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ABSTRACT 

The use of chaotic maps as measurement system or as a signal quantisation unit 

in analogue to digital converters (ADC) is a fairly modern approach. Compared 

to existing ADC architectures, chaotic systems are advantageous because these 

are simple mathematical functions and can be implemented physically involving 

less components. Additionally, unique symbolic identities corresponding to an 

input value (initial condition) can be generated iteratively through the dynamics, 

thus simplifying the design complexities. 

For the application of signal measurement system, the chaotic function tent map 

(TM) is found to be the suitable candidate, as dense distribution of points within 

the state-space can be realised from the dynamics. However, a significant issue 

that may arise while implementing the TM electronically is that, it is difficult to 

maintain the parameter of the map at the ideal value due to component 

imprecisions. When the map parameter is reduced, the dynamics is distorted from 

the ideal behaviour; hence estimating the initial condition from the symbols 

become difficult. If the knowledge of the non-ideal parameter is available, then 

the actual initial condition can be recovered. Hence, it becomes essential to 

determine the non-ideal parameter from the available dynamics. 

In this work, two different approaches have been proposed for the parameter 

estimation of the TM. The first approach is realised from the symbolic dynamics 

of the TM in which the sequence corresponding to the map maximum is searched 

over a symbolic time series, and a difference equation is realised in terms of the 

map parameter. The second method is based on the identification of the map 

fixed-point through the noisy dynamics of the TM. It has been discovered that 

unique crossovers appear within the noisy samples and the information of the 

map fixed-point is preserved through those crossovers. The proposed methods 

have been broadly analysed through mathematical simulations and graphical 

results. The approaches deliver parameter estimates with errors below 1% and 

using short length trajectories as low as 200 iterations. This development can 

benefit accurate estimation of initial condition from the non-ideal dynamics and 

therefore may be considered as a step forward in the development of chaos-based 

measurement systems and chaotic ADCs. The study and the proposed estimation 

methods can also be utilised in other areas of applications such as communication 

and encryption, where parameter estimation of the chaotic functions is one of the 

prime requirements.  
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1 INTRODUCTION 

Measurement play a vital role in scientific disciplines to acquire better 

understanding of the behaviour of nature and engineering systems. Collecting 

observations from scientific experiments, monitoring and exercising control over 

engineering applications, involve exhaustive measurement of some physical 

quantity. Due to the growing needs of performance, it is a prerequisite for the 

measurement systems to be capable of extracting information with greater levels 

of accuracy. An efficient measurement system involves several precision 

components and techniques that deliver the desired degree of accuracy. 

The most salient stages of instrumentation that a standard measurement system 

comprises are the sensing elements (sensors), signal conditioning stage and 

analogue to digital converters (ADC) [1]. Sensors are typically used to detect 

changes in physical quantities in the form of electrical signals, and range over 

different types, catering to a number of different applications. To improve the 

quality of the sensed signal, conditioning elements e.g. amplifiers and filters are 

included in the intermediary stage between the sensor and ADC. 

Data acquisition and instrumentation systems rely upon good quality ADCs to 

digitise the sensor signal so that the measured information can be stored and 

processed in the computation domain [1]. The ADC therefore, is regarded as a 

significant component in a measurement system. Several essential stages are 

involved in signal digitisation (illustrated in Fig. 1.1) that include detecting 

(sampling) an input voltage signal and comparing it with a fixed known reference 

which is often referred to as quantisation; the compared signal is then assigned a 

digital value (binary: 1 or 0) depending on whether the input signal has crossed 
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certain reference threshold or not. This results in the successful conversion of an 

analogue signal to its digital equivalent [2]. 

 

Fig.  1.1 Analogue signal detection using ADC 

There are a wide range of ADCs available with different architectures that 

depend on the performance need and the kind of application for which it is to be 

dedicated. Flash [3], delta-sigma (ΔΣ) [4], successive approximation (SAR) [5], 

pipelined [6], and modified flash [7] type ADCs are primarily the widely popular 

architectures. None of these ADCs, however, completely outmatch the other, 

since each type of architecture shows certain advantages over the other. As 

reported by Walden et al. [8] there are many criteria relating to the accuracy, 

speed, hardware complexity and power consumption that are applied to 

benchmark the performance of ADCs. Bashir et al. have later summarised in [9], 

that, there are certain trade-offs between performance, resource consumption and 

cost that need to be considered while optimally choosing ADCs for different 

applications. The complexity level of the ADC hardware varies from type to type 

of the architectures chosen. As a result, when the ADC technologies are further 

upgraded for better accuracy and resolution these trade-offs often come into play, 

and therefore optimisation of performance to material cost, enhancement of 

resource and power consumption is an ongoing process of development. 

To optimise the accuracy and design factors of a measurement system, new 

techniques are investigated. Application of chaotic functions as measurement 

systems is one such new technique that was first proposed by Michael Peter 
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Kennedy in [10], where he established the significance of considering chaotic 

functions as suitable quantisation units. The idea was broadly justified by the fact 

that, chaotic systems are sensitive to initial conditions [11], and through a unique 

correspondence to the dynamics, such systems can be utilised to realise a dense 

set of points that are input to it [12], [13]. Even though the evolutionary 

dynamics of chaotic functions in itself is very complex, the hardware assembly of 

chaotic systems is believed to be fairly straightforward [14], [15], as such 

systems are governed by simple mathematical equations and therefore 

implementing these systems in hardware domain becomes resource-saving. 

However successful implementation of a complete stand-alone chaotic 

measurement system is still under investigation, as hardware implementation of a 

mathematical function is subject to several non-idealities that affect the circuit 

performance, such as noise, parameter anomalies due to drift and offsets of the 

components used. 

The primary issue that significantly affects the outcome of a chaos based 

measurement system is with the inability to maintain ideal parametric conditions 

in the implemented map function. Since the dynamical behaviour of a chaotic 

system is strictly governed by the control parameter of the function [16], a slight 

variation in the parameter can have a huge impact on the evolutionary dynamics 

and therefore can be responsible for rendering non-ideal chaotic behaviour that 

may affect the signal measurement utilising it, as was observed and stated by 

Kapitaniak et al in [17] , Litovski et al in [18], and Sanjin Berberkic in [19]. This 

work is therefore focussed on studying the dynamical behaviour of chaotic maps 

with respect to the parametric dependencies, and investigating the methods of 

estimating the non-ideal parametric value of the chaotic function such that issues 
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related to the map parameter can be addressed, and the idea of chaotic 

measurement systems can be brought to reality. In the following section a brief 

account of chaotic dynamics along with an overview of the measurement system 

have been presented. 

1.1 Chaotic Measurement System: An Overview  

Chaotic dynamics is a widely studied area in the field of non-linear dynamical 

and complex systems. The dynamical nature of a system can be described as time 

evolution of various states under the influence of parameters that govern the 

system behaviour [16]. Due to the iterative nature (feedback process) of the 

evolution, the present and future states of a dynamical system depend on the 

previous states, therefore a small amount of change in the initial condition or the 

control parameters may lead to different outcomes and eventually causing the 

dynamics to digress completely from the expected progression (set of outcomes). 

Thus, the evolutionary time series (trajectories) of the system may appear to be 

complex and random-like [11]-[13]. These systems are referred to as chaotic 

systems which are special cases of dynamical systems that exhibit a pseudo-

random behaviour. Despite the apparent randomness, chaotic systems are 

mathematically well defined and are therefore deterministic in nature. The 

deterministic principles, hence, aid in estimating the past and future states from 

the available information, collected over a period of time [13]. 

Chaotic systems have found use into various applications such as image [20] and 

data [21] encryption in communication technologies where the chaotic dynamics 

is used as an identifying signature corresponding to the information that is 

intended to be encrypted, and can be deciphered only through the complete 
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knowledge of the chaotic function; that is, the initial condition and parameter 

used as the cypher key. Also, as has been discussed earlier, chaotic dynamics 

have found application in signal measurement and considered to be a pioneering 

approach for analogue to digital conversion [10], [17]-[19]. The fundamental 

block diagram of the envisioned chaotic ADC can be seen from Fig. 1.2.  

 

Fig.  1.2 Fundamental block diagram of chaotic ADC 

From the perspective of signal measurement, an unknown signal can be input to a 

physically implemented chaotic function as the initial condition, and the 

evolutionary dynamics can be generated iteratively by feeding back the outcome 

of the previous time step as the input for the next iteration. Owing to the sensitive 

dependence on initial conditions, the resultant dynamics produced by the chaotic 

map (as an evolutionary time series) may be regarded as the evolutionary 

footprint holding the key information of the corresponding originating point or 

the initial condition. Also, when the dynamics is symbolically coded by assigning 

binary symbols to each of the states of the time series, with respect to a defined 

threshold, a unique correspondence is observed with the initial condition, as was 

demonstrated by Metropolis et al. in [22]. 

For the digitisation of the measured signal, the symbolic sequences produced by 

the chaotic functions can be of great advantage as the input signals can be 



18 

 

uniquely identified [23]. The iterative dynamics of a chaotic map may therefore 

be utilised as a symbolic converter (or a quantiser). Determining an input signal 

fed as an initial condition to a chaotic map is, theoretically, a straightforward 

numerical exercise as long as the information regarding the dynamical time series 

is available and mapping function of the chaotic system is known. However, 

when chaotic maps are implemented in electronic hardware, the map parameters 

are altered by the imprecision caused due to the offsets and drifts in the hardware 

components and inherent noise in the electronic circuit [17], [18]. Such 

parametric alterations may cause the dynamical time series to digress from the 

ideal one; therefore, mapping back to the initial condition using the non-ideal 

time series is difficult unless the operating map definition is fully determined in 

terms of control parameter. Since a small change in the parameter value also 

introduces great divergence in the dynamics, estimation of the system parameters 

is necessary on the context of a measurement system. 

The chaotic map that is preferred for the application of signal measurement is the 

Tent Map (TM) [24]. Therefore, the parameter estimation of the TM is performed 

in order to retrieve sufficient amount of information regarding dynamical 

behaviour of the system, and hence is the main focus of this work. The mapping 

property of TM within the state space show uniform distribution over a wide 

range of parameter values, and dense collection of unique points within the state 

space can be identified through the corresponding chaotic dynamics. Such 

uniform chaotic distribution is established by the properties of robust chaos 

described by Banerjee et al in [25]. 
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Arroyo and Alvarez in [26] have proposed that the symbolic sequence produced 

by the TM are Gray codes and described a straightforward technique that 

involved converting the Gray codes to binary numbers and then to decimal 

numbers to estimate the real valued initial condition from the generated symbolic 

sequence. However, such techniques did not consider the effects of parametric 

imperfections introduced by the physically implemented chaotic function. 

In case of TM, when the parameter value is reduced the height of the map is  

reduced causing the dynamics to digress from the desired or actual time series. 

When Gray code sequences generated by the reduced height TM are directly 

converted into the corresponding decimal values, it leads to an incorrect mapping 

and therefore measurement accuracy is greatly affected, as observed in [18]. In 

[27], some analysis has been presented on the theoretical context mentioning that 

it is preferable to maintain the map parameter at ideal values. The inevitability of 

the parametric reduction cannot be ignored when the map is implemented in 

physical domain, as it is relevant for the case of a measurement system. 

Kapitaniak et al. in [17] have also attempted to measure electrical signals in a 

similar way and observed that the dynamics of the physically implemented TM is 

greatly affected by the component tolerances and offsets. They have shown that, 

when sequences generated by the physically implemented chaotic map are 

converted to real values directly, without considering the non-idealities, the 

estimated outcomes contained significant errors that prevented the outcomes to 

map correctly to the actual initial condition. 

Alternatively, Cong et al. in [28], have theoretically proposed that if the non-

ideal value of the map parameter is known, proper estimation of initial conditions 
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through backward tracking of the iterates over the time series can be performed 

by operating inverse maps on the timeseries. A recent research [24] has also 

discovered that a reduced height TM (due to non-ideal parameter) exhibits 

asymmetric partitioning of the state space over the iterations and the intervals are 

created in unequal sizes. It has been proposed that, in order to determine the 

initial condition correctly, the non-ideal value of the parameter must be used to 

determine the amount of shift in the partitions and correct interval for the initial 

condition can be determined by accordingly reinstating the partitions: further 

details regarding this phenomenon has been provided in Chapter 2. It is therefore 

realised from the available literature that, when chaotic functions are 

implemented physically, the deviation of the map parameter from the ideal values 

is inevitable and must be determined in order to estimate the initial condition 

with reasonable accuracy. In this work, methods have been devised to estimate 

the control parameter value of the non-ideal TM that results from the physical 

circuit implementation of the function. The aim of the research is detailed in the 

following section, and it has been broken down into the following objectives, 

which will be addressed in the upcoming chapters. 

1.2 Aims & Objectives 

The aim of the work is to determine the control parameter of the TM operated in 

non-ideal or reduced parametric conditions. To determine the map parameter, the 

following objectives must be achieved. 

1.2.1 Realising the Dynamics of TM Over Various Parameters 

The dynamical properties of the TM must be understood clearly over a range of 

parameters. From the state space distribution of the chaotic dynamics, the 
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relationship between the map parameter and the dynamical limits namely 

maximum and minimum should be observed and analysed, such that the limits 

can be utilised as an indicator of the map parameter. 

1.2.2 Realising Symbolic Correspondence with the TM Parameter 

It is important to symbolically define the map trajectories and establish their 

correspondence with the iterates and the map parameter. How partitions and 

subintervals are created and shifting of partitions from the ideal positions in case 

of reduced parameter should be observed in order to establish a relationship 

between the symbolic sequences corresponding to the map maximum and the 

minimum. 

1.2.3 Studying the Behaviour of the TM Fixed Point 

The non-zero fixed point of the map is where the 𝑥 = 𝑦 line intersects the map 

whose value changes with the change in the parameter. As a result, identifying 

the fixed point and quantifying its value can be related to the value of the map 

parameter. 

1.2.4 Investigating the Noisy Dynamics of TM  

The dynamics of the TM needs to be further investigated considering noisy 

conditions. The noisy trajectories interact uniquely with the map fixed point and 

the information regarding the non-zero fixed point remains to be preserved 

through the dynamics and therefore can be utilised to determine the map 

parameter. 
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1.2.5 Determining the Methods to Estimate the Parameter 

From the available knowledge of the TM dynamics (both symbolic and noisy 

dynamics), suitable methods to estimate the map parameter must be formulated. 

The proposed methods must be validated through numerical simulations and 

detailed analysis of the results. 

1.3 Original Contributions 

In this work, a broad study has been conducted to estimate the dynamical 

parameter of the tent map (TM). The observations, analysis and the estimation 

methods along with the results are the original contributions made for the 

development of this work and culminating into the thesis. Following are the key 

contributions made in the field of dynamical systems and chaotic measurement:  

• The parameter estimation method from the symbolic code of the 

dynamical maximum (description published in Section IV of the article 

[24]) using symbolic shifting window has been contributed.  

• Further, a difference equation has been formulated from the code of the 

map maximum that directly solves for the parameter. The equation is 

based on the newly discovered relationship (or differences) between the 

ideal and non-ideal symbolic codes in terms of the map parameter. This 

contribution has been explicitly detailed in Section 4.1 of this thesis.  

• Through the development of this work, the crossovers in the samples of 

noisy time series have been first observed and presented in Section 3.1.3.  

Also, the observations have been published in Section 3 of the article [29]. 

• It has also been established that the observed crossovers correspond with 

the map fixed point and a method has been proposed to determine the 
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parameter from those crossovers (for details see Section 4.2). The method 

has also been presented in Section 4 of the article [29]. 

• Original results have been produced using numerical simulations (through 

MATLAB R2016b) and detailed analysis have been presented in Chapter 

5. Where the estimated outcomes (parameters) proved to be promising, 

using only 200 iterations (as the length of the trajectory), with errors 

below 1%. 

• In the noise oriented approach, the map parameter has been recovered 

with such an accuracy for signal to noise ratio 15-30 dB and onwards. 

1.4 Organisation 

The work is organised as follows, in Chapter 2, Sections 2.1 – 2.9 the background 

information regarding dynamical properties of TM have been described followed 

by establishment of the symbolic dynamics and its correspondence to initial 

conditions and subintervals. The chaotic distribution of the system states has 

been studied in great detail and the definitions of map maximum and minimum 

have been established along with the corresponding symbolic identities.  

In Chapter 3, several challenges have been discussed that are encountered while 

the map is implemented in physical hardware domain. The effect of parametric 

reduction has been observed and studied from the perspective of initial condition 

estimation. The impact of noise in the chaotic dynamics is explored and how the 

properties of fixed point can still be useful for the extraction of meaningful 

information have been discussed. The available knowledge regarding realising 

the symbolic sequence in terms of the initial condition and parameter estimation 
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has been elaborately analysed and the inadequacies of the conventional 

approaches have been identified.  

In Chapter 4, some solutions to the parameter estimation problem have been 

presented in the form of computing algorithms. The algorithms independently 

consider both symbolic and real valued platforms for more realistic cases e.g. 

noisy dynamics. The proposed algorithms have been described in detailed steps 

such that in can be easily implemented in the processing domain.  

In Chapter 5, the proposed algorithms and the effectiveness were analysed using 

mathematical simulation and graphical results.  

In Chapter 6, the work has been concluded in terms of the knowledge gained and 

solutions offered to solve the problems. Also, delivering the proper 

understanding considering the implementation of the techniques along with some 

further proposals as future work to meet the remaining technological needs such 

that the chaotic measurement system can be made possible in reality.   
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2 BACKGROUND LITERATURE REVIEW 

In this chapter, the theory of measurement system is presented followed by 

several ADC architectures whose design complexities and shortcomings have 

been briefly discussed. Then chaotic dynamics and behaviour of chaotic maps 

have been broadly discussed from the perspective of the system parameter, 

delivering the insight for the realisation of suitable parameter estimation 

techniques in the upcoming chapters. 

2.1 Measurement Theory 

A typical electronic measurement system involves a sensory device, an 

amplification and signal conditioning stage, an ADC and a microprocessor. A 

sensor is a material or a device that can respond to changes in the physical states 

in the form of electrical signals. A wide variety of sensors are available and can 

be chosen according to the type of the physical quantity to be measured. To 

enhance the amplitude and quality of the sensed signal, further amplification and 

conditioning stage is introduced. The signal amplification is performed by 

electronic amplifiers and conditioning of any noise is performed by electronic 

filters. Finally, an ADC is used to measure and quantise the analogue electrical 

signal into digitised signal. Through further incorporation of microprocessors, the 

digitised signal is represented numerically, stored, displayed or can be processed 

for some decision making.  

Measurement systems always have some errors and tolerances that are 

responsible for the uncertainty in the measured quantity. Measurement 

uncertainties are generally categorised into systematic and random errors. The 
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systematic errors are consistent deviations in the measurement, that occur due to 

the definite causative factors such as the inaccuracies in the calibration and the 

transfer function in the signal conditioning stage of the measurement systems. 

The random errors are fluctuations in measurement around the actual value which 

is mainly caused by induced noise in the system. There are several factors that 

govern the quality of measurement which are: accuracy, precision and resolution. 

2.1.1 Accuracy, Precision and Resolution 

The term accuracy [1], [30] identifies how close the measured outcome is from 

the actual value. The uncertainty in the measurement given by the difference 

between the measured and actual values is usually dependent upon the two 

sources of errors: one is the measurement error or the uncertainty in the reading, 

and the other is error relative to the full scale of measurement [31]. The 

measurement error is generally caused due to the tolerances of the components 

used in the measurement system. This type of error can also occur during 

digitisation of a signal, since tolerances in the voltage dividers might affect the 

reference values, leading to deviation in the reading. The error values are 

specified in percentage or parts per million (ppm). The total absolute uncertainty 

(𝑇𝑜𝑡𝑎𝑙 𝐸𝑟𝑟𝑜𝑟) [1], [32] due to these errors is determined by the additive sum of 

the error in the measured reading (𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟) and the 𝐹𝑢𝑙𝑙 𝑆𝑐𝑎𝑙𝑒 offset 

error: 

𝑇𝑜𝑡𝑎𝑙 𝐸𝑟𝑟𝑜𝑟 =
1

100
(% 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟 × 𝑅𝑒𝑎𝑑𝑖𝑛𝑔 + % 𝐹𝑢𝑙𝑙 𝑆𝑐𝑎𝑙𝑒 𝐸𝑟𝑟𝑜𝑟 ×

𝑅𝑎𝑛𝑔𝑒) , (2.1) 

where 𝑅𝑒𝑎𝑑𝑖𝑛𝑔 is the absolute measured outcome, and 𝑅𝑎𝑛𝑔𝑒 is the scale within 

which the measurement is to be taken. The 𝐹𝑢𝑙𝑙 𝑆𝑐𝑎𝑙𝑒 𝐸𝑟𝑟𝑜𝑟 can therefore be 
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defined as an error expressed as the percentage of full scale of measurement 

range, which signifies that a reading will belong within the error 

bounds ± 𝐹𝑢𝑙𝑙 𝑆𝑐𝑎𝑙𝑒 𝐸𝑟𝑟𝑜𝑟 (%) × 𝑅𝑎𝑛𝑔𝑒. The error percentage in terms of 

accuracy is given by: 

% 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝐸𝑟𝑟𝑜𝑟 =
𝑇𝑜𝑡𝑎𝑙 𝐸𝑟𝑟𝑜𝑟

𝑅𝑒𝑎𝑑𝑖𝑛𝑔
× 100 . (2.2) 

The accuracy error can hence be treated as a systematic error caused due to the 

tolerances or offsets and anomalies in the transfer function or gain in the 

measurement system. Apart from offset errors, there can be other forms of 

inaccuracies, for example, scaling error and nonlinearity. 

Often, in technical fields, the terms accuracy and precision are used 

interchangeably. However, each of these terms can be defined independently. The 

random error or deviations caused by the noise in the measurement system is 

indicated by the term precision [30].  

The noise affecting precision are mostly thermal noise and electromagnetic 

interferences in an electronic measurement system. The random noisy spectrum 

exhibits a Gaussian or normal distribution when distributed over a range [1], 

[30]. If a histogram is obtained from sufficient collection of random variables, a 

heaped bell curve about the mean of all the random points is observed 

corresponding to the peak of the curve.  

The random error in the system can be removed by filtering (High pass, Low 

pass, Band pass) [1] or by oversampling of a reading and averaging of the 

samples, as in the practical scenarios, it is highly likely that a large set of 

randomly distributed samples have its mean close to the actual signal that is 
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intended to be measured. Hence filtration and averaging techniques can be 

utilised to improve precision. 

Another aspect of measurement system is resolution [1], [31] which is the 

smallest measure of change that can be numerically realised by the system. The 

change detected by the measuring device is usually expressed as a point defined 

by the number of bits within a range. Therefore, a measurable range can be 

represented through steps of change that is of the smallest possible magnitude the 

system can measure. Generally, the term resolution is associated while converting 

the analogue signals into digital equivalent using the ADCs. Following are the 

calculations to determine the resolution of a measurement system shown through 

an example. Assuming a measurement system that can measure a ±5V range 

(10V span) using a 16-bits A/D converter. There are up to 216 = 65536 points that 

can be defined by a 16-bit digital code. Therefore, 1 part of the 65536 points 

within the span of 10V, i.e. 10V ÷ 65536 = 152.5 microvolt (uV) can be detected 

as the smallest size of the change or increment by a 16-bit ADC. 

2.2 Analogue to Digital Conversion 

Signal measurement and conditioning is predominantly performed in digital 

computational systems, therefore, ADCs form the most integral block between 

the analogue and digital domains. The basic principle of ADC operation is based 

on comparison of the input signal with a reference, dividing the range into levels 

of equidistant step size and generating an equivalent numerical value [2], [31]. 

The number of steps is determined by the step size or the resolution of the ADC. 

Since the resolution depends on the number of bits, each step size is identi fied by 
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a combination of bits. Therefore, for an n bit ADC, the step size (Z) with 

maximum input of Vref is given by equation (2.3). 

𝑍 =
𝑉𝑟𝑒𝑓

2𝑛⁄ .            (2.3) 

As can be seen from Fig. 2.1, the small change in signal is detected by the finer 

step size but not the coarse one. However, increasing the number of bits also 

increases the components and therefore the complexity in the circuitry. As a 

result, the conversion speed of the ADC is greatly affected. Conversion speed of 

an ADC is determined by the time taken by an ADC to identify the signal level 

and generate equivalent binary outcomes. The conversion speed is dependent on 

the sampling frequency i.e. the number of samples collected within a second. 

 

Fig.  2.1 Reducing the step size improves resolution 

In order to avoid the loss of signal changes, the sampling frequency must always 

be maintained at least twice or higher than that of the bandwidth of the input 

signal. This principle is commonly referred to as Nyquist criterion [2]. Any 
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sampling at the rate less than the Nyquist rate results in void between the samples 

due to the inability to register the changes between the two samples. This 

phenomenon is termed as aliasing. Therefore, in order to avoid aliasing, for an 

ADC with a sampling frequency fs, the signal bandwidth fB must be maintained 

within half of that of fs i.e. 

fB ≤ 0.5fs.            (2.4) 

Depending on these criteria and the resources that are used to implement an 

ADC, with varying conversion times result in development of a number of 

different ADC architectures, each of them prioritising a different criterion.  

Following is a brief discussion of the major types of ADCs – among which the 

Flash, Delta-Sigma (ΔΣ), Successive approximation register (SAR), pipeline and 

the hybrid flash types are most common. The simplest and the most basic ADC is 

the Flash type converters [3] in which, the resolution is determined by the 

number of segments that the input signal is divided into by the voltage dividers. 

Therefore, every time the resolution is increased by one bit (for n+1 bits) the 

number of comparators get doubled (2n+1 comparators). Beyond 6-bits, the 

number of comparators required results in significantly increased chip area, 

whereas commercial devices usually require at least 8-bit conversions. 

Compared to flash ADCs, ΔΣ type ADCs [4] consists of a single bit digital to 

analogue converter (DAC) which acts as the Δ sub-circuit and produces a 

threshold voltage level equivalent to the single bit resolution of the input. Once 

the threshold is achieved, a pulse is generated; therefore, the frequency at which 

the pulse is generated depends on how often the threshold value is reached. 
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The SAR [5] type ADC consists of a control register that is used to generate the 

reference data on each conversion using a DAC and compared with the actual 

input. Depending on comparison, the previous bit in the register is updated and 

thereby the equivalent digitised data for the input signal is produced. 

In a pipelined ADC [6], the conversion process is broken into several smaller 

conversions. Each stage converts the outcome of the previous stage (input signal 

for the first stage) into coarse grained digital equivalent. The outcome is then 

scaled up and converted again through a DAC for the next stage of comparison 

and the process is continued to generate the bits. 

To reduce the number of preamplification units in flash ADCs, interpolating 

stages [7] (more voltage dividers) are added, therefore the architecture is 

regarded as hybrid flash. In order to improve the quality of the measurement, a 

folding stage [33] is often included using which the input is folded into smaller 

range. A combination of a coarse and a fine ADCs determines the range within 

which the folded input belong and accordingly the input is digitised through this 

comparison. 

As can be realised from these ADC architectures, the quantisation block is 

modified and combined to improve various aspects of the ADC parameters, 

depending on the priority of the application. This is usually performed through 

additional circuitry (like folding or interpolating) or by increasing the number of 

comparators or other components like DAC, and coarse and fine ADCs. The 

resolution the ADCs can only be improved at the cost of more components. As a 

result, either power consumption or chip area or circuit complexity is maximised. 

In order to optimise these factors, other possibilities and techniques must be 
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considered to replace the quantisation technologies that are commonly used in the 

available architectures. 

2.3 Chaotic Dynamics and Definitions 

Chaotic maps can be chosen as a quantisation block in a measurement system 

because such maps are simple mathematical functions which are easily 

implemented with fewer resources. Also, in order to increase the resolution, the 

same function can be operated iteratively through a feedback, without having to 

redesign any additional hardware. However, given that chaotic maps are highly 

sensitive to both initial states as well as map parameters, system errors 

introduced by the physical implementation play a major role in the behaviour of 

the map dynamics [17], [18]. Therefore, to implement a chaos-based 

measurement system, an algorithmic approach must be adopted. Such algorithms 

are heavily reliant on the map parameter, which must be recovered accurately in 

order to successfully implement the measurement system. Given the nature of the 

problem, the recovery of the map parameter becomes a pre-requisite in 

developing the algorithm for signal measurement using chaotic quantisation 

system. 

Dynamical systems can be described by the evolution of the various states over 

time under the influence of the factors that govern the system behaviour [34], 

[35] and can be mathematically defined by equations. Involvement of several 

factors governing the dynamics can lead to a complex behaviour whose 

evolutionary states on observation may appear to be random. Chaotic systems 

[11]-[13], are special cases of dynamical systems that exhibit a pseudo-random 

behaviour, despite that, these systems are mathematically well defined and are 
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therefore deterministic in nature. Since the current state of a system is 

responsible for the next states, evidently, all the future states retrospectively 

depend on the previous states, and hence, a small amount of change in the initial 

condition can lead to highly digressing or different future outcomes. The 

evolutionary dynamics of chaotic systems are so sensitive to the initial condition 

and the control parameter of the system that long-term predictability of the future 

states depend on the precision and accuracy with which the current states are 

determined [34]. 

Chaotic dynamics can be defined as a function f(𝑥,𝜇) of control parameter 𝜇 and 

the input 𝑥 which can also be referred to as the current state. The dynamic 

evolution of a chaotic system can be studied through time series representation of 

the system states given by: 𝒳 = {𝑥𝑛 | 𝑛 = 0, 1, … , 𝑁 − 1} where 𝒳 is referred to 

as a trajectory or the orbit of the dynamic process containing 𝑁 number of states 

starting from an initial condition 𝑥0 [13]. As the future states depend on the 

current state, the iterative process is of feedback type, where a single iteration of 

the function is performed by inputting the outcome of the current stage 𝑥𝑛 to 

determine the outcome of the next stage as given by 𝑥𝑛+1 = f(𝑥𝑛,𝜇). Hence, the 

trajectory of an initial condition with 𝑁 dynamical states (or iterates) can be 

represented as 𝑥0, 𝑥1, 𝑥2, …, 𝑥𝑁−1. The iterates in the trajectories can also be 

mapped within a range of possible outcomes that the system can generate; such a 

range is often called phase-space or state-space [13]. 

There are two essential criteria that are necessary for the evolutionary dynamics 

to be chaotic; these are the stretching and folding operations exhibited by the 

chaotic functions. The stretching behaviour of the dynamical system is 
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responsible for the evolutionary trajectories to be divergent even though two 

neighbouring points are separated by very small distance between each other. 

Such divergence was first analysed by Aleksandr Lyapunov, who proposed that 

when two originating points are separated by a negligible distance, over an 

iterative dynamical evolution, the trajectories of the two points will gradually 

become divergent from each other [36], [37] since the distance of separation 

between the two points will exponentially increase over iterations. The 

exponential divergence is therefore analysed as a rate by which the two points 

deviate from each other on every iteration and is termed as Lyapunov exponent 

(λ) given by 

λ = ln(|ƿ𝑛+1|/|ƿ𝑛|),          (2.5) 

where ƿ𝑛 is the small distance in a close neighbourhood of the actual point 𝑥𝑛 

resulting into a deviation 𝑥𝑛 + ƿ𝑛. 

Due to the stretching nature, the dynamical iterate given by 𝑥𝑛+1 + ƿ𝑛+1 is 

diverging away from the actual 𝑥𝑛+1 when ƿ𝑛+1 > ƿ𝑛. The folding nature of the 

chaotic systems plays a salient role in confining the dynamics within the state 

space, as just the stretching nature alone would have caused the dynamics to 

escape to infinitely incrementing trajectories. Both to the stretching and folding 

nature is therefore, responsible for dense mixing of trajectories within the state 

space and therefore making the dynamics sensitive to initial condition.  

The mapping of the trajectories is studied both numerically and graphically for 

further analysis. In the following sections more of such graphical views and 
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corresponding mathematical description of various chaotic systems have been 

presented. 

2.4 Chaotic Maps 

Relating to the structural and dimensional features, there are several ways to 

classify dynamical systems. The chaotic maps are usually classified as 

unidimensional or multidimensional systems depending on the univariate or 

multivariate mapping of the system states as defined by the map function. A few 

of the various dimensional chaotic maps that are widely popular in the field of 

dynamical systems, for instance, a three-dimensional (3D) chaotic map: Lorenz 

system [34], two-dimensional (2D) chaotic maps: Hénon map [12], and one-

dimensional (1D) chaotic maps [12], [13]: Logistic Map (LM), Bitshift Map 

(BM), and Tent Map (TM) that have been discussed briefly in the following parts 

of this section. The 2D and 3D maps are difficult to achieve electronically 

because the parametric relationships to the transfer functions are too complex to 

achieve. Therefore, 1D maps are widely embraced for the simplicity and 

implemented on the context of applied chaos in physical hardware. 

In the following sections the properties of various 1D chaotic maps have been 

broadly discussed and analysed through simulations of bifurcation diagrams, time 

series plots and function plots. For these observations, the math processor 

MATLAB R2016b has been used (alternatively the open source software Octave 

can be used), where the programs for each observation and graphs have been 

provided in the respective appendix as referred to in the sections. 
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2.4.1 Logistic Map 

Out of all other chaotic maps, 1D maps in particular have gained special attention 

[12], [13] because these systems exhibit the most fundamental type of chaotic 

behaviour and can offer a wide level of complexity under various parametric 

conditions. The majority of the 1D maps, apart from BM, are unimodal as these 

maps contain a well-defined unique peak or maximum in the topological structure 

e.g. LM, TM. The LM is mathematically expressed as  

𝑥𝑛+1 = 4𝑟𝑥𝑛(1 − 𝑥𝑛), (2.6) 

where, 𝑟 is the parameter value ranging from [0,1] that controls the height of the 

map, and 𝑥𝑛 and 𝑥𝑛+1 are respectively the current and future states of the system. 

The LM function (refer to Appendix 2.1 for program) is shown in Fig. 2.2. 

 

Fig.  2.2 Logistic Map 
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The LM gained its popularity during a demographic study, when the dynamical 

model of population growth was analysed by Pierre Francois Verhulst [38]. The 

LM dynamical model is widely applied to understand population evolution, 

species conservation, cycles in predator prey model. One of the useful ways to 

study chaotic maps is to graphically plot the distribution of the function states 

against the control parameters, commonly referred to as bifurcation diagram. 

When parametric dependencies of a system need to be investigated, it is essential 

to study the bifurcation diagram of the map [13], [16], because through these 

diagrams, the mapping behaviour of the system states within the state space can 

be analysed in terms of periodicities, bifurcations, chaotic distributions, and the 

upper and lower limits (maximum and minimum) of the distribution against 

different parametric conditions. The bifurcation diagram of LM has been shown 

in Fig. 2.3 (generating program available in Appendix 2.2).  

 

Fig.  2.3 Bifurcation diagram of Logistic Map 
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The bifurcations and windows of periodicity for a range of parameter values  can 

be observed. For parameter value up to 𝑟 = 0.75 the map shows a fixed-point 

behaviour, periodicities can be noticed in the dynamics with intermediate chaotic 

bands up to 𝑟 ≈ 0.9571 where the typical period doubling nature of the dynamics 

can be clearly observed between parameters approximately 𝑟 ≈ [0.75,0.89], 

forming windows of periodicity in the distribution. 

The LM has also gained a lot of attention in engineering applications – e.g. chaos 

control and synchronisation – and also pseudorandom number generation in 

encryption and keying in the area of communication [39]. For the desired 

application of measurement, the LM might not be a proper choice of the chaotic 

map as for several parametric conditions the map is periodic and generation of 

unique chaotic trajectories for a set of initial conditions will be difficult. 

2.4.2 Bitshift Map  

Also known as the Bernoulli Map, BM is a piecewise linear (PWL) 1D map 

which is of type bimodal function as BM has two peaks defined over the state 

space. The following is the mathematical definition of BM [13], 

𝑥𝑛+1 = {
2𝜇𝑥𝑛                   0 ≤ 𝑥𝑛 ≤ 𝑥𝑐

2𝜇𝑥𝑛 − 1          𝑥𝑐 < 𝑥𝑛  ≤ 1
, (2.7) 

where, 𝜇 is the parameter ranging from [0,1] depicting the map height and 𝑥𝑛 and 

𝑥𝑛+1 respectively are the current and future states. As can be seen from Fig. 2.4 

(generated by program in Appendix 2.3), the BM has two stretching sides 

separated by a midpoint 𝑥𝑐 = 0.5.  
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Fig.  2.4 Bitshift Map 

 

Fig.  2.5 Bifurcation diagram of Bitshift Map 

Fig. 2.5 is the bifurcation diagram of the BM (see Appendix 2.4 for program); it 

is understood that the map dynamics, and hence chaos, produced by BM is only 
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defined for the full parameter value of 𝜇 = 1: for any parameter value 𝜇 < 1, the 

dynamics will escape to negative infinity. BM therefore, might not be a suitable 

map for the desired application where parameters are most likely to deviate from 

the ideal values due to material challenges and errors in physical 

implementations. 

2.4.3 Tent Map  

The other PWL 1D map is the Tent Map (TM) [16] which has received a lot of 

attention for the simplicity and ease of implementation in electronic hardware 

domain. The TM (generated by the program in Appendix 2.5 as shown in Fig. 

2.6) is defined by a univariate dynamical quantity 𝑥 over a unit invariant interval 

or the state space I = [0,1] ⊂ ℝ, such that x  I and a control parameter given by 

µ  [0,1].  

 

Fig.  2.6 Tent Map 
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The map is mathematically realised as a parametric self-mapping function T : 

I→I with piecewise monotonically stretching and folding sides about a critical 

point xc = 0.5 ∊ I. The iterative dynamics 𝑇(𝑥𝑛) = 𝑥𝑛+1 is defined as  

𝑥𝑛+1 = 𝑇(𝑥𝑛) = {
2𝜇𝑥𝑛                   0 ≤ 𝑥𝑛 ≤ 𝑥𝑐

2𝜇(1 − 𝑥𝑛)        𝑥𝑐 < 𝑥𝑛  ≤ 1
,       (2.8) 

where 𝑥𝑛 and 𝑥𝑛+1 respectively are the current and future states and 𝑛 is the time 

step index for the dynamical states of the TM. The stretching and folding nature 

of the TM causes the points in the invariant interval I ⊂ ℝ to eventually map 

arbitrarily close to each other [13] and hence, dense distribution of points is 

obtained over I for a wide range of parameter values. In Fig. 2.7, the bifurcation 

diagram of the TM (generated by the program listed in Appendix 2.6) has been 

shown for the parameter µ  (0.5,1]. 

 

Fig.  2.7 Bifurcation diagram of Tent Map 
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Unlike the LM or BM the dynamics of TM for any initial condition 𝑥0 ∊ I is 

chaotic over a wide range of parameter values, and as can be verified from the 

bifurcation diagram, the distribution for µ  [0.707,1], has no prominent 

windows of periodicity. Such a dense distribution of the chaotic trajectories is 

also known as ‘robust chaos’ [25] in which case the dynamical states are unique, 

attributed by a pseudorandom behaviour with no mere repetitions or periodicities 

in the trajectories. This is the reason why the TM is so widely used in the 

applications like random number generation, encryption, cipher key generation in 

the area of communication and image processing technologies [20], [21], [40]. 

For the desired scope of application in the area of measurement system, it is of 

primary interest that a wide range of points must be evaluated, for which the TM 

can be chosen as a suitable candidate as uniquely dense distribution of points can 

be realised through the dynamics of TM. 

In the following sections the properties of the TM have been further discussed in 

detail to provide a clear view in the subsequent sections regarding how the map is 

utilised for the intended application. 

2.5 Properties of Tent Map 

The iterative discrete time trajectory of an input or initial condition 𝑥0 ∊ I through 

T(x0) can be defined as 𝒳 = {𝑥𝑛 | 𝑛 = 0, 1, … , 𝑁 − 1}, with 𝑁 iterates. Hence, the 

dynamical properties of the TM can be described as [26] 

1. x0 = T0(x0)  

2. xn+1 = Tn+1(x0) = T(Tn(x0)) = T(xn) 

3. T(0) = T(1) = 0 



43 

 

4. Tmax = T(xc) = 2µxc = µ ≤ 1, where Tmax is the maximum height and the 

dynamic maximum of the map, for 0.5 < µ ≤ 1 

5. T (Tmax) = T2(xc) ≥ 0, T(Tmax) is the dynamic minimum reached over a 

long-term iteration. 

6.  𝑥𝑓 = T(𝑥𝑓) = 2𝜇(1 − 𝑥𝑓), where 𝑥𝑓 is the non-zero fixed point [13]. 

As can be seen from Fig. 2.6 and equation (2.8) of the TM, the map constitutes a 

positive as well as a negative slope on either side (left and right respectively) of 

the critical point xc. The negative slope is responsible for the reversal of the map 

behaviour resulting in the dynamics being folded whenever the condition 𝑥𝑐 <

𝑥𝑛  ≤ 1 is realised by the TM. Any point exhibiting the dynamics as 𝑥𝑛+1 = 𝑥𝑛 is 

known as a fixed point. There are two fixed points of the TM in the state space I 

which are shown in Fig. 2.8.  

 

Fig.  2.8 Fixed point of the ideal TM 
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One such fixed point is T(0) = 0. The other is the non-zero fixed point T(𝑥𝑓) = 𝑥𝑓, 

given by: 

𝑥𝑓 = 2𝜇/(1 + 2𝜇).           (2.9) 

The 𝑥𝑓 has direct correspondence with the map parameter 𝜇, meaning as 𝜇 is 

varied, the 𝑥𝑓 shifts gradually along the 𝑥 = 𝑦 line (map diagonal 𝑥𝑛 = 𝑥𝑛), as 

can be seen from Fig. 2.9. 

 

Fig.  2.9 𝑥𝑓 moves along the map diagonal as the parameter is altered 

Observing the equation (2.9) across the parameter 𝜇, the change in the 𝑥𝑓 can be 

seen in Fig. 2.10. The chaotic dynamics produced by the TM due to the stretching 

and folding result into constant shuffling and mixing of the state space I [12], 

[41]. Such shuffling and mixing mainly occur about the non-zero fixed point 

[35]. 
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Fig.  2.10 Change of 𝑥𝑓 with respect to the parameter 

2.5.1 Maximum and Minimum of TM Trajectories 

In practical implementations, the parameter may not be maintained constant at 

the ideal value µ = 1. Under such non-ideal conditions, when µ < 1, certain 

changes in the dynamical characteristics of the map may be noticed relating to 

the distribution of points or the attractor. The property of the dynamical attractor 

of the TM can be defined by the dynamical maximum and minimum that are 

expressed as a function of the control parameter 𝜇 [16]. If a value of xc = 0.5 is 

reached at any state in a dynamical trajectory, the next iterate will immediately 

map onto the maximum 𝜇 = T(xc) = 2𝜇(0.5). Once the maximum is reached (𝑥𝑛 = 

𝜇), from the second restriction of the TM equation (2.8), 𝑥𝑛+1 =  2𝜇(1 − 𝑥𝑛) for 

𝑥𝑐 < 𝑥𝑛  ≤ 1, substituting 𝑥𝑛 with 𝜇, the next iterate will therefore map onto 

2𝜇(1 − 𝜇), which is the minimum value that an iterate can reach [16]. Hence, the 

maximum (Tmax) and minimum (Tmin) are respectively defined as: 
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Tmax = T(xc) = µ.           (2.10) 

Tmin = T(Tmax) = T(T(xc)) = 2µ(1‒µ).       (2.11) 

If sufficiently long-term dynamics are studied, it can be observed that the 

trajectories of arbitrary points originating from I are eventually gravitating to be 

trapped within a boundary I′: 

I′ = [Tmin,Tmax] = [2µ(1‒µ),µ],        (2.12)  

where I′ < I, when µ < 1 [16], as it can be verified through cobweb diagrams. The 

trajectory (of N = 300) of an initial condition originating below the Tmin for µ = 

0.75 is shown in Fig. 2.11. 

 

Fig.  2.11 Cobweb diagram for µ = 0.8; 𝑥0 = 0.000124 

Another initial condition, arising from a point beyond Tmax for the same 

parametric condition, is shown in Fig. 2.12. Both the plots for the cobweb 

diagrams are generated by the program in Appendix 2.7. 
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Fig.  2.12 Cobweb diagram for µ = 0.8; 𝑥0 = 0.823 

 

Fig.  2.13 Maximum and minimum of a trajectory with μ = 0.8 

The range I′, therefore, can be termed as an attractor with its boundaries Tmin and 

Tmax. In Fig. 2.13, The same phenomenon can also be observed through the time 
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series shown, where the dynamic trajectory of an arbitrary initial condition 

originating outside I′ is attracted to be trapped within the bounds Tmin and Tmax.  

In Fig. 2.14, the comparison between the maxima and minima for both the cases 

of  𝜇 < 1 and 𝜇 = 1 is shown. For 𝜇 < 1, the points in the shaded regions are 

never mapped by any trajectory of the TM once the attractor is visited. As the 

parameter continues to reduce, the segments of the state space represented by the 

shaded region gradually increases, implying that the attractor or the range defined 

by the bounds Tmin and Tmax will be narrower. 

 

Fig.  2.14 The dynamical attractor I′ for a parameter µ < 1 

This phenomenon can be further observed across a range of parameter values 

through bifurcation diagram where, as the 𝜇 continues to decrease, the mapping 

space between the maximum and the minimum also gets reduced gradually. Fig. 

2.15 shows the global distribution of the TM dynamics for every 𝜇 varying 

between 0.5–1 with the corresponding maximum and minimum points. 
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Fig.  2.15 Maximum and minimum over parameter 

2.5.2 Symbolic Dynamics of TM 

In order to have a better understanding of the dynamics without engaging much 

resources to record the real valued iterates, symbolic coding of trajectories can be 

done. The symbolic trajectory is a coarse-grained version of the real dynamical 

trajectory that was first proposed by Metropolis et al. [22]. At that time 

alphabetical symbols L and R were assigned to intuitively indicate left and right 

sides about the critical point and symbol C was assigned to indicate the centre 

which itself is the critical point of a 1D map. The symbols generated about the 

critical point (primary partition) also serve as a dynamical footprint that perfectly 

corresponds to the real valued dynamics of an initial condition. 

The alphabetical symbols L and R was later replaced with 0 and 1 respectively 

considering the critical point to be one of the edges of the two sides defined by 

the partition [23], [26]. Hence, the real valued trajectories 𝒳 of the TM can also 
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be transformed into symbolic trajectories 𝑆 = {𝑠𝑛 | 𝑛 = 0, 1, … , 𝑁 − 1}, where 

symbol 𝑠𝑛 generated on each iteration is defined as 

𝑠𝑛 = {
0         𝑥𝑛 ≤ 𝑥𝑐

1         𝑥𝑛 > 𝑥𝑐
. (2.13) 

The symbolic sequence 𝑆 = s0, s1, s2, …, sn, …, sN-1 is therefore a time series of 

0s and 1s that aids in understanding which side of the state space I, the iterate 𝑥𝑛 

has visited. Hence, for the desired application, the signal that is intended to be 

measured can be input to the TM as initial condition x0, and N-bit long symbolic 

sequence 𝑆 can be generated with TN-1(x0) iterations. 

2.5.3 Symbolic Representation of the State Space 

The critical point xc is treated as a primary partition over the state space 𝐼 that is 

sometimes referred to as Markovian partition [42] which restricts the two unique 

characteristics, defined on the two sides of a unimodal 1D map. For the TM, the 

primary partition divides the state space 𝐼 into two halves or subintervals, [0,0.5] 

∊ I and (0.5,1] ∊ I that respectively experience stretching and folding due to the 

map operation [13], [16]. 

As the T(x) is operated over the entire state space, more partitions appear at the 

pre-images of 𝑥𝑐. Considering a current state, the pre-images [13] are the possible 

previous states that result into the current state on one operation of the map. 

Since TM performs two different operations on the either side of the critical 

point, every outcome of the TM iteration has two possible preimages, e.g. for a 

current iterate 0.5, there are 0.25 and 0.75 as pre-images, as, 2µ(0.25) = 0.5 also, 

2µ(1 – 0.75) = 0.5, with ideally µ = 1. For every operation of the map two more 

partitions are created within the subintervals about each of the previous 
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partitions. Therefore, for every nth iteration, (2n+1 – 1) partitions are generated and 

the state space I is divided into 2n+1 mutually exclusive sub-intervals 𝐼𝑗
𝑛, where j  

= 0, 1, 2, …, (2n+1‒1), is the count of the sub-interval counting from the left 

boundary 0 to the right boundary 1 of I [13], [26]. In Fig. 2.16, it can be observed 

that for n = 1 iterations (21+1 – 1) = 3 partitions have been generated that created 

21+1 = 4 subintervals. 

 

Fig.  2.16 Symbolic correspondence to the intervals of the state space 

Any x input to the function originating from the state space, therefore, must 

belong to any one of the sub-intervals. Belonging to any interval on the either 

sides of any nth level partition, a unique symbolic signature 𝑆 with n+1 symbols 

can be generated when the input is iterated for n times. The symbolic states of the 

sequence are represented by the partitions generated at the nth iteration, and can 

be used to identify or backtrack which of the 𝐼𝑗
𝑛 subintervals the input has 

originated from [13]. Therefore, an input or a dynamic state can be treated as 

either a point or an interval that can be defined by the corresponding symbolic 
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signature. The following properties establish the relationship between symbolic 

sequence 𝑆 to the sub-intervals 𝐼𝑗
𝑛 generated by the map. 

1. Every x ∊ 𝐼𝑗
𝑛 result into the same symbolic sequence 𝑆 up to n+1 iterations 

2. If two initial conditions with the following identities x ∊ 𝐼𝑗
𝑛 and 𝑥̆ ∊ 𝐼𝑗+1

𝑛 , 

then 𝑆 and 𝑆̆ differ by only one bit 

3. 𝐼0
𝑛 ∪ 𝐼1

𝑛 ∪ 𝐼2
𝑛 ∪ … ∪ 𝐼2𝑛+1−1

𝑛 = 𝐼 

4. 𝐼𝑗
𝑛 ∩ 𝐼𝑘

𝑛 = ∅ for j ≠ k 

 

From the properties 1, 2 and 4, it can be understood that an 𝑁-bit long unique 

symbolic identity 𝑆 corresponds to a sub-interval of the size 𝐼𝑗
𝑁 and therefore, the 

longer 𝑆 sequence will be (for higher 𝑁), the narrower will be the size of the 𝐼𝑗
𝑁 

intervals. The 𝑆 sequences corresponding to each jth interval 𝐼𝑗
𝑁 ∊ I can be formed 

into an ordered set, as shown in [13], [26], with an order of j = 0, 1, 2, …, 2N 

relating with the number of 𝐼𝑗
𝑁 intervals that can be formed for 𝑁-bit long 

sequence as the way 𝐼𝑗
𝑁 are ordered in I. An example of such ordering of 𝑆 

consisting 𝑁 = 3 bits with the corresponding jth order of 𝐼𝑗
3, can be seen from 

Table 2.1.  

Table 2.1  Correspondence between intervals and symbolic sequence 

j 𝑺𝟑(T,x) Binary Intervals 

0 000 000 0 

1 001 001 0.125 

2 011 010 0.25 

3 010 011 0.375 

4 110 100 0.5 

5 111 101 0.625 

6 101 110 0.75 

7 100 111 0.875 
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Also, the partitioning with the symbolic codes corresponding to the intervals can 

be observed in Fig. 2.16. From such correspondence, each jth interval can be 

denoted by the corresponding symbolic sequence 𝑆, hence, any initial condition 

x0 with symbolic sequence 𝑆, the originating interval can be denoted by 𝑆 as a 

subscript as in  𝐼𝑆
𝑁, and it can be said that x0 ∊ 𝐼𝑆

𝑁 [13]. 

The originating interval can be determined by the process of tracing back the 

subintervals that are formed within intervals according to the symbolic sequence. 

The nth symbol sn in 𝑆, that is 1-bit of the sequence indicates whether xn iterate 

belongs to the left or right side about the xc, i.e., to the intervals 𝐼0
0 or 𝐼1

0. Hence, 

for a sequence 𝑆 corresponding to x0 ∊ 𝐼𝑆
𝑛, with any sn ∊ {0,1} in 𝑆, Tn(x0) = xn ∊ 

𝐼𝑠𝑛
0 . Applying inverse operation would result into x0 ∊ T−n(𝐼𝑠𝑛

0 ). Therefore, to 

determine the originating interval of x0 ∊ 𝐼𝑆
𝑁 that satisfies all the 𝑁 inverses 

through the entire symbolic path of the 𝑁-bit sequence, the inverse relation for 

every sn is combined and the originating interval 𝐼𝑆
𝑁 can be defined as [13], [28] 

𝐼𝑆
𝑁 ⋂ 𝑇−𝑛(𝐼𝑠𝑛

0𝑁−1
𝑛=0 ).  (2.14) 

To provide an example, a sequence 𝑆 = 110...sn is considered, the s0 indicates 

that, the x0 ∊ 𝐼1
0. After applying TM once, the iterate T(x0) ∊ 𝐼1

0, therefore, the x0 ∊ 

T −1(𝐼1
0). Again, for s0, s1, the x0 ∊ 𝐼1

0 ∩ T −1(𝐼1
0)  𝐼11

1  ⊂ 𝐼1
0 [13]. Thus, following 

all the symbols in the sequence in this manner, the originating sub-interval can be 

identified as 

𝑥0 ∊ 𝐼1
0 ∩ 𝑇−1(𝐼1

0 ∩ 𝑇−1(𝐼0
0 … ))… ⊂ 𝐼110

2 ⊂ 𝐼11
1 ⊂ 𝐼1

0.    (2.15)  

The inverse of map 𝑇−1(𝐼𝑠𝑛+1
0 ) is applied depending on the sn symbol. Since 

stretching and folding operations are performed on the two sides of the TM, the 
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Fig.  2.17 Fractal structure of symbolic codes 

transformation 𝑇(𝑥𝑛) = 𝑥𝑛+1 has two possible preimages, meaning every 𝑥𝑛+1 

state has two possible 𝑥𝑛 inverses. The correct inverse for the n+1th state is 

therefore identified through the symbolic path by looking at the previous nth 

symbol whether sn is 0 or 1 [13], with the following 

𝑥𝑛 = 𝑇−1(𝑥𝑛+1) = {

𝑥𝑛+1

2𝜇
                    𝑠𝑛  =  0

1 −
𝑥𝑛+1 

2𝜇
            𝑠𝑛  =  1

. (2.16) 

Due to the negative slope on the (0.5,1] half of the map, the symbolic sequence 

generated, results in Gray codes which exhibit a mirroring effect on the sequence 

every time the critical point 𝑥𝑐 is crossed. Since every such crossing is 

represented by ‘1’, the stretching and folding behaviour of the map can be 

tracked by the count of 1’s through the symbolic footprint of the trajectory. The 

odd count of ‘1’ represents the folding operation and the even count represents 

the stretching operation [13]. It can be noted from Fig. 2.16 that the subintervals 

partitioned on the folding side 𝐼1
0 = (0.5,1] are the mirror images of the 

subintervals on the stretching side 𝐼1
0 = [0,0.5]. Due to the negative slope of the 

map on the folding side, the corresponding codes of subintervals become flipped 

and hence the symbolic coding of the intervals follows a fractal structure, 

exhibited by the Gray code, as can be seen in Fig. 2.17. A fractal can be defined 
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as a recursively generated structure that exhibits self-similarity at all scales 

through repeating a fundamental graphical pattern [13], [43]. 

Any unimodal 1D map e.g. LM, TM can generate Gray codes, whereas the BM 

being defined by two stretching sides about the critical point, the symbolic code 

produced by BM follows the structure of binary codes, where one shift in the bit 

sequence depicts one iteration of BM being performed, which justifies the name 

of the map. Since 𝑆 is a Gray code generated by the TM that correspond to the 

initial condition x0, the symbolic code can therefore be realised and mapped back 

to the initial condition by converting the 𝑆 = s0, s1, s2,…sn…sN-1 to binary code 𝐵 

= b0, b1, b2,...bn,...bN-1 using (2.17) and then further converting 𝐵 to the real valued 

number using equation (2.18). The real valued representation of the Gray code is 

also referred to as Gray Ordering Number (GON), which can be used to order the 

𝑆 corresponding to different initial conditions within the state space by an order 

of the magnitude [26]. The following step is performed to convert an 𝑆 to binary 

sequence 𝐵 

𝑏𝑛 = {
𝑠𝑛                 𝑛 = 0
𝑏𝑛−1 ⊕ 𝑠𝑛   𝑛 > 0

.         (2.17) 

where, ⊕ is the Exclusive OR (XOR) logical operator. The 𝐵 is further converted 

to GON through the following transformation (code in Appendix 2.8)  

GON(𝑆) = ∑ 𝑏𝑛
−(𝑛+1)𝑁−1

𝑛=0 .         (2.18) 

The GON conversion from 𝑆 is however only valid and corresponds to the x0 

when the TM used to generate the symbolic signature is of full height , that is 

when the parameter is ideally µ = 1. In practical implementations of TM, the 
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parameter is not always achieved to the ideal value, due to the operation of such a 

reduced height map the size of the subintervals and the corresponding structure 

of the symbolic code is altered. In the work contributed by Basu et al. [24], the 

problems of the altered subintervals have been addressed and therefore a different 

symbolic conversion scheme has been proposed accordingly. 

2.6 Symbolic Shifting Window 

In the symbolic dynamics, the shifting window [43] is a valuable tool to realise 

the correspondence between symbolic trajectories and the real iterates. Since it is 

already established that a symbolic sequence has a direct correspondence to the 

initial condition of a trajectory and given the fact that any iterate in a trajectory 

can be treated as an initial condition for the next iterates, a symbolic window of 

finite length can be shifted over the entire sequence to realise the possible 

symbolic correspondence to each of the real iterates in a trajectory. The 

mechanism of shifting window is described as follows.  

For the trajectory xN-1 = TN-1(x0) with the corresponding symbolic sequence 𝑆 of 

length N, a symbolic window of size w bits can be shifted from 𝑛 = 0, 1, … , (𝑁 −

𝑤 + 1), hence the sequence contained within the window can be defined as 𝑆𝑛 = 

sn+0, sn+1, sn+2 … sn+i… sn+w-1. Assuming a shift operator ψ, operated on the 𝑆 with 

a shifting window size w bit, one shift is therefore defined as 𝑆𝑛+1 = sn+1+0, 

sn+1+1,…sn+1+i… sn+1+w-1 = ψ(sn+0, sn+1,… sn+i… sn+w-1) = ψ(𝑆𝑛). 

Given that the length of the original 𝑆 sequence is N the total number of shifts 

can be performed with a window is W = N – w + 1. Also, GON for each 𝑆𝑛 code 

from the shift can be calculated by converting 𝑆𝑛 code to corresponding binary 

code 𝐵𝑛 = bn+0, bn+1, bn+2 … bn+i… bn+w-1, as given by 
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𝑏𝑖 = {
𝑠𝑖                  𝑖 = 𝑛
𝑏𝑖−1 ⊕ 𝑠𝑖   𝑖 > 𝑛

. (2.19) 

Accordingly, GON for each 𝑆𝑛 is calculated as 

GON𝑛(𝑆𝑛) = ∑ 𝑏𝑖
−(𝑖−𝑛+1)𝑁+𝑤−1

𝑖=𝑛 . (2.20) 

In Fig. 2.18 the illustration of the discussed shifting window mechanism has been 

provided and how GONn for each shifted window code is obtained has been 

shown. 

 

Fig.  2.18 Shifting window mechanism and obtaining GON 

In Fig. 2.19 it can be visualised graphically that for an ideal parametric condition 

(µ = 1) of TM, the GONn obtained from a shifting window over 𝑆 has close 

resemblance to the actual real trajectory xN-1 = TN-1(x0). The program for shifting 

window can be seen from Appendix 2.9. The accuracy of GONn will depend on 

the adequate length w of 𝑆𝑛, and to match the trajectory up to sufficient length, 

higher N may be chosen. 
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Fig.  2.19 Trajectories recreated through GON of shifting window 

2.7 Kneading Theory: Symbolic Maximum and Minimum 

The value of µ can be determined from the available symbolic dynamics, through 

realisation of the symbolic signatures corresponding to the point Tmax or Tmin. The 

symbolic correspondence of the dynamical maximum and minimum of the 

unimodal maps was proposed by Milnor-Thurston Kneading Theory, according to 

which: when a point equal to the value of xc is input to a unimodal map (TM, 

LM), the outcome of the first iteration is equal to the Tmax and the corresponding 

symbolic sequence 𝑆 up to 𝑁 iterations is known as the Kneading Sequence 𝒦 

[12], [13], [41] and thus can be expressed as 

𝒦 = 𝑆:(Tn(xc)) = s:(T0(xc))s:(T1(xc))s:(T2(xc))…s:(Tn(xc)), n ∊ ℕ0.  (2.21) 

𝒦 is an efficient tool to identify the symbolic sequences corresponding to 

Tmin and Tmax from the set of possible sequences that are generated by the 
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dynamics of a unimodal map at any parametric condition. Considering the shift 

operator ψ such that s(Tn+1(x0)) = ψ(s(Tn(x0))), operations of ψ over 𝒦 yield the 

sequences 𝑆max = ψ(𝒦) and 𝑆min = ψ(ψ(𝒦)), which correspond respectively to the 

dynamic maximum (2.10) and minimum (2.11) [13]. 

Therefore, if 𝑆min or 𝑆max can be realised from the generated symbolic dynamics, 

the information of the parameter µ is also recoverable. For any trajectory of x0, a 

certain number of β ∊ ℕ transient iterations can be chosen such that after β 

iterations, for any n > β, the iterates xn ∊ [Tmin,Tmax] and the trajectory become 

bounded within the I′. The selection of β is empirical, depending on both the 

initial condition and the parameter of the map. Therefore, when both the factors 

remain to be unknown, β is chosen to be sufficiently large to ensure that the 

subsequent iterates of the trajectory belong within [Tmin,Tmax]. For any initial 

condition originating outside the I′ = [Tmin,Tmax] such that x0 < Tmin, then, after a 

count of β iterations until xβ+1 ≥ Tmin, the symbolic sequence 𝑆: Tβ(x0) will be a 

string of β zeros followed by a sequence 𝑆: Tn(xβ) ∊ [𝑆min, 𝑆max]. For any initial 

condition x0 > Tmax, x0 ∊ [xc,1], s0 = 1, the T(x0) < Tmin ∊ [0,xc] and the dynamics 

will be continued according to the aforementioned behaviour. Such cases will 

have s0 = 1 leading a string of β‒1 zeros followed by a sequence 𝑆: Tn(xβ) ∊ 

[𝑆min, 𝑆max]. From a sufficiently long trajectory, when the β transient symbols are 

discarded, and a shifting window is operated over the remaining sequence, the 

corresponding GONs of the sequences collected from each operation of the 

window can be ordered and hence can be matched to the ordering of 𝑆min through 

𝑆max. 

GONmin ≺ … ≺ GONmax  𝑆min ≺ … ≺ 𝑆max, (2.22) 
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where, GONmin and GONmax are the respective GONs of 𝑆min and 𝑆max. Hence, 

once β symbols are discarded from a trajectory of any T(x0), theoretically, in the 

remaining 𝑆N‒β+1 part of the sequence 𝑆, there will be no symbolic sequence 

appearing in following dynamics for a given µ whose corresponding GON can be 

found outside the range [GONmin,GONmax]. Therefore, once the dynamics enters 

the boundaries [Tmin,Tmax] any such sequences belonging outside [𝑆min,𝑆max] are 

not generated by the map and are treated as forbidden sequences [44] while all 

the sequences belonging within [𝑆min,𝑆max] are termed as allowed sequence. It is 

therefore confirmed that discarding the transient β symbols from a sufficiently 

long symbolic trajectory 𝑆 and then operating symbolic shifting window over the 

sequence will let one to search for 𝑆min or 𝑆max, which in turn aid in determining 

the reduced parameter µ [24], [43], [45]. However, to determine the initial 

condition x0 successfully from the corresponding 𝑆, it is not recommended to 

discard the transient β symbols because sufficient amount of information 

regarding the dynamic footprint of the originating point x0 is contained in it. The 

originating interval can therefore be determined by back tracking every single 

symbolic iterate 0’s and 1’s in the available symbolic sequence. The, β transient 

symbols need to be discarded only when determining µ, and is kept intact while 

determining the initial condition x0.  
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3 CHAOS BASED SIGNAL MEASUREMENT 

The fundamental use of chaotic systems for signal measurement was contributed 

by Kennedy [10], where unimodal chaotic maps have been used as quantizers for 

ADC and measurement applications. Later more approaches [17]-[19], [24] have 

been proposed in this direction, which confirmed that measurement of a quantity 

using chaotic dynamics is possible, and there are vast scopes and possibilities for 

the development of a chaos based ADC.  

While implementing a chaos function there are, however, a few issues that must 

be resolved before a standalone ADC can be achieved. The majority of the issues 

revolve around the physical implementation of the chaotic circuit, as the ideal 

dynamics of a chaotic function is greatly affected by several non-idealities caused 

in the electronic circuit. So far there have been several attempts to address some 

of the issues through both hardware and software approaches [18], [24], [43], 

[45], however there are plenty of scopes for future development as each of the 

newly proposed approach posed newer challenges that demanded further study 

and investigation. 

3.1 Basic Challenges 

Chaotic maps are simple to implement physically in the electronic hardware 

without engaging much of the resources. Therefore, physical implementation of 

chaotic functions has widely been proposed and achieved for various areas of 

applications. However, as discussed earlier, chaotic functions are very sensitive 

to electrical tolerances of the components used for the design, as the physical 

properties of materials used in electrical and electronic components are subject to 
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changes under several conditions e.g. temperature, electromagnetic interferences 

etc. Considering the inevitability of the non-idealities that are caused due to the 

tolerances in the components, the errors in the behaviour are often addressed 

through system level corrections rather than trying to engage highly accurate and 

precise components. 

The non-idealities and errors in the implemented chaotic function are generally 

related to accuracy and precision errors that are caused due to the offset, 

temperature drift and noise depending on several physical and environmental 

factors. One of such non-idealities is the parametric reduction of the chaotic 

function where the map height is reduced due to parametric deviation, thus, 

affecting the dynamical behaviour of the map [43]-[45].  

The other common type of non-ideality in the chaotic circuits is that the actual 

dynamical trajectories are altered due to the inherent noise in the system [46]-

[48]. The noise adds random variables to each state of the dynamics thus the 

resultant evolution deviates from the ideal one and it becomes challenging to 

extract meaningful information out of such noisy trajectories. 

3.1.1 Parametric Reduction of the TM 

The ideal dynamics of the map for an initial condition is altered when the 

parameter is reduced, as can be seen in Fig. 3.1, where the dynamical trajectories 

for both ideal and non-ideal parameter conditions have been shown. Due to the 

parameter reduction, the partitioning of the intervals is asymmetric (not in equal 

halves as shown in Fig. 3.2) therefore the 𝐼𝑆
𝑁 subintervals appear in uneven sizes 

causing the initial points to be redistributed unevenly to the adjacent intervals 

within state space I. 
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Fig.  3.1 Altered dynamics due to reduction in parameter value 

 

 

Fig.  3.2 Partitions get shifted generating asymmetrical intervals 
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The farther the parameter is deviated away from the ideal value, the greater will 

be the amount of shift in the partitions from the ideal positions [24]. Therefore, 

the correspondence between the symbolic codes 𝑆 and the intervals also become 

altered as the codes are unevenly mapped in the state space I. 

In Table 3.1 symbolic correspondence to the initial condition for both ideal and 

non-ideal parameters have been shown, and the GON of the symbolic sequences 

have been calculated. It can be noticed that the GONs for the non-ideal cases 

have greatly deviated from the ideal values for a slight change in parameter.  

Table 3.1 Sequences generated with µ = 1and µ < 1 

x0 𝑺𝟏𝟔 for µ = 1 𝑺𝟏𝟔 for µ < 1 GON for µ < 1 

0. 1951 0010100100001011 0011101101001110 0.17790 

0. 1952 0010100100000100 0011101101001000 0.17796 

0. 1953 0010100100000000 0011101101011010 0.17802 

0. 1954 0010101100000111 0011101101011100 0.17808 

0. 1955 0010101100001010 0011101101010110 0.17814 

3.1.2 Impact on Initial Condition Estimation 

There have been several contributions in the field that proposed techniques to 

estimate initial condition similar to that of calculating GONs. These approaches 

primarily convert Gray codes to the real values from the equivalent binary codes 

by applying base 2 algebra, as described in equations (2.17) and (2.18). Such 

approaches will not return accurate result for practical situations where the 

parameter value is not ideal. Given that the partitions are misplaced, and 

symbolic trajectories deviate from the ideal, when sequences are converted into 

GON values, there can be found a loss of correspondence with the actual initial 

condition. Similar observations have been documented by Litovski et al. in [18], 

where directly converting the Gray codes generated by a reduced height TM to 
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the real valued signals led to incorrect mapping. The initial condition estimation 

problem was further investigated in [27] where it was concluded that for a correct 

conversion and mapping, ideal map parameter is necessary, which is however, 

quite challenging to achieve with physical electronic circuitry. Kapitaniak et al. 

had also conducted a broad study in [17] towards measurement of electrical 

signals using symbolic dynamics of chaotic maps. Their observations confirmed 

that the signals estimated from the symbolic dynamics of the electronically 

implemented TM were greatly affected by the offsets and tolerances of the 

components used which significantly reduced the parametric height of the map. 

In Fig. 3.3 the conversion of symbolic sequences following the conventional or 

GON approach has been shown for a ramp of initial condition where the 

symbolic sequences generated through reduced parameter TM.  

 

Fig.  3.3 GON estimation with reduced parameter 
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It can be observed that a change in parameter to µ = 0.85 has caused a substantial 

deviation in the estimates from the actual values. The GON transformations have 

limitations towards exactly estimating the initial conditions from the symbolic 

sequence generated through a map with non-ideal parameter, as such 

transformation apparently assumed that the intervals are partitioned into equal 

halves even in the case of reduced height map. However, GON transformations 

are still useful for the relative ordering of the symbols in the state space as 

symbolic sequences can be assigned a real valued magnitude for comparison 

within a range. 

Further investigations have been conducted by Cong et al. [28] who established 

theoretically that for any chaotic map, initial condition can be estimated from the 

symbolic sequences with reasonable accuracy by applying reverse map from the 

last symbol of the symbolic sequence. The method assumed the real valued 

iterate for the last symbol is either xN-1 = 0.5 for sN-1 = 0 or xN-1 = 1 for sN-1 = 1, 

then according to the symbolic path, the reverse map is applied as described in 

equation (2.16). Such process might add an overhead time for recording the data 

before the conversion can begin, hence it might affect the conversion speed. In 

[24], Basu et al. developed a method based on interval theory that took the 

partitions and uneven intervals formed due to the non-ideal parameter into 

consideration. The method established an approach to estimate the initial 

condition from the first symbol instead of the last one relying on the process of 

forming subintervals within intervals as the dynamics evolve, thus the conversion 

can be run as a pipelined process in parallel with the symbol acquisition, and the 

conversion overhead time can be reduced. However, for both the proposed 

advancements, the availability of the knowledge of the non-ideal parameter is 
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necessary that must be supplied for the fruitful estimation. Also, noise is another 

non-ideality that affects the dynamical evolution. Several noise reduction 

methods have been studied and proposed in the past that also rely on a fair 

amount of knowledge about the system producing the dynamics. For the complete 

knowledge of the dynamical system, knowledge of the control parameter is 

therefore essential to define the source system. In the following sections, the way 

in which the dynamics is affected by noise has been described, and the proposed 

solutions for the noise corrections have been elaborated. 

3.1.3 Dynamical Behaviour Affected by Noise 

Due to the stretching and folding nature of the TM, the state space is partitioned 

on every iteration and points in the invariant interval I ⊂ ℝ eventually map 

densely over I ⊂ ℝ, [13], [41], which leads to any point 𝑥0 ∊ I generate unique 

trajectories that hold the key information of the initial condition. The iterative 

trajectories can be treated as a footprint of the system dynamics and its initial 

condition.  

When chaotic maps are implemented in physical hardware, e.g. electronic 

circuits, the actual dynamics of 𝒳 trajectories, governed by the feedback process, 

become greatly affected by the inherent noise in the system hardware.  Fig. 3.4 

shows the feedback mechanisms of the TM dynamics and how it can get affected 

by noise in the iteration process. Noise affected chaotic trajectories have two 

constituent parts, one of which is the deterministic part, that is governed by 

predefined set of rules related to the chaotic function. The other is the random or 

indeterministic part, which is introduced by noise that is intrinsic to the physical 

system.  
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Fig.  3.4 Noise affected TM iterations in a feedback mode 

The coexistence of noise in the feedback process of every iteration affects the 

dynamics by adding random variables to every iterative state. Such types of noise 

can be described as dynamical noise [46], and its evolutionary process can be 

defined as  

ɳ𝑛+1 = 𝑇(ɳ𝑛) + ɽ𝑛,  (3.1) 

where, ɳ𝑛 is the nth noisy iterate and ɽ𝑛 is the random variable combined at each 

stage of iteration. 

The behaviour of the random variables ɽ𝑛 can be realised by the properties of 

additive white Gaussian noise (AWGN) due to its intrinsically additive random 

variables showing Gaussian distribution [48]. The random distribution of AWGN 

has a zero mean whose variance is characterised by the signal-to-noise-ratio 

(SNR) with 10log10 (𝜎𝑥
2/𝜎ɽ

2) measured in dB, where 𝜎𝑥 and 𝜎ɽ are the standard 

deviations of the signal and the noise respectively. In electronic hardware, the 

thermal noise is best represented by AWGN. The AWGN has been simulated in 

the programs using the built-in function awgn(𝑥𝑛,SNR) of MATLAB, where, the 

input arguments are the state variable 𝑥𝑛 and the SNR. 
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Let the trajectory affected by the dynamical noise be defined as Ƞ =

 ɳ0, ɳ1, ɳ2, … , ɳ𝑁−1. The initial condition 𝑥0 is the original signal entering from an 

independent source which can be assumed to be not affected by dynamical noise 

of the chaotic system yet, such that ɳ0 = 𝑥0. However, as the dynamical evolution 

continues the noise is also propagated through the iterative process (as can be 

seen in Fig. 3.5), hence affecting the original trajectories of the initial conditions. 

It is therefore, a challenge to extract meaningful information from the trajectories 

corrupted by dynamical noise. 

 

Fig.  3.5 Dynamics of TM affected by noise in every stage of iteration 

The behaviour of the dynamical noise can be studied by sampling a single 

trajectory repeatedly, and then by observing the samples collectively. For a 

collective view, 𝑀 samples of Ƞ𝑚 for an initial condition 𝑥0 can be collected. 

Each of the sampled trajectories can therefore be represented as 

Ƞ𝑚 =  ɳ0
𝑚, ɳ1

𝑚, ɳ2
𝑚, … , ɳ𝑁−1

𝑚 , (3.2) 

where 𝑚 = 0, 1, … , 𝑀 − 1. For any 𝑚th trajectory, each 𝑛th iterate is sampled and 

stored for all the 𝑁 iterations in the trajectory and then for the next 𝑚+1th 

trajectory, the sampling process is repeated again from ɳ0
𝑚+1 through to ɳ𝑁−1

𝑚+1 as 
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illustrated in Fig. 3.5. Hence, for any 𝑛th iterate, there will be 𝑀 samples of the 

noisy data available for observation. 

Sensitive dependence on initial conditions has a key role to play in dynamics,  

since little perturbations in every iterative stage lead the trajectories to different 

paths. For any perturbation ƿ𝑛, around the close neighbourhood of the actual 

iterate 𝑥𝑛, the resulting 𝑥𝑛+1 + ƿ𝑛+1 = 𝑇(𝑥𝑛 + ƿ𝑛) is further deviated compared 

to the original transformation 𝑥𝑛+1 = 𝑇(𝑥𝑛), as established by rate of divergence 

or the Lyapunov exponent, given by equation (2.5). As long as the |ƿ𝑛+1| ˃ |ƿ𝑛| 

or the Lyapunov exponent λ is positive, the trajectories of TM will be divergent 

in nature [12]. Similar divergence is also experienced by the dynamics when such 

perturbations as ɽ𝑛 is randomly introduced (replacing ƿ𝑛 by ɽ𝑛 in equation 2.5) in 

every stage of iteration. 

 

Fig.  3.6 Divergent noisy trajectories of an initial condition 
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A diverging behaviour of a trajectory can be seen in Fig. 3.6 where a short length 

(𝑁 = 5) trajectory of an arbitrary initial condition 𝑥0 = 0.3234 through TM with 

parameter µ = 0.825 is perturbed by noise with SNR = 30 dB and a few (𝑀 = 10) 

samples are collected for observation. 

Due to the stretching and folding nature of the TM, there is a dense mixing of the 

trajectories in the entire state space [13]. Hence, the points that are originating 

from a close neighbourhood will be eventually spread all over the state space 𝐼 =

[0,1], as it may be the case with ɳ𝑛
𝑚 points that are separated by minute 

perturbations due to the noise. When the dynamics is continued for a higher 𝑁, 

and a large set of 𝑀 number of trajectories are observed collectively, the Ƞ𝑚 are 

found to be highly distributed over 𝐼. In Fig. 3.7 the Ƞ𝑚 trajectories for, 𝑥0 = 

0.3234, µ = 0.825, 𝑁 = 10, SNR = 30 dB and 𝑀 = 50 are shown. 

 

Fig.  3.7 Noisy trajectories with SNR = 30 dB 
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It is often the case with implemented maps that the information regarding the 

parameter µ is not known and is required to be extracted from the only other 

available information, i.e. the collected set of trajectories. In a noise-free system, 

µ may be extracted from the relationship between any known pair of 𝑥𝑛 and 𝑥𝑛+1 

in a trajectory. However, for noisy iterates, since ɳ𝑛+1 = 𝑇(ɳ𝑛) + ɽ𝑛 and ɽ𝑛 

cannot be exactly quantised, such calculations will not determine the correct µ 

[29]. Although it may seem intuitive to consider searching for the map maximum 

Tmax in order to pursue µ, however, even for signals with noise levels as low as 

SNR = 30 dB, the noise causes the iterates to exceed Tmax, therefore causing the 

map maximum to be lost. This is easily verified through the bifurcation diagram 

of a noise affected tent map in Fig. 3.8 (a), as compared to noise-free distribution 

of the dynamics in Fig. 3.8 (b). 

 

 (a)           (b) 

Fig.  3.8 Bifurcation diagrams of noise-free and noise affected tent map 

Given that the TM being the chosen chaotic function for the purpose of signal 

measurement, identification of the control parameter of the map offers two-fold 

advantage, that are: using the information of the parameter, less-noisy data can be 
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retrieved from the noise affected time series; also, the initial condition can be 

determined utilising the knowledge of the parameter. 

As described in [49]-[51], to determine the actual signal from the noisy data, an 

efficient noise reduction method must be able to determine or approximate the 

underlying chaotic function. Since, both chaotic trajectories and noisy samples 

are wideband signals, linear filtering techniques (e.g. lowpass, bandpass filters) 

or classical Fourier approaches cannot be adapted to reduce noise, because 

deterministic chaotic trajectories might also be discarded by the filtration [52], 

[53]. The works proposed in [54]-[56] offer efficient solutions to significantly 

reduce noise involving reconstruction of the dynamical phase space. The methods 

highlighted the importance of knowledge of the system or the approximation of 

the source function for which, a knowledge of the system parameter is essential. 

It is then possible to approximately identify the deterministic and indeterministic 

parts from the available data. To properly identify the chaotic function 

responsible for a certain nature of dynamics, identification of the control 

parameter is necessary. Once the function under operation and the control 

parameters are known, then the dynamics produced by such a function can be 

completely discerned from noise. A property of the tent map has been observed, 

where the dynamical noise can be utilised to determine the control parameter of 

the map. Since noise allows the dynamics to spread in the entire state space, the 

properties seen to be statistically prevalent in the state space. In the following 

chapters, it is shown how the sampled noisy trajectories Ƞ𝑚 can be utilised to 

determine the value of µ, and establishment of the property and techniques to 

apply it in finding the parameter has also been described. 
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3.2 Parameter Estimation: Current Techniques & 

Limitations 

There have been quite a few contributions that approach parameter estimation of 

chaotic maps, through symbolic time series or the real iterates, depending on the 

requirements of the application. In this section the most salient of all the 

contributions and approaches that showed the key direction towards solving the 

parameter estimation problem will be discussed. In [22], the trajectories 

generated by the unimodal chaotic maps were first analysed in terms of symbolic 

patterns represented by L and R respectively depicting left and right side of the 

map. The work proposed an idea of ordering the symbolic patterns by estimating 

a numerical value corresponding to each of the unique symbolic patterns. It was 

fundamentally shown that a set of patterns would occur in the symbolic 

trajectories – for the dynamics originating from the midpoint C = 1/2 and again 

coming back to the same point after a few iterations, such patterns up to a certain 

length are unique for a given parameter of the map. Each of the different patterns 

for a certain length 𝑁 of the sequence were ordered by forming an equation with 

the midpoint of the map. Examples of all the patterns that are possible for length 

𝑁 = 5 for a unimodal transformation 𝑓𝜆
𝑁(x), with originating point as C and again 

returning back to C on the 6th time step is shown as the following: 

C → R → L → R → R → C 

C → R → L → L → R → C 

C → R → L → L → L → C 

It is to determine for which parameter λ the transformation 𝑓𝜆
𝑁(x) would map 

from C to C in 𝑁 = 5 steps. Therefore, the following equation holds: 
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𝑓𝜆
𝑁(½) = ½.  (3.3) 

 Solving the equation for λ generated the order number which directly 

corresponded with the map parameter. Therefore, such patterns can be used for 

ordering of the sequences generated by a map and hence the parameter value of 

the map can be determined from the symbolic analysis. During that period the 

method showed a new direction to analyse chaotic dynamical trajectories using 

symbolic identities and patterns. However, it was difficult to order the patterns as 

unique combinations by looking at the shorter sequences of L and R, and 

therefore longer observation was necessary – sometimes in millions of iterates – 

to ensure that a large set of  unique patterns have been gathered for the analysis.  

From the fundamentals established by Stein et al, later in this direction the idea 

of Kneading sequence has formed. Further developments have been contributed 

by Wu et al. in [43], who made some propositions towards analysing the 

Kneading sequence in terms of Gray codes and established the properties of the 

Kneading sequences in terms of symbolic patterns of 𝑆min and 𝑆max. They have 

also proposed that to estimate the map parameter, the Kneading sequence of a 

unimodal chaotic map can be generated by iterating the map with an initial 

condition x0 = 0.5 i.e. the value of the critical point. Alternatively, the Kneading 

sequence can be searched over the long-term symbolic trajectories. As an 

approach to determine the parameter from the Kneading sequence, once the 𝑆max 

is found and GON(𝑆max) is determined, since GON(𝑆max) ≠ µ, they proposed a 

search algorithm for the parameter between two test parameter boundaries . The 

test parameter boundaries with lower and upper bounds are defined as 𝑝𝐿 and 𝑝𝑈 

respectively. In the processing domain where the parameter is being estimated, 
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the map 𝑇(𝑥𝑐) is operated separately with test parameter 𝑝𝑇 = (𝑝𝐿+ 𝑝𝑈)/2 and the 

symbolic sequence 𝑆 is obtained, and following conditions are applied to narrow 

down the test parameter boundary, that are: if GON(𝑆) > GON(𝑆max), then, 𝑝𝑈 = 

𝑝𝑇, or, if GON(𝑆) < GON(𝑆max), then, 𝑝𝐿 = 𝑝𝑇, and the map is iterated with new 

test parameters 𝑝𝑇 = (𝑝𝐿+ 𝑝𝑈)/2 until, GON(𝑆) = GON(𝑆max), then, 𝑝𝑇 is the 

desired solution. The method involves several indefinite search steps to converge 

to actual solution within the test boundaries, also for each new test parameter, the 

map is separately iterated in the processing domain and GONs are compared, this 

might cause a problem in determining the parameter from the perspective of 

numerical processing as the estimator might have to wait indefinitely for the 

solution to converge. The estimation of the parameter from the Kneading 

sequence is however, not straight forward; further developments in this direction 

have been contributed later in Chapter 3. 

A different approach for parameter estimation of unimodal maps has been 

proposed by Alvarez et al. in [45], which involved finding the probabilities of all 

possible order patterns that can be generated for a given parameter of the map. 

The technique was formulated by obtaining a long-term symbolic trajectory for a 

given parameter condition from the iterative dynamics of the map. Then small 

symbolic patterns were extracted from the symbolic trajectory by operating a 

shifting window, followed by taking permutations of the extracted patterns which 

would result in creating all possible patterns up to a certain length that the map 

can generate for a parameter. The number of patterns is counted and compared 

with the patterns that can be obtained for the full (ideal) parameter of the map. In 

reduced parameter conditions, patterns that can be generated through the map, do 

not cover universally all possible patterns, as all possible patterns can only be 
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realised when the map parameter is full. Therefore, the probability, determined 

by a ratio between the number of patterns that can be realised through the 

dynamics or by the permutations, and the number of all possible patterns in the 

symbolic dynamics, will correspond to the map parameter. As the map parameter 

is improves, the probability of the possible patterns would improve – tending to 

be 1. On the context of TM, the issues regarding such a probabilistic approach is: 

to find all possible patterns an enormously long dynamical trajectory is needed, 

and a large number of permutations needed for each extracted code to cover all 

possible patterns that a map can generate. Usually, such parameter estimation 

methods are applied in the area of communication and encryption where 

sequences are generated through a map implemented in digital computing domain 

therefore generating the dynamics for iterations more than thousands is not a 

problem. However, for hardware-oriented applications as signal measurement, 

suitable techniques need to be investigated.  
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4 PARAMETER ESTIMATION METHODS 

In this chapter, the methods to estimate the parameter of the TM have been 

proposed. From the knowledge of the dynamics of the TM and understanding of 

the anomalies that can be caused by parametric non-idealities, two independent 

methods have been explored during the course of investigation of the problem. 

Following are the detailed description of the methods in the form of algorithms. 

4.1 Parameter Estimation: Kneading Sequence Approach 

It has been observed that the dynamics of the TM shows dense distribution over 

the state space 𝐼. For parameter µ  (0.5,1] there exist unique maximum and 

minimum points. The map maximum Tmax = T(xc) = µ correspond to the 

parameter value, therefore for a non-ideal condition of µ, if the maximum point 

Tmax can be determined from the available dynamics, the parameter value is 

recovered for the reduced height map. It is understood that gathering a set of as 

many points mapped by the dynamics, will ensure that the entire distribution of 

points can define an interval I′ with boundaries, Tmax and Tmin, and a search for 

Tmax can be performed within I′. 

A similar search can be performed in symbolic space to determine the sequence 

that corresponds to the Tmax. The method in this work is based on Kneading 

sequence, which is an improvisation of the approach proposed in [24]. Since a 

real valued dynamical iterate can be represented by a symbolic identity, a shifting 

window of finite length can be operated over the entire symbolic dynamical 

trajectory to retrieve the sequences that correspond to each of the real iterates. 

Similarly, for the case of symbolic search, it is recommended that sequences with 
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as many iterates as possible are gathered, to accommodate as many shifts as 

possible. Once all the sequences corresponding to the shifts of the symbolic 

shifting window are extracted, the gathered sequences can be ordered by the 

determining GON of each sequence. Hence the sequence corresponding the 

maximum can be determined and the value of µ can be estimated from that 

sequence. 

4.1.1 Proposed Kneading Sequence Search Algorithm 

From the properties of Kneading sequence, it is understood that if a long-term 

dynamical trajectory is gathered for an arbitrary initial condition, it is highly 

probable that the dynamics will reach the maximum value 𝑆max = ψ(𝒦) at some 

point in time confirmed by the fact that chaotic dynamics is highly distributed 

over the state space. A search technique can therefore be devised to determine the 

𝑆max and the Kneading sequence 𝒦 corresponding to the operating map maximum 

from a symbolic trajectory 𝑆. A “Binary Search” approach to identify 𝑆max has 

been proposed; utilising a shifting window operated over a symbolic sequence 

of 𝑥0. As discussed in Section 2.9, in order to avoid the initial transient β symbols 

before the dynamics can enter I′ and correspondingly in the domain [𝑆min, 𝑆max], 

initial β bits of symbols from the symbolic sequence 𝑆 need to be discarded. 

Since the β is empirically chosen, it needs to be sufficiently large, such that the 

monotonic transitions towards [𝑆min, 𝑆max] are discarded.  

The search algorithm for 𝑆max is given as: 

1. A sufficiently large sequence 𝑆 is obtained for any arbitrary initial 

condition x0. 𝑆 is stored in the digital domain for further processing 
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2. The 0 < β ∊ ℕ transient symbols must be discarded from 𝑆. After 

discarding β symbols, the remaining sequence 𝑠𝛽 , 𝑠𝛽+1, … , 𝑠𝑛, … , 𝑠𝑁−1 is of 

size N– β +1 bits. The index of 𝑛 will now be considered from 𝑛 =  𝛽, 𝛽 +

1, 𝛽 + 2, … , 𝑁 − 1 

3. A finite length symbolic window of the size w bits is shifted over 

sequence 𝑠𝛽 , 𝑠𝛽+1, … , 𝑠𝑛, … , 𝑠𝑁−1. The symbolic window is shifted towards 

right by one bit, such that, 

𝑠𝛽+1, 𝑠𝛽+2, … 𝑠𝛽+𝑖+1, … 𝑠𝛽+𝑤  =  ψ(𝑠𝛽+0, 𝑠𝛽+1, … 𝑠𝛽+𝑖, … 𝑠𝛽+𝑤−1), (4.1) 

where each shift is operated by ψ, the total number of shifts can be 

performed W = N – β – w + 1. The index 𝑖 = 0, 1, 2, … , 𝑤 − 1 defines 

position of each bit inside the symbolic window. 

In Fig. 4.1, the shifting window approach has been illustrated with further 

detail of how GON is estimated from the w-bit symbols appearing each 

shift of the window. 

 

 

Fig.  4.1 Operation of shifting window and determining GON of each shift 
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4. The real valued GON from 𝑤 bit long sequence appearing in the window 

on each shift is obtained. The sequence with symbols 𝑠0, 𝑠1, … , 𝑠𝑤−1 in the 

window is converted to equivalent binary 𝑏0, 𝑏1, … , 𝑏𝑤−1 through  

𝑏𝑖 = {
𝑠𝑖                  𝑖 = 0
𝑏𝑖−1 ⊕ 𝑠𝑖   𝑖 > 0

, (4.2) 

where 𝑏𝑖 is the 𝑖 th digit of the binary code. Further GON is estimated as 

GON = ∑ 𝑏𝑖 . 2−(𝑖+1)𝑖=𝑤−1
𝑖=0 . (4.3) 

5. For each shift of the symbolic window over 𝑆 for 𝑛 = 𝛽, … , 𝑁 − 1, GONn 

are estimated and compared with GONmax. If GONn > GONmax, then the 

previous GONmax can be overwritten as GONmax = GONn, since the 

process initially started with GONmax = 0, on every nth shift, GONn is 

calculated and GONmax is updated if the stated condition is satisfied. This 

process is repeated until the last shift, the stored largest GON value is then 

found as GONmax and the corresponding sequence of GONmax can be 

recorded and referred to as the maximum sequence 𝑆max. 

6. The 𝑆max is confirmed to be the sequence representing Tmax = T(xc). 

According to the explanation in Section 2.9, since the xc is represented by 

the Kneading sequence 𝒦 = 𝑆:(Tn(xc)), the first symbol of 𝒦 is 0, and as 

𝑆max = ψ(𝒦), to obtain the Kneading sequence 𝒦 from 𝑆max a 0 must be 

appended in front of the 𝑆max. 

7. Due to the non-ideal parameter µ < 1, GON(𝒦) ≠ xc. The deviation of 

GON(𝒦) from xc can be realised by calculating the difference (2µ)-i-2- i at 

each ith stage of symbolic conversion. Since binary-to-decimal conversion 

is performed by choosing a base of 2, where the sequence through TM is 

generated by non-ideal µ, the difference may be realised in terms of 2-2µ. 
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Combining the differences for all i stages would result into the total 

difference by which GON(𝒦) is away from xc. 

8. As 𝒦 is a Gray code, there is certain rule that needs to be followed in 

order to combine the differences. As described in Section 2.6, for every 

‘1’ appearing in the sequence, even count of 1’s refers to stretching nature 

(positive slope) and odd count of 1’s refers to the folding nature (negative 

slope) of the TM operated on an interval. Therefore, the signs for each ith 

stage of the differences are accordingly adjusted to compensate for the 

deviation of the actual signal value from the corresponding GON. After 

appending ‘0’ in front of 𝑆max, the size of 𝒦 is 𝑤+1, the following rule is 

applied to obtain the differences relative to symbolic order in the sequence 

𝒦: 

a. Starting from the MSB (most significant bit) of the sequence 𝒦, 

i.e., 𝑠0, the number of 1’s appearing in the sequence is counted as γ 

γ𝑖 = γ𝑖−1 + 𝑠𝑖. (4.4) 

b. The difference for each ith stage according to odd or even nature of 

γ𝑖 is calculated as δ𝑖 

δ𝑖 = {
𝑠𝑖(2𝜇−𝑖 − 2−𝑖)                  γ 𝑖𝑠 𝑜𝑑𝑑

−𝑠𝑖(2𝜇−𝑖 − 2−𝑖)              γ 𝑖𝑠 𝑒𝑣𝑒𝑛
. (4.5) 

The alternating 1’s, i.e. whether γ𝑖 is odd or even, would decide 

whether the corresponding difference will be added or subtracted 

(as per the positive and negative slope of the map). The symbols 𝑠𝑖, 

whether a 0 or a 1 in each ith stage is multiplied with the 
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difference, which decides whether or not any difference will be 

added or subtracted at a particular ith stage, as for 𝑠𝑖 = 0 no 

difference is generated i.e. δ𝑖 = 0, for 𝑠𝑖 = 1, δ𝑖 = ±𝑠𝑖(2𝜇−𝑖 − 2−𝑖) 

9. Once all the δ𝑖 are determined from 𝒦 in terms of ±𝑠𝑖(2𝜇−𝑖 − 2−𝑖), the 

differences are added to the GON(𝒦), and is equated to xc in the following 

form 

δ0 ± δ1 ± δ2 …± δ𝑤+1 + GON(𝒦) = xc.  (4.6) 

Since xc = 0.5 and the GON(𝒦) is known the equation can be solved in 

terms of µ as each δ𝑖 = ±𝑠𝑖(2𝜇−𝑖 − 2−𝑖) while the µ is unknown. 

10. The above equation is a polynomial, hence the solution for µ will return 

multiple roots with few containing imaginary parts. The largest root, that 

is non-zero and non-negative with the imaginary part equal to 0 should be 

selected as the estimated µ. 

The proposed method is straightforward that is to find Smax over a symbolic 

trajectory and determine the Kneading sequence 𝒦 from Smax. The parameter 

value is determined by solving the difference equation derived using 𝒦. The 

method can be easily implemented in the computing domain (MATLAB code 

using single input in Appendix 2.10). 

4.2 Parameter Estimation from Noisy Dynamics of TM 

The samples of noisy iterates can be used to determine the map parameter. Given 

that the information of both the time step (n) and the magnitude of each iterate 

(ɳ𝑛
𝑚) is contained in a trajectory, a sampled iterate can be treated as a point in a 
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two-dimensional cartesian coordinate system with n plotted in X-axis and the ɳ𝑛
𝑚 

plotted in Y-axis. When the consecutive iterates ɳ𝑛−1
𝑚  and ɳ𝑛

𝑚 in the Ƞ𝑚 

trajectories are joined together through straight lines, a set of intersections within 

such straight-lines appear as all the sampled trajectories are observed collectively 

[29], as can be seen in Fig. 3.7 in Section 3.1.3, when Ƞ𝑚 trajectories are viewed 

through line-plots for all 𝑀. It can be noticed that, such intersections appear in a 

concentrated neighbourhood between the majority of the nth and n+1th. It can also 

be observed that these intersections mainly appear at about the same level on the 

Y-axis of the plot, the behaviour of these intersections is further studied. In the 

following experiment noisy trajectories are plotted for two different values of µ 

perturbed with same level of noise SNR = 25 dB in the system for an arbitrarily 

chosen initial condition 𝑥0 = 0.3234 for both the experiments. In Fig. 4.2 it may 

be noticed that the clusters have appeared around the corresponding fixed point 

𝑥𝑓 = 0.6226 for µ = 0.825, marked with a dashed line. 

 

Fig.  4.2 Crossovers around xf = 0.6226 for µ = 0.825 
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Similarly, in Fig. 4.3, the clusters marked with a dashed line have appeared 

around 𝑥𝑓 = 0.5745 for µ = 0.625. Collectively the locations of the cluster of 

intersections on the Y-axis is relatable to the location of the non-zero fixed point 

𝑥𝑓 of the TM, as the clusters of intersections have appeared in different locations 

for different parameter values [29]. Hence, it is verified that such clusters have a 

correspondence with 𝑥𝑓 and therefore the µ of the map can be determined if 𝑥𝑓 is 

identified according to the property 6 in Section 2.5. 

 

Fig.  4.3 Crossovers around 𝑥𝑓 = 0.5745 for µ = 0.625 

To ascertain this perspective, further study and exploration of the dynamic 

behaviour of the state space around the neighbourhood of the non-zero fixed 

point 𝑥𝑓 is necessary. The mapping of the points within 𝐼 is observed for a single 

iteration from which different intervals are identified that show unique mapping 

properties. For any parameter µ ∊ (0.5,1], the preimage of 𝑥𝑓 is given by 𝑥𝑝 = 
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𝑥𝑓/2µ. Therefore, 𝑥𝑛+1 for any 𝑥𝑛 ∊ [0,𝑥𝑝) ∊ 𝐼 will be less than or equal to 𝑥𝑓, 

thus the mapping 𝑇 : [0,𝑥𝑝) ↦ [0,𝑥𝑓) holds. 

On the other hand, any 𝑥𝑛 ∊ [𝑥𝑝,𝑥𝑐) ∊ 𝐼 the corresponding 𝑥𝑛+1 will be greater 

than 𝑥𝑓, and the mapping will be 𝑇 : [𝑥𝑝,𝑥𝑐) ↦ [𝑥𝑓,𝜇). Also, for the points within 

the intervals [𝑥𝑐,𝑥𝑓) ∊ 𝐼 and [𝑥𝑓,1] ∊ 𝐼 show the respective mappings 𝑇 : 

[𝑥𝑐,𝑥𝑓) ↦ [𝑥𝑓,𝜇) and 𝑇 : [𝑥𝑓,1] ↦ [0,𝑥𝑓]. If the 𝑥𝑛 from the above intervals and 

the corresponding 𝑥𝑛+1 = 𝑇(𝑥𝑛), is plotted on a two-dimensional coordinate 

system where the X-axis represents n and n+1, and the Y-axis represents 𝑥𝑛 and 

𝑥𝑛+1, then a straight line joining the two points can be constructed. 

 

Fig.  4.4 Mapping within the state space 

In Fig. 4.4 the lines joining the of 𝑥𝑛 and the corresponding 𝑥𝑛+1 for the intervals 

within 𝑥𝑛 ∊ [0,𝑥𝑝), 𝑥𝑛 ∊ [𝑥𝑝,𝑥𝑐), 𝑥𝑛 ∊ [𝑥𝑐,𝑥𝑓), 𝑥𝑛 ∊ [𝑥𝑓,1] have been shown. It is 

clearly seen that the straight lines formed by the iterates within the two intervals 
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[𝑥𝑐,𝑥𝑓) ↦ [𝑥𝑓,𝜇) and 𝑇 : [𝑥𝑓,1] ↦ [0,𝑥𝑓] about the 𝑥𝑓, intersect at a single point 𝑥𝑓 

on the Y-axis. Whereas, for the remaining intervals, the intersections between the 

𝑥𝑛 and corresponding 𝑥𝑛+1 points are not concentrated on a single point; rather, 

the intersections are spread widely over the XY-plane. Hence, it is confirmed that 

points within 50% of the entire state space 𝐼, i.e. 𝑥𝑛 ∊ [𝑥𝑐,1] ∊ 𝐼, will show such 

intersections at 𝑥𝑓 [29]. 

Given that the state space is highly distributed due to the perturbed dynamics of 

the TM, having noise in the iterative process will have additional advantages by 

maximising the chances of the dynamics spreading over the entire state space and 

therefore the chance of finding the intersections concentrated around a single 

point 𝑥𝑓 of the map is maximised. Thus, from the sampled collection of the noisy 

trajectories, locations of such intersections can be determined between the 

iterates, and can be further be correlated with 𝑥𝑓 of the map to determine the 

parameter µ. 

4.2.1 The Algorithm: Parameter Estimation from Noisy 

Trajectories 

From the observations presented in the previous section, it is understood that, 

from a collection of noisy trajectories, the intersections corresponding to the non-

zero fixed point (𝑥𝑓) of the map can be determined closely, that can be utilised to 

identify the map parameter with a reasonable accuracy.  

A statistical approach has been implemented to estimate the fixed point from the 

collection of Ƞ𝑚 trajectories, as given in the following algorithm. 
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1. The 𝑁 number of ɳ𝑛
𝑚 iterates are collected for each 𝑚th sample trajectory 

Ƞ𝑚.  

2. According to the behaviour discussed in the previous section, to find the 

intersections that appear closely around 𝑥𝑓, the criteria 𝑥𝑛 ∊ [𝑥𝑐,1] ∊ 𝐼 

needs to be fulfilled. Therefore, for an 𝑛th set of sampled iterates the ɳ𝑛
𝑚 

points that satisfy ɳ𝑛
𝑚 ∊ [𝑥𝑐,1] should be selected. Between any given 𝑛th 

and (𝑛 + 1)th iterates, let the total number of selected points out of 𝑀 

samples be 𝑀′ ≤ 𝑀 contained in set 𝐻𝑛 = {ɳ𝑛
𝑚  ∊  [𝑥𝑐, 1]}. In Fig. 4.5 the 

selection of the noisy samples has been illustrated. 

 

Fig.  4.5 Selection of the iterates to determine the intersections 

3. 𝑀′ number of straight-lines have been formed with each element in 𝐻𝑛 

with their corresponding (𝑛 + 1)th iterates.  

4. The number of intersections between straight-lines formed by the unique 

pairs of points ɳ𝑛
𝑖 , ɳ𝑛+1

𝑖  and ɳ𝑛
𝑗

, ɳ𝑛+1
𝑗

 for the 𝑀′ selected cases will be 
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𝑀′(𝑀′ – 1)/2, for all 𝑖 = 0, 1, … , 𝑀′ − 1  and 𝑗 = 𝑖 + 1, 𝑖 + 2, … , 𝑀′ − 1  

such that 𝑖 ≠ 𝑗.  

5. The ordinate value 𝑌𝑘 of the intersection is solved by equation (4.7) in 

terms of ɳ𝑛
𝑖 , ɳ𝑛+1

𝑖  and ɳ𝑛
𝑗

, ɳ𝑛+1
𝑗

 

𝑌𝑘 − ɳ𝑛
𝑖

ɳ𝑛+1
𝑖 − ɳ𝑛

𝑖 =
𝑌𝑘 − ɳ𝑛

𝑗

ɳ𝑛+1
𝑗

− ɳ𝑛
𝑗 , (4.7) 

where, 𝑘 = 1, 2, …, 𝑀′(𝑀′ – 1)/2. In Fig. 4.6 the assignment of 

coordinates to the samples that are used to determine the intersections 

have been illustrated. 

 

Fig.  4.6 Assignment of coordinates to the selected samples 

6. The 𝑌𝑘 solutions (intersection) form a cluster of the points by the lines 

joining between 𝑛 and (𝑛 + 1) time steps. The central point within each 

such cluster is determined by calculating the arithmetic mean 𝑌̅𝑛 from all 

the 𝑌𝑘 solutions for a given 𝑛. 
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𝑌̅𝑛 =
1

𝑀′(𝑀′ – 1)/2
∑ 𝑌𝑘𝑀′(𝑀′ – 1)/2

𝑘=1 .  (4.8) 

Note: The selection criterion ɳ𝑛
𝑚 ∊ [𝑥𝑐,1] for any 𝑛th time step might lead 

to 𝐻𝑛 being empty or singleton set (i.e. |𝐻𝑛| < 2), which might generate 

no solution for 𝑌𝑘 and therefore 𝑌̅𝑛. To have at least one 𝑌𝑘 solution for 

an intersection between 𝑛 and (𝑛 + 1), there must be at least two elements 

in 𝐻𝑛; therefore, any such |𝐻𝑛| < 2 and the corresponding 𝑌̅𝑛 must be 

excluded, otherwise it might lead to undesirable outcomes in the 

programming domain. 

7. Also, as between every 𝑛 and (𝑛 + 1) time-steps there would be one 𝑌̅𝑛; 

then, the total number of 𝑌̅𝑛 produced for all |𝐻𝑛| ≥ 2 must be Θ ≤ 𝑁 – 1. 

Hence, from the 𝑌̅𝑛 values again a single point ξ that is the closest 

approximation of 𝑥𝑓 can be determined by calculating the arithmetic mean 

of Θ number of 𝑌̅𝑛. Using the value of ξ the control parameter of the TM 

can be estimated as 𝜇′ using the following equation given by re-writing 

equation (2.9) in terms of ξ and making 𝜇′ the subject  

𝜇′ = ξ/2(1 − ξ). (4.9) 

The technique shown in this section utilises the samples of the noisy iterates to 

determine the crossovers of the fixed point and the map parameter. The proposed 

algorithm can be implemented in the computing domain (code in Appendix 2.12) 

where the noisy iterates sampled from the physical hardware can be processed. 
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5 RESULTS: PARAMETER ESTIMATION 

The two parameter estimation methods, as described in Chapter 4, are tested 

through simulation. The results of both the methods – described in Sections 4.1 

and 4.2 respectively – are detailed in this chapter. First, the Kneading Sequence 

Search Algorithm is simulated and verified for performance. Next, the second 

method, Parameter Estimation from Noisy Dynamics of TM has been performed. 

A thorough analysis of the estimated outcomes and errors has been presented.  

For the computerised simulations, MATLAB R2016b has been used. 

Alternatively, the open source Octave can also be used. However, for speedy 

convergence MATLAB is recommended, as it heavily utilises parallel processing. 

For the result generation and storage in the programs, one- and two-dimensional 

array structures have been extensively used. The programs for each of the 

algorithms have been developed considering that the methods can be 

implemented on digital computation devices (e.g. Microcontrollers, FPGAs) and 

can be adapted for programming languages such as C, C++, Java, VHDL etc.  In 

the first part of every experiment (as in the programs in Appendices 2.10 – 2.13), 

the TM dynamics is operated with a test parameter and an initial condition, the 

time series trajectories were generated along with the symbolic outcomes for a 

certain length N. In case of noise-oriented approaches, awgn(𝑥𝑛,SNR) function is 

used to perturb each 𝑥𝑛 state with White Gaussian Noise corresponded by a 

chosen SNR and the trajectories were sampled for M times. In the later parts of 

the experiments, parameter estimation algorithms have been applied on the 

generated data set, and the estimation results and errors have been observed and 

plotted graphically as detailed in the following sections. 
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5.1 Results: Kneading Sequence Search Algorithm 

The Kneading sequence search algorithm and parameter estimation technique 

from the Kneading sequence using difference equation approach has been 

evaluated for various parametric conditions. Following is an example to illustrate 

how the 𝑆max and 𝒦 sequences are determined by operating the symbolic shifting 

window over the 𝑆 sequence; followed by that, the TM parameter value µ is 

estimated by solving the difference equation with xc, realised according to the 

symbolic order of 𝒦. An arbitrary initial condition x0 = 0.092904 is iterated with 

a test parameter µ = 0.90, for N = 200 times to ensure that the dynamics reach 

closest to the map maximum value within that many iterations.  

The symbolic sequence 𝑆 is obtained and the algorithm to find 𝒦 is operated as 

follows: 

1. Initial β = 5 transient symbols were discarded to avoid the monotonic 

trajectories that might not be a part of the dynamical attractor. As can be 

seen from Table 5.1, a symbolic window 𝑤 = 12-bit wide is operated over 

the 𝑆, starting from 𝑠5, 𝑠6, … , 𝑠16 and the GON5 = 0.295410 for the code 

within the symbolic window is estimated. The GONmax = 0, as initialised 

and compared with GON5, if GON5 > GONmax, then GONmax = GON5. 

2. As the single step shift is operated by ψ, in Table 5.1, it can be observed 

that the GON6 for the new code appearing in shifted window is estimated 

as GON6 = 0.591064 > GONmax = 0.295410, therefore GONmax = GON6 

3. On the next shift, GON7 = 0.817382 > GONmax = 0.591064, therefore 

GONmax = GON7.  

4. GON8 = 0.364746 < GONmax = 0.817382, so GONmax remains unchanged. 
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5. As the shifting of the symbolic window is continued the maximum GON 

was found to be GON63 = 0.923095 for the entire symbolic sequence (see 

Table 5.1). 

Table 5.1 Shifting window of 12-bit operated over symbolic sequence 

  𝛽  = 5 Symbolic Window, 𝑤 = 12-bit  

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

𝑆 0 0 0 1 1 0 1 1 0 1 1 1 0 0 1 1 1 1 

  GON5 = 0.295410  

  Symbolic Window, 𝑤 = 12-bit      

n 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

𝑆 0 1 1 0 1 1 1 0 0 1 1 1 1 0 1 0 0 1 

  GON6 = 0.591064  

  Symbolic Window, 𝑤 = 12-bit  

n 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

𝑆 0 1 1 0 1 1 1 0 0 1 1 1 1 0 1 0 0 1 

  GON7 = 0.817382  

  Symbolic Window, 𝑤 = 12-bit  

n 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

𝑆 0 1 1 0 1 1 1 0 0 1 1 1 1 0 1 0 0 1 

  GON8 = 0.364746  

…
 

  Symbolic Window, 𝑤 = 12-bit  

n 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 

𝑆 1 0 0 1 0 0 1 1 0 1 0 0 1 1 1 1 0 0 

  GON63 = 0.923095  

 

6. The code within the symbolic window corresponding to GON63 has been 

recorded as  𝑆max. Form 𝑆max the 𝒦 has been created by appending a 0 in 

front of the 𝑆max, as given in Table 5.2. 

Table 5.2 Obtaining Kneading sequence 𝒦 from 𝑆max 

i 0 1 2 3 4 5 6 7 8 9 10 11 12 

𝑆max 1 0 0 1 1 0 1 0 0 1 1 1 - 

𝒦 0 1 0 0 1 1 0 1 0 0 1 1 1 
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7. The GON(𝒦) = 0.461547 is determined which is not equal to the value of 

xc. The difference between xc and GON(𝒦) is the factor of the non-ideal 

µ, which is realised from the order of the symbols 𝑠𝑖 in 𝒦 in terms of 

(2𝜇−𝑖 − 2−𝑖) by applying rule 8(a) and 8(b) in the proposed algorithm (see 

Section 4.1.1) and formed into an equation with xc, as 𝒦 corresponds to 

xc. Solving the equation will determine the unknown value of µ. 

Table 5.3 Kneading sequence 

 MSB →           LSB 

𝒦 0 1 0 0 1 1 0 1 0 0 1 1 1 

 

Starting from the MSB of 𝒦 (as given in Table 5.3), as per the proposed 

technique, the following rule is applied. 

γ𝑖 = γ𝑖−1 + 𝑠𝑖. (5.1) 

δ𝑖 = {
𝑠𝑖(2𝜇−𝑖 − 2−𝑖)                  γ 𝑖𝑠 𝑜𝑑𝑑

−𝑠𝑖(2𝜇−𝑖 − 2−𝑖)              γ 𝑖𝑠 𝑒𝑣𝑒𝑛
. (5.2) 

a. Starting with i = 0, the γ0 = 0, i.e. even as the 𝑠0 = 0, so δ0 = 0 

b. For i = 1, the γ1 = 1, i.e. odd as the 𝑠1 = 1, so δ1 = (2𝜇−1 − 2−1) 

c. For i = 2, the γ2 = 1, i.e. odd as the 𝑠2 = 0, so δ2 = 0 

d. For i = 3, the γ3 = 1, i.e. odd as the 𝑠3 = 0, so δ3 = 0 

e. For i = 4, the γ4 = 2, i.e. even as the 𝑠4 = 1, so δ4 = −(2𝜇−1 − 2−1) 

8. After determining all the δ𝑖 for all 𝑠𝑖 in the 𝒦. The following equation is 

obtained by adding all the differences to GON(𝒦) and equating with xc. 

δ1 – δ4 + δ5 – δ7 + δ10 – δ11 + δ12 + GON(𝒦) = xc. (5.3) 
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⇒ δ1 – δ4 + δ5 – δ7 + δ10 – δ11 + δ12 + GON(𝒦) – xc = 0. 

Substituting the δ𝑖 terms in the equation with (2𝜇−𝑖 − 2−𝑖), 

⇒ (2𝜇−1 − 2−1) – (2𝜇−4 − 2−4) + (2𝜇−5 − 2−5) – (2𝜇−7 − 2−7) + 

(2𝜇−10 − 2−10) – (2𝜇−11 − 2−11) + (2𝜇−12 − 2−12) + GON(𝒦) – xc = 0. 

Putting the values GON(𝒦) = 0.461547 and xc = 0.5 in the equation the 

highest real valued solution of the µ is given as 

⇒ µ = 0.897065 

that is close to the actual parameter value µ = 0.90. 

In Fig. 5.1, it can be observed that the δ𝑖 differences cumulatively build 

up to xc from GON(𝒦). Hence, it is understood that the equation has been 

established appropriately utilising the structure of the symbolic code that 

can be solved in terms of the unknown parameter value. 

 

Fig.  5.1 The equation build-up: differences added to GON(𝒦) 
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In the graph shown in Fig. 5.1, the differences added with GON(𝒦) given in the 

equation (5.3) has been plotted in the following order GON(𝒦) + δ1, GON(𝒦) + 

δ1 – δ4, GON(𝒦) + δ1 – δ4 + δ5, GON(𝒦) + δ1 – δ4 + δ5 – δ7, and so on in each 

step, as can be seen at the last step of addition the differences added with 

GON(𝒦) equals to xc = 0.5. In Fig. 5.2 the estimation results for the parameter 

values ranging from µ = [0.8,1] has been graphically analysed.  

 

Fig.  5.2 Estimated parameter values for different parametric conditions 

Symbolic sequences 𝑆 were generated from the arbitrary initial conditions using 

the parameter values µ = [0.8,1]. To ensure that 𝑆max appears in the dynamics, the 

length of 𝑆 has been sufficiently chosen as N = 200, and a symbolic window of 

length w = 12 bits have been operated over 𝑆. Thus, 𝒦 is determined from the 

𝑆max. It can be seen that the estimated results for different parameters are in good 

agreement with the actual parameter values, as can be further observed clearly 
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from Fig. 5.3 where the estimation error has been shown in percentages that is 

approximately below 0.5%. 

 

Fig.  5.3 Percentage error in parameter estimation 

The parameter estimation algorithm has been evaluated for a set of initial 

conditions. As the dynamics for different initial condition and parameter values 

would map to the maximum Tmax with the corresponding 𝑆max appearing at 

different times in the time series trajectory, it can be ensured that for N = 200 

after discarding β = 5 symbols, the parameter can be estimated with sufficient 

accuracy. A set of initial conditions has been chosen as x0 = [0,1] within the state 

space with resolution 1/28, that were iterated with parameter µ = 0.8, and 

parameter was estimated from the 𝑆 generated with each different initial 

condition (code for the entire set of initial condition used to generate the results 

is included in Appendix 2.11). 
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Fig.  5.4 Estimated parameter for all initial conditions 

The results presented in Fig. 5.4, shows the majority of the estimated outcomes 

with reasonable accuracy belonging within range [0.78, 0.8] which is close to the 

actual parameter value µ = 0.8. 

For the effective results, the choice of certain variables involved in the algorithm, 

deserves some discussion. Though β is empirically chosen, the choice of β is only 

to ensure that the transient initial points of the dynamics before entering the 

attractor are discarded (elaborate details can also be found in Sections 2.5.1 and 

2.7). Since the initial point or the input may appear from anywhere within the 

state space and not necessarily within the bounds I′ = [Tmax,Tmin], the initial few 

iterates may map to the points outside this attractor. Once the dynamics enters the 

attractor, it remains within, and therefore never exceeds the map maximum. In a 

bid to avoid misrepresentation of the map maximum, any transient iterates prior 
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to entering the attractor is therefore discarded. Hence the choice of β must be 

enough, so that it sufficiently ascertains that the dynamics has entered the 

attractor originating from any initial condition. The choice of β, otherwise, has no 

role to play in the accuracy of estimation, it only ensures the possibility of 

finding the true maximum. 

The choice of N again has no direct impact on the accuracy of estimation, a 

higher count of N only further ensures the probability that the dynamics has 

visited the unique maximum at least once. Since the knowledge of the initial 

condition is not available at this point of the chosen application, it cannot be 

calculatively determined how many iterations will be required to visit the 

maximum. However, if the shifting window size w is increased, N can be 

increased to avail sufficient number of shifts, since larger number of shifts will 

improve the probability of finding the 𝑆max. 

The window size w however needs to be chosen appropriately to ensure the 

accuracy of the estimation. Given the obvious notion that the accuracy would 

increase as the window size is increased, certain sizes of w has been observed (12 

to 14 bits) beyond which the accuracy is stabilised to a steady outcome as can be 

seen in Fig. 5.5. Since the parameter is solved from the code of 𝑆max appearing in 

the window, using a polynomial equation (5.3), addition of further bits to the 

window (increasing the size of w) will result in adding higher order polynomials 

that would contribute a nominal amount of information to the estimates, 

therefore, once the desired accuracy level is reached i.e. with w = [12,14], further 

addition of bits to the window may be ineffective as higher order polynomials 

may consume more time and processing power to converge to a solution. 
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Fig.  5.5 Relationship between estimation accuracy and window size 

Performance of such an estimation method may be affected by inherent noise in 

the physical circuitry, because in case of small overshoot the iterates may cross 

the map maximum and the corresponding Smax might get altered. In such 

situations the estimation algorithm can adapt to an averaging scheme operated on 

the frequently estimated outcomes. The averaging can improve the quality of the 

estimates by computing the mean value of the estimated parameters and updating 

the result. 

5.2 Results: Parameter Estimation from Noisy Dynamics 

The parameter estimation algorithm utilising noisy trajectories has been 

evaluated. To demonstrate working of the algorithm, an experimental condition 

has been chosen with an arbitrary initial condition: 𝑥0 = 0.383 that was iterated 

through the TM with parameter µ = 0.715 for 𝑁 = 50 iterations. The iterates were 

perturbed by dynamic addition of AWGN with SNR = 20 dB, and samples of Ƞ𝑚 
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trajectories were recorded for 𝑀 = 200. For the chosen parameter value in this 

experiment the corresponding value of the non-zero fixed point is 𝑥𝑓 = 2µ/(1 + 

2µ) = 0.588477, which may be compared with the estimated outcome of the 

algorithm. 

According to the proposed technique, the 𝑌𝑘 solutions for the chosen case are the 

crossover points among the straight lines formed between 𝑛 and (𝑛 + 1) iterates. 

In Figs. 5.6 and 5.7, a collection of such 𝑌𝑘 solutions have been shown through 

histograms for the sampled iterates within two independent pair of time steps. 

Fig. 5.6 shows distribution of the 𝑌𝑘 solutions between 𝑛 = 16 and 17. The mean 

value of the 𝑌𝑘 crossover points for this case is given as  𝑌̅16 = 0.588973 and to 

realise the quality of the mean outcome, the standard deviation of the crossover 

solution points between 𝑛 = 16 and 17 is found to be 𝐷16 = 0.090581. 

 

Fig.  5.6 Distribution of 𝑌𝑘solutions between n = 16 and 17 
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Fig.  5.7 Distribution of 𝑌𝑘 solutions between n = 20 and 21 

In Fig. 5.7 the histogram distribution for 𝑌𝑘 solutions between time steps 𝑛 = 20 

and 21 has been shown with mean value of the solutions as 𝑌̅20 = 0.588029 and 

the standard deviation of the distribution 𝐷20 = 0.079790. It can be noticed from 

the histograms, that the crossover solutions between the straight lines formed by 

the iterates of the two consecutive time steps are highly concentrated in the close 

neighbourhood of the actual fixed point 𝑥𝑓 = 0.588477 of the map. Therefore, 

that the mean positions 𝑌̅𝑛 of the 𝑌𝑘 crossover points between every 𝑛 and (𝑛 +

1) time steps are the closest estimates of the map fixed point. If a single estimate 

of all the 𝑌̅𝑛 estimates can be determined, the map fixed point can be ascertained 

more accurately. In Fig. 5.8, the 𝑌̅𝑛 values have been determined for all 𝑛 

timesteps and have been shown. It may be observed that, collectively the 𝑌̅𝑛 

estimates are located closely around the actual fixed point 𝑥𝑓 = 0.588477. 
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Further, mean of all the 𝑌̅𝑛 solutions were calculated as ξ = 0.588820 to determine 

the value of the map fixed point as precisely as possible. 

 

Fig.  5.8 The mean 𝑌̅𝑛 of crossover points (black-square legend) 

As visualised through Fig. 5.8, the estimated fixed point ξ = 0.588820 is 

represented by the black straight line passing through the 𝑌̅𝑛 points. The quality 

of the mean value ξ from the collection of  𝑌̅𝑛 points was realised through 

standard deviation SD = 0.008620. The amount of error in the fixed-point 

estimation is given by 100(𝑥𝑓 - ξ) = -0.0343%, which is significantly low 

considering the effects of noise in the chaotic trajectories. From the value of ξ, as 

being the closest approximation of the TM non-zero fixed point 𝑥𝑓, the control 

parameter of the map has been estimated as 𝜇′ = 0.716027 that is as well the 

closest approximation of the actual parameter µ = 0.715 which was chosen for 

the experiment. The error in the parameter estimation is given as 100(µ - 𝜇′) = -

0.1030%. It can be confirmed that under a harsh field of dynamical noise, the 

parameter value is closely estimated to the actual value with sufficient accuracy, 
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hence the method has been proved to be suitable for parameter estimation of the 

chaotic map from the noisy dynamics. 

The estimation experiment was repeated for another arbitrary initial condition 𝑥0 

= 0.863281 and parameter µ = 0.90, and the trajectory was perturbed by 

dynamical noise of SNR = 30 dB. In this example the TM trajectory was iterated 

for 𝑁 = 50 and each trajectory was sampled for 𝑀 = 50. In Fig. 5.9 the noisy 

iterates and the estimated crossovers (fixed point) have been shown. The 

estimated fixed point from the mean of the crossover clusters 𝑌̅𝑛 was found to be 

ξ = 0.642892 whereas the actual fixed point for the chosen parameter value is 𝑥𝑓 

= 0.642857, the estimation proved to be in good agreement with the actual fixed 

point. Hence the estimated parameter was found to be 𝜇′ = 0.900130. 

 

Fig.  5.9 Fixed point crossover estimates for SNR 30dB 

To further realise the quality of the estimates using the proposed method 

parameter estimation using noisy dynamics, five independent cases of parameters 

µ = 0.95, µ = 0.90, µ = 0.85, µ = 0.80 and µ = 0.75 have been investigated. Due 
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to the statistical nature of the proposed algorithm, a confidence interval is 

determined for all estimation attempts representing the quality of the estimates. 

Each of the chosen cases of µ has been separately iterated through an arbitrary 

initial condition, for 𝑁 = 50 iterations, and chaotic trajectory for each 

independent condition is repeatedly sampled 𝑀 = 50 times. To determine the 

confidence level in the parameter estimations, the algorithm is operated 

repeatedly 25 times and 𝜇′ outcomes of each of the attempts have been recorded. 

The confidence interval depicted by the error bar and mean 𝜇𝑚𝑒𝑎𝑛
′  of 𝑄 = 25 

independent estimation attempts 𝑞 = 1, 2, … , 𝑄, for each case of noise over a 

range of SNR values 10-30 dB have been determined.  

To estimate the standard error-bar, the following calculation is applied for the 

mean of all the attempts for a given case of 𝜇′ outcome. 

𝜇𝑚𝑒𝑎𝑛
′ =

1

𝑄
∑ 𝜇𝑞

′𝑄
𝑞=1 . (5.4) 

The upper and lower bounds of the 95% confidence interval is calculated 

respectively using:  

95% Confidence Interval = 𝜇𝑚𝑒𝑎𝑛
′ ± 1.96 (

𝜇𝑆𝐷
′

√𝑄
), (5.5) 

where, 𝜇𝑆𝐷
′  is the standard deviation of 𝑄 estimation attempts. 

In Figs. 5.10 – 5.14, the quality of the estimated parameter has been shown 

through both 𝜇𝑚𝑒𝑎𝑛
′  and 95% confidence interval for the chosen cases of µ = 

0.95, µ = 0.90, µ = 0.85, µ = 0.80 and µ = 0.75 respectively. The mean value of 

all the estimations is close to the actual µ belonging within the 95% confidence 

interval from SNR 15 dB onwards and the error bar reduces gradually. 
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Fig.  5.10 Estimated parameter error bar plot for µ = 0.95 

 

 

Fig.  5.11 Estimated parameter error bar plot for µ = 0.90 
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Fig.  5.12 Estimated parameter error bar plot for µ = 0.85 

 

 

Fig.  5.13 Estimated parameter error bar plot for µ = 0.80 
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Fig.  5.14 Estimated parameter error bar plot for µ = 0.75 

It can be noticed from the above error bar plots that the estimated outcomes are 

gradually deviated away from the actual µ for SNR values 10 dB or less. Hence, 

as a condition to utilise noise for parameter estimation, with slightly improved 

SNR values better results can be achieved as relatively lower noise may still 

preserve the qualitative properties of the TM dynamics. In harsher noisy 

conditions it has been previously investigated and established that the properties 

of the dynamical system are barely preserved [57]. 

The aim of the work is to establish the approaches for the correct identification of 

the non-ideal parameter so that it can be utilised in initial condition estimation. 

Due to the harsh characteristic of dynamical noise, the trajectories of the initial 

conditions might get severely affected. Therefore, the parameter estimation 

method has been further checked for the trajectories generated with a set of initial 

conditions perturbed by a certain degree of noise. In the following experiments 
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the set of 256 initial points have been iterated up to 𝑁 = 32, with a parameter 

value µ = 0.715 and the trajectories have been perturbed by AWGN with SNR = 

20 dB. The estimates were performed on 𝑀 = 50 samples for each of the 

trajectories of 256 initial conditions. The map parameter was separately estimated 

from each of the perturbed trajectories. 

In Figs. 5.15 – 5.17 the parameter values estimated from individual noisy 

trajectories generated by each initial condition within the state space have been 

shown for a range of SNR levels. Fig. 5.15 shows a perturbation by AWGN of 

SNR = 20 dB. Through the parameter estimation technique proposed here, the 

statistical trend of the estimated parameter values (roughly within range 0.71 – 

0.73) are found to be close to the actual parameter value µ = 0.715 of the TM 

with which the trajectories have been generated. 

 

Fig.  5.15 Estimated parameter for all inputs (SNR = 20 dB) 
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Fig.  5.16 Estimated parameter for all inputs (SNR = 25 dB) 

 

 

Fig.  5.17 Estimated parameter for all inputs (SNR = 30 dB) 
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The same experiment has been repeated with a slightly better SNR = 25 dB. The 

estimated parameter from the noisy trajectories has been shown in Fig. 5.16. The 

parameter estimates for most of the points are quite close to the actual parameter 

value µ = 0.715 as the estimates belong in the range 0.712 – 0.718. Another 

independent case with test parameter value µ = 0.95 and an SNR level of 30 dB 

has been considered for estimation. The estimated parameter from the noisy 

trajectories of the set of initial conditions has been shown in Fig. 5.17, the 

estimated parameters belong within range 0.945-0.955 (code for entire set of 

initial condition is provided in Appendix 2.13). 

Even though noise levels with SNR = 20 dB and beyond is considered as 

moderate in general, such levels of noise may have drastic effects on the chaotic 

trajectories as the noise itself is dynamically multiplied through the chaotic 

function. Therefore, retrieving meaningful information such as map parameter 

becomes difficult. However, the proposed method of determining the map fixed 

points from the collection of crossovers has been proved to be useful for the 

approximation of the parameter value of TM. 

In several cases of harsher conditions of dynamical noise (SNR = 10 dB or less), 

the system might depart from normal distribution [46], as the noise is propagated 

through dynamics. Due to the behaviour of the function corrupted by noise, some 

systematic error might get introduced, that may affect the statistical estimates. It 

is straightforward to deal with the random error using statistical methods 

compared to the systematic errors, as the source and behaviour of the systematic 

error might not always be known and might not exhibit normally distributed 

traits.  
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The proposed parameter estimation method from the noisy dynamics is found to 

be robust for the SNR 15 dB and beyond. In case of practical circuitry, the noise 

level may usually be expected to be better than 15 dB, in such conditions the 

estimations will be even better using the crossover-oriented algorithm. Despite 

the robustness of this estimation approach, currently the proposed algorithm 

utilises the real valued noisy iterates. However, in future, there could be further 

scopes to develop the method suitably for symbolic dynamics which will enhance 

the system resources further while maintaining the desired robustness. 
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6 CONCLUSION AND FUTURE SCOPES 

Considering the chaotic dynamics approach for signal measurement, in this work, 

solutions to the parameter estimation of the implemented chaotic function have 

been presented. Tent map (TM) has been selected as the suitable chaotic function 

for signal measurement; because of the dense distribution of points that can be 

realised through TM dynamics, holding unique correspondence between chaotic 

trajectories and initial condition. However, when the map is implemented in the 

electronic hardware domain, due to offsets and tolerances of the components, the 

parameter of the map cannot be maintained at the ideal value and the map 

partitions shift from the ideal positions causing the dynamics to deviate from the 

actual path. Consequentially, such deviations result into loss of correspondence 

when initial condition is estimated from the symbolic sequences through 

conventional binary to decimal conversion techniques. It has been realised that 

the knowledge of the non-ideal parameter may be utilised to reinstate the 

correspondence and improve the accuracy of the initial condition estimation. 

Therefore, parameter estimation is essential and possible methods have been 

investigated.  

The previously available techniques used extensively long dynamical trajectories 

to estimate the parameter. Such approaches were mainly dedicated to the field of 

communication, where, acquiring millions of iterations from the computationally 

implemented maps were not a problem. However, for the signal measurement 

using electronic hardware, in this work, the knowledge of the dynamical 

properties in non-ideal conditions has been suitably utilised to formulate the 

parameter estimation techniques using significantly less number of iterations.  



114 

 

Two innovative techniques for parameter estimation have been proposed. One of 

the proposed approaches is the Kneading sequence search algorithm, which was 

achieved by operating a symbolic shifting window over the entire symbolic 

sequence generated with an initial condition for any non-ideal parameter. The 

symbolic sequence corresponding to the map maximum was determined by 

comparing the GONs of each shift of the window. The maximum sequence was 

then converted to the Kneading sequence and finally the parameter was estimated 

by solving the difference equation that was established with the map critical 

point. The estimated parameter values were found to be considerably accurate 

with estimation error approximately under 0.5%. Also, the estimation was 

achieved with reduced number of iterations (200) compared to the conventional 

techniques. 

The presence of noise in the chaotic systems result in highly digressing 

trajectories leading to difficulties in determining the desired information of the 

actual trajectory. Numerous researches have confirmed the importance of the 

knowledge of map parameter, such that the actual dynamical trajectory can be 

discerned from the noisy ones. This prompted the investigation of another 

approach that utilises the distribution of the noisy chaotic trajectories to estimate 

the map parameter. From the properties of the noisy dynamics of TM, as has been 

simulated in this work under various noise levels, unique crossovers between the 

trajectories have been observed at the close neighbourhood of the non-zero fixed 

point of the TM. The presence of noise in the system has in fact, enhanced the 

probability of finding the crossovers within the perturbed trajectories, since, 

noise causes the dynamics to be highly distributed over the state space. The 

proposed parameter estimation technique utilised a set of (50) sampled 
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trajectories of the same dynamics iterated up to 50 times. The crossovers 

appeared between the iterates of each consecutive pair of time steps were 

determined by solving linear equations, as the iterates were represented through 

Cartesian coordinate system, where the x-axis depicted the time step and the y-

axis depicted the magnitude of the iterate.  The concentration of the crossovers 

between the sampled trajectories was statistically located by taking average of the 

solutions. Since the location of crossovers corresponds to the non-zero fixed 

point of the TM, the map parameter has been estimated from the knowledge of 

the non-zero fixed point. For such a statistical approach applied over dynamically 

affected noisy time series, the actual parameter was found to be contained within 

95% confidence interval of the estimation for the SNR 15 dB onwards, and with 

the standard deviation of the estimates was found to be between 0.07 to 0.09.  

Both the proposed approaches can be easily implemented through programs in 

the computation domain and in electronic hardware such as field programmable 

gate array (FPGA) and microcontrollers. For the desired application of signal 

measurement, the techniques can be coupled directly with the initial condition 

estimation algorithms to accurately determine the starting point or the input 

signal from the dynamics. This development in the parameter estimation methods 

in accompaniment with initial condition methods can be considered as a step 

forward in the development of a chaotic ADC, and the entire measurement 

system may be implemented in a single chip package. 

6.1 Future scopes 

The knowledge of the chaotic dynamics and the methods devised for parameter 

estimation in this work can be broadly applied in various related and independent 
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areas. Apart from the desired scope of signal measurement, the proposed 

parameter estimation approaches can also be utilised in other applications where 

chaotic maps are widely used e.g. for cryptography and encryption in 

communication technologies. 

6.1.1 Chaotic Measurement System Implementation 

To implement a TM-based chaotic measurement system as a standalone 

technology, either of the two proposed parameter estimation techniques can be 

employed. If the amount of noise in the implemented system hardware ranges 

from SNR values lower than 30 dB, then the crossover-oriented method can be 

applied, as the method efficiently determines parameter from the noisy dynamics 

with SNR as low as 15 dB. On the other hand, if the noise in the circuit is 

significantly low, the shifting window technique can be utilised as the method 

can be directly operated in the symbolic domain. The accuracy of the estimates 

affected by a small amount of noise can be further optimised by employing 

moving average algorithm which will continue to compute the average of the 

estimated outcomes from time to time. 

Successful implementation of a chaotic measurement system as an ADC is 

expected to save a considerable amount of resources and reduce the design 

complexity significantly because a single block of chaotic map can be used as a 

quantisation unit. Following (see Fig. 6.1) is the functional block diagram of the 

chaotic measurement system. The analogue implementation of the TM can be 

adapted from the schematic circuit which was first proposed by Campos-Cantón 

et al [14] and later utilised by Sanjin Berbercick [19] and Basu et al [24] to study 

the application further. The analogue TM comprise of simple electronic circuit 
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involving op-amps with positive and negative gains for the mathematical 

operations of two branches of the equation. 

 

Fig.  6.1 Functional block diagram of the measurement system [24] 

The feedback process of the iterative dynamics can be performed by 

incorporating sample-and-hold circuits in both input and output stages controlled 

by suitable clocking mechanism generated by a digital controller (microcontroller 

or FPGAs). The clocking of the input-output sample-and-hold stages for the 

iteration cycles has to be at par with the sampling of the iterates on each time 

step, and therefore can be generated from the same digital controller where the 

estimation algorithms will be performed so that the iterates can be sampled while 

performing the computations in parallel. The symbolic output for each iteration 

can be generated by including a comparator referenced to the threshold of 0.5V at 

the input stage of the feedback loop. Based on the estimated parameter, the initial 

condition can be estimated correctly, leading to successful recovery of the input 

value. 
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Also, there could be additional requirements regarding the hardware 

implementation of the chaotic system that would demand further investigation 

before the technology can be released off the shelf. Following factors have been 

identified that need addressing, e.g. symbolic approach for noisy dynamics, shift 

of the map critical point. 

6.1.1.1 Symbolic Approach for Noisy Chaos 

Keeping in mind the noisy conditions that may arise in the hardware 

implemented chaotic maps; the parameter estimation approach utilising the noisy 

trajectories needs to be formulated for the symbolic dynamics as well. Since the 

proposed parameter estimation approach is based on real iterates, it might use an 

additional ADC to gather real valued noisy iterates into the processing domain. 

Modifying the approach for symbolic dynamics will offer a robust solution as 

additional ADCs will no longer be needed and noise can still be utilised to 

estimate the parameter directly from the symbolic dynamics. 

6.1.1.2 Shift of Critical Point 

The TM is a piecewise linear function and the two piecewise stretching and 

folding restrictions of the map are defined about the critical point or midpoint of 

the map. When the map is implemented in physical hardware, the midpoint is 

also prone to shift from the ideal value of 0.5 which might cause the dynamics to 

diverge from the desired trajectory.  

A broad study must be conducted to understand the effect of the midpoint shift on 

the dynamics and suitable solutions to address the problem should be 

investigated. However, alternatively the problem can also be addressed by 

utilising a slightly modified version of TM called skew tent map [58]. The 
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primary advantage of the skew tent maps is that, the map is completely defined 

by a single parameter that is the critical point of the map. Unlike tent maps, the 

skew tent maps are always of full height as there is no reduction of height due to 

the non-ideal parameter. Any change in the parameter will only result into shift in 

the primary partition or the map critical point causing the map to appear as 

asymmetric or skewed. Since the dynamics is controlled by a single parameter, it 

is beneficial to utilise skew tent maps as a signal quantiser of chaotic ADCs, and 

accordingly the parameter estimation and initial condition estimation methods 

can be modified. 

6.1.2 Applications of Chaos in Encryption 

The most common area of application of chaotic dynamics is encryption. Since 

chaotic trajectories apparently appear to be random, information can be protected 

by encrypting through the dynamics of a chaotic map. The map parameter is 

often utilised as a cipher key that must be used during the process of decryption 

of the actual information from the available chaotic dynamics. Therefore, 

parameter estimation of the map from a chaotic trajectory representing the 

encrypted information is one of the essential steps. TM is a widely used 

candidate for encryption as the map generates dense chaotic trajectories for a 

wide range of parameter. Due to such a robust chaotic distribution of the TM, 

information can be chaotically mutated into completely different and random data 

such that hacking of the information can be prevented. The original data is 

decrypted from the chaotic dynamics using the knowledge of the parameter. 

Therefore, the proposed parameter estimation method can be a useful addition to 

the decryption process of the chaotically encrypted data. There are other 

approaches for encryption that use single chaotic map or coupled maps as the 
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encryption function, accordingly, the proposed parameter estimation methods can 

be modified complying with the dynamical setting of the type of chaotic function 

chosen.  
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[23] Álvarez, G., Romera, M., Pastor, G., & Montoya, F. (1998). Gray codes 

and 1D quadratic maps. Electronics Letters, 34(13), 1304. 

10.1049/el:19980950 



124 

 

[24] Basu, R., Dutta, D., Banerjee, S., Holmes, V., & Mather, P. (2017). An 

Algorithmic Approach for Signal Measurement Using Symbolic Dynamics 

of Tent Map. IEEE Transactions on Circuits and Systems I: Regular 

Papers , 65(7), 2221-2231. 10.1109/TCSI.2017.2773202 

[25] Banerjee, S., Yorke, J. A., & Grebogi, C. (1998). Robust chaos. Physical 

Review Letters, 80(14), 3049-3052. 10.1103/PhysRevLett.80.3049 

[26] Arroyo, D., & Alvarez, G. (2014). Application of gray codes to the study 

of the theory of symbolic dynamics of unimodal maps. Communications in 

Nonlinear Science and Numerical Simulation, 19(7), 2345. 

10.1016/j.cnsns.2013.11.005 

[27] Xi, C., Yong, G. and Yuan, Y. (2009). A Novel Method for the Initial-

Condition Estimation of a Tent Map. Chinese Physics Letters, 26(7), pp. 

078202 - 1–3. 10.1088/0256-307X/26/7/078202 

[28] Cong, L., Xiaofu, W., & Songgeng, S. (1999). A general efficient method 

for chaotic signal estimation. IEEE Transactions on Signal Processing, 

47(5), 1424-1428. 10.1109/78.757236 

[29] Dutta, D., Basu, R., Banerjee, S., Holmes, V., & Mather, P. (2018). 

Parameter estimation for 1D PWL chaotic maps using noisy dynamics. 

Nonlinear Dynamics, 94(4), 2979-2993. 10.1007/s11071-018-4538-x 
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APPENDIX 2: MATLAB CODES 

MATLAB codes for simulating the map behaviours and verifying proposed 

parameter estimation algorithms are listed. 

 

2.1 Logistic map 

2.2 LM bifurcation diagram 

2.3 Bitshift map 

2.4 BM bifurcation diagram 

2.5 Tent map 

2.6 TM bifurcation diagram 

2.7 TM cobweb 

2.8 Gray Ordering Number (GON) 

2.9 Shifting window 

2.10 Kneading sequence search algorithm for single input 

2.11 Kneading sequence search algorithm for entire input dataset 

2.12 Parameter estimation from noisy dynamics for single input 

2.13 Parameter estimation from noisy dynamics for entire input dataset   
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Appendix 2.1: Logistic Map (LM) 

Program for Logistic Map (LM) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%-------------------- Logistic Map generated for  ----------------------%% 
%%-------------------- a set of initial conditions ----------------------%% 
%%-------------------- Author: Dhrubajyoti Dutta   ----------------------%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
format longe                        

  
clear;                  % clears variables 
clf; 

  
Map_partition = 0.50;   % primary partition of the map 
iteration = 10;          % setting number of iterations                                   

  
Resolution = 8;         % resolution of initial data set 
increment = (1/(2^Resolution)); % size of initial data as 1/2^Resolution 
x = 0;                          % input range [0,1] lower limit = 0 
x_max = 1;                      % input range [0,1] upper limit = 1 
xNew = x;                       % starting initial condition 

  

N = ceil((x_max-x)/increment)+1;  % calculates number of initial conditions 
                                  % within [0,1] 

  
Real_Trajectories = zeros(N,iteration); % stores all iterates for N initial  
                                          % conditions 
Symbolic_Trajectories = zeros(N,iteration); % stores symbolic sequences for  
                                              % N initialconditions 
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parameter = 0.9;                % sets the peak height of the map 

  
for i = 1:N                     % runs for N number of initial conditions 

     
    x1 = x;                     % copy initial condition to input variable 

     
    for n = 1:iteration         % runs map for all iterations 
        x2 = 4*parameter*x1*(1-x1); % map operation, determine next iterate 
        if x1 <= Map_partition      % condition for when x1 < 0.5   
            op = 0;                 % store symbol as 0 
        elseif x1 > Map_partition   % condition for when x1 >= 0.5 
            op = 1;                 % store symbol as 1 
        end     
        Real_Trajectories(i,n) = x1;      % stores the real ietrate 
        Symbolic_Trajectories(i,n) = op;  % stores the symbol  
        x1 = x2;                           % replaces old x1 with new x2 

         
    end 

     
    x = (x + increment);            % increases x by one step for next  
                                      % initial condition       
end 

  
%---------- Map Plot ------------------------------------------------- 
plot(Real_Trajectories(:,1),Real_Trajectories(:,2)); % plot map 
set(gca,'xlim',[0 1]);                               % set axis views 
set(gca,'ylim',[0 1]); 
axis square; 
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Appendix 2.2: LM Bifurcation Diagram 

Program for LM bifurcation diagram 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%-------------------- Logistic Map bifurcation    ----------------------%% 
%%-------------------- diagram                     ----------------------%% 
%%-------------------- Author: Dhrubajyoti Dutta   ----------------------%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  
Npre = 250;        % no. of initial few iterates thrown away for clear view 
Nplot = 100;                  % no. of points in an iteration to be plotted 
x = zeros(Nplot,1);           % x trajectory array initialised 
parameter = zeros(Nplot,1);   % parameter array initialised 

  

  
for r = 0.0:0.00025:1.0       % for parameters sweeping [0,1] range 
     x(1) = 0.5;              % set initial condition as 0.5  
    for n = 1:Npre            % iterate the map for up to Npre 
        x(1) = 4*r*x(1)*(1-x(1)); % determine next iterate     
    end,                       
    for n = 1:Nplot-1               % iterate the map for up to Npre 
        x(n+1) = 4*r*x(n)*(1-x(n)); % map operation 
    end 
    plot(r*ones(Nplot,1), x, 'k.', 'markersize', 3); % ploting the iterates 
    hold on; 
end, 

  
xlabel('µ');  ylabel('x_n');   % setting axis labels and viewing dimentions 
set(gca, 'xlim', [0.5 1]); 
set(gca, 'ylim', [0 1]);  



136 

 

Appendix 2.3: Bitshift Map (BM) 

Program for Bitshift Map (BM) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%-------------------- Bitshift Map generated for  ----------------------%% 
%%-------------------- a set of initial conditions ----------------------%% 
%%-------------------- Author: Dhrubajyoti Dutta   ----------------------%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
format longe                        

  
clear;                  % clears variables 
clf; 

  
Map_partition = 0.50;   % primary partition of the map 
iteration = 10;          % setting number of iterations                                   

  
Resolution = 8;         % resolution of initial data set 
increment = (1/(2^Resolution)); % size of initial data as 1/2^Resolution 
x = 0;                          % input range [0,1] lower limit = 0 
x_max = 1;                      % input range [0,1] upper limit = 1 
xNew = x;                       % starting initial condition 

  
N = ceil((x_max-x)/increment)+1;  % calculates number of initial conditions 
                                  % within [0,1] 

  
Real_Trajectories = zeros(N,iteration); % stores all iterates for N initial  
                                          % conditions 
Symbolic_Trajectories = zeros(N,iteration); % stores symbolic sequences for  
                                              % N initialconditions 
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parameter = 1;                % sets the peak height of the map 

  
for i = 1:N                     % runs for N number of initial conditions 

     
    x1 = x;                     % copy initial condition to input variable 

     
    for n = 1:iteration         % runs map for all iterations 

         
        if x1 <= Map_partition      % condition for when x1 < 0.5 
            x2 = 2*parameter*x1;    % map operation, determine next iterate 
            op = 0;                 % store symbol as 0 
        elseif x1 > Map_partition   % condition for when x1 >= 0.5 
            x2 = (2*parameter*x1)-1;% map operation, determine next iterate 
            op = 1;                 % store symbol as 1 
        end     
        Real_Trajectories(i,n) = x1;      % stores the real ietrate 
        Symbolic_Trajectories(i,n) = op;  % stores the symbol  
        x1 = x2;                           % replaces old x1 with new x2 

         
    end 

     
    x = (x + increment);            % increases x by one step for next  
                                      % initial condition       
end 

  
%---------- Map Plot ------------------------------------------------- 
plot(Real_Trajectories(:,1),Real_Trajectories(:,2)); % plot map 
set(gca,'xlim',[0 1]);                               % set axis views 
set(gca,'ylim',[0 1]); 
axis square; 
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Appendix 2.4: BM Bifurcation Diagram 

Program for chaotic distribution of BM 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%-------------------- Bitshift Map bifurcation    ----------------------%% 
%%-------------------- diagram                     ----------------------%% 
%%-------------------- Author: Dhrubajyoti Dutta   ----------------------%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  
Npre = 250;        % no. of initial few iterates thrown away for clear view 
Nplot = 100;                  % no. of points in an iteration to be plotted 
x = zeros(Nplot,1);           % x trajectory array initialised 
parameter = zeros(Nplot,1);   % parameter array initialised 

  

  
for r = 0.0:0.00025:1.0       % for parameters sweeping [0,1] range 
     x(1) = 0.5;              % set initial condition as 0.5  
    for n = 1:Npre            % iterate the map for up to Npre 
        if x(1) <= 0.5        % check x(1) is less than midpoint 
            x(1) = 2*r*x(1);  % map operation, determine next iterat  
                                % and overwrite 
        elseif x(1) > 0.5     % check x(1) is greater than midpoint 
            x(1) = (2*r*x(1))-1; % map operation, determine next iterat 
                                   % and overwrite 
        end 

         
    end,                       
    for n = 1:Nplot-1               % iterate the map for up to Npre 

        
        if x(n) <= 0.5              % map operation 
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            x(n+1) = 2*r*x(n); 
        elseif x(n) > 0.5 
            x(n+1) = (2*r*x(n))-1; 
        end 

       
    end 
    plot(r*ones(Nplot,1), x, 'k.', 'markersize', 3); % ploting the iterates 
    hold on; 
end, 

  
xlabel('µ');  ylabel('x_n');   % setting axis labels and viewing dimentions 
set(gca, 'xlim', [0.75 1.05]); 
set(gca, 'ylim', [-1 1]); 

  
axis square; 
hold off; 
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Appendix 2.5: Tent Map (TM) 

Program for Tent Map (TM) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%-------------------- Tent Map generated for      ----------------------%% 
%%-------------------- a set of initial conditions ----------------------%% 
%%-------------------- Author: Dhrubajyoti Dutta   ----------------------%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
format longe                        

  
clear;                  % clears variables 
clf; 

  
Map_partition = 0.50;   % primary partition of the map 
iteration = 10;          % setting number of iterations                                   

  
Resolution = 8;         % resolution of initial data set 
increment = (1/(2^Resolution)); % size of initial data as 1/2^Resolution 
x = 0;                          % input range [0,1] lower limit = 0 
x_max = 1;                      % input range [0,1] upper limit = 1 
xNew = x;                       % starting initial condition 

  
N = ceil((x_max-x)/increment)+1;  % calculates number of initial conditions 
                                  % within [0,1] 

  
Real_Trajectories = zeros(N,iteration); % stores all iterates for N initial  
                                          % conditions 
Symbolic_Trajectories = zeros(N,iteration); % stores symbolic sequences for  
                                              % N initialconditions 
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parameter = 1;                % sets the peak height of the map 

  
for i = 1:N                     % runs for N number of initial conditions 

     
    x1 = x;                     % copy initial condition to input variable 

     
    for n = 1:iteration         % runs map for all iterations 

         
        if x1 <= Map_partition      % condition for when x1 < 0.5 
            x2 = 2*parameter*x1;    % map operation, determine next iterate 
            op = 0;                 % store symbol as 0 
        elseif x1 > Map_partition   % condition for when x1 >= 0.5 
            x2 = 2*parameter*(1-x1);% map operation, determine next iterate 
            op = 1;                 % store symbol as 1 
        end     
        Real_Trajectories(i,n) = x1;      % stores the real ietrate 
        Symbolic_Trajectories(i,n) = op;  % stores the symbol  
        x1 = x2;                           % replaces old x1 with new x2 

         
    end 

     
    x = (x + increment);            % increases x by one step for next  
                                      % initial condition       
end 

  
%---------- Map Plot ------------------------------------------------- 
plot(Real_Trajectories(:,1),Real_Trajectories(:,2)); % plot map 
set(gca,'xlim',[0 1]);                               % set axis views 
set(gca,'ylim',[0 1]); 
axis square; 
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Appendix 2.6: TM Bifurcation Diagram 

Program for TM distribution or bifurcation diagram 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%-------------------- Tent Map bifurcation        ----------------------%% 
%%-------------------- diagram                     ----------------------%% 
%%-------------------- Author: Dhrubajyoti Dutta   ----------------------%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  
Npre = 250;        % no. of initial few iterates thrown away for clear view 
Nplot = 100;                  % no. of points in an iteration to be plotted 
x = zeros(Nplot,1);           % x trajectory array initialised 
parameter = zeros(Nplot,1);   % parameter array initialised 

  

  
for r = 0.0:0.00025:1.0       % for parameters sweeping [0,1] range 
     x(1) = 0.5;              % set initial condition as 0.5  
    for n = 1:Npre            % iterate the map for up to Npre 
        if x(1) <= 0.5        % check x(1) is less than midpoint 
            x(1) = 2*r*x(1);  % map operation, determine next iterat  
                                % and overwrite 
        elseif x(1) > 0.5     % check x(1) is greater than midpoint 
            x(1) = 2*r*(1-x(1)); % map operation, determine next iterat 
                                   % and overwrite 
        end 

         
    end,                       
    for n = 1:Nplot-1               % iterate the map for up to Npre 

        
        if x(n) <= 0.5              % map operation 
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            x(n+1) = 2*r*x(n); 
        elseif x(n) > 0.5 
            x(n+1) = 2*r*(1-x(n)); 
        end 

         
% ------- noisy bifurcation diagram generated when uncommented ------------ 

  
%         x(n+1) = awgn(x(n+1),30);   % generates noisy dynamics 
%         if x(n+1) < 0               % statespace limited within [0,1] 
%             x(n+1) = 0.0001; 
%         elseif x(n+1) > 1 
%             x(n+1) = 0.999; 
%         end 

       
    end 
    plot(r*ones(Nplot,1), x, 'k.', 'markersize', 3); % ploting the iterates 
    hold on; 
end, 

  
xlabel('µ');  ylabel('x_n');   % setting axis labels and viewing dimentions 
set(gca, 'xlim', [0.5 1]); 
set(gca, 'ylim', [0 1]); 

  
axis square; 
hold off; 
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Appendix 2.7: TM Cobweb Diagrams 

Program for TM cobweb diagrams 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%-------------------- Tent Map cobweb             ----------------------%% 
%%-------------------- Author: Dhrubajyoti Dutta   ----------------------%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
format longe                        

  
clear;                  % clears variables 
clf; 

  

Map_partition = 0.50;   % primary partition of the map 
iteration = 400;          % setting number of iterations                                   

  
Resolution = 8;         % resolution of initial data set 
increment = (1/(2^Resolution)); % size of initial data as 1/2^Resolution 
x = 0;                          % input range [0,1] lower limit = 0 
x_max = 1;                      % input range [0,1] upper limit = 1 
xNew = x;                       % starting initial condition 

  
N = ceil((x_max-x)/increment)+1;  % calculates number of initial conditions 
                                  % within [0,1] 

  
Real_Trajectories = zeros(N,iteration); % stores all iterates for N initial  
                                          % conditions 
Symbolic_Trajectories = zeros(N,iteration); % stores symbolic sequences for  
                                              % N initialconditions 

  
parameter = 0.9;                % sets the peak height of the map 
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%------------------ framework of tentmap ---------------------------------- 

  
for i = 1:N                     % runs for N number of initial conditions 

     
    x1 = x;                     % copy initial condition to input variable 

     
    for n = 1:iteration         % runs map for all iterations 

         
        if x1 <= Map_partition      % condition for when x1 < 0.5 
            x2 = 2*parameter*x1;    % map operation, determine next iterate 
            op = 0;                 % store symbol as 0 
        elseif x1 > Map_partition   % condition for when x1 >= 0.5 
            x2 = 2*parameter*(1-x1);% map operation, determine next iterate 
            op = 1;                 % store symbol as 1 
        end     
        Real_Trajectories(i,n) = x1;      % stores the real ietrate 
        Symbolic_Trajectories(i,n) = op;  % stores the symbol  
        x1 = x2;                           % replaces old x1 with new x2 

         
    end 

     
    x = (x + increment);            % increases x by one step for next  
                                      % initial condition       
end 

   
%---------------------- cobweb tent plot ---------------------------------- 

  
x1 = 0.157876 ;         % setting initial condition 

  
if x1 <= Map_partition  % if initial condition is less than 0.5 
   plot([x1,x1],[0,2*parameter*x1],'color',[0.0,0.5,0.8]); % plot next iter 
else                                                       % if greater 
   plot([x1,x1],[0,2*parameter*(1-x1)],'color',[0.0,0.5,0.8]); % plot iter 
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end 
hold on; 

  
for n = 1:iteration           % runs a for loop for the iterations 

  
    if x1 <= Map_partition            % condition for when x < 0.5 
        x2 = 2*parameter*x1;          % evaluates x for next iteration 
        plot([x1,x1],[x2,x1],'color',[0.0,0.5,0.8]); % plot x1 to x2 
        hold on; 
        plot([x2,x1],[x2,x2],'color',[0.0,0.5,0.8]); % plot x2 on diagonal 

  
    elseif x1 > Map_partition            % condition for when x >= 0.5 
        x2 = 2*parameter*(1-x1);         % evaluates x for next iteration 
        if(n<2)                          % generating cobweb 
          plot([x1,x2],[x2,x2],'color',[0.0,0.5,0.8]);  
        else 
          plot([x1,x1],[x2,x1],'color',[0.0,0.5,0.8]);  % plot x1 to x2 
        end 
        hold on; 
        plot([x2,x1],[x2,x2],'color',[0.0,0.5,0.8]);  % plot x2 on diagonal 

  
    end 
    x1 = x2;   % feedback iterates 
end 

  
%------------- plot tent map frame ---------------------------------------- 
plot(Real_Trajectories(:,1),Real_Trajectories(:,1),'k'); 
plot(Real_Trajectories(:,1),Real_Trajectories(:,2),'k'); 

  
%------------- axes configuration ----------------------------------------- 
set(gca,'xlim',[0 1]); 
set(gca,'ylim',[0 1]); 
axis square; 
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Appendix 2.8: GON for TM 

Program for Gray Ordering Number (GON) of symbolic sequence generated by TM 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%-------------------- GON Estimation (Tent Map)   ----------------------%% 
%%-------------------- Author: Dhrubajyoti Dutta   ----------------------%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                                              

  
format longe                        

  
clear;                  % clears variables 
clf; 

  

Map_partition = 0.50;   % primary partition of the map 
iteration = 30;          % setting number of iterations                                   

  
Resolution = 8;         % resolution of initial data set 
increment = (1/(2^Resolution)); % size of initial data as 1/2^Resolution 
x = 0;                          % input range [0,1] lower limit = 0 
x_max = 1;                      % input range [0,1] upper limit = 1 
xNew = x;                       % starting initial condition 

  
N = ceil((x_max-x)/increment)+1;  % calculates number of initial conditions 
                                  % within [0,1] 

  
Real_Trajectories = zeros(N,iteration); % stores all iterates for N initial  
                                          % conditions 
Gray_Traj = zeros(N,iteration); % stores symbolic sequences for  
                                              % N initialconditions 
Binary = zeros(N,iteration);   % stores all binary sequence 
GON = zeros(N,1);              % stores all binary GON 
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parameter = 0.8;                % sets the peak height of the map 

  
for i = 1:N                     % runs for N number of initial conditions 

     
    x1 = x;                     % copy initial condition to input variable 

     
    for n = 1:iteration         % runs map for all iterations 

         
        if x1 <= Map_partition      % condition for when x1 < 0.5 
            x2 = 2*parameter*x1;    % map operation, determine next iterate 
            op = 0;                 % store symbol as 0 
        elseif x1 > Map_partition   % condition for when x1 >= 0.5 
            x2 = 2*parameter*(1-x1);% map operation, determine next iterate 
            op = 1;                 % store symbol as 1 
        end     
        Real_Trajectories(i,n) = x1;      % stores the real ietrate 
        Gray_Traj(i,n) = op;  % stores the symbol  
        x1 = x2;                           % replaces old x1 with new x2 

         
    end 

     
    x = (x + increment);            % increases x by one step for next  
                                      % initial condition       
end 

  
for row = 1:N                   % for all initial conditions 
    for col = 1:iteration       % for all iterates 
        if col == 1             % converting gray to binary 
            Binary(row,col) = Gray_Traj(row,col); 
        elseif col > 1 
            Binary(row,col) = bitxor(Gray_Traj(row,col),Binary(row,col-1)); 
        end 
    end 
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    for col = 1:iteration       % estimating GON 
        GON(row,1) = (GON(row,1)+(Binary(row,col)*(2^(-(col))))); 
    end     
end 
GON(:,2) = (Real_Trajectories(:,1) - GON(:,1))*100; % error in GON estimate 
hold on; 
plot(Real_Trajectories(:,1),GON(:,1),'k');      % plotting GON 
plot(Real_Trajectories(:,1),Real_Trajectories(:,1),'k--'); 
                                              % plotting initial condition 
axis square; 
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Appendix 2.9: TM Shifting Window 

Program for shifting window over TM generated symbolic sequence 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%-------------------- Shifting window (Tent Map)  ----------------------%% 
%%-------------------- Author: Dhrubajyoti Dutta   ----------------------%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                                              

  
format longe                        

  
clear;                  % clears variables 
clf; 

  

Map_partition = 0.50;   % primary partition of the map 
iteration = 30;          % setting number of iterations 

  
Resolution = 8;         % resolution of initial data set 
increment = (1/(2^Resolution)); % size of initial data as 1/2^Resolution 
x = 0;                          % input range [0,1] lower limit = 0 
x_max = 1;                      % input range [0,1] upper limit = 1 
xNew = x;                       % starting initial condition 

  
N = ceil((x_max-x)/increment)+1;  % calculates number of initial conditions 
                                  % within [0,1] 

  
Real_Trajectories = zeros(N,iteration); % stores all iterates for N initial  
                                          % conditions 
Gray_Traj = zeros(N,iteration); % stores symbolic sequences for  
                                              % N initialconditions 
Binary = zeros(N,iteration);   % stores all binary sequence 
GON = zeros(N,1);              % stores all binary GON 
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parameter = 0.8;                % sets the peak height of the map 

  
% ------------- TM Trajectory generation ---------------------------------- 

  
for i = 1:N                     % runs for N number of initial conditions 

     
    x1 = x;                     % copy initial condition to input variable 

     
    for n = 1:iteration         % runs map for all iterations 

         
        if x1 <= Map_partition      % condition for when x1 < 0.5 
            x2 = 2*parameter*x1;    % map operation, determine next iterate 
            op = 0;                 % store symbol as 0 
        elseif x1 > Map_partition   % condition for when x1 >= 0.5 
            x2 = 2*parameter*(1-x1);% map operation, determine next iterate 
            op = 1;                 % store symbol as 1 
        end     
        Real_Trajectories(i,n) = x1;      % stores the real ietrate 
        Gray_Traj(i,n) = op;  % stores the symbol  
        x1 = x2;                           % replaces old x1 with new x2 

         
    end 

     
    x = (x + increment);            % increases x by one step for next  
                                      % initial condition       
end 

  
%----------------- Symbolic dynamics processing --------------------------- 
window_size = 8;                  % declare window size 
Win_GON = zeros(N,iteration);     % Window GON array initialised 
Win_Bin = zeros(1,window_size);   % Window binary array initialised 

  
for row = 1:N                   % for all initial conditions 
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    for col = 1:iteration       % for all iterates 
        if col == 1             % converting gray to binary 
            Binary(row,col) = Gray_Traj(row,col); 
        elseif col > 1 
            Binary(row,col) = bitxor(Gray_Traj(row,col),Binary(row,col-1)); 
        end 
    end 

     
    for col = 1:iteration       % estimating GON 
        GON(row,1) = (GON(row,1)+(Binary(row,col)*(2^(-(col))))); 
    end 

     
% ------------- shifting window ------------------------------------------- 
    for col = 1:iteration  % shifting 1 place for all symbols in a sequence 
        for no = col:col+(window_size-1)   % for all symbols within window 
            if col<=iteration-(window_size-1) % check if it isnt last shift 
                if ((no - col) == 0)   % converting window symbol to binary  
                    Win_Bin(1,(no-col)+1) = Gray_Traj(row,no); 
                elseif ((no - col) > 0) 
                    Win_Bin(1,(no-col)+1) = bitxor(Gray_Traj(row,no),Win_Bin(1,no-col)); 
                end 
            end 
        end 
        for num = 1:window_size    % calculating GON for the window symbol 
            if col<=iteration-(window_size-1) 
                Win_GON(row,col) = Win_GON(row,col)+(Win_Bin(1,num)*(2^(-(num)))); 
            end 
        end 
    end 
end                     
GON(:,2)= (Real_Trajectories(:,1) - GON(:,1))*100; % difference between GON 
                                                     % and actual 

  
%----------Plot generation------------------------------------------------- 
hold on 
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% plot(Real_Trajectories(:,1),GON(:,1),'k'); 
% plot(Real_Trajectories(:,1),Real_Trajectories(:,1),'k--'); 
plot(Real_Trajectories(152,:),'b','Markersize',2); 
plot(Win_GON(152,:),'r','Markersize',2); 
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Appendix 2.10: Kneading Sequence Method (single input) 

Program for parameter estimation through Kneading sequence search algorithm (for single initial condition) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%-------------------- Parameter Estimation Algorithm -------------------%% 
%%-------------------- Using shifting window          -------------------%% 
%%-------------------- Program operated for a single input --------------%% 
%%-------------------- Author: Dhrubajyoti Dutta   ----------------------%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
format long                      

  
%///////////////// Symbolic Data Generated Using Non-ideal TM ///////////// 

  
iteration = 200;   % number of iterations initialised   
partition = 0.5;   % map partition defined 

  
x = 0.092904;      % initial condition chosen for the experiment 
parameter = 0.8;   % parameter chosen for the experiment 

  
Real_Trajectories = zeros(1,iteration); % initialise real trajectory array 
Gray_Traj = zeros(1,iteration);   % initialise symbolic trajectory array 

     
for n = 1:iteration              % runs map for all iterations 
    if x <= partition            % condition for when x1 < 0.5 
        x2 = 2*parameter*x;      % map operation, determine next iterate 
        sym = 0;                 % store symbol as 0 
    elseif x > partition         % condition for when x >= 0.5 
        x2 = 2*parameter*(1-x);  % map operation, determine next iterate 
        sym = 1;                 % store symbol as 1 
    end 



155 

 

  
    Real_Trajectories(1,n) = x;  % store the x for iteration 
    Gray_Traj(1,n) = sym;      % store the op for iteration 
    x = x2;                     % replaces old x with new x  
end 

  
%/////////// Kneading Sequence Search Through Shifting Window ///////////// 

  
window_size = 12;                         % declare window size 
Transient_beta = 5;                       % declare transient beta symbols 
Win_Bin = zeros(1,window_size);           % initialise window binary array 
Win_Gray = zeros(1,window_size);          % initialise window gray array 
Smax = zeros(1,window_size);              % initialise Smax register 
Kneading_sequence = zeros(1,window_size+1); % initialise kneading sequence 
                                              % register 
GON_window = 0;                     % initialise GON for window shifts 
Largest = 0;                        % initialise largest tracking variable   

     
for col = Transient_beta + 1:iteration % for each symbol after discarding  
                                         % dscarding beta symbols 
  for no = col:col+(window_size-1) % for symbols within the shifted window     
      if col<=iteration-(window_size-1) % check if it isn't the last shift               
        if ((no - col) == 0)  % convert window symbol to binary 
         Win_Bin(1,(no-col)+1) = Gray_Traj(1,no); 
        elseif ((no - col) > 0) 
         Win_Bin(1,(no-col)+1) = bitxor(Gray_Traj(1,no),Win_Bin(1,no-col)); 
        end 
        Win_Gray(1,(no-col)+1)= Gray_Traj(1,no); % alo save window gray    
      end 
  end 
  for num = 1:window_size          % calculate GON for the window sequence 
      if col<=iteration-(window_size-1) 
        GON_window = GON_window +(Win_Bin(1,num)*(2^((window_size-num)))); 
      end 
  end 
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  if GON_window > Largest   % track the largest GON by comparing previous  
                              % largest to current GON 
     Largest = GON_window;  % update largest if greater GONs found 
     Smax = Win_Gray;       % store window gray as Smax for largest GON 
     Iterate_location = col;    % point at which iteration the largest was  
                                  % found 
  end 
  GON_window = 0;           % reset GON of window for the next shift 
end 

  
%---------------- Preparing the Kneading Sequence ------------------------- 
Kneading_sequence(1,2:end) = Smax; % storing Smax from the 2nd position so 
                                     % a 0 automatically added in the 1st 
                                       % place  
K_length = window_size+1; % size of kneading sequence udated after adding 0 

  

  
%///////// Solving the polynomial equation with GON and x_c = 0.5 ///////// 

                    
Count_one = 0;           % variable to count odd even 1s initialised 
Bin = zeros(1,K_length); % binary register of kneading sequnce initialised 
GON = 0;                 % GON of kneading sequence 
Equation = zeros(1,K_length);  % difference equation array initialised      
Estimated_mu = 0;        % estimated parameter variable initialied 

  
%------------Finding GON of Kneading sequence ----------------------------- 
    for col = 1:K_length 
        if col == 1          % gray to binary estimation 
            Bin(1,col) = Kneading_sequence(1,col); 
        elseif col > 1 
            Bin(1,col) = bitxor(Kneading_sequence(1,col),Bin(1,col-1)); 
        end 
        GON = (GON +(Bin(1,col)*(2^(-(col))))); % calculate GON 
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    end 

     
%---------- Forming the difference equation with signs of delta ----------- 

  
for col = 1:K_length                                 % for all symbols in K 
    Count_one = Count_one + Kneading_sequence(1,col);% count number of ones 
    if rem(Count_one,2) == 0                         % check odd/even 
      Equation(col) = (-1)*Kneading_sequence(col);   % negative when even 
    else 
      Equation(col) = (1)*Kneading_sequence(col);    % positive when odd 
    end 
end 

  
  constant = 0.5 - GON;    % determine the cnstant part of the polynomial 
  for col = 1:K_length 
      constant = constant + (Equation(col)*2^(-(col-1))); % further update 
                            % the constant part with 2^i for all the 
                            % differences 
  end 

  
  Equation(1) = -constant;  % store the constant in the equation array 
                              % with remaining order of polynomial 
                                % coefficients intact 
  Root = roots(Equation);   % solving the equation 

  
for r = 1:K_length-1  % check within the number (K_length-1) of roots 
    if (real(Root(r,1)) > 0) && (imag(Root(r,1))==0 && (real(Root(r,1))> Estimated_mu*2)) 
                                     % select largest non-complex root 
        Estimated_mu = Root(r,1)/2;  % derive the parameter from 2mu part 
    end 
end 
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Appendix 2.11: Kneading Sequence Method (full dataset) 

Program for parameter estimation through Kneading sequence search algorithm (for all initial condition in a dataset)  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%-------------------- Parameter Estimation Algorithm -------------------%% 
%%-------------------- Using shifting window          -------------------%% 
%%-------------------- Program operated for all input -------------------%% 
%%-------------------- Author: Dhrubajyoti Dutta   ----------------------%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
format long                      

  
%///////////////// Symbolic Data Generated Using Non-ideal TM ///////////// 

  
iteration = 200;   % number of iterations initialised   
partition = 0.5;   % map partition defined 

  
Resolution = 8;         % resolution of initial data set 
increment = (1/(2^Resolution)); % size of initial data as 1/2^Resolution 
x = 0;                          % input range [0,1] lower limit = 0 
x_max = 1;                      % input range [0,1] upper limit = 1 

  
N = ceil((x_max-x)/increment)+1;  % calculates number of initial conditions 
                                  % within [0,1] 

  

  
parameter = 0.6;   % parameter chosen for the experiment 

  
Real_Trajectories = zeros(N,iteration); % initialise real trajectory array 
Gray_Traj = zeros(N,iteration);   % initialise symbolic trajectory array 
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for row = 1:N                        % for all initial conditions 
    x1 = x;                          % start with an intial condition 
    for n = 1:iteration              % runs map for all iterations 
        if x1 <= partition            % condition for when x1 < 0.5 
            x2 = 2*parameter*x1;    % map operation, determine next iterate 
            sym = 0;                 % store symbol as 0 
        elseif x1 > partition         % condition for when x >= 0.5 
            x2 = 2*parameter*(1-x1);% map operation, determine next iterate 
            sym = 1;                 % store symbol as 1 
        end 
        Real_Trajectories(row,n) = x1;  % store the x for iteration 
        Gray_Traj(row,n) = sym;      % store the sym for iteration 
        x1 = x2;                     % replaces old x with new x 
    end 
       x = (x + increment);            % increases x by one step for next  
                                      % initial condition 
end 

  
%/////////// Kneading Sequence Search Through Shifting Window ///////////// 

  
window_size = 12;                         % declare window size 
Transient_beta = 5;                       % declare transient beta symbols 
Win_Bin = zeros(1,window_size);           % initialise window binary array 
Win_Gray = zeros(1,window_size);          % initialise window gray array 
Smax = zeros(N,window_size);              % initialise Smax register 
Kneading_sequence = zeros(N,window_size+1); % initialise kneading sequence 
                                              % register 
GON_window = 0;                     % initialise GON for window shifts 
Largest = 0;                        % initialise largest tracking variable   

  
for row = 1:N                        % for all initial conditions 
    for col = (Transient_beta + 1):iteration % for each symbol after  
                                             % dscarding beta symbols 
        for no = col:col+(window_size-1) % for symbols within the window 
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            if col<=iteration-(window_size-1) % check if isn't last shift 
                if ((no - col) == 0)  % convert window symbol to binary 
                    Win_Bin(1,(no-col)+1) = Gray_Traj(row,no); 
                elseif ((no - col) > 0) 
                    Win_Bin(1,(no-col)+1) = bitxor(Gray_Traj(row,no),Win_Bin(1,no-col)); 
                end 
                Win_Gray(1,(no-col)+1)= Gray_Traj(row,no);  
                                                    % alo save window gray 
            end 
        end 
        for num = 1:window_size     % calculate GON for the window sequence 
            if col<=iteration-(window_size-1) 
                GON_window = GON_window +(Win_Bin(1,num)*(2^((window_size-num)))); 
            end 
        end 

         
        if GON_window > Largest   % track the largest GON by comparing 
                                  % previous largest to current GON 
            Largest = GON_window; % update largest if greater GONs found 
            Smax(row,:) = Win_Gray(1,:); % store window gray as Smax for  
                                           % largest GON 
        end 
        GON_window = 0;           % reset GON of window for the next shift 
    end 
Largest = 0; 
%---------------- Preparing the Kneading Sequence ------------------------- 
Kneading_sequence(row,2:end) = Smax(row,:);  
                                  % storing Smax from the 2nd position so 
                                     % a 0 automatically added in the 1st 
                                       % place  
end 

  
%///////// Solving the polynomial equation with GON and x_c = 0.5 ///////// 

  
K_length = window_size+1; % size of kneading sequence udated after adding 0                    
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Count_one = 0;           % variable to count odd even 1s initialised 
Bin = zeros(N,K_length); % binary register of kneading sequnce initialised 
GON = 0;                 % GON of kneading sequence 
Equation = zeros(1,K_length);  % difference equation array initialised      
Estimated_mu = zeros(N,1);        % estimated parameter variable initialied 

  
for row = 1:N                % for all input 
    GON = 0;                 % GON of kneading sequence 
    Equation = zeros(1,K_length);  % difference equation array initialised 
    Count_one = 0;           % variable to count odd even 1s initialised 
    %------------Finding GON of Kneading sequence ------------------------- 
    for col = 1:K_length     % for all symbols in K 
        if col == 1          % gray to binary estimation 
            Bin(1,col) = Kneading_sequence(row,col); 
        elseif col > 1 
            Bin(1,col) = bitxor(Kneading_sequence(row,col),Bin(1,col-1)); 
        end 
        GON = (GON +(Bin(1,col)*(2^(-(col))))); % calculate GON 
    end 

     
    %---------- Forming the difference equation with signs of delta ------- 

     
    for col = 1:K_length                             % for all symbols in K 
        Count_one = Count_one + Kneading_sequence(row,col);% no. of 1s 
        if rem(Count_one,2) == 0                         % check odd/even 
            Equation(col) = (-1)*Kneading_sequence(row,col);% -ive if even 
        else 
            Equation(col) = (1)*Kneading_sequence(row,col); % +ive if odd 
        end 
    end 

     
    constant = 0.5 - GON;   % determine the cnstant part of the polynomial 
    for col = 1:K_length 
        constant = constant + (Equation(col)*2^(-(col-1)));  
        % further update the constant part with 2^i for all the differences 
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    end 

     
    Equation(1) = -constant;  % store the constant in the equation array 
                                % with remaining order of polynomial 
                                  % coefficients intact 
    Root = roots(Equation);   % solving the equation 

     
    for r = 1:K_length-1  % check within the number (K_length-1) of roots 
        if (real(Root(r,1)) > 0) && (imag(Root(r,1))==0 && (real(Root(r,1))> Estimated_mu(row,1)*2)) 
            % select largest non-complex root 
            Estimated_mu(row,1) = Root(r,1)/2;  % derive the parameter from 2mu part 
        end 
    end 
end 
% plot(Real_Trajectories(2:256,1),Estimated_mu(2:256,1)); 
% set(gca,'ylim',[0.7 0.9]); 
axis square 
hold on 
plot(Real_Trajectories(:,1),Real_Trajectories(:,2)); 
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Appendix 2.12: Crossover Method (single input) 

Program for parameter estimation through crossover detection within noisy field (for single initial condition) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%-------------------- Parameter Estimation Algorithm -------------------%% 
%%-------------------- from crossovers in noisy trajectories ------------%% 
%%-------------------- Program operated for single input ----------------%% 
%%-------------------- Author: Dhrubajyoti Dutta   ----------------------%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
format long 

  
%///////////// TM Noisy Dataset Generation For Test conditions //////////// 

  
%------------------ Tunable variables ------------------------------------- 
iteration = 50;             % no of iterates in a trajectory 
samples = 50;               % no of sampled observations per trajectory 
x = 0.86328125;         % chosen initial condition  
parameter = 0.90;     % chosen map paramter 
SNR_db = 30;             % noise level in every stage of iteration 
%------------------ END of Tunable variables ------------------------------ 
% initialisations    
partition = 0.5;                              % map partition 
eta = zeros(samples,iteration); % iterative trajectories 
Gray_Traj = zeros(samples,iteration);         % symbolic trajectories 

  
%----------------- Map operation with noise ------------------------------- 

  
for i = 1:samples                  % for a given sample    
    x1 = x;                        % start with initial condition 
    for n = 1:iteration            % runs map for all iterations 
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        x1 = awgn(x1,SNR_db); 
        if x1 <= partition         % condition for when x1 < 0.5 
            x2 = 2*parameter*x1;   % map operation, determine next iterate 
            Sym = 0;               % store symbol as 0 
        elseif x1 > partition      % condition for when x >= 0.5 
            x2 = 2*parameter*(1-x1);% map operation, determine next iterate 
            Sym = 1;               % store symbol as 1 
        end 
        eta(i,n) = x1;  % store the x for iteration 
        Gray_Traj(i,n) = Sym;         % store the sym for iteration 

         
        x1 = x2;           % replacing old x with new x, map feedback 
        if x1 < 0          % clamp noisy field between [0,1] in statespace 
            x1 = 0.0001; 
        elseif x1 > 1 
            x1 = 0.999; 
        end 

             
    end 
end 

  
%---------------------- Plot noisy data ----------------------------------- 
clf 
hold on 
for samp = 1:samples 
    plot(eta(samp,1:iteration),'color',[0.5 0.5 0.5],'Markersize',1); 
end 

  

%//////////////// Crossover Analysis & Parameter Estimation /////////////// 

  
index = 1;     % initialise index counter for sorting routines 
col_count = 1; % initialise column count variable  
sol_xy = zeros((samples*(samples-1)/2),2); % XY solution array for each m 
Fix_chase_x = zeros(1,iteration); % estimated intersection over x axis 
Fix_chase_y = zeros(1,iteration); % estimated intersection over y axis 
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sol_count_x = 0;                  % initialised count of no. of solutions 

  
for n = 1:(iteration - 1) % for all the iterations  

 
%------- solving straightline equations to determine intersection --------- 

 
    for m = 1:samples - 1   % considering one sample at a time 
        for t = m + 1:samples % considering other samples  
            if(eta(m,n)<=1 && eta(m,n)>=0.5 && eta(t,n)<=1 && eta(t,n)>=0.5) % check if samples comply 0.5<=eta<=1 

for Hn set 
                sol_xy(index,1) = ((eta(m,n) - eta(t,n))/(eta(m,n) - eta(m,n+1) - eta(t,n) + eta(t,n+1))) + n; 

% solve for x coordinate 
                sol_xy(index,2) = ((eta(t,n)*(eta(m,n) - eta(m,n+1))) - (eta(m,n)*(eta(t,n) - 

eta(t,n+1))))/(eta(m,n) - eta(m,n+1) - eta(t,n) + eta(t,n+1)); 
                                        % solve for y coordinates between straight lines formed by n and n+1 samples                                          
                index = index + 1; % counting number of solutions 
            end 
        end 
    end 
    sol_xy = sortrows(sol_xy(1:index - 1,:)); % sort x solution array to separate out no solutions or 0s 
    Mean_X = nanmean(sol_xy(1:index - 1,1));  % take average of x solution for nth step excluding NaNs 
    X_SD = std(sol_xy(1:index - 1,1));        % determine standard deviation of x solutions 
    edgex_L = Mean_X - X_SD;       % determine lower bound for x solutions 
    edgex_H = Mean_X + X_SD;       % determine upper bound for x solutions 

     
    sol_count_x = index - 1;  % store count of x solutions 
    select_y = zeros(index,1); % initialise array for selected y solutions 
    index = 1;          % initialise index for sorting y solutions 

     
    for row = 1:sol_count_x  % for the number of non-zero x solutions 
        if sol_xy(row,1) >= edgex_L && sol_xy(row,1) <= edgex_H % checking if x solution belongs in the boundary 
            select_y(index,1) = sol_xy(row,2); % select corresponding y solution (for all meaningful x solutions) 
            index = index + 1;   % count number of y solutions 
        end 
    end 
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    Mean_Y = nanmean(select_y(1:index - 1,1)); % mean of y solutions to determine a central point of intersections 
    Y_SD = std(select_y(1:index - 1,1)); % determine standard deviation of y solutions 

     
    Fix_chase_x(1,col_count) = n;     % fill array for nth location of the solution   
    Fix_chase_y(1,col_count) = Mean_Y; % mean of all y solutions at nth location (ybar in algorithm) 
    col_count = col_count + 1;         % count number of meaningful solutions 
    Chase = sort(Fix_chase_y(1,1:col_count-1)); % sort all the solutions to separate out 0 
    gain = nanmean(Chase)/(1-nanmean(Chase)); % determine the 2mu part   
    index = 1;                                % reset variables for next nth solution 
    sol_xy = zeros((samples*(samples-1)/2),2); 
    sol_count_x = 0; 
end 

  
Mean_Chase(1:iteration) = mean(Chase); % determine the mean of all crossover to locate fixed pont 
SD_Chase = std(Chase);                   
Estim_para = gain/2;                   % estimating the parameter 

  
% ---------plot the mean chase (fixed point estimate from crossover) ------ 
hold on 
plot(1:iteration,Mean_Chase(1:iteration),'k'); 
plot(Fix_chase_x(1,1:iteration-1),Fix_chase_y(1,1:iteration-1),'ks--','Markersize',7,'markerfacecolor',[0,0,0]); 
axis square 
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Appendix 2.13: Crossover Method (full dataset) 

Program for parameter estimation through crossover detection within noisy field (for all initial condition)  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%-------------------- Parameter Estimation Algorithm -------------------%% 
%%-------------------- from crossovers in noisy trajectories ------------%% 
%%-------------------- Program operated for all input    ----------------%% 
%%-------------------- Author: Dhrubajyoti Dutta   ----------------------%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
format long 

  
%///////////// TM Noisy Dataset Generation For Test conditions //////////// 

  
%------------------ Tunable variables ------------------------------------- 
iteration = 50;             % no of iterates in a trajectory 
samples = 50;               % no of sampled observations per trajectory 
parameter = 0.85;     % chosen map paramter 
SNR_db = 30;             % noise level in every stage of iteration 
%------------------ END of Tunable variables ------------------------------ 
% initialisations    
partition = 0.5;                              % map partition 
Resolution = 8;         % resolution of initial data set 
increment = (1/(2^Resolution)); % size of initial data as 1/2^Resolution 
x = 0;                          % input range [0,1] lower limit = 0 
x_max = 1;                      % input range [0,1] upper limit = 1 
N = ceil((x_max-x)/increment)+1;  % calculates number of initial conditions within [0,1] 
eta = zeros(samples,iteration,N); % iterative trajectories 
Gray_Traj = zeros(samples,iteration,N);         % symbolic trajectories 

  
%----------------- Map operation with noise ------------------------------- 
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for k = 1:N 
    for i = 1:samples                  % for a given sample 
        x1 = x;                        % start with initial condition 
        for n = 1:iteration            % runs map for all iterations 
            x1 = awgn(x1,SNR_db); 
            if x1 <= partition         % condition for when x1 < 0.5 
                x2 = 2*parameter*x1;   % map operation, determine next iterate 
                Sym = 0;               % store symbol as 0 
            elseif x1 > partition      % condition for when x >= 0.5 
                x2 = 2*parameter*(1-x1);% map operation, determine next iterate 
                Sym = 1;               % store symbol as 1 
            end 
            eta(i,n,k) = x1;  % store the x for iteration 
            Gray_Traj(i,n,k) = Sym;         % store the sym for iteration 
                        x1 = x2;           % replacing old x with new x, map feedback 
            if x1 < 0          % clamp noisy field between [0,1] in statespace 
                x1 = 0.0001; 
            elseif x1 > 1 
                x1 = 0.999; 
            end       
        end 
    end 
    x = x + increment; 
end 

  
%//////////////// Crossover Analysis & Parameter Estimation /////////////// 

  
index = 1;     % initialise index counter for sorting routines 
col_count = 1; % initialise column count variable  
sol_xy = zeros((samples*(samples-1)/2),2); % XY solution array for each m 
Fix_chase_x = zeros(1,iteration); % estimated intersection over x axis 
Fix_chase_y = zeros(1,iteration); % estimated intersection over y axis 
sol_count_x = 0;                  % initialised count of no. of solutions 
Estim_Parameter = zeros(N,1); 
gain = 0; 
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for k = 1:N                   % for all input conditions 
    for n = 1:(iteration - 1) % for all the iterations 

 
%------- solving straightline equations to determine intersection ---------  

 
        for m = 1:samples - 1   % considering one sample at a time 
            for t = m + 1:samples % considering other samples 
                if(eta(m,n,k)<=1 && eta(m,n,k)>=0.5 && eta(t,n,k)<=1 && eta(t,n,k)>=0.5) % check if samples comply 

0.5<=eta<=1 for Hn set 
                    sol_xy(index,1) = ((eta(m,n,k) - eta(t,n,k))/(eta(m,n,k) - eta(m,n+1,k) - eta(t,n,k) + 

eta(t,n+1,k))) + n; % solve for x coordinate 
                    sol_xy(index,2) = ((eta(t,n,k)*(eta(m,n,k) - eta(m,n+1,k))) - (eta(m,n,k)*(eta(t,n,k) - 

eta(t,n+1,k))))/(eta(m,n,k) - eta(m,n+1,k) - eta(t,n,k) + eta(t,n+1,k)); 
                    % solve for y coordinates between straight lines formed by n and n+1 samples 
                    index = index + 1; % counting number of solutions 
                end 
            end 
        end 
        sol_xy = sortrows(sol_xy(1:index - 1,:)); % sort x solution array to separate out no solutions or 0s 
        Mean_X = nanmean(sol_xy(1:index - 1,1));  % take average of x solution for nth step excluding NaNs 
        X_SD = std(sol_xy(1:index - 1,1));        % determine standard deviation of x solutions 
        edgex_L = Mean_X - X_SD;       % determine lower bound for x solutions 
        edgex_H = Mean_X + X_SD;       % determine upper bound for x solutions 
        sol_count_x = index - 1;  % store count of x solutions 
        select_y = zeros(index,1); % initialise array for selected y solutions 
        index = 1;          % initialise index for sorting y solutions 

         

        for row = 1:sol_count_x  % for the number of non-zero x solutions 
            if sol_xy(row,1) >= edgex_L && sol_xy(row,1) <= edgex_H % checking if x solution belongs in the boundary 
                select_y(index,1) = sol_xy(row,2); % select corresponding y solution (for all meaningful x 

solutions) 
                index = index + 1;   % count number of y solutions 
            end 
        end 
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        Mean_Y = nanmean(select_y(1:index - 1,1)); % mean of y solutions to determine a central point of 

intersections 
        Y_SD = std(select_y(1:index - 1,1)); % determine standard deviation of y solutions 

         
        Fix_chase_x(1,col_count) = n;     % fill array for nth location of the solution 
        Fix_chase_y(1,col_count) = Mean_Y; % mean of all y solutions at nth location (ybar in algorithm) 
        col_count = col_count + 1;         % count number of meaningful solutions 
        Chase = sort(Fix_chase_y(1,1:col_count-1)); % sort all the solutions to separate out 0 
        gain = nanmean(Chase)/(1-nanmean(Chase)); % determine the 2mu part 
        index = 1;                                % reset variables for next nth solution 
        sol_xy = zeros((samples*(samples-1)/2),2); 
        sol_count_x = 0; 
    end 
    Mean_Chase(1:iteration) = mean(Chase); % determine the mean of all crossover to locate fixed pont 
    SD_Chase = std(Chase); 
    Estim_para = gain/2;                   % estimating the parameter 
    Estim_Parameter(k,1) = Estim_para; % estimated parameter for all initial conditions 

     
    %----- reset all variables for the estimation of the next input ------- 
    index = 1; 
    col_count = 1; 
    sol_xy(:,:) = 0; 
    Fix_chase_x(:,:) = 0; 
    Fix_chase_y(:,:) = 0; 
    Chase(:,:) = 0; 
    sol_count_x = 0; 
    clear select_y;  
    Mean_X = 0; 
    X_SD = 0; 
    edgex_L = 0; 
    edgex_H = 0; 
    Mean_Y = 0; 
    Y_SD = 0; 
end 


