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ABSTRACT 

A realization of an analogue-to-digital converter (ADC) with improved 

conversion accuracy, using the chaotic behaviour of the tent map, is presented. 

In this approach, the analogue input signal to be measured, termed as the initial 

condition is applied to a chaotic map, and the symbolic dynamics resulting from 

the map evolution, is used to determine the initial condition in digital form. The 

unimodal piecewise linear tent map (TM) has been used for this purpose, 

because of its property of generating uniform distribution of points and robust 

chaos. 

Through electronic implementation of the TM it is practically impossible 

to produce an ‘ideal’ TM behaviour with parameter values in the full range 

[0,1]. Due to component imprecision and various other factors, a non-ideal map 

with reduced height is observed. For such a map, converting the equivalent 

symbolic trajectory generated by TM iterations return erroneous results as the 

partitioning of the phase space embodied in the finite symbolic dynamics no 

longer has unique correspondence with the initial condition. 

Two algorithmic solutions have been proposed to minimise the errors 

associated with a practical system. For one, it has been established that for a 

reduced-height map the partitioning will not remain of equal size. Considering 

that the height of the tent map used for this purpose is known from an 

independent but related research, a technique of partitioning the state space 

unevenly, depending on the map height has been proposed and has been shown 

that if the correct partitioning is used, the resulting symbolic dynamics again 

map uniquely to the initial condition. 
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Alternatively, it has been shown that the degree of deviation of the iterate 

values can be determined based on the parameter value, which in turn can be 

adjusted for depending on the symbolic sequence generated by the initial 

condition to determine the correct decimal equivalent values. 

The both the approaches proved to be highly effective in obtaining a 

digital outcome corresponding to the initial condition using 8 symbolic 

iterations of the map in hardware domain, with the second approach 

outperforming the first in terms of accuracy, while the first method can easily 

be pipelined alongside generating the iterates and thus improve the speed.  This 

development is promising because, in contrast to the commercially available 

ADCs, it places lower demand on the hardware resource and can be effectively 

implemented to give a real-time operation. 
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1 INTRODUCTION 

One of the most important requirements in engineering systems is the 

accuracy of the data collected from the environment, leading to the necessity 

for precision measurement. This is particularly true for sensory devices which 

record changes in various physical quantities from the environment and 

generate signals proportional to those changes. With sensors typically being 

analogue instruments, parameter signals with theoretically infinite resolution 

are produced, which thus can potentially detect the finest possible change and 

generate signals accordingly. However, with the signals being analogous in 

nature, complicated computations and manipulations of the collected signals 

become complex without digitisation. This requires the analogue signals from 

the sensors to be converted into the corresponding digital equivalents performed 

by an Analogue to Digital Converter (ADC). The resolution of the converted 

signal is ascertained by the number of digital bits representing each of the 

voltage or current levels. Increased number of bits improves the resolution of 

the measurement, leading to improved accuracy in the resultant computations. 

1.1 Analogue to Digital Converters 

Converting analogue signals to digital numbers with an increased number 

of bits comes at the expense of increased complexity leading to increased chip 

surface area, power consumption and cost, typically along with exponentially 

reduced speed. For example, the fastest ADC architecture – the flash type – 

doubles in complexity for a single bit resolution increase. Also, in terms of 

improved tolerance and precision, in order to retain the accuracy at an optimum 

level, the quality of the components adds to the cost. Evidently, the higher 
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resolution and precision, as well as accuracy, necessary for increased 

digitisation of the data lead to major trade-offs. In an effort to minimise the 

trade-off costs for improving resolution, previous attempts had been made to 

consider chaotic maps as an alternative quantisation block in an ADC. In the 

following section, the principles of chaotic dynamics are briefly introduced, 

prior to discussing the previous techniques for chaotic map based ADCs. 

1.2 Nonlinear Chaos 

Chaotic maps are nonlinear functions that exhibit complex evolution 

over time and the development of the state space is dependent on the initial 

input values [1]. Such functions are broadly studied as nonlinear dynamical 

systems, a branch of science that had been developed from the three-body-

problem famously studied by Henri Poincaré [2] in the late 19th century, where 

he observed deterministic systems demonstrating aperiodic behaviour. This led 

to a geometric approach of treating nonlinear problems where notably 

Aleksandr Lyapunov [3] addressed the nonlinearity through approximations. 

However, the studies of chaotic behaviour of the nonlinear systems were limited 

until the later half of the 20th century, i.e. until the introduction of high-speed 

computers in the 1950’s, which allowed experimentations with long term 

dynamics and observations of chaotic trajectories. 

In 1961 meteorologist Edward Lorenz accidentally discovered the 

sensitivity of the dynamics to initial conditions while working on weather 

prediction models, when he attempted to re-examine some of his previous 

results. He had used data accurate up to three decimal places while the computer 

could produce results accurate up to six decimal places [4]. This led to 
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inaccuracies by up to 0.1% leading to completely divergent solutions. By 1963 

Lorenz discovered the chaotic motion on strange attractors involving three 

variables, which led him to conclude that long term weather prediction was 

impossible, however, there is a structure in the apparent chaos and these 

observations eventually led to what is today known as Chaos Theory [5]. 

Chaotic phenomena have since been observed and applied in many other fields, 

e.g., economics, biology, cosmology etc. The evolutionary dynamics of several 

systems in these fields might appear to be random, however, after a certain 

period, such systems result in behaviour that may appear to be deterministic in 

nature, hence are defined as chaotic systems [3]. Despite the apparent 

randomness in the chaotic evolution the underlying deterministic information 

can be defined i.e. with infinite precision, the exact behaviour can be repeated, 

and also tracked in reverse. The dynamical behaviour of a system involves time 

domain evolution of the system states. The continuously changing states of the 

system, in most cases, is governed by more than one variable whose relationship 

with the evolutionary process can be defined mathematically as a function. One 

such variable is the initial condition, which is the origin point or the initial state 

of the system from which the future evolution is observed.  

Additional influential factors affecting the behaviour are control 

parameters that can be perceived as scaling factors governing the amount of 

change introduced in the system states causing the system to visit several other 

states resulting into the dynamic behaviour. Since the dynamical evolution is 

mainly iterative in nature, as the present state of the dynamics is responsible for 

the future states, the mathematical function that defines the dynamics can also 

be referred to as maps.  
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A state of a system can be considered as the initial condition or system 

input for further dynamic process where the resultant dynamics can be analysed 

as the trajectory of the initial condition. Chaotic maps, which can be either 

discrete where the trajectory is not differentiable with respect to the chaotic 

function can be continuous time domain as it can be differentiable with respect 

to the operating function i.e. the intermediate states between the two iterates can 

also be determined numerically. Chaotic functions with one or more spacial 

dimensions exhibit diverging points over changing parameters (Fig. 1.1). This 

phenomenon is defined as bifurcation in behaviour over a range of parameters 

and specific conditional ranges leading to aperiodic characteristics over time, 

generating chaotic behaviour [6,7].  

 

Fig. 1.1 Behaviour of LM across a range of parameter 

The deterministic property of chaotic maps has found use in a myriad of 

applications, from cryptanalysis [8] to secure digital communication [9,10] to 

pattern recognition [11] to name a few. In this work, in order to determine the 
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absolute values of signals, the unimodal unidimensional chaotic maps are used 

for generating unique trajectories, effectively resulting in an ADC where the 

maps have been envisioned as alternative to the existing quantisation blocks.  

1.2.1 Chaos based ADC  

The fact that the dynamics produced by the chaotic maps are sensitive to 

the initial condition, the application of chaotic maps, as a measurement system, 

can be proved to be feasible [12,13], chaotic maps can thus be chosen as the 

quantisation block for an ADC (Fig. 1.2) where the terms initial condition is 

used interchangeably to imply the input signal to the ADC, wherever relevant. 

As a quantisation block, the chaotic map can be utilised to generate a 0 when 

the input voltage is less than 0.5V and a 1 otherwise. However, using chaotic 

maps iteratively practically eliminates the increase in cost for increasing bit -

resolution because the same block can be reused when incorporating feedback, 

virtually infinitely in order to generate further iterations. The fundamental idea 

relies on the fact that the sensitivity of the maps on the initial condition can be 

utilised to identify the input conditions to the map from the uniqueness of the 

iterated trajectories generated by them. Thus, if a chaotic map is implemented 

electronically through an analogue circuit, the magnitude of the input signal 

entering the circuit could effectively be recovered by reverse calculating from 

the specific resultant trajectory, given the knowledge of the iterative behaviour 

of the map.  
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Fig. 1.2 Using a chaotic map as a quantisation block 

The outcome of the resulting trajectories in the implemented circuit is 

greatly affected by the inevitable presence of noise and the accuracy of the 

analogue implementation, due to component tolerances. Hence, intensive 

computations are involved in the reverse-calculation procedure and must be 

performed in the digital domain. However, the sensitivity of the dependence of 

the map dynamics on the iterate values is crucial.  A slight deviation from the 

actual iterate value will lead to a completely different initial condition over 

sufficient number of iterates. As a result, in order to recover initial conditions 

from the respective trajectories, accurate measurement of the iterate values is 

critical. However, as the map is implemented through a physical circuit, a high-

resolution ADC must be associated with every iteration stage of the 

implemented map. This, however, is dictated by the degree of accuracy and 

resolution required for the initial condition. Also, the resolution of the ADCs 

required may exceed the resolution of the ADC thus generated. As a result, the 

target device or the end-product becomes a requirement in the hardware setup 

and the cost is escalated exponentially. 



20 

 

A solution to avoid high resolution measurement of each iterate is to 

employ another useful tool called symbolic dynamics, which is another way of 

treating and analysing the map dynamics without resorting to actual values of 

iterates of the map. Observing and analysing chaotic trajectories through 

symbolic representation was first introduced by Metropolis et al [14] where the 

iterates were categorised through symbols depending on the position of the 

iterate values around the Markovian partition [6,15]. Therefore, if each iterate 

were assigned a letter or a symbol and the pattern generated by the trajectories 

are studied, any iterate “will then be said to be of “type L” or of “type R”” [13] 

depending on which side (left or right) of the Markovian partition the iterate 

lies. As a result, the trajectories produced a sequence consisting of The 

‘patterns’ thus exhibited by the symbolic treatment were eventually converted 

to binary digits and were soon utilised efficiently in digital analysis of the map. 

In 1D chaotic maps, the symbolic dynamics are generated by assigning ‘1’ to 

iterate values that exceed the midpoint of the possible range of inputs while ‘0’ 

to the rest of them. Under the ideal parametric conditions, the symbolic 

trajectory correspond to the initial condition through binary (generated by BM) 

or Gray code (generated by LM or TM) [6,12,16]. Fig. 1.3 shows the Gray code 

generation over the iterations. Since the state space is partitioned by each 

operation of the chaotic map there are many intervals generated due to the 

partitioning as the dynamics continues. In ideal conditions, the intervals are 

divided into two equal halves and a symbol or a series of symbols represent any 

such interval. Hence, if such sequences are either binary or Gray codes then 

conventionally converting them to equivalent real numbers that involves 

division by two in each of the subsequent stages resulting into determining the 
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initial condition or an iterate in the trajectory, therefore, making such maps and 

its symbolic dynamics the ideal choice for measurement applications. 

 

Fig. 1.3 Using a chaotic map as a quantisation block 

The most recent work for the chaos based ADC development was also 

attempted by Berberkic et al. [17] aimed at determining relative changes in 

incoming signals. Various 1D maps were investigated for performance, where 

the LM and the TM proved to be feasible options. The performances were 

weighed by comparing the shift in the long term trajectories of the signals 

through the maps. Owing to the sensitive dependence of the initial conditions, 

trajectories gradually diverged for the slightest changes and were noticeable 
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over sufficient time steps of the map operation. It has been shown that the 

resulting trajectory of the difference between individual signals showed unique 

characteristics and as a result could be utilised to identify the relative change in 

the signals. The TM emerged to be the optimum option in terms of 

implementation and performance [18] and could successfully measure signal 

differences (as opposed to absolute signal values) up to 20µV. However, the 

lack of determination of absolute values of the signals and the shift in parametric 

values in the implemented circuits were unaddressed. This required further 

investigations, which addressed both issues. Also, the work in [18] approached 

the problem using real valued trajectories of the map, which entailed measuring 

the individual iterates with high precision. This involved sufficiently developed 

measuring techniques and converting the readings into digital values for 

computation. This proved to be challenging for long term aims of implementing 

an ADC. However, the study remains important for the assurance of uniqueness 

of trajectories for physically implemented versions of the maps as well as the 

choice of map. 

The next stage of the research involved correctly identifying the absolute 

value of the signal value from the symbolic dynamics of the map function. 

However, the implemented map would lead to reduced height which needs to 

be identified in order to perform necessary modifications in determining the 

shift in the symbolic behaviour and thus accommodating the shifted dynamics 

within the state space of the map maintaining the correct correspondence with 

the initial condition. The direction of investigation, therefore, became 

bifurcated, one being identification of the implemented map through its 

parameter, which has been led by Dhrubajyoti Dutta as an independent yet 
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related research. The other direction, as described in this work, involves 

remapping the affected symbolic sequence generated by the map to its initial 

condition, keeping in mind the non-ideal behaviour produced by the reduced 

parameter TM. The breakdown of the research areas has been shown in Fig 1.7. 

 

Fig. 1.7 Breakdown of the areas of the research 

Discrete 1D maps are unidimensional systems whose dynamics are 

expressed by a single state variable and is non-differentiable in nature that 

makes such systems discrete, e.g. Logistic Map (LM), Tent Map (TM) and 

Bernoulli Map (BM) of which LM and TM are the two most fundamental forms 

of 1D discrete chaotic systems that are also unimodal in nature. The LM consists 

several regions within certain parameter ranges where the map dynamics 

become periodic, i.e., iterative points visit the same set of points in a cyclic 
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pattern. Thus, the distribution of the dynamics contains windows of periodicity 

which is discussed further in section 2.2.2. In case of the TM, the windows of 

periodicity cease to exist beyond a certain low parameter value (about ~0.7), 

and therefore the distribution is much less periodic (discussed in section 2.2.3). 

Thus, the TM showed better linearity and sensitivity and is known to produce 

robust chaos [19] for a wide range of parametric value that controls the 

behaviour of the map, and can therefore accommodate the dynamics of the 

reduced height map caused by the electronic implementation. 

The TM produces unique, mutually exclusive Gray code sequences as 

output under ideal parametric values, which can be directly utilised to generate 

symbolic signatures for the initial conditions. However, ideal implementation 

of the map as a physical circuit is impossible, owing to the imprecision in the 

components aside from the noise introduced by the hardware [13]. This results 

in a reduction in the parametric value and therefore the height of the map 

function is reduced, leading to substantial deviation in the map trajectories for 

the same initial conditions. This is referred to as the non-ideal condition of the 

map, henceforth being addressed as the non-ideal TM, and the symbolic 

sequence thus generated as non-ideal sequence. As a result, if this behaviour, 

the dynamics continue infinitely, i.e. does not converge to zero, and must be 

truncated after a finite number of iterations as it is not feasible to continue the 

physical process indefinitely, as well as in order to avoid complete corruption 

of the trajectories owing to system noise [20,21]. However, regardless of the 

variations in the sources of the non-idealities – offset, linearity issues, along 

with noise – observed in the implementations, only the parametric value 
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sufficiently reflects the shift in a measurable way that can be addressed to 

recover the initial condition. 

While generating the symbolic sequences from such non-ideal 

trajectories, it results in different codes than what are expected from an initial 

condition. In fact, without a significant number of iterations, insufficient 

definition of the sequences results in overlapping codes, and therefore mapping 

to the same real valued point, despite being produced by different initial 

conditions [16]. With a reduced height TM, if the generated Gray code 

sequences are converted directly into the corresponding decimal values, the 

resultant mapping is incorrect and therefore measurement accuracy is affected. 

This has led to incorrect digitisation of the input signal as observed in [20]. If, 

however, a lengthier symbolic time series is considered, it is demanding in terms 

of resource required for generating the additional symbols. 

An analysis has been conducted, but in a theoretical setting in [23], where 

it is shown that the use of a map with ideal parameter is preferable. Thus, a 

limitation in the applicability of the TM is encountered because in a physical 

implementation, deviation of the parameter is inevitable, as can be seen from 

the work of Kapitaniak et al. [13]. In [13], there was an earlier attempt to 

propose a theoretical model to measure electrical signals using 1D PWL maps 

where it was observed that the traditionally measured outcomes were greatly 

affected by slightest error. These errors have been introduced due to the offsets 

and tolerances of the components used in the physically implemented map, 

which significantly reduced the parametric domain of the map. It can also be 

seen from the works of Cong et al. [24] where the problem of recovering initial 
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conditions was approached using the inverse map with suitable use of symbolic 

sequences as a footmark for the back-track algorithm. Their results have shown 

a good agreement to the actual input values. However, since the approach is 

performed backwards through the sequence, the final symbol for a desired 

length of sequence will have to be known. Therefore, the accumulation process 

of the entire sequence i.e. all the iterations must be completed before any 

conversion process can begin. This might add some time overhead in the 

conversion. However, as each iterative action of the TM on the input signal 

generates partitions and doubles the number of intervals that the entire range of 

the initial condition is divided into, finite length symbolic sequences generated 

by those iterations define each of these specific intervals uniquely [6]. 

Therefore, the number of bits in the finite length non-ideal symbolic trajectories 

directly relates to the number of intervals generated by the iterations [15,25,26]. 

Because the overlapping caused by the non-ideality of the map causes the 

intervals to be unequal in size. In order to successfully retrieve the correct initial 

condition from a finite length Gray code generated by a non-ideal TM, it is 

prudent to identify the initial conditions by the interval in which it belongs. The 

size of the intervals can be guided by the bit-resolution of the magnitude of the 

initial condition.  

The proposed solution is a forward operating conversion algorithm which 

can be applied from the starting symbol through each symbol of the sequence 

to the end as the trajectory generation continues to progress with the map 

iterations. This implies that such a conversion technique can be applied as a 

pipelined stage along with the iterations, thus saving the time overhead to 

collect the entire sequence before conversion. Keeping this aim in mind, the 



27 

 

targets have been set objectively which are explained in detail in the following 

section. 

1.3 Aims and objectives 

The aim of this work is to determine the digital equivalent of signals by 

using it as an initial condition of a non-ideal TM from the resultant symbolic 

sequence generated by the iterations to ultimately develop an accurate ADC 

structure. As the non-ideality of the electronically implemented map most 

severely affects the parametric value of the TM, the mapping of the symbolic 

trajectory generated by the iterative process to the initial condition through any 

direct means, is complex. In particular, the intervals generated by the repeated 

partitioning of the state space are responsible for the mutation of the symbolic 

sequence. Acquiring the parametric value would lead to, tracking the shift in 

the resulting partitions and thus determining the deviation in the trajectory must 

be accounted for while determining the initial condition that generated the 

dynamics. In order to execute the said task, the overarching aim can be achieved 

by fulfilling a set of objectives as are described in the following sub-sections.  

1.3.1 Initial conditions as intervals 

The foremost task is to establish the validity of identifying the initial 

conditions by the intervals they belong to. Any initial condition, belonging to 

the possible range of the inputs, can be identified as a point within a short 

interval. The objective is to define this interval in a way which can later be 

narrowed down to, among the entire range of possibilities. Depending on how 

finely defined this interval is, the resolution of the input signal can be defined. 
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Fig. 1.4 Uniform intervals in the state space 

For example, as can be seen from Fig. 1.4, a random initial condition can 

be either defined as belonging to the interval “BC”, or “fg”. The resolution of 

the input signal, therefore, depends on how sharply the intervals are defined.  

This is analogous to identifying input signals through the step size of an ADC 

and thus establishing the efficacy of utilising the tent map as a quantisation 

block of an intended ADC. Thus, the intervals must be appropriately defined 

before proceeding to identify the correct interval. 

1.3.2 Analysis of the intervals generated 

The next step is to identify the nature of the intervals generated. While it 

is ideal to have equally spaced intervals as the origin of the initial condition, the 

non-ideality of the map parameter affects the dynamics of the map [15,27]. This 

behaviour is introduced by the component tolerances as well as the inherent 

noise of the circuit implementation of the map. As a result, the intervals 

generated are skewed and unequal in nature. 
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Fig. 1.5 Skewed intervals remaps the same input 

As can be seen from Fig. 1.5 the unequal intervals might result in 

redistribution of the initial conditions and is especially true when the precision 

of the input signal is important. The same initial condition as in Fig. 1.8 can be 

now defined to be in the interval “AB”, or in case of increased precision, in 

“eB”. Therefore, in order to determine the underlying dynamics , the next step 

is to identify and analyse the nature of the non-ideality of the map and thereby 

the unequal intervals generated by it. This then forms the basis of the initial 

condition estimation technique. 

1.3.3 Recovering initial conditions 

The precise values of the generated trajectories cannot be retrieved 

without a precision ADC, therefore tracing back to the initial condition by 

reverse calculating the identity of the originating interval must solely depend 

on the symbolic signature associated with the trajectory. Thus, the final step is 

to utilise the acquired knowledge about the nature of non-ideality to identify 
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how the dynamics of the map has been altered and where the initial condition 

has been remapped among the skewed intervals. This must be done to determine 

the modification required for the interval arithmetic to accommodate the 

deformed symbolic sequences with the skewness of the intervals, tallying the 

correct sequence with the correct interval. The modified arithmetic is to be 

utilised to develop an algorithm to determine the initial condition producing the 

symbolic trajectory in question. The algorithm must be tested both in simulated 

as well as a physically implemented test scenario to validate the applicability as 

a successful ADC. 

1.4 Original contribution 

The fundamentals of the work presented here has led to a journal 

publication titled “An Algorithmic Approach for Signal Measurement Using 

Symbolic Dynamics of Tent Map”, published in Transactions in Circuits and 

Systems—I, IEEE [28]. Additionally, further contributions were made to 

another publication, the complete details can be viewed under the List of 

Publications. The primary areas of contributions associated to the work 

presented in this thesis are listed here. 

 Analysis of the intervals generated by the iterations of the non-

ideal variation of the map, identifying the shift in the partitions 

generating unequal, asymmetrical intervals. 

 Identification of the non-ideal symbolic sequences with respect to 

the skewed intervals. 

 Defining the shifted partitions with the help of the symbolic 

sequence with respect to the non-ideal parameter value. 
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 Remapping the initial conditions to the new intervals due to the 

shifted partitions as opposed to where the initial condition would 

be mapped by direct binary conversion of the sequences. 

 Development of an algorithm to determine the initial condition 

solely from the symbolic sequence of a known non-ideal TM, 

keeping in mind the constraints of an implemented map, and the 

resulting sequences, contributing to the successful 

implementation of a chaos-based ADC. 

1.5 Document overview 

The background literature of the proposed work is reviewed in detail in 

the next chapter. A brief account of the types of analogue to digital converters 

is presented, followed by a summary of the map of choice: tent map. This 

chapter also sets up the basic premise of the analogue to digital conversion 

technique and previous works in this direction is discussed. 

The third chapter explains the challenges faced by the basic proposition 

and establishes the need for further investigation. The details of the specific 

reasons that affect the outcome of the proposed method are mentioned. This 

chapter concludes by pointing out the specific directions that require the 

attention in order to improve the accuracy of the results. 

The approach developed in this work to determine the initial condition is 

outlined in the fourth chapter and the necessary analyses of the problems are 

presented. The basis of the solution is established by summarising applications 

of the analytical outcomes of the previous chapter. 
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The fifth chapter explains the mechanism of how the solution works and 

is summarised in the form of an algorithm. The results and validity of the 

algorithm is verified in chapter six. Finally, the seventh chapter concludes the 

overall achievements along with the future steps in order to achieve a fully 

implementable stand-alone ADC. The other possible directions where the 

present work can be utilised, including other fields such as communication or 

cryptography are also discussed.  
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2 BACKGROUND REVIEW 

The research for the implementation of a low-cost ADC devices with 

significant accuracy is very popular. Various architectures have been developed 

and often combined together in order to achieve a balance of cost, accuracy, 

resolution, conversion speed, etc. This chapter explores a brief history of the 

types of ADC architectures, followed by a summary of the properties of 1D 

maps, and how these properties can theoretically be utilised for an ADC. 

Finally, the previous attempts at chaos-based ADC that have been proposed are 

discussed. 

2.1 A brief account of ADC 

Analogue to digital converters (ADCs) convert analogue electrical 

signals from the sensors etc, to digital representation 1’s and 0’s of 

computational electronics. The basic principles of ADCs involve comparing the 

input voltage to a number of voltage levels and determining the maximum 

numeric digital value equivalent to the voltage detected. The step size of the 

increment of voltage levels to which the input signal is compared, is the 

minimum change that an ADC can detect and therefore determines the 

resolution offered by the ADC. Thus, for the step size shown in Fig. 2.1, the 

change in signal desired to be detected does not produce any change in the 

outcome. 

The step size (Z) of an ADC with maximum input of Vref whose output is 

defined by n bits is given by (2.1). 

𝑍 =
𝑉𝑟𝑒𝑓

2𝑛 − 1
⁄ .        (2.1) 
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The step size therefore, depends on the resolution on which the input 

signal is to be defined by the digital output and is referred to as the resolution 

of the instrument. The higher the number of bits used to define the signal , the 

higher is the resolution. However, this does not guarantee the precision of the 

ADC, which is dependent on the repeatability and reliability. The components 

used in manufacturing the ADC are responsible for the degree of precision 

offered. Therefore, the components that vary greatly with temperature and other 

physical conditions offer poorer precision than the components whose 

behaviour is maintained over wider ranges of physical parameters. 

 

Fig. 2.1 ADC step - size and desired level of detection 

The accuracy of the device however is the degree of error caused by the 

gain or off-set parameters, which result in the outcome being scaled by a certain 

factor, or the entire outcome being off-set by a certain amount. Although both 

the accuracy and the precision are dependent on the components used, the 
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conditions are independent of each other. Therefore, it is possible to have a good 

degree of repeatability with the outcome effectively being incorrect due to 

scaling or off-set error (or both). The accuracy of the step size, in particular, is 

of great importance as unequal step size results in non-linear error in the 

outcome, greatly affecting the resolution of the digital output, leading to 

incorrect mapping of the input signals to the corresponding digital value.  

Finally, the sensitivity of an ADC is the minimum absolute change in the 

measurement that can be detected. Unlike resolution, which is the smallest 

amount of change that an instrument is theoretically capable of indicating (as 

an output value) depending on the number of bits it utilises to do so, sensitivity 

is the smallest change in measurement (of the input signal) that is capable of 

triggering a change in the reading or the output. Attaining a balance between 

these four parameters – resolution, accuracy, precision and sensitivity – 

influenced the development of various ADC architectures. The conversion 

speed of the ADC is determined by the amount of time required to realise the 

input signal in terms of digital values. The conversion speed of an ADC is 

governed by Nyquist’s criterion [29] which states that the sampling 

(measurement attempt) frequency fs of the ADC should be at least be double the 

input signal bandwidth given by fB < 0.5fs to avoid aliasing. Aliasing happens 

when signals become indistinguishable between transition of the inputs or a 

void between the points whenever fast changing input signals are sampled. 

Therefore, to avoid unnecessary gaps or coarseness in the converted signals, it 

is always recommended to follow Nyquist’s Criterion for the sampling of input 

signals. Depending on the several architectures of ADCs and the amount of 

resources involved in each design, conversion times may vary and there might 
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be some conversion overheads as well depending on the measurement technique 

followed. In order to comply with the Nyquist criterion there is a limit on 

maximum bandwidth of the input signal that can be chosen for a specific ADC 

architecture with a certain conversion time. 

Currently, there is a wide range of ADC architectures available, with the 

choice of a particular type of architecture over the others dependent on the 

application specifications. Each type can be analysed through several 

performance metrics such as cost, precision, speed, chip area and power 

dissipation which have been proposed by [30,31]. While for some applications, 

the speed is of prime importance, for others, lowered power consumption might 

be of utmost necessity. For critical applications, the precision of the ADC might 

be of prime importance even at the cost of other parameters while a non-critical 

device may focus on reducing the cost even if that means compromising on 

other aspects. Of course, there could be a combination of priorities as well, and 

all these have led to extensive research in the direction of ADCs, of which delta-

sigma (ΔΣ) type, successive approximation register (SAR) type, pipelined and 

modified flash ADC types are some of the most commonly used architectures 

[32]. 

Each of these architectures can be weighted in terms of benefits and 

shortcomings, resulting in one type to be more profitable over the other 

depending on the judging criteria. Generally, performance and design 

complexity of different ADC types are judged based on the quantisation factors 

(gain, offset, transfer function, noise, etc.), speed, structural organisation and 

resource consumption [33]. 
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2.1.1 Flash type ADC 

Flash type converters have the simplest quantisation block of all types of 

ADCs, it consists of quantised segments of resistive dividers, each of which are 

referenced to a set of parallel implementations of comparators [32]. The 

resolution of this type of ADCs depends on the number of voltage divider 

segments that the input range is divided into. The resulting comparator codes 

therefore result in a series of ones until the level which is just above the input 

voltage. This is usually referred to as a thermometer code and is dealt in a 

priority encoder to determine the actual binary output.  

 

Fig. 2.2 Block diagram of a 3-bit flash ADC 
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The block diagram of a 3-bit flash-based ADC is shown in Fig. 2.2. 

Though flash ADCs are well known for high speed operations due to its parallel 

architecture, it is challenging to achieve higher bit resolution as the number of 

comparators given is doubled for each increment in bit resolution, thus 2n 

comparators would be required for an n-bit ADC. This increases the chip area 

requirement significantly for the designs over 6 bits. Currently time-interleaved 

Flash ADCs are being considered [34,35]. 

2.1.2 ΔΣ type ADC 

As an alternative to flash ADCs other kinds of ADC architectures have 

been introduced, which save sufficient resource but at the cost of reduced speed 

[32,36]. ΔΣ ADCs measure the input signal in terms of the frequency of a pulse 

modulated signal generated by the integrator with a thresholding as shown in 

Fig. 2.3.  

 

Fig. 2.3 Simplified block diagram of a Delta-Sigma ADC 

The difference between the input signal and the 1 bit digital to analogue 

converter (DAC or the Δ sub-circuit) is integrated until the threshold value is 

reached and the pulse count is buffered and added together to produce the digital 

outcome. These ADCs are mostly preferred for better precision and power 

consumption; however, it offers moderate speed which can be attributed to 
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oversampling. Also, due to the higher order system implementation, a large 

amount of chip area is required, and the stability factors are affected by the 

order of modulation. 

2.1.3 SAR type ADC 

The SAR type ADCs are comprised of a register controlled by a 

successive approximation sub-circuit where the input signal (Vin) is compared 

to a reference voltage (Vdac) controlled by a residual feedback [37]. The ADC 

initialises the most significant bit (MSB) as 1 and the rest of the bits as 0. The 

resulting code is converted to the analogue equivalent through a DAC. The 

outcome is compared with the input signal. If the Vin > Vdac, then the next bit is 

set as 1, otherwise the previous bit is set as 0 and the following bit is set as 1 . 

The process continues until all the digits in the code, coming from MSB to the 

least significant bit (LSB) have been set, which denotes end of conversion [38]. 

 

Fig. 2.4 Simplified block diagram of a SAR type ADC 
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Since the number of bits is fixed, the time taken for values is fixed too. 

The simplified block diagram of an SAR type ADC is shown in Fig. 2.4. For 

successive approximation type ADCs, improved resolution is achieved through 

higher level of design complexity and resource consumption, but at the cost of 

reduced speed. 

2.1.4 Pipeline ADC 

A flash-based architecture is pipelined ADC, which involves series 

implementation of quantisation blocks that are operated in parallel. Each 

quantisation stage generally includes a 3-bit flash ADC which contributes 2 bits 

to the final outcome, a 3-bit DAC and a multiplier of 4 [32]. Four of such blocks 

are implemented in series with an additional 4-bit flash ADC at the end stage to 

complete 12 bits of conversion. A simplified block diagram shows the operation 

is Fig. 2.5. 

 

Fig. 2.5 Block diagram of a pipelined ADC 
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2.1.5 Hybrid flash ADCs 

Increased resolution is achieved through several other hybrids of flash 

architecture such as interpolation type which reduces the number of pre-

amplification units by using additional voltage dividers between two 

consecutive pre-amplifier outputs [39]. Though chip area is drastically reduced 

through interpolation, the number of latches required is still the same as the 

classical flash architecture. This can further be reduced by incorporating 

additional folding stages [40]. The folding stage includes a coarse grain ADC 

and a fine grain ADC with a folding circuit.  

 

Fig. 2.6 Block diagram of a folding-interpolating ADC 
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A combined block diagram incorporating folding circuits followed by 

interpolating stages can be seen in Fig. 2.6. The success of such ADCs depends 

largely upon the accurate implementation of the folding circuit. As summarised 

in Table 2.1 developed with the help of the data from Saima et al [33], there is 

a trade-off between resolution, power dissipation, and speed for flexible design 

architecture. 

Table 2.1 Comparison chart of various types of ADCs 
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Flash High 1 High High Low High 

ΔΣ Low Variable Low Medium High Low 

SAR Medium Variable Ultralow Low Medium High 

Pipelined Medium 2N/2-1 High High Medium High 

Hybrid flash 

(folding and 

interpolation) 

Medium Variable High High Medium High 

 

From the aforementioned discussions on the various types of ADC 

architectures, it is evident that, for improved performance, most of the ADC 

architectures rely heavily on additional quantization blocks such as increased 

number of comparators or coarse ADC/DAC as well as folding circuits leading 

to increased resource consumption, which result in increased chip area with 

greater design complexity and high power consumption. Therefore, given 

chaotic maps are simple mathematical functions and can be easily implemented 

with simpler structures, and that a single block of chaotic map can be reused 

iteratively to generate the dynamics and symbolic representations 
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corresponding to an input signal, the use of chaotic maps as a quantisation unit 

is investigated. The physical implementation of a chaotic map can suffer errors 

that are caused due to the gain and offset of the components used in the design. 

However, using the technique that is proposed here, such errors can be corrected 

algorithmically through the principles of dynamics while analysing the 

symbolic sequence of an input. All such analysis can be carried out in the digital 

domain, thus making the potential system architecture less complicated at the 

hardware level. 

2.2 Chaotic maps: formal definition and properties 

Chaotic maps are classified according to the dimensions and topologies 

defined by the function. Depending on the univariate or multivariate state 

mapping of the chaotic systems the map definition may be categorised as 

unidimensional or multidimensional maps. The behaviour of chaotic systems is 

widely understood through one dimensional, which produce the most 

fundamental type of chaos that may offer a wide spectrum of chaos under 

different parametric conditions. One dimensional systems can further be 

classified according to the system topology e.g. unimodal, multimodal etc. A 

certain class of chaotic maps called unimodal maps, which shall henceforth be 

denoted as ℱ, is considered. For any mapping given by f ∊ ℱ if the function f 

maps the elements of the set I back to itself, i.e.,  f : I→I, where I = [a,b] ⊂ ℝ, 

a < b and simultaneously satisfies the following conditions: 

 f has a unique maximum fmax, in the interval I, 

 fmax = f(xc) where xc ∊ I is called the critical point of the map, and 
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 f is monotonically increasing in the interval [a,xc] and monotonically 

decreasing in the interval [xc,b], then f is unimodal.  

When such stretching-and-folding-like behaviours are involved in the 

evolutionary process such maps show chaotic dynamics as the monotonic 

progression of the evolution is prevented by the function. The most fundamental 

type of chaotic maps are one dimensional (1D) chaotic maps e.g. Logistic Map 

(LM), Bernoulli or Bitshift Map (BM), Tent Map (TM) with an ideal response 

to the initial condition, shown in Fig. 1.1 – Fig. 2.11 respectively [6]. 

The class ℱ consists of certain maps that can be defined using a control 

parameter, µ, such that fµ(x) ∊ ℱ is valid for x ∊ I and µ ∊ J ⊂ ℝ, and fµ(x) is a 

map on I × J. The BM, LM and TM, all belong to this family of parametric self-

maps fµ : I→I such that I = [0,1] and also J = [0,1].  

 

2.2.1 Bitshift Map 

Of the three types of maps, BM (Fig. 2.7), which is also referred to as 

the Bernoulli Map is the most restrictive in the sense that it is defined for only 

the ideal parametric value. The BM, B can be defined as B(x) ∊ ℱ where  

𝐵(𝑥) = 𝑓𝜇(𝑥) = {
2𝜇𝑥                   0 ≤ 𝑥 ≤ 𝑥𝑐

2𝜇𝑥 − 1          𝑥𝑐 < 𝑥 ≤ 1
.    (2.2) 

where the map is defined only when µ is 1 (i.e. ideal). The map fails to remain 

chaotic and generated trajectories that do not remain trapped within the state 

space and approaches infinity (or negative infinity) for even for the slightest 

deviation in the parametric value.  
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Fig. 2.7 The Bitshift (Bernoulli) Map (BM) behaviour 

 

Fig. 2.8 Bifurcation diagram of BM: points escape to infinity 
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The behaviour can be observed from its bifurcation diagram (BD) shown 

in Fig. 2.8 where the points within the parametric range [0.999,1] approach 

astronomical upper limits  and up to -2.5 for the lower limit. As a result, a 

physical implementation of the map and using it to realise an ADC is rendered 

futile because the dynamic generated fails to remain chaotic. Therefore, 

although the map could produce binary sequences theoretically, practicality of 

achieving an ADC through the BM is is not possible. 

2.2.2 Logistic Map 

As an alternative to the BM, the LM and the TM, both present a large 

range of workable parameters to achieve chaotic trajectories and thus the 

possibility of practical implementation. In particular, the LM has been 

successfully implemented by [41] for practical purposes through an electronic 

circuit. The map, not being defined as a pair of piecewise linear equations, is 

more readily adaptable for electronic implementation. The LM function, L is 

defined as L(x) ∊ ℱ where  

𝐿(𝑥) = 4𝜇𝑥(1 − 𝑥).        (2.3) 

The map is defined for a wide range of parameters, where the behaviour 

begins with a single period orbit gradually bifurcating into 2, 4, 8 periods before 

briefly lapsing into chaotic behaviour and therefore a dense chaos where all the 

points are defined within the state space of the map. However, as can be seen 

from the bifurcation diagram of the LM in Fig. 2.10, the behaviour often lapses 

into a number of wide periodic windows for certain parameters (the periodic 

windows are marked with numbers referring to the periodicity of the window). 
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Fig. 2.9 The Logistic Map (LM) behaviour 

 

Fig. 2.10 BD of LM: periodic window over the entire range 
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When the map is implemented electronically, there is every possibility 

that the component tolerances might drift the parameter into one of the periodic 

windows, if not already in it. This poses a possible hindrance for the ADC to be 

reliably utilised in all conditions.  

2.2.3 Tent Map 

The TM shows dense and robust chaos over a significant range of 

parameters (above ~0.7) where there are no windows of periodicity. Any 

periodicity is limited only to a small region towards the lower range of the 

parametric value, leaving sufficient play for the parameter value to drift due to 

tolerances. This can be seen from the bifurcation diagram in Fig. 2.12. The 

uniformly dense chaos [19] exhibited by the TM enables a successful utilisation 

of the chaos where unique sequences can be generated if sufficiently long 

trajectories are considered. 

 

Fig. 2.11 The Tent Map (TM) behaviour 
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A successful implementation of the map has been done by Campos et al. 

[42] which can be readily utilised for practical purposes. The TM, which can be 

defined as a function  belonging to the function described in section 2.2 as T ∊ 

ℱ, which is and T(x) is defined as 

𝑇(𝑥) = 𝑓𝜇(𝑥) = {
2𝜇𝑥                   0 ≤ 𝑥 ≤ 𝑥𝑐

2𝜇(1 − 𝑥)        𝑥𝑐 < 𝑥 ≤ 1
.    (2.4) 

where xc = 0.5 ∊ I is the critical point of the map. For the map to be chaotic, it 

is crucial that the range J of the control parameter µ is given by J = (0.5,1]. 

 

Fig. 2.12 BD of TM: points above ~0.7 exhibit robust chaos [17] 

In the closed interval I ⊂ ℝ―also known as the state space of the 

map―the ith iterate of T(x) is defined as xi+1 = T(xi), i ∊ ℕ0 (where ℕ0 = {0} ⋃ 

ℕ) such that, 
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1. x0 = T0(x) = x 

2. xi+1 = Ti+1(x0) = T(Ti(x0)) = T(xi) 

3. T(0) = T(1) = 0 is the absolute minimum of the map 

4. Tmax = T(xc) ≤ 1, Tmax is the maximum height of the map, for 0 ≤ µ ≤ 1 

5. T(Tmax) = T2(xc) ≥ 0, T(Tmax) is the dynamic minimum of the long-term 

trajectory. 

When the map is iterated for n times, a set of n values is generated. This 

is known as the trajectory of the map. The set of n+1 points (including the initial 

condition x0) visited by the trajectory of a TM can be referred to as the orbit of 

that particular initial condition and is defined as 𝒪T(x0) = {T0(x0), T1(x0), T2(x0), 

…, Tn(x0)}. The behaviour of 𝒪T(x0) is periodic at J = 0.5, with a period of one. 

As the value of J increases to J > 0.5, the periodicity doubles into a two-period 

orbit. It then doubles again and eventually results into aperiodic orbits for higher 

values of J producing the chaotic characteristics of the map. Eventually, the 

chaotic behaviour exhibited by the map at this stage is known as robust chaos 

[19]. 

Given that chaotic maps are sensitive to initial conditions, an 

infinitesimally small change in the initial condition results in substantially 

diverging trajectories and due to the folding nature of the map, points in the 

closed interval I ⊂ ℝ will eventually map on to every other point in I ⊂ ℝ, or 

arbitrarily close to it [25]. 
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Fig. 2.13 A 3D view of the iterates over the entire state space 

The stretching and folding nature of the map can be isolated as the 

orientation preserving and orientation reversing side of the map [6]. The 

monotonically increasing side of the map function, i.e., the restriction of the 

function that acts upon the points up to the xc are only stretched, but their 

orientation of increment is maintained. The other half, where the folding action 

takes place is called the orientation reversing half, where the map is 

monotonically decreasing, despite having a stretching action by the 2µ. This 

action is repeated over the iterations (Fig. 2.13) and result in mirroring effect 

across the state space over the iterations which can be seen from the top view 

of Fig. 2.13, as can be seen in Fig. 2.14. 
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Fig. 2.14 Fractal dynamics of the TM over the state space 

Observing Fig. 2.14, it can be seen that a self-similar (fractal) behaviour 

emerges from the long-term dynamics of the map over the entire state space. 

Through the repeated preservation and reversal of the orientation of the map, 

unique trajectories can be generated for any arbitrary initial condition in I ⊂ ℝ, 

that result in the aforementioned self-similarity, that was later utilised to 

determine its possible role in the interval partitioning. In the following section, 

the symbolic sequence generated by a TM has been described with its general 

features and functionalities that are relevant to this application. 

2.3 Symbolic dynamics  

The orbit of a TM, given by 𝒪T(x), can be transformed into a symbolic 

sequence 𝒮n+1 of length n+1 where 𝒮n+1(T,x) = s(x0)s(x1)s(x2)…s(xn). The first 

attempt in this direction was initiated by Metropolis et al [14] who defined the 
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symbolic sequences using three letters, L, C and R standing for left, centre and 

right. The symbol assignment was intuitive, the points to the left of the critical 

point are assigned L, the ones to the right are assigned R and the critical point 

itself is assigned C. The realisation that the symbols exhibited pattern over the 

parametric space resulted in development of a strong tool for analysing chaotic 

dynamics. Eventually, the pattern in the symbolic dynamics over the state space 

was observed [14,43] and it was shown that for unimodal maps, if the symbols 

were replaced such that L represented 0, R represented 1 and C could represent 

either one of the two, the patterns were either binary or Gray codes. The codes 

generated by the stretching and folding nature of the TM is always Gray code. 

Therefore, bypassing the L, R, C convention, the symbolic sequence 𝒮n+1(T,x) 

could be conveniently defined as s : [0,1]→{0,1} is defined as 

𝑠(𝑥𝑖) = {
0         𝑥𝑖 ≤ 𝑥𝑐

1         𝑥𝑖 > 𝑥𝑐
.      (2.5) 

Furthermore, it has been shown that, the symbolic sequences generated 

are Gray codes [44]. On every ith iteration, the state space I is partitioned into 

2i+1 mutually exclusive sub-intervals 𝐼𝑗
𝑖 where 0 ≤ j ≤ (2i+1‒1) is the count of the 

sub-interval increasing from the left endpoint 0 to the right endpoint 1 within I 

and i is the iteration count [16]. The input signal to the function must therefore 

belong to any one of the sub-intervals. The following properties relate the 

symbolic sequence 𝒮n+1(T,x) to the sub-intervals generated by the map. 

1. Every x ∊ 𝐼𝑗
𝑖 results in same symbolic sequence 𝒮i+1(T,x) 

2. If initial conditions x ∊ 𝐼𝑗
𝑖 and x̑ ∊ 𝐼𝑗+1

𝑖 , then 𝒮i+1(T,x) and 𝒮i+1(T,x̑) 

differ by only one bit 
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3. 𝐼0
𝑖 ∪ 𝐼1

𝑖 ∪ 𝐼2
𝑖 ∪ … ∪ 𝐼

2𝑖+1−1
𝑖 = 𝐼 

4. 𝐼𝑗
𝑖 ∩ 𝐼𝑘

𝑖  = ∅ for j ≠ k 

Therefore from the properties 1, 2 and 4, the symbolic sequence 𝒮n+1(T,x) 

can be interpreted as an n+1 bit long unique symbolic identity that corresponds 

to a sub-interval of the size 𝐼𝑗
𝑛 and so, the longer the symbolic sequence, the 

narrower will be the size of the intervals. Each such jth interval can be identified 

by the corresponding symbolic sequence 𝒮n+1. The order of the symbolic 

sequences, as shown in [16], corresponds to the order j = 1, 2, 3, …, 2n+1 

according to which the intervals 𝐼𝑗
𝑛 are ordered in I. For example, for all 𝒮3(T,x), 

the order of the possible sequences corresponding to j can be seen from Table 

2.2. Therefore, for 𝒮n+1(T,x), 𝐼𝑗
𝑛can be written as 𝐼𝒮𝑛+1

𝑛 and can be used as a basis 

to identify the originating interval of an initial condition. 

In the case of ideal parameter, the initial conditions directly correspond 

to their originating intervals when their symbolic signatures 𝒮n+1(T,x) are 

converted to the corresponding binary codes ℬ : b0b1b2...bn 

𝑏𝑖 = {
𝑠(𝑥𝑖)                   𝑖 = 0
𝑏𝑖−1 ⊕ 𝑠(𝑥𝑖)    𝑖 > 0

.      (2.6) 

ℬ is further converted to the real values. This conversion from 𝒮n+1(T,x) 

to real number is referred to as Gray Ordering Number (GON), given by the 

transformation  

GON(𝒮𝑛+1) = ∑ 𝑏𝑖
−(𝑖+1)𝑛

𝑖=0 .      (2.7) 

and can be ordered by its magnitude as described in [16]. 
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Table 2.2 shows GONs for a 3-bit sequence generated using T2(x0) for 

inputs (x0) with a step-size of 0.125. Considering a longer sequence will result 

in identification of input signals with a finer step size. 

Table 2.2 Correspondence between Sequences and Input Intervals 

j 𝒮3(T,x) Binary GON 

0 000 000 0 

1 001 001 0.125 

2 011 010 0.25 

3 010 011 0.375 

4 110 100 0.5 

5 111 101 0.625 

6 101 110 0.75 

7 100 111 0.875 

2.4 Previous chaos-based ADC attempts 

This mapping property of the TM has been considered previously and 

attempts have been made to utilise it in developing an ADC. The first attempt 

was that of Kennedy [12] in 1995, where both the TM and the BM were 

considered for conversion. Later, Kapitaniak et al. [13] also attempted 

independently, with similar results with further results exploring the non-ideal 

conditions. It was shown that the TM generated Gray code results while the BM 

directly produced binary outcomes. In the following sub-sections, the details of 

the inception of an ADC based on the BM and the TM respectively are shown. 

2.4.1 ADC based on BM 

The symbolic structure generated by the BM over the iterations for the 

entire state space is binary in nature. As can be seen from Fig. 2.15 the state 

space has been partitioned over repeated iterations. This, therefore, theoretically 

appears to be the most appropriate choice for the ADC. Depending on the 
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number of symbols sampled from the map, the initial condition could be 

recovered up to that many bits of precision [13]. However, in a practical setting, 

the said map must be implemented through a physical circuit. The inherent noise 

in the implemented system and the precision of the components involved 

inevitably incurs a non-ideality, where the parametric value of the map is most 

severely affected. In such non-ideal parametric conditions, the BM fails to 

function as can be seen from the bifurcation diagram of the map (Fig. 2.8) and 

cannot be intended as an ADC for practical purposes. 

 

Fig. 2.15 Intervals with binary signature generated by the BM 

2.4.2 ADC based on TM 

An equivalent principle can be utilised for TM to develop an ADC. The 

symbolic structure for the state space as generated by the TM is in Gray codes 

(Fig. 2.16). In addition, the map functions chaotically even when the parametric 

value is non-ideal and can therefore be implemented in practical domain, and 
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exhibits aperiodic dense chaos for an extended range of parameters (Fig. 2.14). 

In [12], the conversions were successful when the parameter for either maps 

must be maintained at the ideal value. The slightest deviation showed 

significant error in the outcomes. Similar experiments were carried out by 

Kapitaniak et al. [13] using both the maps, where the various sources of 

deviations were explored through simulation by varying separately both the 

elements that are susceptible to variation in an implemented map: the parameter 

as well as the critical point. The outcomes confirm that directly treating the non-

ideal symbolic sequences as digitised output values will produce erroneous 

results. In particular, the effect of the parameter shift is more readily reflected 

on the symbolic sequences. 

 

Fig. 2.16 Intervals with Gray signature generated by the TM 

In the work of Alvarez et al. [45] it is seen that considering a large 

number of iterations and converting them using directly to the decimal values 



58 

 

fairly approximate the initial condition even for non-ideal parametric values as 

the symbols contribute value in exponentially diminishing quantity thus 

asymptotically approaching the initial condition over the iterates. However, in 

a practical scenario, obtaining that many iterates, even without noise is an 

implausible idea. 

Dinu et al. [46] developed a means of reverse-calculating the initial 

condition from a randomly assumed final iterate chosen based on the final 

symbol of the sequence. The generated outcomes were produced with sufficient 

accuracy; however, consistency cannot always be guaranteed. Cong et al. [24] 

have also employed similar techniques of reverse-calculations, which has 

shown good agreement of the outcomes with the input signals. However, as the 

reversal requires the entire sequence to be collected prior to conversion, it 

cannot be executed parallel to the iterations of the map. Also, there is a lack of 

real results testing the feasibility of the techniques in data from implemented 

circuit results of the map which inevitably involves the effect of noise distorting 

the symbolic sequences. Therefore, a conversion method is developed 

considering the challenges offered by a real circuit implementation which are 

described in the following chapter.  

  



59 

 

3 ANALYSIS OF NON-IDEAL BEHAVIOUR 

The ideal condition for developing an ADC using the TM is to utilise a 

map with full parametric value. This would ensure that the symbolic sequence 

generated by the map uniquely identifies the initial condition that generated it. 

In fact, the symbolic sequence generated would produce the Gray code 

equivalent bits for the binary value of the initial condition. However, such a 

system is only feasible in a software simulated environment which is immune 

from component tolerances as well as the inherent noise in the system. Such a 

system would be of no practical use in engineering measurement and control 

where the signals collected by sensors are real electrical voltage or current. 

Therefore, producing a TM in the electronic domain is inevitable. 

Since the primary intention for utilising chaotic maps to develop an ADC 

is to reduce the cost of the system while maintaining satisfactory accuracy, the 

components used for the implementation purposes must not be very highly rated 

in terms of tolerance. Also, such components and the nature of electronic 

circuits in general, are susceptible to noisy interference. Thus, when the TM is 

implemented, the ideal values of various parameters of the map function suffer 

from deviations from the ideal values. This has a significant effect on the map 

dynamics due to the sensitivity of the map to slightest changes. This in turn, 

affects the outcomes if the dynamical trajectories responsible for the set of 

initial conditions which are used as a signature for the initial condition 

measurement. As a result the generated Gray symbolic outcomes are not directly 

convertible to their binary or decimal equivalents. As the deviation is inevitable, 

a solution must be aimed at either recovering the ideal symbolic trajectories 
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from the deviated ones, or devising a method to remap the initial conditions 

correctly through the non-ideal sequences. In order to determine the feasible 

and relevant solution, the effect of the non-ideality of the implemented TM 

needs to be understood thoroughly.  

3.1 Parametric deviation 

The most common form of non-ideality – reduction in the height of the 

map function – alters the intervals that correspond to each symbolic sequence 

[15]. In general, the symbolic representation of the TM dynamics of one half of 

the map is the mirror image of the other half. Therefore, when the intervals 

within the state space are charted symbolically, the structure of the symbolic 

codes are the same as that of the Gray codes. Gray code can be processed using 

a straightforward numerical exercise that involves the Gray to binary conversion 

and further into decimal equivalent values to estimate the initial condition. 

However, this is possible if and only if the tent map dynamics are generated by 

the circuit is 'ideal' i.e., its domain or the dynamical state space maps to the 

entirety of [0,1]. 

As stated before, a parallel independent research in the same direction 

has been conducted where the parameter of the non-ideal TM has been estimated 

by Dutta, once through the maximum sequence method as done in [28] and also 

in [47] where the inherent system noise has been utilised to determine the non-

zero fixed point in a probabilistic approach. The resulting fixed point has then 

been utilised to determine the parameter that led to the estimated fixed point.  

When the map is implemented physically, there is a reduction in the 

height of the tent map and therefore due to the non-ideal parameter as seen in 
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Fig. 3.1, the symbolic trajectories are no longer the same as it is with the ideal 

parameter. Hence converting the generated Gray code sequences directly into 

the corresponding real values, leads to a deviation in the estimated outcome to 

the actual initial condition, thus leading to incorrect mapping [48]. 

 

Fig. 3.1 TM with reduced heights due to various parametric values 

For example, when the initial condition 0.4375 is iterated eight times 

through an ideal and a non-ideal TM, the resultant trajectory after 7 iterations, 

and the corresponding symbolic sequences are shown in Table 3.1. In the ideal 

situation, as can be seen from the table, the result is analogous to a conversion 

using an 8-bit ADC (any type). However, the results vary in case of the non-

ideal map, where the outcome is greatly shifted from the expected result.  

Table 3.1 Change in trajectory with change in parameter 
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Ideal trajectory 

µ = 1 

Ideal  

sequence 

Non-ideal trajectory 

µ = 0.95 

Non-ideal 

sequence 

0.4375 0 0.4375 0 

0.875 1 0.83125 1 

0.25 0 0.320625 0 

0.5 0 0.6091875 1 

1 1 0.74254375 1 

0 0 0.489166875 0 

0 0 0.9294170625 1 

0 0 0.13410758125 0 
 

As can be seen, even for a slight deviation of parameter (µ = 0.95), the 

symbolic sequence generated is quite different from the ideal sequences. As a 

result, converting the symbols directly into the corresponding decimal values 

does not yield the initial condition as can be seen from Table 3.2. 

Table 3.2 Imperfect mapping of symbolic trajectory 

Power 

factor 

Ideal  

Gray 

Ideal 

Binary 

Decimal Non-ideal 

Gray 

Non-ideal 

Binary 

Decimal  

21 0 0 0 0 0 0 

22 1 1 0.25 1 1 0.25 

23 0 1 0.125 0 1 0.125 

24 0 1 0.0625 1 0 0 

25 1 0 0 1 1 0.03125 

26 0 0 0 0 1 0.015625 

27 0 0 0 1 0 0 

28 0 0 0 0 0 0 

 Outcome =  0.4375 Outcome = 0.421875 
 

3.2 Narrowed dynamical attractor 

The dynamical trajectories of all the initial conditions of the state space 

become trapped at one point in time within a boundary called the dynamical 

attractor. In the ideal TM, the iterated trajectory reaches the maximum height at 

some point for all possible initial conditions of the map. Therefore, in the ideal 

case, the dynamical attractor is the entire state space I. However, in the 
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hardware implementation of the map, it may not be possible to maintain the 

parameter µ = 1 constantly. Under such non-ideal condition, when the map 

height (parameter) is reduced i.e. µ < 1, changes to certain degrees in the 

dynamical characteristics of the map that can be noticed. This can be viewed 

from the bifurcation diagram of the TM (Fig. 2.12) where, with changing 

parameter, there is a gradual narrowing of the attractor beyond which, the 

iterated point can no longer visit during further iterations. This can also be 

experienced for random individual initial conditions which also exhibit the 

trapped region where its dynamics is limited to. This can be viewed very well 

in a cobweb diagram showing a trajectory originating from x0 = 0.000124 after 

300 iterations is shown in Fig. 3.2. 

 

Fig. 3.2 Cobweb diagram for points originating before xc 

The cobweb diagram is generated by alternating between the points 

visited by the trajectory and the 𝑥 = 𝑦 line, thus highlighting the growth and 
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folding of the iterate values at each step. In a non-ideal TM, the cobweb diagram 

over the long-time dynamics exhibit the region where the folding nature of the 

map limits the boundary beyond which none of the iterates migrate. This 

property of the dynamical attractor of the tent map is characterised by the 

parameter µ and therefore, the maximum height Tmax = T(xc) where it determines 

the upper limit of the attractor. As can be seen in Fig. 3.2, the points originate 

further away from the Tmin for µ = 0.75, however, once the point enters the 

attractor, the trajectory stays limited within this region.  

 

Fig. 3.3 Cobweb diagram for points originating before xc 

A similar plot can also be generated for a trajectory originating beyond 

the Tmax. With an initial condition of x0 = 0.823 (Fig. 3.3) the trajectory first 

maps to a point less than Tmin and then gradually enters the attractor and stays 

confined. This effect is also seen in the bifurcation diagram (Fig. 2.12), where 

the boundaries of the bifurcated points define the upper and lower limit. 
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Due to the folding nature of the tent map, the minimum value of the 

attractor can be determined as Tmin = T(Tmax) = T(T(xc)). Thus, the upper limit 

and lower limit of the attractor are given by Tmax = T(xc) = 2µxc = µ, and Tmin = 

T2(xc) = T(Tmax) = T(µ) = 2µ(1‒µ). The attractor can therefore be identified as 

the portion in the state space demarcated by these limits, which shall henceforth 

be referred to as I′ = [Tmin,Tmax] = [2µ(1‒µ),µ]. As a result, when µ < 1, over 

time, it can be observed that points originating from arbitrary locations of the 

state space I will eventually be attracted and be trapped within I′ = [Tmin,Tmax], 

where I′ < I. The dynamics continue infinitely as the iterated points never 

achieve the full height of 1 and therefore cannot reach 0 either on the next 

iterate. As both fixed points 0 and 2µ/(1+2µ) are unstable for µ > 0.5, the 

dynamics stay trapped within I′ for a non-ideal µ. The lower the value of the 

parameter, the narrower is the region where the dynamics is trapped and 

therefore the periodicities increase as the iterates repeatedly visit the few 

intervals that fit within that region. 

3.3 Skewness of the intervals 

The non-ideality of the map also affects the intervals generated by the 

map [15]. In an ideal map the first pair of partitions generated by the first 

iteration occur around 0.25 and 0.75 respectively. In a non-ideal map, where 

µ < 1, after an iteration, it is observed that 0.25 falls short of producing 0.5 in 

the next iteration, as does 0.75 in the mirroring half. This can be noticed in Fig. 

3.4, where the non-ideal iterate of 0.25 (and 0.75) shown in green, fails to meet 

the 0.5 line through the Y-axis. Therefore, the input value of x in the map 

function 2µx (correspondingly 2µ(1‒x) for x > 0.5) is required to be higher (or 

lower) than the ideal to make up for the reduction in the parameter value. As a 
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result, the partitions get shifted towards the critical point xc, creating the 

intervals skewed and unequal.  

 

Fig. 3.4 Shift in interval partition due to reduced height 

It can be seen from Fig. 3.4 that the ramp input represented by AA’ gets 

stretched and folded by the operation of the TM function – once using the ideal 

map (µ = 1) and once using the non-ideal map (µ = 0.75) – producing the ABC 

and AB’C respectively. To illustrate the shift of the partitions, the points where 

the stretching side of the two maps cross the critical value (xc = 0.5) are marked 

with X and X’ respectively. The point X’ can be calculated by reverse 

calculating the initial condition from the resulting iterate which must equate to 

the critical point. In this case, this is given by 1 −
𝑥𝑐

2𝜇𝑥
= 0.33. As can be seen, 

from the figure, in case of the non-ideal map, none of the inputs until 0.33 has 

crossed the 0.5 threshold after a single iteration.  
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In the process, the initial conditions are redistributed in the sub-intervals, 

i.e., in case of an ideal map, if a certain initial condition previously belonged to 

a certain sub-interval identified by a specific symbolic signature, in the non-

ideal scenario, the same initial condition might not belong to the same sub-

interval and might belong to an interval with a different signature. Thus the non-

ideal symbolic sequences do not necessarily represent the same interval visits 

as the ideal sequences do. 

This condition causes the non-ideal symbolic trajectories to be no longer 

the same as it is with the ideal parameter. Hence the trajectories do not 

correspond to the actual initial condition when the non-ideal symbolic 

sequences are converted to their decimal equivalents directly. Since the only 

relatively reliable outcomes of the system are the symbolic trajectories, in order 

to work out the initial condition, the information of the parameter of the map is 

also needed to be taken into account. It is assumed the information of the 

parameter is available, which is being taken care of through a parallel 

investigation. However, even the knowledge of the non-ideal parameter is 

insufficient for determining the initial condition from the symbolic sequence, if 

the conventional approaches are applied. 

In order to determine the initial condition from the non-ideal symbolic 

trajectories, the dynamics should be traced with respect to the intervals visited 

by the iterates on every iteration. The information of the system parameter needs 

to be utilised to determine the measure of each interval visited by the trajectory. 

As the intervals of the non-ideal map are not equal in size and the positions are 

skewed, the measure of the non-ideal parameter as well as the symbol of the 
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iterate should be utilised to govern and determine the interval size and thus trace 

the iterates to determine the initial condition that resulted in the sequence. The 

position of the partitions as well as the size of the interval for each symbol will 

aid in repeatedly narrowing down into the interval that should contain the initial 

condition which resulted in the non-ideal symbolic trajectory. To determine the 

shift of the partition with every iteration as well as keeping track of the shift 

with iterations including the folding behaviour of the map, the behaviour of the 

TM must be understood thoroughly, which is described in detail in the following 

chapter. 
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4 INITIAL CONDITION ESTIMATION  

The ideal TM generates uniquely defined Gray code sequences which 

can be converted to binary codes first and then into the corresponding decimal 

values which will correspond to the initial condition that generated the 

trajectory. As shown for the LM in [27], if the symbolic sequences converted 

directly to decimal values without converting to the binary codes first, the 

resulting points when plotted against the initial conditions exhibit the fractal 

nature of the TM dynamics and is a very useful tool to observe the behaviour of 

the points in the state space when subjected to the TM iterations. This can be 

seen from the behaviour of the point 0.4 in Fig. 4.1. It must be noted that, since 

the point plotted is the decimal equivalent of the Gray code and therefore a 

direct doubling cannot be observed. 

 

Fig. 4.1 Fractal behaviour of ideal Gray codes for μ = 1 

When the same observation is made for non-ideal (μ = 0.75) map 

outcomes, the plot appears as shown in Fig. 4.2 and the equivalence of the point 
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0.4 is no longer maintained. The shift in the points introduced by the non-ideal 

parametric condition results in overlapping of points and drastic remapping that 

cannot be traced back in a straightforward manner. This is due to the shift of the 

interval partitions as described in [15] causing unequal and skewed sub-

intervals. Therefore, the initial conditions from the state space I are redistributed 

in these sub-intervals. As a result of this phenomenon, the symbolic signatures 

associated with the specific initial conditions gets changed from the ideal 

symbolic trajectories. Therefore, converting the symbolic sequences directly 

into decimal values produces incorrect mappings.  

 

Fig. 4.2 Distortion of the fractal code for μ = 0.75 

It can be seen from Fig. 4.2, however, the symbolic sequences generated 

by the iterations still maintain the fractal nature of the TM dynamics, even when 

the parameter value deviates from the ideal. Therefore, it might be possible to 

utilise the inherent self-similarity to recreate the skewed sub-intervals and 

identify the correct interval from where the initial condition originated. 
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Therefore, in order to determine the initial condition only from the symbolic 

sequence generated by a non-ideal TM, it is important to have a deeper 

understanding of how the dynamics of the trajectory gets affected with the 

change of parameter and how the change is reflected by the change in the 

symbolic sequence thus generated. 

4.1 Self-Similarity 

Initial experiments were conducted by directly converting the non-ideal 

symbolic sequences into decimal values (GON) and comparing with the initial 

conditions over a range of parameters (Fig. 4.3).  

 

Fig. 4.3 GON values calculated and compared with the ideal case 
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For most of the initial conditions, therefore, the same initial condition 

maps to a variety of points depending on the parameter value of the operating 

function (Fig. 4.4).  

 

Fig. 4.4 A closer view of the GON values 

It was observed that there exists a self-similarity in the GON values (as 

described in section 2.3) as well as the difference of the outcomes with the initial 

conditions. It was therefore logical to infer that there must be an overarching 

rule governing the behaviour of the deviation from the ideal values. As a result, 

it is evident that the initial condition can be recovered if the difference between 

the corresponding values for the initial condition in Fig. 4.3 can be made up for. 

As can be seen from closer observations, the magnitude of deviation from the 

ideal values is dependent on the parameter values. Once the parameter value is 
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known – which is the objective of a parallel and related research – the initial 

conditions can be recovered from the GON values. Since the difference shows 

a fractal behaviour, the underlying governing rule must be recovered.  Since the 

reduced parameter value results in a reduction in the subsequent iterate values 

as compared to the ideal condition, the difference between the parameter values 

can be utilised at every step of the iteration to account for the overall deviation 

of the initial condition. Now, if the initial condition requires to be reverse-

calculated from the symbolic sequence, dividing the iterates and occasionally 

folding the outcomes depending on the symbolic footprint cannot be performed 

with the non-ideal parameter value since the accurate final iterate is not 

accessible. 

On the other hand, replacing the base of 2 with the reduced parameter 

value in the GON calculation will not account for the folding behaviour since 

the symbolic sequence generated is not a true Gray code and will not generate 

true binary codes. This can be verified from Fig. 4.5, where the outcomes show 

scaling error from the ideal scenario and cannot be scaled back by 1/2µ. 

However, in the reverse calculation method, the deviation of the reverse-scaling 

factor can be independently calculated, even without the knowledge of the final 

iterate value. This difference, when accounted for along with the GON of the 

initial condition, depending on the symbolic sequence, should recover the initial 

condition successfully. The problem can be approached by determining how 

much deviation must be restored with every iteration. Since in a non-ideal map, 

the iterates gain by a factor of 2µ, the reversal should scale down the iterates by 

a factor of 1/2µ. However, as GON is performed with a base of 2, effectively, 

it results in a reverse-calculation with a scaling factor of 1/2. Therefore, there 
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is a loss of scaling by 1/2µ1/2. Over iterations, the power of the difference is 

compounded, and the power is increased. 

 

Fig. 4.5 GON calculated with base of 2µ and rescaled by 1/2µ 

4.2 Interval arithmetic 

The self-similarity of the TM function was also reflected by the position 

and the size of the skewness and inequality of the intervals generated by a non-

ideal TM. It was observed that the self-similarity had a mirroring property and 

it always occurred about the critical point of the map (xc). It could therefore be 

linked to the reversed orientation of the two halves of the map as stated by 

Gilmore and LeFranc in [6]. Although the self-similar structure could be utilised 

along with the knowledge of the symbolic trajectory to triangulate an 

approximate area within the state space where the initial condition might 
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belong, in a real situation the information of the entire state space will not be 

available and therefore, the information from the self-similar structure could not 

be accessed from a single symbolic sequence. Therefore, it was important to 

determine the property that lent the self-similarity to the observation in Fig. 4.6, 

and whether this property can aid in determining the initial condition through 

the symbolic sequences. 

 

Fig. 4.6 Fractal growth of sub-intervals over iterations 

4.3 Addressing non-ideal patterns 

In order to correlate the underlying pattern or the self-similarity of the 

skewness of the intervals with the symbolic sequences which result in self-

similar errors when converted to decimal values, the interval arithmetic of the 

map is considered. The interval arithmetic is the technique of observing and 

analysing the formation of the intervals within the state space, caused by 
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repeated iterations of the map over the state space. In case of the TM the folding 

nature of the map result in a reflected fractal nature of the formation of the 

intervals. This is owed to the reversing and preserving nature of the two halves 

of the map. Thus, each partition created by the iterations result in sub-intervals 

on either side that also inherit the similar orientations as the original map.  

As can be seen in Fig. 4.6, over iterations, each interval is again 

partitioned into further smaller sub-intervals with mirroring nature. As the 

newer intervals are produced, the generated intervals can also be uniquely 

identified as addressed by the symbols generated over iterations. Therefore, as 

the number of iterations is increased, the sub-intervals also double each time 

resulting in finer definition, producing higher resolution of the intervals where 

the initial condition might originate from. For example, for the initial condition 

through which the line is shown in Fig. 4.6, the originating interval can either 

be identified by the sequence 1111 if 4 iterations are considered but can be 

defined as 11111110 with a higher resolution if all the 8 iterations are 

considered. 

In a non-ideal TM, the partitions get shifted due to reduced height 

(parameter) and thus the intervals are unequal. However, in order to correctly 

determine the shifted interval, it is important to note how the partitions have 

shifted and in which direction. It is observed that the rate of the partition shift 

is directly related to the change in parameter. Also, the direction of the shift is 

related to the orientation of the map as can be compared with Fig. 4.7. 

As the partitions get repositioned, the interval sizes are either reduced or 

increased and accordingly, initial conditions or the subsequent iterates 
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belonging to specific intervals in case of ideal maps get remapped into different 

intervals. Therefore, the symbolic sequences are altered. However, keeping a 

track of the partition shift along with the altered symbolic sequences might lead 

to partitioning the state space in the right way. If the partitioning is continued 

for all the symbols in a specific sequence, narrowing down and identifying the 

correct interval will be possible. This idea has been developed into an algorithm 

which is described in the next chapter. 

 

Fig. 4.7 Shift of the partitions towards xc 

In a TM, the new partitions are generated on the nth iteration through the 

points which, on the nth iterate, produce the critical value of 0.5. In case of non-

ideal TM, the reduction in the parametric value must be made up for by the 

iterate values. As a result, for the orientation preserved side, the partitions are 

generated for a higher value compared to the ideal scenario. Similarly, in the 

orientation reversed side, due to the folding nature of the map, the partitions are 

generated through the points at values lower than the ideal case. Therefore, as 
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can be seen from Fig. 4.7 the partitions are shifted towards the critical point of 

the map (xc). As for the amount of the shift, since the partitions are generated 

on the nth iterate of the map, the reduction in parameter must be factored into 

the magnitude of the shift. In fact, for the nth iteration, the shift in partition is 

also produced by the nth power of the reduction in the parameter. Clearly, when 

the non-ideal parameter is known, if the orientations of the symbolic iterates are 

known the shifted partitions can be reconstructed. Therefore, the intervals can 

be reconstructed using the symbolic sequences for the initial conditions, which 

are redistributed in the skewed intervals of the non-ideal map. 

4.4 Orientation of the interval arithmetic 

For any initial condition x0 that generated a symbolic sequence 𝒮n+1, the 

symbolic sequence identifies an interval 𝐼𝒮𝑛+1

𝑛  such that x0 ∊ 𝐼𝒮𝑛+1

𝑛 , which is 

described in section 2.3. Moreover, every ith symbol in 𝒮n+1 also indicates 

whether xi belongs to the left or right of xc, i.e., to 𝐼0
0 or 𝐼1

0. As a result, s(xi) ∊ 

{0,1}. This is true for every xi. If xi = Ti(x0) ∊ 𝐼𝑠(𝑥𝑖)
0 , the inverse relation returns 

x0 ∊ T i(𝐼𝑠(𝑥𝑖)
0 ). Since this operation can be performed for all bits in the 

sequence, for an n+1-bit sequence, this relationship can be combined for every 

xi. Hence, the originating interval 𝐼𝒮𝑛+1

𝑛 can be defined as  

𝐼𝒮𝑛+1

𝑛  ⋂ 𝑇−𝑖(𝐼𝑠(𝑥𝑖)
𝑖𝑛

𝑖=0 ).      (4.1) 

For instance, if 𝒮n+1 = 010...s(xn), s(x0) is considered, the initial condition 

can be identified by x0 ∊ 𝐼0
0. After one iteration, the iterate T(x0) ∊ 𝐼1

0, which can 

also be expressed as x0 ∊ T 1(𝐼1
0). Therefore, considering s(x0)s(x1), x0 ∊ 𝐼0

0 ∩ T 
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1(𝐼1
0)  𝐼01

1  ⊂ 𝐼0
0 [17,27]. In this manner, following all the symbols in the 

sequence, the originating sub-interval can be identified as 

𝑥0 ∊ 𝐼0
0 ∩ 𝑇−1(𝐼1

0 ∩ 𝑇−1(𝐼0
0 … ))… ⊂ 𝐼010

2 ⊂ 𝐼01
1 ⊂ 𝐼0

0.  (4.2)  

As the TM is directly non-invertible (every point has two inverses), if 

the inverse operation T 1 of the tent map function on an interval is performed, 

there is more than one choice for the restriction for T 1. However, there is a 

way to determine this factor as it depends on the “orientation” of the map on 

the sub-interval [19]. Orientation of an interval is determined by the tendency 

of the function in that interval, which is dictated by the slope of the function. 

For a TM, a positive slope implies an orientation-preserving interval and a 

negative slope implies an orientation-reversing interval. Unlike a BM, this 

reversal of the orientation results in mirroring of the behaviour of the map and 

hence, generating Gray codes instead of binary codes. This is referred to as the 

reversal of the lexicographic order of the symbolic signature. Therefore, the 

orientation of the interval 𝐼𝒮𝑖+1

𝑖  can be determined from the sequence 𝒮i+1 

associated with the ith iterate. 

 

Fig. 4.8 Generating Gray code over iterations 

From Fig. 4.8, it can be seen that the orientation of 𝐼𝒮𝑖+1

𝑖  gets reversed 

from how it was, every time a 1 is encountered in the trajectory. Hence, it can 
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be deduced that two successive reversals result in restoring a reversed interval 

into a preserving one. Building up from here, it can be said that an even number 

of reversals can result in the same orientation. Hence, up to the ith iteration, 

occurrence of the orientation-reversing iteration for an even number of times 

restores the orientation of 𝐼𝒮𝑖+1

𝑖 , while an odd count of the same behaviour results 

in a reversal. Since orientation-reversing iteration generates the symbol ‘1’, the 

orientation of the interval 𝐼𝒮𝑖+1

𝑖  can be determined by checking whether αi is 

even (preserved) or odd (reversed), where αi is given by (5.3). 

𝛼𝑖 = 𝛼𝑖−1 + 𝑠(𝑥𝑖)       (4.3) 

This knowledge can be utilised to determine the restrictions of the 

inverse operation T 1 of the tent map function can be chosen as 

𝐼𝒮𝑖+1

𝑖 = 𝑇−1(𝐼𝒮𝑖

𝑖−1) = {

𝐼𝒮𝑖
𝑖−1

2𝜇
                  𝛼 𝑖𝑠 𝑒𝑣𝑒𝑛

1 −
𝐼𝒮𝑖

𝑖−1

2𝜇
          𝛼 𝑖𝑠 𝑜𝑑𝑑

.   (4.4) 

In the following section, it is shown how the measure of shift in partitions 

is applied to the corresponding sub-intervals according to their orientation, 

given by each symbolic state in the sequence starting from s(x0) to s(xn), so that 

the originating interval of the initial condition x0 can sharply be narrowed down 

from the state space I. 

4.4.1 The interval arithmetic method  

In a non-ideal TM, the magnitude of inequality of the resulting 

asymmetric sub-intervals is dependent upon the map parameter µ < 1. Also, 

partitioning the state space as a nested sub-interval is guided by the orientation 
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of the current sub-interval for determining whether the bigger or the smaller 

sub-interval needs to be chosen for the next step. Therefore, it must be decided 

regarding the direction, that, in which the partition of the current state needs to 

be shifted (from the midpoint of the current sub-interval) for each symbolic 

iterate in question. 

 

Fig. 4.9 Reconstructing sub-intervals 

Here, it is shown how the orientation of 𝐼𝒮𝑖+1

𝑖  can be used to determine 

which direction the partition on 𝐼𝒮𝑖

𝑖−1 must be shifted to, and which of the two 

sub-intervals generated contains the originating interval of x0. Using 𝒮n+1 = 

01…s(xn) this can be illustrated in the following manner. For x0 ∊ I, s(x0) = 0 ⇒ 

x0 ∊ 𝐼0
0. s(x1) = 1 ⇒ x1 ∊ 𝐼1

0 and therefore, x0 ∊ 𝐼0
0 ∩ 𝑇−1(𝐼1

0)  𝐼01
1 , which lies to 

the right of the newly generated partition as αi is odd for 𝐼01
1  (Fig. 4.9). Similarly, 

for 𝒮n+1 = 11…s(xn), despite s(x1) = 1, αi is even for 𝐼11
1  and therefore 𝐼11

1  ∍ x0 

lies to the left of the newly generated partition. Continuing for n+1 symbols, the 

originating interval 𝐼𝒮𝑛+1 
𝑛 ∍ x0 can be obtained [28].  

A technique has been formulated (Fig. 4.10) to be able to measure signal 

value from the symbolic sequence generated by the TM, in the form of a 

computational algorithm. For easy adaptability in the digital processing domain, 
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the task of partitioning the state space and the determining the next sub-interval 

of choice, has been adapted into a simple numerical exercise. The key essence 

is to shift one of the boundaries of the interval 𝐼𝒮𝑖

𝑖−1 towards the other, depending 

on the orientation of the resulting sub-interval 𝐼𝒮𝑖+1

𝑖 ∍ x0, by a factor of µ, in such 

a way that the sub-interval that does not contain x0 is eliminated, leaving the 

correct 𝐼𝒮𝑖+1

𝑖  behind thereby leading to the originating interval of x0 on the nth 

step. 

For any given sequence 𝒮n+1, s(x0) is determined by T0(x0) i.e. without 

having the initial condition iterated through the map function. This is because 

the critical point xc determines which half of the state space I the point belongs 

to, and thus which symbol must be assigned to it. Hence the role of the first 

symbol s(x0) is simply to determine whether the algorithm must be performed 

on 𝐼0
0 or 𝐼1

0. 𝐼1
0 being a mirror image of 𝐼0

0 about xc = 0.5, for any two symbolic 

sequences that are identical, except for the first symbol s(x0), their originating 

intervals are also mirror images of each other exactly about xc. Therefore, for 

reducing computational complexity, the calculations for the symbolic sequence 

beginning with s(x0) = 1 is performed on the preserving sub-interval and later 

amended for the reverse orientation. 

From s(x1) onwards, the boundaries of the i‒1th sub-interval 𝐼𝒮𝑖

𝑖−1 are 

denoted as A(i‒1) and B(i‒1). Therefore, the corresponding length of the sub-

interval is given by ℓ(i‒1) = B(i‒1) ‒ A(i‒1) and δ(i‒1) = ℓ(i‒1)/2µ determines 

by how much one boundary needs to be shifted towards the other for creating 

the ith sub-interval. The algorithm [47] can be summarised into a flow chart as 

shown in Fig. 4.10. 
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Fig. 4.10 Flow chart for the interval arithmetic algorithm [28] 

Executing the steps in the flow chart evaluate the initial condition. The 

procedure is as follows: 

1. For the interval 𝐼0
0, i.e. for T0(x0), the boundaries are referred to as A(0) 

= 0 and B(0) = 0.5 and ℓ(0) = B(0) ‒ A(0) = 0.5 ‒ 0 = 0.5. Similarly, by 

the previous proposition, the boundaries for 𝐼1
0 are A(0) = 0.5 and B(0) 

= 0 and ℓ(0) = B(0) ‒ A(0) = 0 ‒ 0.5 = ‒ 0.5. The negative value of the 

length is taken care of by the orientation of the symbols in the sequence.  
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2. From s(x1) onwards, the following step is repeated until s(xn). For i = 1, 

2, …, n‒1: 

 αi is even, A(i) = A(i‒1) and B(i) =  A(i‒1) + δ(i‒1) 

 αi is odd, A(i) = B(i‒1) ‒ δ(i‒1) and B(i) =  B(i‒1) 

3. When the operation is performed with µ < 1, the estimated initial 

condition x́0 is scaled by a factor of µ, resulting in x́0 ∊ [0, µ] which needs 

to be scaled back into x́0 ∊ I = [0,1]. Also, if 𝒮n+1 had s(x0) = 1, the final 

sub-interval needs to be mirrored back into 𝐼1
0 = [0.5,1]. Depending on 

the orientation of the sub-interval  𝐼𝒮𝑛+1

𝑛  of the nth iteration, keeping the 

conditions in mind, there are four cases for determining the initial 

condition x0 ∊  𝐼𝒮𝑛+1

𝑛 : 

 If αn is even and s(x0) = 0, x́0 = A(n)/µ 

 If αn is odd and s(x0) = 0, x́0 = B(n)/µ 

 If αn is even and s(x0) = 1, x́0 = 1 ‒ [A(n)/µ] 

 If αn is odd and s(x0) = 1, x́0 = 1 ‒ [B(n)/µ] 

This algorithm is tested in the chapter 6 in both simulation as well as real 

circuit results.  

4.5 Deviation adjustment for the GON 

Another method has also been proposed to determine the initial 

condition, based on the cumulative deviation incurred by each iteration of the 

map. This method also involves utilising the symbolic sequence of the map, by 
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keeping a track of the deviation of the iterates based on the deviation of the 

parameter from the ideal. As mentioned in section 2.3, the deviation of the 

initial condition calculated using GON can be accounted for, if a technique is 

devised to restore the difference. Since the deviation is estimated for individual 

iterates, the cumulative deviation is finally adjusted for the GON value for the 

initial condition concerned. Unlike the previously discussed method, however, 

this method does not require performing the calculations every time, since the 

difference is estimated for the iteration numbers, without any dependence on 

the actual iterate values and are stored in a look-up-table (LUT) of bit difference 

values. Once a symbolic sequence is retrieved for an initial condition, only the 

GON value must be calculated, while the differences can be looked up from the 

LUT and applied with relevant signs (whether to be added or subtracted) 

depending on the symbolic footprint for the specific iterate. Finally, the total 

deviation can be adjusted at the end with the GON. This has been shown in 

detail through an example in section 4.5.2. This method may aid in saving 

sufficient computational power through occasional updates of the LUT which 

would be required only with a noticeable shift in parameter. 

4.5.1 The deviation adjustment method 

The problem is approached by trying to calculate how much deviation 

needs to be restored with every iteration while reverse-calculating the generated 

symbolic sequence. In order to perform inverse TM to go back to the initial 

condition, with each step, the reversal should be performed by scaling down by 

the amount of the multiplying factor of the TM function, 2µ. For non-ideal 

maps, this should have been by 1/(2µ) but the direct conversion effectively 

results in 1/2. Thus, this difference of (2µ)-1-2-1 must be accounted for, when µ 
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is known. Accordingly, the next iteration results in a deviation of (2µ)-2-2-2. 

Continuing in this manner, the deviation can be accounted for until the first 

symbol, and therefore can be added on to the decimal value calculated using 

basic conversion technique. Due to the reversing and preserving nature of the 

two halves of the map, there are two possibilities through which the map can be 

reversed back. This leads to four possibilities in how the deviations can be 

accounted for, when addressing them. This is easily addressed by considering 

the preceding and current symbol for each iteration. 

The algorithm is executed on the Gray code symbolic sequence 𝒮n+1(T,x) 

= s(x0)s(x1)s(x2)…s(xn) generated by the map. The steps are as follows: 

1. Starting from the LSB of the sequence, i.e., s(xn), going towards the 

MSB s(x0), all the bits preceeding the first ‘1’ are ignored, as those do 

not have any influence on the final difference value. 

2. The following bit (i.e. after the first 1), say s(xm), the first weighted 

difference is calculated with the exponent equal to 1 (i.e. (2µ)-1-2-1) 

which is denoted by the column A in Fig. 4.11. Depending on whether 

s(xm) is ‘0’ or ‘1’, the difference is positive or negative respectively. 

3. For the following bits, going towards the MSB, s(xm) > s(xm) s(xm-1) 

represents one of the four cases with the conditions as follows, leading 

to the calculations under the columns B, C, D, etc.(Fig. 4.11): 

 0 > 00: every difference is raised to the next exponent  

 0 > 01: every difference is raised to the next exponent and the 

overall sign is inverted 
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 1 > 10: every difference is raised to the next exponent, the first 

difference is added to it and the overall sign is inverted 

 1 > 11: every difference is raised to the next exponent and the 

first difference is added to it 

4. Finally, all the weighted differences are added to the GON value of the 

corresponding initial condition, in order to make up for the difference. 

 

Fig. 4.11 Tabular representation of deviation adjustment algorithm 

4.5.2 Details of the calculation 

In order to explain the procedure, a TM generated symbolic sequence 

𝒮n+1(T,x) = s(x0)s(x1)s(x2)…s(xn) for an initial condition x0 is considered and the 

corresponding GON is assessed. Because the deviation is calculated in the 
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reverse direction (i.e. from the LSB), the sequence 𝒮n+1(T,x) is inverted and a 

sequence 𝒮’n+1(T,x) = s(xn)s(xn1)s(x n2)…s(x0) is produced. The rules detailed 

in Fig. 4.11 are followed, for 𝒮’n+1(T,x). The differences (weightings) denoted 

by A, B, C, D, etc. are generated as shown in Table 4.1 and stored in a register 

(W).  

Table 4.1 Calculation of weightings 

 A B C D 

W (2µ)1  21 (2µ)2  22 (2µ)3  23 (2µ)4  24 

Ψ 0 or ±1 0 or ±1 0 or ±1 0 or ±1 

Ξ 0 or ±A 0 or ±B 0 or ±C 0 or ±D 
 

As the weightings produce very small float numbers, while implementing 

the algorithm, the values are scaled up by a scaling_factor of 22n-1 (where n = 

number of bits in the sequence) and rounded up to an integer value. Applying 

the above rule chart, an expression is formed. The expression signs are stored 

in a register (Ψ) whose cells correspond to the register W and the elements are 

either 0 or ±1 (Table 4.1), depending on the rules listed in step 3 of the 

algorithm. The equation register (Ξ) is formed by element-wise (Hadamard 

product: ⊙) multiplying W with Ψ, i.e. 𝛯 = 𝑊 ⊙ 𝛹. 

Then sum of all the elements in the expression Ξ is solved to determine 

the magnitude of deviation, determining the deviation of the GON for  𝒮n+1(T,x) 

away from the initial condition that would have been produced by the TM if the 

parameter was ideal. As the differences have been scaled up for the ease of 

calculations, therefore the deviation is scaled down by the same scaling factor 

of 22n-1 before adding to the GON. 
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To demonstrate with an example, let the entire 8-bit sequence for a 

particular initial condition x0 = 0.0234375, generated with parameter μ = 0.95 

be given as 

MSB       LSB 

0 1 1 0 1 0 1 0 
 

Assuming that the parameter is known, the algorithm is executed as 

follows: 

1. GON is calculated by converting the Gray code 𝒮n+1(T,x) 

= s(x0)s(x1)s(x2)…s(xn) first into binary:  ℬ : b0b1b2...bn  

𝑏𝑖 = {
𝑠(𝑥𝑖)                   𝑖 = 0
𝑏𝑖−1 ⊕ 𝑠(𝑥𝑖)    𝑖 > 0

 

∴ ℬ = 0 1 0 0 1 1 0 0 

and then the binary in to GON: 

GON(𝒮𝑛+1) = ∑ 𝑏𝑖

𝑛

𝑖=0
× 2−(𝑖+1) 

=  2−2 + 2−5 + 2−6 = 0.015625 

2. The algorithm starts after the first 1 from the LSB towards MSB, so the 

code is reversed for convenience. 

LSB       MSB 

0 1 0 1 0 1 1 0 
 

As the operations start after the first 1 closest to the LSB and continue 

towards the MSB, the two bits are discarded, and the remaining bits are 

numbered as shown: 
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LSB ⇀      MSB 

0 1 0 1 0 1 1 0 

  (i) (ii) (iii) (iv) (v) (vi) 
 

3. The differences are stored in W acting as the set of weights, marked as 

A-H: 

A B C D E F G H 

(2µ)1 

 21 

(2µ)2 

 22 

(2µ)3 

 23 

(2µ)4 

 24 

(2µ)5 

 25 

(2µ)6 

 26 

(2µ)7 

 27 

(2µ)8 

 28 
 

4. As the “differences” produce very small float numbers, the numbers are 

scaled up by a factor of 22n-1 (where n = 8 is number of bits in the 

sequence) and rounded up to an integer value. This would produce: 

A B C D E F G H 

862 885 681 466 299 185 111 65 
 

5. The symbols dictate the sign of the differences in the equation, which 

decide whether the corresponding differences will be added or 

subtracted (or no operation). 

Therefore, the sign register (Ψ) having correspondence with W is 

created, for storing the signs (±) and initiate it with 0: 

A B C D E F G H 

0 0 0 0 0 0 0 0 
 

The array is filled up according to the rules in the diagram, therefore, 

starting from bit (i): 

(i) The first symbol is 0.  

LSB       MSB 

0 1 0 1 0 1 1 0 

  (i) (ii) (iii) (iv) (v) (vi) 



91 

 

 

Accordingly, the “difference equation” starts with A = 𝐺 -1 – 2-1. 

Therefore, the array will be filled up with +1: 

 

A B C D E F G H 

+1 0 0 0 0 0 0 0 
 

(ii) Next is 0 ⇢ 01.  

LSB       MSB 

0 1 0 1 0 1 1 0 

  (i) (ii) (iii) (iv) (v) (vi) 
 

Therefore, the previous “difference” is shifted to the higher order 

(exponent) by one place (B) which indicates that the sign-register should be 

shifted to the right, to align with the weight register position B. However, the 

first position received no new difference as the previous bit was 0. 

Also, the overall sign is negated (i.e. the entire register undergoes sign 

reversal) since the current bit is 1: 

A B C D E F G H 

0 -1 0 0 0 0 0 0 
 

(iii) Next, 1 ⇢ 10 

LSB       MSB 

0 1 0 1 0 1 1 0 

  (i) (ii) (iii) (iv) (v) (vi) 
 

The previous differences are shifted to the next order as before. The first 

difference is also introduced as the previous bit was 1, causing the first position 
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in the sign register to be filled with +1. The signs are retained (i.e. no change) 

because the present bit is 0: 

A B C D E F G H 

+1 0 -1 0 0 0 0 0 
 

(iv) Next, 0 ⇢ 01 

LSB       MSB 

0 1 0 1 0 1 1 0 

  (i) (ii) (iii) (iv) (v) (vi) 
 

Therefore, the rule (ii) is followed: 

A B C D E F G H 

0 -1 0 +1 0 0 0 0 
 

(v) Next, 1 ⇢ 11 

LSB       MSB 

0 1 0 1 0 1 1 0 

  (i) (ii) (iii) (iv) (v) (vi) 

The previous “differences” are shifted to the next order as before. The 

first difference is also introduced as the previous bit was 1, causing the first 

position in the sign register to be filled with +1. The signs are inverted for the 

entire register because the present bit is 1 as well: 

A B C D E F G H 

-1 0 +1 0 -1 0 0 0 
 

(vi) Finally, for 1 ⇢ 10 

LSB       MSB 

0 1 0 1 0 1 1 0 

  (i) (ii) (iii) (iv) (v) (vi) 

This is again rule (iii): 
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A B C D E F G H 

+1 -1 0 +1 0 -1 0 0 
 

6. The equation for the entire sequence, up to the MSB can now be created. 

This is done by multiplying the two registers W and Ψ element wise 

(Hadamard product: ⊙) and add the elements in an equation Ξ: 

𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =  ∑ 𝛯 

𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =  ∑(𝑊 ⊙ 𝛹) 

∴ 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =  +𝐴 − 𝐵 + 𝐷 − 𝐹 

                                                   = 862 − 885 + 466 − 185 = 258 

7. Ideally, the magnitude of the deviation, scaled up (by 215) of the GON 

of x0 from the actual x0 is produced. Therefore, the deviation must be 

scaled down to the normal range and added it to the GON calculated 

previously, to produce the estimated initial condition �̃�0, given by 

�̃�0 = GON +
𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

215
 

= 0.015625 + 0.00787353515625 = 0.02349853515625 

8. Limiting the output precision to 8 bits, by the following operation is 

performed [floor (�̃�0 × 28)]/ 28, thus producing �̃�0 = 0.0234375, which 

is exactly the value of x0 considered as initial condition to generate the 

sequence for this case. 

As can be noticed, if two codes 𝒫4(T,x) = 10000 and 𝒬4(T,x) = 10001 are 

considered, for 𝒫4(T,x), since the first ‘1’ from the LSB is the MSB, the 

difference is 0 and therefore, the code can be directly converted to the initial 
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condition. This can also be verified from the GON plot in Fig. 4.3 where the 

GON of the maximum value (represented by ‘1’ followed by all ‘0’s in Gray 

code) does not deviate from the ideal case. As for 𝒬4(T,x), since the first ‘1’ 

from the LSB side is the LSB, all the subsequent symbols approaching the MSB 

are used for calculating the difference, and is given by ‘D’. Thus, the 

differences are generated and the GON values are adjusted accordingly. Finally, 

the algorithms described in sections 4.4 and 4.5 are tested for performance and 

are the results are discussed in next chapter. 
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5 RESULTS AND DISCUSSION 

The algorithms developed for the initial condition estimation are first 

tested through simulated results in MATLAB. A tent map circuit was also 

developed based on the circuit developed by Campos et al. [42] and was 

implemented for further testing by Dutta which can be found in [28]. The 

symbolic sequences were recovered for all the initial conditions approximately 

corresponding to 8 and 16-bit precision values. The aforementioned algorithms 

were then tested for performance. The results are shown for input conditions 

with 8-bit precision. All the implemented real circuit results are converted for 

both 8 and 16-bit precision outcomes. 

5.1 Simulation results 

The algorithms are first tested using all the symbolic sequences 

generated by non-ideal TM and the effectiveness of both the methods are shown 

separately in sections 5.1.1 and 5.1.2 for the interval arithmetic algorithm 

described in 4.4.1 and the deviation adjustment algorithm (4.5.1) respectively. 

The performance is observed by measuring the deviation of the outcomes from 

the initial conditions generated by dividing the state space I into equally spaced 

points of 8-bit resolution.  The percentage error for various scenarios as well as 

the bit error is measured, in order to realise the applicability of both the methods 

in successfully developing an ADC. Both the methods show sufficient 

coincidence between the initial condition. 
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5.1.1 Results for interval arithmetic algorithm 

The interval arithmetic method is performed on a data set of 8-bit 

resolution and iterated through a map with parameter µ = 0.75. First, the percent 

error between the converted values and the initial conditions are charted and 

plotted in Fig. 5.1. The initial conditions were generated for 8-bit resolution and 

also calculated using a sequence of 8 symbols. As the method is tested by 

increasing the number of symbols to 12 and 16 bits to test the performance, the 

percent error improved as can be seen in Fig. 5.2 and Fig. 5.3 respectively.  

 

Fig. 5.1 Percent error using 8 symbols 
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Fig. 5.2 Percent error using 12 symbols 

 

Fig. 5.3 Percent error using 16 symbols  

It can be seen that, there is a gradual improvement in the results with 

increasing the number symbols used for running the algorithm. The error goes 

from ±0.6% to about ±0.04% and then a little over ±0.003% for 8, 12 and 16 

bits, showing a tendency in increasing improvement with the bits. 
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In order to observe whether this is a valid trend, the method is tested for 

a range of bit-length of the symbolic sequence used to perform the estimation. 

It is observed that the maximum absolute error percentage gradually diminished 

exponentially (Fig. 5.4) as the number of bits used is increased linearly from 1 

to 50. To better realise the error beyond 10-bit estimation, the logarithm of the 

errors are calculated and plotted against the number of bits used in Fig. 5.5. It 

is also observed that from 10 bits onwards, the spread of the error is condensed 

and uniform. It must be noted, however, that the presence of noise in a real 

setting will influence the exponential improvement, which would entail further 

work to recover the performance. 

 

Fig. 5.4 Exponential reduction with increasing symbols 
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Fig. 5.5 Logarithmic view of the exponential reduction 

The error also diminished when compared over a range of parameters as 

can be seen from the logarithmic value of the absolute errors over a selection of 

parameters in Fig. 5.6. For parameters 0.75, 085 and 0.95, the logarithmic 

maximum % error are plotted and can be seen that the errors improve as the 

parameters approach the ideal parametric value. The improvement also 

increases as the parameter approaches the ideal value. Thus, the improvement 

of the case with µ = 0.95 over µ = 0.85 is better than that of µ = 0.85 over µ = 

0.75. 
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Fig. 5.6 The maximum log-of-error for multiple parameters 

From Fig. 5.6, it can be observed that relaxing the parameter value from 

the ideal does not introduce a drastic error in the recovery and therefore can be 

afforded while implementing the TM function in a real circuit. Such results 

encouraged the successful implementation of a physical TM and observe the 

performances in the later stages, which are also detailed in [28]. As a result, 

using cheaper components may be a viable option to reduce the cost while not 

compromising any major setback in the performance. 

In order to observe how the algorithm performs over the entire range of 

chaotic behaviour, the same observation is conducted for a parametric range of 

µ = [0.5,1] where the conversion is performed with 8, 16 and 32 bits. The 

logarithmic maximum % error can be seen in Fig. 5.7 and can be seen that they 

do not show the linear relationship with the parameter. Increasing the number 



101 

 

of symbols for the conversion also shows diminished error over a range of 

parameters. 

 

Fig. 5.7 The maximum log-of-error using 8, 16 and 32 symbols 

In order to observe how the algorithm performed in terms of bit accuracy, 

the initial condition is generated by dividing the state space I into a set of initial 

conditions of 8-bit resolution and sorted into a histogram with interval (bin size) 

of same as the step size of the initial conditions. The input data can be viewed 

in Fig. 5.8 where it can be seen that the frequency count of each bin is one, i.e. 

every bin consists of one input data. The data set is iterated through a non-ideal 

TM whose parameter is estimated to be µ = 0.9527. The symbolic sequences 

are generated and the GON is calculated for the initial conditions and a 

histogram plot is generated as also shown in Fig. 5.8. As can be seen, points 
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have deviated from their actual values and overlapped with some neighbouring 

points, leaving substantial gaps among the bins. 

 

Fig. 5.8 Histogram of the data set and the calculated GON 

As can be seen from Fig. 5.9, to observe how the estimation method is 

performing, the algorithm has been carried out for the same set of symbolic 

signatures but considering varying number of bits; the performance has 

gradually improved with the increased number of symbols considered. 
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Fig. 5.9 Histograms for interval arithmetic method 

The algorithm shows promising outcomes when the number of bits 

considered are increased to 12, and by 16 bits, only two estimated initial 

conditions are misplaced in the wrong bins. Even after increasing the number 

of symbols, however, some errors are still observed, especially for the initial 

conditions with lower magnitude. Since the initial conditions were generated by 

dividing the state space into 8-bit resolution dataset, the points represent the 

edges of the bins in the histogram. Since signals are not likely to be exactly on 
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the edges of the intervals, the initial condition is better represented if they are 

shifted by half a step (Fig. 5.10). 
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Fig. 5.10 Histogram for dataset shifted by half-step 

Using such data points, when the histograms are generated, the outcome 

is much more improved By the time 11 bits are used, all the estimated initial 
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conditions are uniformly restored to the correct bins. Next, the performance of 

the deviation adjustment algorithm is tested. 

5.1.2 Results for deviation adjustment algorithm 

The deviation adjustment method shows similar performance as the 

interval arithmetic algorithm, and the percentage error is calculated between the 

set of estimated outcomes and the initial condition as shown in Fig. 5.11. The 

percentage error appears to lie within -0.9% and 1.2% (absolute band of 2.1%), 

being slightly higher than the interval arithmetic algorithm. By increasing the 

number of bits in sequence considered for the estimation, the error is seen to be 

improving. Using 12 bits, Fig. 5.12 is generated, and it can be seen that the error 

band has improved drastically and lies between -0.22% and -0.12%, i.e. within 

0.1% absolute percent error band. 

 

Fig. 5.11 Percent error using 8 symbols 
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Fig. 5.12 Percent error using 12 symbols 

 

Fig. 5.13 Percent error using 16 symbols 

When 16-bit long sequences are considered (Fig. 5.13), the error is 

reduced to a band of ~0.0.12% (within -0.188% and -0.2%). Both 12 and 16-bit 

results show improvement over the interval arithmetic method. However, for 
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the deviation adjustment method, there is a tendency of the error bands to lie 

predominantly in one of the halves about ‘0’, i.e. the spread of the error is not 

uniform about ‘0’. Also, in both cases of 12 and 16-bit sequences, the error 

bands are entirely in the negative half. 

For this method, the parameter value as well as the initial condition 

generated, must be limited to the same bit accuracy as the resolution. This is 

because the method is based on adjusting for the individual deviation in symbol 

for every iteration resulting from the change in symbolic sequence due to a 

reduced parameter. Therefore, the deviation that account for more than half the 

step size (i.e. affects the resolution) must attribute sufficiently for the change. 

Since the parameter dictates the magnitude of the deviation value for each 

iterate, the parameter must also be calculated similarly. However, this does not 

pose a challenge because in signal measurement applications, the bit accuracy 

need not exceed the resolution being considered. 

In order to observe the bit accuracy, a histogram similar to the results for 

the interval arithmetic algorithm in section 5.1.2 is produced for the estimated 

outcomes of 8-bit precision with a bin size for the graph also measured in 8-bit 

accuracy. 

As before, compared to the GON values calculated as per section 2.3, 

although the points are better spread out over the state space, there are more 

than one-bit error for certain estimated outcomes (Fig. 5.14). 
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Fig. 5.14 Histograms for deviation adjustment method 

The test is also run for increasing number of symbols engaged in the 

conversion from 8 to 16 bits with an increment of two bits. It is observed in Fig. 

5.14 that the success is achieved for increasing higher number of symbols than 

the intended bit precision. This is due to the fact that the cumulative effect of 

the reduced height map is reflected more as the iteration progresses further. As 

a result, the deviation due to the parameter is increasingly accounted for by a 

longer symbolic sequence. 
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Like the previous method, the current method is also tested using data 

points incremented by half step size. When the histograms are generated (Fig. 

5.15), the outcome is again much more improved, as expected. 
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Fig. 5.15 Histograms for dataset shifted by half-step 

In order to compare how the methods performed with respect to other 

initial condition estimation previously mentioned in Chapter 2, the results have 
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been compared with the outcomes generated by 8-bit symbolic sequences for a 

number of chosen methods. The results are shown in Fig. 5.16.  

 

Fig. 5.16 Comparison of various estimation techniques 
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The methods by both Kennedy [12] and Kapitaniak et al. [13] produce 

results equivalent to GON, as both the methods essentially convert using a base 

of two, the methods are therefore not shown separately in the figure. It can be 

seen that the performance of the presented algorithms is only excelled by the 

method developed by Cong et al. [24] However, the added advantage in the 

interval arithmetic method is that the computation for the initial condition can 

be pipelined alongside the symbol collection in the circuit, thus speeding up the 

process of conversion. On the other hand, the deviation method can sufficiently 

reduce the processing because it employs a simple calculation to estimate the 

generic LUT data, and the deviation measurement equation is easily updated 

with the deviation.  

Finally, the presence of noise is also simulated with the help of 

MATLAB. The MATLAB function “awgn(.)” is used to simulate the noise in 

the circuit. When the noise is added to every iterative step, as it would occur in 

a real circuit, the symbolic signatures of the initial conditions get corrupted. It 

is seen that as the effect of noise builds up over the iteration, the cumulative 

effect on the symbolic dynamics result in random bits getting flipped, i.e. the 

1’s become 0’s or vice versa. Expectedly, as the noise is increased, more 

symbols are flipped. Also, as the iterations progress, the number of symbols 

flipped across the state space escalates. To emulate the possible range of noise 

in real situation, the values are chosen to be such that the signal to noise ratio 

(SNR) is between 0 to 40 dB. To observe the behaviour, a count of flipped bits 

cross the state space is recorded for every iterate for each noise level. The count 

is normalised and plotted against the number of iterations to demonstrate the 

average impact of noise on the iterates. However, for the chosen range of noise, 
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the number of flipped symbols become steady after a certain number of 

iterations. This phenomenon can be observed in Fig. 5.17. 

 

Fig. 5.17 Effect of noise on symbolic outcomes 

In order to verify whether the presented algorithms can also estimate the 

initial condition from real hardware data vulnerable to the noisy environment, 

a physical circuit has been implemented on which the algorithms were tested. 

The test results are shown in the following section. 

5.2 Implementation 

Having seen that both the methods performed satisfactorily in the 

simulated environment of MATLAB, the next step was to test the performance 

using symbolic trajectories generated physically implemented hardware version 

of the map function. The electronic circuit of a TM by Campos et al. [42] has 

been adapted by Dutta [28] and implemented as shown in Fig. 5.18 where the 

relevant blocks are shown: the TM circuitry, the comparator for the symbols 

and the sample and hold (S/H) for the feedback. The physical hardware of the 

implemented circuit is shown in Fig. 5.19.  
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Fig. 5.18 Schematic diagram adapted from the TM circuit [42]. 

 

Fig. 5.19 Physical hardware of the TM function [28]. 
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The map was tested through an oscilloscope where the relative height of 

the map function is shown with respect to the full-scale ramp input of [0,1] (Fig. 

5.20). The TM is fed through channel 1 (blue) and for comparison, the ramp 

input is shown using channel 2 (pink). As can be seen, the imperfection in the 

hardware components has resulted in the map height to be limited to 

approximately µ = 0.81.  

 

Fig. 5.20 Image capture of the map on oscilloscope 

To verify that the map can successfully perform iterations through the 

feedback system, the circuit is tested for function using 200mV and 518mV. 

The input signals are iterated 16 times and the symbolic sequences are also 

generated. The real as well as the symbolic trajectories are observed in the 

oscilloscope and can be seen from the image capture of the time series shown 

in Fig. 5.21. Channel 1, set at 200mV per division (mV/div) shows the real 

trajectory while the symbolic signature is viewed through Channel 2 (5V/div).  
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Fig. 5.21 Time series for 200mV (left), and 518mV (right) 

 

Fig. 5.22 GON of a 3-cycle ramp 

In order to determine how the retrieved trajectories perform, when used 

for calculations in the digital domain, a 3-cycle ramp is run at 10mHz and 8-bit 

symbolic trajectories have been utilised to run the GON function. The resulting 
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values have been imported and plotted through MATLAB and can be seen in 

Fig. 5.23. 

Once the functionality of the circuit is confirmed to be true to the TM 

behaviour, the samples of the initial conditions and the respective 8 bits as well 

as 16 bits long symbolic sequences are collected for a one-cycle ramp (data can 

be found in Appendix X with half-step-size shifted. One by one, both the 

algorithms have been run on the same set of symbolic sequences, and the 

outcome is compared with the original input.  

 

Fig. 5.23 The 8-bit and 16-bit % error using both the algorithms 



121 

 

The data is first experimented with the interval arithmetic algorithm and 

percent error is generated for both 8 and 16-bit long sequences. Fig. 5.23 and 

Fig. 5.24 show the outcomes. For the percent error, there is a general trend of 

skewness in the error which seem to be higher for the values near zero in both 

the cases of symbolic length (Fig. 5.23). This is because the lower valued initial 

conditions have been more readily affected by the system noise. Similar 

observations are shown for the deviation adjustment algorithm. The percent 

error for the deviation adjustment method using 8-bit is seen to be slightly 

higher in case of the practical implemented TM. Although the 16-bit error plots 

look identical with equal ranges, the deviation adjustment method produces 

more negative error than the interval arithmetic method. 

 

Fig. 5.24 The 8-bit and 16-bit histograms using both the algorithms 
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Next, the bit errors are observed by plotting the histograms for all the 

four cases as before (Fig. 5.24). For 8-bit the outcome again appears to be better 

for the interval arithmetic method. However, for 16-bit, the deviation 

adjustment method shows improved spread, although the percent error showed 

no noticeable difference. This is because, although the absolute errors were 

similar, the some of the results produced by the interval arithmetic methods 

must have been on the edge of the histogram bins and therefore got misplaced.  

Both the methods, therefore, can be successfully utilised for the 

implementation of the ADC. The milestones achieved through the methods as 

possible approaches in this work for the proposed implementation a chaos based 

ADC is summarised in the next chapter and possible future directions are also 

indicated. 
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6 CONCLUSION AND FURTHER WORK 

The principles of measurement systems and several analogue to digital 

conversion (ADC) techniques have been discussed. Each of the approaches is 

dedicated to enhancing certain aspects of the ADC such as superior quality of 

signal quantisation i.e. better resolution, accuracy and precision, also power 

optimisation and design level complexities are that are significant factors that 

are dealt differently for different approaches. From the review of each of such 

techniques e.g. working principle, constituent system, power and resource 

consumption it is clearly seen that each aspect of optimisation involves certain 

trade-offs. Due to this, optimising every aspect of an ADC is probably 

challenging as trying to enhance the quantisation can increase the amount of 

hardware required to fulfil the approach which might be resource consuming in 

terms of power and chip area and adding to the design complexity. Otherwise 

to keep the resource and power aspects optimum some accuracy and precision 

is sacrificed which makes choosing the right approach optimally and 

organisation of the entire approach very crucial. 

Given that the chaotic systems are governed by simple mathematical 

rules and processes, such systems are easy to implement in the physical 

platform. As chaotic dynamics is iterative in nature, a single functional block is 

reused to produce the long-term trajectories through feedback mechanisms, this 

prevents involving any additional components. Therefore, chaotic maps to be 

used as measurement system involve very little amount resources to complete 

the entire system. Since chaotic dynamics is sensitive to initial condition, use 

of chaos in measurement applications has been proven feasible and promising.  



124 

 

It was demonstrated that chaotic maps can be utilised as a quantisation 

unit for signal detection. The signal to be measured is input to the chaotic 

function as initial condition and iterated several times depending on the amount 

of information required to define the input. Each TM iteration involves 

stretching or folding which is responsible for the partitioning of the state space. 

As the iterations are continued more partitions are generated hence more 

intervals are created and accordingly the dynamics produced by a certain initial 

condition can be used to identify the originating interval of the input with a 

reasonable accuracy. Knowing that the itinerary of chaotic dynamics can be 

treated as a unique signature of an initial condition it can be utilised to back 

track the initial condition. Applying symbolic dynamics to chaos is even more 

advantageous as plenty of resources can be saved just by introducing a binary 

symbolic structure to the chaotic itineraries depending on a threshold. As the 

dynamics is produced for a desired number of iterations/bits, the symbolic 

sequence for the initial condition is converted to real values to identify the real 

signal present as an input. 

The physical implementation of the chaotic system is subject to several 

non-idealities. One such non-ideality in the circuit realisation of the tent map is 

the parametric imprecision. When TM circuit is used for signal quantisation as 

an ADC, the parametric imprecision is responsible for the loss of 

correspondence between the initial condition and the symbolic sequence as the 

partitions generated by the non-ideal parameter is shifted from their ideal 

positions. Due to the shifted partitions the symbolic sequence also differs from 

sequence that is ideally generated to define an initial condition. Therefore, 

correspondence between the intervals and the symbols have been thoroughly 
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studied in order to understand the consequences of shifted partitions. The 

knowledge of non-ideal parameter value is found to be relatable to the shift of 

partitions. The amount of shift introduced by the non-ideal parameter is found 

to be proportional to the amount of change in the parameter value. Hence using 

the correct parameter value and applying interval arithmetic actual position of 

partitions are retrieved and accordingly a method has been formulated through 

which correct interval for each of the symbol in the sequence can be chosen, 

thus the interval of the initial condition can be properly identified. 

It has been shown that the partitioning of the state space on every 

iteration results into creation of sub-intervals. Evidently, if the number of 

iterations are increased and more partitions and therefore bits of information is 

generated that can be utilised to further back track or narrow down the interval 

of initial condition with a reasonable accuracy. The higher is the number of bits 

more are the divisions in the state space thus the intervals become narrower and 

thereby increasing resolution of the originating signal. 

Due to iterative dynamics a single chaotic map is utilised repeatedly to 

produce the dynamics, hence the cost for generating greater number of bits to 

enhance precision is negligible compared to other ADC architectures e.g. flash 

ADC whose number of comparators doubles per bit whereas for the chaotic 

ADC a single comparator is reused to generate the symbols on every iteration. 

Therefore, from the perspective of resource consumption the technique 

described appears to be promising.  
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6.1 Future directions 

The methods devised in the work are open to several future possibilities 

of further related as well as independent research areas that can be pursued. 

Apart from successfully developing the ADC as a device – which requires more 

adjustments of the algorithms in terms of addressing other hardware 

implementation related issues – the methods can also be utilised in other 

independent directions, the most important being cryptography and 

cryptanalysis. 

6.1.1 ADC implementation 

In order to implement the ADC as a stand-alone device, certain other 

factors need to be taken care of. Like the parametric divergence, the critical 

point of the TM is also subject to deviations introduced by circuit imprecisions 

and perturbations. 

Shift of the critical point 

Further research is required in the direction of addressing the shift of the 

critical point in the implemented circuitry. The use of skew TMs [49] as an 

alternative might be useful once the feasibility is tested. Since the parameter of 

the skew TM is determined by the location of the critical point of the map, it 

provides the advantage of addressing only a single variable that defines the 

structure of the map completely. Therefore, modifications in the existing 

methods for a skew TM is the first step to pursue in terms of ADC implantation.  

Implementation as a stand-alone device 

Once these issues are successfully tested in the simulation domain, a 

skew TM can be implemented in real circuitry and the estimation algorithms 
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can finally be executed on a field programmable gate array (FPGA) as a stand-

alone device. This will benefit the measurement system with more robust 

conversion approach as a single source of error needs to be dealt in case of skew 

TM on the contrary to the two independent sources of errors that would have 

been present in simple TM. 

Deviation adjustment through bits 

Additionally, the deviation adjustment method can be improvised for 

easier implementation through an FPGA. In this case, the research might be 

focussed in a way such that the deviation can be used to determine the correct 

(ideal) symbolic sequence, and the symbols might be directly adjusted to 

generate equivalent binary symbols. As a result, the use of floating number 

library in the FPGA might be substantially reduced.  

6.1.2 Application in Cryptography 

Other possible applications of initial condition estimation and trajectory 

analysis can be explored. One such application could be cryptography where 

information is protected and preserved through cryptic means. TM is widely 

used in cryptography because of the robust chaos generated for a wide range of 

parameter values. The meaningful information is mutated by transforming it 

through the chaotic function that makes the information appear as random data 

to the unintended observants. Then for further utilisation and retrieval of 

information the encrypted data needs to be reinstated which is ideally analogous 

to tracking back from the current iterate (encrypted data) to the initial condition 

(original data). The parameter of the map is used as an encryption key that is 

utilised during decryption. For a chaotically encrypted information, such a 



128 

 

robust and efficient initial condition estimation algorithm as proposed in this 

work can be applied. However, there are several methods and approaches 

available for encryption, e.g. a single chaotic map or coupled chaotic maps can 

be utilised as the encrypting function and the encrypted outcomes can both be 

symbolic or real valued. Depending on the approach and the level of complexity 

demanded as an outcome, further research is necessary for the modification of 

the proposed approach in this work so that it can be dedicated for retrieval of 

the encrypted data. Possible area of encryption is image processing, data storage 

and communication.  

6.1.3 Application in communication 

Communication systems is another promising area where messages are 

encrypted from the originating end and decrypted at the receiving end.  To 

maintain unhindered speed the encryption-decryption processes are 

implemented in the hardware domain. Such an electronic hardware usually 

contains chaotic maps which generate semirandom data that can be sent as an 

encrypted message for the original message input as initial condition to the 

chaotic system. The parameter is saved and sent as a secured key to the receiver 

so that the receiver can retrieve the original message from the encrypted 

message by backtracking. With the proposed algorithm such backtracking can 

be more efficient and speedy. Hence, through further research the proposed 

technique can be dedicated to solving similar problems like initial condition 

estimation into a wide range of areas. 
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APPENDIX 2 

MATLAB codes developed for experimentation as well as documentation. 

 

 

List of codes 

2.1 Dataset generator for both algorithms 

2.2 Bifurcation diagram generator for: 

2.2.1 Bitshift Map 

2.2.2 Logistic Map 

2.2.3 Tent Map 

2.3 Implementation of algorithms 

2.3.1 Interval arithmetic algorithm 

2.3.2 Deviation adjustment algorithm 

 



 

Appendix 2.1 

MATLAB code for dataset generation is presented. 

format long                      

  

iteration = 16;     % number of iterations the sequence is generated up to 

partition = 0.5;    % map partition 

M = 2*partition;    % Map height  

power = 8;          % divition generated as 2^power 

  

increment = (1/(2^power)); % size of each point or increment in the dataset 

  

x = increment/2;  % initiate the points at half stepsize 

x_max = 1;        % final value of x after increments 

xNew = x;         % copy first point of the date set for iteration 

  

N = ((x_max-x)/increment);     % calculating number of increment steps 

N = ceil(N);                   % rounding up N to the next higher integer  

  

GON = zeros(N,1);              % Gray ordering number array 

Newfinal_result = zeros(N,iteration); % stores all x for all steps 

Data_set_8bit = zeros(N,1);           % initial condition data set  

Newfinal_gray = zeros(N,iteration);   % stores all op for all steps 

Newfinal_bin1 = zeros(N,iteration);   % stores all bin-op for all steps 

  

aNew = 0.9054 ;                         

slopeNew = 1+aNew;                 % sets the peak height of the tent map 
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for i = 1:N                     % runs a for loop for increment steps 

     

    x2 = xNew;        % copy data point or initial condition for iteartion 

     

    for n = 1:iteration            % runs a for loop for the iterations 

      

        if x2 <= partition            % condition for when x < 0.5 

            yNew = slopeNew*x2;       % evaluating iterate x_n+1 

            opNew = 0;                % symbolic output '0' when x < 0.5 

        elseif x2 > partition         % condition for when x >= 0.5 

            yNew = slopeNew*(M-x2);   % evaluating iterate x_n+1 

            opNew = 1;                % symbolic output '1' when x >= 0.5 

        end 

         

        Newfinal_result(i,n) = x2;      % store the iterate as trajectory 

        Newfinal_gray(i,n) = opNew;     % store the symbol as symbolic seq. 

         

%       x2 = awgn(yNew,100);              % adding gaussian noise 

        x2 = yNew;                      % copying the x_n = x_n+1 for next 

                                         % iteration 

    end 

    xNew = (xNew + increment);         % increasing x by one step size for 

                                         % the next initial condition 

end 

  

for row = 1:N                     % for N initial conditions 

    for col = 1:iteration         % Converting the Gray code into binary 

        if col == 1 

            Newfinal_bin1(row,col) = Newfinal_gray(row,col); 

        elseif col > 1 

            Newfinal_bin1(row,col) = bitxor(Newfinal_gray(row,col),Newfinal_bin1(row,col-1)); 
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        end 

    end 

    %----------------- converting the binary sequence into real values 

    for col = 1:iteration 

        GON(row,1) = (GON(row,1)+(Newfinal_bin1(row,col)*(2^(-(col)))));        

    end 

       

end 

  

%-----Limiting the bit accuracy of the initial conditions up to 8 bit 

  

Data_set_8bit = Newfinal_result(:,1).*(2^power); 

Data_set_8bit = floor(Data_set_8bit); 

Data_set_8bit = Data_set_8bit.*(2^(-power)); 

  

% histogram(Data_set_8bit(:,1),(2^power),'EdgeColor','none','FaceColor','yellow');  

%  

% % set(gca,'xlim',[0 1]); 

% set(gca,'ylim',[0 2]); 

% % axis square; 

  

% histogram(Data_set_8bit(:,1),256); 

% hold on 

% histogram(GON(:,1),256); 
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Appendix 2.2 

MATLAB codes for bifurcation diagrams are presented. 

Appendix 2.2.1 

Code for generating bifurcation diagram of Bitshift Map (BM) 

pre_trap = 100;    % iterations to ensure point enters trapping region 

trap = 80;    % iterations used for generating bifurcation     

x = zeros(trap,1);    % array to store iterates for each parameter value 

  

for r = 0.5:0.00025:1    % running through parameter values from 0.5 to 1 

  

    x(1) = r;    % initialise x at the maximum value 

     

    % ----------initial iterates are eliminated--------------------------- 

    for n = 1:pre_trap    % bitshift map run but iterates not stored 

        if x(1) <= 0.5 

            x(1) = 2*r*x(1); 

        elseif x(1) > 0.5 

            x(1) = (2*r*x(1))-1; 

        end 

    end 

     

    % ----------bifurcation diagram generated----------------------------- 

    for n = 1:trap-1    % bitshift map run and iterates stored for plotting 
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        if x(n) <= 0.5 

            x(n+1) = 2*r*x(n); 

        elseif x(n) > 0.5 

            x(n+1) = (2*r*x(n))-1; 

        end 

    end 

     

    % ---------iterates plotted for specific parameter-------------------- 

%     plot(r*ones(trap,1), x, 'k.', 'markersize', 3); 

    plot(r*ones(trap,1), x, 'k.', 'markersize', 7); % increased markersize 

    hold on; 

end 

  

% -------------plot limits and axes--------------------------------------- 

xlabel('Parameter (µ)');  

ylabel('Iterates (x_n)'); 

% set(gca, 'xlim', [0.5 1]); 

set(gca, 'xlim', [0.999 1]);   % to observe a narrow region of parameter 

axis square; 

hold off; 
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Appendix 2.2.2  

Code for generating bifurcation diagram of Logistic Map 

pre_trap = 100;    % iterations to ensure point enters trapping region 

trap = 80;    % iterations used for generating bifurcation     

x = zeros(trap,1);    % array to store iterates for each parameter value 

  

for r = 0.5:0.00025:1    % running through parameter values from 0.5 to 1 

  

    x(1) = r;    % initialise x at the maximum value 

     

    % ----------initial iterates are eliminated--------------------------- 

    for n = 1:pre_trap    % logistic map run but iterates not stored 

            x(1) = 4*r*x(1)*(1 - x(1)); 

    end 

     

    % ----------bifurcation diagram generated----------------------------- 

    for n = 1:trap-1    % logistic map run and iterates stored for plotting 

        x(n+1) = 4*r*x(n)*(1 - x(n)); 

    end 

     

    % ---------iterates plotted for specific parameter-------------------- 

    plot(r*ones(trap,1), x, 'k.', 'markersize', 3); 

    hold on; 

end 

  

% -------------plot limits and axes--------------------------------------- 

xlabel('Parameter (µ)');  
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ylabel('Iterates (x_n)'); 

set(gca, 'xlim', [0.5 1]); 

axis square; 

hold off; 

Appendix 2.2.3 

Code for generating bifurcation diagram of Tent Map 

pre_trap = 100;    % iterations to ensure point enters trapping region 

trap = 80;    % iterations used for generating bifurcation     

x = zeros(trap,1);    % array to store iterates for each parameter value 

  

for r = 0.5:0.00025:1    % running through parameter values from 0.5 to 1 

  

    x(1) = r;    % initialise x at the maximum value 

     

    % ----------initial iterates are eliminated--------------------------- 

    for n = 1:pre_trap    % tent map run but iterates not stored 

        if x(1) <= 0.5 

            x(1) = 2*r*x(1); 

        elseif x(1) > 0.5 

            x(1) = 2*r*(1 - x(1)); 

        end 

    end 

     

    % ----------bifurcation diagram generated----------------------------- 

    for n = 1:trap-1    % tent map run and iterates stored for plotting 

        if x(n) <= 0.5 

            x(n+1) = 2*r*x(n); 
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        elseif x(n) > 0.5 

            x(n+1) = 2*r*(1 - x(n)); 

        end 

    end 

     

    % ---------iterates plotted for specific parameter-------------------- 

    plot(r*ones(trap,1), x, 'k.', 'markersize', 3); 

    hold on; 

end 

  

% -------------plot limits and axes--------------------------------------- 

xlabel('Parameter (µ)');  

ylabel('Iterates (x_n)'); 

set(gca, 'xlim', [0.5 1]); 

axis square; 

hold off; 
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Appendix 2.3 

MATLAB codes for the initial condition estimation are presented. 

Appendix 2.2.1  

Code for estimating initial condition through interval arithmetic 

format long 

iteration = 12;               % setting number of itertions 

Parameter_Mu = slopeNew/2;    % setting parameter for estimation 

  

A = 0;                   % initialising lower bound 

B = 0;                   % initialising upper bound 

Delta = 0;               % scaled interval size initialised 

l = 0;                   % size of the interval initialised 

alpha = 0;               % odd even counter variable initialised 

% N = 41; 

% Symbols_Gray = xlsread('30bit_real_symbols_IPfreq10mHz_sampfreq_0.8mHz.xlsx'); 

Symbols_Gray = Newfinal_gray;  % copying generated grey code for estimation 

X0_Dash_Array = zeros(N,1); % estimated initial condition array initialised 

Diff = zeros(N,1);   % error or difference between the actual and  

                      % estimated initial condition 

X0_Dash = 0;       % single initial condition estimate variable initialised 

  

for j = 1:N      % for N initial conditions 

        for i = 1:iteration % for i iteration of each initial condition 
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          alpha = alpha + Symbols_Gray(j,i); % count number of 1s odd/even 

          if i == 1                 % if the first symbol 

             if Symbols_Gray(j,1) == 1 % is 1 then the primary half interval 

                A = 0.5;           % is mirrored with lower bound = 0.5  

                B = 0;              % and upper bound = 0 

             else 

                A = 0;             % other wise keeping primary half 

                B = 0.5;            % unmirrored 

             end    

          else 

             if rem(alpha,2) == 0 % if no. of '1's in the sequence is even 

                A = A;            % lower bound unchanged 

                B = A + Delta;    % upper bound shifted to lower bound + 

                                    %scaled interval size 

             else                 % if no. of '1's in the sequence is odd 

                A = B - Delta;    % lower bound is shifted to upperbound - 

                                    % delta 

                B = B;            % upper bound is unchanged 

             end        

          end 

          l = B - A;     % determine the length of newly formed interval 

          Delta = l/(2*Parameter_Mu); % size of the interval scaled  

                                       % proportional to mu 

        end 

  

% first symbol is not due to the result of TM iteration therefore orienting 

% the final estimated point is necessary and therefore scaled accordingly 

% and again the interval is unmirrored for the range 0.5-1 (with first 

% symbol as 1) 

        if rem(alpha,2) == 0    % if no. of '1's in the sequence is even        

           if Symbols_Gray(j,1) == 1 % if the first symbol is 1 
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              X0_Dash = 1 - (A/Parameter_Mu); % unmirror the interval 

                                               %  and scale down by mu 

           else                      % if the first symbol is 0 

              X0_Dash = (A/Parameter_Mu); % leave the orientation unhanged 

                                           % scale down by mu 

           end 

        else 

           if Symbols_Gray(j,1) == 1 

              X0_Dash = 1 - (B/Parameter_Mu); 

           else 

              X0_Dash = (B/Parameter_Mu); 

           end 

        end 

        X0_Dash_Array(j,1) = X0_Dash;     % store the estimated result 

        A = 0;                            % reset all variables for the 

        B = 0;                              % for the next new estimation 

        Delta = 0; 

        l = 0; 

        alpha = 0; 

        X0_Dash = 0; 

end 

  

  

Diff(:,1)= (Newfinal_result(:,1) - X0_Dash_Array(:,1))*100; 

hold on 

plot(Newfinal_result(:,1),Diff(:,1),'kO-','Markersize',7,'markerfacecolor',[0,0,0]); 

% X0_Dash_Array(:,:) = X0_Dash_Array(:,:).*2^iteration; 

% X0_Dash_Array(:,:) = floor(X0_Dash_Array(:,:)); 

% X0_Dash_Array(:,:) = X0_Dash_Array(:,:)./2^iteration; 

% Error = Data_set_8bit - X0_Dash_Array; 

% figure 
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% subplot(2,1,1)       % add first plot in 2 x 1 grid 

% histogram(GON(:,1),(2^power),'EdgeColor','k','FaceColor','r'); 

% title('conventionally corrected (bin to dec)') 

% set(gca,'xlim',[0 1]); 

% set(gca,'ylim',[0 4]); 

% % axis square; 

% % hold on 

%  

%  

% subplot(2,1,2)       % add second plot in 2 x 1 grid 

% histogram(X0_Dash_Array(:,1),(2^power),'EdgeColor','k','FaceColor','b');  

% title('correction algorithm with limited bit precision') 

set(gca,'xlim',[0 1]); 

% set(gca,'ylim',[-0.02 0.02]); 

% axis square; 

% % hold on 
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Appendix 2.2.2 

Code for estimating initial condition through deviation adjustment 

format long                      

  

power = 8;                    % power of 2 to generate number of divisions 

first = 0;                    % if else identifier 

second = 0;                   % if else identifier 

  

Gain = 1.905242919921875;     % Gain used for estimation 

iteration = 16;               % number of bits considered for estimation 

Bit_Accuracy = iteration;     % Bit accuracy set to number of iterations              

  

% Newfinal_gray = zeros(N,iteration);   % stores all op for all steps 

Gray_inverse = zeros(N,iteration);    % stores the inverted GON 

Newfinal_bin = zeros(N,iteration);    % stores binary of Newfinal_gray 

GON = zeros(N,1);                     % binary to decimal array initialise 

INT = zeros(N,1);                     % binary to integer 

  

Weighting = zeros(1,iteration); % A,B,C,...ordered by position of iterates 

Eq1D = zeros(1,iteration);      % equation array  

Equation = zeros(N,iteration);   % stores equation coefficients  

                                 % corresponding to each row 

Sum_Equation = zeros(N,1);       % Solved resut of equation array 

Estim_init_con = zeros(N,1);     % Estimated initial condition array 
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%----------weighting register definition------------------- 

for col = 1:iteration    

    Weighting(1,col) = (2^15)*((Gain^(-col)) - (2^(-col)));   

                % scaling up the weights by 15 (or number of iterations)          

end 

  

%-----G->B->D----LSB first--------------------------------- 

for row = 1:N   

     

%-----------gray to binary--------------------------------- 

    for col = 1:iteration 

        if col == 1 

            Newfinal_bin(row,col) = Newfinal_gray(row,col); 

        elseif col > 1 

            Newfinal_bin(row,col) = bitxor(Newfinal_gray(row,col),Newfinal_bin(row,col-1)); 

        end 

    end 

  

%-----------binary to decimal------------------------------ 

    for col = 1:iteration 

        GON(row,1) = (GON(row,1)+(Newfinal_bin(row,col)*(2^(-(col)))));     

    end 

    INT(row,1) = (2^15)*(GON(row,1)); % real valued decimals are converted  

                                      % to integer 

     

%-----------inverting gray code - LSB first---------------- 

    for col = 1:iteration 

        Gray_inverse(row,iteration-col+1) = Newfinal_gray(row,col); 

    end 

     

end 
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%--------generating difference wrt gray code (LSB first)------- 

for row = 1:N                  % for each input of the data set 

  for col = 1:iteration        % for each symbol in the sequence 

    if first==0 && Gray_inverse(row,col)==0 % no operation on the fist bit 

    end 

    if first==1             % after the first '1' is detected 

        if Gray_inverse(row,col) == 0 && second == 0 %if next symbol is '0' 

            Eq1D(1,1) = 1;          % fill first cell of eqn array with '1' 

        elseif Gray_inverse(row,col) == 1 && second == 0  

            Eq1D(1,1) = -1;      %if next symbol is '1' then fill '-1' 

        end 

         

        if second == 1           % process starts for filling the Eq1D reg 

            Eq1D(1,2:iteration) = Eq1D(1,1:iteration-1); % shift cell by 1 

            Eq1D(1,1) = 0;                   % clear first cell             

            if Gray_inverse(row,col-1) == 1  

                Eq1D(1) = 1;   % if previous symbol is 1 fillup 1 in the  

                                % current cell            

            end 

            if Gray_inverse(row,col) == 1  

                Eq1D = -Eq1D;  % if current symbol is 1 then change sign  

                                % of the entire equation 

            end 

        end 

        second = 1;               % flag to indicate that the bit (2nd bit) 

                                   % after the first '1' is reached 

    end 

    if Gray_inverse(row,col)==1 

        first = 1;                  % first '1' has been detected 

    end 
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  end 

  Equation(row,:) = Eq1D;   % copy the Eq1D into the matrix of equations 

  Eq1D(1,:) = 0;            % reset Eq1D for next row 

  second = 0;               % reset second for next row 

  first=0;                  % reset first for next row 

end 

  

%--------estimating the initial condition from equation-------------------- 

for row = 1:N  

    for col = 1:iteration 

         Equation(row,col) = Weighting(1,col) * Equation(row,col);     

    end 

    Sum_Equation(row,1) = sum(Equation(row,:)); 

    Estim_init_con(row,1) = (Sum_Equation(row,1) + INT(row,1))*(2^(-15));   

end 

  

% --------------- Bit-accuracy limited to iterations ---------------------- 

  

Estim_init_Limit_bit = Estim_init_con(:,1).*(2^Bit_Accuracy); 

Estim_init_Limit_bit = floor(Estim_init_Limit_bit); 

Estim_init_Limit_bit = Estim_init_Limit_bit.*(2^(-Bit_Accuracy)); 

Error = (Data_set_8bit - Estim_init_Limit_bit)*100; 

  

  

  

% --------------- Plotting styles and techniques -------------------------- 

figure 

subplot(2,1,1)       % add first plot in 2 x 1 grid 

histogram(GON(:,1),(2^power),'EdgeColor','k','FaceColor','r'); 

title('conventionally corrected (bin to dec)') 

% set(gca,'xlim',[0 1]); 
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%%set(gca,'ylim',[0 4]); 

% axis square; 

% hold on 

  

  

subplot(2,1,2)       % add second plot in 2 x 1 grid 

histogram(Estim_init_Limit_bit(:,1),(2^power),'EdgeColor','k','FaceColor','b');  

title('correction algorithm with limited bit precision') 

% set(gca,'xlim',[1 256]); 

%%set(gca,'ylim',[0 4]); 

% axis square; 

% hold on 

  

% subplot(3,1,3)       % add second plot in 2 x 1 grid 

% histogram(Estim_init_Limit_bit(:,1),256,'EdgeColor','k','FaceColor','g');  

% title('correction algorithm') 

% % set(gca,'xlim',[1 256]); 

% set(gca,'ylim',[0 4]); 

% % axis square; 

% % hold on 

  

%  

figure 

% subplot(2,1,1)       % add first plot in 2 x 1 grid 

plot(Data_set_8bit(:,1),Error(:,1)); 

% title('error using 12 bits') 

% set(gca,'xlim',[1 256]); 

% % set(gca,'ylim',[-0.005 0.005]); 

% axis square; 

% % hold on 

% % plot(Data_set_8bit(:,1),pos_half_LSB(:,1)); 
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% % plot(Data_set_8bit(:,1),neg_half_LSB(:,1)); 

% % plot(Data_set_8bit(:,1),pos_full_LSB(:,1)); 

% % plot(Data_set_8bit(:,1),neg_full_LSB(:,1)); 

% % hold off; 

%  

% subplot(2,1,2)       % add second plot in 2 x 1 grid 

% plot(Data_set_8bit(:,1),Error(:,2)); 

% title('error using 13 bits') 

% % set(gca,'xlim',[1 256]); 

% set(gca,'ylim',[-0.0003 0.0008]); 

% % axis square; 

% hold on 

% plot(Data_set_8bit(:,1),pos_half_LSB(:,2)); 

% plot(Data_set_8bit(:,1),neg_half_LSB(:,2)); 

% plot(Data_set_8bit(:,1),pos_full_LSB(:,2)); 

% plot(Data_set_8bit(:,1),neg_full_LSB(:,2)); 

% hold off; 

%  

% figure 

% subplot(3,1,1)       % add second plot in 2 x 1 grid 

% plot(Data_set_8bit(:,1),Error(:,3)); 

% title('error using 14 bits') 

% % set(gca,'xlim',[1 256]); 

% set(gca,'ylim',[-0.0003 0.0004]); 

% % axis square; 

% hold on 

% plot(Data_set_8bit(:,1),pos_half_LSB(:,3)); 

% plot(Data_set_8bit(:,1),neg_half_LSB(:,3)); 

% plot(Data_set_8bit(:,1),pos_full_LSB(:,3)); 

% plot(Data_set_8bit(:,1),neg_full_LSB(:,3)); 

% hold off; 
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%  

 

% subplot(3,1,2)       % add second plot in 2 x 1 grid 

% plot(Data_set_8bit(:,1),Error(:,4)); 

% title('error using 15 bits') 

% % set(gca,'xlim',[1 256]); 

% set(gca,'ylim',[-0.0003 0.0004]); 

% % axis square; 

% hold on 

% plot(Data_set_8bit(:,1),pos_half_LSB(:,4)); 

% plot(Data_set_8bit(:,1),neg_half_LSB(:,4)); 

% plot(Data_set_8bit(:,1),pos_full_LSB(:,4)); 

% plot(Data_set_8bit(:,1),neg_full_LSB(:,4)); 

% hold off; 

%  

% subplot(3,1,3)       % add second plot in 2 x 1 grid 

% plot(Data_set_8bit(:,1),Error(:,5)); 

% title('error using 16 bits') 

% % set(gca,'xlim',[1 256]); 

% set(gca,'ylim',[-0.0003 0.0004]); 

% % axis square; 

% hold on 

% plot(Data_set_8bit(:,1),pos_half_LSB(:,5)); 

% plot(Data_set_8bit(:,1),neg_half_LSB(:,5)); 

% plot(Data_set_8bit(:,1),pos_full_LSB(:,5)); 

% plot(Data_set_8bit(:,1),neg_full_LSB(:,5)); 

% hold off; 

  

% subplot(2,2,3)       % add second plot in 2 x 1 grid 

% plot(Data_set_8bit(:,1),Error(:,6)); 

% title('error using 15 bits') 
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% % set(gca,'xlim',[1 256]); 

% set(gca,'ylim',[-0.002 0.002]); 

% % axis square; 

% hold on 

% plot(Data_set_8bit(:,1),pos_half_LSB(:,6)); 

% plot(Data_set_8bit(:,1),neg_half_LSB(:,6)); 

% plot(Data_set_8bit(:,1),pos_full_LSB(:,6)); 

% plot(Data_set_8bit(:,1),neg_full_LSB(:,6)); 

% hold off; 

% %  

% % %-------------- 

% %  

% subplot(2,2,4)       % add second plot in 2 x 1 grid 

% plot(Data_set_8bit(:,1),Error(:,7)); 

% title('error using 16 bits') 

% % set(gca,'xlim',[1 256]); 

% set(gca,'ylim',[-0.002 0.002]); 

% % axis square; 

% hold on 

% plot(Data_set_8bit(:,1),pos_half_LSB(:,7)); 

% plot(Data_set_8bit(:,1),neg_half_LSB(:,7)); 

% plot(Data_set_8bit(:,1),pos_full_LSB(:,7)); 

% plot(Data_set_8bit(:,1),neg_full_LSB(:,7)); 

% hold off; 

%  

% subplot(3,1,2)       % add second plot in 2 x 1 grid 

% plot(Data_set_8bit(:,1),Error(:,8)); 

% title('error using 15 bits') 

% % set(gca,'xlim',[1 256]); 

% set(gca,'ylim',[-0.002 0.004]); 

% % axis square; 
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% hold on 

% plot(Data_set_8bit(:,1),pos_half_LSB(:,8)); 

% plot(Data_set_8bit(:,1),neg_half_LSB(:,8)); 

% plot(Data_set_8bit(:,1),pos_full_LSB(:,8)); 

% plot(Data_set_8bit(:,1),neg_full_LSB(:,8)); 

% hold off; 

%  

% subplot(3,1,3)       % add second plot in 2 x 1 grid 

% plot(Data_set_8bit(:,1),Error(:,9)); 

% title('error using 16 bits') 

% % set(gca,'xlim',[1 256]); 

% set(gca,'ylim',[-0.002 0.004]); 

% % axis square; 

% hold on 

% plot(Data_set_8bit(:,1),pos_half_LSB(:,9)); 

% plot(Data_set_8bit(:,1),neg_half_LSB(:,9)); 

% plot(Data_set_8bit(:,1),pos_full_LSB(:,9)); 

% plot(Data_set_8bit(:,1),neg_full_LSB(:,9)); 

% hold off;
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APPENDIX 3 

Input dataset generated from the implemented hardware used for the initial condition estimation using both the algorithms are presen ted. 30 

symbols were collected, of which 16 symbols have been used. 

Table A. 1 Input signal with the symbolic sequences 

Input signal Symbolic sequence 

0.001953125000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.005859375000 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 1 0 1 0 1 1 1 0 0 1 1 

0.009765625000 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 1 1 0 1 1 

0.013671875000 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 1 0 1 1 1 0 1 1 0 0 1 0 1 1 

0.017578125000 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 0 0 1 0 1 0 

0.021484375000 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 0 1 0 1 0 1 1 0 

0.025390625000 0 0 0 0 0 0 1 0 1 1 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 

0.029296875000 0 0 0 0 0 1 1 0 0 1 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 0 

0.033203125000 0 0 0 0 0 1 1 0 1 0 0 1 0 0 1 1 1 0 1 1 1 1 0 0 1 0 1 0 1 0 

0.037109375000 0 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 

0.041015625000 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 1 0 1 0 1 1 0 0 1 1 0 1 0 1 1 

0.044921875000 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 0 1 0 1 
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0.048828125000 0 0 0 0 1 1 0 0 1 1 0 1 0 1 1 0 1 0 1 1 1 1 0 1 1 0 1 1 1 0 

0.052734375000 0 0 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 0 

0.056640625000 0 0 0 0 1 1 0 1 0 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 0 0 1 0 1 

0.060546875000 0 0 0 0 1 1 1 1 0 1 0 1 1 0 1 0 0 1 1 1 1 0 1 0 0 1 0 0 1 1 

0.064453125000 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 0 1 0 1 0 1 1 0 1 1 

0.068359375000 0 0 0 0 1 1 1 0 0 1 0 1 1 0 1 1 1 1 0 1 0 1 0 0 1 1 1 1 0 0 

0.072265625000 0 0 0 0 1 0 1 0 1 1 1 1 0 1 0 1 1 0 1 0 0 1 1 1 1 0 1 0 1 0 

0.076171875000 0 0 0 0 1 0 1 1 1 0 1 0 0 1 1 1 1 0 1 1 0 0 1 0 0 1 0 1 1 0 

0.080078125000 0 0 0 0 1 0 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 1 0 1 1 1 0 0 1 0 

0.083984375000 0 0 0 0 1 0 0 1 1 1 0 1 1 0 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 1 

0.087890625000 0 0 0 1 1 0 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 0 1 0 

0.091796875000 0 0 0 1 1 0 1 1 0 0 1 0 1 0 1 1 0 1 1 1 0 1 0 1 1 1 0 1 1 1 

0.095703125000 0 0 0 1 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 0 0 1 0 0 1 0 1 1 1 0 

0.099609375000 0 0 0 1 1 0 1 0 1 1 1 0 1 0 1 1 1 1 1 0 0 1 1 0 1 0 1 1 0 1 

0.103515625000 0 0 0 1 1 1 1 0 0 1 0 1 0 0 1 1 1 1 0 1 0 1 0 0 1 1 1 0 0 1 

0.107421875000 0 0 0 1 1 1 1 0 1 0 0 1 0 0 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 

0.111328125000 0 0 0 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 0 1 0 0 1 0 0 1 1 1 0 

0.115234375000 0 0 0 1 1 1 0 1 0 0 1 0 0 1 1 1 0 1 0 1 1 0 1 0 0 1 0 1 1 0 

0.119140625000 0 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 

0.123046875000 0 0 0 1 1 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 

0.126953125000 0 0 0 1 0 1 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 1 1 0 1 1 0 0 1 0 

0.130859375000 0 0 0 1 0 1 0 1 0 1 0 1 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 1 0 1 

0.134765625000 0 0 0 1 0 1 1 1 0 1 1 1 0 0 1 1 1 1 1 0 1 1 1 0 1 0 0 1 1 1 

0.138671875000 0 0 0 1 0 1 1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 0 1 

0.142578125000 0 0 0 1 0 1 1 0 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 0 0 1 0 1 1 1 

0.146484375000 0 0 0 1 0 0 1 0 1 1 0 1 0 1 0 1 1 1 1 1 0 0 1 0 0 1 0 0 1 1 
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0.150390625000 0 0 0 1 0 0 1 1 1 0 1 0 1 0 0 1 1 1 0 1 1 1 0 0 1 0 1 0 0 1 

0.154296875000 0 0 1 1 0 0 1 1 0 1 0 1 1 0 1 1 0 0 1 0 1 1 0 1 0 1 1 0 1 1 

0.158203125000 0 0 1 1 0 0 1 0 1 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 0 1 1 1 1 0 

0.162109375000 0 0 1 1 0 0 1 0 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 0 

0.166015625000 0 0 1 1 0 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 0 1 0 

0.169921875000 0 0 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 1 

0.173828125000 0 0 1 1 0 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 0 1 1 0 1 0 1 0 0 1 

0.177734375000 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0 1 1 1 0 1 1 0 0 1 1 1 0 1 1 

0.181640625000 0 0 1 1 0 1 0 0 1 0 1 1 0 0 1 0 1 1 1 0 1 1 1 1 0 0 1 1 0 1 

0.185546875000 0 0 1 1 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 0 1 1 1 0 0 

0.189453125000 0 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 0 0 1 1 1 1 0 1 0 1 0 0 1 0 

0.193359375000 0 0 1 1 1 1 1 1 0 0 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 0 0 1 0 1 

0.197265625000 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 1 1 1 1 1 1 0 1 0 1 1 1 

0.201171875000 0 0 1 1 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 0 1 0 

0.205078125000 0 0 1 1 1 1 1 0 0 1 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 1 0 1 0 1 

0.208984375000 0 0 1 1 1 0 1 0 1 0 1 0 1 1 0 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 

0.212890625000 0 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 

0.216796875000 0 0 1 1 1 0 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 0 1 

0.220703125000 0 0 1 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 

0.224609375000 0 0 1 0 1 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 1 0 0 1 0 1 

0.228515625000 0 0 1 0 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 0 1 1 1 0 1 0 0 1 0 1 

0.232421875000 0 0 1 0 1 0 1 1 1 0 1 0 1 1 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 1 

0.236328125000 0 0 1 0 1 0 1 0 1 1 0 1 0 0 1 1 1 1 1 0 0 1 1 1 1 0 1 1 0 0 

0.240234375000 0 0 1 0 1 1 1 0 0 1 0 0 1 0 1 0 0 1 1 0 1 0 0 1 1 1 0 0 1 1 

0.244140625000 0 0 1 0 1 1 1 1 1 0 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 

0.248046875000 0 0 1 0 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 
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0.251953125000 0 0 1 0 1 1 0 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 0 1 1 

0.255859375000 0 0 1 0 1 1 0 1 1 0 1 1 1 1 0 1 0 0 1 0 0 1 0 1 0 1 1 1 1 1 

0.259765625000 0 0 1 0 1 1 0 0 1 1 0 1 0 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 0 1 

0.263671875000 0 0 1 0 0 1 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1 1 

0.267578125000 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 

0.271484375000 0 0 1 0 0 1 1 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 0 

0.275390625000 0 1 1 0 0 1 1 0 1 0 0 1 0 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 

0.279296875000 0 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 0 1 1 1 

0.283203125000 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 1 1 1 1 1 0 

0.287109375000 0 1 1 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 0 

0.291015625000 0 1 1 0 0 1 0 1 1 0 0 1 1 1 1 0 1 0 0 1 0 0 1 0 0 1 1 1 1 0 

0.294921875000 0 1 1 0 1 1 0 0 1 1 1 0 1 0 1 1 0 0 1 1 0 1 0 1 1 1 0 1 1 0 

0.298828125000 0 1 1 0 1 1 0 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 1 0 1 1 

0.302734375000 0 1 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 1 1 0 1 0 1 0 

0.306640625000 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 0 0 1 

0.310546875000 0 1 1 0 1 1 1 0 1 0 1 1 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 0 1 

0.314453125000 0 1 1 0 1 1 1 0 0 1 1 1 1 1 0 1 1 0 1 1 0 0 1 0 1 0 1 1 1 1 

0.318359375000 0 1 1 0 1 0 1 0 1 1 1 0 0 1 0 1 1 1 1 1 0 0 1 1 1 1 0 0 1 0 

0.322265625000 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 0 1 1 

0.326171875000 0 1 1 0 1 0 1 1 0 0 1 1 1 1 1 0 1 0 1 0 1 1 1 1 0 0 1 0 1 1 

0.330078125000 0 1 1 0 1 0 0 1 1 1 1 1 0 0 1 1 0 1 0 1 1 1 1 0 1 0 1 0 0 1 

0.333984375000 0 1 1 1 1 0 0 1 1 1 0 0 1 0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 1 1 

0.337890625000 0 1 1 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 0 1 1 0 1 0 

0.341796875000 0 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 1 

0.345703125000 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 1 0 1 1 1 

0.349609375000 0 1 1 1 1 1 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 1 1 1 1 0 0 1 0 0 
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0.353515625000 0 1 1 1 1 1 1 0 1 0 0 1 0 1 1 0 1 1 0 1 1 0 1 0 0 1 1 1 1 0 

0.357421875000 0 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 1 1 0 0 1 1 0 1 

0.361328125000 0 1 1 1 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 1 0 0 1 0 1 0 1 1 

0.365234375000 0 1 1 1 1 1 0 1 1 1 1 0 1 1 0 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 

0.369140625000 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 0 1 1 1 1 0 1 0 1 1 0 1 1 0 

0.373046875000 0 1 1 1 0 1 0 1 1 0 0 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 0 1 1 

0.376953125000 0 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 0 1 1 1 

0.380859375000 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 1 1 

0.384765625000 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 

0.388671875000 0 1 1 1 0 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 

0.392578125000 0 1 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 1 1 1 0 1 1 0 0 1 0 

0.396484375000 0 1 1 1 0 0 1 1 1 0 0 1 0 0 1 0 1 0 1 1 1 1 0 1 1 1 0 1 0 0 

0.400390625000 0 1 1 1 0 0 1 1 0 1 0 1 0 0 1 0 1 0 1 1 0 0 1 1 1 0 1 0 1 0 

0.404296875000 0 1 0 1 0 0 1 1 1 0 1 1 0 1 1 1 1 1 0 0 1 0 1 1 1 1 1 0 0 1 

0.408203125000 0 1 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 0 1 1 0 0 1 1 1 1 1 1 1 

0.412109375000 0 1 0 1 0 1 1 0 1 1 0 1 1 1 0 1 0 0 1 1 1 1 1 0 1 0 1 1 1 0 

0.416015625000 0 1 0 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 0 0 1 1 1 1 0 

0.419921875000 0 1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 1 

0.423828125000 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 1 0 1 1 

0.427734375000 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 1 1 0 0 1 0 0 1 0 1 1 0 1 0 0 

0.431640625000 0 1 0 1 1 1 0 0 1 1 1 0 1 0 0 1 0 0 1 0 0 1 1 1 1 0 1 0 0 1 

0.435546875000 0 1 0 1 1 1 0 1 1 1 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 1 1 1 0 1 

0.439453125000 0 1 0 1 1 1 0 1 0 0 1 0 1 1 1 0 0 1 0 0 1 0 1 1 1 1 1 1 1 0 

0.443359375000 0 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 0 0 1 0 1 1 1 0 1 0 1 0 

0.447265625000 0 1 0 1 1 1 1 0 1 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1 0 1 1 0 1 0 

0.451171875000 0 1 0 1 1 1 1 0 0 1 1 1 0 1 0 1 0 1 1 1 1 0 0 1 0 0 1 0 1 0 
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0.455078125000 0 1 0 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 

0.458984375000 0 1 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 0 0 1 0 1 0 1 1 

0.462890625000 0 1 0 1 1 0 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 1 0 1 1 1 1 0 0 1 

0.466796875000 0 1 0 1 1 0 0 1 1 1 0 1 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 0 0 1 

0.470703125000 0 1 0 0 1 0 0 1 1 1 0 0 1 0 1 1 1 1 0 1 1 0 0 1 1 1 0 0 1 1 

0.474609375000 0 1 0 0 1 0 1 1 0 1 1 0 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1 

0.478515625000 0 1 0 0 1 0 1 1 1 0 1 0 0 1 0 1 0 1 1 1 1 1 1 0 1 1 0 1 1 0 

0.482421875000 0 1 0 0 1 0 1 0 1 1 1 1 0 1 0 1 0 0 1 1 1 1 0 0 1 1 1 1 0 1 

0.486328125000 0 1 0 0 1 1 1 0 0 1 0 1 1 0 1 1 0 1 1 0 1 0 1 1 1 0 1 1 1 1 

0.490234375000 0 1 0 0 1 1 1 1 1 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 0 1 1 0 0 

0.494140625000 0 1 0 0 1 1 1 1 0 1 0 1 1 0 1 0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 

0.498046875000 0 1 0 0 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1 0 1 0 0 1 0 1 0 1 0 1 

0.501953125000 1 1 0 0 1 1 0 1 0 1 1 1 0 1 0 0 1 1 1 0 1 0 1 0 0 1 1 1 1 0 

0.505859375000 1 1 0 0 1 1 1 1 0 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 0 0 1 0 

0.509765625000 1 1 0 0 1 1 1 1 1 0 0 1 0 1 1 1 0 0 1 1 0 1 0 0 1 0 1 1 1 1 

0.513671875000 1 1 0 0 1 1 1 0 0 1 0 0 1 1 1 1 1 0 0 1 1 1 0 1 0 1 1 0 0 1 

0.517578125000 1 1 0 0 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 0 0 1 1 1 1 1 0 1 1 0 

0.521484375000 1 1 0 0 1 0 1 1 1 0 1 0 1 1 1 0 0 1 1 0 1 1 1 0 0 1 0 0 1 0 

0.525390625000 1 1 0 0 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 1 1 

0.529296875000 1 1 0 0 1 0 0 1 0 1 0 0 1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 0 1 0 

0.533203125000 1 1 0 1 1 0 0 1 1 1 1 1 0 1 1 1 0 0 1 0 1 1 0 1 1 1 1 1 0 1 

0.537109375000 1 1 0 1 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 1 1 1 

0.541015625000 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 0 1 0 0 1 

0.544921875000 1 1 0 1 1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 1 1 0 0 1 0 1 0 0 1 0 

0.548828125000 1 1 0 1 1 1 1 0 0 1 1 1 1 0 1 0 0 1 0 1 0 1 1 1 1 0 0 1 0 0 

0.552734375000 1 1 0 1 1 1 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 
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0.556640625000 1 1 0 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 0 0 1 0 1 0 1 1 0 1 1 0 

0.560546875000 1 1 0 1 1 1 0 1 0 0 1 1 1 0 1 0 1 1 1 0 0 1 0 1 0 1 1 1 1 1 

0.564453125000 1 1 0 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 0 1 1 0 1 0 0 1 1 1 1 1 

0.568359375000 1 1 0 1 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 1 1 1 1 0 1 1 

0.572265625000 1 1 0 1 0 1 0 0 1 0 0 1 1 1 0 1 1 1 1 0 0 1 0 1 1 1 0 0 1 0 

0.576171875000 1 1 0 1 0 1 0 1 0 1 0 0 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 

0.580078125000 1 1 0 1 0 1 1 1 0 1 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 1 0 0 1 0 

0.583984375000 1 1 0 1 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 1 0 0 

0.587890625000 1 1 0 1 0 1 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 

0.591796875000 1 1 0 1 0 0 1 0 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 

0.595703125000 1 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 0 

0.599609375000 1 1 1 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 

0.603515625000 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 

0.607421875000 1 1 1 1 0 0 1 0 1 1 0 1 1 0 1 1 1 1 0 0 1 0 1 0 1 0 1 1 0 1 

0.611328125000 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 0 1 0 0 1 1 1 

0.615234375000 1 1 1 1 0 1 1 1 1 0 1 1 0 1 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 1 

0.619140625000 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 0 0 1 1 1 1 0 0 1 0 1 1 0 

0.623046875000 1 1 1 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 1 1 1 0 1 1 0 1 1 1 0 

0.626953125000 1 1 1 1 0 1 0 1 1 0 0 1 0 0 1 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 

0.630859375000 1 1 1 1 1 1 0 0 1 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 

0.634765625000 1 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1 0 1 

0.638671875000 1 1 1 1 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 1 

0.642578125000 1 1 1 1 1 1 1 1 0 1 0 0 1 0 1 0 1 1 1 0 0 1 0 0 1 0 1 0 1 0 

0.646484375000 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 0 1 1 1 1 1 1 0 1 0 1 0 1 0 

0.650390625000 1 1 1 1 1 1 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 1 

0.654296875000 1 1 1 1 1 0 1 0 1 1 0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 1 0 
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0.658203125000 1 1 1 1 1 0 1 1 1 0 1 0 1 0 0 1 0 1 1 0 0 1 0 1 0 1 0 0 1 0 

0.662109375000 1 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0 

0.666015625000 1 1 1 1 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 1 1 

0.669921875000 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 

0.673828125000 1 1 1 0 1 0 0 1 0 0 1 1 1 0 1 0 1 0 0 1 0 1 0 1 1 0 0 1 0 1 

0.677734375000 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 

0.681640625000 1 1 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 0 1 1 1 1 1 

0.685546875000 1 1 1 0 1 1 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 1 0 1 1 0 1 1 0 

0.689453125000 1 1 1 0 1 1 1 0 1 0 1 0 1 1 0 1 0 0 1 1 1 1 1 0 1 0 1 1 0 0 

0.693359375000 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 

0.697265625000 1 1 1 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 

0.701171875000 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 1 0 1 1 1 1 

0.705078125000 1 1 1 0 1 1 0 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 

0.708984375000 1 1 1 0 0 1 0 0 1 0 1 1 0 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 1 0 

0.712890625000 1 1 1 0 0 1 0 1 1 1 0 0 1 1 1 0 1 1 0 1 1 0 1 0 0 1 1 1 0 1 

0.716796875000 1 1 1 0 0 1 1 1 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 1 1 1 

0.720703125000 1 1 1 0 0 1 1 1 1 0 1 0 0 1 0 1 0 0 1 0 0 1 1 1 1 0 1 0 0 1 

0.724609375000 1 1 1 0 0 1 1 0 1 0 1 1 0 1 0 0 1 1 1 1 1 0 0 1 1 1 1 0 0 1 

0.728515625000 1 0 1 0 0 1 1 1 1 1 0 1 1 0 1 0 1 0 0 1 0 1 1 1 1 0 1 1 0 1 

0.732421875000 1 0 1 0 0 1 0 1 0 0 1 0 1 1 0 0 1 0 0 1 0 1 0 1 1 1 0 1 1 0 

0.736328125000 1 0 1 0 0 1 0 1 1 1 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 1 

0.740234375000 1 0 1 0 0 1 0 0 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0 1 0 1 1 1 0 1 

0.744140625000 1 0 1 0 1 1 0 1 1 0 0 1 0 0 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 1 

0.748046875000 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 0 0 1 0 

0.751953125000 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 0 1 0 0 1 0 1 1 0 1 1 1 1 

0.755859375000 1 0 1 0 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1 0 1 1 0 1 
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0.759765625000 1 0 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 0 0 1 1 1 1 0 1 0 0 1 1 1 

0.763671875000 1 0 1 0 1 0 1 0 1 1 0 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 0 1 

0.767578125000 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 

0.771484375000 1 0 1 0 1 0 1 1 0 1 1 1 0 1 0 0 1 1 1 1 0 0 1 0 0 1 1 1 0 1 

0.775390625000 1 0 1 0 1 0 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 0 0 1 0 1 0 0 1 1 

0.779296875000 1 0 1 1 1 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 1 1 1 0 1 1 0 1 0 

0.783203125000 1 0 1 1 1 0 0 1 0 1 0 0 1 0 1 1 1 0 1 1 0 1 0 1 0 1 1 0 1 0 

0.787109375000 1 0 1 1 1 0 1 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 

0.791015625000 1 0 1 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 1 1 1 0 1 0 1 0 0 1 1 1 

0.794921875000 1 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 0 0 1 0 1 1 1 0 0 1 1 

0.798828125000 1 0 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 0 1 0 1 1 0 

0.802734375000 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 0 0 1 

0.806640625000 1 0 1 1 1 1 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 0 

0.810546875000 1 0 1 1 1 1 0 1 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 0 1 1 1 

0.814453125000 1 0 1 1 1 1 0 0 1 0 1 1 1 0 1 1 0 0 1 1 1 1 0 1 0 0 1 0 1 1 

0.818359375000 1 0 1 1 0 1 0 0 1 0 1 1 1 1 1 0 0 1 0 1 0 1 0 1 1 1 1 0 0 1 

0.822265625000 1 0 1 1 0 1 0 1 1 1 0 1 1 1 0 1 1 0 0 1 0 0 1 0 1 0 1 1 0 1 

0.826171875000 1 0 1 1 0 1 1 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 1 0 1 1 1 1 1 

0.830078125000 1 0 1 1 0 1 1 1 1 1 1 0 1 0 0 1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 

0.833984375000 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 0 

0.837890625000 1 0 1 1 0 0 1 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 

0.841796875000 1 0 1 1 0 0 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1 0 1 0 0 1 1 1 0 1 

0.845703125000 1 0 1 1 0 0 1 1 1 1 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 

0.849609375000 1 0 0 1 0 0 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 0 1 0 0 1 0 1 1 1 

0.853515625000 1 0 0 1 0 0 1 0 1 1 1 1 1 0 1 0 1 0 1 0 1 1 0 1 0 0 1 1 1 1 

0.857421875000 1 0 0 1 0 1 1 0 0 1 0 1 0 1 1 1 0 1 0 1 1 0 1 0 0 1 1 1 1 0 
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0.861328125000 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 1 1 1 0 1 0 1 1 0 0 1 1 1 0 1 

0.865234375000 1 0 0 1 0 1 1 1 0 1 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 0 1 1 0 

0.869140625000 1 0 0 1 0 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 1 

0.873046875000 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 0 1 1 1 1 0 1 1 1 0 1 0 1 0 1 

0.876953125000 1 0 0 1 0 1 0 0 1 1 1 1 0 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 0 0 

0.880859375000 1 0 0 1 1 1 0 1 1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0 0 

0.884765625000 1 0 0 1 1 1 0 1 0 1 0 1 0 0 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 

0.888671875000 1 0 0 1 1 1 1 1 0 1 1 1 0 1 1 0 1 0 1 1 1 0 0 1 0 0 1 1 0 1 

0.892578125000 1 0 0 1 1 1 1 1 1 0 1 1 0 1 1 0 1 0 0 1 1 1 1 1 1 1 1 0 1 0 

0.896484375000 1 0 0 1 1 1 1 0 1 1 0 1 1 0 0 1 1 0 1 0 1 1 1 0 1 0 1 0 1 1 

0.900390625000 1 0 0 1 1 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 1 1 0 1 0 1 0 1 1 1 

0.904296875000 1 0 0 1 1 0 1 1 1 0 1 1 0 1 0 1 1 1 1 0 0 1 1 1 1 1 0 1 0 1 

0.908203125000 1 0 0 1 1 0 1 1 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 0 1 1 1 0 1 1 

0.912109375000 1 0 0 1 1 0 0 1 0 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 0 

0.916015625000 1 0 0 0 1 0 0 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 1 

0.919921875000 1 0 0 0 1 0 0 1 0 0 1 0 1 1 0 1 0 1 0 1 1 1 1 1 1 1 0 0 1 0 

0.923828125000 1 0 0 0 1 0 1 1 1 1 0 1 1 0 1 0 1 1 1 0 0 1 1 0 1 0 0 1 1 0 

0.927734375000 1 0 0 0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 

0.931640625000 1 0 0 0 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 1 0 0 1 

0.935546875000 1 0 0 0 1 1 1 0 1 1 1 0 1 1 0 1 0 1 1 1 1 1 0 0 1 1 1 1 0 1 

0.939453125000 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 1 1 0 1 1 0 1 1 1 1 1 

0.943359375000 1 0 0 0 1 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 0 1 0 1 1 0 1 0 1 1 

0.947265625000 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 1 0 1 1 1 1 0 1 0 0 1 0 1 1 

0.951171875000 1 0 0 0 1 1 0 0 1 0 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 0 1 1 

0.955078125000 1 0 0 0 0 1 0 0 1 0 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 0 0 1 

0.958984375000 1 0 0 0 0 1 0 1 1 1 0 1 0 1 0 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 
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0.962890625000 1 0 0 0 0 1 1 1 0 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 1 0 0 1 1 

0.966796875000 1 0 0 0 0 1 1 1 1 1 1 0 1 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 1 1 

0.970703125000 1 0 0 0 0 1 1 0 1 1 1 0 1 1 0 1 0 1 1 1 1 0 1 0 0 1 0 0 1 1 

0.974609375000 1 0 0 0 0 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 1 0 0 1 0 

0.978515625000 1 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1 1 1 0 1 0 0 1 0 1 0 1 0 1 1 

0.982421875000 1 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 1 1 1 1 1 1 0 1 

0.986328125000 1 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 0 

0.990234375000 1 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 1 0 1 

0.994140625000 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 1 1 0 

0.998046875000 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 

1.001953125000 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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APPENDIX 4 

Using the data from Appendix 3, the real valued trajectories and their corresponding symbolic sequences were plotted across the state space.  

 

Fig. A. 1 3D view of the real iterates across the state space 
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Fig. A. 2 Unequal interval partitioning of the real state space 
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APPENDIX 5 

The change in error over both parameter and number of symbols used to 

estimate the initial condition is viewed in a 3D plot. The plot combines the 

views of Fig. 5.6 and Fig. 5.7 in a surface plot. 

 

Fig. A. 3 A 3D view combining Fig. 6.6 and 6.7 

 


