
University of Huddersfield Repository

Hussain, Enas

Interaction of extracellular factors derived from Pseudomonas aeruginosa on Keratinocytes

Original Citation

Hussain, Enas (2019) Interaction of extracellular factors derived from Pseudomonas aeruginosa on 
Keratinocytes. Doctoral thesis, University of Huddersfield. 

This version is available at http://eprints.hud.ac.uk/id/eprint/34840/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/



1 
 

 

Interaction of extracellular factors 

derived from Pseudomonas aeruginosa 

on Keratinocytes 
 
 
 
 

Enas Hussain 
 
 
 
 
 
 

A thesis submitted to the University of Huddersfield 
in partial fulfilment of the requirements for 

the degree of Doctor of Philosophy 

 

The University of Huddersfield  
School of Applied Science 

Huddersfield, UK 

 

March 2018 

 



2 
 

 

Abstract: 

Pseudomonas aeruginosa is a Gram negative pathogenic bacterium that has the 

notable ability to inhabit a broad range of environments, including humans as an 

opportunistic pathogen. P aeruginosa secrets outer membrane vesicles (OMVs) which 

contain virulence factors such as: pro-elastase, hemolysin, phoshpolipase C, protease, 

alkaline phosphatase and B-lactamase that can damage the cells of host and also other 

bacteria. P aeruginosa commonly colonises wound beds and this can result in the 

development of a chronic wound which is an important cause of major pathology. 

Two strains of P aeruginosa PS3 (hospital strain), which was isolated from the dressing 

of an established chronic wound and a reference laboratory strain (L) that had no known 

pathogenic factors were cultured in different media including a simulated wound fluid. 

The secreted extracellular products were isolated and used to test their virulence on a 

cultured human keratinocyte cell line (HaCaT) and primary human keratinocytes (NHK). 

Vesicles derived from the outer membrane of the bacteria were isolated and the protein 

expression in these outer membrane vesicles (OMV) were compared between the two 

strains of P aeruginosa and with the outer membranes isolated from both strains of 

bacteria. The virulence of these vesicles and the outer membrane was tested on the 

keratinocytes. 

The initial part of the study demonstrated that HaCaT cells grown for either 4 or 10 days 

expressed a range of TLRs required for the recognition and response to a wide range of 

bacterial antigens TLR1, TLR2, TLR4, and both aged cells. In contrast TLR5, TLR9 

were found just in10 days cells. The expression of a range of TLRs was investigated 

and the most expression at the mRNA level was found for TLR2 and TLR4 when the 

cells were grown for either 4 or 10 days.  

Both strains of P aeruginosa produced OMVs that appeared to contain a similar protein 

profile and this was similar to that of the isolated outer membrane. The yield OMVs from 

PS3 and the lab strain was generally similar but was higher when the bacteria were 
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treated with gentamycin before isolation and also when the bacteria were grown in the 

presence of ethanol.  

Cultured keratinocyte cells secreted of IL-8 in response to exposure to cell free 

extracellular material from both strains P aeruginosa with little effect on the cell 

biomass. HaCaT cells produced a much higher concentration of IL-8 in response to 

OMVs than did NHK or an adapted more proliferative derivative of HaCaT (HaCaTa) 

with OMVs from the hospital strain stimulating slightly more IL-8 secretion compared to 

lab strain. NHK also produced significant amounts of IL-8 in response to challenge and 

with OM of PS3 or the lab strain. P. aeruginosa grown in SWF produced OMVs that 

stimulated a greater production of IL-8 in keratinocytes comparted to bacteria grown in 

normal bacterial broth (TSB). 

These data indicate that P aeruginosa which are a common bacterium isolated from the 

bed of chronic wounds secrete virulence factors that stimulate an inflammatory 

phenotype in cultured keratinocytes. This pathogenic response is largely driven by the 

secretion of vesicles derived from the outer membrane and the hospital strain has a 

slightly greater pathogenicity than the lab strain this has implications for the treatment of 

wounds.  
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Abbreviations: 

 

CF cystic fibrosis. 

EPS extracellular poly saccharides. 

LPS lipopolysaccharide. 

Pp periplasm. 

PG peptidoglycan layer. 

IM inner membrane, plasma membrane. 

OM outer membrane. 

VM vesicle membrane. 

Cyt cytosol. 

RBC red blood cell. 

PRRS pattern recognition receptors. 

PAMP pathogen-associated molecular patterns. 

TLR toll-like receptor. 

ds RNA double-stranded RNA. 

ss RNA single-stranded RNA. 

TSA tryptone soy agar. 

TSB tryptone soy broth. 

SWF simulated wound fluid. 

FBS fetal bovine serum. 

DMEM Dulbecco´s modified eagle medium. 

MRD maximum recovery diluent.  

CIS cell line services. 

EDTA ethylenediaamintetera-acitiacid. 

DMSO dimethylsulphoxide. 

MEM membrane desalting buffer. 
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cDNA complementary DNA. 

PCR poly chain reaction. 

qRT-PCR real time –polymerase chain reaction.  

PMPS pathogen-associated molecular patterns. 

DAMA damage (host)-associated molecular patterns. 

PGN peptidoglycan. 

CD14 cluster of differentiation. 

ELISA enzyme-linked immunosorbent assay. 

CXCL8 Cxc Chemokine Ligand 8, “Interleukin 8”. 

IL-8 interleukin-8. 

 L. laboratory strain. 

10421 laboratory strain. 

 PS3   hospital strain. 

OPrI lipoprotein I.  

OPrL lipoprotein L.  

OPrL lipoprotein F. 

SDS Sodium Dodecyl Sulphate-Polyacrylamide gel electrophoresis. 

TNF-α Tumour Necrosis Factor Alpha. 

NFκB Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells. 

NHKs Normal Human Keratinocytes. 

HaCaT an immortalized cell line. 

HaCaTa cell line adapted from HaCaT. 

LOR loricrin.  

FLG filaggrin.  

SC stratum corneum.  

TNF- α Tumor Necrosis factor α. 

RPE Rentinal pigment epithelium. 
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 Figure 3.4. 13: The average cell biomass of HaCaT cells challenged to outer membrane 

vesicles OMV of Pseudomonas aeruginosa Laboratory (L.) and Hospital strains (PS3) in 

SWF. 

Figure 3.4. 14: The average cell biomass of NHK cells challenged to outer membrane OM 

of Pseudomonas aeruginosa PS3 in SWF.  

Figure 3.4. 15: The average cell biomass of NHKs challenged by outer membrane OM of 

Pseudomonas aeruginosa laboratory (L.) in SWF.  

Figure 3.4.16: Concentration of IL-8 of HaCaT cells after expose them to outer membrane 

(OM) of Pseudomonas aeruginosa Laboratory (L.) & Hospital strains (PS3).  

Figure 3.4. 17: Concentration of IL-8 of HaCaTa cells after expose them to outer 

membrane (OM) of Pseudomonas aeruginosa Laboratory (L.) & Hospital strains (PS3).  

Figure3. 4. 18: Concentration of IL-8 of NHK cells after expose them to outer membrane 

(OM) of Pseudomonas aeruginosa Laboratory (L.) & Hospital strains (PS3). 

Figure3. 4. 19: Concentration of IL-8 of HaCaT cells after expose them to outer membrane 

vesicles (OMV) of Pseudomonas aeruginosa Laboratory (L.) & Hospital (PS3) strains.  

Figure 3.4. 20: Concentration of IL-8 of HaCaTa cells after expose them to outer 

membrane vesicles of Pseudomonas aeruginosa Laboratory (L.) & Hospital (PS3) strains. 

Figure3. 4. 21: The concentration of IL-8 (pg/ml) of NHK cells treated with outer 

membrane vesicles (OMVs) for P. aeruginosa lab strain in Simulated Wound Fluid with 

and without ethanol.  

 Figure 3.4. 22: Concentration of IL-8 of of NHK cells after expose them to outer 

membrane (OM) of Pseudomonas aeruginosa Laboratory (L.) and Hospital strains (PS3) 

in (in high concentration of calcium). 



17 
 

Figure 3.4. 23: Concentration of IL-8 of of NHK cells after expose them to outer 

membrane (OM) of Pseudomonas aeruginosa Laboratory (L.) and Hospital strains (PS3) 

in (in low concentration of calcium). 

Figure 3.4. 24: Concentration of IL-8 of of NHK cells after expose them to outer 

membrane vesicles (OMV) of Pseudomonas aeruginosa Laboratory (L.) and Hospital 

strains (PS3) in (in low concentration of calcium). 

Figure 3.4.25: Concentration of IL-8 of NHK cells after expose them to outer membrane 

vesicles (OMV) of Pseudomonas aeruginosa Laboratory (L.) & Hospital strains (PS3) (in 

high concentration of calcium).  

Figure3. 4. 26: Concentration of IL-8 of HaCaTa cells after expose them to outer 

membrane (OM) of Pseudomonas aeruginosa Laboratory (L.) & Hospital strains (PS3).  

Figure 3.5. 1: Concentration of IL-8 (pg/ml) in supernatant of Laboratory strain (L.) in 

TSB.  

Figure 3.5. 2: Concentration of IL-8 (pg/ml) in supernatant of Laboratory strain (L.) in 

DMEM. 

Figure 3.5. 3: Concentration of IL-8 (pg/ml) in supernatant of Hospital strain (PS3 strain) 

in TSB.  

Figure 3.5. 4: Concentration of IL-8 (pg/ml) in supernatant of Hospital strain (PS3) in 

DMEM.  

Figure 3.5. 5: Concentration of IL-8 (pg/ml) in supernatant of Hospital strain (PS3) in 

DMEM.  

Figure 3.5. 6: Concentration of IL-8 (pg/ml) in supernatant of Hospital strain (PS3) in TSB.  

Figure 3.5. 7: Concentration of IL-8 (pg/ml) in supernatant of Hospital strain (PS3) in TSB.  

Figure 3.5. 8: Biomass of HaCaT cells, exposé to supernatant of P. aeruginosa   Hospital 

(PS3) strains. 

Figure 3.5. 9: Biomass of HaCaT cells, exposé to supernatant of P. aeruginosa    

Laboratory (L.) strains.  

Figure 3.5. 10: Biomass of HaCaTa cells, exposé to supernatant of P. aeruginosa 

Laboratory (L.) and Hospital (PS3) strains.  
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1.1 Pseudomonas aeruginosa 
 

P. aeruginosa initially isolated by Gessard in 1882 was first characterised as a pathogen 

by Charrin in 1980 (Bodey et al., 1983) it is now recognized as a common nosocomial 

pathogen which can cause disease in a variety of hosts (Feinbaum et al., 2012) as it 

has a number of virulence factors, that are important in both animal and plant diseases 

(Deep et al., 2011). P. aeruginosa is a Gram-negative, rod shaped bacterium about 1-5 

µm long and 0.5-1.0 µm wide (Bhawsar and Singh, 2014b) it is motile by means of one 

single polar, monotrichous flagellum and a type IV pili (TFP) (Sadikot et al., 2005) these 

gives the bacterium the ability to move on surfaces (Semmler et al., 1999). The majority 

of bacteria require either flagella or a TFP to move, but P. aeruginosa is one of the few 

bacteria that requires both of these (Figure1.1), the surface-associated so-called 

twitching motility is powered by extension and retraction of type IV pili (Skerker and 

Berg, 2001). In pond water samples it is one of the fastest moving bacteria. 

 

 

 

Figure 1. 1: A Scanning electromicrograph of Pseudomonas aeruginosa shoeing the 
flagellum and pilus. 

(Taken from www.news-medical.net/whitepaper/20150526/Type-IV-pili-influence-swarming-of-

Pseudomonas-aeruginosa-an-overview.aspx). 

 

http://www.news-medical.net/whitepaper/20150526/Type-IV-pili-influence-swarming-of-Pseudomonas-aeruginosa-an-overview.aspx
http://www.news-medical.net/whitepaper/20150526/Type-IV-pili-influence-swarming-of-Pseudomonas-aeruginosa-an-overview.aspx
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P. aeruginosa is ubiquitous in moist habitats such as soil, marshes, water, sewage 

plants and various foods such as leafy vegetables, fresh fruit juice, saline solutions, 

utensils and also cosmetics (Bonten et al., 1999). Its metabolism is respiratory not 

fermentative it can be anaerobic or aerobic it can use a variety of carbon sources and 

grows optimally at 37°C but it can grow in temperatures up to 42°C. P aeruginosa is 

tolerant of a wide variety of environmental stresses such as salts, dyes, weak 

antiseptics, antibiotics and moderate concentrations of disinfectants (Todar, 2006) 

(Andonova and Urumova, 2013b). 

P aeruginosa produces characteristic fruity sweet odour and some strains produce the 

soluble fluorescent blue pigments, pyoverdin and pyocyanin the latter is produced by 

bacteria in some infections and this can result in characteristic blue pus (Todar, 2006). 

P aeruginosa is an opportunistic human pathogen that seldom infects healthy 

individuals but often colonizes susceptible people, such as those suffering from: 

pneumonia, acute leukaemia, organ transplants, intravenous-drug addiction (Choi et al., 

2011) cancer or AIDS (Botzenhart and Döring, 1993) (Venza et al., 2009). P aeruginosa 

infection in the lungs of individuals with cystic fibrosis is a particular problem as the 

specific mutation which causes this disease, increases the general venerability to lung 

infections but in addition seems to increase the susceptibility of colonisation by this 

bacterium specifically which results in a subsequent serious increase in morbidity and 

mortality. P.aeruginosa also regularly colonizes the sites of burns and wounds. 

P.aeruginosa is becoming increasingly prevalent pathogen and most studies indicate 

that antibiotic resistance is increasing in clinical strains (Todar, 2008). The majority of P. 

aeruginosa infections occur in hospitals (Mathee et al., 2008) and is responsible for 

about 10% of hospital infections in immunocompromised subjects, patients with cancer 

or diabetes and it is second most frequent agent causing skin infections in burn patients 

(Andonova and Urumova, 2013a). It can cause both acute and chronic infections (Howe 

and Iglewski, 1984). In common with most bacteria no new antibiotics effective against 

P. aeruginosa have been developed recently (Feinbaum et al., 2012). The high 

survivability and pathogenicity of P. aeruginosa can be a attributed to its structural 

characteristics (Carter et al., 2010) (Anwar et al., 1989). In addition it can readily form 
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biofilms (see below) in many environments including in vivo and this makes treatment 

with antibiotics less effective and therefore promotes chronic infections (Anwar et al., 

1989, Rasamiravaka et al., 2015). All this makes it one of the pathogens most 

frequently isolated from intensive care units (Vincent, 2000). 

Some species of Pseudomonas such as, P putida have been used beneficially as a bio-

scrubber to aid in the biodegradation of a diverse range of organic compounds in waste 

water and polluted air (Samuel et al., 2014, Siegrist)(Samuel et al., 2014, Siegrist)(Samuel et al., 

2014, Siegrist)(Samuel et al., 2014, Siegrist)(Samuel et al., 2014, Siegrist)(Samuel et al., 2014, 

Siegrist)(Samuel et al., 2014, Siegrist)(Samuel et al., 2014, Siegrist)(Samuel et al., 2014, Siegrist)(Samuel 

et al., 2014, Siegrist)(Samuel et al., 2014, Siegrist)(Samuel et al., 2014, Siegrist)(Samuel et al., 2014, 

Siegrist)(Samuel et al., 2014, Siegrist)(Samuel et al., 2014, Siegrist)(Samuel et al., 2014, Siegrist) 

(Siegrist, Samuel et al., 2014, Siegrist). Furthermore, P aeruginosa is a very important 

soil bacterium that is capable of breaking down polycyclic aromatic hydrocarbons and 

synthesising rhamnolipids, quinolones, hydrogen cyanide, phenazines, and lectins 

(Bhawsar and Singh, 2014a). 

 

1.1.2 Biofilms and Pseudomonas aeruginosa 
 

The growth of bacteria in pure cultures has been the mainstay of microbiological since 

the time of Pasteur (Costerton et al., 1987). However, most bacteria can grow into 

organized communities known as biofilms. Evidence for biofilm formation appears early 

in the fossil record (nearly 3.25 billion years ago) (Hall-Stoodley et al., 2004). Biofilms 

are defined as a group of bacteria cells that stick to each other on a surface or without a 

surface and encase themselves in a secreted polymeric substances, such biofilms are 

more tolerant of most antimicrobials and host defences (Bjarnsholt, 2013) and thus can 

help produce persistent infections (Costerton, 1999) (Costerton and Stewart, 2000). The 

polymeric substance that the bacteria are embedded into can represent up to 85% of 

total biofilm biomass particularly in the in vitro situation (Rasamiravaka et al., 2015).  

Rogovska et al. were the first to use the term biofilm in 1961 (Bjarnsholt, 2013). The 

clinical importance was first recognized in 1977 when Høiby described a collection of P 
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aeruginosa in an infected patient with cystic fibrosis (CF) (Hoiby et al., 1977). Despite 

long-term antibiotic treatment, pulmonary infections caused by P aeruginosa biofilms 

usually become chronic in patients with cystic fibrosis (Nickel et al., 1985). The 

importance of biofilms in human health has become increasingly apparent over the last 

15 years and it is now recognised that they are an important factor in 65-80% of all 

microbial infections (Rasamiravaka et al., 2015).  

The polymeric substance that biofilms are encased in are composed of biomolecules 

derived from bacteria including: polysaccharides, DNA, lipids, protein, flagella, pili and 

sometimes products from the host such as surfactants and red blood cells (RBC) 

(Rasamiravaka et al., 2015). Most biofilms have water channels which play important 

role as the distribution system for gas and nutrients. 

Exopolysaccharides (EPS) play a central role in the establishment of biofilms they also 

help to protect the bacteria from antibiotics and phagocytes (Bjarnsholt, 2013). In 

addition the EPS matrix protects the individual bacteria from environment stresses, 

scavenges nutrients from the environment and provides shelter for the unique 

heterogeneous micro-niches inside the biofilm (Stoodley et al., 2002). P aeruginosa can 

make at least three types of polysaccharides molecules (alginate, Psl and Pel) which 

determine the stability of the biofilm structure (Sutherland, 2001) (Ghafoor et al., 2011). 

Alginate is a linear non-divaricate polymer that consists of homopolymeric units of 1-4 β 

D-mannuronic acid and L-guluronic residues (Ertesvåg and Valla, 1998) plays a 

fundamental role in the structural stability of biofilms and the preservation of water and 

other molecules as nutrients (Sutherland, 2001). The Pel polysaccharide is rich in 

glucose but its exact composition is unknown (Friedman and Kolter, 2004). Psl consists 

of a recurring pentasaccharides such as D-mannose and L-rhamnose (Byrd et al., 

2009). 

Most acute infections with have P. aeruginosa develop rapidly but are simple to treat 

with antibiotics because the bacteria exist as planktonic cells (single or as a small 

groups) by contrast the chronicity of the pathogenic bacteria is normally due to 

formation of the biofilms as outlined above (Costerton et al., 2007). Biofilms and can 

result in non-healing wounds (Davis and James, 2008). The most common bacterial 
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found in wounds is Staphylococcus aureus but P. aeruginosa has been reported to 

colonise more than 50% of the chronic wounds in clinical studies (Gjødsbøl et al., 

2006), moreover P. aeruginosa can reduce the rate healing or even prevent it altogether 

(Høgsberg et al., 2011) and this is made worse if the bacteria form biofilms in which the 

bacteria have a distinct phenotype compared to planktonic cells (Harrison‐Balestra et 

al., 2003). 

 

 

Figure 1. 2: Biofilm life cycle of Pseudomonas aeruginosa. 

In stage I, planktonic bacteria initiate attachment to an abiotic surface, which become 

irreversible in stage II. Stage III micro colony formation. Stage IV biofilm maturation and growth 

of the three-dimensional community. The images were obtained using fluorescence microscope 

with 400x magnification each image representing the different stages were obtained at the time 

indicated, after the initiation of the culture at 2 h. (stage I), 8 h (stage II), 14 h (stage III), 1 to 4 
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days (stage IV), and 5 days (stage V). Images represent a 250x250µm field. Taken from 

(Rasamiravaka, 2015). 

 

The process of biofilm development can be divided into 3 distinct phases these are: 

attachment, maturation and dispersion (figure 1.2) (Sauer et al., 2002 and Kalusen et al. 

2004). Biofilms of P aeruginosa are highly differentiated in structure and this is 

dependent on the nutrient availability (Kalusen et al. 2004) and specific isolates and 

thus variation in the overall biofilm phenotypes may develop (Rasamiravaka et al., 

2015). Biofilm infections can persist for months, years, or even a lifetime but are rarely 

fatal (Stewart and Costerton, 2001).  

The study of biofilms in relation to the wounds was not considered until the 90s but it is 

now thought that 80% of human infectious disease are caused by biofilms (National 

Institutes of Health, 1997). 

 

1.2.1 Treatment of Biofilms 
 

As outlined above the resistance that biofilms provide for individual bacteria is 

multifactorial (Nickel et al., 1985). But this is dependent on accumulation of bacteria into 

communities, therefore one method to improve treatment is to breakdown the 

organization of the biofilm, allowing the host defences a greater opportunity to eliminate 

the infection (Stewart and Costerton, 2001) potentially such approaches could involve 

the use of enzymes which breakdown the matrix polymers of biofilm (Nemoto et al., 

2000). (Molobela et al., 2010) tested the activity of proteases such as savinase, 

everlase and polarzyme and amylases including amyloglucosidase and the bacterial 

amylase novo, on both biofilm removal and the digestion of EPS. In this study everlase 

and savinase were found to be the most efficient treatments to eliminate biofilms. 

It has been shown that some substances, such as penicillic acid and patulin as well two 

secondary metabolites from Penicillium species can prevent biofilm structural synthesis 

(Yasuda et al., 1993) interestingly these were shown to impact quorum sensing (QS) by 
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controlling the expression of specific genes in P aeruginosa which led to a reduction in 

the formation of biofilms (Rasmussen et al., 2005) (Irie and Parsek, 2008).  

 

 

 

 

 

 

Figure 1. 3: Biofilm of Pseudomonas aeruginosa  

Biofilms are communities of bacteria (light green cells) encased in a coating primarily of matrix polymers 

(dark green), taken from https://www.sciencenews.org/article/scientists-find-way-break-through-bad-

bacteria%E2%80%99s-defenses.  

 

 

1.3 The human skin 

 

The skin is the largest organ of the body consisting of about 20m². It provides a 

protective barrier against mechanical, thermal and physical elements, hazardous 

substances and it also transmits information about surroundings and temperature 

regulation to the brain. The skin consists of three layers (different in function, thickness 

https://www.sciencenews.org/article/scientists-find-way-break-through-bad-bacteria%E2%80%99s-defenses
https://www.sciencenews.org/article/scientists-find-way-break-through-bad-bacteria%E2%80%99s-defenses
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and strength) the epidermis, dermis and hypodermis (figure 1.4) (McGrath and Mellerio, 

2010). 

 

Figure 1. 4: Longitudinal section of the layers of the skin shows: epidermis, dermis and 
hypodermis. 

(Taken from Picture of the Skin, Human Anatomy, By Matthew Hoffman, MD, 2014 WebMD, and LLC.) 

 

The epidermis protects the skin from pathogens and injuries from the environment, its 

thickness varies in different types of skin, 95% of it is composed of keratinocytes but it 

also contains melanocytes (which produce the protein melanin a pigment that gives skin 

a darker colour) Langerhans’s cells (epidermal dendritic cells) and tactile epithelial cells 

or Merkel cells, these are neuroendocrine cells that resemble nerve cells but also have 

some features of endocrine cells. 

The epidermis is made up of five sub layers that work together to continually rebuild the 

surface of the skin these are:  

a) Stratum corneum 

b) Stratum lucidum (only in palm and the soles of feet) 

c) Stratum granulosum 

d) Stratum spinosum 

https://www.webmd.com/matthew-hoffman
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e) Stratum germinativum (also known as stratum Basale) 

 

 

 

Figure 1. 5: Section of the layers of the human skin (layers of epidermis). 

(a): Micrograph showing the epidermal layers in skin. 

(b): Diagram illustrating the sequence of the epidermal layers also indicates the normal locations of three 

important non-keratinocyte cells in the epidermis: melanocytes, a dendritic (Langerhans) cell, and a tactile 

epithelial cell or Merkel cells. Taken from: (Elder, 2014) 
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Figure 1. 6: The layers of Epidermis: Stratum corneum, Stratum lucidum, Stratum 
granulosum, Stratum spinosum, Stratum basal.  

Taken from: http://headandneckcancerguide.org/adults/introduction-to-head-and-neck-
cancer/skin-cancer/anatomy/. 

 

In the stratum basal, keratinocytes proliferate by the process of mitosis and as a result 

the cells rise through the layers of skin and undergoes changes in both shape and 

structure during differentiation until ultimately they become enucleated. The essential 

role of keratinocytes is to act as a barrier against agents such as pathogens (bacteria, 

viruses and parasites), heat, and radiation it also reduces losing of water, this is 

facilitated by the formation of tight junctions but between keratinocytes and with other 

cells such as the nerve cells. In addition within the keratinocytes are Langerhans cells 

which are located in the epidermis and lymphocytes cells in the dermis. Keratinocytes 

also produce recreate proteins such as keratin and lipids that form extracellular units 

that provides strength to the skin. Keratinocytes continue to migrate through the stratum 

corneum until they are eventually shed from the surface of the skin in a process known 

as desquamation.  

http://headandneckcancerguide.org/adults/introduction-to-head-and-neck-cancer/skin-cancer/anatomy/
http://headandneckcancerguide.org/adults/introduction-to-head-and-neck-cancer/skin-cancer/anatomy/
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The dermis is located beneath the epidermis its main function is to regulate 

temperature. This layer includes blood and a lymph vessels in addition to hair follicles 

(Gawkrodger and Ardern-Jones, 2016). The hypodermis the last layer and is made up 

of adipocytes, which contain fat and are used for both energy storage and thermal 

insulation and in addition to connective tissue (Gawkrodger and Ardern-Jones, 2016). 

Not only is the skin a mechanical barrier between internal organs and the outer 

environment, it is also a fundamental part of the innate immune response (Janeway Jr 

and Medzhitov, 2002)and in addition can elicit an adaptive immune response against 

antigens (Nakajima et al., 2014). Keratinocytes are pivotal to both the skin’s 

immunological system (Schloegl et al., 2012), participating in both the innate and 

acquired immunity (Nickoloff et al., 1995) The innate immune response is triggered 

through TOL-like receptors (TLRs) (see section 1.8) that are expressed by keratinocytes 

cells and this activation stimulates acquired immunity via, for example Langerhans cells 

(LCs) and antigen-specific T cells (Sugita et al., 2007). 

 

1.3.1 Calcium Signalling in the Skin 
 

Calcium signalling is an important intracellular pathway in many types of cell (Cordeiro 

and Strauss, 2011) and an excess concentration of intracellular calcium can lead to cell 

impairment and death (Dong et al., 2006). Calcium is the main regulator of growth and 

differentiation in keratinocytes and stimulates the formulation of desmosome, adherents 

and tight junctions (Kobashi et al., 2017b) (Pillai et al., 1993). Abnormal keratinocyte 

calcium concentration can cause disease such as Darier disease which was the first 

genetic skin disease caused by a loss of cell-to-cell adhesion and abnormal 

keratinisation described (Savignac et al., 2011). 

The mobilization of intracellular calcium activates IL-8 production and secretion by 

keratinocytes (Yang et al., 2015). NF-kB is the major transcription element participate in 

the metabolic of intracellular calcium which is mediated by IL-8 gene activation in retinal 

pigment epithelial cells of human (Yang et al., 2015) Inactivated blood neutrophil cells 
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released less concentration of IL-8, the calcium ionophore, A23187, released high 

amount of IL-8 comparing to concentration which is recognized in exudative neutrophil 

removed from an infected part in human (Kuhns et al., 1998). Calcium controls 

activation and production of IL-8 gene from intracellular supplies  in both colonic and 

airway epithelial cells in human (Yu et al., 2001, Carmona et al., 2010). 

An epidermal Ca2+ gradient was first described in 1983 when analysis of skin samples 

indicated high calcium levels in stratum corneum which is the upper part of epidermis 

(Malmqvist et al., 1982). Further research confirmed that the superficial part of 

epidermis in man contains the highest concentration of calcium (Leinonen et al., 2009). 

It is now known generally in the mammalian epidermis there is a Ca2+ gradient, with a 

lower concentration in both basal and spinous layers and high levels in the stratum 

granulosum (Elias et al., 2002). The calcium concentration of the basal keratinocyte 

layer is higher than that of the lowest spinous cell layer in normal epidermis (Leinonen 

et al., 2009). A low Ca2+ concentration decreases the cell density needed to initiate 

growth (McGrath and Soule, 1984). If keratinocytes are exposed to high Ca2+ 

environments this can disrupt normal skin barrier function due to abnormal/premature 

differentiation of keratinocytes (Sah et al., 2017a). In addition high calcium 

concentrations stimulates the expression of serine protease inhibitors such as; 

lymphoepithelial kazal type related inhibitor (LEKTI), secretory leucocyte peptidase 

inhibitor (SLPI) and elafin in epidermal keratinocytes (Kobashi et al., 2017b). Interestingly 

the human keratinocyte cell line (HaCaT) responds to differentiation promoting stimuli, 

such as contact inhibition and high calcium concentrations in the culture medium by 

adopting a more differentiated phenotype (Berning et al., 2015). 

 

1.3.2 The Immune Response and the Skin 
 

Innate immunity is an essential part of the stimulation of acquired immunity. Innate 

immune cells include macrophages, dendritic cells and nonprofessional cells such as 

epithelial cells, endothelial cells, and fibroblasts (Honda, 2006). The cells that make up 

the skin immune system are distributed on both sides of the basement membrane. The 
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epidermal components are (keratinocytes and Langerhans cells). The dermal 

component contains dendritic cells, mast cells and resident perivascular T cells which 

are all professional immune cells. (Bos, 1997). 

 

1.3.2.1 Pattern Recognition Receptors 
 

Pattern recognition receptors (PRRs) are be defined as non-clonal germ line-encoded 

sensory molecules and represent an important element of the innate immune system 

(Akira et al., 2006). The innate immune system uses different PRRs which can be either 

extra or intracellular (Medzhitov et al., 1997). They recognise bacteria and other 

microorganisms via specific components which are called microbial-associated 

molecular patterns (MAMP) (Alexopoulou et al., 2001). Once stimulated PRRs initiate 

downstream signalling pathways that activate cellular responses that facilitate the 

elimination of the microbe (Yujie and Jianping, 2017) Because specific MAMPs are 

central to normal microbial physiology it is hard for microbes to evolve alterations in 

their structure in order to avoid activating the hosts immune response (Akira et al., 

2006). 

The principal functions of pattern recognition receptors are: opsonisation, stimulating 

phagocytosis, stimulation of complement, activation of proinflammatory signalling 

process, and induction of apoptosis {Gewurz, 1981 #168; Schwalbe, 1992 #169; Fraser, 

1998 #170. PRRs also recognize endogenous elements which are released from 

damaged cells, these are named damage-associated molecular patterns (DAMPs) 

(Takeuchi and Akira, 2010) Different classes of PRRs have been identified including: 

transmembrane proteins, Toll-like receptors (TLRs) and C-type lectin receptors (CLRs), 

and intracellular proteins such as NOD-like receptors (NLRs) (Takeuchi and Akira, 

2010) AIM2-like receptors (ALRs) and intracellular DNA sensors such as cyclic GMP-

AMP synthase (cGAS) which is a cytosolic DNA sensor that stimulates the type 1 

interferon signalling pathway (MacCallum et al., 2014) (see figure 8). TLRs are the most 

fundamental and essential of these immune receptors (Beutler, 2004)  and appear to be 

the first line of host defence against microorganisms in many systems (Carstens and 

Akiyama, 2014).  
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1.3.2.2 Toll-like receptors (TLRs) 
 

TLRs are evolutionarily conserved from the worm Caenorhabditis elegans to mammals 

(Beutler, 2004, Akira and Takeda, 2004, Hoffmann, 2003). The identification of 

mammalian Toll-like receptors (TLRs) by Medzhitov and Janeway was considered to 

represent a new chapter in our understanding of viral recognition and the innate 

immune system more generally (Medzhitov et al., 1997). The Toll signalling pathway 

was first discovered in Drosophila where it was identified for its role the control of 

dorsal-ventral polarity (Anderson et al., 1985) 

At least ten human (TLR1-TLR10) and twelve murine (TLR1-TLR9, TLR11-TLR13) 

TLRs have been identified (MacCallum et al., 2014), and many researches have 

focused on both the detection the specific component recognized by each TLR, and the 

role of those interactions on microbial pathogenesis (Akira et al., 2006). TLRs are 

expressed on several skin cells including: keratinocytes, melanocyte and Langerhans 

cells (Ellis et al., 2010, Akira et al., 2001) also cells associated with the skin such as 

macrophages and fibroblast cells (Kawasaki and Kawai, 2014). TLRs are also found in a 

variety of other cells including those in the central nervous system (CNS) and the 

peripheral nervous system (PNS) including: microglia, astrocytes, neurons and 

Schwann cells (Okun et al., 2011 {Buchanan, 2010 #1788) (Lehnardt, 2010). 

TLRs consists of an N-terminal ectodomain with repeats rich in leucine (LRRs), which 

mediate recognition of PAMPs, a transmembrane domain and another molecule of the 

cytoplasmic Toll/IL-1 receptor (TIR) domain which initiates downstream signalling 

{Barbalat, 2009 #2342}; (Cai et al., 2014). The ectodomain has a horseshoe-like 

structure and binds the specific MAMP or DAMP as a homo- or heterodimer along with 

a co-receptor or accessory molecule such as CD14 (Botos et al., 2011) (figure1.7). 
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Figure 1. 7: Schematic diagram of the basic architecture of Toll and Toll-like receptors: 

Toll receptors (a) and Toll-like receptors (b), extracellular, transmembrane and cytoplasmic are shown. 

Toll receptors contain two regions of leucine-rich repeats labelled (LRRs). C is the carboxyl terminus; N 

the amino terminus and TIR domain is the Toll/interleukin-1–receptor-containing domain. (Taken from 

Nicholas, 2006). 

TLRs detect a variety of PAMPs leading to a transcriptional up regulation of distinct 

genes in a TLR and cell type dependent manner (Takeuchi and Akira, 2010). MAMPs 

include: bacterial lipopolysaccharide (TLR4), double-stranded (DS) RNA, small 

interfering RNA, and self–RNA derived from damage cells (TLR3) (Takemura et al., 

2014), and single-stranded (ss) RNA from viruses (TLR7) (Takeda et al., 2003). TLR7 is 

mostly expressed in plasmacytoid DCs (pDCs) (Mancuso et al., 2009). TLR8 recognizes 

viral and bacterial RNA (Guiducci et al., 2013). TLR13 responds to bacterial 23S rRNA 

(Hidmark et al., 2012). TLR2, TLR1 and TLR6 recognize a variety of PAMPs, in a 

species dependent manner, including peptidoglycans, lipoproteins, lipotechoic acids 

mannan, zymosan and tGPI- mucin (Kawai and Akira, 2010). TLR5 recognizes bacterial 

flagellin (Akira et al., 2006). Human TLR10 with the co-receptor TLR2 recognize ligands 

from listeria (Regan et al., 2013), and influenza (Son et al., 2014). TLR9 responds to 
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bacterial and viral DNA due to the high levels of unmethylated CpG-DNA motifs (Coban 

et al., 2010). TLR11 recognizes flagellin (Mathur et al., 2012) and responds to a profilin-

like protein from the parasite Toxoplasma gondii (Yarovinsky et al., 2005). TLR12 is 

very similar to TLR11, it can form a heterodimer with it (TLR11 also forms a homodimer) 

and is also stimulated by the same protein from Toxoplasma gondii (Koblansky et al., 

2013, Andrade et al., 2013, Broz and Monack, 2013) table 1. 

TLRs are all synthesized in the endoplasmic reticulum (ER), passing to the Golgi 

(Kawasaki and Kawai, 2014). TLR1, TLR2, TLR4, TLR5, TLR6 and TLR10 are located 

on the cell surface, whereas other TLRs including TLR3, TLR7, TLR8, TLR9, TLR11, 

TLR12 and TLR13 are expressed on endocytic vesicle membranes or other intercellular 

compartments (Akira, 2003) eg the ER, or lysosomes, (Cai et al., 2014, Celhar et al., 

2012). 

Cell surface TLRs predominantly respond to microbial membrane components such as 

lipids, proteins, and lipoproteins for example TLR4 recognize bacterial 

lipopolysaccharide (LPS) (Kawai and Akira, 2010), and some of the intercellular TLRs 

recognize nucleic acids derived from bacteria and viruses in addition they can respond 

to self-nucleic acids in conditions such as autoimmune disease (Blasius and Beutler, 

2010). Several TLRs respond to the same stimuli (Cai et al., 2014) (figure1.3.2). 

After the detection of a pathogen TLRs mediate the activation of both the innate and 

adaptive immune systems via the modulation of gene expression (Akira et al., 2001). 

This includes a variety of host defence genes such as inflammatory cytokines, 

chemokines, antimicrobial peptides and the major histocompatibility complex (MHC) 

(Kopp and Medzhitov, 1999). 

TLR signalling is divided into two distinct pathways depending on the specific adaptor 

molecules, myeloid differentiation factor 88 (MyD88) and Toll-receptor-associated 

activator of interferon (TRIF), that is incorporated into the signal (Akira et al., 2006). 

MyD88 consists of a death domain (DD) in addition to a TIR (Toll/interleukin-1 receptor) 

domain and is central to signalling in various TLRs, but not (TLR3). MyD88 is also an 

essential component of how most vaccines produce an immunostimulatory effect 

(Schnare et al., 2001)This pathway is also important in natural immunity and as such 
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individuals with MyD88 deficiency suffer from recurrent pyogenic bacterial infections 

(Kawagoe et al., 2008). 

A variety of mechanisms can be used by pathogens to evade TLR signalling pathways 

these include: inhibition of mitogen activated protein kinases (MAPKs) cascade 

reactions, inhibition of NF-КB activation and by the production Toll/interleukin-1 receptor 

(TIR)-containing proteins that interact directly with TLRs or adaptor proteins in the 

signalling pathway and prevent signal transduction (Yujie and Jianping, 2017) 

(figure1.8). 

 

 

Figure 1. 8: Toll like receptor and cystolic proteins Nod1 and Nod2 are pattern 
recognition receptors PRRs. 

Activation of TLRs by pathogen-derived molecules including LPS, flagellin, and PGN. Signalling through 

most TLRs induces the activation of nuclear factor-kB (NF-kB), which leads to activated NF-kB leading to 

induce transcription of gene for proinfammatory cytokines and chemokines (antimicrobial peptides) which 

are synthesized and realised. Cytokines also travel throughout the body and produce systemic effects 

such as vasodilation, fever and alteration of metabolism. (Taken from H.C. Lai 2014). 

 

 



36 
 

Pattern 
recognition 

receptor 
(PRR) 

Location(s) Ligand(s) Source(s) 

TLR1 Plasma membrane 
Triacyl lipopeptides 

Soluble factors 

Bacteria & mycobacteria. 

Neisseria meningitides. 

 

TLR2 Plasma membrane 

Peptidoglycan Bacteria 

Lipoprotein/ lipopeptides Fungi 

Phospholipomannan Viruses 

Haemagglutinin and 
protein  

TLR2-TLR1 Plasma membrane Triacyl lipopeptides Gram-negative bacteria 

TLR3 Endosomal 
Double-stranded 

Bacteria 
RNA 

TLR4 Plasma membrane 
Lipopolysaccharide 

manna 

Gram-negative bacteria 

Fungi 

 TLR5-
TLR11 

Plasma membrane Flagellin Bacteria 

TLR8 Endosomal 
Single-stranded 

Viruses 
RNA 

TLR9 
Plasma membrane 

and endosomal 
CPG-DNA 

Bacteria 

Viruses 

Protozoa 

TLR10-
TLR2 

Plasma membrane Listeria Bacteria 

TLR10 Plasma membrane Influenza Viruses 

TLR11-
TLR12 

Endosomal 
Profiling-like 

Parasite 
protein 

TLR13 Endosomal 23S rRNA Bacteria 

 

Table 1.1: Toll-like receptors (TLRs), Location, their known agonists and the origin of the 
ligands. 
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1.4 Gram Positive and Negative Bacteria 
 

Bacteria can be classifying into two groups: Gram positive and Gram negative this is 

based on two fundamental structural differences Gram positive bacteria have a 

relatively thick bacterial cell wall (30 to 100nm) outside the bacterial membrane by 

contrast Gram negative bacteria have a thinner cell wall (10 to 50 nm) with an additional 

outer membrane outside this cell wall (figure 1.9). 

 

1.4.1 Bacterial Cell wall 
 

The bacterial cell wall is a complex dynamic structure that plays a variety of protective 

and adaptive roles. (Silhavy et al., 2010), in addition there are fundamental differences 

in the structure of the Gram positive and negative cell wall. Specifically there are 

differences in the structure of the peptidoglycan which is the major conserved 

component of all bacterial cell walls and is essential for stabilizing cell membranes 

against high internal osmotic pressures. The Gram negative cell wall contains many 

layers, of peptidoglycan which are long anionic polymers composed of teichoic and 

lipoteichoic acids (Silhavy et al., 2010) (Neuhaus and Baddiley, 2003). Collectively, 

these polymers can constitute over 60% of the mass of the Gram positive cell wall 

(Dramsi et al., 2008). The Gram negative cell wall has few layers of peptidoglycan but 

contains a large number of proteins and is the location for several important functions 

such as nutrient acquisition, adherence, secretion, signalling, and protection from the 

environment (Thompson et al., 1985, Ciofu et al., 2000).  

 

1.4.2 The Gram negative outer membrane 
 

The second defining feature of Gram negative bacteria is the outer membrane (OM), 

which is located outside the cell wall (figure 1.9) and is abundant in lipids and proteins 

which can be divided into two classes: lipoproteins and proteins (Nikaido, 2003).  
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Figure 1. 9: Illustrates the structure of cell wall in Gram-negative and Gram-positive 
bacteria. 

The main difference between Gram-negative and positive is the thickness of peptidoglycan cell wall and 

the outer membrane in Gram-negative bacteria (Funaharat & Nikaido, 1980). 

 

The outer membrane (OM) also has a trilamellar structure with an asymmetric 

distribution of lipids. The outer leaflet is composed primarily of lipopolysaccharide (LPS) 

and the inner leaflet phospholipids and lipoproteins (Avila-Flores and Medellin, 2004). In 

addition the outer membrane has a very large number of transmembrane pore forming 

beta-barrel proteins known as porins {Cusumano, 1997 #2343; Smit, 1978 #2344} 

allowing the passage of a range of substances.  
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1.4.3 Gram Negative Lipopolysaccharide  
 

The LPS that is present in the outer membrane of Gram negative bacteria can be 

important in its pathogenicity and is composed of three different parts:  

i) Lipid-A  

ii) The core polysaccharide comprising the inner and outer cores  

iii) The O-specific polysaccharide chains 

The O-specific polysaccharide chains consist of repetitive sub-units which extend 

outward from the bacteria and are in direct contact with a host immune system and thus 

can act as one mechanism by which the immune response can be triggered. In addition 

to this these polysaccharide chains can protect the pathogen from the effect of many 

antibiotics (Caroff and Karibian, 2003) (figure 1.10). The lipid portion of LPS serves as 

the lipid centre and commonly consists of fatty acids, sugars, and phosphate groups 

depending on the type of the bacteria. 

The space between the outer and inner membrane of Gram negative bacteria, as well 

as containing the cell wall also has an aqueous compartment called the periplasm which 

is densely filled with proteins and peptidoglycan (PG) which results in it being more 

viscous than the cytoplasm (Mullineaux et al., 2006). The distance between the two 

membranes is approximately 13 nm and makes up between 7 and 40% of the total cell 

volume. It is connected to both membranes through different protein-protein interactions 

and it contains destructive proteins such as RNase which contributes to the greater 

virulence of Gram-negative bacteria compared to Gram positive (van den Berg, 2010).  

The multilayered outer membrane explains why Gram negative bacteria are more 

resistant to severe environmental conditions including toxins and antibiotics compard to 

Gram positive bacteria (Martorana et al., 2014). For example the outer membrane of the 

Gram negative bacteria P aeruginosa has three (lipoproteins: I, L, F), OPrI, OPrL, and 

OPrF, which connect the OM to the PG cell wall (Deatherage et al., 2009, Collins et al., 

2007, Stock et al., 1977) each of these has different virulent properties and different 

effects on the host defences (Bodey et al., 1983). 
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Figure 1. 10: Schematic representations of the Gram-negative cell wall (left) and the 
structure of lipopolysaccharide (right). 

Taken from: (Caroff and Karibian, 2003). 

 

 

1.5 Outer membranes vesicles  
 

In recent years that there has been increasing interest in vesicles produced by Gram 

negative bacteria. The vesicles are derived from the outer membrane in a process that 

is conserved among all Gram-negative bacteria so far studied (Kuehn and Kesty, 2005), 

including many pathogenic strains (Necchi et al., 2007) (Marsollier et al., 2007), it is now 

assumed that outer membranes vesicles (OMVs) have an important role in their 

physiology. OMVs were first detected when they were observed in the supernatant of 

Escherichia coli cultures grown under growth limiting conditions and were found to 

contained soluble LPS (Bishop and Work, 1965). It was hypothesised that the vesicles 
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were produced because the growth limiting conditions used inhibited peptidoglycan 

synthesis which affected the synthesis of the bacterial cell wall but did not alter outer 

membrane synthesis and thus an unstable membrane was produced and this resulted 

in vesicles being produced. However, subsequent studies showed that similar structures 

were also formed under normal growth conditions in vitro as well as in infected host 

tissues and serum (Hellman et al., 2000). It is now thought that OMV production is 

ubiquitous in Gram negative bacteria and these vesicles have a range of functions and 

in the case of pathogenic bacteria will contain pathogenic factors which could cause 

damage to the host cells and other bacteria (Choi et al., 2011).  

The OMVs are complex spherical, bilayer membranous structures which contain a 

subset of envelope and protein components they are on average 50 to 250 nm in 

diameter depending on the strain (Ellis et al., 2010). OVMs are produce by growing cells 

and are not products of cell lysis or death (McBroom and Kuehn, 2007) they are 

produced at all stages of bacterial growth in vitro and in vivo (Kuehn and Kesty, 2005) 

(Beveridge, 1999, Keenan et al., 2000, Ismail et al., 2003). When bacteria are grown in 

culture the maximum rate of vesicles production occurs during the end of log phase 

(Hoekstra et al., 1976). OMVs production can be increased by a variety of conditions 

such as limited nutrition, changes in temperature, exposure to antibiotics and oxidative 

stress (Klimentová and Stulík, 2015) it is of note that conditions will often be 

encountered by bacteria during an infection (Chutkan et al., 2013). 

The components of OMVs will be similar to the outer membrane itself and as such will 

include lipopolysaccharide, proteins and phospholipids (Klimentová & Stulík, 2015). In 

addition the will also include products derived from the periplasm or even the contents 

of the cell such as nucleic acids. In common with other Gram negative bacteria P 

aeruginosa, produce outer membrane vesicles (OMVs). In general, vesicles from E. coli 

contain 0.2-%-0.5% of outer membrane and periplasmic proteins (Mug-Opstelten and 

Witholt, 1978, Kesty and Kuehn, 2004, Hoekstra et al., 1976). It is thought that OMVs 

have an important role in stimulating the innate immune system due to their small size, 

which will allow them to easily penetrate infected tissues and potentially further into the 
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body and the high concentration of MAMPs that are associated with them (Ellis et al., 

2010).  

As it is unlikely that bacteria produce OMVs without purpose or function they 

presumably have functions that are beneficial to the bacteria that produced them (figure 

1.11). It is thought that OMVs have roles that could be beneficial to bacteria both in the 

context of infecting a host and also within its own environment. These include the ability 

to transfer many biological molecules to the host cells including virulence factors that 

enhances bacterial survival (Klimentová and Stulík, 2015). In both pathogenic and non-

pathogenic bacteria, OMV can have a protective by absorbing or internalising toxic 

molecules or factors produced by the hosts immune system such as antibodies which 

reduces the concentration that the bacteria are exposed to (Loeb, 1974, Loeb and 

Kilner, 1978). Sometimes OMVs production is a bacterial stress response and can aid 

nutrient procuration, biofilm formation and growth, quorum signalling, horizontal gene 

transfer and pathogenesis (Kulp and Kuehn, 2010). For example they can allow 

bacterial enzymes to spread within the environment which can change its chemical 

composition (Kulp and Kuehn, 2010). In addition Gram negative bacteria can use OMVs 

for bacterial communication and even to cause toxicity in other strains of bacteria in a 

crowded environment (Kulp and Kuehn, 2010).  

 

Figure 1.11: Composition of OMV.  

Figure illustrating aggressive and protective roles of OMVs utilized in bacteria-bacteria and bacteria-host 
interactions; and their potential applications. (Tasleem, 2017). 
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Many P aeruginosa virulence factors affect the growth, and immune evasion of this 

bacterium and can combine to cause inflammation and tissue damage in the host. P. 

aeruginosa lung infections is a main reason for mobidity and mortality in individuals with 

cystic fibrosis (CF) (Sadikot et al., 2005). 

P aeruginosa has two extracellular phospholipase C (PLCs) homologous, a haemolytic 

PLC (PlcHR) and a non- haemolytic PLC (PlcN) (Ostroff et al., 1990). While PlcN has 

no pathogenic activity, PleHR may be an important virulence factor during P aeruginosa 

infection in mammals (Ostroff et al., 1989), plants (Jander et al., 2000), yeast (Hogan 

and Kolter, 2002), and insects (Jander et al., 2000). Purified PleHR is toxic to living cells 

and by interfering with signalling pathways of eukaryotic cells (Terada et al., 1999). 

Specifically, a rise int the concentration of the haemolytic PLC (PlcHR) has been linked 

to the decline in lung function in individuals with CF (Lanotte et al., 2003), the second 

messengers normally involved in PleH activity are phosphatidylcholine (PC) and 

sphingomyelin (López et al., 2011) These lipid derived molecules are precursors of 

pulmonary surfactant. Numerous studies have detailed the potentially deleterious effect 

of PlcH pc-phospholipase C/sphingomyelinase (pc-plc/s Mase) activity during P 

aeruginosa infection (Wiener-Kronish et al., 1993). For example PlcH may impact on 

disease course due to its influence on pulmonary surfactant fluid which is largely 

composed of dipalmitoylphosphatidylcholine (Wargo et al., 2011). 

 

1.5.1 Formation and Pathogenicity of Outer Membrane Vesicles 
 

Outer membrane vesicles are formed by a process of bulging out and pinching off a 

portion of the bacterial outer membrane {Chatterjee, 1967 #2352} thus OMVs originate 

from the bacterial surface (figure 1.12) and contain outer membrane proteins OMPs, 

phospholipids, and LPS {Wai, 2003 #2355; Kuehn, 2005 #2354; Horstman, 2000 

#2353}. As OMVs bleb from the outer membrane, periplasm fills their lumen and is 

retained there {Schooling, 2006 #2356} which means, they entrap some of the 

underlying periplasmic component that probably varies dependent on the specific 
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bacterial growth conditions and species. Generally, the periplasm will include toxins, 

enzymes, DNA, adhesions molecules and other virulence factors (Ellis et al., 2010). 

Vesicles have been identified in different host tissues, revealing the ability of vesicles to 

access a variety of environments within the host. 

       

 

Figure 1. 12: Formation of vesicle membrane. 

OMVs are proteoliposomes made of OM phospholipids, lipopolysaccharides, a raft of OM proteins, and 

proteins from periplasmic space (luminal). (LPS) Lipopolysaccharide; (Pp) periplasm; (OM) outer 

membrane; (PG) peptidoglycan; (IM) inner membrane; (Cyt) cytosol (red symbol) outer membrane protein 

(Kuehn and Kesty, 2005). 

 

Vesicles are thought to bud out from sites where contacts between the peptidoglycan 

and OM are infrequent, missing, or knocked out. It has been shown that almost all 

OMVs preparations are enriched in envelope components (Kuehn and Kesty, 2005). 

Some of the preparation were also found to contain a small amount of cytosolic and 

inner membrane proteins, the basis of which remains unclear or rather controversial 

(Scorza et al., 2008, Ellis and Kuehn, 2010). 
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1.5.2 Virulence Factors of OMVs  
 

Virulence factors have been discovered to be associated with vesicles produced by 

pathogenic bacteria (Kuehn and Kesty, 2005) such as P aeruginosa vesicles from which 

can possess a wide spectrum of virulence factors that can mediate the killing of host 

cells or other bacteria. These virulence factors include: pro-elastase, hemolysin, 

phospholipase C, protease and alkaline phosphatase, in addition to the penicillin-

degrading enzyme B-lactamase (Kadurugamuwa and Beveridge, 1995, Kadurugamuwa 

and Beveridge, 1997) and antibacterial factors such as hydrolases (Choi et al., 2011). In 

addition OMVs released from pathogenic bacteria, contain a wide range of 

immunomodulatory molecules {Allan, 2003a #160; Allan, 2003b #161} and produce 

more outer membrane vesicle than non-pathogenic bacteria (Lai et al., 1981, Wai et al., 

1995). Proteolytic analysis of the cell-free supernatants of mid-log phase cultures 

derived from an enterotoxigenic E. coli produced about 10-fold more outer membrane 

vesicles than non-pathogenic E. coli (Horstman and Kuehn, 2002). OMVs have the 

ability to combine with the membranes of host cells such as epithelial cells and thus 

realise their virulence factors into the cells where they degrade their cellular structure 

which can be an important factor that mediates the pathogenicity caused an infection by 

the pathogenic bacteria (Kadurugamuwa and Beveridge, 1997). 

Vesicles have been detected in different host tissues, which indicates that vesicles have 

the ability to penetrate different milieu of the host also they have been identified in the 

fluids distant from the infected tissues of the host, which indicates the ability of OMVs to 

spread to sites far from the infected area (Kuehn and Kesty, 2005).  

The structure of vesicles of a laboratory P aeruginosa strain was reported to be different 

to the vesicles secreted by pathogenic hospital strains of isolated from an individual with 

cystic fibrosis (CF), the former one lack LPS with O-antigen which is essential for the 

pathogenicity of the P aeruginosa hospital strains (Pier, 2000) and the pathogenic 

vesicles were enriched with an amino peptidase that facilities their ability to fuse to lung 

epithelial cells when compared to vesicles derived from laboratory strains (Kuehn and 
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Kesty, 2005). It has also been reported that there is a dynamic change in the structure 

of OMVs that is related to different phases of bacterial growth and this impacts on their 

biological function (Tasleem, 2017). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 1. 13: Proteins associated with Pseudomonas aeruginosa OMVs. 

 

 

 

Periplasmic proteins 

Alkaline phosphatase (PhoA) 

Beta-lactamase 

Peptideglycan hydrolase   

  

Precursors of virulence factors 

Pro-elastase (LasB)   

Extracellular virulence 

factors 

Phospholipase C (PlcB) 

Hemolytic phospholipase 

(PlcH) 

CFTR inhibitory factor (Cif) 

Probable aminopeptidase 

(PaAP) 

  

Inner membrane protein 

Multidrug efflux 

membrane protein (MexA)    

Outer membrane proteins 

Outer membrane protein D (OprD) 

Outer membrane protein E (OprE) 

Outer membrane protein F (OprF) 

Outer membrane protein G (OprG) 

Outer membrane protein H1 (OprH) 

Outer membrane lipoprotein (OprI) 

Lipid A 3-O-deacylase (PagL) 

Copper resistance protein B (PcoB) 

 

 

Uncharacterized protein  

Probable bacteriophage 

protein  

Cytoplasm proteins 

50S ribosomal protein L20 (RplT) 

50S ribosomal protein L50 (RplU) 

ATP synthase subunit (AtpB) 

Cytochrome c oxidase (CcoP1, CcoP2) 

Appendixes 

Fragellin type B (FliC) 

Fimbrial protein (PilA) 
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The outer membrane of Gram-negative bacteria contains extracellular virulence agents 

(Tashiro et al., 2012) such as phospholipase C (Sabharwal et al., 2014), that cleaves 

host cell phospholipids which induces a number of cell responses including the 

stimulation of the cystic fibrosis transmembrane conductance controlling inhibitory factor 

(cif) (Ballok and O'Toole, 2013), β-lactamase, that can destroy β-lactam based 

antibiotics and thus aid bacterial survival within a host (Tashiro et al., 2012) and on 

occasions cell necrosis (Assis et al., 2014).   

 

1.6 Chronic Wounds 
 

Chronic wounds often cause increasing loss of the functional ability of the skin and is 

occupied by increasing pain and reduction in the quality of life. In addition due to their 

persistence they are a significant burden for patients carers and health care resources 

{Rizzi, 2010 #1986 

 

1.6.1 Pathology of Wounds and Chronic Wounds 
 

The fundamental role of the skin is to act as a barrier against different external factors. 

Loss of the integrity of specific parts of the skin because of injury or illness can cause 

disability or death {Kondo, 2010 #1987}. A wound is defined as a disruption of the 

normal anatomical composition and function of the skin (Atiyeh et al., 2002). 

Wound healing is a complex physiology process and has been simplified by separating 

it into distinct programmed stages: homeostasis, inflammation, proliferation and 

maturation (Stojadinovic et al., 2008), any change in this processes can result in 

pathological conditions of a variety medical relevance. Wound healing involves a well-

organized interaction between various tissues and cells (Branski et al., 2009) in distinct 

phases which have different physiology functions which must take place in the proper 

sequence, at a particular time and continue for a specific period of time and at an 
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optimal intensity as regulated by the activity of distinct cells types that are associated 

with the skin including: keratinocytes, fibroblasts, endothelial cells, immune cells in 

addition to blood cells and platelets {Marfia, 2015 #1991}. 

The management of infected wounds is a worldwide health care issue (Akbar et al., 

2015) and has been further complicated by the rise of antimicrobial resistance (Gottrup 

et al., 2013). 

A wound infection is present when bacteria have invaded the wound and/or the 

surrounding tissue and are replicating to numbers that result in significantly impaired 

local healing, overt wound infection and/or a systemic toxicity (Stojadinovic et al., 2008). 

A wound with adequate blood supply and <105 bacteria per gram of wound tissue 

should heal or accept grafting well {Sibbald, 2000 #1992}. 

There is an essential difference between acute wounds which proceed to uncomplicated 

healing (these progress through the normal stages of wound healing and show definite 

signs of healing within four weeks) (Demidova-Rice et al., 2012) and those that become 

chronic wounds (Stojadinovic et al., 2008). Chronic wounds or non-healing wounds are 

wounds that do not progress through the normal wound healing process resulting in an 

open laceration of varying levels of severity (Silva et al., 2015). All wounds are 

contaminated, in that there are co-habitating, non-replicating bacteria, in addition many 

wounds are colonized with replicating bacteria, but without a host response to their 

presence thus healing is not normally impaired in contaminated or colonized wounds 

(Stojadinovic et al., 2008). However if wounds are heavily infected and this extends to 

the wound bed a chronic wound can develop. The clinical management of chronic 

wounds attempts to accelerate endogenous healing or facilitate the effectiveness of 

other therapeutic interventions and this can be followed with systemic antibiotics with an 

appropriate Staphylococcal, Streptococcal, Coliform and anaerobic coverage (Sibbald 

et al., 2000). However, chronic wound infections often do not respond to traditional 

antimicrobial therapies (Percival, 2004) for this reason new therapeutic modalities may 

be required (Percival et al., 2008). Recently regenerative medicine and in particular the 

use of mesenchymal stem cells is being developed a potential new treatment (Marfia et 

al., 2015). 
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A wound is considered to be infected when bacteria have invaded either the wound its 

self and/or the tissue that surrounds it and are replicating to such numbers that local 

healing is significantly impaired this can then go on to produce systemic toxicity 

(Stojadinovic et al., 2008). In otherwise healthy individuals if a wound has a good blood 

supply it should be able to tolerate over 105 bacteria per gram of wound tissue and still 

heal or accept a skin graft {Sibbald, 2000 #1992}. 

Tissue repair is a complex process and is dependent on the tissue's capacity to 

regenerate and also particularly if the wound is infected the inflammatory response 

(Eming et al., 2017), which is governed by a balance of cytokines, chemokines, growth 

factors and effects of immune cells which collect at the wound site (Chanson et al., 

2005). These factors also effect the rate of healing via stimulation of cell proliferation 

and matrix synthesis (Chanson et al., 2005). 

Non-healing wounds can develop as a complication of a range of different conditions 

such as trauma, surgery, acute illness, or various chronic disease and worldwide affects 

millions of individuals every year. Ultimately it is the result of the defective regulation of 

the processes required for the normal healthy repair of wounds and includes 

inflammation, angiogenesis, and cell recruitment. The defective functioning of one or 

more of these cellular mechanisms and is normally triggered by specific chronic 

diseases, including vascular disease, diabetics or aging. Research aimed at improving 

clinical methods to overcome chronic wounds will require an understanding of the 

essential biological methods of repair and regeneration (Chanson et al., 2005). Globally 

chronic and poorly healing wounds represent a significant health, social and economic 

burden. (Bird and Emery, 2009 {Brem, 2007 #2017). 
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Figure 1. 14: Molecular pathology of chronic wounds.  

Chronic wounds show rapid proliferative and nonmigratory epidermis, unresolved inflammation, 

existence of infection, and formation of biofilm. There is an accumulation of inflammatory cells 

(neutrophils and macrophages) and uncontrolled protease interference with fundamental repair 

mechanisms. Some fibroblasts become senescent and there is low level angiogenesis, stem 

cell recruitment and activation, and a redesigning of the extracellular matrix. (From Eming et al. 

2017). 
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2.1 Materials 

All standard chemicals were obtained from Sigma-Aldrich or Fisher Scientific unless 

otherwise stated. Other consumables were obtained from the manufactory stated at 

their first mention in the text. Table 2.1 shows the use and supplier of the basic cell 

bacterial culture media. 

 

Culture medium and Solutions Application Supplier 

Dulbecco's Modified Eagle Medium  
(DMEM) (high glucose) with sodium 
bicarbonate, without L-Glutamine 

Growth medium Sigma-Aldrich 

Foetal bovine serum (FBS) 500ml Supplements Sigma-Aldrich 

L-Glutamine 200mM solution Supplements Sigma-Aldrich 

Keratinocyte-SFM Medium Growth medium Fisher scientific 

Supplements for keratinocyte-SFM Supplements Fisher scientific 

DPBS (10x concentrated) liquid 500ml Cell washing Invitrogen 

Trypsin-EDTA solution 0.25%   Cell detachment Sigma-Aldrich 

Simulated Wound Fluid (SWF) Bacterial growth Sigma-Aldrich 

Tryptone Soy Broth (TSB) Bacterial growth Fisher scientific 

Tryptone Soy Agar (TSA) Bacterial growth Fisher scientific 

 

Table 2.1: Growth medium, supplements and basic bacterial media. 

 

2.2 Bacterial Culture 
 

Two strains of Pseudomonas aeruginosa was used in this study these were a hospital 

strain PS3 which had been previously isolated from the dressing of a chronic wound 

and a laboratory strain 10421 which has no known pathogenic markers. In addition an 

enteric bacteria E.coli C25 was also used all 3 strains were kindly provided by Prof. P. 
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Humphreys (Department of Biological, University of Huddersfield). Routinely the 

bacteria were grown on tryptone soy agar (TSA) plates and in tryptone soy broth (TSB) 

at 37°C in aerobic conditions. The broth and agar were made up using the 

manufactures instructions. In addition to this and for selected experiments both strains 

of Pseudomonas aeruginosa were also grown in simulated wound fluid or DMEM which 

was prepared as described below.  

 

2.2.1 Simulated Wound Fluid (SWF) 
 

Simulated wound fluid (SWF) was prepared using 1:1 v:v mix of fetal bovine serum 

(FBS) and maximum recovery diluent (MRD). MRD is a peptone saline solution routinely 

used as an isotonic diluent for maintaining the viability of micro-organisms during 

dilution procedures in a laboratory setting, it contains a low concentration (0.1% w:v) of 

peptone to reduce organism multiplication in addition it contains nitrogen, carbon, 

vitamins, and minerals with a pH of 7.0 ± 0.2 at 25°C. (Said et al., 2014).  

 

2.2.2 Dulbecco's Modified Eagle Medium (DMEM) and P. aeruginosa 
 

DMEM powder medium was prepared as per the manufacture's instruction (13.4 grams 

of powder per litre of ultra-pure water) of and filtered sterilised with 0.22 µm pore size 

sterile filters (Millipore). pH was adjusted to 7.4 using HEPES buffer. 

 

2.2.3 Establishing P. aeruginosa strains 
 

To establish the initial bacterial cutlers one bead of both strains of previously bio-

banked P aeruginosa was removed in aseptic conditions and grown in 30 ml of TSB at 

37°C in an orbital incubator (S1500, Stuart Scientific) at 120 rpm or until the solution 

became cloudy. This solution was then streaked on 4 TSA plates and grown overnight 

at 37°C it was visually established that all the colonies had the same appearance. 
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These plates were stored at 4°C for up to 6 months. To establish a bacterial culture 1 

colony was removed from the plate and added to 30mls of TSB and incubated overnight 

at 37°C in an orbital shaker set at 120 rpm these conditions had previously been shown 

to provide a plateau phase culture.  

 

2.2.4 Obtaining a growth curve for the strains of P. aeruginosa  

 

Two sterilized flasks with 50ml of SWF or DMEM were inoculated with both strains of P. 

aeruginosa and the absorbency at 600 nM was adjusted to 0.255 au for Laboratory 

strain (L.) and 0.270 au for Hospital strain (PS3) at 270 nm respectively which had been 

determine to give a suspension of approximately 108 cfu/ml. 5ml of the suspension was 

added to 45ml of growth media in a flask and incubated in an orbital shaker at 37°C and 

120 rpm absorbance at 600 nM was measured each hour for 7 hours and then at 

various time point up to 24, 72, 96 hours.  

In addition to absorbance bacterial growth curves were established by sampling the 

bacteria and producing a serial dilution to give a final dilution of 10²,104,106 these were 

then added to TSA plates using an automatic spiral plater, (Don Whitley Scientific, UK) 

in duplicate for each dilution after which the plates are incubated at 37°C overnight and 

then the colonises were counted using aCOLyte plate reader and accompanying 

software. 

 

2.2.5 E coli C25 
 

E coli C25 was obtained from bio-banked stores described for P. aeruginosa the 

bacteria was grown in TSB or on TSA plates. 
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2.2.6 Total carbohydrate analysis by the phenol-sulphuric acid assay  

 
The phenol-sulphuric acid method is a simple and rapid colorimetric method to 

determine total carbohydrates in a sample (Dubois et al., 1956). To quantify the 

concentration of glucose a calibration curve was constructed using (0, 50, 100, 150, 

200, 250, 300, 350, 400) mg/l. Samples were taken from the bacterial solution at the 

time intervals indicated in the results and then centrifuged at (4000 rpm) for 10 min, 

then 100μl of the supernatant was added to 500μl of 50% phenol and 2.5ml of 

concentrated 99.9% (v:v) sulphuric acid vortexed and incubated at 70°C for 20 min, the 

samples were then cooled in a water bath at 10°C for 20 min. Absorbance was 

measured at 490 nm and the glucose concentration calculated. 

 

2.2.7 Determination of glucose concentration by pico-trace analysis 

method 

 
To detect the glucose consumption during Pseudomonas aeruginosa growth a pico-

trace was used (Pico-trace Analytics, Richard-Wagner-Strab, Braunschweing, 

Germany). 10μl samples were first centrifuged at 4000 rpm and then added to Pico-

trace buffer solution and vortexed and the glucose concentration was measured.  

 

2.2.8 Isolation of bacterial supernatant solutions 

 
A loopful of Laboratory strain (L.) and Hospital strain (PS3) of P. aeruginosa were taken 

and streaked onto separate TSA plates. In aerobic conditions the plates were incubated 

in incubator (Sanyo MIR 262) at 37ºC. By using a sterile inoculation loop, colonies were 

taken from the TSA plates to inoculate 50ml of sterile media which was incubated 

overnight in a shaking incubator at 37ºC, 120rpm to grow to stationary phase. The 

bacteria were centrifuged at 10000 x g for 10 minutes and the supernatant was retained 

and then filtered through a 0.45μm syringe-driven filter and stored at -30 ºC until 

required. 
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2.2.9 Sonicated bacteria 
 

Bacteria were grown as described in section 2.2.4 and 10 ml aliquots of stationary 

phase bacterial cultures were sonicated on ice, using a Vibracell VCX 130 (Sonics and 

Materials Inc., Newtown, CT, USA) at 85% amplitude for a 5 x 6 sec pulses with a 25 

sec cooling between pulses, to prevent an excessive increase in temperature. The 

resulting solutions were filtered through a 0.45μm syringe-driven filter and stored at -30 

ºC until required. 

 

2.2.10 Whole Cell Extract Preparation 
 

The 10ml of a plateau phase of bacteria were centrifuged at 10000 x g for 10 minutes 

the supernatant was removed and the pellet re-suspended in water. This extract is then 

sonicated following the method described above and stored in aliquots at -30 ºC. 

 

2.2.11 Isolation and quantification of outer membrane vesicles 

isolated from P. aeruginosa and E coli  

 
The method used for the isolation of outer membrane vesicles (OMVs) was based on 

that described by Kadurugamuwa & Beveridge (1995). A colony of P. aeruginosa both 

PS3 and lab strain and E. coli (C25) from tryptone soy agar plate was used to 

inoculated 30 ml aliquots of tryptone soy broth (TSB) and incubated at 37°C overnight in 

an orbital shaker at 120 rpm to achieve the plateau phase of the growth curve. These 

cultures were then added to 270ml of TSB and again grown overnight in an orbital 

shaker or until the plateau phase was achieved. 1ml of the bacteria culture just before 

the isolation of OMV was taken to determine the CFU/ml for each culture following the 

procedure described in section 2.1.4. The remaining culture was centrifuged at 10,000 x 

g (Beckman Coulter Avanti J-26 XPI centrifuge, F250 rotor) for 20 minutes to pellet the 

bacteria. The supernatant was collected and filtered through 0.45µm pore filter, to 
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remove any remaining bacteria, the filtrate was centrifuged at 40,000 x g (Beckman 

Coulter Optima L-100K, 50Ti rotor) at 4°C for 2 hours to pellet out the OMVs. The small 

pellets that were distributed in 8 tubes were suspended using 1ml of HEPES buffer per 

tube and pooled in 1 tube the volume was then made up to 28mls and centrifuged again 

at 40,000 x g at 4°C for 1.5 hours to re-pellet the OMVs. The supernatant was removed 

and the pellet was re-suspended in specific volumes for each strain in HEPES buffer 

solutions at pH 6.8, this was filtered aseptically through 0.45µm pore filter to sterilise 

and stored at -20°C. 

 

2.2.12 Isolation of bacterial outer membranes 
 

The isolation of bacterial outer membranes was carried out using a method previously 

described (Zhou et al, 1998). A plateau phase culture of either one of the two strains of P. 

aeruginosa or E. coli (C25) grown in TSB was centrifuged at 10000g for 10 mins and the 

pellet resuspended in 10ml phosphate buffer saline (PBS) the centrifugation step was 

repeated twice after which the bacterial pellet was resuspended in 10ml PBS containing 

0.01M ethylenediaminetetraacetic acid (EDTA) and incubated at room temperature for 30 

mins, the suspension was then placed on ice and sonicated for 10 seconds at 85% 

amplitude and then centrifuged at 10000g for 10 mins at 4°C. The resultant supernatant 

was again centrifuged at 80000g (using the Beckman Ti rotor) for 2 hours at 4°C, this 

produced a translucent yellow pellet that was resuspended in sterile water the two 

previous centrifugation steps were repeated and the pellets, which represents the outer 

membranes, are pooled and resuspended in a final volume of 0.5ml of sterile water the 

samples were stored at -20°C. 

 

2.2.13 Lowry protein assay 

 
A BioRad Lowry assay kit was used in a 96 well plate format using the manufactures 

instructions with BSA used as standards. The supplied 2X (2N) Folin-Ciocalteu reagent 

was diluted1:1 with ultrapure water to prepare 1X (1N) reagent and used on the same 
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day. 40µL of all standards and protein samples was added into a 96 well plate to which 

was added 200µL of the modified Lowry reagent using a multi-channel pipette. 

Immediately the contents of the wells were mixed on a plate mixer for 30 seconds. The 

microplate was covered with sealing tape and incubated at room temperature (RT) for 

10 minutes. The absorbance at 750nm was then measured using a plate reader. The 

average absorbance value of the blanks, standards and protein samples were 

calculated. 

 

2.2.14 SDS Polyacrylamide gel electrophoresis analysis of outer 

membrane vesicles  
 

Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) is the most 

commonly used laboratory technique to separate proteins and to estimate their 

molecular weight. This was used to compare the proteins expressed in the OMVs from 

the bacteria grown in various culture conditions and to those obtained from the outer 

membrane of the bacteria. In order to run the SDS-PAGE 2ml of the OMVs or OM 

suspensions from the different bacteria grown in different conditions were centrifuged at 

150000 x g for 1.5 hours at 5°C. The resultant pellets were resuspended in 85µl of 

NuPAGE® LDS sample buffer (4X) and 10µl DTT. Loading buffer was added to the 

purified sample at a 1:1 v: v ratio. 500µl NuPAGE LDS 4X sample buffer, 300µl water 

and 200µl DTT resulting in a total of 1ml the samples were incubated at 70°C for 10 

minutes.  

10µl of the sample along with 10µl of the Novex pre-stained protein standards were 

pipetted into individual wells. 1x MES buffer (50 mM MES, 50 mM Tris Base, 0.1% SDS, 

1 mM EDTA, pH 7.0) was added to the chambers of a one-dimensional, 4-12% 

NuPAGE Novex Bis-Tris precast protein gel in a vertical gel container system. The gel 

was run at 200V, 250mA for 45 minutes after which the gel was stained in Coomassie 

blue stain on an IKA Labortechnik KS250 basic flat shaker bed for approximately an 

hour. The gel was destained overnight in destain (10% acetic acid, 30% methanol, 60% 
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water) and viewed using the InGenius Syngene gel viewing cabinet and images were 

taken with the GeneSnap software. 

As there were no clear bands visible in for the OMV samples, the method was modified 

and 30µl of sample was pipetted into individual wells along with 30µl of the Novex pre-

stained protein standard. The gel was stained for approximately 1 hour and destained 

for 3 days. 

 

2.2.15 Transmission electron microscopy of outer membrane vesicles 
 

Transmission electron microscopy (TEM) of the OMVs was carried out in collaboration 

with Dr Dan Patten at the University of Birmingham UK. OMVs were isolated as 

described in section 2.1.11. The OMVs from a 300ml overnight plateau phase bacterial 

growth in TSB was resuspended in 1ml of 50mM HEPES buffer (pH 6.8). The vesicles 

were put on carbon films that were placed on a 400 copper mesh grid (Agar Scientific) 

and left for 1 minute at room temperature. The grids were then negatively stained with 

1% aqueous uranyl acetate for 1 min at room temperature. The grids were then mounted 

on the viewing platform of on a 1200EX transmission electron microscope (LoJeol) and 

images of the OMVs were taken. 

 

2.3 Cell culture 

 
The culture of the mammalian keratinocytes used in this study was performed 

aseptically within a HEPA filtration microbiological safety class II cabinet (CellGarda 

manufactured by NUAIRE, Triple Red Technologies). To avoid contamination, working 

areas of the cabinet were cleaned before and after use with 70% ethanol (w/v). For a 

monthly routine sterilisation, the hood was disinfected by using Mikrozid® (Gompel 

Healthcare). Contaminated solutions and unwanted cells were treated with 10% (w/v) 

virkon for at least 30 mins before being disposed of via the normal waste drain. For 
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centrifugation of the cells Hettich Zentrifugen Universal 320 bench top centrifuge for 

pelleting of cells they were routinely spun for 5 mins at 1200rpm.  

 

2.3.1 HaCaT Cells 
 

The immortalized human skin keratinocyte cell line HaCaT was obtained from Cell Line 

Services (CIS) and used between passages 49-61. These cells were in grown in 

Dulbecco’s Modified Eagle’s Medium (DMEM) with high glucose (4500 mg/l) 

supplemented with 10% fetal bovine serum (FBS) and 2mM L-glutamine at 37 C in 5% 

CO2 and 100% humidity. 

 

2.3.2 Sub Culturing Cells  
 

Cells were sub cultured when they reached 80-95% confluence. The media was poured 

off the cells and they were washed with 10 ml of EDTA 0.1% (w:v) solution in HBSS 

without of calcium and magnesium to remove any remaining serum from the cells and 

dissociated the tight junction between the cells, allowing the trypsin to access the cell 

adherence sites and break the bonds with the surface of the flasks. After the cells were 

washed, 2 ml of 0.05% trypsin/ EDTA solution were added to the flasks. The cells were 

then incubated with trypsin solution at 37 C for 5-10 minutes until all the cells were 

detached, fresh media was added to inactivate the trypsin. The HaCaT suspension 

produced was pipetted a number of times to disperse the cells. The cell suspension was 

transferred to a new T75 culture flask containing 12 ml fresh medium a split ratio 1:4 

was used routinely for continuation cultures. The cells were also seeded on specific 

plastic-ware for experiments as indicated. 
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2.3.3 HaCaT adaptation to serum-free medium 
 

A sequential adaptation methodology was followed to switch the culture conditions of 

HaCaT cells from a serum-supplemented to a serum-free, low calcium medium (KSFM). 

This involved culture and passaging whilst gradually reducing the proportion of standard 

culture medium DMEM/10% FBS (DMEM complete, DMEMc) and replacing it with 

KSFM/EGF/BPE (KSFM complete, KSFMc) over a period of six passages. To do this 

the following media ratios changes were used passage 1 (P1) from DMEMc to 3:1 (v/v) 

DMEMc: KSFMc, (P2) change to 1:1 (v/v) DMEMc: KSFMc (P3) change to 1:3 (v/v) 

DMEMc: KSFMc (P4) medium-change to 1:9 (v/v) DMEMc: KSFMc (P4) and (P5), final 

medium-change to KSFMc and subsequent passage (P6). After this, HaCaT cells had 

fully adapted to the new culture medium and were named HaCaTa. 

 

2.3.4 HaCaTa cells 
 

HaCaT cell were adapted to culture conditions designed for NHKs (Keratinocyte serum 

free medium KSFM) (see section 2.2.3) in order to render them more representative of 

normal cells, this newly adapted cell line was named HaCaTa. HaCaTa were kindly 

provided by Dr Nikolaos T. Georgopoulos (Department of Biological Sciences, 

University of Huddersfield). 

HaCaTa cell were cultured in Keratinocyte serum free medium (KSFM) supplemented 

with epidermal growth factor (EGF) and bovine pituitary extract (BPE) as recommended 

by the manufacturer.  

 

2.3.5 Normal Human keratinocytes (NHKs) 
 

Normal Human keratinocytes (NHKs) were kindly provided by Dr Nikolaos T. 

Georgopoulos (Department of Biological Sciences, University of Huddersfield) (and 

were originally isolated from human obtained from various surgical procedures). NHKs 

were cultured in keratinocyte serum free medium (KSFM) supplemented with epidermal 
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growth factor (EGF) and bovine pituitary extract (BPE) as recommended by the 

manufacturer. NHKs were used at passages 1–6 to ensure maximal proliferative 

capacity. NHKs were seeded into 96-well tissue culture plates at a density of 7.5 × 103 

cells per well. For routine maintenance and experiments, NHKs were cultured in 

Primaria™ (Scientific Laboratory Supplies) or Cell Plus (Sarstedt) plasticware, whereas 

original and adapted HaCaT cells were maintained in standard plasticware (Sarstedt). 

 

2.3.6 Effects of extracellular calcium on the growth and differentiation 

of normal human keratinocytes  

 

NHK’s were cultured in keratinocyte serum free media (KSFM) already containing 0.09 

mM calcium, supplemented with 25 µg / ml Bovine Pituitary Extract (BPE) and 1.5 

ng.ml-1 of recombinant epidermal growth factor (EGF). Cultures were maintained in a 

humidified 5% CO2 atmosphere at 37°C. For all experiments, cells were seeded at a 

density of 3x 104 cells.cm2. Cells were allowed to adhere for 24 h in LC KSFM (0.09 mM 

calcium) prior to exposure to high calcium (HC) KSFM supplemented with 1.2 mM 

calcium, for 24 hours.  

 

2.3.7 Seeding of cells for bacterial challenged experiments  
 

HaCaT or HaCaTa were seeded into 96-well tissue culture plates at a density of 5 x 103 

cells per well, NHKs (both low and high calcium) were seeded at 7.5 x 103 cells per well 

optimal density for each cell type was determined by pre-titration experiments. All 3 

types of keratinocytes were grown in standard tissue culture conditions before the 

experiments. 

For IL-8 analysis HaCaT and HaCaTa were seeded at 1.5 x105 cell/well and NHKs (both 

low and high calcium) were seeded at 7.5 x 103 cells per well in 6 well plates and grown 

in standard tissue culture conditions for 3 days until they became confluent during this 
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time the media was changed every once. After this the cells were challenged with 

various bacterial products as described below.   

 

2.3.8 Cryopreservation of HaCaT, HaCaTa and NHK cells 

 
For cryopreservation of the cells they were first trypsinized as described in section 2.2.2 

above and then centrifuged at 1200 rpm for 5 minutes the supernatant removed and the 

cell pellet resuspended in freeze media (80% normal complete media (for the specific 

cell line) supplemented with 10% FBS and 10% dimethylsulphoxide (DMSO). Cells were 

aliquoted into 1ml storage cryovials and transferred to a ‘Mr. Frosty’™ supplied by 

Thermo Scientific this contains ethanol and provides controlled and gradually cooling 

when placed at -80°C overnight after this the vials were transferred to a liquid nitrogen 

at -176 °C for long term storage. 

 

2.3.9 RNA isolation 
 

RNA was isolated using an isolate ll RNA mini kit (Bioline) following the manufactures 

instructions. Each kit contains: filter columns, collection tubes (2ml and 1.5ml), lysis 

buffer, wash buffer, membrane desalting buffer MEM (to reduce DNase I activity), and 

reaction buffer for DNase I, DNase, RNase-free water. The cells were cultured in a T75 

flask the supernatant was removed and the cells were lysed with the addition of 350μl 

lysis buffer with 3.5μl of β-mercaptolethanol the cell lysates were stored at -80°C until 

required.  

After defrosting the lysates were loaded on the filter which was placed inside a 2ml 

collection tube and spun at 11000xg for 1 min. 350μl of 70% ethanol was added to the 

filter and mixed by pipetting up and down several times. The homogenized cell lysate 

was loaded on the filter column and centrifuged at 11000xg for 30s. 350μl of membrane 

desalting buffer (MEM) was added to the column and centrifuge at 11000xg for 1min. 

10μl of DNase I was added to 90μl of reaction buffer and 95μl of this DNase l reaction 
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mixture was added to the centre of the silica membrane and incubated at room 

temperature for 15 min. After which 200μl of wash buffer was added to the column and 

centrifuged at 11000xg for 30s 2 further wash steps were carried out and then 60μl of 

RNase-free water was added to the column and centrifuged at 11000xg for 1 min. The 

filtrate, containing RNA was then collected and the UV absorbance at 260nm was 

measured using a Nanodrop (manufactory etc) to determine the concentration of RNA 

which was stored in aliquots at -80°C until required.  

 

2.3.10 cDNA production by reverse transcription  
 

mRNA was converted to cDNA by reverse transcription (RT) reaction using the 

SensiFAST cDNA synthesis kit from (Bioline,UK) following the manufactures instruction. 

Up to 1μg of RNA was added to 4μl of 5x trans amplification buffer and 1μl reverse 

transcriptase the volume was made up to 20μl with DNase/RNase free water. The 

solution was incubated in a Techne TC-3000 Thermocycle, using the following protocol: 

25°C for 10 min, 42°C for 15 min, 85°C for 5 min and the reaction was held at 4°C. The 

cDNA was stored at -80°C.  

 

2.3.11 Quantification of gene expression 
 

Quantitative PCR (qRT-PCR) was used to quantify the relative abundance of TLR-1, 

TLR-2, TLR-4, TLR-5, TLR-9 and actin. qRT-PCR was performed on the 7500 Fast 

Real time PCR system (Life Technologies). Probes and primers were designed using 

the Roche ProbeFinder software (Roche Diagnostics Ltd). Table 2.1 shows the 

sequences of the primers and the Universal probe number used to quantify the 

expression of the genes in this study. The probes were obtained from Roche Products 

Limited and primers from MWG Eurofins. qRT-PCR reaction was carried out in final 

volume of 20μl with the following reaction mix: 0.5μl of 20μM primers, 0.5μl universal 

probelibrary probe, and 4μl of 5 x lightcycler® Taqman®Master mix, 0.5μl of 8.95μg/ml 

cDNA and 13 μLPCR-grade water. All PCR assay were performed in triplicate using the 

following incubation steps: activation at 95C° for 10 min, followed by cycles of 95°C for 
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10s, 60°C for 30s and 72°C for 1s this was repeated for 44 cycles after which the 

reaction was stopped with a final cooling step at 40°C for 30 s. 

 

Gene Forward Primer sequence Reverse Primer sequence 
Universal 
Probe No 

Actin ccaaccgcgagaagatga tccatcacgatgccagtg 64 

TLR1 aaacaacattgaaacaacttggaa cacgtttgaaattgagaaatacca 64 

TLR2 ctctcggtgtcggaatgtc aggatcagcaggaacagagc 56 

TLR4 gaaggttcccagaaaagaatgtt cctgattgtccttttcttgaatg 75 

TLR5 ctccacagtcaccaaaccag cctgtgtattgatgggcaaa 72 

TLR9 tgtgaagcatccttccctgta gagagacagcgggtgcag 56 

 

Table 2.2: Primers and Universal probes used for the genes indicated in qRT-
PCR. 

 

2.3 Bacterial products challenge experiments 

 

2.3.1 Keratinocytes challenge cell free bacterial conditioned media 
 

In order to challenge HaCaT cell with the soluble factors secreted from the bacterial 

strains they were grown for 24 hours in 30ml of growth media either DMEM or TSB after 

this the solution was centrifuged at 1200 RPM for 5 minutes to remove the bacteria. The 

supernatant was then filtered using 0.4µm pore size aseptically the solutions were 

aliquoted and stored at -20°C before being used to challenge of the cells. 

HaCaT cells were grown in 6 well plates until became confluent, the media was 

removed and replace with 1 ml of bacteria conditioned TSB or DMEM diluted in 

complete tissue culture media as indicated or the corresponding non-conditioned 

bacterial growth media. The cells were incubated 4 hours at 37°C after this the 

challenge solution was removed and then fresh tissue culture media was added and the 
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cells were returned to the cell culture incubator for 24 hours after which the supernatant 

was removed and stored at -20°C for subsequent IL-8 analysis. After the supernatant 

was removed the biomass of the cells was routinely measured using the CellTiter 96® 

AQueous One Solution as described in section 2.2.7. 

 

2.3.2 Cell challenge with OMVs and OM 
 

Cells were seeded at 1.5x105 cells/well in 6 well plates and grown in standard tissue 

culture conditions until they became confluent during this time the media was changed 

every 2nd day. After this the cells were challenged with 1ml of several concentrations of 

OMV and OM in tissue culture media derived from both strains of P. aeruginosa for 4 

hours. The solution was then removed and 1ml of tissue culture media was added to 

each well and incubated over night at 37°C. The culture media was then collected into 

several Eppendorf tubes and stored at (-20°C) for subsequent IL-8 analysis. 

Micrographs of the cells were obtained to allow a visual representation of their viability 

cell viability was also quantified using CellTiter 96® AQueous One Solution as 

described in section 2.3.3.  

 

2.3.3. Quantification of cell biomass 
 

Quantification of cell viability was performed via the determination of cell biomass using 

the CellTiter 96® AQueous One Solution Cell proliferation assay (Promega UK). This 

assay involves the use of the MTS tetrazolium ion which is yellow and is reduced to a 

brown formazan derivative by cellular respiration and this colour change is proportional 

to the number of viable cells. To perform the cells were plated into 96 well plates at a 

density of 5 x 103 cells per well incubated overnight and then challenged with various 

bacterial culture supernatants or outer membrane vesicles (OMV’s) as indicated in the 

results. After this 20µl of CellTiter 96® AQueous One Solution was added to each well 

and the plate was incubated at 37°C in 5% CO2 for 4 hours. The concentration of 

formazan formation/cell viability was quantified by measuring absorbance at 492nm on 
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a FLUOstar OPTIMA plate reader (BMG Labtech) the data was processed using MARS 

software (BMG Labtech). Cell viability was calculated as percentage viability in 

comparison to controls using equation 1:  

 

Cell viability (%) = T/C x 100   ……………………. (1) 

 

T= treated cells and C= controls cells.  

 

In addition to Cell Titer assay, cell viability was also monitored by inverted contrast 

microscopy and phase contrast images were obtained using an EVOS XL core 

microscope (life Technologies) at 100x magnification. 

 

2.3.4 IL-8 Quantification  
 

IL-8 quantification was carried out using the DuoSet® ELISA development system 

Human CXCL8/IL-8 kit (DY008) provided by R&D Systems, following the protocol 

supplied. The capture antibody was diluted to the working concentration in PBS only 

and 100µl per well was added to a 96-wellplate which was then sealed with sealing film 

and incubated overnight at room temperature. The wells were then washed with 310µl 

of diluted wash buffer this was then removed by inverting the plate and blotting it 

against clean paper towels this step was repeated 3 times. 300µl of blocking buffer per 

well was added and the plate was incubated for one hour after this the wash step as 

reported above was repeated. The standards were prepared by serial dilution of the IL-8 

stock solution in reagent diluent to give the following concentrations: 1000, 500, 250, 

125, 62.5 and 31.3 pg/ml. 100µl of these were added to the well in duplicate. Samples 

(which were diluted if required) were added to the remaining wells. The plate was then 

covered and incubated for 2 hours at room temperature after which the wash step was 

repeated again. The detection antibody was prepared by dilution in the regent diluent 

and 100µl of this was added per well. The plate was covered with a new adhesive strip 

and incubated for 2 hours at room temperature. After this the wash step was repeated 
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as before and 100μl of a 1:40 dilution of streptavidin-HRP solution was added to each 

well the plate was covered and incubated for 20 minutes away from light. The wash was 

repeated and then 100μl of the substrate solution was added to each well and the plate 

incubated at room temperature away from direct light for 20 minutes. 50μl of stop 

solution was added to each well, the plate was taped gently to mix the contents and a 

96 well plate reader (FULOstar OPTIMA) (BMG labtech) was used to measure the 

optical density at 540nm.  

 

Statistical Analysis 

By using Microsoft Excel the results were collected and analysed. All data were 

presented as mean values ± SEM. Statistical analysis was performed by using 

statistical software (Minitab 17). P-value was generated by using two tailed paired 

student t-test. 
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3.1.1 HaCaT, HaCaTa and NHK cell lines 
 

Three cells lines were used to study the interactions of bacterial products with keratinocytes. 

Micrograph images were routinly taken to check that they grow with a consitent phenotype and 

repersientiative images are presented here. 

 

 

 

Figure 3.1.1: HaCaT cells cultured in complete media DMEM to demonstrate their normal 
growth pattern  

Classic morphology of HaCaT cells can be seen. Image is representive phase contrast 
micrographs (taken at 100x magnification. 
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Figure 3.1.2: A representative image of Normal Human Keratinocyte 

Image is representative phase contrast micrograph (taken at 100x magnification). 
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Figure 3.1.3: A representative image of HaCaTa.  

Image is a representative phase contrast micrograph (taken at 100x magnification). 
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3.1.2 NHK in low and high Calcium 
 

In order to study the effect of differentiation of the NHK cells on their response to bacterial 

secreted products they were grown in different concentrations of calcium the effect of this on 

their basic morphology are presented here. 

 

Figure 3.1.4: Human Keratinocyte control calcium. 

Image is represented phase contrast micrographs (taken at 100x magnification). 
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Figure 3.1.5: A representative image of Normal Human Keratinocyte after exposure to low 
concentration of calcium medium (LC) after three days.  

Morphological changed can be seen as a result of calcium addition, cells became flat and 

spread out, and a steady increase in cell growth was observed. Image is representative phase 

contrast micrographs (taken at 100x magnification). 
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Figure 3.1.6: A representative image of Normal Human Keratinocyte after exposure to 
high concentration of calcium (HC) after three days.  

Morphological changed can be seen as a result of calcium addition, cells became small and 

cobble-stoned and cell growth was slower than LC medium. Image is representive phase 

contrast micrographs (taken at 100x magnification). 
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3.1.4 Expression Pattern Recognition Receptors in HaCaT cells 

In order to understand if the HaCaT cells express a range of Pattern Recognition 

Receptors when grown in culture a series of quantitative PCR experiments were 

performed. These are the mammalian receptors that respond to a series of microbial-

associated molecular pattern molecules. HaCaT cells were grown for either 4 or 10 

days in standard culture conditions before the RNA was extracted.  

 

 
10 Days 4 Days 

Gene CT1 CT2 CT1 CT2 

Actin 18.862 - 18.7644 - 

TLR1 29.824 10.9617 27.928 9.1637 

TLR2 24.853 5.9909 25.8853 7.1209 

TLR4 28.012 9.1498 24.8197 6.0553 

TLR5 24.852 5.9898 25.3899 6.6255 

TLR9 28.062 9.2005 32.3793 13.6149 

 

Table 3.1. 1: Gene expression HaCaT cells grown for 4 days, 10 days in culture. 

CT: (Threshold cycle) the cycle number at which the fluorescence signal crosses threshold. Also called cp 
(cross point cycle) for light cycle terminology. Gene amplification represented relative amount of mRNA 
for that gene. ΔCT: value of CT of the Gene - value of CT for housekeeping (Actin) Gene. Representative 
standard amplification curves are shown in the appendix  

 

The expression of the house keeping gene actin is the same in both age of cells and 

TLR9 has more expression in day 4 however, TLR1 and TLR4 had greater expression 

in days 10 cells.  

Overall, with the exception of TLR9, there was generally high expression in the older 

cell. Expression, at the mRNA level, was observed for all the TLRs although relatively 

little TLR9 mRNA seems to be present. 
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3.2.1 TEM image of outer membrane vesicles (OMVs) isolated from 

bacteria 
Outer membrane vesicles were obtained from both strains of Pseudomonas aeruginosa 

using standard isolation techniques as described in the methods. Following this 

samples were processed for TEM and the following images where obtained. 

 

 

Figure 3.2.1: TEM image of outer membrane vesicles (OMVs) isolated from Pseudomonas 
aeruginosa Hospital strain (PS3).  

The vesicles can be seen as white 30 -50 nm sized spheres.  

 

 
 

Figure 3.2.2: TEM image of outer membrane vesicles (OMVs) isolated from Pseudomonas 
aeruginosa Laboratory strain (L.).  

The vesicles can be seen as white 30 -50 nm sized spheres.  
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As a comparison and to verify the isolation of OMVs from Pseudomonas aeruginosa a 

similar isolation was performed on E coli C25 and TEM images were obtained although 

isolated at a lower density similar images of vesicles were obtained.  

 

 
Figure 3.2.3: Image illustrates Outer Membrane Vesicles OMVs of E. Coli (C25).  

The vesicles can be seen as white 30 -70 nm sized spheres. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



81 
 

3.2.2 Protein assay for OMVs isolated from Pseudomonas bacterial 

strains 

 
In order to quantify the OMV obtained from each preparation a Lowry assay was 

performed to measure the concentration of protein associated with the OMVs obtained 

following each preparation performed on the 2 strains of Pseudomonas and different 

growth conditions used in this study. 

 

 

In order to calculate the relative yield of OMVs from the 2 strains of Pseudomonas and 

different growth conditions were used in this study, the number of bacteria in the 

overnight culture used to isolate the vesicles from was calculated. This was then used 

to normalise the protein content of the OMVs in µg per 108 bacteria from the culture that 

the OMV were isolated from the results for preparation 1 is shown below. 

 

Samples 
Protein concentration 

(μg/ml) 
Total Protein (μg) 

OMVs of Hospital strain 

(PS3) without gentamicin in 

TSB 

7.95 3.62 

OMVs of Hospital strain 

(PS3) with gentamicin in 

TSB 

8.10 6.68 

OMVs of Laboratory strain 

(L.)  without gentamicin in 

TSB 

8.00 0.289 

OMVs of Laboratory strain 

(L.)  with gentamicin in TSB 

 

18.00 0.318 

Table 3.2. 1: Protein concentration for OMVs isolated from P. aeruginosa strains in TSB 

using a Lowry assay (Preparation 1). 



82 
 

In addition, the CFU/ml of bacteria that was used to isolate the OMVs is indicated.  

 

The Hospital strain PS3 produced over 10 fold more OMVs compared to the lab strain, 

as assessed by protein concentration (table 3.2.2). It also showed that addition of 

gentamicin 30 minutes before isolation of OMV increased the amount of vesicles 

produced in both strains but this increase was much greater in the Hospital strain. 

 

 

 

 

 

 

 

 

 

 

Samples 

CFU/ml× Vol. per ml 

centrifuged at first 

high speed rotation 

= overall CFU in 

bacteria sample 

Total protein in OMV 

(μg/ml) 

Protein (μg) in 

CFU bacteria108 

OMVs of Hospital 

strain (PS3) without 

gentamicin in TSB 

(1.01 × 107) × 50 

=5.05 × 108 
7.95 x 2.3 =18.28 18.282/5.05=3.62 

OMVs of Hospital 

strain (PS3) with 

gentamicin  in TSB 

(6.3 × 106) × 50 = 

3.15 × 108 
8.1 x 2.6 =21.06 21.06/3.15=6.68 

OMVs of Laboratory 

strain (L.)  without 

gentamicin in TSB 

(1.16×107) × 100 = 

11.6 × 108 
8.0 x 0.42 =3.36 3.36/11.6=0.29 

OMVs of Laboratory 

strain (L.)  with 

gentamicin in TSB 

(1.58 x107) x100= 

15.8 x 108 
18.0 x 0.28 =5.04 5.04/15.8=0.32 

Table 3.2. 2: OMVs purified from P. aeruginosa strains in TSB and the overall protein 

concentration in each sample (preparation 1). 
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Samples 
Protein concentration 

(μg/ml)  
Total protein (μg) 

OMVs of Hospital strain 

(PS3) in TSB 
49.6 (4ml) 24.5 

OMVs of Laboratory 

strain (L.)  without 

gentamicin in TSB 

37.0 (5ml) 19.6 

Laboratory strain (L.)  

with gentamicin in TSB 
56.0 (2ml) 298.7 

 

Table 3.2. 3: Protein concentration for OMVs isolated from P. aeruginosa strains in TSB 
using a Lowry assay (Preparation 2). 

 

In order to compare the total yield of OMVs from the different strains of bacteria the total 

amount of protein in the OMVs from the Hospital PS3 and Laboratory L. strains of P. 

aeruginosa was normalised to the CFU of the bacteria in the culture that the vesicles 

were isolated from using the calculation outlined below in (Table 3). 

 In addition, the effect on the yield of OMVs of adding gentamycin 30 mins before 

purification in the laboratory strain L. was assessed.  

The total volume for the OMVs concentration was calculated as it stated in the table 

below (Table 3). First of all, the concentration of OMVs for Hospital strain (OMVs PS3) 

was (24.5μg per 1011 of bacteria) where the total volume of protein for laboratory strain 

(OMVs L.) was (19.6μg per 1011 of bacteria), the protein concentration in the laboratory 

strain with the presence of Gentamicin (gOMVs L.) was (298.7μg per 1011 of bacteria), 

and that was the highest concentration from all P. aeruginosa strains. 
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Table 3.2. 4: OMVs purified from P. aeruginosa strains in TSB and the overall protein 
concentration in each sample (preparation 2). 

The data above represents that the concentration of protein was different in the Hospital 

(PS3) and Laboratory strains (L.) and Laboratory strain (L.) treated with gentamicin had 

the highest in protein concentration followed by Hospital strain (PS3) and untreated 

Laboratory strain (L.). This was taken as an indication of a greater production of OMVs. 

The preparation was repeated and the data is indicated in the table. 

  

Samples 

CFU/ml× Vol. per ml 

centrifuged at first 

high speed 

rotation=overall 

CFU in bacteria 

sample 

Total protein in 

OMV (μg/ml) 

Protein (μg) in CFU 

bacteria1011 

OMVs of  Hospital 

strain (PS3)  in TSB 

(2.7 × 109) × 300 = 

8.1 × 1011 
49.6×4 =198.4 198.4 /8.1= 24.49 

OMVs of Laboratory 

strain (L.) without 

gentamicin in TSB 

(2.7 × 109) × 350 = 

9.45 × 1011 
37 ×5= 185 185/9.45=19.58 

gOMVs  of 

Laboratory  strain 

(L.) with gentamicin 

in TSB 

(1.5×108) × 250 = 

0.375 × 1011 
56×2 = 112 112/0.375=298.66 
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Samples 
Protein concentration 

(μg/ml)  
Total protein (μg) 

OMVs of Hospital strain 

(PS3) in TSB 
35.2 (2ml) 70.4 

OMVs of Laboratory strain 

(L.) in TSB 
49.0 (2ml) 98.0 

 

Table 3.2. 5: Protein concentration for OMVs isolated from P. aeruginosa strain in TSB 
using a Lowry assay (Preparation 3).  

 

 

Samples 

CFU/mlx Vol. 

Per ml 

centrifuged at 

first high speed 

rotation=overall 

CFU in bacterial 

sample 

Protein 

concentration 

(μg/ml) in OMV 

samples 

Total protein in 

OMV (μg/ml) 

Protein (μg) in 

CFU 

bacteria1011 

OMVs of 

Hospital (PS3) 

Strain in TSB 

(2.79x 109) x300 

=8.37x10¹¹ 
35.2 70.4 8.4 

OMVs of 

Laboratory 

(L.)Strain in TSB 

(2.65x109) x300 

=7.95x10¹¹ 
49.0 98.0 12.3 

 

Table 3.2. 6: The data of the OMVs purified from P. aeruginosa strains in TSB and overall 
protein concentration in each sample has been stated with CFU/ml of both strains which 
used for (preparation 3) OMVs Isolation. 
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Samples 
Protein concentration 

(μg/ml) in samples 

Total protein in samples 

(μg) 

OMVs of Hospital 

(PS3)strain in TSB 
32.3 (3.5ml) 113.1 

OMVs of Laboratory 

strain (L.) in TSB 
22.4 (3.5ml) 78.4 

 

Table 3.2. 7: Protein concentration for OMVs isolated from P. aeruginosa   strains in TSB 
using a Lowry assay (Preparation 4). 

 

 

 

Samples 

CFU/ml x Vol. 

Per ml 

centrifuged at 

first high speed 

rotation=overall 

CFU in bacterial 

sample 

Protein 

concentration 

(μg/ml) in 

OMV samples 

Total protein 

in OMV 

(μg/ml) 

Protein (μg) in 

CFU bacteria10 11 

OMVs of 

Hospital (PS3) 

Strain in TSB 

(2.38x 109) x300 

=7.14x10¹¹ 
32.3 113.1 15.8 

OMVs of 

Laboratory 

Strain(L.) in TSB 

(2.06x109) x300 

=6.18x10¹¹= 
22.4 78.4 12.7 

 

Table 3.2. 8: Shows the data of the OMVs purified from P. aeruginosa strains in TSB and 
overall protein concentration in each sample has been stated with CFU/ml of both strains 
which used for (preparation 4) OMVs Isolation. 
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Samples Protein concentration 

(μg/ml) in samples 

Total protein in samples 

(μg) 

OMVs of Laboratory strain 

(L.) strain in SWF 
535 1605 

OMVs of Laboratory strain 

(L.) in SWF+Ethanol 
650 1950 

 

Table 3.2. 9: Protein concentration for OMVs isolated from P. aeruginosa   strains in TSB 
using a Lowry assay (Preparation 5). 

 

 

Samples 

CFU/ml x Vol. 

Per ml 

centrifuged at 

first high speed 

rotation=overall 

CFU in bacterial 

sample 

Protein 

concentration 

(μg/ml) in OMV 

samples 

Total protein 

in OMV(μg/ml) 

Protein (μg) in 

CFU bacteria10 11 

OMVs of 

Laboratory 

strain (L.) in 

SWF 

(3.17 x 109) x300 

=9.5x10¹¹ 
535 535x3=1605 1605/9.5=169 

OMVs of 

Laboratory 

strain in 

SWF+Ethanol 

(2.18 x109) x300 

=6.54x10¹¹= 
650 650x3=1950 1950/6.54=298 

 

Table 3.2.10: The data of the OMVs purified from P. aeruginosa Laboratory strain (L.) in 
SWF and SWF + Ethanol overall protein concentration in each sample has been stated 
with CFU/ml of Laboratory strain (L.) which used for OMVs Isolation (Preparation 5). 

        

The overall of protein concentration in OMVs samples µg/ml can be used to calculate 

the total OMVs protein per 1011 CFU. In the table above the colony count data (CFU/ml) 

was obtained during the OMVs isolation process as shown in in the first column of 

(Table 3.2.10). This number of bacteria was multiplied by the total volume of the culture 
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media used and gives the total CFU/in 300ml culture. The total protein in OMVs (µg/ml) 

was the amount of HEPES buffer that was added to the OMVs pellet when isolated from 

P. aeruginosa multiplied by the protein concentration (µg/ml) of the total protein. 

Concentration was obtained by multiplying the total protein in OMV (µg/ml) by the 

CFU/ml of total bacteria. Finally, the results show that the bacteria which were grown in 

SWF with ethanol produced OMVs more than the bacteria grown in only SWF.  

 

Samples 

Protein 

concentration 

(µg/ml) in samples 

Total protein in samples (µg). 

OMVs of Laboratory 

strain (L.) in TSB 
191.66 1916.6 

OMVs of Laboratory 

strain (L.) in SWF 
543.75 5437.5 

 

Table 3.2.20: Protein concentration for OMVs isolated from P. aeruginosa strain in TSB 
using a Lowry assay (Preparation 6). 

 

 

Samples 

CFU/ml x Vol. Per ml 

centrifuged at first 

high speed 

rotation=overall CFU 

in bacterial sample 

Protein 

concentration 

(μg/ml) in 

OMV samples 

Total protein 

in 

OMV(µg/ml) 

Protein (μg) 

in CFU 

bacteria10 11 

OMVs of 

Laboratory  strain 

(L.) in TSB 

(3.5 x 109) x 300 = 

10.5 x 1011 
1916.6 

1916.6 x 0.2 

= 383.32 
36.506 

OMVs of 

Laboratory  strain 

(L.) in SWF 

(2.9 x 109) X 300 = 

8.7x 1011 
5437.5 

5437.5x 

0.5= 
312.5 

 

Table 3.2.21: The data of the OMVs purified from P. aeruginosa Laboratory strain (L.) in 
TSB and SWF overall protein concentration in each sample has been stated with CFU/ml 
of Laboratory strain (L.) which used for OMVs Isolation (Preparation 6). 
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Samples 
Protein concentration 

(µg/ml) in samples 
Total protein in samples (μg) 

OMVs of Laboratory 

strain (L.) in TSB 
160 1600 

OMVs of Laboratory 

strain (L.) in SWF 
382 76400 

 

Table 3.2.22:  Protein concentration for OMVs isolated from P. aeruginosa Laboratory 
strain (L.) in TSB and SWF using a Lowry assay (Preparation 7) 

                

Samples 

CFU/ml x Vol. 

per ml 

centrifuged at 

1st high speed 

rotation-

Overall CFU in 

bacteria 

sample 

Protein 

concentration 

(μg/ml) in 

OMV samples 

Total protein 

in 

OMV(µg/ml) 

Protein (μg) in 

CFU bacteria10 11 

OMVs of 

Laboratory 

strain (L.) in 

TSB 

(3.3 x 109) x 

300 = 9.9 x 1011 
1600 

1600 x0.2 

=320 
320/9.9=32.3 

OMVs of 

Laboratory 

strain (L.) in 

SWF 

(8.6 x 109) x 

300 =25.8 x 

1011 

3820 76400 x 0.5= 
305600/2.58=1184

4.9 

 

Table 3.2.23: Shows the data of the OMVs purified from P. aeruginosa Laboratory strain 
(L.) in TSB and SWF overall protein concentration in each sample has been stated with 
CFU/ml of Laboratory strain (L.) which used for OMVs Isolation (Preparation 7). 
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Samples Protein concentration 

(µg/ml) in samples 

Total protein in samples (μg) 

OMVs of Hospital strain 

(PS3) in SWF 

44.2 884 

OMVs of Laboratory 

strain (L.) in SWF 

49.4 988 

 

Table 3.2. 24:  Protein concentration for OMVs isolated from P. aeruginosa Hospital strain 
(PS3) and Laboratory strain (L.) in SWF using a Lowry assay (Preparation 8). 

 

 

Samples CFU/ml x Vol. 

per ml 

centrifuged at 

1st high speed 

rotation-Overall 

CFU in bacteria 

sample 

Protein 

concentra

tion 

(μg/ml) in 

OMV 

samples 

Total 

protein in 

OMV(µg/ml) 

Protein (μg) in CFU 

bacteria10 11 

OMVs of 

Hospital 

strain (PS3) in 

SWF 

(2.59 x 109) x 300 

= 7.8 x 1011 

44.2 44.2x20=884 884/7.8=113.33 

OMVs of 

Laboratory 

strain (L.) in 

SWF 

(2.7 x 109) x 300 

=8.1 x 1011 

49.4 49.4x20=998 998/8.1=121.97 

 
Table 3.2. 25: The OMVs purified from P. aeruginosa Hospital strain (PS3) and   
Laboratory strain (L.) in SWF overall protein concentration in each sample has been 
stated with CFU/ml of Laboratory strain (L.) which used for OMVs Isolation (Preparation 
8).  

 

 

 

  



91 
 

3.2.3 Preparation of Outer Membrane (OM)    
                                                    

Samples Protein concentration 

(µg/ml) in samples 

Total protein in samples (μg) 

OM of Hospital strain 

(PS3) in SWF 

14.3 71.5 

 

OM of Laboratory strain 

(L.) in SWF 

11.4 57 

 

Table 3.2.26:  Protein concentration for OM isolated from P. aeruginosa Laboratory strain 
(L.) and Hospital strain (PS3) in SWF using a Lowry assay (Preparation 1). 

 

Samples CFU/ml x Vol. per 

ml centrifuged at 

1st high speed 

rotation-Overall 

CFU in bacteria 

sample 

Protein 

concentratio

n (μg/ml) in 

OM samples 

Total protein 

in OM 

(µg/ml) 

Protein (μg) in CFU 

bacteria10 11 

OM of Hospital 

strain (PS3) in 

SWF 

(2.32 x 109) x 300 = 

7.0 x 1011 

14.3 71.5 71.5/7.0=10.21 

OM of 

Laboratory 

strain (L.) in 

SWF 

(2.10 x 109) x 300 

=6.3 x 1011 

11.4 57 57/6.3=9.04 

 

Table 3.2.27: The OM purified from P. aeruginosa Laboratory strain (L.) and Hospital 
strain (PS3) in SWF overall protein concentration in each sample has been stated with 
CFU/ml of both strains which used for OM Isolation (Preparation 1). 
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3.2.4 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis 

results 
 

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to 

separate and determine the molecular weight of proteins expressed in the samples of P. 

aeruginosa.  
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Gel image of OMV proteins derived from P. aeruginosa (Preparation 5): 

 

 

 

Figure 3.2.4: SDS-PAGE of OMV determination of an unknown protein isolated from 
P.aeuginosa Laboratory strain (L.) (Preparation 5).  

Lane 1 contains 10 µl of Protein standard standards; lane 2 has 30 µl of OMVs of P.aeuginosa grown in 

SWF and lane 3 has 30 µl of OMVs of P.aeuginosa grown in SWF with ethanol. Proteins were separated 

by SDS-PAGE in a Criterion 4–20% precast gel and stained with Coomassie blue stain. Molecular 

weights markers are indicated. 

Figure 3.2.4 shows the bands in the lane 2 and lane 3 are identical to each other which 

refer to that the OMVs of P. aeruginosa grown in SWF contain the same protein in the 

OMVs of P. aeruginosa grown in SWF with ethanol. Estimation of molecular weight of 

unknown proteins in OMVs were based on the values of the bands on the standard 

where the graph was plotted by using the logarithm of the molecular weight of standard 

protein. 
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Molecular weight 

of protein standard (KDa) 

log of standard molecular 

weight 

migration 

distance 

(mm) 

260 2.41 22 

160 2.20       29 

110 2.04 40 

80 1.90 48 

60 1.78 54 

50 1.61 64 

40 1.60 73 

30 1.51 79 

20 1.30 88 

 

Table 3.2.19: The values of molecular weight of protein standard (KDa) and its log, the 
migration distance (mm). 

 

unknown 
protein 
bands 

Molecular weight (KDa) Protein name 

A 295 
 

unknown 

B  
182 

unknown 

C  
126 

unknown 

D  
91 

FpvA 

E  
72 

OprC 

 F  
62 

XcpQ 

 

Table 3.2.20: Possible identification of the unknown protein in OMVs isolated from P. 
aeruginosa grown in Simulated Wound Fluid (SWF) and SWF with ethanol. 
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The approximate molecular weights (MW) of each unknown protein was used to provide 

to identify a potential protein based on the similar size of MW which can be found on 

data bases of outer membrane proteins of Pseudomouns aeruginosa. In this study three 

proteins were identified in OMVs (FpvA, OprC and XcpQ) whereas, the other three 

bands have high MW could not be determined. 

 

Gel image of OMV proteins derived from P. aeruginosa in TSB (Preparation 6):  

                             KDa 

                                              

Figure 3.2. 5: showing SDS-PAGE of OMV determination of an unknown protein isolated 
from P. aeuginosa Laboratory strain (L.) in TSB (Preparation 6). 

 Lane 1 contains 10 µl of Protein standard standards; lane 2 has 40 µl of OMVs of P. aeuginosa grown in 

only TSB Proteins were separated by SDS-PAGE in a Criterion 4–20% precast gel stained with 

Coomassie Blue. Molecular weights are indicated. The unknown OMV protein are labelled with letters. 
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Unknown 

protein 

bands 

         Molecular weight (KDa)              Protein name 

A 110 unknown 

B 106 unknown 

C 80 PiuA 

D 50 OprM 

E 39 OprF 

F 13 unknown 

 

Table 3.2.21:  Possible identification of the unknown protein from OMVs isolated from P. 
aeruginosa grown in TSB. 
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 Gel image of OMVs proteins derived from P. aeruginosa in Simulated Wound 

Fluid (SWF) (Preparation 6): 

                                                            KDa 

                                                         

Figure 3.2 6: showing SDS-PAGE of OMV determination of an unknown protein isolated 
from P. aeruginosa Laboratory strain (L.) in SWF (Belong table 11 and 12) (Preparation 6). 

 Lane 1 contains 10μL of protein standard, lane 2 has 30μL and lane 3 has 10μL. Proteins were 
separated by SDS-PAGE stained with Coomassie Blue. Molecular weights are indicated.  
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Unknown Protein 

bands in SWF 

Molecular weight 

(KDa) 

Protein name 

A 122 Unknown 

B 100 Unknown 

C 78 PfuA 

D 51 OprM 

E 40 OprF 

F 16 OprX 

 

Table 3.2.22: Possible identification of the unknown protein in OMVs isolated from P. 
aeruginosa grown in SWF. (Preparation 6). 
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Image of OMVs proteins taken from P. aeruginosa Laboratory strain in TSB 

(Preparation 7): 

 

Figure 3.2.7; SDS-PAGE of OMV determination of an unknown protein isolated from P. 
aeruginosa Laboratory strain (L.) in tryptone soy broth media TSB. 

(Belong table 12 and 13) (Preparation 6).  Lane 1 contains 10μL of protein standard, lane 2 has 
40μL, of of P. aeruginosa Laboratory strain in TSB. Proteins were separated by SDS-PAGE and 
stained with Coomassie Blue. Molecular weights are labelled. The unknown OMV protein bands 
indicated. 

 

Unknown protein bands in 

TSB 

Molecular weight 

(kDa) 

protein name 

A 97720 unknown 

B 51280 OprM 

C 28180 PilD 

D 12580 unknown 

 

Table 3.2.23:  Estimation of the unknown protein in OMVs isolated from P. aeruginosa 
Laboratory strain (L.) grown in TSB (Preparation 7). 

 

A

B

C

D
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Gel image of OMVs proteins derives from Pseudomonas aeruginosa in SWF 

(Preparation 7): 

 

Figure 3.2.8: Showing SDS-PAGE of OMV determination of an unknown protein isolated 
from P. aeruginosa Laboratory strain (L.)  grown in simulated wound fluid SWF. 

 Lane 1 contains 10μL of protein standard, lane 2 has 30μL, of sample all containing OM proteins of P. 
aeruginosa Laboratory strain in TSB. Proteins were separated by SDS-PAGE gel stained with Coomassie 
Blue. Molecular weights are indicated.  

 

Unknown protein bands 

in SWF 

Molecular weight (KDa) protein name 

A 194 unknown 

B 158 unknown 

C 117 unknown 

D 97 unknown 

E 68 XcpQ 

F 15 unknown 

G 16 OprH 

  

Table 3.2.24: Possible identification of the unknown protein in OMVs isolated from P. 
aeruginosa Laboratory strain (L.) grown in TSB (Preparation 7). 

A
B
C
D

E
F
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There was a lower protein concentration in OMVs isolated from Pseudomonas 

aeruginosa in TSB compared to the same bacteria cultured in SWF which indicates that 

Pseudomonas aeruginosa produce higher amounts of OMVs in SWF.  

OMVs have variety of sizes and proteins, the protein expression seems to vary a little 

depending on their media the bacteria were grown in P. aeruginosa cell-free 

supernatants contain a high concentration of vesicles, but could also contain other 

secreted elements including pili, flagella, and R-type pyocins that increase the protein 

content (Bauman and Kuehn, 2006).  
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Gel image of OM proteins derives from Pseudomonas aeruginosa Laboratory 

strain (L.) in SWF: 

                                        KDa 

 

Figure 3.2.9: SDS-PAGE of OM determination of an unknown protein isolated from P. aeruginosa 

laboratory strain (L.) grown in simulated wound fluid SWF. 

Lane 1 contains 10μL of protein standard, lane 2 has 30μL, of sample all containing OM proteins of P. 
aeruginosa Laboratory strain in SWF. Proteins were separated by SDS-PAGE in a Criterion 4–20% 
precast gel stained with Coomassie Blue. Molecular weights (in kilodaltons) are indicated on the left. The 
unknown OM protein bands indicated.  

 

Unknown protein bands 

in SWF 

Molecular weight (KDa) protein name 

A 154.43 rPOB 

B 112.42 NrdA 

C 88.61 Cation-Transporting p-

type ATPase 

D 69.84 XcpQ 

E 41.06 OprD 

  

Table 3.2.25: Possible identification of the unknown protein in OM isolated from P. 
aeruginosa Laboratory strain (L.) grown in SWF. 

B
260

60

40

30

20
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Gel image of OMV proteins derives from Pseudomonas aeruginosa Laboratory 

strain (L.) in SWF 

                                      KDa  

 

 

Figure 3.2.10:  SDS-PAGE of OMV determination of unknown proteins derived from P. 

aeruginosa laboratory strain (L.) grown in simulated wound fluid SWF. 

 Lane 1 contains 10μL of protein standard, lane 2 has 30μL, of sample all containing OM proteins of P. 
aeruginosa Laboratory strain in SWF. Proteins were separated by SDS-PAGE gel stained with 
Coomassie Blue. Molecular weights markers are indicated.  

 

Unknown protein bands 

in SWF 

Molecular weight (KDa) protein name 

A 88.61 Cation-Transporting p-

type ATPase 

B 51280 OprM 

C 30.35 Unknown 

D 18.12 OPrH 

E 14.86 PilG 

 

Table 3.2. 26: Possible identification of the unknown protein in OMV isolated from P. 
aeruginosa Laboratory strain (L.) grown in SWF (Preparation 8). 
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Image of OM proteins derives from Pseudomonas aeruginosa Hospital strain 

(PS3) in SWF: 

                                   KDa    

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.11: SDS-PAGE of OM determination of an unknown protein isolated from P. 
aeruginosa Hospital strain (PS3) grown in simulated wound fluid SWF. 

 Lane 1 contains 10μL of protein standard, lane 2 has 30μL, of sample all containing OM proteins of P. 

aeruginosa Laboratory strain in SWF. Proteins were separated by SDS-PAGE gel stained with 

Coomassie Blue. Molecular weights marked are indicated.  

 

Unknown protein bands 

in SWF 
Molecular weight (KDa) protein name 

A 154.4 rPOB 

B 117.0 unknown 

C 88.6 
Cation-Transporting p-

type ATPase 

D 69.8 XcpQ 

E 41.1 OprD 

  

Table 3.2. 27: Possible identification of the unknown protein in OM isolated from P. 
aeruginosa Hospital strain (PS3) grown in SWF.  

260 

160 

110 

80 

6

0 
50 

40 

30 

20 

A 

B 

C 

D 

E 
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Gel image of OMV proteins derives from Pseudomonas aeruginosa Hospital 

strain (PS3) in SWF: 

                                       KDa 

 

 

Figure 3.2.12: SDS-PAGE of OMV determination of unknown proteins derived from P. 
aeruginosa Hospital strain (PS3) grown in simulated wound fluid SWF. 

 Lane 1 contains 10μL of protein standard, lane 2 has 30μL, of sample all containing OM proteins of P. 
aeruginosa Laboratory strain in SWF. Proteins were separated by SDS-PAGE gel stained with 
Coomassie Blue. Molecular weights markers are indicated. 

 

Unknown protein bands 

in SWF 
Molecular weight (KDa) Protein name 

A 88.6 
Cation-Transporting p-

type ATPase 

B 51.3 OprM 

C 30.4 unknown 

D 18.1 OPrH 

  

Table 3.2. 28: Possible identification of the unknown protein in OMVs isolated from P. 
aeruginosa Hospital strain (PS3) grown in SWF (Preparation 8). 
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Gel image of OM proteins derives from E. coli strain (C25) in SWF: 

                                         KDa 

 

 

Figure 3.2.13: SDS-PAGE of OM determination of unknown proteins derived from E. coli 

strain (C25) grown in simulated wound fluid SWF. 

Lane 1 contains 10μL of protein standard, lane 2 has 30μL, of sample all containing OM proteins of strain 
E. coli in SWF. Proteins were separated by SDS-PAGE gel stained with Coomassie Blue. Molecular 
weights of the markers are indicated. 

 

 

Unknown protein bands 

in SWF 

Molecular weight (KDa) protein name 

A 78.86  

B 55.04  

C 17.52  

D 13.21  

E 11.81  

  

Table 3.2. 29: Estimation of the unknown protein in OM isolated from E. coli strain (C25) 
grown in simulated wound fluid SWF. 
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Gel image of OMV proteins derives from E. coli strain (C25) in SWF: 

 

      KDa                               

 

 

 

 

 

    

 

           

 

 

 

 

Figure 3.2.14: SDS-PAGE of OMV determination of unknown proteins derived from E. coli 
strain (C25) grown in simulated wound fluid SWF. 

 Lane 1 contains 10μL of protein standard, lane 2 has 30μL, of sample all containing OM proteins of strain 
E. coli in SWF. Proteins were separated by SDS-PAGE in a Criterion 4–20% precast gel stained with 
Coomassie Blue. Molecular weights markers are indicated on the left.  

 

 

Unknown protein bands 

in SWF 

Molecular weight (KDa) protein name 

A 79  

B 18  

C 13  

  

Table 3.2.30: Molecular weight of the unknown protein in OMVs isolated from E. coli 
strain (C25) grown in simulated wound fluid SWF. 
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Bacterial Growth curves  

 

Pseudomonas aeruginosa laboratory strain (L.) 10421 was grown in tryptone soy broth 

(TSB) and Simulated wound fluid (SWF) for 7 hours and >2.5 au after 24hours. 

 

 

Figure 3.3.1: Measurement of absorbency for Pseudomonas aeruginosa laboratory strain 
(L.) 10421 In TSB and SWF for 7 hours. 

Three independent biological experiments, each consisting of 6-8 technical replicates. 

 

Pseudomonas aeruginosa laboratory strain (L.) 10421 was grown in either TSB (the 

basic media for the bacteria) or simulated wound fluid (SWF) (which is much closer to 

the conditions at the wound bed). The absorbance at 620nm was monitored. The 

absorbance data indicated that both strains had very similar growth characteristics in 

both culture conditions. 
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Figure 3.3.2: Measurement of absorbency for Pseudomonas aeruginosa Hospital strain 
(PS3) in TSB for 7 hours.  

Three independent biological experiments, each consisting of 6-8 technical replicates. 
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Figure 3.3.3: Measurement of absorbency for Pseudomonas aeruginosa Hospital strain 
(PS3) in SWF for 7 hours.  

 Three independent biological experiments, each consisting of 6-8 technical replicates. 
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Figure 3.3.4: Measurement of absorbency at 620nm of Pseudomonas aeruginosa Hospital 
strain type 3 (PS3) in SWF and TSB for 8 hours in 24hours, note change of scale from 
previous graph. 

 Three independent biological experiments, each consisting of 6-8 technical replicates. 
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Figure 3.3.5: Measurement of absorbency at 620nm of Pseudomonas aeruginosa both 
Laboratory strain (L.)  10421 and Hospital strain type 3 (PS3) in DMEM for 7 hours in 
24hours, note change of scale from previous graph.  

Three independent biological experiments, each consisting of 6-8 technical replicates. 

 

Both strains (Hospital and lab.) grown in DMEM and reached the stationary phase after 

about 7 hours. The absorbance data indicates that greater bacteria numbers grow in 

DMEM compared to TSB or SWF.  
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Figure 3.3.6: Number of bacteria Pseudomonas aeruginosa Hospital strain type 3 (PS3) in 
DMEM for 8 hours.   

Three independent biological experiments, each consisting of 6-8 technical replicates. 

 

There was also rapid increase in the number of bacteria Pseudomonas aeruginosa in 

DMEM. When bacteria numbers were directly quantified by plating on agar plates as the 

rapid growth as indicated by change in absorbency was confirmed. 
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Figure 3.3.7: Glucose concentrations in DMEM whilst growing of Pseudomonas 
aeruginosa Hospital strain (PS3).  

Three independent biological experiments, each consisting of 6-8 technical replicates. 

 

Figure 3.3.7 shows the consumption of glucose, decline slowly for 4 hours after that the 

rate of glucose consumption increased. 
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Figure 3.3.8:  Glucose concentration (mg/l) and growth of Pseudomonas aeruginosa (ml) 
in DMEM in first day (8 hours).   

Three independent biological experiments, each consisting of 6-8 technical replicates. 

 

As shown in figure 3.3.8 there is a rapid increase in the number of bacteria that is 

associated with consumption of glucose. 
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Figure 3.3.9: Glucose concentration (g/l) and growth of Pseudomonas aeruginosa (m/l) in 
DMEM on the second day (7 hours).   

Three independent biological experiments, each consisting of 6-8 technical replicates. 

 

After overnight growth all glucose was used and the bacterial numbers declined over 

the next 7 hours in DMEM. Showing that the decline phase of the growth curve had 

been reached this, at least in part, this is due to the fact that all the glucose had been 

used. 
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Section 4 
 

 

 

Interaction of Outer membrane vesicles and 

outer membranes isolated from Pseudomonas 

aeruginosa on keratinocyte cells 
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3.4.1 Cytotoxicity of OMV isolated from Pseudomonas grown in TSB 

A cytotoxicity assay was determined to assess the toxicity of the OMVs isolated from 

the two strains of Pseudomonas grown in TSB on the HaCaT cells at different 

concentrations the average biomass of the treated cells was compared to control to give 

an average % biomass relative to control. 

 

Mean 5.71 μg/ml 

OMV (PS3) 

28.55μg/ml 

OMV (PS3) 

14.28 μg/ml 

OMV (L.) 

71.40μg/ml 

OMV (L.) 

Biomass% 105.05 82.01 130.62 98.11 

S.E.M 10.02 0.50 4.99 16.49 

 

Table 3.4.1: The means of the biomass for all concentration for OMVs of Pseudomonas 

aeruginosa strains (preparation 1). 

 HaCaT cells were exposed to the indicated concentrations of OMVs for four hours. The data is from for 

three independent biological experiments, each consisting of 6-8 technical replicates. 

 

There was a lower biomass of HaCaT cells on exposure to OMVs from PS3 compared 

to Laboratory Strain L. and this was the case even when the cells were exposed to a 

greater concentration of Laboratory Strain L. OMV (figure 3.4.1). 
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Figure 3.4.1: The average cell biomass for HaCaT cells challenged with OMVs of Hospital 
strain (PS3) and Laboratory Strain (L.) in two different concentrations. (For preparation 
1). 

 HaCaT cells were exposed for four hours and the MTS assay was performed after further 24 hour 

incubation in cell cutler media. Data are represented as mean values ± S.E.M. for three independent 

biological experiments, each consisting of 6-8 technical replicates. 
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The micrographs below demonstrate HaCaT cells exposed to OMVs for both strains of 

P. aeruginosa. 

 

    

 

    

 

Figure 3.4.2. Photomicrographs of keratinocytes cells exposed to OMVs of P. aeruginosa. 

(A)  Untreated cells.   (B) Challenged with OMVs of the laboratory strain (L.) at 14.28µg/ml, the cells 
appear not be affect at this concentration of OMVs.  (C)  Challenged with 71.4µg/ml of laboratory strain 
(L.) OMV showing many dead cells.  (D) Treated with 5.714µg/ml of OMVs form the Hospital strain (PS3), 
has less effect on the cells.  (E)  28.55 µg/ml of Hospital strain OMVs (PS3) shows death of some cell. 
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E 

C 
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A second preparation of OMVs was produced and the MTS biomass assay was used to 

determine the toxicity of the OMVs on the HaCaT cells at different concentration of 

OMV from the 2 strains of Pseudomonas grown in TSB  

 

Mean 
6.67μg/ml 

OMV (PS3) 

33.3μg/ml 

OMV(PS3) 

6.67μg/ml 

OMV (L.) 

33.3μg/ml 

OMV (L.) 

Biomass% 117.12 153.12 123.55 133.93 

S.E.M 11.08 12.52 18.10 14.54 

Table 3.4.2 the means for the % change in biomass for OMVs derived from Pseudomonas 

aeruginosa strains taken from preparation 2.  

HaCaT cells were exposed for four hours and the MTS assay was performed after further 24 hour 

incubation in cell cutler media. Data are represented as mean values ± S.E.M. for three independent 

biological experiments, each consisting of 6-8 technical replicates. 

 

 

    

                                                              

 

 

 

  

 

 

 

Figure 3.4.3: The average cell biomass for HaCaT cells challenged with OMVs of Hospital 

(PS3) strain and laboratory strain (L.) in two different concentrations. (For preparation 2).  

Data are represented as mean values ±S.E.M. for three independent biological experiments, each 

consisting of 6-8 technical replicates. Stats: NS. Non-significant, paired Student T-test Cell biomass of 

HaCaT cells compared for challenging this cells with different concentration of (OMV) of Pseudomonas 

aeruginosa Laboratory (L.) & Hospital (PS3) strains. 
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A 3rd OMVs isolation from Pseudomonas grown in TSB was performed and their effect 

on the biomass of HaCaT keratinocytes was tested. 

 

Mean 11.67μg/ml 

OMV (PS3) 

58.33μg/ml 

OMV (PS3) 

11.67μg/ml 

OMV (L.) 

58.33μg/ml 

OMV (L.) 

Biomass% 125.55 127.96 126.67 126.29 

S.D. 2.10 4.24 2.15 7.34 

Table 4.3: The means of the biomass and absorbance for all concentration for OMVs of 

Pseudomonas aeruginosa strains (preparation 3). 

 HaCaT cells were exposed for four hours and the MTS assay was performed after further 24 hour 

incubation in cell cutler media. Data are represented as mean values ±S.E.M. for three independent 

biological experiments, each consisting of 6-8 technical replicates 

 

 

                             

 

 

 

                                                                      

 

                                                                                                                                                                                       

 

Figure 3.4.4:  The average cell biomass for HaCaT cells challenged with OMVs of Hospital 
(PS3) strain and laboratory strain (L.) in two different concentrations. (For preparation 3). 

 Data are represented as mean values ±S.E.M. for three independent biological experiments, each 

consisting of 6-8 technical replicates. Stats: NS. Non-significant, paired Student T-test Cell biomass of 

HaCaT cells compared for challenging this cells with different concentration of (OMV) of Pseudomonas 

aeruginosa Laboratory (L.) & Hospital (PS3) strains.   
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Overall the 3 preparation of OMV’s from both strains of Pseudomonas aeruginosa 

grown in TSB had little effect on HaCaT cells biomass and there was no difference 

between the Hospital and Laboratory strains. 

To confirm the data from the cytotoxicity assays photomicrographs were taken to give a 

visual representation of the cells. 

                                

 

Figure 3.4.5: HaCaT cells growing in DMEM as control sample to demonstrate their 
normal growth pattern.  

(Classic morphology of HaCaT cells can be seen in this figure). Image is representative phase contrast 

micrographs (taken at 100x magnification). 

 

                                          

Figure 3.4.6: HaCaT cells exposed to the OMVs of Laboratory strain 6.66μg/ml of 
preparation 2. 

The effect of OMVs is clear compared with non-treated cells as control. (In agreement with cytotoxicity 

assay). Image is representative phase contrast micrographs (taken at 100x magnification). 
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Figure 3.4.7: HaCaT cells exposed to the OMVs of Hospital strain (PS3) with 
concentration 6.66μg/ml preparation 2. 

 The effect of OMVs on the shape of the cells is clear comparing with the control. Image is representative 

phase contrast micrographs (taken at 100x magnification). 
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3.4.2 IL-8 secretion from HaCaT cells in response to OMV isolated 

from Pseudomonas grown in TSB 

 
HaCaTa cells were exposed for 4 hours to OMV taken from the 3 OMV preparations 

from both strains Pseudomonas grown in TSB after this the cells were returned to 

normal culture conditions for a further 24 hours after which the culture media was tested 

for the concentration of IL-8. 

 

Table 4.4: IL-8 Concentration form HaCaT cells treated with 11.7µg/ml of OMV obtained 

from preparation 1, 2, 3.  

For each preparation the data are mean values ± S.E.M. for three independent biological experiments, 

each consisting of 6-8 technical replicates. An overall mean is also provided. 

 

Samples 

IL-8 Concentration (pg/ml) 

Preparation 1 Preparation 2 Preparation 3 Mean 

Control 9.3 18.3 4.4 10.7 

OMVs 

Laboratory 

strain (L.) 

42.8 17.4 13.4 24.5 

OMVs Hospital 

strain (PS3) 
44.4 71.5 20.3 30.6 



127 
 

 

 

Figure 3.4.8: The concentration of IL-8 (pg/ml) of HaCaT cells treated with outer 
membrane vesicles (OMVs) for P. aeruginosa in TSB for both strains (preparation 1).  

Data are represented as mean values ±S.E.M. for three independent biological experiments, each 

consisting of 6-8 technical replicates. 

 

 

 

Figure 3.4.9: The concentration of IL-8 (pg/ml) of HaCaT cells treated with outer 
membrane vesicles (OMVs) for P. aeruginosa in TSB for both strains (preparation 2).  

Data are represented as mean values ±S.E.M. for three independent biological experiments, each 

consisting of 6-8 technical replicates. 
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Figure 3.4.10: The concentration of IL-8 (pg/ml) of HaCaT cells treated with outer 
membrane vesicles (OMVs) for P. aeruginosa in TSB for both strains (preparation 3). 

 Data are represented as mean values ±S.E.M. for three independent biological experiments, each 

consisting of 6-8 technical replicates. 

 

Overall the data indicates that OMVs derived from both strains P. aeruginosa grown in 

TSB stimulates an increase in IL-8 from HaCaT cells however, PS3 resulted in a greater 

secretion of IL-8 

 

 

3.4.3 HaCaT viability in response to OMVs isolated from 

Pseudomonas grown in simulated wound fluid with glucose or 

ethanol as the carbon source 

 
HaCaT cells were challenged with OMVs from P.aeruginosa grown in SWF with either 

glucose or ethanol as the carbon source using the same protocol as described 

previously  
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3.4.3.1 Images of HaCaT cells challenged with OMVs from simulated 

wound fluid with glucose or ethanol as the carbon source 

 

 

 

Figure 3.4.11: Photomicrographs for HaCaT cells treated with OMVs. 

Picture (1) shows HaCaT cells without OMVs challenge, picture (2) shows cells challenged with OMVs 

derived from P. aeruganosa Laboratory strain (L.) grown in Simulated Wound fluid (SWF with ethanol and 

picture (3) challenged OMVs from the P. aeruganosa Laboratory strain (L.) These images show little 

effect on the size and shape of the cells however, there is no significant change in the numbers of the 

cells after treated with OMVs compared with the control in the image (1). Image is representative phase 

contrast micrographs (taken at 100x magnification). 
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3.4.3.2 HaCaT IL-8 secretion in response to OMVs isolated from 

Pseudomonas grown in simulated wound fluid with glucose or 

ethanol 

 
Following the protocol described above OMVs isolated from P. aeruginosa lab strain (L.)  

grown in SWF with either glucose or EtOH as the main carbon source was used to 

challenge HaCaT cells and the concentration of IL-8 secreted was quantified by ELISA.  

 

Samples IL-8 concentration (pg/ml) 

Control 2.0 

OMVs of P.aeruginosa (L.) 

in SWF 

21.7 

OMVs of P.aeruginosa (L.) 

in SWF+Ethanol 

20.9 

                        

Table 4.5: The concentration of IL-8 (pg/ml) of HaCaT cells treated with outer membrane 

vesicles (OMVs) for P. aeruginosa lab strain in SWF with glucose or ethanol as the 

carbon source. 

 Data are represented as mean values ± S.E.M. for three independent biological experiments, each 

consisting of 6-8 technical replicates. 

 

The data above shows the concentrations of IL-8 produced by HaCaT cells after 

challenging with culture media in different conditions, where the control sample 

represents concentration of IL-8 produced by HaCaT in culture media without OMVs 

whereas, the other samples represent the concentrations of IL-8 which secreted from 

HaCaT after challenged with OMVs of P. aeruginosa Laboratory strain (L.) growth in 

Simulated Wound Fluid (SWF) and with ethanol. These data were similar to OMVs from 

bacteria grown in TSB 
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Figure 3.4.12: The concentration of IL-8 (pg/ml) of HaCaT cells treated with outer 
membrane vesicles (OMVs) for P. aeruginosa lab strain in Simulated Wound Fluid with 
and without ethanol.  

Data are represented as mean values ±S.E.M. for three independent biological experiments, each 

consisting of 6-8 technical replicates. Stats:***, p<0.001 paired Student T-test Control compared with the 

concentration (pg/ml) of IL-8 released by HaCaT cells challenge with different concentration of (OMV) of 

Pseudomonas aeruginosa Laboratory (L.) strain.   

 

 

 

3.4.3.3 HaCaT Biomass in response to OMVs isolated from 

Pseudomonas grown in simulated wound fluid  

 
HaCaT were challenged with OMVs derived from PS3 and lab strain grown in SWF. For 

this series of experiments the quantification of OMVs was based on fold concentration 

of the OMVs from the culture solution they were originally isolated from ie if the OMVs 

were used at their original concentration this would be a 1:1 if it was a 10 fold 

concentration this would be 1:10. 
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Figure 3.4.13: The average cell biomass of HaCaT cells challenged with outer membrane 
vesicles OMV of Pseudomonas aeruginosa Laboratory (L.) and Hospital strains (PS3) in 
SWF. 

 Data are represented as mean values ±S.E.M. for three independent biological experiments, each 

consisting of 6-8 technical replicates. 

  

Although there is some small variation the OMVs from either strain of Pseudomonas 

produces little variation in biomass. 

 

3.4.3.4 NHK Biomass in response to outer membrane isolated from 

both Pseudomonas grown in simulated wound fluid  

 
The effect of outer membrane (OM) from Pseudomonas aeruginosa PS3 grown in SWF 

on the biomass of NHK cells was investigated. 
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Figure 3.4.14: The average cell biomass of NHK cells challenged with outer membrane 
OM of Pseudomonas aeruginosa PS3 in SWF.  

Data are represented as mean values ± S.E.M. for three independent biological experiments, each 

consisting of 6-8 technical replicates. 

 

The bar chart shows that the NHK treated cells with and 1-10 of OM Hospital strain 

(PS3) showed a small stimulation of biomass for 1:15.5 concentration of OM but little 

effect overall. 
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Figure 3.4.15: The average cell biomass of NHKs challenged by outer membrane OM of 
Pseudomonas aeruginosa laboratory (L.) in SWF.  

Data are represented as mean values ± S.E.M. for three independent biological experiments, each 

consisting of 6-8 technical replicates. 

 

Overall the data showed that NHKs treated with OM from Pseudomonas aeruginosa 

laboratory strain showed little overall effect on biomass. 
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3.4.3.5 IL-8 secretion of HaCaT cells, HaCaTa cells, NHK cells in 

response to outer membrane isolated from both Pseudomonas grown 

in simulated wound fluid  

 
The effect of the OM isolated from Pseudomonas grown in simulated wound fluid on IL-

8 secretion of the 3 cultured keratinocyte cell lines was tested.  

 

 HaCaT cells HaCaTa cells NHK cells 

Control 455 86.3 250 

Outer membrane of 

Pseudomonas 

aeruginosa (L.) (1:16) 

3690 395 310 

Outer membrane of 

Pseudomonas 

aeruginosa (L.) (1:32) 

3600 340 300 

Outer membrane of 

Pseudomonas 

aeruginosa (PS3) 

(1:15.5) 

3700 350 370 

Outer membrane of 

Pseudomonas 

aeruginosa (PS3) 

(1:31) 

2600 317 345 

 

Table 4. 6: Concentration of IL-8 pg/ml for HaCaT, HaCaTa, NHK cells after expose to OM 

of Pseudomonas aeruginosa Laboratory (L.) and Hospital (PS3) strains. 

There is variation in the concentration of IL-8 secreted from the keratinocytes in response to the control 

samples, which only contained DMEM or KSFM.  
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HaCaT cells were much more sensitive to OM derived from both strains of 

Pseudomonas aeruginosa than with NHK or HaCaTa cells but all three cell types 

responded similarly to the both PS3 and lab strain. 

 

 

Figure 3.4.16: Concentration of IL-8 of HaCaT cells after expose them to outer membrane 
(OM) of Pseudomonas aeruginosa Laboratory (L.) & Hospital strains (PS3).  

Data are represented as mean values ±S.E.M. for three independent biological experiments, 

each consisting of 6-8 technical replicates. Stats: NS. Non-significant, and  *, p<0.05 paired 

Student T-test Control compared with the concentration (pg/ml) of IL-8 released by HaCaT cells 

challenge with different concentration of (OM) of Pseudomonas aeruginosa Laboratory (L.) & 

Hospital (PS3) strains.   

 

There was an increase in IL-8 concentration in the solution surrounding the 

keratinocytes that have been challenged with outer membrane (OM) of Pseudomonas 

aeruginosa the highest concentration of IL-8 with 1:15.5 µg/ml of (OM) Hospital strain 

(PS3).   
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Figure 3.4.17: Concentration of IL-8 of HaCaTa cells after exposure to the outer 
membrane (OM) of Pseudomonas aeruginosa Laboratory (L.) & Hospital strains (PS3).  

 Data are represented as mean values ±S.E.M. for three independent biological experiments, each 

consisting of 6-8 technical replicates. Stats: NS. Non-significant, and  *, p<0.05 paired Student T-test 

Control compared with the concentration (pg/ml) of IL-8 released by HaCaTa cells challenge with different 

concentration of (OM) of Pseudomonas aeruginosa Laboratory (L.) & Hospital (PS3) strains.   

 

There was an increase in IL-8 concentration in the solution surrounding HaCaTa that 

have been challenged with outer membrane (OM) of Pseudomonas aeruginosa the 

highest concentration of IL-8 with 1:32 of (OM) Hospital strain (PS3). 
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Figure 3.4.18: Concentration of IL-8 of NHK cells after expose them to outer membrane 
(OM) of Pseudomonas aeruginosa Laboratory (L.) & Hospital strains (PS3). 

 Data are represented as mean values ±S.E.M. for three independent biological experiments, each 

consisting of 6-8 technical replicates. Stats: NS. Non-significant, and  *, p<0.05 paired Student T-test 

Control compared with the concentration (pg/ml) of IL-8 released by NHK cells challenge with different 

concentration of (OM) of Pseudomonas aeruginosa Laboratory (L.) & Hospital (PS3) strains.   
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3.4.3.6 IL-8 secretion of HaCaT cells, HaCaTa cells, NHK cells in 

response to outer membrane vesicles isolated from both 

Pseudomonas grown in simulated wound fluid  

 
The effect of the OMVs isolated from Pseudomonas grown in simulated wound fluid on 

IL-8 secretion of the 3 cultured keratinocyte cell lines was tested.  

 

Table 4.7: Concentration of IL-8 pg/ml for HaCaT, HaCaTa, NHK cells. After expose 

HaCaT, HaCaTa, NHK cells to OMVs of Pseudomonas aeruginosa Laboratory (L.) and 

Hospital (PS3) strains. 

 

HaCaT produced more IL-8 in response to OMV derived from both strains of 

Pseudomonas aeruginosa than NHK or HaCaTa. In addition OMVs from PS3 stimulated 

a greater secretion of IL-8 than the lab strain in HaCaT.  

 

 

 HaCaT cells HaCaTa cells NHK cells 

Control 219 133 259 

Outer membrane vesicles of 

Pseudomonas aeruginosa (L.) 

(1-5) 

5621 286 218 

Outer membrane vesicles of 

Pseudomonas aeruginosa (L.) 

(1-10) 

3437 253 137 

Outer membrane vesicles of 

Pseudomonas aeruginosa (PS3) 

(1-5) 

7390 389 254 

Outer membrane vesicles of 

Pseudomonas aeruginosa (PS3) 

(1-10) 

6006 226 172 
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Figure 3.4.19: Concentration of IL-8 of HaCaT cells after expose them to outer membrane 
vesicles (OMV) of Pseudomonas aeruginosa Laboratory (L.) & Hospital (PS3) strains.  

Data are represented as mean values ±S.E.M. for three independent biological experiments, each 

consisting of 6-8 technical replicates. 

 

A greater secretion of IL-8 from HaCaT cells occurred on challenge from PS3 OMVs 
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Figure 3.4.20: Concentration of IL-8 of HaCaTa cells after expose them to outer 
membrane vesicles of Pseudomonas aeruginosa Laboratory (L.) & Hospital (PS3) strains. 

 Data are represented as mean values ±S.E.M for three independent biological experiments, each 

consisting of 6-8 technical replicates. 

 

A similar secretion of IL-8 from HaCaTa cells occurred on challenge from PS3 OMVs 
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Figure 3.4.21: Concentration of IL-8 of NHK cells after expose them to outer membrane 
vesicles of Pseudomonas aeruginosa Laboratory (L.) & Hospital (PS3) strains. 

 Data are represented as mean values ±S.E.M for three independent biological experiments, each 

consisting of 6-8 technical replicates. 

 

A similar secretion of IL-8 from NHKs occurred on challenge from PS3 OMVs 
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Figure 3.4.22:  Concentration of IL-8 of NHK cells after expose them to outer membrane 
(OM) of Pseudomonas aeruginosa Laboratory (L.) & Hospital (PS3) strains. (In low 
concentration of Calcium). Data are represented as mean values ±S.E.M. for three independent 

biological experiments, each consisting of 6-8 technical replicates. Stats: NS. Non-significant, and  *, 
p<0.05 paired Student T-test Control compared with the concentration (pg/ml) of IL-8 released by NHK 
grown in high concentration of Calcium following challenge with different concentration of (OMVs) of 
Pseudomonas aeruginosa Laboratory (L.) & Hospital (PS3) strains.   

 

Bar graph to show the concentration of IL-8 the concentration (pg/ml) of IL-8 present in 

solution surrounding NHK following challenge with different concentration of (OM) or 

control KSFM. The results on the graph above are the average concentration of IL-8 for 

each sample type and the highest concentration of IL-8 with 1:31 µg/ml of (OM) Hospital 

strain (PS3). In low concentration of calcium.   
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3.4.3.6 IL-8 secretion of NHK grown in high calcium in response to 

outer membrane isolated from both Pseudomonas strains grown in 

simulated wound fluid  

 
The effect of the OM isolated from Pseudomonas grown in simulated wound fluid on IL-

8 secretion of NHK cells grown in high calcium solutions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.23:  Concentration of IL-8 of NHK cells after expose them to outer membrane 
(OM) of Pseudomonas aeruginosa Laboratory (L.) & Hospital (PS3) strains. (In high 
concentration of Calcium). Data are represented as mean values ±S.E.M. for three independent 

biological experiments, each consisting of 6-8 technical replicates. Stats: NS. Non-significant, paired 
Student T-test Control was statically compared with the concentration (pg/ml) of IL-8 released by NHK 
grown in high concentration of Calcium following challenge with different concentration of (OM) of 
Pseudomonas aeruginosa Laboratory (L.) & Hospital (PS3) strains.   
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The results on the graph above are the average concentration of IL-8 for each sample 

type and the highest concentration of IL-8 with 1:32 µg/ml of (OM) Hospital strain (PS3). 

In high concentration of Calcium. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.24: Concentration of IL-8 of NHK cells after expose them to outer membrane 
vesicles (OMV) of Pseudomonas aeruginosa Laboratory (L.) & Hospital (PS3) strains. (In 
Low concentration of Calcium). Data are represented as mean values ±S.E.M. for three 

independent biological experiments, each consisting of 6-8 technical replicates. Stats: NS. Non-
significant, paired Student T-test Control was statically compared with the concentration (pg/ml) of IL-8 
released by NHK grown in low concentration of Calcium following challenge with different concentration of 
(OMVs) of Pseudomonas aeruginosa Laboratory (L.) & Hospital (PS3) strains.   

 

The bar chart shows that NHK produced the highest concentration (pg/ml) of IL-8 when 

exposed to 1-5 µg/ml of OMV Hospital strain (PS3). In low concentration of calcium). 

 

 

0

100

200

300

400

500

600

IL
-8

 C
o

n
ce

n
tr

at
io

n
 (

p
g/

m
l)

Conditions



146 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.25: Concentration of IL-8 of NHK cells after expose them to outer membrane 
vesicles (OMVs) of Pseudomonas aeruginosa Laboratory (L.) & Hospital (PS3) strains. (In 
high concentration of Calcium).  

Data are represented as mean values ±S.E.M. for three independent biological experiments, each 
consisting of 6-8 technical replicates. Stats: NS. Non-significant, *, p<0.05 and ***, p<0.001paired 
Student T-test Control compared with the concentration (pg/ml) of IL-8 released by NHK grown in high 
concentration of Calcium following challenge with different concentration of (OMVs) of Pseudomonas 
aeruginosa Laboratory (L.) & Hospital (PS3) strains.   

 

The bar chart shows the concentration (pg/ml) of IL-8 present in solution surrounding 

NHK grown in high concentration of Calcium following challenge with different 

concentration of (OMVs) or control KSFM. The results show that culturing NHK in high 

calcium had little effect on their response to OMVs 
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Section 5 
 

 

IL-8 of supernatant HaCaT challenge with cell 

free Pseudomonas aeruginosa culture media 
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5.1 HaCaT challenge with cell free Pseudomonas aeruginosa culture 

media 

 
The HaCaT cells were challenged with the cell free growth media Dulbecco’s Modified 

Eagle Medium (DMEM) or Tryptone Soy Broth (TSB) after 24 hours of bacterial growth 

the controls were cells left in culture media of DMEM or TSB that had been placed in an 

incubator at 37°C for 24 hours. 

 

Sample Concentration of IL-8 

(pg/ml) in Control 

Concentration of IL-8 

(pg/ml) in (with 

P.aeruginosa) 

Laboratory Strain (L.) 

in TSB 

794 7795 

Laboratory Strain (L.) 

in DMEM 

997 842 

Hospital Strain (PS3) 

in TSB 

1022 8732 

Hospital Strain (PS3) 

in DMEM 

845 8451 

 

Table 3.5. 1: The average concentrations of Interlukine-8 (IL-8) after expose the HaCaT 

cells to supernatant of Pseudomonas aeruginosa Laboratory (L.) and Hospital strains 

(PS3). 

 The averages include all results across the sample type. Control samples are those collected from the 

challenge of keratinocytes with Dulbecco’s Eagles Medium alone. Samples “with P. aeruginosa” are those 

that were   obtained from the solution surrounding the cultured keratinocytes challenged with supernatant 

from the growth of Pseudomonas aeruginosa in the same growth media.  

                                              

 

Keratinocytes HaCaT cells challenged with the supernatant from the growth of 

laboratory strain in Dulbecco’s Modified Eagles Medium (DMEM) show little difference 

in the concentration the proinflammatory cytokine IL-8 secreted when compared to 

control sample. The control, which followed the challenge with DMEM only, show that 
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there is an increase in contained a higher concentration of IL-8, containing 997pg/ml, 

than the sample that challenged with bacterial growth media, which contained 842pg/ml 

(table 3.5.1). 

All other samples assayed contained a higher level in IL-8 concentration in the solution 

surrounding the keratinocytes that have been challenged with supernatant from growth 

media which contained Pseudomonas aeruginosa (figure 3.5.1and 3.5.2). 

 

Samples of cultured HaCaT cells that exposed to the supernatant from the growth of 

Hospital strain (PS3) in (DMEM) showed the highest concentration of IL-8. Also, both 

control samples from this challenge are higher than the other samples in comparison.  

When the bacteria were grown in tryptone soy broth (TSB) there was a higher 

concentration of IL-8 present in the samples following the challenge with supernatant 

from laboratory strain growth media when compared to Hospital strain (PS3) in TSB. 

When looking at results (table 1) it is clear that there is variation in the level of IL-8 

secretion following the challenge of the keratinocytes with DMEM. The highest and 

lowest concentrations are both from samples alongside the samples from the challenge 

with Hospital strain (PS3). 

The data indicates a relatively high spontaneous release of IL-8 but a significant 

increase when exposed to cell free bacterial supernatant in all conditions apart from the 

laboratory strain when grown in DMEM. In addition, there was a greater secretion of the 

proinflammatory cytokine IL-8 on exposure to the PS3 strain and this was particularly 

evident when grown in TSB.  

 

 

 

 

 



150 
 

 

 

 

 

Figure 3.5.1: Concentration of IL-8 (pg/ml) in supernatant of Laboratory strain (L.) in TSB.  

A graph showing the concentration (pg/ml) of IL-8 present in solution surrounding keratinocytes following 

challenge with growth media or control DMEM. The results on the graph above are the average 

concentration of IL-8 for each sample type. Data are represented as mean values ± S.E.M.for three 

independent biological experiments.  
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Figure 3.5.2: Concentration of IL-8 (pg/ml) in supernatant of Laboratory strain (L.) in 
DMEM. 

 A graph showing the concentration (pg/ml) of IL-8 present in solution surrounding keratinocytes following 

challenge with growth media or control DMEM. The results on the graph above are the average 

concentration of IL-8 for each sample type. Data are represented as mean values ±S.E.M.for three 

independent biological experiments.  
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Figure 3.5.3: Concentration of IL-8 (pg/ml) in supernatant of Hospital strain (PS3 strain) in 
TSB.  

 

A graph showing the concentration (pg/ml) of IL-8 present in solution surrounding keratinocytes 

following challenge with growth media or control DMEM. The results on the graph above are the 

average concentration of IL-8 for each sample type. Data are represented as mean values 

±S.E.M.for three independent biological experiments.  
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Figure 3.5.4: Concentration of IL-8 (pg/ml) in supernatant of Hospital strain (PS3) in 
DMEM.  

A graph showing the concentration (pg/ml) of IL-8 present in solution surrounding keratinocytes following 

challenge with growth media or control DMEM. The results on the graph above are the average 

concentration of IL-8 for each sample type. Data are represented as mean values ±S.E.M.for three 

independent biological experiments.  

 

Sample Concentration of IL-8 

(pg/ml) in Control 

Concentration of IL-8 

(pg/ml) in (with 

P.aeruginosa) 

Hospital 

Strain(PS3) in 

DMEM 

1548.3 8925.5 

Hospital 

Strain(PS3) in TSB 

577.1 7022.3 

Hospital 

Strain(PS3) in TSB 

577.1 10130.77 

 

Table 3.5.2: The average concentrations of Interlukine-8 (IL-8) after expose the HaCaT 

cells to supernatant of Pseudomonas aeruginosa Hospital strains (PS3). 

 The averages include all results across the sample type. Control samples are those collected from the 

challenge of keratinocytes with Dulbecco’s Eagles Medium (DMEM) and (TSB). Samples “with P. 

aeruginosa” are those that were   obtained from the solution surrounding the cultured keratinocytes 

challenged with supernatant from the growth of Pseudomonas aeruginosa Hospital strains (PS3) in the 

same growth media.  
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Figure 3.5.5: Concentration of IL-8 (pg/ml) in supernatant of Hospital strain (PS3) in 
DMEM.  

A graph showing the concentration (pg/ml) of IL-8 present in solution surrounding keratinocytes following 

challenge with growth media or control DMEM. The results on the graph above are the average 

concentration of IL-8 for each sample type. Data are represented as mean values ±S.E.M.for three 

independent biological experiments.  
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Figure 3.5.6: Concentration of IL-8 (pg/ml) in supernatant of Hospital strain (PS3) in TSB.  

A graph showing the concentration (pg/ml) of IL-8 present in solution surrounding keratinocytes following 

challenge with growth media or control TSB. The results on the graph above are the average 

concentration of IL-8 for each sample type. Data are represented as mean values ±S.E.M.for three 

independent biological experiments.  
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Figure 3.5.7: Concentration of IL-8 (pg/ml) in supernatant of Hospital strain (PS3) in TSB.  

 Bar chart showing the concentration of IL-8 present in samples of keratinocytes exposed to medium only 

(Control) and keratinocytes in cell culture medium: bacterial solution of TSB-grown P. aeruginosa 

solution. 1:10 dilutions were used to find the actual concentrations. (1:50) Data are represented as mean 

values ± S.E.M.for three independent biological experiments.  
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Figure 3.5.8: Biomass of HaCaT cells, exposé to supernatant of P. aeruginosa   Hospital 
(PS3) strains. 

 The bar chart shows that the treated cells with supernatant 1:100 of Hospital strain (PS3) showed a loss 

of mass where the other concentration showed less dead cells. Data are represented as mean values ± 

S.E.M. for three independent biological experiments.  
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Figure 3.5.9: Biomass of HaCaT cells, exposé to supernatant of P. aeruginosa   
Laboratory (L.) strains.  

 A graph shows that the treated cells with supernatant 1:50 of Laboratory strain (L.) showed a loss of 

mass where the other concentration showed less dead cells. Data are represented as mean values ± 

S.E.M. for three independent biological experiments. 
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Figure 3.5.10: Biomass of HaCaTa cells, exposé to supernatant of P. aeruginosa 
Laboratory (L.) and Hospital (PS3) strains.  

 

The bar chart shows that the treated cells with supernatant 1:5 of Laboratory strain (L.) showed a loss of 

mass where the other concentration showed less dead cells. Data are represented as mean values ± 

S.E.M. for three independent biological experiments.  
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4.1 HaCaT, HaCaTa and NHK cells: 
 

HaCaT, HaCaTa and NHK cells have been shown to possess different capacities for IL-

8 release according to the factors to which they are exposed (various concentration of 

OMVs and supernatant of P. aeruginosa and the outer membrane OM of this bacteria 

for both clinical or laboratory strains). This in vitro study used HaCaT cells which are 

immortal non-tumorigenic keratinocytes (Wilson, 2013). HaCaT is abridgement for (Ha = 

human adult, Ca = calcium, T = temperature) to appoint its provenance and the original 

culture milieu (Boukamp, 1988). The HaCaT cell line is mainly used as a keratinocyte 

model because of its ability to proliferate and differentiate forming an epidermal 

community in vitro (Schoop et al., 1999). Keratinocyte differentiation requires a 

complicated group of processes characterized by a normal and equal level of growth 

and differentiation. The HaCaT cell line became spontaneously immortalised (Micallef et 

al., 2009).  

The HaCaTa cells used in this study were adapt from HaCaT by the use of a stepwise 

change of the culture media of HaCaT cells from a serum-supplemented media with a 

high calcium concentration to a serum-free low calcium media ie keratinocyte serum 

free media (KSFM), when HaCaT cells had totally adapted to the new culture medium 

and they were named HaCaTa (Al-Tameemi et al., 2014). 

Normal Human Keratinocyte (NHK) being a primary cells are somewhat more 

complicated to culture and have a much shorter period where they are viable in culture 

than the 2 cell lines (Micallef et al., 2009). 

The epidermis is an important location of microorganism interactions with keratinocytes 

and host defences (Wingens et al., 1998). Epidermis keratinocytes do not compose a 

passive barrier, it mediates a controlled cutaneous inflammation and functions as part 

and innate immune system and can also activate an adaptive immune response  

(Frohm et al., 1997). In order to model these interactions it was proposed that the 

human keratinocyte cell line HaCaT was used. However, for these cells to represent a 

viable model of bacterial interactions with the skin they, as a minimum, must express a 

similar range of receptors that recognise bacterial products, as normal keratinocytes. In 
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order to establish that the HaCaT cells cultured here maintain these receptors it was 

determined if the cells expressed mRNA for a range of TLRs.  

The initial study demonstrated that both that HaCaT cells grown for either 4 or 10 days 

expressed a range of TLRs needed for the identification and response to a vast range of 

bacterial antigens. The receptors expressed were TLR1, TLR2, TLR4, and in both aged 

cells. In contrast TLR5, TLR9 were found just in 10 days cells. The expression of a 

range of TLRs has previously been reported in HaCaT cells (Köllisch et al., 2005). Most 

expression at the mRNA level was found for TLR2 and TLR4 when the cells were grown 

for either 4 or 10 days.  

 

4.1.1 Function of TLR:  
 

TLR1 and TLR2 recognise various bacterial cell wall elements for example 

peptidoglycan (PGN) is recognized by TLR2 (Schwandner et al., 1999). The first human 

homologue of Toll to be discovered was TLR4 (Medzhitov et al., 1997) and was 

thereafter considered as a receptor for LPS signalling pathway (Poltorak et al., 1998). It 

is now known that TLR4 consists of a family that can recognize many ligands for 

example the fusion molecule of a protein that is synthesized by a respiratory syncytial 

virus and taxol subunits in the mouse. It has been reported that LPS activity is mediated 

by TLR4 in primary human keratinocyte cells. However this is a controversial data 

because other groups have failed to find such expression (Smith et al., 2003, Kawai, 

2003). Besides pathogen-associated molecular patterns (PMPS) TLR4 has been 

reported to also identified host damage associated molecular patterns (DAMPS) (Akira 

et al., 2001) an example of which is serum amyloid A.  

In order to function some TLR such as TLR4 require the binding of a co-receptor known 

as CD14. Cluster of differentiation 14 (CD14) is a human gene that was first recognized 

on the surface of both monocytes and macrophages (Griffin et al., 1981). It is now 

known that CD14 acts as a pattern recognition receptor in innate immune system and 

recognizes different ligands, from apoptotic cells and fungi to the products of bacteria 

such as components of microbial cell walls and whole bacteria (Savill et al., 1990, Devitt 
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et al., 1998). CD14 considered as homing receptor for the LPS component endotoxin of 

Gram-negative bacteria (Wright et al., 1990) #2041; Ziegler-Heitbrock, 1995 #2042}. 

It has been reported that TLR4 and CD14 are expressed by both HaCaT and primary 

human keratinocytes and are activated by LPS (Song et al., 2002, Pivarcsi et al., 2003, 

Pivarcsi et al., 2004) Our result showed that TLR4 mRNA is found in HaCaT cells, 

however, by contrast Kawai, 2003 showed no TLR4 expression in these cells. 

Interestingly TLR4 expression has been found to be correlated to keratinocyte 

differentiation (Pivarcsi et al., 2004) so this might explain these discrepancies. 

TLR5 is an independent subfamily of the mammalian group of Toll homologues that 

recognizes the flagellin protein of bacteria through a specific part on the flagellin protein 

that is needed for motility of the bacteria (Smith et al., 2003); (Hayashi et al., 2001). 

Specifically it was reported that TLR5 is expressed in HaCaT cells grown for 10 days. 

It has been elucidated that for TLR9 a TLR9-CPG DNA interaction often take place after 

TLR9 recruitment from the endoplasmic reticulum to a tubular lysosome structure (Latz 

et al., 2004). 

Interestingly (Köllisch et al., 2005) has suggested that there are differences in the 

functional expression of some TLRs and TLR cofactor components between HaCaT 

cells and primary keratinocytes these data illustrate the caution required when 

extrapolating data from immortalized cell lines and primary cells into tissue. Despite this 

it is clear that the variety of TLR expression in keratinocytes indicates that these cells 

could act as sentinels of skin homeostasis.  

 

4.1.2 Role of TLR in skin Inflammation:  
 

In addition to their role in wounds PAMPs could play important in skin inflammation 

conditions. Inflammatory cutaneous diseases such as atopic dermatitis and psoriasis 

that disturbed the physical skin barrier and may affect the state of the immune barrier 

(Hatano et al., 2013). TLR participate in the stimulation of immune activity in infection 

and inflammation of the skin (Kupper and Fuhlbrigge, 2004, Leung, 2000). According to 
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Panzer et al., 2014 TLR2 was expressed in the suprabasal layers in diseased skin, but 

its expression is restricted to the basal epidermis in normal skin. This change in the TLR 

expression may be due to disturbed skin barrier function and need to boost the immune 

defence because of the skins increased vulnerability to invading of pathogens. 

Calcium is a main regulator of the differentiation of normal keratinocyte, and stimulated 

the formation of desmosome, adherens junctions and tight junctions. In part this is by 

the stimulation of calcium receptors that stimulate cellular signalling pathways which are 

necessary for differentiation (Kobashi et al., 2017a). In connective tissues, intercellular 

adhesion is essential for tissue morphogenesis, development and wound healing (Ko et 

al., 2001). 

It is established that Ca2+ ions are an essential part to a complex intracellular 

messenger that mediates vast sets of biological processes including: muscle 

contraction, secretion, glycolysis and gluconeogenesis, ion transport, division and 

growth of the cells (Forsen and Kordel, 1994).  

The importance of extracellular calcium in epidermal differentiation has been recognized 

for many years (Savignac et al., 2011). An increase in extracellular calcium 

concentration enhances the intracellular levels of free calcium which promote the 

differentiation of keratinocyte (Pillai and Bikle, 1991). 

NHK cells are the principle cell culture model to study the physiological mechanisms of 

human keratinocyte differentiation mechanisms that can be activated by supplements 

the in the media including calcium (Garach-Jehoshua et al., 1998). The explanation of 

the process of normal keratinocyte growth and differentiation in vitro is still insufficient 

understood in part because they have slow growth rates and are relatively complicated 

to handle. To aid in vitro keratinocyte research a spontaneously immortalized human 

keratinocyte cell line is often used as a keratinocyte model because their capacity for 

proliferating and differentiating (Boukamp et al., 1988). These HaCaT cells are capable 

of maintaining a balance between differentiation and growth, in part, because cells they 

are immortalized. 
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When normal keratinocyte cells were cultured in low calcium (LC) medium (0.09 mM), 

cells became more proliferative and only had a few cell-cell contacts without any 

desmosomes formation (Watt et al., 1984).  

Data in this study that was supported by morphological observations by contrast phase 

microscopy (Figure 1.8) indicated that in LC medium there was a steady increase in cell 

growth in NHK cells and they became flattened and spread-out. NHK proliferation 

decreased with high calcium (HC) KSFM (1.2mM), specifically cell growth was slowed 

by about 30% at day 3 and this congruent with on-going process of differentiation as 

observed by the small and cobble-stoned appearance of the cells in HC medium. This is 

in agreement with other studies that have shown that NHK proliferation can be 

prevented and terminal differentiation initiated by increasing the calcium concentration 

(Kolly et al., 2005a). It has been confirmed that when NHK are incubated in 

physiological concentrations of calcium (1-1.5 mM) this results in an intracellular 

calcium concentration that can slow cell proliferation (Sakaguchi et al., 2003). Similar 

results obtained (Dr. Christopher Dunnill, 2017- personal communication). The influence 

of calcium on intercellular adhesion and cell morphology such as cell-cell contacts has 

also been shown by Micallef et al (Micallef et al., 2009) 
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4.2 Isolation and purification and yield of outer membrane vesicles 
 

Outer membrane vesicles were successfully isolated from both strains of the Gram 

negative bacteria P. aeruginosa using a standard centrifugation technique. To help 

verify this the OMVs were visualised using transmission electron microscopy. As a 

comparison and to check the isolation method could isolate Gram negative OMVs 

vesicles from an enteric bacteria E coli C25 was also isolated. This bacterium had 

previously been reported to secrete abundant OMVs (Patten et al ‘17) 

The yield of outer membrane vesicles has an inverse relationship with purification 

process where the amount of OMVs reduces as the purity increasing, based on this the 

volume of OMVs isolated from P. aeruginosa was relatively small due to the levels of 

purification (Chutkan et al., 2013). The production of sufficient vesicles of a high purity 

in a reproducible manner remains a critical challenge for their analysis in most bacteria 

(Klimentová and Stulík, 2015) the precise purification protocol and subsequent analysis 

the OMVs production might determine the resulting data. It has previously been shown 

that, there are many factors that control the production of outer membrane vesicles 

such as the temperature, the number of bacteria and the type of media used grow the 

bacteria.  

Choi et al stated that the size of the filter used in filtration step plays a profound role in 

the yield of OMVs (Choi et al., 2011). The pore size of filters used in this study was 

0.22µm and the diameter of outer membrane vesicles are approximately 10-250nm, as 

result: some of these OMVs are blocked by the filter which will affect the yield of OMVs 

of both strains (Hospital and Laboratory) of P. aeruginosa. Also temperature plays a 

fundamental role in the production of vesicles, higher temperatures leads to an increase 

in the secretion of vesicles because temperature affects the cell membrane proteins and 

makes them less stable which activates various signalling pathways within the 

membrane, which in turn affects the production of vesicles. In addition, higher 

temperatures make the membrane more fluid which may lead to a greater release 

OMVs from outer membrane (Kulp and Kuehn, 2010). In this research P. aeruginosa 

was grown at 37°C which is considered to be the optimal temperature for growth 

however, it is not known if this temperature has impact yield of OMVs. 
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Here we used the protein composition of the OMVs to estimate the concentration of the 

OMVs isolated. This has the advantage of being quick and reliable, however, it has to 

be acknowledged that if vesicles from different strains of bacteria or when grown in 

different conditions had a higher content of protein than this method could not 

distinguish between this or an increase in the production of vesicles. When the vesicles 

are quantified on the basis of protein it is was clear that the yield of OMVs derived from 

P. aeruginosa laboratory strain (L.) was increased when cultured with the antibiotic 

gentamycin which is considered to be a stress factor and this is in agreement with Ellis 

and Kuehn (Ellis and Kuehn, 2010). In addition the increase in yield stimulated by some 

antibiotics could at least in part be explained by the fact that they target the outer 

membrane (Hancock et al., 1981), however, this is not the case with gentamycin, and its 

target is ribosomal. 

Here the production of OMVs from Hospital isolate (PS3) in control conditions was 

greater than the production of OMVs from the laboratory strain by contrast, there was a 

greater production from the Laboratory strain (L.) on treatment with gentamicin 

compared to the Hospital strain (PS3) without treatment. It has been suggested that the 

production of OMVs is an important mechanism by which bacteria can save themselves 

from the effect of antibiotics. Kukavica-Ibrulj et al. stated that the clinical isolate (PS3) is 

more toxic than the Laboratory strain (10421) (Kukavica-Ibrulj et al., 2008) and the 

greater secretion of OMVs compared to the Laboratory strain (L.) 10421. The greater 

production of OMVs could increase the virulence of PS3 because OMVs are known to 

deliver virulence factors to other cells this will be discussed further below. Poole, 2005 

also suggested that the OMVs increase resistance to antibiotics, particularly 

aminoglycosides, by the protein OprH. The same report showed that bacteria with OprH 

knockout mutations have compromised resistance to aminoglycoside because of its 

impact on the expression of the phoQP genes, which leads to a change the lipid A of 

lipopolysaccharide (LPS), and then the modification of the LPS component of the outer 

membrane which is involved in resistance to aminoglycoside (Poole, 2005). 

The CFU of Hospital strain (PS3) was slightly lower than the unchallenged Laboratory 

stain (L.). The production of OMVs depends on many factors of stress including: the 
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CFU of the bacteria, temperature, the nutrition factors in the media and other stress 

inducers of vesiculation such as the biosynthesis of the cell wall inhibitor D-cycloserine 

and the OM targeted antimicrobial peptide polymyxin B raises the generated OMV in P. 

aeruginosa (Klimentová and Stulík, 2015).  

OMVs derived from P. aeruginosa Laboratory isolate (L.) which are grown in SWF with 

ethanol was higher than the protein concentration that produced from OMVs isolated 

from P. aeruginosa Laboratory isolate (L.) which grown in SWF without ethanol (Table 

2.9), this provides evidence that the yield of vesicles was higher in the presence of 

ethanol in culture media in comparison to P. aeruginosa grown in SWF without ethanol 

which suggests that the ethanol increased the yield of OMVs. It was shown that P. 

aeruginosa PS3 also produced more OMV when it was grown in the culture media 

contains ethanol and in this case these would be potentially pathogenic. 

 

4.2.1 SDS-PAGE Analysis Outer Membrane Vesicle Proteins 
 

In order to compare the proteins in the OMVs isolated from the 2 strains of P. 

aeruginosa grown in different culture conditions SDS-PAGE was used to compare 

proteins based on their molecular weight (MW). Here it was showen that OMVs derived 

from P. aeruginosa grown in SWF without ethanol have similar proteins to OMVs 

derived from P. aeruginosa grown in SWF with ethanol. The resultant of gel image has 

six protein bands which were tentativly identified based on their molecular weight. Three 

outer membrane proteins were identified by comparing their molecular weight to the 

known P. aruginosa outer membrane proteins on the proteomic database for P. 

aruginosa proteins that have been identified include FpvA, OprC and XcpQ. 
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4.2.1.1 Ferripyoverdine receptor FpvA 
 

Many species of Pseudomonas produce pyoverdine siderophores. Pyoverdine is a 6, 7-

dihydroxyyquinolone containing a fluorescent compound which is linked to a partly 

cyclic octapeptide and has an affinity to Fe3+. It is the main siderophore that traffics iron 

from transferrin or serum to bacteria in vivo. Siderophores are chemically heterogenic 

and each bacterium tends to use its own siderophore and is less able to utilize others. 

This specificity is mediated at the level of the outer membrane receptors and gated 

porins (Hoffmann et al., 2002b).  

FpvA is a receptor for pyoverdine which co-purifies with iron-free pyoverdine in P. 

aeruginosa and has no role in active transport. Iron-free pyoverdine is dislodge by 

Ferric-pyoverdine with the internal kinetics and as result the complexes PpvA-

pyoverdine-Fe3C were formed in this reaction. Final reaction is TonB dependent. P. 

aeruginosa has two homologous of TonB (TonB1 and TonB2) and it has been noted 

that TonB2 is heavily involved in this displacement. This process causes the ferric-

pyoverdine to move across the membrane (Hoffmann et al., 2002b). 

 

4.2.1.2 Outer membrane copper receptor (OprC) 
 

OprC was first identified as a nonselective porin that produces slightly anion selective 

small diffusion pores that seems to have no role in the uptake of antibiotics. It was found 

to have 65% homolog with P. stuzeri NosA which is an outer membrane protein 

required for insertion of copper into nitrate reductase (Hoffmann et al., 2002a). NosA its 

self contains copper and was only when the bacteria are maintained in anaerobic 

conditions (Lee et al., 1989). Purified NosA can form channels in black lipid bilayers. 

Production of OprC is an anaerobic process which is inhibited by high copper 

concentrations. It is homologous to PfeA a ferric enterobactin receptor making it a 

member of large TonB-dependent family of proteins the expression of which is 

correlated with complexed iron uptake. BtuB is another less common member of TonB 
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family of outer membrane receptor which is also a vitamin B12 receptor in P. 

aeruginosa and E. coli and is identical to BtuB (Hoffmann et al., 2002b). 

 

4.2.1.3 XcpQ (type II secretion system protein D) 

 

(Bleves et al., 2010) outlines the numerous secretion systems P. aeruginosa expresses. 

These systems allow the secretion and utilization of virulence factors that promote 

infection as well as increase bacterial adaptability and survival. Five different pathways 

of protein secretion have been described in Pseudomonas aeruginosa including the 

type II secretion system (T2SS) that is employed by bacteria in order to secrete toxic 

factors into cells. T2SS is responsible for exporting most of the exoproteins (Florez et 

al., 2017). The T2SS encoded by Xcp gegns contains 12 different oligomeric protein 

molecules (Van der Meeren et al., 2012). P. aeruginosa have 12 different proteins that 

comprise this secretion machinery. Generally, the Xcp secretion machinery requires 

very large pores to transport folded exoproteins across the outer membrane. XcpQ is 

protein contains approximately 659 amino acids. (Akrim, 1993 #1681). It is an element 

of type II secretion pathways in Pseudomonas aeruginosa, specifically it is the outer 

membrane component of this machinery and also has been shown to form large 

channels. XcpQ is a member of the protein family specific for the secretions. The other 

members of this family are involved in type III protein secretion which results in the 

formation of filamentous type IV pili. Hence secretin makes up an essential group of 

transporters in the outer membrane of Gram negative bacteria (Florez et al., 2017). 

P.aeruginosa produces only a small amount of XcpQ that is around 50-100 copies per 

bacterium, the high expression of this protein is considered to be toxic to the cells (Brok, 

1999 #1682).  

Interestingly it has been shown that type III secretion system (T3SS) expression results 

in worsened disease outcome. For example in mice inoculated with P. aeruginosa 

isolates genetically adapt to have only T3SS, there was a 100% fatality rate by contrast 

there was an 80% rate, in strains exhibiting a Type II secretion system only (Lavoie et 

al., 2011, Fito-Boncompte et al., 2011). 
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4.2.1.4 PiuA: (a Ton-B-dependent receptor).  

PiuA is one of 35 different in Ton-B-dependent receptors (TTBDRs) in P. aeruginosa 

(Luscher et al., 2018). PiuA is a siderophore receptor, the crystal structure of which has 

been obtained from the protein in P. aeruginosa. Some strains of this bacteria have no 

PiuA gene, but contain other TBDR such as PfuA, OptE and pyochelin which can 

transport siderophore-drug conjugates in an iron-limited environment (Luscher et al., 

2018). PiuA can also be involved in uptake of xenosiderophore (Luscher et al., 2018). 

PfuA is also a TBDR, the natural substrate is unknown. Luscher et al. identified PfuA 

with the other Ton-B-dependent receptor (TBDRs) of P. aeruginosa isolate namely OptE 

and OptJ. (Luscher et al., 2018). 

 

4.2.1.5 Outer membrane protein M OprM: 

In P. aeruginosa lipoprotein OprM plays a fundamental role in the antibiotic resistance 

and works by trafficking molecules through the cell membrane (Koch et al., 2012). It is is 

a member of the Mex-OprM xenobiotic antibiotic transporter family (Akama et al., 2004) 

and as such can actively export antibiotic thus reducing their concentration in the cell. 

The OprM monomer consist of 468 amino acid residues and a N-terminal fatty acid 

modifcation. (Akama et al., 2004).  

 

4.2.1.6 Outer membrane porin F (OprF) 

OprF is the main surface protein in wild type isolates of P. aeruginosa (Yu et al., 2016). 

OprF is likely to be important in the modification of P. aeruginosa to the host immune 

defence system. As part of this process it binds IFNγ and can thus sense the activation 

of an immune response and in response produce a more virulent phenotype (Sharma et 

al., 2011). OprF protein is the major OM component participating in the production of 

non-specific channels for the diffusion of ions, small polar molecules and also antibiotics 

(Nestorovich et al., 2006). The pathogenicity of P. aeruginosa is affect by absence of 
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OprF protein (Fito-Boncompte et al., 2011). Interestingly the lack of OprF increases 

OMV production via increased Pseudomonas quinolone signal (PQS) production 

(Wessel et al., 2012). 

 

4.2.1.7 OprX  
 

OmpX, is a lipoprotein the over expression which is known to increase the production of 

OMVs in Salmonella enterica.  

 

4.2.1.8 Type 4 prepilin-like proteins leader peptide-processing enzyme 

(PilD): 

In P. aeruginosa, PilD is prepilin peptidase and represent one of the integral membrane 

aspartic acid proteases (IMAAPs) (Aly et al., 2013). This enzyme is required to change 

many proteins of the type IV pilin subunits to other structures such as filaments (Pepe 

and Lory, 1998). PilD cleaves the unique leader peptides of type-IV pilin system that is 

found in a variety of Gram-negative bacteria (Lory, 1997 #1757). 

 

4.2.1.9 Outer membrane protein H1 (OprH) 
 

OprH Is an outer membrane protein which increases the stability of the outer membrane 

and its components by interacting with LPS (Lee et al., 2017). In the early stages of 

infection OprH is highly expressed and is also part of the P. aeruginosa in stress 

response (Lee et al., 2017).  
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4.2.1.10 DNA-directed RNA polymerase subunit beta (rpoB) 
 

rpoB is an RNA polymerase beta subunit (Mollet et al., 1997). One copy of the rpoB 

gene is present in all bacteria because of it is important role in cellular metabolism as 

such rpoB is a highly conserved housekeeping gene (Qi et al., 2001). It has been used 

to study the phylogenetics of the genus Pseudomonas and for the identification of clinic 

isolates (Tayeb et al., 2005).  

Mollet, suggested that the rpoB gene is a suitable target on which to base identification 

of enteric bacteria (Mollet et al., 1997), it could also be used for Spirochetes (Renesto et 

al., 2000), Bartonellas (Renesto et al., 2001) and Rickettsias (Drancourt and Raoult, 

1999). 

 

4.2.1.11 Pilus response regulator (pilG) 
 

The pilus response regulator (pilG) is a type IV pilin protein (T4P) (Bertrand et al., 

2010). These are long, thin (5-8 nm diameter) hair like annexations located on the 

bacterial and surface (Pelicic, 2008). The appendages play essential roles in surface 

attachment, cell-cell aggregation, formation of biofilms and motility of bacteria (Burrows, 

2005, Pelicic, 2008 #1691, Pelicic, 2008 #1691). Type IV pilin are also important for 

virulence. They are divided in two major subfamilies, type IVa (T4aP) and type IVb 

(T4bP) pili (Burrows, 2012) (Darzins, 1993). 

 

4.2.1.12 Cation-transporting P-type ATPase 
 

P-type ATPases are found in bacteria and in a number of eukaryotic plasma 

membranes and organelles (Axelsen and Palmgren, 1998). P-type ATPases include 

proteins that participate in the active pumping of charged molecules through the cell 

membrane (Møller et al., 1996). 
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In many types of organisms P-type ATPase have been found to be involved in the 

transport of copper. The P-type ATPases constitute a large class of homologous ATP-

dependent cation transporters (Lutsenko and Kaplan, 1995). All P-type ATPases have a 

conserved aspartate residue that is phosphorylated by ATP during the catalytic cycle 

(Fan and Rosen, 2002). 

Spillman et al., 2013 provided evidence of the cation ATPase pfATP4 pump being a Na+ 

efflux pump, maintaining copper homeostasis in E coli (Spillman et al., 2013). The 

mutation of copA gene led to less copper being secreted and an increase copper 

toxicity. (Rensing et al., 2000). 

 

4.3 Comparison of Outer Membrane vesicles and Outer Membrane 

proteins 
 

The results reported here indicated that most proteins of OMV are the same to OM 

which support the hypothesis that the OMV isolated here are indeed derived from OM. 

Wurpel, 2015 stated that 70-80% OM-associated proteins are trafficked to OMVs 

(Wurpel et al., 2015). It has been proposed that the proteomic analysing of the outer 

membrane is a fundamental process to identify the pathogen that is causing the disease 

(Tiwari 2016). It is intriguing to think that these could be obtained coulters or blood 

samples via the isolation of OMVs. 
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4.3 Growth curve of bacteria 

 

This study examined and assessed the effect of different coulter conditions on the 

growth of Pseudomonas aeruginosa bacteria, a growth curve was produced to establish 

the growth rate of the bacteria in tryptone soy broth (TSB) and simulated wound fluid 

(SWF) for Pseudomonas aeruginosa. The same procedure was performed for both 

Laboratory (L.) 10421 and Hospital (PS3) strains (PS3). To establish how the bacteria 

would grow in cell culture media growth curves were also performed in Dulbecco’s 

Modified Eagles Medium (DMEM). Growth was assessed using both absorbency at 

620nm and CFU/ml to provide a more accurate enumeration of bacterial numbers. The 

growth of Pseudomonas aeruginosa was found to follow a standard pattern of growth, 

displaying logarithmic, exponential and stationary phases. 

Pseudomonas aeruginosa was grown in either TSB (as basic medium for the bacteria) 

or simulated wound fluid (SWF) which is much closer to the condition in wound for both 

strains Laboratory strain (L.) 10421 and Hospital strain (PS3) the bacteria were grown 

for 3 days and absorbance at 620nm was monitored. The absorbance data indicated 

that both strains had very similar growth characteristics in both culture conditions. By 

contrast Pseudomonas aeruginosa (both strains) grown in high glucose DMEM resulted 

in a much greater maximum absorbance (2 times) after 7 hours compared to either TSB 

or SWF it is likely that this is mainly because it contains 4.5g/l of glucose while TSB 

contains 2.5g/l. However, there was little effect on the immediate growth of the bacteria 

in DMEM, there may be problems using the media for bacterial growth, as its intended 

purpose is for use as a constituent of tissue culture media at least in part because of the 

effects of bacteria on the pH of the media. In an attempt to avoid this measures were 

taken to ensure that the pH of the media was at 6.9, the optimum pH for the bacterial 

growth, by using HEPES buffer and 1M HCl. In cell culture using a 5% CO2 incubator is 

commonly used to maintain the pH of the media (Kim et al., 2013) because the bacteria 

were not cultured in a CO2 incubator HEPES was required to act as a buffer to maintain 

the pH. 
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Mathee et al. (2008) showed that different strains of P. aeruginosa have genomic 

variation and demonstrated that these variations have effects on bacterial survivability in 

different environments. P. aeruginosa present in hospitals may have more opportunity 

to be exposed to more harsh environmental conditions for example the routine use of 

antimicrobial products and this could selected for a bacterial strains that can thrive in 

less-optimal environments (Mathee et al., 2008). This may be through direct resistance 

mechanisms to condition of alkaline pH, or developed mechanisms that have a positive 

effect with regard to pH resistance. 

Despite the finding of reduced P. aeruginosa growth in different pH, clinical implications 

related to wound treatment may be insubstantial. Gethin (2007) suggested the ability of 

wounds to heal in alkaline pH environments was reduced and thus promoted the idea 

that wounds heal better within more neutral and acidic conditions (Gethin, 2007). This 

information leads to practical considerations for the effect of pH on P. aeruginosa when 

looking at direct wound treatment. P. aeruginosa remains a concern in hospital 

environments due to its ability to adapt and grow on a range of surfaces, including 

medical equipment which can for example result in surgical wound infections (Secher et 

al., 2005). A possible implication for the effect of pH on the bacteria is in the treatment 

and storage of equipment, such as catheters, prior to use. Storage within an acidic 

condition may inhibit the growth of P. aeruginosa on the surfaces of equipment and then 

reduce the incidence of infection. There are some considerations when exploring this, 

including the link between biofilm formation and the effectiveness of pH treatment. P. 

aeruginosa can exist as a biofilm when colonizing medical equipment, this can be a 

particular issue in a medical context because biofilm formation can result increased 

resistance to a number of antibiotics (Breidenstein et al., 2011). Some researchers have 

assessed the use of liquid-infused silicone as a strategy to control the infection. It was 

found that treatment of equipment with silicone oil, a slippery polymer, resulted in 

reduced bacterial surface adhesion and reduced biofilm formation (MacCallum et al., 

2014). Recently, carbon monoxide releasing molecules (EBOR-CORM-1) have been 

proposed as a new synthetic type of antimicrobials to treat bacterial infections by 

reducing the growth of a range of clinical P. aeruginosa strains (Flanagan et al., 2018) 

(Sônego et al., 2018). 
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Glucose consumption could not be determined in the media because the high level of 

glucose in this cell culture media saturated the glucose assay for this reason the media 

was diluted (3.325g/l instead of 13.3g/l) which brings the glucose concentration down to 

a point where the changes caused by the bacteria could be detected. In this way it was 

confirmed that the bacteria consumed glucose during the first 7 hours in culture (figure 

3.7). After an overnight incubation all the glucose was used up and the bacteria reached 

the stationary phase of the growth curve. 

Simulated Wound Fliud (SWF) consisted of fetal bovine serum (FBS) and Maximum 

Recovery Diluent (MRD). Important molecules for bacterial present in FBS include; 

different proteins, polypeptides, fat, carbohydrates, growth factor, vitamins and 

minerals. MRD contains low level of peptone with a pH 7.0 and it reduces replication of 

the bacteria for at least one hour (Yang & Xiong, 2012). The use of Simulated Wound 

Fliud (SWF) as a bacterial growth media produced a growth curve with a long lag phase 

which supports the fact that MRD in SWF reduced the replication of P. aeruginosa, 

however 6 hours after inoculation, the bacterial population entered exponential growth 

phase of growth.  

The result obtained from growing Pseudomonas aeruginosa in different conditions with 

optimal temperature at 37°Ċ indicates the impact of culture media on the growth rate of 

Pseudomonas aeruginosa laboratory strain (L.). The growth of P. aeruginosa in SWF 

without ethanol showed that the CFU was higher than the bacteria grown in combination 

of SWF with ethanol. This indicated that ethanol has a negative effect on the growth of 

bacteria, as the high levels of the ethanol may cause a complete inhabitation of the 

growth rate of bacteria. The amount of the ethanol added was 4.02ml into 300ml of 

simulated wound fluid, which is identical to adding 0.0134ml of ethanol per ml of culture 

media as reported by Kretzschmar et al, this concentration is low enough when added 

to bacterial culture media to act as a carbon source for bacterial growth as was shown 

here. Interestingly, the addition of ethanol reduced the growth of P. aeruginosa 

compared to the sample of SWF without ethanol. Koshiro and Olie, reported that when 

the concentration of ethanol reaches 30% and the P. aeruginosa are grown at 20°C this 

resulted in the killing of approximately 106 CFU/ml in 30 min and when the concentration 
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of ethanol was increased to 40% it killed approximately the same number of P. 

aeruginosa within 20 second (Koshiro and Oie, 1984). 
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4.4 The cytotoxicity of OMVs 

 

The effect of a variety of OMVs at different concentrations on the viability of the 2 

keratinocyte cell lines and on NHKs was determined using an assay of biomass which 

compares the metabolic activity of live cells to that of the controls.  

For HaCaT cells initially OMV form both laboratory (L.) and Hospital strains (PS3) were 

added at a concentration of 14.28 µg/ml and 5.71 µg/ml and this had little impact on the 

cells. However, when 71.4 µg/ml of the laboratory strain (L.) OMV was added there was 

a slight reduction in cell viability. The most toxic concentration for OMV was the second 

experiment in which a concentration 28.55 µg/ml from the Hospital strain (PS3) was 

used and this produced a lower biomass. This indicates some variability between the 

different preparation of the vesicles but supports the theory proposed by Kukavica-Ibrulj 

that P. aeruginosa Hospital strain (PS3) is more toxic than the laboratory strain (L.) 

(Kukavica-Ibrulj et al., 2008) and this, at least in part, could be due to the different 

properties of vesicles that they produce. However, HaCaT showed no response to low 

amounts of OMV s for laboratory (L.) and clinical strains (PS3). Importantly, these 

findings demonstrated that at low concentrations of OMVs the cell growth remain 

unaffected and show rapid growth compared to control and this was particularly clear for 

the lower concentrations of the laboratory strain (L.) where there appeared to be a 

stimulation in the rate of cell growth. This increase in biomass in response to moderate 

cell stress has been reported previously by (Al-Tameemi et al., 2014) and others who 

have shown that that a low concentrations of the cytotoxic drugs doxorubicin and 4-OH-

CP increases cell growth in comparison to untreated cells. This response of increase 

cell proliferation at sub-lethal doses of toxic chemotherapy compounds has been 

observed in other cell types (Kayamba et al., 2013, Paus et al., 2013).  

The images collected 24hrs after exposing the cells to OMV showed that the most 

affected cells with an apparent loss of viability was in those exposed to the Hospital 

strain (PS3) and the laboratory strain (L.) OMVs, had less effect on the cells. This was 

the same in both groups of images. Specifically, for preparation 2, the cells were treated 

with 6.67µg/ml of OMVs from the clinical strain (PS3) and this produced a loss of 
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biomass whereas lower concentration of vesicles produced a smaller affect, thus the 

most toxic concentration for OMVs was 6.67µg/ml for the Hospital strain (PS3). In 

addition, in these conditions the shape of the HaCaT cells did not represent classical 

morphology indicting that the OMVs are a stress factor and again these results confirm 

the idea that clinical strain (PS3) for P. aeruginosa is more toxic than the laboratory 

strain (L.) (Kukavica-Ibrulj et al., 2008).  

A diversity of environmental factors effects the proteins in OMVs and alteration of the 

protein content in response to environmental cues could have important implications on 

how OMVs impact host cell function and immune response (Ballok et al., 2014). The 

fact that both strains of Pseudomonas aeruginosa produce OMV is an indication of the 

central role that these must have in the function of this bacteria and shows that 

mechanisms exist to promote the formation of OMV in both lab-adapted and clinical 

strains of Pseudomonas aeruginosa (Florez et al., 2017). Previous results have shown 

that P. aeruginosa OMVs are damaging to epithelia, being both inflammatory and 

cytotoxic (Bomberger et al., 2009). 

The potential of OMVs to stimulate an inflammatory phenotype in the keratinocytes was 

investigated here by quantifying the secretion of IL-8 (CXCL8) from the cells. CXCL8 or 

Interleukin-8 (IL-8) was the first chemokine to be described (Koch et al., 1992). IL-8 is a 

member of CXC chemokine family, which are a small inducible proteins (6-15 kDa) that 

possess diverse biological activities (Zaja-Milatovic and Richmond, 2008), they are 

characterized by their capacity to attract subsets of leukocytes. More than 20 

chemokines have been isolated in humans (Liebler et al., 1994). CXC’s are secreted by 

cells such as: macrophages and epithelial cells in response to environmental stress 

including the presence of bacteria, components of bacteria and/or bacteria virulence 

factors (Lotti and Maggi, 2013) and as such they play a key role in the initiation of the 

innate immune system in both health and disease (Daig et al., 1996). Specifically, IL-8 

plays a major role in the recruitment of neutrophils to inflammatory sites (Kuhns et al., 

1998) and thus evokes a neutrophil-mediated inflammation which can lead to tissue 

destruction (De Boer et al., 1993), IL-8 expression is also found after mechanical injury 

in the retinal pigment epithelium (RPE) during the wound healing process (Yoshida et 
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al., 2001). IL-8 is one of the defences against tissue damage and end-pathogen 

invasion (Dinarello, 2009). 

Recently, non-thermal atmospheric pressure plasma (NTAPP) has emerged as a novel 

medical therapy for skin wounds. NTAPP irradiation has been reported to promote 

production of IL-8 (Hotta et al., 2018). In this context IL-8 is thought to play an important 

role in wound healing by initiating an immune response. 

HaCaT, HaCaTa and NHK cells have been shown here to possess different capacities 

for IL-8 release according to the factors to which they are exposed including various 

concentration of outer membrane vesicles OMVs and the outer membrane OM of P. 

aeruginosa isolated from either clinical PS3 or laboratory strains (L.). The response of 

HaCaT, HaCaTa and NHK cells was determined by measuring the amount of interleukin 

8 (IL-8) secreted using an enzyme linked immunosorbant assay (ELISA). The 

production and secretion of IL-8 is known to be related to environmental stress upon the 

cell (Lotti & Maggi, 2013), such as bacterial infection which in this research simulated by 

OMVs or OM isolated from P. aeruginosa. 

Our results indicated that OMVs have similar proteins to those find in OM, which they 

are derived from. Some studies show that 70-80% of OM associated proteins make up 

the protein content of OMVs (Wurpel et al., 2015)The quantitative proteomic differences 

between OMVs and the OM vesicles they are derived from shows that the OMVs were 

enriched with proteins and trace metal uptake and transport proteins (Lappann et al., 

2013). If this occurred here it be expected that the effect of OM on HaCaT, HaCaTa and 

NHK would be like exposing them to OMVs. Both laboratory and clinical strains of 

bacteria produce OMVs, their protein content showed high similarity to the OM of the 

bacteria, from where the originate and this is in agreement with previous studies (Jan, 

2017)OMVs from pathogenic bacteria are considered as a stress factor. It has been 

shown that a diversity of environmental factors affects the proteins that are expression 

in OMVs (Ballok et al., 2014) and presumable this is a result of changes in the protein 

expressed in the OM of the bacteria. 

The highest concentration of IL-8 secretion from HaCaT cells occurred after challenging 

with OM from the Hospital strain (PS3) thus again these results support the hypothesis 
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that the clinical strain PS3 of P. aeruginosa is more toxic than the laboratory strain (L.) 

(Kukavica-Ibrulj et al., 2008). 

HaCaT cells adapted to grow in low calcium (0.09mM) and serum-free conditions the to 

produce a new cell line (HaCaTa cells) which was cultured in Keratinocyte Serum Free 

Medium (KSFM) which contains low calcium concentration (~0.09mM) – in comparison 

to physiological (~2mM) calcium (Georgopoulos et al., 2010). When HaCaTa cells were 

challenged with OMV again the highest concentration of IL-8 was produced in response 

to the hospital strain and this was the same for the OM. 

The concentration of extracellular calcium has a central role as a switch between a 

differentiation and growth phase of epithelial keratinocytes, accordingly calcium 

stimulates terminal differentiation producing specific changes in cell structure and cell 

cycle withdrawal and stimulation of a group of terminal differentiation-related genes 

(Boelsma et al., 1999). 

Deyrieux and Wilson, 2007 stated that reducing the amounts of calcium in the media of 

HaCaT cells resulting in a high growth and low differentiation phenotype which was 

confirmed by decrease of specific molecular markers including K1and involucrin 

(Deyrieux and Wilson, 2007). 

Normal Human Keratinocyte NHK that are cultured in Keratinocyte Serum Free Medium 

(KSFM), respond to different concentration of OM by producing IL-8, again the highest 

level of IL-8 was stimulated by the Hospital strain (PS3) it was also more toxic more 

toxic than the laboratory strain which is similar to the other keratinocytes studied here 

and confirms previous work (Kukavica-Ibrulj et al., 2008). When normal keratinocytes 

are challenged with S. aureus and increase in the secretion of interleukin IL-6 and 

significantly attenuated expression of terminal differentiation markers keratin, loricrin 

and filaggrin in the stratum corneum (SC) of the skin in vivo has been reported. In 

addition, S. aureus inhibits the terminal differentiation of keratinocytes by stimulating IL-

6 secretion. (Son et al., 2014)  

Cultured HaCaT keratinocyte cells secreted a higher concentration of IL-8 in response 

to exposure to outer membrane vesicles (OMV) Hospital strain (PS3) of P. aeruginosa 
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and the Laboratory isolate than either HaCaTa or NHK both of which are grown in a 

lower concentration of calcium (0.09mM) and serum free conditions and exhibited 

higher proliferation rates cells and are less differentiated than HaCaT (Al-Tameemi et 

al., 2014). This could be due to the fact that in normal skin such undifferentiated and 

proliferating cells would, because of their location be less exposed to bacteria or their 

products. In this regard it is interestingly HaCaT cells and NHKs have the different Th 

cell cytokine-dependent transcriptional profiles and expression of epidermal 

differentiation markers such as: filaggrin, loricrin, involucrin, and KRT10, which is 

essential in skin permeability barrier formation (Seo et al., 2012). 

Venza et al. (2009) reported that heat-killed P. aeruginosa bacteria had a stimulatory 

effect on IL-8 secretion from human conjunctiva. This suggests that stressed or heat-

killed bacteria may produce an upregulation of secreted factors and therefore have an 

increased effect on IL-8 production (Venza et al., 2009).  

Calcium as well as being the main regulator of keratinocyte differentiation is also 

responsible for the stimulating the formation of desmosome, adherens junctions and 

tight junctions (Kobashi et al., 2017a). In connective tissues, intercellular adhesion is 

essential for tissue morphogenesis, development and wound healing (Ko et al., 2001). 

NHK cells have been shown to possess different capacities for IL-8 release according to 

the factors to which they are exposed various concentration of outer membrane vesicles 

OMVs and the outer membrane OM of P. aeruginosa for both clinical (PS3) or 

laboratory strains (L.) in low and high levels of calcium. Differentiation of Normal Human 

Keratinocyte can be activated by supplementing calcium in the media (Hennings et al., 

1980, Micallef et al., 2009, Tu et al., 2004, Tu et al., 2007). Indeed, calcium induces 

terminal differentiation, therefore the concentration of extracellular calcium has a 

profound role as a switch between epithelial growth and differentiation of keratinocytes 

(Boelsma et al., 1999). 

In vivo high concentration of Ca2+ in keratinocytes can affect normal skin barrier due to 

abnormal differentiation of cells (Sah et al., 2017b, Sah et al., 2017a). High calcium 

concentrations also increased the expression of serine protease inhibitors such as: 

lympho epithelial kazal type related inhibitor (LEKTI), secretory leucocyte peptidase 
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inhibitor (SLPI) and elafin in epidermal keratinocytes (Kobashi et al., 2017a). High 

concentrations of calcium can disrupt the normal skin barrier due to abnormal 

differentiation of keratinocytes (Sah et al., 2017a). The abnormality of differentiation and 

proliferation can lead to many diseases such as: dermatitis, angioedema, macropapular 

rashes, psoriasis and skin cancer (Sah et al., 2017a).  

Here it was shown that for NHKs an increase in the concentration of calcium in the 

media produced a reduction in the secretion of IL-8 when the cells are challenged with 

OM or OMVs.  

The results showed a significant increase of IL-8 the highest concentration of IL-8 with 

1:31 µg/ml of (OM) Hospital strain (PS3) and the lower concentration with 1:32 µg/ml of 

(OM) Laboratory strain 12041. In low concentration of calcium (~0.09 mM) comparing to 

physiological calcium (~2 mM) (Georgopoulos et al., 2010) (figure 4.19). It has been 

stated that reducing the concentration of calcium of keratinocyte HaCaT cells resulted in 

a high level of proliferation and less differentiation (Deyrieux and Wilson, 2007). A low 

Ca2+ concentration decreases the cell density needed to initiate growth (McGrath and 

Soule, 1984). When Normal Human Keratinocyte (NHK) were maintained in L.C. levels 

in the culture medium, cells were described to proliferate and grew as monolayers and 

have less cell-cell contact without desmosome formation (Watt et al., 1984).  

In vivo a high calcium environment around keratinocytes can disrupt normal skin barrier 

function due to abnormal and/or premature differentiation of keratinocytes (Sah et al., 

2017a). Changes in the concentration of extracellular calcium affect the balance 

between proliferation and differentiation in epidermal keratinocytes {(Menon et al., 

1992)#1957}. In our results morphological changes were observed by contrast phase 

microscopy. NHK growth can be stopped and terminal differentiation activated by 

raising the concentration of calcium (Kolly et al., 2005b). Thus, the type of cultured 

medium used is fundamental {Papp, 2003 #53 
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The effect of P. aeruginosa secreted factors on keratinocytes  

The supernatant of P. aeruginosa PS3 was found to be cytotoxic to keratinocytes in a 

dose dependent manner to a dilution of 1:100. Other dilutions produced an increase in 

the biomass of the keratinocyte cells which could be due to to a sub-lethal stress 

mediated effect on the cells as described previously for the OMV and previously 

reported for sub-lethal concentrations of cytoxic drugs (Al-Tameemi et al., 2014). For 

the Laboratory isolate a 1:50 dilution of the cell free supernatant produced a loss of 

biomass resulting from the treatment of the cells, while other concentrations resulted in 

no loss of biomass. 

HaCaTa cells were less affected by the supernatant of P. aeruginosa Hospital (PS3) 

and this could be due to the fact that the growth rate of HaCaTa cells were higher than 

that of HaCaT. Al-Tameemi, 2014 state that (the proliferation rate of the HaCaTa in 

comparison to the HaCaT cell line, with HaCaTa having about a 50% higher 

proliferation rate (Al-Tameemi et al., 2014).  

 

4.5 HaCaT IL-8 secretion in response to P. aeruginosa 

secreted factors 

 
It has been previously reported that when HaCaT cells are exposed to bacteria and/or 

bacteria virulence factors (Olaru and Jensen, 2010) they secrete IL-8. Here the 

keratinocyte cells secreted the highest concentration of IL-8 when exposed to the 

supernatant from Hospital strain (PS3) grown in TSB, and the lowest value of IL-8 in 

response to laboratory isolate grown in DMEM. This indicates that the conditions in 

which bacteria are grown affects their phenotype there is issue with using DMEM for 

bacterial growth, as it is not the normal growth media for bacteria, it was used here 

because when the cells were challenged with this media because it was similar to the 

media used for the cells in this study in contrast to the bacterial broth. When it was 

evident that coulter conditions changed the phenotype of the bacteria it was decided 

that it was also important to grow bacteria in conditions that could be found at a wound 
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bed and thus the simulated wound fluid (SWF) used to more closely mimic the situation 

found in an infected wound. The relatively low concentration of IL-8 in control samples 

increased on challenge with bacterial products this is in agreement with (DiMango et al., 

1995), (Sar et al., 1999), Denning et al., 1998) as they showed that IL-8 expression was 

low in a normal environment but its secretion form epithelial cells could be stimulated by 

conditions such as infection by P. aeruginosa and this results in a significant recruitment 

of neutrophils to infected area. It has been stated that IL-8 expression is activated by P. 

aeruginosa associated molecules such as pilin, flagellin, pyocyanin, and phospholipase 

C (Kipnis et al., 2006). These finding suggest that at least some of these factors are 

secreted into the extracellular fluid of wounds and that as described previously in this 

study could be in the form of OMVs. 

The production and secretion of IL-8 in response to factors from Pseudomonas 

aeruginosa is related to environmental stress on the cells (Lotti and Maggi, 2013). In 

addition to IL-8 P. aeruginosa infection potently induces other proinflammatory 

mediators, such as: IL-1, IL-6 and IL-10 (Epelman et al., 2000, Schultz et al., 2002, 

Kube et al., 2001). Also, P. aeruginosa can affect the host cells, Shao (2010) states that 

infections with P. aeruginosa can be lethal to individuals with impaired respiratory and 

immune systems P. aeruginosa produces cyanide which can kill the nematode C. 

elegans within hours (Shao, 2010). 

Keratinocytes play a fundamental role in coordinating immune responses by releasing 

chemokines following TLR engagement (Lebre et al., 2007). Keratinocytes express a 

range of Toll-like receptors (TLRs) which are a group of receptors that can detect 

microbial derived factors (MAMPs) which are produced by pathogenic and non-

pathogenic bacteria (Takeda and Akira, 2005). Both keratinocytes and HaCaT cells 

expressed TLR2, 3 and 5 while TLR4 was only observed in HaCaT cells and this was 

confirmed here. TLRs are normally highly expressed in keratinocytes (Köllisch et al., 

2005) which is indicative of the function of skin as the first line of defence to pathogenic 

components via detection of microbial associated molecular patterns (MAMPs) 

(Andonova and Urumova, 2013). It is likely that TLRs respond to OMVs because they 

are enriched in, not only outer membrane components (such as lipoproteins), but also 
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because of the method of their synthesis which results in other structures from the 

bacterial envelope such as peptidoglycan being incorporated into the vesicles (Kuehn 

and Kesty, 2005) and these are known to stimulate TLRs. 

It has reported that there are differences in the basic structure and function of some 

TLRs and TLR cofactor molecules between primary keratinocytes and the HaCaT cell 

line and this provides evidence for why it is important to use a range of models in 

addition to the immortalised non-malignant human keratinocyte line HaCaT, when 

investigating epithelial TLR expression. However, HaCaT cells have been shown to 

demonstrate some features and behaviour that are identical to normal keratinocytes in 

some molecular studies (Boukamp et al., 1988 and Deyrieux and Wilson, 2007), and 

both of them have been used in 2D organotypic cultures (Margulis et al., 2005) and they 

have also been used to investigate drug-interactions (Luanpitpong et al., 2011). 

The keratinocytes secreted the highest concentration of IL-8 after exposure to PS3 

grown in TSB and the lowest concentration when exposed to the supernatant from PS3 

grown in DMEM. This could be due to the reduced growth of the bacteria in this media 

however, the same environmental stress may have provoked an increased secretion of 

outer membrane vesicles (Ellis & Kuehn, 2010) or an increase in pathogenic factors in 

the vesicles of the hospital strain (PS3), compared to the bacterial grown in TSB this 

could be due to changes in pH in DMEM when used to cutler bacteria. Acute 

inflammation is known as an important strategy that the body uses to combat infection. 

However, over stimulation of innate immunity can result in a worsening of the disease 

outcome (De Lima, 2012) and in the case of the skin the development of a chronic 

wound.  

The IL-8 data presented here provides more information related to various factors which 

are released by P. aeruginosa and result in a further understanding of the impact these 

have on the innate immune response. Future studies may lead to the direct control of 

pro-inflammatory molecules and thus reduce the over stimulation of the immune 

response which can be responsible for the development of chronic wounds. For 

example it is already understood that elafin plays a vital role in preventing tissue 

damage Meyer-Hoffart et al. (2003) in addition it also has antimicrobial effect against P. 
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aeruginosa (Gales et al. 2000) but is also an example of an immuno-modulating 

molecule that produces an anti-inflammatory effect reducing the neutrophil-caused cell 

damage. With future research, both pro-inflammatory and anti-inflammatory molecules 

may be shown to have the ability to be used to control the immune response at a 

molecular level and thus reduce the possible clinical complications that may occur.  
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Future work  

Determine the effect of bacterial cell free supernatant that has had the OMVs removed 

on the IL-8 secretion of keratinocytes. 

 

Determine the TLR expression in NHK and HaCaTa cells and verify this using protein 

expression studies such as western blot. 

 

Determine TLR expression in keratinocytes after exposure to OMVs to help confirm 

which pathways are being stimulated. 

 

Use protein expression to determine the intracellular pathways stimulated by the 

Pseudomonas strains. 

 

Use a proteomic approach to investigate the differences in protein expression in the 

OMVs of Pseudomonas grown in SWF and TSB. 
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Figure 1: The BSA standard curve which used to find the protein concentration (µg/ml) at 

750nm wave length, for the purified OMVs which isolated from Pseudomonas 

aeruginosa. 
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Figure2: Standard curve generated by IL-8 concentration and its optical density 450nm. 
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Figure 3: Calibration curve for glucose using the phenol-sulphuric acid assay. 
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Figure 4: Typical amplification curves of qRT-PCR for TLR2, in 10 days HaCaT cell. 
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Figure 5: Typical amplification curves of qRT-PCR for TLR4, in 10 days HaCaT cell. 
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Figure 6: Typical amplification curves of qRT-PCR for TLR5, in (10 days) HaCaT cell. 
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Figure 7: Typical amplification curve of qRT-PSR. For actin gene in 4 days HaCaT cells. 
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Figure 8: Typical amplification curve of qRT-PSR. For TLR1 gene in 4 days HaCaT cells. 
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Figure 9: Typical amplification curve of qRT-PSR. For TLR2 gene in 4 days HaCaT cells. 
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Figure 10:Typical amplification curve of qRT-PSR. For TLR4 gene in 4 days HaCaT cells. 
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Figure 11: Typical amplification curve of qRT-PSR. For TLR5 gene in 4 days HaCaT cells. 
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Figure 12: Typical amplification curve of qRT-PSR. For TLR5 gene in 4 days HaCaT cells. 
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Figure 13: Typical amplification curves of qRT-PCR for TLR2, in 10 days HaCaT cell. 
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3.2 Gene expression of TLR in HaCaT: 

 
Figure 14: Typical amplification curves of qRT-PCR for Actin, in7 days HaCaT cell.  

                             Δ Rn: Fluorescence signal. 

                             Threshold: (0.073313) at which significant and specific amplification                       

occurs.  

                             Cycle: cycle number of amplification. 
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Figure 15: Typical amplification curves of qRT-PCR for TLR1, in10 days HaCaT cell. 
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