
University of Huddersfield Repository

Basu, Rajlaxmi

Estimation of Input Variable as Initial Condition of a Chaos Based Analogue to Digital Converter

Original Citation

Basu, Rajlaxmi (2018) Estimation of Input Variable as Initial Condition of a Chaos Based Analogue
to Digital Converter. Doctoral thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/34821/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Estimation of Input Variable as Initial Condition of a

Chaos Based Analogue to Digital Converter

Rajlaxmi Basu

A thesis submitted to the University of Huddersfield in

partial fulfilment of the requirements for

the degree of Doctor of Philosophy

February 2018

1

ABSTRACT

A realization of an analogue-to-digital converter (ADC) with improved

conversion accuracy, using the chaotic behaviour of the tent map, is presented.

In this approach, the analogue input signal to be measured, termed as the initial

condition is applied to a chaotic map, and the symbolic dynamics resulting from

the map evolution, is used to determine the initial condition in digital form. The

unimodal piecewise linear tent map (TM) has been used for this purpose,

because of its property of generating uniform distribution of points and robust

chaos.

Through electronic implementation of the TM it is practically impossible

to produce an ‘ideal’ TM behaviour with parameter values in the full range

[0,1]. Due to component imprecision and various other factors, a non-ideal map

with reduced height is observed. For such a map, converting the equivalent

symbolic trajectory generated by TM iterations return erroneous results as the

partitioning of the phase space embodied in the finite symbolic dynamics no

longer has unique correspondence with the initial condition.

Two algorithmic solutions have been proposed to minimise the errors

associated with a practical system. For one, it has been established that for a

reduced-height map the partitioning will not remain of equal size. Considering

that the height of the tent map used for this purpose is known from an

independent but related research, a technique of partitioning the state space

unevenly, depending on the map height has been proposed and has been shown

that if the correct partitioning is used, the resulting symbolic dynamics again

map uniquely to the initial condition.

2

Alternatively, it has been shown that the degree of deviation of the iterate

values can be determined based on the parameter value, which in turn can be

adjusted for depending on the symbolic sequence generated by the initial

condition to determine the correct decimal equivalent values.

The both the approaches proved to be highly effective in obtaining a

digital outcome corresponding to the initial condition using 8 symbolic

iterations of the map in hardware domain, with the second approach

outperforming the first in terms of accuracy, while the first method can easily

be pipelined alongside generating the iterates and thus improve the speed. This

development is promising because, in contrast to the commercially available

ADCs, it places lower demand on the hardware resource and can be effectively

implemented to give a real-time operation.

3

ACKNOWLEDGEMENT

I would like to take this opportunity to acknowledge the individuals who

have been integral parts of my journey with their patience, advice and

encouragement on both personal and professional levels.

First of all, I would like to express my sincere gratitude to my academic

supervisor Dr Peter Mather for his relentless support that was not limited to my

research and thesis alone. His patience, motivation and advice through some of

the most difficult times have been invaluable, and I could not have asked for a

better supervisor. I would also like to thank Dr Violeta Holmes for her support

and advice every time I turned to her for help. Special thanks to Dr Soumitro

Banerjee, without whose guidance, I couldn’t have come this far.

Apart from my supervisors, I had the chance to work with some of the

greatest people I have ever met. In particular, I would like to thank Dhrubajyoti

Dutta, who has often gone out of his way to help and support whenever I needed.

I would also like to thank Dennis Town for being who he is, because nothing I

say can be enough; Jan Berkenbusch for being one of the most endearing person

I have ever known, and Michael Agolom and David Upton for being amazing

friends and colleagues.

I would like to thank my parents Bani and Swapan, and my brother

Debkumar, for keeping up with my whims and still managing to motivate and

support me, albeit 5000 miles away and despite a tedious time difference.

Finally, my sincere thanks to Chris Sentance and Cathie Raw for

supporting me whenever I reached out to them, which was often.

4

CONTENTS

Abstract ... 1

Acknowledgement ... 3

List of figures .. 7

List of tables .. 10

List of Publications .. 11

List of abbreviations and acronyms .. 12

1 Introduction ... 14

1.1 Analogue to Digital Converters ... 14

1.2 Nonlinear Chaos ... 15

1.2.1 Chaos based ADC.. 18

1.3 Aims and objectives .. 27

1.3.1 Initial conditions as intervals ... 27

1.3.2 Analysis of the intervals generated 28

1.3.3 Recovering initial conditions ... 29

1.4 Original contribution .. 30

1.5 Document overview .. 31

2 Background review .. 33

2.1 A brief account of ADC .. 33

2.1.1 Flash type ADC ... 37

2.1.2 ΔΣ type ADC ... 38

2.1.3 SAR type ADC .. 39

2.1.4 Pipeline ADC .. 40

2.1.5 Hybrid flash ADCs .. 41

5

2.2 Chaotic maps: formal definition and properties 43

2.2.1 Bitshift Map .. 44

2.2.2 Logistic Map ... 46

2.2.3 Tent Map ... 48

2.3 Symbolic dynamics ... 52

2.4 Previous chaos-based ADC attempts 55

2.4.1 ADC based on BM .. 55

2.4.2 ADC based on TM ... 56

3 Analysis of non-ideal behaviour .. 59

3.1 Parametric deviation ... 60

3.2 Narrowed dynamical attractor ... 62

3.3 Skewness of the intervals .. 65

4 Initial condition estimation .. 69

4.1 Self-Similarity .. 71

4.2 Interval arithmetic .. 74

4.3 Addressing non-ideal patterns ... 75

4.4 Orientation of the interval arithmetic 78

4.4.1 The interval arithmetic method .. 80

4.5 Deviation adjustment for the GON .. 84

4.5.1 The deviation adjustment method 85

4.5.2 Details of the calculation ... 87

5 Results and Discussion .. 95

5.1 Simulation results ... 95

5.1.1 Results for interval arithmetic algorithm 96

6

5.1.2 Results for deviation adjustment algorithm 107

5.2 Implementation ... 116

6 Conclusion and further work.. 123

6.1 Future directions ... 126

6.1.1 ADC implementation ... 126

6.1.2 Application in Cryptography ... 127

6.1.3 Application in communication 128

References ... 129

Appendix 1 .. 136

Appendix 1.1 .. 137

Appendix 1.2 .. 138

Appendix 2 .. 139

Appendix 2.1 .. 140

Appendix 2.2 .. 143

Appendix 2.2.1 .. 143

Appendix 2.2.2 .. 145

Appendix 2.2.3 .. 146

Appendix 2.3 .. 148

Appendix 2.2.1 .. 148

Appendix 2.2.2 .. 152

Appendix 3 .. 161

Appendix 4 .. 172

Appendix 5 .. 174

7

LIST OF FIGURES

Fig. 1.1 Behaviour of LM across a range of parameter 17

Fig. 1.2 Using a chaotic map as a quantisation block 19

Fig. 1.3 Using a chaotic map as a quantisation block 21

Fig. 1.4 Uniform intervals in the state space 28

Fig. 1.5 Skewed intervals remaps the same input 29

Fig. 2.1 ADC step - size and desired level of detection....................... 34

Fig. 2.2 Block diagram of a 3-bit flash ADC 37

Fig. 2.3 Simplified block diagram of a Delta-Sigma ADC 38

Fig. 2.4 Simplified block diagram of a SAR type ADC 39

Fig. 2.5 Block diagram of a pipelined ADC.. 40

Fig. 2.6 Block diagram of a folding-interpolating ADC 41

Fig. 2.7 The Bitshift (Bernoulli) Map (BM) behaviour 45

Fig. 2.8 Bifurcation diagram of BM: points escape to infinity 45

Fig. 2.9 The Logistic Map (LM) behaviour .. 47

Fig. 2.10 BD of LM: periodic window over the entire range............... 47

Fig. 2.11 The Tent Map (TM) behaviour .. 48

Fig. 2.12 BD of TM: points above ~0.7 exhibit robust chaos [17] 49

Fig. 2.13 A 3D view of the iterates over the entire state space 51

Fig. 2.14 Fractal dynamics of the TM over the state space 52

Fig. 2.15 Intervals with binary signature generated by the BM 56

Fig. 2.16 Intervals with Gray signature generated by the TM 57

Fig. 3.1 TM with reduced heights due to various parametric values 61

Fig. 3.2 Cobweb diagram for points originating before xc 63

8

Fig. 3.3 Cobweb diagram for points originating before xc 64

Fig. 3.4 Shift in interval partition due to reduced height 66

Fig. 4.1 Fractal behaviour of ideal Gray codes for μ = 1 69

Fig. 4.2 Distortion of the fractal code for μ = 0.75 70

Fig. 4.3 GON values calculated and compared with the ideal case 71

Fig. 4.4 A closer view of the GON values .. 72

Fig. 4.5 GON calculated with base of 2µ and rescaled by 1/2µ 74

Fig. 4.6 Fractal growth of sub-intervals over iterations 75

Fig. 4.7 Shift of the partitions towards xc ... 77

Fig. 4.8 Generating Gray code over iterations 79

Fig. 4.9 Reconstructing sub-intervals ... 81

Fig. 4.10 Flow chart for the interval arithmetic algorithm [28] 83

Fig. 4.11 Tabular representation of deviation adjustment algorithm ... 87

Fig. 5.1 Percent error using 8 symbols ... 96

Fig. 5.2 Percent error using 12 symbols ... 97

Fig. 5.3 Percent error using 16 symbols ... 97

Fig. 5.4 Exponential reduction with increasing symbols 98

Fig. 5.5 Logarithmic view of the exponential reduction 99

Fig. 5.6 The maximum log-of-error for multiple parameters 100

Fig. 5.7 The maximum log-of-error using 8, 16 and 32 symbols 101

Fig. 5.8 Histogram of the data set and the calculated GON 102

Fig. 5.9 Histograms for interval arithmetic method 104

Fig. 5.10 Histogram for dataset shifted by half-step 106

Fig. 5.11 Percent error using 8 symbols.. 107

Fig. 5.12 Percent error using 12 symbols .. 108

9

Fig. 5.13 Percent error using 16 symbols .. 108

Fig. 5.14 Histograms for deviation adjustment method 111

Fig. 5.15 Histograms for dataset shifted by half-step 113

Fig. 5.16 Comparison of various estimation techniques 114

Fig. 5.17 Effect of noise on symbolic outcomes 116

Fig. 5.18 Schematic diagram adapted from the TM circuit [42]. 117

Fig. 5.19 Physical hardware of the TM function [28]. 117

Fig. 5.20 Image capture of the map on oscilloscope 118

Fig. 5.21 Time series for 200mV (left), and 518mV (right) 119

Fig. 5.22 GON of a 3-cycle ramp ... 119

Fig. 5.23 The 8-bit and 16-bit % error using both the algorithms 120

Fig. 5.24 The 8-bit and 16-bit histograms using both the algorithms 121

Fig. A. 1 3D view of the real iterates across the state space 172

Fig. A. 2 Unequal interval partitioning of the real state space 173

Fig. A. 3 A 3D view combining Fig. 6.6 and 6.7 ... 174

10

LIST OF TABLES

Table 2.1 Comparison chart of various types of ADCs 42

Table 2.1 Correspondence between Sequences and Input Intervals 55

Table 3.1 Change in trajectory with change in parameter 61

Table 3.2 Imperfect mapping of symbolic trajectory 62

Table 4.1 Calculation of weightings ... 88

Table A. 1 Input signal with the symbolic sequences........................ 161

11

LIST OF PUBLICATIONS

1. An Algorithmic Approach for Signal Measurement Using Symbolic

Dynamics of Tent Map

Reference

Basu, R., Dutta, D., Banerjee, S., Holmes, V., & Mather, P. (2018). An

Algorithmic Approach for Signal Measurement Using Symbolic Dynamics

of Tent Map. IEEE Transactions on Circuits and Systems I: Regular

Papers, 65(7), 2221-2231.

Individual contribution

 Effect on the symbolic dynamics of the tent map due to non-ideal

parameter

 Shift of the tent map partitions under non-ideal parametric conditions

 Association of the non-ideal symbolic sequences with the correct

interval through repositioning of the partitions

 Determination of the initial condition from the symbolic sequence

through repeated partitions proportional to the parameter value

2. Parameter estimation for 1D PWL chaotic maps using noisy dynamics

Reference

Dutta, D., Basu, R., Banerjee, S., Holmes, V., & Mather, P. (2018).

Parameter estimation for 1D PWL chaotic maps using noisy

dynamics. Nonlinear Dynamics, 1-15.

Individual contribution

 Contribution to validation of the proposed estimation method to other

1D PWL maps apart from tent map

12

LIST OF ABBREVIATIONS AND ACRONYMS

µ Parameter

1D One dimensional

ADC Analogue to digital converter

BD Bifurcation diagram

BM Bitshift or Bernoulli Map

DAC Digital to analogue converter

div division

FPGA Field programmable gate array

GON Gray Ordering Number

LM Logistic Map

LSB least significant bit

LUT Look up table

MSB mot significant bit

mV milivolt

mV/div milivolt per division

S/H (alt. S&H) Sample and hold

13

SAR Successive approximation register

SNR Signal to noise ratio

TM Tent Map

V Volt

Vdac DAC voltage

Vin input voltage

Vref reference voltage

ΔΣ Delta Sigma

14

1 INTRODUCTION

One of the most important requirements in engineering systems is the

accuracy of the data collected from the environment, leading to the necessity

for precision measurement. This is particularly true for sensory devices which

record changes in various physical quantities from the environment and

generate signals proportional to those changes. With sensors typically being

analogue instruments, parameter signals with theoretically infinite resolution

are produced, which thus can potentially detect the finest possible change and

generate signals accordingly. However, with the signals being analogous in

nature, complicated computations and manipulations of the collected signals

become complex without digitisation. This requires the analogue signals from

the sensors to be converted into the corresponding digital equivalents performed

by an Analogue to Digital Converter (ADC). The resolution of the converted

signal is ascertained by the number of digital bits representing each of the

voltage or current levels. Increased number of bits improves the resolution of

the measurement, leading to improved accuracy in the resultant computations.

1.1 Analogue to Digital Converters

Converting analogue signals to digital numbers with an increased number

of bits comes at the expense of increased complexity leading to increased chip

surface area, power consumption and cost, typically along with exponentially

reduced speed. For example, the fastest ADC architecture – the flash type –

doubles in complexity for a single bit resolution increase. Also, in terms of

improved tolerance and precision, in order to retain the accuracy at an optimum

level, the quality of the components adds to the cost. Evidently, the higher

15

resolution and precision, as well as accuracy, necessary for increased

digitisation of the data lead to major trade-offs. In an effort to minimise the

trade-off costs for improving resolution, previous attempts had been made to

consider chaotic maps as an alternative quantisation block in an ADC. In the

following section, the principles of chaotic dynamics are briefly introduced,

prior to discussing the previous techniques for chaotic map based ADCs.

1.2 Nonlinear Chaos

Chaotic maps are nonlinear functions that exhibit complex evolution

over time and the development of the state space is dependent on the initial

input values [1]. Such functions are broadly studied as nonlinear dynamical

systems, a branch of science that had been developed from the three-body-

problem famously studied by Henri Poincaré [2] in the late 19th century, where

he observed deterministic systems demonstrating aperiodic behaviour. This led

to a geometric approach of treating nonlinear problems where notably

Aleksandr Lyapunov [3] addressed the nonlinearity through approximations.

However, the studies of chaotic behaviour of the nonlinear systems were limited

until the later half of the 20th century, i.e. until the introduction of high-speed

computers in the 1950’s, which allowed experimentations with long term

dynamics and observations of chaotic trajectories.

In 1961 meteorologist Edward Lorenz accidentally discovered the

sensitivity of the dynamics to initial conditions while working on weather

prediction models, when he attempted to re-examine some of his previous

results. He had used data accurate up to three decimal places while the computer

could produce results accurate up to six decimal places [4]. This led to

16

inaccuracies by up to 0.1% leading to completely divergent solutions. By 1963

Lorenz discovered the chaotic motion on strange attractors involving three

variables, which led him to conclude that long term weather prediction was

impossible, however, there is a structure in the apparent chaos and these

observations eventually led to what is today known as Chaos Theory [5].

Chaotic phenomena have since been observed and applied in many other fields,

e.g., economics, biology, cosmology etc. The evolutionary dynamics of several

systems in these fields might appear to be random, however, after a certain

period, such systems result in behaviour that may appear to be deterministic in

nature, hence are defined as chaotic systems [3]. Despite the apparent

randomness in the chaotic evolution the underlying deterministic information

can be defined i.e. with infinite precision, the exact behaviour can be repeated,

and also tracked in reverse. The dynamical behaviour of a system involves time

domain evolution of the system states. The continuously changing states of the

system, in most cases, is governed by more than one variable whose relationship

with the evolutionary process can be defined mathematically as a function. One

such variable is the initial condition, which is the origin point or the initial state

of the system from which the future evolution is observed.

Additional influential factors affecting the behaviour are control

parameters that can be perceived as scaling factors governing the amount of

change introduced in the system states causing the system to visit several other

states resulting into the dynamic behaviour. Since the dynamical evolution is

mainly iterative in nature, as the present state of the dynamics is responsible for

the future states, the mathematical function that defines the dynamics can also

be referred to as maps.

17

A state of a system can be considered as the initial condition or system

input for further dynamic process where the resultant dynamics can be analysed

as the trajectory of the initial condition. Chaotic maps, which can be either

discrete where the trajectory is not differentiable with respect to the chaotic

function can be continuous time domain as it can be differentiable with respect

to the operating function i.e. the intermediate states between the two iterates can

also be determined numerically. Chaotic functions with one or more spacial

dimensions exhibit diverging points over changing parameters (Fig. 1.1). This

phenomenon is defined as bifurcation in behaviour over a range of parameters

and specific conditional ranges leading to aperiodic characteristics over time,

generating chaotic behaviour [6,7].

Fig. 1.1 Behaviour of LM across a range of parameter

The deterministic property of chaotic maps has found use in a myriad of

applications, from cryptanalysis [8] to secure digital communication [9,10] to

pattern recognition [11] to name a few. In this work, in order to determine the

18

absolute values of signals, the unimodal unidimensional chaotic maps are used

for generating unique trajectories, effectively resulting in an ADC where the

maps have been envisioned as alternative to the existing quantisation blocks.

1.2.1 Chaos based ADC

The fact that the dynamics produced by the chaotic maps are sensitive to

the initial condition, the application of chaotic maps, as a measurement system,

can be proved to be feasible [12,13], chaotic maps can thus be chosen as the

quantisation block for an ADC (Fig. 1.2) where the terms initial condition is

used interchangeably to imply the input signal to the ADC, wherever relevant.

As a quantisation block, the chaotic map can be utilised to generate a 0 when

the input voltage is less than 0.5V and a 1 otherwise. However, using chaotic

maps iteratively practically eliminates the increase in cost for increasing bit -

resolution because the same block can be reused when incorporating feedback,

virtually infinitely in order to generate further iterations. The fundamental idea

relies on the fact that the sensitivity of the maps on the initial condition can be

utilised to identify the input conditions to the map from the uniqueness of the

iterated trajectories generated by them. Thus, if a chaotic map is implemented

electronically through an analogue circuit, the magnitude of the input signal

entering the circuit could effectively be recovered by reverse calculating from

the specific resultant trajectory, given the knowledge of the iterative behaviour

of the map.

19

Fig. 1.2 Using a chaotic map as a quantisation block

The outcome of the resulting trajectories in the implemented circuit is

greatly affected by the inevitable presence of noise and the accuracy of the

analogue implementation, due to component tolerances. Hence, intensive

computations are involved in the reverse-calculation procedure and must be

performed in the digital domain. However, the sensitivity of the dependence of

the map dynamics on the iterate values is crucial. A slight deviation from the

actual iterate value will lead to a completely different initial condition over

sufficient number of iterates. As a result, in order to recover initial conditions

from the respective trajectories, accurate measurement of the iterate values is

critical. However, as the map is implemented through a physical circuit, a high-

resolution ADC must be associated with every iteration stage of the

implemented map. This, however, is dictated by the degree of accuracy and

resolution required for the initial condition. Also, the resolution of the ADCs

required may exceed the resolution of the ADC thus generated. As a result, the

target device or the end-product becomes a requirement in the hardware setup

and the cost is escalated exponentially.

20

A solution to avoid high resolution measurement of each iterate is to

employ another useful tool called symbolic dynamics, which is another way of

treating and analysing the map dynamics without resorting to actual values of

iterates of the map. Observing and analysing chaotic trajectories through

symbolic representation was first introduced by Metropolis et al [14] where the

iterates were categorised through symbols depending on the position of the

iterate values around the Markovian partition [6,15]. Therefore, if each iterate

were assigned a letter or a symbol and the pattern generated by the trajectories

are studied, any iterate “will then be said to be of “type L” or of “type R”” [13]

depending on which side (left or right) of the Markovian partition the iterate

lies. As a result, the trajectories produced a sequence consisting of The

‘patterns’ thus exhibited by the symbolic treatment were eventually converted

to binary digits and were soon utilised efficiently in digital analysis of the map.

In 1D chaotic maps, the symbolic dynamics are generated by assigning ‘1’ to

iterate values that exceed the midpoint of the possible range of inputs while ‘0’

to the rest of them. Under the ideal parametric conditions, the symbolic

trajectory correspond to the initial condition through binary (generated by BM)

or Gray code (generated by LM or TM) [6,12,16]. Fig. 1.3 shows the Gray code

generation over the iterations. Since the state space is partitioned by each

operation of the chaotic map there are many intervals generated due to the

partitioning as the dynamics continues. In ideal conditions, the intervals are

divided into two equal halves and a symbol or a series of symbols represent any

such interval. Hence, if such sequences are either binary or Gray codes then

conventionally converting them to equivalent real numbers that involves

division by two in each of the subsequent stages resulting into determining the

21

initial condition or an iterate in the trajectory, therefore, making such maps and

its symbolic dynamics the ideal choice for measurement applications.

Fig. 1.3 Using a chaotic map as a quantisation block

The most recent work for the chaos based ADC development was also

attempted by Berberkic et al. [17] aimed at determining relative changes in

incoming signals. Various 1D maps were investigated for performance, where

the LM and the TM proved to be feasible options. The performances were

weighed by comparing the shift in the long term trajectories of the signals

through the maps. Owing to the sensitive dependence of the initial conditions,

trajectories gradually diverged for the slightest changes and were noticeable

22

over sufficient time steps of the map operation. It has been shown that the

resulting trajectory of the difference between individual signals showed unique

characteristics and as a result could be utilised to identify the relative change in

the signals. The TM emerged to be the optimum option in terms of

implementation and performance [18] and could successfully measure signal

differences (as opposed to absolute signal values) up to 20µV. However, the

lack of determination of absolute values of the signals and the shift in parametric

values in the implemented circuits were unaddressed. This required further

investigations, which addressed both issues. Also, the work in [18] approached

the problem using real valued trajectories of the map, which entailed measuring

the individual iterates with high precision. This involved sufficiently developed

measuring techniques and converting the readings into digital values for

computation. This proved to be challenging for long term aims of implementing

an ADC. However, the study remains important for the assurance of uniqueness

of trajectories for physically implemented versions of the maps as well as the

choice of map.

The next stage of the research involved correctly identifying the absolute

value of the signal value from the symbolic dynamics of the map function.

However, the implemented map would lead to reduced height which needs to

be identified in order to perform necessary modifications in determining the

shift in the symbolic behaviour and thus accommodating the shifted dynamics

within the state space of the map maintaining the correct correspondence with

the initial condition. The direction of investigation, therefore, became

bifurcated, one being identification of the implemented map through its

parameter, which has been led by Dhrubajyoti Dutta as an independent yet

23

related research. The other direction, as described in this work, involves

remapping the affected symbolic sequence generated by the map to its initial

condition, keeping in mind the non-ideal behaviour produced by the reduced

parameter TM. The breakdown of the research areas has been shown in Fig 1.7.

Fig. 1.7 Breakdown of the areas of the research

Discrete 1D maps are unidimensional systems whose dynamics are

expressed by a single state variable and is non-differentiable in nature that

makes such systems discrete, e.g. Logistic Map (LM), Tent Map (TM) and

Bernoulli Map (BM) of which LM and TM are the two most fundamental forms

of 1D discrete chaotic systems that are also unimodal in nature. The LM consists

several regions within certain parameter ranges where the map dynamics

become periodic, i.e., iterative points visit the same set of points in a cyclic

24

pattern. Thus, the distribution of the dynamics contains windows of periodicity

which is discussed further in section 2.2.2. In case of the TM, the windows of

periodicity cease to exist beyond a certain low parameter value (about ~0.7),

and therefore the distribution is much less periodic (discussed in section 2.2.3).

Thus, the TM showed better linearity and sensitivity and is known to produce

robust chaos [19] for a wide range of parametric value that controls the

behaviour of the map, and can therefore accommodate the dynamics of the

reduced height map caused by the electronic implementation.

The TM produces unique, mutually exclusive Gray code sequences as

output under ideal parametric values, which can be directly utilised to generate

symbolic signatures for the initial conditions. However, ideal implementation

of the map as a physical circuit is impossible, owing to the imprecision in the

components aside from the noise introduced by the hardware [13]. This results

in a reduction in the parametric value and therefore the height of the map

function is reduced, leading to substantial deviation in the map trajectories for

the same initial conditions. This is referred to as the non-ideal condition of the

map, henceforth being addressed as the non-ideal TM, and the symbolic

sequence thus generated as non-ideal sequence. As a result, if this behaviour,

the dynamics continue infinitely, i.e. does not converge to zero, and must be

truncated after a finite number of iterations as it is not feasible to continue the

physical process indefinitely, as well as in order to avoid complete corruption

of the trajectories owing to system noise [20,21]. However, regardless of the

variations in the sources of the non-idealities – offset, linearity issues, along

with noise – observed in the implementations, only the parametric value

25

sufficiently reflects the shift in a measurable way that can be addressed to

recover the initial condition.

While generating the symbolic sequences from such non-ideal

trajectories, it results in different codes than what are expected from an initial

condition. In fact, without a significant number of iterations, insufficient

definition of the sequences results in overlapping codes, and therefore mapping

to the same real valued point, despite being produced by different initial

conditions [16]. With a reduced height TM, if the generated Gray code

sequences are converted directly into the corresponding decimal values, the

resultant mapping is incorrect and therefore measurement accuracy is affected.

This has led to incorrect digitisation of the input signal as observed in [20]. If,

however, a lengthier symbolic time series is considered, it is demanding in terms

of resource required for generating the additional symbols.

An analysis has been conducted, but in a theoretical setting in [23], where

it is shown that the use of a map with ideal parameter is preferable. Thus, a

limitation in the applicability of the TM is encountered because in a physical

implementation, deviation of the parameter is inevitable, as can be seen from

the work of Kapitaniak et al. [13]. In [13], there was an earlier attempt to

propose a theoretical model to measure electrical signals using 1D PWL maps

where it was observed that the traditionally measured outcomes were greatly

affected by slightest error. These errors have been introduced due to the offsets

and tolerances of the components used in the physically implemented map,

which significantly reduced the parametric domain of the map. It can also be

seen from the works of Cong et al. [24] where the problem of recovering initial

26

conditions was approached using the inverse map with suitable use of symbolic

sequences as a footmark for the back-track algorithm. Their results have shown

a good agreement to the actual input values. However, since the approach is

performed backwards through the sequence, the final symbol for a desired

length of sequence will have to be known. Therefore, the accumulation process

of the entire sequence i.e. all the iterations must be completed before any

conversion process can begin. This might add some time overhead in the

conversion. However, as each iterative action of the TM on the input signal

generates partitions and doubles the number of intervals that the entire range of

the initial condition is divided into, finite length symbolic sequences generated

by those iterations define each of these specific intervals uniquely [6].

Therefore, the number of bits in the finite length non-ideal symbolic trajectories

directly relates to the number of intervals generated by the iterations [15,25,26].

Because the overlapping caused by the non-ideality of the map causes the

intervals to be unequal in size. In order to successfully retrieve the correct initial

condition from a finite length Gray code generated by a non-ideal TM, it is

prudent to identify the initial conditions by the interval in which it belongs. The

size of the intervals can be guided by the bit-resolution of the magnitude of the

initial condition.

The proposed solution is a forward operating conversion algorithm which

can be applied from the starting symbol through each symbol of the sequence

to the end as the trajectory generation continues to progress with the map

iterations. This implies that such a conversion technique can be applied as a

pipelined stage along with the iterations, thus saving the time overhead to

collect the entire sequence before conversion. Keeping this aim in mind, the

27

targets have been set objectively which are explained in detail in the following

section.

1.3 Aims and objectives

The aim of this work is to determine the digital equivalent of signals by

using it as an initial condition of a non-ideal TM from the resultant symbolic

sequence generated by the iterations to ultimately develop an accurate ADC

structure. As the non-ideality of the electronically implemented map most

severely affects the parametric value of the TM, the mapping of the symbolic

trajectory generated by the iterative process to the initial condition through any

direct means, is complex. In particular, the intervals generated by the repeated

partitioning of the state space are responsible for the mutation of the symbolic

sequence. Acquiring the parametric value would lead to, tracking the shift in

the resulting partitions and thus determining the deviation in the trajectory must

be accounted for while determining the initial condition that generated the

dynamics. In order to execute the said task, the overarching aim can be achieved

by fulfilling a set of objectives as are described in the following sub-sections.

1.3.1 Initial conditions as intervals

The foremost task is to establish the validity of identifying the initial

conditions by the intervals they belong to. Any initial condition, belonging to

the possible range of the inputs, can be identified as a point within a short

interval. The objective is to define this interval in a way which can later be

narrowed down to, among the entire range of possibilities. Depending on how

finely defined this interval is, the resolution of the input signal can be defined.

28

Fig. 1.4 Uniform intervals in the state space

For example, as can be seen from Fig. 1.4, a random initial condition can

be either defined as belonging to the interval “BC”, or “fg”. The resolution of

the input signal, therefore, depends on how sharply the intervals are defined.

This is analogous to identifying input signals through the step size of an ADC

and thus establishing the efficacy of utilising the tent map as a quantisation

block of an intended ADC. Thus, the intervals must be appropriately defined

before proceeding to identify the correct interval.

1.3.2 Analysis of the intervals generated

The next step is to identify the nature of the intervals generated. While it

is ideal to have equally spaced intervals as the origin of the initial condition, the

non-ideality of the map parameter affects the dynamics of the map [15,27]. This

behaviour is introduced by the component tolerances as well as the inherent

noise of the circuit implementation of the map. As a result, the intervals

generated are skewed and unequal in nature.

29

Fig. 1.5 Skewed intervals remaps the same input

As can be seen from Fig. 1.5 the unequal intervals might result in

redistribution of the initial conditions and is especially true when the precision

of the input signal is important. The same initial condition as in Fig. 1.8 can be

now defined to be in the interval “AB”, or in case of increased precision, in

“eB”. Therefore, in order to determine the underlying dynamics , the next step

is to identify and analyse the nature of the non-ideality of the map and thereby

the unequal intervals generated by it. This then forms the basis of the initial

condition estimation technique.

1.3.3 Recovering initial conditions

The precise values of the generated trajectories cannot be retrieved

without a precision ADC, therefore tracing back to the initial condition by

reverse calculating the identity of the originating interval must solely depend

on the symbolic signature associated with the trajectory. Thus, the final step is

to utilise the acquired knowledge about the nature of non-ideality to identify

30

how the dynamics of the map has been altered and where the initial condition

has been remapped among the skewed intervals. This must be done to determine

the modification required for the interval arithmetic to accommodate the

deformed symbolic sequences with the skewness of the intervals, tallying the

correct sequence with the correct interval. The modified arithmetic is to be

utilised to develop an algorithm to determine the initial condition producing the

symbolic trajectory in question. The algorithm must be tested both in simulated

as well as a physically implemented test scenario to validate the applicability as

a successful ADC.

1.4 Original contribution

The fundamentals of the work presented here has led to a journal

publication titled “An Algorithmic Approach for Signal Measurement Using

Symbolic Dynamics of Tent Map”, published in Transactions in Circuits and

Systems—I, IEEE [28]. Additionally, further contributions were made to

another publication, the complete details can be viewed under the List of

Publications. The primary areas of contributions associated to the work

presented in this thesis are listed here.

 Analysis of the intervals generated by the iterations of the non-

ideal variation of the map, identifying the shift in the partitions

generating unequal, asymmetrical intervals.

 Identification of the non-ideal symbolic sequences with respect to

the skewed intervals.

 Defining the shifted partitions with the help of the symbolic

sequence with respect to the non-ideal parameter value.

31

 Remapping the initial conditions to the new intervals due to the

shifted partitions as opposed to where the initial condition would

be mapped by direct binary conversion of the sequences.

 Development of an algorithm to determine the initial condition

solely from the symbolic sequence of a known non-ideal TM,

keeping in mind the constraints of an implemented map, and the

resulting sequences, contributing to the successful

implementation of a chaos-based ADC.

1.5 Document overview

The background literature of the proposed work is reviewed in detail in

the next chapter. A brief account of the types of analogue to digital converters

is presented, followed by a summary of the map of choice: tent map. This

chapter also sets up the basic premise of the analogue to digital conversion

technique and previous works in this direction is discussed.

The third chapter explains the challenges faced by the basic proposition

and establishes the need for further investigation. The details of the specific

reasons that affect the outcome of the proposed method are mentioned. This

chapter concludes by pointing out the specific directions that require the

attention in order to improve the accuracy of the results.

The approach developed in this work to determine the initial condition is

outlined in the fourth chapter and the necessary analyses of the problems are

presented. The basis of the solution is established by summarising applications

of the analytical outcomes of the previous chapter.

32

The fifth chapter explains the mechanism of how the solution works and

is summarised in the form of an algorithm. The results and validity of the

algorithm is verified in chapter six. Finally, the seventh chapter concludes the

overall achievements along with the future steps in order to achieve a fully

implementable stand-alone ADC. The other possible directions where the

present work can be utilised, including other fields such as communication or

cryptography are also discussed.

33

2 BACKGROUND REVIEW

The research for the implementation of a low-cost ADC devices with

significant accuracy is very popular. Various architectures have been developed

and often combined together in order to achieve a balance of cost, accuracy,

resolution, conversion speed, etc. This chapter explores a brief history of the

types of ADC architectures, followed by a summary of the properties of 1D

maps, and how these properties can theoretically be utilised for an ADC.

Finally, the previous attempts at chaos-based ADC that have been proposed are

discussed.

2.1 A brief account of ADC

Analogue to digital converters (ADCs) convert analogue electrical

signals from the sensors etc, to digital representation 1’s and 0’s of

computational electronics. The basic principles of ADCs involve comparing the

input voltage to a number of voltage levels and determining the maximum

numeric digital value equivalent to the voltage detected. The step size of the

increment of voltage levels to which the input signal is compared, is the

minimum change that an ADC can detect and therefore determines the

resolution offered by the ADC. Thus, for the step size shown in Fig. 2.1, the

change in signal desired to be detected does not produce any change in the

outcome.

The step size (Z) of an ADC with maximum input of Vref whose output is

defined by n bits is given by (2.1).

𝑍 =
𝑉𝑟𝑒𝑓

2𝑛 − 1
⁄ . (2.1)

34

The step size therefore, depends on the resolution on which the input

signal is to be defined by the digital output and is referred to as the resolution

of the instrument. The higher the number of bits used to define the signal , the

higher is the resolution. However, this does not guarantee the precision of the

ADC, which is dependent on the repeatability and reliability. The components

used in manufacturing the ADC are responsible for the degree of precision

offered. Therefore, the components that vary greatly with temperature and other

physical conditions offer poorer precision than the components whose

behaviour is maintained over wider ranges of physical parameters.

Fig. 2.1 ADC step - size and desired level of detection

The accuracy of the device however is the degree of error caused by the

gain or off-set parameters, which result in the outcome being scaled by a certain

factor, or the entire outcome being off-set by a certain amount. Although both

the accuracy and the precision are dependent on the components used, the

35

conditions are independent of each other. Therefore, it is possible to have a good

degree of repeatability with the outcome effectively being incorrect due to

scaling or off-set error (or both). The accuracy of the step size, in particular, is

of great importance as unequal step size results in non-linear error in the

outcome, greatly affecting the resolution of the digital output, leading to

incorrect mapping of the input signals to the corresponding digital value.

Finally, the sensitivity of an ADC is the minimum absolute change in the

measurement that can be detected. Unlike resolution, which is the smallest

amount of change that an instrument is theoretically capable of indicating (as

an output value) depending on the number of bits it utilises to do so, sensitivity

is the smallest change in measurement (of the input signal) that is capable of

triggering a change in the reading or the output. Attaining a balance between

these four parameters – resolution, accuracy, precision and sensitivity –

influenced the development of various ADC architectures. The conversion

speed of the ADC is determined by the amount of time required to realise the

input signal in terms of digital values. The conversion speed of an ADC is

governed by Nyquist’s criterion [29] which states that the sampling

(measurement attempt) frequency fs of the ADC should be at least be double the

input signal bandwidth given by fB < 0.5fs to avoid aliasing. Aliasing happens

when signals become indistinguishable between transition of the inputs or a

void between the points whenever fast changing input signals are sampled.

Therefore, to avoid unnecessary gaps or coarseness in the converted signals, it

is always recommended to follow Nyquist’s Criterion for the sampling of input

signals. Depending on the several architectures of ADCs and the amount of

resources involved in each design, conversion times may vary and there might

36

be some conversion overheads as well depending on the measurement technique

followed. In order to comply with the Nyquist criterion there is a limit on

maximum bandwidth of the input signal that can be chosen for a specific ADC

architecture with a certain conversion time.

Currently, there is a wide range of ADC architectures available, with the

choice of a particular type of architecture over the others dependent on the

application specifications. Each type can be analysed through several

performance metrics such as cost, precision, speed, chip area and power

dissipation which have been proposed by [30,31]. While for some applications,

the speed is of prime importance, for others, lowered power consumption might

be of utmost necessity. For critical applications, the precision of the ADC might

be of prime importance even at the cost of other parameters while a non-critical

device may focus on reducing the cost even if that means compromising on

other aspects. Of course, there could be a combination of priorities as well, and

all these have led to extensive research in the direction of ADCs, of which delta-

sigma (ΔΣ) type, successive approximation register (SAR) type, pipelined and

modified flash ADC types are some of the most commonly used architectures

[32].

Each of these architectures can be weighted in terms of benefits and

shortcomings, resulting in one type to be more profitable over the other

depending on the judging criteria. Generally, performance and design

complexity of different ADC types are judged based on the quantisation factors

(gain, offset, transfer function, noise, etc.), speed, structural organisation and

resource consumption [33].

37

2.1.1 Flash type ADC

Flash type converters have the simplest quantisation block of all types of

ADCs, it consists of quantised segments of resistive dividers, each of which are

referenced to a set of parallel implementations of comparators [32]. The

resolution of this type of ADCs depends on the number of voltage divider

segments that the input range is divided into. The resulting comparator codes

therefore result in a series of ones until the level which is just above the input

voltage. This is usually referred to as a thermometer code and is dealt in a

priority encoder to determine the actual binary output.

Fig. 2.2 Block diagram of a 3-bit flash ADC

38

The block diagram of a 3-bit flash-based ADC is shown in Fig. 2.2.

Though flash ADCs are well known for high speed operations due to its parallel

architecture, it is challenging to achieve higher bit resolution as the number of

comparators given is doubled for each increment in bit resolution, thus 2n

comparators would be required for an n-bit ADC. This increases the chip area

requirement significantly for the designs over 6 bits. Currently time-interleaved

Flash ADCs are being considered [34,35].

2.1.2 ΔΣ type ADC

As an alternative to flash ADCs other kinds of ADC architectures have

been introduced, which save sufficient resource but at the cost of reduced speed

[32,36]. ΔΣ ADCs measure the input signal in terms of the frequency of a pulse

modulated signal generated by the integrator with a thresholding as shown in

Fig. 2.3.

Fig. 2.3 Simplified block diagram of a Delta-Sigma ADC

The difference between the input signal and the 1 bit digital to analogue

converter (DAC or the Δ sub-circuit) is integrated until the threshold value is

reached and the pulse count is buffered and added together to produce the digital

outcome. These ADCs are mostly preferred for better precision and power

consumption; however, it offers moderate speed which can be attributed to

39

oversampling. Also, due to the higher order system implementation, a large

amount of chip area is required, and the stability factors are affected by the

order of modulation.

2.1.3 SAR type ADC

The SAR type ADCs are comprised of a register controlled by a

successive approximation sub-circuit where the input signal (Vin) is compared

to a reference voltage (Vdac) controlled by a residual feedback [37]. The ADC

initialises the most significant bit (MSB) as 1 and the rest of the bits as 0. The

resulting code is converted to the analogue equivalent through a DAC. The

outcome is compared with the input signal. If the Vin > Vdac, then the next bit is

set as 1, otherwise the previous bit is set as 0 and the following bit is set as 1 .

The process continues until all the digits in the code, coming from MSB to the

least significant bit (LSB) have been set, which denotes end of conversion [38].

Fig. 2.4 Simplified block diagram of a SAR type ADC

40

Since the number of bits is fixed, the time taken for values is fixed too.

The simplified block diagram of an SAR type ADC is shown in Fig. 2.4. For

successive approximation type ADCs, improved resolution is achieved through

higher level of design complexity and resource consumption, but at the cost of

reduced speed.

2.1.4 Pipeline ADC

A flash-based architecture is pipelined ADC, which involves series

implementation of quantisation blocks that are operated in parallel. Each

quantisation stage generally includes a 3-bit flash ADC which contributes 2 bits

to the final outcome, a 3-bit DAC and a multiplier of 4 [32]. Four of such blocks

are implemented in series with an additional 4-bit flash ADC at the end stage to

complete 12 bits of conversion. A simplified block diagram shows the operation

is Fig. 2.5.

Fig. 2.5 Block diagram of a pipelined ADC

41

2.1.5 Hybrid flash ADCs

Increased resolution is achieved through several other hybrids of flash

architecture such as interpolation type which reduces the number of pre-

amplification units by using additional voltage dividers between two

consecutive pre-amplifier outputs [39]. Though chip area is drastically reduced

through interpolation, the number of latches required is still the same as the

classical flash architecture. This can further be reduced by incorporating

additional folding stages [40]. The folding stage includes a coarse grain ADC

and a fine grain ADC with a folding circuit.

Fig. 2.6 Block diagram of a folding-interpolating ADC

42

A combined block diagram incorporating folding circuits followed by

interpolating stages can be seen in Fig. 2.6. The success of such ADCs depends

largely upon the accurate implementation of the folding circuit. As summarised

in Table 2.1 developed with the help of the data from Saima et al [33], there is

a trade-off between resolution, power dissipation, and speed for flexible design

architecture.

Table 2.1 Comparison chart of various types of ADCs

ADC

S
a
m

p
li

n
g

sp
e
e
d

C
o

n
v

e
rs

io
n

c
y

c
le

s

P
o

w
e
r

c
o

n
su

m
p

ti
o

n

C
h

ip
 a

re
a

A
c
c
u

ra
c
y

C
o

st

Flash High 1 High High Low High

ΔΣ Low Variable Low Medium High Low

SAR Medium Variable Ultralow Low Medium High

Pipelined Medium 2N/2-1 High High Medium High

Hybrid flash

(folding and

interpolation)

Medium Variable High High Medium High

From the aforementioned discussions on the various types of ADC

architectures, it is evident that, for improved performance, most of the ADC

architectures rely heavily on additional quantization blocks such as increased

number of comparators or coarse ADC/DAC as well as folding circuits leading

to increased resource consumption, which result in increased chip area with

greater design complexity and high power consumption. Therefore, given

chaotic maps are simple mathematical functions and can be easily implemented

with simpler structures, and that a single block of chaotic map can be reused

iteratively to generate the dynamics and symbolic representations

43

corresponding to an input signal, the use of chaotic maps as a quantisation unit

is investigated. The physical implementation of a chaotic map can suffer errors

that are caused due to the gain and offset of the components used in the design.

However, using the technique that is proposed here, such errors can be corrected

algorithmically through the principles of dynamics while analysing the

symbolic sequence of an input. All such analysis can be carried out in the digital

domain, thus making the potential system architecture less complicated at the

hardware level.

2.2 Chaotic maps: formal definition and properties

Chaotic maps are classified according to the dimensions and topologies

defined by the function. Depending on the univariate or multivariate state

mapping of the chaotic systems the map definition may be categorised as

unidimensional or multidimensional maps. The behaviour of chaotic systems is

widely understood through one dimensional, which produce the most

fundamental type of chaos that may offer a wide spectrum of chaos under

different parametric conditions. One dimensional systems can further be

classified according to the system topology e.g. unimodal, multimodal etc. A

certain class of chaotic maps called unimodal maps, which shall henceforth be

denoted as ℱ, is considered. For any mapping given by f ∊ ℱ if the function f

maps the elements of the set I back to itself, i.e., f : I→I, where I = [a,b] ⊂ ℝ,

a < b and simultaneously satisfies the following conditions:

 f has a unique maximum fmax, in the interval I,

 fmax = f(xc) where xc ∊ I is called the critical point of the map, and

44

 f is monotonically increasing in the interval [a,xc] and monotonically

decreasing in the interval [xc,b], then f is unimodal.

When such stretching-and-folding-like behaviours are involved in the

evolutionary process such maps show chaotic dynamics as the monotonic

progression of the evolution is prevented by the function. The most fundamental

type of chaotic maps are one dimensional (1D) chaotic maps e.g. Logistic Map

(LM), Bernoulli or Bitshift Map (BM), Tent Map (TM) with an ideal response

to the initial condition, shown in Fig. 1.1 – Fig. 2.11 respectively [6].

The class ℱ consists of certain maps that can be defined using a control

parameter, µ, such that fµ(x) ∊ ℱ is valid for x ∊ I and µ ∊ J ⊂ ℝ, and fµ(x) is a

map on I × J. The BM, LM and TM, all belong to this family of parametric self-

maps fµ : I→I such that I = [0,1] and also J = [0,1].

2.2.1 Bitshift Map

Of the three types of maps, BM (Fig. 2.7), which is also referred to as

the Bernoulli Map is the most restrictive in the sense that it is defined for only

the ideal parametric value. The BM, B can be defined as B(x) ∊ ℱ where

𝐵(𝑥) = 𝑓𝜇(𝑥) = {
2𝜇𝑥 0 ≤ 𝑥 ≤ 𝑥𝑐

2𝜇𝑥 − 1 𝑥𝑐 < 𝑥 ≤ 1
. (2.2)

where the map is defined only when µ is 1 (i.e. ideal). The map fails to remain

chaotic and generated trajectories that do not remain trapped within the state

space and approaches infinity (or negative infinity) for even for the slightest

deviation in the parametric value.

45

Fig. 2.7 The Bitshift (Bernoulli) Map (BM) behaviour

Fig. 2.8 Bifurcation diagram of BM: points escape to infinity

46

The behaviour can be observed from its bifurcation diagram (BD) shown

in Fig. 2.8 where the points within the parametric range [0.999,1] approach

astronomical upper limits and up to -2.5 for the lower limit. As a result, a

physical implementation of the map and using it to realise an ADC is rendered

futile because the dynamic generated fails to remain chaotic. Therefore,

although the map could produce binary sequences theoretically, practicality of

achieving an ADC through the BM is is not possible.

2.2.2 Logistic Map

As an alternative to the BM, the LM and the TM, both present a large

range of workable parameters to achieve chaotic trajectories and thus the

possibility of practical implementation. In particular, the LM has been

successfully implemented by [41] for practical purposes through an electronic

circuit. The map, not being defined as a pair of piecewise linear equations, is

more readily adaptable for electronic implementation. The LM function, L is

defined as L(x) ∊ ℱ where

𝐿(𝑥) = 4𝜇𝑥(1 − 𝑥). (2.3)

The map is defined for a wide range of parameters, where the behaviour

begins with a single period orbit gradually bifurcating into 2, 4, 8 periods before

briefly lapsing into chaotic behaviour and therefore a dense chaos where all the

points are defined within the state space of the map. However, as can be seen

from the bifurcation diagram of the LM in Fig. 2.10, the behaviour often lapses

into a number of wide periodic windows for certain parameters (the periodic

windows are marked with numbers referring to the periodicity of the window).

47

Fig. 2.9 The Logistic Map (LM) behaviour

Fig. 2.10 BD of LM: periodic window over the entire range

48

When the map is implemented electronically, there is every possibility

that the component tolerances might drift the parameter into one of the periodic

windows, if not already in it. This poses a possible hindrance for the ADC to be

reliably utilised in all conditions.

2.2.3 Tent Map

The TM shows dense and robust chaos over a significant range of

parameters (above ~0.7) where there are no windows of periodicity. Any

periodicity is limited only to a small region towards the lower range of the

parametric value, leaving sufficient play for the parameter value to drift due to

tolerances. This can be seen from the bifurcation diagram in Fig. 2.12. The

uniformly dense chaos [19] exhibited by the TM enables a successful utilisation

of the chaos where unique sequences can be generated if sufficiently long

trajectories are considered.

Fig. 2.11 The Tent Map (TM) behaviour

49

A successful implementation of the map has been done by Campos et al.

[42] which can be readily utilised for practical purposes. The TM, which can be

defined as a function belonging to the function described in section 2.2 as T ∊

ℱ, which is and T(x) is defined as

𝑇(𝑥) = 𝑓𝜇(𝑥) = {
2𝜇𝑥 0 ≤ 𝑥 ≤ 𝑥𝑐

2𝜇(1 − 𝑥) 𝑥𝑐 < 𝑥 ≤ 1
. (2.4)

where xc = 0.5 ∊ I is the critical point of the map. For the map to be chaotic, it

is crucial that the range J of the control parameter µ is given by J = (0.5,1].

Fig. 2.12 BD of TM: points above ~0.7 exhibit robust chaos [17]

In the closed interval I ⊂ ℝ―also known as the state space of the

map―the ith iterate of T(x) is defined as xi+1 = T(xi), i ∊ ℕ0 (where ℕ0 = {0} ⋃

ℕ) such that,

50

1. x0 = T0(x) = x

2. xi+1 = Ti+1(x0) = T(Ti(x0)) = T(xi)

3. T(0) = T(1) = 0 is the absolute minimum of the map

4. Tmax = T(xc) ≤ 1, Tmax is the maximum height of the map, for 0 ≤ µ ≤ 1

5. T(Tmax) = T2(xc) ≥ 0, T(Tmax) is the dynamic minimum of the long-term

trajectory.

When the map is iterated for n times, a set of n values is generated. This

is known as the trajectory of the map. The set of n+1 points (including the initial

condition x0) visited by the trajectory of a TM can be referred to as the orbit of

that particular initial condition and is defined as 𝒪T(x0) = {T0(x0), T1(x0), T2(x0),

…, Tn(x0)}. The behaviour of 𝒪T(x0) is periodic at J = 0.5, with a period of one.

As the value of J increases to J > 0.5, the periodicity doubles into a two-period

orbit. It then doubles again and eventually results into aperiodic orbits for higher

values of J producing the chaotic characteristics of the map. Eventually, the

chaotic behaviour exhibited by the map at this stage is known as robust chaos

[19].

Given that chaotic maps are sensitive to initial conditions, an

infinitesimally small change in the initial condition results in substantially

diverging trajectories and due to the folding nature of the map, points in the

closed interval I ⊂ ℝ will eventually map on to every other point in I ⊂ ℝ, or

arbitrarily close to it [25].

51

Fig. 2.13 A 3D view of the iterates over the entire state space

The stretching and folding nature of the map can be isolated as the

orientation preserving and orientation reversing side of the map [6]. The

monotonically increasing side of the map function, i.e., the restriction of the

function that acts upon the points up to the xc are only stretched, but their

orientation of increment is maintained. The other half, where the folding action

takes place is called the orientation reversing half, where the map is

monotonically decreasing, despite having a stretching action by the 2µ. This

action is repeated over the iterations (Fig. 2.13) and result in mirroring effect

across the state space over the iterations which can be seen from the top view

of Fig. 2.13, as can be seen in Fig. 2.14.

52

Fig. 2.14 Fractal dynamics of the TM over the state space

Observing Fig. 2.14, it can be seen that a self-similar (fractal) behaviour

emerges from the long-term dynamics of the map over the entire state space.

Through the repeated preservation and reversal of the orientation of the map,

unique trajectories can be generated for any arbitrary initial condition in I ⊂ ℝ,

that result in the aforementioned self-similarity, that was later utilised to

determine its possible role in the interval partitioning. In the following section,

the symbolic sequence generated by a TM has been described with its general

features and functionalities that are relevant to this application.

2.3 Symbolic dynamics

The orbit of a TM, given by 𝒪T(x), can be transformed into a symbolic

sequence 𝒮n+1 of length n+1 where 𝒮n+1(T,x) = s(x0)s(x1)s(x2)…s(xn). The first

attempt in this direction was initiated by Metropolis et al [14] who defined the

53

symbolic sequences using three letters, L, C and R standing for left, centre and

right. The symbol assignment was intuitive, the points to the left of the critical

point are assigned L, the ones to the right are assigned R and the critical point

itself is assigned C. The realisation that the symbols exhibited pattern over the

parametric space resulted in development of a strong tool for analysing chaotic

dynamics. Eventually, the pattern in the symbolic dynamics over the state space

was observed [14,43] and it was shown that for unimodal maps, if the symbols

were replaced such that L represented 0, R represented 1 and C could represent

either one of the two, the patterns were either binary or Gray codes. The codes

generated by the stretching and folding nature of the TM is always Gray code.

Therefore, bypassing the L, R, C convention, the symbolic sequence 𝒮n+1(T,x)

could be conveniently defined as s : [0,1]→{0,1} is defined as

𝑠(𝑥𝑖) = {
0 𝑥𝑖 ≤ 𝑥𝑐

1 𝑥𝑖 > 𝑥𝑐
. (2.5)

Furthermore, it has been shown that, the symbolic sequences generated

are Gray codes [44]. On every ith iteration, the state space I is partitioned into

2i+1 mutually exclusive sub-intervals 𝐼𝑗
𝑖 where 0 ≤ j ≤ (2i+1‒1) is the count of the

sub-interval increasing from the left endpoint 0 to the right endpoint 1 within I

and i is the iteration count [16]. The input signal to the function must therefore

belong to any one of the sub-intervals. The following properties relate the

symbolic sequence 𝒮n+1(T,x) to the sub-intervals generated by the map.

1. Every x ∊ 𝐼𝑗
𝑖 results in same symbolic sequence 𝒮i+1(T,x)

2. If initial conditions x ∊ 𝐼𝑗
𝑖 and x̑ ∊ 𝐼𝑗+1

𝑖 , then 𝒮i+1(T,x) and 𝒮i+1(T,x̑)

differ by only one bit

54

3. 𝐼0
𝑖 ∪ 𝐼1

𝑖 ∪ 𝐼2
𝑖 ∪ … ∪ 𝐼

2𝑖+1−1
𝑖 = 𝐼

4. 𝐼𝑗
𝑖 ∩ 𝐼𝑘

𝑖 = ∅ for j ≠ k

Therefore from the properties 1, 2 and 4, the symbolic sequence 𝒮n+1(T,x)

can be interpreted as an n+1 bit long unique symbolic identity that corresponds

to a sub-interval of the size 𝐼𝑗
𝑛 and so, the longer the symbolic sequence, the

narrower will be the size of the intervals. Each such jth interval can be identified

by the corresponding symbolic sequence 𝒮n+1. The order of the symbolic

sequences, as shown in [16], corresponds to the order j = 1, 2, 3, …, 2n+1

according to which the intervals 𝐼𝑗
𝑛 are ordered in I. For example, for all 𝒮3(T,x),

the order of the possible sequences corresponding to j can be seen from Table

2.2. Therefore, for 𝒮n+1(T,x), 𝐼𝑗
𝑛can be written as 𝐼𝒮𝑛+1

𝑛 and can be used as a basis

to identify the originating interval of an initial condition.

In the case of ideal parameter, the initial conditions directly correspond

to their originating intervals when their symbolic signatures 𝒮n+1(T,x) are

converted to the corresponding binary codes ℬ : b0b1b2...bn

𝑏𝑖 = {
𝑠(𝑥𝑖) 𝑖 = 0
𝑏𝑖−1 ⊕ 𝑠(𝑥𝑖) 𝑖 > 0

. (2.6)

ℬ is further converted to the real values. This conversion from 𝒮n+1(T,x)

to real number is referred to as Gray Ordering Number (GON), given by the

transformation

GON(𝒮𝑛+1) = ∑ 𝑏𝑖
−(𝑖+1)𝑛

𝑖=0 . (2.7)

and can be ordered by its magnitude as described in [16].

55

Table 2.2 shows GONs for a 3-bit sequence generated using T2(x0) for

inputs (x0) with a step-size of 0.125. Considering a longer sequence will result

in identification of input signals with a finer step size.

Table 2.2 Correspondence between Sequences and Input Intervals

j 𝒮3(T,x) Binary GON

0 000 000 0

1 001 001 0.125

2 011 010 0.25

3 010 011 0.375

4 110 100 0.5

5 111 101 0.625

6 101 110 0.75

7 100 111 0.875

2.4 Previous chaos-based ADC attempts

This mapping property of the TM has been considered previously and

attempts have been made to utilise it in developing an ADC. The first attempt

was that of Kennedy [12] in 1995, where both the TM and the BM were

considered for conversion. Later, Kapitaniak et al. [13] also attempted

independently, with similar results with further results exploring the non-ideal

conditions. It was shown that the TM generated Gray code results while the BM

directly produced binary outcomes. In the following sub-sections, the details of

the inception of an ADC based on the BM and the TM respectively are shown.

2.4.1 ADC based on BM

The symbolic structure generated by the BM over the iterations for the

entire state space is binary in nature. As can be seen from Fig. 2.15 the state

space has been partitioned over repeated iterations. This, therefore, theoretically

appears to be the most appropriate choice for the ADC. Depending on the

56

number of symbols sampled from the map, the initial condition could be

recovered up to that many bits of precision [13]. However, in a practical setting,

the said map must be implemented through a physical circuit. The inherent noise

in the implemented system and the precision of the components involved

inevitably incurs a non-ideality, where the parametric value of the map is most

severely affected. In such non-ideal parametric conditions, the BM fails to

function as can be seen from the bifurcation diagram of the map (Fig. 2.8) and

cannot be intended as an ADC for practical purposes.

Fig. 2.15 Intervals with binary signature generated by the BM

2.4.2 ADC based on TM

An equivalent principle can be utilised for TM to develop an ADC. The

symbolic structure for the state space as generated by the TM is in Gray codes

(Fig. 2.16). In addition, the map functions chaotically even when the parametric

value is non-ideal and can therefore be implemented in practical domain, and

57

exhibits aperiodic dense chaos for an extended range of parameters (Fig. 2.14).

In [12], the conversions were successful when the parameter for either maps

must be maintained at the ideal value. The slightest deviation showed

significant error in the outcomes. Similar experiments were carried out by

Kapitaniak et al. [13] using both the maps, where the various sources of

deviations were explored through simulation by varying separately both the

elements that are susceptible to variation in an implemented map: the parameter

as well as the critical point. The outcomes confirm that directly treating the non-

ideal symbolic sequences as digitised output values will produce erroneous

results. In particular, the effect of the parameter shift is more readily reflected

on the symbolic sequences.

Fig. 2.16 Intervals with Gray signature generated by the TM

In the work of Alvarez et al. [45] it is seen that considering a large

number of iterations and converting them using directly to the decimal values

58

fairly approximate the initial condition even for non-ideal parametric values as

the symbols contribute value in exponentially diminishing quantity thus

asymptotically approaching the initial condition over the iterates. However, in

a practical scenario, obtaining that many iterates, even without noise is an

implausible idea.

Dinu et al. [46] developed a means of reverse-calculating the initial

condition from a randomly assumed final iterate chosen based on the final

symbol of the sequence. The generated outcomes were produced with sufficient

accuracy; however, consistency cannot always be guaranteed. Cong et al. [24]

have also employed similar techniques of reverse-calculations, which has

shown good agreement of the outcomes with the input signals. However, as the

reversal requires the entire sequence to be collected prior to conversion, it

cannot be executed parallel to the iterations of the map. Also, there is a lack of

real results testing the feasibility of the techniques in data from implemented

circuit results of the map which inevitably involves the effect of noise distorting

the symbolic sequences. Therefore, a conversion method is developed

considering the challenges offered by a real circuit implementation which are

described in the following chapter.

59

3 ANALYSIS OF NON-IDEAL BEHAVIOUR

The ideal condition for developing an ADC using the TM is to utilise a

map with full parametric value. This would ensure that the symbolic sequence

generated by the map uniquely identifies the initial condition that generated it.

In fact, the symbolic sequence generated would produce the Gray code

equivalent bits for the binary value of the initial condition. However, such a

system is only feasible in a software simulated environment which is immune

from component tolerances as well as the inherent noise in the system. Such a

system would be of no practical use in engineering measurement and control

where the signals collected by sensors are real electrical voltage or current.

Therefore, producing a TM in the electronic domain is inevitable.

Since the primary intention for utilising chaotic maps to develop an ADC

is to reduce the cost of the system while maintaining satisfactory accuracy, the

components used for the implementation purposes must not be very highly rated

in terms of tolerance. Also, such components and the nature of electronic

circuits in general, are susceptible to noisy interference. Thus, when the TM is

implemented, the ideal values of various parameters of the map function suffer

from deviations from the ideal values. This has a significant effect on the map

dynamics due to the sensitivity of the map to slightest changes. This in turn,

affects the outcomes if the dynamical trajectories responsible for the set of

initial conditions which are used as a signature for the initial condition

measurement. As a result the generated Gray symbolic outcomes are not directly

convertible to their binary or decimal equivalents. As the deviation is inevitable,

a solution must be aimed at either recovering the ideal symbolic trajectories

60

from the deviated ones, or devising a method to remap the initial conditions

correctly through the non-ideal sequences. In order to determine the feasible

and relevant solution, the effect of the non-ideality of the implemented TM

needs to be understood thoroughly.

3.1 Parametric deviation

The most common form of non-ideality – reduction in the height of the

map function – alters the intervals that correspond to each symbolic sequence

[15]. In general, the symbolic representation of the TM dynamics of one half of

the map is the mirror image of the other half. Therefore, when the intervals

within the state space are charted symbolically, the structure of the symbolic

codes are the same as that of the Gray codes. Gray code can be processed using

a straightforward numerical exercise that involves the Gray to binary conversion

and further into decimal equivalent values to estimate the initial condition.

However, this is possible if and only if the tent map dynamics are generated by

the circuit is 'ideal' i.e., its domain or the dynamical state space maps to the

entirety of [0,1].

As stated before, a parallel independent research in the same direction

has been conducted where the parameter of the non-ideal TM has been estimated

by Dutta, once through the maximum sequence method as done in [28] and also

in [47] where the inherent system noise has been utilised to determine the non-

zero fixed point in a probabilistic approach. The resulting fixed point has then

been utilised to determine the parameter that led to the estimated fixed point.

When the map is implemented physically, there is a reduction in the

height of the tent map and therefore due to the non-ideal parameter as seen in

61

Fig. 3.1, the symbolic trajectories are no longer the same as it is with the ideal

parameter. Hence converting the generated Gray code sequences directly into

the corresponding real values, leads to a deviation in the estimated outcome to

the actual initial condition, thus leading to incorrect mapping [48].

Fig. 3.1 TM with reduced heights due to various parametric values

For example, when the initial condition 0.4375 is iterated eight times

through an ideal and a non-ideal TM, the resultant trajectory after 7 iterations,

and the corresponding symbolic sequences are shown in Table 3.1. In the ideal

situation, as can be seen from the table, the result is analogous to a conversion

using an 8-bit ADC (any type). However, the results vary in case of the non-

ideal map, where the outcome is greatly shifted from the expected result.

Table 3.1 Change in trajectory with change in parameter

62

Ideal trajectory

µ = 1

Ideal

sequence

Non-ideal trajectory

µ = 0.95

Non-ideal

sequence

0.4375 0 0.4375 0

0.875 1 0.83125 1

0.25 0 0.320625 0

0.5 0 0.6091875 1

1 1 0.74254375 1

0 0 0.489166875 0

0 0 0.9294170625 1

0 0 0.13410758125 0

As can be seen, even for a slight deviation of parameter (µ = 0.95), the

symbolic sequence generated is quite different from the ideal sequences. As a

result, converting the symbols directly into the corresponding decimal values

does not yield the initial condition as can be seen from Table 3.2.

Table 3.2 Imperfect mapping of symbolic trajectory

Power

factor

Ideal

Gray

Ideal

Binary

Decimal Non-ideal

Gray

Non-ideal

Binary

Decimal

21 0 0 0 0 0 0

22 1 1 0.25 1 1 0.25

23 0 1 0.125 0 1 0.125

24 0 1 0.0625 1 0 0

25 1 0 0 1 1 0.03125

26 0 0 0 0 1 0.015625

27 0 0 0 1 0 0

28 0 0 0 0 0 0

 Outcome = 0.4375 Outcome = 0.421875

3.2 Narrowed dynamical attractor

The dynamical trajectories of all the initial conditions of the state space

become trapped at one point in time within a boundary called the dynamical

attractor. In the ideal TM, the iterated trajectory reaches the maximum height at

some point for all possible initial conditions of the map. Therefore, in the ideal

case, the dynamical attractor is the entire state space I. However, in the

63

hardware implementation of the map, it may not be possible to maintain the

parameter µ = 1 constantly. Under such non-ideal condition, when the map

height (parameter) is reduced i.e. µ < 1, changes to certain degrees in the

dynamical characteristics of the map that can be noticed. This can be viewed

from the bifurcation diagram of the TM (Fig. 2.12) where, with changing

parameter, there is a gradual narrowing of the attractor beyond which, the

iterated point can no longer visit during further iterations. This can also be

experienced for random individual initial conditions which also exhibit the

trapped region where its dynamics is limited to. This can be viewed very well

in a cobweb diagram showing a trajectory originating from x0 = 0.000124 after

300 iterations is shown in Fig. 3.2.

Fig. 3.2 Cobweb diagram for points originating before xc

The cobweb diagram is generated by alternating between the points

visited by the trajectory and the 𝑥 = 𝑦 line, thus highlighting the growth and

64

folding of the iterate values at each step. In a non-ideal TM, the cobweb diagram

over the long-time dynamics exhibit the region where the folding nature of the

map limits the boundary beyond which none of the iterates migrate. This

property of the dynamical attractor of the tent map is characterised by the

parameter µ and therefore, the maximum height Tmax = T(xc) where it determines

the upper limit of the attractor. As can be seen in Fig. 3.2, the points originate

further away from the Tmin for µ = 0.75, however, once the point enters the

attractor, the trajectory stays limited within this region.

Fig. 3.3 Cobweb diagram for points originating before xc

A similar plot can also be generated for a trajectory originating beyond

the Tmax. With an initial condition of x0 = 0.823 (Fig. 3.3) the trajectory first

maps to a point less than Tmin and then gradually enters the attractor and stays

confined. This effect is also seen in the bifurcation diagram (Fig. 2.12), where

the boundaries of the bifurcated points define the upper and lower limit.

65

Due to the folding nature of the tent map, the minimum value of the

attractor can be determined as Tmin = T(Tmax) = T(T(xc)). Thus, the upper limit

and lower limit of the attractor are given by Tmax = T(xc) = 2µxc = µ, and Tmin =

T2(xc) = T(Tmax) = T(µ) = 2µ(1‒µ). The attractor can therefore be identified as

the portion in the state space demarcated by these limits, which shall henceforth

be referred to as I′ = [Tmin,Tmax] = [2µ(1‒µ),µ]. As a result, when µ < 1, over

time, it can be observed that points originating from arbitrary locations of the

state space I will eventually be attracted and be trapped within I′ = [Tmin,Tmax],

where I′ < I. The dynamics continue infinitely as the iterated points never

achieve the full height of 1 and therefore cannot reach 0 either on the next

iterate. As both fixed points 0 and 2µ/(1+2µ) are unstable for µ > 0.5, the

dynamics stay trapped within I′ for a non-ideal µ. The lower the value of the

parameter, the narrower is the region where the dynamics is trapped and

therefore the periodicities increase as the iterates repeatedly visit the few

intervals that fit within that region.

3.3 Skewness of the intervals

The non-ideality of the map also affects the intervals generated by the

map [15]. In an ideal map the first pair of partitions generated by the first

iteration occur around 0.25 and 0.75 respectively. In a non-ideal map, where

µ < 1, after an iteration, it is observed that 0.25 falls short of producing 0.5 in

the next iteration, as does 0.75 in the mirroring half. This can be noticed in Fig.

3.4, where the non-ideal iterate of 0.25 (and 0.75) shown in green, fails to meet

the 0.5 line through the Y-axis. Therefore, the input value of x in the map

function 2µx (correspondingly 2µ(1‒x) for x > 0.5) is required to be higher (or

lower) than the ideal to make up for the reduction in the parameter value. As a

66

result, the partitions get shifted towards the critical point xc, creating the

intervals skewed and unequal.

Fig. 3.4 Shift in interval partition due to reduced height

It can be seen from Fig. 3.4 that the ramp input represented by AA’ gets

stretched and folded by the operation of the TM function – once using the ideal

map (µ = 1) and once using the non-ideal map (µ = 0.75) – producing the ABC

and AB’C respectively. To illustrate the shift of the partitions, the points where

the stretching side of the two maps cross the critical value (xc = 0.5) are marked

with X and X’ respectively. The point X’ can be calculated by reverse

calculating the initial condition from the resulting iterate which must equate to

the critical point. In this case, this is given by 1 −
𝑥𝑐

2𝜇𝑥
= 0.33. As can be seen,

from the figure, in case of the non-ideal map, none of the inputs until 0.33 has

crossed the 0.5 threshold after a single iteration.

67

In the process, the initial conditions are redistributed in the sub-intervals,

i.e., in case of an ideal map, if a certain initial condition previously belonged to

a certain sub-interval identified by a specific symbolic signature, in the non-

ideal scenario, the same initial condition might not belong to the same sub-

interval and might belong to an interval with a different signature. Thus the non-

ideal symbolic sequences do not necessarily represent the same interval visits

as the ideal sequences do.

This condition causes the non-ideal symbolic trajectories to be no longer

the same as it is with the ideal parameter. Hence the trajectories do not

correspond to the actual initial condition when the non-ideal symbolic

sequences are converted to their decimal equivalents directly. Since the only

relatively reliable outcomes of the system are the symbolic trajectories, in order

to work out the initial condition, the information of the parameter of the map is

also needed to be taken into account. It is assumed the information of the

parameter is available, which is being taken care of through a parallel

investigation. However, even the knowledge of the non-ideal parameter is

insufficient for determining the initial condition from the symbolic sequence, if

the conventional approaches are applied.

In order to determine the initial condition from the non-ideal symbolic

trajectories, the dynamics should be traced with respect to the intervals visited

by the iterates on every iteration. The information of the system parameter needs

to be utilised to determine the measure of each interval visited by the trajectory.

As the intervals of the non-ideal map are not equal in size and the positions are

skewed, the measure of the non-ideal parameter as well as the symbol of the

68

iterate should be utilised to govern and determine the interval size and thus trace

the iterates to determine the initial condition that resulted in the sequence. The

position of the partitions as well as the size of the interval for each symbol will

aid in repeatedly narrowing down into the interval that should contain the initial

condition which resulted in the non-ideal symbolic trajectory. To determine the

shift of the partition with every iteration as well as keeping track of the shift

with iterations including the folding behaviour of the map, the behaviour of the

TM must be understood thoroughly, which is described in detail in the following

chapter.

69

4 INITIAL CONDITION ESTIMATION

The ideal TM generates uniquely defined Gray code sequences which

can be converted to binary codes first and then into the corresponding decimal

values which will correspond to the initial condition that generated the

trajectory. As shown for the LM in [27], if the symbolic sequences converted

directly to decimal values without converting to the binary codes first, the

resulting points when plotted against the initial conditions exhibit the fractal

nature of the TM dynamics and is a very useful tool to observe the behaviour of

the points in the state space when subjected to the TM iterations. This can be

seen from the behaviour of the point 0.4 in Fig. 4.1. It must be noted that, since

the point plotted is the decimal equivalent of the Gray code and therefore a

direct doubling cannot be observed.

Fig. 4.1 Fractal behaviour of ideal Gray codes for μ = 1

When the same observation is made for non-ideal (μ = 0.75) map

outcomes, the plot appears as shown in Fig. 4.2 and the equivalence of the point

70

0.4 is no longer maintained. The shift in the points introduced by the non-ideal

parametric condition results in overlapping of points and drastic remapping that

cannot be traced back in a straightforward manner. This is due to the shift of the

interval partitions as described in [15] causing unequal and skewed sub-

intervals. Therefore, the initial conditions from the state space I are redistributed

in these sub-intervals. As a result of this phenomenon, the symbolic signatures

associated with the specific initial conditions gets changed from the ideal

symbolic trajectories. Therefore, converting the symbolic sequences directly

into decimal values produces incorrect mappings.

Fig. 4.2 Distortion of the fractal code for μ = 0.75

It can be seen from Fig. 4.2, however, the symbolic sequences generated

by the iterations still maintain the fractal nature of the TM dynamics, even when

the parameter value deviates from the ideal. Therefore, it might be possible to

utilise the inherent self-similarity to recreate the skewed sub-intervals and

identify the correct interval from where the initial condition originated.

71

Therefore, in order to determine the initial condition only from the symbolic

sequence generated by a non-ideal TM, it is important to have a deeper

understanding of how the dynamics of the trajectory gets affected with the

change of parameter and how the change is reflected by the change in the

symbolic sequence thus generated.

4.1 Self-Similarity

Initial experiments were conducted by directly converting the non-ideal

symbolic sequences into decimal values (GON) and comparing with the initial

conditions over a range of parameters (Fig. 4.3).

Fig. 4.3 GON values calculated and compared with the ideal case

72

For most of the initial conditions, therefore, the same initial condition

maps to a variety of points depending on the parameter value of the operating

function (Fig. 4.4).

Fig. 4.4 A closer view of the GON values

It was observed that there exists a self-similarity in the GON values (as

described in section 2.3) as well as the difference of the outcomes with the initial

conditions. It was therefore logical to infer that there must be an overarching

rule governing the behaviour of the deviation from the ideal values. As a result,

it is evident that the initial condition can be recovered if the difference between

the corresponding values for the initial condition in Fig. 4.3 can be made up for.

As can be seen from closer observations, the magnitude of deviation from the

ideal values is dependent on the parameter values. Once the parameter value is

73

known – which is the objective of a parallel and related research – the initial

conditions can be recovered from the GON values. Since the difference shows

a fractal behaviour, the underlying governing rule must be recovered. Since the

reduced parameter value results in a reduction in the subsequent iterate values

as compared to the ideal condition, the difference between the parameter values

can be utilised at every step of the iteration to account for the overall deviation

of the initial condition. Now, if the initial condition requires to be reverse-

calculated from the symbolic sequence, dividing the iterates and occasionally

folding the outcomes depending on the symbolic footprint cannot be performed

with the non-ideal parameter value since the accurate final iterate is not

accessible.

On the other hand, replacing the base of 2 with the reduced parameter

value in the GON calculation will not account for the folding behaviour since

the symbolic sequence generated is not a true Gray code and will not generate

true binary codes. This can be verified from Fig. 4.5, where the outcomes show

scaling error from the ideal scenario and cannot be scaled back by 1/2µ.

However, in the reverse calculation method, the deviation of the reverse-scaling

factor can be independently calculated, even without the knowledge of the final

iterate value. This difference, when accounted for along with the GON of the

initial condition, depending on the symbolic sequence, should recover the initial

condition successfully. The problem can be approached by determining how

much deviation must be restored with every iteration. Since in a non-ideal map,

the iterates gain by a factor of 2µ, the reversal should scale down the iterates by

a factor of 1/2µ. However, as GON is performed with a base of 2, effectively,

it results in a reverse-calculation with a scaling factor of 1/2. Therefore, there

74

is a loss of scaling by 1/2µ1/2. Over iterations, the power of the difference is

compounded, and the power is increased.

Fig. 4.5 GON calculated with base of 2µ and rescaled by 1/2µ

4.2 Interval arithmetic

The self-similarity of the TM function was also reflected by the position

and the size of the skewness and inequality of the intervals generated by a non-

ideal TM. It was observed that the self-similarity had a mirroring property and

it always occurred about the critical point of the map (xc). It could therefore be

linked to the reversed orientation of the two halves of the map as stated by

Gilmore and LeFranc in [6]. Although the self-similar structure could be utilised

along with the knowledge of the symbolic trajectory to triangulate an

approximate area within the state space where the initial condition might

75

belong, in a real situation the information of the entire state space will not be

available and therefore, the information from the self-similar structure could not

be accessed from a single symbolic sequence. Therefore, it was important to

determine the property that lent the self-similarity to the observation in Fig. 4.6,

and whether this property can aid in determining the initial condition through

the symbolic sequences.

Fig. 4.6 Fractal growth of sub-intervals over iterations

4.3 Addressing non-ideal patterns

In order to correlate the underlying pattern or the self-similarity of the

skewness of the intervals with the symbolic sequences which result in self-

similar errors when converted to decimal values, the interval arithmetic of the

map is considered. The interval arithmetic is the technique of observing and

analysing the formation of the intervals within the state space, caused by

76

repeated iterations of the map over the state space. In case of the TM the folding

nature of the map result in a reflected fractal nature of the formation of the

intervals. This is owed to the reversing and preserving nature of the two halves

of the map. Thus, each partition created by the iterations result in sub-intervals

on either side that also inherit the similar orientations as the original map.

As can be seen in Fig. 4.6, over iterations, each interval is again

partitioned into further smaller sub-intervals with mirroring nature. As the

newer intervals are produced, the generated intervals can also be uniquely

identified as addressed by the symbols generated over iterations. Therefore, as

the number of iterations is increased, the sub-intervals also double each time

resulting in finer definition, producing higher resolution of the intervals where

the initial condition might originate from. For example, for the initial condition

through which the line is shown in Fig. 4.6, the originating interval can either

be identified by the sequence 1111 if 4 iterations are considered but can be

defined as 11111110 with a higher resolution if all the 8 iterations are

considered.

In a non-ideal TM, the partitions get shifted due to reduced height

(parameter) and thus the intervals are unequal. However, in order to correctly

determine the shifted interval, it is important to note how the partitions have

shifted and in which direction. It is observed that the rate of the partition shift

is directly related to the change in parameter. Also, the direction of the shift is

related to the orientation of the map as can be compared with Fig. 4.7.

As the partitions get repositioned, the interval sizes are either reduced or

increased and accordingly, initial conditions or the subsequent iterates

77

belonging to specific intervals in case of ideal maps get remapped into different

intervals. Therefore, the symbolic sequences are altered. However, keeping a

track of the partition shift along with the altered symbolic sequences might lead

to partitioning the state space in the right way. If the partitioning is continued

for all the symbols in a specific sequence, narrowing down and identifying the

correct interval will be possible. This idea has been developed into an algorithm

which is described in the next chapter.

Fig. 4.7 Shift of the partitions towards xc

In a TM, the new partitions are generated on the nth iteration through the

points which, on the nth iterate, produce the critical value of 0.5. In case of non-

ideal TM, the reduction in the parametric value must be made up for by the

iterate values. As a result, for the orientation preserved side, the partitions are

generated for a higher value compared to the ideal scenario. Similarly, in the

orientation reversed side, due to the folding nature of the map, the partitions are

generated through the points at values lower than the ideal case. Therefore, as

78

can be seen from Fig. 4.7 the partitions are shifted towards the critical point of

the map (xc). As for the amount of the shift, since the partitions are generated

on the nth iterate of the map, the reduction in parameter must be factored into

the magnitude of the shift. In fact, for the nth iteration, the shift in partition is

also produced by the nth power of the reduction in the parameter. Clearly, when

the non-ideal parameter is known, if the orientations of the symbolic iterates are

known the shifted partitions can be reconstructed. Therefore, the intervals can

be reconstructed using the symbolic sequences for the initial conditions, which

are redistributed in the skewed intervals of the non-ideal map.

4.4 Orientation of the interval arithmetic

For any initial condition x0 that generated a symbolic sequence 𝒮n+1, the

symbolic sequence identifies an interval 𝐼𝒮𝑛+1

𝑛 such that x0 ∊ 𝐼𝒮𝑛+1

𝑛 , which is

described in section 2.3. Moreover, every ith symbol in 𝒮n+1 also indicates

whether xi belongs to the left or right of xc, i.e., to 𝐼0
0 or 𝐼1

0. As a result, s(xi) ∊

{0,1}. This is true for every xi. If xi = Ti(x0) ∊ 𝐼𝑠(𝑥𝑖)
0 , the inverse relation returns

x0 ∊ T i(𝐼𝑠(𝑥𝑖)
0). Since this operation can be performed for all bits in the

sequence, for an n+1-bit sequence, this relationship can be combined for every

xi. Hence, the originating interval 𝐼𝒮𝑛+1

𝑛 can be defined as

𝐼𝒮𝑛+1

𝑛 ⋂ 𝑇−𝑖(𝐼𝑠(𝑥𝑖)
𝑖𝑛

𝑖=0). (4.1)

For instance, if 𝒮n+1 = 010...s(xn), s(x0) is considered, the initial condition

can be identified by x0 ∊ 𝐼0
0. After one iteration, the iterate T(x0) ∊ 𝐼1

0, which can

also be expressed as x0 ∊ T 1(𝐼1
0). Therefore, considering s(x0)s(x1), x0 ∊ 𝐼0

0 ∩ T

79

1(𝐼1
0) 𝐼01

1 ⊂ 𝐼0
0 [17,27]. In this manner, following all the symbols in the

sequence, the originating sub-interval can be identified as

𝑥0 ∊ 𝐼0
0 ∩ 𝑇−1(𝐼1

0 ∩ 𝑇−1(𝐼0
0 …))… ⊂ 𝐼010

2 ⊂ 𝐼01
1 ⊂ 𝐼0

0. (4.2)

As the TM is directly non-invertible (every point has two inverses), if

the inverse operation T 1 of the tent map function on an interval is performed,

there is more than one choice for the restriction for T 1. However, there is a

way to determine this factor as it depends on the “orientation” of the map on

the sub-interval [19]. Orientation of an interval is determined by the tendency

of the function in that interval, which is dictated by the slope of the function.

For a TM, a positive slope implies an orientation-preserving interval and a

negative slope implies an orientation-reversing interval. Unlike a BM, this

reversal of the orientation results in mirroring of the behaviour of the map and

hence, generating Gray codes instead of binary codes. This is referred to as the

reversal of the lexicographic order of the symbolic signature. Therefore, the

orientation of the interval 𝐼𝒮𝑖+1

𝑖 can be determined from the sequence 𝒮i+1

associated with the ith iterate.

Fig. 4.8 Generating Gray code over iterations

From Fig. 4.8, it can be seen that the orientation of 𝐼𝒮𝑖+1

𝑖 gets reversed

from how it was, every time a 1 is encountered in the trajectory. Hence, it can

80

be deduced that two successive reversals result in restoring a reversed interval

into a preserving one. Building up from here, it can be said that an even number

of reversals can result in the same orientation. Hence, up to the ith iteration,

occurrence of the orientation-reversing iteration for an even number of times

restores the orientation of 𝐼𝒮𝑖+1

𝑖 , while an odd count of the same behaviour results

in a reversal. Since orientation-reversing iteration generates the symbol ‘1’, the

orientation of the interval 𝐼𝒮𝑖+1

𝑖 can be determined by checking whether αi is

even (preserved) or odd (reversed), where αi is given by (5.3).

𝛼𝑖 = 𝛼𝑖−1 + 𝑠(𝑥𝑖) (4.3)

This knowledge can be utilised to determine the restrictions of the

inverse operation T 1 of the tent map function can be chosen as

𝐼𝒮𝑖+1

𝑖 = 𝑇−1(𝐼𝒮𝑖

𝑖−1) = {

𝐼𝒮𝑖
𝑖−1

2𝜇
 𝛼 𝑖𝑠 𝑒𝑣𝑒𝑛

1 −
𝐼𝒮𝑖

𝑖−1

2𝜇
 𝛼 𝑖𝑠 𝑜𝑑𝑑

. (4.4)

In the following section, it is shown how the measure of shift in partitions

is applied to the corresponding sub-intervals according to their orientation,

given by each symbolic state in the sequence starting from s(x0) to s(xn), so that

the originating interval of the initial condition x0 can sharply be narrowed down

from the state space I.

4.4.1 The interval arithmetic method

In a non-ideal TM, the magnitude of inequality of the resulting

asymmetric sub-intervals is dependent upon the map parameter µ < 1. Also,

partitioning the state space as a nested sub-interval is guided by the orientation

81

of the current sub-interval for determining whether the bigger or the smaller

sub-interval needs to be chosen for the next step. Therefore, it must be decided

regarding the direction, that, in which the partition of the current state needs to

be shifted (from the midpoint of the current sub-interval) for each symbolic

iterate in question.

Fig. 4.9 Reconstructing sub-intervals

Here, it is shown how the orientation of 𝐼𝒮𝑖+1

𝑖 can be used to determine

which direction the partition on 𝐼𝒮𝑖

𝑖−1 must be shifted to, and which of the two

sub-intervals generated contains the originating interval of x0. Using 𝒮n+1 =

01…s(xn) this can be illustrated in the following manner. For x0 ∊ I, s(x0) = 0 ⇒

x0 ∊ 𝐼0
0. s(x1) = 1 ⇒ x1 ∊ 𝐼1

0 and therefore, x0 ∊ 𝐼0
0 ∩ 𝑇−1(𝐼1

0) 𝐼01
1 , which lies to

the right of the newly generated partition as αi is odd for 𝐼01
1 (Fig. 4.9). Similarly,

for 𝒮n+1 = 11…s(xn), despite s(x1) = 1, αi is even for 𝐼11
1 and therefore 𝐼11

1 ∍ x0

lies to the left of the newly generated partition. Continuing for n+1 symbols, the

originating interval 𝐼𝒮𝑛+1
𝑛 ∍ x0 can be obtained [28].

A technique has been formulated (Fig. 4.10) to be able to measure signal

value from the symbolic sequence generated by the TM, in the form of a

computational algorithm. For easy adaptability in the digital processing domain,

82

the task of partitioning the state space and the determining the next sub-interval

of choice, has been adapted into a simple numerical exercise. The key essence

is to shift one of the boundaries of the interval 𝐼𝒮𝑖

𝑖−1 towards the other, depending

on the orientation of the resulting sub-interval 𝐼𝒮𝑖+1

𝑖 ∍ x0, by a factor of µ, in such

a way that the sub-interval that does not contain x0 is eliminated, leaving the

correct 𝐼𝒮𝑖+1

𝑖 behind thereby leading to the originating interval of x0 on the nth

step.

For any given sequence 𝒮n+1, s(x0) is determined by T0(x0) i.e. without

having the initial condition iterated through the map function. This is because

the critical point xc determines which half of the state space I the point belongs

to, and thus which symbol must be assigned to it. Hence the role of the first

symbol s(x0) is simply to determine whether the algorithm must be performed

on 𝐼0
0 or 𝐼1

0. 𝐼1
0 being a mirror image of 𝐼0

0 about xc = 0.5, for any two symbolic

sequences that are identical, except for the first symbol s(x0), their originating

intervals are also mirror images of each other exactly about xc. Therefore, for

reducing computational complexity, the calculations for the symbolic sequence

beginning with s(x0) = 1 is performed on the preserving sub-interval and later

amended for the reverse orientation.

From s(x1) onwards, the boundaries of the i‒1th sub-interval 𝐼𝒮𝑖

𝑖−1 are

denoted as A(i‒1) and B(i‒1). Therefore, the corresponding length of the sub-

interval is given by ℓ(i‒1) = B(i‒1) ‒ A(i‒1) and δ(i‒1) = ℓ(i‒1)/2µ determines

by how much one boundary needs to be shifted towards the other for creating

the ith sub-interval. The algorithm [47] can be summarised into a flow chart as

shown in Fig. 4.10.

83

Fig. 4.10 Flow chart for the interval arithmetic algorithm [28]

Executing the steps in the flow chart evaluate the initial condition. The

procedure is as follows:

1. For the interval 𝐼0
0, i.e. for T0(x0), the boundaries are referred to as A(0)

= 0 and B(0) = 0.5 and ℓ(0) = B(0) ‒ A(0) = 0.5 ‒ 0 = 0.5. Similarly, by

the previous proposition, the boundaries for 𝐼1
0 are A(0) = 0.5 and B(0)

= 0 and ℓ(0) = B(0) ‒ A(0) = 0 ‒ 0.5 = ‒ 0.5. The negative value of the

length is taken care of by the orientation of the symbols in the sequence.

84

2. From s(x1) onwards, the following step is repeated until s(xn). For i = 1,

2, …, n‒1:

 αi is even, A(i) = A(i‒1) and B(i) = A(i‒1) + δ(i‒1)

 αi is odd, A(i) = B(i‒1) ‒ δ(i‒1) and B(i) = B(i‒1)

3. When the operation is performed with µ < 1, the estimated initial

condition x́0 is scaled by a factor of µ, resulting in x́0 ∊ [0, µ] which needs

to be scaled back into x́0 ∊ I = [0,1]. Also, if 𝒮n+1 had s(x0) = 1, the final

sub-interval needs to be mirrored back into 𝐼1
0 = [0.5,1]. Depending on

the orientation of the sub-interval 𝐼𝒮𝑛+1

𝑛 of the nth iteration, keeping the

conditions in mind, there are four cases for determining the initial

condition x0 ∊ 𝐼𝒮𝑛+1

𝑛 :

 If αn is even and s(x0) = 0, x́0 = A(n)/µ

 If αn is odd and s(x0) = 0, x́0 = B(n)/µ

 If αn is even and s(x0) = 1, x́0 = 1 ‒ [A(n)/µ]

 If αn is odd and s(x0) = 1, x́0 = 1 ‒ [B(n)/µ]

This algorithm is tested in the chapter 6 in both simulation as well as real

circuit results.

4.5 Deviation adjustment for the GON

Another method has also been proposed to determine the initial

condition, based on the cumulative deviation incurred by each iteration of the

map. This method also involves utilising the symbolic sequence of the map, by

85

keeping a track of the deviation of the iterates based on the deviation of the

parameter from the ideal. As mentioned in section 2.3, the deviation of the

initial condition calculated using GON can be accounted for, if a technique is

devised to restore the difference. Since the deviation is estimated for individual

iterates, the cumulative deviation is finally adjusted for the GON value for the

initial condition concerned. Unlike the previously discussed method, however,

this method does not require performing the calculations every time, since the

difference is estimated for the iteration numbers, without any dependence on

the actual iterate values and are stored in a look-up-table (LUT) of bit difference

values. Once a symbolic sequence is retrieved for an initial condition, only the

GON value must be calculated, while the differences can be looked up from the

LUT and applied with relevant signs (whether to be added or subtracted)

depending on the symbolic footprint for the specific iterate. Finally, the total

deviation can be adjusted at the end with the GON. This has been shown in

detail through an example in section 4.5.2. This method may aid in saving

sufficient computational power through occasional updates of the LUT which

would be required only with a noticeable shift in parameter.

4.5.1 The deviation adjustment method

The problem is approached by trying to calculate how much deviation

needs to be restored with every iteration while reverse-calculating the generated

symbolic sequence. In order to perform inverse TM to go back to the initial

condition, with each step, the reversal should be performed by scaling down by

the amount of the multiplying factor of the TM function, 2µ. For non-ideal

maps, this should have been by 1/(2µ) but the direct conversion effectively

results in 1/2. Thus, this difference of (2µ)-1-2-1 must be accounted for, when µ

86

is known. Accordingly, the next iteration results in a deviation of (2µ)-2-2-2.

Continuing in this manner, the deviation can be accounted for until the first

symbol, and therefore can be added on to the decimal value calculated using

basic conversion technique. Due to the reversing and preserving nature of the

two halves of the map, there are two possibilities through which the map can be

reversed back. This leads to four possibilities in how the deviations can be

accounted for, when addressing them. This is easily addressed by considering

the preceding and current symbol for each iteration.

The algorithm is executed on the Gray code symbolic sequence 𝒮n+1(T,x)

= s(x0)s(x1)s(x2)…s(xn) generated by the map. The steps are as follows:

1. Starting from the LSB of the sequence, i.e., s(xn), going towards the

MSB s(x0), all the bits preceeding the first ‘1’ are ignored, as those do

not have any influence on the final difference value.

2. The following bit (i.e. after the first 1), say s(xm), the first weighted

difference is calculated with the exponent equal to 1 (i.e. (2µ)-1-2-1)

which is denoted by the column A in Fig. 4.11. Depending on whether

s(xm) is ‘0’ or ‘1’, the difference is positive or negative respectively.

3. For the following bits, going towards the MSB, s(xm) > s(xm) s(xm-1)

represents one of the four cases with the conditions as follows, leading

to the calculations under the columns B, C, D, etc.(Fig. 4.11):

 0 > 00: every difference is raised to the next exponent

 0 > 01: every difference is raised to the next exponent and the

overall sign is inverted

87

 1 > 10: every difference is raised to the next exponent, the first

difference is added to it and the overall sign is inverted

 1 > 11: every difference is raised to the next exponent and the

first difference is added to it

4. Finally, all the weighted differences are added to the GON value of the

corresponding initial condition, in order to make up for the difference.

Fig. 4.11 Tabular representation of deviation adjustment algorithm

4.5.2 Details of the calculation

In order to explain the procedure, a TM generated symbolic sequence

𝒮n+1(T,x) = s(x0)s(x1)s(x2)…s(xn) for an initial condition x0 is considered and the

corresponding GON is assessed. Because the deviation is calculated in the

88

reverse direction (i.e. from the LSB), the sequence 𝒮n+1(T,x) is inverted and a

sequence 𝒮’n+1(T,x) = s(xn)s(xn1)s(x n2)…s(x0) is produced. The rules detailed

in Fig. 4.11 are followed, for 𝒮’n+1(T,x). The differences (weightings) denoted

by A, B, C, D, etc. are generated as shown in Table 4.1 and stored in a register

(W).

Table 4.1 Calculation of weightings

 A B C D

W (2µ)1 21 (2µ)2 22 (2µ)3 23 (2µ)4 24

Ψ 0 or ±1 0 or ±1 0 or ±1 0 or ±1

Ξ 0 or ±A 0 or ±B 0 or ±C 0 or ±D

As the weightings produce very small float numbers, while implementing

the algorithm, the values are scaled up by a scaling_factor of 22n-1 (where n =

number of bits in the sequence) and rounded up to an integer value. Applying

the above rule chart, an expression is formed. The expression signs are stored

in a register (Ψ) whose cells correspond to the register W and the elements are

either 0 or ±1 (Table 4.1), depending on the rules listed in step 3 of the

algorithm. The equation register (Ξ) is formed by element-wise (Hadamard

product: ⊙) multiplying W with Ψ, i.e. 𝛯 = 𝑊 ⊙ 𝛹.

Then sum of all the elements in the expression Ξ is solved to determine

the magnitude of deviation, determining the deviation of the GON for 𝒮n+1(T,x)

away from the initial condition that would have been produced by the TM if the

parameter was ideal. As the differences have been scaled up for the ease of

calculations, therefore the deviation is scaled down by the same scaling factor

of 22n-1 before adding to the GON.

89

To demonstrate with an example, let the entire 8-bit sequence for a

particular initial condition x0 = 0.0234375, generated with parameter μ = 0.95

be given as

MSB LSB

0 1 1 0 1 0 1 0

Assuming that the parameter is known, the algorithm is executed as

follows:

1. GON is calculated by converting the Gray code 𝒮n+1(T,x)

= s(x0)s(x1)s(x2)…s(xn) first into binary: ℬ : b0b1b2...bn

𝑏𝑖 = {
𝑠(𝑥𝑖) 𝑖 = 0
𝑏𝑖−1 ⊕ 𝑠(𝑥𝑖) 𝑖 > 0

∴ ℬ = 0 1 0 0 1 1 0 0

and then the binary in to GON:

GON(𝒮𝑛+1) = ∑ 𝑏𝑖

𝑛

𝑖=0
× 2−(𝑖+1)

= 2−2 + 2−5 + 2−6 = 0.015625

2. The algorithm starts after the first 1 from the LSB towards MSB, so the

code is reversed for convenience.

LSB MSB

0 1 0 1 0 1 1 0

As the operations start after the first 1 closest to the LSB and continue

towards the MSB, the two bits are discarded, and the remaining bits are

numbered as shown:

90

LSB ⇀ MSB

0 1 0 1 0 1 1 0

 (i) (ii) (iii) (iv) (v) (vi)

3. The differences are stored in W acting as the set of weights, marked as

A-H:

A B C D E F G H

(2µ)1

 21

(2µ)2

 22

(2µ)3

 23

(2µ)4

 24

(2µ)5

 25

(2µ)6

 26

(2µ)7

 27

(2µ)8

 28

4. As the “differences” produce very small float numbers, the numbers are

scaled up by a factor of 22n-1 (where n = 8 is number of bits in the

sequence) and rounded up to an integer value. This would produce:

A B C D E F G H

862 885 681 466 299 185 111 65

5. The symbols dictate the sign of the differences in the equation, which

decide whether the corresponding differences will be added or

subtracted (or no operation).

Therefore, the sign register (Ψ) having correspondence with W is

created, for storing the signs (±) and initiate it with 0:

A B C D E F G H

0 0 0 0 0 0 0 0

The array is filled up according to the rules in the diagram, therefore,

starting from bit (i):

(i) The first symbol is 0.

LSB MSB

0 1 0 1 0 1 1 0

 (i) (ii) (iii) (iv) (v) (vi)

91

Accordingly, the “difference equation” starts with A = 𝐺 -1 – 2-1.

Therefore, the array will be filled up with +1:

A B C D E F G H

+1 0 0 0 0 0 0 0

(ii) Next is 0 ⇢ 01.

LSB MSB

0 1 0 1 0 1 1 0

 (i) (ii) (iii) (iv) (v) (vi)

Therefore, the previous “difference” is shifted to the higher order

(exponent) by one place (B) which indicates that the sign-register should be

shifted to the right, to align with the weight register position B. However, the

first position received no new difference as the previous bit was 0.

Also, the overall sign is negated (i.e. the entire register undergoes sign

reversal) since the current bit is 1:

A B C D E F G H

0 -1 0 0 0 0 0 0

(iii) Next, 1 ⇢ 10

LSB MSB

0 1 0 1 0 1 1 0

 (i) (ii) (iii) (iv) (v) (vi)

The previous differences are shifted to the next order as before. The first

difference is also introduced as the previous bit was 1, causing the first position

92

in the sign register to be filled with +1. The signs are retained (i.e. no change)

because the present bit is 0:

A B C D E F G H

+1 0 -1 0 0 0 0 0

(iv) Next, 0 ⇢ 01

LSB MSB

0 1 0 1 0 1 1 0

 (i) (ii) (iii) (iv) (v) (vi)

Therefore, the rule (ii) is followed:

A B C D E F G H

0 -1 0 +1 0 0 0 0

(v) Next, 1 ⇢ 11

LSB MSB

0 1 0 1 0 1 1 0

 (i) (ii) (iii) (iv) (v) (vi)

The previous “differences” are shifted to the next order as before. The

first difference is also introduced as the previous bit was 1, causing the first

position in the sign register to be filled with +1. The signs are inverted for the

entire register because the present bit is 1 as well:

A B C D E F G H

-1 0 +1 0 -1 0 0 0

(vi) Finally, for 1 ⇢ 10

LSB MSB

0 1 0 1 0 1 1 0

 (i) (ii) (iii) (iv) (v) (vi)

This is again rule (iii):

93

A B C D E F G H

+1 -1 0 +1 0 -1 0 0

6. The equation for the entire sequence, up to the MSB can now be created.

This is done by multiplying the two registers W and Ψ element wise

(Hadamard product: ⊙) and add the elements in an equation Ξ:

𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = ∑ 𝛯

𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = ∑(𝑊 ⊙ 𝛹)

∴ 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = +𝐴 − 𝐵 + 𝐷 − 𝐹

 = 862 − 885 + 466 − 185 = 258

7. Ideally, the magnitude of the deviation, scaled up (by 215) of the GON

of x0 from the actual x0 is produced. Therefore, the deviation must be

scaled down to the normal range and added it to the GON calculated

previously, to produce the estimated initial condition �̃�0, given by

�̃�0 = GON +
𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

215

= 0.015625 + 0.00787353515625 = 0.02349853515625

8. Limiting the output precision to 8 bits, by the following operation is

performed [floor (�̃�0 × 28)]/ 28, thus producing �̃�0 = 0.0234375, which

is exactly the value of x0 considered as initial condition to generate the

sequence for this case.

As can be noticed, if two codes 𝒫4(T,x) = 10000 and 𝒬4(T,x) = 10001 are

considered, for 𝒫4(T,x), since the first ‘1’ from the LSB is the MSB, the

difference is 0 and therefore, the code can be directly converted to the initial

94

condition. This can also be verified from the GON plot in Fig. 4.3 where the

GON of the maximum value (represented by ‘1’ followed by all ‘0’s in Gray

code) does not deviate from the ideal case. As for 𝒬4(T,x), since the first ‘1’

from the LSB side is the LSB, all the subsequent symbols approaching the MSB

are used for calculating the difference, and is given by ‘D’. Thus, the

differences are generated and the GON values are adjusted accordingly. Finally,

the algorithms described in sections 4.4 and 4.5 are tested for performance and

are the results are discussed in next chapter.

95

5 RESULTS AND DISCUSSION

The algorithms developed for the initial condition estimation are first

tested through simulated results in MATLAB. A tent map circuit was also

developed based on the circuit developed by Campos et al. [42] and was

implemented for further testing by Dutta which can be found in [28]. The

symbolic sequences were recovered for all the initial conditions approximately

corresponding to 8 and 16-bit precision values. The aforementioned algorithms

were then tested for performance. The results are shown for input conditions

with 8-bit precision. All the implemented real circuit results are converted for

both 8 and 16-bit precision outcomes.

5.1 Simulation results

The algorithms are first tested using all the symbolic sequences

generated by non-ideal TM and the effectiveness of both the methods are shown

separately in sections 5.1.1 and 5.1.2 for the interval arithmetic algorithm

described in 4.4.1 and the deviation adjustment algorithm (4.5.1) respectively.

The performance is observed by measuring the deviation of the outcomes from

the initial conditions generated by dividing the state space I into equally spaced

points of 8-bit resolution. The percentage error for various scenarios as well as

the bit error is measured, in order to realise the applicability of both the methods

in successfully developing an ADC. Both the methods show sufficient

coincidence between the initial condition.

96

5.1.1 Results for interval arithmetic algorithm

The interval arithmetic method is performed on a data set of 8-bit

resolution and iterated through a map with parameter µ = 0.75. First, the percent

error between the converted values and the initial conditions are charted and

plotted in Fig. 5.1. The initial conditions were generated for 8-bit resolution and

also calculated using a sequence of 8 symbols. As the method is tested by

increasing the number of symbols to 12 and 16 bits to test the performance, the

percent error improved as can be seen in Fig. 5.2 and Fig. 5.3 respectively.

Fig. 5.1 Percent error using 8 symbols

97

Fig. 5.2 Percent error using 12 symbols

Fig. 5.3 Percent error using 16 symbols

It can be seen that, there is a gradual improvement in the results with

increasing the number symbols used for running the algorithm. The error goes

from ±0.6% to about ±0.04% and then a little over ±0.003% for 8, 12 and 16

bits, showing a tendency in increasing improvement with the bits.

98

In order to observe whether this is a valid trend, the method is tested for

a range of bit-length of the symbolic sequence used to perform the estimation.

It is observed that the maximum absolute error percentage gradually diminished

exponentially (Fig. 5.4) as the number of bits used is increased linearly from 1

to 50. To better realise the error beyond 10-bit estimation, the logarithm of the

errors are calculated and plotted against the number of bits used in Fig. 5.5. It

is also observed that from 10 bits onwards, the spread of the error is condensed

and uniform. It must be noted, however, that the presence of noise in a real

setting will influence the exponential improvement, which would entail further

work to recover the performance.

Fig. 5.4 Exponential reduction with increasing symbols

99

Fig. 5.5 Logarithmic view of the exponential reduction

The error also diminished when compared over a range of parameters as

can be seen from the logarithmic value of the absolute errors over a selection of

parameters in Fig. 5.6. For parameters 0.75, 085 and 0.95, the logarithmic

maximum % error are plotted and can be seen that the errors improve as the

parameters approach the ideal parametric value. The improvement also

increases as the parameter approaches the ideal value. Thus, the improvement

of the case with µ = 0.95 over µ = 0.85 is better than that of µ = 0.85 over µ =

0.75.

100

Fig. 5.6 The maximum log-of-error for multiple parameters

From Fig. 5.6, it can be observed that relaxing the parameter value from

the ideal does not introduce a drastic error in the recovery and therefore can be

afforded while implementing the TM function in a real circuit. Such results

encouraged the successful implementation of a physical TM and observe the

performances in the later stages, which are also detailed in [28]. As a result,

using cheaper components may be a viable option to reduce the cost while not

compromising any major setback in the performance.

In order to observe how the algorithm performs over the entire range of

chaotic behaviour, the same observation is conducted for a parametric range of

µ = [0.5,1] where the conversion is performed with 8, 16 and 32 bits. The

logarithmic maximum % error can be seen in Fig. 5.7 and can be seen that they

do not show the linear relationship with the parameter. Increasing the number

101

of symbols for the conversion also shows diminished error over a range of

parameters.

Fig. 5.7 The maximum log-of-error using 8, 16 and 32 symbols

In order to observe how the algorithm performed in terms of bit accuracy,

the initial condition is generated by dividing the state space I into a set of initial

conditions of 8-bit resolution and sorted into a histogram with interval (bin size)

of same as the step size of the initial conditions. The input data can be viewed

in Fig. 5.8 where it can be seen that the frequency count of each bin is one, i.e.

every bin consists of one input data. The data set is iterated through a non-ideal

TM whose parameter is estimated to be µ = 0.9527. The symbolic sequences

are generated and the GON is calculated for the initial conditions and a

histogram plot is generated as also shown in Fig. 5.8. As can be seen, points

102

have deviated from their actual values and overlapped with some neighbouring

points, leaving substantial gaps among the bins.

Fig. 5.8 Histogram of the data set and the calculated GON

As can be seen from Fig. 5.9, to observe how the estimation method is

performing, the algorithm has been carried out for the same set of symbolic

signatures but considering varying number of bits; the performance has

gradually improved with the increased number of symbols considered.

103

104

Fig. 5.9 Histograms for interval arithmetic method

The algorithm shows promising outcomes when the number of bits

considered are increased to 12, and by 16 bits, only two estimated initial

conditions are misplaced in the wrong bins. Even after increasing the number

of symbols, however, some errors are still observed, especially for the initial

conditions with lower magnitude. Since the initial conditions were generated by

dividing the state space into 8-bit resolution dataset, the points represent the

edges of the bins in the histogram. Since signals are not likely to be exactly on

105

the edges of the intervals, the initial condition is better represented if they are

shifted by half a step (Fig. 5.10).

106

Fig. 5.10 Histogram for dataset shifted by half-step

Using such data points, when the histograms are generated, the outcome

is much more improved By the time 11 bits are used, all the estimated initial

107

conditions are uniformly restored to the correct bins. Next, the performance of

the deviation adjustment algorithm is tested.

5.1.2 Results for deviation adjustment algorithm

The deviation adjustment method shows similar performance as the

interval arithmetic algorithm, and the percentage error is calculated between the

set of estimated outcomes and the initial condition as shown in Fig. 5.11. The

percentage error appears to lie within -0.9% and 1.2% (absolute band of 2.1%),

being slightly higher than the interval arithmetic algorithm. By increasing the

number of bits in sequence considered for the estimation, the error is seen to be

improving. Using 12 bits, Fig. 5.12 is generated, and it can be seen that the error

band has improved drastically and lies between -0.22% and -0.12%, i.e. within

0.1% absolute percent error band.

Fig. 5.11 Percent error using 8 symbols

108

Fig. 5.12 Percent error using 12 symbols

Fig. 5.13 Percent error using 16 symbols

When 16-bit long sequences are considered (Fig. 5.13), the error is

reduced to a band of ~0.0.12% (within -0.188% and -0.2%). Both 12 and 16-bit

results show improvement over the interval arithmetic method. However, for

109

the deviation adjustment method, there is a tendency of the error bands to lie

predominantly in one of the halves about ‘0’, i.e. the spread of the error is not

uniform about ‘0’. Also, in both cases of 12 and 16-bit sequences, the error

bands are entirely in the negative half.

For this method, the parameter value as well as the initial condition

generated, must be limited to the same bit accuracy as the resolution. This is

because the method is based on adjusting for the individual deviation in symbol

for every iteration resulting from the change in symbolic sequence due to a

reduced parameter. Therefore, the deviation that account for more than half the

step size (i.e. affects the resolution) must attribute sufficiently for the change.

Since the parameter dictates the magnitude of the deviation value for each

iterate, the parameter must also be calculated similarly. However, this does not

pose a challenge because in signal measurement applications, the bit accuracy

need not exceed the resolution being considered.

In order to observe the bit accuracy, a histogram similar to the results for

the interval arithmetic algorithm in section 5.1.2 is produced for the estimated

outcomes of 8-bit precision with a bin size for the graph also measured in 8-bit

accuracy.

As before, compared to the GON values calculated as per section 2.3,

although the points are better spread out over the state space, there are more

than one-bit error for certain estimated outcomes (Fig. 5.14).

110

111

Fig. 5.14 Histograms for deviation adjustment method

The test is also run for increasing number of symbols engaged in the

conversion from 8 to 16 bits with an increment of two bits. It is observed in Fig.

5.14 that the success is achieved for increasing higher number of symbols than

the intended bit precision. This is due to the fact that the cumulative effect of

the reduced height map is reflected more as the iteration progresses further. As

a result, the deviation due to the parameter is increasingly accounted for by a

longer symbolic sequence.

112

Like the previous method, the current method is also tested using data

points incremented by half step size. When the histograms are generated (Fig.

5.15), the outcome is again much more improved, as expected.

113

Fig. 5.15 Histograms for dataset shifted by half-step

In order to compare how the methods performed with respect to other

initial condition estimation previously mentioned in Chapter 2, the results have

114

been compared with the outcomes generated by 8-bit symbolic sequences for a

number of chosen methods. The results are shown in Fig. 5.16.

Fig. 5.16 Comparison of various estimation techniques

115

The methods by both Kennedy [12] and Kapitaniak et al. [13] produce

results equivalent to GON, as both the methods essentially convert using a base

of two, the methods are therefore not shown separately in the figure. It can be

seen that the performance of the presented algorithms is only excelled by the

method developed by Cong et al. [24] However, the added advantage in the

interval arithmetic method is that the computation for the initial condition can

be pipelined alongside the symbol collection in the circuit, thus speeding up the

process of conversion. On the other hand, the deviation method can sufficiently

reduce the processing because it employs a simple calculation to estimate the

generic LUT data, and the deviation measurement equation is easily updated

with the deviation.

Finally, the presence of noise is also simulated with the help of

MATLAB. The MATLAB function “awgn(.)” is used to simulate the noise in

the circuit. When the noise is added to every iterative step, as it would occur in

a real circuit, the symbolic signatures of the initial conditions get corrupted. It

is seen that as the effect of noise builds up over the iteration, the cumulative

effect on the symbolic dynamics result in random bits getting flipped, i.e. the

1’s become 0’s or vice versa. Expectedly, as the noise is increased, more

symbols are flipped. Also, as the iterations progress, the number of symbols

flipped across the state space escalates. To emulate the possible range of noise

in real situation, the values are chosen to be such that the signal to noise ratio

(SNR) is between 0 to 40 dB. To observe the behaviour, a count of flipped bits

cross the state space is recorded for every iterate for each noise level. The count

is normalised and plotted against the number of iterations to demonstrate the

average impact of noise on the iterates. However, for the chosen range of noise,

116

the number of flipped symbols become steady after a certain number of

iterations. This phenomenon can be observed in Fig. 5.17.

Fig. 5.17 Effect of noise on symbolic outcomes

In order to verify whether the presented algorithms can also estimate the

initial condition from real hardware data vulnerable to the noisy environment,

a physical circuit has been implemented on which the algorithms were tested.

The test results are shown in the following section.

5.2 Implementation

Having seen that both the methods performed satisfactorily in the

simulated environment of MATLAB, the next step was to test the performance

using symbolic trajectories generated physically implemented hardware version

of the map function. The electronic circuit of a TM by Campos et al. [42] has

been adapted by Dutta [28] and implemented as shown in Fig. 5.18 where the

relevant blocks are shown: the TM circuitry, the comparator for the symbols

and the sample and hold (S/H) for the feedback. The physical hardware of the

implemented circuit is shown in Fig. 5.19.

117

Fig. 5.18 Schematic diagram adapted from the TM circuit [42].

Fig. 5.19 Physical hardware of the TM function [28].

118

The map was tested through an oscilloscope where the relative height of

the map function is shown with respect to the full-scale ramp input of [0,1] (Fig.

5.20). The TM is fed through channel 1 (blue) and for comparison, the ramp

input is shown using channel 2 (pink). As can be seen, the imperfection in the

hardware components has resulted in the map height to be limited to

approximately µ = 0.81.

Fig. 5.20 Image capture of the map on oscilloscope

To verify that the map can successfully perform iterations through the

feedback system, the circuit is tested for function using 200mV and 518mV.

The input signals are iterated 16 times and the symbolic sequences are also

generated. The real as well as the symbolic trajectories are observed in the

oscilloscope and can be seen from the image capture of the time series shown

in Fig. 5.21. Channel 1, set at 200mV per division (mV/div) shows the real

trajectory while the symbolic signature is viewed through Channel 2 (5V/div).

119

Fig. 5.21 Time series for 200mV (left), and 518mV (right)

Fig. 5.22 GON of a 3-cycle ramp

In order to determine how the retrieved trajectories perform, when used

for calculations in the digital domain, a 3-cycle ramp is run at 10mHz and 8-bit

symbolic trajectories have been utilised to run the GON function. The resulting

120

values have been imported and plotted through MATLAB and can be seen in

Fig. 5.23.

Once the functionality of the circuit is confirmed to be true to the TM

behaviour, the samples of the initial conditions and the respective 8 bits as well

as 16 bits long symbolic sequences are collected for a one-cycle ramp (data can

be found in Appendix X with half-step-size shifted. One by one, both the

algorithms have been run on the same set of symbolic sequences, and the

outcome is compared with the original input.

Fig. 5.23 The 8-bit and 16-bit % error using both the algorithms

121

The data is first experimented with the interval arithmetic algorithm and

percent error is generated for both 8 and 16-bit long sequences. Fig. 5.23 and

Fig. 5.24 show the outcomes. For the percent error, there is a general trend of

skewness in the error which seem to be higher for the values near zero in both

the cases of symbolic length (Fig. 5.23). This is because the lower valued initial

conditions have been more readily affected by the system noise. Similar

observations are shown for the deviation adjustment algorithm. The percent

error for the deviation adjustment method using 8-bit is seen to be slightly

higher in case of the practical implemented TM. Although the 16-bit error plots

look identical with equal ranges, the deviation adjustment method produces

more negative error than the interval arithmetic method.

Fig. 5.24 The 8-bit and 16-bit histograms using both the algorithms

122

Next, the bit errors are observed by plotting the histograms for all the

four cases as before (Fig. 5.24). For 8-bit the outcome again appears to be better

for the interval arithmetic method. However, for 16-bit, the deviation

adjustment method shows improved spread, although the percent error showed

no noticeable difference. This is because, although the absolute errors were

similar, the some of the results produced by the interval arithmetic methods

must have been on the edge of the histogram bins and therefore got misplaced.

Both the methods, therefore, can be successfully utilised for the

implementation of the ADC. The milestones achieved through the methods as

possible approaches in this work for the proposed implementation a chaos based

ADC is summarised in the next chapter and possible future directions are also

indicated.

123

6 CONCLUSION AND FURTHER WORK

The principles of measurement systems and several analogue to digital

conversion (ADC) techniques have been discussed. Each of the approaches is

dedicated to enhancing certain aspects of the ADC such as superior quality of

signal quantisation i.e. better resolution, accuracy and precision, also power

optimisation and design level complexities are that are significant factors that

are dealt differently for different approaches. From the review of each of such

techniques e.g. working principle, constituent system, power and resource

consumption it is clearly seen that each aspect of optimisation involves certain

trade-offs. Due to this, optimising every aspect of an ADC is probably

challenging as trying to enhance the quantisation can increase the amount of

hardware required to fulfil the approach which might be resource consuming in

terms of power and chip area and adding to the design complexity. Otherwise

to keep the resource and power aspects optimum some accuracy and precision

is sacrificed which makes choosing the right approach optimally and

organisation of the entire approach very crucial.

Given that the chaotic systems are governed by simple mathematical

rules and processes, such systems are easy to implement in the physical

platform. As chaotic dynamics is iterative in nature, a single functional block is

reused to produce the long-term trajectories through feedback mechanisms, this

prevents involving any additional components. Therefore, chaotic maps to be

used as measurement system involve very little amount resources to complete

the entire system. Since chaotic dynamics is sensitive to initial condition, use

of chaos in measurement applications has been proven feasible and promising.

124

It was demonstrated that chaotic maps can be utilised as a quantisation

unit for signal detection. The signal to be measured is input to the chaotic

function as initial condition and iterated several times depending on the amount

of information required to define the input. Each TM iteration involves

stretching or folding which is responsible for the partitioning of the state space.

As the iterations are continued more partitions are generated hence more

intervals are created and accordingly the dynamics produced by a certain initial

condition can be used to identify the originating interval of the input with a

reasonable accuracy. Knowing that the itinerary of chaotic dynamics can be

treated as a unique signature of an initial condition it can be utilised to back

track the initial condition. Applying symbolic dynamics to chaos is even more

advantageous as plenty of resources can be saved just by introducing a binary

symbolic structure to the chaotic itineraries depending on a threshold. As the

dynamics is produced for a desired number of iterations/bits, the symbolic

sequence for the initial condition is converted to real values to identify the real

signal present as an input.

The physical implementation of the chaotic system is subject to several

non-idealities. One such non-ideality in the circuit realisation of the tent map is

the parametric imprecision. When TM circuit is used for signal quantisation as

an ADC, the parametric imprecision is responsible for the loss of

correspondence between the initial condition and the symbolic sequence as the

partitions generated by the non-ideal parameter is shifted from their ideal

positions. Due to the shifted partitions the symbolic sequence also differs from

sequence that is ideally generated to define an initial condition. Therefore,

correspondence between the intervals and the symbols have been thoroughly

125

studied in order to understand the consequences of shifted partitions. The

knowledge of non-ideal parameter value is found to be relatable to the shift of

partitions. The amount of shift introduced by the non-ideal parameter is found

to be proportional to the amount of change in the parameter value. Hence using

the correct parameter value and applying interval arithmetic actual position of

partitions are retrieved and accordingly a method has been formulated through

which correct interval for each of the symbol in the sequence can be chosen,

thus the interval of the initial condition can be properly identified.

It has been shown that the partitioning of the state space on every

iteration results into creation of sub-intervals. Evidently, if the number of

iterations are increased and more partitions and therefore bits of information is

generated that can be utilised to further back track or narrow down the interval

of initial condition with a reasonable accuracy. The higher is the number of bits

more are the divisions in the state space thus the intervals become narrower and

thereby increasing resolution of the originating signal.

Due to iterative dynamics a single chaotic map is utilised repeatedly to

produce the dynamics, hence the cost for generating greater number of bits to

enhance precision is negligible compared to other ADC architectures e.g. flash

ADC whose number of comparators doubles per bit whereas for the chaotic

ADC a single comparator is reused to generate the symbols on every iteration.

Therefore, from the perspective of resource consumption the technique

described appears to be promising.

126

6.1 Future directions

The methods devised in the work are open to several future possibilities

of further related as well as independent research areas that can be pursued.

Apart from successfully developing the ADC as a device – which requires more

adjustments of the algorithms in terms of addressing other hardware

implementation related issues – the methods can also be utilised in other

independent directions, the most important being cryptography and

cryptanalysis.

6.1.1 ADC implementation

In order to implement the ADC as a stand-alone device, certain other

factors need to be taken care of. Like the parametric divergence, the critical

point of the TM is also subject to deviations introduced by circuit imprecisions

and perturbations.

Shift of the critical point

Further research is required in the direction of addressing the shift of the

critical point in the implemented circuitry. The use of skew TMs [49] as an

alternative might be useful once the feasibility is tested. Since the parameter of

the skew TM is determined by the location of the critical point of the map, it

provides the advantage of addressing only a single variable that defines the

structure of the map completely. Therefore, modifications in the existing

methods for a skew TM is the first step to pursue in terms of ADC implantation.

Implementation as a stand-alone device

Once these issues are successfully tested in the simulation domain, a

skew TM can be implemented in real circuitry and the estimation algorithms

127

can finally be executed on a field programmable gate array (FPGA) as a stand-

alone device. This will benefit the measurement system with more robust

conversion approach as a single source of error needs to be dealt in case of skew

TM on the contrary to the two independent sources of errors that would have

been present in simple TM.

Deviation adjustment through bits

Additionally, the deviation adjustment method can be improvised for

easier implementation through an FPGA. In this case, the research might be

focussed in a way such that the deviation can be used to determine the correct

(ideal) symbolic sequence, and the symbols might be directly adjusted to

generate equivalent binary symbols. As a result, the use of floating number

library in the FPGA might be substantially reduced.

6.1.2 Application in Cryptography

Other possible applications of initial condition estimation and trajectory

analysis can be explored. One such application could be cryptography where

information is protected and preserved through cryptic means. TM is widely

used in cryptography because of the robust chaos generated for a wide range of

parameter values. The meaningful information is mutated by transforming it

through the chaotic function that makes the information appear as random data

to the unintended observants. Then for further utilisation and retrieval of

information the encrypted data needs to be reinstated which is ideally analogous

to tracking back from the current iterate (encrypted data) to the initial condition

(original data). The parameter of the map is used as an encryption key that is

utilised during decryption. For a chaotically encrypted information, such a

128

robust and efficient initial condition estimation algorithm as proposed in this

work can be applied. However, there are several methods and approaches

available for encryption, e.g. a single chaotic map or coupled chaotic maps can

be utilised as the encrypting function and the encrypted outcomes can both be

symbolic or real valued. Depending on the approach and the level of complexity

demanded as an outcome, further research is necessary for the modification of

the proposed approach in this work so that it can be dedicated for retrieval of

the encrypted data. Possible area of encryption is image processing, data storage

and communication.

6.1.3 Application in communication

Communication systems is another promising area where messages are

encrypted from the originating end and decrypted at the receiving end. To

maintain unhindered speed the encryption-decryption processes are

implemented in the hardware domain. Such an electronic hardware usually

contains chaotic maps which generate semirandom data that can be sent as an

encrypted message for the original message input as initial condition to the

chaotic system. The parameter is saved and sent as a secured key to the receiver

so that the receiver can retrieve the original message from the encrypted

message by backtracking. With the proposed algorithm such backtracking can

be more efficient and speedy. Hence, through further research the proposed

technique can be dedicated to solving similar problems like initial condition

estimation into a wide range of areas.

129

REFERENCES

[1] Ingraham, R. L. (1991). A Survey of Nonlinear Dynamics (Chaos

Theory). World Scientific Publishing Company

[2] Poincaré, H. (1993). New methods of celestial mechanics. Los Angeles,

CA: Tomash

[3] Baker, G. L., & Gollub, J. P. (1990). Chaotic Dynamics: An

Introduction. Cambridge University Press

[4] Gleick, J. (1988). Chaos: making a new science. Penguin

[5] Lorenz, E. (n.d.). Deterministic Nonperiodic Flow. Journal of the

Atmospheric Sciences, 20, 130-141

[6] Gilmore, R., and Lefranc, M. (2002) “Discrete Dynamical Systems:

Maps,” The Topology of Chaos, 1st ed. New York, NY, USA: JW&Sons,

40-53

[7] Strogatz, S. H. (2000). Nonlinear dynamics and chaos: With

applications to physics, biology, chemistry and engineering . Cambridge,

Mass: Westview

[8] Radwan, A. G., Abd-El-Hafiz, S. K., & AbdElHaleem, S. H. (2014). An

image encryption system based on generalized discrete maps. Paper

presented at the 2014 21st IEEE International Conference on Electronics,

Circuits and Systems (ICECS), Marseille, 283-286.

10.1109/ICECS.2014.7049977

[9] Kurian, A. P., & Puthusserypady, S. (2006). Secure Digital

Communication using Chaotic Symbolic Dynamics. Turkish Journal of

Electrical Engineering, 14(1), 195-207

130

[10] Maggio, G. M., & Galias, Z. (2002). Applications of symbolic dynamics

to differential chaos shift keying. IEEE Transactions on Circuits and

Systems I: Fundamental Theory and Applications, 49(12), 1729-1735.

10.1109/TCSI.2002.805701

[11] Rogers, A., Keating, J., Shorten, R., & Heffernan, D. M. (2002). Chaotic

maps and pattern recognition – the XOR problem. Chaos, Solitons and

Fractals, 14(1), 57-70. 10.1016/S0960-0779(01)00181-3

[12] Kennedy, M. P. (1995). a nonlinear dynamics interpretation of

algorithmic a/d conversion.International Journal of Bifurcation and

Chaos, 5(3), 891-893. 10.1142/S0218127495000685

[13] Kapitaniak, T., Zyczkowski, K., Feudel, U., & Grebogi, C. (2000).

Analog to digital conversion in physical measurements. Chaos, Solitons

and Fractals, 11(8), 1247-1251. 10.1016/S0960-0779(99)00003-X

[14] Metropolis, N., Stein, P. R., & Stein, M. L. (1973). On finite limit sets

for transformations on the unit interval. Journal of Combinatorial

Theory, Series A, 15(1), 25-44. 10.1016/0097-3165(73)90033-2

[15] Bollt, E., Standford,T., Lai, Y., and Życzkowski, K. (2001). What

symbolic dynamics do we get with a misplaced partition? on the validity

of threshold crossings analysis of chaotic time-series. Physica D:

Nonlinear Phenomena, 154(3-4), 259-286. 10.1016/S0167-

2789(01)00242-1

[16] Arroyo, D., & Alvarez, G. (2014). Application of gray codes to the study

of the theory of symbolic dynamics of unimodal maps. Communications

in Nonlinear Science and Numerical Simulation, 19(7), 2345.

10.1016/j.cnsns.2013.11.005

131

[17] Berberkic, S. (2014) Measurement of small signal variations using one-

dimensional chaotic maps. Doctoral thesis, University of Huddersfield

[18] Berberkic, S., Mather, P., & Bromley, R. (2014). G.B. Patent No.

WO/2014/191732.

[19] Banerjee, S., Yorke, J. A., & Grebogi, C. (1998). Robust chaos. Physical

Review Letters, 80(14), 3049-3052. 10.1103/PhysRevLett.80.3049

[20] Schweizer, J., & Schimming, T. (2001). Symbolic dynamics for

processing chaotic signals. I. noise reduction of chaotic sequences. IEEE

Transactions on Circuits and Systems I: Fundamental Theory and

Applications, 48(11), 1269-1282. 10.1109/81.964416

[21] Marteau, P. F., & Abarbanel, H. D. I. (1991). Noise reduction in chaotic

time series using scaled probabilistic methods. Journal of Nonlinear

Science, 1(3), 313-343. 10.1007/BF01238817

[22] Litovski, V., Andrejevic, M., & Nikolic, M. (2006). Chaos based analog-

to-digital conversion of small signals. Paper presented at the 2006 8th

Seminar on Neural Network Applications in Electrical Engineering ,

Belgrade, Serbia & Montenegro, 173-176.

10.1109/NEUREL.2006.341205

[23] Xi, C., Yong, G. and Yuan, Y. (2009). A Novel Method for the Initial-

Condition Estimation of a Tent Map. Chinese Physics Letters, 26(7), pp.

078202 - 1–3. 10.1088/0256-307X/26/7/078202

[24] Cong, L., Xiaofu, W., & Songgeng, S. (1999). A general efficient

method for chaotic signal estimation. IEEE Transactions on Signal

Processing, 47(5), 1424-1428. 10.1109/78.757236

132

[25] Collet, P., and Eckmann, J. P. (1980). Typical Behavior for One Map.

Iterated Maps on the Interval as Dynamical Systems, 1st ed. Boston,

MA, USA: Birkhäuser Basel, 7–22

[26] Amigó, J. M., Elizalde, S., & Kennel, M. B. (2008). Forbidden patterns

and shift systems.Journal of Combinatorial Theory, Series A, 115(3),

485-504. 10.1016/j.jcta.2007.07.004

[27] Wu, X., Hu, H., & Zhang, B. (2004). Parameter estimation only from the

symbolic sequences generated by chaos system. Chaos, Solitons and

Fractals, 22(2), 359-366. 10.1016/j.chaos.2004.02.008

[28] Basu, R., Dutta, D., Banerjee, S., Holmes, V., & Mather, P. (2017). An

Algorithmic Approach for Signal Measurement Using Symbolic

Dynamics of Tent Map. IEEE Transactions on Circuits and Systems I:

Regular Papers , PP(99), 1-10. doi: 10.1109/TCSI.2017.2773202

[29] Sheingold, D. H., & Analog Devices. (1986). Analog-digital conversion

handbook (3rd ed.). London;Englewood Cliffs;: Prentice-Hall.

[30] Walden, R. H. (1999). Analog-to-digital converter survey and

analysis. IEEE Journal on Selected Areas in Communications, 17(4),

539-550. 10.1109/49.761034

[31] Robert, M., Savaria, Y., & Wang, C. (2004). Analysis of metrics used to

compare analog-to-digital converters. Paper presented at the The 2nd

Annual IEEE Northeast Workshop on Circuits and Systems, 2004.

NEWCAS 2004, 301-304. 10.1109/NEWCAS.2004.1359091

[32] Mather, P. J. (n.d.). 6. Mixed-Signal Circuit Structures. Lecture

presented at NIE2203 Electronics 2 Lecture in University of

Huddersfield, Huddersfield

133

[33] Bashir, S., Ali, S., Ahmed, S., & Kakkar, V. (2016). Analog-to-digital

converters: A comparative study and performance analysis. Paper

presented at the 2016 International Conference on Computing,

Communication and Automation (ICCCA), Noida, 999-1001.

10.1109/CCAA.2016.7813861

[34] El-Chammas, M., and Murmann, B. (2011). A 12-GS/s 81-mW 5-bit

Time-Interleaved Flash ADC With Background Timing Skew

Calibration IEEE Journal of Solid-State Circuits, 46(4), 838-847,

10.1109/JSSC.2011.2108125

[35] Black, W. C. and Hodges, D. A. (1980). Time interleaved converter

arrays, IEEE Journal of Solid-State Circuits, 15(6), 1022-1029, 1980.

10.1109/JSSC.1980.1051512

[36] Silva, J., Moon, U., Steensgaard, J., & Temes, G. C. (2001). Wideband

low-distortion delta-sigma ADC topology. Electronics Letters, 37(12),

737. 10.1049/el:20010542

[37] Barot, N. Successive Approximation Analog to Digital

Converter (Unpublished doctoral dissertation). San Jose State

University

[38] Zhu, D., Sifleet, T, Nunnally, T and Huang, Y. (n.d.). Analogue to

Digital Converters Lecture presented at Mechatronics Course Lecture in

Georgia Tech University [online:

http://ume.gatech.edu/mechatronics_course/ADC_F08.pdf]

[39] Kimura, H., Matsuzawa, A., Nakamura, T., & Sawada, S. (1993). A 10-

b 300-MHz interpolated-parallel A/D converter. IEEE Journal of Solid-

State Circuits, 28(4), 438-446. 10.1109/4.210026

134

[40] Nauta, B., & Venes, A. G. W. (1995). A 70-MS/s 110-mW 8-b CMOS

folding and interpolating A/D converter. IEEE Journal of Solid-State

Circuits, 30(12), 1302-1308. 10.1109/4.482155

[41] Suneel, M. (2006). Electronic circuit realization of the logistic map.

Sadhana, 31(1), 69-78. 10.1007/BF02703801

[42] Campos-Cantón, I., Campos-Cantón, E., Murguía, J. S., & Rosu, H. C.

(2009). A simple electronic circuit realization of the tent map. Chaos,

Solitons and Fractals, 42(1), 12-16. 10.1016/j.chaos.2008.10.037

[43] Wang, L., & Kazarinoff, N. D. (1987). On the universal sequence

generated by a class of unimodal functions. Journal of Combinatorial

Theory, Series A, 46(1), 39-49. 10.1016/0097-3165(87)90075-6

[44] Álvarez, G., Romera, M., Pastor, G., & Montoya, F. (1998). Gray codes

and 1D quadratic maps. Electronics Letters, 34(13), 1304.

10.1049/el:19980950

[45] Arroyo, D., Alvarez, G., & Amigó, J. M. (2009). Estimation of the

control parameter from symbolic sequences: Unimodal maps with

variable critical point. Chaos: An Interdisciplinary Journal of Nonlinear

Science, 19(2), 023125-023125-9. 10.1063/1.3155072

[46] Dinu, A. and Vlad, A. (2014). The Compound Tent Map and the

Connection between Gray Codes and the Initial Condition Recovery.

U.P.B. Sci. Bull., 76 (1), A, 17-28

[47] Dutta, D., Basu, R., Banerjee, S., Holmes, V., & Mather, P. (2018).

Parameter estimation for 1D PWL chaotic maps using noisy

dynamics. Nonlinear Dynamics, 1-15

135

[48] Martinez-Gonzalez, R. F., Diaz-Mendez, J. A., & Vazquez-Medina, R.

(2016). Algorithm for implementing 32-bits represented bernoulli map

using an 8-bits microcontroller. Paper presented at the 1-6.

10.1109/IESummit.2016.7459773

[49] Wang, K., Pei, W., Hou, X., Shen, Y., & He, Z. (2009). Symbolic

dynamics approach to parameter estimation without initial

value. Physics Letters A, 374(1), 44-49. 10.1016/j.physleta.2009.10.021

136

APPENDIX 1

Contributions to journal publications associated with the research.

List of articles

1.1 An Algorithmic Approach for Signal Measurement Using Symbolic

Dynamics of Tent Map

1.2 Parameter estimation for 1D PWL chaotic maps using noisy dynamics

137

Appendix 1.1

This article has been published in the Transactions in Circuits and Systems I

on 7 December 2017 and can be found online at: 10.1109/TCSI.2017.2773202

An Algorithmic Approach for Signal Measurement

Using Symbolic Dynamics of Tent Map

R Basu, D. Dutta, S. Banerjee, V. Holmes and P. Mather

R. Basu, D. Dutta, V. Holmes and P. Mather are with the Engineering and Technology

Department, School of Computing and Engineering, University of Huddersfield, Queensgate,

Huddersfield, W. Yorks., UK, HD1 3DH (email: rajlaxmi.basu@hud.ac.uk,

dhruba.dutta@hud.ac.uk, v.holmes@hud.ac.uk, p.j.mather@hud.ac.uk).

S. Banerjee is with the Department of Physical Sciences, Indian Institute of Science

Education & Research, Kolkata, Mohanpur Campus, Nadia-741246, India (email:

soumitro@iiserkol.ac.in).

Reference

Basu, R., Dutta, D., Banerjee, S., Holmes, V., & Mather, P. (2017). An Algorithmic Approach

for Signal Measurement Using Symbolic Dynamics of Tent Map. IEEE Transactions on

Circuits and Systems I: Regular Papers , PP(99), 1-10.

https://doi-org.libaccess.hud.ac.uk/10.1109/TCSI.2017.2773202
mailto:soumitro@iiserkol.ac.in

138

Appendix 1.2

This article has been published in the Nonlinear Dynamics on 18 September

2018 and can be found online at: 10.1007/s11071-018-4538-x

Parameter estimation for 1D PWL chaotic maps using

noisy dynamics

D. Dutta, R Basu, S. Banerjee, V. Holmes and P. Mather

D. Dutta, R. Basu, V. Holmes and P. Mather are with the Engineering and Technology

Department, School of Computing and Engineering, University of Huddersfield, Queensgate,

Huddersfield, W. Yorks., UK, HD1 3DH (email: rajlaxmi.basu@hud.ac.uk,

dhruba.dutta@hud.ac.uk, v.holmes@hud.ac.uk, p.j.mather@hud.ac.uk).

S. Banerjee is with the Department of Physical Sciences, Indian Institute of Science

Education & Research, Kolkata, Mohanpur Campus, Nadia-741246, India (email:

soumitro@iiserkol.ac.in).

Reference

Dutta, D., Basu, R., Banerjee, S., Holmes, V., & Mather, P. (2018). Parameter estimation for

1D PWL chaotic maps using noisy dynamics. Nonlinear Dynamics, 1-15.

https://link.springer.com/article/10.1007%2Fs11071-018-4538-x
mailto:soumitro@iiserkol.ac.in

139

APPENDIX 2

MATLAB codes developed for experimentation as well as documentation.

List of codes

2.1 Dataset generator for both algorithms

2.2 Bifurcation diagram generator for:

2.2.1 Bitshift Map

2.2.2 Logistic Map

2.2.3 Tent Map

2.3 Implementation of algorithms

2.3.1 Interval arithmetic algorithm

2.3.2 Deviation adjustment algorithm

Appendix 2.1

MATLAB code for dataset generation is presented.

format long

iteration = 16; % number of iterations the sequence is generated up to

partition = 0.5; % map partition

M = 2*partition; % Map height

power = 8; % divition generated as 2^power

increment = (1/(2^power)); % size of each point or increment in the dataset

x = increment/2; % initiate the points at half stepsize

x_max = 1; % final value of x after increments

xNew = x; % copy first point of the date set for iteration

N = ((x_max-x)/increment); % calculating number of increment steps

N = ceil(N); % rounding up N to the next higher integer

GON = zeros(N,1); % Gray ordering number array

Newfinal_result = zeros(N,iteration); % stores all x for all steps

Data_set_8bit = zeros(N,1); % initial condition data set

Newfinal_gray = zeros(N,iteration); % stores all op for all steps

Newfinal_bin1 = zeros(N,iteration); % stores all bin-op for all steps

aNew = 0.9054 ;

slopeNew = 1+aNew; % sets the peak height of the tent map

141

for i = 1:N % runs a for loop for increment steps

 x2 = xNew; % copy data point or initial condition for iteartion

 for n = 1:iteration % runs a for loop for the iterations

 if x2 <= partition % condition for when x < 0.5

 yNew = slopeNew*x2; % evaluating iterate x_n+1

 opNew = 0; % symbolic output '0' when x < 0.5

 elseif x2 > partition % condition for when x >= 0.5

 yNew = slopeNew*(M-x2); % evaluating iterate x_n+1

 opNew = 1; % symbolic output '1' when x >= 0.5

 end

 Newfinal_result(i,n) = x2; % store the iterate as trajectory

 Newfinal_gray(i,n) = opNew; % store the symbol as symbolic seq.

% x2 = awgn(yNew,100); % adding gaussian noise

 x2 = yNew; % copying the x_n = x_n+1 for next

 % iteration

 end

 xNew = (xNew + increment); % increasing x by one step size for

 % the next initial condition

end

for row = 1:N % for N initial conditions

 for col = 1:iteration % Converting the Gray code into binary

 if col == 1

 Newfinal_bin1(row,col) = Newfinal_gray(row,col);

 elseif col > 1

 Newfinal_bin1(row,col) = bitxor(Newfinal_gray(row,col),Newfinal_bin1(row,col-1));

142

 end

 end

 %----------------- converting the binary sequence into real values

 for col = 1:iteration

 GON(row,1) = (GON(row,1)+(Newfinal_bin1(row,col)*(2^(-(col)))));

 end

end

%-----Limiting the bit accuracy of the initial conditions up to 8 bit

Data_set_8bit = Newfinal_result(:,1).*(2^power);

Data_set_8bit = floor(Data_set_8bit);

Data_set_8bit = Data_set_8bit.*(2^(-power));

% histogram(Data_set_8bit(:,1),(2^power),'EdgeColor','none','FaceColor','yellow');

%

% % set(gca,'xlim',[0 1]);

% set(gca,'ylim',[0 2]);

% % axis square;

% histogram(Data_set_8bit(:,1),256);

% hold on

% histogram(GON(:,1),256);

143

Appendix 2.2

MATLAB codes for bifurcation diagrams are presented.

Appendix 2.2.1

Code for generating bifurcation diagram of Bitshift Map (BM)

pre_trap = 100; % iterations to ensure point enters trapping region

trap = 80; % iterations used for generating bifurcation

x = zeros(trap,1); % array to store iterates for each parameter value

for r = 0.5:0.00025:1 % running through parameter values from 0.5 to 1

 x(1) = r; % initialise x at the maximum value

 % ----------initial iterates are eliminated---------------------------

 for n = 1:pre_trap % bitshift map run but iterates not stored

 if x(1) <= 0.5

 x(1) = 2*r*x(1);

 elseif x(1) > 0.5

 x(1) = (2*r*x(1))-1;

 end

 end

 % ----------bifurcation diagram generated-----------------------------

 for n = 1:trap-1 % bitshift map run and iterates stored for plotting

144

 if x(n) <= 0.5

 x(n+1) = 2*r*x(n);

 elseif x(n) > 0.5

 x(n+1) = (2*r*x(n))-1;

 end

 end

 % ---------iterates plotted for specific parameter--------------------

% plot(r*ones(trap,1), x, 'k.', 'markersize', 3);

 plot(r*ones(trap,1), x, 'k.', 'markersize', 7); % increased markersize

 hold on;

end

% -------------plot limits and axes---------------------------------------

xlabel('Parameter (µ)');

ylabel('Iterates (x_n)');

% set(gca, 'xlim', [0.5 1]);

set(gca, 'xlim', [0.999 1]); % to observe a narrow region of parameter

axis square;

hold off;

145

Appendix 2.2.2

Code for generating bifurcation diagram of Logistic Map

pre_trap = 100; % iterations to ensure point enters trapping region

trap = 80; % iterations used for generating bifurcation

x = zeros(trap,1); % array to store iterates for each parameter value

for r = 0.5:0.00025:1 % running through parameter values from 0.5 to 1

 x(1) = r; % initialise x at the maximum value

 % ----------initial iterates are eliminated---------------------------

 for n = 1:pre_trap % logistic map run but iterates not stored

 x(1) = 4*r*x(1)*(1 - x(1));

 end

 % ----------bifurcation diagram generated-----------------------------

 for n = 1:trap-1 % logistic map run and iterates stored for plotting

 x(n+1) = 4*r*x(n)*(1 - x(n));

 end

 % ---------iterates plotted for specific parameter--------------------

 plot(r*ones(trap,1), x, 'k.', 'markersize', 3);

 hold on;

end

% -------------plot limits and axes---------------------------------------

xlabel('Parameter (µ)');

146

ylabel('Iterates (x_n)');

set(gca, 'xlim', [0.5 1]);

axis square;

hold off;

Appendix 2.2.3

Code for generating bifurcation diagram of Tent Map

pre_trap = 100; % iterations to ensure point enters trapping region

trap = 80; % iterations used for generating bifurcation

x = zeros(trap,1); % array to store iterates for each parameter value

for r = 0.5:0.00025:1 % running through parameter values from 0.5 to 1

 x(1) = r; % initialise x at the maximum value

 % ----------initial iterates are eliminated---------------------------

 for n = 1:pre_trap % tent map run but iterates not stored

 if x(1) <= 0.5

 x(1) = 2*r*x(1);

 elseif x(1) > 0.5

 x(1) = 2*r*(1 - x(1));

 end

 end

 % ----------bifurcation diagram generated-----------------------------

 for n = 1:trap-1 % tent map run and iterates stored for plotting

 if x(n) <= 0.5

 x(n+1) = 2*r*x(n);

147

 elseif x(n) > 0.5

 x(n+1) = 2*r*(1 - x(n));

 end

 end

 % ---------iterates plotted for specific parameter--------------------

 plot(r*ones(trap,1), x, 'k.', 'markersize', 3);

 hold on;

end

% -------------plot limits and axes---------------------------------------

xlabel('Parameter (µ)');

ylabel('Iterates (x_n)');

set(gca, 'xlim', [0.5 1]);

axis square;

hold off;

148

Appendix 2.3

MATLAB codes for the initial condition estimation are presented.

Appendix 2.2.1

Code for estimating initial condition through interval arithmetic

format long

iteration = 12; % setting number of itertions

Parameter_Mu = slopeNew/2; % setting parameter for estimation

A = 0; % initialising lower bound

B = 0; % initialising upper bound

Delta = 0; % scaled interval size initialised

l = 0; % size of the interval initialised

alpha = 0; % odd even counter variable initialised

% N = 41;

% Symbols_Gray = xlsread('30bit_real_symbols_IPfreq10mHz_sampfreq_0.8mHz.xlsx');

Symbols_Gray = Newfinal_gray; % copying generated grey code for estimation

X0_Dash_Array = zeros(N,1); % estimated initial condition array initialised

Diff = zeros(N,1); % error or difference between the actual and

 % estimated initial condition

X0_Dash = 0; % single initial condition estimate variable initialised

for j = 1:N % for N initial conditions

 for i = 1:iteration % for i iteration of each initial condition

149

 alpha = alpha + Symbols_Gray(j,i); % count number of 1s odd/even

 if i == 1 % if the first symbol

 if Symbols_Gray(j,1) == 1 % is 1 then the primary half interval

 A = 0.5; % is mirrored with lower bound = 0.5

 B = 0; % and upper bound = 0

 else

 A = 0; % other wise keeping primary half

 B = 0.5; % unmirrored

 end

 else

 if rem(alpha,2) == 0 % if no. of '1's in the sequence is even

 A = A; % lower bound unchanged

 B = A + Delta; % upper bound shifted to lower bound +

 %scaled interval size

 else % if no. of '1's in the sequence is odd

 A = B - Delta; % lower bound is shifted to upperbound -

 % delta

 B = B; % upper bound is unchanged

 end

 end

 l = B - A; % determine the length of newly formed interval

 Delta = l/(2*Parameter_Mu); % size of the interval scaled

 % proportional to mu

 end

% first symbol is not due to the result of TM iteration therefore orienting

% the final estimated point is necessary and therefore scaled accordingly

% and again the interval is unmirrored for the range 0.5-1 (with first

% symbol as 1)

 if rem(alpha,2) == 0 % if no. of '1's in the sequence is even

 if Symbols_Gray(j,1) == 1 % if the first symbol is 1

150

 X0_Dash = 1 - (A/Parameter_Mu); % unmirror the interval

 % and scale down by mu

 else % if the first symbol is 0

 X0_Dash = (A/Parameter_Mu); % leave the orientation unhanged

 % scale down by mu

 end

 else

 if Symbols_Gray(j,1) == 1

 X0_Dash = 1 - (B/Parameter_Mu);

 else

 X0_Dash = (B/Parameter_Mu);

 end

 end

 X0_Dash_Array(j,1) = X0_Dash; % store the estimated result

 A = 0; % reset all variables for the

 B = 0; % for the next new estimation

 Delta = 0;

 l = 0;

 alpha = 0;

 X0_Dash = 0;

end

Diff(:,1)= (Newfinal_result(:,1) - X0_Dash_Array(:,1))*100;

hold on

plot(Newfinal_result(:,1),Diff(:,1),'kO-','Markersize',7,'markerfacecolor',[0,0,0]);

% X0_Dash_Array(:,:) = X0_Dash_Array(:,:).*2^iteration;

% X0_Dash_Array(:,:) = floor(X0_Dash_Array(:,:));

% X0_Dash_Array(:,:) = X0_Dash_Array(:,:)./2^iteration;

% Error = Data_set_8bit - X0_Dash_Array;

% figure

151

% subplot(2,1,1) % add first plot in 2 x 1 grid

% histogram(GON(:,1),(2^power),'EdgeColor','k','FaceColor','r');

% title('conventionally corrected (bin to dec)')

% set(gca,'xlim',[0 1]);

% set(gca,'ylim',[0 4]);

% % axis square;

% % hold on

%

%

% subplot(2,1,2) % add second plot in 2 x 1 grid

% histogram(X0_Dash_Array(:,1),(2^power),'EdgeColor','k','FaceColor','b');

% title('correction algorithm with limited bit precision')

set(gca,'xlim',[0 1]);

% set(gca,'ylim',[-0.02 0.02]);

% axis square;

% % hold on

152

Appendix 2.2.2

Code for estimating initial condition through deviation adjustment

format long

power = 8; % power of 2 to generate number of divisions

first = 0; % if else identifier

second = 0; % if else identifier

Gain = 1.905242919921875; % Gain used for estimation

iteration = 16; % number of bits considered for estimation

Bit_Accuracy = iteration; % Bit accuracy set to number of iterations

% Newfinal_gray = zeros(N,iteration); % stores all op for all steps

Gray_inverse = zeros(N,iteration); % stores the inverted GON

Newfinal_bin = zeros(N,iteration); % stores binary of Newfinal_gray

GON = zeros(N,1); % binary to decimal array initialise

INT = zeros(N,1); % binary to integer

Weighting = zeros(1,iteration); % A,B,C,...ordered by position of iterates

Eq1D = zeros(1,iteration); % equation array

Equation = zeros(N,iteration); % stores equation coefficients

 % corresponding to each row

Sum_Equation = zeros(N,1); % Solved resut of equation array

Estim_init_con = zeros(N,1); % Estimated initial condition array

153

%----------weighting register definition-------------------

for col = 1:iteration

 Weighting(1,col) = (2^15)*((Gain^(-col)) - (2^(-col)));

 % scaling up the weights by 15 (or number of iterations)

end

%-----G->B->D----LSB first---------------------------------

for row = 1:N

%-----------gray to binary---------------------------------

 for col = 1:iteration

 if col == 1

 Newfinal_bin(row,col) = Newfinal_gray(row,col);

 elseif col > 1

 Newfinal_bin(row,col) = bitxor(Newfinal_gray(row,col),Newfinal_bin(row,col-1));

 end

 end

%-----------binary to decimal------------------------------

 for col = 1:iteration

 GON(row,1) = (GON(row,1)+(Newfinal_bin(row,col)*(2^(-(col)))));

 end

 INT(row,1) = (2^15)*(GON(row,1)); % real valued decimals are converted

 % to integer

%-----------inverting gray code - LSB first----------------

 for col = 1:iteration

 Gray_inverse(row,iteration-col+1) = Newfinal_gray(row,col);

 end

end

154

%--------generating difference wrt gray code (LSB first)-------

for row = 1:N % for each input of the data set

 for col = 1:iteration % for each symbol in the sequence

 if first==0 && Gray_inverse(row,col)==0 % no operation on the fist bit

 end

 if first==1 % after the first '1' is detected

 if Gray_inverse(row,col) == 0 && second == 0 %if next symbol is '0'

 Eq1D(1,1) = 1; % fill first cell of eqn array with '1'

 elseif Gray_inverse(row,col) == 1 && second == 0

 Eq1D(1,1) = -1; %if next symbol is '1' then fill '-1'

 end

 if second == 1 % process starts for filling the Eq1D reg

 Eq1D(1,2:iteration) = Eq1D(1,1:iteration-1); % shift cell by 1

 Eq1D(1,1) = 0; % clear first cell

 if Gray_inverse(row,col-1) == 1

 Eq1D(1) = 1; % if previous symbol is 1 fillup 1 in the

 % current cell

 end

 if Gray_inverse(row,col) == 1

 Eq1D = -Eq1D; % if current symbol is 1 then change sign

 % of the entire equation

 end

 end

 second = 1; % flag to indicate that the bit (2nd bit)

 % after the first '1' is reached

 end

 if Gray_inverse(row,col)==1

 first = 1; % first '1' has been detected

 end

155

 end

 Equation(row,:) = Eq1D; % copy the Eq1D into the matrix of equations

 Eq1D(1,:) = 0; % reset Eq1D for next row

 second = 0; % reset second for next row

 first=0; % reset first for next row

end

%--------estimating the initial condition from equation--------------------

for row = 1:N

 for col = 1:iteration

 Equation(row,col) = Weighting(1,col) * Equation(row,col);

 end

 Sum_Equation(row,1) = sum(Equation(row,:));

 Estim_init_con(row,1) = (Sum_Equation(row,1) + INT(row,1))*(2^(-15));

end

% --------------- Bit-accuracy limited to iterations ----------------------

Estim_init_Limit_bit = Estim_init_con(:,1).*(2^Bit_Accuracy);

Estim_init_Limit_bit = floor(Estim_init_Limit_bit);

Estim_init_Limit_bit = Estim_init_Limit_bit.*(2^(-Bit_Accuracy));

Error = (Data_set_8bit - Estim_init_Limit_bit)*100;

% --------------- Plotting styles and techniques --------------------------

figure

subplot(2,1,1) % add first plot in 2 x 1 grid

histogram(GON(:,1),(2^power),'EdgeColor','k','FaceColor','r');

title('conventionally corrected (bin to dec)')

% set(gca,'xlim',[0 1]);

156

%%set(gca,'ylim',[0 4]);

% axis square;

% hold on

subplot(2,1,2) % add second plot in 2 x 1 grid

histogram(Estim_init_Limit_bit(:,1),(2^power),'EdgeColor','k','FaceColor','b');

title('correction algorithm with limited bit precision')

% set(gca,'xlim',[1 256]);

%%set(gca,'ylim',[0 4]);

% axis square;

% hold on

% subplot(3,1,3) % add second plot in 2 x 1 grid

% histogram(Estim_init_Limit_bit(:,1),256,'EdgeColor','k','FaceColor','g');

% title('correction algorithm')

% % set(gca,'xlim',[1 256]);

% set(gca,'ylim',[0 4]);

% % axis square;

% % hold on

%

figure

% subplot(2,1,1) % add first plot in 2 x 1 grid

plot(Data_set_8bit(:,1),Error(:,1));

% title('error using 12 bits')

% set(gca,'xlim',[1 256]);

% % set(gca,'ylim',[-0.005 0.005]);

% axis square;

% % hold on

% % plot(Data_set_8bit(:,1),pos_half_LSB(:,1));

157

% % plot(Data_set_8bit(:,1),neg_half_LSB(:,1));

% % plot(Data_set_8bit(:,1),pos_full_LSB(:,1));

% % plot(Data_set_8bit(:,1),neg_full_LSB(:,1));

% % hold off;

%

% subplot(2,1,2) % add second plot in 2 x 1 grid

% plot(Data_set_8bit(:,1),Error(:,2));

% title('error using 13 bits')

% % set(gca,'xlim',[1 256]);

% set(gca,'ylim',[-0.0003 0.0008]);

% % axis square;

% hold on

% plot(Data_set_8bit(:,1),pos_half_LSB(:,2));

% plot(Data_set_8bit(:,1),neg_half_LSB(:,2));

% plot(Data_set_8bit(:,1),pos_full_LSB(:,2));

% plot(Data_set_8bit(:,1),neg_full_LSB(:,2));

% hold off;

%

% figure

% subplot(3,1,1) % add second plot in 2 x 1 grid

% plot(Data_set_8bit(:,1),Error(:,3));

% title('error using 14 bits')

% % set(gca,'xlim',[1 256]);

% set(gca,'ylim',[-0.0003 0.0004]);

% % axis square;

% hold on

% plot(Data_set_8bit(:,1),pos_half_LSB(:,3));

% plot(Data_set_8bit(:,1),neg_half_LSB(:,3));

% plot(Data_set_8bit(:,1),pos_full_LSB(:,3));

% plot(Data_set_8bit(:,1),neg_full_LSB(:,3));

% hold off;

158

%

% subplot(3,1,2) % add second plot in 2 x 1 grid

% plot(Data_set_8bit(:,1),Error(:,4));

% title('error using 15 bits')

% % set(gca,'xlim',[1 256]);

% set(gca,'ylim',[-0.0003 0.0004]);

% % axis square;

% hold on

% plot(Data_set_8bit(:,1),pos_half_LSB(:,4));

% plot(Data_set_8bit(:,1),neg_half_LSB(:,4));

% plot(Data_set_8bit(:,1),pos_full_LSB(:,4));

% plot(Data_set_8bit(:,1),neg_full_LSB(:,4));

% hold off;

%

% subplot(3,1,3) % add second plot in 2 x 1 grid

% plot(Data_set_8bit(:,1),Error(:,5));

% title('error using 16 bits')

% % set(gca,'xlim',[1 256]);

% set(gca,'ylim',[-0.0003 0.0004]);

% % axis square;

% hold on

% plot(Data_set_8bit(:,1),pos_half_LSB(:,5));

% plot(Data_set_8bit(:,1),neg_half_LSB(:,5));

% plot(Data_set_8bit(:,1),pos_full_LSB(:,5));

% plot(Data_set_8bit(:,1),neg_full_LSB(:,5));

% hold off;

% subplot(2,2,3) % add second plot in 2 x 1 grid

% plot(Data_set_8bit(:,1),Error(:,6));

% title('error using 15 bits')

159

% % set(gca,'xlim',[1 256]);

% set(gca,'ylim',[-0.002 0.002]);

% % axis square;

% hold on

% plot(Data_set_8bit(:,1),pos_half_LSB(:,6));

% plot(Data_set_8bit(:,1),neg_half_LSB(:,6));

% plot(Data_set_8bit(:,1),pos_full_LSB(:,6));

% plot(Data_set_8bit(:,1),neg_full_LSB(:,6));

% hold off;

% %

% % %--------------

% %

% subplot(2,2,4) % add second plot in 2 x 1 grid

% plot(Data_set_8bit(:,1),Error(:,7));

% title('error using 16 bits')

% % set(gca,'xlim',[1 256]);

% set(gca,'ylim',[-0.002 0.002]);

% % axis square;

% hold on

% plot(Data_set_8bit(:,1),pos_half_LSB(:,7));

% plot(Data_set_8bit(:,1),neg_half_LSB(:,7));

% plot(Data_set_8bit(:,1),pos_full_LSB(:,7));

% plot(Data_set_8bit(:,1),neg_full_LSB(:,7));

% hold off;

%

% subplot(3,1,2) % add second plot in 2 x 1 grid

% plot(Data_set_8bit(:,1),Error(:,8));

% title('error using 15 bits')

% % set(gca,'xlim',[1 256]);

% set(gca,'ylim',[-0.002 0.004]);

% % axis square;

160

% hold on

% plot(Data_set_8bit(:,1),pos_half_LSB(:,8));

% plot(Data_set_8bit(:,1),neg_half_LSB(:,8));

% plot(Data_set_8bit(:,1),pos_full_LSB(:,8));

% plot(Data_set_8bit(:,1),neg_full_LSB(:,8));

% hold off;

%

% subplot(3,1,3) % add second plot in 2 x 1 grid

% plot(Data_set_8bit(:,1),Error(:,9));

% title('error using 16 bits')

% % set(gca,'xlim',[1 256]);

% set(gca,'ylim',[-0.002 0.004]);

% % axis square;

% hold on

% plot(Data_set_8bit(:,1),pos_half_LSB(:,9));

% plot(Data_set_8bit(:,1),neg_half_LSB(:,9));

% plot(Data_set_8bit(:,1),pos_full_LSB(:,9));

% plot(Data_set_8bit(:,1),neg_full_LSB(:,9));

% hold off;

161

APPENDIX 3

Input dataset generated from the implemented hardware used for the initial condition estimation using both the algorithms are presen ted. 30

symbols were collected, of which 16 symbols have been used.

Table A. 1 Input signal with the symbolic sequences

Input signal Symbolic sequence

0.001953125000

0.005859375000 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 1 0 1 0 1 1 1 0 0 1 1

0.009765625000 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 1 1 0 1 1

0.013671875000 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 1 0 1 1 1 0 1 1 0 0 1 0 1 1

0.017578125000 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 0 0 1 0 1 0

0.021484375000 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 0 1 0 1 0 1 1 0

0.025390625000 0 0 0 0 0 0 1 0 1 1 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1

0.029296875000 0 0 0 0 0 1 1 0 0 1 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 0

0.033203125000 0 0 0 0 0 1 1 0 1 0 0 1 0 0 1 1 1 0 1 1 1 1 0 0 1 0 1 0 1 0

0.037109375000 0 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0

0.041015625000 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 1 0 1 0 1 1 0 0 1 1 0 1 0 1 1

0.044921875000 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 0 1 0 1

162

0.048828125000 0 0 0 0 1 1 0 0 1 1 0 1 0 1 1 0 1 0 1 1 1 1 0 1 1 0 1 1 1 0

0.052734375000 0 0 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 0

0.056640625000 0 0 0 0 1 1 0 1 0 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 0 0 1 0 1

0.060546875000 0 0 0 0 1 1 1 1 0 1 0 1 1 0 1 0 0 1 1 1 1 0 1 0 0 1 0 0 1 1

0.064453125000 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 0 1 0 1 0 1 1 0 1 1

0.068359375000 0 0 0 0 1 1 1 0 0 1 0 1 1 0 1 1 1 1 0 1 0 1 0 0 1 1 1 1 0 0

0.072265625000 0 0 0 0 1 0 1 0 1 1 1 1 0 1 0 1 1 0 1 0 0 1 1 1 1 0 1 0 1 0

0.076171875000 0 0 0 0 1 0 1 1 1 0 1 0 0 1 1 1 1 0 1 1 0 0 1 0 0 1 0 1 1 0

0.080078125000 0 0 0 0 1 0 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 1 0 1 1 1 0 0 1 0

0.083984375000 0 0 0 0 1 0 0 1 1 1 0 1 1 0 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 1

0.087890625000 0 0 0 1 1 0 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 0 1 0

0.091796875000 0 0 0 1 1 0 1 1 0 0 1 0 1 0 1 1 0 1 1 1 0 1 0 1 1 1 0 1 1 1

0.095703125000 0 0 0 1 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 0 0 1 0 0 1 0 1 1 1 0

0.099609375000 0 0 0 1 1 0 1 0 1 1 1 0 1 0 1 1 1 1 1 0 0 1 1 0 1 0 1 1 0 1

0.103515625000 0 0 0 1 1 1 1 0 0 1 0 1 0 0 1 1 1 1 0 1 0 1 0 0 1 1 1 0 0 1

0.107421875000 0 0 0 1 1 1 1 0 1 0 0 1 0 0 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0

0.111328125000 0 0 0 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 0 1 0 0 1 0 0 1 1 1 0

0.115234375000 0 0 0 1 1 1 0 1 0 0 1 0 0 1 1 1 0 1 0 1 1 0 1 0 0 1 0 1 1 0

0.119140625000 0 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0

0.123046875000 0 0 0 1 1 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1

0.126953125000 0 0 0 1 0 1 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 1 1 0 1 1 0 0 1 0

0.130859375000 0 0 0 1 0 1 0 1 0 1 0 1 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 1 0 1

0.134765625000 0 0 0 1 0 1 1 1 0 1 1 1 0 0 1 1 1 1 1 0 1 1 1 0 1 0 0 1 1 1

0.138671875000 0 0 0 1 0 1 1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 0 1

0.142578125000 0 0 0 1 0 1 1 0 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 0 0 1 0 1 1 1

0.146484375000 0 0 0 1 0 0 1 0 1 1 0 1 0 1 0 1 1 1 1 1 0 0 1 0 0 1 0 0 1 1

163

0.150390625000 0 0 0 1 0 0 1 1 1 0 1 0 1 0 0 1 1 1 0 1 1 1 0 0 1 0 1 0 0 1

0.154296875000 0 0 1 1 0 0 1 1 0 1 0 1 1 0 1 1 0 0 1 0 1 1 0 1 0 1 1 0 1 1

0.158203125000 0 0 1 1 0 0 1 0 1 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 0 1 1 1 1 0

0.162109375000 0 0 1 1 0 0 1 0 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 0

0.166015625000 0 0 1 1 0 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 0 1 0

0.169921875000 0 0 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 1

0.173828125000 0 0 1 1 0 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 0 1 1 0 1 0 1 0 0 1

0.177734375000 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0 1 1 1 0 1 1 0 0 1 1 1 0 1 1

0.181640625000 0 0 1 1 0 1 0 0 1 0 1 1 0 0 1 0 1 1 1 0 1 1 1 1 0 0 1 1 0 1

0.185546875000 0 0 1 1 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 0 1 1 1 0 0

0.189453125000 0 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 0 0 1 1 1 1 0 1 0 1 0 0 1 0

0.193359375000 0 0 1 1 1 1 1 1 0 0 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 0 0 1 0 1

0.197265625000 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 1 1 1 1 1 1 0 1 0 1 1 1

0.201171875000 0 0 1 1 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 0 1 0

0.205078125000 0 0 1 1 1 1 1 0 0 1 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 1 0 1 0 1

0.208984375000 0 0 1 1 1 0 1 0 1 0 1 0 1 1 0 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1

0.212890625000 0 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1

0.216796875000 0 0 1 1 1 0 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 0 1

0.220703125000 0 0 1 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1

0.224609375000 0 0 1 0 1 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 1 0 0 1 0 1

0.228515625000 0 0 1 0 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 0 1 1 1 0 1 0 0 1 0 1

0.232421875000 0 0 1 0 1 0 1 1 1 0 1 0 1 1 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 1

0.236328125000 0 0 1 0 1 0 1 0 1 1 0 1 0 0 1 1 1 1 1 0 0 1 1 1 1 0 1 1 0 0

0.240234375000 0 0 1 0 1 1 1 0 0 1 0 0 1 0 1 0 0 1 1 0 1 0 0 1 1 1 0 0 1 1

0.244140625000 0 0 1 0 1 1 1 1 1 0 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0

0.248046875000 0 0 1 0 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1

164

0.251953125000 0 0 1 0 1 1 0 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 0 1 1

0.255859375000 0 0 1 0 1 1 0 1 1 0 1 1 1 1 0 1 0 0 1 0 0 1 0 1 0 1 1 1 1 1

0.259765625000 0 0 1 0 1 1 0 0 1 1 0 1 0 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 0 1

0.263671875000 0 0 1 0 0 1 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1 1

0.267578125000 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1

0.271484375000 0 0 1 0 0 1 1 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 0

0.275390625000 0 1 1 0 0 1 1 0 1 0 0 1 0 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0

0.279296875000 0 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 0 1 1 1

0.283203125000 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 1 1 1 1 1 0

0.287109375000 0 1 1 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 0

0.291015625000 0 1 1 0 0 1 0 1 1 0 0 1 1 1 1 0 1 0 0 1 0 0 1 0 0 1 1 1 1 0

0.294921875000 0 1 1 0 1 1 0 0 1 1 1 0 1 0 1 1 0 0 1 1 0 1 0 1 1 1 0 1 1 0

0.298828125000 0 1 1 0 1 1 0 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 1 0 1 1

0.302734375000 0 1 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 1 1 0 1 0 1 0

0.306640625000 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 0 0 1

0.310546875000 0 1 1 0 1 1 1 0 1 0 1 1 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 0 1

0.314453125000 0 1 1 0 1 1 1 0 0 1 1 1 1 1 0 1 1 0 1 1 0 0 1 0 1 0 1 1 1 1

0.318359375000 0 1 1 0 1 0 1 0 1 1 1 0 0 1 0 1 1 1 1 1 0 0 1 1 1 1 0 0 1 0

0.322265625000 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 0 1 1

0.326171875000 0 1 1 0 1 0 1 1 0 0 1 1 1 1 1 0 1 0 1 0 1 1 1 1 0 0 1 0 1 1

0.330078125000 0 1 1 0 1 0 0 1 1 1 1 1 0 0 1 1 0 1 0 1 1 1 1 0 1 0 1 0 0 1

0.333984375000 0 1 1 1 1 0 0 1 1 1 0 0 1 0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 1 1

0.337890625000 0 1 1 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 0 1 1 0 1 0

0.341796875000 0 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 1

0.345703125000 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 1 0 1 1 1

0.349609375000 0 1 1 1 1 1 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 1 1 1 1 0 0 1 0 0

165

0.353515625000 0 1 1 1 1 1 1 0 1 0 0 1 0 1 1 0 1 1 0 1 1 0 1 0 0 1 1 1 1 0

0.357421875000 0 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 1 1 0 0 1 1 0 1

0.361328125000 0 1 1 1 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 1 0 0 1 0 1 0 1 1

0.365234375000 0 1 1 1 1 1 0 1 1 1 1 0 1 1 0 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1

0.369140625000 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 0 1 1 1 1 0 1 0 1 1 0 1 1 0

0.373046875000 0 1 1 1 0 1 0 1 1 0 0 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 0 1 1

0.376953125000 0 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 0 1 1 1

0.380859375000 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 1 1

0.384765625000 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1

0.388671875000 0 1 1 1 0 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1

0.392578125000 0 1 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 1 1 1 0 1 1 0 0 1 0

0.396484375000 0 1 1 1 0 0 1 1 1 0 0 1 0 0 1 0 1 0 1 1 1 1 0 1 1 1 0 1 0 0

0.400390625000 0 1 1 1 0 0 1 1 0 1 0 1 0 0 1 0 1 0 1 1 0 0 1 1 1 0 1 0 1 0

0.404296875000 0 1 0 1 0 0 1 1 1 0 1 1 0 1 1 1 1 1 0 0 1 0 1 1 1 1 1 0 0 1

0.408203125000 0 1 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 0 1 1 0 0 1 1 1 1 1 1 1

0.412109375000 0 1 0 1 0 1 1 0 1 1 0 1 1 1 0 1 0 0 1 1 1 1 1 0 1 0 1 1 1 0

0.416015625000 0 1 0 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 0 0 1 1 1 1 0

0.419921875000 0 1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 1

0.423828125000 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 1 0 1 1

0.427734375000 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 1 1 0 0 1 0 0 1 0 1 1 0 1 0 0

0.431640625000 0 1 0 1 1 1 0 0 1 1 1 0 1 0 0 1 0 0 1 0 0 1 1 1 1 0 1 0 0 1

0.435546875000 0 1 0 1 1 1 0 1 1 1 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 1 1 1 0 1

0.439453125000 0 1 0 1 1 1 0 1 0 0 1 0 1 1 1 0 0 1 0 0 1 0 1 1 1 1 1 1 1 0

0.443359375000 0 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 0 0 1 0 1 1 1 0 1 0 1 0

0.447265625000 0 1 0 1 1 1 1 0 1 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1 0 1 1 0 1 0

0.451171875000 0 1 0 1 1 1 1 0 0 1 1 1 0 1 0 1 0 1 1 1 1 0 0 1 0 0 1 0 1 0

166

0.455078125000 0 1 0 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1

0.458984375000 0 1 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 0 0 1 0 1 0 1 1

0.462890625000 0 1 0 1 1 0 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 1 0 1 1 1 1 0 0 1

0.466796875000 0 1 0 1 1 0 0 1 1 1 0 1 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 0 0 1

0.470703125000 0 1 0 0 1 0 0 1 1 1 0 0 1 0 1 1 1 1 0 1 1 0 0 1 1 1 0 0 1 1

0.474609375000 0 1 0 0 1 0 1 1 0 1 1 0 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1

0.478515625000 0 1 0 0 1 0 1 1 1 0 1 0 0 1 0 1 0 1 1 1 1 1 1 0 1 1 0 1 1 0

0.482421875000 0 1 0 0 1 0 1 0 1 1 1 1 0 1 0 1 0 0 1 1 1 1 0 0 1 1 1 1 0 1

0.486328125000 0 1 0 0 1 1 1 0 0 1 0 1 1 0 1 1 0 1 1 0 1 0 1 1 1 0 1 1 1 1

0.490234375000 0 1 0 0 1 1 1 1 1 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 0 1 1 0 0

0.494140625000 0 1 0 0 1 1 1 1 0 1 0 1 1 0 1 0 1 1 1 0 1 1 0 0 1 0 1 0 1 0

0.498046875000 0 1 0 0 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1 0 1 0 0 1 0 1 0 1 0 1

0.501953125000 1 1 0 0 1 1 0 1 0 1 1 1 0 1 0 0 1 1 1 0 1 0 1 0 0 1 1 1 1 0

0.505859375000 1 1 0 0 1 1 1 1 0 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 0 0 1 0

0.509765625000 1 1 0 0 1 1 1 1 1 0 0 1 0 1 1 1 0 0 1 1 0 1 0 0 1 0 1 1 1 1

0.513671875000 1 1 0 0 1 1 1 0 0 1 0 0 1 1 1 1 1 0 0 1 1 1 0 1 0 1 1 0 0 1

0.517578125000 1 1 0 0 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 0 0 1 1 1 1 1 0 1 1 0

0.521484375000 1 1 0 0 1 0 1 1 1 0 1 0 1 1 1 0 0 1 1 0 1 1 1 0 0 1 0 0 1 0

0.525390625000 1 1 0 0 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 1 1

0.529296875000 1 1 0 0 1 0 0 1 0 1 0 0 1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 0 1 0

0.533203125000 1 1 0 1 1 0 0 1 1 1 1 1 0 1 1 1 0 0 1 0 1 1 0 1 1 1 1 1 0 1

0.537109375000 1 1 0 1 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 1 1 1

0.541015625000 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 0 1 0 0 1

0.544921875000 1 1 0 1 1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 1 1 0 0 1 0 1 0 0 1 0

0.548828125000 1 1 0 1 1 1 1 0 0 1 1 1 1 0 1 0 0 1 0 1 0 1 1 1 1 0 0 1 0 0

0.552734375000 1 1 0 1 1 1 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0

167

0.556640625000 1 1 0 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 0 0 1 0 1 0 1 1 0 1 1 0

0.560546875000 1 1 0 1 1 1 0 1 0 0 1 1 1 0 1 0 1 1 1 0 0 1 0 1 0 1 1 1 1 1

0.564453125000 1 1 0 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 0 1 1 0 1 0 0 1 1 1 1 1

0.568359375000 1 1 0 1 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 1 1 1 1 0 1 1

0.572265625000 1 1 0 1 0 1 0 0 1 0 0 1 1 1 0 1 1 1 1 0 0 1 0 1 1 1 0 0 1 0

0.576171875000 1 1 0 1 0 1 0 1 0 1 0 0 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1

0.580078125000 1 1 0 1 0 1 1 1 0 1 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 1 0 0 1 0

0.583984375000 1 1 0 1 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 1 0 0

0.587890625000 1 1 0 1 0 1 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1

0.591796875000 1 1 0 1 0 0 1 0 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1

0.595703125000 1 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 0

0.599609375000 1 1 1 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1

0.603515625000 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1

0.607421875000 1 1 1 1 0 0 1 0 1 1 0 1 1 0 1 1 1 1 0 0 1 0 1 0 1 0 1 1 0 1

0.611328125000 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 0 1 0 0 1 1 1

0.615234375000 1 1 1 1 0 1 1 1 1 0 1 1 0 1 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 1

0.619140625000 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 0 0 1 1 1 1 0 0 1 0 1 1 0

0.623046875000 1 1 1 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 1 1 1 0 1 1 0 1 1 1 0

0.626953125000 1 1 1 1 0 1 0 1 1 0 0 1 0 0 1 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1

0.630859375000 1 1 1 1 1 1 0 0 1 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1

0.634765625000 1 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1 0 1

0.638671875000 1 1 1 1 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 1

0.642578125000 1 1 1 1 1 1 1 1 0 1 0 0 1 0 1 0 1 1 1 0 0 1 0 0 1 0 1 0 1 0

0.646484375000 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 0 1 1 1 1 1 1 0 1 0 1 0 1 0

0.650390625000 1 1 1 1 1 1 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 1

0.654296875000 1 1 1 1 1 0 1 0 1 1 0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 1 0

168

0.658203125000 1 1 1 1 1 0 1 1 1 0 1 0 1 0 0 1 0 1 1 0 0 1 0 1 0 1 0 0 1 0

0.662109375000 1 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0

0.666015625000 1 1 1 1 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 1 1

0.669921875000 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1

0.673828125000 1 1 1 0 1 0 0 1 0 0 1 1 1 0 1 0 1 0 0 1 0 1 0 1 1 0 0 1 0 1

0.677734375000 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1

0.681640625000 1 1 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 0 1 1 1 1 1

0.685546875000 1 1 1 0 1 1 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 1 0 1 1 0 1 1 0

0.689453125000 1 1 1 0 1 1 1 0 1 0 1 0 1 1 0 1 0 0 1 1 1 1 1 0 1 0 1 1 0 0

0.693359375000 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1

0.697265625000 1 1 1 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 1 0 0 1 1 0 1 0 0 1 1

0.701171875000 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 1 0 1 1 1 1

0.705078125000 1 1 1 0 1 1 0 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0

0.708984375000 1 1 1 0 0 1 0 0 1 0 1 1 0 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 1 0

0.712890625000 1 1 1 0 0 1 0 1 1 1 0 0 1 1 1 0 1 1 0 1 1 0 1 0 0 1 1 1 0 1

0.716796875000 1 1 1 0 0 1 1 1 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 1 1 1

0.720703125000 1 1 1 0 0 1 1 1 1 0 1 0 0 1 0 1 0 0 1 0 0 1 1 1 1 0 1 0 0 1

0.724609375000 1 1 1 0 0 1 1 0 1 0 1 1 0 1 0 0 1 1 1 1 1 0 0 1 1 1 1 0 0 1

0.728515625000 1 0 1 0 0 1 1 1 1 1 0 1 1 0 1 0 1 0 0 1 0 1 1 1 1 0 1 1 0 1

0.732421875000 1 0 1 0 0 1 0 1 0 0 1 0 1 1 0 0 1 0 0 1 0 1 0 1 1 1 0 1 1 0

0.736328125000 1 0 1 0 0 1 0 1 1 1 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 1

0.740234375000 1 0 1 0 0 1 0 0 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0 1 0 1 1 1 0 1

0.744140625000 1 0 1 0 1 1 0 1 1 0 0 1 0 0 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 1

0.748046875000 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 0 0 1 0

0.751953125000 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 0 1 0 0 1 0 1 1 0 1 1 1 1

0.755859375000 1 0 1 0 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1 0 1 1 0 1

169

0.759765625000 1 0 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 0 0 1 1 1 1 0 1 0 0 1 1 1

0.763671875000 1 0 1 0 1 0 1 0 1 1 0 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 0 1

0.767578125000 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1

0.771484375000 1 0 1 0 1 0 1 1 0 1 1 1 0 1 0 0 1 1 1 1 0 0 1 0 0 1 1 1 0 1

0.775390625000 1 0 1 0 1 0 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 0 0 1 0 1 0 0 1 1

0.779296875000 1 0 1 1 1 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 1 1 1 0 1 1 0 1 0

0.783203125000 1 0 1 1 1 0 0 1 0 1 0 0 1 0 1 1 1 0 1 1 0 1 0 1 0 1 1 0 1 0

0.787109375000 1 0 1 1 1 0 1 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1

0.791015625000 1 0 1 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 1 1 1 0 1 0 1 0 0 1 1 1

0.794921875000 1 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 0 0 1 0 1 1 1 0 0 1 1

0.798828125000 1 0 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 0 1 0 1 1 0

0.802734375000 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 0 0 1

0.806640625000 1 0 1 1 1 1 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 0

0.810546875000 1 0 1 1 1 1 0 1 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 0 1 1 1

0.814453125000 1 0 1 1 1 1 0 0 1 0 1 1 1 0 1 1 0 0 1 1 1 1 0 1 0 0 1 0 1 1

0.818359375000 1 0 1 1 0 1 0 0 1 0 1 1 1 1 1 0 0 1 0 1 0 1 0 1 1 1 1 0 0 1

0.822265625000 1 0 1 1 0 1 0 1 1 1 0 1 1 1 0 1 1 0 0 1 0 0 1 0 1 0 1 1 0 1

0.826171875000 1 0 1 1 0 1 1 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 1 0 1 1 1 1 1

0.830078125000 1 0 1 1 0 1 1 1 1 1 1 0 1 0 0 1 0 1 1 1 0 0 1 0 1 0 1 1 0 0

0.833984375000 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 0

0.837890625000 1 0 1 1 0 0 1 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1

0.841796875000 1 0 1 1 0 0 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1 0 1 0 0 1 1 1 0 1

0.845703125000 1 0 1 1 0 0 1 1 1 1 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1

0.849609375000 1 0 0 1 0 0 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 0 1 0 0 1 0 1 1 1

0.853515625000 1 0 0 1 0 0 1 0 1 1 1 1 1 0 1 0 1 0 1 0 1 1 0 1 0 0 1 1 1 1

0.857421875000 1 0 0 1 0 1 1 0 0 1 0 1 0 1 1 1 0 1 0 1 1 0 1 0 0 1 1 1 1 0

170

0.861328125000 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 1 1 1 0 1 0 1 1 0 0 1 1 1 0 1

0.865234375000 1 0 0 1 0 1 1 1 0 1 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 0 1 1 0

0.869140625000 1 0 0 1 0 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 1

0.873046875000 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 0 1 1 1 1 0 1 1 1 0 1 0 1 0 1

0.876953125000 1 0 0 1 0 1 0 0 1 1 1 1 0 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 0 0

0.880859375000 1 0 0 1 1 1 0 1 1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0 0

0.884765625000 1 0 0 1 1 1 0 1 0 1 0 1 0 0 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1

0.888671875000 1 0 0 1 1 1 1 1 0 1 1 1 0 1 1 0 1 0 1 1 1 0 0 1 0 0 1 1 0 1

0.892578125000 1 0 0 1 1 1 1 1 1 0 1 1 0 1 1 0 1 0 0 1 1 1 1 1 1 1 1 0 1 0

0.896484375000 1 0 0 1 1 1 1 0 1 1 0 1 1 0 0 1 1 0 1 0 1 1 1 0 1 0 1 0 1 1

0.900390625000 1 0 0 1 1 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 1 1 0 1 0 1 0 1 1 1

0.904296875000 1 0 0 1 1 0 1 1 1 0 1 1 0 1 0 1 1 1 1 0 0 1 1 1 1 1 0 1 0 1

0.908203125000 1 0 0 1 1 0 1 1 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 0 1 1 1 0 1 1

0.912109375000 1 0 0 1 1 0 0 1 0 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 0

0.916015625000 1 0 0 0 1 0 0 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 1

0.919921875000 1 0 0 0 1 0 0 1 0 0 1 0 1 1 0 1 0 1 0 1 1 1 1 1 1 1 0 0 1 0

0.923828125000 1 0 0 0 1 0 1 1 1 1 0 1 1 0 1 0 1 1 1 0 0 1 1 0 1 0 0 1 1 0

0.927734375000 1 0 0 0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0

0.931640625000 1 0 0 0 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 1 0 0 1

0.935546875000 1 0 0 0 1 1 1 0 1 1 1 0 1 1 0 1 0 1 1 1 1 1 0 0 1 1 1 1 0 1

0.939453125000 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 1 1 0 1 1 0 1 1 1 1 1

0.943359375000 1 0 0 0 1 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 0 1 0 1 1 0 1 0 1 1

0.947265625000 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 1 0 1 1 1 1 0 1 0 0 1 0 1 1

0.951171875000 1 0 0 0 1 1 0 0 1 0 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 0 1 1

0.955078125000 1 0 0 0 0 1 0 0 1 0 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 0 0 1

0.958984375000 1 0 0 0 0 1 0 1 1 1 0 1 0 1 0 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1

171

0.962890625000 1 0 0 0 0 1 1 1 0 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 1 0 0 1 1

0.966796875000 1 0 0 0 0 1 1 1 1 1 1 0 1 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 1 1

0.970703125000 1 0 0 0 0 1 1 0 1 1 1 0 1 1 0 1 0 1 1 1 1 0 1 0 0 1 0 0 1 1

0.974609375000 1 0 0 0 0 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 1 0 0 1 0

0.978515625000 1 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1 1 1 0 1 0 0 1 0 1 0 1 0 1 1

0.982421875000 1 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 1 1 1 1 1 1 0 1

0.986328125000 1 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 0

0.990234375000 1 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 1 0 1

0.994140625000 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 1 1 0

0.998046875000 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1

1.001953125000 1 0

172

APPENDIX 4

Using the data from Appendix 3, the real valued trajectories and their corresponding symbolic sequences were plotted across the state space.

Fig. A. 1 3D view of the real iterates across the state space

173

Fig. A. 2 Unequal interval partitioning of the real state space

174

APPENDIX 5

The change in error over both parameter and number of symbols used to

estimate the initial condition is viewed in a 3D plot. The plot combines the

views of Fig. 5.6 and Fig. 5.7 in a surface plot.

Fig. A. 3 A 3D view combining Fig. 6.6 and 6.7

