter estimation problem have been

presented in the form of computing algorithms. The algorithms independently

consider both symbolic and real valued platforms for more realistic cases e.g.

noisy dynamics. The proposed algorithms have been described in detailed steps

such that in can be easily implemented in the processing domain.

In Chapter 5, the proposed algorithms and the effectiveness were analysed using

mathematical simulation and graphical results.

In Chapter 6, the work has been concluded in terms of the knowledge gained and

solutions offered to solve the problems. Also, delivering the proper

understanding considering the implementation of the techniques along with some

further proposals as future work to meet the remaining technological needs such

that the chaotic measurement system can be made possible in reality.

25

2 BACKGROUND LITERATURE REVIEW

In this chapter, the theory of measurement system is presented followed by

several ADC architectures whose design complexities and shortcomings have

been briefly discussed. Then chaotic dynamics and behaviour of chaotic maps

have been broadly discussed from the perspective of the system parameter,

delivering the insight for the realisation of suitable parameter estimation

techniques in the upcoming chapters.

2.1 Measurement Theory

A typical electronic measurement system involves a sensory device, an

amplification and signal conditioning stage, an ADC and a microprocessor. A

sensor is a material or a device that can respond to changes in the physical states

in the form of electrical signals. A wide variety of sensors are available and can

be chosen according to the type of the physical quantity to be measured. To

enhance the amplitude and quality of the sensed signal, further amplification and

conditioning stage is introduced. The signal amplification is performed by

electronic amplifiers and conditioning of any noise is performed by electronic

filters. Finally, an ADC is used to measure and quantise the analogue electrical

signal into digitised signal. Through further incorporation of microprocessors, the

digitised signal is represented numerically, stored, displayed or can be processed

for some decision making.

Measurement systems always have some errors and tolerances that are

responsible for the uncertainty in the measured quantity. Measurement

uncertainties are generally categorised into systematic and random errors. The

26

systematic errors are consistent deviations in the measurement, that occur due to

the definite causative factors such as the inaccuracies in the calibration and the

transfer function in the signal conditioning stage of the measurement systems.

The random errors are fluctuations in measurement around the actual value which

is mainly caused by induced noise in the system. There are several factors that

govern the quality of measurement which are: accuracy, precision and resolution.

2.1.1 Accuracy, Precision and Resolution

The term accuracy [1], [30] identifies how close the measured outcome is from

the actual value. The uncertainty in the measurement given by the difference

between the measured and actual values is usually dependent upon the two

sources of errors: one is the measurement error or the uncertainty in the reading,

and the other is error relative to the full scale of measurement [31]. The

measurement error is generally caused due to the tolerances of the components

used in the measurement system. This type of error can also occur during

digitisation of a signal, since tolerances in the voltage dividers might affect the

reference values, leading to deviation in the reading. The error values are

specified in percentage or parts per million (ppm). The total absolute uncertainty

(𝑇𝑜𝑡𝑎𝑙 𝐸𝑟𝑟𝑜𝑟) [1], [32] due to these errors is determined by the additive sum of

the error in the measured reading (𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟) and the 𝐹𝑢𝑙𝑙 𝑆𝑐𝑎𝑙𝑒 offset

error:

𝑇𝑜𝑡𝑎𝑙 𝐸𝑟𝑟𝑜𝑟 =
1

100
(% 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟 × 𝑅𝑒𝑎𝑑𝑖𝑛𝑔 + % 𝐹𝑢𝑙𝑙 𝑆𝑐𝑎𝑙𝑒 𝐸𝑟𝑟𝑜𝑟 ×

𝑅𝑎𝑛𝑔𝑒) , (2.1)

where 𝑅𝑒𝑎𝑑𝑖𝑛𝑔 is the absolute measured outcome, and 𝑅𝑎𝑛𝑔𝑒 is the scale within

which the measurement is to be taken. The 𝐹𝑢𝑙𝑙 𝑆𝑐𝑎𝑙𝑒 𝐸𝑟𝑟𝑜𝑟 can therefore be

27

defined as an error expressed as the percentage of full scale of measurement

range, which signifies that a reading will belong within the error

bounds ± 𝐹𝑢𝑙𝑙 𝑆𝑐𝑎𝑙𝑒 𝐸𝑟𝑟𝑜𝑟 (%) × 𝑅𝑎𝑛𝑔𝑒. The error percentage in terms of

accuracy is given by:

% 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝐸𝑟𝑟𝑜𝑟 =
𝑇𝑜𝑡𝑎𝑙 𝐸𝑟𝑟𝑜𝑟

𝑅𝑒𝑎𝑑𝑖𝑛𝑔
× 100 . (2.2)

The accuracy error can hence be treated as a systematic error caused due to the

tolerances or offsets and anomalies in the transfer function or gain in the

measurement system. Apart from offset errors, there can be other forms of

inaccuracies, for example, scaling error and nonlinearity.

Often, in technical fields, the terms accuracy and precision are used

interchangeably. However, each of these terms can be defined independently. The

random error or deviations caused by the noise in the measurement system is

indicated by the term precision [30].

The noise affecting precision are mostly thermal noise and electromagnetic

interferences in an electronic measurement system. The random noisy spectrum

exhibits a Gaussian or normal distribution when distributed over a range [1],

[30]. If a histogram is obtained from sufficient collection of random variables, a

heaped bell curve about the mean of all the random points is observed

corresponding to the peak of the curve.

The random error in the system can be removed by filtering (High pass, Low

pass, Band pass) [1] or by oversampling of a reading and averaging of the

samples, as in the practical scenarios, it is highly likely that a large set of

randomly distributed samples have its mean close to the actual signal that is

28

intended to be measured. Hence filtration and averaging techniques can be

utilised to improve precision.

Another aspect of measurement system is resolution [1], [31] which is the

smallest measure of change that can be numerically realised by the system. The

change detected by the measuring device is usually expressed as a point defined

by the number of bits within a range. Therefore, a measurable range can be

represented through steps of change that is of the smallest possible magnitude the

system can measure. Generally, the term resolution is associated while converting

the analogue signals into digital equivalent using the ADCs. Following are the

calculations to determine the resolution of a measurement system shown through

an example. Assuming a measurement system that can measure a ±5V range

(10V span) using a 16-bits A/D converter. There are up to 216 = 65536 points that

can be defined by a 16-bit digital code. Therefore, 1 part of the 65536 points

within the span of 10V, i.e. 10V ÷ 65536 = 152.5 microvolt (uV) can be detected

as the smallest size of the change or increment by a 16-bit ADC.

2.2 Analogue to Digital Conversion

Signal measurement and conditioning is predominantly performed in digital

computational systems, therefore, ADCs form the most integral block between

the analogue and digital domains. The basic principle of ADC operation is based

on comparison of the input signal with a reference, dividing the range into levels

of equidistant step size and generating an equivalent numerical value [2], [31].

The number of steps is determined by the step size or the resolution of the ADC.

Since the resolution depends on the number of bits, each step size is identi fied by

29

a combination of bits. Therefore, for an n bit ADC, the step size (Z) with

maximum input of Vref is given by equation (2.3).

𝑍 =
𝑉𝑟𝑒𝑓

2𝑛⁄ . (2.3)

As can be seen from Fig. 2.1, the small change in signal is detected by the finer

step size but not the coarse one. However, increasing the number of bits also

increases the components and therefore the complexity in the circuitry. As a

result, the conversion speed of the ADC is greatly affected. Conversion speed of

an ADC is determined by the time taken by an ADC to identify the signal level

and generate equivalent binary outcomes. The conversion speed is dependent on

the sampling frequency i.e. the number of samples collected within a second.

Fig. 2.1 Reducing the step size improves resolution

In order to avoid the loss of signal changes, the sampling frequency must always

be maintained at least twice or higher than that of the bandwidth of the input

signal. This principle is commonly referred to as Nyquist criterion [2]. Any

30

sampling at the rate less than the Nyquist rate results in void between the samples

due to the inability to register the changes between the two samples. This

phenomenon is termed as aliasing. Therefore, in order to avoid aliasing, for an

ADC with a sampling frequency fs, the signal bandwidth fB must be maintained

within half of that of fs i.e.

fB ≤ 0.5fs. (2.4)

Depending on these criteria and the resources that are used to implement an

ADC, with varying conversion times result in development of a number of

different ADC architectures, each of them prioritising a different criterion.

Following is a brief discussion of the major types of ADCs – among which the

Flash, Delta-Sigma (ΔΣ), Successive approximation register (SAR), pipeline and

the hybrid flash types are most common. The simplest and the most basic ADC is

the Flash type converters [3] in which, the resolution is determined by the

number of segments that the input signal is divided into by the voltage dividers.

Therefore, every time the resolution is increased by one bit (for n+1 bits) the

number of comparators get doubled (2n+1 comparators). Beyond 6-bits, the

number of comparators required results in significantly increased chip area,

whereas commercial devices usually require at least 8-bit conversions.

Compared to flash ADCs, ΔΣ type ADCs [4] consists of a single bit digital to

analogue converter (DAC) which acts as the Δ sub-circuit and produces a

threshold voltage level equivalent to the single bit resolution of the input. Once

the threshold is achieved, a pulse is generated; therefore, the frequency at which

the pulse is generated depends on how often the threshold value is reached.

31

The SAR [5] type ADC consists of a control register that is used to generate the

reference data on each conversion using a DAC and compared with the actual

input. Depending on comparison, the previous bit in the register is updated and

thereby the equivalent digitised data for the input signal is produced.

In a pipelined ADC [6], the conversion process is broken into several smaller

conversions. Each stage converts the outcome of the previous stage (input signal

for the first stage) into coarse grained digital equivalent. The outcome is then

scaled up and converted again through a DAC for the next stage of comparison

and the process is continued to generate the bits.

To reduce the number of preamplification units in flash ADCs, interpolating

stages [7] (more voltage dividers) are added, therefore the architecture is

regarded as hybrid flash. In order to improve the quality of the measurement, a

folding stage [33] is often included using which the input is folded into smaller

range. A combination of a coarse and a fine ADCs determines the range within

which the folded input belong and accordingly the input is digitised through this

comparison.

As can be realised from these ADC architectures, the quantisation block is

modified and combined to improve various aspects of the ADC parameters,

depending on the priority of the application. This is usually performed through

additional circuitry (like folding or interpolating) or by increasing the number of

comparators or other components like DAC, and coarse and fine ADCs. The

resolution the ADCs can only be improved at the cost of more components. As a

result, either power consumption or chip area or circuit complexity is maximised.

In order to optimise these factors, other possibilities and techniques must be

32

considered to replace the quantisation technologies that are commonly used in the

available architectures.

2.3 Chaotic Dynamics and Definitions

Chaotic maps can be chosen as a quantisation block in a measurement system

because such maps are simple mathematical functions which are easily

implemented with fewer resources. Also, in order to increase the resolution, the

same function can be operated iteratively through a feedback, without having to

redesign any additional hardware. However, given that chaotic maps are highly

sensitive to both initial states as well as map parameters, system errors

introduced by the physical implementation play a major role in the behaviour of

the map dynamics [17], [18]. Therefore, to implement a chaos-based

measurement system, an algorithmic approach must be adopted. Such algorithms

are heavily reliant on the map parameter, which must be recovered accurately in

order to successfully implement the measurement system. Given the nature of the

problem, the recovery of the map parameter becomes a pre-requisite in

developing the algorithm for signal measurement using chaotic quantisation

system.

Dynamical systems can be described by the evolution of the various states over

time under the influence of the factors that govern the system behaviour [34],

[35] and can be mathematically defined by equations. Involvement of several

factors governing the dynamics can lead to a complex behaviour whose

evolutionary states on observation may appear to be random. Chaotic systems

[11]-[13], are special cases of dynamical systems that exhibit a pseudo-random

behaviour, despite that, these systems are mathematically well defined and are

33

therefore deterministic in nature. Since the current state of a system is

responsible for the next states, evidently, all the future states retrospectively

depend on the previous states, and hence, a small amount of change in the initial

condition can lead to highly digressing or different future outcomes. The

evolutionary dynamics of chaotic systems are so sensitive to the initial condition

and the control parameter of the system that long-term predictability of the future

states depend on the precision and accuracy with which the current states are

determined [34].

Chaotic dynamics can be defined as a function f(𝑥,𝜇) of control parameter 𝜇 and

the input 𝑥 which can also be referred to as the current state. The dynamic

evolution of a chaotic system can be studied through time series representation of

the system states given by: 𝒳 = {𝑥𝑛 | 𝑛 = 0, 1, … , 𝑁 − 1} where 𝒳 is referred to

as a trajectory or the orbit of the dynamic process containing 𝑁 number of states

starting from an initial condition 𝑥0 [13]. As the future states depend on the

current state, the iterative process is of feedback type, where a single iteration of

the function is performed by inputting the outcome of the current stage 𝑥𝑛 to

determine the outcome of the next stage as given by 𝑥𝑛+1 = f(𝑥𝑛,𝜇). Hence, the

trajectory of an initial condition with 𝑁 dynamical states (or iterates) can be

represented as 𝑥0, 𝑥1, 𝑥2, …, 𝑥𝑁−1. The iterates in the trajectories can also be

mapped within a range of possible outcomes that the system can generate; such a

range is often called phase-space or state-space [13].

There are two essential criteria that are necessary for the evolutionary dynamics

to be chaotic; these are the stretching and folding operations exhibited by the

chaotic functions. The stretching behaviour of the dynamical system is

34

responsible for the evolutionary trajectories to be divergent even though two

neighbouring points are separated by very small distance between each other.

Such divergence was first analysed by Aleksandr Lyapunov, who proposed that

when two originating points are separated by a negligible distance, over an

iterative dynamical evolution, the trajectories of the two points will gradually

become divergent from each other [36], [37] since the distance of separation

between the two points will exponentially increase over iterations. The

exponential divergence is therefore analysed as a rate by which the two points

deviate from each other on every iteration and is termed as Lyapunov exponent

(λ) given by

λ = ln(|ƿ𝑛+1|/|ƿ𝑛|), (2.5)

where ƿ𝑛 is the small distance in a close neighbourhood of the actual point 𝑥𝑛

resulting into a deviation 𝑥𝑛 + ƿ𝑛.

Due to the stretching nature, the dynamical iterate given by 𝑥𝑛+1 + ƿ𝑛+1 is

diverging away from the actual 𝑥𝑛+1 when ƿ𝑛+1 > ƿ𝑛. The folding nature of the

chaotic systems plays a salient role in confining the dynamics within the state

space, as just the stretching nature alone would have caused the dynamics to

escape to infinitely incrementing trajectories. Both to the stretching and folding

nature is therefore, responsible for dense mixing of trajectories within the state

space and therefore making the dynamics sensitive to initial condition.

The mapping of the trajectories is studied both numerically and graphically for

further analysis. In the following sections more of such graphical views and

35

corresponding mathematical description of various chaotic systems have been

presented.

2.4 Chaotic Maps

Relating to the structural and dimensional features, there are several ways to

classify dynamical systems. The chaotic maps are usually classified as

unidimensional or multidimensional systems depending on the univariate or

multivariate mapping of the system states as defined by the map function. A few

of the various dimensional chaotic maps that are widely popular in the field of

dynamical systems, for instance, a three-dimensional (3D) chaotic map: Lorenz

system [34], two-dimensional (2D) chaotic maps: Hénon map [12], and one-

dimensional (1D) chaotic maps [12], [13]: Logistic Map (LM), Bitshift Map

(BM), and Tent Map (TM) that have been discussed briefly in the following parts

of this section. The 2D and 3D maps are difficult to achieve electronically

because the parametric relationships to the transfer functions are too complex to

achieve. Therefore, 1D maps are widely embraced for the simplicity and

implemented on the context of applied chaos in physical hardware.

In the following sections the properties of various 1D chaotic maps have been

broadly discussed and analysed through simulations of bifurcation diagrams, time

series plots and function plots. For these observations, the math processor

MATLAB R2016b has been used (alternatively the open source software Octave

can be used), where the programs for each observation and graphs have been

provided in the respective appendix as referred to in the sections.

36

2.4.1 Logistic Map

Out of all other chaotic maps, 1D maps in particular have gained special attention

[12], [13] because these systems exhibit the most fundamental type of chaotic

behaviour and can offer a wide level of complexity under various parametric

conditions. The majority of the 1D maps, apart from BM, are unimodal as these

maps contain a well-defined unique peak or maximum in the topological structure

e.g. LM, TM. The LM is mathematically expressed as

𝑥𝑛+1 = 4𝑟𝑥𝑛(1 − 𝑥𝑛), (2.6)

where, 𝑟 is the parameter value ranging from [0,1] that controls the height of the

map, and 𝑥𝑛 and 𝑥𝑛+1 are respectively the current and future states of the system.

The LM function (refer to Appendix 2.1 for program) is shown in Fig. 2.2.

Fig. 2.2 Logistic Map

37

The LM gained its popularity during a demographic study, when the dynamical

model of population growth was analysed by Pierre Francois Verhulst [38]. The

LM dynamical model is widely applied to understand population evolution,

species conservation, cycles in predator prey model. One of the useful ways to

study chaotic maps is to graphically plot the distribution of the function states

against the control parameters, commonly referred to as bifurcation diagram.

When parametric dependencies of a system need to be investigated, it is essential

to study the bifurcation diagram of the map [13], [16], because through these

diagrams, the mapping behaviour of the system states within the state space can

be analysed in terms of periodicities, bifurcations, chaotic distributions, and the

upper and lower limits (maximum and minimum) of the distribution against

different parametric conditions. The bifurcation diagram of LM has been shown

in Fig. 2.3 (generating program available in Appendix 2.2).

Fig. 2.3 Bifurcation diagram of Logistic Map

38

The bifurcations and windows of periodicity for a range of parameter values can

be observed. For parameter value up to 𝑟 = 0.75 the map shows a fixed-point

behaviour, periodicities can be noticed in the dynamics with intermediate chaotic

bands up to 𝑟 ≈ 0.9571 where the typical period doubling nature of the dynamics

can be clearly observed between parameters approximately 𝑟 ≈ [0.75,0.89],

forming windows of periodicity in the distribution.

The LM has also gained a lot of attention in engineering applications – e.g. chaos

control and synchronisation – and also pseudorandom number generation in

encryption and keying in the area of communication [39]. For the desired

application of measurement, the LM might not be a proper choice of the chaotic

map as for several parametric conditions the map is periodic and generation of

unique chaotic trajectories for a set of initial conditions will be difficult.

2.4.2 Bitshift Map

Also known as the Bernoulli Map, BM is a piecewise linear (PWL) 1D map

which is of type bimodal function as BM has two peaks defined over the state

space. The following is the mathematical definition of BM [13],

𝑥𝑛+1 = {
2𝜇𝑥𝑛 0 ≤ 𝑥𝑛 ≤ 𝑥𝑐

2𝜇𝑥𝑛 − 1 𝑥𝑐 < 𝑥𝑛 ≤ 1
, (2.7)

where, 𝜇 is the parameter ranging from [0,1] depicting the map height and 𝑥𝑛 and

𝑥𝑛+1 respectively are the current and future states. As can be seen from Fig. 2.4

(generated by program in Appendix 2.3), the BM has two stretching sides

separated by a midpoint 𝑥𝑐 = 0.5.

39

Fig. 2.4 Bitshift Map

Fig. 2.5 Bifurcation diagram of Bitshift Map

Fig. 2.5 is the bifurcation diagram of the BM (see Appendix 2.4 for program); it

is understood that the map dynamics, and hence chaos, produced by BM is only

40

defined for the full parameter value of 𝜇 = 1: for any parameter value 𝜇 < 1, the

dynamics will escape to negative infinity. BM therefore, might not be a suitable

map for the desired application where parameters are most likely to deviate from

the ideal values due to material challenges and errors in physical

implementations.

2.4.3 Tent Map

The other PWL 1D map is the Tent Map (TM) [16] which has received a lot of

attention for the simplicity and ease of implementation in electronic hardware

domain. The TM (generated by the program in Appendix 2.5 as shown in Fig.

2.6) is defined by a univariate dynamical quantity 𝑥 over a unit invariant interval

or the state space I = [0,1] ⊂ ℝ, such that x  I and a control parameter given by

µ  [0,1].

Fig. 2.6 Tent Map

41

The map is mathematically realised as a parametric self-mapping function T :

I→I with piecewise monotonically stretching and folding sides about a critical

point xc = 0.5 ∊ I. The iterative dynamics 𝑇(𝑥𝑛) = 𝑥𝑛+1 is defined as

𝑥𝑛+1 = 𝑇(𝑥𝑛) = {
2𝜇𝑥𝑛 0 ≤ 𝑥𝑛 ≤ 𝑥𝑐

2𝜇(1 − 𝑥𝑛) 𝑥𝑐 < 𝑥𝑛 ≤ 1
, (2.8)

where 𝑥𝑛 and 𝑥𝑛+1 respectively are the current and future states and 𝑛 is the time

step index for the dynamical states of the TM. The stretching and folding nature

of the TM causes the points in the invariant interval I ⊂ ℝ to eventually map

arbitrarily close to each other [13] and hence, dense distribution of points is

obtained over I for a wide range of parameter values. In Fig. 2.7, the bifurcation

diagram of the TM (generated by the program listed in Appendix 2.6) has been

shown for the parameter µ  (0.5,1].

Fig. 2.7 Bifurcation diagram of Tent Map

42

Unlike the LM or BM the dynamics of TM for any initial condition 𝑥0 ∊ I is

chaotic over a wide range of parameter values, and as can be verified from the

bifurcation diagram, the distribution for µ  [0.707,1], has no prominent

windows of periodicity. Such a dense distribution of the chaotic trajectories is

also known as ‘robust chaos’ [25] in which case the dynamical states are unique,

attributed by a pseudorandom behaviour with no mere repetitions or periodicities

in the trajectories. This is the reason why the TM is so widely used in the

applications like random number generation, encryption, cipher key generation in

the area of communication and image processing technologies [20], [21], [40].

For the desired scope of application in the area of measurement system, it is of

primary interest that a wide range of points must be evaluated, for which the TM

can be chosen as a suitable candidate as uniquely dense distribution of points can

be realised through the dynamics of TM.

In the following sections the properties of the TM have been further discussed in

detail to provide a clear view in the subsequent sections regarding how the map is

utilised for the intended application.

2.5 Properties of Tent Map

The iterative discrete time trajectory of an input or initial condition 𝑥0 ∊ I through

T(x0) can be defined as 𝒳 = {𝑥𝑛 | 𝑛 = 0, 1, … , 𝑁 − 1}, with 𝑁 iterates. Hence, the

dynamical properties of the TM can be described as [26]

1. x0 = T0(x0)

2. xn+1 = Tn+1(x0) = T(Tn(x0)) = T(xn)

3. T(0) = T(1) = 0

43

4. Tmax = T(xc) = 2µxc = µ ≤ 1, where Tmax is the maximum height and the

dynamic maximum of the map, for 0.5 < µ ≤ 1

5. T (Tmax) = T2(xc) ≥ 0, T(Tmax) is the dynamic minimum reached over a

long-term iteration.

6. 𝑥𝑓 = T(𝑥𝑓) = 2𝜇(1 − 𝑥𝑓), where 𝑥𝑓 is the non-zero fixed point [13].

As can be seen from Fig. 2.6 and equation (2.8) of the TM, the map constitutes a

positive as well as a negative slope on either side (left and right respectively) of

the critical point xc. The negative slope is responsible for the reversal of the map

behaviour resulting in the dynamics being folded whenever the condition 𝑥𝑐 <

𝑥𝑛 ≤ 1 is realised by the TM. Any point exhibiting the dynamics as 𝑥𝑛+1 = 𝑥𝑛 is

known as a fixed point. There are two fixed points of the TM in the state space I

which are shown in Fig. 2.8.

Fig. 2.8 Fixed point of the ideal TM

44

One such fixed point is T(0) = 0. The other is the non-zero fixed point T(𝑥𝑓) = 𝑥𝑓,

given by:

𝑥𝑓 = 2𝜇/(1 + 2𝜇). (2.9)

The 𝑥𝑓 has direct correspondence with the map parameter 𝜇, meaning as 𝜇 is

varied, the 𝑥𝑓 shifts gradually along the 𝑥 = 𝑦 line (map diagonal 𝑥𝑛 = 𝑥𝑛), as

can be seen from Fig. 2.9.

Fig. 2.9 𝑥𝑓 moves along the map diagonal as the parameter is altered

Observing the equation (2.9) across the parameter 𝜇, the change in the 𝑥𝑓 can be

seen in Fig. 2.10. The chaotic dynamics produced by the TM due to the stretching

and folding result into constant shuffling and mixing of the state space I [12],

[41]. Such shuffling and mixing mainly occur about the non-zero fixed point

[35].

45

Fig. 2.10 Change of 𝑥𝑓 with respect to the parameter

2.5.1 Maximum and Minimum of TM Trajectories

In practical implementations, the parameter may not be maintained constant at

the ideal value µ = 1. Under such non-ideal conditions, when µ < 1, certain

changes in the dynamical characteristics of the map may be noticed relating to

the distribution of points or the attractor. The property of the dynamical attractor

of the TM can be defined by the dynamical maximum and minimum that are

expressed as a function of the control parameter 𝜇 [16]. If a value of xc = 0.5 is

reached at any state in a dynamical trajectory, the next iterate will immediately

map onto the maximum 𝜇 = T(xc) = 2𝜇(0.5). Once the maximum is reached (𝑥𝑛 =

𝜇), from the second restriction of the TM equation (2.8), 𝑥𝑛+1 = 2𝜇(1 − 𝑥𝑛) for

𝑥𝑐 < 𝑥𝑛 ≤ 1, substituting 𝑥𝑛 with 𝜇, the next iterate will therefore map onto

2𝜇(1 − 𝜇), which is the minimum value that an iterate can reach [16]. Hence, the

maximum (Tmax) and minimum (Tmin) are respectively defined as:

46

Tmax = T(xc) = µ. (2.10)

Tmin = T(Tmax) = T(T(xc)) = 2µ(1‒µ). (2.11)

If sufficiently long-term dynamics are studied, it can be observed that the

trajectories of arbitrary points originating from I are eventually gravitating to be

trapped within a boundary I′:

I′ = [Tmin,Tmax] = [2µ(1‒µ),µ], (2.12)

where I′ < I, when µ < 1 [16], as it can be verified through cobweb diagrams. The

trajectory (of N = 300) of an initial condition originating below the Tmin for µ =

0.75 is shown in Fig. 2.11.

Fig. 2.11 Cobweb diagram for µ = 0.8; 𝑥0 = 0.000124

Another initial condition, arising from a point beyond Tmax for the same

parametric condition, is shown in Fig. 2.12. Both the plots for the cobweb

diagrams are generated by the program in Appendix 2.7.

47

Fig. 2.12 Cobweb diagram for µ = 0.8; 𝑥0 = 0.823

Fig. 2.13 Maximum and minimum of a trajectory with μ = 0.8

The range I′, therefore, can be termed as an attractor with its boundaries Tmin and

Tmax. In Fig. 2.13, The same phenomenon can also be observed through the time

48

series shown, where the dynamic trajectory of an arbitrary initial condition

originating outside I′ is attracted to be trapped within the bounds Tmin and Tmax.

In Fig. 2.14, the comparison between the maxima and minima for both the cases

of 𝜇 < 1 and 𝜇 = 1 is shown. For 𝜇 < 1, the points in the shaded regions are

never mapped by any trajectory of the TM once the attractor is visited. As the

parameter continues to reduce, the segments of the state space represented by the

shaded region gradually increases, implying that the attractor or the range defined

by the bounds Tmin and Tmax will be narrower.

Fig. 2.14 The dynamical attractor I′ for a parameter µ < 1

This phenomenon can be further observed across a range of parameter values

through bifurcation diagram where, as the 𝜇 continues to decrease, the mapping

space between the maximum and the minimum also gets reduced gradually. Fig.

2.15 shows the global distribution of the TM dynamics for every 𝜇 varying

between 0.5–1 with the corresponding maximum and minimum points.

49

Fig. 2.15 Maximum and minimum over parameter

2.5.2 Symbolic Dynamics of TM

In order to have a better understanding of the dynamics without engaging much

resources to record the real valued iterates, symbolic coding of trajectories can be

done. The symbolic trajectory is a coarse-grained version of the real dynamical

trajectory that was first proposed by Metropolis et al. [22]. At that time

alphabetical symbols L and R were assigned to intuitively indicate left and right

sides about the critical point and symbol C was assigned to indicate the centre

which itself is the critical point of a 1D map. The symbols generated about the

critical point (primary partition) also serve as a dynamical footprint that perfectly

corresponds to the real valued dynamics of an initial condition.

The alphabetical symbols L and R was later replaced with 0 and 1 respectively

considering the critical point to be one of the edges of the two sides defined by

the partition [23], [26]. Hence, the real valued trajectories 𝒳 of the TM can also

50

be transformed into symbolic trajectories 𝑆 = {𝑠𝑛 | 𝑛 = 0, 1, … , 𝑁 − 1}, where

symbol 𝑠𝑛 generated on each iteration is defined as

𝑠𝑛 = {
0 𝑥𝑛 ≤ 𝑥𝑐

1 𝑥𝑛 > 𝑥𝑐
. (2.13)

The symbolic sequence 𝑆 = s0, s1, s2, …, sn, …, sN-1 is therefore a time series of

0s and 1s that aids in understanding which side of the state space I, the iterate 𝑥𝑛

has visited. Hence, for the desired application, the signal that is intended to be

measured can be input to the TM as initial condition x0, and N-bit long symbolic

sequence 𝑆 can be generated with TN-1(x0) iterations.

2.5.3 Symbolic Representation of the State Space

The critical point xc is treated as a primary partition over the state space 𝐼 that is

sometimes referred to as Markovian partition [42] which restricts the two unique

characteristics, defined on the two sides of a unimodal 1D map. For the TM, the

primary partition divides the state space 𝐼 into two halves or subintervals, [0,0.5]

∊ I and (0.5,1] ∊ I that respectively experience stretching and folding due to the

map operation [13], [16].

As the T(x) is operated over the entire state space, more partitions appear at the

pre-images of 𝑥𝑐. Considering a current state, the pre-images [13] are the possible

previous states that result into the current state on one operation of the map.

Since TM performs two different operations on the either side of the critical

point, every outcome of the TM iteration has two possible preimages, e.g. for a

current iterate 0.5, there are 0.25 and 0.75 as pre-images, as, 2µ(0.25) = 0.5 also,

2µ(1 – 0.75) = 0.5, with ideally µ = 1. For every operation of the map two more

partitions are created within the subintervals about each of the previous

51

partitions. Therefore, for every nth iteration, (2n+1 – 1) partitions are generated and

the state space I is divided into 2n+1 mutually exclusive sub-intervals 𝐼𝑗
𝑛, where j

= 0, 1, 2, …, (2n+1‒1), is the count of the sub-interval counting from the left

boundary 0 to the right boundary 1 of I [13], [26]. In Fig. 2.16, it can be observed

that for n = 1 iterations (21+1 – 1) = 3 partitions have been generated that created

21+1 = 4 subintervals.

Fig. 2.16 Symbolic correspondence to the intervals of the state space

Any x input to the function originating from the state space, therefore, must

belong to any one of the sub-intervals. Belonging to any interval on the either

sides of any nth level partition, a unique symbolic signature 𝑆 with n+1 symbols

can be generated when the input is iterated for n times. The symbolic states of the

sequence are represented by the partitions generated at the nth iteration, and can

be used to identify or backtrack which of the 𝐼𝑗
𝑛 subintervals the input has

originated from [13]. Therefore, an input or a dynamic state can be treated as

either a point or an interval that can be defined by the corresponding symbolic

52

signature. The following properties establish the relationship between symbolic

sequence 𝑆 to the sub-intervals 𝐼𝑗
𝑛 generated by the map.

1. Every x ∊ 𝐼𝑗
𝑛 result into the same symbolic sequence 𝑆 up to n+1 iterations

2. If two initial conditions with the following identities x ∊ 𝐼𝑗
𝑛 and 𝑥̆ ∊ 𝐼𝑗+1

𝑛 ,

then 𝑆 and 𝑆̆ differ by only one bit

3. 𝐼0
𝑛 ∪ 𝐼1

𝑛 ∪ 𝐼2
𝑛 ∪ … ∪ 𝐼2𝑛+1−1

𝑛 = 𝐼

4. 𝐼𝑗
𝑛 ∩ 𝐼𝑘

𝑛 = ∅ for j ≠ k

From the properties 1, 2 and 4, it can be understood that an 𝑁-bit long unique

symbolic identity 𝑆 corresponds to a sub-interval of the size 𝐼𝑗
𝑁 and therefore, the

longer 𝑆 sequence will be (for higher 𝑁), the narrower will be the size of the 𝐼𝑗
𝑁

intervals. The 𝑆 sequences corresponding to each jth interval 𝐼𝑗
𝑁 ∊ I can be formed

into an ordered set, as shown in [13], [26], with an order of j = 0, 1, 2, …, 2N

relating with the number of 𝐼𝑗
𝑁 intervals that can be formed for 𝑁-bit long

sequence as the way 𝐼𝑗
𝑁 are ordered in I. An example of such ordering of 𝑆

consisting 𝑁 = 3 bits with the corresponding jth order of 𝐼𝑗
3, can be seen from

Table 2.1.

Table 2.1 Correspondence between intervals and symbolic sequence

j 𝑺𝟑(T,x) Binary Intervals

0 000 000 0

1 001 001 0.125

2 011 010 0.25

3 010 011 0.375

4 110 100 0.5

5 111 101 0.625

6 101 110 0.75

7 100 111 0.875

53

Also, the partitioning with the symbolic codes corresponding to the intervals can

be observed in Fig. 2.16. From such correspondence, each jth interval can be

denoted by the corresponding symbolic sequence 𝑆, hence, any initial condition

x0 with symbolic sequence 𝑆, the originating interval can be denoted by 𝑆 as a

subscript as in 𝐼𝑆
𝑁, and it can be said that x0 ∊ 𝐼𝑆

𝑁 [13].

The originating interval can be determined by the process of tracing back the

subintervals that are formed within intervals according to the symbolic sequence.

The nth symbol sn in 𝑆, that is 1-bit of the sequence indicates whether xn iterate

belongs to the left or right side about the xc, i.e., to the intervals 𝐼0
0 or 𝐼1

0. Hence,

for a sequence 𝑆 corresponding to x0 ∊ 𝐼𝑆
𝑛, with any sn ∊ {0,1} in 𝑆, Tn(x0) = xn ∊

𝐼𝑠𝑛
0 . Applying inverse operation would result into x0 ∊ T−n(𝐼𝑠𝑛

0). Therefore, to

determine the originating interval of x0 ∊ 𝐼𝑆
𝑁 that satisfies all the 𝑁 inverses

through the entire symbolic path of the 𝑁-bit sequence, the inverse relation for

every sn is combined and the originating interval 𝐼𝑆
𝑁 can be defined as [13], [28]

𝐼𝑆
𝑁 ⋂ 𝑇−𝑛(𝐼𝑠𝑛

0𝑁−1
𝑛=0). (2.14)

To provide an example, a sequence 𝑆 = 110...sn is considered, the s0 indicates

that, the x0 ∊ 𝐼1
0. After applying TM once, the iterate T(x0) ∊ 𝐼1

0, therefore, the x0 ∊

T −1(𝐼1
0). Again, for s0, s1, the x0 ∊ 𝐼1

0 ∩ T −1(𝐼1
0)  𝐼11

1 ⊂ 𝐼1
0 [13]. Thus, following

all the symbols in the sequence in this manner, the originating sub-interval can be

identified as

𝑥0 ∊ 𝐼1
0 ∩ 𝑇−1(𝐼1

0 ∩ 𝑇−1(𝐼0
0 …))… ⊂ 𝐼110

2 ⊂ 𝐼11
1 ⊂ 𝐼1

0. (2.15)

The inverse of map 𝑇−1(𝐼𝑠𝑛+1
0) is applied depending on the sn symbol. Since

stretching and folding operations are performed on the two sides of the TM, the

54

Fig. 2.17 Fractal structure of symbolic codes

transformation 𝑇(𝑥𝑛) = 𝑥𝑛+1 has two possible preimages, meaning every 𝑥𝑛+1

state has two possible 𝑥𝑛 inverses. The correct inverse for the n+1th state is

therefore identified through the symbolic path by looking at the previous nth

symbol whether sn is 0 or 1 [13], with the following

𝑥𝑛 = 𝑇−1(𝑥𝑛+1) = {

𝑥𝑛+1

2𝜇
 𝑠𝑛 = 0

1 −
𝑥𝑛+1

2𝜇
 𝑠𝑛 = 1

. (2.16)

Due to the negative slope on the (0.5,1] half of the map, the symbolic sequence

generated, results in Gray codes which exhibit a mirroring effect on the sequence

every time the critical point 𝑥𝑐 is crossed. Since every such crossing is

represented by ‘1’, the stretching and folding behaviour of the map can be

tracked by the count of 1’s through the symbolic footprint of the trajectory. The

odd count of ‘1’ represents the folding operation and the even count represents

the stretching operation [13]. It can be noted from Fig. 2.16 that the subintervals

partitioned on the folding side 𝐼1
0 = (0.5,1] are the mirror images of the

subintervals on the stretching side 𝐼1
0 = [0,0.5]. Due to the negative slope of the

map on the folding side, the corresponding codes of subintervals become flipped

and hence the symbolic coding of the intervals follows a fractal structure,

exhibited by the Gray code, as can be seen in Fig. 2.17. A fractal can be defined

55

as a recursively generated structure that exhibits self-similarity at all scales

through repeating a fundamental graphical pattern [13], [43].

Any unimodal 1D map e.g. LM, TM can generate Gray codes, whereas the BM

being defined by two stretching sides about the critical point, the symbolic code

produced by BM follows the structure of binary codes, where one shift in the bit

sequence depicts one iteration of BM being performed, which justifies the name

of the map. Since 𝑆 is a Gray code generated by the TM that correspond to the

initial condition x0, the symbolic code can therefore be realised and mapped back

to the initial condition by converting the 𝑆 = s0, s1, s2,…sn…sN-1 to binary code 𝐵

= b0, b1, b2,...bn,...bN-1 using (2.17) and then further converting 𝐵 to the real valued

number using equation (2.18). The real valued representation of the Gray code is

also referred to as Gray Ordering Number (GON), which can be used to order the

𝑆 corresponding to different initial conditions within the state space by an order

of the magnitude [26]. The following step is performed to convert an 𝑆 to binary

sequence 𝐵

𝑏𝑛 = {
𝑠𝑛 𝑛 = 0
𝑏𝑛−1 ⊕ 𝑠𝑛 𝑛 > 0

. (2.17)

where, ⊕ is the Exclusive OR (XOR) logical operator. The 𝐵 is further converted

to GON through the following transformation (code in Appendix 2.8)

GON(𝑆) = ∑ 𝑏𝑛
−(𝑛+1)𝑁−1

𝑛=0 . (2.18)

The GON conversion from 𝑆 is however only valid and corresponds to the x0

when the TM used to generate the symbolic signature is of full height , that is

when the parameter is ideally µ = 1. In practical implementations of TM, the

56

parameter is not always achieved to the ideal value, due to the operation of such a

reduced height map the size of the subintervals and the corresponding structure

of the symbolic code is altered. In the work contributed by Basu et al. [24], the

problems of the altered subintervals have been addressed and therefore a different

symbolic conversion scheme has been proposed accordingly.

2.6 Symbolic Shifting Window

In the symbolic dynamics, the shifting window [43] is a valuable tool to realise

the correspondence between symbolic trajectories and the real iterates. Since it is

already established that a symbolic sequence has a direct correspondence to the

initial condition of a trajectory and given the fact that any iterate in a trajectory

can be treated as an initial condition for the next iterates, a symbolic window of

finite length can be shifted over the entire sequence to realise the possible

symbolic correspondence to each of the real iterates in a trajectory. The

mechanism of shifting window is described as follows.

For the trajectory xN-1 = TN-1(x0) with the corresponding symbolic sequence 𝑆 of

length N, a symbolic window of size w bits can be shifted from 𝑛 = 0, 1, … , (𝑁 −

𝑤 + 1), hence the sequence contained within the window can be defined as 𝑆𝑛 =

sn+0, sn+1, sn+2 … sn+i… sn+w-1. Assuming a shift operator ψ, operated on the 𝑆 with

a shifting window size w bit, one shift is therefore defined as 𝑆𝑛+1 = sn+1+0,

sn+1+1,…sn+1+i… sn+1+w-1 = ψ(sn+0, sn+1,… sn+i… sn+w-1) = ψ(𝑆𝑛).

Given that the length of the original 𝑆 sequence is N the total number of shifts

can be performed with a window is W = N – w + 1. Also, GON for each 𝑆𝑛 code

from the shift can be calculated by converting 𝑆𝑛 code to corresponding binary

code 𝐵𝑛 = bn+0, bn+1, bn+2 … bn+i… bn+w-1, as given by

57

𝑏𝑖 = {
𝑠𝑖 𝑖 = 𝑛
𝑏𝑖−1 ⊕ 𝑠𝑖 𝑖 > 𝑛

. (2.19)

Accordingly, GON for each 𝑆𝑛 is calculated as

GON𝑛(𝑆𝑛) = ∑ 𝑏𝑖
−(𝑖−𝑛+1)𝑁+𝑤−1

𝑖=𝑛 . (2.20)

In Fig. 2.18 the illustration of the discussed shifting window mechanism has been

provided and how GONn for each shifted window code is obtained has been

shown.

Fig. 2.18 Shifting window mechanism and obtaining GON

In Fig. 2.19 it can be visualised graphically that for an ideal parametric condition

(µ = 1) of TM, the GONn obtained from a shifting window over 𝑆 has close

resemblance to the actual real trajectory xN-1 = TN-1(x0). The program for shifting

window can be seen from Appendix 2.9. The accuracy of GONn will depend on

the adequate length w of 𝑆𝑛, and to match the trajectory up to sufficient length,

higher N may be chosen.

58

Fig. 2.19 Trajectories recreated through GON of shifting window

2.7 Kneading Theory: Symbolic Maximum and Minimum

The value of µ can be determined from the available symbolic dynamics, through

realisation of the symbolic signatures corresponding to the point Tmax or Tmin. The

symbolic correspondence of the dynamical maximum and minimum of the

unimodal maps was proposed by Milnor-Thurston Kneading Theory, according to

which: when a point equal to the value of xc is input to a unimodal map (TM,

LM), the outcome of the first iteration is equal to the Tmax and the corresponding

symbolic sequence 𝑆 up to 𝑁 iterations is known as the Kneading Sequence 𝒦

[12], [13], [41] and thus can be expressed as

𝒦 = 𝑆:(Tn(xc)) = s:(T0(xc))s:(T1(xc))s:(T2(xc))…s:(Tn(xc)), n ∊ ℕ0. (2.21)

𝒦 is an efficient tool to identify the symbolic sequences corresponding to

Tmin and Tmax from the set of possible sequences that are generated by the

59

dynamics of a unimodal map at any parametric condition. Considering the shift

operator ψ such that s(Tn+1(x0)) = ψ(s(Tn(x0))), operations of ψ over 𝒦 yield the

sequences 𝑆max = ψ(𝒦) and 𝑆min = ψ(ψ(𝒦)), which correspond respectively to the

dynamic maximum (2.10) and minimum (2.11) [13].

Therefore, if 𝑆min or 𝑆max can be realised from the generated symbolic dynamics,

the information of the parameter µ is also recoverable. For any trajectory of x0, a

certain number of β ∊ ℕ transient iterations can be chosen such that after β

iterations, for any n > β, the iterates xn ∊ [Tmin,Tmax] and the trajectory become

bounded within the I′. The selection of β is empirical, depending on both the

initial condition and the parameter of the map. Therefore, when both the factors

remain to be unknown, β is chosen to be sufficiently large to ensure that the

subsequent iterates of the trajectory belong within [Tmin,Tmax]. For any initial

condition originating outside the I′ = [Tmin,Tmax] such that x0 < Tmin, then, after a

count of β iterations until xβ+1 ≥ Tmin, the symbolic sequence 𝑆: Tβ(x0) will be a

string of β zeros followed by a sequence 𝑆: Tn(xβ) ∊ [𝑆min, 𝑆max]. For any initial

condition x0 > Tmax, x0 ∊ [xc,1], s0 = 1, the T(x0) < Tmin ∊ [0,xc] and the dynamics

will be continued according to the aforementioned behaviour. Such cases will

have s0 = 1 leading a string of β‒1 zeros followed by a sequence 𝑆: Tn(xβ) ∊

[𝑆min, 𝑆max]. From a sufficiently long trajectory, when the β transient symbols are

discarded, and a shifting window is operated over the remaining sequence, the

corresponding GONs of the sequences collected from each operation of the

window can be ordered and hence can be matched to the ordering of 𝑆min through

𝑆max.

GONmin ≺ … ≺ GONmax  𝑆min ≺ … ≺ 𝑆max, (2.22)

60

where, GONmin and GONmax are the respective GONs of 𝑆min and 𝑆max. Hence,

once β symbols are discarded from a trajectory of any T(x0), theoretically, in the

remaining 𝑆N‒β+1 part of the sequence 𝑆, there will be no symbolic sequence

appearing in following dynamics for a given µ whose corresponding GON can be

found outside the range [GONmin,GONmax]. Therefore, once the dynamics enters

the boundaries [Tmin,Tmax] any such sequences belonging outside [𝑆min,𝑆max] are

not generated by the map and are treated as forbidden sequences [44] while all

the sequences belonging within [𝑆min,𝑆max] are termed as allowed sequence. It is

therefore confirmed that discarding the transient β symbols from a sufficiently

long symbolic trajectory 𝑆 and then operating symbolic shifting window over the

sequence will let one to search for 𝑆min or 𝑆max, which in turn aid in determining

the reduced parameter µ [24], [43], [45]. However, to determine the initial

condition x0 successfully from the corresponding 𝑆, it is not recommended to

discard the transient β symbols because sufficient amount of information

regarding the dynamic footprint of the originating point x0 is contained in it. The

originating interval can therefore be determined by back tracking every single

symbolic iterate 0’s and 1’s in the available symbolic sequence. The, β transient

symbols need to be discarded only when determining µ, and is kept intact while

determining the initial condition x0.

61

3 CHAOS BASED SIGNAL MEASUREMENT

The fundamental use of chaotic systems for signal measurement was contributed

by Kennedy [10], where unimodal chaotic maps have been used as quantizers for

ADC and measurement applications. Later more approaches [17]-[19], [24] have

been proposed in this direction, which confirmed that measurement of a quantity

using chaotic dynamics is possible, and there are vast scopes and possibilities for

the development of a chaos based ADC.

While implementing a chaos function there are, however, a few issues that must

be resolved before a standalone ADC can be achieved. The majority of the issues

revolve around the physical implementation of the chaotic circuit, as the ideal

dynamics of a chaotic function is greatly affected by several non-idealities caused

in the electronic circuit. So far there have been several attempts to address some

of the issues through both hardware and software approaches [18], [24], [43],

[45], however there are plenty of scopes for future development as each of the

newly proposed approach posed newer challenges that demanded further study

and investigation.

3.1 Basic Challenges

Chaotic maps are simple to implement physically in the electronic hardware

without engaging much of the resources. Therefore, physical implementation of

chaotic functions has widely been proposed and achieved for various areas of

applications. However, as discussed earlier, chaotic functions are very sensitive

to electrical tolerances of the components used for the design, as the physical

properties of materials used in electrical and electronic components are subject to

62

changes under several conditions e.g. temperature, electromagnetic interferences

etc. Considering the inevitability of the non-idealities that are caused due to the

tolerances in the components, the errors in the behaviour are often addressed

through system level corrections rather than trying to engage highly accurate and

precise components.

The non-idealities and errors in the implemented chaotic function are generally

related to accuracy and precision errors that are caused due to the offset,

temperature drift and noise depending on several physical and environmental

factors. One of such non-idealities is the parametric reduction of the chaotic

function where the map height is reduced due to parametric deviation, thus,

affecting the dynamical behaviour of the map [43]-[45].

The other common type of non-ideality in the chaotic circuits is that the actual

dynamical trajectories are altered due to the inherent noise in the system [46]-

[48]. The noise adds random variables to each state of the dynamics thus the

resultant evolution deviates from the ideal one and it becomes challenging to

extract meaningful information out of such noisy trajectories.

3.1.1 Parametric Reduction of the TM

The ideal dynamics of the map for an initial condition is altered when the

parameter is reduced, as can be seen in Fig. 3.1, where the dynamical trajectories

for both ideal and non-ideal parameter conditions have been shown. Due to the

parameter reduction, the partitioning of the intervals is asymmetric (not in equal

halves as shown in Fig. 3.2) therefore the 𝐼𝑆
𝑁 subintervals appear in uneven sizes

causing the initial points to be redistributed unevenly to the adjacent intervals

within state space I.

63

Fig. 3.1 Altered dynamics due to reduction in parameter value

Fig. 3.2 Partitions get shifted generating asymmetrical intervals

64

The farther the parameter is deviated away from the ideal value, the greater will

be the amount of shift in the partitions from the ideal positions [24]. Therefore,

the correspondence between the symbolic codes 𝑆 and the intervals also become

altered as the codes are unevenly mapped in the state space I.

In Table 3.1 symbolic correspondence to the initial condition for both ideal and

non-ideal parameters have been shown, and the GON of the symbolic sequences

have been calculated. It can be noticed that the GONs for the non-ideal cases

have greatly deviated from the ideal values for a slight change in parameter.

Table 3.1 Sequences generated with µ = 1and µ < 1

x0 𝑺𝟏𝟔 for µ = 1 𝑺𝟏𝟔 for µ < 1 GON for µ < 1

0. 1951 0010100100001011 0011101101001110 0.17790

0. 1952 0010100100000100 0011101101001000 0.17796

0. 1953 0010100100000000 0011101101011010 0.17802

0. 1954 0010101100000111 0011101101011100 0.17808

0. 1955 0010101100001010 0011101101010110 0.17814

3.1.2 Impact on Initial Condition Estimation

There have been several contributions in the field that proposed techniques to

estimate initial condition similar to that of calculating GONs. These approaches

primarily convert Gray codes to the real values from the equivalent binary codes

by applying base 2 algebra, as described in equations (2.17) and (2.18). Such

approaches will not return accurate result for practical situations where the

parameter value is not ideal. Given that the partitions are misplaced, and

symbolic trajectories deviate from the ideal, when sequences are converted into

GON values, there can be found a loss of correspondence with the actual initial

condition. Similar observations have been documented by Litovski et al. in [18],

where directly converting the Gray codes generated by a reduced height TM to

65

the real valued signals led to incorrect mapping. The initial condition estimation

problem was further investigated in [27] where it was concluded that for a correct

conversion and mapping, ideal map parameter is necessary, which is however,

quite challenging to achieve with physical electronic circuitry. Kapitaniak et al.

had also conducted a broad study in [17] towards measurement of electrical

signals using symbolic dynamics of chaotic maps. Their observations confirmed

that the signals estimated from the symbolic dynamics of the electronically

implemented TM were greatly affected by the offsets and tolerances of the

components used which significantly reduced the parametric height of the map.

In Fig. 3.3 the conversion of symbolic sequences following the conventional or

GON approach has been shown for a ramp of initial condition where the

symbolic sequences generated through reduced parameter TM.

Fig. 3.3 GON estimation with reduced parameter

66

It can be observed that a change in parameter to µ = 0.85 has caused a substantial

deviation in the estimates from the actual values. The GON transformations have

limitations towards exactly estimating the initial conditions from the symbolic

sequence generated through a map with non-ideal parameter, as such

transformation apparently assumed that the intervals are partitioned into equal

halves even in the case of reduced height map. However, GON transformations

are still useful for the relative ordering of the symbols in the state space as

symbolic sequences can be assigned a real valued magnitude for comparison

within a range.

Further investigations have been conducted by Cong et al. [28] who established

theoretically that for any chaotic map, initial condition can be estimated from the

symbolic sequences with reasonable accuracy by applying reverse map from the

last symbol of the symbolic sequence. The method assumed the real valued

iterate for the last symbol is either xN-1 = 0.5 for sN-1 = 0 or xN-1 = 1 for sN-1 = 1,

then according to the symbolic path, the reverse map is applied as described in

equation (2.16). Such process might add an overhead time for recording the data

before the conversion can begin, hence it might affect the conversion speed. In

[24], Basu et al. developed a method based on interval theory that took the

partitions and uneven intervals formed due to the non-ideal parameter into

consideration. The method established an approach to estimate the initial

condition from the first symbol instead of the last one relying on the process of

forming subintervals within intervals as the dynamics evolve, thus the conversion

can be run as a pipelined process in parallel with the symbol acquisition, and the

conversion overhead time can be reduced. However, for both the proposed

advancements, the availability of the knowledge of the non-ideal parameter is

67

necessary that must be supplied for the fruitful estimation. Also, noise is another

non-ideality that affects the dynamical evolution. Several noise reduction

methods have been studied and proposed in the past that also rely on a fair

amount of knowledge about the system producing the dynamics. For the complete

knowledge of the dynamical system, knowledge of the control parameter is

therefore essential to define the source system. In the following sections, the way

in which the dynamics is affected by noise has been described, and the proposed

solutions for the noise corrections have been elaborated.

3.1.3 Dynamical Behaviour Affected by Noise

Due to the stretching and folding nature of the TM, the state space is partitioned

on every iteration and points in the invariant interval I ⊂ ℝ eventually map

densely over I ⊂ ℝ, [13], [41], which leads to any point 𝑥0 ∊ I generate unique

trajectories that hold the key information of the initial condition. The iterative

trajectories can be treated as a footprint of the system dynamics and its initial

condition.

When chaotic maps are implemented in physical hardware, e.g. electronic

circuits, the actual dynamics of 𝒳 trajectories, governed by the feedback process,

become greatly affected by the inherent noise in the system hardware. Fig. 3.4

shows the feedback mechanisms of the TM dynamics and how it can get affected

by noise in the iteration process. Noise affected chaotic trajectories have two

constituent parts, one of which is the deterministic part, that is governed by

predefined set of rules related to the chaotic function. The other is the random or

indeterministic part, which is introduced by noise that is intrinsic to the physical

system.

68

Fig. 3.4 Noise affected TM iterations in a feedback mode

The coexistence of noise in the feedback process of every iteration affects the

dynamics by adding random variables to every iterative state. Such types of noise

can be described as dynamical noise [46], and its evolutionary process can be

defined as

ɳ𝑛+1 = 𝑇(ɳ𝑛) + ɽ𝑛, (3.1)

where, ɳ𝑛 is the nth noisy iterate and ɽ𝑛 is the random variable combined at each

stage of iteration.

The behaviour of the random variables ɽ𝑛 can be realised by the properties of

additive white Gaussian noise (AWGN) due to its intrinsically additive random

variables showing Gaussian distribution [48]. The random distribution of AWGN

has a zero mean whose variance is characterised by the signal-to-noise-ratio

(SNR) with 10log10 (𝜎𝑥
2/𝜎ɽ

2) measured in dB, where 𝜎𝑥 and 𝜎ɽ are the standard

deviations of the signal and the noise respectively. In electronic hardware, the

thermal noise is best represented by AWGN. The AWGN has been simulated in

the programs using the built-in function awgn(𝑥𝑛,SNR) of MATLAB, where, the

input arguments are the state variable 𝑥𝑛 and the SNR.

69

Let the trajectory affected by the dynamical noise be defined as Ƞ =

 ɳ0, ɳ1, ɳ2, … , ɳ𝑁−1. The initial condition 𝑥0 is the original signal entering from an

independent source which can be assumed to be not affected by dynamical noise

of the chaotic system yet, such that ɳ0 = 𝑥0. However, as the dynamical evolution

continues the noise is also propagated through the iterative process (as can be

seen in Fig. 3.5), hence affecting the original trajectories of the initial conditions.

It is therefore, a challenge to extract meaningful information from the trajectories

corrupted by dynamical noise.

Fig. 3.5 Dynamics of TM affected by noise in every stage of iteration

The behaviour of the dynamical noise can be studied by sampling a single

trajectory repeatedly, and then by observing the samples collectively. For a

collective view, 𝑀 samples of Ƞ𝑚 for an initial condition 𝑥0 can be collected.

Each of the sampled trajectories can therefore be represented as

Ƞ𝑚 = ɳ0
𝑚, ɳ1

𝑚, ɳ2
𝑚, … , ɳ𝑁−1

𝑚 , (3.2)

where 𝑚 = 0, 1, … , 𝑀 − 1. For any 𝑚th trajectory, each 𝑛th iterate is sampled and

stored for all the 𝑁 iterations in the trajectory and then for the next 𝑚+1th

trajectory, the sampling process is repeated again from ɳ0
𝑚+1 through to ɳ𝑁−1

𝑚+1 as

70

illustrated in Fig. 3.5. Hence, for any 𝑛th iterate, there will be 𝑀 samples of the

noisy data available for observation.

Sensitive dependence on initial conditions has a key role to play in dynamics,

since little perturbations in every iterative stage lead the trajectories to different

paths. For any perturbation ƿ𝑛, around the close neighbourhood of the actual

iterate 𝑥𝑛, the resulting 𝑥𝑛+1 + ƿ𝑛+1 = 𝑇(𝑥𝑛 + ƿ𝑛) is further deviated compared

to the original transformation 𝑥𝑛+1 = 𝑇(𝑥𝑛), as established by rate of divergence

or the Lyapunov exponent, given by equation (2.5). As long as the |ƿ𝑛+1| ˃ |ƿ𝑛|

or the Lyapunov exponent λ is positive, the trajectories of TM will be divergent

in nature [12]. Similar divergence is also experienced by the dynamics when such

perturbations as ɽ𝑛 is randomly introduced (replacing ƿ𝑛 by ɽ𝑛 in equation 2.5) in

every stage of iteration.

Fig. 3.6 Divergent noisy trajectories of an initial condition

71

A diverging behaviour of a trajectory can be seen in Fig. 3.6 where a short length

(𝑁 = 5) trajectory of an arbitrary initial condition 𝑥0 = 0.3234 through TM with

parameter µ = 0.825 is perturbed by noise with SNR = 30 dB and a few (𝑀 = 10)

samples are collected for observation.

Due to the stretching and folding nature of the TM, there is a dense mixing of the

trajectories in the entire state space [13]. Hence, the points that are originating

from a close neighbourhood will be eventually spread all over the state space 𝐼 =

[0,1], as it may be the case with ɳ𝑛
𝑚 points that are separated by minute

perturbations due to the noise. When the dynamics is continued for a higher 𝑁,

and a large set of 𝑀 number of trajectories are observed collectively, the Ƞ𝑚 are

found to be highly distributed over 𝐼. In Fig. 3.7 the Ƞ𝑚 trajectories for, 𝑥0 =

0.3234, µ = 0.825, 𝑁 = 10, SNR = 30 dB and 𝑀 = 50 are shown.

Fig. 3.7 Noisy trajectories with SNR = 30 dB

72

It is often the case with implemented maps that the information regarding the

parameter µ is not known and is required to be extracted from the only other

available information, i.e. the collected set of trajectories. In a noise-free system,

µ may be extracted from the relationship between any known pair of 𝑥𝑛 and 𝑥𝑛+1

in a trajectory. However, for noisy iterates, since ɳ𝑛+1 = 𝑇(ɳ𝑛) + ɽ𝑛 and ɽ𝑛

cannot be exactly quantised, such calculations will not determine the correct µ

[29]. Although it may seem intuitive to consider searching for the map maximum

Tmax in order to pursue µ, however, even for signals with noise levels as low as

SNR = 30 dB, the noise causes the iterates to exceed Tmax, therefore causing the

map maximum to be lost. This is easily verified through the bifurcation diagram

of a noise affected tent map in Fig. 3.8 (a), as compared to noise-free distribution

of the dynamics in Fig. 3.8 (b).

 (a) (b)

Fig. 3.8 Bifurcation diagrams of noise-free and noise affected tent map

Given that the TM being the chosen chaotic function for the purpose of signal

measurement, identification of the control parameter of the map offers two-fold

advantage, that are: using the information of the parameter, less-noisy data can be

73

retrieved from the noise affected time series; also, the initial condition can be

determined utilising the knowledge of the parameter.

As described in [49]-[51], to determine the actual signal from the noisy data, an

efficient noise reduction method must be able to determine or approximate the

underlying chaotic function. Since, both chaotic trajectories and noisy samples

are wideband signals, linear filtering techniques (e.g. lowpass, bandpass filters)

or classical Fourier approaches cannot be adapted to reduce noise, because

deterministic chaotic trajectories might also be discarded by the filtration [52],

[53]. The works proposed in [54]-[56] offer efficient solutions to significantly

reduce noise involving reconstruction of the dynamical phase space. The methods

highlighted the importance of knowledge of the system or the approximation of

the source function for which, a knowledge of the system parameter is essential.

It is then possible to approximately identify the deterministic and indeterministic

parts from the available data. To properly identify the chaotic function

responsible for a certain nature of dynamics, identification of the control

parameter is necessary. Once the function under operation and the control

parameters are known, then the dynamics produced by such a function can be

completely discerned from noise. A property of the tent map has been observed,

where the dynamical noise can be utilised to determine the control parameter of

the map. Since noise allows the dynamics to spread in the entire state space, the

properties seen to be statistically prevalent in the state space. In the following

chapters, it is shown how the sampled noisy trajectories Ƞ𝑚 can be utilised to

determine the value of µ, and establishment of the property and techniques to

apply it in finding the parameter has also been described.

74

3.2 Parameter Estimation: Current Techniques &

Limitations

There have been quite a few contributions that approach parameter estimation of

chaotic maps, through symbolic time series or the real iterates, depending on the

requirements of the application. In this section the most salient of all the

contributions and approaches that showed the key direction towards solving the

parameter estimation problem will be discussed. In [22], the trajectories

generated by the unimodal chaotic maps were first analysed in terms of symbolic

patterns represented by L and R respectively depicting left and right side of the

map. The work proposed an idea of ordering the symbolic patterns by estimating

a numerical value corresponding to each of the unique symbolic patterns. It was

fundamentally shown that a set of patterns would occur in the symbolic

trajectories – for the dynamics originating from the midpoint C = 1/2 and again

coming back to the same point after a few iterations, such patterns up to a certain

length are unique for a given parameter of the map. Each of the different patterns

for a certain length 𝑁 of the sequence were ordered by forming an equation with

the midpoint of the map. Examples of all the patterns that are possible for length

𝑁 = 5 for a unimodal transformation 𝑓𝜆
𝑁(x), with originating point as C and again

returning back to C on the 6th time step is shown as the following:

C → R → L → R → R → C

C → R → L → L → R → C

C → R → L → L → L → C

It is to determine for which parameter λ the transformation 𝑓𝜆
𝑁(x) would map

from C to C in 𝑁 = 5 steps. Therefore, the following equation holds:

75

𝑓𝜆
𝑁(½) = ½. (3.3)

 Solving the equation for λ generated the order number which directly

corresponded with the map parameter. Therefore, such patterns can be used for

ordering of the sequences generated by a map and hence the parameter value of

the map can be determined from the symbolic analysis. During that period the

method showed a new direction to analyse chaotic dynamical trajectories using

symbolic identities and patterns. However, it was difficult to order the patterns as

unique combinations by looking at the shorter sequences of L and R, and

therefore longer observation was necessary – sometimes in millions of iterates –

to ensure that a large set of unique patterns have been gathered for the analysis.

From the fundamentals established by Stein et al, later in this direction the idea

of Kneading sequence has formed. Further developments have been contributed

by Wu et al. in [43], who made some propositions towards analysing the

Kneading sequence in terms of Gray codes and established the properties of the

Kneading sequences in terms of symbolic patterns of 𝑆min and 𝑆max. They have

also proposed that to estimate the map parameter, the Kneading sequence of a

unimodal chaotic map can be generated by iterating the map with an initial

condition x0 = 0.5 i.e. the value of the critical point. Alternatively, the Kneading

sequence can be searched over the long-term symbolic trajectories. As an

approach to determine the parameter from the Kneading sequence, once the 𝑆max

is found and GON(𝑆max) is determined, since GON(𝑆max) ≠ µ, they proposed a

search algorithm for the parameter between two test parameter boundaries . The

test parameter boundaries with lower and upper bounds are defined as 𝑝𝐿 and 𝑝𝑈

respectively. In the processing domain where the parameter is being estimated,

76

the map 𝑇(𝑥𝑐) is operated separately with test parameter 𝑝𝑇 = (𝑝𝐿+ 𝑝𝑈)/2 and the

symbolic sequence 𝑆 is obtained, and following conditions are applied to narrow

down the test parameter boundary, that are: if GON(𝑆) > GON(𝑆max), then, 𝑝𝑈 =

𝑝𝑇, or, if GON(𝑆) < GON(𝑆max), then, 𝑝𝐿 = 𝑝𝑇, and the map is iterated with new

test parameters 𝑝𝑇 = (𝑝𝐿+ 𝑝𝑈)/2 until, GON(𝑆) = GON(𝑆max), then, 𝑝𝑇 is the

desired solution. The method involves several indefinite search steps to converge

to actual solution within the test boundaries, also for each new test parameter, the

map is separately iterated in the processing domain and GONs are compared, this

might cause a problem in determining the parameter from the perspective of

numerical processing as the estimator might have to wait indefinitely for the

solution to converge. The estimation of the parameter from the Kneading

sequence is however, not straight forward; further developments in this direction

have been contributed later in Chapter 3.

A different approach for parameter estimation of unimodal maps has been

proposed by Alvarez et al. in [45], which involved finding the probabilities of all

possible order patterns that can be generated for a given parameter of the map.

The technique was formulated by obtaining a long-term symbolic trajectory for a

given parameter condition from the iterative dynamics of the map. Then small

symbolic patterns were extracted from the symbolic trajectory by operating a

shifting window, followed by taking permutations of the extracted patterns which

would result in creating all possible patterns up to a certain length that the map

can generate for a parameter. The number of patterns is counted and compared

with the patterns that can be obtained for the full (ideal) parameter of the map. In

reduced parameter conditions, patterns that can be generated through the map, do

not cover universally all possible patterns, as all possible patterns can only be

77

realised when the map parameter is full. Therefore, the probability, determined

by a ratio between the number of patterns that can be realised through the

dynamics or by the permutations, and the number of all possible patterns in the

symbolic dynamics, will correspond to the map parameter. As the map parameter

is improves, the probability of the possible patterns would improve – tending to

be 1. On the context of TM, the issues regarding such a probabilistic approach is:

to find all possible patterns an enormously long dynamical trajectory is needed,

and a large number of permutations needed for each extracted code to cover all

possible patterns that a map can generate. Usually, such parameter estimation

methods are applied in the area of communication and encryption where

sequences are generated through a map implemented in digital computing domain

therefore generating the dynamics for iterations more than thousands is not a

problem. However, for hardware-oriented applications as signal measurement,

suitable techniques need to be investigated.

78

4 PARAMETER ESTIMATION METHODS

In this chapter, the methods to estimate the parameter of the TM have been

proposed. From the knowledge of the dynamics of the TM and understanding of

the anomalies that can be caused by parametric non-idealities, two independent

methods have been explored during the course of investigation of the problem.

Following are the detailed description of the methods in the form of algorithms.

4.1 Parameter Estimation: Kneading Sequence Approach

It has been observed that the dynamics of the TM shows dense distribution over

the state space 𝐼. For parameter µ  (0.5,1] there exist unique maximum and

minimum points. The map maximum Tmax = T(xc) = µ correspond to the

parameter value, therefore for a non-ideal condition of µ, if the maximum point

Tmax can be determined from the available dynamics, the parameter value is

recovered for the reduced height map. It is understood that gathering a set of as

many points mapped by the dynamics, will ensure that the entire distribution of

points can define an interval I′ with boundaries, Tmax and Tmin, and a search for

Tmax can be performed within I′.

A similar search can be performed in symbolic space to determine the sequence

that corresponds to the Tmax. The method in this work is based on Kneading

sequence, which is an improvisation of the approach proposed in [24]. Since a

real valued dynamical iterate can be represented by a symbolic identity, a shifting

window of finite length can be operated over the entire symbolic dynamical

trajectory to retrieve the sequences that correspond to each of the real iterates.

Similarly, for the case of symbolic search, it is recommended that sequences with

79

as many iterates as possible are gathered, to accommodate as many shifts as

possible. Once all the sequences corresponding to the shifts of the symbolic

shifting window are extracted, the gathered sequences can be ordered by the

determining GON of each sequence. Hence the sequence corresponding the

maximum can be determined and the value of µ can be estimated from that

sequence.

4.1.1 Proposed Kneading Sequence Search Algorithm

From the properties of Kneading sequence, it is understood that if a long-term

dynamical trajectory is gathered for an arbitrary initial condition, it is highly

probable that the dynamics will reach the maximum value 𝑆max = ψ(𝒦) at some

point in time confirmed by the fact that chaotic dynamics is highly distributed

over the state space. A search technique can therefore be devised to determine the

𝑆max and the Kneading sequence 𝒦 corresponding to the operating map maximum

from a symbolic trajectory 𝑆. A “Binary Search” approach to identify 𝑆max has

been proposed; utilising a shifting window operated over a symbolic sequence

of 𝑥0. As discussed in Section 2.9, in order to avoid the initial transient β symbols

before the dynamics can enter I′ and correspondingly in the domain [𝑆min, 𝑆max],

initial β bits of symbols from the symbolic sequence 𝑆 need to be discarded.

Since the β is empirically chosen, it needs to be sufficiently large, such that the

monotonic transitions towards [𝑆min, 𝑆max] are discarded.

The search algorithm for 𝑆max is given as:

1. A sufficiently large sequence 𝑆 is obtained for any arbitrary initial

condition x0. 𝑆 is stored in the digital domain for further processing

80

2. The 0 < β ∊ ℕ transient symbols must be discarded from 𝑆. After

discarding β symbols, the remaining sequence 𝑠𝛽 , 𝑠𝛽+1, … , 𝑠𝑛, … , 𝑠𝑁−1 is of

size N– β +1 bits. The index of 𝑛 will now be considered from 𝑛 = 𝛽, 𝛽 +

1, 𝛽 + 2, … , 𝑁 − 1

3. A finite length symbolic window of the size w bits is shifted over

sequence 𝑠𝛽 , 𝑠𝛽+1, … , 𝑠𝑛, … , 𝑠𝑁−1. The symbolic window is shifted towards

right by one bit, such that,

𝑠𝛽+1, 𝑠𝛽+2, … 𝑠𝛽+𝑖+1, … 𝑠𝛽+𝑤 = ψ(𝑠𝛽+0, 𝑠𝛽+1, … 𝑠𝛽+𝑖, … 𝑠𝛽+𝑤−1), (4.1)

where each shift is operated by ψ, the total number of shifts can be

performed W = N – β – w + 1. The index 𝑖 = 0, 1, 2, … , 𝑤 − 1 defines

position of each bit inside the symbolic window.

In Fig. 4.1, the shifting window approach has been illustrated with further

detail of how GON is estimated from the w-bit symbols appearing each

shift of the window.

Fig. 4.1 Operation of shifting window and determining GON of each shift

81

4. The real valued GON from 𝑤 bit long sequence appearing in the window

on each shift is obtained. The sequence with symbols 𝑠0, 𝑠1, … , 𝑠𝑤−1 in the

window is converted to equivalent binary 𝑏0, 𝑏1, … , 𝑏𝑤−1 through

𝑏𝑖 = {
𝑠𝑖 𝑖 = 0
𝑏𝑖−1 ⊕ 𝑠𝑖 𝑖 > 0

, (4.2)

where 𝑏𝑖 is the 𝑖 th digit of the binary code. Further GON is estimated as

GON = ∑ 𝑏𝑖 . 2−(𝑖+1)𝑖=𝑤−1
𝑖=0 . (4.3)

5. For each shift of the symbolic window over 𝑆 for 𝑛 = 𝛽, … , 𝑁 − 1, GONn

are estimated and compared with GONmax. If GONn > GONmax, then the

previous GONmax can be overwritten as GONmax = GONn, since the

process initially started with GONmax = 0, on every nth shift, GONn is

calculated and GONmax is updated if the stated condition is satisfied. This

process is repeated until the last shift, the stored largest GON value is then

found as GONmax and the corresponding sequence of GONmax can be

recorded and referred to as the maximum sequence 𝑆max.

6. The 𝑆max is confirmed to be the sequence representing Tmax = T(xc).

According to the explanation in Section 2.9, since the xc is represented by

the Kneading sequence 𝒦 = 𝑆:(Tn(xc)), the first symbol of 𝒦 is 0, and as

𝑆max = ψ(𝒦), to obtain the Kneading sequence 𝒦 from 𝑆max a 0 must be

appended in front of the 𝑆max.

7. Due to the non-ideal parameter µ < 1, GON(𝒦) ≠ xc. The deviation of

GON(𝒦) from xc can be realised by calculating the difference (2µ)-i-2- i at

each ith stage of symbolic conversion. Since binary-to-decimal conversion

is performed by choosing a base of 2, where the sequence through TM is

generated by non-ideal µ, the difference may be realised in terms of 2-2µ.

82

Combining the differences for all i stages would result into the total

difference by which GON(𝒦) is away from xc.

8. As 𝒦 is a Gray code, there is certain rule that needs to be followed in

order to combine the differences. As described in Section 2.6, for every

‘1’ appearing in the sequence, even count of 1’s refers to stretching nature

(positive slope) and odd count of 1’s refers to the folding nature (negative

slope) of the TM operated on an interval. Therefore, the signs for each ith

stage of the differences are accordingly adjusted to compensate for the

deviation of the actual signal value from the corresponding GON. After

appending ‘0’ in front of 𝑆max, the size of 𝒦 is 𝑤+1, the following rule is

applied to obtain the differences relative to symbolic order in the sequence

𝒦:

a. Starting from the MSB (most significant bit) of the sequence 𝒦,

i.e., 𝑠0, the number of 1’s appearing in the sequence is counted as γ

γ𝑖 = γ𝑖−1 + 𝑠𝑖. (4.4)

b. The difference for each ith stage according to odd or even nature of

γ𝑖 is calculated as δ𝑖

δ𝑖 = {
𝑠𝑖(2𝜇−𝑖 − 2−𝑖) γ 𝑖𝑠 𝑜𝑑𝑑

−𝑠𝑖(2𝜇−𝑖 − 2−𝑖) γ 𝑖𝑠 𝑒𝑣𝑒𝑛
. (4.5)

The alternating 1’s, i.e. whether γ𝑖 is odd or even, would decide

whether the corresponding difference will be added or subtracted

(as per the positive and negative slope of the map). The symbols 𝑠𝑖,

whether a 0 or a 1 in each ith stage is multiplied with the

83

difference, which decides whether or not any difference will be

added or subtracted at a particular ith stage, as for 𝑠𝑖 = 0 no

difference is generated i.e. δ𝑖 = 0, for 𝑠𝑖 = 1, δ𝑖 = ±𝑠𝑖(2𝜇−𝑖 − 2−𝑖)

9. Once all the δ𝑖 are determined from 𝒦 in terms of ±𝑠𝑖(2𝜇−𝑖 − 2−𝑖), the

differences are added to the GON(𝒦), and is equated to xc in the following

form

δ0 ± δ1 ± δ2 …± δ𝑤+1 + GON(𝒦) = xc. (4.6)

Since xc = 0.5 and the GON(𝒦) is known the equation can be solved in

terms of µ as each δ𝑖 = ±𝑠𝑖(2𝜇−𝑖 − 2−𝑖) while the µ is unknown.

10. The above equation is a polynomial, hence the solution for µ will return

multiple roots with few containing imaginary parts. The largest root, that

is non-zero and non-negative with the imaginary part equal to 0 should be

selected as the estimated µ.

The proposed method is straightforward that is to find Smax over a symbolic

trajectory and determine the Kneading sequence 𝒦 from Smax. The parameter

value is determined by solving the difference equation derived using 𝒦. The

method can be easily implemented in the computing domain (MATLAB code

using single input in Appendix 2.10).

4.2 Parameter Estimation from Noisy Dynamics of TM

The samples of noisy iterates can be used to determine the map parameter. Given

that the information of both the time step (n) and the magnitude of each iterate

(ɳ𝑛
𝑚) is contained in a trajectory, a sampled iterate can be treated as a point in a

84

two-dimensional cartesian coordinate system with n plotted in X-axis and the ɳ𝑛
𝑚

plotted in Y-axis. When the consecutive iterates ɳ𝑛−1
𝑚 and ɳ𝑛

𝑚 in the Ƞ𝑚

trajectories are joined together through straight lines, a set of intersections within

such straight-lines appear as all the sampled trajectories are observed collectively

[29], as can be seen in Fig. 3.7 in Section 3.1.3, when Ƞ𝑚 trajectories are viewed

through line-plots for all 𝑀. It can be noticed that, such intersections appear in a

concentrated neighbourhood between the majority of the nth and n+1th. It can also

be observed that these intersections mainly appear at about the same level on the

Y-axis of the plot, the behaviour of these intersections is further studied. In the

following experiment noisy trajectories are plotted for two different values of µ

perturbed with same level of noise SNR = 25 dB in the system for an arbitrarily

chosen initial condition 𝑥0 = 0.3234 for both the experiments. In Fig. 4.2 it may

be noticed that the clusters have appeared around the corresponding fixed point

𝑥𝑓 = 0.6226 for µ = 0.825, marked with a dashed line.

Fig. 4.2 Crossovers around xf = 0.6226 for µ = 0.825

85

Similarly, in Fig. 4.3, the clusters marked with a dashed line have appeared

around 𝑥𝑓 = 0.5745 for µ = 0.625. Collectively the locations of the cluster of

intersections on the Y-axis is relatable to the location of the non-zero fixed point

𝑥𝑓 of the TM, as the clusters of intersections have appeared in different locations

for different parameter values [29]. Hence, it is verified that such clusters have a

correspondence with 𝑥𝑓 and therefore the µ of the map can be determined if 𝑥𝑓 is

identified according to the property 6 in Section 2.5.

Fig. 4.3 Crossovers around 𝑥𝑓 = 0.5745 for µ = 0.625

To ascertain this perspective, further study and exploration of the dynamic

behaviour of the state space around the neighbourhood of the non-zero fixed

point 𝑥𝑓 is necessary. The mapping of the points within 𝐼 is observed for a single

iteration from which different intervals are identified that show unique mapping

properties. For any parameter µ ∊ (0.5,1], the preimage of 𝑥𝑓 is given by 𝑥𝑝 =

86

𝑥𝑓/2µ. Therefore, 𝑥𝑛+1 for any 𝑥𝑛 ∊ [0,𝑥𝑝) ∊ 𝐼 will be less than or equal to 𝑥𝑓,

thus the mapping 𝑇 : [0,𝑥𝑝) ↦ [0,𝑥𝑓) holds.

On the other hand, any 𝑥𝑛 ∊ [𝑥𝑝,𝑥𝑐) ∊ 𝐼 the corresponding 𝑥𝑛+1 will be greater

than 𝑥𝑓, and the mapping will be 𝑇 : [𝑥𝑝,𝑥𝑐) ↦ [𝑥𝑓,𝜇). Also, for the points within

the intervals [𝑥𝑐,𝑥𝑓) ∊ 𝐼 and [𝑥𝑓,1] ∊ 𝐼 show the respective mappings 𝑇 :

[𝑥𝑐,𝑥𝑓) ↦ [𝑥𝑓,𝜇) and 𝑇 : [𝑥𝑓,1] ↦ [0,𝑥𝑓]. If the 𝑥𝑛 from the above intervals and

the corresponding 𝑥𝑛+1 = 𝑇(𝑥𝑛), is plotted on a two-dimensional coordinate

system where the X-axis represents n and n+1, and the Y-axis represents 𝑥𝑛 and

𝑥𝑛+1, then a straight line joining the two points can be constructed.

Fig. 4.4 Mapping within the state space

In Fig. 4.4 the lines joining the of 𝑥𝑛 and the corresponding 𝑥𝑛+1 for the intervals

within 𝑥𝑛 ∊ [0,𝑥𝑝), 𝑥𝑛 ∊ [𝑥𝑝,𝑥𝑐), 𝑥𝑛 ∊ [𝑥𝑐,𝑥𝑓), 𝑥𝑛 ∊ [𝑥𝑓,1] have been shown. It is

clearly seen that the straight lines formed by the iterates within the two intervals

87

[𝑥𝑐,𝑥𝑓) ↦ [𝑥𝑓,𝜇) and 𝑇 : [𝑥𝑓,1] ↦ [0,𝑥𝑓] about the 𝑥𝑓, intersect at a single point 𝑥𝑓

on the Y-axis. Whereas, for the remaining intervals, the intersections between the

𝑥𝑛 and corresponding 𝑥𝑛+1 points are not concentrated on a single point; rather,

the intersections are spread widely over the XY-plane. Hence, it is confirmed that

points within 50% of the entire state space 𝐼, i.e. 𝑥𝑛 ∊ [𝑥𝑐,1] ∊ 𝐼, will show such

intersections at 𝑥𝑓 [29].

Given that the state space is highly distributed due to the perturbed dynamics of

the TM, having noise in the iterative process will have additional advantages by

maximising the chances of the dynamics spreading over the entire state space and

therefore the chance of finding the intersections concentrated around a single

point 𝑥𝑓 of the map is maximised. Thus, from the sampled collection of the noisy

trajectories, locations of such intersections can be determined between the

iterates, and can be further be correlated with 𝑥𝑓 of the map to determine the

parameter µ.

4.2.1 The Algorithm: Parameter Estimation from Noisy

Trajectories

From the observations presented in the previous section, it is understood that,

from a collection of noisy trajectories, the intersections corresponding to the non-

zero fixed point (𝑥𝑓) of the map can be determined closely, that can be utilised to

identify the map parameter with a reasonable accuracy.

A statistical approach has been implemented to estimate the fixed point from the

collection of Ƞ𝑚 trajectories, as given in the following algorithm.

88

1. The 𝑁 number of ɳ𝑛
𝑚 iterates are collected for each 𝑚th sample trajectory

Ƞ𝑚.

2. According to the behaviour discussed in the previous section, to find the

intersections that appear closely around 𝑥𝑓, the criteria 𝑥𝑛 ∊ [𝑥𝑐,1] ∊ 𝐼

needs to be fulfilled. Therefore, for an 𝑛th set of sampled iterates the ɳ𝑛
𝑚

points that satisfy ɳ𝑛
𝑚 ∊ [𝑥𝑐,1] should be selected. Between any given 𝑛th

and (𝑛 + 1)th iterates, let the total number of selected points out of 𝑀

samples be 𝑀′ ≤ 𝑀 contained in set 𝐻𝑛 = {ɳ𝑛
𝑚 ∊ [𝑥𝑐, 1]}. In Fig. 4.5 the

selection of the noisy samples has been illustrated.

Fig. 4.5 Selection of the iterates to determine the intersections

3. 𝑀′ number of straight-lines have been formed with each element in 𝐻𝑛

with their corresponding (𝑛 + 1)th iterates.

4. The number of intersections between straight-lines formed by the unique

pairs of points ɳ𝑛
𝑖 , ɳ𝑛+1

𝑖 and ɳ𝑛
𝑗

, ɳ𝑛+1
𝑗

 for the 𝑀′ selected cases will be

89

𝑀′(𝑀′ – 1)/2, for all 𝑖 = 0, 1, … , 𝑀′ − 1 and 𝑗 = 𝑖 + 1, 𝑖 + 2, … , 𝑀′ − 1

such that 𝑖 ≠ 𝑗.

5. The ordinate value 𝑌𝑘 of the intersection is solved by equation (4.7) in

terms of ɳ𝑛
𝑖 , ɳ𝑛+1

𝑖 and ɳ𝑛
𝑗

, ɳ𝑛+1
𝑗

𝑌𝑘 − ɳ𝑛
𝑖

ɳ𝑛+1
𝑖 − ɳ𝑛

𝑖 =
𝑌𝑘 − ɳ𝑛

𝑗

ɳ𝑛+1
𝑗

− ɳ𝑛
𝑗 , (4.7)

where, 𝑘 = 1, 2, …, 𝑀′(𝑀′ – 1)/2. In Fig. 4.6 the assignment of

coordinates to the samples that are used to determine the intersections

have been illustrated.

Fig. 4.6 Assignment of coordinates to the selected samples

6. The 𝑌𝑘 solutions (intersection) form a cluster of the points by the lines

joining between 𝑛 and (𝑛 + 1) time steps. The central point within each

such cluster is determined by calculating the arithmetic mean 𝑌̅𝑛 from all

the 𝑌𝑘 solutions for a given 𝑛.

90

𝑌̅𝑛 =
1

𝑀′(𝑀′ – 1)/2
∑ 𝑌𝑘𝑀′(𝑀′ – 1)/2

𝑘=1 . (4.8)

Note: The selection criterion ɳ𝑛
𝑚 ∊ [𝑥𝑐,1] for any 𝑛th time step might lead

to 𝐻𝑛 being empty or singleton set (i.e. |𝐻𝑛| < 2), which might generate

no solution for 𝑌𝑘 and therefore 𝑌̅𝑛. To have at least one 𝑌𝑘 solution for

an intersection between 𝑛 and (𝑛 + 1), there must be at least two elements

in 𝐻𝑛; therefore, any such |𝐻𝑛| < 2 and the corresponding 𝑌̅𝑛 must be

excluded, otherwise it might lead to undesirable outcomes in the

programming domain.

7. Also, as between every 𝑛 and (𝑛 + 1) time-steps there would be one 𝑌̅𝑛;

then, the total number of 𝑌̅𝑛 produced for all |𝐻𝑛| ≥ 2 must be Θ ≤ 𝑁 – 1.

Hence, from the 𝑌̅𝑛 values again a single point ξ that is the closest

approximation of 𝑥𝑓 can be determined by calculating the arithmetic mean

of Θ number of 𝑌̅𝑛. Using the value of ξ the control parameter of the TM

can be estimated as 𝜇′ using the following equation given by re-writing

equation (2.9) in terms of ξ and making 𝜇′ the subject

𝜇′ = ξ/2(1 − ξ). (4.9)

The technique shown in this section utilises the samples of the noisy iterates to

determine the crossovers of the fixed point and the map parameter. The proposed

algorithm can be implemented in the computing domain (code in Appendix 2.12)

where the noisy iterates sampled from the physical hardware can be processed.

91

5 RESULTS: PARAMETER ESTIMATION

The two parameter estimation methods, as described in Chapter 4, are tested

through simulation. The results of both the methods – described in Sections 4.1

and 4.2 respectively – are detailed in this chapter. First, the Kneading Sequence

Search Algorithm is simulated and verified for performance. Next, the second

method, Parameter Estimation from Noisy Dynamics of TM has been performed.

A thorough analysis of the estimated outcomes and errors has been presented.

For the computerised simulations, MATLAB R2016b has been used.

Alternatively, the open source Octave can also be used. However, for speedy

convergence MATLAB is recommended, as it heavily utilises parallel processing.

For the result generation and storage in the programs, one- and two-dimensional

array structures have been extensively used. The programs for each of the

algorithms have been developed considering that the methods can be

implemented on digital computation devices (e.g. Microcontrollers, FPGAs) and

can be adapted for programming languages such as C, C++, Java, VHDL etc. In

the first part of every experiment (as in the programs in Appendices 2.10 – 2.13),

the TM dynamics is operated with a test parameter and an initial condition, the

time series trajectories were generated along with the symbolic outcomes for a

certain length N. In case of noise-oriented approaches, awgn(𝑥𝑛,SNR) function is

used to perturb each 𝑥𝑛 state with White Gaussian Noise corresponded by a

chosen SNR and the trajectories were sampled for M times. In the later parts of

the experiments, parameter estimation algorithms have been applied on the

generated data set, and the estimation results and errors have been observed and

plotted graphically as detailed in the following sections.

92

5.1 Results: Kneading Sequence Search Algorithm

The Kneading sequence search algorithm and parameter estimation technique

from the Kneading sequence using difference equation approach has been

evaluated for various parametric conditions. Following is an example to illustrate

how the 𝑆max and 𝒦 sequences are determined by operating the symbolic shifting

window over the 𝑆 sequence; followed by that, the TM parameter value µ is

estimated by solving the difference equation with xc, realised according to the

symbolic order of 𝒦. An arbitrary initial condition x0 = 0.092904 is iterated with

a test parameter µ = 0.90, for N = 200 times to ensure that the dynamics reach

closest to the map maximum value within that many iterations.

The symbolic sequence 𝑆 is obtained and the algorithm to find 𝒦 is operated as

follows:

1. Initial β = 5 transient symbols were discarded to avoid the monotonic

trajectories that might not be a part of the dynamical attractor. As can be

seen from Table 5.1, a symbolic window 𝑤 = 12-bit wide is operated over

the 𝑆, starting from 𝑠5, 𝑠6, … , 𝑠16 and the GON5 = 0.295410 for the code

within the symbolic window is estimated. The GONmax = 0, as initialised

and compared with GON5, if GON5 > GONmax, then GONmax = GON5.

2. As the single step shift is operated by ψ, in Table 5.1, it can be observed

that the GON6 for the new code appearing in shifted window is estimated

as GON6 = 0.591064 > GONmax = 0.295410, therefore GONmax = GON6

3. On the next shift, GON7 = 0.817382 > GONmax = 0.591064, therefore

GONmax = GON7.

4. GON8 = 0.364746 < GONmax = 0.817382, so GONmax remains unchanged.

93

5. As the shifting of the symbolic window is continued the maximum GON

was found to be GON63 = 0.923095 for the entire symbolic sequence (see

Table 5.1).

Table 5.1 Shifting window of 12-bit operated over symbolic sequence

 𝛽 = 5 Symbolic Window, 𝑤 = 12-bit

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

𝑆 0 0 0 1 1 0 1 1 0 1 1 1 0 0 1 1 1 1

 GON5 = 0.295410

 Symbolic Window, 𝑤 = 12-bit

n 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

𝑆 0 1 1 0 1 1 1 0 0 1 1 1 1 0 1 0 0 1

 GON6 = 0.591064

 Symbolic Window, 𝑤 = 12-bit

n 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

𝑆 0 1 1 0 1 1 1 0 0 1 1 1 1 0 1 0 0 1

 GON7 = 0.817382

 Symbolic Window, 𝑤 = 12-bit

n 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

𝑆 0 1 1 0 1 1 1 0 0 1 1 1 1 0 1 0 0 1

 GON8 = 0.364746

…

 Symbolic Window, 𝑤 = 12-bit

n 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

𝑆 1 0 0 1 0 0 1 1 0 1 0 0 1 1 1 1 0 0

 GON63 = 0.923095

6. The code within the symbolic window corresponding to GON63 has been

recorded as 𝑆max. Form 𝑆max the 𝒦 has been created by appending a 0 in

front of the 𝑆max, as given in Table 5.2.

Table 5.2 Obtaining Kneading sequence 𝒦 from 𝑆max

i 0 1 2 3 4 5 6 7 8 9 10 11 12

𝑆max 1 0 0 1 1 0 1 0 0 1 1 1 -

𝒦 0 1 0 0 1 1 0 1 0 0 1 1 1

94

7. The GON(𝒦) = 0.461547 is determined which is not equal to the value of

xc. The difference between xc and GON(𝒦) is the factor of the non-ideal

µ, which is realised from the order of the symbols 𝑠𝑖 in 𝒦 in terms of

(2𝜇−𝑖 − 2−𝑖) by applying rule 8(a) and 8(b) in the proposed algorithm (see

Section 4.1.1) and formed into an equation with xc, as 𝒦 corresponds to

xc. Solving the equation will determine the unknown value of µ.

Table 5.3 Kneading sequence

 MSB → LSB

𝒦 0 1 0 0 1 1 0 1 0 0 1 1 1

Starting from the MSB of 𝒦 (as given in Table 5.3), as per the proposed

technique, the following rule is applied.

γ𝑖 = γ𝑖−1 + 𝑠𝑖. (5.1)

δ𝑖 = {
𝑠𝑖(2𝜇−𝑖 − 2−𝑖) γ 𝑖𝑠 𝑜𝑑𝑑

−𝑠𝑖(2𝜇−𝑖 − 2−𝑖) γ 𝑖𝑠 𝑒𝑣𝑒𝑛
. (5.2)

a. Starting with i = 0, the γ0 = 0, i.e. even as the 𝑠0 = 0, so δ0 = 0

b. For i = 1, the γ1 = 1, i.e. odd as the 𝑠1 = 1, so δ1 = (2𝜇−1 − 2−1)

c. For i = 2, the γ2 = 1, i.e. odd as the 𝑠2 = 0, so δ2 = 0

d. For i = 3, the γ3 = 1, i.e. odd as the 𝑠3 = 0, so δ3 = 0

e. For i = 4, the γ4 = 2, i.e. even as the 𝑠4 = 1, so δ4 = −(2𝜇−1 − 2−1)

8. After determining all the δ𝑖 for all 𝑠𝑖 in the 𝒦. The following equation is

obtained by adding all the differences to GON(𝒦) and equating with xc.

δ1 – δ4 + δ5 – δ7 + δ10 – δ11 + δ12 + GON(𝒦) = xc. (5.3)

95

⇒ δ1 – δ4 + δ5 – δ7 + δ10 – δ11 + δ12 + GON(𝒦) – xc = 0.

Substituting the δ𝑖 terms in the equation with (2𝜇−𝑖 − 2−𝑖),

⇒ (2𝜇−1 − 2−1) – (2𝜇−4 − 2−4) + (2𝜇−5 − 2−5) – (2𝜇−7 − 2−7) +

(2𝜇−10 − 2−10) – (2𝜇−11 − 2−11) + (2𝜇−12 − 2−12) + GON(𝒦) – xc = 0.

Putting the values GON(𝒦) = 0.461547 and xc = 0.5 in the equation the

highest real valued solution of the µ is given as

⇒ µ = 0.897065

that is close to the actual parameter value µ = 0.90.

In Fig. 5.1, it can be observed that the δ𝑖 differences cumulatively build

up to xc from GON(𝒦). Hence, it is understood that the equation has been

established appropriately utilising the structure of the symbolic code that

can be solved in terms of the unknown parameter value.

Fig. 5.1 The equation build-up: differences added to GON(𝒦)

96

In the graph shown in Fig. 5.1, the differences added with GON(𝒦) given in the

equation (5.3) has been plotted in the following order GON(𝒦) + δ1, GON(𝒦) +

δ1 – δ4, GON(𝒦) + δ1 – δ4 + δ5, GON(𝒦) + δ1 – δ4 + δ5 – δ7, and so on in each

step, as can be seen at the last step of addition the differences added with

GON(𝒦) equals to xc = 0.5. In Fig. 5.2 the estimation results for the parameter

values ranging from µ = [0.8,1] has been graphically analysed.

Fig. 5.2 Estimated parameter values for different parametric conditions

Symbolic sequences 𝑆 were generated from the arbitrary initial conditions using

the parameter values µ = [0.8,1]. To ensure that 𝑆max appears in the dynamics, the

length of 𝑆 has been sufficiently chosen as N = 200, and a symbolic window of

length w = 12 bits have been operated over 𝑆. Thus, 𝒦 is determined from the

𝑆max. It can be seen that the estimated results for different parameters are in good

agreement with the actual parameter values, as can be further observed clearly

97

from Fig. 5.3 where the estimation error has been shown in percentages that is

approximately below 0.5%.

Fig. 5.3 Percentage error in parameter estimation

The parameter estimation algorithm has been evaluated for a set of initial

conditions. As the dynamics for different initial condition and parameter values

would map to the maximum Tmax with the corresponding 𝑆max appearing at

different times in the time series trajectory, it can be ensured that for N = 200

after discarding β = 5 symbols, the parameter can be estimated with sufficient

accuracy. A set of initial conditions has been chosen as x0 = [0,1] within the state

space with resolution 1/28, that were iterated with parameter µ = 0.8, and

parameter was estimated from the 𝑆 generated with each different initial

condition (code for the entire set of initial condition used to generate the results

is included in Appendix 2.11).

98

Fig. 5.4 Estimated parameter for all initial conditions

The results presented in Fig. 5.4, shows the majority of the estimated outcomes

with reasonable accuracy belonging within range [0.78, 0.8] which is close to the

actual parameter value µ = 0.8.

For the effective results, the choice of certain variables involved in the algorithm,

deserves some discussion. Though β is empirically chosen, the choice of β is only

to ensure that the transient initial points of the dynamics before entering the

attractor are discarded (elaborate details can also be found in Sections 2.5.1 and

2.7). Since the initial point or the input may appear from anywhere within the

state space and not necessarily within the bounds I′ = [Tmax,Tmin], the initial few

iterates may map to the points outside this attractor. Once the dynamics enters the

attractor, it remains within, and therefore never exceeds the map maximum. In a

bid to avoid misrepresentation of the map maximum, any transient iterates prior

99

to entering the attractor is therefore discarded. Hence the choice of β must be

enough, so that it sufficiently ascertains that the dynamics has entered the

attractor originating from any initial condition. The choice of β, otherwise, has no

role to play in the accuracy of estimation, it only ensures the possibility of

finding the true maximum.

The choice of N again has no direct impact on the accuracy of estimation, a

higher count of N only further ensures the probability that the dynamics has

visited the unique maximum at least once. Since the knowledge of the initial

condition is not available at this point of the chosen application, it cannot be

calculatively determined how many iterations will be required to visit the

maximum. However, if the shifting window size w is increased, N can be

increased to avail sufficient number of shifts, since larger number of shifts will

improve the probability of finding the 𝑆max.

The window size w however needs to be chosen appropriately to ensure the

accuracy of the estimation. Given the obvious notion that the accuracy would

increase as the window size is increased, certain sizes of w has been observed (12

to 14 bits) beyond which the accuracy is stabilised to a steady outcome as can be

seen in Fig. 5.5. Since the parameter is solved from the code of 𝑆max appearing in

the window, using a polynomial equation (5.3), addition of further bits to the

window (increasing the size of w) will result in adding higher order polynomials

that would contribute a nominal amount of information to the estimates,

therefore, once the desired accuracy level is reached i.e. with w = [12,14], further

addition of bits to the window may be ineffective as higher order polynomials

may consume more time and processing power to converge to a solution.

100

Fig. 5.5 Relationship between estimation accuracy and window size

Performance of such an estimation method may be affected by inherent noise in

the physical circuitry, because in case of small overshoot the iterates may cross

the map maximum and the corresponding Smax might get altered. In such

situations the estimation algorithm can adapt to an averaging scheme operated on

the frequently estimated outcomes. The averaging can improve the quality of the

estimates by computing the mean value of the estimated parameters and updating

the result.

5.2 Results: Parameter Estimation from Noisy Dynamics

The parameter estimation algorithm utilising noisy trajectories has been

evaluated. To demonstrate working of the algorithm, an experimental condition

has been chosen with an arbitrary initial condition: 𝑥0 = 0.383 that was iterated

through the TM with parameter µ = 0.715 for 𝑁 = 50 iterations. The iterates were

perturbed by dynamic addition of AWGN with SNR = 20 dB, and samples of Ƞ𝑚

101

trajectories were recorded for 𝑀 = 200. For the chosen parameter value in this

experiment the corresponding value of the non-zero fixed point is 𝑥𝑓 = 2µ/(1 +

2µ) = 0.588477, which may be compared with the estimated outcome of the

algorithm.

According to the proposed technique, the 𝑌𝑘 solutions for the chosen case are the

crossover points among the straight lines formed between 𝑛 and (𝑛 + 1) iterates.

In Figs. 5.6 and 5.7, a collection of such 𝑌𝑘 solutions have been shown through

histograms for the sampled iterates within two independent pair of time steps.

Fig. 5.6 shows distribution of the 𝑌𝑘 solutions between 𝑛 = 16 and 17. The mean

value of the 𝑌𝑘 crossover points for this case is given as 𝑌̅16 = 0.588973 and to

realise the quality of the mean outcome, the standard deviation of the crossover

solution points between 𝑛 = 16 and 17 is found to be 𝐷16 = 0.090581.

Fig. 5.6 Distribution of 𝑌𝑘solutions between n = 16 and 17

102

Fig. 5.7 Distribution of 𝑌𝑘 solutions between n = 20 and 21

In Fig. 5.7 the histogram distribution for 𝑌𝑘 solutions between time steps 𝑛 = 20

and 21 has been shown with mean value of the solutions as 𝑌̅20 = 0.588029 and

the standard deviation of the distribution 𝐷20 = 0.079790. It can be noticed from

the histograms, that the crossover solutions between the straight lines formed by

the iterates of the two consecutive time steps are highly concentrated in the close

neighbourhood of the actual fixed point 𝑥𝑓 = 0.588477 of the map. Therefore,

that the mean positions 𝑌̅𝑛 of the 𝑌𝑘 crossover points between every 𝑛 and (𝑛 +

1) time steps are the closest estimates of the map fixed point. If a single estimate

of all the 𝑌̅𝑛 estimates can be determined, the map fixed point can be ascertained

more accurately. In Fig. 5.8, the 𝑌̅𝑛 values have been determined for all 𝑛

timesteps and have been shown. It may be observed that, collectively the 𝑌̅𝑛

estimates are located closely around the actual fixed point 𝑥𝑓 = 0.588477.

103

Further, mean of all the 𝑌̅𝑛 solutions were calculated as ξ = 0.588820 to determine

the value of the map fixed point as precisely as possible.

Fig. 5.8 The mean 𝑌̅𝑛 of crossover points (black-square legend)

As visualised through Fig. 5.8, the estimated fixed point ξ = 0.588820 is

represented by the black straight line passing through the 𝑌̅𝑛 points. The quality

of the mean value ξ from the collection of 𝑌̅𝑛 points was realised through

standard deviation SD = 0.008620. The amount of error in the fixed-point

estimation is given by 100(𝑥𝑓 - ξ) = -0.0343%, which is significantly low

considering the effects of noise in the chaotic trajectories. From the value of ξ, as

being the closest approximation of the TM non-zero fixed point 𝑥𝑓, the control

parameter of the map has been estimated as 𝜇′ = 0.716027 that is as well the

closest approximation of the actual parameter µ = 0.715 which was chosen for

the experiment. The error in the parameter estimation is given as 100(µ - 𝜇′) = -

0.1030%. It can be confirmed that under a harsh field of dynamical noise, the

parameter value is closely estimated to the actual value with sufficient accuracy,

104

hence the method has been proved to be suitable for parameter estimation of the

chaotic map from the noisy dynamics.

The estimation experiment was repeated for another arbitrary initial condition 𝑥0

= 0.863281 and parameter µ = 0.90, and the trajectory was perturbed by

dynamical noise of SNR = 30 dB. In this example the TM trajectory was iterated

for 𝑁 = 50 and each trajectory was sampled for 𝑀 = 50. In Fig. 5.9 the noisy

iterates and the estimated crossovers (fixed point) have been shown. The

estimated fixed point from the mean of the crossover clusters 𝑌̅𝑛 was found to be

ξ = 0.642892 whereas the actual fixed point for the chosen parameter value is 𝑥𝑓

= 0.642857, the estimation proved to be in good agreement with the actual fixed

point. Hence the estimated parameter was found to be 𝜇′ = 0.900130.

Fig. 5.9 Fixed point crossover estimates for SNR 30dB

To further realise the quality of the estimates using the proposed method

parameter estimation using noisy dynamics, five independent cases of parameters

µ = 0.95, µ = 0.90, µ = 0.85, µ = 0.80 and µ = 0.75 have been investigated. Due

105

to the statistical nature of the proposed algorithm, a confidence interval is

determined for all estimation attempts representing the quality of the estimates.

Each of the chosen cases of µ has been separately iterated through an arbitrary

initial condition, for 𝑁 = 50 iterations, and chaotic trajectory for each

independent condition is repeatedly sampled 𝑀 = 50 times. To determine the

confidence level in the parameter estimations, the algorithm is operated

repeatedly 25 times and 𝜇′ outcomes of each of the attempts have been recorded.

The confidence interval depicted by the error bar and mean 𝜇𝑚𝑒𝑎𝑛
′ of 𝑄 = 25

independent estimation attempts 𝑞 = 1, 2, … , 𝑄, for each case of noise over a

range of SNR values 10-30 dB have been determined.

To estimate the standard error-bar, the following calculation is applied for the

mean of all the attempts for a given case of 𝜇′ outcome.

𝜇𝑚𝑒𝑎𝑛
′ =

1

𝑄
∑ 𝜇𝑞

′𝑄
𝑞=1 . (5.4)

The upper and lower bounds of the 95% confidence interval is calculated

respectively using:

95% Confidence Interval = 𝜇𝑚𝑒𝑎𝑛
′ ± 1.96 (

𝜇𝑆𝐷
′

√𝑄
), (5.5)

where, 𝜇𝑆𝐷
′ is the standard deviation of 𝑄 estimation attempts.

In Figs. 5.10 – 5.14, the quality of the estimated parameter has been shown

through both 𝜇𝑚𝑒𝑎𝑛
′ and 95% confidence interval for the chosen cases of µ =

0.95, µ = 0.90, µ = 0.85, µ = 0.80 and µ = 0.75 respectively. The mean value of

all the estimations is close to the actual µ belonging within the 95% confidence

interval from SNR 15 dB onwards and the error bar reduces gradually.

106

Fig. 5.10 Estimated parameter error bar plot for µ = 0.95

Fig. 5.11 Estimated parameter error bar plot for µ = 0.90

107

Fig. 5.12 Estimated parameter error bar plot for µ = 0.85

Fig. 5.13 Estimated parameter error bar plot for µ = 0.80

108

Fig. 5.14 Estimated parameter error bar plot for µ = 0.75

It can be noticed from the above error bar plots that the estimated outcomes are

gradually deviated away from the actual µ for SNR values 10 dB or less. Hence,

as a condition to utilise noise for parameter estimation, with slightly improved

SNR values better results can be achieved as relatively lower noise may still

preserve the qualitative properties of the TM dynamics. In harsher noisy

conditions it has been previously investigated and established that the properties

of the dynamical system are barely preserved [57].

The aim of the work is to establish the approaches for the correct identification of

the non-ideal parameter so that it can be utilised in initial condition estimation.

Due to the harsh characteristic of dynamical noise, the trajectories of the initial

conditions might get severely affected. Therefore, the parameter estimation

method has been further checked for the trajectories generated with a set of initial

conditions perturbed by a certain degree of noise. In the following experiments

109

the set of 256 initial points have been iterated up to 𝑁 = 32, with a parameter

value µ = 0.715 and the trajectories have been perturbed by AWGN with SNR =

20 dB. The estimates were performed on 𝑀 = 50 samples for each of the

trajectories of 256 initial conditions. The map parameter was separately estimated

from each of the perturbed trajectories.

In Figs. 5.15 – 5.17 the parameter values estimated from individual noisy

trajectories generated by each initial condition within the state space have been

shown for a range of SNR levels. Fig. 5.15 shows a perturbation by AWGN of

SNR = 20 dB. Through the parameter estimation technique proposed here, the

statistical trend of the estimated parameter values (roughly within range 0.71 –

0.73) are found to be close to the actual parameter value µ = 0.715 of the TM

with which the trajectories have been generated.

Fig. 5.15 Estimated parameter for all inputs (SNR = 20 dB)

110

Fig. 5.16 Estimated parameter for all inputs (SNR = 25 dB)

Fig. 5.17 Estimated parameter for all inputs (SNR = 30 dB)

111

The same experiment has been repeated with a slightly better SNR = 25 dB. The

estimated parameter from the noisy trajectories has been shown in Fig. 5.16. The

parameter estimates for most of the points are quite close to the actual parameter

value µ = 0.715 as the estimates belong in the range 0.712 – 0.718. Another

independent case with test parameter value µ = 0.95 and an SNR level of 30 dB

has been considered for estimation. The estimated parameter from the noisy

trajectories of the set of initial conditions has been shown in Fig. 5.17, the

estimated parameters belong within range 0.945-0.955 (code for entire set of

initial condition is provided in Appendix 2.13).

Even though noise levels with SNR = 20 dB and beyond is considered as

moderate in general, such levels of noise may have drastic effects on the chaotic

trajectories as the noise itself is dynamically multiplied through the chaotic

function. Therefore, retrieving meaningful information such as map parameter

becomes difficult. However, the proposed method of determining the map fixed

points from the collection of crossovers has been proved to be useful for the

approximation of the parameter value of TM.

In several cases of harsher conditions of dynamical noise (SNR = 10 dB or less),

the system might depart from normal distribution [46], as the noise is propagated

through dynamics. Due to the behaviour of the function corrupted by noise, some

systematic error might get introduced, that may affect the statistical estimates. It

is straightforward to deal with the random error using statistical methods

compared to the systematic errors, as the source and behaviour of the systematic

error might not always be known and might not exhibit normally distributed

traits.

112

The proposed parameter estimation method from the noisy dynamics is found to

be robust for the SNR 15 dB and beyond. In case of practical circuitry, the noise

level may usually be expected to be better than 15 dB, in such conditions the

estimations will be even better using the crossover-oriented algorithm. Despite

the robustness of this estimation approach, currently the proposed algorithm

utilises the real valued noisy iterates. However, in future, there could be further

scopes to develop the method suitably for symbolic dynamics which will enhance

the system resources further while maintaining the desired robustness.

113

6 CONCLUSION AND FUTURE SCOPES

Considering the chaotic dynamics approach for signal measurement, in this work,

solutions to the parameter estimation of the implemented chaotic function have

been presented. Tent map (TM) has been selected as the suitable chaotic function

for signal measurement; because of the dense distribution of points that can be

realised through TM dynamics, holding unique correspondence between chaotic

trajectories and initial condition. However, when the map is implemented in the

electronic hardware domain, due to offsets and tolerances of the components, the

parameter of the map cannot be maintained at the ideal value and the map

partitions shift from the ideal positions causing the dynamics to deviate from the

actual path. Consequentially, such deviations result into loss of correspondence

when initial condition is estimated from the symbolic sequences through

conventional binary to decimal conversion techniques. It has been realised that

the knowledge of the non-ideal parameter may be utilised to reinstate the

correspondence and improve the accuracy of the initial condition estimation.

Therefore, parameter estimation is essential and possible methods have been

investigated.

The previously available techniques used extensively long dynamical trajectories

to estimate the parameter. Such approaches were mainly dedicated to the field of

communication, where, acquiring millions of iterations from the computationally

implemented maps were not a problem. However, for the signal measurement

using electronic hardware, in this work, the knowledge of the dynamical

properties in non-ideal conditions has been suitably utilised to formulate the

parameter estimation techniques using significantly less number of iterations.

114

Two innovative techniques for parameter estimation have been proposed. One of

the proposed approaches is the Kneading sequence search algorithm, which was

achieved by operating a symbolic shifting window over the entire symbolic

sequence generated with an initial condition for any non-ideal parameter. The

symbolic sequence corresponding to the map maximum was determined by

comparing the GONs of each shift of the window. The maximum sequence was

then converted to the Kneading sequence and finally the parameter was estimated

by solving the difference equation that was established with the map critical

point. The estimated parameter values were found to be considerably accurate

with estimation error approximately under 0.5%. Also, the estimation was

achieved with reduced number of iterations (200) compared to the conventional

techniques.

The presence of noise in the chaotic systems result in highly digressing

trajectories leading to difficulties in determining the desired information of the

actual trajectory. Numerous researches have confirmed the importance of the

knowledge of map parameter, such that the actual dynamical trajectory can be

discerned from the noisy ones. This prompted the investigation of another

approach that utilises the distribution of the noisy chaotic trajectories to estimate

the map parameter. From the properties of the noisy dynamics of TM, as has been

simulated in this work under various noise levels, unique crossovers between the

trajectories have been observed at the close neighbourhood of the non-zero fixed

point of the TM. The presence of noise in the system has in fact, enhanced the

probability of finding the crossovers within the perturbed trajectories, since,

noise causes the dynamics to be highly distributed over the state space. The

proposed parameter estimation technique utilised a set of (50) sampled

115

trajectories of the same dynamics iterated up to 50 times. The crossovers

appeared between the iterates of each consecutive pair of time steps were

determined by solving linear equations, as the iterates were represented through

Cartesian coordinate system, where the x-axis depicted the time step and the y-

axis depicted the magnitude of the iterate. The concentration of the crossovers

between the sampled trajectories was statistically located by taking average of the

solutions. Since the location of crossovers corresponds to the non-zero fixed

point of the TM, the map parameter has been estimated from the knowledge of

the non-zero fixed point. For such a statistical approach applied over dynamically

affected noisy time series, the actual parameter was found to be contained within

95% confidence interval of the estimation for the SNR 15 dB onwards, and with

the standard deviation of the estimates was found to be between 0.07 to 0.09.

Both the proposed approaches can be easily implemented through programs in

the computation domain and in electronic hardware such as field programmable

gate array (FPGA) and microcontrollers. For the desired application of signal

measurement, the techniques can be coupled directly with the initial condition

estimation algorithms to accurately determine the starting point or the input

signal from the dynamics. This development in the parameter estimation methods

in accompaniment with initial condition methods can be considered as a step

forward in the development of a chaotic ADC, and the entire measurement

system may be implemented in a single chip package.

6.1 Future scopes

The knowledge of the chaotic dynamics and the methods devised for parameter

estimation in this work can be broadly applied in various related and independent

116

areas. Apart from the desired scope of signal measurement, the proposed

parameter estimation approaches can also be utilised in other applications where

chaotic maps are widely used e.g. for cryptography and encryption in

communication technologies.

6.1.1 Chaotic Measurement System Implementation

To implement a TM-based chaotic measurement system as a standalone

technology, either of the two proposed parameter estimation techniques can be

employed. If the amount of noise in the implemented system hardware ranges

from SNR values lower than 30 dB, then the crossover-oriented method can be

applied, as the method efficiently determines parameter from the noisy dynamics

with SNR as low as 15 dB. On the other hand, if the noise in the circuit is

significantly low, the shifting window technique can be utilised as the method

can be directly operated in the symbolic domain. The accuracy of the estimates

affected by a small amount of noise can be further optimised by employing

moving average algorithm which will continue to compute the average of the

estimated outcomes from time to time.

Successful implementation of a chaotic measurement system as an ADC is

expected to save a considerable amount of resources and reduce the design

complexity significantly because a single block of chaotic map can be used as a

quantisation unit. Following (see Fig. 6.1) is the functional block diagram of the

chaotic measurement system. The analogue implementation of the TM can be

adapted from the schematic circuit which was first proposed by Campos-Cantón

et al [14] and later utilised by Sanjin Berbercick [19] and Basu et al [24] to study

the application further. The analogue TM comprise of simple electronic circuit

117

involving op-amps with positive and negative gains for the mathematical

operations of two branches of the equation.

Fig. 6.1 Functional block diagram of the measurement system [24]

The feedback process of the iterative dynamics can be performed by

incorporating sample-and-hold circuits in both input and output stages controlled

by suitable clocking mechanism generated by a digital controller (microcontroller

or FPGAs). The clocking of the input-output sample-and-hold stages for the

iteration cycles has to be at par with the sampling of the iterates on each time

step, and therefore can be generated from the same digital controller where the

estimation algorithms will be performed so that the iterates can be sampled while

performing the computations in parallel. The symbolic output for each iteration

can be generated by including a comparator referenced to the threshold of 0.5V at

the input stage of the feedback loop. Based on the estimated parameter, the initial

condition can be estimated correctly, leading to successful recovery of the input

value.

118

Also, there could be additional requirements regarding the hardware

implementation of the chaotic system that would demand further investigation

before the technology can be released off the shelf. Following factors have been

identified that need addressing, e.g. symbolic approach for noisy dynamics, shift

of the map critical point.

6.1.1.1 Symbolic Approach for Noisy Chaos

Keeping in mind the noisy conditions that may arise in the hardware

implemented chaotic maps; the parameter estimation approach utilising the noisy

trajectories needs to be formulated for the symbolic dynamics as well. Since the

proposed parameter estimation approach is based on real iterates, it might use an

additional ADC to gather real valued noisy iterates into the processing domain.

Modifying the approach for symbolic dynamics will offer a robust solution as

additional ADCs will no longer be needed and noise can still be utilised to

estimate the parameter directly from the symbolic dynamics.

6.1.1.2 Shift of Critical Point

The TM is a piecewise linear function and the two piecewise stretching and

folding restrictions of the map are defined about the critical point or midpoint of

the map. When the map is implemented in physical hardware, the midpoint is

also prone to shift from the ideal value of 0.5 which might cause the dynamics to

diverge from the desired trajectory.

A broad study must be conducted to understand the effect of the midpoint shift on

the dynamics and suitable solutions to address the problem should be

investigated. However, alternatively the problem can also be addressed by

utilising a slightly modified version of TM called skew tent map [58]. The

119

primary advantage of the skew tent maps is that, the map is completely defined

by a single parameter that is the critical point of the map. Unlike tent maps, the

skew tent maps are always of full height as there is no reduction of height due to

the non-ideal parameter. Any change in the parameter will only result into shift in

the primary partition or the map critical point causing the map to appear as

asymmetric or skewed. Since the dynamics is controlled by a single parameter, it

is beneficial to utilise skew tent maps as a signal quantiser of chaotic ADCs, and

accordingly the parameter estimation and initial condition estimation methods

can be modified.

6.1.2 Applications of Chaos in Encryption

The most common area of application of chaotic dynamics is encryption. Since

chaotic trajectories apparently appear to be random, information can be protected

by encrypting through the dynamics of a chaotic map. The map parameter is

often utilised as a cipher key that must be used during the process of decryption

of the actual information from the available chaotic dynamics. Therefore,

parameter estimation of the map from a chaotic trajectory representing the

encrypted information is one of the essential steps. TM is a widely used

candidate for encryption as the map generates dense chaotic trajectories for a

wide range of parameter. Due to such a robust chaotic distribution of the TM,

information can be chaotically mutated into completely different and random data

such that hacking of the information can be prevented. The original data is

decrypted from the chaotic dynamics using the knowledge of the parameter.

Therefore, the proposed parameter estimation method can be a useful addition to

the decryption process of the chaotically encrypted data. There are other

approaches for encryption that use single chaotic map or coupled maps as the

120

encryption function, accordingly, the proposed parameter estimation methods can

be modified complying with the dynamical setting of the type of chaotic function

chosen.

121

REFERENCES

[1] Bentley, J. P. (2005). Principles of measurement systems (4th ed.).

Pearson Prentice Hall

[2] Sheingold, D. H., Analog Devices. (1986). Analog-digital conversion

handbook (3rd ed.). London; Englewood Cliffs:; Prentice-Hall.

[3] Mather, P. J. (n.d.). 6. Mixed-Signal Circuit Structures. Lecture presented

at NIE2203 Electronics 2 Lecture in University of Huddersfield,

Huddersfield

[4] Silva, J., Moon, U., Steensgaard, J., & Temes, G. C. (2001). Wideband

low-distortion delta-sigma ADC topology. Electronics Letters, 37(12),

737. 10.1049/el:20010542

[5] Hong, X., Yang, C., & Zhang, X. (2017). An energy-efficient SAR ADC

with a partial-monotonic capacitor switching technique. 2017 IEEE 2nd

Advanced Information Technology, Electronic and Automation Control

Conference (IAEAC), Chongqing, 2050-2054.

10.1109/IAEAC.2017.8054377

[6] Chiu, Y., Gray, P. R., & Nikolic, B. (2004). A 14-b 12-MS/s CMOS

pipeline ADC with over 100-dB SFDR. IEEE Journal of Solid-State

Circuits, 39(12), 2139-2151. 10.1109/JSSC.2004.836232

[7] Kimura, H., Matsuzawa, A., Nakamura, T., & Sawada, S. (1993). A 10-b

300-MHz interpolated-parallel A/D converter. IEEE Journal of Solid-State

Circuits, 28(4), 438-446. 10.1109/4.210026

122

[8] Walden, R. H. (1999). Analog-to-digital converter survey and analysis.

IEEE Journal on Selected Areas in Communications, 17(4), 539-550.

10.1109/49.761034

[9] Bashir, S., Ali, S., Ahmed, S., & Kakkar, V. (2016). Analog-to-digital

converters: A comparative study and performance analysis. 2016

International Conference on Computing, Communication and Automation

(ICCCA), Noida, 999-1001. 10.1109/CCAA.2016.7813861

[10] Kennedy, M. P. (1995). a nonlinear dynamics interpretation of algorithmic

a/d conversion. International Journal of Bifurcation and Chaos, 5(3), 891-

893. 10.1142/S0218127495000685

[11] Berliner, L. M. (1992). Statistics, probability and chaos. Statistical

Science, 7(1), 69-90. 10.1214/ss/1177011444

[12] Cvitanovic, P., Artuso, R., Mainieri, R., Tanner, G. and Vattay, G . Chaos:

Classical and Quantum (Niels Bohr Institute, Copenhagen 2016) [online:

Chaosbook.org].

[13] Gilmore, R., and Lefranc, M. (2002) “Discrete Dynamical Systems:

Maps,” The Topology of Chaos, 1st ed. New York, NY, USA: JW&Sons,

40-53

[14] Campos-Cantón, I., Campos-Cantón, E., Murguía, J. S., & Rosu, H. C.

(2009). A simple electronic circuit realization of the tent map. Chaos,

Solitons and Fractals, 42(1), 12-16. 10.1016/j.chaos.2008.10.037

[15] Suneel, M. (2006). Electronic circuit realization of the logistic map.

Sadhana, 31(1), 69-78. 10.1007/BF02703801

123

[16] Ott, E. (1981). Strange attractors and chaotic motions of dynamical

systems. Reviews of Modern Physics, 53(4), 655-671.

10.1103/RevModPhys.53.655

[17] Kapitaniak, T., Zyczkowski, K., Feudel, U., & Grebogi, C. (2000). Analog

to digital conversion in physical measurements. Chaos, Solitons and

Fractals, 11(8), 1247-1251. 10.1016/S0960-0779(99)00003-X

[18] Litovski, V., Andrejevic, M., & Nikolic, M. (2006). Chaos based analog-

to-digital conversion of small signals. 2006 8th Seminar on Neural

Network Applications in Electrical Engineering, Belgrade, Serbia &

Montenegro, 173-176. 10.1109/NEUREL.2006.341205

[19] Berberkic, S. (2014) Measurement of small signal variations using one-

dimensional chaotic maps. Doctoral thesis, University of Huddersfield

[20] Radwan, A. G., Abd-El-Hafiz, S. K., & AbdElHaleem, S. H. (2014). An

image encryption system based on generalized discrete maps . 2014 21st

IEEE International Conference on Electronics, Circuits and Systems

(ICECS), Marseille, 283-286. 10.1109/ICECS.2014.7049977

[21] Arroyo, D., Alvarez, G., Li, S., Li, C., & Fernandez, V., (2009).

Cryptanalysis of a new chaotic cryptosystem based on ergodicity.

International Journal of Modern Physics, B, 23(5), 651–659.

[22] Metropolis, N., Stein, P. R., & Stein, M. L. (1973). On finite limit sets for

transformations on the unit interval. Journal of Combinatorial Theory,

Series A, 15(1), 25-44. 10.1016/0097-3165(73)90033-2

[23] Álvarez, G., Romera, M., Pastor, G., & Montoya, F. (1998). Gray codes

and 1D quadratic maps. Electronics Letters, 34(13), 1304.

10.1049/el:19980950

124

[24] Basu, R., Dutta, D., Banerjee, S., Holmes, V., & Mather, P. (2017). An

Algorithmic Approach for Signal Measurement Using Symbolic Dynamics

of Tent Map. IEEE Transactions on Circuits and Systems I: Regular

Papers , 65(7), 2221-2231. 10.1109/TCSI.2017.2773202

[25] Banerjee, S., Yorke, J. A., & Grebogi, C. (1998). Robust chaos. Physical

Review Letters, 80(14), 3049-3052. 10.1103/PhysRevLett.80.3049

[26] Arroyo, D., & Alvarez, G. (2014). Application of gray codes to the study

of the theory of symbolic dynamics of unimodal maps. Communications in

Nonlinear Science and Numerical Simulation, 19(7), 2345.

10.1016/j.cnsns.2013.11.005

[27] Xi, C., Yong, G. and Yuan, Y. (2009). A Novel Method for the Initial-

Condition Estimation of a Tent Map. Chinese Physics Letters, 26(7), pp.

078202 - 1–3. 10.1088/0256-307X/26/7/078202

[28] Cong, L., Xiaofu, W., & Songgeng, S. (1999). A general efficient method

for chaotic signal estimation. IEEE Transactions on Signal Processing,

47(5), 1424-1428. 10.1109/78.757236

[29] Dutta, D., Basu, R., Banerjee, S., Holmes, V., & Mather, P. (2018).

Parameter estimation for 1D PWL chaotic maps using noisy dynamics.

Nonlinear Dynamics, 94(4), 2979-2993. 10.1007/s11071-018-4538-x

[30] Taylor, J. R., & Teĭlor, D. (1997). An introduction to error analysis: The

study of uncertainties in physical measurements (2nd ed.). Sausalito,

Calif: University Science Books.

[31] Texas Instruments (1994). Principles of Data Acquisition and Conversion

(Application Report No. SBAA051A). Retrieved from Texas Instruments

website: http://www.ti.com/lit/an/sbaa051a/sbaa051a.pdf

http://www.ti.com/lit/an/sbaa051a/sbaa051a.pdf

125

[32] Biswas, S. S., Bindra, M., Jain, V., & Gokhale, P. (2015). Evaluation of

imprecision, bias and total error of clinical chemistry analysers. Indian

Journal of Clinical Biochemistry, 30(1), 104-108. 10.1007/s12291-014-

0448-y

[33] Nauta, B., & Venes, A. G. W. (1995). A 70-MS/s 110-mW 8-b CMOS

folding and interpolating A/D converter. IEEE Journal of Solid-State

Circuits, 30(12), 1302-1308. 10.1109/4.482155

[34] Lorenz, E. (n.d.). Deterministic Nonperiodic Flow. Journal of the

Atmospheric Sciences, 20, 130-141

[35] Strogatz, S. H. (2000). Nonlinear dynamics and chaos: With applications

to physics, biology, chemistry and engineering. Cambridge, Mass:

Westview

[36] Bryant, P., & Brown, R. (1990). Lyapunov exponents from observed time

series. Physical Review Letters, 65(13), 1523-1526.

10.1103/PhysRevLett.65.1523.

[37] Pastor, G., Romera, M., & Montoya, F. (1997). A revision of the lyapunov

exponent in 1D quadratic maps. Physica D: Nonlinear Phenomena,

107(1), 17-22. 10.1016/S0167-2789(97)00057-2

[38] Bacaër, N. (2011). A short history of mathematical population dynamics.

Springer Science & Business Media.

[39] Arroyo, D., Amigó, J. M., Li, S. J., & Alvarez, G. (2010). On the

inadequacy of unimodal maps for cryptographic applications. 11th

Spanish Meeting on Cryptology and Information Security (RECSI 2010),

2010. Tarragona, Spain

126

[40] Ilyas, A., Luca, A., & Vlad, A. (2012). A study on binary sequences

generated by tent map having cryptographic view. 2012 9th International

Conference on Communications (COMM), 2012.

[41] Collet, P., & Eckmann, J. (2009). Modern birkhäuser classics: Iterated

maps on the interval as dynamical systems. Birkhäuser Boston

[42] Bollt, E., Standford,T., Lai, Y., and Życzkowski, K. (2001). What

symbolic dynamics do we get with a misplaced partition? on the validity

of threshold crossings analysis of chaotic time-series. Physica D:

Nonlinear Phenomena, 154(3-4), 259-286. 10.1016/S0167-

2789(01)00242-1

[43] Wu, X., Hu, H., & Zhang, B. (2004). Parameter estimation only from the

symbolic sequences generated by chaos system. Chaos, Solitons and

Fractals, 22(2), 359-366. 10.1016/j.chaos.2004.02.008

[44] Amigó, J. M., Elizalde, S., & Kennel, M. B. (2008). Forbidden patterns

and shift systems. Journal of Combinatorial Theory, Series A, 115(3),

485-504. 10.1016/j.jcta.2007.07.004

[45] Arroyo, D., Alvarez, G., & Amigó, J. M. (2009). Estimation of the control

parameter from symbolic sequences: Unimodal maps with variable critical

point. Chaos: An Interdisciplinary Journal of Nonlinear Science, 19(2),

023125-023125-9. 10.1063/1.3155072

[46] Strumik, M., & Macek, W. M. (2008). Influence of dynamical noise on

time series generated by nonlinear maps. Physica D: Nonlinear

Phenomena, 237(5), 613-618. 10.1016/j.physd.2007.10.002

127

[47] Orzeszko, W. (2008). The new method of measuring the effects of noise

reduction in chaotic data. Chaos, Solitons and Fractals, 38(5), 1355-1368.

10.1016/j.chaos.2007.06.059

[48] Kantz, H., & Schreiber, T. (2003). Nonlinear time series analysis (2nd

ed.). GB: Cambridge University Press

[49] Kostelich, E. J., & Schreiber, T. (1993). Noise reduction in chaotic time-

series data: A survey of common methods. Physical Review E, 48(3),

1752-1763. 10.1103/PhysRevE.48.1752

[50] Kostelich, E. J., & Yorke, J. A. (1990). Noise reduction: Finding the

simplest dynamical system consistent with the data. Physica D: Nonlinear

Phenomena, 41(2), 183-196. 10.1016/0167-2789(90)90121-5

[51] Casdagli, M. (1989). Nonlinear prediction of chaotic time series . Physica

D: Nonlinear Phenomena, 35(3), 335-356. 10.1016/0167-2789(89)90074-

2

[52] Abarbanel, H. D. I., & SpringerLink (Online service). (1996). Analysis of

observed chaotic data (1st ed.). New York: Springer. 10.1007/978-1-

4612-0763-4

[53] Badii, R., Broggi, G., Derighetti, B., Ravani, M., Ciliberto, S., Politi, A.,

& Rubio, M. A. (1988). Dimension increase in filtered chaotic signals.

Physical Review Letters, 60(11), 979-982. 10.1103/PhysRevLett.60.979

[54] Schreiber, T. (1993). Determination of the noise level of chaotic time

series. Physical Review E, 48(1), R13-R16. 10.1103/PhysRevE.48.R13

[55] Davies, M. (1994). Noise reduction schemes for chaotic time series.

Physica D: Nonlinear Phenomena, 79(2), 174-192. 10.1016/S0167-

2789(05)80005-3

128

[56] Grassberger, P., Hegger, R., Kantz, H., Schaffrath, C., & Schreiber, T.

(1993). On noise reduction methods for chaotic data. Chaos: An

Interdisciplinary Journal of Nonlinear Science, 3(2), 127-141.

10.1063/1.165979

[57] Ott, E., Yorke, E. D., & Yorke, J. A. (1985). A scaling law: How an

attractor's volume depends on noise level. Physica D: Nonlinear

Phenomena, 16(1), 62-78. 10.1016/0167-2789(85)90085-5

[58] Wang, K., Pei, W., Hou, X., Shen, Y., & He, Z. (2009). Symbolic

dynamics approach to parameter estimation without initial value. Physics

Letters A, 374(1), 44-49. 10.1016/j.physleta.2009.10.021

129

APPENDIX 1: PUBLICATIONS

List of peer-reviewed articles

1.1 Parameter estimation for 1D PWL chaotic maps using noisy dynamics

1.2 An Algorithmic Approach for Signal Measurement Using Symbolic

Dynamics of Tent Map

130

Appendix 1.1

This article has been published in the Nonlinear Dynamics and was first online

on 18 September 2018 and can be found online at: 10.1007/s11071-018-4538-x

Parameter Estimation for 1D PWL Chaotic Maps

Using Noisy Dynamics

D. Dutta, R Basu, S. Banerjee, V. Holmes and P. Mather

D. Dutta, R. Basu, V. Holmes and P. Mather are with the Engineering and Technology Department,

School of Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield, W.

Yorks., UK, HD1 3DH (email: dhruba.dutta@hud.ac.uk, rajlaxmi.basu@hud.ac.uk,

v.holmes@hud.ac.uk, p.j.mather@hud.ac.uk).

S. Banerjee is with the Department of Physical Sciences, Indian Institute of Science Education &

Research, Kolkata, Mohanpur Campus, Nadia-741246, India (email: soumitro@iiserkol.ac.in).

Reference

Dutta, D., Basu, R., Banerjee, S., Holmes, V., & Mather, P. (2018). Parameter estimation for 1D

PWL chaotic maps using noisy dynamics. Nonlinear Dynamics, 94(4), 2979-2993.

131

Appendix 1.2

This article has been published in the Transactions in Circuits and Systems – I

on 7 December 2017 and can be found online at: 10.1109/TCSI.2017.2773202

An Algorithmic Approach for Signal Measurement

Using Symbolic Dynamics of Tent Map

R Basu, D. Dutta, S. Banerjee, V. Holmes and P. Mather

R. Basu, D. Dutta, V. Holmes and P. Mather are with the Engineering and Technology Department,

School of Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield, W.

Yorks., UK, HD1 3DH (email: rajlaxmi.basu@hud.ac.uk, dhruba.dutta@hud.ac.uk,

v.holmes@hud.ac.uk, p.j.mather@hud.ac.uk).

S. Banerjee is with the Department of Physical Sciences, Indian Institute of Science Education &

Research, Kolkata, Mohanpur Campus, Nadia-741246, India (email: soumitro@iiserkol.ac.in).

Reference

Basu, R., Dutta, D., Banerjee, S., Holmes, V., & Mather, P. (2018). An Algorithmic Approach

for Signal Measurement Using Symbolic Dynamics of Tent Map. IEEE Transactions on Circuits

and Systems I: Regular Papers, 65(7), 2221-2231.

132

APPENDIX 2: MATLAB CODES

MATLAB codes for simulating the map behaviours and verifying proposed

parameter estimation algorithms are listed.

2.1 Logistic map

2.2 LM bifurcation diagram

2.3 Bitshift map

2.4 BM bifurcation diagram

2.5 Tent map

2.6 TM bifurcation diagram

2.7 TM cobweb

2.8 Gray Ordering Number (GON)

2.9 Shifting window

2.10 Kneading sequence search algorithm for single input

2.11 Kneading sequence search algorithm for entire input dataset

2.12 Parameter estimation from noisy dynamics for single input

2.13 Parameter estimation from noisy dynamics for entire input dataset

133

Appendix 2.1: Logistic Map (LM)

Program for Logistic Map (LM)

%%%
%%-------------------- Logistic Map generated for ----------------------%%
%%-------------------- a set of initial conditions ----------------------%%
%%-------------------- Author: Dhrubajyoti Dutta ----------------------%%
%%%

format longe

clear; % clears variables
clf;

Map_partition = 0.50; % primary partition of the map
iteration = 10; % setting number of iterations

Resolution = 8; % resolution of initial data set
increment = (1/(2^Resolution)); % size of initial data as 1/2^Resolution
x = 0; % input range [0,1] lower limit = 0
x_max = 1; % input range [0,1] upper limit = 1
xNew = x; % starting initial condition

N = ceil((x_max-x)/increment)+1; % calculates number of initial conditions
 % within [0,1]

Real_Trajectories = zeros(N,iteration); % stores all iterates for N initial
 % conditions
Symbolic_Trajectories = zeros(N,iteration); % stores symbolic sequences for
 % N initialconditions

134

parameter = 0.9; % sets the peak height of the map

for i = 1:N % runs for N number of initial conditions

 x1 = x; % copy initial condition to input variable

 for n = 1:iteration % runs map for all iterations
 x2 = 4*parameter*x1*(1-x1); % map operation, determine next iterate
 if x1 <= Map_partition % condition for when x1 < 0.5
 op = 0; % store symbol as 0
 elseif x1 > Map_partition % condition for when x1 >= 0.5
 op = 1; % store symbol as 1
 end
 Real_Trajectories(i,n) = x1; % stores the real ietrate
 Symbolic_Trajectories(i,n) = op; % stores the symbol
 x1 = x2; % replaces old x1 with new x2

 end

 x = (x + increment); % increases x by one step for next
 % initial condition
end

%---------- Map Plot ---
plot(Real_Trajectories(:,1),Real_Trajectories(:,2)); % plot map
set(gca,'xlim',[0 1]); % set axis views
set(gca,'ylim',[0 1]);
axis square;

135

Appendix 2.2: LM Bifurcation Diagram

Program for LM bifurcation diagram

%%%
%%-------------------- Logistic Map bifurcation ----------------------%%
%%-------------------- diagram ----------------------%%
%%-------------------- Author: Dhrubajyoti Dutta ----------------------%%
%%%

Npre = 250; % no. of initial few iterates thrown away for clear view
Nplot = 100; % no. of points in an iteration to be plotted
x = zeros(Nplot,1); % x trajectory array initialised
parameter = zeros(Nplot,1); % parameter array initialised

for r = 0.0:0.00025:1.0 % for parameters sweeping [0,1] range
 x(1) = 0.5; % set initial condition as 0.5
 for n = 1:Npre % iterate the map for up to Npre
 x(1) = 4*r*x(1)*(1-x(1)); % determine next iterate
 end,
 for n = 1:Nplot-1 % iterate the map for up to Npre
 x(n+1) = 4*r*x(n)*(1-x(n)); % map operation
 end
 plot(r*ones(Nplot,1), x, 'k.', 'markersize', 3); % ploting the iterates
 hold on;
end,

xlabel('µ'); ylabel('x_n'); % setting axis labels and viewing dimentions
set(gca, 'xlim', [0.5 1]);
set(gca, 'ylim', [0 1]);

136

Appendix 2.3: Bitshift Map (BM)

Program for Bitshift Map (BM)

%%%
%%-------------------- Bitshift Map generated for ----------------------%%
%%-------------------- a set of initial conditions ----------------------%%
%%-------------------- Author: Dhrubajyoti Dutta ----------------------%%
%%%

format longe

clear; % clears variables
clf;

Map_partition = 0.50; % primary partition of the map
iteration = 10; % setting number of iterations

Resolution = 8; % resolution of initial data set
increment = (1/(2^Resolution)); % size of initial data as 1/2^Resolution
x = 0; % input range [0,1] lower limit = 0
x_max = 1; % input range [0,1] upper limit = 1
xNew = x; % starting initial condition

N = ceil((x_max-x)/increment)+1; % calculates number of initial conditions
 % within [0,1]

Real_Trajectories = zeros(N,iteration); % stores all iterates for N initial
 % conditions
Symbolic_Trajectories = zeros(N,iteration); % stores symbolic sequences for
 % N initialconditions

137

parameter = 1; % sets the peak height of the map

for i = 1:N % runs for N number of initial conditions

 x1 = x; % copy initial condition to input variable

 for n = 1:iteration % runs map for all iterations

 if x1 <= Map_partition % condition for when x1 < 0.5
 x2 = 2*parameter*x1; % map operation, determine next iterate
 op = 0; % store symbol as 0
 elseif x1 > Map_partition % condition for when x1 >= 0.5
 x2 = (2*parameter*x1)-1;% map operation, determine next iterate
 op = 1; % store symbol as 1
 end
 Real_Trajectories(i,n) = x1; % stores the real ietrate
 Symbolic_Trajectories(i,n) = op; % stores the symbol
 x1 = x2; % replaces old x1 with new x2

 end

 x = (x + increment); % increases x by one step for next
 % initial condition
end

%---------- Map Plot ---
plot(Real_Trajectories(:,1),Real_Trajectories(:,2)); % plot map
set(gca,'xlim',[0 1]); % set axis views
set(gca,'ylim',[0 1]);
axis square;

138

Appendix 2.4: BM Bifurcation Diagram

Program for chaotic distribution of BM

%%%
%%-------------------- Bitshift Map bifurcation ----------------------%%
%%-------------------- diagram ----------------------%%
%%-------------------- Author: Dhrubajyoti Dutta ----------------------%%
%%%

Npre = 250; % no. of initial few iterates thrown away for clear view
Nplot = 100; % no. of points in an iteration to be plotted
x = zeros(Nplot,1); % x trajectory array initialised
parameter = zeros(Nplot,1); % parameter array initialised

for r = 0.0:0.00025:1.0 % for parameters sweeping [0,1] range
 x(1) = 0.5; % set initial condition as 0.5
 for n = 1:Npre % iterate the map for up to Npre
 if x(1) <= 0.5 % check x(1) is less than midpoint
 x(1) = 2*r*x(1); % map operation, determine next iterat
 % and overwrite
 elseif x(1) > 0.5 % check x(1) is greater than midpoint
 x(1) = (2*r*x(1))-1; % map operation, determine next iterat
 % and overwrite
 end

 end,
 for n = 1:Nplot-1 % iterate the map for up to Npre

 if x(n) <= 0.5 % map operation

139

 x(n+1) = 2*r*x(n);
 elseif x(n) > 0.5
 x(n+1) = (2*r*x(n))-1;
 end

 end
 plot(r*ones(Nplot,1), x, 'k.', 'markersize', 3); % ploting the iterates
 hold on;
end,

xlabel('µ'); ylabel('x_n'); % setting axis labels and viewing dimentions
set(gca, 'xlim', [0.75 1.05]);
set(gca, 'ylim', [-1 1]);

axis square;
hold off;

140

Appendix 2.5: Tent Map (TM)

Program for Tent Map (TM)

%%%
%%-------------------- Tent Map generated for ----------------------%%
%%-------------------- a set of initial conditions ----------------------%%
%%-------------------- Author: Dhrubajyoti Dutta ----------------------%%
%%%

format longe

clear; % clears variables
clf;

Map_partition = 0.50; % primary partition of the map
iteration = 10; % setting number of iterations

Resolution = 8; % resolution of initial data set
increment = (1/(2^Resolution)); % size of initial data as 1/2^Resolution
x = 0; % input range [0,1] lower limit = 0
x_max = 1; % input range [0,1] upper limit = 1
xNew = x; % starting initial condition

N = ceil((x_max-x)/increment)+1; % calculates number of initial conditions
 % within [0,1]

Real_Trajectories = zeros(N,iteration); % stores all iterates for N initial
 % conditions
Symbolic_Trajectories = zeros(N,iteration); % stores symbolic sequences for
 % N initialconditions

141

parameter = 1; % sets the peak height of the map

for i = 1:N % runs for N number of initial conditions

 x1 = x; % copy initial condition to input variable

 for n = 1:iteration % runs map for all iterations

 if x1 <= Map_partition % condition for when x1 < 0.5
 x2 = 2*parameter*x1; % map operation, determine next iterate
 op = 0; % store symbol as 0
 elseif x1 > Map_partition % condition for when x1 >= 0.5
 x2 = 2*parameter*(1-x1);% map operation, determine next iterate
 op = 1; % store symbol as 1
 end
 Real_Trajectories(i,n) = x1; % stores the real ietrate
 Symbolic_Trajectories(i,n) = op; % stores the symbol
 x1 = x2; % replaces old x1 with new x2

 end

 x = (x + increment); % increases x by one step for next
 % initial condition
end

%---------- Map Plot ---
plot(Real_Trajectories(:,1),Real_Trajectories(:,2)); % plot map
set(gca,'xlim',[0 1]); % set axis views
set(gca,'ylim',[0 1]);
axis square;

142

Appendix 2.6: TM Bifurcation Diagram

Program for TM distribution or bifurcation diagram

%%%
%%-------------------- Tent Map bifurcation ----------------------%%
%%-------------------- diagram ----------------------%%
%%-------------------- Author: Dhrubajyoti Dutta ----------------------%%
%%%

Npre = 250; % no. of initial few iterates thrown away for clear view
Nplot = 100; % no. of points in an iteration to be plotted
x = zeros(Nplot,1); % x trajectory array initialised
parameter = zeros(Nplot,1); % parameter array initialised

for r = 0.0:0.00025:1.0 % for parameters sweeping [0,1] range
 x(1) = 0.5; % set initial condition as 0.5
 for n = 1:Npre % iterate the map for up to Npre
 if x(1) <= 0.5 % check x(1) is less than midpoint
 x(1) = 2*r*x(1); % map operation, determine next iterat
 % and overwrite
 elseif x(1) > 0.5 % check x(1) is greater than midpoint
 x(1) = 2*r*(1-x(1)); % map operation, determine next iterat
 % and overwrite
 end

 end,
 for n = 1:Nplot-1 % iterate the map for up to Npre

 if x(n) <= 0.5 % map operation

143

 x(n+1) = 2*r*x(n);
 elseif x(n) > 0.5
 x(n+1) = 2*r*(1-x(n));
 end

% ------- noisy bifurcation diagram generated when uncommented ------------

% x(n+1) = awgn(x(n+1),30); % generates noisy dynamics
% if x(n+1) < 0 % statespace limited within [0,1]
% x(n+1) = 0.0001;
% elseif x(n+1) > 1
% x(n+1) = 0.999;
% end

 end
 plot(r*ones(Nplot,1), x, 'k.', 'markersize', 3); % ploting the iterates
 hold on;
end,

xlabel('µ'); ylabel('x_n'); % setting axis labels and viewing dimentions
set(gca, 'xlim', [0.5 1]);
set(gca, 'ylim', [0 1]);

axis square;
hold off;

144

Appendix 2.7: TM Cobweb Diagrams

Program for TM cobweb diagrams

%%%
%%-------------------- Tent Map cobweb ----------------------%%
%%-------------------- Author: Dhrubajyoti Dutta ----------------------%%
%%%

format longe

clear; % clears variables
clf;

Map_partition = 0.50; % primary partition of the map
iteration = 400; % setting number of iterations

Resolution = 8; % resolution of initial data set
increment = (1/(2^Resolution)); % size of initial data as 1/2^Resolution
x = 0; % input range [0,1] lower limit = 0
x_max = 1; % input range [0,1] upper limit = 1
xNew = x; % starting initial condition

N = ceil((x_max-x)/increment)+1; % calculates number of initial conditions
 % within [0,1]

Real_Trajectories = zeros(N,iteration); % stores all iterates for N initial
 % conditions
Symbolic_Trajectories = zeros(N,iteration); % stores symbolic sequences for
 % N initialconditions

parameter = 0.9; % sets the peak height of the map

145

%------------------ framework of tentmap ----------------------------------

for i = 1:N % runs for N number of initial conditions

 x1 = x; % copy initial condition to input variable

 for n = 1:iteration % runs map for all iterations

 if x1 <= Map_partition % condition for when x1 < 0.5
 x2 = 2*parameter*x1; % map operation, determine next iterate
 op = 0; % store symbol as 0
 elseif x1 > Map_partition % condition for when x1 >= 0.5
 x2 = 2*parameter*(1-x1);% map operation, determine next iterate
 op = 1; % store symbol as 1
 end
 Real_Trajectories(i,n) = x1; % stores the real ietrate
 Symbolic_Trajectories(i,n) = op; % stores the symbol
 x1 = x2; % replaces old x1 with new x2

 end

 x = (x + increment); % increases x by one step for next
 % initial condition
end

%---------------------- cobweb tent plot ----------------------------------

x1 = 0.157876 ; % setting initial condition

if x1 <= Map_partition % if initial condition is less than 0.5
 plot([x1,x1],[0,2*parameter*x1],'color',[0.0,0.5,0.8]); % plot next iter
else % if greater
 plot([x1,x1],[0,2*parameter*(1-x1)],'color',[0.0,0.5,0.8]); % plot iter

146

end
hold on;

for n = 1:iteration % runs a for loop for the iterations

 if x1 <= Map_partition % condition for when x < 0.5
 x2 = 2*parameter*x1; % evaluates x for next iteration
 plot([x1,x1],[x2,x1],'color',[0.0,0.5,0.8]); % plot x1 to x2
 hold on;
 plot([x2,x1],[x2,x2],'color',[0.0,0.5,0.8]); % plot x2 on diagonal

 elseif x1 > Map_partition % condition for when x >= 0.5
 x2 = 2*parameter*(1-x1); % evaluates x for next iteration
 if(n<2) % generating cobweb
 plot([x1,x2],[x2,x2],'color',[0.0,0.5,0.8]);
 else
 plot([x1,x1],[x2,x1],'color',[0.0,0.5,0.8]); % plot x1 to x2
 end
 hold on;
 plot([x2,x1],[x2,x2],'color',[0.0,0.5,0.8]); % plot x2 on diagonal

 end
 x1 = x2; % feedback iterates
end

%------------- plot tent map frame --
plot(Real_Trajectories(:,1),Real_Trajectories(:,1),'k');
plot(Real_Trajectories(:,1),Real_Trajectories(:,2),'k');

%------------- axes configuration ---
set(gca,'xlim',[0 1]);
set(gca,'ylim',[0 1]);
axis square;

147

Appendix 2.8: GON for TM

Program for Gray Ordering Number (GON) of symbolic sequence generated by TM

%%%
%%-------------------- GON Estimation (Tent Map) ----------------------%%
%%-------------------- Author: Dhrubajyoti Dutta ----------------------%%
%%%

format longe

clear; % clears variables
clf;

Map_partition = 0.50; % primary partition of the map
iteration = 30; % setting number of iterations

Resolution = 8; % resolution of initial data set
increment = (1/(2^Resolution)); % size of initial data as 1/2^Resolution
x = 0; % input range [0,1] lower limit = 0
x_max = 1; % input range [0,1] upper limit = 1
xNew = x; % starting initial condition

N = ceil((x_max-x)/increment)+1; % calculates number of initial conditions
 % within [0,1]

Real_Trajectories = zeros(N,iteration); % stores all iterates for N initial
 % conditions
Gray_Traj = zeros(N,iteration); % stores symbolic sequences for
 % N initialconditions
Binary = zeros(N,iteration); % stores all binary sequence
GON = zeros(N,1); % stores all binary GON

148

parameter = 0.8; % sets the peak height of the map

for i = 1:N % runs for N number of initial conditions

 x1 = x; % copy initial condition to input variable

 for n = 1:iteration % runs map for all iterations

 if x1 <= Map_partition % condition for when x1 < 0.5
 x2 = 2*parameter*x1; % map operation, determine next iterate
 op = 0; % store symbol as 0
 elseif x1 > Map_partition % condition for when x1 >= 0.5
 x2 = 2*parameter*(1-x1);% map operation, determine next iterate
 op = 1; % store symbol as 1
 end
 Real_Trajectories(i,n) = x1; % stores the real ietrate
 Gray_Traj(i,n) = op; % stores the symbol
 x1 = x2; % replaces old x1 with new x2

 end

 x = (x + increment); % increases x by one step for next
 % initial condition
end

for row = 1:N % for all initial conditions
 for col = 1:iteration % for all iterates
 if col == 1 % converting gray to binary
 Binary(row,col) = Gray_Traj(row,col);
 elseif col > 1
 Binary(row,col) = bitxor(Gray_Traj(row,col),Binary(row,col-1));
 end
 end

149

 for col = 1:iteration % estimating GON
 GON(row,1) = (GON(row,1)+(Binary(row,col)*(2^(-(col)))));
 end
end
GON(:,2) = (Real_Trajectories(:,1) - GON(:,1))*100; % error in GON estimate
hold on;
plot(Real_Trajectories(:,1),GON(:,1),'k'); % plotting GON
plot(Real_Trajectories(:,1),Real_Trajectories(:,1),'k--');
 % plotting initial condition
axis square;

150

Appendix 2.9: TM Shifting Window

Program for shifting window over TM generated symbolic sequence

%%%
%%-------------------- Shifting window (Tent Map) ----------------------%%
%%-------------------- Author: Dhrubajyoti Dutta ----------------------%%
%%%

format longe

clear; % clears variables
clf;

Map_partition = 0.50; % primary partition of the map
iteration = 30; % setting number of iterations

Resolution = 8; % resolution of initial data set
increment = (1/(2^Resolution)); % size of initial data as 1/2^Resolution
x = 0; % input range [0,1] lower limit = 0
x_max = 1; % input range [0,1] upper limit = 1
xNew = x; % starting initial condition

N = ceil((x_max-x)/increment)+1; % calculates number of initial conditions
 % within [0,1]

Real_Trajectories = zeros(N,iteration); % stores all iterates for N initial
 % conditions
Gray_Traj = zeros(N,iteration); % stores symbolic sequences for
 % N initialconditions
Binary = zeros(N,iteration); % stores all binary sequence
GON = zeros(N,1); % stores all binary GON

151

parameter = 0.8; % sets the peak height of the map

% ------------- TM Trajectory generation ----------------------------------

for i = 1:N % runs for N number of initial conditions

 x1 = x; % copy initial condition to input variable

 for n = 1:iteration % runs map for all iterations

 if x1 <= Map_partition % condition for when x1 < 0.5
 x2 = 2*parameter*x1; % map operation, determine next iterate
 op = 0; % store symbol as 0
 elseif x1 > Map_partition % condition for when x1 >= 0.5
 x2 = 2*parameter*(1-x1);% map operation, determine next iterate
 op = 1; % store symbol as 1
 end
 Real_Trajectories(i,n) = x1; % stores the real ietrate
 Gray_Traj(i,n) = op; % stores the symbol
 x1 = x2; % replaces old x1 with new x2

 end

 x = (x + increment); % increases x by one step for next
 % initial condition
end

%----------------- Symbolic dynamics processing ---------------------------
window_size = 8; % declare window size
Win_GON = zeros(N,iteration); % Window GON array initialised
Win_Bin = zeros(1,window_size); % Window binary array initialised

for row = 1:N % for all initial conditions

152

 for col = 1:iteration % for all iterates
 if col == 1 % converting gray to binary
 Binary(row,col) = Gray_Traj(row,col);
 elseif col > 1
 Binary(row,col) = bitxor(Gray_Traj(row,col),Binary(row,col-1));
 end
 end

 for col = 1:iteration % estimating GON
 GON(row,1) = (GON(row,1)+(Binary(row,col)*(2^(-(col)))));
 end

% ------------- shifting window ---
 for col = 1:iteration % shifting 1 place for all symbols in a sequence
 for no = col:col+(window_size-1) % for all symbols within window
 if col<=iteration-(window_size-1) % check if it isnt last shift
 if ((no - col) == 0) % converting window symbol to binary
 Win_Bin(1,(no-col)+1) = Gray_Traj(row,no);
 elseif ((no - col) > 0)
 Win_Bin(1,(no-col)+1) = bitxor(Gray_Traj(row,no),Win_Bin(1,no-col));
 end
 end
 end
 for num = 1:window_size % calculating GON for the window symbol
 if col<=iteration-(window_size-1)
 Win_GON(row,col) = Win_GON(row,col)+(Win_Bin(1,num)*(2^(-(num))));
 end
 end
 end
end
GON(:,2)= (Real_Trajectories(:,1) - GON(:,1))*100; % difference between GON
 % and actual

%----------Plot generation---
hold on

153

% plot(Real_Trajectories(:,1),GON(:,1),'k');
% plot(Real_Trajectories(:,1),Real_Trajectories(:,1),'k--');
plot(Real_Trajectories(152,:),'b','Markersize',2);
plot(Win_GON(152,:),'r','Markersize',2);

154

Appendix 2.10: Kneading Sequence Method (single input)

Program for parameter estimation through Kneading sequence search algorithm (for single initial condition)

%%%
%%-------------------- Parameter Estimation Algorithm -------------------%%
%%-------------------- Using shifting window -------------------%%
%%-------------------- Program operated for a single input --------------%%
%%-------------------- Author: Dhrubajyoti Dutta ----------------------%%
%%%

format long

%///////////////// Symbolic Data Generated Using Non-ideal TM /////////////

iteration = 200; % number of iterations initialised
partition = 0.5; % map partition defined

x = 0.092904; % initial condition chosen for the experiment
parameter = 0.8; % parameter chosen for the experiment

Real_Trajectories = zeros(1,iteration); % initialise real trajectory array
Gray_Traj = zeros(1,iteration); % initialise symbolic trajectory array

for n = 1:iteration % runs map for all iterations
 if x <= partition % condition for when x1 < 0.5
 x2 = 2*parameter*x; % map operation, determine next iterate
 sym = 0; % store symbol as 0
 elseif x > partition % condition for when x >= 0.5
 x2 = 2*parameter*(1-x); % map operation, determine next iterate
 sym = 1; % store symbol as 1
 end

155

 Real_Trajectories(1,n) = x; % store the x for iteration
 Gray_Traj(1,n) = sym; % store the op for iteration
 x = x2; % replaces old x with new x
end

%/////////// Kneading Sequence Search Through Shifting Window /////////////

window_size = 12; % declare window size
Transient_beta = 5; % declare transient beta symbols
Win_Bin = zeros(1,window_size); % initialise window binary array
Win_Gray = zeros(1,window_size); % initialise window gray array
Smax = zeros(1,window_size); % initialise Smax register
Kneading_sequence = zeros(1,window_size+1); % initialise kneading sequence
 % register
GON_window = 0; % initialise GON for window shifts
Largest = 0; % initialise largest tracking variable

for col = Transient_beta + 1:iteration % for each symbol after discarding
 % dscarding beta symbols
 for no = col:col+(window_size-1) % for symbols within the shifted window
 if col<=iteration-(window_size-1) % check if it isn't the last shift
 if ((no - col) == 0) % convert window symbol to binary
 Win_Bin(1,(no-col)+1) = Gray_Traj(1,no);
 elseif ((no - col) > 0)
 Win_Bin(1,(no-col)+1) = bitxor(Gray_Traj(1,no),Win_Bin(1,no-col));
 end
 Win_Gray(1,(no-col)+1)= Gray_Traj(1,no); % alo save window gray
 end
 end
 for num = 1:window_size % calculate GON for the window sequence
 if col<=iteration-(window_size-1)
 GON_window = GON_window +(Win_Bin(1,num)*(2^((window_size-num))));
 end
 end

156

 if GON_window > Largest % track the largest GON by comparing previous
 % largest to current GON
 Largest = GON_window; % update largest if greater GONs found
 Smax = Win_Gray; % store window gray as Smax for largest GON
 Iterate_location = col; % point at which iteration the largest was
 % found
 end
 GON_window = 0; % reset GON of window for the next shift
end

%---------------- Preparing the Kneading Sequence -------------------------
Kneading_sequence(1,2:end) = Smax; % storing Smax from the 2nd position so
 % a 0 automatically added in the 1st
 % place
K_length = window_size+1; % size of kneading sequence udated after adding 0

%///////// Solving the polynomial equation with GON and x_c = 0.5 /////////

Count_one = 0; % variable to count odd even 1s initialised
Bin = zeros(1,K_length); % binary register of kneading sequnce initialised
GON = 0; % GON of kneading sequence
Equation = zeros(1,K_length); % difference equation array initialised
Estimated_mu = 0; % estimated parameter variable initialied

%------------Finding GON of Kneading sequence -----------------------------
 for col = 1:K_length
 if col == 1 % gray to binary estimation
 Bin(1,col) = Kneading_sequence(1,col);
 elseif col > 1
 Bin(1,col) = bitxor(Kneading_sequence(1,col),Bin(1,col-1));
 end
 GON = (GON +(Bin(1,col)*(2^(-(col))))); % calculate GON

157

 end

%---------- Forming the difference equation with signs of delta -----------

for col = 1:K_length % for all symbols in K
 Count_one = Count_one + Kneading_sequence(1,col);% count number of ones
 if rem(Count_one,2) == 0 % check odd/even
 Equation(col) = (-1)*Kneading_sequence(col); % negative when even
 else
 Equation(col) = (1)*Kneading_sequence(col); % positive when odd
 end
end

 constant = 0.5 - GON; % determine the cnstant part of the polynomial
 for col = 1:K_length
 constant = constant + (Equation(col)*2^(-(col-1))); % further update
 % the constant part with 2^i for all the
 % differences
 end

 Equation(1) = -constant; % store the constant in the equation array
 % with remaining order of polynomial
 % coefficients intact
 Root = roots(Equation); % solving the equation

for r = 1:K_length-1 % check within the number (K_length-1) of roots
 if (real(Root(r,1)) > 0) && (imag(Root(r,1))==0 && (real(Root(r,1))> Estimated_mu*2))
 % select largest non-complex root
 Estimated_mu = Root(r,1)/2; % derive the parameter from 2mu part
 end
end

158

Appendix 2.11: Kneading Sequence Method (full dataset)

Program for parameter estimation through Kneading sequence search algorithm (for all initial condition in a dataset)

%%%
%%-------------------- Parameter Estimation Algorithm -------------------%%
%%-------------------- Using shifting window -------------------%%
%%-------------------- Program operated for all input -------------------%%
%%-------------------- Author: Dhrubajyoti Dutta ----------------------%%
%%%

format long

%///////////////// Symbolic Data Generated Using Non-ideal TM /////////////

iteration = 200; % number of iterations initialised
partition = 0.5; % map partition defined

Resolution = 8; % resolution of initial data set
increment = (1/(2^Resolution)); % size of initial data as 1/2^Resolution
x = 0; % input range [0,1] lower limit = 0
x_max = 1; % input range [0,1] upper limit = 1

N = ceil((x_max-x)/increment)+1; % calculates number of initial conditions
 % within [0,1]

parameter = 0.6; % parameter chosen for the experiment

Real_Trajectories = zeros(N,iteration); % initialise real trajectory array
Gray_Traj = zeros(N,iteration); % initialise symbolic trajectory array

159

for row = 1:N % for all initial conditions
 x1 = x; % start with an intial condition
 for n = 1:iteration % runs map for all iterations
 if x1 <= partition % condition for when x1 < 0.5
 x2 = 2*parameter*x1; % map operation, determine next iterate
 sym = 0; % store symbol as 0
 elseif x1 > partition % condition for when x >= 0.5
 x2 = 2*parameter*(1-x1);% map operation, determine next iterate
 sym = 1; % store symbol as 1
 end
 Real_Trajectories(row,n) = x1; % store the x for iteration
 Gray_Traj(row,n) = sym; % store the sym for iteration
 x1 = x2; % replaces old x with new x
 end
 x = (x + increment); % increases x by one step for next
 % initial condition
end

%/////////// Kneading Sequence Search Through Shifting Window /////////////

window_size = 12; % declare window size
Transient_beta = 5; % declare transient beta symbols
Win_Bin = zeros(1,window_size); % initialise window binary array
Win_Gray = zeros(1,window_size); % initialise window gray array
Smax = zeros(N,window_size); % initialise Smax register
Kneading_sequence = zeros(N,window_size+1); % initialise kneading sequence
 % register
GON_window = 0; % initialise GON for window shifts
Largest = 0; % initialise largest tracking variable

for row = 1:N % for all initial conditions
 for col = (Transient_beta + 1):iteration % for each symbol after
 % dscarding beta symbols
 for no = col:col+(window_size-1) % for symbols within the window

160

 if col<=iteration-(window_size-1) % check if isn't last shift
 if ((no - col) == 0) % convert window symbol to binary
 Win_Bin(1,(no-col)+1) = Gray_Traj(row,no);
 elseif ((no - col) > 0)
 Win_Bin(1,(no-col)+1) = bitxor(Gray_Traj(row,no),Win_Bin(1,no-col));
 end
 Win_Gray(1,(no-col)+1)= Gray_Traj(row,no);
 % alo save window gray
 end
 end
 for num = 1:window_size % calculate GON for the window sequence
 if col<=iteration-(window_size-1)
 GON_window = GON_window +(Win_Bin(1,num)*(2^((window_size-num))));
 end
 end

 if GON_window > Largest % track the largest GON by comparing
 % previous largest to current GON
 Largest = GON_window; % update largest if greater GONs found
 Smax(row,:) = Win_Gray(1,:); % store window gray as Smax for
 % largest GON
 end
 GON_window = 0; % reset GON of window for the next shift
 end
Largest = 0;
%---------------- Preparing the Kneading Sequence -------------------------
Kneading_sequence(row,2:end) = Smax(row,:);
 % storing Smax from the 2nd position so
 % a 0 automatically added in the 1st
 % place
end

%///////// Solving the polynomial equation with GON and x_c = 0.5 /////////

K_length = window_size+1; % size of kneading sequence udated after adding 0

161

Count_one = 0; % variable to count odd even 1s initialised
Bin = zeros(N,K_length); % binary register of kneading sequnce initialised
GON = 0; % GON of kneading sequence
Equation = zeros(1,K_length); % difference equation array initialised
Estimated_mu = zeros(N,1); % estimated parameter variable initialied

for row = 1:N % for all input
 GON = 0; % GON of kneading sequence
 Equation = zeros(1,K_length); % difference equation array initialised
 Count_one = 0; % variable to count odd even 1s initialised
 %------------Finding GON of Kneading sequence -------------------------
 for col = 1:K_length % for all symbols in K
 if col == 1 % gray to binary estimation
 Bin(1,col) = Kneading_sequence(row,col);
 elseif col > 1
 Bin(1,col) = bitxor(Kneading_sequence(row,col),Bin(1,col-1));
 end
 GON = (GON +(Bin(1,col)*(2^(-(col))))); % calculate GON
 end

 %---------- Forming the difference equation with signs of delta -------

 for col = 1:K_length % for all symbols in K
 Count_one = Count_one + Kneading_sequence(row,col);% no. of 1s
 if rem(Count_one,2) == 0 % check odd/even
 Equation(col) = (-1)*Kneading_sequence(row,col);% -ive if even
 else
 Equation(col) = (1)*Kneading_sequence(row,col); % +ive if odd
 end
 end

 constant = 0.5 - GON; % determine the cnstant part of the polynomial
 for col = 1:K_length
 constant = constant + (Equation(col)*2^(-(col-1)));
 % further update the constant part with 2^i for all the differences

162

 end

 Equation(1) = -constant; % store the constant in the equation array
 % with remaining order of polynomial
 % coefficients intact
 Root = roots(Equation); % solving the equation

 for r = 1:K_length-1 % check within the number (K_length-1) of roots
 if (real(Root(r,1)) > 0) && (imag(Root(r,1))==0 && (real(Root(r,1))> Estimated_mu(row,1)*2))
 % select largest non-complex root
 Estimated_mu(row,1) = Root(r,1)/2; % derive the parameter from 2mu part
 end
 end
end
% plot(Real_Trajectories(2:256,1),Estimated_mu(2:256,1));
% set(gca,'ylim',[0.7 0.9]);
axis square
hold on
plot(Real_Trajectories(:,1),Real_Trajectories(:,2));

163

Appendix 2.12: Crossover Method (single input)

Program for parameter estimation through crossover detection within noisy field (for single initial condition)

%%%
%%-------------------- Parameter Estimation Algorithm -------------------%%
%%-------------------- from crossovers in noisy trajectories ------------%%
%%-------------------- Program operated for single input ----------------%%
%%-------------------- Author: Dhrubajyoti Dutta ----------------------%%
%%%

format long

%///////////// TM Noisy Dataset Generation For Test conditions ////////////

%------------------ Tunable variables -------------------------------------
iteration = 50; % no of iterates in a trajectory
samples = 50; % no of sampled observations per trajectory
x = 0.86328125; % chosen initial condition
parameter = 0.90; % chosen map paramter
SNR_db = 30; % noise level in every stage of iteration
%------------------ END of Tunable variables ------------------------------
% initialisations
partition = 0.5; % map partition
eta = zeros(samples,iteration); % iterative trajectories
Gray_Traj = zeros(samples,iteration); % symbolic trajectories

%----------------- Map operation with noise -------------------------------

for i = 1:samples % for a given sample
 x1 = x; % start with initial condition
 for n = 1:iteration % runs map for all iterations

164

 x1 = awgn(x1,SNR_db);
 if x1 <= partition % condition for when x1 < 0.5
 x2 = 2*parameter*x1; % map operation, determine next iterate
 Sym = 0; % store symbol as 0
 elseif x1 > partition % condition for when x >= 0.5
 x2 = 2*parameter*(1-x1);% map operation, determine next iterate
 Sym = 1; % store symbol as 1
 end
 eta(i,n) = x1; % store the x for iteration
 Gray_Traj(i,n) = Sym; % store the sym for iteration

 x1 = x2; % replacing old x with new x, map feedback
 if x1 < 0 % clamp noisy field between [0,1] in statespace
 x1 = 0.0001;
 elseif x1 > 1
 x1 = 0.999;
 end

 end
end

%---------------------- Plot noisy data -----------------------------------
clf
hold on
for samp = 1:samples
 plot(eta(samp,1:iteration),'color',[0.5 0.5 0.5],'Markersize',1);
end

%//////////////// Crossover Analysis & Parameter Estimation ///////////////

index = 1; % initialise index counter for sorting routines
col_count = 1; % initialise column count variable
sol_xy = zeros((samples*(samples-1)/2),2); % XY solution array for each m
Fix_chase_x = zeros(1,iteration); % estimated intersection over x axis
Fix_chase_y = zeros(1,iteration); % estimated intersection over y axis

165

sol_count_x = 0; % initialised count of no. of solutions

for n = 1:(iteration - 1) % for all the iterations

%------- solving straightline equations to determine intersection ---------

 for m = 1:samples - 1 % considering one sample at a time
 for t = m + 1:samples % considering other samples
 if(eta(m,n)<=1 && eta(m,n)>=0.5 && eta(t,n)<=1 && eta(t,n)>=0.5) % check if samples comply 0.5<=eta<=1

for Hn set
 sol_xy(index,1) = ((eta(m,n) - eta(t,n))/(eta(m,n) - eta(m,n+1) - eta(t,n) + eta(t,n+1))) + n;

% solve for x coordinate
 sol_xy(index,2) = ((eta(t,n)*(eta(m,n) - eta(m,n+1))) - (eta(m,n)*(eta(t,n) -

eta(t,n+1))))/(eta(m,n) - eta(m,n+1) - eta(t,n) + eta(t,n+1));
 % solve for y coordinates between straight lines formed by n and n+1 samples
 index = index + 1; % counting number of solutions
 end
 end
 end
 sol_xy = sortrows(sol_xy(1:index - 1,:)); % sort x solution array to separate out no solutions or 0s
 Mean_X = nanmean(sol_xy(1:index - 1,1)); % take average of x solution for nth step excluding NaNs
 X_SD = std(sol_xy(1:index - 1,1)); % determine standard deviation of x solutions
 edgex_L = Mean_X - X_SD; % determine lower bound for x solutions
 edgex_H = Mean_X + X_SD; % determine upper bound for x solutions

 sol_count_x = index - 1; % store count of x solutions
 select_y = zeros(index,1); % initialise array for selected y solutions
 index = 1; % initialise index for sorting y solutions

 for row = 1:sol_count_x % for the number of non-zero x solutions
 if sol_xy(row,1) >= edgex_L && sol_xy(row,1) <= edgex_H % checking if x solution belongs in the boundary
 select_y(index,1) = sol_xy(row,2); % select corresponding y solution (for all meaningful x solutions)
 index = index + 1; % count number of y solutions
 end
 end

166

 Mean_Y = nanmean(select_y(1:index - 1,1)); % mean of y solutions to determine a central point of intersections
 Y_SD = std(select_y(1:index - 1,1)); % determine standard deviation of y solutions

 Fix_chase_x(1,col_count) = n; % fill array for nth location of the solution
 Fix_chase_y(1,col_count) = Mean_Y; % mean of all y solutions at nth location (ybar in algorithm)
 col_count = col_count + 1; % count number of meaningful solutions
 Chase = sort(Fix_chase_y(1,1:col_count-1)); % sort all the solutions to separate out 0
 gain = nanmean(Chase)/(1-nanmean(Chase)); % determine the 2mu part
 index = 1; % reset variables for next nth solution
 sol_xy = zeros((samples*(samples-1)/2),2);
 sol_count_x = 0;
end

Mean_Chase(1:iteration) = mean(Chase); % determine the mean of all crossover to locate fixed pont
SD_Chase = std(Chase);
Estim_para = gain/2; % estimating the parameter

% ---------plot the mean chase (fixed point estimate from crossover) ------
hold on
plot(1:iteration,Mean_Chase(1:iteration),'k');
plot(Fix_chase_x(1,1:iteration-1),Fix_chase_y(1,1:iteration-1),'ks--','Markersize',7,'markerfacecolor',[0,0,0]);
axis square

167

Appendix 2.13: Crossover Method (full dataset)

Program for parameter estimation through crossover detection within noisy field (for all initial condition)

%%%
%%-------------------- Parameter Estimation Algorithm -------------------%%
%%-------------------- from crossovers in noisy trajectories ------------%%
%%-------------------- Program operated for all input ----------------%%
%%-------------------- Author: Dhrubajyoti Dutta ----------------------%%
%%%

format long

%///////////// TM Noisy Dataset Generation For Test conditions ////////////

%------------------ Tunable variables -------------------------------------
iteration = 50; % no of iterates in a trajectory
samples = 50; % no of sampled observations per trajectory
parameter = 0.85; % chosen map paramter
SNR_db = 30; % noise level in every stage of iteration
%------------------ END of Tunable variables ------------------------------
% initialisations
partition = 0.5; % map partition
Resolution = 8; % resolution of initial data set
increment = (1/(2^Resolution)); % size of initial data as 1/2^Resolution
x = 0; % input range [0,1] lower limit = 0
x_max = 1; % input range [0,1] upper limit = 1
N = ceil((x_max-x)/increment)+1; % calculates number of initial conditions within [0,1]
eta = zeros(samples,iteration,N); % iterative trajectories
Gray_Traj = zeros(samples,iteration,N); % symbolic trajectories

%----------------- Map operation with noise -------------------------------

168

for k = 1:N
 for i = 1:samples % for a given sample
 x1 = x; % start with initial condition
 for n = 1:iteration % runs map for all iterations
 x1 = awgn(x1,SNR_db);
 if x1 <= partition % condition for when x1 < 0.5
 x2 = 2*parameter*x1; % map operation, determine next iterate
 Sym = 0; % store symbol as 0
 elseif x1 > partition % condition for when x >= 0.5
 x2 = 2*parameter*(1-x1);% map operation, determine next iterate
 Sym = 1; % store symbol as 1
 end
 eta(i,n,k) = x1; % store the x for iteration
 Gray_Traj(i,n,k) = Sym; % store the sym for iteration
 x1 = x2; % replacing old x with new x, map feedback
 if x1 < 0 % clamp noisy field between [0,1] in statespace
 x1 = 0.0001;
 elseif x1 > 1
 x1 = 0.999;
 end
 end
 end
 x = x + increment;
end

%//////////////// Crossover Analysis & Parameter Estimation ///////////////

index = 1; % initialise index counter for sorting routines
col_count = 1; % initialise column count variable
sol_xy = zeros((samples*(samples-1)/2),2); % XY solution array for each m
Fix_chase_x = zeros(1,iteration); % estimated intersection over x axis
Fix_chase_y = zeros(1,iteration); % estimated intersection over y axis
sol_count_x = 0; % initialised count of no. of solutions
Estim_Parameter = zeros(N,1);
gain = 0;

169

for k = 1:N % for all input conditions
 for n = 1:(iteration - 1) % for all the iterations

%------- solving straightline equations to determine intersection ---------

 for m = 1:samples - 1 % considering one sample at a time
 for t = m + 1:samples % considering other samples
 if(eta(m,n,k)<=1 && eta(m,n,k)>=0.5 && eta(t,n,k)<=1 && eta(t,n,k)>=0.5) % check if samples comply

0.5<=eta<=1 for Hn set
 sol_xy(index,1) = ((eta(m,n,k) - eta(t,n,k))/(eta(m,n,k) - eta(m,n+1,k) - eta(t,n,k) +

eta(t,n+1,k))) + n; % solve for x coordinate
 sol_xy(index,2) = ((eta(t,n,k)*(eta(m,n,k) - eta(m,n+1,k))) - (eta(m,n,k)*(eta(t,n,k) -

eta(t,n+1,k))))/(eta(m,n,k) - eta(m,n+1,k) - eta(t,n,k) + eta(t,n+1,k));
 % solve for y coordinates between straight lines formed by n and n+1 samples
 index = index + 1; % counting number of solutions
 end
 end
 end
 sol_xy = sortrows(sol_xy(1:index - 1,:)); % sort x solution array to separate out no solutions or 0s
 Mean_X = nanmean(sol_xy(1:index - 1,1)); % take average of x solution for nth step excluding NaNs
 X_SD = std(sol_xy(1:index - 1,1)); % determine standard deviation of x solutions
 edgex_L = Mean_X - X_SD; % determine lower bound for x solutions
 edgex_H = Mean_X + X_SD; % determine upper bound for x solutions
 sol_count_x = index - 1; % store count of x solutions
 select_y = zeros(index,1); % initialise array for selected y solutions
 index = 1; % initialise index for sorting y solutions

 for row = 1:sol_count_x % for the number of non-zero x solutions
 if sol_xy(row,1) >= edgex_L && sol_xy(row,1) <= edgex_H % checking if x solution belongs in the boundary
 select_y(index,1) = sol_xy(row,2); % select corresponding y solution (for all meaningful x

solutions)
 index = index + 1; % count number of y solutions
 end
 end

170

 Mean_Y = nanmean(select_y(1:index - 1,1)); % mean of y solutions to determine a central point of

intersections
 Y_SD = std(select_y(1:index - 1,1)); % determine standard deviation of y solutions

 Fix_chase_x(1,col_count) = n; % fill array for nth location of the solution
 Fix_chase_y(1,col_count) = Mean_Y; % mean of all y solutions at nth location (ybar in algorithm)
 col_count = col_count + 1; % count number of meaningful solutions
 Chase = sort(Fix_chase_y(1,1:col_count-1)); % sort all the solutions to separate out 0
 gain = nanmean(Chase)/(1-nanmean(Chase)); % determine the 2mu part
 index = 1; % reset variables for next nth solution
 sol_xy = zeros((samples*(samples-1)/2),2);
 sol_count_x = 0;
 end
 Mean_Chase(1:iteration) = mean(Chase); % determine the mean of all crossover to locate fixed pont
 SD_Chase = std(Chase);
 Estim_para = gain/2; % estimating the parameter
 Estim_Parameter(k,1) = Estim_para; % estimated parameter for all initial conditions

 %----- reset all variables for the estimation of the next input -------
 index = 1;
 col_count = 1;
 sol_xy(:,:) = 0;
 Fix_chase_x(:,:) = 0;
 Fix_chase_y(:,:) = 0;
 Chase(:,:) = 0;
 sol_count_x = 0;
 clear select_y;
 Mean_X = 0;
 X_SD = 0;
 edgex_L = 0;
 edgex_H = 0;
 Mean_Y = 0;
 Y_SD = 0;
end

