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Ⅱ Abstract  

Wireless sensor networks (WSNs) are becoming widely adopted across multiple industries to 

implement sensor and non-critical control applications. These networks of smart sensors and actuators 

require energy efficient and reliable operation to meet application requirements. Regulatory body 

restrictions, hardware resource constraints and an increasingly crowded network space makes realising 

these requirements a significant challenge.  

Transmission power control (TPC) protocols are poised for wide spread adoption in WSNs to address 

energy constraints and prolong the lifetime of the networked devices. The complex and dynamic nature 

of the transmission medium; the processing and memory hardware resource constraints and the low 

channel throughput makes identifying the optimum transmission power a significant challenge. TPC 

protocols for WSNs are not well developed and previously published works suffer from a number of 

common deficiencies such as; having poor tuning agility, not being practical to implement on the 

resource constrained hardware and not accounting for the energy consumed by packet retransmissions. 

This has resulted in several WSN standards featuring support for TPC but no formal definition being 

given for its implementation. Addressing the deficiencies associated with current works is required to 

increase the adoption of TPC protocols in WSNs.  

In this thesis a novel holistic TPC protocol with the primary objective of increasing the energy 

efficiency of communication activities in WSNs is proposed, implemented and evaluated. Firstly, the 

opportunities for TPC protocols in WSN applications were evaluated through developing a 

mathematical model that compares transmission power against communication reliability and energy 

consumption. Applying this model to state-of-the-art (SoA) radio hardware and parameter values from 

current WSN standards, the maximum energy savings were quantified at up to 80% for links that belong 

to the connected region and up to 66% for links that belong to the transitional and disconnected regions. 

Applying the results from this study, previous assumptions that protocols and mechanisms, such as 

TPC, not being able to achieve significant energy savings at short communications distances are 

contested. This study showed that the greatest energy savings are achieved at short communication 

distances and under ideal channel conditions.   

An empirical characterisation of wireless link quality in typical WSN environments was conducted to 

identify and quantify the spatial and temporal factors which affect radio and link dynamics. The study 

found that wireless link quality exhibits complex, unique and dynamic tendencies which cannot be 

captured by simplistic theoretical models. Link quality must therefore be estimated online, in real-time, 

using resources internal to the network.  

An empirical characterisation of raw link quality metrics for evaluating channel quality, packet delivery 

and channel stability properties of a communication link was conducted. Using the recommendations 

from this study, a novel holistic TPC protocol (HTPC) which operates on a per-packet basis and features 

a dynamic algorithm is proposed. The optimal TP is estimated through combining channel quality and 
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packet delivery properties to provide a real-time estimation of the minimum channel gain, and using 

the channel stability properties to implement an adaptive fade margin.  

Practical evaluations show that HTPC is adaptive to link quality changes and outperforms current TPC 

protocols by achieving higher energy efficiency without detrimentally affecting the communication 

reliability. When subjected to several common temporal variations, links implemented with HTPC 

consumed 38% less than the current practise of using a fixed maximum TP and between 18-39% less 

than current SoA TPC protocols. Through offline computations, HTPC was found to closely match the 

performance of the optimal link performance, with links implemented with HTPC only consuming 7.8% 

more energy than when the optimal TP is considered.  

On top of this, real-world implementations of HTPC show that it is practical to implement on the 

resource constrained hardware as a result of implementing simplistic metric evaluation techniques and 

requiring minimal numbers of samples. Comparing the performance and characteristics of HTPC 

against previous works, HTPC addresses the common deficiencies associated with current solutions 

and therefore presents an incremental improvement on SoA TPC protocols.  

 

Key words: Transmission Power Control, Wireless Sensor Network, Link Quality Estimation, Channel 

Quality, Packet Delivery, Channel Stability, Spatio-temporal Factors.   
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Chapter One: Introduction 

1.0 Background 

With the integration of sensing, processing and communication abilities in small form factor devices, 

wireless sensor networks (WSNs) are becoming widely adopted across multiple industries to implement 

sensor and non-critical control applications. These networks of smart sensors and actuators require 

energy efficient and reliable operation to meet application requirements. Regulatory body restrictions, 

hardware resource constraints and an increasingly crowded network spaces makes realising these 

requirements a significant challenge.  

One of the most severe resource constraints in WSNs is energy [1]. Energy constraints are the result of 

cost and form factor requirements limiting the type, size and capacity of the battery store. The available 

energy is typically finite and cannot be replenished during the lifetime of the device due to the inability 

or infeasibility of battery charging and replacement. Future WSNs are expected to have orders of 

magnitude lower energy capacity [2] as a result of replacing traditional energy supplies for super 

capacitor, paper-thin battery and energy harvesting solutions. Subsequently, there is a growing need to 

optimise common activities through energy efficient algorithms and protocols to address energy 

constraints and prolong the lifetime of the networked devices.  

Previous works have found that wireless communication activities are often the most energy consuming 

that a WSN node performs [3] and as such, optimising this activity is seen as pivotal to achieve battery 

life requirements. A large number of works have been devoted to increasing the energy efficiency of 

wireless communication activities in WSNs and have proposed optimising several radio parameters, 

including; data rate [4], packet routing [5] and duty cycle [6]. Alongside these, several works have 

proposed schemes that modulate the transmission power (TP). This practise is commonly referred to as 

transmission power control (TPC). Through the implementation of a TPC protocol, nodes dissipate the 

minimum amount of energy required to ensure error free reception at the receiver. This reduces the 

number of packet retransmissions and the number of packets transmitted with excessive energy for the 

intended recipient. 

The implementation of a TPC protocol faces several challenges. The most prominent of these is 

characterising the communication link in order to identify the optimum TP. Communication links have 

been shown in several empirical studies ( [7] [8] [9] [10]) to be affected by spatio-temporal factors 

which result in them experiencing complex and dynamic tendencies. The effect of these factors is more 

severe in WSNs since low-power radios are used and the link budget is limited. Consequently, radio 

links in WSNs are often unpredictable and their quality fluctuates over time ( [11] [12]) and space ( [7] 

[9]). On top of this, WSNs are constrained in memory and computational complexity domains, and 

channel throughput is typically very low. Therefore, only protocols and mechanisms which feature low 

processing, memory and sampling overheads are practical to implement [1].  
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1.1 Motivation 

TPC protocols with the primary objective of increasing the energy efficiency of wireless 

communication activities have been shown in several works to be highly effective, with up to 80% 

energy savings deemed possible in [13]. On top of this, TPC protocols designed for energy efficiency 

objectives have the potential to make improvements to the following aspects of communications in 

WSNs: 

1. Spectrum efficiency. When nodes communicate at the minimum TP needed to ensure a 

successful reception, the communication and interference radii are nothing broader than needs 

be. Thus, only nodes which really must share the same space will contend to access the medium. 

The interference suppression offered by a TPC protocol subsequently enhances the network 

utilisation, lowers latency times and helps to ensure co-existence with other wireless networks.  

2. Packet delivery. When nodes transmit at a given TP that results in sufficient signal-to-noise 

ratio (SNR) at the receiver, the bit error rate can be constrained. Links with poor communication 

reliability as a result of inadequate SNR can be improved through leveraging the features of a 

TPC protocol and using a more suitable TP.  

There has been extensive research on TPC protocols in wireless networks, studied in several contexts 

and optimised for different objectives. However, the use of TPC in short-range, low-power WSNs is 

relatively new and as such, the algorithms are not well developed. Despite some promising results, 

current TPC protocols suffer from numerous deficiencies which limits their performance. These 

include: 

1. Not practical to implement on WSN hardware. Many current TPC protocols have proposed 

link quality estimation techniques which are computationally expensive and/ or require a large 

number of samples to be cached. Due to the typical resource constraints of WSN hardware 

(namely limited memory and processing resources), existing solutions are often impractical to 

implement.  

2. Poor accuracy. Several works on TPC have experienced poor energy efficiency and/ or 

reliability, particularly when the link quality has dynamic tendencies. This is primarily due to 

deficiencies in the link quality estimation process which result in the TP not being optimised to 

the actual channel conditions. 

3. Poor tuning agility. Current TPC protocols leverage metric evaluation techniques and tuning 

algorithms which are slow to react to changing channel conditions. This results in the TP being 

poorly optimised to current channel conditions and detrimental effects to energy efficiency and/ 

or communication reliability. This is exacerbated by the dynamic link conditions experienced 

in WSN applications.  

4. Optimised for different objectives. Several TPC protocols have been proposed with the 

primary objective of enhancing throughput, increasing connectivity and reducing delays. Since 

energy is the fundamental resources constraint in WSNs, TPC protocols with the primary 

objective of increasing the energy efficiency are of most relevance. 
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5. Optimised for a single application. Many current TPC protocols are modelled, optimised and 

tested on single applications with specific environmental factors and wireless properties. Since 

WSNs cover a plethora of application areas, the performance of the TPC protocol needs to be 

optimised over various link conditions and radio configurations.  

6. Based on theoretical study and simulations. Although theoretical study and simulations 

provide a valuable and solid foundation, solutions found by such efforts are often ineffective in 

real running systems. This is because they are based on simplified assumptions which are not 

representative of actual channel conditions, such as; static link quality, perfect modulation 

accuracy and continuous TP levels.  

7. Do not account for the energy consumed by packet retransmissions. Almost all link layer 

protocols used in WSNs use packet acknowledgement and retransmission mechanisms to 

improve the communication reliability. Many current works on TPC have failed to account for 

the energy consumed by packet retransmissions so the reported energy savings are often 

unrepresentative of the actual performance of the protocol.  

Several WSN standards (such as Bluetooth Low Energy [14], WirelessHART [15] and ISA100.11a 

[16]) feature support for TPC but no formal definition is given for its implementation [17]. The author 

believes this is a result of the aforementioned deficiencies which limit the performance of state-of-the-

art (SoA) TPC protocols. Addressing these deficiencies is therefore necessary to increase the adoption 

of TPC protocols in WSN applications.  

 

1.2 Aims and Objectives 

The aim of this research is to design, implement and test an application independent TPC protocol with 

the primary objective of increasing the energy efficiency of wireless communication activities in WSNs. 

The protocol should leverage simplistic metric evaluation techniques and require a small number of 

samples to be cached so that it is practical to implement on the resource constrained hardware and the 

sampling requirements can be achieved in typical WSN applications.  

The approach used in this research follows a series of ordered objectives, as detailed below: 

1. Review of TPC practices and current solutions.  

2. Review of the literature on wireless channel models and measurements.  

3. Develop mathematical models that compare TP against communication reliability and energy 

consumption to quantify the potential energy savings of a TPC protocol.  

4. Evaluate the link conditions typically experienced in WSN applications.  

5. Evaluate the performance of link quality metrics for the purpose of capturing the properties of 

the communication link required to identify the optimum TP. 

6. Design and optimisation of a new TPC protocol.  
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7. Evaluation of the new TPC protocol.  

 

1.3 Publications and Novelty 

The principal contributions of this works are as follows: 

- The opportunities for TPC protocols in WSN applications have been evaluated through 

developing a mathematical model that compares TP against communication reliability and 

energy consumption. Applying this model to SoA radio hardware, the maximum potential 

energy savings were quantified and the link conditions which offered the greatest opportunities 

were identified. 

- An empirical characterisation of wireless link quality in typical WSN environments was 

conducted. Through this, the spatial and temporal factors which affect radio and link dynamics 

in WSNs were identified and quantified.  

- An empirical characterisation of raw link quality metrics for evaluating channel quality, packet 

delivery and channel stability properties of the communication link is presented. From this, 

recommendations on the most suitable metrics to use for a TPC protocol are made. The 

evaluation can also be used to assess the link quality metrics used in future works on TPC and 

utilised in the design of other link quality estimators with minor amendments.  

- A novel holistic TPC (HTPC) protocol with the primary objective of increasing the energy 

efficiency of communication activities in WSN applications is proposed. HTPC captures 

channel quality, packet delivery and channel stability properties of the communication link 

using low computational complexity and memory techniques. Practical evaluations show that 

HTPC is practical to implement on the resource constrained hardware, adaptive to link quality 

changes and outperforms current SoA TPC protocols.  

 

Part of this work has been published and presented in the following international conferences and 

journals. 

• J. Hughes, G. Horler, E. Morris, “Transmission power control for wireless sensor networks in 

railway environments,” in Proc. 3rd Int. Conf. on Railway Technology: Research, Development 

and Maintenance, Cagliari, Italy, 2016.  

• E. Morris, G. Horler, J. Hughes “An architecture for efficient distribution of railway asset 

performance metrics,” in Proc. 3rd Int. Conf. on Railway Technology: Research, Development 

and Maintenance, Cagliari, Italy, 2016.  

• J. Hughes, G. Horler, E. Morris, “An investigatory study into transmission power control for 

wireless sensor networks in railway applications,” in Proc. 7th IET Conf. on Railway Condition 

Monitoring, Birmingham, UK, 2016.  
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• G. Horler, E. Morris, J. Hughes, “Asset clamp force measurement and remote condition 

monitoring using a smart washer: a case study of railway research, innovation and technical 

delivery in the early 21st century,” in IMechE Proc. Stephenson Conference: Research for 

Railways, London, UK, 2017.  

• J. Hughes, P. Lazaridis, I. Glover, A. Ball, “Opportunities for transmission power control 

protocols in wireless sensor networks,” in IEEE Proc. Int. Conf. Automation and Computing, 

Huddersfield, UK, 2017. 

• J. Hughes, P. Lazaridis, I. Glover, A. Ball, “A survey of link quality properties related to 

transmission power control protocols in wireless sensor networks,”, in IEEE Proc. Int. Conf. 

Automation and Computing, Huddersfield, UK, 2017. 

• J. Hughes, P. Lazaridis, I. Glover, A. Ball, “An empirical study of link quality assessment in 

wireless sensor networks applicable to transmission power control protocols,” in IET 

Loughborough Antennas and Propagation Conf., Loughborough, UK, 2017. 

• J. Hughes, P. Lazaridis, I. Glover, A. Ball, “A novel transmission power control protocol for 

wireless sensor networks,” in PGR Conf. Huddersfield, UK, 2017. 

• J. Hughes, P. Lazaridis, I. Glover, A. Ball, “Real-time link quality estimation and holistic 

transmission power control for wireless sensor networks,” IET Wireless Sensor Sys., 2018, to 

be published.  

 

1.5 Thesis Structure 

The rest of the thesis is organised as follows:  

- Chapter 2 reviews the relevant literature related to TPC protocols for WSN applications. This 

includes an overview of WSN technology, TPC techniques, wireless channel modelling and 

link quality estimation.  

- Chapter 3 presents mathematic models to quantify the opportunities for TPC protocols in WSN 

applications.  

- Chapter 4 provides an empirical characterisation of wireless link quality in typical WSN 

environments.  

- Chapter 5 provides an assessment of link quality metrics for evaluating the channel quality, 

packet delivery and channel stability properties of the communication link.  

- Chapter 6 presents the design of a new TPC protocol.  

- Chapter 7 provides an evaluation of the proposed TPC protocol. 

- Chapter 8 draws together the conclusions and makes suggestions for future work.   
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Chapter Two: Literature Review 
The following sub-sections review the relevant literature, which has been classified into four categories: 

1. Introduction to wireless sensor networks (WSNs). A review of WSN technology, 

highlighting the characteristics, constraints and opportunities.  

2. Transmission power control (TPC) techniques. An overview of TPC techniques and analysis 

of current solutions.  

3. Wireless channel modelling. A review of the principles of wireless communications and 

presentation of suitable models and algorithms to describe the relationship between 

transmission power (TP) and link quality.  

4. Link quality estimation and distribution. An overview of the link quality estimation process 

and a high-level review of current solutions.  

 

2.0 Introduction to Wireless Sensor Networks 

WSNs can be regarded as distributed sensor systems that facilitate a range of monitoring and non-

critical control applications. They consist of a large set of autonomous wireless sensing nodes that are 

deployed over a sensing field. Each node is a low-power device capable of sensing physical information 

from the surrounding environment (e.g. temperature, load, vibration). As well as application specific 

sensors, each node features a battery, microcontroller and radio. These hardware components are used 

to perform sensing, processing and communication tasks. The data generated at the nodes is forwarded, 

possibly via multiple hops, through wireless links to a local collection point (commonly referred to as 

a sink). The sink can use the data locally or upload it to another network (e.g. the internet) through a 

gateway.  

WSN nodes may be stationary or moving, and can cover many short-range network spaces, from body-

area to neighbourhood-area networks. WSNs have specific traffic patterns and network topologies 

which are strongly application dependent and exhibit key properties from ad-hoc networks, including; 

decentralised control, common transmission channel, broadcast nature and ephemeral topologies [18]. 

A plethora of wireless standards and proprietary solutions are currently used to target the unique 

characteristics and challenges presented by WSNs.  

WSNs are severely constrained in energy, processing and memory domains. As described in 1.0 

Background, energy constraints are the result of cost and form factor requirements limiting the type, 

size and capacity of the battery store. Processing and memory constraints are the result of using low-

cost and low-power microcontrollers to run the host protocol stack and interface with peripherals. In 

order to develop systems that run unattended without battery replacement for arbitrarily long time 

periods (e.g. years), lightweight protocols and algorithms (in terms of computational complexity and 

memory usage) are required to increase the energy efficiency. 
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2.1 Transmission Power Control Techniques 

2.1.1 Introduction 

TPC is the intelligent selection of transmission output power in a wireless communication system and 

can be used to improve several performance properties, including; range, energy efficiency, network 

capacity and reliability. In the context of this thesis, the primary focus is on TPC applicable to energy 

efficiency objectives. However, through the implementation of a TPC protocol with energy efficiency 

objectives, improvements to network utilisation and communication reliability are probable (as 

described in 1.1 Motivation).  

The generic control loop which forms the basis of a TPC protocol is presented in Figure 1. The control 

loop shows transmitter operating at a TP of 
tP  and a receiver having an input power of 

rP . The block 

labelled ‘radio channel’ represents the signal attenuation as it propagates through the medium. The 

signal power (
sP ) is subjected to interference (

iP ) and noise (
nP ) at the receiver. Feedback of the 

received signal is then sent back to the transmitter so the TP used in subsequent transmissions can be 

optimised.  

Transmitter ReceiverRadio channel
Pt Ps

Pi

Pn

Pr

 

Figure 1. Generic TPC protocol control loop. 

The ability to control the TP is available on most radio platforms. As an example, the Texas Instrument 

(TI) CC2420 radio present in the Crossbow MicaZ motes, provides 8 TP levels (ranging from -25 to 0 

dBm), selectable at runtime by configuring a register [19]. The output power and power consumption 

in transmit mode when different TP levels are considered are shown in Table 1. Clearly, the higher the 

TP, the higher the power consumption. The range, amount and granularity of TP levels are hardware 

dependent.  

TP level 
Output power 

(dBm) 

Output Power 

(mW) 

Power consumption 

(mW) 

1 -25 0.003 25.5 

2 -15 0.032 29.7 

3 -10 0.100 33.6 

4 -7 0.200 37.5 

5 -5 0.316 41.7 

6 -3 0.501 45.6 

7 -1 0.794 49.5 

8 0 1.000 52.2 

Table 1. Power consumption of the TI CC2420 radio in TX mode at different TP levels [19]. 
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The basic operating principle of a TPC protocol is to configure the TP to a level that results in the 

minimum energy dissipated per transaction1 (
transE ), whilst still allowing a predefined level of 

reliability to be achieved. This principle is demonstrated in Figure 2.  

A

P1

P2

B

C

 

Figure 2. High-level overview of TP against communication range. 

The diagram in Figure 2 illustrates a network consisting of one transmitting node (A) and two receiving 

nodes (B and C). In order for packets transmitted from node A to be successfully received by nodes B 

and C, the minimum TP levels are P1 and P2, respectively. If the transmitting node uses a fixed TP of 

P2 for all packet transmissions, packets received at node B will have excessive energy. This results in 

poor energy efficiency at the transmitting node because packets could have been sent at a lower TP and 

still be successfully received. Conversely, if a TP of P1 is used for all packet transmissions, the 

communication radius would be too small for node C. This would result in poor communication 

reliability and energy efficiency because of insufficient link budget causing packet retransmissions. To 

maximise the energy savings and ensure that detrimental effects to communication reliability aren’t 

realised, the TP needs to be configured on a per-link basis.  

 

2.1.2 Transmission Power Control Modelling 

TPC protocols are based upon models that describe the relationship between TP, 
transE  and 

communication reliability (CR). CR is often measured by the packet reception ratio (PRR) or similar 

packet delivery properties. The relationship between TP, 
transE and CR was characterised empirically 

in [13] and found to exhibit the characteristics shown in Figure 3. This relationship is further analysed 

in 3.3 Generalised Energy Model.  

                                                     
1 A transaction is a data exchange event between a transmitter and receiver, and may consist of multiple packet 

retransmissions if a successful packet transmission is not detected (i.e. not acknowledged).  
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Figure 3. Relationship between TP, Etrans and PRR. 

The graph in Figure 3 can be seen to have three distinct regions which determine the relationship 

between TP, 
transE  and CR. These are: 

- Connected region (Conn). In the connected region, reducing the TP minimises the 
transE . The 

CR is not affected by the TP (i.e. PRR > 95%) because of sufficient link budget.  

- Disconnected region (Disconn). In the disconnected region, reducing the TP also reduces the 

transE . However, 
transE  is significantly higher than in the connected region because each 

transaction consists of multiple packet retransmissions. In the disconnected region, there is 

insufficient link budget for successful packet delivery so the CR remains poor (i.e. PRR < 5%), 

irrespective of the TP level used.  

- Transitional region (Trans). The relationship between TP and 
transE / CR is sigmoidal in the 

transitional region, with a small change in TP significantly affecting the other two properties.    

From Figure 3, it can be seen that the TP that results in minimal 
transE  exists on the boundary between 

the transitional and connected regions. As a result of the steep increase in 
transE  and the negative effect 

on CR, it is preferable to use a slightly higher TP so that the link exists in the connected region rather 

than the transitional region.  

Previous empirical studies into the correlation between TP and link quality ( [10] [20] [21]) have 

highlighted that the optimum TP is application dependent and will vary over time due to the spatio-

temporal factors of the transmission medium. For this reason, the wireless link quality needs to be 

continually evaluated so that the optimum TP can be identified, applied and maintained during 

operation.  
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2.1.3 Transmission Power Control Design Considerations 

Since TPC protocols operate in a distributed manner, certain undesirable side effects are inevitable. 

These are predominately the resultant of communication and carrier sense radii being suppressed as a 

result of reducing the TP. The design of an efficient TPC protocol has to take these effects into account. 

A previous study into TPC protocols for IEEE 802.11 networks ( [22]) has highlighted that TPC can 

exacerbate hidden and exposed nodes issues, as well as introduce channel asymmetry between links 

operating on the same channel. The interaction between two networks with TPC applied are summarised 

in Figure 4 and described below.    

Tx1 Tx2

Rx1 Rx2

Tx1 Tx2

Rx1 Rx2

Tx1 Tx2

Rx1 Rx2

(a) (b) (c)

Tx1 Tx2

Rx1 Rx2

Tx1 Tx2

Rx1 Rx2

Tx1 Tx2

Rx1 Rx2

(d) (e) (f)
 

Figure 4. Interaction between two networks with TPC applied [22]. 

Transmitters and receivers are represented by Tx and Rx blocks, respectively. A solid arrow (→) from 

Tx to Rx indicates that the Rx is in the communication range of Tx. A dashed arrow (- - >) from Tx1 to 

Tx2 indicates that Tx2 can carrier sense Tx1 (i.e. Tx2 can hear Tx1’s transmissions so will not transmit at 

the same time).  

The six scenarios are: 

• Scenarios a and b in Figure 4 represent best-base scenarios, where the two networks do not 

detrimentally affect one another when TPC has been applied. This is a result of both networks 

either having separate network spaces (scenario a) or both networks being able to successfully 

share the same network space (scenario b).  

• Scenario c represents the exposed node problem that results in channel access asymmetry. The 

link between Tx1 and Rx1 is starved since Tx2 cannot hear Tx1’s transmissions so always 

perceives a clear channel. Due to the low throughput characteristics of WSNs, the latency 

introduced by this scenario will be minimal and thus, will not pose significant issues.  
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• Scenario d also represents the exposed node problem but this time it manifests itself in the form 

of packet losses at Rx1 due to simultaneous transmissions by Tx1 and Tx2 causing packet 

collisions at Rx1. 

• Scenarios e and f represent the hidden node problem. The transmitters (Tx1 and Tx2) are not in 

each other’s carrier sense range and hence the problem again manifests itself as packet losses 

at Rx1 and/or Rx2 due to simultaneous transmissions.  

To the best of the author’s knowledge there are no previous studies on the occurrence of the six 

scenarios presented in Figure 4 for WSN deployments. These have however been studied for unplanned 

dense deployments of IEEE 802.11 networks in [22] and [23], and were found to be highly probable 

because of their high throughput characteristics. Detecting and avoiding these problems in mobile 

environments was also found to be challenging since they can be dynamically introduced for short time 

periods. Although the probability of these scenarios occurring in WSNs is lower due to the low 

throughput characteristics of WSN applications and regulatory body restrictions, they are still predicted 

to degrade the performance of the network and therefore must be addressed.  

In [24] the medium access control (MAC) protocol specified by the IEEE 802.15.4 standard, which is 

commonly used in WSNs, was studied with TPC enabled. This study observed that the nodes 

experienced lower communication reliability when TPC was enabled. The link unreliability was 

believed to be linked with limitations of the carrier sense multiple access with collision avoidance 

(CSMA/CA) algorithm, which resulted in scenarios d, e and f occurring. Although it was shown in [24] 

that in some cases with appropriate parameter settings the communication reliability can be improved, 

these parameters were often not compliant with the standard.  

In [22] it was recommended that the packet delivery properties of the link are monitored to address the 

exposed and hidden node issues. Through monitoring packet delivery properties of the communication 

link, the TP could be increased to either leverage the capture effect or to bring the interfering transmitter 

within the carrier sense range. Both techniques would have a desirable effect and would allow for 

scenarios d, e and f to be identified and mitigated. Many previous works on TPC presented in the 

literature (further details provided in 2.1.6 Related Works) do not account for packet delivery properties 

so are unable to identify and mitigate against the exposed and hidden node issues. These protocols are 

therefore likely to suffer from performance degradation due to packet losses.  

 

2.1.4 Transmission Power Control Protocols 

TPC protocols can be categorised into four different categories depending upon the configurability of 

the TP. These are: 

• Network-level. A single fixed TP is used for all communications within the network (for 

example [25]). 

• Node-level. Every node uses a single fixed TP for all its neighbours (for example [26]).  

• Neighbour-level. Each node uses a different fixed TP for each neighbour (for example [27]). 
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• Packet-level. The TP is configured on a per-packet basis (for example [28]). 

Previous research works ( [9] [10] [29]) have concluded that the quality of a communication link 

between an arbitrary distance transmitter and receiver is unique, and is dynamic in nature. For the full 

benefits of a TPC protocol to be realised, a packet-level solution is required. To implement a packet-

level TPC protocol, the quality of each communication link needs to be continually evaluated and 

information about this distributed in the network. This process can result in additional memory, 

computation and energy overhead so efficient design practices need to be applied.  

 

2.1.5 Transmission Power Control Algorithms 

As documented in [30], TPC protocols use one of the following algorithms: 

- Linear. Linear TPC algorithms change the TP linearly, step-by-step, through comparing the 

link quality against upper and lower thresholds. The gradual change in TP offered by this 

technique results in the optimum TP being reached in a conservative manner.  

- Binary. Binary TPC algorithms operate in a similar manner to linear algorithms but the step 

size change in TP is exponential. This type of approach is more aggressive than linear 

algorithms and the optimal TP is reached much sooner but there is an increased risk of 

detrimental effects to the communication reliability.   

- Dynamic. Dynamic TPC algorithms directly determine the optimal TP from a predefined 

relationship between TP and the link quality property.   

An assessment carried out in [30] observed that dynamic algorithms yielded the best performance from 

reliability and energy efficiency perspectives because of their low latency characteristics. However, 

dynamic algorithms typically consume more memory and processing resources than other approaches 

so care must be taken to ensure they are practical to implement on the resource constrained hardware.  

  

2.1.6 Related Works 

TPC protocols have been studied extensively in the literature; in several different contexts and with 

several different objectives. This has resulted in TPC protocols being produced for multiple wireless 

technologies, including; cellular ( [31]), mobile ad-hoc ( [32]), vehicular ad-hoc ( [33]), and wireless 

local area networks ( [34]). TPC strategies and methods for traditional networks cannot simply be 

replicated for WSNs. Reasons for this include regulations surrounding the use of industrial, scientific 

and medical (ISM) radio bands, the availability of link quality metrics and resource constraints of the 

hardware. Because of these important differences, only TPC protocols which consider WSN 

applications and that are optimised for energy efficiency objectives have been considered. A taxonomy 

of the most relevant TPC protocols for WSN applications is presented in Table 2 (page 29). 
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In [10], Lin et al. proposed ATPC; an adaptive TPC protocol which modulates the TP on a per-packet 

basis using an autoregressive filter on RSSI samples. The protocol was tested in pseudo-static 

environments and was found to achieve significant energy savings. Correia et al. in [35] developed 

ATPC to include battery voltage and noise power measurements. Xiao et al. in [2] and Lee et al. in [30] 

proposed similar channel quality based TPC protocols. These were optimised and tested in healthcare 

applications with high throughput. Although the aforementioned works present protocols with 

significant energy savings, they were tested in best case scenarios, i.e. static network conditions or 

dynamic network conditions with high throughput. On top of this, they required large numbers of 

samples which are often impossible to achieve because of the low throughput characteristics of WSN 

applications and impractical to implement on the resource constrained hardware. The TPC proposed in 

this thesis differs as it has been designed to be application independent and as such, its performance has 

been optimised and analysed over various link conditions using both simulated and practical 

approaches. Moreover, it is practical to implement on the resource constrained hardware because it 

requires few samples and leverages simplistic metric evaluation techniques.  

In [29], [17] and [36], TPC protocols which capture channel quality and channel stability properties 

were proposed. These works all quantified the channel quality properties through measuring the power 

at the receiver (Receive signal strength indicator, RSSI) and the channel stability properties through 

quantifying the variance in the RSSI metric. The aforementioned works commonly argued that channel 

stability properties need to be captured to address estimation errors which are often the result of link 

quality changes between measurement and operational windows. The low channel throughput 

characteristics of WSN applications coupled with the dynamic tendencies of the transmission medium, 

were found to lead to large estimation errors in [29]. Observations presented in previous works highlight 

that channel stability properties need to be captured to ensure energy efficient and reliable operation.  

In [37], B-MAC-PCI is proposed which only captures the packet delivery properties of the 

communication link. This study observed that some of the detrimental effects to communication 

reliability, which can often be exacerbated through the implementation of a TPC protocol (most 

noticeable increased likelihood of hidden and exposed node issues because of the interference and 

communication radii are supressed [22]), can be addressed through capturing packet delivery properties. 

Despite this, the protocol was found to only achieve minimal energy savings because it suffered from 

poor agility as a result of using a linear tuning algorithm. This work highlights that packet delivery 

properties should complement, rather than replace, channel quality properties.  

The aforementioned, state-of-the-art TPC protocols have presented some promising results and 

therefore act as a solid foundation. However, they all suffer from one or more common deficiencies. 

These are summarised below and referenced in Table 2 (page 29). 

1. Not practical to implement in WSN hardware. Many of the current TPC protocols utilise 

link quality estimation techniques which are computationally expensive and/ or require a large 

number of samples to be cached so are not practical to implement on the resource constrained 

hardware. For example, in AMC-TPC [17] over 4000 samples need to be cached to analyse the 

relationship between TP and link quality.  
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2. Poor accuracy. Several works on TPC have experienced poor energy efficiency and/ or 

communication reliability, particularly when the link quality has dynamic tendencies. For 

example, ATPC [10], BMAC-PCA [35] and Hybrid [30], do not offer interference mitigation 

so there will be errors in the link quality estimate when these protocols are implemented into 

real-world WSNs.  

3. Poor tuning agility. Current TPC protocols have leveraged metric evaluation techniques and 

tuning algorithms which are slow to react to changing channel conditions. For example, B-

MAC-PCA [35] and RSSI/LQI TPC for BANs [36] implement linear TPC algorithms. As 

described in 2.1.5 Transmission Power Control Algorithms, linear algorithms only allow the 

TP to be changed by one level at a time. When linear algorithms are implemented in networks 

which have low throughput and/ or dynamic link conditions, the TP will be poorly optimised 

to the current channel conditions and detrimental effects to the communication reliability and 

energy efficiency are likely.  

4. Optimised for different objectives. Several TPC protocols have been proposed with the 

primary objective of enhancing throughput ( [38]), increasing connectivity ( [39]) and reducing 

delays ( [40]). Since energy is the fundamental resources constraint in WSNs, TPC protocols 

with the primary objective of increasing the energy efficiency are of most relevance. 

5. Optimised for a single application. Many current TPC protocols are modelled, optimised and 

tested on single applications with specific environmental factors and wireless properties. For 

example, ATPC for WBANS [29], TPC in WBANs for healthcare monitoring [2], RSSI/LQI 

TPC for BANs [36] and Hybrid [30] have only been tested in healthcare applications with high 

throughput. Since WSNs cover a plethora of application areas, the performance of the TPC 

protocol needs to be optimised over various link conditions and radio configurations.    

6. Based on theoretical study and simulations. Although theoretical study and simulations 

provide a valuable and solid foundation, solutions (such as [29]) found by such efforts are often 

ineffective in real running systems. This is because they are based on simplified assumptions 

which are not representative of actual channel conditions, such as; static link quality, perfect 

modulation accuracy and continuous TP levels.  

7. Do not account for the energy consumed by packet retransmissions. Almost all link layer 

protocols used in WSNs use packet acknowledgement and retransmission mechanisms to 

improve the communication reliability. Practical evaluations of ATPC [10], B-MAC-PCA [35] 

and RSSI/LQI TPC for BANs [36] did not account for the energy consumed by packet 

retransmissions. As such, the energy savings reported by the aforementioned works are often 

impossible to achieve in real-world implementations.  
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Protocol 

Hardware 

implementation 

(transceiver) 

Application(s) 
Performance 

metric(s) 

Interference 

mitigation 

Link quality properties 

Hardware 

independent 

Pre-

configuration 
Algorithm Deficiencies 
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ta

b
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y
 

ATPC 

[10] 

MicaZ (Chipcon 

CC2420, IEEE 

802.15.4 compliant) 

Not explicit 

Receiver 

sensitivity and 

RSSI. Link 

quality 

indicator 

(LQI) shown 

to work. 

Not explicit X   Yes (if LQI 

not used) 
No Dynamic 1, 2,6  

B-MAC-

PCI [35] 

Mica2 (Chipcon 

CC1000, IEEE 

802.15.4 compliant) 

Not explicit Packet ACKs Not explicit  X  Yes 

Yes. Thresholds 

for the number 

of packet 

ACK/NAK 

before TP is 

modified are 

programmaticall

y implemented. 

 Linear 2, 3 

B-MAC-

PCA [35] 

Mica2 (Chipcon 

CC1000, IEEE 

802.15.4 compliant) 

Not explicit 

RSSI, Noise, 

battery 

voltage and 

receiver 

sensitivity. 

Not explicit X   Yes 

Yes. Values of 

receiver 

sensitivity and 

SINR threshold 

are 

programmaticall

y implemented. 

 Dynamic 2, 6 

ATPC for 

WBANs 

[29] 

No practical 

implementation, 

based on results 

from [41]. 

Healthcare 

applications in 

BANs. 

Receiver 

sensitivity, 

RSSI 

(autoregressiv

e filter) 

Not explicit X  X Yes 

Yes. Values of 

receiver 

sensitivity are 

programmaticall

y implemented. 

Dynamic 5, 6 

TPC in 

WBANs 

for 

healthcare 

MicaZ (Chipcon 

CC2420, IEEE 

802.15.4 compliant) 

Healthcare 

applications in 

BANs. 

RSSI 

(weighted 

average), 

upper and 

Not explicit X   Yes  

Yes. Upper and 

lower thresholds 

for RSSI and 

averaging 

Binary 
2, 3, 5, 6 

 



   

29 

 

monitorin

g [2] 

lower 

thresholds of 

RSSI. 

weight of 

improving/ 

deteriorating 

channel are 

programmaticall

y implemented. 

AMC-

TPC [17] 

Unknown (Texas 

Instrument CC2430, 

IEEE 802.15.4 

compliant) 

Industrial 

automation and 

control.  

RSSI, SINR 

upper (based 

on channel 

stability) and 

lower 

threshold. 

Yes X  X Yes  

Yes. SINR 

reference is 

programmaticall

y 

implemented.    

 Dynamic 1, 5 

RSSI/LQI 

TPC for 

BANs in 

healthcare 

environme

nt [36] 

TMote Sky 

(Chipcon CC2420, 

IEEE 802.15.4 

compliant) 

Healthcare 

applications in 

BANs 

RSSI, LQI, 

variable upper 

threshold of 

RSSI (based 

on channel 

stability) 

Yes X  X No 

Yes. Target 

lower threshold 

of RSSI and 

averaging 

weight of 

improving/ 

deteriorating 

channel are 

programmaticall

y implemented. 

Linear (one 

level 

decrease for 

improving 

link, two 

level 

increase for 

degrading 

link) 

 

5, 6 

Hybrid 

[30] 

Mica2 (Chipcon 

CC1000, IEEE 

802.15.4 compliant) 

Healthcare 

applications in 

BANs. 

RSSI, fixed 

upper and 

lower 

thresholds of 

RSSI.  

Not explicit X   Yes 

Yes. Upper and 

lower thresholds 

for RSSI are 

programmaticall

y implemented.  

Binary (for 

static 

environment

s) and linear 

(for 

dynamic 

environment

s). 

2, 3, 5, 6, 7 

Table 2. Taxonomy of state-of-the-art TPC protocols for WSNs.
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As seen in the above analysis, TPC protocols for low-power WSNs are not well developed. The author 

believes the following design challenges need to be addressed to increase the adoption of TPC protocols 

in WSN applications: 

- Precise tuning algorithm which allows for the maximum energy savings to be achieved without 

detrimentally affecting the communication reliability.  

- Minimal memory and computation overhead so it is practical to implement on the resource 

constrained hardware. 

- Application, hardware and standard agnostic.  

- Adaptive to link quality changes.  

 

2.1.7 Summary 

This sub-section can be summarised as follows: 

- TP/ CR/ 
transE  models show that energy savings are only available up to a certain limit and 

beyond this, detrimental effects to the energy efficiency and communication reliability are 

highly probable.  

- The unique and dynamic nature of wireless communication links result in packet-level 

protocols and dynamic algorithms yielding the optimum performance. These approaches do 

however require more memory and computation resources than other approaches so efficient 

design is necessary to ensure the protocol is practical to implement.  

- Hidden and exposed node issues can be exacerbated through the implementation of a TPC 

protocol. These effects can be identified and mitigated through capturing the packet delivery 

properties of the communication link. 

- There has been extensive research on TPC protocols but their use in low-power WSNs is 

relatively new. As such, the solutions are not well developed and they suffer from a number of 

common deficiencies which limits their performance. Addressing the common deficiencies is 

necessary to increase the adoption of TPC protocols in WSNs.   
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2.2 Wireless Channel Modelling 

2.2.1 Introduction 

To implement a measurement based TPC protocol, the underlying characteristics of the wireless 

communication link need to be analysed and the relationship between TP and link quality needs to be 

defined. This subsection aims to: 

- Describe the fundamental principles of wireless communications. 

- Present suitable models and algorithms for quantifying channel performance over various link 

conditions. 

- Present observations from previous empirical studies on low-power wireless links.  

 

The wireless channel places fundamental limitations on the performance of wireless communication 

systems. The electromagnetic waves are diffracted, scattered or reflected as the wave propagates 

through the medium resulting in a decrease in signal strength with distance. The decay in signal strength 

in respect to distance is known as the path loss index and broadly depends on the environment and 

frequency of operation [42]. Fading of the signal over certain propagation media may also occur, which 

will vary with time, geographical position or radio frequency, and is often modelled as a random 

process. Fading is either due to multipath propagation (referred to as multipath induced fading) or due 

to shadowing from obstacles affecting the wave propagation (referred to as shadow fading) [43]. The 

presence of reflectors in the environment surrounding a transmitter and receiver create multiple paths 

that a transmitted signal can transverse. As a result, the receiver sees a superposition of multiple copies 

of the transmitted signal, each traversing a different path which can lead to constructive or destructive 

interference at the receiver [44].  

Electromagnetic waves propagating from a transmitter to receiver can be classified as sky waves, space 

waves and ground waves. Sky waves are reflected from the ionosphere at High Frequency (HF) 

frequencies (3 to 30 MHz) and can be used for long-range communication. Surface waves, sometimes 

referred to as ground waves, exist only for vertical polarisation when transmitting and receiving 

antennas are close to the surface of the earth. For antenna elevations greater than a wavelength above 

the surface and for frequencies greater 1 MHz, the magnitude of the surface waves becomes negligible 

[42]. Space waves travel via direct line-of-sight, reflected paths and (sometimes) refracted paths. In this 

study, the focus is on short-range communications (such as those encountered in WSNs) at microwave 

frequencies, where only space waves are plausible and of significant influence. 

 

2.2.2 Survey of Channel Models 

Multiple link properties, including; path loss, coverage prediction and receiver sensitivity can be 

analysed using deterministic or statistical approaches. In a deterministic approach, link properties are 

modelled theoretically using appropriate equations and formula. An example of this is ray tracing, 

where the possible propagation paths are identified and the amplitude and delay of each path is 
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considered. This approach requires a rich set of information about the environment stored in a three-

dimensional database. The process can be time consuming, resource heavy and potentially miss other 

factors such as interference from adjoining networks and changes to the transmission medium over 

time. In a statistical approach, mean signal strength, signal quality, packet delivery or other link 

properties are observed over a range of distances, in different environments and over varying time 

periods through empirical measurement.  

In this work, a combination of deterministic and statistical approaches will be used to analyse properties 

of the link quality. This will consist of collecting a rich set of empirical data from different WSN 

environments, under varying conditions and over relatively long time periods. This statistical data will 

then be compared with theoretical channel models to infer the underlying phenomenon. From this, 

models that can estimate and predict the optimum TP will be developed.  

 

2.2.3 Relationship between Transmission and Reception Powers 

An essential aspect of wireless channel modelling for a TPC protocol is to quantify propagation loss, 

which defines the relationship between transmission and reception powers. It is dependent on many 

factors, including; communication distance, carrier frequency and antenna gain. This relationship can 

be analysed deterministically, under ideal conditions, using the Friis free-space propagation model.  

The Friis free-space propagation model is used to estimate the reception power when the transmitter 

and receiver have a clear, unobstructed, line-of-sight communication path. The model predicts that the 

reception power (
rP ) decays as a function of the transmitter and receiver separation ( d ), raised to the 

power two (i.e. a power law function). The signal power at the receiver when considering the transmitter 

and receiver antenna gains (
tG  and 

rG , respectively), TP (
tP ) and wavelength ( ), can be calculated 

using Equation 1.  
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Equation 1. Friis free-space path loss [42]. 

The free-space path loss model shows that the received power decays with distance at a rate of 20dB/ 

decade.  

Wireless transmission range is defined in terms of transmission loss (
tL ) which represents signal 

attenuation in decibels. It is the difference (in dB) between the transmitted and received signal as 

described in Equation 2. 
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Equation 2. Transmission loss [42]. 

The equation for unity gain antennas is called path loss (
pL ): 
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( ) 10log ( )

(4 )
pL dB

d




= −  

Equation 3. Path loss [42]. 

Path loss is often expressed as in terms of carrier frequency ( f ) in MHz and communication distance 

( d ) in metres as shown in Equation 4. 10 10( ) 20log ( ) 20log ( ) 27.56pL dB f d= + −  

Equation 4. Path loss in standardised form [42]. 

The fixed element (-27.56) in Equation 4 is the sum of: 

- Converting wavelength (λ) in m to frequency (f) in MHz (
1020log (300)  

- Simplifying 
1020log (4 )  

Different values for the fixed element are required for different units of distance or frequency.  

The path loss and transmission loss are related by: 

( ) ( )p p t rL dB L dB G G= − −  

Equation 5, Relationship between path loss and transmission loss [42]. 

The received power is given by: 

r t tP P L= −  

Equation 6. Received power with respect to transmitted power and transmission loss. 

The Friis free space formula calculates the received power for a distance that is in the far field region 

of the transmitting antenna. The far field region ( fd ) can be calculated from the largest physical 

dimension of the antenna ( D ) and the wavelength as follows:  

22
f

D
d


=  

Equation 7. Far field region [42]. 

Since WSNs use radios that operate in the ISM frequency bands (e.g. 433 MHz, 868 MHz, 2.4 GHz, 

etc.) and incorporate small antennas, the far-field region is close to the transmitting antenna and near-

field effects are not often observed. For example, consider the widely used Anaren A1101R08A radio 

module ( [45]), it has an integrated antenna with the largest physical diameter of 17mm. When operating 

at 868 MHz, the far field region starts at 1.7 mm from the transmitting antenna which is orders of 

magnitude lower than the typical communication distance.    

The free-space path loss model fails to account for fading affects and decay in mean signal strength not 

caused by free-space, e.g. refraction, diffraction, absorption and reflection. A vast array of works ( [7] 

[9] [20]) have provided empirical characterisations of real-world wireless links and have observed that 

wireless link quality experiences complex and dynamic tendencies as a result of spatio-temporal factors 
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and hardware inaccuracies. These factors result in large estimation errors when using the free-space 

path loss model.  

Whilst there are many sophisticated deterministic models that can overcome many of the limitations 

associated with the free-space model (such as Rayleigh, Ricean and Nakagmi distributions [46]), several 

studies have shown that the log normal shadowing model presented in Equation 8 gives a good match 

for short-range, line-of-sight communications. The log normal shadowing model incorporates a path 

loss exponent ( ) and a random shadowing term ( X ) to account for the spatio-temporal factors which 

are often environmentally dependent.  

10 10( ) 10 log ( ) 10 log ( ) 30 32.44pL dB f d X  = + − + +  

Equation 8. Path loss for different path loss exponents [47]. 

The log normal shadowing model can be further developed to account for more of the factors of the 

wireless transmission medium. For example, obstacles including walls can be modelled by including 

additional adsorption terms and the random fading term could be modelled as a multi-dimensional 

random process to incorporate both temporal and spatial correlations. Even richer models that explicitly 

characterise the impact of other factors besides distance, e.g. the antenna orientation and height, have 

been proposed ( [42]).   

 

2.2.4 Interference in Wireless Sensor Networks 

Interference is a phenomenon inherent to wireless networks because the transmission medium is shared 

between multiple devices. The dominant co-channel interference in a WSN is likely to be due to the 

neighbouring nodes (known as internal interference) or due to other wireless equipment operating in 

the same frequency band (known as external interference). The severity of interference effects are 

influenced by the network design, e.g. network architecture, MAC protocol, node density and 

deployment strategy. For example, the co-channel interference experienced in networks with a 

centralised MAC protocol will be lower than decentralised counterparts because nodes are restricted to 

transmitting in allocated time slots. Since the network design is application and standard dependent, the 

aggregate interference experienced by a WSN will often be unique to a single network and liable to 

change over time. It is therefore difficult to predict the interference experienced in WSNs.  

Quantification of aggregate interference experienced by a receiving node in a collaborative network is 

vital for the performance of upper layer protocols, such as TPC. Interference in WSNs has been studied 

extensively using both theoretical and empirical approaches in several works ( [9] [17] [21]). These 

works have commonly argued that internal interference is typically minimal and in some cases 

negligible, even when decentralised MAC protocols are implemented. This is due to the low bandwidth 

characteristics of the supported applications and the regulatory body restrictions in the ISM bands. For 

example, the European Telecommunications Standard International (ETSI) impose restrictions on 

transmission events in the 868 MHz bands which include low duty cycle (< 1% per channel), listen 

before talk, adaptive frequency hoping and dead time after transmission [48]. External interference, 
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however, has been shown to significantly affect the link quality in WSNs. This is predominantly the 

result of interference from high TP, high bandwidth, co-habiting networks such as Wi-Fi (IEEE 

802.11b) and Bluetooth. It is widely acceptable that for a protocol or mechanism to be applied to 

multiple applications, the worst-case scenarios (i.e. interference existing in the network) need to be 

considered.     

 

2.2.5 Noise Floor 

The noise floor can be defined as the measure of the signal created from the sum of all the noise sources 

and unwanted signals within a system which are dependent on hardware, temperature and environment. 

The noise floor is used to assess the sensitivity of the wireless system, i.e. the minimum possible 

detectable signal. The noise power (
nP ) can be calculated from Boltzmann’s constant ( k ), temperature 

(
0T ) in degrees kelvin, detection bandwidth ( B ) and the noise figure ( F ), as shown in Equation 9.   

0nP FkT B=  

 Equation 9. Noise floor [42].  

The noise power is not fixed and will vary over time depending on the environmental conditions. For 

example, diurnal temperature changes will influence the thermal noise generated by the radio 

components [44].  

 

2.2.6 Signal-to-Noise Ratio 

The signal-to-noise ratio (SNR) is the degree to which the input signal is greater than the noise power 

within a bandwidth of interest. The SNR experienced at the receiving node can be estimated from the 

transmission loss, TP and noise power as follows: 

t t nSNR P L P= − −  

Equation 10. Signal-to-noise ratio [42]. 

 

2.2.7 Bit Error Rate 

The bit error rate (BER) for a given radio configuration is a function of the receiver SNR. The exact 

form of the function depends on the physical layer particulars of the radio, including the modulation 

technique [49]. The relationship between the theoretical BER and SNR for the most common 

modulation techniques used in WSNs is shown in Figure 5. 
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Figure 5. Theoretical BER over SNR for different modulation techniques [50]. 

Depending on packet size, and any packet-level encoding used, the BER can in turn be used to derive 

the relationship between packet reception ratio (PRR) and SNR. For example, considering a non-

coherent frequency shift keying (FSK) radio, the PRR for a given SNR and packet length (L) can be 

calculated as follows: 

1.28
1

(1 )
2

SNR

LPRR e
−

= −  

Equation 11. PRR as a function of SNR and packet length [51]. 

The relationship between SNR and PRR is of significant importance to a TPC protocol since the TP is 

typically modulated to achieve the minimum SNR before detrimental effects to the communication 

reliability occur.  

 

2.2.8 Receiver Sensitivity 

The receiver sensitivity is defined as the lowest reception power that yields a packet error rate (PER) 

less than a predefined figure. The maximum allowable PER is dependent on the standard but many 

WSN implementations use the guidelines of a 1% PER as defined in IEEE 802.15.4 [52]. Many 

standards, including IEEE 802.15.4, specify that the receiver sensitivity is based on a best-case noise 

floor (no interference) and the input signal has perfect modulation accuracy. For example, considering 

a FSK modulation technique, the carrier frequency offset of the input signal is zero. The effect 

frequency offset has on receiver sensitivity is shown in Figure 6.    
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Figure 6. Receiver sensitivity as function of modulation inaccuracy [53]. 

In real-world wireless communication links, signals received at the receiver sensitivity power level are 

rarely received without errors. This is because: 

- Noise floor. The noise floor is typically higher than the best-case scenario from which the 

receiver sensitivity was calculated and is liable to change over time.  

- Modulation inaccuracies. Shadowing effects, noise and hardware inaccuracies are likely to 

cause modulation inaccuracies.  

Therefore, configuring the TP to a given level which results in the receive signal power being equal to 

the receiver sensitivity is unlikely to yield optimum performance from both an energy efficiency or 

communication reliability perspective. Alternative techniques which are able to account for signal 

variability at the receiver are therefore required.  

 

2.2.9 Empirical Characteristics of Low-Power Wireless Links 

Several research efforts have been devoted to an empirical characterisation of low-power wireless links. 

The observations presented in these works which are most relevant to this thesis are as follows: 

- In [7] it was shown that the transmission range is not isotropic, where packets are received 

within a certain distance. This was attributed to various spatial characteristics, including; 

irregular antenna radiation pattern, multipath effects and unique propagation paths.  

- The effect that obstacles and environmental changes have on link quality was studied in [21] 

and [54]. The works concluded that link quality will have a complex, unique and dynamic 

nature in WSN applications so identifying and maintaining the optimum TP is a significant 

challenge.   

- In [18] it was found that links in WSNs are typically asymmetric, i.e. the uplink and downlink 

properties are significantly different. This observation was confirmed in [12], where the 

performance difference between the uplink and downlink PRR was as great as 40%.  
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- The factors which affect link asymmetry was assessed in [55]. This study argued that hardware 

asymmetry and radio irregularity constitute the major causes of link asymmetry.   

- The impact of interference from co-habiting Wi-Fi networks was investigated in [56]. The work 

found that external interference effects from these networks were severe, leading to 

performance degradation when a node is operating within 7 MHz of the carrier frequency and 

within a communication distance of 8 m. In [12] it was noticed that only IEEE 802.15.4 channel 

26 is largely immune from this source of interference because it does not overlap with Wi-Fi 

channels.  

- External interference from domestic appliances, such as microwave ovens, was analysed in 

[57]. Using a spectrum analyser, it was observed that external interference from domestic 

appliances can spread along several (adjacent) channels, i.e. microwave ovens can cover almost 

half of the 2.4 GHz available spectrum.  

- The importance of interference mitigation for a TPC protocol was shown in [17]. The results 

highlighted that TPC protocols that do not feature interference mitigation will suffer from poor 

stability, reliability and energy efficiency in real-world wireless links because of link quality 

estimation errors.   

- The time varying effect on link quality was investigated in [58]. The work highlighted that three 

typical temporal patterns will exist in WSNs and the severity of each of these will be application 

dependent.  

- Work in [53] (Chapter 2, pages 21-56) compared the theoretical and practical performance of 

radio hardware. This study argued that theoretical parameters (specified in the datasheet) are 

often impossible to achieve due to interference, radio hardware inaccuracies and environmental 

factors. 

 

In the following section the high-level observations from the vast array of empirical studies on low-

power wireless links are distilled and classified into spatial and temporal characteristics. Such 

observations are helpful in the design of an appropriate link quality estimator (LQE) that captures the 

most important properties of link quality required for a TPC protocol.  

 

2.2.9.1 Spatial Characteristics 

Spatial factors include the surrounding environment, such as terrain and the distance between 

transmitter and receiver. It was demonstrated in several studies ( [9] [53] [59]) that the transmission 

range is not isotropic, where packets are received only within a certain distance from the transmitter. 

The results presented in [53] are shown graphically in Figure 7. 
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Figure 7. PRR as a function of communication distance for real-world communication links [53]. 

Figure 7 shows that the link quality generally degrades with an increase in communication distance, 

however this is not always the case. For example, a receiver that is further from the transmitter can have 

better packet delivery properties than another receiver nearer to the transmitter and two receivers placed 

at the same distance from the transmitter can have different packet delivery properties. This is due to 

multiple influences, including: 

- Irregular radiation pattern. WSNs often use radio modules with on-board low-gain 

antennas. In such a design, although intended to be omnidirectional, the actual radiation pattern 

is often irregular. This is mainly the result of circuitry, batteries and metallic housings in close 

proximity to the antenna which results in the antenna not having the same gain along all 

propagation directions.  

- Multipath effects. In instances where the direct signal is weak due to path loss, multipath 

effects can significantly influence the link quality through constructive or destructive 

interference.  

- Propagation path. The decay in signal strength caused by shadowing effects (e.g. refraction, 

diffraction, absorption and reflection) is unique to a single communication link. 

As a result of the spatial characteristics, the relationship between link quality is not deterministic so 

metrics such as communication distance cannot be used to identify the optimum TP.  

 

2.2.9.2 Temporal Characteristics 

Temporal characteristics of the wireless transmission medium change the link quality over time. Several 

studies ( [2] [10] [29]) have confirmed that temporal variations of link quality are due to changes in the 

operational environment, such as; climatic conditions (e.g. temperature and humidity), human presence, 

obstacles and interference. As documented by Lin et al. in [58], temporal variations can be categorised 

into three patterns: 



   

40 

 

1. Small fluctuations. Small fluctuations are the result of multipath fading and changes in 

temperature and humidity.  

2. Large fluctuations and disturbances. Large fluctuation and disturbance temporal patterns are 

typically caused by shadowing and fading effects of humans, moving doors and other objects.  

3. Continuous large fluctuations. Continuous large fluctuations are the result of interference 

from high-bandwidth, high TP, co-habiting networks (e.g. adjoining Wi-Fi networks) and 

appliances operating in the same frequency band (e.g. microwave ovens).  

 

2.2.9.3 Deficiencies with Existing Studies 

The aforementioned empirical studies have been carried out using different hardware platforms having 

different radio ICs, (e.g. MicaZ that incorporates the Chipcon CC2420 used in [2] and [10], whilst the 

Mica2 with the Chipcon C1000 used in [30] and [35]), different operational environments (e.g. indoor, 

outdoor) and different experimental settings (e.g. traffic load, channel access mechanism, channel, etc.). 

They have therefore presented radically different and in some instances, contradictory results on the 

magnitude of these factors. It is therefore necessary to analyse wireless link quality in typical WSN 

environments with current state-of-the-art and commonly used radio hardware to draw suitable 

conclusions upon which a TPC protocol can be designed.  

 

2.2.10 Summary 

This sub-section can be summarised as follows: 

- Many of the properties that affect wireless link quality are application and environment 

dependent, and they may be dynamic in nature. For a TPC protocol to identify and maintain 

the optimum TP, the wireless link quality must be continually evaluated in real-time using 

statistical approaches and metrics generated internally to the network.  

- Deterministic modelling of the network is still required to develop the key principles behind 

the TPC protocol, such as evaluating the raw link quality metrics. However, deterministic 

models should be consigned to the development stages as many of the metrics which are 

required in the computation (such as communication distance, path loss exponent and receiver 

sensitivity) are unlikely to be known in real-world implementations and are likely to change 

over time.  

- Interference in WSNs is likely in certain applications. This is largely the result of external 

interference from high-bandwidth, high TP, co-habiting networks (such as Wi-Fi). Internal 

interference is typically negligible because of the low throughput characteristics of the 

supported applications and the regulatory body restrictions of the ISM bands. Interference 

mitigation is therefore a key requirement to ensure energy efficient and reliability operation. 
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- Real-world communication links are affected by spatio-temporal factors which result in the 

wireless link quality experiencing complex, unique and dynamic characteristics. Many 

previous studies have presented contradictory results on the magnitude of these factors in WSN 

applications. Therefore, further study is proposed to quantify these factors in typical WSN 

environments and with current state-of-the-art radio hardware.  
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2.3 Link Quality Estimation 

To identify and maintain the optimum TP, the wireless link quality needs to be continually evaluated 

through a process known as link quality estimation. Link quality estimation consists of evaluating a 

metric within an estimation window (e.g. at each w seconds or based on w received/ sent packets) to 

quantify the quality of a communication link [60]. The generated metric is known as a link quality 

estimator (LQE). A LQE can estimate the quality on the basis of multiple properties, including; packet 

delivery, asymmetric, stability, channel quality, channel load and location [61]. 

Link quality estimation is already used as a fundamental building block in a number of network 

protocols and mechanisms, such as; medium access control, routing, mobility management, topology 

control, data rate control and TPC [60]. For instance, routing protocols use link quality estimation to 

select routes with the best packet delivery properties, whilst data rate control protocols use link quality 

estimation to evaluate the maximum data rate for an individual communication link. The accuracy, 

agility and link quality properties captured by the LQE are heavily dependent on the protocol or 

mechanism it is proposed to be used in and the resources available in the network.  

Measuring and characterising link quality in WSNs is a challenging task due to the complex and 

dynamic nature of transmission medium, the resource limitations of the hardware and the low 

throughput characteristics of the typical applications. Several simplistic theoretical models were 

presented in section 2.2 Wireless Channel Modelling but they were found to lead to gross errors due to 

spatio-temporal factors of the transmission medium. Although more complex theoretical models were 

also discussed, these were found to be impractical because their computation required metrics which 

were generally inaccessible to the transmitting node and they utilised metric evaluation techniques 

which cannot be implemented on the resource constrained hardware. Therefore, link quality needs to 

be estimated in real-time, using resources internal to the network and metric evaluation techniques 

which are practical to implement on the resource constrained hardware.  

The remainder of this subsection aims to: 

- Describe the link quality estimation process. 

- Present the link quality properties that needs to be captured for a TPC protocol.  

- Review currently available LQEs. 

 

2.3.1 Link Quality Estimation Process 

The link quality estimation process involves three stages as shown in Figure 8.  
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Figure 8. Link quality estimation process [61]. 

Link monitoring defines the strategy to have traffic over the link allowing for link measurements. 

Baccour et al. in [61] defined three types of link monitoring: 

1. Active link monitoring. In active link monitoring, a node monitors the links to its neighbours 

by sending probe packets.  

2. Passive link monitoring. Passive link monitoring exploits existing traffic without incurring 

additional communication overhead. 

3. Hybrid link monitoring. Hybrid mechanisms combine both active and passive link 

monitoring, allowing a balance between energy efficiency and up-to-date link measurements.  

The link monitoring strategy is dependent on the network resources, channel conditions and the 

sampling requirements of the LQE. Passive link monitoring has been recommended in several previous 

TPC protocols ( [10] [34] [62]) because it has a lower energy overhead than hybrid or active approaches. 

However, passive link monitoring can lead to a lack of up-to-date link measurements when the network 

has low throughput so the LQE has to be designed to account for this.  

Link measurements can be obtained from metrics captured by received data packets, received 

acknowledgement packets and transmitted packets. Receiver-side LQEs are computed from metrics 

retrieved from received data and acknowledgement packets, such as; sequence number, time stamp, 

receive RSSI, SNR and link quality indicator (LQI). On the other hand, metrics received from 

transmitted packets, such as; time stamp and packet transmission count, allow for transmitter-side LQEs 

to be computed. After the link measurements are captured, the raw metrics are evaluated using various 

estimation techniques, including; averaging, filtering, learning, regression and fuzzy logic.   

Each stage of the link quality estimation process needs to be optimised for the requirements of a TPC 

protocol, the typical network conditions experienced in WSN applications and the resource limitations 

of the hardware. This includes the use of passive link monitoring and the implementation of simplistic 

metric evaluation techniques which require minimal memory and computation overhead.  
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2.3.2 Link Quality Properties 

There is wide spread debate on what link quality properties need to be captured to accurately determine 

the optimum TP. This has led to previous works using a plethora of link quality properties as 

documented in Table 2 (page 29). In general, the more link quality properties that an LQE can represent, 

the finer grain link qualification possible and therefore, the higher accuracy achievable in the TPC 

protocol. However, analysing multiple link quality properties typically requires large amounts of data, 

collected over large estimation windows. This in turn reduces the agility and increases the computation 

and memory resources required in the link quality estimation process. It is therefore necessary to only 

measure the most energy critical properties of the wireless link to ensure the requirements of a TPC 

protocol can be fulfilled whilst still complying with the resource constraints of WSNs.  

Drawing upon observations presented in previous works on wireless channel modelling ( [9] [18] [42] 

[61]), link quality estimation ( [8] [29] [59] [60]) and TPC ( [17] [29] [36]), multiple link quality 

properties need to be captured to ensure energy efficient and reliable operation of a TPC protocol. These 

are described in the subsequent sections.  

 

2.3.2.1 Channel Quality 

Channel quality represents properties of the received signal. The most common metrics used to capture 

channel quality properties relate to the quality of the signal (i.e. Link Quality Indicator, LQI), the power 

of the received signal (i.e. Receive Signal Strength Indicator, RSSI) and the ratio of the received signal 

power to the noise power (i.e. Signal-to-Noise Ratio, SNR). Channel quality is of significant importance 

to a TPC protocol for the following two reasons. Firstly, channel quality properties allow for a 

quantitative assessment between the configurable parameter, in this instance TP, and the resulting 

received signal. This relationship needs to be established for a dynamic TPC algorithm to be applied 

which as described in 2.1.5 Transmission Power Control Algorithms is more agile than linear and binary 

approaches and thus allows for greater energy savings. Secondly, channel quality properties allow for 

a link quality threshold (LQT) to be generated. Many previous works on TPC, including [10] [17] [36], 

tune the TP to a target value of the channel quality property, commonly referred to as the LQT. 

Operating at the LQT is predicted to yield the highest energy efficiency, i.e. high probability of 

successful packet transmission with little excess power at the receiver.  

 

2.3.2.2 Packet Delivery 

Packet delivery is the capacity of the link to successfully deliver data and is sometimes referred to as 

the communication reliability. Packet delivery properties needs to be captured for the following three 

reasons: 
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1. TPC protocols can detrimentally affect communication reliability. TPC protocols have the 

potential to detrimentally affect the packet delivery properties of a communication link through 

using a TPC which does not result in sufficient link budget for successful packet transmission.  

2. Energy considerations. Communication reliability can significantly affect the energy 

consumed per transaction due to packet retransmissions [13]. To ensure that communication 

activities are being carried out at the lowest energy cost (i.e. with no packet retransmissions), 

the packet delivery properties of the link need to be monitored.  

3. Mitigate against the exposed and hidden node problems. As identified in [22] and discussed 

in 2.1.3 Transmission Power Control Design Considerations, the exposed and hidden node 

problems can be exacerbated through the implementation of a TPC protocol. The effects of the 

hidden and exposed node problems can be mitigated through monitoring the packet delivery 

properties, thus allowing the TP to be increased to leverage the capture effect or to bring the 

interfering transmitter within the carrier sense range.  

 

2.3.2.3 Channel Stability 

Channel stability is a measure of the variability level of the link. As LQEs are calculated based on 

historic performance of the network (over a prior estimation window), when they are used (during the 

operational window) they may not be representative of the current channel conditions due to link quality 

changes between the two windows. Channel stability metrics give a measure of how similar the 

performance of the network is likely to be over the operational window compared to the estimation 

window.  

As discussed in [29], capturing channel stability properties is of significant importance to a TPC 

protocol because they allow for an adaptive fade margin to be implemented. For links with low variance 

(and hence high stability), the perceived performance of the network is likely to be fairly similar in the 

estimation and operational windows so the LQE should be a good representation of the actual channel 

conditions. This subsequently allows a small fade margin to be implemented (i.e. target TP ≈ calculated 

optimal TP) without significant risk of detrimental effects on communication reliability and energy 

usage (due to packet retransmissions). Conversely, communication links with high variance (poor 

stability) result in the LQE not being a close account of current channel conditions so a larger fade 

margin is required to reduce the risk of performance degradation.  

Other link properties, such as packet asymmetry and channel load, are of less relevance to a TPC 

protocol because they do not represent the characteristics of WSNs or the requirements of the 

application. For instance, packet asymmetry can be ignored because communications in WSNs are 

typically one way (upstream) from node to sink and the sink will have significantly higher energy 

resources so optimising the downstream link is not as critical. Measuring only the properties of the link 

quality which are most relevant to the proposed application increases the agility and reduces the memory 

and computation resources required for the link quality estimation process.  
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2.3.3 Link Quality Estimators 
Several LQEs have been reported in the literature. They can be classified as either hardware or 

software based, as shown in Figure 9.  

 

Link Quality Estimators

Hardware-based

PRR-basedRSSI

LQI

SNR

SINR

Software-based

RNP-based Score-based

 

Figure 9. Taxonomy of link quality estimators [61]. 

 

2.3.3.1 Hardware Link Quality Estimators 

Hardware-based LQEs have been extensively used to assess the channel quality properties of 

communication links in WSNs applications. Their main advantage is that they require very minimal, 

and in some instances no post processing so can provide a fast and inexpensive method (from a 

computation and memory perspective) of evaluating link quality. The most common hardware-based 

LQEs are: 

- RSSI. RSSI is an estimate of the received signal power in the transmission channel [52]. It is 

the RF power input to the receiver (denoted as 
rP  in Figure 1) and can be expressed as: 

1
m

s i n

M

i i

m

RSSI P P P

P P
−

= + +

=
 

Equation 12. Receive signal strength indicator [17]. 

Where; 
sP , 

iP  and 
nP  are the signal, interference and noise power, respectively and imP  is the 

interference power from interference number m  and M  is the total number of interferers. RSSI 

is not typically monitored over the complete packet and is often estimated over the preamble 

[8] (e.g. the first 16-bits for the Texas Instrument CC1101 chipset [63]).  

- LQI. LQI is a measure of the modulation quality of the received signal and can be calculated 

based on receiver energy detection, SNR estimation, or a combination of these metrics [17] 

[63]. Although LQI has been proposed in IEEE 802.15.4 (the most common MAC/PHY layer 

standard used in WSNs [1]), no definitive explanation of its measurement range or calculation 

is given [17]. Texas Instruments, a leading chipset manufacture for low-power radios, define 
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LQI as a metric that quantifies the error in the modulation parameter (frequency for FSK and 

GFSK, phase for MSK, amplitude for ASK) against the ideal constellation. Other chip 

manufactures calculate LQI using slightly different methods so it is therefore a manufacture 

specific metric.  

- Signal-to-interference-and-noise ratio (SINR). SINR is the ratio of the power of the signal, 

to the interference plus noise power. It is expressed as: 

( )s n iSINR P P P= − +  

Equation 13. Signal-to-interference-and-noise ratio [17]. 

On platforms that do not feature an SINR register, this metric can be estimated through reading 

the RSSI register during packet transmission to estimate 
sP  and just after to estimate 

n iP P+ . 

- SNR. SNR is the ratio of the power of the signal, to the background noise. It is expressed as: 

s nSNR P P= −  

Equation 14. Signal-to- noise ratio [17]. 

Similar to SINR, SNR can be estimated through reading the RSSI register during packet 

transmission to estimate sP  and sometime after, when the channel is clear, to estimate nP . To 

identify when the channel is clear (i.e. no transmissions and interference effects are negligible), 

clear channel assessment (CCA) modes are required. Although CCA modes are required to be 

compliant with IEEE 802.15.4 [52], they are not a common feature of all wireless standards 

used in WSNs. This means that identifying when the channel is clear is sometimes impossible 

so estimating SNR can be particularly challenging.  

 

2.3.3.2 Software Link Quality Estimators 

Software-based LQEs are derived through packet statistics collection (e.g. packet sequence number). 

Software-based LQEs can be classified into three categories (as shown in Figure 9): 

- Packet reception ratio (PRR). PRR-based LQEs represent the ratio of the number of 

successfully received packets ( rxN ), to the number of transmitted packets ( txN ) over a 

sampling window ( w ), as shown in Equation 15. The sampling window typically represents a 

fixed number of packets or a fixed time period.  

rx

tx

N
PRR

N
=  

Equation 15. Packet reception ratio [53]. 

PRR is simple to measure but its efficiency is dependent on the estimation window size. In [64] 

it was shown that for links with very high or very low PRRs, accurate link quality estimation 

can be achieved over small sampling windows. On the other hand, links with medium PRRs 

need much larger sampling windows to converge to an accurate link quality estimate which in 
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turn increases the memory and computation overhead. The objective of LQEs that approximate 

PRR, such as Window Mean with Exponentially Weighted Moving Average (WMEWMA) 

[65] and Kalmann Filter (KLE) [66], is to provide more efficient link quality estimates than the 

PRR.   

- Required number of packet retransmissions (RNP). RNP-based LQEs count the number of 

packet retransmissions ( rtxN ) required before a successful packet reception is detected, as 

shown in Equation 16. 

1tx rtx

rx

N N
RNP

N

+
= −  

Equation 16. Required number of packet retransmissions [53]. 

- Score. Score-based LQEs provide a link estimate that does not refer to a physical phenomenon 

(like packet reception or packet retransmissions); rather they provide a score or a label that is 

defined within a certain range [53].  

 

2.3.4 Comparison of Link Quality Estimators 

Several previous studies ( [53] [61])  have acknowledged that comparing the performance of currently 

available LQEs is a challenging task. This is because there is a lack of ground-truth metric upon which 

the accuracy of different estimators can be compared. In classic estimation theory, an estimation process 

can be compared to a real known process using a certain statistical tool (e.g. least mean square error). 

However, such comparison is not possible in link quality estimation since there is no metric that is 

considered the “real” one as link quality is represented by quantities of different natures.  

A table (Table 3) has been formulated to show the high-level characteristics of currently available 

LQEs. From Table 3 it can be seen that many of the currently available LQEs only capture single link 

properties so can only provide partial characterisation of the communication link. For example, all PRR 

and RNP based software LQEs are only able to account for the packet delivery properties of the 

communication link. This is a result of them being primarily designed for routing protocols, where link 

quality estimation is used to identify the links with the best packet delivery properties to ensure reliable 

communication. As discussed in 2.3.2 Link Quality Properties, analysis of previous works highlights 

that multiple link properties (namely; channel quality, packet delivery and channel stability) need to be 

captured for a TPC protocol to ensure energy efficient and reliable operation. This renders these single 

property LQEs unsuitable for a TPC protocol in their current form. 

From Table 3, none of the currently available LQEs target all the properties which are proposed for a 

TPC protocol. The channel state information (CSI) [67] LQE can account for channel quality and packet 

delivery properties but is unable to account for stability properties of link quality. CSI also uses active 

link monitoring, which as discussed in 2.3.1 Link Quality Estimation Process, does not exploit existing 

network traffic so requires extra communication and energy overhead. The fuzzy link quality estimator 

(F-LQE) is able to account for all the proposed link quality properties for a TPC protocol, as well as, 
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channel asymmetry. However, as documented in [60], F-LQE requires significant memory and 

computation resources as it captures four different metrics and uses a complex metric evaluation 

technique (fuzzy logic). It is therefore not practical to implement on the resource constrained hardware.  

From the above analysis, it can be seen that a new LQE needs to be designed for the proposed TPC 

protocol that captures the link quality properties which are required to ensure energy efficient and 

reliable operation, whilst still being practical to implement on the resource constrained hardware.    
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Type 
Link quality 

estimator 

Link quality properties captured 

Technique 
Link 

monitoring 
Location Channel 

quality 

Packet 

delivery 

Channel 

stability 
Asymmetry Other 

Hardware RSSI [63] X     

Read from hardware and 

can be averaged 

Passive or 

active 
Receiver 

Hardware LQI [63] X     

Hardware SNR [17] X     

Hardware SINR [17] X     

Software, PRR PRR [61]  X    Average 
Passive or 

active 
Receiver 

Software, PRR WMEWMA [65]  X    Filtering Passive Receiver 

Software, PRR KLE [66]  X    Filtering Not explicit Receiver 

Software, RNP RNP [53]  X    Average Passive Sender 

Software, RNP 

Expected 

Transmission Count 

(ETX) [68] 

 X    Average Active Receiver 

Software, RNP Four-bit [69]  X    Filtering Hybrid 
Sender and 

receiver 

Software, RNP 
Link Inefficiency (LI) 

[70] 
 X    Probability Passive Receiver 

Software, RNP 

Link Expected 

Transmission Count 

(L-ETX) [71] 

 X    Filtering Active Sender 

Software, score 

based 

Fuzzy link quality 

estimator (F-LQE) 

[60] 

X X X X  Fuzzy logic Passive Receiver 

Software, score 

based 

Weighted Regression 

Estimator (WRE) [7] 
X    Location Regression Passive Receiver 

Software, score 

based 
MetricMap [72] X    Channel 

load 
Training and classification Passive Receiver 

Software, score 

based 

Channel State 

Information (CSI) 

[67] 

X X  X  Weighted sum Active Receiver 

Table 3. Taxonomy of currently available link quality estimators. 
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2.3.5 Summary 

This sub-section can be summarised as follows: 

- A LQE is required to assess the quality of the communication link in order to identify and 

maintain the optimum TP. To account for the dynamic link conditions, the link quality needs to 

be estimated in real-time, using resources internal to the network and metric evaluation 

technique which are practical to implement on the resource constrained hardware.  

- The estimation process has three stages (monitor, measure and evaluate) and each stage needs 

to be optimised for the application. This includes the use of passive link monitoring and metric 

evaluation techniques which are practical to implement and can account for the lack of up-to-

date information. 

- The link quality properties captured by the LQE are application dependent. TPC protocols 

require channel quality, packet delivery and channel stability properties to be captured to ensure 

energy efficient and reliable operation.  

- Comparing the properties captured by currently available LQEs against the requirements of a 

TPC protocol, there is a need to design a new LQE that is tailored to the requirements of TPC 

protocols for WSN applications.  
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Chapter Three: Radio Energy Considerations 

3.1 Introduction 

Although transmission power control (TPC) has been studied extensively in the literature, there is a 

lack of ground-truth about the potential energy savings achievable through its implementation. This is 

because previous works have produced radically different results about the maximum energy savings 

of their respective protocols. For example, in [10] energy savings of up to 79% were reported, whilst in 

[35] it was concluded that this was only 27% despite both protocols operating in similar ways. The 

vastly different results are due to studies being carried out using different hardware platforms having 

different radio ICs, different operational environments and different experimental settings.  

Second to this, the energy consumed to transmit a bit of data (
bitE ) can be decomposed into distance 

dependent and distance independent parts. Observations by Chandrakasan et al. in [73] highlighted that 

the distance independent term of 
bitE  dominates the distance dependent term at short communication 

distances, such as those found in wireless sensor networks (WSNs). This has led to the assumption that 

protocols and mechanisms, such as TPC, that target the distance dependent term not presenting 

significant opportunities to reduce the energy consumed by wireless communication activities in WSNs.  

To address the lack of ground-truth about the potential energy savings of a TPC protocol, a 

mathematical model that compares transmission power (TP) against communication reliability and 

energy consumption is developed. Applying this models to state-of-the-art radio hardware, the 

maximum potential energy savings are quantified and the link conditions which offer the greatest energy 

savings are identified.  

 

3.2 HCB Energy Model 

To quantify the energy dissipated by transmitting and receiving radios (
txE  and 

rxE , respectively), the 

first order Heinselman-Chandrakasan-Balakrishnan (HCB) energy model [74] is deployed. The HCB 

model calculates the nominal energy dissipated by both transmitting and receiving radios through a 

computation taking into account the energy dissipated by transmitter/ receiver electronics (
elecE ), 

energy dissipated by the transmit amplifier ( amp ), packet length ( k ) in bits, communication distance (

d ) and path loss exponent ( ). A block diagram of the HCB model is shown in Figure 10, with the 

algebraic expressions shown in Equation 17 and Equation 18.  
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Figure 10. First order HCB energy model [74]. 

( , )tx elec ampE k d E k kd= +  

Equation 17. Energy dissipated by transmitting radio [74]. 

( )rx elecE k E k=  

Equation 18. Energy dissipated by receiving radio [74]. 

For this study, the following parameter values are used.  

Parameter Value Units 

elecE  50 nJ/bit 

amp  0.1 nJ/bit/m2 

Table 4. Parameters for HCB model. 

These parameters are in line with state-of-the-art radio design. For example, it is assumed that the radio 

dissipated 50 nJ/bit to run the transmitter and receiver circuitry (
elecE ). This is similar to the 

performance of the Nordic Semiconductor nRF2401 radio transceiver (1 Mbps data rate radio that 

operates at 2.7 V and consumes 16.8 mA of current [75]) which has been extensively used in previous 

WSNs (e.g. Tyndall Mote [76] and Hogthrob [77]).  

Assuming link layer acknowledgement and retransmission schemes are implemented, the energy 

dissipated per transaction ( transE ), assuming acknowledgement packets are always successfully 

received, is given by: 
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( )trans tx tx rxE N E E= +  

Equation 19. Energy dissipated per transaction [74].  

The number of packet transmissions (
txN ) required before a high probability of successful packet 

reception can be calculated using Equation 20, where 
aP  is the confidence interval (probability that 

after n  transmissions the packet will be successfully received, typically 99%), PRR is the packet 

reception ratio (probability that a single packet will be successfully received) and ln is the natural log 

ln(1 )
1

ln(1 )

a
tx

P
N

PRR

−
= +

−
 

Equation 20. Number of packet transmissions before successful packet reception. 

Link layer protocols typically place limits on the maximum number of transmissions ( _ maxtxN ). In this 

study it is assumed that  _ max 3txN =  which is in line with link layer protocols typically used in WSNs, 

such as WirelessHART [15] and Bluetooth low energy [14]. The first order HCB model equations 

(Equation 17 and Equation 18) can be made packet length agnostic by dividing through by k . The 

energy dissipated per bit (
bitE ) is therefore: 

( )

( ( ))

(2 )

tx tx rx
bit

bit tx elec elec amp

bit tx elec amp

N E E
E

k

E N E E d

E N E d









+
=

= + +

= +

 

Equation 21. Energy dissipated per bit. 

 

3.3 Generalised Energy Model 

In order to evaluate 
bitE  when different TPs are considered, Equation 21 needs to be modified to 

represent the actual, rather than the nominal, energy dissipated. As shown in Equation 22, this can be 

achieved by substituting ampd  with tpxE  (energy dissipated by the transmitter power amplifier when 

different TPs are considered).  

(2 )bit tx elec tpxE N E E= +  

Equation 22. Energy dissipated per bit when different transmission power levels are considered [74]. 

Combining bitE  when different TPs are considered (Equation 22) with path loss ( pL ) (Equation 8), 

signal-to-noise ratio (SNR) (Equation 10) and packet reception ratio (PRR) (Equation 11), a generalised 

model showing the relationship between TP (
tP ), communication reliability and bitE  for an arbitrary 

communication distance, path loss exponent and carrier frequency ( F ) can be created. This model is 

represented algebraically in Equation 23 and Equation 24, and shown graphically in Figure 11 for a 

representative WSN communication link (Texas Instrument CC1101 radio operating over a 

communication distance of 20 m with a path loss exponent of 2).  
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81.28
1

(1 )
2

t n pP P L

kPRR e

− −

= −  

Equation 23. Packet reception ratio as a function of transmission power, path loss and background noise. 

ln(1 )
( 1) (2 )
ln(1 )

a
bit elec tpx

P
E E E

PRR

−
= +  +

−
 

Equation 24, Energy dissipated per bit as a function of packet reception ratio, confidence interval and energy dissipated by 

the transmitter amplifier when different TP are considered. 

 

Figure 11. Relationship between TP, communication reliability and Ebit [13]. 

 

3.4 Potential Energy Savings 

As seen in Figure 11, the TP that results in the minimum value of 
bitE  exists on the boundary between 

the connected and transitional regions. At the optimum TP, packets are sent with just enough energy to 

ensure successful packet reception at the receiver with a low probability of a bit error. Figure 11 shows 

that it is preferable to use a slightly higher, rather than lower, TP because 
bitE  increases much more 

rapidly and communication reliability is detrimentally affected when the TP is below the optimum level.  

Using the generalised model, the maximum potential energy savings that can be achieved through the 

implementation of a TPC protocol can be quantified. The maximum energy savings are dependent upon 

which connectivity region the link belongs to. For links that exist in the connected region, energy 

savings can be achieved through lowering the TP, thus ensuring that packets are not sent with excessive 

power for the intended recipient. Referring this observation to Equation 22, links in the connected region 

can only be improved by reducing the tpxE  term, since 
elecE  is fixed and txN  is close to its minimum 

value (i.e. txN  ≈ 1) because the communication reliability is nearly perfect (i.e. PRR > 95%). Therefore, 

the maximum energy savings achievable in the connected region ( _ maxconnE ) is the difference in bitE  

between using the minimum ( _ mintpE ) and maximum ( _ maxtpE ) TP, as follows: 

E
b

it
 (

u
J)
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_ min _ min

_ max _ max

_ max _ min

_ max

_ max

2

2

bit elec tp

bit elec tp

tp tp

conn

tp

E E E

E E E

E E
E

E

= +

= +

−
=

 

Equation 25. Maximum energy savings in connected region. 

The maximum energy savings in the connected region are radio hardware dependent since the following 

parameters vary between devices: TP range, power amplifier efficiency and 
elecE . Values of _ maxconnE  

for state-of-the-art radio hardware commonly used in WSNs varies between 38-80% as calculated from 

the datasheet parameters presented in Appendix 1: Taxonomy of state-of-the-art radio hardware 

commonly used in WSNs.  

Communication links that exist in the transitional and disconnected regions can be improved from 

energy efficiency and communication reliability perspectives through increasing the TP. In these 

regions, 
bitE  is dominated by 

txN  as the difference in TP that results in a link residing in the connected 

or disconnected regions is minimal (e.g. _tp connE  is typically only 10% greater than _tp discE ). This 

results in the maximum energy savings being largely influenced by _ maxtxN  as shown in Equation 26.  

_ _ min _

_ _ max _

_ _

_ max _ min

_ max

_ max

(2 )

(2 )

bit conn tx elec tp conn

bit disc tx elec tp disc

tp conn tp disc

tx tx

disc

tx

E N E E

E N E E

E E

N N
E

N

= +

= +



−
=

 

Equation 26. Maximum energy savings in the disconnected region. 

As an example, most current WSN standards specify that _ maxtxN  is 3 so the maximum energy savings 

achievable in the disconnected region can be quantified to be around 66%. 

 

3.5 Relationship between Channel Conditions and Energy Savings 

As highlighted in [74], 
bitE  (Equation 21) calculated from the first order HCB model consists of 

distance dependent and distance independent terms, 2 elecE  and ampd  respectively. Chandrakasan et 

al. in [73] concluded that for many short-range radios, the distance dependent term typically dominates 

(i.e. 2 elecE  >  ampd ). To observe this characteristic, the dominance of the distance dependent (ddep) 

term on bitE  over varying communication distances and for different path loss exponents was analysed, 

with the results presented in Figure 12. 
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Figure 12. Weighting of distance dependent (ddep) term on Ebit for varying communication distance and path loss exponent. 

As seen in Figure 12, the dominance of the distance dependent term is a factor of the communication 

distance and path loss exponent. Under ideal conditions, assuming only propagation losses are the result 

of free-space propagation (  = 2), the distance dependent term only becomes of significant influence 

(i.e. the distance dependent term accounts for over 50% of 
bitE ) when the communication distance is 

greater than 30 m. Below this, 
bitE  is dominated by the distance independent term. When considering 

real world communication links, where propagation losses due to shadowing, reflection and diffraction 

are likely to occur (i.e.   > 2), the communication distance at which the distance dependent term 

becomes of significant influence is lower. For example, considering an office environment where   = 

3 [53], the distance dependent term becomes of significant influence when the communication distance 

is 10 m. This model suggests that protocols and mechanisms that aim to reduce 
bitE  through targeting 

the distance dependent term may not offer significant energy savings for short communication distances 

and methods of improving circuit efficiency (e.g. higher data rate, low supply voltage, lower current 

consumption) as suggested in [73], would offer more greater opportunities.  

However, the HCB model calculates the nominal energy dissipated so its results are based upon using 

the nominal TP. To identify and maintain the nominal TP, a TPC protocol is required. Many current 

WSN standards (such as WirelessHART [15] and Bluetooth Low Energy [14]) use a fixed TP so are 

unable to benefit from the fact that 
bitE  can be minimised based on current channel conditions. As 

current WSN standards typically fix the TP to the maximum level, the distance dependent term will be 

fixed at its maximum value (Emax). The energy savings achievable through using the optimum TP, 

rather than the maximum, for different channel conditions (communication distances and path loss 

exponents) are shown by the green shaded areas in Figure 13. Note the results in Figure 13 are based 

on the performance metrics of the Nordic nRF2401 ( [78]) but other radio hardware will exhibit similar 

characteristics.  
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Figure 13. Potential energy savings through using the optimum transmission power.  

As seen in Figure 13, the potential energy savings are dependent on the communication distance and 

path loss exponent. For example, when α=2.0 and the communication distance is 40m, 
bitE = 2.0uJ 

when the optimal TP is used. This represents a 71% energy saving when compared to the link 

performance when the maximum TP is used. As seen by the green shaded area, the energy savings are 

lower when the path loss exponent and/ or communication distance increase. For example, when α=2.4 

and the communication distance is 30m, 
bitE = 4.0uJ when the optimal TP is used and this only 

represents a 42% energy saving. This highlights that the maximum energy savings are achievable under 

ideal channel conditions and at short communication distances. This observation disproves previous 

assumptions about the limited impact of protocol and mechanisms that target the distance dependent 

term not offering significant energy savings at short communication distances.  

 

3.6 Summary 

In this chapter, a mathematic model that compares TP against communication reliability and energy 

consumption has been developed. From this, the potential energy savings achievable through the 

implementation of a TPC protocol have been quantified. The results show that optimising the TP can 

significantly reduce the energy consumed by wireless communication activities for links that exist in 

the connected, transitional and disconnected regions. Using performance metrics from commonly used, 

state-of-the-art radio hardware and parameter values from current WSN standards, this study highlights 

that energy savings of up to 38-80% are achievable for links that belong to the connected region and up 

to 66% for links that belong to the disconnected region.  

On top of this, previous assumptions that protocols and mechanisms that target the distance dependent 

term of bitE  not being able to achieve significant energy savings at short communication distances have 

been contested. This work has shown that the greatest energy savings are achievable at short 

communication distances and under ideal channel conditions.  
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As seen in this study, the energy consumed by communication activities are heavily influenced by the 

radio hardware and environment. Comparing link performance when TPC is applied against when the 

maximum TP is used (as has been used in other works [2] [10] [79]) is therefore a poor evaluation 

metric. An alternative evaluation process, such as comparing the link performance against an offline 

computation of the optimum link performance, is therefore recommended.   
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Chapter Four: Empirical Study of Link Quality Assessment in Wireless 
Sensor Networks 

4.1 Introduction 

In this chapter, an empirical characterisation of low power wireless links in typical wireless sensor 

network (WSN) environments is presented. The purpose of this study is to identify and quantify the 

spatial and temporal factors present in typical WSN environments, describe the in-situ correlation 

between transmission power (TP) and link quality, as well as provide meta-data for the overarching 

design of a transmission power control (TPC) protocol.  

Several previous research works ( [9] [10] [21]) have presented empirical characterisations of low-

power wireless links. These works commonly argue that link quality exhibits complex and dynamic 

tendencies as a result of spatial and temporal factors. The spatial factors include the surrounding 

environment, such as terrain and the communication distance. Temporal variations of link quality are 

due to changes in the operational environment, such as; climatic conditions, human presence, obstacles 

and interference. As discussed in 2.2.9 Empirical Characteristics of Low-Power Wireless Links, 

previous empirical studies have produced contradictory results on the magnitude of the spatial and 

temporal effects and have not focused on radio and link dynamics in the context of different TP settings. 

It is therefore necessary to analyse these factors in real-world WSNs and with state-of-the-art radio 

hardware to identify and quantify the typical sources of link degradation that TPC protocols will 

encounter.  

 

4.2 Experimental Methodology 

To assess link quality, the receive signal strength indicator (RSSI) metric was used. As described in 

2.3.3.1 Hardware Link Quality Estimators, RSSI is a measurement of the RF power input to the receiver 

and it is typically estimated over the preamble. To generate this metric, an experimental WSN was 

created. The network consisted of several nodes connected to a sink using a single hop, star network 

topology. Both the node and sink use the Anaren A1101R08A radio module which is based on the Texas 

Instrument CC1101 IC. This module was chosen because it has a large TP range (-30 to 12 dBm), good 

TP granularity (total of 32 levels), allows for easy retrieval of link quality metrics and closely represents 

the performance of state-of-the-art radio hardware commonly used in WSN (as seen in Appendix 1: 

Taxonomy of state-of-the-art radio hardware commonly used in WSNs) [45].   

The basic operation of the experimental WSN is presented in Figure 14. The node and sink are placed 

0.5 m above the ground at different locations, maintaining the same antenna direction. The node sends 

out 100 beacon packets (at a rate of 500 packet per second) at each TP level. The generated link metrics, 

which are retrieved from beacon acknowledgement packets, are saved in non-volatile memory on the 

node and subsequently downloaded and analysed after the test is complete. To obtain statistical 

confidence, multiple measurements were taken for each test condition and the experiments were 

repeated with three different sets of wireless hardware (node/ sink pairs) to ensure hardware variance 

and calibration didn’t significantly affect the result.     
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Figure 14. Experimental WSN block diagram. 

To compare link quality at different TP levels, simultaneous measurements should ideally be taken at 

all TP levels, however, this is infeasible in practise. This is because configuring the TP takes a finite 

time period (e.g. 10ms for the Texas Instrument CC1101 [63]). As an approximation, packets were 

transmitted in quick succession at different TP levels to minimise the risk of temporal factors affecting 

the transmission medium over the measurement window. 

 

4.3 Spatial Characteristics 

To assess and quantify the spatial impact, a study into the correlation between path loss and 

communication distance was carried out in three environments which are representative of WSNs. The 

test environments were chosen to be a grass field (Figure 15a), an office (Figure 15b) and a warehouse 

(Figure 15c), to represent WSN environments in a range of applications, including; smart energy, 

environmental monitoring and industrial automation. Path loss as described in Equation 6, is the 

difference between transmitted and received powers. It can be estimated through comparing the 

captured RSSI metrics against the TP setting. The relationship between RSSI and TP is generally 

monotonic and continuous over short time periods and the relationship can be estimated as linear as 

seen in Figure 16. However, the relationship is not deterministic as it is influenced by several factors, 

including; hardware inaccuracies, propagation path, accuracy of RSSI readout and antenna orientation. 

For the analysis, the path loss was averaged over the complete TP range to minimise measurement 

errors.   

 

Figure 15. Test environments a) grass field, b) office, c) warehouse. 

(a) (b) (c) 



   

62 

 

 

Figure 16. RSSI against TP. 

The results from one node/ sink pair in the three test environments are shown in Figure 17. The results 

from different node/ sink pairs showed similar characteristics and variations so to simplify the analysis, 

the results from these pairs are not presented in this chapter. The confidence intervals (97%) were 

calculated to show the variance in the measured parameter over the measurement window. However, 

due to the stable performance of RSSI, the confidence intervals were negligible so they have not been 

included in Figure 17. 

The results can be summarised as follows: 

1. An increase in communication distance does not always result in an increase in path loss. 

As per the Friis free-space path loss model (Equation 1), the received power decays as a 

function of the communication distance, raised to the power two (i.e. a power law function) so 

the path loss should increase with distance. The results show that the path loss generally 

increases as the communication distance increases, but this is not always the case. For example, 

the path loss in the office environment was 2 dB lower at communication distance of 19 m 

compared to that at 13 m. This is believed to be caused by multipath effects, as a result of the 

electromagnetic waves being reflected, diffracted and scattered as the wave propagates through 

the medium. This results in the receiver seeing a superposition of multiple copies of the 

transmitted signal that leads to constructive or destructive interference at the receiver 

depending upon the nature of the propagation path.  

2. The relationship between communication distance and path loss is environmentally 

dependent. The relationship between path loss and communication distance is significantly 

different for the three test environments. For example, at a communication distance of 3 m, the 

path loss was 54.1 dB in a grass field environment, 65.2 dB in an office environment and 55.0 

dB in a warehouse environment. This is the result of the different environments presenting 

unique sets of propagation paths which attenuate the signal in vastly different ways.  
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Figure 17. Relationship between communication distance and average path loss for different WSN environments.  

These observations confirm findings from previous works, such as the quality of wireless 

communication links between low-power sensor devices is significantly influenced by the environment. 

The analysis has also gone further and quantified the magnitude of the spatial effects and observed the 

characteristics of path loss in multiple WSN environments, when different TP levels are considered and 

state-of-the-art radio hardware is implemented. Observations presented in this section highlight that 

wireless link quality in WSN environments exhibits characteristics which cannot be captured by 

simplistic theoretical models. Further highlighting that link quality needs to be estimated online, in real-

time, using metrics generated internally to the network. 

 

4.4 Temporal Characteristics 

The dynamic nature of the transmission medium was characterised through empirical profiling the 

temporal variations. Basic observations of the chosen test environments highlight that multiple potential 

sources of temporal variation exist. As documented in 2.2.9.2 Temporal Characteristics, these 

variations can be categorised into three patterns: 

1. Small fluctuations. Small fluctuations are the result of multipath fading, and changes in 

temperature and humidity.  

2. Large fluctuations and disturbances. Large fluctuation and disturbance patterns are typically 

caused by shadowing and fading effects of humans, moving doors and other objects.  

3. Continuous large fluctuations. Continuous large fluctuations are predominantly the result of 

interference from high-bandwidth, high TP, co-habiting networks (e.g. adjoining Wi-Fi 

networks) and appliances operating in the same frequency band (e.g. microwave ovens).  

The likelihood that a temporal pattern will exist in a specific communication link will be dependent on 

the environment. For example, an office environment is more likely to be affected by continuous large 
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fluctuations from adjoining Wi-Fi networks, whilst a grass field environment is more likely to suffer 

from small fluctuations because of temperature and humidity changes. Through analysing the link 

quality over a range of time periods and test conditions, all three of these temporal patterns were 

observed over the three test environments.  

 

4.4.1 Small Fluctuations 

To monitor small fluctuation temporal patterns, a three-day experiment in a grass field environment 

was conducted. This environment was chosen because it was remote and away from other wireless 

networks and human activity. On top of this, it was likely to be subjected to temperature and humidity 

changes. In Figure 18 the average path loss over time is plotted for a one-hour period where the greatest 

variance in link quality was observed. The 97% confidence intervals are plotted to show the variance 

in the measured parameter over the measurement window. 

 

Figure 18. Average path loss over time in a grass field environment. 

The results from the grass field environment show that the path loss changes slowly but noticeably over 

time. As seen in Figure 18, the maximum change in path loss over a five-minute window is 4 dB. 

Comparing this temporal fluctuation to visual observations of the test environment, it was found that 

the test site received heavy rain between 10.15-10.25. During this time and for a period afterwards, the 

path loss was higher. This is thought to be attributed to two phenomena. The first is rain fade, i.e. 

increased atmospheric absorption because of increase water vapour. The second, and more likely cause 

of this temporal variation, is an increased reflective path signal strength resulting to increased 

destructive interference at the receiver.  

By means of further investigation, the two-ray path model is applied to see if the reflected signal path 

will lead to constructive or destructive interference at the receiver. As seen in Figure 19, the two-ray 

path loss model shows that the signal at the receiver is a combination of the line-of-sight (LOS) and 
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non-line-of-sight (NLOS) ground reflected path. At the receiver they will lead to either constructive or 

destructive interference depending on the communication distance ( d ), wavelength ( ) and antenna 

elevations of the transmitter and receiver ( th  and rh , respectively) as described by Equation 27. 

Applying Equation 27 to the application ( d  = 5 m, f  = 868 MHz, th  and rh  = 0.5 m), the reflective 

path will be 51.90 out of phase which would result in destructive interference at the receiver.  

ht

d

LOS path

NLOS (ground reflected) path

hr

 

Figure 19. Two-ray path model. 

2 2 2 22
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
= + − − + −  

Equation 27. Two-ray path model. 

The power of the reflected path is dependent on the ground reflection coefficient and is a factor of the 

permittivity and conductivity of the ground. During the rain shower, the ground becomes wet which 

increases the ground conductivity and subsequently increases the power of the reflective path. This in 

turn leads to increased destructive interference at the receiver because the reflective path is out of phase. 

As seen in Figure 18, the path loss is still higher after the rain shower finishes so this temporal effect is 

more than likely the result of increased reflective path signal strength rather than rain fade.  

 

4.2.2 Large Fluctuations and Disturbances 

To observe large fluctuation temporal patterns caused by shadowing effects of humans and other 

moving objects, a one-hour experiment was conducted in a warehouse environment. The nodes were 

configured to transmit beacon frames at shorter time periods than in 4.4.1 Small Fluctuations to capture 

the temporal factors which may occur over very short time periods (e.g. moving machinery in the 

network area). The results for a fifteen-minute window which showed the highest levels of temporal 

variation are presented in Figure 20.  
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Figure 20. Average path loss over time in warehouse environment. 

As seen in Figure 20, the average path loss changed by up to 7 dB over small time periods. Correlating 

the data with visual observations of the test environment, these large changes in path loss were seen to 

be caused by human presence and moving machinery obstructing the LOS communication path. The 

confidence intervals shown in Figure 20 are much larger than those observed during the study on small 

fluctuation temporal patterns (Figure 18). To explain the cause of this, the raw data captured for the 

time period with the greatest variance (17:41) is shown in Figure 21.  

 

Figure 21. Relationship between RSSI and TP in warehouse environment. 

From Figure 21, it can be seen that the relationship between RSSI and TP exhibits characteristics which 

are contrary to theory (Equation 6) and dissimilar to the typical performance shown in Figure 16. This 

is believed to be caused by temporal factors changing over the measurement window. For example, the 
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measurement window is typically around six seconds, which is larger than the time period of some of 

the temporal fluctuations (e.g. human walking across the direct LOS communication path). 

 

4.4.3 Large Continuous Fluctuations 

To observe large continuous fluctuation temporal patterns, packets were sent in quick succession in an 

office environment. The sink was intentionally placed 3m from a smart energy node to see the effect 

that interference has on path loss. The distribution of RSSI samples over a one-minute sampling window 

are presented in Figure 22.   

 

Figure 22. Distribution of path loss samples in office environment. 

Figure 22 shows two distinct groups of RSSI samples, around -64 dBm and -75 dBm. Comparing the 

RSSI samples against the activity indicator on the front panel of the smart energy meter, the RSSI 

samples around -64 dBm are representative of the link conditions when the interferer is active. This is 

believed to be a result of RSSI following an additive model whereby it represents the sum of all signals 

in the band of interest (i.e. representative of signal, noise and interference powers) as described 

algebraically in Equation 12. Further analysis of the results highlighted that fewer packets were 

successfully received when the interferer was active, despite the RSSI being higher. It is often assumed 

that a higher RSSI value represents lower probability of a bit error at the receiver but this study 

highlights that the relationship between RSSI and communication reliability is not fixed and is affected 

by interference.  

Clearly, the magnitude of large continuous temporal patterns are dependent on a number of application 

specific factors of the interferer and the network, such as; TP, communication distance, carrier 

frequency, modulation technique and channel access mechanism. However, results presented in this 

section highlight that large continuous fluctuation patterns exist in typical WSN environments and they 

can significantly affect the relationship between TP and RSSI.  
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4.5 Summary 

Through considered test methodologies and a rigorous statistical analysis of the link quality, the spatial 

and temporal characteristics of the transmission medium in typical WSN environments have been 

identified and quantified. The results highlight that link quality in WSNs exhibits complex and dynamic 

tendencies which are contrary to simplistic deterministic models. These results further highlight that 

link quality needs to be estimated online, in real-time, using resources internal to the network. On top 

of this, meta-data has been collected which is representative of link quality in real-world WSN 

applications. This will be used to optimise and test the performance of the proposed TPC protocol.  

 

  



   

69 

 

Chapter Five: Assessment of Link Quality Metrics 

5.1 Introduction 

In order to identify and maintain the optimum transmission power (TP), the wireless link quality needs 

to be continually evaluated in real-time, using resources internal to the network. As documented in 2.3.2 

Link Quality Properties; channel quality, packet delivery and channel stability properties need to be 

captured to ensure optimum performance from both energy efficiency and communication reliability 

perspectives. The high-level overview of current link quality estimators (LQEs) presented in 2.3.4 

Comparison of Link Quality Estimators highlighted that no current solutions monitor the link quality 

properties required for a transmission power control (TPC) protocol. Subsequently, there is a 

requirement for a new LQE to be developed which is tailored to the monitoring requirements of a TPC 

protocol and practical to implement on the resource constrained hardware.  

The most suitable link quality metrics used to compute the various link quality properties are currently 

unclear and previous works have presented conflicting views of the matter. For example, in [30] [35] it 

is argued that receive signal strength indicator (RSSI) is the best metric to quantify channel quality 

properties, whilst in [10] [36] this is disputed and link quality indicator (LQI) is recommended. In this 

chapter the sampling requirements of a TPC protocol are compared against the characteristics of WSNs 

to evaluate the performance of various link quality metrics. From this, recommendations on the most 

suitable metrics to use for a TPC protocol with energy efficiency objectives are made.  

Aside from performance in respect to the measurement of the specific link quality property, the high-

level characteristics which are most desirable for link quality metrics are as follows: 

- Practical to implement. As described in 2.0 Introduction to Wireless Sensor Networks, WSNs 

are constrained in energy, processing and memory domains. To ensure that the protocol is 

practical to implement on the resource constrained hardware typically used in WSNs, the metric 

should require few samples and minimal computation. 

- Minimal sampling time window. As identified in 4.4 Temporal Characteristics, wireless link 

quality in WSN environments can be highly dynamic and channel throughput can be very low. 

This results in the number of samples over which the link conditions remain stable and for 

which the link quality properties can be quantified being very low.  

- Universally available. WSNs use chipsets which are compliant to several different standards 

and manufactured from several different vendors. To ensure that the protocol can be applied to 

a wide range of WSN applications, the link quality metrics should be standard and hardware 

agnostic.  

 

5.2 Channel Quality 

Channel quality represents properties of the received signal (e.g. power of the received signal, 

modulation quality of the received signal or the ratio of the signal to noise power). Channel quality 

properties need to be captured for the following two reasons: 
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1. To provide a quantitative assessment between the configurable parameter, in this instance TP, 

and the resulting received signal. This relationship needs to be established for a dynamic TPC 

algorithm to be applied which, as described in 2.1.5 Transmission Power Control Algorithms, 

outperforms linear and binary based solutions.  

2. To allow a link quality threshold (LQT) to be generated. Many current TPC protocols ( [10] 

[35] [80]) tune the TP to a target value of the channel quality property, commonly referred to 

as the LQT. Operating at the LQT is predicted to yield the highest energy efficiency, i.e. high 

probability of successful packet transmission with little excess power at the receiver.  

The rest of this subsection compares the performance of channel quality link metrics in respect to these 

two measurement criteria.  

 

5.2.1 Quantitative Assessment between Transmission Power and the Received Signal 

Previous TPC protocols have used an array of link quality metrics to provide a quantitative assessment 

between TP and the received signal, including; RSSI in [30] [35], LQI in [10] [36] and signal-to-noise-

ratio (SNR) in [17]. As seen in Table 3, Signal-to-interference-and-noise ratio (SINR) can also be used 

and although not implemented in any published works on TPC, several have considered its use. To 

compare the performance of these different metrics, their relationship with TP has been analysed. SNR 

was excluded from the analysis because its computation requires features which are not common for all 

WSN hardware (namely clear channel assessment modes [17]) so it fails to meet the criteria of 

universally available.  

To compare the link quality metrics against TP, an experimental WSN was created. The WSN setup is 

similar to that used in   
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Chapter Four: Empirical Study of Link Quality Assessment in Wireless Sensor Networks, with the basic 

operation explained in Figure 14. The experimental WSN was installed in a grass field environment and 

the three link quality metrics were captured, averaged and compared against TP over a communication 

distance of 10 m. The results are presented in Figure 23. The 97% confidence intervals have also been 

plotted to show the variance in the parameter over the measurement window.  
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Figure 23. TP against average RSSI (a), SINR (b) and LQI (c).  

The results in Figure 23 show that RSSI, SINR and LQI metrics have a detectable correlation to TP, 

over a certain range and over a short time period. This is in line with the observations presented in other 

empirical studies The relationship between LQI and TP, as seen in Figure 23c, shows approximately 

linear correlation for part of the TP range (from -30 to -10 dBm). This metric can however be seen to 

saturate at a value of 32 (unitless) which is the maximum quality frame detectable by the radio hardware 

[63]. The results highlight that the LQI metric suffers from high variance (up to 32 % of the measurable 

range) which means that multiple samples and a post processing technique would need to be applied. 

As LQI samples are dependent on over-the-air packet transmissions, the time period to obtain multiple 

samples can be quite large and this in turn could reduce the agility of the TPC protocol. The dependency 

of over-the-air packet transmissions also results in a large energy overhead.  

RSSI and SINR metrics show strong linear correlation against TP over the full TP range as seen in 

Figure 23a and Figure 23b, respectively. RSSI readings can be seen to be more stable than SINR 

readings, with the observed variance being less than 2 dB (5% of the measurable range). SINR readings 

have much higher variance at between 5 and 10 dB (up to 25% of the measurable range) even though 

they are measured from the same register. The SINR metric has been decomposed into receive power (

rP ) and noise plus interference power ( n iP P+ ) elements to identify the source of the variance. The 

distribution of SINR samples and its two elements ( rP  and n iP P+ ) are shown in Figure 24 for the 

sampling window which showed the highest variance (TP = -30 dBm). 
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Figure 24. SINR (left), Pr (centre) and Pn+Pi (right) distributions. 

From Figure 24 the variance in the SINR metric can be seen to be the result of the n iP P+  element 

rather than rP . To better characterise this, n iP P+  samples at different power levels have been 

measured, with the results presented in Figure 25. Different levels of n iP P+  were introduced at the 

receiving node through incorporating an interfering node into the network. The interfering node was 

composed of the same hardware as was used in the experimental network (Anaren A1101R08A radio) 

and was configured to operate in a transmit test mode [63]. This mode of operation makes it possible to 

generate a continuous burst of interfering packets with a modulated carrier. The interfering node was 

operated at several different TP levels (denoted as Int TP in Figure 25) to introduce various interference 

powers at the receiver.  

 

Figure 25. Distribution of Pn+Pi samples at different power levels. 

The variance in n iP P+  at different power levels is summarised in Figure 26.  

Pn+Pi (dBm) 
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Figure 26. Variance in Av. (Pn+Pi) at different power levels. 

The results in Figure 25 show that the variance in n iP P+  metric follows a Gaussian distribution and 

Figure 26 shows the magnitude of the variance is dependent on the power level. The authors believe 

the variance is the result of thermal and electronic sources having a significant influence on n iP P+  

measurements when it is low in magnitude. When n iP P+  is much greater in magnitude, which is often 

the result of interference from wireless sources either internal or external to the network, the effects of 

thermal and electronic sources are not as pronounced and the variance in the metric is minimal. These 

results highlight that multiple samples and a post processing technique is required when using the SINR 

metric. The energy, memory and computational resource requirements to address the variance in SINR 

are significantly lower than LQI since fewer samples are required and SINR samples are independent 

of over-the-air packet transmissions.  

 

5.2.2 LQT Generation 

The LQT represents the lowest possible value of the channel quality property which can be used before 

packet losses occur due to insufficient link budget. A desirable characteristic of the LQT is to be directly 

mapped to the packet delivery properties of the communication link. To compare the performance of 

different link quality metrics, their correlation to packet reception ratio (PRR) was analysed over three 

test environments which are typical of WSN applications; a grass field, a warehouse and an office (as 

seen in Figure 15). The experimental setup is the same as that described in   
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Chapter Four: Empirical Study of Link Quality Assessment in Wireless Sensor Networks, with the basic 

operation explained in Figure 14. For each transaction, the three channel quality metrics (RSSI, LQI, 

SINR) were captured along with the sequence number to quantify the PRR. PRR was calculated over a 

sampling window size of 100 packets. Over the sampling window every effort was made to ensure the 

link conditions remained constant. The communication distance was varied between sampling windows 

to characterise the link quality metrics over their full range. In Figure 27, the average value of the link 

quality metric measured over the complete sampling window is plotted against the PRR for the three 

test environments.  

 

 

(b) 

(a) 

Av. RSSI (dBm) 

Av. SINR (dB) 
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Figure 27. PRR against average RSSI (a), SINR (b) and LQI (c) in grass field, office and warehouse environments. 

Analysis of the results show that the LQT is fairly consistent for SINR and LQI metrics, across all three 

environments, at between 10-11 dB and 46-48 (unitless), respectively. Although not shown in Figure 

27, it was previously identified that both SINR and LQI metrics suffer from a high level of variance 

over the measurement window so multiple samples and a post processing technique would be required 

to identify the LQT.  

The LQT for RSSI in the grass field and warehouse environments were similar at -94 and -93 dBm, 

respectively. However, the relationship between RSSI and PRR in an office environment showed 

several spurious data points (as seen by the blue square data points in Figure 27a) resulting in a LQT of 

-85 dBm. Visual observations of the office environment identified a smart energy wireless network in 

close proximity to the receiving node. To determine whether it is interference that results in the 

relationship between RSSI and PRR being environmentally dependent, this relationship has been 

analysed with a controllable source of interference (an additional node operating in a transmit test mode) 

in the network. The results are presented in Figure 28.    

(c) 

Av. LQI (unitless) 
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Figure 28. PRR against RSSI with a controllable source of interference in the network. 

The results presented in Figure 28, clearly show that the relationship between PRR and RSSI is severely 

affected by interference. The author believes this is a result of RSSI following an additive model 

whereby it represents the sum of all signals in the band of interest (i.e. representative of signal, noise 

and interference powers) as shown algebraically in Equation 12. Thus, interference may increase the 

RSSI and degrade the packet delivery properties of the communication link. This highlights that the 

relationship between RSSI and PRR will be environmentally dependent and liable to change over time 

depending on the presence and severity of interference. This is a very undesirable characteristic for a 

link quality metric from which a LQT is to be generated and previous works ( [10] [80]) which 

implement this would suffer from poor energy efficiency and unreliable operation due to gross errors 

in the link quality estimation process.  

The relationship between link quality and PRR was also analysed for LQI and SINR metrics with 

interference present in the network. The results showed negligible changes to the LQT. This is a result 

of SINR and the Texas Instrument implementation of LQI (which is based on SNR estimation [63]) 

having a fixed relationship to the PRR as described by Equation 11. Other implementations of the LQI 

metric may not exhibit the same characteristics since they may be estimated using different methods. 

The relationship between PRR and SNR/SINR is dependent on the physical layer particulars of the 

radio (e.g. data rate, modulation type, packet length) so will vary for different radio hardware and 

application configurations. The physical layer configuration of the radio is however typically fixed over 

the lifetime of the network so the LQT wouldn’t need to be continually updated. 

Although not observed in the above empirical study, previous works ( [21] [61]) have highlighted that 

multipath wave propagation and fading can affect the relationship between channel quality and packet 

delivery metrics. As described by the two-ray path model shown in Figure 19, when two or more signals 

are combined at the receiver, the resulting signal amplitude can be increased or decreased as a result of 

constructive or destructive interference at the receiver, respectively. If multipath effects only result in 

No interference 

INT TP = 0.5 dBm 

INT TP = 5.0 dBm 
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signal magnitude changes (no/ negligible effect on phase and bit spread), the relationship between 

channel quality and packet delivery metrics should remain constant.   

However, multipath can lead to time dispersion of the original signal resulting in inter symbol 

interference (ISI), as well as, phase shifts causing distortion. These phenomena can affect the 

relationship between channel quality and packet delivery metrics as shown in Figure 6. In real-world 

wireless links, the effect of multipath is often more complex than that described in the two-ray model 

because the receiver might see a combination of several different signals with each traversing a different 

path and when scattering exists in the channel, a wave will experience a phase shift, polarisation changes 

or some other change when it encounters a scattering surface.  

The reason for the empirical results presented in this chapter showing clear LQT values and multipath 

factors not being observed is not clear. Previous works ( [61]) have noted that wireless networks which 

use phase shifting modulation techniques and/ or high data rates are often more sensitive to ISI and 

distortion. The experimental network used in this chapter uses a low data rate (1 kbps) and a frequency 

shift keying modulation technique, and the author believes these could be two contributing factors 

towards the minimal severity of multipath effects. Nevertheless, some WSNs do use high data rates and 

phase shift keying modulation techniques so for the proposed TPC protocol to work efficiently in these 

networks, the effects of multipath should be considered and mitigated.  

 

5.2.3 Summary 

The observations presented above have been summarised in Table 5. A ranking mechanism has been 

used to provide a quantitative assessment between the different metrics. Four evaluation criteria have 

been identified and each of these have a relative weight associated with it. In the table below, each of 

the metrics are scored against the evaluation criteria and the reasoning behind the scorings are presented. 

Note the relative weightings and scores provided in Table 5 and Table 6 (page 81) are subjective and 

are based on the experience of the author.  
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Channel 

quality 

metric 

Range 

(25%) 

Variance 

(15%) 

Detectable correlation to 

transmission power 

(30%) 

Detectable correlation to PRR 

(30%) 
Score 

(%) 

RSSI 

 

22 

 

RSSI has a high range which 

is unlikely to saturate so will 

allow the TP to be compared 

against the received signal 

over the complete TP range. 

 

13 

 

RSSI has low variance (5% of measured 

range over short time periods) so a single 

sample is sufficient to capture the channel 

quality.  

 

27 

 

RSSI has a direct linear correlation to 

TP over short time periods.  

 

7 

 

The correlation between RSSI and PRR is 

environmentally dependent since RSSI 

represents the sum of all input powers and 

thus, is affected by varying levels of 

interference and noise power.  

 

69 

LQI 

 

10 

 

LQI has a low range which 

is likely to saturate and thus, 

will not allow the TP to be 

compared to the received 

signal for the complete TP 

range. 

 

3 

 

LQI has high variance (35% of the 

measured range over short time periods) 

so multiple samples and a post processing 

technique is required. The number of 

samples and the dependency of over-air 

packet transmissions results in large 

sampling windows and high energy 

overhead. 

 

2 

 

LQI doesn’t represent a single 

property of the received signal as it is 

calculated using receiver energy 

detection, SNR estimation or a 

combination of these metrics. Since 

LQI is not based on a single property 

of the received signal, it cannot be 

accurately mapped to a physical 

phenomenon, such as TP.   

 

10 

 

The correlation between LQI and PRR is 

dependent upon how LQI is calculated. 

Implementations of LQI that use SNR 

estimation have strong correlation to PRR 

and the relationship is not affected by 

environmental factors. The relationship 

between LQI (when calculated based on 

SNR estimation) and PRR is however 

dependent on a number of physical layers 

particulars of the radio so will vary for 

different radio hardware and application 

configurations. 

 

25 

SINR 

 

22 

 

SINR has a high range 

which is unlikely to saturate 

so will allow the TP to be 

compared against the 

received signal over the 

complete TP range. 

 

9 

 

SINR has high variance (5-25% of the 

measured range over short time periods) 

so multiple samples and a post processing 

technique is required. Samples are 

independent of over-air packet 

transmissions so the variance can be 

addressed with minimal energy overhead 

and over short sampling windows. 

 

 

27 

 

SINR has a direct linear correlation to 

TP over short time periods. 

 

25 

 

The correlation between SINR and PRR is 

not affected by environmental factors. It is 

however dependent on a number of physical 

layers particulars of the radio so will vary for 

different radio hardware and application 

configurations. 
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Table 5. Comparison of link quality metrics for evaluating channel quality properties. 
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From Table 5 it can be seen that LQI scores the lowest. This is because it does not have a detectable 

correlation to TP, it doesn’t represent a fixed property of the communication link (since it could either 

be based on SNR, modulation quality or a combination of the two) and it has high variance. RSSI is 

seen to outperform LQI and it is the best metric to use for providing a quantifiable assessment of TP 

over a single sample. However, confirming observations from previous works, RSSI does not have a 

fixed relationship to PRR when interference exists in the network since it represents the sum of the 

signal, noise and interference powers.  

When considering all the requirements of a link quality metric for measuring the channel quality 

properties of a communication link, SINR can be seen to be the most suitable. It has a linear correlation 

to TP, has sufficient range so can be compared against the configurable parameter over the full TP range 

and it has a detectable correlation to PRR which is not influenced by the environment. SINR does suffer 

from variance which the authors believe to be a result of thermal and electronic sources, especially 

when the noise and interference power is weak. The energy overhead to address the variance in the 

SINR metric is however minimal because multiple noise and interference power samples can be taken 

independently of over-the-air packet transmissions. The number of samples required and the complexity 

of the post processing technique is also minimal so the memory and processing overheads are low, 

which makes it practical to implement on the resource constrained hardware. 

 

5.3 Packet Delivery 

As discussed in 2.3.2 Link Quality Properties, packet delivery properties of the communication link 

need to be monitored for the following three reasons: 

- To mitigate against the exposed and hidden node problems which are exacerbated by the 

implementation of a TPC protocol. 

- To identify when the communication reliability has been detrimentally affected by the operation 

of the TPC protocol as a result of insufficient link budget. 

- To identify when multiple packet retransmissions occur as these significantly affect the energy 

consumed per transaction.  

As shown in Figure 9, packet delivery properties can be captured by either a PRR or required number 

of packet retransmission (RNP) based software link quality estimator (LQE). Several variations of these 

estimators exist (e.g. KLE [66], ETX [68] and Four-bit [69]), however, their high-level characteristics 

are fairly similar so they have not been considered in this analysis. In Table 6 a comparison of the 

sampling characteristics of RNP and PRR based software LQEs is presented.    
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Packet delivery 

metric 

Sampling window 

(50%) 

Memory overhead 

(25%) 

Computation overhead 

(25%) 

Overall 

score 

(%) 

RNP 

 

45 

 

RNP is calculated over a single transaction so the 

sampling time window is limited to the maximum 

number of packet transmissions allowed by the 

protocol (typically no more than 5). 

 

22 

 

As RNP is calculated over a single transaction, 

very few samples need to be cached to compute 

this metric.  

 

22 

 

The computation of RNP is very simplistic and 

is practical to implement on processors with 

minimal processing capabilities.  

 

87 

PRR 

 

20 

 

PRR is calculated over a number of transactions. 

As was observed in [64], the number of 

transactions required to accurately predict the 

PRR is dependent on the connectivity region the 

link exists in. For links in the connected or 

disconnected regions, PRR can be estimated over 

a small number of packets, however links in the 

transitional regions typically require significantly 

more samples (e.g. over 20). With the dynamic 

characteristics of wireless links in WSNs and the 

typically low throughput, link quality metrics 

which require multiple samples over which the 

link conditions remain consistent are generally 

impossible to implement. 

 

10 

 

As PRR can require a large number of samples, 

the memory overhead can be significantly large 

and impractical to implement on WSN 

hardware.  

 

20 

 

Although PRR is computed from multiple 

samples, the computation is fairly simplistic 

and is practical to implement on resource 

constrained hardware with minimal processing 

capabilities.   

 

50 

Table 6. Comparison of link quality metrics for evaluating packet delivery properties.
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Comparing the characteristics of PRR and RNP based estimators with the requirements of a TPC 

protocol for WSN applications, RNP based estimators can be seen to be superior. This is because they 

can be computed over a single transaction, feature few samples and require very little processing in 

their computation. On top of this, only RNP based estimators can assess the number of packet 

retransmissions which occur over the transaction. Since packet retransmissions consume considerable 

energy resources (as seen in Chapter Three: Radio Energy Considerations) identifying when they occur 

and mitigating against them is a key requirement to ensure energy efficient operation.  

 

5.4 Channel Stability 

Channel stability represents the variability level of the communication link. Channel stability is 

typically measured through analysing the variance in the packet delivery or channel quality properties 

of the communication link. Through reusing the same metrics used to compute other link quality 

properties, the sampling and memory overhead required to capture the channel stability properties is 

minimal. Since the metrics used to compute the channel quality properties typically have a larger 

dynamic range and they are more agile so can react quickly to link quality changes, their use is 

recommended.  

 

5.5 Summary 

In this chapter the suitability of various link quality metrics for evaluating the three critical link quality 

properties for a TPC protocol have been analysed. This study highlighted that using SINR to capture 

the channel quality properties of the communication link is most suitable since; it has a detectable 

correlation to TP, has a large measurement range so can be compared against the configurable parameter 

over the full TP range and has a detectable correlation to PRR even when interference exists in the 

network. Although SINR does suffer from a considerable level of variance over the measurement 

window, especially when the interference and noise power is weak, the variance can be addressed using 

low computation, memory and energy overhead methods which are practical to implement on the 

resource constrained hardware.  

A simple high-level comparison of link quality metrics for capturing packet delivery properties of the 

communication link highlighted that RNP based metrics outperformed PRR based counterparts. This is 

because they require less computation, fewer samples and can be calculated over smaller sampling 

windows. On top of this, only RNP based LQEs can assess the number of packet retransmissions.  

An assessment of link quality metrics for capturing channel stability properties found that reusing 

channel quality metrics was the most practical since they have the greatest dynamic range and they are 

the most agile. On top of this, reusing channel quality metrics would minimise the sampling overhead 

so there use in recommended for capturing channel stability properties.  
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Chapter Six: Novel Holistic Transmission Protocol Control Proposal 

6.1 Introduction 

Following on from the link quality metric recommendations made in Chapter Five: Assessment of Link 

Quality Metrics, a new transmission power control (TPC) protocol, named holistic TPC (HTPC) is 

proposed. In line with the recommendations made in 2.1.4 Transmission Power Control Protocols and 

2.1.5 Transmission Power Control Algorithms, HTPC implements a dynamic algorithm and modulates 

the transmission power (TP) on a per-packet basis. The optimal TP is estimated through capturing 

channel quality and packet delivery properties to provide a real-time estimation of the minimum channel 

gain, and capturing channel stability properties to implement an adaptive fade margin to address channel 

estimation errors between measurement and operational windows.  

 

6.2 Channel Gain 

The minimum channel gain ( minCG ) is an estimate of the minimum amount of gain required at the 

transmitter to ensure the intended receiver can detect the transmitted signal. minCG  accounts for the 

factors which affect the relationship between transmitted and received signal powers. As detailed in 

2.2.3 Relationship between Transmission and Reception Powers, this includes; path loss, noise and 

interference. In reference to the system model (Figure 1), minCG can be estimated from the noise and 

interference power ( n iP P+ ), TP ( tP ) and received power ( rP ), as follows: 

min ( )t n i rCG P P P P= + + −  

Equation 28. Minimum channel gain for a single packet. 

The simplistic expression shown in Equation 28 needs to be expanded to account for the following: 

- Variance in noise and interference power samples. As observed in 5.2 Channel Quality, 

n iP P+  samples suffer from high variance, particularly when it is low in magnitude. As such, 

multiple samples and a post processing technique needs to be applied.  

- Received power samples only being available for successfully received packets. Received 

power measurements are taken at the receiver after a packet has been successfully received. To 

ensure that the channel gain is not overestimated, and that the metric represents both channel 

quality and packet delivery properties, the channel conditions experienced over the complete 

transaction (i.e. for successful and unsuccessful packet transmissions) need to be accounted for.  

 

6.2.1 Variance in Noise and Interference Power Measurements 

Using the samples collected in 5.2.1 Quantitative Assessment between Transmission Power and the 

Received Signal, a simple post processing technique was developed to address the variance in the 

n iP P+  metric. The variance in n iP P+  is a Gaussian distribution (as seen in Figure 25) so a simplistic 

averaging mechanism was implemented as described in Equation 29.   
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Equation 29. Average noise and interference power. 

To determine the optimal number of samples to use in the averaging mechanism (denoted as n  in 

Equation 29), the 99.7% confidence intervals (third standard deviation, 3σ) were calculated for different 

sample sizes using the worst-case scenario ( .( )n iav P P+ = -110 dBm). The results are presented in 

Figure 29. 

 

Figure 29. Third standard deviation (3σ) of Av.(Pn+Pi) samples with different sample sizes (n). 

As expected, the more samples used to compute .( )n iav P P+ , the lower the observed variance. 

However, caution needs to be applied since using a large sample size increases the memory, 

computation and energy overhead needed to capture and compute .( )n iav P P+ . Second to this, n iP P+  

samples are captured soon after the packet is transmitted with the assumption that this is representative 

of the same channel conditions experienced during the transmission. The more samples used in the post 

processing technique, the longer the sampling window and the lower the probability that this assumption 

will be representative of actual channel conditions experienced during the packet transmission. Based 

on the evaluation presented in Figure 29, a sample size of 10 has been selected as a suitable trade-off 

between metric variance and computation overhead.  

 

6.2.2 Accounting for Unsuccessful Packet Transmissions 

Acknowledgement and retransmission schemes are commonly implemented in WSNs to improve 

communication reliability. This means that a single transaction can consist of multiple packet 

transmissions if the original packet is not acknowledged. Samples of rP  are only generated for packets 

which are successfully received and acknowledged by the intended recipient. To ensure that the channel 
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quality is not overestimated and is representative of the channel conditions experienced over the 

complete transaction, the performance of the channel when packets are not successfully received needs 

to be considered.  

To account for this, the transmitting node assumes that the power at the receiver is equal to the noise 

plus interference power (i.e. rP  = n iP P+ ) when a packet is not acknowledged. The rP  measured over 

a complete transaction (
_r transP ) therefore becomes: 
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Equation 30. Received power averaged over a complete transaction. 

Where RNP  is the number of packet retransmissions before a successful packet reception is detected.  

The minimum channel gain calculated over the complete transaction (
min_ transCG ) therefore becomes: 

min_ r_.( ) Ptrans t n i transCG P av P P= + + −  

Equation 31. Channel gain averaged over the complete transaction. 

 

6.3 Fade Margin 

If the minimum channel gain (as described in 6.2 Channel Gain) was used at the transmitting node, the 

bit error rate (BER) would be excessively high and this would have a detrimental effect on the energy 

efficiency as a result of packet retransmissions. The TP needs to be sufficiently higher than the 

minimum channel gain to ensure error free reception. This is known as the fade margin. In HTPC, the 

fade margin ( FM ) consists of fixed (
fFM ) and adaptive ( aFM ) elements, as seen in Equation 32. 

f aFM FM FM= +  

Equation 32. Fade margin. 

 

6.3.1 Fixed Fade Margin 

fFM  represents the minimum fade margin required to ensure sufficient SINR at the receiver for error 

free reception. It is very similar in nature to the link quality threshold (LQT) used in previous works ( 

[10] [35] [80]) and analysed empirically in 5.2.2 LQT Generation. The fixed element is based on the 

radio configuration, e.g. modulation type, packet size, frame level encoding and data rate. As the radio 

configuration is typically fixed throughout the operation of the network, a fixed fade margin to account 

for these factors is a reasonable approach.  

The fixed fade margin can be calculated through one of the following approaches: 
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- Offline. If the radio configuration is known, the minimum fade margin can be estimated offline 

and programmatically implemented prior to network installation. The relationship between 

SINR and PRR is well documented as described in 2.2.7 Bit Error Rate. 

- Online. Similar to the experiment carried out in 5.2.2 LQT Generation, the relationship between 

SINR and PRR can be calculated empirically during network installation. Depending on the 

range and granularity of the TP levels available at the transmitting node, this relationship could 

be sufficiently characterised through just cycling the TP. It may however be necessary to change 

other link conditions, for example the communication distance, in order to fully characterise 

the relationship between SINR and TP.  

 

Previous empirical investigations into the relationship between SINR and PRR carried out in 5.2.2 LQT 

Generation produced similar results to the theoretical model so either approach is acceptable.   

 

6.3.2 Adaptive Fade Margin 

The adaptive fade margin is used to address channel estimation errors between measurement and 

operational windows which, as described in 2.3.2.3 Channel Stability, are common in WSNs due to the 

dynamic network conditions and low channel throughput. The adaptive fade margin is based on the 

channel stability properties of the communication link and represents a trade-off between energy 

efficiency and packet delivery. Links with high stability result in low estimation errors so a minimal 

fade margin can be applied to maximise energy savings without significant risk of detrimental effects 

to communication reliability. Conversely, links with poor stability require a much larger fade margin to 

ensure sufficient communication reliability performance is achieved and to ensure packet 

retransmissions aren’t triggered, which themselves consume significant energy resources.  

To identify the optimum parameter settings to use for the adaptive fade margin, the energy efficiency 

(as measured by the energy consumed per bit, bitE ) and communication reliability (as measured by the 

packet reception ratio, PRR) performance properties of communication links with various fade margin 

parameters have been simulated. The PRR and bitE  performance metrics were computed offline using 

the generalised energy model equations (Equation 23 and Equation 24, page 55) formulated in Chapter 

Three: Radio Energy Considerations and the link conditions captured in the empirical study in   
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Chapter Four: Empirical Study of Link Quality Assessment in Wireless Sensor Networks.  

As seen in Equation 33, aFM  was derived from a multiple ( i ) of the standard deviation of the last n  

samples of the min channel gain measured over a complete transaction ( min_ transCG ) (Equation 34). The 

number of samples used to calculate the standard deviation ( n ) and the multiple of the standard 

deviation ( i ) were varied to identify the optimum parameter settings, with the results presented in Table 

7 and Table 8. 

 

min_a transFM i =   

Equation 33. Adaptive fade margin. 
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Equation 34. Standard deviation of last n samples of min channel gain measured over a complete transaction. 

i 
PRR (%) 

n=5 n=10 n=15 n=20 

0.0 84.50 84.50 84.50 84.50 

0.5 90.47 99.45 99.90 99.96 

1.0 94.95 99.98 99.99 99.99 

1.5 97.23 99.98 99.99 99.99 

2.0 98.38 99.99 99.99 99.99 

2.5 99.01 99.99 99.99 99.99 

3.0 99.35 99.99 99.99 99.99 

Table 7. PRR performance with variable fade margin settings. 

i 
Ebit (uJ) 

n=5 n=10 n=15 n=20 

0.0 1.54 1.54 1.54 1.54 

0.5 1.40 1.14 1.11 1.10 

1.0 1.30 1.12 1.28 1.37 

1.5 1.27 1.38 1.68 1.83 

2.0 1.28 1.69 2.10 2.31 

2.5 1.33 2.03 2.54 2.78 

3.0 1.42 2.40 2.98 3.26 

Table 8. Ebit performance with variable fade margin settings. 

As seen in Table 7, the PRR is lower than 85% when no adaptive fade margin is applied ( i  = 0), further 

highlighting that an adaptive fade margin is required to ensure a sufficient PRR is achieved. From the 

heat map in Table 7, parameter settings of n  > 10 or i  > 1.5 are required to ensure detrimental effects 
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to communication reliability aren’t realised. Comparing these observations against the energy 

performance shown in Table 8, a larger than necessary value of n  and/ or i  results in poor energy 

efficiency. High values of either of these parameters results in a larger than necessary fade margin and 

consequently, wasted energy at the transmitter because packets could be sent at a lower TP and still be 

successfully received.  

Comparing the results presented in Table 7 and Table 8, parameter settings of i  = 0.5 and n  = 10 

ensure optimum performance from both energy efficiency and communication reliability perspectives. 

Although, similar performance could be achieved with larger n  settings, this would increase the 

memory and computation overhead so would be less practical to implement on the resource constrained 

hardware.  

 

6.4 Recommended Transmission Power 

Taking into account the fade margin, the recommended TP ( recTP ) becomes: 

min_ trec rans f aTP CG FM FM= + +  

Equation 35. Minimum TP. 

It is often impossible to operate at the recommended TP due to the discrete power levels available in 

the radio hardware. The actual TP used at the transmitter ( actTP ) and recTP  are related by:  

act recTP TP=     

Equation 36. Recommended TP. 

A ceiling function (    ) is used in Equation 36, rather than the nearest available TP because as 

identified in 2.1.2 Transmission Power Control Modelling, it is preferable to use a slightly higher (rather 

than lower) TP to minimise the detrimental effects on energy efficiency and communication reliability 

when a non-optimal TP is used. As an example, if recTP  is -19 dBm, the next available TP level on the 

Texas Instrument CC1101 radio is -15 dBm [63] so the TP used for the next transaction ( actTP ) would 

be set to this. 

 

6.5 Implementation 

A block diagram of HTPC is presented in Figure 30. The majority of the processing for the TPC protocol 

takes place at the transmitter. The transmitter is often the node in WSNs since traffic is typically 

upstream from node to sink (as discussed in 2.0 Introduction to Wireless Sensor Networks). Although 

the node typically has lower memory, computation and energy resources than the sink, the processing 

has been allocated in this manner for the following reasons: 

- Scalability. The sink is often shared amongst numerous nodes in a WSN. If the memory and 

processing of the TPC protocol was allocated to the sink and a large number of nodes existed 

in the network, there may be insufficient resources in the sink to implement the TPC protocol. 
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Through allocating the majority of the processing to the node, the overhead on the sink is 

negligible so no prior knowledge or consideration for node density and number of nodes 

connected to a sink needs to be carried out.   

- Metric availability. Metrics generated remotely to the node need to be transported over 

wireless links. Since the chance of dropped packets over a wireless link is relatively high, it is 

preferable to generate metrics locally (i.e. internally to the transmitter).  

- Metric distribution. Through localising the processing as much as possible, the number of 

metrics which need to be distributed in the network is minimised. This reduces the energy 

overhead of metric distribution.  

- Acknowledgement packet limitations. HTPC utilises acknowledgement packets sent from the 

receiver to the transmitter to transport the link quality metrics generated at the receiver. Through 

utilising existing network traffic, there is no additional energy overhead to transport the link 

quality metrics. Acknowledgement packets can only carry a small amount of dynamic data (less 

than four bytes for Bluetooth Low Energy [14]) and need to be sent soon after the packet is 

received. This therefore places limitations on the number of metrics that can be transported in 

the acknowledgement packet and the processing time to generate the link quality metrics.    
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Figure 30. HTPC block diagram. 

The operation of HTPC is explained below in reference to Figure 30. 

1. A data packet is sent from the transmitter (node) to the receiver (sink) at a TP of tP .  

2. Upon successful reception of the packet, the receiver measures the power of the received signal 

( rP ) through the RSSI register. The link quality metric is subsequently sent back to the 

transmitter in an acknowledgement packet.  

3. If the acknowledgment packet is successfully received, the rP  sample is read from the contents 

of the acknowledgement packet.  
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If no acknowledgement is received, rP  is assumed to be equal to the noise and interference 

power ( n iP P+ ), and packet retransmissions are triggered.  

4. .( )n iAv P P+  is measured at the transmitting node through reading the RSSI register and an 

averaging mechanism is applied (Equation 29). 

5. The average received power over the complete transaction (
_r transP ) is estimated at the 

transmitting node (Equation 30). 

6. The minimum channel gain calculated over the complete transaction (
min_ transCG ) is estimated 

at the transmitting node (Equation 31). 

7. The adaptive fade margin is estimated from the cached samples of 
min_ transCG  (Equation 33). 

8. The recommended and actual TPs ( recTP  and actTP , respectively) are calculated (Equation 35 

and Equation 36, respectively) and the TP register in the transmitting node is updated.   

 

6.6 Comparison to Design Challenges 

In 2.1.6 Related Works, four design challenges were identified which needed to be addressed to increase 

the adoption of TPC protocols in WSN applications. The ways in which these design challenges have 

been addressed by HTPC are presented below: 

- Practical to implement. HTPC requires few samples to be cached (10 bytes of data) and 

utilises simplistic metric evaluation techniques so is practical to implement on the resource 

constrained hardware. The energy overhead to implement HTPC is also negligible since it 

implements passive link monitoring so exploits existing network traffic to transport the link 

quality metrics.  

- Adaptive to link quality changes. HTPC utilises agile link quality metrics, a dynamic tuning 

algorithm and updates the TP on a per-packet basis so is adaptive to the dynamic nature of the 

transmission medium.  

- Application, hardware and standard agnostic. HTPC uses link quality metrics which are 

readily available from registers on most radio platforms used in WSNs. 

- Precise tuning algorithm. HTPC captures more link quality properties than any other existing 

works on TPC. Through this, more of the energy critical properties can be accounted for and 

the TP can be more highly optimised to the existing and predicted future channel conditions.  

 

6.7 Summary 

In this chapter, a new TPC protocol has been proposed. HTPC captures channel quality, packet delivery 

and channels stability properties of the communication link to provide a real-time estimation of the link 

quality. The TP is modulated on a per-packet basis using a dynamic algorithm. The algorithm has been 

developed from first principles and has been optimised using empirical data from a range of typical 

WSN environments. Block diagrams and step-by-step instructions of the operation of HTPC are 
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provided to ease implementation. A comparison of the proposed protocol to the design challenges 

identified in 2.1.6 Related Works is provided to highlight how these have been addressed to help 

improve the adoption of TPC protocols in WSN applications.   

 

Chapter Seven: Holistic Transmission Power Control Evaluation 

7.1 Introduction 

In this chapter the transmission power control (TPC) protocol proposed in Chapter Six: Novel Holistic 

Transmission Protocol Control Proposal, named holistic TPC (HTPC), is evaluated in a range of 

scenarios which are representative of wireless sensor network (WSN) applications. The performance of 

HTPC is subsequently compared against existing state-of-the-art (SoA) TPC protocols and other 

benchmarks through both quantitative and qualitative means.  

 

7.2 Quantitative Evaluation 

To evaluate its performance, HTPC was implemented on representative WSN hardware and 

incorporated into an experimental WSN. The hardware consisted of a Anaren A1101R08A radio 

module to implement the MAC/PHY layers which as shown in Appendix 1: Taxonomy of state-of-the-

art radio hardware commonly used in WSNs is representative of SoA radio hardware commonly used 

in WSN applications. The remainder of the host protocol stack was implemented on a low-cost, 8-bit, 

Microchip PIC microcontroller (PIC16LF1947 [81]). The experimental WSN consisted of a number of 

nodes with HTPC implemented, connected to a sink in a single hop, star network topology. Only the 

communication link between the node and sink was optimised since (as discussed in 2.0 Introduction 

to Wireless Sensor Networks) communications in WSNs are predominantly one-way (upstream) from 

node to sink. On top of this, the sink typically has larger energy resources so optimising this link is not 

as crucial.  

To compare the performance of HTPC against a number of benchmarks and other protocols, the 

performance of the communication link at every available TP was assessed and the performance metrics 

were saved in local non-volatile memory. An offline computation of the stored metrics was then used 

to compare the performance of HTPC against the following: 

- Fixed maximum TP. This is the maximum TP available on the radio hardware (12 dBm). 

- Optimal TP. The optimal TP is computed as the TP which results in the lowest energy 

consumption. This requires the transmitter to have a priori knowledge of the link quality at the 

receiver, which the author acknowledges is infeasible to achieve in reality.  

- Adaptive Transmission Power Control (ATPC) [10]. ATPC is one the most referenced works 

on TPC and it claims the highest energy savings out of all the previous works identified in 2.1.6 

Related Works. In ATPC, the TP is modulated on a per-packet basis through a dynamic 

algorithm that uses an autoregressive filter on RSSI samples. In [10] it is proposed that the link 
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quality threshold (LQT) is calculated empirically but to simplify the analysis, the LQT is 

assumed to be the receiver sensitivity.  

- TPC in wireless body area networks for healthcare monitoring (TPC-WBAN) [80]. In 

TPC-WBAN the TP is modulated on a per-packet basis using an exponentially weighted 

average of the received signal strength. The tuning parameters (average weight of a sample 

representing an improving/ deteriorating channel and upper/ lower thresholds of channel 

quality) represent the balanced approach proposed in [80].    

The link conditions experienced in the experimental WSN were varied to see how HTPC performs 

under dynamic link conditions. For this, the experimental WSN was tested across the same three 

environments used in   



   

93 

 

Chapter Four: Empirical Study of Link Quality Assessment in Wireless Sensor Networks so the 

following temporal fluctuation patterns could be applied: 

- Small fluctuations. In the grass field environment, the experimental WSN was subjected to 

multipath fading and changes to temperature and humidity.  

- Large Fluctuations and disturbances. In the warehouse environment, the WSN was subjected 

to shadowing effects from humans, moving machinery and other moving objects.  

- Large continuous fluctuations. In the office environment, the WSN was subjected to 

interference from an adjoining smart energy wireless network.  

The energy efficiency (as measured by the energy consumed per bit, bitE ) and packet delivery (as 

measured by the packet reception ratio, PRR) performance of each of the aforementioned approaches 

(maximum TP, optimum TP, ATPC, TPC-WBAN) were quantified using the generalised model 

equations (Equation 23 and Equation 24) presented in Chapter Three: Radio Energy Considerations 

and compared against the online performance of HTPC. The results are presented in Figure 31 and 

Figure 32. Note, since the optimum TP is a retrospective measure of the optimum channel conditions, 

its communication reliability performance cannot be assessed.   

 

Figure 31. PRR performance evaluation of HTPC and other approaches. 
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Figure 32. Ebit performance evaluation of HTPC and other approaches. 

The energy performance of the various approaches have been compared against the optimal TP 

performance in Table 9.  

% increase in Ebit  

compared to Opt TP 

Approach 

Max TP ATPC 
TPC- 

WBAN 
HTPC 

Temporal  

interference  

pattern 

Small 49.7 3.7 4.9 10.3 

Large 38.4 26.5 51.0 4.5 

Large cont. 43.2 34.8 53.7 8.8 

Average 43.8 24.4 44.0 7.8 

Table 9. Ebit performance comparison between using the optimal TP and maximum TP, ATPC, TPC-WBAN and HTPC. 

Firstly, confirming observations from previous works, Table 9 shows that through using the optimum 

TP, rather than the current practise of using a fixed maximum TP, considerable energy savings (of up 

to 49.7%) can be achieved. These significant energy savings can be achieved even when the link is 

subjected to various temporal interference patterns and the link quality is dynamic. Although these 

results are application dependent since the energy savings are heavily influenced by radio hardware and 

environment (as discussed in Chapter Three: Radio Energy Considerations), these observations further 

highlight that the current practise of using a fixed maximum TP yields poor energy efficiency and there 

are significant energy savings achievable through modulating the TP.   

When the experimental WSN was tested in the relatively benign grass field environment, where only 

small fluctuation temporal variations exist, the energy performance of ATPC, AMC-TPC and HTPC 

are all relatively similar. As seen in Table 9, the energy performance of all three protocols are within 

3.7 - 10.3% of the optimal TP performance. ATPC and AMC-TPC outperform HTPC marginally in this 

scenario. This is believed to be the result of HTPC implementing a slightly larger fade margin than the 

other two protocols. On top of this, HTPC was implemented on hardware and evaluated online so its 

performance was affected by the amount and granularity of TP levels available in the radio hardware. 
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The other protocols were evaluated offline where it was assumed that infinite TP levels exist. As seen 

in Figure 31, all three protocols delivered a PRR > 98% so their implementation did not detrimentally 

affect the communication reliability performance of the communication link when subjected to small 

temporal variations.  

As seen in Figure 32, the energy efficiency performance of ATPC and AMC-TPC is poor when the 

network is subjected to temporal variations which are large in magnitude and occur over shorter time 

periods. Comparing this observation to Table 9, the energy consumption of ATPC and AMC-TPC is 

between 26.5 - 53.7% greater than when the optimal TP is considered. Both of these protocols 

detrimentally affect the packet delivery properties of the communication link when the link is subjected 

to large temporal variations (as seen in Figure 31) so the poor energy efficiency is likely to be a result 

of insufficient link budget causing multiple packet retransmissions. Surprisingly, ATPC outperforms 

AMC-TPC when the link is subjected to large temporal variations, despite the latter being optimised 

for the dynamic link conditions experienced in healthcare applications rather than the pseudo-static 

scenarios considered in the optimisation of ATPC. Further analysis of the traces show that this is the 

result of ATPC being more agile than AMC-TPC so can react quicker to the changing channel 

conditions. The author believes this is a result of ATPC using a dynamic TPC algorithm which is more 

agile than the binary approach used in AMC-TPC. 

Comparing the performance of HTPC to ATPC and AMC-TPC when the network is subjected to large 

temporal variations, the performance of HTPC can be seen to be vastly superior in terms of energy 

efficiency and packet delivery. When the network was subjected to large fluctuation and disturbance 

temporal variations, HTPC only consumed 4.5% more energy than when the optimal TP is considered 

whilst still maintaining a PRR > 99%. Similar performance was observed when the experimental WSN 

was subjected to large continuous temporal variations from a smart energy wireless network, with a 

PRR > 98% and the energy consumption being within 8.8% of the optimal level. The results show that 

HTPC is adaptive to link quality changes and can accurately predict the optimum TP even when the 

link quality is highly dynamic. 

From Table 9 HTPC can be seen to outperform other SoA TPC protocols. The average energy consumed 

by links implemented with HTPC was 18% and 39% lower than links optimised with ATPC and TPC-

WBAN, respectively. On top of this, HTPC did not detrimentally affect the communication reliability 

and achieved a PRR > 98% across all test environments. Both ATPC and TPC-WBAN detrimentally 

affected the communication reliability, with up to 15% of packets being dropped. HTPC closely 

matches the performance of the communication link when the optimum TP is considered, with the 

average energy consumed by links implemented with HTPC only 7.8% higher than the optimal 

performance.  

Ideally, a quantitative comparison with several more existing TPC protocols would be carried out and 

the evaluation would extend beyond the energy efficiency and packet delivery performance. However, 

the results presented in other works are application dependent so a direct comparison cannot be made. 

Previous works have provided insufficient information on the protocol implementation so it has been 

impossible to replicate the protocols to perform an offline computation. As has been suggested in 
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previous works ( [17] [29]), a valuable contribution to this field would be defining a common test 

framework from which TPC protocols can be evaluated. From this, the energy efficiency, 

communication reliability and memory usage of different approaches could be compared for a common 

set of link conditions.  

  

7.3 Comparison with Previous Works 

In 2.1.6 Related Works, a number of common deficiencies associated with current SoA TPC protocols 

were identified. The ways in which these aforementioned deficiencies have been addressed are as 

follows: 

1. Not practical to implement in WSN hardware. HTPC requires few samples to be cached (10 

bytes of data) and utilises simplistic metric evaluation techniques so is practical to implement 

on the resource constrained hardware. On top of this, it implements passive link monitoring and 

exploits existing network traffic to transport the link quality metrics so the energy overhead to 

implement HTPC is negligible.    

2. Poor accuracy. HTPC captures more link quality properties than any other works on TPC. 

Through this, more of the energy critical properties can be accounted for and the TP can be 

more finely tuned to the current channel conditions.  

3. Poor tuning agility. The link quality estimation technique implemented in HTPC utilises link 

quality metrics which can be computed over a single transaction so dynamic link conditions 

can be accounted for, even when channel throughput is minimal. On top of this, HTPC 

modulates the TP on a per-packet basis using a dynamic algorithm so is quick to react to 

changing channel conditions. 

4. Optimised for different objectives. HTPC has been designed to address the most significant 

resource constraint in WSNs; energy. The evaluation presented in 7.2 Quantitative Evaluation 

shows that HTPC can significantly improve the energy efficiency of wireless communication 

activities in WSNs.  

5. Optimised for a single application. HTPC has been optimised and tested over various link 

conditions which are representative of a large number of WSN applications.  

6. Based on theoretical study and simulation. HTPC has been designed through a combination 

of theoretical and empirical study. Practical evaluations in 7.2 Quantitative Evaluation show 

that HTPC is effective in real-world WSNs.  

7. Do not account for packet retransmissions. HTPC uses the required number of packet 

retransmissions (RNP) metric to estimate the minimum channel gain. Through this, channel 

conditions experienced over the complete transaction are accounted for in the calculation of the 

optimum TP. 
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7.4 Summary 

In this chapter the performance of HTPC has been evaluated using quantitative and qualitative 

approaches. The practical evaluation showed that HTPC outperforms current SoA TPC protocols and 

achieves significant energy savings whilst still maintaining a high level of communication reliability, 

even when the link conditions are highly dynamic. When subjected to various temporal variations, the 

average energy consumed by links implemented with HTPC was 38%, 18% and 39% lower than using 

the maximum TP, ATPC and AMC-TPC, respectively. HTPC closely matches the performance of the 

communication link when the optimum TP is considered, with the average energy consumed by links 

implemented with HTPC only 7.8% higher than the optimal performance. On top of this, HTPC was 

shown to be practical to implement on representative WSN hardware through requiring minimal number 

of samples and utilising simplistic metric evaluation techniques. A comparison between HTPC and 

current TPC protocols showed that HTPC addresses many of the common deficiencies associated with 

TPC protocols and therefore presents an incremental improvement on SoA TPC protocols.  
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Chapter Eight: Conclusion and Future Work 
In this thesis a novel holistic transmission power control (TPC) protocol with the primary objective of 

increasing the energy efficiency of wireless communication activities in wireless sensor networks 

(WSNs) has been proposed, implemented and evaluated.  

The following conclusions are drawn: 

1. TPC protocols for WSNs with energy efficiency objectives are not well developed and all 

previously published works suffer from a number of common deficiencies. These deficiencies 

lead to poor energy efficiency and/ or detrimental effects to the communication reliability, and 

thus have limited the implementation of TPC protocols in WSN applications.  

2. Hidden and exposed node issues can be exacerbated through the implementation of a TPC 

protocol, leading to detrimental effects to energy efficiency and communication reliability. 

These are primarily the result of the communication and carrier sense radii being supressed as 

a result of minimising the TP. The hidden and exposed node issues can be identified and 

mitigated through capturing the packet delivery properties of the communication link.  

3. There are significant opportunities for TPC protocols in WSN applications. A mathematical 

model which compares transmission power (TP) against communication reliability and energy 

consumption was developed. Applying this model to state-of-the-art (SoA) radio hardware and 

parameter values from current WSN standards, the maximum energy savings were quantified 

at between 38-80% for links in the connected region and up to 66% for links in the transitional 

and disconnected regions. From this, previous assumptions that protocols and mechanisms, 

such as TPC, not being able to achieve significant energy savings at short communications 

distances have been disproven. This study showed that the greatest energy savings are achieves 

at short communication distances and under ideal channel conditions.   

4. An empirical characterisation of wireless link quality in typical WSN environments was 

conducted to identify and quantify the spatial and temporal factors which affect radio and link 

dynamics. The results highlight that link quality in WSNs exhibits complex and dynamic 

tendencies which are contrary to simplistic deterministic models. Link quality must therefore 

be estimated online, in real-time, using resources internal to the network.  

5. An empirical evaluation of raw link quality metrics for evaluating the channel quality, packet 

delivery and channel stability properties of the communication link was conducted. This study 

highlighted that using signal-to-interference-and-noise ratio (SINR) to capture the channel 

quality properties of the communication link is most suitable since; it has a detectable 

correlation to TP, has a large measurement range so can be compared against the configurable 

parameter over the full TP range and has a detectable correlation to PRR even when interference 

exists in the network. Although SINR does suffer from a considerable level of variance over 

the measurement window, especially when the interference and noise power is weak, the 

variance can be addressed using low computation, memory and energy overhead methods 

which are practical to implement on the resource constrained hardware. 
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This study also found that required number of packet retransmission (RNP) based estimators 

are most suitable for estimating packet delivery properties of the communication link. This is 

because they require less computation, fewer samples and can be calculated over smaller 

sampling windows when compared to PRR based metrics. On top of this, only RNP based 

estimators can assess the number of packet retransmissions.  

An overview of the metrics used to capture channel stability properties highlighted that it is 

most practical to reuse the same link quality metrics used to assess other link quality properties 

so that the sampling overhead is minimised. Channel quality metrics were found to have the 

greatest dynamic range and are more agile so their use is recommended.  

6. HTPC has been proposed to increase the energy efficiency of wireless communication activities 

in WSNs. HTPC is adaptive to link quality changes through utilising agile link quality metrics, 

a dynamic tuning algorithm and TP updates on a per-packet basis. The optimal TP is estimated 

through combining channel quality and packet delivery properties to provide a real-time 

estimation of the minimum channel gain, and using the channel stability properties to 

implement an adaptive fade margin. 

7. Practical evaluations show that HTPC is adaptive to link quality changes and outperforms 

current TPC protocols by achieving higher energy efficiency without detrimentally affecting 

the communication reliability. When subjected to several common temporal variations, links 

implemented with HTPC consumed 38% less than the current practise of using a fixed 

maximum TP and between 18-39% less than current SoA TPC protocols. Through offline 

computations, HTPC was found to closely match the performance of the optimal link 

performance, with links implemented with HTPC only consuming 7.8% more energy than when 

the optimal TP is considered.  

8. Real-world implementations of HTPC show that it is practical to implement on the resource 

constrained hardware as a result of implementing simplistic metric evaluation techniques and 

requiring minimal numbers of samples. Comparing the performance and characteristics of 

HTPC against current TPC protocols, HTPC addresses the common deficiencies associated 

with current TPC protocols and therefore presents an incremental improvement on SoA TPC 

protocols.  
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8.1 Future Work 

By means of future work, the following areas are proposed: 

- Common test framework. Since the performance of a TPC protocol is heavily influenced by 

the environment and radio hardware, a quantitative evaluation between different solutions is a 

significant challenge. As was identified in 7.2 Quantitative Evaluation and [17], a valuable 

contribution to this field would be defining a common test framework from which TPC 

protocols can be evaluated. Using this, the energy efficiency, communication reliability and 

memory usage of different approaches could be compared for a common set of link conditions.  

- Online evaluation with other TPC protocols. In this work HTPC has only be compared 

against two current TPC protocols through an offline computation. Ideally, a quantitative 

comparison with several more existing TPC protocols would be carried out and the tuning 

metrics would be calculated empirically rather than theoretically. However, previous works 

have provided insufficient information on the protocol implementation so it has been 

impossible to replicate current solutions. It is proposed that contact is made with the authors of 

previous works to gain further insight of protocol implementation and identify if collaborative 

partnerships could be established to evaluate the different approaches.   

- The application of HTPC in emerging wireless standards. Current WSN standards have 

primarily been designed and optimised to communicate over a distance of tens or hundreds of 

metres and have typically used frequency shift keying (FSK) modulation techniques and high 

data rates [1]. A number of emerging standards such as LoRa [82] and Sigfox [83] are being 

proposed in WSNs to communicate over very large distances (several kilometres). To enable 

this, ultra-narrow band modulation techniques (e.g. D-BPSK) and low data rates (e.g 100 bps) 

are being used [82]. The link conditions experienced by these networks will be significantly 

different than those presented by traditional WSNs. For example, the over-air transmission time 

will be significantly longer due to the low data rate so the probability that temporal factors will 

change the link quality over the transmission window is higher. An empirical study of link 

quality when considering different TPs in LoRa and Sigfox networks would be the first step 

towards determining the feasibility of using HTPC in these emerging wireless standards.  

- Co-existence with other protocols. A common viewpoint that has been shared across multiple 

studies is that wireless networks need to collectively adapt transmission power, data rate and 

channel assignment to enhance throughout, minimise energy usage and maintain quality of 

service [29]. When these protocols are implemented, the receiver performance is likely to 

change. For example, the receiver sensitivity is likely to change when data rate control protocols 

are implemented. There is little previous study on how TPC protocols work in collaboration 

with data rate control and other similar protocols. A valuable contribution to this field would 

be to characterise how these protocols co-exist.  

- The implementation of HTPC in existing standards. In this work a standard and hardware 

agnostic protocol has been developed. To simplify the implementation of HTPC into existing 
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standards (such as; ZigBee, Bluetooth Low Energy and WirelessHART), standard specific user 

manuals and libraries need to be created.  
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Appendices 

 

Appendix 1: Taxonomy of state-of-the-art radio hardware commonly used in WSNs 
 

Table 10. Taxonomy of state-of-the-art radio hardware typically used in wireless sensor networks. 

 

Radio hardware Wireless sensor node usage 
Transmission power range 

(dBm) 

Eelec 

(nJ/bit) 

Econn_max 

(%) 

Atmel AT86RF230 
 

AVR Raven (Atmel), Iris (Crossbow), ZigBit ZDM-A1281 (Meshnetics). 
-17 to 3 114.0 42.4 

Chipcon CC1000 

 

BTnode rev3 (Imperial College London), Mica2 (Crossbow), Spec (University of 

California). 

-20 to 10 207.0 80.1 

Chipcon CC2420 

 

AcquisGrain (Phillips Research), BSN Node V2/3 (Imperial College London), ENS 

(University of Edinburgh), iMote2 (Crossbow), LEAP (University of California, Los 

Angeles), MicaZ (Crossbow), Kmote-B (InTech Co), Shimmer (Intel), Telos 

(University of California, Berkeley/ Moteiv), TelosB (Crossbow). 

-25 to 0 112.2 51.1 

Nordic 

Semiconductor 

nRF2401 

DSYS24 (University College York), Hogthrob (Technical University of Denmark), 

Tyndall Mote (Tyndall). 
-20 to 0 45.4 38.0 

Nordic 

Semiconductor 

nRF903 

CIT sensor node (Cork Institute of Technology), Fleck 1/2 (CSIRO). -8 to 10 722.7 47.9 

Texas Instruments 

CC1101 (Anaren 

A1101R08a) 

WiSense (WiSense Technologies) -30 to 12 187.2 70.8 
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