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ABSTRACT 

The Fan Coil Unit (FCU) is an integral part of heating, ventilation and air conditioning systems 

used in residential and commercial buildings. One main component of this device is a multi-

tube and fin heat exchanger. Improvement of thermal performance in such heat exchangers is 

vital for improved performance of FCU. Performance improvements in the FCUs   are mainly 

limited by available technology, manufacturing capabilities and overall cost effectiveness of 

the design. Better thermal performance usually comes at a cost of higher pressure drop or more 

expensive materials and manufacturing costs. 

In this thesis, a global framework for design and optimisation was developed taking into 

account overall costs of design, manufacturing and operation. Full 3D CFD models of multi-

tube and fins heat exchanger were developed to investigate complex and non-uniform flow on 

water and air sides of the device. The CFD models were developed to enable local heat transfer 

analysis within the FCU. 

Experimental setup to evaluate performance of the heat exchanger has been designed and built. 

Different configurations of heat exchanger were tested experimentally and numerically, 

including the baseline configuration, so called plain fins. More efficient design of louvre fins 

and and fins with vortex generating mechanism (perforation in the fin surfaces) were also 

investigated. Best thermal performance was found to be for the perforated louvre fins. 

CFD model was validated against experimental results and obtained data was used to create a 

novel semi-analytical prediction model for Fanning friction factor (f) and Colburn factor (j). 

Appropriate costs calculation model was also developed and employed for total costs 

estimation of the FCU over the period of 15 years. 

The framework proposed in this thesis for optimised design and development strategy of heat 

exchangers resulted in development of a novel design which offers significant improvements 

in comparison to the current design. 

This new optimised design of the heat exchanger (with perforation in louvre fins) increased 

thermal performance by additional 10% while the total costs increased by only 6%.  
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NOMENCLATURE 

A1 Heat transfer surface areas for hot fluid m2 

A2 Heat transfer surface areas for could fluid m2 

Aw Heat transfer area of the wall m2 

Ac Flow cross sectional area m2 

Ao Total surface area m2 

Af Fins total surface area m2 

Ab Base area m2 

At Total heat transfer surface area of the heat exchanger m2 

Cp1, Cpw Specific heats for the hot fluid J/kg K 

Cp2,Cpa Specific heats for the cold fluid J/kg K 

Cmin Product of mass and specific heat of the fluid which has a 

lower thermal capacity rate 

kJ/sec K 

Cmax Product of mass and specific heat of the fluid which has a 

higher thermal capacity rate 

kJ/sec K 

C* Heat capacity rate ratio  

Cf Skin friction coefficient  

CTotal Total cost £ 

CCapital Capital cost £ 

COperating Operating cost £ 

CMaterial Material cost £ 

CManufacturing Manufacturing and installation cost £ 

CTubes Cost of the tubes £ 

Cfins Cost of the tubes £ 

CHousing Cost of the housing £ 

C1 Cost of tubes material £/Kg 

C2 Cost of Aluminium per unit volume £/mm3 

C3 Cost for steel sheet per unit volume £/mm3 

CKWhr Power cost for 1 kwhr (kilowatt hour) £ 

Dh Hydraulic diameter m 
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Dc Fin collar outside diameter m 

Dout Outer diameter of the tube m 

ESD Estimated standard deviation  

f Fanning friction factor  

Ft Fin thickness mm 

Fp Fin spacing m 

Fw Fin width m 

FH Fin height m 

h1, hh, hw Heat transfer coefficient for hot fluid W /m2 K 

h2, hc, ha Heat transfer coefficient for cold fluid W /m2 K 

hD Hole diameter m 

hS Hole spacing m 

j Colburn factor  

j/f Efficiency index  

JF JF factor optimisation factor  

kw Thermal conductivity of the wall material W/m K 

KI Abrupt contraction pressure-loss coefficient  

Ke Abrupt expansion pressure-loss coefficient  

Ka Thermal conductivity of the fin material W/m K 

tTube Tube thickness m 

LTube Total length of the tubes m 

Lp Longitudinal pitch m 

ṁ1 Mass flow rate for hot fluid kg/sec 

ṁ2 Mass flow rate for cold fluid kg/sec 

MV Arithmetic means of (n) number of measurements  

Nu Nusselt number  

n Number of measurements in the set  

NTU Number of transfer units  

Pp Pumping power W 

∆P Pressure drop Pa 
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Pr Prandtl number  

PWater−side Pumping powers required to operate the water-side  W 

PAir−side Pumping powers required to operate the air-side W 

Q̇h Heat transfer rate for hot fluid W 

 Q̇c Heat transfer rate for cold fluid W 

Q̇ Actual heat transfer rate W 

Q̇max Maximum possible heat transfer rate W 

Q̇avg Average heat transfer rate W 

Rw Wall thermal resistance m2 K 

Re Reynolds number  

R Radius of a circular fin which has the same efficiency as the 

rectangular fin 

m 

ro Outer radius of the tube m 

SU Standard uncertainty  

SV The result of the ith measurement (sample value)  

T1i,Thi Hot fluid inlet temperature K 

T1o,Tho Hot fluid outlet temperature K 

T2i, Tci Cold fluid inlet temperature K 

T2o, Tco Cold fluid outlet temperature K 

∆Tlm Log mean temperature difference  

ΔTw Difference between the inlet and outlet temperature of the 

water 

K 

Tp Transverse pitch m 

top Operational hours per year hr/yr 

U Overall heat transfer coefficient W/m2 K 

UT Frictional velocity m/sec 

VHousing Volume of the steel sheet used to create the housing mm3 

y+ Non-dimensional distance from the wall m 

Δy First layer height in the viscous sublayer of the boundary layer m 
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δw Wall thickness m 

𝜀 Heat exchanger effectiveness  

η𝑝 Efficiency of the fan or pump % 

ηo Surface efficiency % 

ηf Fin efficiency % 

μ Dynamic Viscosity Pa sec 

ν Kinematic viscosity Pa sec 

ρ Fluid density kg/m3 

ρ1 Density of air inlet kg/m3 

ρ2 Density of air outlet kg/m3 

ρm Mean density kg/m3 

σ Ratio of the minimum flow area to the frontal 

area 
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 INTRODUCTION 

 

SUMMARY: A Fan Coil Unit (FCU) is a part of a Heating, Ventilation and Air 

Conditioning (HVAC) system used in residential, commercial, and industrial buildings. These 

devices consist of a heating or cooling coil and a fan. This chapter briefly introduces the FCU 

and its main components. The enhancement techniques to improve the heat transfer have been 

discussed. Furthermore, this chapter provides the main research aims of this study related to 

optimisation of heat transfer performance.  
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1.1 Introduction  

Heating, ventilation, and air conditioning (HVAC) system design is a sub-discipline 

of mechanical engineering. These systems are designed based on the principles of 

thermodynamics, fluid mechanics, and heat transfer. These days HVAC plays an important 

role while developing a medium to large industrial and office buildings such as skyscrapers, 

where safe and healthy building conditions are regulated through management of comfort 

indicators such as temperature and humidity induction of fresh air from outside if necessary. 

A fan coil unit (FCU) is a part of an HVAC system used in residential, commercial, and 

industrial buildings. These devices consist of a heating or cooling coil and a fan. Typically, a 

fan coil unit is not connected to the ductwork, and is used to control the temperature in the 

space where it is installed, or serve multiple spaces. It is controlled either manually using on/off 

switch or using a thermostat. 

Due to their simplicity, fan coil units are more economical to install than ducted or central 

heating systems with air handling units. However, they can be noisy because the fan is within 

the same space. There can be in several unit configurations, including horizontal (ceiling 

mounted) or vertical (floor mounted). 

1.2 Operating principle 

The basic Fan Coil Unit (FCU) is manufactured using galvanised steel, which consists of a 

back panel, side panels, spigot panel, fan deck assembly, heat exchanger, drain tray assembly, 

filter, electrics assembly and access panels. In general, any FCU primary inputs are the flow 

rate of air, air temperature, the flow rate of liquid and its temperature, whereas heat transfer 

rate, pressure drop and noise level are the primary outputs that need to be analysed.  

The basic operation of FCU uses re-circulated air which is air pulled into the FCU using the 

fan deck assembly. The heat exchanger has either cold or hot water circulating through the 

tubes, depending on what is required. The air which is drawn across the heat exchanger is then 

cooled or heated and expelled through various ducts, which are attached to the spigot panel 

into the room below which is seen in Figure 1.1. Various sensors and controls systems are used 

with the FCU to control the temperature in the room. 
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Figure 1.1 Operation of a Fan Coil Unit [1] 

A centrifugal fan draws the air across the heat exchanger which will have either cold or hot 

water through the copper tubes; this is then expelled into the room as seen in Figure 1.2. 

 

Figure 1.2 Fan operation [2] 

1.3 Heat Exchangers 

As described in the previous section, heat exchanger represents the main part of the FCU. It 

can be defined as a device that is used to transfer thermal energy (enthalpy) between two or 

more fluids, between a solid surface and a fluid, or between solid particulates and a fluid, at 

different temperatures and in thermal contact. In heat exchangers, there are usually no external 

heat and work interactions. Typical applications involve heating or cooling of a fluid stream 

and evaporation or condensation of single or multicomponent fluid streams. In a few heat 

exchangers, the fluids exchanging heat are in direct contact. In most heat exchangers, heat 

transfer between fluids takes place through a separating wall or into and out of a wall in a 

transient manner. In many heat exchangers, the fluids are separated by a heat transfer surface, 

and ideally, they do not mix or leak. They are used in many applications, such as in heating, 

ventilation and air conditioning systems (HVAC), power generation and manufacturing 
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system. The term heat exchanger is generally used to describe a variety of heat transfer 

equipment such as condensers, evaporators, economisers and radiators. A detailed information 

about the heat exchanger analysis under different operating conditions will be discussed in the 

next chapter. 

1.4 Fan Motors 

In order to circulate the required air, a fan motor is installed within the FCU. These motors can 

be either AC or electronically commutated DC (ECDC) motor. Both the motors are capable of 

rotating with variable speed. However, AC motors need an additional multi tap transformer to 

vary its speed. The new ERP (energy rated product) directive has forced many companies to 

design new ECDC fan motors which are compliant with the ERP directive and can produce 

huge savings on energy bills but come at a higher price. The new ECDC fan motors are up to 

57% more efficient than the AC fan motor, the AC fan uses 118watts of power input compared 

to only 75watts on the ECDC fan and has 0.75 of specific fan power compared to only 0.31 on 

the ECDC. They run cooler due to a lower energy input, have a reduced maintenance and lower 

lifetime costs. Table 1-1 Comparisons between AC and DC fan motor [1] shows the 

comparison between AC and DC motors. 

Table 1-1 Comparisons between AC and DC fan motor [1] 

 

 

1.5 Insulation  

Providing adequate cooling & heating and low noise levels are the two most important 

parameters that consumers expect from any FCU. The noise levels can be reduced by applying 
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an acoustic insulation to certain areas of the FCU. However, this will increase the total cost of 

the FCU [3]. 

1.6 Heat Transfer Enhancement Techniques 

In recent years, development of energy efficient heat exchangers has become a concern for 

many researchers and experts as the cost of energy and material has increased significantly[4], 

[5]. 

Enhanced surfaces transfer more heat than a standard surface, a reduction in weight of the heat 

exchanger for a given heat duty and pressure drop and a decrease in the pumping power for a 

given size and heat duty are the main benefits of enhancement device. In general, enhancement 

or augmentation techniques are classified into active and passive techniques. In addition, a 

combination of both active and passive techniques may be used for the aim of additional 

improvement in the thermo-hydraulic performance of a heat exchanger. The following sections 

include more details about these techniques. 

1.9.1 Active Techniques 

These techniques require external power to cause the expected flow improvement and 

modification in the rate of heat transfer. Using external forces such as mechanical aids, electric 

field, surface or fluid vibration and electrohydrodynamic fields are examples of these 

techniques.  

1.9.2 Passive Techniques 

Generally, these techniques use surface or geometrical modifications to the flow channel by 

employing inserts or additional devices. The main result of that is a higher heat transfer 

coefficients, and it also may lead to increase in the pressure drop [6]. The passive techniques 

require no direct application of external power. These techniques include extended or rough 

surfaces (where the effective heat transfer area is increased) , fluid or gas additives, swirl flow 

devices, surface tension devices, etc.[2],[7] 

1.7  Motivation 

In many engineering applications, process of transferring heat between two mediums at 

different temperatures in a direct contact or separated by a solid wall occurs in a device called 

heat exchanger. This function of exchanging the heat can also be found in a variety of relevant 

equipment such as condensers, evaporators, economisers, FCU and radiators. They are all 

commonly known as heat exchangers. Thermal performance of the heat exchanger depends on 
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a variety of factors including materials, used medium like water or air, device configuration, 

water flow and air flow etc… Increase of thermal performance can provide significant cost 

savings during both manufacturing and operation of the device. Optimisation of the heat 

exchangers itself as well as cost saving, and faster design and development processes are often 

referred to as heat transfer augmentation, enhancement or intensification. Main gains in thermal 

performance are usually achieved by increase in convective heat transfer by reduced thermal 

resistance. However, better thermal performance usually is coming at a cost of increased 

pressure drop across the heat exchanger and therefore increased energy requirement during 

operation. This could be partially compensated for by smaller designs and overall device 

miniaturisation of the heat exchanger unit. Therefore, design and development of new type of 

heat exchangers is often an act of balancing competing requirements and different objectives 

at different stages of the design process. More in-depth analysis is required to access in a 

unified manner fluid side flow, air- side flow performance, materials, manufacturing costs, 

operational and maintenance costs and energy efficiency. 

In the process of designing or predicting the performance of a heat exchanger is necessary to 

link the total heat transfer rate to various process variables. These variables include; heat 

exchanger geometry, flow arrangements, materials and design configurations such as tube 

sizes, fins geometry, operating conditions and cost of operation. Furthermore, the experimental 

and numerical analysis of the heat exchanger under steady condition cannot be applied on the 

transient condition; hence, it is vital to conduct separate studies to analyse the performance 

characteristics of the heat exchanger under this condition. 

An optimum design for a heat exchanger has to provide maximum heat transfer rate at low 

pressure drop. As with high pressure drop in the heat exchanger, a large pump size is required 

to overcome the flow resistance caused by this pressure drop which may lead to an increase in 

the cost of the system. 

The total duty of a heat exchanger depends on the difference between the inlet and outlet fluid 

temperatures and the mass flow rate. The total duty for FCU that is 1.43 m long can vary from 

2 KW to 5 KW [1] depending on the mass flow rate for the same inlet and outlet fluid 

temperatures difference. 

The primary focus of this study is to analyse the current heat exchanger and propose some 

design modifications in order to optimise the FCU design in such way that it will take into 

account whole life cycle of the device including development, manufacturing, and operation. 
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Therefore, emphasis will be given not only to the thermal performance but also to the cost of 

manufacturing and operation. 

1.8 Research Aims  

The main aim of this thesis is to improve thermal performance and minimise the costs of the 

fan coil unit (FCU) and the specific aims formulated for this research study are described 

below. Detailed research objectives have been placed in the next section in order to make them 

easy to find. Three specific research aims can be formulated as follows: - 

➢ Development of a novel approach to analyse the thermal performance of a multi-tube 

and fin heat exchanger used in the current FCU unit experimentally and numerically 

under steady state operating condition, 

➢ Development of more efficient design for multi-tube and fin heat exchanger geometry 

to improve FCU thermal performance,  

➢ To develop a novel performance optimisation model and to apply it to develop more 

efficient design of fins configuration for the multi-tube heat exchanger used in the 

current FCU based on multi-objective optimisation and total cost analysis. 

1.9 Research objectives 

Based on the research aim presented in the previous section, and after conducting a detailed 

literature review which will be carried out in chapter 2, the following objectives have been 

allocated to aid the research aims: -   

A1. Development of a novel approach to analyse the thermal performance of a multi-tube and 

fin heat exchanger used in the current FCU unit experimentally and numerically under steady 

state operating condition: 

1.1 To carry out a qualitative and quantitative analyses of the results achieved 

experimentally and numerically using a novel 3D CFD model for the baseline 

model, 

1.2 To use CFD to predict heat transfer coefficients and local fin efficiency for 

multi tube and fin heat exchanger, 
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1.3 To determine the effect of longitudinal pitch, transverse pitch and fin spacing 

on the thermal performance of multi tubes and fins heat exchanger, 

1.4 To develop a semi-empirical prediction model for the Colburn (j) factor and 

Fanning friction factor (f) for the multi-tube and fin heat exchanger with plain fins. 

A2. Development of more efficient design for multi-tube and fin heat exchanger geometry to 

improve FCU thermal performance: 

2.1 To present a novel fin configuration (perforated plain fin) and compare its 

thermal performance with plain and louvre fins configurations, 

2.2 To carry out a comparative numerical study of the airside performance of multi-

tube and fin heat exchanger under steady state operating conditions having plain, 

louvre and perforated louvre fins, 

2.3 To develop a combined semi-empirical prediction model for Colburn (j) factor 

and Fanning friction factor (f) which can be used for different fin configurations, 

2.4 To formulate the effect of hole diameter and hole spacing of the perforations 

on the thermal performance of the multi-tube and fin heat exchanger. 

A3. Development of novel performance optimisation model and its application to develop more 

efficient design of fins configuration for the multi-tube heat exchanger used in the current FCU 

based on multi-objective optimisation and total cost analysis: 

3.1 To propose a time efficient optimisation strategy which take into consideration 

limited experimental inputs, CFD modelling and optimisation, 

3.2 To employ the new optimisation strategy to evaluate the thermal performance 

of the heat exchanger used in the FCU with combination of plain, perforated and 

louvre fins arrangements, 

3.3 To derive an optimised model for the FCU design based on the heat exchanger 

performance with the following inputs: fins geometry, fins arrangements and total 

cost, 
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3.4 To assess the effectiveness of the proposed optimisation strategy by prototyping 

and validating the new optimised design. 

1.10 Organisation of Thesis 

This thesis is organised into seven main chapters. Chapter 1 presents an introduction to the 

fan coil unit (FCU), its main components and operating conditions principles. From this 

introduction, the motivation for carrying out this research has been defined, which identifies 

the main areas to be reviewed in Chapter 2. 

Chapter 2 starts with a background about the analysis of the heat exchanger under different 

operating conditions. The next part of this chapter presents an overview of current published 

literature on multi-tubes and fins heat exchangers. This chapter includes a review about the 

research that has been carried out in the analysis of the thermal performance of the multi-tube 

and fin heat exchanger used in the current FCU unit experimentally and numerically under 

steady state operating condition. Moreover, a review of available literature for the design 

modifications to improve the thermal performance of multi-tube and fin heat exchanger has 

also been included. The last part of this chapter contains the literature review being carried out 

on the optimisation techniques for multi-tube and fin heat exchanger. Details of the scope of 

research have been provided in the form of specific research aims and objectives. 

Chapter 3 has been divided into two parts; the first part includes in detail a description of each 

component that has been used in the experimental facility.  The experimental setup has been 

developed to validate the numerical model for multi-tubes and fins heat exchanger and to 

evaluate the effect of enhanced heat transfer for the optimum modified model on the thermal 

performance of the heat exchanger. Additionally, an estimation of the uncertainty of 

experimental results has been included. The second part provides the fundamentals of 

Computational Fluid Dynamics (CFD). The CFD modelling for the model of multi-tubes and 

fins heat exchanger has been included. It covers in detail the implemented meshing technique 

for the flow domain. Furthermore, this chapter specifies the suitable boundary conditions and 

solver settings. 

In Chapter 4, in order to understand the complex flow structure in multi-tube and fin heat 

exchanger, a detailed qualitative and quantitative analysis of the results achieved numerically 

and experimentally has been carried out. Furthermore, the effect of various geometric and flow-

related parameters on heat transfer and pressure drop characteristics on both air-side and water-
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side for the heat exchanger has been investigated. The regression analysis and the 

corresponding equations for heat transfer and pressure drop characteristics as functions of all 

relevant parameters have been presented. 

Chapter 5 deals with the design modifications to improve the thermal performance of multi-

tube and fin heat exchanger. This chapter includes an extensive experimental and numerical 

studies to compare these design modifications with the baseline model of the heat exchanger. 

Chapter 6 presents an optimisation model for multi-tube and fin heat exchanger. Moreover, 

the cost estimation of FCU integrated with multi-tube and fin heat exchanger has been included. 

This study includes a comparison between baseline and modified models in order to evaluate 

the effectiveness of the modifications.  

Chapter 7 draws the overall conclusions of the thesis and provides several recommendations 

for possible future work. 
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 HEAT EXCHANGERS ANALYSIS 

AND LITERATURE REVIEW 

 

SUMMARY: In the introduction chapter, detailed information regarding the parameters 

affecting the design of multi-tube and fin heat exchanger has been identified. This chapter 

provides detailed information about analysing the heat exchanger under different operating 

conditions followed by an intensive literature review to highlight the knowledge gaps in the 

existing literature. The literature review has been divided into three main part; I) analysis of 

performance of a heat exchanger used in the current FCU unit experimentally and numerically 

under steady state operating condition, II) design modification to enhance thermal performance 

of the heat exchanger and III) multi-objective optimisation of the new design and cost analysis. 

Based on this analysis, research objectives aligned with specific research aims have been 

formulated. 
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2.1 Heat Exchangers Analysis 

In order to analyse the heat exchanger and to determine the amount of heat that will be 

transferred from one fluid to another, some fundamental assumptions are made as follows [8]: 

• Heat exchangers are steady-flow or unsteady-flow devices. 

• Thermal properties of all fluids are almost constant. 

• Constant overall heat transfer coefficient. 

• No heat exchange between the heat exchanger and the surroundings (Adiabatic). 

• The fluids are gaining the heat through the solid surfaces. 

There are three primary flow arrangements in heat exchangers: counter-flow, parallel-flow, and 

cross-flow. In the counter-flow exchanger, the fluids enter the exchanger from opposite sides. 

This is the most efficient design because it transfers the greatest amount of heat. In the parallel-

flow version, both the fluids enter from the same end and move parallel to each other as they 

flow to the other side. For very long systems, the output temperature of both fluids becomes 

the same. The cross-flow heat exchanger moves the fluids in a perpendicular fashion. Figure 

2.1 depicts the temperature profiles and schematics of the double-pipe heat exchanger for 

parallel-flow and counter-flow. 

  

  

Figure 2.1 the counter flow arrangements: (a) Schematic for counter-flow channels and (b) the 

temperature distribution. The parallel-flow arrangements: (c) Schematic for parallel-flow channels 

and (d) the temperature distribution [9] 

From the previous assumptions, the first law of thermodynamics can be written as. 
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Q̇h = Q̇c                                                                    (2.1) 

where the heat transfer rate for hot fluid is Q̇h and the heat transfer rate for cold fluid is Q̇c, 

respectively. 

Q̇h = ṁ1Cp1(T1i − T1o)                                                            (2.2) 

Q̇c = ṁ2Cp2(T2o − T2i)                                                             (2.3) 

where ṁ1 and ṁ2 are the mass flow rate for hot and cold fluid, respectively, and Cp1 and Cp2 

are the specific heats for the hot and cold fluid, respectively. 

The overall heat transfer coefficient, heat exchanger effectiveness and the pressure drop within 

the heat exchanger are the most important parameters in the analysis of the heat exchanger. 

Therefore, the overall heat transfer coefficient, the heat exchanger effectiveness, basic methods 

to calculate the thermal effectiveness and the heat exchanger pressure drop will be discussed 

in the next sections. 

2.1.1 Overall Heat Transfer Coefficient 

To find an equation for the overall heat transfer coefficient, a thermal circuit across the wall 

between the hot and cold fluid can be constructed as shown in Figure 2.2.  

 
Figure 2.2 Thermal Resistance and Thermal Circuit for a Heat Exchanger [10] 

The resistance network around the wall can be expressed in three terms, 

• Convective resistance through the hot fluid 

• Conductive resistance through the wall 

• Convective resistance through the cold fluid 
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The UA value (the overall conductance) is defined as [9], 

UA =
1

1

h1A1
+Rw+

1

h2A2

                                                             (2.4) 

Where U is the overall heat transfer coefficient, h1 and h2 are the heat transfer coefficients for 

hot and cold fluids, respectively, A1 and A2 are the heat transfer surface areas for hot and could 

fluids, respectively, and Rw  is the wall thermal resistance. For flat wall, this resistance equals 

to: 

Rw =  
δw

kwAw
                                                                     (2.5) 

where δw is the wall thickness, kw is the thermal conductivity of the wall material and Aw is 

the heat transfer area of the wall. 

2.1.2 Colburn (j) factor and Fanning friction factor (f)  

In order to analyse the thermal performance of the heat exchanger, it is important to compute 

heat transfer and pressure drop characteristics accurately by using non-dimensional parameters.  

In the experiments, it is more common to present the heat transfer characteristics using Colburn 

(j) factor and the pressure drop characteristics using Fanning friction factor (f) as a function of 

Reynolds number (Re) [7]. Definitions for these factors have been presented by [7] as follows, 

Fanning friction factor is the ratio between wall shear stress and the flow kinetic energy per 

unit volume. 

Colburn factor a modified Stanton number to take into consideration the moderate variations 

in the Prandtl number (Pr) for a range from 0.5 to 10.0 in turbulent flow.  

The Colburn j factor and the friction factor f can be computed from Eq.s (2.6) and (2.7), 

respectively. 

j =
ha

ρaVa(max)Cpa
Pr

2

3                                                        (2.6) 

f =
Ac

Ao

ρm

ρ1
[

2ρ1∆P

Gc
2 − (Ki + 1 − σ2) − 2 (

ρ1

ρ2
− 1) + (1 − σ2 − Ke)

ρ1

ρ2
]              (2.7) 
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The Eq. (1.7) has been proposed by Kays and London [11] and the coefficients KI and Ke are 

the abrupt contraction pressure-loss coefficient and the abrupt expansion pressure-loss 

coefficient, respectively. These coefficients are adapted from Figure 2.3 [12]. 

 
Figure 2.3 Entrance and Exit Pressure Drop Coefficients for Plate-Fin Heat Exchanger [12] 

Ac is the flow cross sectional area and  σ represents the ratio of the minimum flow area to the 

frontal area. ρ1, ρ2 𝑎𝑛𝑑 ρm are the density of air inlet, air outlet and mean density, respectively. 

2.2 Classification of Heat Exchangers  

Heat exchangers classification will be discussed in this section. In general, heat exchangers can 

be classified according to transfer processes, a number of fluids used in the system, degrees of 

surface compactness, construction features, flow arrangements, and heat transfer mechanisms 

[13]. 

Generally, heat exchangers can be classified into two groups: - 

A. According to its construction features 

➢ Double-pipe  

➢ Shell-and-Tube  

➢ Plate heat exchanger (PHE) 

➢ Finned-Tube Heat Exchangers 

➢ Plate-Fin Heat Exchangers 
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B. According to the fluid used. 

➢ Gas-Liquid 

➢ Liquid-Liquid 

➢ Gas-Gas 

2.2.1 The Heat Exchanger Effectiveness 

The heat exchanger effectiveness 𝜀 is defined as the ratio between the actual heat transfer rates 

to the maximum possible heat transfer rate, therefore 𝜀 can be written as: - 

ε =
Q̇

Q̇max
                                                                       (2.8) 

The maximum possible heat transfer rate will occur when the difference in inlet temperature 

and outlet temperature is the maximum value. Hence, for parallel-flow heat exchanger Eq. 2.8 

can be written as follows [9] 

ε =
T1i−T1o

T1i−T2i
                                                                    (2.9) 

2.2.2 Basic Methods to Calculate Thermal Effectiveness 

There are four basic design methods to calculate the thermal effectiveness of heat exchangers 

[14]: 

1. ε-NTU method  

2. LMTD method  

3. P-NTUt method  

4. ψ-P method 

The fundamentals of the first two methods are discussed next because of their importance in 

the analysis. 

I. ε-NTU method 

This method has been proposed  by [15]. The method expresses the total heat transfer rate from 

the hot fluid to the cold fluid in the heat exchanger as: 
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Q = εCmin(T1i − T2i)                                                         (2.10) 

where, Cmin denotes to the product of mass and specific heat of the fluid which has a lower 

thermal capacity rate. 

In this method, the effectiveness of the heat exchanger is a function of the number of transfer 

units (NTU), the heat capacity rate ratio (C*) and (U) the overall heat transfer coefficient. 

Number of transfer units (NTU): is a ratio between the overall conductance and the smaller 

heat capacity rate. 

NTU =  
UA

Cmin
=

1

Cmin
∫ UdA

A
                                         (2.11) 

Where (U) is the overall heat transfer coefficient (W/m2 K). 

Heat capacity rate ratio (C*) is the ratio between the smaller and larger heat capacity rate for 

the two fluid streams so that C* ≤ 1.  

C∗ =
Cmin

Cmax
=

(mCp)min

(mCp)max
                                          (2.12) 

where, (Cmax) denotes to the product of mass and specific heat of the fluid which has a higher 

thermal capacity rate. 

From equations 2.10 and 2.12 

ε =
Ch(Thi−Tho)

Cmin(Thi−Tci)
=

Cc(Tco−Tci)

Cmin(Thi−Tci)
                                               (2.13) 

In general, as the effectiveness of the heat exchanger increases as the NTU increases. However, 

there are exceptions such that after reaching a maximum value, the effectiveness decreases with 

increasing NTU.  

II.  LMTD method  

Another way to express the heat transfer rate is [13], 

Q = UAF∆Tlm                                                             (2.14) 
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where U is the overall heat transfer coefficient, A is heat transfer area, and ∆Tlm is the log mean 

temperature difference, defined as 

∆Tlm =
∆T1−∆T2

ln(
∆T1
∆T2

)
                                                            (2.15) 

where 

∆T1 =  T1i − T2i And  ∆T2 =  T1o −  T2o for parallel flow                  (2.16) 

∆T1 =  T1i − T2o And  ∆T2 =  T1o − T2i  for counter flow                (2.17) 

F is the correction factor which depends on the flow arrangements. At the install design stages, 

the value for the correction factor can be assumed as in Table 2-1[16].  

Table 2-1 Estimated Values for the Correction Factor [16]  

Heat exchanger type Correction Factor 

True counter flow 1.0 

Double-pipe heat exchanger in counter flow arrangement 1.0 

Shell type of shell and tube heat exchanger 1.0 

Cross flow heat exchanger 0.7 

TEMA E shell with single pass on both shell side and tube side 0.7 

In General, for the design of compact heat exchangers, the ε-NTU method is used. In contrast, 

for the design of shell and tube heat exchangers, the LMTD method is used [16]. 

2.2.3 Heat Exchanger Pressure Drop 

Pressure drop in a heat exchanger is an important factor; it is vital to consider during the design 

process. This factor will determine the pumping power or fan work input necessary to keep the 

continuous of the flow through the heat exchanger. Hence poor design can result in additional 

cost. Pressure drop calculations are required for both fluid streams, and in most cases flow 

consists of either two internal streams or an internal and external stream. Pressure drop is 

affected by a number of factors, namely the type of flow (laminar or turbulent) and the passage 

geometry. 
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In general , calculating the pressure drop in a heat exchanger is necessary for many applications 

for at least two reasons [14]: 

1- The pumping power (Pp) is the power required to run the working fluids and this power 

is related to the heat exchanger pressure drop. Equation 2.18 describes the relationship 

between the pumping power and the heat exchanger pressure drop for moving devices 

such as pumps, fans, and blowers. 

 

Pp =
ṁ∆P

ρ
                                                                         (2.18) 

2- At large pressure drop, the heat transfer rate is considerably affected by the saturation 

temperature change for a condensing/evaporating fluid. 

2.3 Transient Behaviour of a Heat Exchanger 

Under practical conditions, steady testing is not feasible or practical because the inputs of the 

heat exchanger are time dependent. Hence, it is very important to analysis the heat exchanger 

under transient conditions where the inputs and the outputs are dependent on time [17]. Heat 

exchangers with two working fluids are operating at different states,    

• Steady state where the inlet and outlet temperatures of both fluids are constant over 

time. 

• Transient state where one or both fluids is / are having a change in its inlet temperature.  

According to [17] the transient inputs can be: 

• Step input; where the inlet temperature or flow rate changed suddenly to a new value. 

• Frequency input; where the inlet temperature or flow rate changed periodically. 

• Impulse input; where the inlet temperature or flow rate changed by an infinite 

amplitude. 

Figure 2.4 illustrates a diagram for these inputs. 
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A) Step Input 

 

B) Frequency Input 

  

C) Impulse Input 

Figure 2.4 Transient Inputs [17] 

A mathematical model is proposed by many researches [18],[19],[20],[7] and [21] to express 

the convective heat transfer between the wall of a heat exchanger and fluid streams at constant 

velocities. The model consists of three linear partial differential equations. The schematic 

description of cross flow heat exchanger is shown in Figure 2.5. 

 

Figure 2.5 Schematic Description of Cross Flow Heat Exchanger[22] 

In order to develop a mathematical solution for cross flow heat exchanger model some 

simplifying assumptions are made.  The assumptions are as follows [22]: 

• Single phase for both fluids and they are unmixed; 

• Adiabatic setup; 

• Neglecting the axial conduction in both fluid and walls; 

• Constant fluid velocity in each flow path; 
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• Both fluids are finite-velocity liquids or gases; 

• The independence of the heat transfer characteristics and physical properties from 

temperature, position and time. 

Based on the previous simplifying assumptions and by applying the energy equations on both 

fluids, three simultaneous partial differential equations can be written [22] which are shown 

below: 

MwCPw

∂Tw

∂t
= (hA)1(T1 − Tw) − (hA)2(Tw − T2)                             (2.19) 

m1CP1
X0 [

∂T1

∂X
+

1

u1

∂T1

∂t
] = (hA)1(T1 − Tw)                                       (2.20) 

m2CP2
Y0 [

∂T2

∂Y
+

1

u2

∂T2

∂t
] = (hA)2(Tw − T2)                                          (2.21) 

where,  

            Mw and Cpw are the mass and specific heat of the wall of heat exchanger, respectively. 

In experiments, the single blow transient testing has been used to obtain the heat transfer 

characterises of the heat exchanger [23]. The test is based on changing the state of the fluid 

from steady to a transient condition in a short time by changing the inlets condition. 

2.4 Literature Review  

Multi-tube and fin type heat exchangers have numerous application areas in the field of thermal 

engineering. There are several fin shapes such as plain, louvre, convex-louvre, and wavy. 

Among these designs, plain fin configuration is the most common fin design in heat exchanger 

applications, due to its simplicity and rigidity. Circular type tubes are the typical geometries 

used in heat exchangers. 

Many studies have been carried out to improve the performance of heat exchangers to meet a 

certain duty. These studies involve many techniques and can be classified as two major 

techniques [2], 

• Active technique, use external forces, such as electric field, surface vibration.  
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• Passive technique, use special surface geometries or fluid additives  

2.5 Analysis of Performance of a Heat Exchanger Used in the Current 

FCU Unit Experimentally and Numerically under Steady State Condition 

2.5.1 Experimental Studies 

Wilson [24] experimentally developed a method to evaluate the convection coefficients in a 

variety of convective heat transfer processes. The method divided the overall thermal resistance 

into three major resistances; the internal convection, the tube wall and the external convection. 

The result of this method is represented graphically in Figure 2.6, where the water-side heat 

transfer coefficient is a function of water velocity. 

 
Figure 2.6 Original Wilson Plot [25] 

Modifications of Wilson method were carried out by Sieder-Tate [26], Colburn [27] and Dittus-

Boelter [28]. These modifications correlate Nusselt number with the Reynolds and Prandtl 

numbers in conformity with Equation (2.1). In those correlations, the authors assumed the 

exponents of the Reynolds number (nA) and Prandtl number (mA) for Eq. (2.22). 

NuA = CAReA
nAPrA

mA                                                    (2.22) 

where, A is denoted for fluid A, C is constant, m is an exponent of Prandtl number and n is an 

exponent of Reynolds number. 

Wang et al. [29] provided an experimental data, by studying 15 samples with different 

geometries and a range for Reynolds number from 300 to 7500, on the plain fin and tube heat 

exchanger having 3/8th (9.52 mm) tube diameter. Furthermore, the effect of fin spacing, the 

number of tube rows and fin thickness on the heat transfer and friction characteristics are also 

studied. The results of this study are shown (Figure 2.7) in terms of friction factor and Colburn 

j-factor against Reynolds number. The study showed that there is no effect of the fin thickness 
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on the heat transfer or friction characteristics. The number of tube rows has negligible effect 

on the friction factor. Also, for the range of Reynolds number used in this study, it has found 

that the fin spacing has no effect on the heat transfer characteristics. However, the study does 

not take in account changing the diameter of the tubes. 

 
Figure 2.7 Friction Factor and Colburn j-Factor for the Tested Samples [29] 

 

Abu Madi et al. [30] examined the thermal characteristics of the round tube and plate finned 

heat exchangers. Based on consideration of the heat transfer and fluid flow relations for the 

heat exchanger surfaces, Abu Madi et al. developed a novel approach for deriving the 

geometric ratios in the correlation equations. Authors state that the fin type affects the heat 

transfer and friction factor, whilst the numbers of tube rows have an insignificant effect on the 

friction factor. The number of tube rows effect was found to be influenced by the fin and tube 

geometries as well as the Reynolds number. However, authors didn’t not mention the number 

of fin used, as well as the experiments are only limited to four rows of tubes. 

Wang et al. [31] studied the airside performance of fin and tube heat exchangers with plain fin 

configurations. A sum of 18 samples was tested to study the effect of the number of tube rows, 

fin spacing and tube diameter on the thermal hydraulic characteristics. The author concluded 

that the fin pitch has a strong effect on the heat transfer characteristics for a range of Reynolds 

number from 300 to 3000 and for one and two number of tube rows. Moreover, a very small 

effect of the number of rows on the friction performance has been found and the effect of tube 

diameter on heat transfer performance are linked to fin pitch.  
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Halıcı et al. [32] investigate the influence of the number of tube rows on heat, mass and 

momentum transfer experimentally for flat-plate finned-tube heat exchangers under both wet 

and dry surface conditions and for a range of Reynolds number between 300 and 2000. Heat 

exchangers used in this study consist of Aluminium fins and Copper tubes. The number of rows 

was increased from (1 to 4) for the same geometry of flat-plate finned-tube heat exchangers. It 

has been found in this study that, the Colburn and friction factors are higher for wet surfaces 

comparing with dry surfaces. 

Wang [33] tested 36 plain fin and tube heat exchangers with a different number of tube rows 

to examine the heat and mass analogy under dehumidifying process. The study has been carried 

out for a range for Reynolds number between 250 and 7500. Wang stated that the ratio of 

hc,o
hd,o

⁄  Cp,a is in the range between 0.6 and 1.1 and it is unaffected by any variations of fin 

spacing at low Reynolds number, as it can be seen from Figure 2.8. where (hc,o) is the sensible 

heat transfer coefficient, (hd,o) is the mass transfer coefficient and (Cp,a) is the heat capacity. 

 

Figure 2.8 Variation of the Value hc,o⁄hd,o   Cp,a with Reynolds Number [33] 

 

Taler [34] presented two methods for determining the air-side heat transfer coefficient for a 

model of two-pass radiator consists of two inline rows of oval tubes with smooth plain fins. 

Taler developed a correlation for the heat transfer coefficient on the air-side based on the first 

method which is based on the experimental data. Furthermore, he concluded that the heat 

transfer coefficients based on the air temperature difference across the heat exchanger obtained 

from the second method, CFD simulation, are larger because the CFD simulation does not 

account for the thermal contact conductance between tubes and fins. 
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Chaudhari et al. [35] studied the effect of finned heat exchanger over a without finned tube 

heat exchanger on the overall heat transfer coefficient. The study was done experimentally for 

an automobile radiator. The authors concluded with: 

• Experiment setup is a useful tool to analyse a finned tube heat exchanger. 

• The overall heat transfer rate for a non-finned tube heat exchanger is less than the finned 

type. 

Taler et al. [36] proposed two modified methods, the first one is to predicate the mean value of 

thermal contact resistance in plate fin and tube heat exchanger. The second is to find the 

average heat transfer coefficient for the air flow. Those methods were established based on 

experimental and CFD simulations data. Taler et al. recommended pre-setting the value of 

thermal contact resistance between the tube and the fin of the CFD model on the source of the 

experimental data. 

Wang et al.[37] carried out an experimental comparative study of the airside performance of 

fin and tube heat exchanger having plain, louvre and semi-dimple vortex generator (VG) for a 

different number of tubes row and different fin spacings. The results of this study indicated that 

the effect of a number of tubes row on the heat transfer coefficients is small for both louvre 

and semi-dimple vortex generator fin geometry. Furthermore, the heat transfer coefficients for 

louvre fin geometry, for a number of tubes row equal to 2 and 4 rows, is about 2-15% higher 

than those of semi-dimple vortex generator fin geometry. 

Song et al. [38] experimentally investigated the effect of fin pitch, tube pitch and two sizes of 

curved delta winglet vortex generators with different base length on the heat transfer and 

pressure drop performance of circular tube-fin compact heat exchanger. The study used 

Colburn factor (j) and friction factor (f) to evaluate the heat transfer and pressure drop 

characteristics of the heat exchanger, respectively. The results of this study reveal that at low 

Reynolds number, heat transfer enhancement has been achieved for the smaller vortex 

generator which locates close to the tube. Furthermore, changing the fin pitch has a strong 

effect on the friction factor and therefore on the cost of the heat exchanger. 

2.5.2 Numerical Studies 

A prediction of the heat transfer and fluid flow performance of the heat exchanger is mainly 

carried out by some extensive experimental studies. However, the capability of the numerical 

studies has increased which allowed CFD simulations to be used more frequently. 
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Singh et al. [39] introduced two segment by segment models, resistance model and conduction 

model, that account for fin conduction for the refrigerant to air heat transfer in fin and tube heat 

exchanger. The results of this study showed a good agreement with some experiments. 

However, this study was based on refrigerant to air heat transfer in fin and tube heat exchanger. 

Borrajo-Peláez et al. [40] presented 3-D numerical simulations, using CFD, to compare both 

an air-side and an air/water-side models. The effect of Reynolds number, fin pitch, tube 

diameter, fin length and thickness on the mechanical and thermal efficiencies was studied. The 

authors evaluated the model performance by using two non-dimensional parameters; the air 

side Nusselt number and a friction factor. It was found that the effect of the five parameters 

over the mechanical and thermal efficiencies can be well reported using these non-dimensional 

coefficients.  

Dong et al. [41] presented an experimental and numerical investigation of friction factor and 

heat transfer performance for a fully developed turbulent region of air flow in a wavy fin. The 

investigation was done experimentally and numerically. The results of this investigation 

indicated that there is a negligible effect on the different wavy fin profiles (Triangular, 

Sinusoidal and Triangular round corner) on friction factor and heat transfer performance. In 

addition, the standard k-ε model (SST) is the most appropriate mode to simulate the air flow 

and heat transfer of wavy fin, for a range (1000 – 5500) of Reynolds number. 

Lu et al.[42] carried out a numerical study to establish the effect of fin spacing, tube pitch, fin 

thickness, and tube diameter on thermal performance of a two-row fin and tube heat exchanger. 

The performance of the heat exchangers is evaluated in terms of the ratio between heat transfer 

rate and pressure drop ( 
Q

∆P⁄ ) and the coefficient of performance (COP). The results of this 

study indicate that as the longitudinal tube pitch and of transverse tube pitch increases, the ratio 

( 
Q

∆P⁄ ) increases steadily. However, the ratio ( 
Q

∆P⁄ ) diminishes as the tube diameter and fin 

thickness goes higher. Additionally, an optimum value for the ratio ( 
Q

∆P⁄ ) has been achieved 

at 6–8 fin per inch. 

Čarija et al.[43] used CFD to analyses the fluid flow of the air side of a multi-row fin and tube 

heat exchanger with flat (plain) and louvred fins in a range of Reynolds number, based on fin 

spacing and air frontal velocities, between 70 and 350. The study reported that at Reynolds 

number equal to 350, an increase in heat transfer performance of 58% was obtained for louvre 

fins comparing with flat fins. Furthermore, as the louvre length increases an almost linear 
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improvement in heat transfer performance can be noticed for a constant Reynolds number, as 

can be seen in Figure 2.9. 

 
Figure 2.9 Linear Relations between Louver Length and Heat Transfer Performance [43] 

Altwieb et al. [44] carried out an experimental and numerical investigation on the response of 

a multi tube and fin heat exchanger under steady state operating conditions. In these 

investigations, a novel 3D numerical model with the full geometry of the heat exchanger has 

been implemented to develop a set of design equations which can be used to predict the heat 

transfer rate and the pressure drop across the airside. 

2.5.3 Summary of Literature Regarding the Analysis the performance of the heat 

exchanger used in the current FCU unit experimentally and numerically under Steady 

State Condition 

In order to identify the knowledge gaps in the area of analysing the performance of the heat 

exchanger used in the current FCU unit experimentally and numerically under steady state 

condition, the literature review has been carried out. Consequently, it can be noticed that the 

published literature has a limited range of investigation parameters. Furthermore, the literature 

presented lack certain aspects, such as: 

1. Most of the CFD based studies use a computational domain which takes into 

consideration only a part of the fin, 

2. A majority of these studies lack local flow field analysis, such as local fin efficiency, 

local heat transfer coefficient and temperature distribution of the working fluid and on 
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fins. The identification of the improvement of these local flow features may improve 

the performance of the heat exchanger, 

3. A majority of the literature seems to be omitting the profiles of the air flow with 

different velocities in centre and at the edges of the test section. As well as influence of 

the temperature profile along the water tube. 

2.6 Development of more efficient design for multi-tube and fin heat 

exchanger geometry to improve the FCU thermal performance 

In recent years, many studies have been carried out to improve the performance of a multi-tube and 

fin heat exchanger and therefore to improve the thermal performance of the FCU. The main task 

behind these studies is to enhance the thermal performance of the heat exchanger with less pressure 

drop and a reduction in both material weight and cost.  

Wang et al. [45] carried out an experimental study on the airside performance of compact slit 

fin and tube heat exchangers. Authors provided a comparison between the compact slit fin and 

louvre and plain fin surface using different comparison methods; comparison using Colburn 

and friction factors, comparison of heat transfer as a function of fluid power and performance 

comparison with a reference surface. The results of this study showed that: 

• A small effect for the number of tube row on the frictional performance for the present 

compact slit fin geometry. 

• The slit breadth represents a major function to improve the heat transfer performance. 

In contrast, the slit height represents a minor function to improve the heat transfer 

performance. 

• Based on the comparison of the air-side performance between compact slit, louvre and 

plain fins. It is found that the compact slit and louvre fin are similar in the results. 

According to Webb et al [46] and Wang et al [47] extending the fin surface come to be one of 

the most important means to enhance the heat transfer performance. Moreover, the plain fin is 

common use because of it is easy to manufacture, simply to assemble and result a lower 

pressure drop. 

Torii et al. [4] presented a novel strategy, delta winglet-type vortex generators, to enhance the 

heat transfer characterises of fin and tube heat exchanger with circular tubes at low Reynolds 

number. The thermal performance of this novel fin has been evaluated experimentally. The 
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configuration of winglet type vortex generator on the fin surface-tube is depicted in Figure 

2.10. 

 
Figure 2.10 Configuration of Winglet Type Vortex Generator on the Fin Surface-Tube [4] 

The results of this study revealed that for a staggered tube banks, the heat transfer was improved 

by 10% to 30% this was accompanied by a decrease of 34% to 55% in the pressure drop, for 

the Reynolds number ranging from 350 to 2100. Joardar et al. [5] applied the same technique 

on a compact plain fin and tube heat exchanger. The study was carried out by comparing the 

overall heat transfer and pressure drop performance of the modified designs; one with a single-

row and the other with three-row winglet vortex generators, with a baseline model with no 

winglet vortex generators, Figure 2.11illustrates the three fins configurations, over a Reynolds 

number range of 220 ≤ Re ≥ 960. 

 
  

A) Baseline Fin B) Single-Row Winglet Vortex 

Generators Fin 

C) Three-Row Winglet Vortex 

Generators Fin 

Figure 2.11 Winglet Vortex Generators Fins Configurations [5] 
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The results of this study showed that vortex generator technique can significantly enhance the 

performance of fin-tube heat exchangers where, for the single-row winglet configuration, the 

air-side heat transfer coefficient increased from 16.5% to 44% and the pressure drop has gone 

higher by 12%. For the three-row vortex generator configuration, the heat transfer coefficient 

increases with Reynolds number from 29.9% to 68.8% with a rise of the pressure drop by 26% 

at Reynolds number = 960 to 87.5% at Reynolds number = 220. 

Erek et al. [48] numerically investigated the impacts on heat transfer and pressure drop by 

changing the fin geometry of a plate fin and tube heat exchanger. The investigation observed 

that placing the fin tube at downstream region affects heat transfer positively. Another 

important result of this investigation is that larger heat transfer and pressure drop values are 

obtained as the fin height is increased, due to the increased heat transfer surface area. 

Banerjee et al. [23] numerically studied the effect of having perforations on plain annular fins 

on the heat transfer and pressure drop characteristics with various locations of the perforations. 

The numerical study has been carried out for a range of frontal air velocity from 1 m/sec to 5 

m/sec and a corresponding range of Reynolds number was between 4000 and 24,000. The study 

takes into consideration also the effect of the non-uniform fin spacing on the pressure drop. 

The results of this study indicate that the location of the perforation on fin surfaces significantly 

affect the performance of this fin and it has recommended having the perforation on the back 

side of the fin. In addition, it is reported that the pressure drop for non-uniform fin spacing is 

lower than the uniform fin spacing design. 

Liu et al. [49] carried out a numerical investigation to study the effect of the perforation size 

and number on the air-side (j) factor and heat transfer rates of finned-tube heat exchangers for 

different fin spacing. The results of the numerical simulations of the perforated fins have been 

compared with plain fins with the aim to evaluate the heat exchanger performance. It has been 

found that, by increasing the air-side Reynolds number from 750 to 2350 and for a constant fin 

spacing, the air-side (j) factor has increased by 3% and 8.1%, respectively. Moreover, 

perforated fins heat exchanger has a higher air-side (j) factor comparing with plain fins heat 

exchanger. 
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2.6.1 Summary of Literature Regarding the Development of more efficient design for 

multi-tube and fin heat exchanger geometry to improve FCU thermal performance 

In the previous section, a literature review regarding the development of new design for multi-

tube and fin heat exchanger geometry to improve FCU thermal performance has been carried 

out. It has noticed that the literature presented above lack certain aspects, such as: 

1. The scope of work that is published is very limited on the perforations of plain or louvre 

fins which represents a passive enhancement technique to improve the thermal 

performance of the heat exchanger. The influence of perforations on local flow features 

as well as global performance indicators is a major research gap that needs to be 

bridged.    

2. Majority of equations which have been developed for the design purposes have limited 

applicability and these do not include all the geometric parameters corresponding to the 

fins. 

3. Most of these studies lack in investigation of parameters such as hole diameter and hole 

spacing of the perforations. These parameters significantly affect the thermal 

performance of multi-tube and fin heat exchanger which need to be investigated. 

2.7 Multi-objective optimisation of the more efficient design and cost 

analysis 

As discussed in Chapter 1, the heat exchanger is the most important part in the FCU. Therefore, 

the following section provides a detailed review of the available literature in the field of 

optimise the design of multi-tube and fin heat exchanger. 

Fax et al. [50] has presented the first systematic heat exchanger optimisation methodology in 

1957. The methodology applies the Largrangian multipliers method in the optimisation of 

plate-fin gas turbine heat exchanger based on analytical solutions. 

Queipo et al. [51] has combined numerical simulations and the Genetic Algorithm technique 

(GA) to optimise of electronics cooling. This work is regarded as the first work to use numerical 

solver in heat exchanger optimisation. In addition, Guessous et al. [52] devolved a simplified 

framework for shape optimisation of engine cooling system (radiator). The framework 

combines the GAMBIT® and FLUENT® software with an in-house code. Moreover, Suram 

et al. [53] optimised the fin shape of the heat exchanger using numerical simulations coupled 

with graph based evolutionary algorithm. 
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Mishra et al.[54] and Xie, Sunden et al.[55] used the Genetic Algorithm technique (GA) to 

design and optimise a compact heat exchangers (CHE). The technique was sufficient to exploit 

the problem and deal with numerous variables within different constraints. Xie, Sunden et al. 

carried out a theoretical optimisation design by taking into consideration the minimum total 

volume or/and total annual cost of the CHE as objective functions in the GA, respectively. The 

authors concluded that the optimised CHE provides a reduction in both total volume and total 

cost with or without pressure drop constraints. Furthermore, the presented method can be 

transferred for use in optimisation design of different types of heat exchangers with different 

fins configurations such as perforated, slotted and louvered fins. Mishra et al. developed a 

genetic algorithm based optimisation technique for cross flow plate-fin heat exchangers using 

offset-strip fins. The aim of the study was to minimise the number of entropy generation units 

for a specified heat duty under given space restrictions. 

Rao et al.[56] carried out a thermodynamic optimisation of a cross flow plate-fin heat 

exchanger using the particle swarm optimization (PSO) algorithm technique. The authors 

considered the minimisation of entropy generation units and minimum total volume and/or 

minimum total cost as objective functions. In their conclusion, the authors mentioned that the 

PSO technique is simple in concept, has few parameters and easy to put into practice comparing 

with Genetic Algorithm technique (GA). 

Juan et al. [57] optimised a plate fin and tube heat exchanger using the Genetic Algorithm 

technique (GA). The fin pitch, the transverse and longitudinal tube pitches and the tube 

diameter were considered as optimization parameters within reasonable constraints, the total 

rate of heat transfer and the total pressure drop of the air side are considered as two differing 

objective functions. Results show, in the range of Re = 1200–14000, an increase of the total 

heat transfer rate of the optimized heat exchanger by about 2.1–9.2% comparing with the 

original one, the heat transfer coefficient increased by about 8.2–14.7% and the total pressure 

drop decreased by about 4.4–8%. 

Myhren et al. [58] optimised the heat output of a ventilation radiator by proposing a simplified 

fin configuration model. The model has been used to optimise the spacing between convection 

fins. The results of this study showed that thermal performance of the ventilation radiator can 

be enhanced by decreasing the distance between convection fins inside the radiator panels in 

order to enlarge the area of heat transfer surfaces. This change in the internal geometry could 

mean a considerable increase in the pressure drop. 
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Yun et al. [59] carried out an experimental study to analysis the effect of fin pitch, angle of slit 

pattern, slit length and slit height on the thermal performance of a heat exchanger with slit fins. 

The authors used a novel dimensionless factor to determine the optimised condition of each 

parameter from the aforementioned parameters. The factor is named JF factor and it is the 

larger-the-better. The JF factor can be expressed as, 

JF =
j

jR
⁄

(f
fR

⁄ )
1

3⁄
                                                                (2.23) 

where, j is Colburn factor which symbolised the heat transfer characteristics and f is Fanning 

friction factor which symbolised the pressure drop characteristics of the heat exchanger. jR and 

fR are the values of j and f for the reference heat exchanger used in the experimental results. 

The work presented by Yun et al. [59] has been followed by MS Kim et al. [60] and Jonghyeok 

et al.[61] to carry out a multi-objective optimisation and use the JF factor as a single-objective 

function for the optimisation of a heat exchanger with offset-strip fins and a channel with 

aligned dimples and protrusions, respectively. However, the above-mentioned research works 

have been mainly focused on the optimisation based on geometrical parameters and the 

objective of minimum total cost is not considered as an optimisation objective. 

Song et al. [57] employed ANSYS Workbench software, and Fluent to study the heat transfer 

and pressure drop characteristics of offset strip fins. The authors developed new correlations 

for j is Colburn factor f is Fanning friction factor for Aluminium plate-fin heat exchanger NB/T 

47006-2009. In this study, it has been stated that the traditional empirical formula is not able 

to cover the general specifications of domestic offset strip fins. Therefore, it is vital to develop 

more precision correlation using a numerical technique in order to optimise the design of the 

heat exchanger. 

Singh et al. [62] carried out a systematic numerical study on the overall performance and weight 

reduction of a cross-flow type fin and tube heat exchanger design for a waste heat recovery 

application. The study aimed to improve the thermal performance and reduce the total cost of 

the heat exchanger by proposing a new geometric design based on changing a dimensionless 

design variable named aspect ratio (𝛼) from 𝛼 = 0.1 (triangular profile of the fin) to 

1(trapezoidal profile of the fin). However, the numerical model for the heat exchanger used in 

this study has considered only one-half of the fin. 
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2.7.1 Summary of Literature Regarding Multi-Objective Optimisation of the more 

efficient Design and Cost Analysis 

In the previous section, the literature review about the optimisation of the heat exchanger has 

been presented. To the best of author’s knowledge, there is limited work that has been carried out 

on the optimisation process of the heat exchanger, such as: 

1. The existing studies do not explain in detail the optimum design procedure of the heat 

exchanger. Therefore, the development of a reasonable reference framework for the 

optimum design of the heat exchanger is required. 

2. Majority of the presented studies regarding the optimisation of the heat exchanger lack 

the total costs optimisation. 

3. The lack of optimum design procedure (optimisation strategy) of the heat exchanger 

which take into consideration maximum heat transfer, low pressure drop and least total 

cost. 

For successful completion of the project and achieving all the previous-mentioned aims and 

objectives, a combination of experimental and numerical investigations have been carried out. 

The following chapter will provide a detailed explanation of the experimental setup and the 

numerical method that have been employed in this study. 
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 EXPERIMENTAL SETUP AND 

NUMERICAL MODEL 

  

SUMMARY: Based on the research objectives that have been presented in the chapter two, 

this chapter develops various tools for numerical and experimental research which are called 

collectively framework used in this study. The first part of this chapter provides a detailed 

description of the experimental setup which has been designed and built at the University of 

Huddersfield with the cooperation of TEV Ltd, Brighouse-UK. The description includes the 

equipment used, configuration of the setup, test procedure and the method of estimating the 

uncertainties in the experiment. The second part deals with the methodology of the CFD 

modelling for multi-tubes and fins heat exchanger which is used in this study. The methodology 

includes the governing equations, model geometry, model meshing, and justification of applied 

boundary conditions.  
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3.1 Introduction  

An experimental setup has been designed and built at the University of Huddersfield with the 

cooperation of TEV Ltd, Brighouse-UK to perform the experiments of the multi-tubes and fins 

heat exchanger model. Figure 3.1 shows a schematic diagram of the experimental setup. The 

main objectives of the experimental work are: 

• To validate the numerically predicated results of multi-tubes and fins heat exchanger 

models with the results obtained from experimental tests. 

• To evaluate enhanced heat transfer and pressure drop for the optimum new model on the 

thermal performance of multi-tubes and fins heat exchanger model as compared to the 

baseline model that has been mentioned in previous chapter. 

 
Figure 3.1 Schematic of the Experiment Setup 

 

3.2 Test Rig Components 

The setup is mainly composed of a water tank, heater, pump, flow meter, fan coil testing unit, 

pressure transducers, thermocouples data logger, RTD sensors data logger and a computer. In 

the following individual elements of this setup have been explained.  
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3.2.1 Water Tank 

4” Pipe was used to store the water required to be circulated through the flow loop. The tank 

has 5 L volume capacity. In order to minimise the heat loss, the tank has been wrapped using 

reflector foil which reduces heat loss from the water tank by reflecting heat back into it, as 

shown in Figure 3.2. 

 

Figure 3.2Water Tank 

 

3.2.2 Flow Circulator Pump and Heater 

The heater, shown in Figure 3.3, was used to heat the water up to 60° (C) and 75° (C) [37], [45] 

using a controller shown in Figure 3.4. The heater has a power rating of 0.9 kW at 230 V. 

 

Figure 3.3Water Heater 

 

Moreover, this heater has the capability to pump water through the flow loop at low flow rates 

which can be used to analyse the flow through the system in laminar region. 
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Figure 3.4 Heater’s Controller 

3.2.3 Central Heating Pump 

This standard high-efficiency pump was used to pump water through the flow loop at high flow 

rates. This pump, shown in Figure 3.5, has a LED display for setting the set point and displaying 

current consumption (range between 4 to 40W). The pump has a 6 m maximum delivery head.  

 

Figure 3.5Water Pump 

3.2.4 Water Flow Meter 

To measure water flow rate, a Flowmax 44i was used, shown in Figure 3.6. This water flow 

meter is able to calculate the volume flow of liquids based on the ultrasonic technology. The 

measuring range for this flow meter is 0.3 to 21 (L/min). The flow meter requires 18 to 30 V 

DC power supply while the current output is 4-20 mA, a current to voltage converter has been 

used to connect the flow meter with DAQ. In addition, the flow meter is able to show the actual 

flow and volume counter on a background lighted display.  
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Figure 3.6Water Flow Meter 

 

3.2.5 Fan Coil Testing Unit 

Figure 3.7 shows a schematic diagram of the fan coil testing unit. The unit is mainly composed 

of test section (housing), centrifugal fan, heat exchanger and some measuring components. The 

details of these individual elements will be discussed in following sections. 

I. Test Section (Housing) 

The testing section was made up from galvanised steel sheet with 2 mm thickness riveted 

together to form the test section which holds the heat exchanger and fan assembly. The test 

section is 650 mm long, 165 mm wide and 175 mm high. 

 
Figure 3.7 Schematic of the Fan Coil Testing Unit 

 

II. Single-Sided Centrifugal Fan with Integrated Electronically Commutated (EC) Motor 

In this study, a single-sided centrifugal fan with integrated electronically commutated (EC) 

motor has been sourced for the purpose of this research. The EC motor has been controlled 
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using a potentiometer, to control voltage in order vary the speed of motor allowing changing 

the various air flow rates to pass through test section. The technical specifications of this fan 

are shown in Table 3-1. 

 

  

Table 3-1 Single-sided Centrifugal Fan Technical Specification [63] 

Description Value 

Voltage 1 ~ 230 VAC 

Voltage Range 1 ~ 200-277 VAC 

Frequency 50/60 Hz 

Power 119 W 

Rated current 0.9 A 

Speed 2150 rpm 

Airflow 610.0 m3 / hr 

Operating temperature range -25 ... + 30 ° C 

Direction of rotation Clockwise viewed from the rotor facing 

Engine type M3G074-CF 

Engine Model Energy-saving EC motor with integrated electronics 

Motor protection / Protection Built-in anti-lock. 

Protection class IP44 

Motor insulation class B 

Bearings Ball bearing 

Material The rotor galvanized, electronics encased in 

Aluminum castings. 

Impeller Made from galvanised sheet steel 

Mounting position Free 

Electrical connection Cable 450 mm. 

Weight 2.4 kg 

III. Heat Exchanger 

The model of multi-tube and fin type heat exchanger was used in this study has plain fins shown 

in Figure 3.8. The heat exchanger consists of two rows of tubes of 9.52 mm diameter, each row 
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contains 5 tubes, the over length of each tube is 130 mm and they are joined together with 25 

mm bend.  

  
Figure 3.8 Multi-tube and Fin Heat Exchanger with Plain Fins (Baseline Model) 

 

Tubes are made up from Copper with 0.26 mm thickness. The heat exchanger has 21 staggered 

configuration fins made up from Aluminium with 0.12 mm thickness. Fins are 44 mm wide 

and 125 mm high and they are placed 4.23mm apart from each other (6 fins per inch). fins are 

attached to the Tubes by a tight mechanical (press) fit. The detailed dimension of the heat 

exchanger is shown in Figure 3.9. 
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Figure 3.9 Heat Exchanger Dimensions 

 

IV. Flow Straightener (Honeycomb) 

In order to suppress the incoming free turbulence flow honeycomb was placed at the outlet of 

the centrifugal fan. 

V. TFI Cobra Probe Station 

In this study, the cobra probe was used to measure the air velocity at the inlet of the test section, 

as shown in Figure 3.10. The cobra probe is a multi-hole pressure probe able to resolve 3-

components of velocity and local static pressure in real time. Moreover, the ASHRAE standard 

41.2 was adapted to measure the air velocity at 25 points in the inlet section [37, 64]. The 

details of this process are described in Appendix B. 
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Figure 3.10 TFI Cobra Probe Station 

 

VI. Air Inlet and Outlet Temperature Measuring Stations 

The air inlet and outlet temperatures upstream and downstream the testing unit were measured 

by two measuring stations; each measuring station is composed of seven T-type exposed 

welded tip thermocouples (Copper / Constantan) [37, 64]. Using seven thermocouples for each 

side has two advantages; The first is to improve the accuracy by having large signal, and the 

second is automatic averaging of the air temperature distribution on both inlet and outlet 

measuring stations. The specifications of thermocouple are shown in Table 3-2. 

 

Table 3-2 T-type Thermocouples Specifications [65] 

Description Value 

Thermocouple Type T-type exposed welded tip 

Operating range -75°C to +250°C 

Cable Length 2000 mm 

Standards Met ANSI 

Typical accuracy 0.5 °C 

 

The data from these thermocouples were recorded then averaged. During testing, these 

thermocouples were repeatedly checked and calibrated using a standard thermometer. See 

Appendix A. 
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VII. Micro-Manometer  

The pressure drop across the airside of the heat exchanger was detected by using DPM TT550 

micro-manometer, Figure 3.11. The micro-manometer can measure the static pressure in range 

± 0.4 to 5000 Pascal. 

 
Figure 3.11 DPM TT550 Micro-Manometer 

 

3.2.6 RTD Sensors  

Water inlet and outlet temperatures were measured by Pico technology temperature probes 

(RTD-PT100) [37]. Table 3-3 provides the technical specification of these sensors. 

Furthermore, during testing these sensors were repeatedly checked and calibrated using open 

surface water bath which has a thermometer indicator. See Appendix A. 

Table 3-3 RTD Sensors Specifications [66] 

Description Value 

Sensors Type PT100 

Temperature Measurement Range -75 to +250°C 

Accuracy ±0.15°C at 0°C 

Probe Length 120 mm 

Probe Diameter  3.3 mm 

Cable 2 m PVC 

3.2.7 Pressure Transducers 

The pressure drop across the waterside of the heat exchanger was detected by using two 

pressure transducers (IMP - Industrial Pressure Transmitter); one in the water inlet section and 
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the other is in the outlet. Table 3-4 provides the technical specification of these pressure 

transducers. Moreover, both sensors have been connected with USB-1616HS series data 

acquisition which is able to record the voltage readings coming from both sensors and then 

these voltage readings are converted to a corresponding pressure using a calibration equation. 

Table 3-4 Pressure Transducers Specifications [67] 

Description Value 

Sensors Type IMP - Industrial Pressure Transmitter 

Pressure Datum Gauge 

Pressure Range 0 to 4 Bar 

Output 0 - 10V / 3-wire 

Process Connection G 1/4" male DIN 3852 

Operating Temperature -20° to +80°C 

Supply Voltage 13 - 32V DC 

 

3.2.8  Data Loggers 

All the data coming through the thermocouples were recorded using Pico thermocouple data 

logger TC-08 and Pico log data logger software. The data logger has eight channels and two of 

these data loggers have been used in this test setup. The specifications of the data logger are 

summarised in Table 3-5. 

Table 3-5 Pico Thermocouple Data Logger Specifications [68] 

Description Value 

No. of channels 8 miniature thermocouple inputs 

Accuracy ±0.2% of reading + 0.5°C 

Overload protection >±30V 

Voltage input range ±70mV 

Maximum sampling rate 10 readings per second (100ms) 

Resolution 20 bits 

Output connectors USB.1 – connector cable supplied 
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Thermocouple types supported B, E, J, K, N, R, S, T  

Dimensions 85 x 145 x 25mm 

Power requirements  Powered from USB port  

In addition, a PT-104 Platinum resistance data logger was used to convert the voltage coming 

through the RTD sensors into corresponding temperatures.  Pico log data logger software was 

used to record these temperatures. Table 3-6 summarised the specifications of the PT-104 data 

logger. 

 

Table 3-6 PT-104 Platinum Resistance Data Logger specifications [69] 

Description Value 

Sensor  PT100, PT1000 

Range –200 to +800 °C 

Accuracy (at 23 ±2 °C) 0.01% of reading + 0.015 °C 

Number of inputs  4 

Converter resolution 24 bits 

Conversion time 720 ms per channel 

Input connectors 4-pin mini-DIN 

Input impedance >1 MΩ 

Output connectors USB and Ethernet 

3.2.9 Computer 

A PC has been used to record all the data coming from data acquisition, water flow meter, 

pressure transducer sensors, cobra probe and data loggers. 

3.3 Tests Procedure 

In the present study, tests were performed by drawing an air flow over the fins side of the heat 

exchanger, while circulating hot water through the tubes of the heat exchanger. Two different 

types of tests have been carried out; steady state and transient tests. The steps below describe 

how to prepare the experimental setup for testing: 

• Fill the tank with water 

• Turn on the heater by setting water temperature in the heater controller to 60° C 

• Turn on the water pump and adjust it at a certain water flow rate 
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• Wait some time until the water temperature reach 60°C. In the meantime, connect 

thermocouples, RTD sensors and pressure transducers with data loggers and data 

acquisition and connect them with the computer 

• After the water temperature reach 60°C, turn on the centrifugal fan at a certain air 

velocity by using the potentiometer 

• Prepare the data logger software  

• The water temperature will drop due to the effect of the air blown from fan. Therefore, 

make sure that the water temperature is in range of 60 ±1 °C (steady state condition) 

before starting recording the readings 

• Start testing 

3.4 Estimating Uncertainty 

The error in measurement is defined as the difference between its true and measured values. 

However, this definition is not helpful because it is not easy to know which is the true quantity 

of these values. Therefore, it is necessary to compute the uncertainty when presenting an 

experimental results [70]. Generally, the uncertainty of measurement is described as the 

amount of errors or doubts in taking measurement [71]. These errors or doubts are mainly due 

to measuring instrument, measuring process, human error (operator skills) and operating 

condition. 

For any set of data, the standard uncertainty (SU) can be calculated using the equation (3.1) 

[72], [73]: 

SU =
ESD

√n
                                                                  (3.1) 

where, ESD is the estimated standard deviation and n is the number of measurements in this 

set. 

The estimated standard deviation (ESD) for (n) number of measurements can be expressed 

mathematically as: 

ESD = √
∑ (SV−MV)2n

i=1

(n−1)
                                                       (3.2) 

Where, SV is the result of the ith measurement (sample value) and MV the arithmetic means of 

(n) number of measurements which can be calculated using the equation below: 
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MV =
1

n
∑ SVn

i=1                                                                     (3.3) 

 Based on the calculation procedure shown above using the equations Eq. (3.1), (3.2) and (3.3) 

and the set of data for steady state test 1 (plain fins), the results for calculating the standard 

uncertainty are shown in Table 3-7 for the thermocouples in inlet and outlet measuring stations, 

2 RTD sensors 2 pressure transducers and water flow rate which were used in the experiments. 

 

Table 3-7 Standard Uncertainty Results 

Description Standard 

Uncertainty Value 

In
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t 
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n
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TC-1 0.003 

TC-2 0.001 

TC-3 0.002 

TC-4 0.001 

TC-5 0.001 

TC-6 0.001 

TC-7 0.001 

O
u
tl

et
 M

ea
su
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n
g
 

S
ta

ti
o
n
 

TC-1 0.015 

TC-2 0.012 

TC-3 0.012 

TC-4 0.009 

TC-5 0.007 

TC-6 0.007 

TC-7 0.003 

RTD Sensors Water-IN 0.0052 

Water-OUT 0.0053 

Pressure 

Transducers 

Water-IN 0.0002 

Water-OUT 0.0002 

Water Flow 

Rate 

Water Flow 

Rate 

0.0003 

 

After a detailed description of the experimental setup by showing the equipment used, test 

procedure and the method of estimating the uncertainties in the experiment. The next part of 

this chapter includes the methodology of the CFD modelling for multi-tubes and fins heat 

exchanger. 

3.5 Introduction to CFD 

The Computational Fluid Dynamics (CFD) software FLUENT® is used in this study to carry 

out the simulation to analyse the pressure drop and heat transfer characteristics in multi-tubes 

and fins heat exchanger. Computer modelling, such as those carried out by CFD software 
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FLUENT®, has received a lot of attention in recent years and became increasingly popular as 

an alternative approach to address the problems in the real world. Computer modelling can 

provide detailed information on fluid flow, heat and mass transfer mechanism. Moreover, 

numerical methods are much more flexible and less expensive compared to experimental 

analysis, as it gives an opportunity to test new methods and flexibility to make any 

modifications before they are executed through experiments. 

 

3.6 CFD Codes 

CFD codes are structured around the numerical algorithms that can address the problems of 

fluid flow. For the aim to provide easy access to their solving power, all commercial CFD 

packages include sophisticated user interfaces to input problem parameters and to study the 

results. Thus, all codes contain four main elements [74]. These are: 

• Problem Identification 

• Pre – Processor 

• Solver 

• Post – Processor 

 

An overview of CFD modelling is shown in Figure 3.12. 

 
Figure 3.12 Overview of CFD Modelling [75] 
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3.7 Governing Equations of Fluid flow 

The governing equations of fluid flow represent mathematical statements of the conservation 

laws of Physics: 

• The mass of a fluid is conserved. 

• The rate of change of momentum equals the sum of the forces on a fluid particle. 

(Newton’s second law) 

• The rate of change of energy is equal to the sum of the rate of heat addition to and the 

rate of work done on a fluid particle. (First law of thermodynamics) 

The fluid is regarded as a continuum.  For the analysis of fluid flows at macroscopic length 

scales, the molecular structure of matter and molecular motions may be ignored. The behavior 

of the fluid is described in terms of macroscopic properties such as velocity, pressure, density 

and temperature etc. These are averages over suitably large numbers of molecules. A fluid 

particle or point in a fluid is then the smallest possible element of fluid whose macroscopic 

properties are not influenced by individual molecules. 

3.7.1 Mass Conservation in 3D  

For the fluid element, the mass balance equation can be written as follows:  

 

 

                                                                                                                                              (3.4) 

                                                                                                                 

There is no any change rate of density for an incompressible fluid. Therefore, the mass conservation 

equation is: 

Div V = 0                                                                (3.5) 

The Eq. (3.5) describes the net flow of mass out of the element across its boundaries. The above 

equation in longhand notation can be written as: 

                                                         
∂u

∂x
+  

∂v

∂y
+ 

∂w

∂z
= 0                                                        (3.6) 

3.7.2 Momentum Equations in 3D 

Newton’s second law can be expressed as follows, 

 

Rate of increase of mass in fluid 

element    

Net rate of flow of mass into 

fluid element = 
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                                                                                                                                              (3.7)                                                                                                                                          

                 

Surface forces and the body forces are the two types of flow forces on fluid particles; surface 

forces include pressure, viscous and gravity forces while body forces include centrifugal and 

electromagnetic forces. It is a common practice to highlight the contributions due to the surface 

forces as separate terms in the momentum equations and to include the effects of body forces 

as source terms. 

The 𝑥-component of the momentum equation is found by setting the rate of change of 𝑥– 

momentum of the fluid particle equal to the total force in the 𝑥 – direction on the element due 

to surface stresses, plus the rate of increase of 𝑥 – momentum due to sources. The equation is 

as follows [76]:   

ρgx +
∂σxx

∂x
+

∂τyx

∂y
+

∂τzx

∂z
= ρ (

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
)                                  (3.8) 

Similarly, 𝑦 and 𝑧  components of momentum equation are given by: 

ρgy +
∂σxy

∂x
+

∂τyy

∂y
+

∂τzy

∂z
= ρ (

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
)                                                (3.9) 

ρgz +
∂σxz

∂x
+

∂τyz

∂y
+

∂τzz

∂z
= ρ (

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
)                                              (3.10) 

3.7.3 Energy Equation in 3D  

The energy equation is derived from the first law of thermodynamics, it can be written as follows,  

 

   (3.11) 

 

Conservation of energy of the fluid particle is ensured by equating the rate of change of energy 

of the fluid particle to the sum of the net rate of work done on the fluid particle, the net rate of 

heat addition to the fluid and the rate of increase of energy due to sources. The energy equation 

is [74]: 

Rate of increase of Momentum 

of the fluid particle 

Sum of flow of forces on the 

fluid particle 
= 

Rate of increase of 

energy of fluid 

particle         

Net rate of heat 

added to fluid 

particle 

Net rate of work 

done on fluid 

particle  

+ = 
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ρ
DE

Dt
= −div(pu) + [

∂(uτxx)

∂x
+  

∂(uτyx)

∂y
+

∂(uτzx)

∂z
+  

∂(vτxy)

∂x
+

∂(vτyy)

∂y
+  

∂(vτzy)

∂z
+ 

∂(wτxz)

∂x
+

∂(wτyz)

∂y
+

∂(wτzz)

∂z
] + div(k grad T) + SE                            (3.12) 

The energy equation for solid materials which is solved in FLUENT can be written as [77], 

∂(ρh)

∂t
= ∇. (k∇T) + Sh                                                (3.13) 

Where, the h is the enthalpy which can be expressed as, 

h = ∫ Cp
T

0
dT                                                                     (3.14) 

Sh is the enthalpy source. The term [∇. (k∇T)] represents the conduction (Fourier’s Law) in the 

CFD models where k is the thermal conductivity of the solid materials in the models. 

3.7.4 Equations of State 

The motion of a fluid in three dimensions is described by a system of five partial differential 

equations i.e. mass conservation, x, y and z momentum equations and energy equation. Among 

the unknowns are four thermodynamic variables i.e. density, pressure, temperature and internal 

energy. Relationships between the thermodynamic variables can be obtained through the 

assumption of thermodynamic equilibrium. 

The fluid velocities may be large, but they are usually small enough that, even though 

properties of a fluid particle change rapidly from place to place, the fluid can 

thermodynamically adjust itself to new conditions so quickly that the changes are effectively 

instantaneous. Thus, the fluid always remains in thermodynamic equilibrium. The only 

exceptions are certain flows with strong shockwaves, but even some of those are often well 

enough approximated by equilibrium assumptions. The state of a substance in thermodynamic 

equilibrium can be described by means of just two state variables. Equations of state relates the 

other variables to the two state variables i.e. density and temperature [74]. The equations of 

state are: 

p=p(ρ,T)                                                                 (3.15) 

And;  

i=i (ρ,T)                                                                         (3.16) 

In case of perfect gas, the equations of state are written as follows, 
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p = ρRT                                                                         (3.17) 

And;  

i = CvT                                                                         (3.18) 

where Cv denotes as the heat capacity at constant volume. 

Liquids and gases flowing at low speeds behave as incompressible fluids. Without density 

variations, there is no linkage between the energy equation, mass conservation equation and 

momentum equations. The flow field can often be solved by considering mass conservation 

and momentum conservation equations only. The energy equation only needs to be solved 

alongside the others if the problem involves heat transfer. 

3.7.5 Navier-Stokes equations 

The shear stresses are proportional to shear strains rate for a Newtonian fluid [76] . Navier-Stokes 

equations for incompressible flows can be written as: 

ρ𝑔𝑥 −
∂p

∂x
+ μ (

∂2u

∂x2 +
∂2u

∂y2 +
∂2u

∂z2) = ρ (
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
)       (3.19) 

ρ𝑔𝑦 −
∂p

∂y
+ μ (

∂2v

∂x2 +
∂2v

∂y2 +
∂2v

∂z2) = ρ (
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
)        (3.20) 

ρ𝑔𝑧 −
∂p

∂z
+ μ (

∂2w

∂x2 +
∂2w

∂y2 +
∂2w

∂z2 ) = ρ (
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
)     (3.21) 

3.8 Pre- Processing 

The pre-processing in CFD is subdivided into two main categories; creation of the geometry 

and the meshing of the flow domain. This section provides details of the geometric modelling 

and the meshing of the multi-tubes and fins heat exchanger. 

3.8.1 Geometry 

In this section, a novel CFD model which include a full 3D geometry of the heat exchanger 

with plain fin is presented. The geometry of the heat exchanger has been created using ANSYS 

design modeler as shown in Figure 3.13.  The heat exchanger model has the same geometry as 

described in section 3.2.5. 
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Figure 3.13 CFD Model for Multi-tube and Fin Heat Exchanger with Plain Fins 

The numerical model also consists of 21 fins made up from Aluminium. The thickness of each 

fin is 0.12 mm. The fins are placed 4.23mm apart from each other (6 fins per inch). The detail 

of the plain fins shape is shown in Figure 3.14.  

 
Plain Fin 

Figure 3.14 Plain Fins Shape 

3.8.2 Meshing of the Flow Domain 

In order to analyse the heat exchanger model in the FLUENT® solver, it is required to create 

a mesh structure [78]. The hybrid meshing concept was incorporated for the flow domain. The 

concept based on using more than one type of meshing. The test section was meshed with 
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tetrahedral elements and it is divided into three sections to allow more mesh elements around 

the heat exchanger. The sweep method was used to mesh the tubes with quad elements in the 

critical inflation layer region. The mesh structure specifies the resolution at which FLUENT® 

analyses the model. Therefore, a grid independence study was carried out to ensure the results 

accuracy, the results of this test are shown in chapter 4. Figure 3.15 shows the model meshing. 

 
Figure 3.15 Model Meshing 

 

 

3.8.3  (y+) Consideration 

The parameter y+ is defined as a non-dimensional distance from the wall. This term refers to the 

size of the first cell height from the wall. A higher y+ value prevents to predict the flow 

characteristics close to the wall in good accuracy. Therefore, a lower y+ is required for better results. 

Furthermore, the SST 𝑘 − 𝜔 turbulence model, used in this study, does not involve the complex 

nonlinear functions required for the 𝑘 − 𝜀 model. the SST 𝑘 − 𝜔 turbulence model involves a 

near wall resolution of (𝑦+ < 0.2) which is not easy to reach in industrial flows. However, the 

𝑘 − 𝜔 requires a minimum of (𝑦+ < 2). As the current study deals with heat transfer predictions, 

the automatic wall treatment in 𝑘 − 𝜔 model permits for consistent refining of coarse mesh and 

insensitive 𝑦+. Hence, a mesh with 𝑦 + around 1 is recommended [79]. 

This section provides the detailed steps to calculate the first layer height in the viscous sublayer 

of the boundary layer (Δy) based on the above recommendation for 𝑦 +, 

y+ =
UT

ν
Δy                                                                   (3.22) 
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Or:           Δy =
ν

UT
𝑦+                                                                    (3.23) 

where ν denotes as the kinematic viscosity (m2/sec) and UT denotes as the frictional velocity 

(m/sec). 

UT = √
τw

ρ
                                                                      (3.24) 

where τw is the wall shear stress and it can be calculated from, 

τw = Cf.
1

2
ρU2                                                                (3.25) 

where Cf denotes as the skin friction coefficient, ρ denotes as the fluid density and U denotes 

as the freestream velocity. 

Cf can be estimated as a function of Reynolds number (Re) using the Empirical equations as 

follows [80], 

For internal flow, 

Cf = 0.079Re−0.25                                                     (3.26) 

And for external flow, 

Cf = 0.058Re−0.2                                                      (3.27) 

Following the previous steps, the estimated Δy for the water side was equal to 0.047 mm and 

for the air side was equal to 0.8 mm. 

3.9 Boundary Conditions 

The boundary conditions types that have been specified in this study are as follows 

3.9.1 Water and Air Inlets 

The inlets of the test section and the tube were considered as velocity inlets.  

3.9.2 Water and Air Outlets 

The outlets of the test section and the tube were considered as pressure outlets. The pressure of 

the water outlet has been kept at atmospheric pressure, i.e. 0 Pascal gauge. 
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3.9.3 Tubes and Fins Walls 

In this study, the wall which forms the interface between the two regions, such as the interface 

liquid / solid, FLUENT® enables the two sides of the wall to be combined, prompting the 

solver to calculate heat transfer directly from the solution in the contiguous cells. 

3.10 Solving Setting 

The solver used in the present study is called FLUENT®, which is an integral part of CFD 

package ANSYS 17.2. In this study, the following solver setting has been used: 

• Double Precision solver because it provides more precise results [81], 

• Pressure-Based solver as the flow is subsonic and incompressible flow [78], 

• The SST k-ω turbulence model is employed [82] because it recalls the properties of the 

k-ω model near the wall and gradually declines away from the wall in the k-ε model, to 

give more accurate results [83], 

• Under-relaxation factors for pressure, density, body force, momentum and energy are 

0.3, 1, 1, 0.7 and 1 respectively [78], 

• Second Order Upwind discrimination has been used as it predicts more accurate 

results [78], 

• Gravitational acceleration acting in the negative Y- direction was set as of 9.81 m/s2, 

• Coupled interfaces were used; the interface between the two regions, such as the 

interface liquid / solid, FLUENT® enables the two sides of the wall to be combined, 

prompting the solver to calculate heat transfer directly from the solution in the 

contiguous cells [78], 

• Add the command (rpsetvar 'temperature/secondary-gradient? #f), which turns off the 

secondary gradient and helps to converge in case of bad quality mesh [78], 

• The heat transfers by conduction through the walls; where the thermal conductivity of 

the Copper (tubes) has been set to 387.6 W/m K, whereas the thermal conductivity of 

the Aluminium (fins) has been set to 202.4 W/m K, 

• Water and Air properties are shown in Table 3-8. 
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Table 3-8 Water and Air properties 

Property Water Air 

Density (kg/m3) 998.2  incompressible ideal gas [58] 

Viscosity (kg/m sec) 0.000471 0.00001789 

Specific Heat (J/kg K) 4179 1005.684 
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 PERFORMANCE CHARACTERISTICS 

OF THE BASELINE MODEL 

  

SUMMARY: In this chapter, quantitative and qualitative analysis of the data from the 

experiments and the numerical simulations are presented for the baseline model; multi-tube 

and fin heat exchanger with plain fins. The mesh independence and time independence study 

are carried out to validate a newly developed CFD model. This analysis is important in order 

to understand the forced convection and the complex flow structure happening within the heat 

exchanger. Furthermore, effects of geometric parameters on the heat transfer and pressure 

drop characteristics of the heat exchanger under steady state operating condition have been 

numerically investigated.  The data from this study has been used to develop a novel semi-

empirical prediction model which takes into consideration effects of these geometric 

parameters. 
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4.1 Experiments Results 

The following sections show the results obtained experimentally for the baseline model; multi-

tube and fin heat exchanger having plain fins. The geometry of this heat exchanger has been 

described in section 3.2.5. Tests were carried out at different operating conditions; steady state 

and transient operating conditions. 

4.1.1 Steady State Tests Results 

Steady state tests represent the simplest tests to perform and evaluate because the flow is 

independent of time. In general, steady state condition is used in the process of designing a 

heat exchanger. Boundary conditions for steady state tests that have been carried out on the 

baseline model of the heat exchanger are shown in Table 4-1. The data for each test have been 

recorded once every second and then averaged. The air velocity used in this study is in the 

range of 0.7 to 5 m/sec which represents the velocity arithmetic mean (velocity average) of 

the gross cross-sectional area for airflow (face area) which is computed using the ASHRAE 

standard 41.2 [84] and it was reported by [85], [16]. The method for measuring air flow 

velocity in the experiments is described in detail in APPENDIX B. Moreover, the range for 

water flow rate is from 2 L/min to 6 L/min which make the flow inside the tubes fully 

turbulent. 

4.1.2 Data Analysis 

In this study, the temperatures of both hot water and air at inlets and outlets were measured 

together with the pressure drop across water and air sides. Based on the ε-NTU method, the 

number of heat transfer units (NTU) can be written as: 

NTU =  
UA

Cmin
                                                                  (4.1) 

where, Cmin denotes to the product of mass and specific heat of the fluid which has lower 

thermal capacity rate (air side). 
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Table 4-1 Boundary Conditions of Steady State Tests for Plain Fins Heat Exchanger 

Test 

Name 

Water Side Air Side 

Water Flow rate 

(L/min) 
Water Inlet 

Temperature (ᵒ C) 

Air Velocity 

(m/sec) 
Air Inlet 

Temperature (ᵒ C) 

Test 1 

2 ±0.03 60 ± 1 

0.705 

24 ± 1 

Test 2 1.546 

Test 3 2.183 

Test 4 3.177 

Test 5 3.991 

Test 1 

3±0.03 60 ± 1 

0.705 

24 ± 1 

Test 2 1.546 

Test 3 2.183 

Test 4 3.177 

Test 5 3.991 

Test 1 

4±0.03 60 ± 1 

0.705 

24 ± 1 

Test 2 1.546 

Test 3 2.183 

Test 4 3.177 

Test 5 3.991 

Test 1 

5±0.03 60 ± 1 

0.705 

24 ± 1 

Test 2 1.546 

Test 3 2.183 

Test 4 3.177 

Test 5 3.991 

Test 1 

6±0.03 60 ± 1 

0.705 

24 ± 1 

Test 2 1.546 

Test 3 2.183 

Test 4 3.177 

Test 5 3.991 

 

The heat transfer rate for water side and air side can be calculated from, 

Q̇w = ṁwCpw(Twi − Two)                                                            (4.2) 

Q̇a = ṁaCpa(Tao − Tai)                                                                 (4.3) 

In order to minimise the drop-off in Colburn j factor, the data should be reduced based on the 

average heat transfer rate (Q̇avg) [7], hence, (Q̇avg) can be calculated as follows, 

Q̇avg =
Q̇w+Q̇a

2
                                                                (4.4) 
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The heat exchanger effectiveness ( 𝜀 ) is defined as the ratio between the actual heat transfer 

rates to the maximum possible heat transfer rate, therefore 𝜀 can be written as: - 

ε =
Q̇avg

Cmin(Twi−Tai)
                                                          (4.5) 

The maximum possible heat transfer rate occurs when the difference in inlet temperature and 

outlet temperature is maximum value.  

The UA value (the overall conductance) is defined as [9], 

UA =
1

1

ηohaAa
+Rwall+

1

hwAw

                                                      (4.6) 

where hw and ha are the heat transfer coefficients for water and air, respectively, Aw and Aa 

are the heat transfer surface areas for water and air, respectively, and Rwall  is the wall thermal 

resistance. For flat wall, this resistance equals to: 

Rwall =  
δwall

kwallAwall
                                                                 (4.7) 

where, δwall is the wall thickness, kwall is the thermal conductivity of the wall material and 

Awall is the heat transfer area of the wall. 

The water side heat transfer coefficient (hw) can be evaluated using Gnielinski semi-empirical 

correlation [86], 

hw = (
k

D
)

w

(ReDw−1000)Pr(
fi

2⁄ )

1+12.7√(
fi

2⁄ )(Pr

2
3⁄

−1)

                                               (4.8) 

where, 

fi = [1.58 ln(ReDw
) − 3.28]

−2
                                              (4.9) 

The surface efficiency (ηo) is defined as the ratio between the actual heat transfer for the fin 

and base and the heat transfer for the fin and base when the fin is at the same base temperature 

(Tb). Equation (5.10) expresses the surface efficiency as a function of fin efficiency (ηf),  
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ηo = 1 −
Af

Ao
⁄ (1 − ηf)                                                  (4.10) 

where, Ao=Af+Ab  

Ao ,Af and Ab are the total surface area, fin and base areas, respectively.  

The Colburn j factor and the friction factor f can be calculated from Eq.s (4.11) and (4.12), 

respectively. 

j =
ha

ρaVa(max)Cpa
Pr

2

3                                                        (4.11) 

f =
Ac

Ao

ρm

ρ1
[

2ρ1∆P

Gc
2 − (Ki + 1 − σ2) − 2 (

ρ1

ρ2
− 1) + (1 − σ2 − Ke)

ρ1

ρ2
]              (4.12) 

The equation (4.12) has been proposed by Kays and London  [11] and the coefficients KI and 

Ke are the abrupt contraction pressure-loss coefficient and the abrupt expansion pressure-loss 

coefficient, respectively. These coefficients are adapted from Figure 4.1[12]. 

 
Figure 4.1Entrance and Exit Pressure Drop Coefficients for Plate-Fin Heat Exchanger [12] 

 

Ac is the flow cross sectional area and  σ represents the ratio of the minimum flow area to the 

frontal area. Ρ1, ρ2 𝑎𝑛𝑑 ρm are the density of air inlet, air outlet and mean density, 

respectively. 

Results of steady state tests carried out for plain fins heat exchanger have been presented in 

the form of surface characteristics; friction factor (f) and Colburn factor (j) against Reynolds 

number. Figure 4.2 depicts the variations of Colburn (j) factor and Fanning friction factor (f) 
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with Reynolds number for plain fins model. The calculated values of (j) and (f) are depending 

on the variations of the inputs. i.e. water and air inlet temperatures, water flow rate and air 

velocity as it has been shown in the analysis method in section 4.1.2. Therefore, an error bars 

have been set on the values of (j) and (f) factors plotted in Figure 4.2 to show the variability 

of these factors.  

 
Figure 4.2 Variations of Colburn j Factor and Fanning Friction Factor ƒ with Reynolds for Baseline 

Model 

 

Figure 4.3 represents the variations of efficiency index (j/f) of the plain fins heat exchanger 

with Reynolds number (ReD). In Figure 4.3 and in order to show the variability of this factor, 

an error bars have been set on the values of (j/f) factor. The calculated value of (j/f) factor 

depends on the values of (j) and (f) which are depending on the variations of the inputs. i.e. 

water and air inlet temperatures, water flow rate and air velocity as it has been shown in the 

analysis method in section 4.1.2. 
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Figure 4.3 Variation of the Efficiency Index (j/f) for Baseline Model 

 

As shown in Figure 4.2, both Colburn (j) factor and Fanning friction factor (f) tend to decrease 

with increasing Reynolds number and they are almost parallel to each other. Moreover, it can 

be noticed that at the same Reynolds number, friction factor is three times more than Colburn 

factor. Furthermore, the efficiency index (j/f) has the same trend as both Colburn (j) factor 

and Fanning friction factor (f) which show that the percentage decreases in the friction factor is 

more than the percentage decrease in the Colburn factor. 

The relationship between heat exchanger thermal effectiveness with air velocity at different 

water flow rates, in a range from 2 L/min to 6 L/min, for plain fins heat exchanger is depicted 

in Figure 4.4. For all cases of different water flow rates, it can be realised that the heat 

exchanger thermal effectiveness decreases with increasing air velocity. In general, the 

effectiveness of the plain fins heat exchanger varies from as low as 10% to as high as 25%. 

Moreover, as the water flow rate increases the heat exchanger effectiveness increases. For 

example, at 0.7 m/sec air velocity the heat exchanger thermal effectiveness at 2 L/min water 

flow rate is 22% whereas the effectiveness is increased by 10% at 6 L/min water flow rate. In 

addition, at low air velocity, the baseline model is showing high thermal effectiveness where 

the amount of energy transferred would be high. 
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Figure 4.4 Variations of Heat Exchanger Thermal Effectiveness with Air Velocity at Different Water 

Flow Rates for Plain Fins Heat Exchanger 

4.1.3 Transient Tests Results 

Under practical conditions, steady testing is not feasible or practical because the inputs of the 

heat exchanger are timely dependent. Hence, it is very important to analysis the heat 

exchanger under transient conditions where the inputs and the outputs are dependent on time 

[17]. Transient tests can be used to investigate the response of the heat exchanger during some 

operating conditions such as transient behaviour between two steady conditions, step input 

test, or transient behaviour during start up and shutdown conditions. Although most of the 

analysis of the heat exchanger has been carried out for steady state operating condition. 

However, this section includes transient tests for validation purpose and to prove that the 

presented CFD is reliable and it can be used to predict heat transfer and pressure drop 

characteristics for multi-tube and fin heat exchanger with plain fins under different operating 

conditions. In this section, two different transient tests were carried out; starting up test and 

step input test. 

I. Starting up Test 

This test was carried out to establish the operating characteristics of the heat exchanger while 

starting up. In this test, the single blow transient testing technique, where the experiment uses 
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transient variation only on one fluid stream [87], was used to obtain the heat transfer 

characterises of the heat exchanger. 

 
Figure 4.5 Staring Up Test Diagram 

 

As shown in Figure 4.5, the water temperature was increased from 27° C to 60 ° C, during 

this test water flow rate (3 L/min) and air velocity (2.183 m/sec) were kept constant (single 

blow transient testing technique). Figure 4.6 illustrates variations of water inlet, water outlet, 

air inlet and air outlet temperatures with operating time for starting up test in experiments for 

the baseline model. 
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Figure 4.6Variations of Water Inlet, Water Outlet, Air Inlet and Air Outlet Temperatures with 

Operating Time for Starting Up Test 

 

It can be seen from Figure 4.6 that after 300 seconds the water started heating and it took 1900 

seconds to reach 60 ° C where the heat exchanger started operating at steady state condition.  

II. Step Input Test 

The step input test represents the characteristics in the heat exchanger due to a dynamic 

change in its inputs. This test was performed by suddenly changing the water inlet temperature 

from 25 °C to 60 °C at a constant water flow rate (3 L/min) and constant air velocity (2.183 

m/sec). Figure 4.7 describes the test procedure. 
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Figure 4.7 Step Input Test Diagram 

 

Figure 4.8 depicts variations of water inlet, water outlet, air inlet and air outlet temperatures 

with operating time for step input test in experiments for the baseline model. 

 

Figure 4.8 Variations of Water Inlet, Water Outlet, Air Inlet and Air Outlet Temperatures with 

Operating Time for Step Input Test 

From Figure 4.8 it can be seen clearly that the water inlet temperature has suddenly increased 

from 25 °C to 60 °C and the heat exchanger took about 20 seconds to reach the steady state 

again. 
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4.2 Numerical Results 

In this section, the numerically predicted results using the novel CFD model which include a 

full 3D geometry of the heat exchanger with plain fin (baseline model) are presented in order 

to validate them with the results for the baseline model computed experimentally. 

4.2.1 Grid Independence 

The mesh independence test is essential in order to demonstrate the improvement of results 

by using successively smaller cell sizes for the calculation with less computational time [78]. 

As discussed in chapter 3, three different meshes 4, 8 and 12 million mesh elements were 

chosen for this test for plain fins model, where a model with 4 million mesh elements is a 

coarse mesh and it has been gradually refined to reach a fine mesh. Furthermore, the air outlet 

temperature has been chosen as a parameter for comparing the test results because it 

represents the main output of the CFD model and indicates the performance of the system. 

The results of this test are shown in Table 4-2.  

Table 4-2 Mesh Independence Test Results 

Mesh Size 

(million) 

Air Outlet 

Temperature  

CFD (ᵒ C) 

Computation 

Time (Hours) 

Percentage 

Difference 

(%) 

Time Saving 

(Hours) 

4 31.387 4.50 --- --- 

8 32.920 8.61 4.9 4.11 

12 33.105 11.74 0.6 3.13 

 

The results of the mesh independence test reveal that a 4.9% difference in the air outlet 

temperature between 4 million mesh elements model and 8 million mesh elements model, 

whereas 0.6% difference between 8 million mesh elements model and 12 million mesh 

elements model. It can therefore be concluded that 8 million mesh elements model is can give 

a good accuracy to the work with a valuable time saving in computational time and hence it 

has been chosen for further numerical analysis of the heat exchanger with plain fins. 

Moreover, the mesh for other cases has been determined by using the similar methodology. 

4.2.2 Temporal Discretisation 

In transient tests, it is essential to carry out a time step independence test. Otherwise, it can 

lead to inaccurate results of CFD. Therefore, time-step independence test has been carried out 

with three different time steps (0.5, 1, and 2 seconds) for test 3 and water flow rate equal to 3 

L/min as presented in Table 4-1. Table 4-3 summarises the result of the temporal 

discretisation. 
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Table 4-3 Temporal Discretisation Results 

Time Step (second) Air Outlet Temperature  

CFD (ᵒ C) 

Percentage Difference (%) 

2 30.745 --- 

1 31.313 1.84 

0.5 31.451 0.45 

 

The temporal discretisation results depicted in Table 4-3 showed that the percentage 

difference in air outlet temperature is less than 1.85 % between the three-time steps considered 

in this test. Hence, it can be concluded that the time step with 1 second is capable of predicting 

the flow features accurately and therefore 1 second time step has been chosen for carrying out 

the simulations of the baseline model. 

4.3 Benchmark Tests 

In order to ensure the reliability of the numerical CFD model, a benchmark test has to be carried 

out. The process of comparing the numerical results against experimental findings is known as 

Benchmarking. In this section, the numerically predicted results using the novel CFD model 

which include a full 3D geometry of the heat exchanger with plain fin have been validated 

against experimental data in terms of water and air outlet temperatures and pressure drop 

obtained in both water and air sides and at different operating conditions.  These variables are 

the main outputs of the numerical model. Therefore, these variables were plotted against each 

other at a constant water flow rate (3 L/min) and constant air velocity (2.183 m/sec) with the 

same boundary conditions as previously shown in Table 4-1. 

4.3.1 Steady State Tests Results Validation 

Figure 4.9 depicts a comparison between the numerically predicted results and the 

experimental data for water outlet temperature for plain fins heat exchanger.  
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Figure 4.9 Comparison of Numerical and Experimental Results for Water Outlet Temperature Plain 

Fins Heat Exchanger 

A comparison between the numerically predicted results and the experimental data for air 

outlet temperature for plain fins heat exchanger is depicted in Figure 4.10.  

 
Figure 4.10 Comparison of Numerical and Experimental Results for Air Outlet Temperature Plain 

Fins Heat Exchanger 

 

Based on the results plotted in Figure 4.8 and 4.9, it can be clearly seen that the differences 

between the numerically predicted results and the experimental data for water outlet and air 

outlet temperatures are very small and the numerical results agree well with the experimental 
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results for the baseline model. The percentage differences between theses results for the water 

outlet and the air outlet temperatures were observed to be less than 5%. 

Figure 4.11 depicts a comparison between the numerically predicted results and the 

experimental data for water-side pressure drop for heat exchanger with plain fins. 

 

Figure 4.11Comparison of Numerical and Experimental Results for Water-side Pressure Drop Plain 

Fins Heat Exchanger 

From Figure 4.11, a good agreement has been reached between numerically predicted results 

with the experiments for water-side pressure drop, where the percentage differences for the 

heat exchangers with plain fins were less than 15%. 

A comparison between the numerically predicted results and the experimental data for air-

side pressure drop for the heat exchanger with plain fins is depicted in Figure 4.12. 
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Figure 4.12Comparison of Numerical and Experimental Results for Air-side Pressure Drop Plain 

Fins Heat Exchanger 

 

The results plotted in Figure 4.12 reveal that the percentage differences between the 

numerically predicted results and the experimental data for air-side pressure drop are observed 

to be less than 15%. 

4.3.2  Transient Tests Results Validation 

I. Starting Up Test 

In order to simulate the starting up test in CFD, a user-defined function (UDF) has been 

adopted to express the inputs (water inlet temperature and air inlet temperature) of the CFD 

simulation as a function of time [80]. The C language program based on the data of the 

experiment for water inlet temperature and air inlet temperature used to define these inputs 

has been attached in the APPENDIX C1. 

Figure 4.13 depicts the variations for air outlet and water outlet temperatures in both 

experiments and CFD results for starting up test. 
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Figure 4.13Validation of the CFD results with respect to the experimental results for Air Outlet and 

Water Outlet Temperatures at Starting up Test 

 

The graphs depicted in Figure 4.13 are shown a good agreement in both water outlet and air 

out temperatures for the results computed numerically using CFD with respect to the 

experimental results. The maximum difference between the CFD and experimental results is 

observed for both water outlet temperature was less than 2% and for air out temperature was 

to be less than 6 %. 

II. Step Input Test 

The same inputs in the experiments; water inlet and air inlet temperatures, have been used as 

inputs to simulate the CFD model for step input test. A user-defined function (UDF) has been 

adopted to define both water inlet and air inlet temperatures as a timely dependent function 

using C language program based on the data of the experiment. The UDF for step input test 

has been presented in the APPENDIX C2. 

Figure 4.14 depicts the variations for air outlet and water outlet temperatures in both 

experiments and CFD results for step input test. 
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Figure 4.14 Validation of the CFD Results with Respect to Experimental Results for Air Outlet and 

Water Outlet Temperatures at Step Input Test 

 

A very good agreement has been achieved in both water outlet and air outlet temperatures for 

the results computed using CFD with respect to the experimental results for step input test. 

The percentage difference for water outlet temperature was less than 1% while the percentage 

difference for air outlet temperature was less than 5%. 

Based on the Benchmark tests carried out in sections 4.3.1 and 4.3.2, it can be concluded that 

the presented novel CFD model which include a full 3D geometry of the heat exchanger with 

plain fin is reliable and hence it can be used to predict heat transfer and pressure drop 

characteristics for multi-tube and fin heat exchanger with plain fins under different operating 

conditions with good accuracy. 
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4.4 Flow Field Analysis 

The numerical analysis carried out on multi-tube and fin heat exchanger which has plain fins 

under steady state operating condition helps to understand the forced convection phenomena 

happened inside this system by knowing the distribution of temperature and velocity of 

working fluids within the system. In the next section, the analysis the thermal performance of 

the plain fins heat exchanger has been carried out for air-side, water-side and flow in tube 

bends. 

4.4.1 Air-Side Flow Field Analysis 

In order to analysis the flow field in the air-side the temperature contours at mid-section (X-

axis) and mid-section (Y-axis) have been chosen. These planes were chosen because the flow 

in more streamlined at those sections and they are shown in Figure 4.15. CFD simulations were 

carried out at constant water velocity of 1 m/sec and five different air velocities; 1, 2, 3, 4 and 

5 m/sec, respectively. 

 
Figure 4.15 Locations of Analysed Planes in the Test Section 

 

Figure 4.16 depicts the contours of the temperature variation in the test section at mid-section 

(X-Axis) and mid-section (Y-axis) under steady state operating condition. The contours 

describe the behaviour of the air-side due to a change in the air velocity and at constant water 
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velocity. It is clear from the figure as the air velocity increases the temperature of the air at the 

outlet section tends to decrease. For example, the difference between air inlet and outlet 

temperatures (ΔTa) at 1 m/sec air velocity is equal to 8.7ᵒ C and this difference decreased by 

about 40% to reach 5.23ᵒ C at 4 m/sec. This can be explained as, at low air velocity there is a 

large amount of heat transferred from the hot fluid (water) to the cold fluid (air) and as the air 

velocity increase the air fluid particles have less chance to pick up more thermal energy. 

Moreover, the backflow phenomenon can be seen for the airflow at low velocity due to a 

negative pressure difference in the back-side of the heat exchanger. This phenomenon becomes 

less effective at high air velocity and the flow in more streamlined.  

Heat exchanger mid-section (X-axis) Heat exchanger mid-section (Y-axis) Legend 

  

Temperatu

re (K) 

 

Air Velocity=1 m/sec ΔTa= 8.7ᵒ C 

  
Air Velocity=2 m/sec ΔTa= 7.08ᵒ C 

  
Air Velocity=3 m/sec ΔTa= 6.02ᵒ C 

  

Air Velocity=4 m/sec ΔTa= 5.23ᵒ C 

  
Air Velocity=5 m/sec ΔTa= 4.59ᵒ C 

Figure 4.16 Contours of Temperature Variation at mid-section (X-axis) and mid-section (Y-axis) of 

the Heat Exchanger Due to Change in Air Velocity under Steady State Operating Condition 

 

In order to understand the behaviour of the local flow characteristics; velocity magnitude, static 

pressure and static temperature of the air inside the test section (housing), the local flow 

characteristics have been computed at different cross-sections along the test section and for 5 

different points; middle (M), right (R), left (L), top (T) and bottom (B) in each cross-section. 
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The locations of these points in each cross-section is shown in Figure 4.17. In addition, the 

points have been selected away from the test section walls to avoid the effect of the boundary 

layer. 

 

Figure 4.17 Locations of the Analysed Points in Each Cross-Section along the Test Section 

 

Figure 4.18 depicts the variations of the velocity magnitude ratio between middle point and 

right, left, top and bottom, respectively for the analysed points in each cross-section along the 

test section. 
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Figure 4.18 Variations of the Velocity Magnitude Ratio for the Analysed Points in each Cross-Section 

Along the Test Section 

The velocity ratio variations depicted in Figure 4.18 showed a uniform distribution for the 

velocity magnitude along the test section for the selected points middle and right, top and 

bottom. However, nonuniform flow distribution is observed at the left points where the velocity 

is always higher than the velocity magnitude at the middle point. This non-uniform flow 

distribution of the velocity magnitude is affecting the thermal performance of the air flow 

coming out of the test section by creating high velocity regions. 

The variations of the static pressure ratio between middle point and right, left, top and bottom, 

respectively for the analysed points in each 6 different cross-sections along the test section is 

shown in Figure 4.19. 
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Figure 4.19 Variations of the Static Pressure Ratio for the Analysed Points in each Cross-Section 

Along the Test Section 

 

Due to backflow phenomenon occurred in the test section at low air velocity, the static pressure 

has a negative value for the points in bottom side, this can be seen clearly as for the points after 

the heat exchangers. Furthermore, a uniform static pressure distribution has been observed for 

the other points. The backflow phenomenon may affect the overall performance of the heat 

exchanger by increasing the amount of power required to run the fan. 

Figure 4.20 illustrates the variations of the static temperature ratio between middle point and 

right, left, top and bottom, respectively for the analysed points in each cross-section along the 

test section. 
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Figure 4.20 Variations of the Static Temperature Ratio for the Analysed Points in each Cross-Section 

Along the Test Section 

The static temperature variations depicted in Figure 4.20 reveal that as the air flow passed 

through the heat exchanger, the static temperature of the air is increased for all the points. 

Furthermore, the points on the right and bottom of the test section have a relatively high 

temperature because they are in the hot water feeding side. Moreover, the static temperature 

variations were mostly small. In general, non-uniform flow distribution badly affects the 

thermal performance of the heat exchanger and also could produce high-velocity regions. Thus, 

to obtain maximum thermal performance, the flow should be uniform across the entire frontal 

area of the core. However, the flow may not be uniform due to nonuniform fin spacing, 

deformation of the fin shape and non-uniform flow coming out from the fan. [74] 

 

4.4.2 Water-Side Flow Field Analysis 

Figure 4.21 illustrates the contours of the temperature variation in the heat exchanger at water 

inlet section and water outlet section under steady state operating condition. CFD simulations 

were carried out at constant water velocity of 1 m/sec and five different air velocities; 1, 2, 3, 

4 and 5 m/sec, respectively. 
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Water Inlet Section Water Outlet Section Legend 

  

Temperature 

(K) 

 

Air Velocity=1 m/sec ΔTw= 0.85ᵒ C 

  
Air Velocity=2 m/sec ΔTw= 1.3ᵒ C 

  
Air Velocity=3 m/sec ΔTw= 1.65ᵒ C 

  
Air Velocity=4 m/sec ΔTw= 1.91ᵒ C 

  
Air Velocity=5 m/sec ΔTw= 2.11ᵒ C 

Figure 4.21 Contours of Temperature Variation Water Inlet Section and Water Outlet Section of the 

Heat Exchanger Due to Change in Air Velocity under Steady State Operating Condition 
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The temperature contours depicted in Figure 4.21 describe the behaviour of the water-side due 

to a change in the air velocity and at constant water velocity. It is evident from the figure the 

temperature of the water inside tubes, in both inlet and outlet sections of the water, is decreasing 

due to an increase in the heat transfer rate which is a consequence of increasing the air flow 

velocity. For example, as the air velocity increases from 1 m/sec to 5 m/sec, the difference 

between the inlet and outlet temperature of the water (ΔTw) has increased from 0.85ᵒ C to 2.11ᵒ 

C. In addition, the water inlet section is less heated than the outlet section because it is facing 

the airflow. 

4.4.3 Tube Bends Flow Field Analysis 

A bend in a tube represents a means to enhance the heat transfer compared with a straight tube 

due to creation of secondary flows and curvature affects the flow’s turbulence structure. These 

two effects not only affecting the pressure drop, but also the heat transfer characteristics [88], 

[89]. However, separation of flow after the bend cause a significant increase in the water 

pressure drop. This increase is due to both friction and momentum exchanges resulting from a 

change in the direction of flow. 

Figure 4.22 depicts variations of water velocity magnitude contours at 6 different cross-sections 

(P1 to P6) through a tube bend in the water-side of the heat exchanger when the inlet water 

velocity is 1 m/sec and water inlet temperature is equal to 60ᵒ C. 
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Figure 4.22 Variations of Water Velocity Magnitude Contours at 6 Different Cross-Sections Through 

a Tube Bend in the Water-Side of the Heat Exchanger 

 

The variations of water static pressure contours at 6 different cross-sections (P1 to P6) through 

a tube bend in the water-side of the heat exchanger when the inlet water velocity is 1 m/sec is 

illustrated in Figure 4.23. 
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Figure 4.23 Variations of Water Static Pressure Contours at 6 Different Cross-Sections Through a 

Tube Bend in the Water-Side of the Heat Exchanger 

 

Figure 4.24 depicts variations of water static temperature contours at 6 different cross-sections 

(P1 to P6) through a tube bend in the water-side of the heat exchanger when the inlet water 

velocity is 1 m/sec and water inlet temperature is equal to 60ᵒ C.  

From the contours depicted in Figure 4.22, 4.23 and 4.24, the water velocity varies from a 

maximum at the centre of the tube to zero at the tube walls due to the effect of the boundary 

layer (P1 and P2). As the water flow approaches a tube bend (P3), the water velocity decreases 

from the inside to outside of the bend in order to keep the total pressure constant through the 

tube (P4). However, the static pressure of the water increases with the radius of the bend which 

enhances the heat transfer through the bend. This increase has to balance the centrifugal force 

caused by passing of the water in the bend. In addition, the flow is generally unstable in both 

cross-sections (P5 and P6) due to the small length of the tube after the bend. It was found that 

the process described above keeps repeating till the flow reaches the outlet. In general, the 

temperature variations were identical to the static pressure variations for the different cross-
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sections (P1 to P6) and it is noticed a high temperature distribution at the outer surface of the 

bend due to high static pressure in this area. 
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P3 

Figure 4.24 Variations of Water Static Temperature Contours at 6 Different Cross-Sections Through a 

Tube Bend in the Water-Side of the Heat Exchanger 

 

In order to achieve a deep analysis of the flow through a bend, a local velocity magnitude, static 

pressure and static temperature ratios has been plotted at the 6 different cross-sections through 

a tube bend, described in the previous section. These ratios represent the ratio between the local 

flow characteristics; velocity magnitude, static pressure and static temperature at a point in the 

top of the tube divided by the local flow characteristics at a point in the bottom of the tube. 

And another ratio which take into consideration the local flow characteristics at a point in the 

right of the tube divided by the local flow characteristics at a point in the left of the tube. Figure 

4.25 shows the locations of these points in the cross-section of the tube. In addition, the points 

have been selected away from the tube walls to avoid the effect of the boundary layer. 
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Figure 4.25 Locations of the Analysed Points in the Cross-Section of the Tube 

 

Figure 4.26 depicts the variations of the velocity magnitude ratio for the analysed points at 6 

different cross-sections through a tube bend. 

 

Figure 4.26 Variations of the Velocity Magnitude Ratio for the Analysed Points at 6 Different Cross-

Sections Through a Tube Bend 

From Figure 4.26 it can be seen that the velocity magnitude for the right points (the inner side 

of the bend) are higher than those is the left side. This agrees with the idea presented previously 

where it has been detected a high velocity region at the inner side of the bend. However, the 

no any notable change in the velocity magnitude between the right and left points.  

The variations of the static pressure ratio for the analysed points at 6 different cross-sections 

through a tube bend is shown in Figure 4.27.  
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Figure 4.27 Variations of the Static Pressure Ratio for the Analysed Points at 6 Different Cross-

Sections Through a Tube Bend 

As it has been described before, the static pressure was higher at the outer side of the bend. 

Therefore, the static pressure at the top point in section 4 was higher than the bottom point. 

Furthermore, it can be observed that the water pressure decreases in general due to the frictional 

forces. 

Figure 4.28 illustrates the variations of the static temperature ratio for the analysed points at 6 

different cross-sections through a tube bend. 

 

Figure 4.28 Variations of the Static Temperature Ratio for the Analysed Points at 6 Different Cross-

Sections Through a Tube Bend 
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Based on the data plotted in Figure 4.28, the variations in the static temperature for 6 different 

cross-sections through a tube bend are small. Moreover, points on the right of tube (inner side 

of the bend) are having higher temperature comparing with the left points. This is happened 

because of the left side of the tube is facing the air flow. The situation has changed as the water 

reached section 5. The same behaviour can be observed for the points in top and bottom of the 

tube.   

4.5 Incorporating the novel CFD model to Predict Heat Transfer 

Coefficients and Local Fin Efficiency for Multi-tube and Fin Heat 

Exchanger 

The main purpose of using fins is to increase the surface area and therefore to enhance the total 

heat transfer rate. The heat transfers through fins in two methods; conduction through fins and 

convection from their surface area to the air. Hence, an accurate model is required to predict 

the heat transfer characteristics of the heat exchanger as the fin efficiency is one of the main 

parameters affecting heat transfer on the air-side [90]. 

In the next section, the novel CFD model, presented in chapter 3, was incorporated to predict 

heat transfer coefficients and local fin efficiency for the baseline model; multi-tube and fin heat 

exchanger with plain fins. 

The fin efficiency (ηf) can be described as the ratio of the actual heat transferred through the 

fin to ideal case where the whole fin would be at the base temperature [16]. Schmidt empirical 

method [91] is used to determine fins efficiency of the multi-tube and fin heat exchanger having 

plain fins. Based on this method, the fin efficiency can be calculated from [12],[16]: 

ηf =
tanh(mr𝑜ϕ)

(mr𝑜ϕ)
                                                                (4.13) 

where m is defined as, 

m = √
2 ha

kaft
                                                                           (4.14) 

where, ha is the air side heat transfer coefficient for the fin (W /m2 K) which can be predicted 

from the novel CFD model 

Ka is the thermal conductivity of the fin material (W/m K) 

ft is the fin thickness (m) 
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ro is the outer radius of the tube (m) 

ϕ = (
R

r𝑜
− 1)[1 + 0.35ln (R

r𝑜
⁄ )]                                              (4.15) 

 

Based on this method, R is the radius of a circular fin which has the same efficiency as the 

rectangular fin (m). The ratio (R/ro) for staggered fin configuration (hexagonal tube array), as 

shown in Figure 4.29, can be calculated from, 

R

r𝑜
= 1.27ψ√β − 0.3                                               (4.16) 

where,                                        ψ =
M

r𝑜
 and β =

L

M
                                                 (4.17) 

 
Figure 4.29 Geometrical Details of Staggered Fin Configuration [16] 

 

4.5.1 Sample Calculation of Local fin efficiency (ηf) 

As described in the previous section, steps to calculate the fin efficiency are summarised below, 

1. Calculate ψ and β 

For M=0.0125 m, ro=0.00476 m, and L= 0.0125 m, then from Eq. (4.17), 

ψ =
0.00125

0.00476
= 2.626 

β =
0.0125 

0.0125 
= 1.0 

2. Calculate the ratio (R/ro) from Eq. (4.16) 

R

r𝑜
= 1.27 ∗ 2.626 ∗ √1.0 − 0.3 
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R

r𝑜
= 2.79 

3. Calculate ϕ from Eq. (4.15) 

ϕ = (2.97 − 1)[1 + 0.35ln (2.97)] 

ϕ = 2.433 

4. Calculate m from Eq. (4.14), where Ka (Aluminum) = 202.4 W/m.K [92], ft =0.00012 

m and the value of ha is computed from FLUENT and after considering the following 

reference values: 

❖ Area= 1 m2 (per unit area) 

❖ Density= 1.184 Kg/m3 (Air density at T∞ =25ᵒ C) [92] 

❖ Length= 0.043 m (fin width) 

❖ Temperature Tref =
Twall+T∞

2
  [93] and [94] 

Twall is the area-weighted average temperature of the fin (computed from 

FLUENT). Twall for the fin 1 of the baseline model for test 3 and water flow 

rate 3 L/min with the boundary condition shown in Table 4-1 is equal to 53.85ᵒ 

C 

Tref =
53.85+25

2
 = 39.42 ᵒ C 

❖ Air Velocity= 3 m/sec 

❖ Viscosity= 1.8364e-05 Kg/m.sec (Air Dynamic Viscosity at T∞ =25ᵒ C)[92] 

❖ Ratio of air specific heat= 1.4 

5. The air side heat transfer coefficient (ha) for fin 1 in the heat exchanger used in this 

study is equal to 98.116 W /m2.K 

m = √
2 ∗ 98.116 

202.4 ∗ 0.00012
 

m = 89.885 

6. The last step is to calculate the fin efficiency (ηf) from Eq. (4.1) 

ηf(1) =
tanh(89.885 ∗ 0.00476 ∗ 2.433)

(89.885 ∗ 0.00476 ∗ 2.433)
 

ηf(1) = 0.748 

The same steps were repeated in order to calculate the local fin efficiency of each fin in the 

heat exchanger under study based on computing the local heat transfer coefficient using the 
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novel CFD model. The results of this calculations are shown in Figure 4.30 and 4.31, 

respectively. 

 
Figure 4.30 Local Heat Transfer Coefficient for Every Fin in the Heat Exchanger Computed from 

CFD- FLUENT 

The vertical bars presented in both Figure 4.30 and 4.31 indicate that the local values for heat 

transfer coefficient and fin efficiency are not identical for all fins. A difference is observed and 

it can be clearly seen that in fin 1 and fin 21. As a result of this difference, values for the local 

heat transfer coefficient for both fin 1 and fin 21 were higher than the average value of other 

fins with 3.02 % and 2.2 %, respectively. Accordingly, the local values of fin efficiency for fin 

1 and fin 21 were lower than the average value of other fins with 0.7 % and 0.5 %, respectively. 

 
Figure 4.31 Local Fin Efficiency for Every Fin in the Heat Exchanger Computed from CFD- 

FLUENT 

 

Figure 4.32 depicts the static temperature contours for the heat exchanger together with local 

values of air heat transfer coefficient and the local fin efficiency of fins 1, 5, 9, 13, 17 and 21.  
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Figure 4.32 Static Temperature Contour for Some Fins in The Heat Exchanger 

 

Table 4-4 illustrates in detail static temperature contours for fins 1, 5, 9, 13, 17 and 21 in both 

front and back sides. 
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Table 4-4 Static Temperature Contours for Fins 1, 5, 9, 13, 17 And 21 in both Front and Back Sides 

Fin 

no. 
1 5 9 13 17 21 

Legend 
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From both Figure 4.32 and Table 4-4, it can be seen that static temperature distribution on the 

fins is not alike. However, an identical temperature distribution is observed for both sides of 

the same fin. Moreover, local values of heat transfer coefficient and the fin efficiency for fins 

number 5, 9, 13, and 17 are in the same range.  

By using this method to calculate the local fin efficiency of some fins in the baseline model of 

the heat exchanger it can be conclude that, due to the dissimilarity of thermal behaviour of the 

fins of the heat exchanger so the condition in one fin cannot be applied to the other one; hence 

it is vital to analysis the whole heat exchanger under this condition. This idea agreed with the 

idea presented in [95], where it has been reported that the heat transfer coefficient is not 

constant throughout its flow length and it is varying with location, the entrance length effect 

(due to the boundary layer development), surface temperature, maldistribution, fouling, 

manufacturing imperfections, fluid physical properties, etc.   
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4.6 Effect of Geometrical Parameters on the Thermal Performance of the 

Baseline Model 

The main objective of this study (objective 2.2) is to understand the hydrodynamics of the flow, 

the heat transfer and pressure drop characterises as a function of geometrical parameters of the 

heat exchanger. The multi-tube and fin heat exchanger which has plain fins has been 

numerically investigated for the effects of fin spacings (Fp), longitudinal pitches (Lp) and 

transverse pitches (Tp) on the heat transfer and pressure drop characteristics of the heat 

exchanger under steady state operating condition. In this parametric study, three different cases 

have been considered for specific geometric parameters; Fp, Lp and Tp. These cases considered 

in this parametric study are tabulated in Table 4-5where case II represents the geometry of the 

baseline model. The effects of the geometrical parameters previously mentioned were 

investigated using Fanning friction factor (f) which symbolised the pressure drop 

characteristics, Colburn factor (j) which symbolised the heat transfer characteristics and the 

ratio between Colburn factor (j) and Fanning friction factor (f) them which is efficiency index 

(j/f). In addition, Fanning friction factor (f) and Colburn factor (j) were computed using the 

method previously described in section 4.1.2. 

Table 4-5 Cases Considered in the Parametric Study 

Parameter Case I Case II Case III 

Fin Spacing (Fp) mm 3.7 4.2 4.7 

Longitudinal Tube Pitch (Lp) mm 20 22 24 

Transverse Tube Pitch (Tp) mm 23.5 25 26.5 

 

The boundary conditions of the present study are shown in Table 4-6. For each geometrical 

parameter, CFD simulations were carried out for steady state operating condition. The air 

velocity was varying from 1 to 5 m/sec, whereas the water velocity was varying from 0.3 to 

1.5 m/sec. 
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Table 4-6 Boundary Conditions of Steady State Tests for Parametric Study 

Test Name 
Water Side Air Side 

Water Velocity 

(m/sec) 

Water Inlet 

Temperature (ᵒ C) 
Air Velocity (m/sec) 

Air Inlet 

Temperature (ᵒ C) 

Test 1 

1 60  

1 

25 

Test 2 2 

Test 3 3 

Test 4 4 

Test 5 5 

Test 1 0.3 

60 3 25 

Test 2 0.6 

Test 3 0.9 

Test 4 1.2 

Test 5 1.5 

4.6.1 Effect of Fin Spacings 

This section is focusing on the impact of the spacing between the fins on the heat transfer and 

pressure drop characteristics of the heat exchanger. This effect controls the number of fins 

which can be installed in a given space along the tubes. The effects of three different fin 

spacings; 3.7 mm, 4.2 mm and 4.7 mm have been investigated.  

Figure 4.33 depicts the variations of Colburn factor (j) of heat exchangers used in the present 

study with Reynolds number (ReD) computed based on the hydraulic diameter of the tube and 

for three different fin spacings (Fp); 3.7 mm, 4.2 mm and 4.7 mm, respectively. 

 
Figure 4.33 Effect of the Variation of Different Fin Spacing on Colburn Factor (j) 

From Figure 4.33, Colburn factor (j) of heat exchangers used in the present study decreases as 

the Reynolds number goes higher. Furthermore, at a constant Reynolds number equal to 18,000 
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and when the fin spacing (Fp) is decreasing from 4.7 mm to 4.2 mm and from 4.2 mm to 3.7 

mm, the Colburn factor (j) increase 3.53% and 6.7%, respectively. Therefore, a higher heat 

transfer is observed for the heat exchanger model with 3.7 mm fin spacing, i.e. at low fin 

spacing. This behaviour of the heat exchanger can be explained as the fin spacing (Fp) is 

decreasing, the flow becomes more turbulent and it can interrupt the development of the 

boundary layer.  

Variations of Fanning friction factor (f) with Reynolds number (ReD) for three different fin 

spacings (Fp); 3.7 mm, 4.2 mm and 4.7 mm, respectively is illustrated in Figure 4.34. 

 
Figure 4.34 Effect of the Variation of Different Fin Spacings on Fanning Friction Factor (f) 

 

It can be clearly seen from Figure 4.34 that, a significant effect of fin spacing on Fanning 

friction factor (f) has observed. Moreover, by decreasing the fin spacing, the tube surface area 

is reduced which affects the pressure drop performance. In other words, a higher-pressure drop 

has detected at 3.7mm fin spacing which represent a disadvantage of high heat transfer rate 

reached in the previous figure. The friction factor (f) increases 8.44% and 8.78% when the fin 

spacing is changed from 4.7 mm to 4.2 mm and 4.2 mm to 3.7 mm and at a constant Reynolds 

number of 18,000. 

Figure 4.35 represents the variations of efficiency index (j/f) of heat exchangers used in the 

present study with Reynolds number (ReD) for different fin spacings (Fp); 3.7mm, 4.2mm and 

4.7mm, respectively. 
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Figure 4.35 Effect of the Variation of Different Fin Spacings on Efficiency Index (j/f) 

 

The data plotted in Figure 4.35 reveals that the efficiency index (j/f) decreases as the Reynolds 

number is increased. Moreover, a higher efficiency index is observed at high fin spacing, i.e. 

at 4.7 mm fin spacing.  

The reason for an increase in heat transfer with low value of fin spacing can be generally 

explained by the fact that, as the fin spacing decreased the boundary layer thickness decreased 

which result an enhancement in the heat transfer characteristics of the heat exchanger. 

However, this enhancement has a disadvantage of higher pressure drop.  
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4.6.2 Effect of Longitudinal Pitches 

The effect of longitudinal pitches (Lp) on the heat transfer and pressure drop characteristics of 

the heat exchanger presented in this study is discussed in this section. This effect is evaluated 

by varying the longitudinal pitches (Lp) for three different values; 20 mm, 22 mm and 24 mm. 

Variations of Colburn factor (j) of heat exchangers used in the present study with Reynolds 

number (ReD) for three different longitudinal pitches (Lp); 20 mm, 22 mm and 24 mm, 

respectively is illustrated in Figure 4.36. 

 
Figure 4.36 Effect of the Variation of Different Longitudinal Pitches on Colburn Factor (j) 

 

It has found that as the longitudinal pitch (Lp) increases Colburn factor (j) decrease. For 

example, Colburn factor (j) declines by 10.22% and 3.71% when the longitudinal pitch (Lp) is 

varied from 20 mm to 22 mm and 22 mm to 24 mm, respectively for a constant Reynolds 

number of 25,000. This response of the heat exchanger can be clarified by increasing of tube 

surface area by an increase in longitudinal pitch (Lp) which however results a decrease in the 

heat transfer rate. This response of the heat exchanger contradicts with of the phenomenon 

which states that as the heat transfer area increases the heat transfer rate would increase. 

Figure 4.37 depicts the variations of Fanning friction factor (f) of heat exchangers used in the 

present study with Reynolds number (ReD) for different longitudinal pitches (Lp); 20 mm, 22 

mm and 24 mm, respectively. 
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Figure 4.37 Effect of the Variation of Different Longitudinal Pitches on Fanning Friction Factor (f) 

 

It can be seen clearly from Figure 4.37 that, friction factor (f) has the same behaviour as 

Colburn factor (j), i.e. as the Reynolds number (ReD) increases the friction factor (f) decreases. 

Moreover, a higher friction factor (f) is observed at the lowest longitudinal pitch (Lp= 20 mm). 

At a constant Reynolds number of 25,000, friction factor (f) decrease by 10.1% and 4.23% 

when the longitudinal pitch (Lp) is changed from 20 mm to 22 mm and 22 mm to 24 mm, 

respectively  

Figure 4.38 illustrates the variations of efficiency index (j/f) of heat exchangers used in the 

present study with Reynolds number (ReD) for different longitudinal pitches (Lp); 20 mm, 22 

mm and 24 mm, respectively. 
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Figure 4.38 Effect of the Variation of Different Longitudinal Pitches on Efficiency Index (j/f) 

 

 

The data plotted in Figure 4.38 reveals that, the efficiency index (j/f) decreases as Reynolds 

number (ReD) increases. In contrast to the behaviour of friction factor (f) and Colburn factor 

(j), the efficiency index (j/f) is observed to be slightly higher for high longitudinal pitches (Lp). 

This can be explained as the rate of increase in Colburn factor (j) is lower than the friction 

factor (f).  
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4.6.3 Effect of Transverse Pitches 

In this section, the effect of transverse pitches has been investigated. The numerical 

investigation has been carried out for three different transverse pitches (Tp); 23.5 mm, 25 mm 

and 26.5 mm, respectively. 

Figure 4.39 depicts the variations of Colburn factor (j) of heat exchangers used in the present 

study with Reynolds number (ReD) for different transverse pitches (Tp); 23.5 mm, 25 mm and 

26.5 mm, respectively. 

 
Figure 4.39 Effect of the Variation of Different Transverse Pitch on Colburn Factor (j) 

 It can be clearly seen from Figure 4.39 that the value of transverse pitch is affecting Colburn 

factor (j) and therefore affecting the heat transfer rate in the heat exchanger. In general, Colburn 

factor (j) of heat exchangers used in the present study decreases as the Reynolds number 

increases. Furthermore, at a constant Reynolds number equal to 30,000 and when the transverse 

pitch (Tp) is decreasing from 26.5 mm to 25 mm and 25 mm to 23.5 mm, the Colburn factor (j) 

increase by 7.58% and 3.05%, respectively. Therefore, a higher heat transfer is observed for 

the heat exchanger model with 23.5 mm transverse pitch, i.e. at low transverse pitch. This 

behaviour of the heat exchanger is similar to that of longitudinal pitch. 

Variations of Fanning friction factor (f) of heat exchangers used in the present study with 

Reynolds number (ReD) for different transverse pitches (Tp); 23.5 mm, 25 mm and 26.5 mm, 

respectively is illustrated in Figure 4.40. 
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Figure 4.40 Effect of the Variation of Different Transverse Pitch on Fanning Friction Factor (f) 

 

The results plotted in Figure 4.40 depict that, as Reynolds number (ReD) increases the friction 

factor (f) tend to decrease for all the cases studied. A higher friction factor (f) is observed at a 

low transverse pitch (23.5 mm). This behaviour of the heat exchanger can be explained that, as 

the transverse pitch increased, the surface of tubes area is increased, which result an expanding 

in flow area and hence lower pressure drop.  

Figure 4.41 represents the variations of efficiency index (j/f) of heat exchangers used in the 

present study with Reynolds number (ReD) for three different transverse pitches (Tp); 23.5 mm, 

25 mm and 26.5 mm, respectively. It can be seen that the efficiency index decreases as the 

Reynolds number is increased. Moreover, a higher efficiency index is observed at high 

transverse pitch, i.e. at 26.5 mm transverse pitch, which represents a difference for respective 

cases comparing with the behaviour of friction factor (f) and Colburn factor (j). 
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Figure 4.41 Effect of the Variation of Different Transverse Pitch on Efficiency Index (j/f) 
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4.7 Development of Novel Semi-Empirical Prediction Model 

The results which have been obtained in the previous study which has quantified the effect of 

geometrical parameters; fin spacings (Fp), longitudinal pitches (Lp) and transverse pitches (Tp) 

on the thermal performance of multi-tube and fin heat exchanger having plain fins (baseline 

model) have been implemented to develop a novel semi-empirical prediction model for 

Fanning friction factor (f) and Colburn factor (j). As it has been stated before, Fanning friction 

factor (f) and Colburn factor (j) are representing the pressure drop heat transfer characteristics, 

respectively. Therefore, it is vital to develop a prediction model to correlate them. In addition, 

In the design of a plain fin heat exchanger, the geometric parameters are fin spacings (Fp), 

longitudinal pitches (Lp), transverse pitches (Tp), fin collar outside diameter (Dc), fin width 

(Fw), fin height (FH) and Reynolds number computed based on the hydraulic diameter (ReD). 

Theses parameters are affecting the thermal performance of the heat exchanger. Hence, the 

dimensionless geometric parameters used to develop the prediction model are ReD, Fp/Dc, Lp/ 

Fw and Tp/ FH. 

The correlation has been carried out using multiple variable regression analysis. These novel 

equations are shown below. 

j = 0.0468 ReD
−0.439 (

Fp
Dc

⁄ )
−0.413

(
Lp

Fw
⁄ )

−0.819

(
Tp

FH
⁄ )

−1.001

                (4.18) 

f = 0.0175 ReD
−0.212 (

Fp
Dc

⁄ )
−0.659

(
Lp

Fw
⁄ )

−0.884

(
Tp

FH
⁄ )

−0.829

                    (4.19) 

where, 

j is Colburn factor 

f is Fanning friction factor 

ReD is Reynolds number computed based on the hydraulic diameter 

Fp is fin spacing (m) 

Dc is fin collar outside diameter (m) 

Lp is longitudinal pitch (m) 

Tp is transverse pitch (m) 

Fw is fin width (m) 
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FH is fin height (m) 

The limitations of using the equations above are: 

• These equations are applicable only to multi-tube and fin heat exchanger with plain fins 

• These equations have been developed based on heating condition 

• These equations are applicable only to forced convection heat transfer analysis  

The correlation coefficient values between calculated and predicted data for Eqs. (4.6) and (4.7) 

are 0.987 and 0.977, respectively. Based on the above information it can be concluded that the 

developed prediction model shows no significant difference to the available data and they have 

the same trend. Therefore, this prediction model developed can be used during the design process 

of multi-tube and fin heat exchanger having plain fins. 

4.7.1 The Accuracy of the Developed Equations for Predicting Colburn factor (j) and 

fanning friction factor (f)  

This section illustrates the accuracy of the developed equations for predicting Colburn factor 

(j) and Fanning friction factor (f). Figure 4.42 and 4.43 depict the relation between the 

calculated values and the predicted values of Colburn factor (j) and Fanning friction factor (f), 

respectively.  

 
Figure 4.42 Calculated Against Predicted Values of Colburn Factor (j) 
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it can be seen that percentage differences between the calculated and predicted values of 

Colburn factor (j) and Fanning friction factor (f) are in range of less than 10%. Therefore, it 

can be concluded that, the developed equation (prediction model) is well capable of predicting 

Colburn factor (j) and Fanning friction factor (f) with a good accuracy. 

 
Figure 4.43 Calculated Against Predicted Values of Fanning friction factor (f) 
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4.8 Summary of the Analysis Carried Out on the Baseline Model  

Detailed flow behaviour of working fluids within the multi-tube and fin heat exchanger having 

plain fins have been revealed in the following results: 

• A novel CFD model for multi-tube and fin heat exchanger with a full geometry has 

been presented and verified against the experimental results at different operating 

conditions. Therefore, the numerical model can be used for further investigation with 

different design modifications. 

• A flow field qualitative analysis has been carried out which helps to understand the 

forced convection phenomena happened inside this system.  

• CFD has been incorporated to compute heat transfer coefficients and local fin efficiency 

for multi-tube and fin heat exchanger with plain fins. 

• Fin spacing, longitudinal pitch and transverse pitch have a significant impact on the 

heat transfer and pressure drop characteristics of the heat exchanger under steady state 

operating condition. 

• Minimising the fin spacing would enhance the heat transfer characteristics of the heat 

exchanger. However, it would increase the pressure drop across the heat exchanger. 

• Plain fins provide the lowest possible air-side pressure drop and lowest fan power.  

• A Prediction model to estimate Fanning friction factor (f) and Colburn factor (j) has 

been developed by taking in consideration the effects of heat exchanger geometrical 

parameters; fin spacing, longitudinal pitch and transverse pitch. 

This chapter provides in detail information about the forced convection phenomena and 

behaviour of working fluids within the multi-tube and fin heat exchanger. Design modifications 

will be considered in the next chapter in order to enhance the heat transfer and pressure drop 

characteristics of the heat exchanger. This process will be carried out experimentally and 

numerically.  
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 EXPERIMENTAL AND NUMERICAL 

INVESTIGATIONS OF DIFFERENT DESIGN 

CONFIGURATIONS OF HEAT EXCHANGER 

  

SUMMARY: In the previous chapter, validation and analysis of the baseline model for 

multi-tube and fin heat exchanger having plain fins under different operating conditions were 

carried out. This chapter focus on improving the thermal performance of the heat exchanger by 

employing different fin configurations. An experimental investigation has been carried out by 

comparing the heat transfer and pressure drop characteristics of a novel fin design (perforated 

plain fin) with plain and louvre fins. Moreover, a comparative numerical study of the airside 

thermal performance of the multi-tube and fin heat exchanger having perforated plain, louvre 

and perforated louvre fin has been carried out. The best thermal performance was found to be 

for perforated louvre fins.  
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5.1 Introduction 

The baseline model which has been analysed in the previous chapter has plain fins. Thermal 

performance of the plain fins can be enhanced by using passive techniques which does not 

require application of any additional external power. This technique can be in form of surface 

or geometrical modifications of fin surfaces. This chapter deals with performance improvement 

of the heat exchanger used in the FCU by having different design configurations of the fins. 

This includes louvre and perforated fins.  

The louvre fins have a surface area larger than plain fins and they are commonly used in auto 

industry because of their mass production manufacturability and high j and f factors compared 

with plain fins. In addition, proposed here perforation in the fin surfaces enhance turbulence 

around fins which cause an increase in the local heat transfer coefficient compared with plain 

fins as well as a reduction in the total weight of the heat exchanger. 

In this chapter, when possible an experimental investigation has been carried out and in other 

cases numerical investigation, in order to evaluate the thermal performance of new fin 

arrangements. These investigations include: 

• An experimental study to compare the thermal characteristics of multi-tube and fin heat 

exchanger with plain, louvre and perforated plain fins, 

• A comparative numerical study of the airside performance of multi-tube and fin heat 

exchanger having perforated plain, louvre and perforated louvre fins, 

• A numerical investigation to determine effects of the hole diameter (hD) and hole 

spacing (hS) on the heat transfer and pressure drop characteristics of the air side of the 

heat exchanger which has perforated louvre fins. 

The results of those investigations have been used to develop the optimisation model which 

will discussed in the next chapter. 

5.2 A Comparison of Thermal Characteristics of Multi-tube and Fin Heat 

Exchanger with Different Fin Arrangements 

This study experimentally examines the thermal performance of a multi-tube and fin heat 

exchanger under steady state operating condition. The investigation has been carried out by 

comparing a heat exchanger having perforated plain fin, novel fin design, with plain and louvre 

fins heat exchangers. This study shows how the thermal performance of the baseline model can 

be improved by having perforations on the plain fins or using louvre fins instead of plain fins. 
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Moreover, this study aims to correct the novel predictions model developed in section 4.7 that 

can be applied on the perforated and louvre fins.  

5.2.1 Heat Exchanger Model Description and Boundary Conditions 

The test setup, described in chapter three, has been used in order to study the heat transfer and 

pressure drop characteristics of these heat exchangers. The model for heat exchanger having 

perforated plain fin was manufactured by punching 12 holes with 3 mm diameter in each plain 

fin material. Figure 5.1 depicts the heat exchanger having perforated plain fin and the 

distribution of the perforated holes in fin geometry.  

  

Figure 5.1 Perforated Plain Fin Heat Exchanger and Perforated Holes’ Distribution in Fin Geometry 

The air velocity used in this study is in the range of 0.7 to 4 m/sec which represents the velocity 

arithmetic mean (velocity average) of the gross cross-sectional area for airflow (face area) 

which is computed using the ASHRAE standard 41.2 [84] and it was reported by [85], [16]. 

The method for measuring air flow velocity in the experiments is described in detail in 

APPENDIX B. Moreover, the range for water flow rate is from 2 L/min to 6 L/min which make 

the flow inside the tubes fully turbulent. The detailed boundary conditions of this study are 

presented in Table 5-1. 
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Table 5-1 Boundary Conditions of Steady State Tests for the Comparative Experiential Study 

Test 

Name 

Water Side Air Side 

Water Flow rate 

(L/min) 
Water Inlet 

Temperature (ᵒ C) 

Air Velocity 

(m/sec) 
Air Inlet 

Temperature (ᵒ C) 

Test 1 

2±0.03 60 ± 1 

0.705 

24 ± 1 

Test 2 1.546 

Test 3 2.183 

Test 4 3.177 

Test 5 3.991 

Test 1 

3±0.03 60 ± 1 

0.705 

24 ± 1 

Test 2 1.546 

Test 3 2.183 

Test 4 3.177 

Test 5 3.991 

Test 1 

4±0.03 60 ± 1 

0.705 

24 ± 1 

Test 2 1.546 

Test 3 2.183 

Test 4 3.177 

Test 5 3.991 

Test 1 

5±0.03 60 ± 1 

0.705 

24 ± 1 

Test 2 1.546 

Test 3 2.183 

Test 4 3.177 

Test 5 3.991 

Test 1 

6±0.03 60 ± 1 

0.705 

24 ± 1 

Test 2 1.546 

Test 3 2.183 

Test 4 3.177 

Test 5 3.991 

 

5.2.2 Data Analysis 

In this study, the temperatures of both hot water and air at inlets and outlets were measured 

experimentally together with the pressure drop across water and air sides. The average heat 

transfer rate (Q̇avg) has been computed using Eq. (4.4). Furthermore, the comparison has been 

carried out using Fanning friction factor (f) which symbolised the pressure drop characteristics, 

Colburn factor (j) which symbolised the heat transfer characteristics and the ratio between 

Colburn factor (j) and Fanning friction factor (f) them which is efficiency index (j/f). In 

addition, Fanning friction factor (f) and Colburn factor (j) were computed using the method 

previously described in section 4.1.2. 
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5.2.3  Comparison Results 

Figure 5.2 depicts variations of the average heat transfer rate (Q̇avg)  against air velocity for 

the three heat exchangers having different fin arrangements; perforated plain, plain and louvre 

fins at different water flow rates from 2 to 6 L/min. 
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Figure 5.2 Variations of Average Heat Transfer Rate Against Air Velocity for Three Heat Exchanger 

with Different Fin Arrangements at Different Water Flow Rates; A) 2 L/min, B) 3 L/min, C) 4 L/min, 

D) 5 L/min and E) 6 L/min 

 

Figure 5.3 illustrates variations of pressure drop per unit length across the air side against air 

velocity for three heat exchangers having different fin arrangements; perforated plain, plain 

and louvre fins at different water flow rates from 2 to 6 L/min.  
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A) 2 L/min B) 3 L/min 

 

 

 

 C) 4 L/min  

  

D) 5 L/min E) 6 L/min 

Figure 5.3 Variations of Pressure Drop Per Unit Length of the Air Side Against Air Velocity for 

Three Heat Exchanger with Different Fin Arrangements at Different Water Flow Rates; A) 2 L/min, 

B) 3 L/min, C) 4 L/min, D) 5 L/min and E) 6 L/min 

From Figure 5.2 and 5.3 it can be seen that the louvre fins heat exchanger has the higher average 

heat transfer rate comparing with perforated plain fins and plain fins heat exchangers. The 

average heat transfer rate increases as the water flow rate increases. At 4 L/min water flow rate, 

the average increase in the average heat transfer rate for louvre fins heat exchanger is 16.95% 
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and 14.15% comparing with plain fins and perforated plain fins heat exchangers, respectively. 

However, this enhancement in the heat transfer is accompanied by a high pressure drop across 

the air side. Furthermore, due to the vortex generated by the holes, the perforated plain fins 

heat exchanger has achieved an enhancement in heat transfer characteristics when it is 

compared with the plain fins heat exchanger. This enhancement is small at high water flow rate 

and it has the disadvantage of an increase in the pressure drop. For example, at 3 L/min water 

flow rate, the average increase in the average heat transfer rate for perforated plain fins heat 

exchanger is 10.5%, this increase drop to 3.65% at 5 L/min water flow rate. 

Figure 5.4 depicts the variations of friction factor (f) for three heat exchangers having different 

fin arrangements; perforated plain, plain and louvre fins due to a change in Reynolds number. 

 
Figure 5.4 Variations of Friction Factor (f) for Different Fin Arrangements Due to a Change in 

Reynolds Number 

 

Figure 5.5 depicts the variations of Colburn factor (j) for three heat exchangers having different 

fin arrangements; perforated plain, plain and louvre fins due to a change in Reynolds number. 
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Figure 5.5 Variations of Colburn Factor (j) for Different Fin Arrangements Due to a Change in 

Reynolds Number 

 

Figure 5.6 illustrates the variations of efficiency index (j/f) for three heat exchangers having 

different fin arrangements; perforated plain, plain and louvre fins due to a change in Reynolds 

number. 

 

Figure 5.6 Variations of Efficiency Index (j/f) for Different Fin Arrangements Due to a Change in 

Reynolds Number 

 

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

5,000 10,000 15,000 20,000 25,000 30,000 35,000

C
o

lb
u

rn
 f

ac
to

r 
(j

)

Reynolds Number (ReD)

Louvre Plain Perforated Plain Fin

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

5,000 10,000 15,000 20,000 25,000 30,000 35,000

Ef
fi

ci
en

cy
 In

d
ex

 (
j/

f)

Reynolds Number (ReD)

Louvre Plain Perforated Plain Fin



119 

 

The plotted data in Figure 5.4, 5.5 and 5.6 reveal that, as Reynolds number is increased, friction 

factor (f), Colburn factor (j) and efficiency index (j/f) tend to decrease for all the three heat 

exchangers. Moreover, high Colburn factor (j) and friction factor (f) for the louvre fins heat 

exchanger are observed comparing with perforated plain fins and plain fins heat exchangers. 

This can be explained by, as the surface area of louvre fin is larger than the plain fin and 

perforated plain, this fact results an increase in the heat transfer coefficient which lead to high 

Colburn factor (j). Nevertheless, the friction factor (f) of the heat exchanger with louvre fins 

has increased due to louvre arrangement in the louvre fin shape. 

The results of this study showed that an average improvement in the average heat transfer rate 

(Qavg
∙ ) by 8% and 18% for the perforated plain fins and louvre fins heat exchanger, respectively 

when they were compared with the plain fins heat exchanger. However, this improvement was 

accompanied with an increase in the pressure drop across the air-side by 35% and 180%, 

respectively. The data for this study has been used to develop a novel semi-empirical prediction 

model for Fanning friction factor (f) and Colburn factor (j) as a function of Reynolds number, 

fins total surface area and total heat transfer surface area of the heat exchanger. 

5.2.4 Development of Novel Semi-Empirical Prediction Model for computing Fanning 

friction factor (f) and Colburn factor (j) 

The results which have been obtained in the previous experimental study were implemented to 

develop a novel semi-empirical prediction model for Fanning friction factor (f) and Colburn 

factor (j). As it has been stated before, Fanning friction factor (f) and Colburn factor (j) are 

representing the pressure drop heat transfer characteristics, respectively. Therefore, it is 

important to develop a prediction model to correlate them. The correlation has been carried out 

using multiple variable regression analysis. In addition, Fanning friction factor (f) and Colburn 

factor (j) were computed using the method previously described in section 4.1.2. the 

dimensionless geometric parameters used to develop the prediction model are (ReD) Reynolds 

number and the ratio between fins total surface area and total heat transfer surface area of the 

heat exchanger (
Af

At
⁄ ) 

These novel equations are shown below, 

j = 104.595 (
Af

At
⁄ )

29.918

ReD
−0.374                                                 (5.1) 
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f = 101.203 (
Af

At
⁄ )

12.811

ReD
−0.139                                               (5.2) 

where, 

j is Colburn factor 

f is Fanning friction factor 

ReD is Reynolds number  

Dc is fin collar outside diameter (m) 

Af is the fins total surface area (m2) 

At is the total heat transfer surface area of the heat exchanger (m2) 

These equations for predicting both Fanning friction factor (f) and Colburn factor (j) are 

applicable only to multi-tube and fin heat exchanger with different fin arrangements in a 

heating condition and for forced convection heat transfer. 

The correlation coefficient values between calculated and predicted data for Eqs. (5.1) and 

(5.2) are 0.853 and 0.811, respectively. Based on the above information it can be concluded 

that the developed prediction model shows no significant difference to the available. Therefore, 

this prediction models developed can be used during the design process of multi-tube and fin 

heat exchanger having louvre and perforated fins. 

Figure 5.7 and 5.8 depict the relation between the calculated values and the predicted values of 

Colburn factor (j) and Fanning friction factor (f), respectively.  
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Figure 5.7 Calculated Against Predicted Values of Colburn Factor (j) 

it can be seen that the percentage difference between the calculated and predicted values of 

Colburn factor (j) and Fanning friction factor (f) are in range of less than 15%. Therefore, it 

can be concluded that, the developed equation is well capable of predicting Colburn factor (j) 

with a good accuracy. 

 

Figure 5.8 Calculated Against Predicted Values of Fanning friction factor (f) 
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5.2.5 Combined Prediction Models 

The prediction model previously developed in section 4.7 has a limited use because it is 

developed based on the baseline model geometry. i.e. heat exchanger with plain fins. Therefore, 

a correction factors have been presented in this section in order to correct the predicted values 

of Fanning friction factor (f) and Colburn factor (j) by combining the values computed using 

the Prediction model developed in section 4.7 with the Prediction model developed in section 

5.2.4. By doing this combination, the new prediction models can be used to predict Fanning 

friction factor (f) and Colburn factor (j) for a heat exchanger with either louvre or perforated 

fins. Corrections factors for Fanning friction factor (f) and Colburn factor (j) for perforated 

plain heat exchanger are 1.06 and 1.03, respectively. Hence, the corrected prediction model 

equations for a heat exchanger with perforated plain fins are:  

f = 0.0186 ReD
−0.212 (

Fp
Dc

⁄ )
−0.659

(
Lp

Fw
⁄ )

−0.884

(
Tp

FH
⁄ )

−0.829

                    (5.3) 

j = 0.0482 ReD
−0.439 (

Fp
Dc

⁄ )
−0.413

(
Lp

Fw
⁄ )

−0.819

(
Tp

FH
⁄ )

−1.001

                   (5.4) 

Similarly, corrections factors for Fanning friction factor (f) and Colburn factor (j) for louvre 

fins heat exchanger are 1.21 and 1.56, respectively. Hence, the corrected prediction model 

equations for a heat exchanger with louvre fins are:  

f = 0.0212 ReD
−0.212 (

Fp
Dc

⁄ )
−0.659

(
Lp

Fw
⁄ )

−0.884

(
Tp

FH
⁄ )

−0.829

                    (5.5) 

j = 0.073 ReD
−0.439 (

Fp
Dc

⁄ )
−0.413

(
Lp

Fw
⁄ )

−0.819

(
Tp

FH
⁄ )

−1.001

                    (5.6) 

The novel combined prediction models can be used to predict Fanning friction factor (f) and 

Colburn factor (j) for different fin configurations. Thus, it can be used as a prediction tool in 

the design process of multi-tube and fin heat exchanger as they contain wide range of 

geometrical parameters. 

5.3 Comparative Numerical Study of the Airside Performance  

In this section, a comparative numerical study of the airside performance of multi-tube and fin 

heat exchanger under steady operating condition having perforated plain, louvre and perforated 

louvre fins has been carried out. All the heat exchangers used in this study have the same fin 
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geometry, i.e. 125 mm height, 43 mm width and 0.12 mm thickness. Figure 5.9 depicts fins 

shapes used in this study. 

   

A) Perforated Plain  B) Louvre C) Perforated Louvre 

Figure 5.9 Type of fins A) Perforated Plain, B) Louvre and C) Perforated Louvre 

CFD simulations have been run for different air velocity in range between 1 and 5 m/sec, 

whereas the water velocity was kept constant at 1 m/sec. The detailed boundary conditions of 

this study are shown in Table 5-2. Moreover, the simulations have been carried out for two 

different fin spacings of 3.7 mm and 4.2 mm. 

Table 5-2 Boundary Conditions of Steady State Tests for the Comparative Numerical Study 

Test 

Name 

Water Side Air Side 

Water Velocity 

(m/sec) 
Water Inlet 

Temperature (ᵒ C) 

Air Velocity 

(m/sec) 
Air Inlet 

Temperature (ᵒ C) 

Test 1 

1 60  

1 

25  

Test 2 2 

Test 3 3 

Test 4 4 

Test 5 5 

 

The method developed in section 4.5; incorporate the novel CFD model to predict heat transfer 

coefficients and local fin efficiency, has been implemented to compare the air side thermal 

performance of the heat exchangers used in this study. The comparison has been carried out in 

terms of air side average heat transfer coefficient, average fins efficiency and air side pressure 

drop per unit length. 

Figure 5.10 and 5.11 depict the variations of the air side average heat transfer coefficient with 

air velocity for different fin arrangements at 3.7 mm and 4.2 mm fin spacing, respectively. 
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Figure 5.10 Variations of the Air Side Average Heat Transfer Coefficient with Air Velocity for 

Different Fin Arrangements at 3.7 mm Fin Spacing 

Figure 5.10 and 5.11 showed that the air side average heat transfer coefficient for perforated 

louvre fin geometry is higher than those of perforated plain and louvre fin geometry for both 

fin spacings. Moreover, the values of air side average heat transfer coefficient of 3.7 mm fin 

spacing are higher than those at 4.2 mm, for all fin types. This is due to a decrease in fin spacing 

which result an enhancement in heat transfer characteristics as it was discussed in section 4.6.1.  
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Figure 5.11 Variations of the Air Side Average Heat Transfer Coefficient with Air Velocity for 

Different Fin Arrangements at 4.2 mm Fin Spacing 

Figure 5.12 and 5.13 illustrate the variations of the average fins efficiency with air velocity for 

different fin arrangements at 3.7 mm and 4.2 mm fin spacing, respectively. 

 

Figure 5.12 Variation of the Average Fins Efficiency with Air Velocity for Different Fin 

Arrangements at 3.7 mm Fin Spacing 

The results in Figure 5.12 and 5.13 depict that the average fins efficiency decreases with the 

increase in fin pitch. In addition, the average fins efficiency is higher for plain fin geometry 
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than those of louvre and perforated louvre fin geometry for both fin pitch. This is due to low 

air side average heat transfer coefficient for plain fins which result high average fins efficiency.  

 

Figure 5.13 Variation of the Average Fin Efficiency with Air Velocity for Different Fin Arrangements 

at 4.2 mm Fin Spacing 

The variations of the air side pressure drop per unit length with air velocity for different fin 

arrangements at 3.7 mm and 4.2 mm fin spacing are depicted in Figure 5.14 and 5.15, 

respectively. 

 

Figure 5.14 Variation of the Average Fin Efficiency with Reynolds Number for Different Fin 

Arrangements at 4.2 mm Fin Spacing 
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From both figures, the pressure drop per unit length across the airside is lowest for plain fin 

geometry than those of louvre and perforated louvre generator fin geometry for both fin pitch.  

 

Figure 5.15 Variations of the Air Side Pressure Drop Per Unit Length with Air Velocity for Different 

Fin Arrangements at 4.2 mm Fin Spacing 

  

Generally, the pressure drop decreases with the increase of fin pitch. The results obtained in 

this section have a good agreement with the experimental investigation carried out by [37] 

where authors carried out an experimental study of the air side performance of fin and tube 

heat exchangers having plain, louver, and semi-dimple vortex generator configuration to 

investigate the effect of fin spacing on the thermal performance of the heat exchanger. 

5.4 Effect of Geometrical Parameters of Perforated Louvre Fins 

As it was shown in the earlier section, the thermal performance of perforated louvre fins heat 

exchanger has improved comparing with plain and louvre fins heat exchanger. In this study, 

the multi-tube and fin heat exchanger which has perforated louvre fins has been numerically 

investigated for the effects of hole diameter (hD) and hole spacing (hS) on the heat transfer and 

pressure drop characteristics of the air side of the heat exchanger under steady state operating 

condition. Figure 5.16 depicts the geometrical details of the perforated louvre fin and the 

geometrical parameters which will be investigated in this study where D, FH and FW are tube 

outside diameter, fin height and fin width, respectively. 
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Figure 5.16 Geometrical Details of the Perforated Louvre Fin 

In this parametric study, three different cases are considered for specific geometric parameters; 

hD and hS. These cases considered in this parametric study are tabulated in Table 5-3 where 

case II represents the baseline model. 

Table 5-3 Cases Considered in the Parametric Study 

Parameter Case I Case II Case III 

Hole Diameter (hD) mm 4.5 (D/2) 3 (D/3) 2.25 (D/4) 

Hole Spacing (hS) mm 15 25 35 

 

The boundary conditions of the present study are shown in Table 5-4. For each geometrical 

parameter, CFD simulations were carried out to show the response of the heat exchanger as the 

air velocity is varying. 

Table 5-4 Boundary Conditions of Steady State Tests for Parametric Study 

Test Name 
Water Side Air Side 

Water Velocity 

(m/sec) 

Water Inlet 

Temperature (ᵒ C) 
Air Velocity (m/sec) 

Air Inlet 

Temperature (ᵒ C) 

Test 1 

1 60  

1 

25 

Test 2 2 

Test 3 3 

Test 4 4 

Test 5 5 
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5.4.1 Effect of Hole Diameter (hD) 

As described in the previous section, three different hole diameters were chosen to carry out 

this study; D/2=4.5 mm, D/3=3 mm and D/4=2.25 mm.  Table 5-5 illustrations the different 

fins used to build the CFD models to carry out this study.  

Table 5-5 Different Hole Diameter Fins 

4.5 mm (D/2) 3 mm (D/3) 2.25 mm (D/4) 

   

Figure 5.17 and 5.18 depict variations of average heat transfer rate and pressure drop per unit 

length across the air side due to a change in air velocity and at different hole diameter D/2, D/3 

and D/4, respectively.  

 
Figure 5.17 Average Heat Transfer Rate Versus Air Velocity at Different Hole Diameter 
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In Figure 5.17, the average heat transfer rate of heat exchangers varies between 240 and 560 

Watts. As a general response, the average heat transfer rate of heat exchangers of the heat 

exchanger increases as the air velocity increases. Additionally, an increase of the average heat 

transfer rate of heat exchangers can be observed for model with D/3-hole diameter especially 

at low air velocity; 3% and 6.5% comparing with D/2 and D/4-hole diameter models, 

respectively. 

 
Figure 5.18 Air side Pressure Drop Per Unit Length Versus Air Velocity at Different Hole Diameter 

 

As it can be seen from Figure 5.18, the pressure drop per unit length for D/3-hole diameter 

model is higher comparing with D/2 and D/4-hole diameter models. For example, at air velocity 

equal to 5 m/sec, the pressure drop per unit length for D/3-hole diameter has increased 0.5% 

and 1% comparing with D/2 and D/4-hole diameter models. 

Contours of temperature variation in mid-section (x-axis) of the heat exchanger due to change 

in air velocity under steady state operating condition at different hole diameter are shown in 

Table 5-6. For effective comparison purposes, the scale of the contours has been kept constant. 

The air side temperature differences (ΔTa) for the D/3-hole diameter model are higher 

comparing with D/2 and D/4-hole diameter models, the average of increase in temperature 

differences (ΔTa) for the D/2-hole diameter model are 1.46% and 5.12%, respectively. 
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Table 5-6 Contours of Temperature Variation in mid-section (X-axis) of the Heat Exchanger Due to 

Change in Air Velocity under Steady State Operating Condition at Different Hole Diameter 

Hole 

Diameter 

4.5 mm 

(D/2) 

3 mm  

(D/3) 

2.25 mm  

(D/4) 

Legend 

   

Temperature 

(K) 

 

Va=1 m/sec ΔTa=8.01ᵒ C ΔTa=8.1ᵒ C ΔTa=7.5ᵒ C 

   
Va=3 m/sec ΔTa=4.84ᵒ C ΔTa=5.0ᵒ C ΔTa=4.8ᵒ C 

   
Va=5 m/sec ΔTa= 3.62 ᵒ C ΔTa=3.7ᵒC ΔTa=3.6ᵒ C 
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5.4.2 Effect of Hole Spacing (hS) 

The following section of this chapter will illustrate the effect of hole spacing on the thermal 

performance of the air side of the multi-tube and fin heat exchanger which has perforated louvre 

fins. Three different hole spacings were chosen to carry out this study; 15 mm, 25 mm and 35 

mm. Details of the different fins used to build up the CFD models to carry out this study are 

shown in Table 5-7. 

Table 5-7 Different Hole Spacing Fins 

15 mm  25 mm  35 mm 

   
 

Variations of the average heat transfer rate due to a change in air velocity and at different hole 

spacings; 15mm, 25mm and 35mm, respectively is depicted in Figure 5.19. 

 
Figure 5.19 Average Heat Transfer Rate Versus Air Velocity at Different Hole Spacings 
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From Figure 5.19, the average heat transfer rate for the air side used in the present study 

increases as the air velocity goes higher. Additionally, at a constant air velocity of 3 m/sec, and 

when the hole spacing is changing from 25 mm to 15 mm and 25 mm to 35 mm, the average 

heat transfer rate for the air side decrease 2.52% and 2.84%, respectively. Therefore, a higher 

heat transfer rate is observed for the heat exchanger model with 25 mm hole spacing.  

Figure 5.20 illustrates the variation of pressure drop across the air side of the heat exchanger 

at different hole spacings; 15mm, 25mm and 35mm, respectively. It can be seen that the 

pressure drop per unit length increases as the air velocity is increased. Moreover, it can be 

observed that at 25 mm hole spacing has a higher pressure drop per unit length which is a 

disadvantage of high heat transfer rate. 

 
Figure 5.20 Air side Pressure Drop Per Unit Length Versus Air Velocity at Different Hole Spacings 

 

Table 5-8 depicts contours of temperature variation in mid-section (x-axis) of the heat 

exchanger due to change in air velocity under steady state operating condition at different hole 

spacing. For effective comparison purposes, the scale of the contours has been kept constant. The 

air side temperature differences (ΔTa) for with 25 mm hole spacing model are higher comparing 

with 15 mm and 35 mm hole spacings models, the average of increase in temperature 

differences (ΔTa) for the 25 mm hole spacing model are 3.73% and 5.52%, respectively. 

15 mm

25 mm

35 mm
0

5

10

15

20

1
2

3
4

5

A
ir

 s
id

e
 P

re
ss

u
re

 D
ro

p
 P

e
r 

U
n

it
 L

e
n

gt
h

 (
P

as
ca

l/
m

)

Air Velocity (m/sec)

15 mm

25 mm

35 mm



134 

 

Table 5-8 Contours of Temperature Variation in mid-section (X-axis) of the Heat Exchanger Due to 

Change in Air Velocity under Steady State Operating Condition at Different Hole Spacings 

Hole 

Spacing 

15 mm 25 mm  35 mm  Legend 

   

Temperature 

(K) 

 

Va=1 m/sec ΔTa=7.79ᵒ C ΔTa=8.03ᵒ C ΔTa=7.59ᵒ C 

   
Va=3 m/sec ΔTa=4.91ᵒ C ΔTa=5.12ᵒ C ΔTa=4.87ᵒ C 

   
Va=5 m/sec ΔTa=3.81ᵒ C ΔTa=3.90ᵒ C ΔTa=3.77ᵒ C 

 

The results presented in this chapter have a good agreement with the results presented by Liu 

et al. in [49] where the two studies focused on the enhancement of the heat exchanger 

performance by adopting a perforation in fins surfaces and compare the results with plain fins. 

However, the numerical model used in [49] was limited by taken only half of the three tube 

rows of the heat exchanger as a calculation element. This consideration may affect the results 

by [49] as it has been proved in section 4.5.1 of this study, where it has been stated that the 

thermal behaviour of the fins of the heat exchanger is not the same and the condition in one fin 

cannot be applied to the other one; hence it is vital to analysis the whole heat exchanger under 

this condition.  
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5.5 Summary of the Design Modification of the Multi-tube and Fin Heat 

Exchanger 

This chapter has presented novel geometric configurations for multi-tube and fin heat 

exchanger. These novel geometric configurations were arrived at after carrying out a careful 

experimental and numerical investigations of a variety of models with different heat transfer 

enhancement methods. Some important observations that have been made during the numerical 

and experimental investigations are listed below. 

• Due to the vortex generated by the holes, the perforate plain fins heat exchanger model 

has achieved an enhancement in heat transfer characteristics when it is compared with 

the plain fins heat exchanger model. This enhancement is relatively high at small water 

flow rate and it has the disadvantage of an increase in the pressure drop. Hence, the 

perforate plain fins heat exchanger model has been considered for further 

investigations, 

• The surface area of the louvre fins is larger comparing with plain fins. This fact results 

an increase in the heat transfer characteristics as well as increase in the pressure drop 

across the air side of the heat exchanger, 

• By using a surface modification in the form of perforations in the louvre fins the thermal 

performance of the heat exchanger has improved. Hence, the model with perforate 

louvre fins can be considered as the best thermal performance model, 

• Hole diameter and hole spacing have shown some effect on the thermal performance of 

perforate louvre fins heat exchanger model, whereas larger hole diameter (D/3-hole 

diameter) and 25 mm hole spacing are the optimum values of theses parameters, 

• A novel Set of design equations have been developed based on the prediction models 

developed in this chapter and the previous chapter. 

In this chapter, the effectiveness of the heat enhancement device used within the multi-tube 

and fins heat exchanger has been discussed. The new enhanced models flow behaviour has 

been analysed for various geometrical parameters. Based on this analysis, in next chapter a user 

friendly and reliable methodology for designing an optimised model with least-cost principle 

will be proposed.  
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 MULTI-OBJECTIVE OPTIMISATION 

OF THE NEW DESIGN AND COST ANALYSIS  

 

SUMMARY: This chapter proposes a multi-objective optimisation procedure for four 

different models of multi-tube and fin heat exchangers, with different fin spacing, namely; 

plain fins, perforated plain fins, louvre fins and perforated louvre fins. The proposed 

optimisation procedure has been carried out with two main constraints; optimisation for 

maximising JF and optimisation for minimising total cost. In addition, a detailed method to 

estimate the total cost of the FCU integrated with multi-tube and fin heat exchanger has been 

included. The results of this chapter reveal that the heat exchanger with perforated louvre fins 

is the optimal model. 
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6.1 Optimisation Strategy 

The process of developing a new design of heat exchanger and therefore a new design of FCU 

is complicated process due to the high cost and long development period involved. Nowadays, 

using computer in this design process has enabled engineers to accurately analyse parts with 

complex geometry at low cost and timely efficient. The previous chapter focused on enhancing 

the thermal performance of the heat exchanger by using a surface modification in the form of 

surface or geometrical modifications in fin surfaces. This design modification increases the 

heat transfer rates as well as reduces the weight of the heat exchanger. In this chapter, a time 

efficient optimisation strategy will be proposed. The optimisation strategy takes into 

consideration limited experimental inputs, CFD modelling and optimisation by using a new 

framework. The output of this framework is a prototype of the new design of FCU which will 

be validated with the experiments on the same model in order to achieve a new optimised 

design of the FCU. The flow chart of this optimisation strategy is depicted in Figure 6.1. 

furthermore, a detailed method to estimate the total cost of the FCU integrated with multi-tube 

and fin heat exchanger will be presented. 
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Figure 6.1 Flow Chart of the Optimisation Strategy 
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6.2 The Cost Estimation of FCU Integrated with Multi-tube and Fin Heat 

Exchanger  

As it has been discussed in the previous chapter, each design configuration of the heat 

exchanger has some advantages, these advantages may affect the size of this heat exchanger 

and therefore the economics of the heat exchanger. In the next section, a method to estimate 

the total cost of the FCU integrated with multi-tube and fin heat exchanger has been described.  

In general, there are two types of cost related with FCU; capital and operating costs [96]. 

CTotal = CCapital + COperating                                                (6.1) 

Where all costs are expressed in GBP (£). 

6.2.1 Capital Cost 

The capital cost of FCU includes the cost of material and manufacturing and installation cost.  

CCapital = CMaterial + CManufacturing                                           (6.2) 

The material cost consists of the cost of the tubes, fins and working fluids. The FCU is 

operating with water as a hot fluid and air as a cold fluid. Both of these fluids are widely 

available and inexpensive. Therefore, their cost can be considered negligible. Hence, the 

equation of the material cost can be written as: 

CMaterial = CTubes + Cfins + CHousing                                      (6.3) 

I. Cost of Tubes 

As it has been described in section 3.2.5, heat exchanger tubes are made up from Copper with 

0.26 mm thickness. Tubes cost can be estimated using the equation given by [97] and [98]. 

This equation uses the geometry of the tube to estimate its cost. 

CTubes = C1 ∗ ρ ∗ π ∗ tTube ∗ LTube ∗ (Dout − tTube)                                 (6.4) 

where, C1 is the cost of tubes material (£/Kg), ρ is the material density (kg/m3), tTube is the tube 

thickness (m), LTube is the total length of the tubes (m) and Dout is the outer diameter of the tube 

(m). 
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II. Cost of Fins 

The heat exchanger has 22 staggered configuration fins made up from Aluminium with 0.12 

mm thickness. Fins are 44 mm wide and 125 mm high. Eq. (6.5) has been provided by [99] and 

it can be implemented to estimate the cost of the fins (CFins). 

CFins = C2 ∗ Ft ∗ Af                                               (6.5) 

where, C2 is the cost of Aluminium per unit volume (£/mm3), Ft is the fin thickness (mm) and 

Af is the total fins surface area (mm2) 

III. Cost of Housing 

The housing of FCU is made up using galvanised steel sheet with 2 mm thickness riveted 

together to form the test section which holds the heat exchanger and fan assembly, as it has 

been described in section 3.2.5. The test section is 650 mm long, 165 mm wide and 175 mm 

high. The material cost of the test section (CHousing) can be calculated using the following 

equation [100], 

CHousing = C3 ∗ VHousing                                                       (6.6) 

where, C3 is the cost for steel sheet per unit volume (£/mm3) and VHousing is the volume of the 

steel sheet used to create the housing (mm3) 

Table 6-1 lists the prices of the materials used to manufacture the FCU. The prices are estimated 

based on the current market in the UK. 

Table 6-1 Various Costs of The Materials Used to Manufacture the FCU 

Material Price 

Copper 6.3 £/Kg  

Aluminium 2.303×10-4 £/mm3 

Steel Sheet 3×10-5 £/mm3 

 

IV. Manufacturing Cost 

The manufacturing cost represents the fabrication and assembly costs. It has been reported by 

[101] that the fabrication and assembly costs are 3 times the material cost. Thus, 

CManufacturing = 3 ∗ CMaterial                                          (6.7) 



141 

 

6.2.2 Operating Cost 

The power required to draw the air in the air side and the power required to circulate the water 

in the water side are the main components of the operating cost. Hence, 

COperating = CKWhr ∗ top ∗ (PWater side + PAir side)                                  (6.8) 

where, PWater−side and PAir−side are the pumping powers in Watts required to operate the water-

side and the air-side, respectively, CKWhr is the power cost for 1 KWhr (kilowatt hour) which 

is assumed to be £ 0.20 and top is operational hours per year (hr/yr) 

The pumping power (Pp) can be calculated from Eq. (6.9). This equation formulates the 

pumping power for moving devices such as pumps, fans, and blowers as a function of pressure 

drop [102].  

           Pp =
ṁ∆P

ρη𝑝
                                                                               (6.9)                                      

where, ṁ is the working fluid flow rate (kg/sec), ΔP is the pressure drop (pascal), ρ is the 

working fluid density (kg/m3) and fluid η𝑝 is the efficiency of the fan or pump. 

6.3 Estimating Total Cost Example: 

In this section, the total cost for FCU which contain multi-tube and fin heat exchanger with 

perforated louvre fins will be estimated for comparison purpose. 

To estimate the cost of the tubes, total length of the tubes should be calculated first. 

𝐿𝑇𝑢𝑏𝑒 = (2 × 150) + (8 × 130) + (9 × 25) = 1565 𝑚𝑚 = 1.565 𝑚 

Then using Eq. 6.4,  

CTubes = 6.3 × 8978 × π × 0.00026 × 1.565 ×
(9.52 − 0.26)

1000
= £ 6.691 

The cost of fins can be calculated from Eq.6.5 

CFins = 2.3 × 10−4 × 0.12 × (22 × 9796) = £ 5.955 

The cost of the housing can be calculated from Eq.6.6 

CHousing = 3 × 10−5 × (650 × 680 × 2) = £ 26.52 

Then, the total material cost is, 
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CMaterial = 6.691 + 5.955 + 26.52 = £ 39.167 

The manufacturing cost can be calculated using Eq. 6.7 

CManufacturing = 3 × 39.167 = £ 117.501 

Therefore, the capital cost is, 

CCapital = 39.167 + 117.501 = £ 156.668 

As it has been mentioned previously, the operating cost is dependent on the pressure drop for 

both water-side and air-side. Therefore, assuming the efficiency of the pumping units (water 

pump and air fan) η = 60% and both of them would be used 7000 hours per year. Hence, a 15-

year lifetime of the FCU will be used in the further calculations. Figure 6.2 depicts the 

variations of the operating cost with variations of water and air velocities for 15-year lifetime 

of the FCU. 

 
Figure 6.2 Variations of the Operating Cost with Variations of Water and Air Velocities for 15-Year 

Lifetime of the FCU 

 

6.4 The Optimisation Model 

Heat exchanger optimisation is an important field in order to design an economical and efficient 

system. The main aims of this process are to save materials or energy as well as saving in the 

total cost of this system. On the other hand, the complex design procedure of the heat exchanger 

includes selection of geometrical parameters and operating parameters for the design, cost 
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estimation and optimisation. This section provides in detail a multi-objective optimum design 

procedure of multi-tube and fin heat exchanger based on using CFD simulations as a main tool 

to achieve an optimum condition of maximum heat transfer, low pressure drop and least total 

cost. The multi-objective optimum design procedure has been carried out for four different 

models of multi-tube and fin heat exchangers namely; plain fins, perforated plain fins, louvre 

fins and perforated louvre fins. Each heat exchanger has three different configurations with 

three fin spacings; 4.2mm, 4.7mm and 5.2mm. The fin spacing has been chosen as an objective 

function in this optimum design procedure because of its significant effect on the thermal 

performance of the heat exchanger as it has been discussed in section 4.6.1. In addition, due to 

the design of the fins, it was not possible to decrease the fin spacing less than 4.2mm due to 

the fillet which is used to eliminate sharp edges created by fitting the fins on the tubes, as it can 

be seen in Figure 6.3. 

 

Figure 6.3 Fin Spacing in the Heat Exchanger 

As it has been previously mentioned, Colburn factor (j) and friction factor (f) are generally 

adopted to symbolise the pressure drop characteristics and the heat transfer characteristics, 

respectively. However, it is not useful to use a direct comparison of them to evaluate the 

thermal performance of heat exchanger in order to select an optimum configuration, because 

as j increases, f increases as well. Therefore, a JF factor which is a nondimensionalised 

parameter has been proposed by [59] and it can be expressed as, 

JF =
j

jRef
⁄

(f
fRef

⁄ )
1

3⁄
                                                                (6.1) 
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where, j is Colburn factor f is friction factor of the evaluated heat exchanger. jRef and fRef are 

the values of j and f for the reference heat exchanger (in this study the baseline model has been 

selected as a reference heat exchanger). From Eq. (6.1) it can be noted that the higher value of 

JF factor is, the better performance of the heat exchanger. Thus, optimisation for maximizing JF 

factor has been employed as another objective function in this optimum design procedure. 

The total cost of each heat exchanger can be normalised by dividing the its total cost by the 

baseline model total cost. Therefore, optimisation for minimum total cost is the last objective 

function in this optimum design procedure. 

The steps to obtain the optimised design are as follows: 

1. Input the heat exchanger geometrical parameters (fin spacing, fin collar outside 

diameter, longitudinal pitch, transverse pitch, fin width and fin height) 

2. Input the water and air boundary conditions (velocity and temperature) 

3. Choose the reference model (baseline model) 

4. Calculate Fanning friction factor (f) and Colburn factor (j) of heat exchanger using the 

novel semi-empirical prediction models developed in sections 4.7, 5.2.4 and 5.2.5 

5. Calculate JF factor from Eq. (6.1) 

6. The first output of this optimum design procedure is optimised model based on JF as a 

single-objective function  

7. Estimate the total cost of operating the heat exchanger using the method described in 

the previous section, i.e. section 6.1 

8. Normalise the total cost by dividing the total cost of each heat exchanger by the baseline 

model total cost  

9. Combine the two objectives of this optimum design procedure; optimisation for 

maximising JF and optimisation for minimising total cost 

10. Repeat steps 1 to 9 for different Reynolds number and for different fin spacing in order 

to achieve the optimum case where maximum heat transfer, low pressure drop and least 

total cost 

Figure 6.4 depict the flow chart for the optimisation methodology. 
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Figure 6.4 Flow Chart of the Optimisation Methodology 
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6.5 Optimisations Procedure for Multi-tube and Fin Heat Exchanger 

results 

This section will show the results computed using the multi-objective optimum design 

procedure described in the previous section. The results will be shown for two different cases; 

optimisation for maximising JF and multi-objective optimisation. 

6.4.1 Optimisation for Maximising JF 

In this case, the JF factor is considered as a single-objective function for the optimisation 

process. Figure 6.5 depicts the variation of the JF factor for the four models of heat exchanger 

used in this study and for different fin spacing. 

 

Figure 6.5 Variation of JF Factor for Different Heat Exchanger Configurations 

 

The vertical bars presented in Figure 6.5 indicate that heat exchangers with perforated louvre 

fins have the highest values of JF factor, whereas heat exchanger with plain fins have the lowest 

values. For the same fin spacing (4.2 mm), when the fins of the model have been changed from 

plain to perforated plain, louvre and perforated louvre, the value for JF factor has increased 

7%, 80% and 94%, respectively. Furthermore, a higher JF factor is observed for the heat 

exchanger model with perforated louvre fins at 4.2 mm fin spacing. Hence, this model can be 

considered as the optimum model when JF is employed as a single-objective function for the 

optimisation process. 
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6.4.2 Multi-Objective Optimisation 

In this case, the optimisation carried out in the previous section has been combined with another 

optimisation objective which is optimisation for minimising total cost. This process is very 

important in order to achieve the optimal solution of the optimisation process. i.e. optimised 

model with high heat transfer, low pressure drop and lowest total cost. 

Figure 6.6 illustrates the variation between Colburn factor (j) and normalised total cost 

calculated over 15 years for the heat exchangers presented in this study at different fin spacings. 

 

Figure 6.6 Optimised Model for High Colburn Factor (j) 

 

The variation between Fanning friction factor (f) and normalised total cost calculated over 15 

years for the heat exchangers presented in this study at different fin spacings is depicted in 

Figure 6.7. 
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Figure 6.7 Optimised Model for Low Friction Factor (f) 

 

The Pareto optimal fronts plotted in both Figure 6.6 and 6.6 help to select a final solution among 

the points plotted in these graphs.  For the case of high Colburn factor (j), high heat transfer, 

the optimised model was found to be the perforated louvre fins model (JF= 0.0193) with 4.2 

mm fin spacing operating at low Reynolds number. The second choice was the louvre fins 

model (JF= 0.0178) with 4.2 mm fin spacing and also operating at low Reynolds number. These 

results agreed with the results obtained in section 4.6.1 where it has stated that the highest heat 

transfer rate can be obtained at low fin spacing because as the fin spacing decreases the flow 

becomes more streamlined which result a better flow mixing. For the case of low friction factor 

(f), the plain fins model with 5.2 mm fin spacing operating at Reynolds number (12,000) has 

proven low pressure drop which result a low total cost. The second choice was the perforated 

plain fins model with 5.2 mm fin spacing operating at Reynolds number (12,000). 

Figure 6.8 depicts the relation between JF factor and normalised total cost calculated over 15 

years for the heat exchangers presented in this study at different fin spacings.  
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Figure 6.8 Optimised Solution for the Multi-Objective Optimisation 

The Pareto front plotted in Figure 6.8 reveals that, the perforated louvre fin models operating 

at 12,000 Reynolds number are the optimal solutions of this optimum design process. This 

result comes after combining the two main objectives of this process; optimisation for 

maximising JF and optimisation for minimising total cost. The JF factors for the optimal 

solutions were in range from 1.847 to 1.899, whereas the normalised total costs calculated over 

15 years were in range from 1.063 to 1.071. Hence, these values can be used to design and 

operate the enhanced heat exchanger with optimum thermal performance and at lowest total 

cost. In addition, it should be clear that the optimal solutions selected are independent of fin 

spacing. However, the optimal design model is the heat exchanger with perforated louvre fins 

with 4.2 mm fin spacing. 

6.6 Validate the numerical predicted results with experimental data for 

the optimal design model 

In order to ensure the reliability of the numerical model, a benchmark test has to be carried out 

on the optimised design model; perforated louvre fins with 4.2 mm fin spacing. In this section, 

the numerically predicted results have been validated against experimental data for heat 

exchangers with perforated louvre fin in terms of water and air outlet temperatures and pressure 

drop obtained in both water and air sides.  These variables were plotted against each other at a 
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constant water flow rate (3 L/min). Boundary conditions for steady state tests that have been 

carried out on the optimised model are shown in Table 6-2. 

Table 6-2 Boundary Conditions of Steady State Tests for Optimised Model 

Test 

Name 

Water Side Air Side 

Water Flow rate 

(L/min) 
Water Inlet 

Temperature (ᵒ C) 

Air Velocity 

(m/sec) 
Air Inlet 

Temperature (ᵒ C) 

Test 1 

3 60 ± 1 

0.705 

25 ± 1 

Test 2 1.546 

Test 3 2.183 

Test 4 3.177 

Test 5 3.991 

 

Figure 6.9 depicts a comparison between the numerically predicted results and the experimental 

data for water outlet temperature for the optimised model. 

 
Figure 6.9 Comparison of Numerical and Experimental Results for Water Outlet Temperature 

Perforated Louvre Fins Heat Exchanger 

 

Figure 6.10 illustrates a comparison between the numerically predicted results and the 

experimental data for air outlet temperature.  
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Figure 6.10 Comparison of Numerical and Experimental Results for Air Outlet Temperature 

Perforated Louvre Fins Heat Exchanger 

 

Figure 6.11 depicts a comparison between the numerically predicted results and the 

experimental data for waterside pressure drop for heat exchangers with perforated louvre fins. 

 
Figure 6.11 Comparison of Numerical and Experimental Results for Waterside Pressure Drop 

Perforated Louvre Fins Heat Exchanger 

 

A comparison between the numerically predicted results and the experimental data for airside 

pressure drop for heat exchangers with perforated louvre fins is depicted in Figure 6.12. 
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Based on the results depicted in figures 6.8, 6.9, 6.10 and 6.11, it can be clearly seen that the 

differences between the numerically predicted results and the experimental data for water outlet 

and air outlet temperatures are very small and the numerical results agree well with the 

experimental results for the perforated louvre fins heat exchanger. The percentage differences 

between theses results for the water outlet and the air outlet temperatures were less than 2% 

and 5%, respectively. Furthermore, the percentage differences between the numerically 

computed results and the experimental data for water-side pressure drop were observed to be 

less than 8%, while the percentage differences between the numerically computed results and 

the experimental data for air-side pressure drop were detected to be less than 15%. 

 
Figure 6.12 Comparison of Numerical and Experimental Results for Airside Pressure Drop Perforated 

Louvre Fins Heat Exchanger 
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6.7 Summary of the Multi-Objective Optimisation of the New Design and 

Cost Analysis  

 

This chapter has presented a multi-objective optimisation procedure for different models of 

multi-tube and fin heat exchanger based on two main objectives; optimisation for maximising 

JF and optimisation for minimising total cost. This procedure comes after presenting a method 

to estimate the total cost of the FCU integrated with multi-tube and fin heat exchanger. Some 

important observations that have been made during this chapter are listed below. 

• The operating cost of the FCU is dependent on the cost of operating the water pump 

and the fan, 

• Fin spacing is a key factor in designing the heat exchanger because by reducing the fin 

spacing a high heat transfer performance can be achieved. However, reducing the fin 

spacing may case a significant increase in the total cost, 

• The derivation of an optimised model for the FCU design based on the heat exchanger 

performance with different fin arrangements helps to design and operate a better 

performance FCU with optimum thermal performance and at lowest total cost, 

• Perforated louvre fins have proven better thermal performance with reasonable total 

cost. Nevertheless, plain fins can provide the lowest operating cost. 
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 CONCLUSIONS 

  

SUMMARY: This chapter concludes the thesis by summarising the achievements of this 

research. This thesis includes an experimental and numerical investigations of the design and 

optimisation based on the best performance and lowest cost of multi-tube and fin heat 

exchanger used in the Fan Coil Unit (FCU).  
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7.1 Context and Importance of Research Question 

Fan Coil Units (FCU) are commonly used in central air conditioning systems, especially in 

office buildings and hotels. They are playing a very important role in the heating, ventilation 

and air conditioning (HVAC) systems which are designed to control thermal comfort in the 

buildings. Consumption of energy required to run such a device will directly influence the 

overall energy requirements for such buildings and therefore its CO2 footprint. Therefore, it is 

important to optimise the design of the FCU in order to improve its thermal performance and 

minimise the total cost.  

FCU consists of a heating or cooling coil (heat exchanger) and a fan. Heat exchangers have a 

significant impact on the energy efficiency, cost, size, and weight of this system. In recent 

years, there have been numerous methods and new technologies reported worldwide to enhance 

the heat transfer and pressure drop characteristics of the heat exchanger to improve 

performance envelop of such devices in a cost-effective manner. However, a majority of these 

studies did not consider overall energy efficiency and overall costs analysis. In this thesis, a 

novel approach based on time efficient multi-objective optimisation strategy with limited 

experimental inputs at development stage, results of CFD modelling based on a full 3D 

representation of the FCU which also include local heat transfer approach and the total costs 

analysis has been developed. 

The main outcome of this study is to improve the thermal performance of the current FCU 

based on high heat transfer rate, low pressure drop and lowest total cost. 

In order to formulate the research objectives, an extensive literature review has been carried 

out in chapter two. The major achievements and contributions from this study have been 

presented in a summarised form in the following sections of this chapter. 

7.2 Research Aims and Major Achievements 

This section is summarising the work done to achieve the research aims together with the major 

achievements of this study. 

Research Aim # 1: Development of novel approach to analysis of thermal performance of 

a multi-tube and fin heat exchanger used in the current FCU unit experimentally and 

numerically under steady state operating condition. 
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Achievement # 1: A novel CFD model with full 3D geometry for multi-tube and fin heat 

exchanger has been presented and verified against the experimental results at different 

operating conditions. This model has been used for an additional investigation with different 

design modifications. Furthermore, qualitative analysis of flow field has been carried out in 

order to quantify the complex and non-uniform flow phenomena on both water and air sides. 

numerically simulated data has been employed to develop a Prediction model to estimate 

Fanning friction factor (f) and Colburn factor (j) has been developed by taking in consideration 

the effects of heat exchanger geometrical parameters. 

Research Aim # 2: Development of more efficient design for multi-tube and fin heat 

exchanger geometry to improve FCU thermal performance. 

Achievement # 2: A passive heat transfer enhancement technique has been adopted to develop 

more efficient design for multi-tube and fin heat exchanger geometry to improve FCU thermal 

performance. This includes having louvre fins or by creating perforation on the fin surface. The 

technique has proven to provide enhancement in the heat transfer of about 10%. However, it 

has the disadvantage of an increase in the pressure drop. This enhancement is due by the large 

surface area of louvre fins and by the vortex generated by the holes. Moreover, it has been 

demonstrated that by reducing the fin spacing the heat transfer characteristics of the heat 

exchanger could be further improved.   

Research Aim # 3: To develop a novel performance optimisation model and to apply it to 

develop more efficient design of fins configuration for the multi-tube heat exchanger used 

in the current FCU based on multi-objective optimisation and total cost analysis.  

Achievement # 3: A time efficient optimisation strategy which takes into consideration limited 

experimental inputs, CFD modelling and optimisation has been proposed. The outcome from 

this strategy is an optimised model developed based on two main optimisation objectives; 

optimisation for maximising JF and optimisation for minimising total cost. Furthermore, 

detailed method to estimate the total cost of the FCU integrated with multi-tube and fin heat 

exchanger has been discussed. 

7.3 Thesis Conclusions 

An inclusive study has been carried out to extend the existing literature regarding the design 

and performance of the multi-tube and fin heat exchanger used in the FCU and to provide novel 

techniques to improve the current understanding of the design process, operational 
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characteristics and geometry related effects. The major conclusions for each objective of this 

research study are summarized as follows: 

1.1 To carry out a qualitative and quantitative analyses of the results achieved 

experimentally and numerically using a novel 3D CFD model for the baseline model, 

A novel CFD model with full 3D geometry for multi-tube and fin heat exchanger with different 

fin configurations (i.e. plain, louvre and perforated) has been developed. In addition, qualitative 

and quantitative analyses have been carried out on the baseline model. This analysis suggests 

that full 3D modelling is required to achieve more accurate results. Very good agreement with 

experimental results was observed for temperature distribution. However, pressure drop results 

were within 15% of error margin. This indicates that often used in a literature much simpler 

3D single fin simulation may not be sufficiently accurate to estimate an overall thermal 

performance and pressure drop of the FCU. Therefore, developed full 3D CFD model can be 

valuable contribution to the research field in this area. 

1.2 To use CFD to predict heat transfer coefficients and local fin efficiency for multi tube 

and fin heat exchanger, 

The CFD model has been used to compute heat transfer coefficients and local fin efficiency for 

a heat exchanger. Obtained results indicate significant variations of the air flow across different 

sections of the heat exchanger. Moreover, heat transfer coefficient is higher at external fins (i.e 

1st and 21st) and its distribution is not uniform across other fins. 

1.3 To determine the effect of longitudinal pitch, transvers pitch and fin spacing on the 

thermal performance of multi tubes and fins heat exchanger, 

Fin spacing, longitudinal pitch and transverse pitch have a significant impact on the heat 

transfer and pressure drop characteristics of the heat exchanger under steady state operating 

condition. Lower fin spacing will enhance the heat transfer characteristics of the heat 

exchanger. However, it will also raise the pressure drop across the heat exchanger. For 

example, change of fin spacing from 5.2mm to 4.2mm will increase operating cost of 1% but 

will enhance thermal performance (JF factor) of 3%. 

1.4 To develop a novel semi-empirical prediction model for the Colburn (j) factor and 

Fanning friction factor (f) for the multi-tube and fin heat exchanger with plain fins. 
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A prediction model to estimate Fanning friction factor (f) and Colburn factor (j) has been 

developed by taking into consideration the effects of heat exchanger geometrical parameters; 

fin spacing, longitudinal pitch and transverse pitch. The prediction model and its modifications 

have been used to optimise thermal performance of new FCU design. 

2.1 To present a novel fin configuration (perforated plain fin) and compare its thermal 

performance with plain and louvre fins configurations, 

Due to the vortex generated by the holes, the perforated plain fins heat exchanger model has 

achieved an enhancement in heat transfer characteristics when it is compared with the plain 

fins heat exchanger model. This enhancement is relatively high at small water flow rate but it 

has disadvantage of an increase in the pressure drop. Hence, the perforated plain fins heat 

exchanger model has been considered for further investigations. 

2.2 To carry out a comparative numerical study of the airside performance of multi-tube 

and fin heat exchanger under steady state operating conditions having plain, louvre and 

perforated louvre fins, 

By using a surface modification in the form of perforations in the louvre fins the thermal 

performance of the heat exchanger has been improved. Hence, the model with perforated louvre 

fins can be considered as the optimal model. Furthermore, the surface area of the louvre fins is 

larger comparing with plain fins. This fact results in an increase of the heat transfer 

characteristics as well as an increase in the pressure drop across the air-side of the heat 

exchanger. 

2.3 To develop a combined semi-empirical prediction model for Colburn (j) factor and 

Fanning friction factor (f) which can be used for different fin configurations, 

The prediction model developed in chapter 4 was only applicable to predict Fanning friction 

factor (f) and Colburn factor (j) for plain fins heat exchanger based on its geometrical 

parameters. Therefore, a novel set of design equations have been developed based on propose 

correction factors to account for the predicted values of Fanning friction factor (f) and Colburn 

factor (j) computed using the prediction model for the baseline model. Hence, these set of novel 

equations are applicable for louvre and perforated fins heat exchangers. 

2.4 To formulate the effect of hole diameter and hole spacing of the perforations on the 

thermal performance of the multi-tube and fin heat exchanger. 
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The holes diameter and holes spacing have shown some effect on the thermal performance of 

perforate louvre fins heat exchanger model especially at low air velocity, whereas larger hole 

diameter (D/3-hole diameter) and 25 mm holes spacing are the optimum values for theses 

parameters. 

3.1 To propose a time efficient optimisation strategy which take into consideration limited 

experimental inputs, CFD modelling and optimisation 

The optimisation approach for more efficient design which require only limited experimental 

inputs and is based on analytical analysis of thermal performance prediction, CFD modelling 

and costs analysis has been proposed. This strategy is used for multi-objective optimisation 

developed in chapter 6. 

3.2 To employ the new optimisation strategy to evaluate the thermal performance of the 

heat exchanger used in the FCU with combination of plain, perforated and louvre fins 

arrangements, 

The optimisation strategy has been employed to evaluate the thermal performance of the heat 

exchanger used in the FCU with combination of plain, perforated and louvre fins arrangements 

by using when possible an experimental technique and in other cases numerical technique. The 

perforated louvre fins heat exchanger has been considered the best performance heat 

exchanger.  

3.3 To derive an optimised model for the FCU design based on the heat exchanger 

performance with the following inputs: fins geometry, fins arrangements and total cost 

Developed in this thesis optimisation strategy was used to design new heat exchanger with the 

following parameters: type of fins are louvre perforated, fins spacing 4.2mm, surface area of a 

single fin 9796 mm2, number of fins 21 and operating at Reynolds number equal to12,000 with 

total manufacturing and operating costs only 6% higher than for plain fins, when calculated 

over 15 years of intended use. Increase of the costs is mainly attributed to much higher air 

pressure drop of up to 40% higher than for plain fins. However, thermal efficiency (JF factor) 

of this configuration is 80% better than for plain fins and 10% better than for unperforated 

louvre fins. 
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3.4 To assess the effectiveness of the proposed optimisation strategy by prototyping and 

validating the new optimised design 

A prototype of the optimised model has been manufactured. A benchmark test has been carried 

out to validate the numerically predicted results against experimental data in order to evaluate 

the effectiveness of the proposed optimisation strategy. 

7.4 Main Conclusions 

The main conclusions from the carried-out research can be summarised as follows: 

• New optimisation strategy for designing the FCU has been developed, which is based 

on the combination of initial experimental input, CFD modelling and analytical 

thermal performance calculations and cost analysis. 

• New and more efficient FCU optimised design has been created which include 

geometrical modification to the fins in term of perforation of louvre fins and its 

spacing 4.2mm. Comparing to a plain fins design, thermal performance of newly 

proposed design improved 80% and comparing to unperforated louvre fins improved 

10%. 

• Having perforations in the fin surface improve its thermal performance and therefore 

improve the thermal performance of the heat exchanger. The holes on the fin surface 

enhance turbulence, which increases the local heat transfer coefficient compared to 

unperforated fins. Moreover, having a perforation on the fin helps to create secondary 

flows due to disturbance effect in the flow inside the boundary layer. For louvre fins 

perforation is increasing heat transfer (Qavg) of 5% and thermal performance (JF 

factor) of 10% at a cost of very moderate increase of the pressure drop of about 2%. 

• A local thermal analysis has been introduced by incorporating CFD modelling to 

predict heat transfer coefficients and local fin efficiency for multi-tube and fin heat 

exchanger. 

• Using a combination of different tools developed in this study, the cost and time of 

the design process can be significantly reduced.      
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7.5 Thesis Contributions 

The major contributions of this research study are summarised below in which novelties of this 

research are described. 

Contribution # 1:  

A novel local flow field analysis using CFD model with full 3D geometry for multi-tube and 

fin heat exchanger as numerical model has been carried out. This analysis includes the local 

behaviour of both working fluids, the change in the local flow characteristics as the flow pass 

through a tube bend. The local flow analysis has been extended to incorporate the heat transfer 

coefficients and local fin efficiency corresponding to local flow field around a fin placed within 

the heat exchanger. Evaluation of local heat transfer performance of individual fins is a major 

step forward in performance analysis of heat exchangers. The available literature use of part or 

whole fin to simulate the flow in a heat exchanger and hence provide only simplified view of 

heat transfer process within heat exchangers. It has been observed that depending on the fin 

location within the heat exchanger both the heat transfer coefficient and hence the heat transfer 

efficiency of fins can vary substantially. 

Contribution # 2:  

The realistic CFD model has been implemented to study the effect of fin spacing, longitudinal 

pitches and transverse pitches on the heat transfer and pressure drop characteristics of the heat 

exchanger under a number of steady state operating conditions. Based on the numerical results 

of this parametric study, a novel mathematical model has been suggested. This model can 

predict the heat transfer and pressure drop characteristics of the plain fins heat exchanger as a 

function of its geometrical parameters. Therefore, it can be used to design a heat exchanger. 

Furthermore, correction factors have been presented for this model in order to make it more 

applicable for the design modification carried out on the heat exchanger. i.e. louvre and 

perforated configurations. All the equations developed are novel as these are not based on the 

assumption of single fin efficiency parameter but take actual variations in fin efficiency into 

account. 
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Contribution # 3:  

A novel optimisation procedure for designing the FCU integrated with multi-tube and fin heat 

exchanger has been developed. The optimisation procedure combined two optimisation 

objectives; optimisation for maximising the thermal performance and for minimising total cost. 

In addition, this work has been carried out based on a unique optimisation strategy which is 

based on the combination of initial experimental input, CFD modelling and analytical thermal 

performance calculations and cost analysis. 

7.6 Recommendations for Future Work 

After carrying out this study on improving the thermal performance of the FCU with mainly 

focus on the heat exchanger, it has become obvious that there is a huge potential for further 

research and studies in this field. Suggestions for future works are as follows: 

Recommendation # 1:  To study the improving of the thermal performance of the FCU by 

increasing the surface area of the water-side to enhance the amount of heat transfer. This can 

be done by redesigning the water-side by having different tube shapes such as helical, wavy 

and spiral. 

Recommendation # 2: Analysing energy consumption without affecting the duty in FCU by 

finding an environmentally friendly source of heating the water such as a closed loop thermo-

syphon system. This can reduce the total cost of operating the FCU and improve the thermal 

performance as well.  

Recommendation # 3: To further evaluate the noise level in FCU with design modifications. 

This can be carried out by studying the electromagnetic, mechanical and aerodynamic 

performance of the fan and by applying an acoustic insulation. 
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APPENDIX A - CALIBRATION PROCEDURE 

A.1 RTD Sensors Calibration 

To ensure that the water temperature readings stayed accurate, both RTD sensors (Temperature 

Probe- PT100) used in this experiment were carefully calibrated. The calibration was 

performed using an open surface water bath which has a thermometer indicator with 0.1 (°C) 

divisions [103]. PT-104 Platinum resistance data logger and water bath are the main equipment 

used to carry out this calibration, as shown in figure A.1.  

 

Figure A.1 RTD Sensors Calibration Equipment 

The procedure of calibrating the RTD sensors can be summarised in the following steps: 

1. Connect RTD sensors to PT-104 data logger. The data logger should be connected the 

computer 

2. Place both RTD sensors into the water bath  

3. Heat water in the water bath until it reaches 60 ±0.2°C. Ensure the equilibrium of the 

water temperature by allowing some time before starting recording the readings 

4. Record the data form both RTD sensors and the water bath thermometer at constant 

intervals  

5. Take the average value of data for both RTD sensors and thermometer 

6. Lastly, compute the percentage difference by subtracting the average value of data for 

each RTD sensor from the average value of data for thermometer 

Table A-1 summarise the results of this calibration. 
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Table A-1 RTD Sensors Calibration Results 

 Water Bath 

Thermometer 

Reading (°C) 

RTD Sensor Reading 

Water-IN (°C) 

RTD Sensor Reading 

Water-OUT (°C) 

 60.200 59.966 59.969 

 60.100 59.794 59.763 

 60.100 59.793 59.732 

 60.000 59.594 59.660 

 60.100 59.702 59.591 

 60.000 59.544 59.686 

 60.100 59.635 59.532 

 60.100 59.603 59.544 

 60.000 59.575 59.608 

 60.100 59.556 59.625 

Average Value (°C) 60.080 59.676 59.671 

Difference (°C) === 0.404 0.409 

 59.900 59.558 59.523 

 60.000 59.566 59.584 

 60.100 59.566 59.549 

 59.800 59.534 59.632 

 60.000 59.603 59.620 

 60.100 59.615 59.612 
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 60.000 59.563 59.689 

 60.000 59.550 59.643 

 60.100 59.575 59.709 

 60.100 59.621 59.612 

Average Value (°C) 60.010 59.575 59.617 

Difference (°C) === 0.435 0.393 

Average Difference (°C) === 0.419 0.401 
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A.2 Thermocouples Calibration  

Calibrating thermocouples is essential in order to achieve accurate readings from theses 

thermocouples.  A mercury in glass thermometer with 0.5 (°C) divisions and a TC-08 

thermocouple data logger were used to perform the calibration for T-type exposed welded tip 

thermocouples [103], as shown in figure A.2 . The thermocouple data logger can convert the 

voltage coming through the thermocouples into temperature and using Pico log data logger 

software to record the data. 

  

Figure A.2 Thermocouples Calibration Equipment 

As discussed in chapter 3, two measuring stations were used to measure the air inlet and outlet 

temperatures; each measuring station contains of 7 T-type exposed welded tip thermocouples. 

The distribution of these thermocouples in the measuring station is shown in figure A.3. 

 

Figure A3 Thermocouples Distribution in the Measuring Station 

The procedure of calibrating the thermocouples can be summarised in the following steps: 
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1. Plug the TC-08 into a USB port on a computer, plug in the thermocouples in to the data 

logger 

2. Place the thermometer in the inlet measuring station as shown in figure A.4 

 

Figure A.4 Inserting the Thermometer in the Measuring Station 

3. Turn on the centrifugal fan and record the measured temperature from both 

thermocouples and thermometer 

4. Average value of recorded data from both thermocouples and thermometer 

5. Compute the percentage difference by subtracting the average value of data for every 

thermocouple from the average value of data for thermometer  

6. Table A-2 summarise the results of calibrating the thermocouples in the inlet measuring 

station 
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Table A-2 Results of Calibrating the Thermocouples in the Inlet Measuring Station 

 
Thermometer 

Reading (°C) 

TC-1 

(°C) 

TC-2 

(°C) 

TC-3 

(°C) 

TC-4 

(°C) 

TC-5 

(°C) 

TC-6 

(°C) 

TC-7 

(°C) 

 22.700 23.176 23.443 23.100 23.400 23.063 23.490 23.450 

 23.000 23.229 23.476 23.124 23.433 23.104 23.539 23.514 

 23.000 23.229 23.480 23.127 23.437 23.116 23.536 23.518 

 23.000 23.192 23.466 23.110 23.426 23.105 23.530 23.502 

 23.000 23.191 23.470 23.108 23.444 23.115 23.526 23.504 

 22.700 23.162 23.461 23.105 23.441 23.114 23.520 23.489 

 22.700 23.134 23.446 23.093 23.439 23.121 23.548 23.506 

 23.000 23.108 23.444 23.080 23.438 23.134 23.568 23.511 

 23.000 23.122 23.445 23.068 23.428 23.139 23.571 23.526 

 23.000 23.176 23.474 23.139 23.472 23.167 23.592 23.555 

Average 

Value (°C) 
22.910 23.172 23.461 23.105 23.436 23.118 23.542 23.508 

Difference 

(°C) 
=== 0.262 0.551 0.195 0.526 0.208 0.632 0.598 

 23.000 23.240 23.528 23.208 23.523 23.212 23.667 23.628 

 23.000 23.211 23.524 23.151 23.501 23.210 23.686 23.612 

 23.000 23.162 23.488 23.099 23.468 23.178 23.647 23.573 

 23.300 23.210 23.509 23.150 23.467 23.222 23.691 23.675 

 23.300 23.236 23.521 23.169 23.466 23.258 23.726 23.728 

 23.300 23.223 23.522 23.165 23.468 23.261 23.729 23.726 
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 23.300 23.280 23.552 23.226 23.529 23.289 23.779 23.772 

 23.300 23.263 23.551 23.172 23.493 23.278 23.780 23.770 

 23.000 23.179 23.504 23.092 23.439 23.227 23.744 23.711 

 23.000 23.160 23.484 23.091 23.440 23.215 23.730 23.693 

Average 

Value (°C) 
23.150 23.216 23.518 23.152 23.479 23.235 23.718 23.689 

Difference 

(°C) 
=== 0.066 0.368 0.002 0.329 0.085 0.568 0.539 

Average 

Difference 

(°C) 

=== 0.164 0.459 0.099 0.428 0.146 0.600 0.568 

 

7. The same steps have been followed to calibrate thermocouples in the measuring outlet 

station 

8. Table A-3 summarise the results of calibrating the thermocouples in the outlet 

measuring station 

Table A-3 Results of Calibrating the Thermocouples in the Outlet Measuring Station 

 
Thermometer 

Reading (°C) 

TC-1 

(°C) 

TC-2 

(°C) 

TC-3 

(°C) 

TC-4 

(°C) 

TC-5 

(°C) 

TC-6 

(°C) 

TC-7 

(°C) 

 28.500 28.621 27.619 29.232 29.531 31.176 26.465 28.146 

 28.500 28.670 27.711 29.227 29.514 31.162 26.473 28.168 

 28.000 28.561 27.593 29.176 29.504 31.070 26.402 28.127 

 28.000 28.568 27.578 29.171 29.527 31.102 26.401 28.117 

 28.500 28.502 27.578 29.054 29.510 30.985 26.388 28.075 

 28.500 28.608 27.620 29.150 29.520 31.116 26.422 28.139 
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 28.500 28.667 27.668 29.168 29.549 31.120 26.447 28.164 

 28.500 28.513 27.619 29.086 29.472 31.012 26.387 28.094 

 28.500 28.609 27.599 29.144 29.654 31.117 26.435 28.157 

 29.000 28.633 27.560 29.166 29.486 31.100 26.402 28.132 

Average 

Value (°C) 
28.450 28.595 27.614 29.157 29.526 31.096 26.422 28.132 

Difference 

(°C) 
=== 0.145 0.836 0.707 1.076 2.646 2.028 0.318 

 29.000 28.708 27.590 29.160 29.594 31.132 26.368 28.157 

 28.500 28.648 27.578 29.151 29.528 31.041 26.377 28.119 

 25.800 28.674 27.541 29.198 29.605 31.077 26.388 28.154 

 28.500 28.670 27.629 29.178 29.632 31.112 26.391 28.165 

 29.000 28.674 27.656 29.184 29.646 31.079 26.428 28.148 

 29.000 28.721 27.677 29.234 29.699 31.132 26.440 28.186 

 29.500 28.712 27.698 29.166 29.533 31.075 26.385 28.133 

 29.500 28.800 27.673 29.282 29.759 31.175 26.448 28.220 

 30.000 28.646 27.707 29.106 29.522 31.086 26.396 28.125 

 30.000 28.578 27.592 29.167 29.550 30.985 26.420 28.058 

Average 

Value (°C) 
28.880 28.683 27.634 29.182 29.607 31.089 26.404 28.147 

Difference 

(°C) 
=== 0.197 1.246 0.302 0.727 2.209 2.476 0.733 
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Average 

Difference 

(°C) 

=== 0.171 1.041 0.505 0.902 2.428 2.252 0.526 
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APPENDIX B- MEASURING AIR FLOW 

VELOCITY 

In the experiments, the ASHRAE standard 41.2 [84] was adopted to measure the air flow 

velocity. Due to the consideration of density effects on accurate measurement of air, the TFI 

cobra probe was used to measure the air velocity at 25 points at the inlet section. Figure B.1 

illustrations the location of measuring points at the test section using log-Tchebycheff method 

(The test section is 165 mm wide and 175 mm high). 

 

Figure B.1 Location of Measuring Points at Test Section Using Log-Tchebycheff Method 

The Cobra probe is a multi-hole pressure probe able to determine 3-components of velocity 

and local static pressure in real time. The probe is manly composed of body, head, stem, 

connector socket and a reference pressure port. The schematic diagram of the series 100 TFI 

Cobra probe is shown in figure B.2. 
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Figure B.2 Schematic Diagram of the Series 100 TFI Cobra Probe [104] 

The probe measures the 3-component velocity and static pressure within a ±45° acceptance 

cone, figure B.3.  

 
Figure B.3 Flow Directions for Cobra Probe [104] 

For the purpose of measuring air flow velocity components these steps need to be followed: 

Preparing Cobra Probes 

1. Plug the cobra probe into its cable. Make sure that the two red signs match each other 

 
 
2. Place the cobra probe inside its holder. 
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3. Insert the cobra probe in it is position where the probe head is facing the air flow 

direction.  

4. Plug cobra probe into the DAQ port (2-input interface unit).  

 

5. Plug the DAQ cable into PC.  

Setting-up the Cobra Probe 

1. In PC, open the software named ‘TFI Device Control’ 

 
TFI Device Control main interface 

 
 

2. Set air properties (temperature and pressure) and sampling time 
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3. Go to setting/ devices 

 
 

4. Calibrate the probe 

Click on calibration 

 
 

Click on calibrate 
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Input the reference pressure (atmospheric pressure) and click on sample 

 

 
Now the probe is ready for use.  

Measuring the Air Velocity Components 

To measure the air velocity components, you need first to measure the air velocity when the 

fan is off, this can be named as “Zero-flow velocity”, then measure the air velocity at certain 

flow velocity. In order to get the exact value for the measured velocity, the zero-flow velocity 

should be subtracted from the measure the air velocity at certain flow velocity. The steps below 

show how to do that. 

1. From the main interface in TFI Device Control, click on select 
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2. Name the file as Zero 

 
3. Click on Zero 

 
 



184 

 

 
4. Click on Start Sampling 

 
 
The software is recording data for the sampling time 

 
 

The recorded data is saved in two files (Zero (Ve).asA and Zero (Ve).thA)  

The file (*.as*) contains the values for velocity components, as well as, the velocity magnitude. 

file (Zero (Ve).asA) 
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5. To measure the velocity components at certain flow velocity, turn on the air flow from 

the fan.  

6. Follow the same steps as in measuring zero-flow velocity to measure the air velocity at 

certain flow velocity (the test is named 3).  

The recorded data is saved in two files (3.asA and 3.thA)  

The file (*.as*) contains the values for velocity components, as well as, the velocity magnitude. 

 
 

Calculations Example 

Based on the results from test (3), 

Upstream velocity (U-component) = 3.05 m/sec 
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Zero-flow velocity (U-component) = 0.409 m/sec 

Then the exact measured velocity can be calculated as follows, 

Exact measured velocity (U-component) = Upstream velocity (U-component) – zero-flow 

velocity (U-component) 

  = 3.05 – 0.409 

 Exact measured velocity (U-component) = 2.641 m/sec 

Figure B.4 depicts the variations of measured velocity components upstream the test section. 

It can be seen clearly that the value of the measured velocity component almost zero near the 

test section walls and tends to increase near the centre.  

 

Figure B.4 Variations of Measured Velocity Components Upstream the Test Section 

Using the measured data, the velocity arithmetic mean (velocity average) has been calculated 

by using the following formula [105]: 
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𝑉 =
∑ 𝐴𝑖𝑉𝑖

𝑛
𝑖=1

∑ 𝐴𝑖
𝑛
𝑖=1

                  (B-1) 

Where, 

𝑉 is the velocity mean value (m/sec) 

𝑉𝑖 is the average of the measured velocities effective at the centre of the area 𝐴𝑖 (m/sec) 

𝐴𝑖 is the area each element (m2) 

The results of this process led to five different air velocities (0.705, 1.546, 2.183, 3.177 and 

3.991 m/sec) which they were used to carry out the experiments. 

  



188 

 

APPENDIX C- USER-DEFINED FUNCTIONS 

(UDFS) FOR TRANSIENT TEST 

C.1 Starting Up test UDF 

#include "udf.h" 

 

DEFINE_PROFILE(ramp_waterIN, thread, position)  

{ 

 

  float t, water; 

  face_t f; 

 

   t = RP_Get_Real("flow-time"); 

  if (0 < t <= 300) 

  {  water = (-0.0005*t)+300.13; 

} 

else if (300 < t <= 2200) 

  {  water = (0.000000001*(t*t*t))-

(0.000009*(t*t))+(0.0337*t)+291.64; 

} 

 

else if (2200 < t <= 2767676765) 

  {  water = (0.0021*t)+328.68; 

} 

  

 

  begin_f_loop(f, thread) 

  { 

   F_PROFILE(f, thread, position) = water; 

  } 

  end_f_loop(f, thread) 

 

} 

 

 

DEFINE_PROFILE(ramp_airIN, thread, position)  

{ 

 

  float t, air; 

  face_t f; 

 

   t = RP_Get_Real("flow-time"); 

  if (0 < t <= 300) 

  {  air = (-0.0002*t)+298.49; 

} 

else if (300 < t <= 2200) 

  {  air = (0.0003*t)+298.37; 

} 

else f (2200 < t <= 2765) 

  {  air = (0.0003*t)+298.33; 

} 
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  begin_f_loop(f, thread) 

  { 

   F_PROFILE(f, thread, position) = air; 

  } 

  end_f_loop(f, thread) 

 

} 

 

 

C.2 Step Input test UDF 

#include "udf.h" 

 

DEFINE_PROFILE(ramp_waterIN, thread, position)  

{ 

 

  float t, water; 

  face_t f; 

 

   t = RP_Get_Real("flow-time"); 

  if (0 < t <= 300) 

  {  water = (-0.0002*t)+298.94; 

} 

else if (300 < t <= 318) 

  {  water = (-0.002*(t*t*t*t))+(2.59*(t*t*t))-

(1191.2*(t*t))+(243057*t)-2E+07; 

} 

else if (318 < t <= 600) 

  {  water = (0.0045*t)+330.15; 

} 

 

 

   

 

  begin_f_loop(f, thread) 

  { 

   F_PROFILE(f, thread, position) = water; 

  } 

  end_f_loop(f, thread) 

 

} 

 

 

 

 

 

DEFINE_PROFILE(ramp_airIN, thread, position)  

{ 

 

  float t, air; 

  face_t f; 

 

   t = RP_Get_Real("flow-time"); 
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  if (0 < t <= 300) 

  {  air = (8E-05*t)+298.41; 

} 

else if (300 < t <= 318) 

  {  air = (0.006*t)+296.53; 

} 

else if (318 < t <= 600) 

  {  air = (0.0012*t)+298.15; 

} 

 

 

  

 

  begin_f_loop(f, thread) 

  { 

   F_PROFILE(f, thread, position) = air; 

  } 

  end_f_loop(f, thread) 

 

} 

 

 

 

 


