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Abstract 
 

The purpose of this thesis is to seek evidence of commonalities in the mental 

representations of fractions and decimals between zero and one. The focus is on the 

mental representations of non-familiar fractions and decimals in adults. In addition, 

individual differences in the extent of common fraction and decimal mental 

representations are explored and their links to mathematical understanding of numbers 

between zero and one. 

 

For whole numbers, number comparison tasks have found evidence of an ordered, 

magnitude mental representation known as the mental number line through which the 

magnitude of a whole number is automatically processed. This evidence consists of 

phenomena such as the distance effect and SNARC effect. Here, indications of a similar 

magnitude representation common to both fractions and decimals are sought through a 

task in which a fraction is compared with a decimal.  

 

Substantial evidence of a distance effect is presented but not a SNARC effect, indicating 

that fractions and decimals can have mental representations containing or accessing a 

common magnitude but that this magnitude is not automatically processed.   

 

In addition, two emergent phenomena are reported. The first is an effect of location 

which is contrasted with the size effect in whole numbers and a previously reported 

anchor-point effect. The second is a larger-stimulus effect which is an indication of 

differences in the mental representations of fractions and decimals. These effects are 

explored in two additional, simple magnitude and location tasks. 

 

Furthermore, success but not speed within the comparison task is linked to strength of 

the distance effect for individuals. Therefore the number comparison task is repeated in 

series with a test designed to uncover common misconceptions of fractions and 

decimals. Patterns with the individual differences in responses to the test and 

comparison task are explored. 

 

By making links between the features and commonalities of individuals’ mental 

representations of fractions and decimals and quality of their understanding, this 

research hopes to be of value to mathematical educators.  
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Chapter 1 Introduction and literature review 

1.1 Prologue 

The research contained within this thesis was inspired by my experiences as a teacher of 

mathematics. I teach in a sixth-form college whose students have finished their 

compulsory primary and secondary schooling and have performed well enough to pursue 

academic pre-university courses in their chosen subjects. By definition, these are at least 

reasonably able and motivated students. Many of them choose to study mathematics 

further and are successful in that pursuit. 

 

However, there is always a significant proportion of these able students who have failed 

to reach the minimum standard in mathematics by age sixteen. When teaching, 

especially the poorest performing of these students, I am often struck by how their 

mathematical reasoning at the higher level tasks of algebra and problem solving is 

undermined by very weak and faulty proportional reasoning; by a complete lack of 

understanding of the meaning of fractions and decimals (between zero and one) and the 

links between these concepts. These are not students with an inability or unwillingness 

to learn but they have failed to successfully learn these key ideas. 

 

Thus I embarked on this research to gain some understanding for myself of how people 

do and do not understand numbers between zero and one. I hoped to find out something 

useful that might inform teachers of mathematics and planners of education or at least 

highlight areas of further study that might be fruitful. 

1.2 Definition of terms 

This document concerns human understanding of small numbers between zero and one. 

Many different symbolic representations of these numbers are used by people in their 

everyday life and work. Due to the flexible nature of English, it is necessary to define 

precisely the meaning of the terms that are utilised throughout this thesis. The two main 

symbolic representations of number referred to within are fraction and decimal.  

 

The term fraction always refers to a number between zero and one (not inclusive), that 

consists of two whole numbers separated by a horizontal or oblique line.  

 

The term decimal always refers to a number between zero and one (again, not 

inclusive), that consists of a horizontal string of numbers beginning with a zero and a 

decimal point. An n digit decimal number has n digits following the decimal point. 
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In addition, the term fractional numbers is used to encompass both of the above 

symbolic representations. Whereas proportion signifies any value between zero and one 

with or without accompanying symbolic representation including, but not exclusively, 

fractions, decimals or percentages, both in symbols and in words. Proportional reasoning 

is therefore the knowledge and skills associated with the use of proportions.  

 

The meaning of the term mental representation to which I will be referring within this 

thesis is the cognitive structure within the brain that acts as an internal model of our 

understanding and experience of an outside concept; the outside concept in this case 

being numbers between zero and one and their symbolic representation by way of 

fraction and decimal notation.  The mental representation is the mechanism through 

which our brains interpret external stimuli and make judgements about them. As the 

detail of internal knowledge structures cannot be directly viewed, it is necessary to 

design experiments whose results allow us to infer the nature of these structures. 

1.3 Review of the current literature 

The purpose of this chapter is to bring together the relevant literature from education 

and cognitive science in order to establish the research basis for this thesis. There are 

three parts to the chapter. 

 

The first part is based on research into education. It briefly describes the common 

problems and misconceptions that students have with respect to learning fractional 

numbers. It goes on to discuss how these misconceptions and poor understanding of 

fractional numbers create problems for students trying to gain access to higher 

mathematical knowledge. This demonstrates why research into understanding of 

fractional numbers is so important. 

 

Next, this first part highlights how the environment in which one learns about fractional 

numbers and proportion affects the types of proficiencies as well as the types of 

misconceptions that one acquires. Thus implying that the emphasis placed on the subject 

matter by the teacher or learning environment affects the mental representation formed. 

 

The second part of this chapter is a short summary of the relevant research into mental 

representations of number. It starts with a look at the beginnings of this discipline, that 

is, research into whole number representations. There is a summary of some of the 

tasks used to gain insight into the hidden structures of the mind and the inferences 

made from them. 
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Then, the current literature with respect to the extension of these techniques to the 

study of mental representations of fractional numbers is explored. The findings common 

with and different from those for whole numbers are dealt with as well as issues specific 

to the representations of fractional numbers. 

 

The third and final part of this chapter brings together all of the above to give an account 

of the gaps in the current research that are tackled in this thesis.  

1.3.1 What education research has to say about mental 

representations of fractions and decimals 

This section is a short summary of educational research relevant to the topic of mental 

representations of fractions and decimals. 

1.3.1.1 Problems and misconceptions 

There has been a considerable body of research into mathematics education. Within this 

research it has been demonstrated many times that children particularly struggle to 

learn the skills and knowledge associated with fractional numbers, e.g. Behr, Lesh, Post  

& Silver (1983), Dickson, Brown & Gibson (1984), Kerslake (1986) or more recently 

Gabriel, Coche, Szucs, Carette, Rey & Content (2013).  

 

Very much the same errors in procedures but also in conceptual knowledge were made 

by the children in all of these studies. In addition, these errors were found to persist 

throughout the school years – up to the age of 15 years by Dickson et al. (1984) and to 

17 years by Behr et al. (1983). The study of Hasemann (1981) found that older school 

children between the ages of  12 and 15 had generally learned to successfully use 

mechanical methods for calculations involving fractions but could demonstrate very little 

of the conceptual understanding that underpinned these methods. Furthermore, Koch & 

Li (1996) found that even college students with 12 years of mathematical learning 

behind them still focussed overly on surface knowledge and failed to make the relevant 

conceptual connections between their areas of rational knowledge.  

 

It seems that fractional numbers concepts are universally challenging to acquire and 

process. This is of concern to educators because fractions, decimals and proportional 

reasoning in general play a key part in many aspects of our daily life from cooking to 

managing our finances.   



16 

 

1.3.1.2 Fraction understanding and progress in learning higher 

mathematics 

In addition to the extensive scope for misunderstanding and misconceptions in the 

subject, it might also be asked whether there are other reasons why poor understanding 

of fractions and decimals should be a key area of concern for mathematics educators. 

Anecdotally, teachers ‘know’ that an individual student’s progress, in areas of 

mathematics such as algebra, indices and calculus, can be hampered by inconsistent and 

faulty knowledge of fractions, decimals and proportional reasoning generally. Indeed, 

Behr et al. (1983) comment on this as being one of their main motivations for 

conducting research into the improvement of the learning of proportional concepts and 

reasoning.  

 

There is some empirical evidence to support teachers’ belief of  a connection between a 

student’s skills with proportion and their readiness to learn higher mathematics. Siegler, 

Thompson & Schneider (2011) found that understanding of fraction magnitudes was the 

most reliable indicator of future progress at higher mathematics for school-aged children 

but not that the former directly affected the latter. 

 

Additionally, Booth & Newton (2012) established a causal link. They conducted a school-

based study into progression from learning about number to learning about algebra. 

They were able to find direct evidence that, more than any other factor, a poor 

understanding of the magnitude of fractions affects the readiness of school children to 

develop an understanding of algebra. This points to specifically magnitude understanding 

of fractions as a key area of focus when trying to help students progress mathematically.  

1.3.1.3 How knowledge is acquired affects mental representations 

Instinctively one would think that how the mathematics of fractional numbers and 

proportional reasoning is acquired would have an impact on the nature of the underlying 

cognitive structures formed. There is some evidence to support this instinct. 

 

Schliemann & Carraher (1992) studied unschooled children in Africa and Brazil with 

specific jobs that required proportional reasoning and compared their skills with those of 

their peers in US schools. What the researchers found was that in the skills and context 

specific to the jobs they held, the unschooled children vastly out-performed their 

American counterparts. However, they had little or no understanding or skills outside of 

what was required by their jobs and no ability to generalise their skills to other 

situations. Whereas, the American children had broader, if shallower knowledge of 

proportion and were much more flexible in their ability to apply it.  
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What is shown by Schliemann & Carraher (1992) is indeed that “Proportional reasoning 

could not occur at all if there were not cognitive structures available for sustaining the 

representation and comparison of ratios”(pp. 70). Also, that the milieu in which you 

learn about proportion and the emphasis placed upon it affects the development of these 

cognitive structures. Part of these cognitive structures must be the mental 

representations of fractional numbers and proportion generally. 

 

The study of Resnick et al. (1989) reinforces this conclusion. They compared the 

procedural errors and misconceptions made by children in Israel, France and the USA. In 

these three countries, the order in which the concepts of integers, fractions and decimals 

were introduced and the emphasis placed upon them were different. What Resnick et al. 

found was that they could differentiate between the types of misconception held by 

children in the different countries. They highlighted the fact that the different styles of 

approach to teaching decimals and fractions had had an impact on the types of mental 

representations that had been formed in the children’s minds. Hence the researchers 

postulated the importance of finding out which mental representations are formed in the 

heads of competent mathematicians and using this information to inform educators how 

to design courses which engender functional mental representations of fractional 

numbers. 

1.3.2 Mental representations of numbers 

This section starts with a review of the evidence relating to the ‘mental number line’ for 

whole numbers. The mental number line theory postulates that the mental 

representation of whole numbers is an analogue to a spatial number line. This implies 

that the mental representations of whole numbers are arranged in a size-ordered array. 

Indeed, de Hevia & Spelke (2009) found a special link between numerical and spatial 

concepts both in children and adults. 

 

The next part of the section is devoted to the evidence for and against the extension of 

the mental number line to fractional numbers. This encompasses research seeking 

automatic and deliberate responses to fractional stimuli, incorporating evidence from 

cognitive neuroscience. 

 

Then additional phenomena related to the position of fractions on the number line will be 

explored; in particular, the concept of anchoring and its possible relevance to mental 

representations of fractions. 
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1.3.2.1 The mental number line for whole numbers 

Evidence for a mental number line includes experimental data on both automatic and 

deliberate responses to magnitude data. An automatic response is typically sought by an 

experiment in which the magnitude of the number is not relevant to the task at hand. If 

a magnitude-related pattern is found within the responses to the task, this implies that 

the magnitude of a number is automatically processed even when not relevant. 

Furthermore, this pattern indicates that magnitude is an inextricable part of the mental 

representation of number. However, these tasks do not generally generate any further 

insight into the structure of any magnitude-based mental representation of number. 

 

More light can be thrown upon such structures by use of tasks that elicit a deliberate 

response to the magnitude of numerical stimuli. By studying patterns of responses to 

such tasks, inferences can be drawn about how magnitude representations of number 

are interrelated within the mind. 

 

1.3.2.1.1 Mental representations of single-digit whole numbers 

Several studies have demonstrated that single-digit whole number magnitudes are 

unconsciously accessed, even when irrelevant to the task in hand. Chiou, Wu,  Tzeng, 

Hung & Chang (2012) for example, found that grip aperture can be affected by the 

presence of numerical labels.  When participants were given an object to grasp which 

was labelled with a `5', their grip aperture was larger when it was accompanied by a 

smaller number (e.g., 2) than by a larger number (e.g., 8). Also Lindemann, Abolafia, 

Girardi & Bekkering (2007) similarly showed that large grip apertures were more quickly 

formed in response to larger number and small grip apertures more quickly primed by 

small numbers. 

 

Another example of unconscious activation of numerical magnitude is the size 

(in)congruity effect (SCE or SiCE). When people are given the task of selecting the 

physically larger of two digits it can be observed that they are faster if that digit is also 

the numerically largest of the pair (Henik & Tzelgov, 1982).   

 

The most commonly deliberate task used to seek evidence of a mental number line is the 

number comparison task. In a number comparison task the larger (or smaller) number 

must be selected from a pair of numbers presented usually simultaneously but 

sometimes sequentially.  The distance effect, (Moyer & Landauer, 1967), is the 

phenomenon that response times for this comparison task increase as the numerical 

distance between the pair of numbers is reduced.   
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This distance effect is taken as evidence for a mental number line because it is thought 

that when the brain receives input from two numbers close to one another in magnitude, 

the mental representations of these two numbers are also close to one another. The 

consequent interference slows down the comparison response. The distance effect can 

also be found in spatial comparison judgements Johnson (1939), further reinforcing the 

theory of a mental number line analogous to a spatial number line.  

 

The interpretation of the distance effect as evidence of a mental number line, is not 

entirely unchallenged. Cohen (2010) asserts that an alternative explanation for the 

effect could be the similarity of the visual input of numbers that are close in size. 

Goldfarb, Henik, Rubinsten, Bloch-David & Gertner (2011) investigated this assertion by 

seeking the distance effect in both an automatic number matching task in which number 

magnitude was an irrelevance and a deliberate number magnitude comparison task. 

They found that the similarity of the visual input of the two numbers can explain the 

distance effect found in the automatic task but not the deliberate one. This outcome of 

Goldfarb et al. indicates that a number comparison task might be the best choice for an 

experiment seeking evidence of a mental number line for fractional numbers. 

 

Another phenomenon that occurs within the number comparison task, found by Moyer & 

Landauer (1967) is sometimes known as the ‘size effect’. It is that if the distance 

between stimuli is controlled then response latencies are smaller for smaller stimuli than 

they are for larger stimuli. This is interpreted as further evidence of mental 

representations of number that mirrors a spatial, magnitude ordered number line. This 

size effect result was also found for whole numbers, both positive and negative, by 

Ganor-Stern & Tzelgov (2008). 

 

The number comparison task has additionally been used to elicit an automatic response 

to a deliberate task. The spatial-numerical association of response codes (SNARC) effect 

has been found in single-digit number comparison tasks (Dehaene, Bossini & Giraux, 

1993). The SNARC effect is that when people are presented with two numbers to 

compare, they are faster to select the larger number if it is on the right. This result 

demonstrates not an unconscious activation of irrelevant magnitude data but instead an 

activation of irrelevant spatial data in response to magnitude.  It implies a right-left 

alignment to a mental number line, reinforcing the idea that numbers have a mental 

representation analogous to a spatial number line.  
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The experiments detailed above involved responses to single digit number stimuli only. 

Whilst some support has been found for an extension to the mental number line theory 

to two digit whole numbers, experimental results are mixed. It is most important that 

these two digit numbers can be shown to be represented holistically rather than as two 

separate digits in order for the evidence to imply a continuation of the mental number 

line beyond single digits. 

1.3.2.1.2 Mental representations of two-digit whole numbers 

Indeed, Dehaene, Dupoux & Mehler (1990) did find a distance effect for two-digit 

numbers with some discontinuities at the decade breaks. Unlike in Moyer & Landauer’s 

(1967) experiment in which the two single-digit numbers were presented 

simultaneously, Dehaene et al. (1990), used a target-stimulus paradigm for their 

number comparison task. There were three experiments with three targets numbers (55, 

65 & 66), stated at the start of the experiment against which numerical stimuli were 

compared. They also ran an experiment in which the digits of the stimulus were 

presented separately. Though their results were somewhat mixed they concluded that 

the best explanation for the distance effect they found was that the holistic magnitude of 

the target stimulus had been internalised and the size of the stimuli were accessed in 

order to make the comparison. 

 

In contrast with this result, Zhang & Wang (2005) did not find evidence for holistic 

magnitude processing in a two-digit comparison task in which the target and stimulus 

were presented simultaneously. They found instead that the best explanation for their 

results was that the two digits of the numbers were being compared in parallel. This 

parallel approach means that the single digits in the tens position are first considered. If 

a judgement cannot be made on these first digits, only then are the units digits 

compared.  

 

Taken together, these two studies could be taken to imply that holistic mental 

representations of two digit numbers are accessible but they are only used when the 

task at hand requires them. Conversely, Fitousi & Algom (2006) and Ganor-Stern, 

Tzelgov & Ellenbogen (2007) found the size congruity effect (SCE) present in certain 

arrays of two digit numbers. Additionally, Zhou, Chen, Chen & Dong (2008) found a 

SNARC effect present in a two-digit number matching task. These results imply that the 

holistic magnitude of two digit numbers might be automatically accessed even when 

irrelevant to the task at hand.  

 

So there is strong evidence for a mental number line for whole numbers, particularly 

single-digit numbers. Magnitudes of single-digit numbers are automatically accessed 
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even when not relevant to the task at hand. Holistic magnitude mental representations 

of two-digit numbers are available if required and are sometimes accessed automatically.  

1.3.2.2 Mental representations of fractional numbers 

The question now arises is whether this mental number line is available as a mental 

representation of fractional numbers. The current literature on mental representations of 

fractional numbers demonstrates, in general, the same mixed, task-dependent results as 

for two-digit numbers.  

1.3.2.2.1 Fraction comparison studies 

For example, Bonato, Fabbri, Umiltà & Zorzi (2007) carried out a number comparison 

task using pairs of fractions with magnitudes between zero and one and found no 

distance effect based upon the holistic magnitude of the fractions but instead, distance 

effects based on the numerator or denominator magnitudes.  They concluded that no 

holistic magnitude representation for fractions exists but that instead, the whole number 

magnitudes of the components of the fractions, (numerators and denominators), are 

processed separately. This result is similar to that of Zhang & Wang (2005) above for 

two digit numbers in that numerators were compared with numerators or denominators 

with denominators just as tens were compared with tens then units with units. 

 

The experiment of Bonato et al. (2007) has been criticised however, on the grounds that 

the pairs of fractions used with the experiment could all be compared by considering the 

numerator or denominator alone (e.g., 1/3 with 1/5). Thus these results do not refute 

the possibility of holistic magnitude internal representations of fractions but instead they 

highlight the probable primacy of single digit numbers over other numbers.  

 

Hence, subsequent number comparison studies ensured that pairs of fractions could not 

be compared using simply numerator or denominator components alone. These studies 

consequently did produce evidence of a holistic magnitude distance effect for fractions 

e.g. Meert, Grégoire & Noël (2009), Schneider & Siegler (2010), Sprute & Temple 

(2011). 

 

Combining these studies to one in which fractions both could and could not be compared 

componentially, Obersteiner, Van Dooren, Van Hoof & Verschaffel  (2013) found an 

intuitive bias towards using whole number component techniques to make magnitude 

comparisons of fractions when possible, even amongst experts. Yet this was switched to 

a holistic magnitude representation when the task required. In addition, Faulkenberry & 

Pierce (2011) found a distance effect for fraction comparisons that was mediated by 

task-dependent strategy. 
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There is also evidence from cognitive neuroscience to support the existence of mental 

representations for the holistic magnitude of fractions. A significant distance effect was 

found in the neural adaptation study of Jacob & Nieder (2009). Adaptation in this context 

means presentation with a stimulus for a sufficient length of time for the activity 

associated with its presentation to subside. This activity can be  observed via fMRI as 

increased  blood flow in the relevant part of the brain. So, participants were adapted to 

the fraction 1/6. A new fractional number was then presented. Jacob & Nieder found that 

the time taken for the participants’ brains to adapt to the new stimulus was a function of 

the numerical difference between the new stimulus and 1/6. 

 

The results of these distance effect studies for fractions mirror those for two-digit whole 

numbers. Unless the comparison requires holistic representation, only the mental 

representations of the whole number components of fractions are generally accessed. 

Yet holistic magnitude representations can be formed and used when necessary. 

1.3.2.2.2 Automatic magnitude responses to fractions 

Unlike for two-digit whole numbers, attempts to reproduce unconscious/automatic 

activation of magnitudes for fractions similar to those of whole numbers have proved 

entirely unsuccessful. Bonato et al. (2007) sought, but did not find the SNARC effect in 

their fraction comparison tasks.  However, this could well be due to the nature of the 

fractions they used and the consequent strategies adopted by their participants. 

 

Kallai & Tzelgov (2009) found that although the SiCE persisted between pairs of numbers 

in which one was a proper fraction (between zero and one) and the other was a whole 

number, it did not occur in physical size comparison tasks in which both stimuli were 

fractions. They concluded that there is one internal magnitude representation that 

encompasses all numbers less than one. 

 

This conclusion is probably too strong because if it were true then the distance effect 

that has been confirmed for fractions (by e.g., Faulkenberry & Pierce, 2011, Meert et al., 

2009, Schneider & Siegler, 2010 and Sprute & Temple, 2011), would be unexplained.  A 

more plausible explanation could be that because processing fractions requires additional 

effort and therefore time. So there is less opportunity for such automatic processes to 

have a significant effect on the larger response times. To support this explanation it can 

be noted that these studies found average response times for fraction comparison tasks 

that were in the region of 700ms to 1300ms. This contrasts with the average response 

times for whole number comparisons of Moyer & Landauer (1967) which were between 

500ms and 650ms.  
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1.3.3 Differences between fractional numbers and whole numbers 

1.3.3.1 Anchor points 

Fractional numbers, unlike whole numbers are bounded, lying as they are between zero 

and one.  

As mentioned above, there are discontinuities detectable (decade breaks) in the mental 

number line for two-digit numbers. There is some evidence that similar discontinuities 

around zero, one and half might exist within the mental representations of fractional 

numbers.  

 

In previous studies it has been found that the numbers zero, one and (to a lesser 

extent) half act as reference or anchor points on the number line which can affect 

performance on estimation (see Hollands & Dyre (2000) for a review). This implies the 

numbers zero, one and half are influential ‘anchor points’ for magnitude estimation of 

small numbers, maybe in the same way that the decades are for two-digit numbers. 

 

For example, Varey, Mellers & Birnbaum (1990) found that when estimating the size of a 

proportion of black to white or white to black dots present in an array, participants 

produced an ‘inverse ogival’ pattern of results. This is to say, they overestimated 

proportions between zero and half and underestimated proportions between half and 

one. Additionally, Cohen, Ferrell, & Johnson (2002) found that there was bias in 

estimation of small numbers around zero, half and one.  

 

These magnitude estimation investigations point toward a possible discontinuous or, at 

least, non-linear nature to the mental number line for fractional numbers with maybe 

zero, half and one acting as anchor points against which to judge magnitude. In other 

word, points on the number line in relation to which fuzzy magnitude representations of 

other proportions are judged. Classically  Tversky & Kahneman (1974) demonstrated 

that people make judgements that are skewed towards initially presented bounds for 

estimation (the anchors). They concluded that people use the anchors as starting points 

for their estimation. They then utilise a heuristic by which they adjust their estimations 

away from the anchors leading to the observed skew in judgements. Since then many 

studies have demonstrated the influence of  anchor points on judgements of number, 

probability and spatial proportion but other mechanisms by which the observed effect 

takes place have been proposed (see Furnham & Boo (2011) for a review).  

 

There is however scope for more conclusive investigation of the importance of anchor 

points specifically in the mental representations of fractional numbers.  
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1.3.3.2 Symbolic representations 

A further difference between whole numbers and proportions is the range of external 

symbolic representations each has in common usage.  Though some bilingual people 

might use more than one language or number system, the majority of people have only 

two regularly used symbolic representations of whole numbers – words and numerals. 

Numbers between zero and one have a multitude of symbols that used in everyday life 

such as words, numerator/denominator fractions (of which there are infinite equivalent 

versions), ratios, decimals and percentages.  Nonetheless, there are very few studies 

into the mental representation of proportion that have looked beyond fractions.  Most of 

the existing literature concerns studies of magnitude estimation or conversion rather 

than magnitude comparison tasks.  

 

One that has utilised a comparison task to compare different external representations is 

the neural adaptation study of Jacob & Nieder (2009), detailed above. Their distance 

effect result was found to be consistent across all combinations of stimuli and 

presentation: both as fractions and decimals, in symbols and in spoken words. This does 

seem to imply common magnitude representations across symbolic input.  

 

However, on the face of it, the study involving both relative frequency fractions (1/x) 

and decimals conducted by Cohen et al. (2002) might be interpreted as leading to the 

opposite conclusion.  

 

In their fifth experiment, participants were given the task of converting between relative 

frequencies and decimals or vice-versa. Participants' responses were extremely 

inaccurate (on average 13% correct) leading Cohen et al. to conclude that there is no 

single internal magnitude representation for very small numbers.  However the stimuli 

were extremely unfamiliar, small quantities (e.g., 1/63) making the conversion process 

very arithmetically taxing.   

 

The results of Cohen et al. can certainly be taken to indicate that there are limits to any 

concrete, common internal representations for fractions and decimals. Indeed, if they 

had instead looked only at conversions between 0.5 and half or 0.2 and one fifth they 

might have made entirely the opposite conclusion. If a broad understanding is to be 

shaped of human abilities to form functional, common mental representations of 

fractions and decimals, great consideration must be given to the limits of this ability. 

Experimental stimuli must be chosen to gain the greatest insight into these limits.  
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One last study to be considered in this section is that of Iuculano & Butterworth (2011) 

which seems to indicate that, for familiar examples of fractions and decimals at least, 

some commonality in magnitude understanding but also some differences. They 

conducted two number estimation tasks; one in which numbers had to be placed on a 

number line and another in which the value of marks on the number line had to be given 

a value. They found no difference in the linear pattern of accuracy of estimation between 

decimals and whole numbers. However, for fraction estimations, they found the pattern 

of responses was task-dependent with a non-linear pattern of response for the second 

estimation task for adults.  

 

Only very commonly used fractions and decimals such as half and quarter were used as 

stimuli in this experiment and the differences found between fractions and decimals were 

subtle. This study seems to indicate some commonality but also some subtle differences 

in the magnitude representations of fractions and decimals. However, as fractions and 

decimals are not directly compared in the task, the limits of these commonalities and 

differences are not clear. 

1.4 Summary of the findings and questions remaining 

The above literature highlights the need to understand the mental representations of 

fractional numbers. It has been established that teaching emphasis can have an effect 

on understanding and misconceptions. Therefore, if we know what mental 

representations are available and even those that are more functionally useful, this will 

aid educators in guiding the understanding of students of mathematics.  

 

So far it seems fairly well established that fractions can have a magnitude mental 

representation akin to that of the mental number line for whole numbers. What is not so 

clear is whether this is shared with or linked to a mental number line for decimals. Could 

a distance or even a SNARC effect be found for a magnitude comparison tasks between 

these two? 

 

What is more, little account has been taken of the position of small numbers within the 

zero to one range. Is the mental number line for fractional numbers linear? 
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Chapter 2 Experiment one 

2.1 Introduction 

This chapter is a commentary on the first of the experiments carried out for the purpose 

of this thesis. It starts with a summary of the justification of the experiment. That is, 

how it was intended to extend and elaborate on existing findings on the cognitive 

processing of small numbers. Then follows details of the design of the experimental task 

and stimuli; with reference to how they were devised to addresses the intention of the 

experiment.  

 

The second part of the chapter covers the experimental procedure. Then the third 

section contains the results of the experiment along with the methodology of the 

analysis. 

 

Finally, the last section of the chapter is a consideration of the implications of the results 

of the experiment and areas for further investigation. 

2.2  Justification and design 

The previous chapter reviewed the evidence that supports the theory that there is a 

human capacity for holistic magnitude mental representations of fractions that is 

somewhat akin to the mental number line found for whole numbers. This evidence 

comes mainly from the distance effect found in the fraction comparison experiments of 

Faulkenberry & Pierce (2011), Meert et al. (2009), Obersteiner et al. (2013), Schneider 

& Siegler (2010) and Sprute & Temple (2011).  

 

However, the previous chapter also showed that it has not yet been established whether 

this mental number line for fractions is related to the mental representations of other 

symbolic representations of proportion such as decimals. The question remains whether 

cognitive structures exist that allow us to translate between these magnitudes even for 

less familiar examples of proportion? The study of Iuculano & Butterworth (2011) seems 

to imply only subtle differences between the mental representations of fractions and 

decimals. However, they did not require participants to compare fractions and decimals 

directly. Instead they compared the outcomes of fraction and decimal estimation tasks 

performed separately. Moreover, they used a relatively restricted set of examples of 

fractions and decimals.  
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In contrast, the study of Cohen et al. (2002) implies no commonality at all between 

mental magnitude representations of fractions and decimals. Though this study did 

require participants to translate directly between fractions and decimals, the stimuli were 

exceedingly unfamiliar and very small indeed, ranging in size between 0.0001 and 0.01. 

A lack of ability to translate directly and exactly between extremely unfamiliar fractions 

and decimals does not necessarily imply there is no shared magnitude understanding 

albeit approximate in nature. 

 

Taking these contrasting experimental approaches and results into account, a magnitude 

comparison task was designed directly comparing the magnitude of a fraction with that 

of a decimal. As the distance effect was the key result being sought, stimulus pairs were 

controlled for the magnitude of the distance between the fraction and the decimal. 

 

In addition, relatively unfamiliar fraction and decimal stimuli were selected for the task 

for two reasons. Firstly, the use of very familiar fractions such as half and quarters and 

tenths would introduce the possibly confounding factor of familiarity. There is limited 

availability of familiar fractional numbers and including familiarity as a factor would be 

problematic as it would be difficult to quantify.   

 

The other reason for the use of relatively unfamiliar fractional stimuli is to control for any 

effect of position within the zero to one range. The use of fractional stimuli with 

denominators of 11, 13, 15, 17 and 19 allows for stimulus pairs in many positions across 

the zero to one range. There are two effects of position that might influence the 

response times in a magnitude comparison task. 

 

Firstly, Moyer & Landauer (1967) found a size effect for whole numbers in their single 

digit number comparison tasks. That is, if for the same distance between stimuli, 

response latencies are longer for larger numbers. This result was found also for two digit 

numbers by e.g. Dehaene et al. (1990); Nuerk, Weger & Willmes (2001). It is possible 

that even within the small range of numbers between zero to one, response times are 

longer for larger stimulus pairs than for smaller stimulus pairs with the same distance 

between them. 

 

Secondly, a possible influence of anchor points might be present on approximate size 

estimation of fractions and decimals. It has been established that judgements of 

probabilities (which are also numbers between zero and one) are, like so many other 

judgements, subject to the anchoring effect (e.g. Chapman & Johnson, 1999). If size 
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judgements of proportions are affected by anchoring, then it is possible that size 

comparison judgements are affected also. 

 

Traditionally, in tests of anchoring, the anchors used are explicit rather than implicit. If 

people are informed that they are to make magnitude judgements about numbers 

between zero and one, these two ends of the scale might be considered explicit anchors. 

Yet, bearing in mind that anchors are known to influence the final judgements made 

such that estimates are closer to anchor points than they should be, the inverse ogival 

pattern of estimation errors for numbers between zero and one demonstrated by Cohen 

et al. (2002) implies that the likely anchor points for judgements of proportion are zero, 

half and one.  

 

Thus it was necessary that response times for each distance between stimuli be 

measured over a full range of positions between zero and one. This should to eliminate 

any effect due to position interfering with detection of the distance effect. Furthermore, 

by selecting stimulus pairs in this way it is also possible to test whether there is an effect 

of position on response times in addition to the distance effect. That is, to test whether 

an equivalent of the size effect exists for numbers between zero and one, irrespective of 

their symbolic representation. 

 

In addition to distance between stimuli and their position within the zero to one range, 

two further factors were built into the experiment. Stimuli were balanced for both left-

right position of the largest stimulus and for whether the largest stimulus was the 

fraction or the decimal. Balancing for both of these factors allowed for an increased 

number of stimuli. The factor of whether the larger stimulus was a fraction or a decimal 

was not expected to have any influence on the results but was included for balance and 

as a means to double the number of stimuli presented.  

 

Balancing the stimuli for both left-right position of the largest stimulus not only allowed 

for an increased number of stimuli but it also was intended to eliminate any confound in 

the results due to the SNARC effect. In addition, it provided a means of detecting a 

SNARC effect if present. A SNARC effect would be found if stimulus pairs in which the 

larger stimulus was on the right had significantly smaller response times than those on 

which the larger stimulus was on the left. However, the detection of a SNARC effect was 

not anticipated. This is because it would imply that the mental magnitude 

representations of both unfamiliar fractions and decimals are automatically processed. 

Further, that these are automatically accessed as magnitudes upon a common scale. As 
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detailed in the last chapter, there is little evidence from previous studies to suggest this 

automatic magnitude response would be found.  

 

The physical appearances of the two numbers being compared were quite dissimilar – 

one had a vertical display with a horizontal line dividing two numbers and the other, a 

horizontal display starting with ‘0.’ followed by three digits. Although there were, by 

chance some similarities between the digits of some of the stimulus pairs this was not in 

any systematic manner. Thus the challenge of Cohen (2010) to the interpretation of the 

distance effect is answered. Any influence of physical similarity of stimuli on response 

latencies would not account for the distance effect being detected.  

 

With all of these factors taken into account, any significant distance effect found would 

indicate that, to some extent, people have a functioning magnitude representation that 

has commonalities between the two symbolic representations of unfamiliar fractions and 

decimals. This result was anticipated but the strength of the result was expected to be 

possibly mediated by the position of the pairs of stimuli within the zero to one range.  

2.3 Method 

2.3.1 Participants 

Thirty-one healthy adults (20 women and 11 men) aged between 20 and 64 years 

(M=36.7, SD=12.3) participated in the study.  Seven were students at the University of 

Huddersfield.  The remaining 24 were (non-mathematics) teaching and support staff at a 

sixth form college. One participant chose not to complete the experiment and was not 

included in any analysis.  

2.3.2 Stimuli 

Stimuli consisted of two relatively unfamiliar numbers between 0 and 1.  That is, one 

fraction presented in its simplest terms with denominator of 11, 13, 15, 17 or 19 and 

one three-digit decimal number.  The decimals were generated by adding and 

subtracting the distances 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5 from each fraction and 

rounding to three decimal places, ignoring pairs in which the decimal fell outside of the 

range 0 to 1.  This resulted in a list of 582 possible stimulus pairs; 291 in which the 

decimal was the larger number and 291 in which it was the smaller. 

 

  



30 

 

To control for and identify any possible influence of the anchor points 0, 1 and 0.5, for 

each distance, the stimuli were grouped according to their position within the zero to one 

range The details are outlined below with figure 2.1 for illustration. 

 

For distances 0.05, 0.1 and 0.2 there were 

seven positions presented: 

A. The smaller stimulus below 0.1  

B. Both stimuli between 0.1 and 0.4 

C. The larger stimulus between 0.4 and 0.5 

D. The stimuli on either side of 0.5 

E. The smaller stimulus between 0.5 and 0.6 

F. Both stimuli between 0.6 and 0.9 

G. The larger stimulus above 0.9 

 

It was not possible for distances above 0.2 to 

be presented in all seven positions. Therefore 

for distances 0.3 and 0.4 there were three 

positions presented: 

H. Both stimuli below 0.5 

I. The stimuli on either side of 0.5 

J. Both stimuli above 0.5 

 

For the distance of 0.5, all stimulus pairs 

would be either side of 0.5. So the following 

three positions were presented: 

K. The smaller stimulus below 0.1  

L. Both stimuli between 0.1 and 0.9 

M. The larger stimulus above 0.9 

 

 

The 582 possible stimulus pairs were thus split into 60 groups; two for each of the 30 

combinations of distance and position; one in which the decimal was the larger and one 

in which it was the smaller.  Two stimulus pairs were randomly chosen from each of the 

60 groups. In order to detect any evidence of the SNARC effect, one of these was 

presented with the larger number on the right and the other with the larger number on 

the left.  Thus there were a total of 120 stimuli. 

 

The fraction was presented vertically with a horizontal line separating the numerator and 

denominator, each of which had one or two digits.  The decimal fraction was presented 

as a zero followed by a decimal point and three digits to the right of the decimal point.  

Stimuli were displayed in black type on a white background.  

0 0.5 1 

0 0.5 1 

A      B       C        D         E       

F      G 

H               I                 J 

K         L                 M 

Figure 2.1 Illustration of the levels of the position 
factor 
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2.3.3 Procedure 

The experiment was conducted using SuperLab® 4.0 stimulus presentation software in 

the participant's place of study or work in a quiet, well-lit room.  Participants were 

instructed that within each trial they had to decide which of the two numbers presented 

was the largest and to press the ‘A’ key if it was the number on the left and the ‘L’ key if 

it was the number on the right.  They were informed that both speed and accuracy of 

response were important.  In addition, it was made clear that some of the tasks were 

expected to appear very easy and some extremely difficult and the purpose of the 

experiment was to find out what factors made the task more difficult. 

  

A practice block of four stimuli preceded the experimental blocks. Participants were given 

feedback on their accuracy on the practice stimuli and were allowed to ask questions if 

they did not understand the procedure.  The 120 experimental stimuli were then 

presented in random order in three blocks of 40 with no further feedback on accuracy 

nor opportunity to ask questions. 

Participants were given the opportunity to take a break between the blocks. All 

participants were presented with the same stimuli.   

 

Response times and accuracy were recorded by the program.  

 

Following the experimental blocks the participants were questioned on the strategies and 

reasoning they had used to complete the tasks.  To facilitate their explanation they were 

presented with three further stimuli each with a distance between the fraction and 

decimal of 0.2 and asked to choose the largest number and explain their reasoning.  

These explanations were recorded on film. 

2.4 Results 

2.4.1 Pre-analysis data processing 

In the post-task interview, two participants said they had chosen the smaller stimulus 

instead of the larger. Their results bore this out with one giving only 14 correct 

responses and the other 4 (out of 120). The interview took place immediately after the 

task and they were able to give correct verbal responses to the three further stimuli. 

Therefore their responses were included in the analysis with the error responses 

recoded.  
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Taking this into account, the number of errors per subject ranged from 3 to 45 (out of 

120). The worst of these, with 45 errors, had a probability of only 0.00392 of achieving 

this result or worse by guesswork alone (B(120,0.5)). Thus all participants can be 

considered to have performed better than chance at the task and none were excluded 

from the analysis.  

2.4.2.1 Skew 

Using the method of Crawley (2005), it was found that the RT data were highly positively 

skewed (γ = 3.31, p < .001). This skew can be seen in figure 2.2. Therefore, initial 

exploratory graphs used the median as a measure of central tendency.  

 

 

Figure 2.2 Histogram showing distribution of response times for experiment 1 

 

2.4.2.2 Distance effect 

The graph of median RT against distance (figure 2.3) demonstrates a distance effect 

such that RTs decreased as distance between stimuli increased. The effect appears to 

have been approximately linear for distances between 0.05 and 0.4. However there was 

little difference in median RT between distances 0.4 and 0.5.  

 

The Welford function was used by Moyer & Landauer (1967) to link their results for the 

numerical distance effect to previous distance effects for physical size. It is a linear 

model using log(larger stimulus size/distance between stimuli) as a predictor for RTs. To 

test the fit of the Welford function to the experiment one data, the mean average RT was 

calculated for each stimulus pair.  
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Figure 2.3 Graph of median RT against distance for experiment one 

 

A small but significant association was found (rs = .425, p < .001) between log(larger 

stimulus size/distance between stimuli) and mRT, indicating a reasonable fit of these 

data to the Welford function. This implies a distance effect was present that, to some 

extent, mirrors that found for physical magnitude comparison. However, the association 

between simply distance and mRT was much larger in size (rs = -.681, p < .001). 

 

The association of the absolute difference between the numerator of the fraction with the 

first decimal place of the decimal was also tested. This difference between the numerator 

and first decimal is not independent of the distance between stimuli. There was some 

concern that any distance effect found might actually be due to participants comparing 

these two values rather than the holistic magnitudes of the stimuli. However, though 

significantly associated, the association was not as strong as either of the associations 

above (rs = -.363, p < .001). 

2.4.2.3 Position factor 

As detailed in section 2.2 stimuli pairs were placed in different sets of positions for the 

different distances. There were seven positions for distances 0.05, 0.1 and 0.2 and three 

positions for the larger distances. I judged that if no effect of position could be observed, 

or if an effect was found only for certain positions, this might simplify somewhat the 

analysis of the RTs. In particular, if some of the seven positions A to G for the smaller 

distances of 0.05, 0.1 and 0.2 could be combined, the RT (and error) analysis could be 

simplified. 
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Figure 2.4 Graph of median RT against position by distance for experiment one 

 

The graph of median RT against position for the smaller distances, (fig 2.4), indicated 

that there might not be a significant difference between the median RTs for all of the 

positions A to G, particularly the middle positions B to F. In light of this, analysis was 

carried out to test, first for a significant effect of position on RTs; then for a significant 

difference between each pair of positions for the distances 0.05, 0.1 and 0.2. 

 

 

Figure 2.5 Histogram showing distribution of logRT for experiment 1 

 

For the purpose of this analysis, and all further parametric analysis, a natural logarithm 

(log) transform was applied to the RT data, (see fig 2.5). This resulted in a much less 

skewed distribution, (γ = 0.289, p = .386), which a Q-Q plot shows to be approximately 

normal, (fig 2.6). 
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Figure 2.6 Q-Q plot of logRT quantiles against theoretical normal quantiles for experiment one 

 

First, log RTs for each participant were averaged over the seven positions A to G for 

each of the distances 0.05, 0.1 and 0.2. Then an ANOVA was carried out for the factor of 

position for distances 0.05, 0.1 and 0.2 combined, taking onto account the factor of 

participant to minimise the effect of individual differences. This revealed a significant 

effect of position F(6,420) = 25.18, p < .001.  

 

Secondly, a pairwise (Bonferroni corrected) t-test between positions A to G was carried 

out for this data set. The significance results are shown in table 2.1. 

 

  A B C D E F 

B < .001 - - - - - 

C 1 .094 - - - - 

D .259 .185 1 - - - 

E .047 .743 1 1 - - 

F .122 1 1 1 1 - 

G < .001 < .001 < .001 < .001 < .001 < .001 
 

Table 2.1 Significance results for pairwise t-test between positions A to G for distances 0.05, 0.1 and 0.2 for 
experiment one 

 

This test revealed that position G (the larger number above 0.9) stood out as being 

significantly different from the other positions with position A (the smaller number below 

0.1) being significantly different from positions B (where both stimuli are between 0.1 

and 0.4) and position E (where the smaller number is between 0.5 and 0.6). Other 

positions did not differ significantly in terms of mean log RT. 
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Due to these findings, the factor of position was re-coded to a new factor called location 

at three levels. These three levels being:  

near _zero   the smaller stimulus below 0.1; 

near_one  the larger stimulus above 0.9; 

middle   all other positions. 

 

This re-coding was easily applied to distance 0.5 for which the re-coding matched the 

original definitions of the K,L and M levels of the position factor. 

 

More problematic were distances 0.3 and 0.4. The original definitions of the H,I and J 

levels of the position factor did not match the definitions of the new near_zero, middle 

and near_one levels of the location factor. For distance 0.4 it was found, however, that 

the stimuli chosen for levels H,I & J also fit the definitions for levels near_zero, middle 

and near_one respectively. Stimuli for distance 0.3 did not transfer so neatly to the new 

location factor. In the re-coding, three of the four position H stimuli fell into the middle 

location as did two of the four position J stimuli.  

 

Despite the slight unbalancing of the data caused by this re-coding, it was decided to 

perform analysis on the full data set as long as this did not conflict with the 

requirements of the analytical methods used. 

2.4.2.4 Mixed linear modelling for logRT 

Initial testing of the null model (for logRTs) with no predictors, against a baseline model 

including random intercepts for participants, showed significant individual differences (L 

Ratio 1151, p < .001). Hence I decided that the use of a mixed linear modelling 

approach which accounted for individual’s baseline speed of response would be the most 

appropriate method of analysis of the RT data. Averaging across individuals and 

performing a standard analysis of variance would have been an easier but less rigorous 

approach.  

 

Therefore, using the R statistical package nlme, a mixed linear model was applied to the 

logRT data with subject as the random effect. The maximum likelihood (ML) method of 

estimation was utilised to allow for the calculation of likelihood ratios as the model was 

built up (see Field, Miles & Field 2012). There were four potential fixed factors: distance, 

location, left or right position of the larger stimulus (largelr), included to detect a SNARC 

effect and whether the larger stimulus was a fraction or decimal (largerstim). The mixed 

linear modelling method can accommodate missing data at some combinations of factor-

levels. 
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2.4.2.4.1 Individual testing of potential fixed factors 

First, the four possible fixed factors were added separately  to the random intercepts 

only (baseline) model. An ANOVA test was then applied to detect improvements of each 

individual factor on its own to the fit of the model (see table 2.2). The factors of distance 

and location, as predicted, made a significant improvement to the baseline model but the 

factor largelr did not. Thus no SNARC effect was detected and the factor largelr was 

excluded from any further analysis. Incidentally, this exclusion improved the balance of 

the design. It left only one combination of levels of the significant factors (distance: 0.3, 

location: near_zero, largerstim: decimal) with no data. 

 

Factor df AIC BIC Log Likelihood L Ratio p 

Baseline 3 6785.7 6804.2 -3389.8 
  Distance 4 6390.6 6415.4 -3191.3 397.1 <.001 

Location 5 6464.1 6495.0 -3227.0 325.6 <.001 

Largerstim 4 6711.2 6736.0 -3351.6 76.46 <.001 

Largelr 4 6786.0 6810.7 -3389.0 1.70 .192 

Table 2.2 Results of ANOVA comparisons between baseline linear model and linear models including single 
factors for experiment one 

 

A somewhat surprising result was the significant improvement made to the model fit by 

the inclusion of largerstim as a fixed effect. That implied logRTs differed significantly 

when the larger of the stimulus pair was a fraction from when it was a decimal. 

However, with factors added to the model in isolation, it was possible that this outcome 

was just an artefact resulting from the other factors and the stimuli chosen. 

2.4.2.4.2 Building the model – single factors 

The mixed linear model was then built up in stages by adding the fixed factors in turn. 

An ANOVA test was applied to test for an improvement in the model (see table 2.3). The 

addition of location and largerstim to the distance only model significantly improved the 

fit of the model.  

 

Additional factor df AIC BIC 
Log 
Likelihood L Ratio p 

Distance 4 6390.6 6415.4 -3191.3 
 

 

Location 6 6189.5 6226.7 -3088.8 205.1 <.001 

Largerstim 7 6103.3 6146.6 -3044.6 88.2 <.001 

Table 2.3 Results of ANOVA comparisons between versions of the linear model as single factors are added 
for experiment one 

 

A summary of the mixed effects model for the single factors can be seen in table 2.4. 

 

  



38 

 

Factor/level b (95% CI) SE df t-value p 

distance -1.122 (-1.249, -0.994) 0.065 3566 -17.20 <.001 

location: near_zero  middle 0.140 (0.090, 0.190) 0.025 3566 5.50 <.001 

location: middle  near_one -0.223 (-0.283, -0.162) 0.031 3566 -7.22 <.001 

largerstim: decimal  fraction -0.175 (-0.211, -0.138) 0.018 3566 -9.45 <.001 

Table 2.4 Summary of the linear model including all significant single factors for experiment one 

 

Within this linear model, the b-value for distance implies that for every 0.1 increase in 

distance, there was a reduction of 0.112 in logRT (or a 10.6% reduction in RT). This 

distance effect was significant (p < .001).  

 

There were significant (p < .001) changes in average logRT with the shift in stimulus 

location between zero and one. The b-value (0.140) between locations near_zero and 

middle was smaller in size than that between middle and near_one (-0.223). In general, 

location near_one response times were fastest and middle response times were slowest. 

These were, on average, around 15.0% longer than those for the near_zero location and 

25.0% longer than those for the near_one location. Though this effect was significant, it 

was small in size. 

 

The significant (p < .001) effect found for largerstim had a b-value of -0.175. This 

implies that RTs for stimulus pairs in which the decimal was the larger number were, on 

average, around 16.1% longer than for those in which the fraction was the larger 

number.  

2.4.2.4.3 Building the model – interactions 

Interactions were added to the model to see if they would improve the fit to the logRT 

data. The addition of an interaction between distance and location significantly improved 

the fit of the model. The addition of an interaction between distance and largerstim 

made a marginally significant improvement to the model.  However, the addition of an 

interaction between location and largerstim also significantly improved the model. 

Therefore the three-factor interaction between distance, location and largerstim was 

added to the model and again, a significant improvement was found.  The results of the 

ANOVA comparisons can be seen in table 2.5. 

 

A visual inspection of the residuals of the final linear mixed model for logRT (including all 

interactions between distance, location and largerstim) indicated no obvious deviation 

from the assumptions of normality and homoscedasticity (see figure 2.7).  
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Interaction added df AIC BIC 
Log 
Likelihood L.Ratio p 

No Interaction 7 6103.3 6146.6 -3044.6 
  

distance/location 9 6092.3 6148.0 -3037.1 15.03 <.001 

distance/largerstim 10 6090.5 6152.4 -3035.3 3.75 .053 

location/largerstim 12 6080.4 6154.6 -3028.2 14.15 <.001 

distance/location/largerstim 14 6076.8 6163.4 -3024.4 7.60 .022 

Table 2.5 Results of ANOVA comparisons between versions of the linear model as interactions are added for 
experiment one 

 

The fixed effects of the model including all interactions are summarised in table 2.6.  It 

can be seen that the inclusion of the interactions in the model increased the size of the 

b-value for distance to -1.720. In this model, distance was the largest of the significant 

effects on logRT. 

 

Figure 2.7 Residual plot for the final mixed linear model for experiment one 

 

The inclusion of the interactions greatly reduced the significance of the increase in logRT 

between locations near_zero and middle, (p = .175). It was only within the three-factor 

interaction that the shift between locations near_zero and middle had a significant effect 

(p = .017, b = -0.760) on logRT. The three-factor interaction between distance, location 

and largerstim was complex and is investigated in detail later in the analysis. 

 

The transition between locations middle and near_one continued to be highly significant, 

(p < .001) showing an average fall in logRT of 0.372. This effect was significantly 

mediated by distance (p < .001, b = 1.056), with the logRT difference between locations 
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near_zero and middle reducing  as distance increased. In addition, the shift between 

locations middle and near_one was also significantly affected within the three-factor 

interaction (p = .012, b = -0.917).  

 

single factors b (95% CI) SE df t-value p 

distance -1.720 (-2.080, -1.360) 0.184 3559 -9.351 <.001 

location: near_zero  middle 0.085 (-0.038, 0.207) 0.062 3559 1.356 .175 

location: middle  near_one -0.372 (-0.527, -0.218) 0.079 3559 -4.719 <.001 

largerstim: decimal  fraction -0.28 (-0.434, -0.125) 0.079 3559 -3.541 <.001 

two-factor interaction           

dist/location near_zero  middle 0.401 (-0.039, 0.841) 0.225 3559 1.783 .075 

dist/location middle  near_one 1.056 (0.547, 1.564) 0.260 3559 4.065 <.001 

distance/largerstim decimal  fraction 0.874 (0.366, 1.383) 0.260 3559 3.367 <.001 

L.stim fraction/loc. near_zero  middle 0.086 (-0.087, 0.258) 0.088 3559 0.971 .332 

L.stim fraction/loc. middle  near_one 0.003 (-0.215, 0.221) 0.111 3559 0.028 .977 

three-factor interaction           

dist/loc near_zero  middle/largerstim 

decimal  fraction 

-0.760 (-1.383, -0.137) 0.318 3559 -2.389 .017 

dist/loc middle  near_one/largerstim 

decimal  fraction 

-0.917 (-1.635, -0.199) 0.367 3559 -2.499 .012 

Table 2.6 Summary of the linear model including all interactions for experiment one 

 

 

With the inclusion of the interactions in the model, the single factor of largerstim 

continued to be significant, (p <.001) and with an increased (negative) b-value of  -0.279. 

On average, responses were significantly faster when the larger of the stimulus pair was 

a fraction than when it was a decimal. This effect had a significant (p <.001) interaction 

with distance with b = 0.874.  

 

Both significant two-factor interactions included the distance factor. I found that by 

picking apart the three-factor interaction I could clarify the nature of these interactions 

better. 

2.4.2.4.4 Three-factor interaction 

Figure 2.8 shows the three-factor interaction between distance between stimulus pairs, 

location of stimulus on the zero to one scale and whether the larger of the stimulus pair 

is a fraction or a decimal. The missing data for the combination of factor levels distance: 

0.3, location: near_zero, largerstim: decimal is apparent.  

 

It can be observed that as distance increased, the interaction between largerstim and 

location changed. Most noticeable was that for the larger distances of 0.4 and 0.5, there 

was a much smaller difference between logRTs for near_zero and middle located stimuli 
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when the fraction was the larger of the stimulus pair than when the decimal was the 

larger. Fraction-larger stimuli actually having longer response latencies than decimal-

larger ones when the stimulus pairs were in the near_zero location for the two largest 

distances. Fraction larger stimuli being consistently faster than decimal larger stimuli, on 

average, across all other distance and location pairings for which data was recorded. 

 

Though, as seen earlier, (figure 2.3), there appears to have been a consistent, if not 

necessarily entirely linear, distance effect across all stimuli; the three-factor interaction 

graph (figure 2.8) demonstrates that this distance effect was not consistent across any 

combination of the factors location and largerstim. In particular, it was only the 

distances 0.05, 0.1 and 0.2 that a decrease in response latencies was consistently 

associated with an increase in distance between stimulus pairs for all combinations of the 

factors location and largerstim.  

 

Figure 2.8 Lattice graph showing three-way interaction between factors distance, location and largerstim for 
experiment one 

 

Because of this change in response patterns as distance increased, I decided it would be 

appropriate to consider the data for the smaller distances of 0.05, 0.1 and 0.2 separately 

from the larger distances of 0.3, 0.4 and 0.5. 
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2.4.2.4.5 Smaller distances (≤ 20) 

For the smaller distances, the factors of distance, location and largerstim all made 

significant improvements to the model (all p < .001). No interactions made a significant 

improvement to the model (all p > .398). Again, the (SNARC) factor of whether the 

larger stimulus was on the right or the left did not significantly improve the model (p = 

.288).  

 

Hence, the final model for the smaller distances contains only the three factors distance, 

location and largerstim with no interactions. For this model, the significant (p < .001) 

effect of distance was b = -1.921 (95%CI -2.267, -1.574) , SE = 0.177 indicating a 

reduction of 0.192 in logRT, (or a 17.5% decrease in RT), for each 0.1 increase in 

distance.  

 

From location near_zero to location middle, there was a significant (p < .001) average 

increase in logRT of b = 0.139 (95%CI 0.076, 0.202) , SE = 0.032. This value of b 

indicates a 14.9% increase in RT. The significant reduction in logRT from the middle 

location to the near_one location indicates a drop in logRT  of b = 0.306 (95%CI -0.386, 

-0.225) , SE = 0.041. This is equivalently a 26.4% drop in RT between the two locations.  

 

Stimuli in which the decimal was the larger of the pair were significantly (p < .001) 

smaller in logRT by b = -0.198 (95%CI -0.241, -0.155) , SE = 0.022 (or 21.9% faster in 

RT). 

2.4.2.4.6 Larger distances (≥ 30) 

In building up the mixed linear model for the larger distances, the factors of distance (p 

= .008), location (p < .001) and largerstim (p < .001) all made significant 

improvements to the model. Again, the (SNARC) factor of whether the larger stimulus 

was on the right or the left did not significantly improve the model (p = .762). The 

interactions of distance with location (p = .040) and location with largerstim (p < .001) 

both made a significant improvement to the model.   

 

In the final model for the larger distances which included interactions, there was no 

significant individual factor effect of distance (p = .161) or of location (p = .872 for 

near_zero to middle and p = .507 for middle to near_one).  

 

However, the largerstim effect persisted. Stimulus pairs in which the fraction was larger 

had significantly (p = .029) lower logRTs than those in which the decimal is larger b = 

0.140 (95%CI 0.015, 0.265), SE = 0.064 (or 13.1% faster in RT). 
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The interaction between location (near_zero to middle only) and distance was marginally 

significant in the final model, p = .086. However, the 95%CI for b was (-0.134, 2.016) 

which does not indicate a reliable effect. This result could be attributable to the paucity 

of near_zero data for the distance 0.3.  

 

However the factor largerstim interacts significantly (p < .001) with the shift in location 

between near_zero and middle, b = -0.293 (95%CI -0.446, -0.140), SE = 0.078 and 

with the shift in location from middle to near_one (p < .001), b = -0.447 (95%CI -

0.617, -0.277), SE = 0.087. This interaction is apparent on figure 2.8. Particularly 

notable is that for distances 0.4 and 0.5, stimuli in which the larger stimulus is a fraction 

had greater logmRT than those for which the larger stimulus is a decimal at the 

near_zero position – a reversal of the generally observable pattern. 

 

In summary, at the larger distances of 0.3, 0.4 and 0.5, the largerstim effect persisted. 

However, the effect of distance did not. The effect of location is only apparent as an  

interaction with the largerstim factor; the shape of which can be seen in figure 2.8. 

2.4.3 Error analysis 

To identify which factors had a significant influence on errors, a logistic (binomial) 

regression analysis was applied to the error responses, (0 for a correct response and 1 

for an incorrect response). The factor of participant was included in the analysis but 

results for individuals are not reported here. The coefficient and odds ratio results can be 

seen in table 2.7.  

 

Source b SE odds ratio (95% CI) z value p 

distance -4.996 0.494 0.007 (0.003, 0.018) -10.12 <.001 

location: near_zero  middle 0.753 0.174 2.123 (1.51, 2.984) 4.33 <.001 

location: middle  near_one 0.264 0.218 1.302 (0.849, 1.996) 1.21 .227 

largerstim: decimal  fraction -0.424 0.106 0.655 (0.532, 0.806) -4.00 <.001 

largelr: left  right 0.072 0.105 1.074 (0.874, 1.32) 0.68 .495 

Table 2.7 Results of a logistic regression analysis of error data for experiment one 

 

Individual differences between participants had a significant effect on the number of 

errors (χ2(29) = 227, p <.001). 

 

the percentages of incorrect responses for each distance, location and larger stimulus 

type can be seen in Table 2.8. 
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Again, there was no effect due to whether the larger stimulus was on the right or left 

(χ2(1) = 0.47, p =.495). However, participants were significantly more likely to make an 

error if the larger stimulus was a decimal than if it was a fraction (χ2(1) = 16.16, p 

<.001). Errors were  1.52 (1/0.655) times as likely to occur if the larger stimulus was a 

decimal rather than a fraction all other factors being equal. This reflects the result found 

for the effect of the largerstim factor on RTs and further reinforces the observation that 

participants found it  more difficult to decide which of the stimuli was the larger when 

the larger one was a decimal rather than a fraction.  

 

distance 0.05 0.1 0.2 0.3 0.4 0.5 

% Errors 23.0% 18.2% 9.2% 5.8% 5.8% 4.7% 

       location near_zero middle near_one 
   % Errors 6.7% 17.2% 8.8% 
   

       larger stimulus decimal fraction 
    % Errors 15.6% 11.2% 
    Table 2.8 Tables showing percentage of errors at levels of distance, location and largerstim factors for 

experiment one 

 

Location also had a significant effect on whether an error was made (χ2(2) = 27.91, p 

<.001). This effect was specifically applicable to the shift from near_zero to middle 

locations. An error was a little over twice (2.123) as likely to occur if the stimulus was in 

the middle location than if it was in the near_zero position, all other factors being equal. 

Table 2.8 indicates that, indeed, participants were, in general, much more likely to make 

an error when a stimulus was in the middle position. 

 

Distance had a highly significant influence on errors (χ2(1) = 157.89, p <.001). The odds 

ratio here is difficult to interpret in any very meaningful way but the fact that it is so 

small is implying a rapid dropping off of errors as distance increased. Table 2.8 shows 

that the percentage of error responses decreased rapidly between distance 0.05 and 0.2 

but then almost levelled out between distances 0.3 and 0.5. 

 

2.4.4 Verbal report of strategy 

Once participants had completed all 120 stimuli they were asked to give a verbal report 

of their strategy with reference to three further stimulus pairs, if required. These 

strategies were studied for general themes and categorised into ten expressed methods 

(coded 1 to 10) plus three further non-method categories (coded 11, X and 0), as 

detailed in table 2.9. If participants mentioned several methods, all were recorded. Some 
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reported using no method or a faulty method as well as legitimate method(s). In these 

cases, both the method and no method or faulty method responses were recorded. The 

recordings made of two of the participants became corrupted before analysis was carried 

out. So no data for those participants are available. The vast majority of participants, 

(23 of the 29 recorded), reported using two or more strategies. 

 

Strategy Number of participants 

1. Use 0.5 or ½ as an anchor point. 20 

2. Use other fractional anchor points. 13 

3. Use 0 as an anchor point. 2 

4. Use 1 as an anchor point. 1 

5. Convert the decimal to a fraction. 3 

6. Convert the fraction to a decimal. 6 

7. Convert both (into e.g. percentages/tenths). 4 

8. Partition of the whole (e.g. mental shading) 3 

9. Multiplication/division to/from a whole. 5 

10.Abstract method of multiplication/division. 1 

11. Just know. 3 

X. Faulty/incoherent reasoning. 3 

0. No method. 3 

Table 2.9 Summary of reported strategies for experiment one 

 

There are several interesting points to note in relation to these expressed strategies and 

participants’ responses to the number comparison task. 

 

Firstly, the one person who reported using a solely abstract method of multiplication and 

division with no reference to the size or position or physical magnitude of the numbers 

(strategy 10) was the one participant who was unable to complete the task. Upon further 

questioning they said that the task was too difficult as their abstract strategy was too 

much to hold in their head and they knew no other strategy. This responses of this 

participant are an interesting indication that understanding small numbers only in an 

abstract sense is not sufficient for successfully using them in a flexible manner. 

However, they constitute a very small sample.  

 

Secondly, the majority of participants (20 out of 31) reported making judgements by 

comparing the two stimulus numbers to 0.5 or one half. If just the smaller distances are 

considered, only position D had stimuli either side of 0.5. However, there was no 

evidence that participants were quicker in general in this position. On the contrary, only 

one of them was quickest in position D for the smaller distances. In general, it was 

shown in section 2.4.2.3 that position D was not significantly different in terms of mean 

logRT from any of the other positions but G (closest to one), which was, in fact, 
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significantly faster. This implies that the participants were not using a comparison with 

0.5 as the first choice strategy to make their judgements despite their verbal reports. 

 

Lastly, of the three participants who gave faulty or incoherent reasoning strategies, one 

was the most erroneous participant (45 errors out of 120). However, one of them made 

only 4 errors and the other only 22 errors (ranked 25 of 30 participants). This 

demonstrates that an inability to verbalise their strategy was not necessarily indicative 

of an inability to complete the task successfully.  

 

These two last points imply that whatever strategies participants were using, they were 

not necessarily consciously aware of them. As such, there is perhaps, little value in these 

verbal reports  for drawing conclusions about the actual strategies that had been used.  

 

Nevertheless, they might be indicative of the nature of the conscious schema of 

fractional numbers held by the participants. The non-abstract strategies (1 to 9) can be 

categorised in three ways.  Strategies 1 to 4 are number line strategies that involve the 

comparison of the stimuli to anchor points on a number line. Whereas strategies 5 to 7 

involve the use of direct conversion between different representations. Finally, strategies 

8 and 9 involve relating the part (stimulus) to the “whole” with the whole not being 

specified as a number line between zero and one.  

 

Of the 29 participants whose recordings were analysed, 22 of them stated using number 

line strategies (1 to 4), often in combination with other methods. Only one of the 13 

participants who reported using a conversion strategy (5, 6 or 7) did not also report 

using a number line strategy. That was, again, the most erroneous participant. Upon 

further explanation, it became apparent that their conversion strategy was actually 

mathematically faulty, despite being correct in intent. This implies that most of the 

participants were aware of the spatial analogue for the ordering of the size of fractions 

and decimals. That is, they were aware that the mental number line concept can be 

extended to fractional numbers of different external representations. 

 

For four participants the only correct reported strategy was a comparison to the whole 

method (8 or 9). Thinking of fractional numbers as parts of the whole is a useful and 

correct concept and strategies 8 and 9 are effective methods of completing the number 

comparison task. However, they do not relate  to extending the number line (linear 

spatial analogue) for whole numbers to fractional numbers. Nevertheless, two of these 

four participants did demonstrate a significant distance effect. 
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2.4.5 Summary of results 

2.4.5.1 Response times 

The RT results were noisy with a great deal of the variance being accounted for by the 

random effect of  individual difference.  

 

Three fixed effects were found to have significant effects on RTs. Firstly the classic 

distance effect for number comparison tasks. This effect was sought by the experiment 

and expected to occur. Secondly, the location effect in which RTs were affected by the 

location of stimulus pairs in the zero-to-one interval. This effect was not entirely 

unexpected. Thirdly, the entirely unexpected largerstim effect in which whether the 

larger, (or indeed smaller), stimulus was a decimal, (or fraction), affected the RT for that 

stimulus pair. 

 

At the distances of 0.05, 0.1 and 0.2, there was a significant classic distance effect with 

RTs increasing as the distance between stimulus pairs decreased. This was by far the 

greatest effect on RTs found. Also, the effect of location was significant with RTs in the 

middle location being largest and those in the near_one location being smallest. Finally, 

also for these smallest distances, the largerstim effect was significant. That is, stimulus 

pairs in which the larger was a decimal had larger average RTs than those in which the 

larger stimulus was a fraction. There were no significant interactions between these 

effects. 

 

At the larger distances of 0.3, 0.4 and 0.5, the largerstim effect persisted. However, the 

effect of distance did not. There were no significant differences in RTs at these distances. 

Though those at distance 0.3 might have been smaller than those at 0.2. The effect of 

location was only apparent as an  interaction with the largerstim factor. Specifically, the 

difference between RTs in the near_zero and middle locations was greater when the 

larger stimulus was a decimal than when it was a fraction. 

 

There was no effect on response times of whether the larger stimulus was (congruently) 

on the right or (incongruently) on the left. Thus there was no evidence of an unconscious 

spatial-numerical association between size, physical location and response key location 

(SNARC effect). 

2.4.5.2 Errors 

The results for the error analysis showed a similar story to those of the RT analysis. That 

is, firstly a significant distance effect was present, at least over the distances of 0.05 to 
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0.3. That is, error rates decreased as distance increased but this effect tailed-off for the 

larger distances. Distance between stimuli was the most significant influence on error 

rates. 

 

Error rates also demonstrated a significant location effect. They were significantly higher 

for the middle location than the near_zero and near_one locations. In addition, errors 

were significantly more likely to occur when the larger of the stimulus pair was a decimal 

than when it was a fraction. That is the same largerstim effect as was found for RTs. 

2.4.5.3 Reported strategies 

The reported strategies of the majority of participants implied that they were consciously 

aware of the number line analogue for fractional number magnitude and that they 

employed this knowledge in completing the number comparison task.  

 

Most participants reported comparing magnitudes by using the anchor points of zero, 0.5 

and one. Though the location effect found within the RTs and error analysis supports the 

use of zero and one as anchors, there is no pattern of responses supporting the use of 

0.5 as an anchor point against which judgements were made. 

2.5 Discussion 

One of the most remarkable outcomes of this experiment was just how few errors 

participants made. I had made the task deliberately difficult yet there was an error rate 

of only 22.9% at the very small distance of 0.05. It can also be noted that the only 

participant who reported using a completely abstract strategy, that made no reference to 

magnitude related features of the numbers, could not complete the task. Taking these 

two outcomes into account seriously challenges the assertion of Cohen et al. (2002) that 

there is no common mental magnitude representation for fractions and decimals. This 

common, ordered, magnitude representation may be approximate and imprecise in 

nature but it seems to be the only mechanism by which participants in this experiment 

could have been so successful a making their judgements. 

 

Evidence of participants accessing a mental number line for fractional numbers was 

sought in two ways. First, the distance effect was tested for. Additionally, the stimulus 

were chosen so as to allow for the detection of a Stroop-like SNARC effect. The second of 

these is considered first. 
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2.5.1 SNARC effect 

The factor of largelr was included in this experiment in order to detect any evidence of a 

SNARC effect. Largelr had virtually no detectable effect upon RTs. The SNARC effect is 

an unconscious effect indicating that magnitudes are accessed swiftly and unconsciously 

associated with a left-right spatial magnitude ordering. So the fact that this effect was 

not found implies either that magnitudes were not swiftly accessed or that they were not 

associated with a left-right spatial magnitude ordering.  

 

In the experiments of Dehaene et al. (1993) which first highlighted the existence of a 

SNARC effect for whole numbers, average RTs that were between 460 and 530ms. These 

were for quite a different comparison task than my experiment one. Nevertheless, even 

at the largest distance between stimuli of 0.5, the median RT for experiment one was 

around 2500ms – almost five times as long.  Hence it is reasonable to assume that the 

comparison procedure taking place that was deliberative and too lengthy to be affected 

by an unconscious effect such as the SNARC effect. This does not mean that the 

magnitudes of fractional numbers are not accessible, just that they are not automatically 

accessed. 

 

Indeed,  Gabriel, Szucs & Content (2013a) and (2013b) found evidence that holistic 

magnitude of fractions were accessed for numerical tasks but not for tasks in which the 

magnitude of the number was not relevant. So the lack of automatic access to fraction 

magnitudes does not mean that internal representations are not akin to a mental 

number line. 

2.5.2 Distance effect 

A strong and unequivocal distance effect for RTs (and errors) was found. Indeed, the 

effect was not dissimilar to that found by Tversky & Kahneman in 1974. The way this 

experiment was set up, however allowed for more in-depth analysis of the nature and 

limits of the effect. The distance effect was most clear for the stimuli with smaller 

distances between them. For these it was by far the strongest effect found. For larger 

distances, the effect was less concrete. 

 

This shape of the distance effect found in experiment one (figure 2.3) is very similar to 

the pattern of distance effect found by Schneider & Siegler (2010) in their second target-

stimulus number comparison task. That task included comparisons between pairs of 

fractions some of which had  double-digit denominators. They too recorded a sharp fall-

off in RTs as the stimuli initially moved away from the target (i.e. at smaller distances) 
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with that decrease in RTs becoming smaller as distance from the target increased. 

Schneider & Siegler interpreted their result as evidence of holistic magnitude processing 

of their stimuli. 

 

Conventionally, indeed, the distance effect has been thus understood as an implication 

that holistic magnitudes representations of both stimuli are used to make comparisons. 

Cohen (2010) made a challenge to this conventional interpretation. He showed that any 

distance effect found in his magnitude comparison task (for single digits) could be better 

explained by the visual similarity of the stimulus pairs than the distance between stimuli.  

 

The stimulus pairs chosen for my experiment one were made up of one decimal with a 

zero & a dot followed by three digits and one fraction with one or two digits above a line 

with two digits below. It would be difficult to construct a meaningful way to codify the 

similarity between these pairs of numbers. As such, I have not demonstrated that 

physical similarity was not a better predictor of RTs than distance. However, it seems 

more plausible that participants in my experiment were translating the two numbers into 

(approximate) magnitude analogues for comparison and the distance effect seen was an 

outcome of this translation. The stimuli were chosen specifically to make it difficult for 

participants to do otherwise. 

 

The diminishing of the distance effect for larger distances raises the question of whether 

there is a limit on the distance effect for fractional number pairs. These numbers are on 

a bounded continuum with zero at one and one at the other. They can only get so far 

apart before they hit the ends of their limits. There was an effect on response times of 

these limits, especially at the smaller distances however. I termed that phenomenon the 

location effect. 

2.5.3 Location effect 

In contrast to other studies of the distance effect, by controlling the distance between 

stimuli I was able to investigate the influence of location within the zero-to-one range on 

the magnitude comparison task. The main feature of the location effect found was that, 

at least for the smaller distances of 0.05, 0.1 and 0.2, RTs were fastest when stimuli 

were within 0.1 of one and next fastest when the stimuli were within 0.1 of zero and 

slowest when they located in the other middle positions.  

This is not the size effect reported for whole numbers by Moyer & Landauer (1967); 

Dehaene et al. (1990); Nuerk et al. (2001). RTs did not increase as the size of stimulus 

pairs increased (the distance remaining the same). Instead more of an anchor point 
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effect was found. Perhaps implying that magnitudes for fractional numbers between zero 

and one are automatically estimated from these two anchoring points.   

 

There was no interaction between location and distance for the smaller distances and at 

larger distances it was questionable also. Taking this into account, the diminution of the 

distance effect for larger distances might not, in fact be down to the fact that both 

stimuli are moving closer to the end points of zero and one as the distance between 

them increases.  

2.5.4 Largerstim effect 

The final and completely unexpected main outcome of experiment one was that RTs (and 

errors) were found to be significantly greater when the larger of the two stimuli 

presented was a decimal than when it was a fraction. I termed this outcome the 

largerstim effect.  

 

The effect was present at all distances, though less clear-cut at the greatest distances. 

Also, for the smaller distances at least, the largerstim effect was consistent at all 

locations of the stimuli in the zero-to-one range.  

 

Not only was this outcome unexpected it is also difficult to interpret. The only simple 

conclusion that can sensibly be drawn is that it indicates a difference between 

participants’ mental representations of decimals and fractions and/or how participants 

processed the magnitude of fractions and decimals.  

 

It was not completely unexpected to find evidence of such a difference. Fractions and 

decimals look different and though, mathematically they can represent the same types 

of phenomena they are generally used in  different ways; fractions to represent relative 

frequency and decimals to represent partial quantities, for example. What was 

unexpected, was the nature of the difference found. 

 

Another way of stating the largerstim effect would be that RTs times were longer (and 

error rates were greater) when comparing a larger decimal with a smaller fraction than 

when comparing a smaller decimal to a larger fraction. This was an effect that indicated 

not only a difference between fraction and decimals also their comparative size.  

 

It is therefore possible that the instruction to choose specifically the larger of the two 

stimuli is triggering some procedure of comparison that is quicker when the decimal is 

smaller and the fraction is larger. Perhaps changing the response that participants have 
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to give from choosing the larger to choosing the smaller would reverse this largerstim 

effect. 

 

2.5.5 Reported strategies 

Most participants reported the use of more than one strategy. In their fraction 

comparison experiment, Faulkenberry & Pierce (2011) similarly found that participants 

often used multiple strategies that were dependent on the types of fraction being 

compared. They had participants report strategies for every trial and so obtained much 

richer data on strategies than I. They encoded the strategies differently but they were 

generally very similar to those I recorded. However, in the light of the location effect, it 

is interesting that they did not report any participants using a comparison to zero or one 

strategy. I had one participant reporting using both and another reporting using zero 

only. 

 

The reports I recorded probably reflect only the most salient strategies that participants 

used. This could contribute to some explanation of why so many people said they made 

their comparisons on whether numbers were either side of 0.5 despite the fact that the 

minority of comparisons could be made that way. Also, there was evidence to suggest 

that comparisons that could be made that way actually took longer. (More consideration 

of this point follows the results of experiments three and four.) 

 

The fact that the great majority of participants reported strategies based on correct 

holistic magnitude reasoning is supportive of my conclusion that the distance effect 

found does reflect holistic magnitude comparison. 

2.5.6 Next steps 

The next chapter summarises the second experiment carried out for the purposes of this 

thesis. Experiment two was intended to investigate a possible reason for the largerstim 

effect, further investigate the limits of the distance effect for fractional numbers and find 

out whether the location effect could be replicated. 
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Chapter 3 Experiment two 

3.1 Introduction 

This third chapter details the second of the experiments carried out for the purpose of 

this thesis. Experiment two was an extension of experiment one. This chapter starts with 

a summary of the justification of the experiment. The changes to the design of the 

experimental task and stimuli are then explained. In particular, how these changes were 

intended to further investigate and clarify the results of experiment one. 

 

The next part of this chapter covers the method of experiment two. Then the following  

section contains the results of the experiment along with the methodology of the 

analysis. 

 

Finally, the last section of the chapter is a consideration of the implications of the results 

of the experiment and areas for further investigation. 

3.2  Justification and design 

The second experiment detailed in this chapter was essentially an extension of the first 

experiment. This consisted of two key modifications. The intention was to find out both 

whether the results of experiment one could be replicated/extended and to test for 

possible explanations of these results. 

 

Experiment one sought to find evidence of common mental magnitude representations of 

fractions and decimals. Evidence was indeed found in the form of a significant distance 

effect in the magnitude comparison task. However, this distance effect, (decrease in RTs 

and errors associated with an increase in distance between stimulus pairs), appeared to 

diminish as distance increased. Between the two largest distances, 0.4 and 0.5, there 

appeared to be no difference in average RT or errors. 

 

Therefore, the first modification to the experiment was to increase the range of distances 

between the two stimuli. Specifically, two larger distances between stimulus pairs were 

included. This was intended to investigate whether the diminishing of the distance effect 

between distances 0.4 and 0.5 would continue for larger distances.  

 

As the stimuli were numbers between zero and one, a gap of only one unit, there was a 

limit to the practical increase in distance between the stimuli. In addition, in experiment 

one, the factor of location appeared to have an effect on RTs and errors. Thus it was 

deemed important to balance the new stimulus pairs for the three levels of the location 



54 

 

factor – near_zero (smallest number between 0 and 0.1), near_one (largest number 

between 0.9 and 1) and middle (both numbers between 0.1 and 0.9). 

 

These considerations meant that the two additional distances included were 0.6 and 0.7. 

Twenty-four new and distinct stimulus pairs were created in the same manner as the 

stimuli of experiment one. The 24 new stimulus pairs encompassed every combination of 

the two new distances, the three levels of the location factor, the two levels of the 

largerstim factor and the two levels of the largerlr factor. This was done to allowed for 

consistency and replication within the experiment, despite the fact that the factor largelr 

did not demonstrate any effect on mRT in experiment one. 

 

The second modification was included as an attempt to explain the unexpected 

largerstim effect observed in experiment one. This is the effect that average RTs and 

error rates were significantly greater when the  larger stimulus of the pair was a decimal 

than when it was a fraction. As discussed in the previous chapter, this outcome could 

possibly have been caused by the response that participants were asked to give during 

the experiment. They were asked to choose specifically the larger of the two numbers 

presented.  

 

Therefore, the second modification to the experiment was to include an additional 

between participants factor of response with two conditions. One group of participants 

was asked to respond by identifying the larger number of the stimulus pair, as in 

experiment one (the response-larger condition) and the other group was asked to 

respond by identifying the smaller number (the response-smaller condition). If the 

participants in the two groups demonstrated different largerstim effects, this might help 

to explain the causes of the largerstim effect.  

 

The inclusion of this additional response factor also allowed for some investigation into 

the slight asymmetry of the location effect seen in experiment one. Stimulus pairs in the 

middle location certainly had significantly longer RTs. However, it was also observed for 

the smaller distances of 0.05, 0.1 and 0.2, that those the near_one location had smaller 

RTs (but slightly more errors) than those in the near_zero location. This slight 

asymmetry might have been caused by attention being drawn to the top of the zero-to-

one range by the requirement to choose the larger stimulus.  

 

Because of the second modification to the experiment, at least twice as many 

participants were required to take part in the experiment. It was therefore considered 

impractical to interview each participant verbally about their strategy.  
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3.3 Method  

 

3.3.1 Participants 

Fifty-eight staff and students at the University of Huddersfield initially participated in the 

second experiment. However, subsequent analysis showed that several participants 

performed no better than chance and were therefore rejected from the analysis; as 

detailed in the results section. Thus a second session of the same experiment was run 

involving nine further participants, all students at the University of Huddersfield.  

Equivalent conditions and the same software and equipment were used during both 

sessions. There were sixty-seven participants in total, all of whom completed the task.  

 

3.3.2 Stimuli 

The 120 stimuli used in Experiment 1 were again used in Experiment 2.  An additional 24 

stimuli were created, 12 each at distances 0.6 and 0.7. The stimuli again consisted of 

one fraction presented in its simplest terms with denominator of 11, 13, 15, 17 or 19 

and one three-digit decimal fraction.  The decimal fractions were generated by adding 

and subtracting the distances 0.6 and 0.7 from each fraction and rounding to three 

decimal places, ignoring pairs in which the decimal fell outside of the range 0 to 1.  

 

The 88 possible new stimulus pairs were split into 12 groups; two for each of the 6 

combinations of distance (0.6 and 0.7) and location (near-zero, middle, and near-one). 

This allowed for one in which the decimal was the larger and one in which it was the 

smaller.  Two stimulus pairs were randomly chosen from each of the 12 groups so that, 

as in the first experiment, one could be presented with the larger number on the right 

and the other with the larger number on the left. 

 

This resulted in a set of 144 stimuli in total. 

3.3.3 Procedure 

The experimental procedure was almost identical to that of Experiment 1 with the 

exception that participants were divided into two conditions. Thirty-three of them had to 

choose the larger of the two numbers presented, as in Experiment 1 (response-larger 

condition). The other thirty-four participants had to choose the smaller of the two 

numbers (response-smaller condition). 
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The experiment was conducted using SuperLab® 4.0 stimulus presentation software in a 

quiet, well-lit laboratory at the University of Huddersfield.  Participants were instructed 

that within each trial they had to decide which of the two numbers presented was the 

largest and to press the leftmost button on the response pad  if it was the number on 

the left and the rightmost button on the response pad  if it was the number on the right.  

They were informed that both speed and accuracy of response were important.  In 

addition, it was made clear that some of the tasks were expected to appear very easy 

and some extremely difficult and the purpose of the experiment was to find out what 

factors made the task more difficult. 

  

A practice block of four stimuli preceded the experimental blocks. Participants were given 

feedback on their accuracy on the practice stimuli and were allowed to ask questions if 

they did not understand the procedure.  The 144 experimental stimuli were then 

presented in random order in three blocks of 48 with no further feedback on accuracy 

nor opportunity to ask questions. 

Participants were given the opportunity to take a break between the blocks. All 

participants were presented with the same stimuli.   

  

Response times and accuracy were recorded by the program.  

3.4 Results 

3.4.1 Pre-analysis data processing 

One RT of only 1ms and another of 97s, (twice as long as the next longest RT), were 

considered extreme outliers and replaced with the next smallest RT and next largest RT 

of the participants concerned respectively. 

 

The number of errors per candidate ranged between 3 and 89, with a mean average of 

33.5. Nine subjects performed no better than chance at the 5% level. That is, they made 

more than 61 errors out of the 144 trials, B(144, 0.5). It can be speculated that these 

participants may have misunderstood the task or were not able to, or did not attempt to, 

complete the task accurately. Whatever the reason for their poor performance, as the 

purpose of the experiment was to uncover mental representations accessed in 

completion of the comparison task, the nine subjects were excluded from any further 

analysis. This left thirty participants in the response-smaller condition and twenty-eight 

in the response-larger condition. 
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3.4.2 Response times analysis 

3.4.2.1 Skew and transform 

Using the method of Crawley (2005), it was found that the RT data were highly positively 

skewed (γ = 4.023, p < .001). So a log transform was applied to the RTs as for 

experiment 1. This resulted in much less skewed data (γ = 0.192, p = .424) which a Q-

Q plot (figure 3.1) showed to be approximately normal across the majority of the data 

but with some negative skew caused by 17 of the 8352 responses. 

 

 
Figure 3.1 Q-Q plot of logRT quantiles against theoretical normal quantiles for experiment two 

 

3.4.2.2 Position factor 

Log RTs for each participant were averaged over the seven positions A to G for each of 

the distances 0.05, 0.1 and 0.2 and an ANOVA was carried out for the factor of position 

for distances 0.05, 0.1 and 0.2 combined. Again, to minimise the effect of individual 

differences, the factor of participant was included. This revealed a significant effect of 

position F(6,812) = 23.5, p < .001. 

 

Then a pairwise (Bonferroni corrected) t-test between positions A to G was carried out 

on these data for each of the response types separately . The significance results for 

response-larger are shown in table 3.1 and for response-smaller in table 3.2. 

 

Certainly the results of these pairwise t-tests for the response-larger condition mirror 

those of experiment one in that position G nearest to one stands out as having 
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significantly different mean logRTs  from the other positions, except, in this case, 

position A. Also position A, nearest to zero has significantly different mean logRTs from 

positions B, D and E. Again, the middle positions of B, C, D, E and F do not have 

significantly different mean logRTs.  

 

larger A B C D E F 

B <.001 - - - - - 

C .220 1 - - - - 

D <.001 1 1 - - - 

E .012 1 1 1 - - 

F .254 .504 1 .242 1 - 

G .112 <.001 <.001 <.001 <.001 <.001 
Table 3.1 Sig. results for pairwise t-test between positions A to G, distances 0.05, 0.1 and 0.2, response-

larger condition for experiment two 

 

 

 

smaller A B C D E F 

B <.001 - - - - - 

C <.001 1 - - - - 

D <.001 1 1 - - - 

E <.001 .060 .735 1 - - 

F <.001 .132 .784 1 1 - 

G .004 1 .359 .028 .007 .020 
Table 3.2 Sig. results for pairwise t-test between positions A to G, distances 0.05, 0.1 and 0.2, response-

smaller condition for experiment two 

 

For the response-smaller condition, the result is similar but with one key difference. Here 

it is position A, nearest zero that stands out as having significantly different (in fact 

smaller) mean logRTs  from the other positions. Position G, nearest to one, now is 

significantly different from only A, D , E and F in terms of mean logRT. The middle 

positions of B, C, D, E and F do not have significantly different mean logRTs except 

maybe positions B and E which are marginally significantly different from one-another.  

 

As a result of these observations, the factor of position was again re-coded to the new 

factor of location at the three levels near _zero, middle and near_one as before. 

Experiment two was initiated before the problem with the recoding for distance 0.3 was 

discovered for experiment one. So again, there are the same missing combinations of 

factors for distance 0.3 only. The new distances of 0.6 and 0.7 were not problematic to 

recode as the definition of the original positions at these distances matched the new 

location definitions exactly. 
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3.4.2.3 Distance effect by stimulus 

The mean average RT was calculated for each stimulus pair. This was to allow for testing 

of the strength of a distance effect against another, non-independent effect as was done 

in the analysis of experiment one.  

 

Specifically, there was concern that any distance effect found might be due to 

participants comparing the absolute difference between the numerator of the fraction 

with the first decimal place of the decimal. Comparing the two numbers in this manner 

would actually have been a very successful tactic. For all of the stimulus pairs of distance 

0.3 or more, this comparison was congruent with a holistic magnitude comparison and 

would therefore have yielded the same correct answer. At the smaller distances of 0.05, 

0.1 and 0.2, 59 of the 84 stimulus pairs (70.2%) could also have been correctly 

compared thus. 

 

Nevertheless, the association of mRT with distance was far stronger (rs = -.768, p < 

.001) than it was with the absolute difference between the numerator of the fraction and 

the first decimal place of the decimal (rs = -.428, p < .001). 

3.4.2.4 Mixed linear modelling for logRT 

An initial test of the null model (for logRTs) with no predictors, against a baseline model 

including random intercepts for participants, showed significant individual differences (L 

Ratio 2948, p < .001). This indicated that a mixed linear model approach with 

participant as a random effect was again a suitable method for the analyses of logRT. 

3.4.2.4.1 Hierarchy 

The experiment design was between groups of participants that were either in the 

response-smaller condition or the response-larger condition. Hence the experimental 

design could be thought of as hierarchical in nature with participants nested within 

response conditions. The addition of this hierarchy to the random effects did not improve 

the fit of the model by itself (L Ratio < 1, p = .998). This indicates that there was not a 

significant difference between the average logRTs of the participants in the two response 

conditions. However, the hierarchy was included in the model for all further analysis of 

the full data set to allow for detection of any interaction with other factors. 

3.4.2.4.2 Individual testing of potential factors 

The five possible fixed factors (response, distance, location, largerstim & largelr) were 

added separately  to the random intercepts only (baseline) model. An ANOVA test was 

then applied to detect improvements of each individual factor on its own to the fit of the 

model (see table 3.3).  
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Factor df AIC BIC 
Log 

Likelihood L Ratio p 

Baseline 4 16259.8 16288.0 -8125.9 

  Response 5 16261.8 16297.0 -8125.9 0.027 .870 

Distance 5 15691.0 15726.1 -7840.5 570.9 <.001 

Location 6 15879.2 15921.4 -7933.6 384.6 <.001 

Largerstim 5 16215.6 16250.8 -8102.8 46.25 <.001 

Largelr 5 16258.9 16294.1 -8124.5 2.90 .089 

Table 3.3 Results of ANOVA comparisons between baseline linear model and linear models including single 
factors for experiment two 

 

Response on its own made no significant improvement to the model. Neither did whether 

the larger stimulus was on the right or the left, again implying there is no significant 

SNARC effect present. The three factors of distance, location and largerstim that were 

found to be significant improvements to the model for the previous experiment, again 

individually improve the linear model for experiment two. 

3.4.2.4.3 Building the model – single factors 

Therefore the model was built up, as before adding the significant single factors. A 

summary of this process is in table 3.4. 

 

Additional factor df AIC BIC 
Log 

Likelihood L Ratio p 

Distance 5 15691.0 15726.1 -7840.5 
  

Location 7 15529.0 15578.2 -7757.5 165.9 <.001 

Largerstim 8 15483.3 15539.6 -7733.7 47.71 <.001 

Table 3.4 Results of ANOVA comparisons between versions of the linear model as single factors are added 
for experiment two 

 

This single factor model is summarised in table 3.5. It can be seen that the distance 

effect was significant (p < .001) with b = -0.617 implying that logRT was reduced on 

average by 0.0617 for each 0.1 increase in distance (or RT is reduced by 5.98%).  

 

Factor/level b (95% CI) SE df t-value p 

distance -0.617 (-0.681, -0.554) 0.032 8290 -19.05 <.001 

location: near_zero  middle 0.192 (0.157, 0.226) 0.018 8290 10.87 <.001 

location: middle  near_one 0.019 (-0.021, 0.059) 0.021 8290 0.92 .356 

largerstim: decimal  fraction -0.091 (-0.117, -0.065) 0.013 8290 -6.92 <.001 

Table 3.5 Summary of the linear model including all significant single factors for experiment two 

 

The shift between location near_zero and middle was significant (p < .001)  with an 

increase in logRT of 0.192 on average (or a 21.2 average increase in RT). However, the 

shift between the middle and near_one locations was not significant overall (p = .356). 
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In addition, stimuli in which the larger of the pair was a fraction were significantly (p < 

.001) faster, on average in log RT by 0.091 (a 8.70% decrease in RT). 

3.4.2.4.4 Interaction with response 

To find out whether these effects were significantly different for the two response 

category, as predicted, each of the interactions between response and distance, location 

and largerstim were added and tested for a significant improvement to the model.  

 

Interaction added df AIC BIC 
Log 

Likelihood L Ratio p 

No Interaction 8 15483.3 15539.6 -7733.7 
  

distance/response 9 15464.6 15527.9 -7723.3 20.68 <.001 

location/response 11 15411.7 15489.0 -7694.9 56.93 <.001 

largerstim/response 12 15394.9 15479.3 -7685.4 18.82 <.001 

Table 3.6 Results of ANOVA comparisons between versions of the linear model as interactions with response 
condition are added for experiment two 

 

It can be seen in table 3.6 that all three of the factors significantly (p < .001) interacted 

with response. This implies that each of the factors distance, location and largerstim had 

a different effect on RT for participants in the two response conditions. These differences 

between response conditions are illustrated in figures 3.2, 3.3 and 3.4 . 

 

 
Figure 3.2 Graph of median RT against distance by response condition for experiment two 

 

Figure 3.2 indicates that the distance effect was present for both response conditions. 

However, it appears to have been stronger for those in the response-larger condition. 
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Also, the addition of distances 0.6 and 0.7 highlighted that the levelling-off of the 

distance effect seen in the results of experiment one was not continued in experiment 

two for either response condition. RTs at distance 0.7 were shorter than at any of the 

smaller distances. 

 

In fact, for both response conditions, the distance effect appears to have been 

approximately linear over distances 0.05 to 0.7. Interestingly, virtually the same pattern 

of median RTs for distances 0.05 to 0.5 is shown here for the response-larger condition 

as can be seen for experiment 1 (figure 2.3, page 33 ) even though participants in 

experiment two responded faster on average at all comparable distances. 

 

 
Figure 3.3 Graph of median RT against location by response condition for experiment two 

 

Figure 3.3 demonstrates the difference in average RTs for the location factor between 

response conditions. The participants that chose the larger number were fastest in the 

near_one location, next fastest in the near_zero location and slowest in the middle 

location as in experiment one. However, the participants that chose the smaller number 

were fastest on average in the near_zero location, followed by the near_one location and 

then the middle location.  

 

The effect that responses were slower when the decimal was the larger of the stimulus 

pair was significant in experiment one but does not appear to be so here for the 

comparable response-larger condition (fig 3.4). It does seem to be markedly present for 

the response-smaller condition, however. 
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Figure 3.4 Graph of median RT against larger stimulus type by response condition for experiment two 

 

In order to further investigate the differences between the two response conditions, a 

mixed linear model was built up for each condition separately. 

3.4.2.4.5 Response-smaller model (with interactions considered) 

The mixed effects linear model was built up by adding the fixed effects of single factors 

and interactions in the same manner as previous models within this document. The 

differing baseline intercepts of participants was the random effect specified in the model. 

 

A summary of the final model is shown in table 3.7. The three main fixed effects of 

distance, location and largerstim made significant (p < .001) improvements to the 

baseline (random effect only) model. There was no improvement to the model made by 

any interactions between the factors. This contrasts with the results for experiment one 

for which there were interactions for the larger distances but not for the smaller 

distances (0.05, 0.1 & 0.2). 

 

Factor/level b (95% CI) SE df t-value p 

distance -0.474 (-0.561, -0.387) 0.044 4286 -10.68 <.001 

location: near_zero  middle 0.277 (0.229, 0.324) 0.024 4286 11.45 <.001 

location: middle  near_one 0.171 (0.116, 0.227) 0.028 4286 6.08 <.001 

largerstim: decimal  fraction -0.144 (-0.18, -0.109) 0.018 4286 -8.00 <.001 

Table 3.7 Summary of the linear model for the response-smaller condition of experiment two 

 

Therefore, for the participants who chose the smaller number of the pair, RTs decreased 

as  distance increased; RTs in the middle location were significantly larger than RTs in 

the near_zero and near_one locations; RTs were significantly larger when the larger 

stimulus was a decimal than when it was a fraction. 
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3.4.2.4.6 Response-larger model (with interactions considered) 

Again a similar mixed effects linear model was built up by adding the fixed effects of 

single factor and interactions; adopting additions to the model only when they made a 

significant (or near significant) improvement to the model. 

 

The results were somewhat more complex than for those participants in the response-

smaller condition. The fixed effects of distance and location made significant (p < .001) 

improvements to the model. However, the factor of largerstim made only a marginal (p 

= .075) improvement to the model as a single factor.  

 

In addition, significant improvements were made to the model by the three interactions 

between distance and location (p < .001); distance and largerstim (p = .002); location 

and largerstim (p < .001). The three-factor interaction did not make a significant 

improvement to the model (p = .144). 

 

A summary of the final model in shown in table 3.8. 

 

single factors b (95% CI) SE df t-value p 

distance -0.689 (-0.890, -0.489) 0.102 3995 -6.73 <.001 

location: near_zero  middle 0.332 (0.233, 0.432) 0.051 3995 6.54 <.001 

location: middle  near_one -0.035 (-0.158, 0.088) 0.063 3995 -0.56 .578 

largerstim: decimal  fraction 0.074 (-0.031, 0.179) 0.054 3995 1.37 .169 

two-factor interactions           

dist/location near_zero  middle -0.481 (-0.703, -0.260) 0.113 3995 -4.26 <.001 

dist/location middle  near_one 0.123 (-0.129, 0.376) 0.129 3995 0.96 .339 

distance/largerstim decimal  fraction 0.241 (0.060, 0.423) 0.093 3995 2.60 .009 

largerstim decimal  fraction /loc. 

near_zero  middle 
-0.190 (-0.289, -0.091) 0.051 3995 -3.76 <.001 

largerstim decimal  fraction /loc. middle 

 near_one 
-0.300 (-0.416, -0.185) 0.059 3995 -5.09 <.001 

Table 3.8 Summary of the linear model including interactions for the response-larger condition  of 
experiment two 

 

Figures 3.5, 3.6 and 3.7 show the nature of the significant interactions found. There was 

a more pronounced distance effect for stimulus pairs in the middle location than in the 

other locations (figure 3.5).  

 

There were some small deviations from the general distance effect. For stimulus pairs in 

which the larger was a decimal, average RTs increased slightly just between distances 

0.4 and 0.5. Whereas for stimulus pairs in which the larger was a fraction, average RTs 

increased slightly just between distances 0.6 and 0.7 (figure 3.6). 
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Figure 3.5 Graph of median RT against distance by location for response-larger condition of experiment two 

 

 

 
Figure 3.6 Graph of median RT against distance by larger stimulus type for response-larger condition of 

experiment two 

 

Both when the larger stimulus was a fraction and when it was a decimal, RTs were 

larger, on average in the middle location than the other two locations. However, only for 

stimulus pairs in which the larger was a fraction, RTs were smaller in the near_one 

location than in the near_zero location (figure 3.7). 
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The interactions are more concerned with the relative strength rather than the general 

pattern of the effects of distance and the location factor on RT.  

 

 
Figure 3.7 Graph of median RT against location by larger stimulus type for response-larger condition of 

experiment two 

 

3.4.3 Error analysis 

Again, as for experiment one,  logistic (binomial) regression analysis of errors was 

carried out.  due to the between subjects design, it was not feasible to include response 

condition as a factor in the analysis. The errors of the participants in the two response 

conditions were analysed both separately and together. Due to a difference between the 

results for the two response types, they are reported separately. Those participants in 

the response-smaller condition made more errors overall. Their error rate was 21.7% as 

compared to 16.4% for those in the response-smaller condition. 

 

The coefficient and odds ratio results for each response can be seen in table 3.9. 

 

Again, the factor of participant was included in the analysis but results for individuals are 

not reported in the table. However, individual differences between participants had a 

significant effect on the number of errors both for those in the response-larger condition 

(χ2(27) = 223, p <.001) and for those in the response-smaller condition (χ2(29) = 390, 

p <.001). 

 

Table 3.10 shows the percentages of incorrect responses for each distance, location, 

larger stimulus type and the position of the larger stimulus. Percentages for the two 

response conditions are shown separately. 
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Response larger 

Source b SE odds ratio (95% CI) z value p 

distance -3.679 0.297 0.025 (0.014, 0.045) -12.37 <.001 

location: near_zero  middle 0.413 0.133 1.511 (1.165, 1.961) 3.10 .002 

location: middle  near_one -0.245 0.175 0.783 (0.555, 1.103) -1.41 .160 

largerstim: decimal  fraction -0.441 0.092 0.643 (0.537, 0.771) -4.77 <.001 

largelr: left  right 0.081 0.092 1.084 (0.905, 1.299) 0.89 .375 

Response smaller 

Source b SE odds ratio (95% CI) z value p 

distance -2.363 0.224 0.094 (0.061, 0.146) -10.56 <.001 

location: near_zero  middle 0.554 0.118 1.740 (1.381, 2.193) 4.71 <.001 

location: middle  near_one 0.269 0.141 1.309 (0.993, 1.725) 1.90 .057 

largerstim: decimal  fraction -0.753 0.082 0.471 (0.401, 0.553) -9.19 <.001 

largelr: left  right 0.226 0.081 1.254 (1.070, 1.469) 2.80 .005 

Table 3.9 Results of a logistic regression analysis of error data by response condition for experiment two 

 

For both response conditions, there was a significant decrease in errors as distance 

between stimuli increased χ2(1) = 257, p <.001 for response-larger and χ2(1) = 170, p 

<.001 for response-smaller. Again, the odds ratio is difficult to interpret for distance but 

its small size implies a sharp drop-off in errors with as distance increases. 

 

In addition, there were significantly more errors made when the larger stimulus was a 

decimal than when it was a fraction for both conditions. That is, for participants in the 

response-larger condition, errors were 1.56 times as likely when the larger stimulus was 

a decimal (or the smaller a fraction) with  χ2(1) = 23.0, p <.001. For the response-

smaller condition the figure is 2.12 times as likely (χ2(1) = 86.8, p <.001). 

 

The location of stimuli within the zero to one range consistently had a significant effect 

on whether an error was made. For participants in the response-larger condition, χ2(2) = 

29.7, p <.001; for those in the response-smaller condition, χ2(2) = 27.4, p <.001. For 

the response-larger condition, in the middle location, errors were 1.51 times as likely 

than in the near_zero location with no significant difference between the middle and 

near_one locations. Similarly, for the response-smaller condition, in the middle location, 

errors were 1.31 times as likely than in the near_zero location but the difference 

between the middle and near_one locations was not significant.  

 

There was, however, a marked difference between the two response conditions in the 

effect of whether the larger stimulus was on the left or the right. This factor had no 

significant effect on errors for the participants that chose the larger stimulus. However, 

participants that chose the smaller stimulus were significantly more likely to make an 

error when the larger stimulus was on the right (χ2(1) = 7.85, p = .005). 
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Response larger 

         
distance 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

% Errors 30.6% 23.9% 14.9% 9.5% 7.7% 6.0% 5.7% 6.3% 

         location near_zero middle near_one 

     % Errors 10.7% 21.6% 9.3% 
     

         larger stimulus 
type 

decimal fraction 

      % Errors 19.0% 13.8% 
      

         position of 
larger stimulus 

left right 

      % Errors 15.8% 17.0% 
      

         Response smaller 

         
distance 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

% Errors 33.9% 28.3% 21.0% 14.2% 15.0% 12.5% 12.8% 11.4% 

         location near_zero middle near_one 

     % Errors 13.9% 26.5% 17.3% 
     

         larger stimulus 
type 

decimal fraction 

      % Errors 27.1% 16.2% 
      

         position of 
larger stimulus 

left right 

      % Errors 20.0% 23.4% 
      Table 3.10 Tables showing percentage of errors at levels of distance, location and largerstim factors by 

response condition for experiment two 

 

3.4.4 Summary of results 

3.4.4.1 Response times 

By far the largest effect on RTs was the classic distance effect. This was true for both 

response conditions. One of the purposes of experiment two was to find out whether the 

distance effect for these types of stimuli was limited to smaller distances only (up to 

distances of approximately 0.3). The results, however, showed RTs did continue to 

decrease as distance increased up to the maximum distance used of 0.7, though perhaps 

less sharply for distances above 0.3.  
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The other main purpose of the experiment was to find out whether the largerstim effect 

would be affected by changing the response that participants had to give (choosing the 

smaller rather than the larger number). The results were completely unexpected in that 

for both response conditions, RTs were greater, on average, when the larger of the 

stimulus pair was a decimal, than when it was a fraction. Moreover, this effect was only 

significant for participants in the response-smaller condition. 

 

An effect of location persisted for both response conditions in that RTs in the middle 

position were greatest.  

3.4.4.2 Errors  

The results for the error analysis of experiment two were largely the same as those for 

experiment one. For both response conditions, the most significant effect on error rates 

was the distance between stimuli. Rates of errors decreased as distance increased but 

again, this effect diminished for the larger distances. 

 

In both response conditions, error rates also demonstrated a significant location effect. 

They were again, significantly higher for the middle location than for the near_zero and 

near_one locations. In addition, errors were significantly more likely to occur when the 

larger of the stimulus pair was a decimal than when it was a fraction. 

 

The only difference between the two response conditions was that participants in the 

response-smaller condition made significantly more errors when the larger stimulus was 

(congruently) on the right than when it was (incongruently) on the left. This was the 

only evidence in either experiment of the SNARC effect. 

3.5 Discussion 

3.5.1 Response 

I did not find a great difference in the nature of any of the main effects between the 

response-larger  group and the response-smaller group. The distance and largerstim 

effects were significant and in the same direction for both response groups. The effect 

that RTs were larger in the middle location persisted with the change in response.  

This contrasts somewhat with the findings of Arend & Henik (2015). They conducted a 

SiCE experiment with whole numbers and found that changing the instruction from 

choose larger to choose smaller significantly altered the outcome of their experiment. 

They concluded that the instruction given caused an attention capture effect towards the 
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goal of the task. That is, attention was drawn to the physically larger object presented if 

asked to choose the larger etc. 

 

Of course, the SiCE effect indicates an unconscious processing of magnitude information 

and more specifically that the magnitude information is common to numerals and 

physical size. As discussed before, the magnitude comparison task in experiments one 

and two required far too much deliberate processing to be noticeably affected by 

unconscious processes.  

 

The only outcome of experiment two which might be explained by an attention capture 

effect is the general reverse in the slight asymmetry of the location effect for the two 

response groups (see figure 3.3). When participants were asked to choose the larger 

number, they were slightly faster when the stimulus pair was in the near_one location 

than when it was in the near_zero location. This was reversed for participants asked to 

choose the smaller number.  

 

These differences were small but might well have been due to attention being captured 

towards to top of the zero-to-one range by the instruction to choose the larger number 

and to the bottom of the range by the instruction to choose the smaller number.  

 

3.5.2 Largerstim effect  

Indeed, the main purpose of varying the response required of participants was whether 

the largerstim effect was influenced by the requirement of participants to response to 

the larger of the stimulus pair in experiment one. That is, was the larger part of the 

largerstim effect partly due to a focus of attention on the larger stimulus? Would it be 

diminished or reversed by a change in response.   

 

The two stimuli presented in each trial did have physical size differences, as in the 

experiments of Arend & Henik (2015). Had the largerstim effect been reversed by the 

change in response, some similar kind of attention capture effect might have proved a 

plausible explanation for the largerstim effect. However, the largerstim effect was 

unchanged by the change in response. Even when asked to choose the smaller of two 

numbers people still responded more slowly and less accurately when the larger number 

in the stimulus pair was a decimal and the smaller number was a fraction.  

 

Again, the only concrete conclusion that can be made is that there are differences 

between the processing or representation of fractions and decimals. As mentioned in the 
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previous chapter, it is not surprizing that there would be a difference.  Differences in 

external representations of numbers have been shown to affect responses to 

mathematical tasks e.g Gonzales & Kolers (1982) comparing Roman and Arabic 

numerals; Dehaene et al. (1993) comparing verbal with Arabic numbers. Perhaps even 

more relevantly, understanding of likelihood has been shown to be influenced by the 

representation of proportion used (Gigerenzer & Edwards 2003). 

 

These differences do not preclude the accessibility of common (possibly approximate) 

holistic magnitudes. Indeed Dehaene et al. (1993) concluded that though the methods of 

processing of the magnitudes of the different external representations were distinct, 

these had to be interconnected to allow for comparison between external 

representations. 

 

Nevertheless, the differences between the magnitude processing of fractions and 

decimals, particularly as measured by RTs, still require exploration. 

3.5.3 Location effect 

The lack of any SNARC effect in experiments one and two reinforces previous findings 

(Bonato et al., 2007; Kallai & Tzelgov, 2009) that the holistic magnitudes of fractional 

numbers are not processed automatically. However, important facts about the 

magnitude of fractions have been shown to be  processed automatically.  

 

Kallai & Tzelgov, (2009) found a SiCE when comparing fraction stimuli to the number 

one. This implies that the fact that a fraction is less than one is automatically processed. 

This is magnitude information. Furthermore, this result implies an influence of the 

number one when considering fraction magnitude. When presented with a fraction, it 

seems we are automatically aware that it is less than one, whether helpful or not to the 

task at hand. 

 

The location effect found in my experiments one and two also implies that fraction and 

maybe decimal magnitude knowledge is tied or anchored not only to one but to zero as 

well.  This highlights the need for more investigation into the significance of zero and 

one in the mental representations of fractional numbers. 

 

In one study, Ganor-Stern (2012) compared the magnitude of unit fractions (1/2, 
1/4, 

1/6 

& 1/9) with either zero or one. They did not find a distance effect when comparing these 

unit fractions with one but they did find that this was quicker than comparing them with 

zero. One interpretation of this result is that there is a fast, automatic response to any 
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given fraction that it is smaller than one. Also there is not an equally fast larger than 

zero automatic response. 

 

However, it is problematic that only unit fractions were used. As they were unit fractions, 

Ganor-Stern’s stimuli were all closer to zero than one (except 1/2) so the fact that 

comparisons were quicker against one than against zero might be seen as a distance 

effect of sorts.  

 

It has been shown that different types of fraction stimuli produce different results even 

when used within the same magnitude comparison task (e.g. Meert et al., 2009; Meert, 

Grégoire & Noël, 2010; Faulkenberry & Pierce, 2011). Therefore, comparing a wider 

range of fractions against both zero and one might be throw more illumination on the 

significance of these two numbers to our mental representation of fractional numbers. 

3.5.4 Distance effect 

Experiment two successfully replicated the strong distance effect found in experiment 

one. When comparing a relatively unfamiliar fraction with a three digit decimal, RTs were 

again dependent on the magnitude distance between the two stimuli with larger 

distances being associated with shorter RTs. Does this show a comparison between 

fractions and decimal based upon common holistic magnitudes? 

 

It has been demonstrated that people automatically process the separate components of 

fractions (Kallai & Tzelgov, 2012a) and each place value component of a (whole) decimal 

number separately (Kallai & Tzelgov, 2012b). Fraction magnitude comparison tasks have 

been shown to be carried out using componential magnitude comparison alone (Bonato 

et al., 2007) However, these findings do not preclude the use of holistic magnitude 

mental representations of fractions and decimal fractions any more than of multi-digit 

whole numbers.  

 

Indeed, Zhang & Wang (2005) showed it is possible to remove the distance effect for 

two-digit whole numbers by manipulating the stimuli presented. Similarly, it has been 

shown that the use of components only for the comparison of the magnitude of two 

fractions is dependent on the stimuli presented.  

 

People might have more automatic responses to the single digit components of a number 

presented to them. However, they can and will use holistic magnitudes to make a 

comparison between two fraction stimuli  if they do not allow for a componential 

comparison (e.g. Meert et al., 2009, 2010; Schneider & Siegler, 2010; Faulkenberry & 
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Pierce, 2011). Indeed, people were observed to process components of fractions before 

forming a holistic magnitude representation in the mouse-tracking study of 

Faulkenberry, Montgomery & Tennes (2015). Also recent studies from neuroscience 

imply that the brain encodes whole magnitudes rather than components when presented 

with fractions (Ischebeck, Schocke & Delazer, 2009; Jacob, Vallentin & Nieder, 2012). 

 

 

Yet in my experiments people were comparing fractions with decimals so consideration 

must be made of how people process and represent decimal magnitudes also. When 

directly comparing the magnitude of two 3-digit decimal fractions with one another, a 

distance effect is found that mirrors that of 3-digit decimal whole numbers (DeWolf, 

Grounds, Bassok & Holyoak, 2014). This is an outcome similar to that found by Huber, 

Klein, Willmes, Nuerk & Moeller (2014) in an eye-tracker study contrasting the 

comparison of pairs of decimals with the comparison of pairs of whole numbers.  

 

Matthews, Chesney & McNeil (2014) did cross-format magnitude comparison tasks for 

fractions and diagrams of proportion. They found a distance effect for fractions versus 

non-symbolic representations implying participants were accessing holistic magnitude 

representations of fractions that were directly comparable to visual proportions.  

 

But what of comparisons between fractions and decimals? Response times for my 

experiments one and two were relatively long. They clearly were a difficult set of 

magnitude comparisons to make. However, with a very few exceptions, participants 

were remarkably successful at the task and a strong, significant distance effect was 

found in both. The stimuli were designed to make it very difficult indeed to successfully 

compare them in any way other than via holistic magnitudes. The fact that such a strong 

distance effect was found implies that there is indeed a common, (if fuzzy), mental 

number line for fractions and decimals. 

 

The distance effect has often been found to diminish in size with an increase in distance 

(e.g. DeWolf et al., 2014; Matthews et al., 2014; Schneider & Siegler, 2010). For simpler 

experimental designs than mine, that used a target-stimulus paradigm, it has been 

possible to accurately model this shape as logarithmic. However, this is not a universal 

result and a linear model implying no decrease in t distance effect as distance between 

fractions increases has also been found (Faulkenberry, 2011). 

 

In my experiment one, the distance effect appeared to completely plateau between 

distances 0.4 and 0.5. Part of the changes to the design of experiment two was to look 
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for an extension to the distance effect at larger distances. This certainly seems to have 

been found.  In experiment two, the average RT continued to decrease as distance 

increased up to 0.7 (see figure 3.2). It also appeared to be approximately linear in 

nature for each response group. However, though the distance effect was fairly 

consistent across all three location levels, I do have some concern that for the largest 

distances (particularly 0.7) one of the stimuli would be fairly close to either zero or one 

for all stimulus pairs. 

 

3.5.5 Next steps 

Nevertheless, the questions left open after experiments one and two are not about the 

distance effect. They are about the emergent results of the location and largerstim 

effects. 

 

What requires further investigation is whether differences can be found between the 

magnitude representations of fractions and decimals that might help explain the causes 

of the largerstim effect. Additionally,  are estimations of the size of fractions and 

decimals anchored to the end points of the zero-to-one range? Is this the cause of the 

location effect? 

  



75 

 

Chapter 4 Experiments 3 and 4 

4.1 Introduction 

This fourth chapter is a commentary on the short third and fourth experiments that were 

carried out simultaneously for the purpose of this thesis. It starts with a summary of the 

reasoning which led to the design of these experiments; in particular, how they follow on 

from the findings of the previous two experiments. The details of the design of both 

experimental tasks and stimuli follows.  

 

The next part of the chapter covers the methodology and outcomes of experiment three. 

This includes analysis of the results and any findings thereof. The third section of the 

chapter similarly covers the experimental procedure, analysis and results of experiment 

four.  

 

Finally, the last section of the chapter is a consideration of the implications of the results 

of these two experiments with an assessment of whether they were helpful in clarifying 

outcomes of the first two experiments. 

4.2 Justification 

4.2.1 Revisiting the results of experiments one and two 

Both of the magnitude comparison tasks of relatively unfamiliar fractions and decimals, 

that were experiments one and two, produced evidence of three significant influences on 

both RTs and error rates. 

 

The largest of these was the predicted distance effect. This implied the existence of a 

magnitude understanding of these numbers that is to some extent, common to both 

forms of fractional numbers of the kind presented. The extent of commonality and 

difference of the magnitude representations of fractions and decimals was left in 

question. 

 

Possible differences were highlighted by a surprising effect on RTs uncovered by 

experiment one which was again found in experiment two. This was that when the larger 

stimulus in the magnitude comparison task was a decimal, RTs were significantly 

greater. Experiment two confirmed  that this largerstim effect was not due to the 

phrasing of the question asked.  Asking participants to choose the smaller of two 

numbers rather than the larger led to the same result.  
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This outcome suggests that there might be some key difference in how the magnitudes 

of fractions and decimals are represented in the brain. It could be, for example, that 

comprehension of the magnitude of a decimal gets harder as the decimal gets larger or 

that comprehension of the magnitude of a fraction gets easier as the fraction gets larger.  

 

Additionally, in both experiments one and two, there was an effect on RTs of the location 

of stimuli within the zero-to-one range. Responses were significantly faster when one of 

the stimulus pair was very near to (within 0.1 of)  zero or one than when they were in 

the middle. This effect was not universally found to interact with the largerstim effect. So 

this would seem to have been an effect that was acting on both fractions and decimals in 

the same way. Therefore implying that judging the magnitude of both fractions and 

decimals is easier when they are very close to zero or one than when they are not. 

 

Another finding to consider comes from the reporting of strategies in experiment one. 

Many participants reported that they were using ½ or 0.5 as an anchor point against 

which to judge which stimulus was larger or smaller. However, the consequent effect 

was not found that responses were faster when the stimuli were positioned either side of 

0.5. This can be seen, particularly in the results of trials at the smaller distances of 0.05, 

0.1 and 0.2. For these trials, the central position (D) was the only one with stimuli either 

side of 0.5 but RTs were not significantly quicker for this position than they were for any 

of the other middle positions in either experiment.  

 

Indeed, the effect of location, would more imply that the key anchor points used against 

which to make a magnitude judgement are zero and one only; rather than, for example 

0.5, as reported by participants.  

 

Within the stimulus pairs presented in experiments one and two, one number was 

always closer to zero and the other number was closer to one. If the number comparison 

was, at least partly, being made by judging the closeness of stimuli to zero and one then 

the location effect could have arisen from an anchoring effect. This has been observed 

before in the magnitude estimation of whole numbers (Izard & Dehaene, 2008). 

 

In the context of the decimals and fractions presented in experiments one and two, the 

anchoring effect would  mean the judgement of their magnitudes were each anchored at 

either zero or one and then adjusted away from the anchor. So the further away from 

the anchor(s) the stimulus was, the longer the estimation took because more adjustment 

needed to take place. However, it should be noted that there was not any evidence of 
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gradation of the location effect in experiments one and two. Responses were quicker for 

stimuli positioned within 0.1 of zero or one but similarly slower otherwise.  

 

A simple same/different to zero or one judgement would not be sufficient to make all 

size comparisons. However, when only one of the numbers passes some threshold which 

makes it sufficiently the same as zero or one, a comparison could thus be made. If 

neither number is judged as such, some other methodology would need to be employed. 

This could be the explanation of the location effect found in experiments one and two, 

particularly at the smaller distances.  

 

There did seem to be some plateauing of the distance effect for the larger distances 

(above 0.4). For these, even the stimulus pairs in the middle position, might be judged 

at either end to be sufficiently close to zero or one. The judgement that near_zero and 

near_one are within 0.1 of the ends of the zero-to-one range was somewhat arbitrary 

and based on the need to classify the positions chosen in the original design of 

experiment one. So perhaps the stimulus pairs at the larger distances were similarly as 

fast as each other because for these, one of the stimuli was beyond the threshold at 

which it could be recognised as almost zero or almost one. 

 

The three questions that experiments three and four were designed to answer were: 

1. Could more evidence be found of similarities and differences between the 

magnitude representations of fractions and decimals; specifically for the types of 

fractions and decimals used in experiments one and two? 

2. Could any differences found help to explain the largerstim effect? That is, could 

an explanation be found  for an increase in the difficulty of the magnitude 

comparison task when the larger stimulus is a decimal and the smaller a fraction 

rather than vice-versa? 

3. Could more evidence be found of a location effect? That is, are magnitude-type 

judgements of fractions and decimals particularly easy/fast near to zero and one? 

4.2.2 Experiment three design 

Experiment three was a magnitude comparison task with the two targets of zero and 

one. It was designed to discover whether the effect of location on RTs and error rates in 

experiments one and two might be somewhat explained by judging the individual stimuli 

against both zero and one. That is, would far smaller RTs (and error rates) again be 

found for stimuli very near to zero and one with fairly uniform RTs (and error rates) for 

those in between?  
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Experiment three was additionally intended to investigate similarities and differences in 

the pattern of responses for fraction stimuli and decimal stimuli. It was hoped to thus 

throw light onto the largerstim effect found in the previous experiments. That is, would 

RTs and errors be particularly low for fractions very close to one and for decimals very 

close to zero? 

 

A very simple task was utilised. Participants were shown single fractions or decimals and 

asked to judge whether they were closer to zero or closer to one. Response times and 

accuracy were recorded.  

4.2.3 Experiment four design 

Experiment four was a magnitude estimation task. It also was designed to investigate 

causes of the largerstim effect and find out whether a different pattern of responses 

would be found, in RTs to fractions and decimals stimuli.  Again, would RTs be 

particularly low for fractions very close to one and for decimals very close to zero? 

 

In addition, it was intended to discover whether the effect of location on RTs and 

accuracy in experiments one and two could, in fact, be explained by the challenge 

associated with estimating the magnitude of numbers of different sizes within the zero-

to-one range. That is, would far smaller RTs again be found for stimuli very near to zero 

and one with fairly uniform RTs for those in between? 

 

The size of errors for an estimation task would be quantifiable. Therefore, rather than 

looking at error rates, would the size of errors be greater in the middle of the zero-to-

one range? Would errors for fractions be particularly small nearest to one; and for 

decimals be particularly small nearest to zero? 

 

In the experiment four task, participants were shown single fractions or decimals and 

asked to estimate their size by placing a mark on a line. It was particularly important 

that the stimuli were presented in random order for this task as it has been shown that 

successive number estimations  can be biased by the first number presented (Sullivan, 

Juhasz, Slattery & Barth, 2011). 
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4.3 Experiment three 

4.3.1 Method 

4.3.1.1 Participants 

38 psychology students at the university of Huddersfield, (5 men), participated in the 

experiment in return for course credit. Their ages ranged from 18.6 to 37.0 years with 

an average age of 20.9 years and a standard deviation of 3.6 years. 

4.3.1.2 Stimuli 

Stimuli consisted of one relatively unfamiliar number with a magnitude between zero and 

one; either a decimal or a numerator/denominator fraction. The fractions were the sixty-

four fractions with denominators of 11, 13, 15, 17 or 19 that cannot be simplified. The 

decimals were the decimal equivalents of these sixty-four fractions, rounded to three 

decimal places. This made 128 stimuli in total.  

4.3.1.3 Procedure 

The experiment was conducted using E-Prime® 2.0 stimulus presentation software in a 

lab at the University of Huddersfield. Participants were instructed that within each trial 

they had to press the ‘Z’ key if they decided if the number shown was closer to zero or 

the ‘M’ key if it was closer to one.  They were informed that both speed and accuracy of 

response were important. 

 

A practice block of four stimuli preceded the experimental blocks. Participants were given 

feedback on their accuracy in the practice block stimuli and were allowed to ask 

questions if they did not understand the procedure.  All of the 128 experimental stimuli 

were then presented in random order with no further feedback on accuracy nor 

opportunity to ask questions.  

 

Response times and accuracy were recorded by the program.  

 

4.3.2 Results 

4.3.2.1 Response time analysis 

4.3.2.1.1 Pre-analysis data processing  

One participant made 115 errors out of 128 trials (90%). All participants had obtained at 

least a level two maths qualification, (GCSE or equivalent).  Therefore it was not 
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considered possible that this participant was unable to tell if a number was closer to zero 

or one. It was judged, instead, that they either misunderstood the task or had 

deliberately not completed the task correctly. In either case, their results were not 

considered valuable and were not included in any analysis. 

 

The number of errors for the remaining thirty-seven participants ranged from 0 to 48. All 

performed better than chance at the task at the 5% level. That is, they made fewer than 

55 errors out of 128 trials, B(128, 0.5). Therefore, all were included in the analysis.  

Their ages ranged from 18.6 to 37.0 years with an average age of 20.9 years and a 

standard deviation of 3.6 years. 

 

Two datasets were formed for analysis.  One was the average response times (mRTs), 

across participants, for each of 64 decimal stimuli. The other was the mRTs, across 

participants, for the 64 fraction stimuli. Measurements are in ms. 

 

One potential outlier was identified for the decimal mRTs. This was for the decimal 

stimulus 0.462 which had an outcome 3.71 standard deviations above the mean for the 

decimal mRTs. Investigation of the individual responses for this stimulus, (decimal 

0.462), identified only one value (out of 37) that might have been considered an outlier 

for the candidate concerned. It was 3.38 standard deviations above the mean for that 

candidate’s responses (p = .0004). The analysis detailed in this section was also run with 

the outlier replaced by M + 2SD for the decimal mRTs. This had virtually no effect upon 

the results obtained. Therefore, it was decided that there was no overwhelming reason 

to omit or adjust any data for the decimal 0.462 stimulus and the analysis reported 

herein is of the unaltered data.  

4.3.2.1.2 Separate analysis of mRTs for decimal and fraction stimuli 

Histograms showed both datasets to be approximately normal though with some 

possible positive skew for the decimal stimuli mRTs (figure 4.1). However, the method of 

Crawley (2005), found  insignificant skew for both decimal stimuli mRT (γ = 1.08, p = 

.141) and fraction stimuli mRT (γ = -0.057, p = .523). 

 
To investigate the shape of the RTs across the zero-to-one range, scatter diagrams were 

produced of mRT against the size of the stimulus presented for each of the fraction and 

decimal datasets (figure 4.2). Locally weighted regression (loess) calculations were 

performed to find smoothed patterns for the data (span = .75, polynomial degree = 2). 

The results are shown in green on figure 4.2.  
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Figure 4.1 Histograms showing distribution of mean RTs for (i) decimal and (ii) fraction stimuli for 

experiment three 

 

Neither of the distributions of mRTs had the shape of the RTs for the seven positions of 

the smaller distances in experiments one and two (see figure 2.4, page 34). These were 

generally flat in the middle with sharp declines at either end. grew had a distinct peak  

 
Figure 4.2 Scatter diagrams of mean RT against stimulus size for (i) decimal and (ii) fraction stimuli for 

experiment three 

 

Particularly different from those was the distribution of the mRTs for the fraction stimuli 

of experiment three which had an approximately negative parabolic shape. That is, 
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faster mRTs for the smallest and largest stimuli, (nearest to zero and to one), with mRTs 

increasing for the middle stimuli; reaching a maximum mRT  for a stimulus close to 0.5 

in size.  

 

For the decimal stimuli the pattern was similar, rising in the middle of the range but not 

with the distinctive parabolic curvature. There was also a much less pronounced 

difference between mRTs for stimuli at the centre of the zero-to-one scale and those 

nearest the ends of the scale. The potential outlier (0.462, 2235) can be clearly 

identified on the scatter diagram (figure 4.2) as being the largest mRT but it does follow 

the general pattern of responses increasing toward the middle of the stimulus range. 

 
Due to the approximately parabolic shape of the data, multiple linear regressions were 

calculated to predict mRT based on stimulus size and (stimulus size)2 for each dataset. 

The purpose of these models was descriptive rather than predictive. The fraction stimuli 

were an exhaustive list within set parameters and not a random nor a representative 

sample of all fractions. Therefore any models obtained could not legitimately be used to 

predict anything other than a general pattern of results for other types of fractions.  

 

For decimal stimuli a significant regression equation was found (F(2,61) = 7.67, p = 

.0011). Both stimulus size (t = 2.73, p = .0082) and (stimulus size)2 (t = -3.311, p = 

.0016) were significant predictors of mRT. A significant regression equation was also 

found for fraction stimuli (F(2,61) = 36.0, p < .001). Both stimulus size (t = 8.24, p < 

.001) and (stimulus size)2 (t = -8.49, p < .001) were significant predictors of mRT. The 

regression models are displayed on figure 4.3 along with r2 values for the models, 

adjusted for the additional predictor. Details of the coefficients are shown in table 4.1. 

 

Decimal stimuli 

Coefficient Estimate SE 95% CI (model) Bootstrapped 95% CI 

intercept 1618 55.3 (1510, 1727) (1528, 1699) 

stimulus size  701 257 (198, 1204) (268, 1254) 

(stimulus size)
2
 -826 249 (-1315, -337) (-1390, -405) 

Fraction stimuli 

Coefficient Estimate SE 95% CI (model) Bootstrapped 95% CI 

intercept 1580 83.3 (1417, 1744) (1423, 1707) 

stimulus size  3178 386 (2421, 3934) (2615, 3804) 

(stimulus size)
2
 -3185 375 (-3920, -2449) (-3738, -2595) 

Table 4.1 Details of the coefficients of the parabolic models for mean RT for decimal and fraction stimuli for 
experiment three 
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Figure 4.3 Parabolic models of mean RT for (i) decimal and (ii) fraction stimuli for experiment three 

 

There is no particularly systematic pattern to the scatter around the model on either 

graph. The residual plots for the two models (figure 4.4) do not have obviously non-

random patterns. They are centred roughly around zero with one outlying value each (at 

decimal 0.462 and at fraction 10/13). This indicates that the parabolic multiple linear 

regression models using stimulus size and (stimulus size)2 as predictors of mRT were 

somewhat appropriate. 

 
Figure 4.4 Plot of residuals for parabolic models for mRT for (i) decimal and (ii) fraction stimuli for 

experiment three 
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Confidence intervals for the model coefficients were also found by bootstrapping with 

5000 replications. The results are shown in table 4.1. The results do not differ greatly 

from those found by regression analysis implying that the datasets are close enough to 

normal distributions for the parametric regression analysis to be valid.  

The adjusted r2 values indicated that the model for the decimal stimuli accounted for 

only 17.5% of the variance within mRTs to decimal stimuli whereas the model for the 

fraction stimuli accounted for 52.6% of the variance within mRTs to fraction stimuli.  The 

fraction model has a considerably steeper curve (gradient function xy 63703178 ) than 

the decimal model  (gradient function xy 1652701 )The fraction model peaks at the 

centre of the zero-to-one range (0.499). The decimal model peaks at 0.424, slightly to 

the left of the centre of the range.  

 

Responses to fraction stimuli were far more affected by the position of the stimulus 

within the zero-to-one range than were responses to decimal stimuli. Additionally, the 

nature of the effect was virtually symmetrical about ½ for fractions. 

 

 

One additional test of mRTs was applied to the results of the fraction stimuli only. This 

was a Kruskal-Wallis test to check whether there was evidence of any difference in the 

average mRT results for the five different denominators (11, 13, 15, 17 & 19). If one or 

some of the denominators made the task particularly easier than the others that could 

have confounded the results. No significant difference between denominators was found 

χ2(4) = 2.04, p = .728.  

4.3.2.1.3  Analysis of the difference between fraction and decimal mRTs 

The scatter diagrams in figure 4.2 and the histograms in figure 4.1 indicated that mRTs 

for the decimal stimuli were smaller than those to the equivalent fraction stimuli. A 

paired t-test was conducted on mRT of decimal and fraction stimuli of the same size. 

Average response times to decimal stimuli (M = 1700ms, SD = 144ms) were 

significantly lower than those to fraction stimuli (M = 2134ms, SD = 286ms), with very 

large effect size; t(63) = 13.7, p < .001, d = 1.92. Effect sizes are interpreted using the 

benchmarks proposed by Cohen (1988) and Rosenthal (1996). 

 

To mirror the largerstim results of experiments one and two, the pattern of the paired RT 

differences (fraction – decimal stimuli) should have been positive near zero and negative 

near one. That is because the largerstim effect possibly implies that it is more difficult to 

judge the size of fractions than decimals near zero (when they are smaller) and more 

difficult to judge the size of decimals than fractions near one (when they are larger).  
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To investigate the pattern of differences, a scatter diagram of difference in mRT against 

stimulus size was plotted with loess calculations performed as above, to find a smoothed 

pattern for the data (figure 4.5). It showed an approximately parabolic shape with lower 

differences near to the stimulus size end points of zero and one; with higher differences 

in the middle of the range. The differences are almost all positive and roughly of the 

same size at either end of the zero-to-one range. 

 
Figure 4.5 Scatter diagram of difference in mean RT (fraction – decimal stimuli) against stimulus size for 

experiment three 

 

So again a multiple linear regression was fitted using stimulus size and (stimulus size)2 

as predictors of mRT differences. A significant regression equation was found (F(2,61) = 

15.7, p < .001). Both stimulus size (t = 5.59, p < .001) and (stimulus size)2 (t = -5.48, 

p < .001) were significant predictors of mRT. Details of the coefficients are shown in 

table 4.2. 

 

Coefficient Estimate SE 95% CI (model) Bootstrapped 95% CI 

intercept (not significant) -37.8 95.6 N/A (-198,   86 ) 

stimulus size  2477 443 (1609, 3345) (1768, 3211) 

(stimulus size)
2
 -2358 431 (-3203, -1514) (-3037, -1596) 

Table 4.2 Details of the coefficients of the parabolic model for differences in mean RT for experiment three 

 

No systematic pattern to the scatter around the model is apparent on the graph and the 

residual plot for the model (figure 4.6) has a suitably random pattern around zero with 

just one potential positive outlier (at decimal 0.842, fraction 16/19).  Confidence intervals 
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for the model coefficients were also found by bootstrapping with 5000 replications, 

shown in table 4.2. The results do not differ greatly from those found by regression 

analysis. 

 
Figure 4.6 Plot of residuals for parabolic model for differences in mean RT for experiment three 

 

These findings imply that the multiple linear regression model using stimulus size and 

(stimulus size)2 as predictors of mRT difference was appropriate. The adjusted r2 value 

indicates that the model accounted for 31.7% of the variance within mRT differences. 

 

Figure 4.7 Parabolic model of mean RT for differences in mean RT with 95% CI for experiment three 
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The regression model with the associated adjusted r2 is shown on figure 4.7, graphically 

depicted as a solid blue line, with 95% CI for the model shown as red dotted lines. For 

0.269 < stimulus size < 0.780 the 95% CI is completely above the difference = 0 line. 

This implies that for stimulus sizes in the interval (0.269, 0.780), responses to fraction 

stimuli were significantly larger than they were to their equivalent decimal stimuli. 

 

It also can be seen that the model reaches its maximum only slightly to the right of the 

centre of the zero-to-one range (at 0.525). This implies that within the middle of the 

range it is significantly harder to identify whether a fraction is closer to zero or one than 

it is for the equivalent decimal. However, at the far ends of the range it is not 

significantly harder to make this judgement for a fraction than a decimal. 

 

4.3.2.2 Error analysis 

4.3.2.2.1 Pre-analysis data processing 

Analysis of the errors made by participants was conducted. These data were far more 

problematic than the response times data as participants might have given incorrect 

responses even when they knew the correct response to give. They had no opportunity 

to correct their responses. All participants had at least a level two qualification 

(minimum GCSE grade C or equivalent). As such, the task itself should have been 

relatively easy for all participants. Indeed, several verbally reported frustration at having 

“pressed the wrong button”.  

 

Again, the erroneous responses were processed into two separate datasets. One was the 

percentage rate of errors, across participants, for each of 64 decimal stimuli. The other 

was the percentage rate of errors, across participants, for the 64 fraction stimuli.  

 

4.3.2.2.2 Separate analysis of errors for decimal and fraction stimuli 

Both datasets were found to be somewhat but not significantly positively skewed using 

the method of Crawley (2005). The error rate for decimal stimuli produced γ = 1.59, p = 

.058 and for fraction stimuli, γ = 1.06, p = .147. However, as can be seen in histograms 

of the datasets (figure 4.8), neither distribution looks approximately normally 

distributed. 
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Figure 4.8 Histograms showing distribution of error rates for (i) decimal and (ii) fraction stimuli for 

experiment three 

 

Scatter diagrams of error rate against stimulus size were plotted for each dataset (figure 

4.9). The pattern of errors for decimal stimuli is generally flat but with peaks in error 

rate around stimulus sizes 0 (zero) and 0.5. It is unlikely participants could not tell 

whether a decimal was closer to zero or one. So the little peak around 0.5, perhaps is 

allied to the hesitation shown by the peak in mRTs here. Hesitation that could lead  to 

fluster and pressing the wrong button.  

 
Figure 4.9 Scatter diagrams of error rates against stimulus size for (i) decimal and (ii) fraction stimuli for 

experiment three 
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The pattern of errors for fraction stimuli is more useful as participants might have not 

known the correct answer. It has a distinctive shape with lower error rates around the 

ends of the zero-to-one range and a steep rise to a peak in errors in the middle of the 

range, around 0.5. However, this is not an approximately parabolic pattern as 

demonstrated by the plots of the loess calculations shown in green on the scatter graph 

of error rates against stimulus size for the fraction stimuli only (figure 4.9(ii)). The lower 

error rates near to zero and one do mirror the location effect of experiments one and 

two. 

 

The lack of normal distributions and the complexity of the  shapes of the scatter 

diagrams preclude more in-depth analysis of the errors for fractions and decimals 

separately. 

4.3.2.2.3 Analysis of the difference between fraction and decimal errors 

The differences calculated by subtracting the error rate (%) for each decimal stimulus 

from the error rate (%) for the equivalent  fraction stimulus were not significantly 

skewed, γ = 0.265, p = .40. Additionally, the histogram produced from these differences 

(figure 4.10) demonstrated an approximately normal distribution.  

 
Figure 4.10 Histogram showing distribution of difference in error rates (fraction – decimal stimuli) for 

experiment three 

 

Therefore a paired t-test was conducted to compare the error rate of decimal and 

fraction stimuli of the same size. Average % error rates for decimal stimuli (M = 5.53, 

Mdn = 2.78, SD = 5.71, range = 25) were significantly lower than those for fraction 

stimuli (M = 19.5, Mdn = 16.2, SD = 11.7, range = 51.4), with very large effect size; 

t(63) = 9.63, p < .001, d = 1.51. So significantly more errors were made when the 

stimulus was a fraction than when it was a decimal. 
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4.3.2.3 Summary of results 

Average RTs to both fraction and decimal stimuli were affected by their size (or position 

in the zero-to-one range with larger mRTs in the middle of the range than at the ends of 

the range. However, responses to fraction stimuli were far more affected by the position 

of the stimulus then those to decimal stimuli. In addition, the pattern of the effect was 

symmetrical about ½ for fractions but with a peak lower than 0.5 for decimals indicating 

generally lower RTs for larger decimals. 

 

The pattern of errors also peaked around the middle of the zero-to-one range for both 

fractions and decimals. For decimal stimuli, other than this peak, there was little pattern 

to the errors. However the errors for the fraction stimuli demonstrated a graduated rise 

to the middle peak.  

 

Responses to fraction stimuli were longer and less accurate than responses to decimal 

stimuli, particularly in the middle of the zero-to-one range. 

 

Taken together, this implies that the task of deciding whether a number is closer to zero 

or to one is more difficult when that number is a fraction than a decimal. Near to zero 

and one, there is not a significant difference in the difficulty of the task but as the stimuli 

move towards 0.5, the task becomes increasingly more difficult for fraction stimuli than 

for decimal stimuli. 

 

4.4 Experiment four 

4.4.1 Method 

4.4.1.1 Participants 

32 psychology students at the university of Huddersfield, (5 men), participated in the 

experiment in return for course credit. Their ages ranged from 18.6 to 24.4 years with 

an average age of 20.5 years and a standard deviation of 1.5 years. 

4.4.1.2 Stimuli 

Stimuli consisted of relatively unfamiliar fraction or decimal with a magnitude between 

zero and one.  The stimuli were presented, in black on a white screen, one-by-one, in 

the centre of the screen.  Simultaneously, below this, a horizontal line was shown, taking 

up approximately the central third of the screen. The ends of the horizontal line were 
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marked with two equal-sized, small vertical lines. Beneath the left hand vertical line was 

a ‘0’. Beneath the right hand vertical line was a ‘1’.  

 

The fractions used were the sixty-four fractions with denominators of 11, 13, 15, 17 or 

19 that cannot be simplified. The decimals were the decimal equivalents of these sixty-

four fractions, rounded to three decimal places. This made 128 stimuli in total.  

4.4.1.3 Procedure 

The experiment was conducted using E-Prime® 2.0 stimulus presentation software in a 

lab at the University of Huddersfield. The same computer was used by all participants. 

Stimuli were preceded by a fixation cross in the centre of the screen. Participants were 

instructed that within each trial they had to judge the size of the fraction or decimal 

stimulus and mark it on the number line using a mouse click.  The participants were able 

to see their judgement on the number line as a thin green line that appeared for 500ms 

after clicking. Once made, participants were not able to change their estimation. 

 

The experimental block was preceded by two preparatory blocks. A practice block of four 

stimuli first accustomed participants to the procedure and allowed them to pause and 

ask questions of the experimenter for clarification of the task, if required . Then a 

calibration block followed in which participants clicked twice on zero and twice on one. 

The 128 experimental stimuli were then presented in random order with the opportunity 

to take a break offered half way through. 

 

Response times and the position of mouse clicks in pixels were recorded by the program 

for the practice, calibration and experimental blocks.  

4.4.2 Results 

4.4.2.1 Response time analysis 

4.4.2.1.1 Pre analysis data processing 

As for the analysis of RTs for experiment three, two datasets of average response times 

were formed. One was the mRTs, across participants, for each of 64 decimal stimuli. The 

other was the mRTs, across participants, for the 64 fraction stimuli (measurement in 

ms).  

 

All of the mRTs in each dataset were less than 3 standard deviations away from the 

mean for that dataset. So none of these data were considered to be outliers. 
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4.4.2.1.2 Separate analysis of mRTs for decimal and fraction stimuli 

Both datasets were found to be somewhat but not significantly positively skewed using 

the method of Crawley (2005). The RTs  for decimal stimuli produced γ = 0.711, p = 

.240 and for fraction stimuli, γ = 0.451, p = .327. Histograms of the datasets are shown 

in figure 4.11. 

 
Figure 4.11 Histograms showing distribution of mean RTs for (i) decimal and (ii) fraction stimuli for 

experiment four 

 

 
Figure 4.12 Scatter diagrams of error rates against stimulus size for (i) decimal and (ii) fraction stimuli for 

experiment four 

 

Scatter diagrams were produced of mRT against the size of the stimulus presented for 

each of the fraction and decimal datasets (figure 4.12). As for experiment three, loess 

calculations were performed to find smoothed patterns for the data (span = .75, 

polynomial degree = 2). The results are shown in green on figure 4.12. 
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For  decimal stimuli there was a generally flat shape to the mRTs. They appeared to be 

fairly consistent across the zero-to-one interval, possibly slightly larger close to zero. 

This was the opposite of what the largerstim would lead one to expect which is that RTs 

should be lower for smaller decimals than for larger decimals. Neither a linear (r2 = 

.0376, F(1,62) = 2.42, p = .125), nor a parabolic (adj.r2 = .0732, F(1,62) = 3.49, p = 

.0369) model accounted for any notable proportion of the variance. 

 

For fraction stimuli, the shape of mRT against stimulus size was again not the relatively 

flat pattern with a sharp drop-off at either end seen for mRT against position in 

experiment one (figure 2.4). There was instead, the same approximately parabolic shape 

as seen in experiment three. Mean RTs were greater in the middle of the zero-to-one 

range than at the ends but the transition between the middle and ends was relatively 

smooth.  

 
Figure 4.13 Parabolic models of mean RT for fraction stimuli for experiment four 

 

A multiple linear regression was fitted using fraction size and (fraction size)2 as 

predictors of mRT. A significant regression equation was found (F(2,61) = 36.5, p < 

.001). Both fraction size (t = 8.05, p < .001) and (fraction size)2 (t = -8.49, p < .001) 

were significant predictors of mRT. The model as well as the adjusted r2 value are shown 

in figure 4.13. Details of the coefficients are in table 4.3 along with confidence intervals 

for the model coefficients found by bootstrapping with 5000 replications.  

 

The bootstrapped results differ only very slightly from those found by regression 

analysis. Also, the residual plot for the model (figure 4.14) has a suitably random 
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pattern, approximately around zero.  This implies that the multiple linear model with 

fraction size and (fraction size)2 as predictors of mRT is suitable for these data.  

 

Coefficient Estimate SE 95% CI (model) Bootstrapped 95% CI 

intercept 2175 149 (1883, 2466) (1928, 2409) 

fraction size  5554 690 (4202, 6906) (4388, 6872) 

(fraction size)
2
 -5696 671 (-7011, -4382) (-7003, -4543) 

Table 4.3 Details of the coefficients of the parabolic model for fraction stimuli for experiment four 

 

The adjusted r2 value indicates that the model accounted for 52.9% of the variance 

within mRTs. The model reaches its maximum only slightly to the left of the centre of the 

zero-to-one range (at 0.488).  

 
Figure 4.14 Plot of residuals for parabolic model for fraction stimuli for experiment four 

 
Again, a Kruskal-Wallis test was conducted on mRTs for the fraction stimuli to check 

whether there was evidence of any difference in the average mRT results for the five 

different denominators (11, 13, 15, 17 & 19). No significant difference was found χ2(4) = 

1.92, p = .750.  

4.4.2.1.3 Analysis of the difference between fraction and decimal mRTs 

Just as for experiment three, mRTs for fraction stimuli appeared to be generally longer 

than for decimal stimuli. The paired differences calculated by subtracting the mRT for 

each decimal stimulus from the mRT for the equivalent  fraction stimulus were not 

significantly skewed, γ = 0.148, p = .441.  The histogram produced from these 

differences (figure 4.15) demonstrated an approximately normal distribution.  

 

Therefore, a paired t-test was conducted on these paired differences. Average response 

times to decimal stimuli (M = 2458ms, SD = 2254ms) were significantly lower than 
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those to fraction stimuli (M = 3100ms, SD = 2787ms), with very large effect size; t(63) 

= 7.50, p < .001, d = 1.51. 

 

 
Figure 4.15 Histogram showing distribution of difference in mean RTs (fraction – decimal stimuli) for 

experiment four 

 

The pairwise (fraction – decimal) differences in mRT were potted against stimulus size 

(figure 4.16). Loess calculations were performed to find a smoothed pattern for the 

points which again demonstrated an approximately parabolic shape (shown in green). 

The largerstim effect led to the expectation that this difference would be greater near to 

zero than near to one. However, the curve appears to be approximately symmetrical 

with the turning point in the centre of the zero-to-one range. 

 
Figure 4.16 Scatter diagram of difference in mean RT (fraction – decimal stimuli) against stimulus size for 

experiment four 

 

Again, a multiple linear regression was fitted using stimulus size and (stimulus size)2 as 

predictors of mRT differences. A significant regression equation was found (F(2,61) = 
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24.32, p < .001). Both stimulus size (t = 6.85, p < .001) and (stimulus size)2 (t = -6.97, 

p < .001) were significant predictors of mRT differences. Details of the coefficients are 

shown in table 4.4. 

 

Coefficient Estimate SE 95% CI (model) Bootstrapped 95% CI 

intercept (not significant) -603 220 (-1034, -172) (-1003,   -181 ) 

stimulus size  6973 1018 (4978, 8968) (4980, 8909) 

(stimulus size)
2
 -6897 990 (-8837, -4957) (-8747, -5065) 

Table 4.4 Details of the coefficients of the parabolic model for differences in mean RT for experiment four 

 

The residual plot for the model (fig 4.17) has a suitably random pattern around zero with 

just one potential negative outlier (at decimal 0.462, fraction 6/13).  Confidence intervals 

for the model coefficients were also found by bootstrapping with 5000 replications, 

shown in table 4.4. The results differ only very slightly from those found by regression 

analysis. 

 
Figure 4.17 Plot of residuals for parabolic model for differences in mean RT for experiment four 

 

These findings imply that the multiple linear regression model using stimulus size and 

(stimulus size)2 as predictors of mRT difference was appropriate. The adjusted r2 value 

indicates that the model accounted for 42.5% of the variance within mRT differences. 

 

The regression model with the associated adjusted r2 is shown on figure 4.18, graphically 

depicted as a solid blue line, with the 95% CI for the model shown as red dotted lines. 

The 95% CI is completely above the difference = 0 line on the interval (0.383, 0.629), 

implying that for these stimulus sizes, responses to fraction stimuli were significantly 

larger than they were to their equivalent decimal stimuli. However, nearer to the end 

points of zero and one, the model dips below the difference = 0 line implying that here 
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responses to fraction stimuli were smaller than they were to their equivalent decimal 

stimuli. 

 
Figure 4.18 Parabolic model of mean RT for differences in mean RT with 95% CI for experiment four 

 

It also can be seen that the model reaches its maximum only slightly to the right of the 

centre of the zero-to-one range (at 0.506). These outcomes taken together imply that 

within the middle of the range it is significantly harder to judge the size of a fraction 

than it is to judge the size of a decimal. At both ends of the range it is not significantly 

harder to make this judgement for a fraction than a decimal, in fact the opposite might 

be true.  

4.4.2.1.4 Comparison between experiments three and four of fraction mRTs 

Response times for fraction stimuli in experiment four appeared to be generally longer 

than for experiment three. Therefore, a paired t-test was conducted on the paired 

differences of fraction mRTs (experiment four – experiment three). Average response 

times to fraction stimuli in experiment three (M = 2134ms, SD = 286ms) were 

significantly lower than those to the same stimuli in experiment four (M = 3100ms, SD = 

2787ms), with very large effect size; t(63) = 18.9, p < .001, d = 2.33).  

 

The differences between mRTs for fraction stimuli in experiments four and three ranged 

between 331ms and 2115ms (M = 966, SD = 408). 

 

There did not appear to be a particular pattern to the differences across the zero-to-one 

range. Loess calculations showed a slight rise and then fall in differences so a parabolic 

model was fitted. A significant fit was found, (F(2,61) = 6.43, p = .003), with both 
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stimulus size (t = 3.22, p = .002) and (stimulus size)2 (t = -3.50, p < .001) significant 

predictors of mRT differences. However, the adjusted r2 value was only .147 implying 

that only 14.7% of the variance in mRT differences could be accounted for by the model. 

This implies that the effect of fraction size (or position) upon the difference in mRTs for 

fraction stimuli in experiments four and three was small in size. 

4.4.2.2 Accuracy analysis 

4.4.2.2.1 Calibration and pre-analysis data processing 

Participants’ calibration results were collated and used to locate the zero and one ends of 

the estimation number line. For both the zero and one calibration clicks, the mode, 

median and mean pixel locations were the same; with zero placed at 159 pixels and one 

at 471 pixels. These were very consistent between participants and therefore taken to be 

reliable locators of the end points of the estimation line.  It followed that each pixel 

between these end points was representing a distance of approximately 0.003205 on the 

number line.  

 

This was not ideal as the decimal numbers presented were given to three decimal places 

but participants had not been given the facility to respond with that degree of accuracy. 

Nevertheless, it was considered a reasonable degree of accuracy for the purposes of 

detecting the general shape of responses and any differences in the shape of responses 

between decimal and fraction stimuli. 

 

Participants’ responses were therefore converted from pixels into decimal values. Then 

for the purpose of analysis of the accuracy of estimation, the average response size was 

calculated, across participants, for each of 64 decimal stimuli and then again for each of 

the 64 fraction stimuli. They were not significantly skewed for either the fraction stimuli 

(γ = -0.364, p = .641) or the decimal stimuli (γ = -0.330, p = .629). Histograms for 

each of these datasets (not included herein) demonstrated reasonably normal 

distributions.  

4.4.2.2.2 Separate analysis of accuracy for decimal and fraction stimuli 

Average estimations (mean response size) were plotted against stimulus size for both  

the decimal and fraction stimuli and linear regression lines calculated for each. These are 

shown in figure 4.19 (i) and (ii). The target line y = x is shown for comparison.  
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Figure 4.19 Linear models for mean response size for (i) decimal and (ii) fraction stimuli  for experiment four 

 

It can be seen that the linear regression lines were a very good fit to both the decimal 

and the fraction data. Indeed, the linear correlation between stimulus size and mean 

response size was very large for both decimals (r = .990, t(62) = 55.5, p < .001) and 

fractions (r = .985, t(62) = 45.2, p < .001).  

 

4.4.2.2.3 Comparisons of accuracy between fraction and decimal stimuli 

A paired t-test showed that the responses to decimal stimuli were generally 

underestimates of the true value (t(63) = -13.1, p < .001, d  =  0.244) by 

approximately 0.07 on average. It should be noted that these are under- estimates of 

approximately 0.02 even based on solely their leading decimal. A t-test of mean 

response against leading decimal yielded t(63) = -3.96, p < .001, d  =  0.067). 

 

The responses to fraction stimuli appear to be approximately correct or slightly over 

estimated between zero and roughly 0.6 and then slightly underestimated between 0.6 

and one. A generally  accurate/over- and then under-estimate would lead to the 

decrease in the gradient of the regression line from the expected value of 1 to 0.872.  

 

An over- and then under-estimation (inverse ogival) pattern of proportion estimations 

was seen by Varey et al. (1990). So paired t-tests were carried out. First, for stimuli 

below 0.6 in size, no significant error in the size of estimation was found (t(38) = 0.238, 

p = .813). Stimuli above 0.6 in size, however, were found to be significantly 

underestimated (t(24) = -9.08, p < .001, d  =  0.733) by approximately 0.08 on 

average.  
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A paired t-test comparison between fractions and decimals of the absolute difference 

between estimate and target number showed that estimates of decimal stimuli were 

significantly less accurate than of their equivalent fraction stimuli  (t(63) = 2.79, p = 

.003) and that this effect was of medium size (d  =  0.527). 

4.4.2.3 Summary of results 

Average RTs to fraction stimuli were affected by their size (or position in the zero-to-one 

range) with larger mRTs in the middle of the range than at the ends of the range. The 

pattern of the effect was symmetrical about approximately ½ for fractions.  

 

The size/position of decimal stimuli within the range had a far less clear-cut effect on 

RTs. However, it was clear that responses to fraction stimuli were longer than responses 

to decimal stimuli, particularly in the middle of the zero-to-one range. 

 

For both fractions and decimals, the size of estimation had a very strong linear 

association with the size of the stimulus presented. However, there was a systematic 

underestimation of decimal stimuli and estimations of fraction stimuli were therefore 

more accurate generally.  

 

Taken together, this implies that estimation of the size of fractions is a more lengthy and 

deliberate procedure than is the estimation of the size of a decimal, particularly as the 

stimuli move away from zero and one towards 0.5. Yet this lengthier procedure yields a 

more accurate result (at least for numbers below 0.6).  

 

The factor of denominator did not confound the results for either experiment. 

Average RTs to fraction stimuli were significantly much greater in experiment four than 

they were in experiment three. The difference was not greatly affected by the size of the 

fraction. 

4.5 Discussion 

4.5.1 Contrasting the results for fractions and decimals 

Decimal magnitudes were accessed more quickly than fraction magnitudes. Their 

proximity to the end points of zero and one was more accurately and quickly accessed 

too. These differences were significant in the middle of the zero-to-one range only.  
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Similarly, DeWolf et al. (2014) also found RTs for fractions were significantly greater 

than for 3-digit decimals. There’s were magnitude comparison tasks in which they 

presented very similar stimuli to mine. However, unlike in my experiments one and two, 

the fractions and three-digit decimals were separately, and not directly, compared. They 

concluded that the increased RTs for fractions implied that representations of fraction 

magnitudes are more fuzzy in nature and less easy to access than those of decimals. 

 

This is a conclusion supported by the longer RTs and greater error rates for fractions 

than for decimals in experiments three and longer RTs for experiment four. However, I 

also found that this effect was mediated by the location of the stimuli within the  zero-

to-one range. Close to zero and close to one there were no differences in RT for fractions 

and decimals. Conversely, I found that fraction estimates, though they took longer, were 

more accurate. The underestimation of decimals was systematic across the whole of the 

zero-to-one range. 

 

Iuculano & Butterworth (2011) did not analyse the pattern of RTs in terms of the 

location of the stimulus in the zero-to-one interval, (their experiments were more 

concerned with the differences between adult’s and children’s estimations of different 

types of stimuli). However, they too had generally longer RTs for fraction than decimal 

stimuli in their NP task for their adult participants. 

 

Both fraction and decimal estimations in my experiment four had an approximately linear 

relationship to their target number. In their NP task, Iuculano & Butterworth also 

presented their participants with fractions and decimals to estimate and mark on a 

number line. They used a smaller set of fractions and decimals which included familiar 

number, such as 1/4 and more unfamiliar numbers like 7/9.  Despite the different 

numbers used, they got very much the same kind of results for accuracy of estimation. 

That is, linear models were a very good fit to the pattern of mean estimate against 

stimulus size for both fractions and decimals. However, they did not discuss whether 

fractions or decimals had any systematic under- or over- estimation.  

4.5.2 Patterns of estimation in experiment four 

In the estimation task of experiment four, different patterns of size estimations were 

observed for fractions and decimals. Both results differed from the cyclical over- and 

then under-estimation, inverse ogival pattern for judgements of spatial proportion found 

by e.g. Varey et al. (1990), Hollands & Dyre (2000) or of numerical interval estimations 

found by e.g. Karolis,  Iuculano & Butterworth (2011). If this had been observed it would 

have implied that judgements had been biased away from the end points of zero and 
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one. Conversely an under-and then over- estimation pattern would have implied 

judgements biased towards the end points.  

 

However for decimals there was an markedly linear pattern of systematic slight under-

estimation that is consistent with the dominance of the leading decimal. For fractions 

there was some evidence of underestimation for the larger fractions but generally 

estimates were very accurate. Neither of these patterns demonstrates any influence of 

the theoretical anchor points of zero and one upon estimation accuracy. So the patterns 

in the accuracy of estimation do not support my theory of the use of zero and one as 

anchor points in size judgements about fractional numbers. 

 

The systematic underestimation of  the decimal stimuli implies that participants were 

overly influenced by the leading decimal digit, neglecting the rest of the number, rather 

than rounding  to one decimal place. However, the estimates of decimals were also an 

underestimation of their leading decimal digit. This combined with the greater accuracy 

of estimation for fraction magnitude estimations seems at odds with the findings of 

DeWolf et al. (2014).  

 

They found faster and more accurate magnitude comparisons between pairs of decimal 

stimuli than pairs of fraction stimuli. They concluded that mental magnitude 

representations of fractions were more fuzzy and less easily accessed than those of 

decimals. It could be argued that I have found the opposite in this estimation task.  

 

Systematic underestimation is consistently found when people are asked to bisect a line 

segment (see Jewell & McCourt, 2000 for a review and meta-analysis). This is the same 

task as marking the decimal 0.5 or familiar fraction ½ on a line. Longo & Lourenco 

(2007) saw the same type of underestimation in the bisection of pairs of whole numbers. 

The conclusion was of the leftward spatial bias being mirrored as a similar numerical 

bias. In other words, a numerical bias that supports the mental number line theory for 

whole numbers because it matches a known spatial bias.  

 

By giving participants a spatial task to do – mark numbers on a line, spatial biases could 

have been elicited. They might have had a stronger affect on the decimal stimuli 

precisely because they are less fuzzily mapped onto a spatial mental number line. This 

could have been the reason for the systematic underestimation of decimals even against 

their leading digit. 
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4.5.3 Location effect and anchor points 

It is important to note that the anchor points of zero and one were explicit in both 

experiments. In experiment three they were asked to judge against these two numbers. 

In experiment four, both zero and one were visible on the screen at all times and 

participants were asked to click on each three times at the start of the experiment for 

calibration. 

 

Results of both experiments three and four indicate faster and more accurate magnitude 

judgements near zero and near one than in the middle of the range. However these 

differences were more gradual than the location effect seen in experiments one and two. 

Nevertheless, the pattern of results for RTs and errors still imply that size judgements, 

particularly for fractions, are more difficult in the centre of the zero-to-one range. 

 

This bias in the RTs towards zero and one supports the theory that these numbers are 

used as anchors for judging the magnitude of fractions, if not decimals (Tversky & 

Kahneman, 1974). RTs increasing as increasing adjustments are made away from the 

anchor points. 

 

However, the pattern of RTs might also be interpreted as a bias away from the centre of 

the range. This could mean that judgements of the magnitudes of fractions are 

automatically made against ½. Effectively a distance effect would then produce a 

decrease in RTs as stimuli move away from ½. It would be interesting to know if the 

same pattern of RTs would have emerged if participants had been primed to make that 

judgement. That is, if they had been asked in experiment three “Is this number greater 

or smaller than ½?” or had been presented with a number line with only ½ marked in 

experiment four.  

 

The shape of the location effect of experiments one and two, particularly at the smallest 

distances of 0.05, 0.1 and 0.2,argues against this interpretation. For those distances, 

there were no significant differences in RTs to the positions B to F (see Chapter two, 

pages 33 to 36). This is why they were amalgamated into a single middle location. It 

was only for the extreme end positions that any differences in RTs were found.  

 

The fact that there was far more influence of position in the zero-to-one interval on RTs 

on fraction stimuli than there was on decimal stimuli implies that the location effect on 

the magnitude comparison tasks of experiments one and two was due more to the 

fraction in the stimulus pair than the decimal. Yet the smooth parabolic shape of RTs 
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seen for fraction stimuli in both experiments three and four is not the same as the shape 

of the location effect in experiments one and two. Of course, in a magnitude comparison 

task there is the interference between the two numbers being compared. That is evident 

in the distance effect. 

 

However, RTs to fraction stimuli were the same size or even perhaps shorter than to 

decimal stimuli very close to zero and one. The differences between fractions and 

decimals were only evident in the middle of the range.  

 

4.5.4 Largerstim effect 

The systematic underestimation of the size of decimals in experiment four might throw 

some light on the largerstim effect seen in experiments one and two. 

 

It has been shown that decimal fractions are processed componentially i.e. decimal place 

by decimal place (Kallai & Tzelgov, 2014). This, along with the systematic decimal 

underestimation implies that the estimates of the size of decimal stimuli were based 

mainly on their leading digit alone. Though they were still generally an underestimation 

of this too. 

 

In the magnitude comparison task, if the decimal is the smaller of the stimulus pair, then 

an underestimation of its size (based on its leading digit) would not be problematic. 

However, if the decimal is the larger number, its underestimation could lead to errors 

being made, (particularly at smaller distances). Part of the largerstim effect was indeed 

a significantly greater number of errors when the larger stimulus was a decimal than 

when it was a fraction. 

 

The other part of the largerstim effect was a similar increase in RTs when the larger 

stimulus was a decimal. The RT analysis for experiments three and four above really did 

not throw any light on this effect. The RTs for fractions were symmetrical about ½ in 

both experiments. The RTs for decimals were basically consistent across the zero-to-one 

range for experiment four and if anything, slightly shorter for higher decimals for 

experiment three. This is exactly the opposite of what one might expect to see which 

would be longer RTs when making size judgements about increasing larger decimals. 

 

However, the underestimation of the size of decimals and the implication that their size 

was being judged predominantly on their leading digit does provide a possible 

explanation of the largerstim effect on RTs. In experiments one and two, participants 
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might have tried first to make a comparison based on the leading decimal alone. If that 

comparison was not clear-cut enough for them they would have to take more time to 

look at further decimal places before coming to a judgement on which was the smaller or 

larger.  

 

This need to look at more decimal places would occur more often when the decimal was 

the larger number because of the inherent rounding-down effect of looking only at the 

leading decimal. This could be an explanation for the longer RTs when the decimal was 

the larger of the stimulus pair. 

4.5.5 Reported strategies from experiment one 

There is one final problematic outcome of experiment one that can be addressed by the 

results, specifically of experiment three. 

 

There was an apparent discrepancy in experiment one between participants’ reported 

methodology and the results obtained. The majority of participants in experiment one 

claimed to have made their judgements by testing which side of 0.5 the two stimuli 

were. Only 26.7% of the stimulus pairs were either side of 0.5. There was no evidence 

that it was easier to judge the larger in these than in other pairs. Indeed, these stimulus 

pairs were mostly in the slower middle location. Thus, I judged that they were not aware 

of their own strategy.  

 

The judgement of whether a number is one side or the other of 0.5 is effectively the 

same as judging whether it is nearer to zero or to one.  This was the task in experiment 

three. Therefore the results of experiment three imply that judging whether either a 

fraction or a decimal is above or below 0.5 takes the longest in the middle of the zero-

to-one range. Indeed, for fractions the RT reaches it maximum pretty much at 0.5. 

 

The participants in experiment one were not reporting strategies on a trial-by-trial basis. 

They were asked to recall methods they had used after the experiment was over. As 

such, the methods that might have been the most salient were the ones they had 

deliberated over the longest. That is the most difficult judgements, close to 0.5. 

4.5.6 Next steps 

The next chapter of this thesis is not concerned with the differences between fractions 

and decimals. It revisits the results of experiments one and two and considers individual 

differences in more depth. Specifically in the three main effects of distance, location and 
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largerstim. The links between these effects in individuals and their success at the 

number comparison task are investigated. 
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Chapter 5 Individual differences in experiments one 

and two 

5.1 Introduction 

In this very short chapter, experiments one and two are revisited. First is an argument 

for  reconsidering the  outcomes of these experiments in terms of individual differences. 

Then the statistical methodology used for investigating and quantifying individual 

differences is detailed. 

 

The next part of the chapter details the analysis made. In particular, analysis of the 

associations between patterns in participants’ response times with their accuracy at the 

task. 

 

The chapter finishes with a short discussion of the implications of the analysis of 

individual differences. 

 

5.2 Individual differences in experiments one and two 

During the analysis of the results of experiment one and experiment two, significant 

individual differences for participants in average response time were found (pages 36 

and 59). This resulted in the use of mixed linear models for the analysis of RTs, with 

random intercepts for participants. It was also  demonstrated that there were significant 

differences between participants in the number of errors made (pages 43 and 66). 

Individual participants gave as few as 3 to as many as 45 incorrect responses out of the 

120 trials in experiment one. In experiment two, the number of errors ranged from 3 to 

61 out of 144 trials.  

 

So individuals significantly differed in their baseline mRTs and error rate. General effects 

on mRT were found for the factors of distance, location and largerstim.  The distance 

effect was sought and expected. Additionally, the possibility that zero and one would act 

as anchor points for magnitude estimation meant that some effect of location was not 

unexpected.  

 

However, the effect that RTs would be longer and error rates greater when the larger of 

the stimulus pair was a decimal and the smaller a fraction was not expected. 

Experiments three and four highlighted some variability in the pattern of RTs and errors 

across the zero-to-one range, particularly for fractions and decimals. These differences 
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did offer some grounds for speculating on the cause of the largerstim effect. However, 

there was no conclusive reason to explain the result. 

 

Taking all of the above into consideration, I was prompted to look more deeply at 

individual differences in participants’ results. More particularly, to look at whether there 

were large variations in their distance, location and largerstim effects and whether the 

size of these effects bore any relation to participants’ ability at the number comparison 

task.  

 

These distance, location and largerstim effects might be considered cognitive indicators 

for individuals. That is, they might allow some insight into the cognitive representations 

of small numbers within individual participants’ minds. After all, the distance effect is 

classically used as an indication of number magnitudes being internally represented on a 

mental number line. If there are links between the strength of these cognitive indicators 

in individuals and their success at the number comparison task, this could throw light on 

what kinds of mental representations of  fractional numbers are most effective.  

 

5.3 Method 

5.3.1 Verifying that individuals differed significantly 

To investigate whether it might be the case that individuals were also significantly varied 

in the nature of their distance, location and largerstim effects, the final mixed linear 

models of logRT for experiments one and two were revisited.  

 

Variable slopes were added to these models for distance by participant, location by 

participant and largerstim by participant. Each factor was added separately from the 

others. These models would have been contained far too many variables to be 

considered useful. Therefore this procedure was only carried out to demonstrate that 

individual differences in the results of experiment one and two were worth exploring. 

 

5.3.2 Quantifying individual differences 

Next, for each participant of the two experiments an ANOVA tests was run on logRT for 

the three factors of distance, location and largerstim. Interactions were not included for 

simplicity. These analyses yielded both the significance and the partial η2 effect size of 

the distance, location and largerstim effects for each individual.  
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The partial η2 effect size measures the percentage of the variance within responses that 

might be explained by a particular factor. As such, they were used as a measure of the 

three cognitive indicators for each individual. The greatest sum of these three partial η2 

values for any individual in either experiment was 61.2% and the least was 0.8% (M = 

19.0, SD = 12.8).  

 

The partial η2 values were recorded as positive if the effect for that participant was in the 

expected direction and negative otherwise. The expected direction for the distance effect 

was decreasing RT with increasing distance (tested via Spearman’s r for each 

participant); for the largerstim effect, was larger median RT for trials in which the 

decimal was the larger stimulus; for the location effect, was median RT highest in the 

middle location larger. These measures were then used to make comparisons between 

the strength of these three cognitive indicators and participants’ success in the 

experimental task. 

5.4 Results 

5.4.1 Experiment one results 

Variable slopes for distance by participant were added to the final logRT mixed linear 

model and were shown to make a significant improvement to the fit of the model (L 

Ratio 86.39, p < .001). The same result was found for the location (L Ratio 56.11, p < 

.001) and largerstim (L Ratio 14.61, p < .001) factors.  

 

These results demonstrated that there were significant differences between the strength 

of individuals’ distance, location and largerstim effects. Hence ANOVA tests were run on 

logRT for each participant for the three single factors of distance, location and 

largerstim. The results of these analyses can be found in appendix 1 (page 157).  

 

A significant distance effect on logRT was found for 26 of the 30 participants (87%). 

Three of the four who did not demonstrate a significant distance effect were, by far, the 

least successful participants at the task; making 45 (38%), 43 (36%) and  38 (32%) 

errors each (as compared to a range of 3 to 27 errors for the remaining participants). 

This observation already implied that the distance effect, might have been associated 

with improved success at this comparison task. All participants except one (number 7) 

demonstrated a negative association between distance and RT. Participant 7 had an 

insignificant but positive distance effect and made 38 errors. 
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Importantly, no speed-accuracy trade-off was found for this task. Those who were faster 

on average, were not also significantly less accurate (Spearman’s r = -.174., p = .178 

for median RT against total errors). This indicates that accuracy and RTs were 

independent. The distance effect is an effect upon response times, specifically that  

response times decrease as distance increases. The independence between accuracy and 

RTs was necessary, therefore, for the investigation to take place into whether the 

strength of the distance effect was associated with the number of errors.  

 

A large, significant negative association was found between the size of the distance 

effect, (participants’ partial η2) and the number of errors made by individuals 

(Spearman’s r = -.659, p < .001). This association is illustrated in figure 5.1(i). The 

inference to be drawn from this outcome is that participants with a stronger distance 

effect and so, presumably a stronger magnitude element to their mental representations 

of fractional numbers, were more successful at the task.  

 

The effect of location on logRT was significant, (p < .05), for only 18 participants of the 

30 (60%). However, no participants at all were faster in the middle location than the 

other locations.  A marginally significant, small, negative association was found between 

the size of the location effect and the number of errors for individuals (Spearman’s r = -

.289, p = .060), illustrated in figure 5.1(ii).  

 

 
Figure 5.1 Scatter diagrams of number of errors against distance, location and largerstim effect sizes for 

experiment one 

 

The effect of largerstim was significant (p < .05) for only 15 participants of the 30 

(50%). Additionally, six of the participants had the reverse largerstim effect. These were 

participants {7, 10, 15, 16, 17 , 18}; none of whom had a significant location effect. A 

marginally significant, small negative association was found between the size of the 

largerstim effect and the number of errors for individuals (Spearman’s r = -.256, p = 

.086), illustrated in figure 5.1(iii).  
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The last two results imply an intriguing possibility that the location effect and largerstim 

effects are also manifestations of features of the mental representation of small numbers 

that are useful for the task of comparing magnitudes. However, the results were 

marginal and lacked consistency. All participants performed better than chance at the 

task and so could be considered to have sufficiently functional mental representations of 

fractions and decimals to complete the task successfully. The lack of consistency across 

participants of the largerstim and location effects implies that these effects might not be 

highlighting functionally necessary features of the mental representation of small 

numbers. 

 

However, one further detail to note is that only three participants in experiment one did 

not demonstrate a significant distance, location or largerstim effect. These were the 

three participants that produced the most errors (see appendix 1, page 157).  

5.4.2 Experiment two results 

There were separate final mixed linear models for the two response groups of 

experiment two. So these two groups were initially analysed separately for individual 

differences. 

 

For the response-smaller group, variable slopes first for distance by participant were 

added to the final logRT mixed linear model and were shown to make a significant 

improvement to the fit of the model (L Ratio 48.7, p < .001). The same result was found 

for the location (L Ratio 44.1, p < .001) and largerstim (L Ratio 15.0, p < .001) factors.  

 

For the response-larger group, the same significant result was found for the addition of 

variable slopes first for distance by participant (L Ratio 59.7, p < .001). However, due to 

the complexity of the model, it would not converge when variable slopes for location by 

participant were added. The addition of variable slopes for largerstim by participant did 

not significantly improve the model (L Ratio 4.17, p = .125).   

 

Though not completely consistent, these results were sufficient evidence to investigate 

the effects of individual differences on responses for experiment two. Therefore, as for 

experiment one, ANOVA tests were run on logRT for each participant for the three single 

factors of distance, location and largerstim. The results of this analysis can be found in 

appendices 2a and 2b, pages 159-160.  

 

A significant, (p < .5) distance effect on logRT was found for 22 of the 28 (79%) 

participants in the response-smaller group and for only 20 of the 30 (67%) participants 
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in the response-larger group. Again, only one participant (number 48) demonstrated a 

reverse distance effect but it was very much not significant. 

 

A large significant negative association was found between the size of the distance effect 

and the number of errors made by individuals (Spearman’s r = -.770, p < .001). This 

association is illustrated in figure 5.2(i). Again, to support the validity of this analysis, no 

speed-accuracy trade-off was found for experiment two. That is, there was no significant 

association between median RT and the number of errors made (Spearman’s r = -.002, 

p = .495).  

 

The effect of location on logRT was significant (p < 0.05) for only 13 participants of the 

28 (46%) in the response-larger group, though a further 7 were marginally significant (p 

< .10). Only 16 out of the 30 (53%) participants in the response-smaller group 

demonstrated a significant effect of location on logRT (with 2 marginally significant).  Six 

participants were not slowest in the middle location. These were participants {7, 14, 34, 

43, 50, 57}; none had a significant location effect, though participant 43’s was 

marginally significant. 

 

For experiment two, a significant, medium sized, negative association was found 

between the size of the location effect and the number of errors participants made 

(Spearman’s r = -.362, p = .003, see figure 5.2(ii) for illustration).  However, there was 

one apparent outlier (participant 32) with, by far, the largest location effect but also a 

large number of errors as can be seen on figure 5.2(ii).  

 

 
Figure 5.2 Scatter diagrams of number of errors against distance, location and largerstim effect sizes for 

experiment two 

 

Nevertheless, in general, the greater the difference between RTs in the middle locations 

and those in the other locations, the fewer errors were made. So this is stronger 
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evidence that the location effect might be indicative of some understanding of fractional 

numbers that was helpful in this comparison task. 

 

The effect of largerstim on logRT was significant for only 6 (21%) of the response-larger 

group, (2 further marginally significant), but 15 (50%) of the response-smaller group,  

(3 further marginally significant). Indeed, 20 of the 58 participants did not have a larger 

median RT when the larger stimulus was a decimal than when it was a fraction. These 

were participants {3, 5, 6, 11, 13, 15, 16, 20, 21, 23, 24, 26, 27} of the response-larger 

group and {29, 31, 43, 50, 53, 57, 58} of the response-smaller group. Of these, four 

had a significant largerstim effect in the opposite direction to that expected 15, 26, 27 & 

43. 

 

No association was found between the size of the largerstim effect and the number of 

errors participants made (Spearman’s r = -.040, p = .382, see figure 5.2(iii) for 

illustration).   

5.4.3 Summary 

Most participants demonstrated a significant distance effect in the expected direction. A 

little over half had a significant location affect, with longest RTs in the middle location. 

Under half of participants had a significant largerstim effect. For several of these it was 

in the opposite direction to that expected.  

 

In both experiments, the distance effect was very strongly associated with success at the 

magnitude comparison task. The location effect was significantly associated with success 

at the magnitude comparison task in experiment two only. However, this association was 

marginally significant in experiment one. There was no significant association between 

the largerstim effect and success at the magnitude comparison task. 

5.5 Discussion 

5.5.1 Individual differences 

Like Schneider & Siegler (2010), I found a significant distance effect for the majority of 

my participants. Unlike them, I had presented a task that afforded very little choice of 

strategy other than holistic magnitude comparison.  

 

It might have been expected that participants who completed the magnitude comparison 

tasks more quickly would have made more errors. If so, this could have invalidated my 
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attempts to establish an association between the distance effect as mentioned in the 

analysis. However, no speed-accuracy trade-off was found. This a result which has been 

found to be a feature of several simple mathematical tasks (Ratcliff, Thompson & 

McKoon, 2015). 

 

The location and largerstim effects were much less consistently observed in individuals 

than the distance effect. However, though only 47 of the 88 participants in the two 

experiments (53%) demonstrated a significant location effect, almost all participants 

were slowest when responding to stimulus pairs in the middle location. This implies that 

when prompted to think about the size of fractions (and possibly decimals), their location 

near the anchor point of zero or one is a salient feature for many people. Moreover, it 

one around which they build a strategy. 

 

It also appears to be part of a successful strategy or suite of strategies. There was a 

significant negative association between the strength of participants’ location effect and 

the number of errors they made. Yet only three participants reported using a strategy 

that involved comparison with either zero or one in experiment one. This was also not 

one of the strategies reported by participants in Faulkenberry (2011).  

 

This implies that the magnitude relationship with zero and one might be an unconscious 

response to fractional numbers. The swift comparison of fractions to the number one 

found by Kallai & Tzelgov (2009) does partly support this conjecture. 

 

In the mixed effects modelling of logRTs for experiment two, RTs were significantly 

longer when the larger of the stimulus pair was a decimal, for both response groups. 

Looking at the individual differences, it can be seen that, out of 58 participants, only 38 

showed this effect at all with only 17 of these demonstrating a significant effect. These 

were countered by 4 who significantly demonstrated the opposite effect. The fact that 

the largerstim effect nevertheless appeared to be significant in both response groups is 

an example of a minority strategy having an undue effect upon the general conclusions 

of analysis (see Siegler (1987) for another example).  

 

The largerstim effect is still of interest as it might indicate some strategy that individuals 

are using to make magnitude comparisons that is either effective or problematic. It may 

be linked to useful strategies for fraction and decimal tasks other than magnitude 

comparison. 
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5.5.2 Next steps 

The results from this further analysis of experiments one and two imply that not only the 

distance effect, but also the location effect might be indicative of useful features of the 

mental representation of fractional numbers. 

 

The following chapter details the last experiment carried out for the purposes of this 

thesis. The intent of which was to find out whether individuals’ success at general 

mathematical tasks involving fractions and decimals is associated with the strength of 

their distance, location and largerstim effects. 
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Chapter 6 Experiment five 

6.1 Introduction 

This chapter is a commentary on the two-stage final experiment carried out for the 

purpose of this thesis. It starts with a summary of the justification of the experiment and 

how it was intended to bring together the findings of the previous experiments. Details 

of the design of the experimental task and stimuli follow with reference to how they were 

devised to addresses the intention of the experiment.  

 

The second part of the chapter covers the experimental procedure. Then the third 

section contains the results of the experiment along with the methodology of the 

analysis. 

 

Finally, the last section of the chapter is a consideration of the implications of the results 

of the experiment. 

6.2  Justification and design 

The analysis into individual differences in performance in experiments one and two 

detailed in the last chapter highlighted possible associations between  

 

 an interesting and significant result outcome referred to as the expert-distance effect. 

This was the outcome that participants with a greater distance effect also made fewer 

mistakes in their size comparisons. Experiment five was designed to find out whether 

this expert-distance effect could also be seen for fraction and decimal skills other than 

size comparison. In other words, to discern whether there is a link between the strength 

of an adult’s distance effect in number comparison tasks and their general knowledge of 

fractions and decimals. 

 

As the intention of this experiment was to find a link between participants’ outcomes for 

experiment one and their understanding of fractions and decimals, it was necessary to 

find an effective way to assess their understanding of fractions and decimals. Professor 

Margaret Brown of King’s College London kindly offered use of the fraction and decimal 

portions of the CSMS (Chelsea Diagnostics Mathematics Tests) for this purpose.  

 

The CSMS tests were formulated in the 1970s by experts in mathematical education and 

due to their effectiveness in discerning children’s level of knowledge and misconceptions, 

they are still in use today. Extensive studies of schoolchildren’s understanding of 

mathematics using these tests by professor Brown and others are published in Hart et al. 
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(1981). and Dickson et al. (1984). The CSMS tests and associated documentation are 

freely available for researchers to use via the website http://iccams-maths.org/CSMS/.  

 

Built into the CSMS tests, there is an assessment mechanism by which participants can 

be assigned a level for each mathematical area of understanding. The levels are 

intended to be hierarchical in that level 1 indicates greater understanding than level 0 

and so on. For fraction understanding, the levels range from 0 “unable to make a 

coherent attempt” to 4 ability to complete “questions where more than one operation is 

needed”. For decimal understanding, the levels range from 0 “little grasp of place-value”, 

through increasing and more sophisticated understanding of place-value, to level 6 

“decimals as the result of a division; infinite number of decimals”. A score of 60% or 

more is required on a designated set of question parts in order to attain a level. 

 

Opportunity to study how the effects found are linked to individual differences in 

understanding and ability. Look at failures/rejected candidates on E2 and what they said 

about their method.  

 

Despite the slight effect of response on RTs for the locations near_zero and near_one 

noted in experiment two, it was decided, for simplicity, to not vary the response required 

and ask all participants to choose the larger stimulus. The three main effects had the 

same general direction for both response groups and as was demonstrated in the last 

chapter, differences in the size of the location and largerstim effects between the groups 

might well have been down to the influence of individual differences between 

participants.  

6.3 Method 

6.3.1 Participants 

Fifty-four healthy adults, (5 men) aged between 18 and 48 years (M=23.5, SD=7.65) 

participated in the study.  All were psychology students at the University of Huddersfield 

who volunteered for the study in return for course credit. 

6.3.2 Stimuli and materials 

The stimuli for the first part of the experiment were identical to those used in experiment 

1. For the second part of the experiment, slightly modified versions of two of the CSMS 

tests were used. Detailed assessment of both fraction and decimal knowledge was 

necessary for the purposes of experiment 5. Thus both the Fractions 2 and Place-value 

http://iccams-maths.org/CSMS/
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and Decimals CSMS tests were employed. However, there were concerns that 

participants might abandon the test due to fatigue or fail to maintain concentration if the 

questions were overly repetitious or the test too long. So questions 21 to 26 were 

omitted from the Fractions 2 test and questions 1 to 4 and 7 and 8 were omitted from 

the Place-value and Decimals test. It was judged that the skills tested in these questions 

were covered in other questions. Also, as adults rather than children were to be tested, 

the questions remaining emphasised real-life contextual use of number skills over 

classroom-based and abstract use of number.  

 

Thus in the modified test, questions 1 to 23 covered fraction knowledge. These 

comprised 39 question parts. Questions 24 to 35 covered decimal knowledge. These 

comprised 59 question parts. The greater number of question parts for decimal 

knowledge reflecting the greater variety in the body of knowledge for decimals rather 

than fractions that the test designers discerned.  

 

This omission of some questions caused the CSMS method for assessing levels of 

understanding in fractions and decimals to be slightly affected. In order to maintain a 

method of assessment that was consistent with the original CSMS method, a level was 

deemed to be reached if 60% or over of the remaining relevant question parts were 

completed correctly. 

6.3.3 Procedure 

The experiment was composed of two parts. Part one was identical to Experiment 1 with 

the exception that participants completed the task alone in small, quiet, well-lit, 

laboratory booths at the University of Huddersfield. 

 

Exactly as for experiment one, the stimuli were presented on SuperLab® 4.0 stimulus 

presentation software.  Participants were instructed that within each trial they had to 

decide which of the two numbers presented was the largest and to press the leftmost 

button on the response pad  if it was the number on the left and the rightmost button on 

the response pad  if it was the number on the right.  They were informed that both 

speed and accuracy of response were important.  In addition, it was made clear that 

some of the tasks were expected to appear very easy and some extremely difficult and 

the purpose of the experiment was to find out what factors made the task more difficult. 

  

A practice block of four stimuli preceded the experimental blocks. Participants were given 

feedback on their accuracy on the practice stimuli and were allowed to ask questions if 

they did not understand the procedure.  The 120 experimental stimuli were then 
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presented in random order in three blocks of 40 with no further feedback on accuracy 

nor opportunity to ask questions. 

Participants were given the opportunity to take a break between the blocks. All 

participants were presented with the same stimuli.  Response times and accuracy were 

recorded by the SuperLab® program.  

 

After completing part one, participants were allowed to take a break of up to 5 minutes 

before they started part two.  

 

For part two of the experiment, participants remained in their booths and completed the 

modified CSMS tests on paper. They were instructed to work alone, use no tools other 

than pen and paper and to respond to every question. For any questions they were 

completely unable to answer mathematically they were asked to write either “I don’t 

know” or  “?”. Once they had embarked upon the experimental task, participants were 

not allowed to ask questions of the experimenter. 

 

There was no time limit on completion of the task and the time taken was not recorded. 

Every participant completed the two tasks in this order. 

6.4 Results 

6.4.1 Introduction 

The results section of this chapter is split into four parts. Part one is a summary of the 

mixed linear modelling analysis of logRTs for the first part of the experiment. That is, a 

replication of the analysis of response times for experiment one as detailed in chapter 

two of this thesis. General logistic regression error analysis was not carried out as error 

rates were investigated in terms of individual differences. 

 

Part two is the analysis of individual differences in terms of the associations between the 

size of individuals’ cognitive indicators (distance, location and largerstim effects) and 

their error rates on the task in part one of the experiment. This mirrors the analysis of 

experiments one and two that was reported in the last chapter. 

 

Part three is a short summary of the general results of the full cohort of participants on 

the CSMS tests that formed part two of this experiment. 

 

The last part of the analysis is an investigation into associations between the 

participants’ various measures of performance on both parts of the experiment. That is 
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the size of individual participants cognitive indicators and measures of their performance 

on the CSMS fractions and decimals paper-based tests.  

6.4.2 Response time analysis of the first task 

6.4.2.1 Pre-analysis data processing 

Of the 54 participants, 8 were excluded from this part of the analysis for performing no 

better than chance at the 5% level (more than 50 errors out of 120 trials). Six of these 

made errors on the majority of trials indicating either a misunderstanding of the task 

(possibly choosing the smaller number rather than the larger) or very faulty reasoning. 

 

Two response times were identified as extreme outliers, one of 58ms and another of 

148ms. These were respectively 5.65 and 5.22 standard deviations below the mean 

logRT for the candidates concerned. These were identified as skewing the results of the 

mixed linear models and so were replaced with the candidates’ next lowest RTs (1160ms 

and 1120ms respectively). 

 

Only three candidates demonstrated a significant SNARC effect. This was indicated by 

the factor largelr being identified by the ANOVA test as having a significant result on 

mean logRT. They showed no other specific detectable differences from the rest of the 

cohort so no further analysis of factor largelr was carried out in any part of the analysis 

of this experiment. 

 
Figure 6.1 Histogram showing the distribution of  logRT for experiment five 

 
The natural log transform of RTs resulted in an approximately normal distribution (see 

figure 6.1) that was not significantly skewed (γ = .606, p = .272). 
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6.4.2.2 Linear modelling for logRT 

The same method of formulating a mixed linear model was used as for the results of 

experiment one (see chapter two pages 36-43) and experiment two (see chapter three 

pages 59-66). As for both of these previous experiments the position factor was recoded 

into the location factor. 

6.4.2.2.1 Individual testing of potential factors 

First, the three possible fixed factors were added separately  to the random intercepts 

only (baseline) model. An ANOVA test was then applied to detect improvements of each 

individual factor on its own to the fit of the model (see table 6.1). As in previous versions 

of the experiment, the factors of distance, location and largerstim each made a 

significant improvement to the baseline model. 

 

Factor df AIC BIC Log Likelihood L Ratio p 

Baseline 3 10914 10934 -5454.1 
  Distance 4 10367 10394 -5179.6 548.9 <.001 

Location 5 10274 10307 -5132.1 644.1 <.001 

Largerstim 4 10902 10929 -5447.1 13.87 <.001 

Table 6.1 Results of ANOVA comparisons between baseline linear model and linear models including single 
factors 

6.4.2.2.2 Building the model – single factors 

The mixed linear model was then built up in stages by adding the fixed factors in turn. 

An ANOVA test was applied to test for an improvement in the model (see table 6.2). The 

addition of location and largerstim to the distance only model significantly improved the 

fit of the model.  

 

Additional factor df AIC BIC 
Log 
Likelihood L Ratio p 

Distance 4 10367 10394 -5179.6 
 

 

Location 6   9946   9986 -4967.0 425.3 <.001 

Largerstim 7   9934   9980 -4960.1 13.85 <.001 

Table 6.2 Results of ANOVA comparisons between versions of the linear model as single factors are added 
for experiment five 

 

A summary of the mixed effects model for the single factors can be seen in table 6.3.  

 

Factor/level b (95% CI) SE df t-value p 

distance -1.036(-1.146, -0.927) 0.056 5470 -18.50 <.001 

location: near_zero  middle 0.162(0.120, 0.205) 0.022 5470 7.56 <.001 

location: middle  near_one -0.274(-0.324, -0.224) 0.025 5470 -10.76 <.001 

largerstim: decimal  fraction -0.059(-0.089, -0.028) 0.016 5470 -3.72 <.001 

Table 6.3 Summary of the linear model including all significant single factors for experiment five 
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Within this linear model without added interactions, the b-value for distance implies that 

for every 0.1 increase in distance, there was a reduction of 0.1036 in logRT (or a 9.8% 

reduction in RT). This distance effect was significant (p < .001).  

 

There were significant (p < .001) changes in average logRT with the shift in stimulus 

location between zero and one. The b-value (0.162) between locations near_zero and 

middle was smaller in magnitude than that between middle and near_one (-0.274). In 

general, location near_one response times were fastest and middle response times were 

slowest. These were, on average, around 17.6% longer than those for the near_zero 

location and 24.0% longer than those for the near_one location.  

 

The significant (p < .001) effect found for largerstim had a b-value of only -0.059. This 

implies that RTs for stimulus pairs in which the decimal was the larger number were, on 

average, around 5.7% longer than for those in which the fraction was the larger number.  

6.4.2.2.3 Building the model – interactions 

Interactions were added to the model to see if they would improve the fit to the logRT 

data. The addition of an interaction between distance and location significantly improved 

the fit of the model; as did the further addition of an interaction between location and 

largerstim. The addition of no other interactions significantly improved the fit of the 

model. A summary of the significant ANOVA comparisons can be seen in table 6.4. 

 

Interaction added df AIC BIC 
Log 
Likelihood L.Ratio p 

No Interaction 7   9934   9980 -4960.1  
 

distance/location 9   9898   9958 -4940.1 39.9 <.001 

location/largerstim 11   9875   9948 -4926.5 27.2 <.001 

Table 6.4 Results of ANOVA comparisons between versions of the linear model as interactions are added for 
experiment five 

 

A summary of the final mixed effects model including interactions is in table 6.5. It can 

be seen that the greatest effect on logRT was that of the distance factor. The location 

factor remained significant when interactions were taken into consideration but the 

largerstim was only significant in its interaction with location. 

 

The nature of the significant interaction between distance and location can be seen in 

figure 6.2. The expected distance effect can be seen for all three locations with median 

RTs decreasing as distances increase. For the middle locations it is a steeper effect with 

median RTs decreasing more rapidly generally and consistently across the range of 

distances.  
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In addition, at the distance between stimuli of 0.3 there is a hiatus in the expected 

distance effect particularly for the near_zero location, as was seen in experiments one 

and two. Again, this is probably an artefact of the unfortunate choice of stimuli at this 

distance.  

 

single factors b (95% CI) SE df t-value p 

distance -1.002(-1.218, -0.787) 0.110 5466 -9.10 <.001 

location: near_zero  middle 0.278(0.193, 0.363) 0.043 5466 6.42 <.001 

location: middle  near_one -0.272(-0.378, -0.167) 0.054 5466 -5.05 <.001 

largerstim: decimal  fraction 0.053(-0.019, 0.125) 0.037 5466 1.45 .148 

two-factor interaction           

dist/location near_zero  middle -0.344(-0.61, -0.077) 0.136 5466 -2.53 .012 

dist/location middle  near_one 0.513(0.209, 0.818) 0.156 5466 3.30 .001 

L.stim fraction/loc. near_zero  middle -0.099(-0.181, -0.018) 0.042 5466 -2.38 .017 

L.stim fraction/loc. middle  near_one -0.258(-0.358, -0.159) 0.051 5466 -5.10 <.001 

Table 6.5 Summary of the linear model including all interactions for experiment five 

 

Figure 6.3 demonstrates the interaction between the factors of largerstim and location. 

There is a greater increase in mean logRT between the locations near_zero and middle 

for stimuli pairs in which the decimal is the larger of the stimuli. Between the location 

middle and near_one, there is a more significantly larger decrease in mean logRT for 

trials in which the fraction is the larger of the stimuli.  

 

 
Figure 6.2 Graph of median RT against distance by location for experiment 5 
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It can be seen that for each location, the distance effect is approximately linear in 

nature. The inclusion, therefore, of the distance-location interaction in the model allays 

the concern that linear modelling is being used to model a non-linear effect. 

 

A very similar interaction between distance and location was also found in experiment 

two (see pages 64-65).  

 

 
Figure 6.3 Graph of median RT against location by largerstim for experiment 5 

 

A visual inspection of the qqplot of the residuals of the final experiment five linear mixed 

model for logRT (including interactions) indicated no obvious deviation from the 

assumption of normality (see figure 6.4). However, the slight wedge shape of the plot of 

the residuals did indicate some degree of heteroscedasticity, (see figure 6.5), which 

would imply the model did not account for all significant variables.  

 
Figure 6.4 Qqplot of the residuals of the final mixed linear model for experiment five 
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Figure 6.5 Plot of standardised residual against fitted values of the final mixed linear model for experiment 

five 

6.4.2.2.3 Building the model – considering additional factors 

Seven additional factors within the recorded data were added to the model in an attempt 

to account for the heteroscedasticity in the final model for logRT. Six made no notable 

improvement to the model. These were the decimal (p = .150), fraction (p = .803), 

denominator (p = .777) and numerator (p = .488) sizes, the absolute difference 

between the numerator and denominator of the fraction (p = .382) and the absolute 

difference between the numerator of the fraction and the first decimal place of the 

decimal (p = .186).  

 

These six factors are not independent of the distance between stimuli and/or the location 

of the stimuli. If they had significantly improved the model this would have thrown the 

nature of the distance and/or location effects into question as they might, in fact, have 

been artefacts of one of these other effects.  

 

Adding the factor of stimulus presentation order to the model did make a significant (p < 

.001)  improvement. This is unsurprising as it is simply indicative of a learning effect 

taking place with response times decreasing as participants have more practice at the 

task in hand.  

 

The addition of the factor trial order to the model made virtually no difference to the 

output of the model for the other factors. Indeed order had a b value of only -0.0016 

implying an average decrease of 0.0016 in logRT for each successive stimulus which 

would amount to a 17.4% decrease in RT over all 120 trials. The addition of the order 

factor did not greatly affect the residuals plot (see figure 6.6). 
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As the purpose of this analysis was to identify the nature and comparative sizes of any 

influences of the experimental factors on response times, I decided that this degree of 

unaccounted for variance did not invalidate such conclusions being drawn from the 

mixed linear model. 

 
Figure 6.6 Plot of standardised residual against fitted values of the final mixed linear model with additional 

factor of trial order for experiment five 

 

6.4.3 Individual difference analysis of the first task 

6.4.3.1 Pre-analysis data processing 

The analysis made of individual differences for this part of chapter six was conducted in 

much the same way as the analysis in the last chapter. As this experiment was intended 

as investigation of individual differences, no candidate was completely excluded because 

of poor performance. However, analysis was conducted first excluding the 8 participants 

who performed worse than chance termed unsuccessful (the others are termed 

successful). The results including the unsuccessful participants are given for 

completeness. Nevertheless, there are good reasons for excluding these participants as 

the reasons for their lack of success are unknown and might have been due to some 

misunderstanding of the task or lack of concentration. 

 

For each participant an ANOVA tests was run for logRT on the three single factors of 

distance, location and largerstim. Again, interactions were not included for simplicity. 

These analyses yielded both the significance and the partial η2 effect size of the distance, 

location and largerstim effects for each individual. P-values < .05 were considered 

significant. 
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The partial η2 effect sizes measure the percentage of the variance within responses that 

might be explained by a particular factor. As such, they were used as measures of the 

effect of each factor on the responses of each individual. The greatest sum of these 

three partial η2 values for any individual participant in experiment five was 50.4% and 

the least was 1.5% (M = 19.8, SD = 11.4). The results of this analysis can be found in 

appendix 3,  page 161.  

 

As in the last chapter, the partial η2 values were recorded as positive if the effect for that 

participant was in the expected direction and negative otherwise. The expected direction 

for the distance factor was decreasing RT with increasing distance (tested via 

Spearman’s r for each participant); for the largerstim factor was larger median RT for 

trials in which the decimal was the larger stimulus; for the location factor was median RT 

in middle position larger than in the other positions. Comparisons were then made 

between the strength of the three factors and participants’ success in the first 

experimental task. 

 

6.4.3.2 Analysis of associations between effect sizes and error rates 

As for the analysis of experiments one and two in the last chapter, it was important to 

establish that there was no speed accuracy trade-off to enable the analysis of an 

association between distance effect and error rate. In fact, an insignificant association 

was found in the opposite direction to that expected, i.e. larger median RTs associated 

with greater error rates (Spearman’s r = .098 , p = .742). This indicates that accuracy 

and response time are independent for the successful participants.  

 

However, when the unsuccessful participants were included, the association was 

unexpectedly increased to Spearman’s r = .257 , p = .970, now a significant reverse 

result. This can be explained by one outlying participant who took a particularly long 

time to complete the task and yet performed no better than chance.  

 

For the successful participants, a significant distance effect on logRT was found for 37 of 

the 46 (80%). Only one, number 40, had an insignificant reverse distance effect; that is, 

increasing RTs associated with increasing distance between stimuli. A very large, 

significant negative association was found between the size of the distance effect, 

(participants’ partial η2) and the number of errors on the number comparison task for 

these individuals (Spearman’s r = -.794, p < .001). Again, this was strong evidence that 

participants with a stronger distance effect were more successful at the task.  
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Three of the 8 unsuccessful participants demonstrated a significant distance effect. 

Another 4 of them showed an insignificant reverse distance effect {24, 27, 33, 46}. The 

association between distance effect size and error was little changed when the 

unsuccessful participants were included, (Spearman’s r = -.736, p < .001). However, the 

above significant positive association between speed and inaccuracy should be born in 

mind when considering this result.  

 

The effect of location on logRT was significant, for 38 of the 46 successful participants 

(83%). In addition, none of the successful participants were not slowest in the middle 

location.  A medium-sized, significant, negative association was found between the size 

of the location effect and the number of errors for these individuals (Spearman’s r = -

.288, p = .026). This implies, again that there is some link between faster comparison of 

the magnitude of numbers located close to one than numbers in the middle of the zero-

to-one range and general success at the number comparison task.  

 

Two of the 8 unsuccessful participants had a significant location effect. For one of these, 

participant 24, it was a reverse effect, faster in the middle location than in the near_one 

location. Additionally, participant 46 had an insignificant but reversed location effect.  So 

with the unsuccessful participants included, the magnitude of the association between 

the location effect and error rates was greatly increased (Spearman’s r = -.503, p < 

.001). 

 

Only 10 (22%) of the successful participants demonstrated a significant largerstim 

effect. For participants {3, 4, 6, 12, 15, 17, 25, 28, 29, 30, 31, 34, 36, 37, 38, 39, 40, 

44} their median RT was greater when the larger stimulus was the fraction; 29 and 34 

significantly so. Thus only 8 successful participants demonstrated a significant largerstim 

effect in the expected direction. There was an insignificant negative association between 

the largerstim effect and number of errors (Spearman’s r = -.145, p = .168). So 

altogether this shows that the significantly larger logRTs when the larger of the stimulus 

pair is a decimal, that were seen in the mixed linear model analysis, was not a very 

common individual effect. It also was not linked to success at the comparison task. 

 

Of the 8 unsuccessful participants, 3 of them showed a significant largerstim effect and 

one other, participant 16, demonstrated an insignificant reverse effect. With these 

participants included, Spearman’s r = .023, p = .564, highly insignificant and implying, 

for this dataset, an increase in errors associated with a stronger largerstim effect. 
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6.4.4 Analysis of general performance on the second task 

Unfortunately participant 27, did not complete the CSMS tests. This participant was one 

of the unsuccessful participants who performed worse than chance on part one of the 

experiment. The lack of completion was due to an oversight rather than any 

unwillingness so to do. Nevertheless, this participant had to be excluded entirely from 

any analysis involving the results of part two of the experiment. All of the other 53 

participants were included.  

6.4.4.1 Conflicts in the knowledge hierarchy 

In only 5 (9.3%) of the decimals assessments and 3 (5.6%) of the fractions assessments 

were there conflicts within the hierarchy of assessment. That is when a participants 

scored < 60% at one level but ≥ 60% in a higher level. In only one case did more than 

one lower level score < 60%. This conflict was considered to be at a sufficiently low 

occurrence rate that it might be considered to not greatly affect the use of the 

assessment levels as a hierarchical measure of fraction and decimal understanding. 

 

For the 8 assessments affected by the conflict, participants were awarded the higher 

level if the lower levels were all ≥ 50% correct and their overall percentage, at the 

relevant levels, was ≥ 60%. This accounted for 7 of the 8 affected assessments. For the 

other, the next lowest level which scored ≥ 60% was awarded. 

6.4.4.2 Summary of correct responses 

The minimum number of correct answers on the tests (out of 98) was 44 (44.9%). One 

person answered every single question correctly. The median result was 74 (75.5%) 

correct answers.  

 

For the 39 fraction questions, the minimum number of correct answers was 13 (33.3%) 

and the median was 30 (76.9%). For the 59 decimal questions, the minimum number of 

correct answers was 29 (49.2%) and the median was 44(74.6%). 

6.4.4.3 Summary of fraction and decimal levels obtained 

Table 6.6 shows a summary of the fraction levels obtained by the 53 participants who 

completed the tests. The median level obtained was 3 (out of 4). Table 6.7 shows a 

summary of the decimal levels obtained by the 53 participants. The median level 

obtained was 4 (out of 6). 

 

It is difficult to directly compare the fraction and decimal levels as they are on different 

scales. It is interesting, however, that one participant failed to gain any level at all on 
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the fractions test but nobody scored less than two on the decimals test. In fact, it was 

the same participant who scored the lowest level on both tests. That was a participant 

successful at part one of the experiment. 

 

Fraction 
level Number of participants Percentage 

0 1 1.9 

1 12 22.6 

2 8 15.1 

3 28 52.8 

4 4 7.5 

Table 6.6 Breakdown of the fraction levels obtained in the CSMS test 

 

 
Decimal 

level Number of participants Percentage 

0 0 0 

1 0 0 

2 1 1.9 

3 11 20.8 

4 20 37.7 

5 8 15.1 

6 13 24.5 

Table 6.7 Breakdown of the decimal levels obtained in the CSMS test 

 

6.4.5 Comparing individuals’ performance on the tasks.  

6.4.5.1 Pre-analysis considerations 

Of the 53 participants that completed part two of experiment five, 7 were judged 

unsuccessful at part one. When comparing the performance of individuals in the two 

tasks, it seemed somewhat problematic to include participants who had possibly 

misunderstood the task in part one of the experiment.  

 

In this part of the analysis, therefore, the results for the 46 successful candidates were 

considered first. However, the same analysis was repeated including the 7 unsuccessful 

candidates who did complete the CSMS tests. Both sets of results are reported herein. 

 

The partial η2 effect sizes from the first part of the experiment were again, used as 

measures of the size of individuals’ distance, location and largerstim effects. As in part 

two of the analysis, these were recorded as negative if they were in the reverse direction 

to that expected.  The fact that data from both parts of the experiment were analysed 
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together was the reason for my reservations about automatically including the 

candidates unsuccessful at the first part. 

6.4.5.2 Investigation of associations between features of performance 

This time, associations were sought between the strength of the three factors in the first 

part of the experiment and participants’ performance in the CSMS tests that constituted 

the second part of the experiment. The participants’ distance, location and largerstim 

effect results were assessed against their overall success (% error), decimal reasoning 

success (% error and score) and fraction reasoning success (% error and score). The 

associations with the three error rates were expected to be negative, i.e. increasing 

effect implying decreasing error. The associations with the decimal and fraction levels 

were expected to be positive, i.e. increasing effect implying a higher level of skill. 

 

As would be expected, there was a large, significant positive association between the 

number of errors made on the two parts of the experiment (Spearman’s r = .601, p < 

.001 for the 46 successful participants and Spearman’s r = .551, p < .001 for the 53 

who completed the CSMS tests). The lack of perfect correlation between the results of 

the two test reflects the opportunity the CSMS test gave participants to demonstrate 

fraction and decimal skills other than number magnitude comparison. 

 

Even more marked was the positive association between participants’ error rates on the 

fraction and decimal sections of the CSMS tests (Spearman’s r = .802, p < .001 for the 

46 successful participants and Spearman’s r = .794, p < .001 for the 53 who completed 

the CSMS tests). The association between participants’ fraction and decimal levels was 

also large but less strikingly so (Spearman’s r = .558, p < .001 for the 46 successful 

participants and Spearman’s r = .567, p < .001 for the 53 who completed the CSMS 

tests). This is significant evidence that skills in fractions and decimals are very strongly 

linked and as skill in one increases so does skill in the other. 

 

Distance effect 
successful only complete cohort 

Spearman's r p Spearman's r p 

Total CSMS error -.620 <.001 -.546 <.001 

Decimal error -.597 <.001 -.514 <.001 

Decimal level .574 <.001 .555 <.001 

Fraction error -.601 <.001 -.538 <.001 

Fraction level .463 <.001 .405 .001 

Table 6.8 Spearman’s rank associations between the distance effect and the five measures of success on the 
CSMS test of experiment five 
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First were considered the associations of the factor of distance with total error on the 

CSMS tests, decimal test error, decimal test level, fraction test error and fraction. The 

results are summarised in table 6.8.  

 

As can be seen in table 6.8, there were significant associations between size of the 

distance effect and performance in both fraction and decimal tasks. These were large 

associations except perhaps for the fraction level measurement. Participants with a 

larger distance effect made fewer errors and achieved higher skill levels than those with 

a smaller distance effect.  

 

Table 6.9 shows the results of the association tests between the size of participants’ 

location effects and the five measures of their performance on the CSMS tests.  

 

Location effect 
successful only complete cohort 

Spearman's r p Spearman's r p 

Total CSMS error -.276 .032 -.303 .014 

Decimal error -.275 .032 -.277 .022 

Decimal level .162 .141 .211 .065 

Fraction error -.253 .045 -.298 .015 

Fraction level .201 .091 .236 .044 

Table 6.9 Spearman’s rank associations between the location effect and the five measures of success on the 
CSMS test of experiment five 

 

There are significant associations between the size of participants’ location effects and all 

three of the error rates but not consistently so for their fraction and decimal level scores. 

Taken together these results imply that the location effect is a manifestation of some 

aspect of mathematical cognition which is helpful for skill with both fractions and 

decimals. However, it is not helpful at all levels of fraction and decimal skill. 

 

The values of Spearman’s r for the location effect are far lower than for the distance 

effect. So the distance effect is clearly far more strongly associated with success at 

fraction and decimal tasks than is the location effect. 

 

Finally, table 6.10 contains the results of the Spearman’s rank association tests on the 

size of participants’ largerstim effect and their success on and levels for the CSMS test. 

All of these associations are in the expected direction. However, amongst the results 

there is only a marginally significant negative association between the strength of the 

largerstim effect and the decimal error rate.   
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Largerstim effect 
successful complete cohort 

Spearman's r p Spearman's r p 

Total CSMS error -.171 .128 -.089 .264 

Decimal error -.223 .069 -.131 .174 

Decimal level .057 .353 .010 .471 

Fraction error -.124 .205 -.056 .346 

Fraction level .070 .323 .028 .421 

Table 6.10 Spearman’s rank associations between the largerstim effect and the five measures of success on 
the CSMS test of experiment five 

 

6.4.6 Summary of results 

6.4.6.1 Mixed linear modelling 

Much the same general results were found for the mixed linear modelling of logRTs as in 

experiments one and two. They confirm the influence on responses of the location of 

stimulus pair in the zero-to-one range.  

 

They also confirm that there is some effect on RTs of whether the larger stimulus is a 

fraction or a decimal. However, this did appear to be restricted to a very small 

interaction with the location factor in the results of experiment five. 

 

The most important confirmation was that the strongest effect found on logRTs was the 

magnitude of the distance between stimuli.  

 

6.4.6.2 Associations between effect sizes and error rates in the number 

comparison task 

Most participants demonstrated a significant distance effect in the expected direction. 

Most also had a significant location affect, with longest RTs in the middle location. A 

small minority of participants had a significant largerstim effect. For two of these it was 

in the opposite direction to that expected.  

 

The distance effect was very strongly associated with success at the magnitude 

comparison task. The location effect was significantly associated with success at the 

magnitude comparison task but the association was small in size. There was no 

significant association between the largerstim effect and success at the magnitude 

comparison task. 
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6.4.6.3 Associations between effect sizes and the five measures of 

success in the CSMS tests. 

There was a very strong positive association between success at the fraction and decimal 

tests. The strength of a participant’s distance effect was significantly associated with 

success in both tests and with the levels of understanding of both fractions and decimals. 

 

The location effect had a far smaller but still significant association with success on the 

two tests but not on fraction or decimal level attained. There were no significant 

associations between participants’ largerstim effects and the measures of success in the 

CSMS tests.  

6.5 Discussion 

6.5.1 Largerstim effect 

There was no significant association found between the strength of the largerstim effect 

and any measure of ability for the fraction and decimal tasks. There was a marginally 

significant negative association between the strength of the largerstim effect and the 

decimal error rate. This might imply that whatever produces the largerstim effect is a 

facet of small number knowledge that is helpful for decimal tasks at the lowest levels 

only. 

 

The largerstim effect appears to be a cognitive indicator of some sort of bias regarding 

the mental representations or processing of fractions and/or decimals. It also appears to 

affect only a minority of people. This bias seems to be neither useful nor relevant to the 

effective processing of fractions and decimals. That could be because it is related to the 

underestimation of the magnitude of decimal as discussed in chapter four. However, the 

results of experiment five do not imply that the largerstim effect is a hindrance  to 

fraction and decimal knowledge and ability. 

 

Lastly, the lack of association between the largerstim effect and ability implies that it is 

not indicative of a wider array of appropriate strategies being used by the participants 

who demonstrate the largerstim effect. If it did we would expect to see a positive 

association between the largerstim effect and success. This is because the use of an 

increased variety of appropriate strategies for magnitude comparison of fractions has 

been linked to improved performance on fraction tasks (Fazio, DeWolf & Siegler, 2016). 
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6.5.2 Distance effect 

The distance effect was again the strongest effect found in the mixed linear modelling 

analysis across logRTs. The majority of individual participants also had a significant 

distance effect such that their RTs decreased as the distance between the fraction and 

decimal pair increased.  

 

A very significant association was found between participants’ distance effects and their 

success in the magnitude comparison task and both tests of fraction and decimal skill. In 

addition, participants with stronger distance effects also achieved higher skill level scores 

in both the fraction and the decimal tests. The strength of the associations for fractions 

and decimals were approximately the same but maybe a little higher for the decimal 

skills level than the fraction skills level.  

 

It should be noted that the distance effect I have found is specifically between the 

magnitude comparison of fractions and decimals. So when calculated for an individual, it 

is a measure of how strongly magnitude representations of fractions and decimals share 

commonalities for that participant. Therefore, my results indicate that mental 

representations which make stronger links between the magnitude of fractions and 

decimals are a feature of individuals with higher levels of skill with both fractions and 

decimals.    

 

Links between the distance effect and number skill have been found by others. The 

number skill of small children and adults has been shown to be associated with the 

strength of their individual distance effects (Booth & Siegler, 2008; Fazio, Bailey, 

Thompson & Siegler, 2014; Holloway & Ansari, 2009).  

 

Also, De Smedt, Verschaffel & Ghesquière (2009) carried out a longitudinal study testing 

children initially at around age 6 and then a year later. They found that the distance 

effect was a better predictor of progress in mathematics than age, intellectual ability and 

speed of response. Their findings also reflect the consistent lack of association between 

speed of response and accuracy that I have found.  

 

There have also been studies that have made connections between understanding of 

specifically fraction magnitude and mathematical understanding. For example, Torbeyns, 

Schneider, Xin & Siegler (2015) found that, across three different countries, children’s 

understanding of fraction magnitude was positively associated with their mathematical 

achievement in general. Also, Booth & Newton (2012) demonstrated that an individual’s 
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level of understanding of numerical magnitude in fractions was a strong predictor of their 

future progress in higher maths.  

 

Furthermore, Faulkenberry (2011) found that students with stronger distance effects in 

fraction magnitude comparison tasks were more confident and relied less upon the use 

of calculators. Better understanding of proportions has even been linked to improved 

rationality in decision making (Alonso & Fernández-Berrocal, 2003). 

 

Importantly, it is deliberate rather than automatic processing of number magnitudes that 

have been linked to success with mathematical tasks. Automatic responses like the 

SNARC effect and SiCE/SCE are not found for fractions unless people are trained to 

associate specific examples of fractions with abstract non-componential symbols (Kallai 

& Tzelgov, 2012b). This is probably because holistic fraction magnitude processing is 

deliberate and takes too long to be affected by any automatic response to irrelevant size 

or location information.  

 

Furthermore, automatic responses to irrelevant information are not necessarily a feature 

of effective number magnitude representation. For example, Hoffmann, Mussolin, Martin 

& Schiltz  (2014) found that the strength of the SNARC effect is inversely related to 

ability with whole numbers.  

6.5.3 Location effect 

The great majority of participants also demonstrated a significant location effect. That is, 

magnitude comparisons were significantly slowest in the middle location. In addition, the 

strength of this effect was significantly associated with success in both the fraction and 

decimal tests. However, it was not associated with the levels obtained in either the 

fraction or the decimal tasks.  

 

These facts would imply that the location effect might be a cognitive indicator that 

highlights a feature of numerical magnitude understanding that is helpful for lower level 

fraction and decimal tasks only.  The decimal skills for the lowest levels encompassed 

the understanding of whole number, tenth and hundredth decimal place values. The 

lowest level of the fraction skills hierarchy was the part-whole understanding of 

fractions. 

 

I have suggested that the location effect is an outcome of the use of zero and one as 

anchor points against which to estimate the size of fractions in particular. However, the 
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association between the strength of the location effect and success at decimal tasks 

implies that anchor points might also be used for decimal magnitude estimation. 

6.5.4 Number lines 

Both of the distance and location effects have their basis in features of the number line. 

The distance effect reflects relative magnitude. The location effect reflects the section of 

the number line which is the frame of reference for fractional numbers.  The fact that 

these two effects have been linked to greater success at both fraction and decimal tasks 

might imply that the teaching of fractional numbers should emphasise the use of number 

lines. 

 

Indeed, the use of number lines in the teaching of fractions and decimals has been 

shown to improve learning. For example, Fuchs, et al. (2013) found that an intervention 

that focussed on the measurement interpretation rather than part-whole understanding 

of fractions was most effective in helping low achieving students develop better 

performance at fraction tasks. The measure interpretation of fractions emphasises the 

combined meaning of fraction components, the equivalence of different fractions and the 

place of fractions within the number line.  

 

Mayer, Lewis & Hegarty (1992) found that students were generally more successful at 

solving proportion questions when they constructed a number line on paper to help them 

(see pages 140-141 of their book). Furthermore, Jordan et al. (2013) found that number 

line estimation proficiency was the largest predictor of progress in the learning of 

fraction knowledge. 

 

Countering this, the study of Bright, Behr, Post & Wachsmuth (1988) suggested that 

simply using number lines in the teaching of fractions does not necessarily improve 

fraction skills beyond tasks that specifically make use of number lines. They did not find 

that the children they studied necessarily transferred their number line knowledge to 

other tasks; implying they had learned procedures rather than relative magnitude 

concepts. 

 

So using number lines when teaching the topics of fractions and decimals may well 

facilitate learning. Encouraging children to explicitly use number lines for tasks involving 

proportions may also be helpful. This may be because it strengthens the magnitude 

understanding which leads to the distance effect; maybe even the location effect also. 

However, number lines must be used to instruct for conceptual understanding not just 

discrete procedures. 
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The results of experiment five imply that it would be especially important to ensure that 

number lines are used to reinforce the commonalities between the magnitudes of 

fractions and decimals. 

6.5.5 Next steps 

The next and final chapter of the thesis sums up the analysis and findings of 

experiments one to five. It responds specifically to the questions asked by the research. 

What more has been discovered about the commonalities and differences between 

fractions and decimals and how do these discoveries inform the teaching of proportional 

knowledge? 
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Chapter 7 Summary and implications 

7.1 Introduction 

This final chapter summarises the findings of the research reported within the thesis. It 

starts with an assessment of the research and analysis techniques used.  

 

The rest of the chapter consists of three short sections responding to the three themes 

of this thesis. These are, the commonalities between mental representations of fractions 

and decimals; the differences between mental representations of fractions and decimals; 

the implications for teaching and learning.   

 

7.2 Techniques of research and analysis 

Unlike most researchers that seek the distance effect, I did not use a target-stimulus 

paradigm in experiments one and two. Using a constant target against which to compare 

a stimulus certainly leads to a much simpler experimental design.  

 

However there were no appropriate targets to use for the purposes of my investigation. 

The intention of which was to find out if there are processing routes by which fractions 

and decimals can be mapped onto a common magnitude mental representation – a 

mental number line. In other words, whether a distance effect could be found when the 

magnitude of a fraction is being compared to the magnitude of a decimals. Relatively 

unfamiliar fractions and decimals needed to be used to find out if these processes exist 

for fractions and decimals in general rather than just specific, familiar examples.  

 

Not using a target against which to compare meant that it was necessary to control the 

distance between pairs. Doing so necessitated that the possible confounding factor of the 

position of the stimulus pairs within the zero-to-one range be accounted for. Indeed, not 

only did the location factor have a significant effect upon responses but there were 

significant interactions found between distance and location in both experiments two and 

five. So to not include some control for location could have resulted in misleading as well 

as impoverished results. 

 

Not accounting for all possible relevant factors and interactions in the design of an 

experiment involving mental representations of number can lead to conflicting results.  

Jiang et al. (2016) demonstrated this in their SiCE task for single digit whole numbers. 

Like me, they did not use a target-stimulus paradigm  which allowed them to control for 
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additional factors which they used to show that responses to a SiCE task are more 

complex than previously thought. 

 

Still, the design of the number comparison task might be criticised for being too complex 

and including too many factors. Neither the largerstim factor or the largerlr factor were 

expected to have any effect. They were mainly included to allow for balanced replication 

as well as the elimination of the SNARC effect. Nevertheless, the complexity of the 

experimental set-up did not preclude analysis and it did allow for the effects of several, 

possibly confounding factors to be eliminated from the investigation of the distance 

effect.  

 

The decision to use a mixed linear modelling approach to the analysis of the number 

comparison tasks had drawbacks. In particular, it meant that only comparisons between 

the relative sizes of the significant effects could be made. Other techniques might have 

allowed for standardised effect sizes to be calculated.  However, the considerable 

influence of individual differences upon the three main factors invalidated any approach 

which analysed averages across participants. Using the mixed linear modelling allowed 

valid conclusions to be drawn despite the inherently noisy data and the unbalanced 

design. 

 

For the much simpler experiments three and four, participants responded to each 

stimulus only once so the only replications were between subjects. Particularly for 

experiment three, there was actually relatively little variance between participants. So 

the decision to analyse average responses for each stimuli was taken which allowed for 

comparison with other studies (especially Iuculano & Butterworth, 2011). 

 

7.3 Commonalities – the distance effect 

The key finding of this research is the one that it set out to find. That is, access to a 

common magnitude understanding of fractions and decimals. In three tasks in which the 

magnitude of a decimal was compared to that of a fraction, not only was the distance 

effect found but it was consistently by far the strongest effect.  

 

There is some still question of whether the distance effect is indicative of number 

comparisons based upon holistic magnitudes rather than components. So I conducted a 

final meta-analysis on the combined results of experiment one, the response-larger data 

of experiment two (with the responses for distances 0.6 and 0.7 removed), and the 
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magnitude comparison task of experiment five for the 46 successful participants. This 

combined the results of 110 participants. 

 

The distance effect remained the strongest effect. The location effect remained 

significant as did the largerstim effect by way of interactions with distance and the 

interaction of all three factors. Other magnitude features of the stimuli including 

comparisons between stimulus components were tested. These were the fraction size, 

the decimal size, the numerator and denominator of the fraction, the absolute difference 

between the numerator and denominator and the absolute difference between the 

numerator and the first digit of the decimal. 

 

These factors are not independent of the distance between stimuli and/or the location of 

the stimulus pair so added individually they did appear to improve the model of logRT. 

However, the combination of distance, location and largerstim effects superseded the 

effect of these other factors. 

 

Three digit decimals have been seen to have commonalities in their mental 

representations as three digit whole numbers (DeWolf et al., 2014). In their comparison 

tasks for large whole numbers,  Barth, Kanwisher & Spelke (2003) found that the format 

of numbers (visual or auditory) did not affect performance, nor did the size of the 

numbers. They found that the ratio of the sets being compared was what predicted 

performance best. That is, they found a distance effect scaled for set size. I didn’t find 

this as it would have presented as a monotonic, increasing location effect for each 

distance.  

 

The persistent and strong distance effect that I have found for small numbers and 

among people with functional mathematical skills strongly implies that people try to fit 

small numbers into their existing cognitive structures for whole numbers; that is the 

mental number line.  

 

7.4 Differences 

Though theoretically representing the same amount, fractions and decimal are used 

differently. For example, relative proportions are more often represented by and better 

understood using fractions than decimals (DeWolf, Bassok & Holyoak, 2015). Magnitude 

responses to decimals are faster than to fractions (e.g. DeWolf et al., 2014; Iuculano & 

Butterworth, 2011). This last result was also found in my experiments three and four at 
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least for stimuli in the middle of the zero-to-one range. In all five experiments responses 

were affected by the location of stimuli in relation to zero and one. 

 

The specific effect of location upon responses in the magnitude comparison tasks and the 

magnitude estimation task was one of the key novel findings of this research. It was also 

found to be a significant individual effect for approximately half of the participants in 

experiments one, two and five.  

 

Rational numbers – fractions and decimals in this case, reside within a restricted domain. 

The fact that they are influenced by the end-points of that domain is not remarkable. It 

seems to be indicative of some sort of processing route to magnitude representation that 

depends on the use of anchor points. So the magnitude of a fraction is generally 

accessed as a process of adjustment away from either zero or one.  

 

The results of experiments three and four imply that this is indeed a process applied to 

fractions alone rather than to decimals and proportions in general. In fact, it seems that 

only if prompted specifically to compare with zero and one does a decimal’s distance 

from these two points affect the response to it and then only slightly. This is both in 

terms of response times and errors. 

 

The evidence is that three-digit decimals are processed much like three-digit whole 

numbers (see DeWolf et al., 2014). This would appear in some ways to be an 

appropriate approach considering that, especially when used in a scientific or 

measurement context, the magnitude of a decimal number is dependent on the units 

used and a two number differing in place value can mean the same thing. For example, 

452mm = 0.452m. However, 452 ≠ 0.452 in other contexts such as when representing a 

proportion. In the task of comparing a decimal’s magnitude to that of a fraction, place 

value is relevant. 

 

Evidently, there is a different processing route to magnitude representation for decimals 

than fractions. Decimal magnitudes appear to be accessed more quickly with a strong 

componential bias towards the first decimal place. Fractions appear to be accessed more 

slowly with the components considered but combined into a holistic magnitude, if 

necessary, which is more accurate than that of a multi-digit decimal. These observations 

are generalisations. There were large variations between individuals found in 

experiments one, two and five.  
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Differences are significant between individuals’ mental representations of fractions and 

decimals and their routes to processing them. RT results for experiments one, two and 

five were very noisy and much of the noise was down to the very great differences 

between individuals. Individuals not only had significantly different baseline RTs but also 

significantly different sizes of distance and location effects. Some few people also had a 

significant largerstim effect, not all of them in the same direction.  

 

The results of these number comparison experiments, combined with the findings of 

others on the effects of stimulus and strategy choice on responses to fractions (e.g. 

Faulkenberry & Pierce, 2011; Meert et al. 2009, 2010; Schneider & Siegler, 2010; Shaki 

& Fischer, 2013), build up a picture of a very complicated cognitive structure for 

processing the magnitudes of fractional numbers. Structures that vary depending on the 

individual and the task that they are performing. 

 

The apparent visual simplicity of the fraction and decimal stimuli presented in the five 

experiments carried out for this thesis belie the complex nature of their meaning, 

processing and representation. Future research into the cognitive structures that support 

our use and understanding of fractional numbers must take into account all of this 

complexity within and between individuals and tasks. 

 

Most of the participants of these experiments performed remarkably well at a 

challenging task. So a holistic magnitude distance effect combined with an effect of 

location for many individuals and a largerstim effect for a small minority of individuals 

seems the best account of the response time results of the magnitude comparison task.  

 

7.5 Implications for teaching and learning 

Gérard (1998) makes an argument that the notion of understanding representation is 

important in mathematics education research because we do not directly experience 

number we use symbolic representations. So understanding the nature of our internal 

representations and how they work is key to understanding how to teach numerical 

concepts better. 

 

When we teach, we facilitate the formation of mental number representations in the 

minds of each of our students. The pedagogical techniques we employ affect the 

development of these mental representations. An example of how different approaches 

to teaching result in the different development of mental representations can be seen in 

the cross-cultural study of Resnick et al. (1989) discussed in chapter one.  
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As discussed in the previous chapter, the findings of my research add to previous 

research which has demonstrated that holistic magnitude understanding of fractions is 

key to achievement in mathematics, not only for fraction tasks. However, I have also 

shown that people who effectively translate fractional numbers into magnitude 

representations common to both fractions and decimals are also more successful at 

solving fraction and decimal problems. 

 

I have also highlighted the possibility that the use of the anchor points of zero and one 

in making judgements of the magnitude of fractions, (and maybe decimals), is linked to 

improved basic skills with fractions and decimals. The magnitude representations and 

anchor points are part of a mental number line. So I have suggested that the use of 

physical number lines might be used to improve learners’ understanding of fractions and 

decimals and their commonalities. 

 

I have not found a causal relationship between either holistic, common magnitude 

representations of fractions and decimals, or the use of anchoring for estimation and 

improvement in fraction and decimal skills. I would suggest, however, that it makes 

sense for teacher to aim to build up knowledge of fractions and decimals in their 

students in ways that make use of these available structures that have been 

demonstrated to be potentially effective.  
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Appendix 1 Individual differences for participants in 

experiment one. 

 

 

key:  p < .05 

 

  

  
distance location largerstim 

Participant 
no. of 
errors F(1,115) p partial η

2
 F(2,115) p partial η

2
 F(1,115) p partial η

2
 

2 8 31.11 <.001 .119 17.52 <.001 .232 4.87 .029 .041 

3 21 6.23 .014 .042 1.71 .186 .029 6.41 .013 .053 

4 16 0.89 .348 .002 1.60 .207 .026 4.22 .042 .035 

5 9 8.93 .003 .036 6.12 .003 .096 0.00 .985 .000 

6 45 2.37 .127 .020 0.68 .510 .011 0.21 .652 .002 

7 38 0.09 .765 .001 0.17 .846 .003 1.46 .229 .013 

8 19 19.80 <.001 .107 6.15 .003 .097 3.67 .058 .031 

9 7 16.54 <.001 .082 4.70 .011 .073 4.65 .033 .039 

10 8 35.89 <.001 .155 15.79 <.001 .216 0.11 .745 .001 

11 17 42.82 <.001 .222 6.55 .002 .102 13.12 <.001 .102 

12 14 15.82 <.001 .095 2.79 .066 .046 9.10 .003 .073 

13 17 20.59 <.001 .056 24.82 <.001 .300 3.74 .056 .031 

14 14 11.10 .001 .035 12.53 <.001 .174 16.66 <.001 .127 

15 18 5.69 .019 .035 0.52 .598 .009 0.12 .728 .001 

16 24 6.90 .010 .034 2.90 .059 .048 0.00 .949 .000 

17 14 8.41 .004 .027 7.70 .001 .117 0.69 .408 .006 

18 43 0.11 .739 .000 0.64 .532 .011 0.55 .461 .005 

19 4 25.26 <.001 .150 2.40 .095 .040 0.24 .629 .002 

20 4 33.84 <.001 .177 3.05 .051 .049 7.21 .008 .059 

21 11 10.02 .002 .059 2.48 .089 .041 1.55 .216 .013 

22 10 30.27 <.001 .127 12.61 <.001 .178 6.74 .011 .055 

23 14 18.61 <.001 .093 8.27 <.001 .126 7.04 .009 .058 

24 3 39.16 <.001 .194 5.35 .006 .084 2.98 .087 .025 

25 17 9.78 .002 .036 6.48 .002 .100 3.57 .061 .030 

26 27 5.37 .022 .022 8.38 <.001 .127 2.26 .135 .019 

27 6 88.36 <.001 .367 6.53 .002 .100 11.68 .001 .092 

28 10 65.80 <.001 .312 16.04 <.001 .219 10.05 .002 .080 

29 18 40.86 <.001 .215 4.41 .014 .071 17.26 <.001 .131 

30 4 27.02 <.001 .168 1.14 .324 .020 13.68 <.001 .106 

31 22 12.45 .001 .066 4.47 .013 .072 14.68 <.001 .113 
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Appendix 2a Individual differences for participants in 

experiment two response larger group. 

 
  no. of 

errors 

distance location largerstim 

Participant F(1,139) p partial η
2
 F(2,139) p partial η

2
 F(1,139) p partial η

2
 

1 17 78.96 <.001 .300 2.26 .109 .031 3.15 .078 .022 

2 23 11.45 .001 .068 2.51 .085 .035 3.17 .077 .022 

3 32 21.21 <.001 .090 2.10 .127 .029 0.18 .674 .001 

4 21 49.12 <.001 .230 0.82 .441 .012 8.42 .004 .057 

5 53 0.11 .743 .000 0.68 .507 .010 0.10 .755 .001 

6 18 28.50 <.001 .105 6.50 .002 .086 2.65 .106 .019 

7 61 1.49 .225 .003 1.91 .152 .026 1.08 .301 .008 

8 19 45.67 <.001 .205 2.89 .059 .040 1.16 .283 .008 

9 11 61.28 <.001 .255 3.06 .050 .042 0.70 .405 .005 

10 11 21.92 <.001 .093 2.87 .060 .039 3.22 .075 .023 

11 17 66.19 <.001 .227 8.26 <.001 .106 0.33 .570 .002 

12 32 2.58 .111 .005 4.65 .011 .063 1.28 .261 .009 

13 27 2.95 .088 .013 3.47 .034 .047 2.05 .155 .014 

14 39 6.15 .014 .062 2.31 .103 .032 0.47 .495 .003 

15 10 22.20 <.001 .106 1.20 .304 .017 4.57 .034 .032 

16 46 2.24 .137 .002 4.02 .020 .055 0.80 .373 .006 

17 15 37.58 <.001 .148 7.32 .001 .095 5.31 .023 .037 

18 12 47.71 <.001 .215 1.11 .332 .016 0.70 .405 .005 

19 12 50.56 <.001 .156 13.01 <.001 .156 7.16 .008 .049 

20 35 4.25 .041 .011 4.53 .012 .061 0.80 .372 .006 

21 19 13.05 <.001 .054 2.79 .065 .039 1.63 .204 .012 

22 10 68.75 <.001 .251 8.09 <.001 .104 7.04 .009 .048 

23 18 17.18 <.001 .046 9.49 <.001 .119 1.86 .175 .013 

24 18 14.81 <.001 .058 2.75 .067 .038 0.08 .772 .001 

25 20 5.73 .018 .022 5.45 .005 .073 1.14 .288 .008 

26 17 9.08 .003 .037 5.00 .008 .067 3.03 .084 .021 

27 35 1.17 .282 .002 1.69 .189 .024 5.54 .020 .038 

28 14 48.74 <.001 .186 4.63 .011 .063 0.11 .747 .001 

 

 

Key:   p < .05 

 
  .05 ≤ p < .10 

 
  p > .10 
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Appendix 2b Individual differences for participants in 

experiment two response smaller group. 

 
  no. of 

errors 

distance location largerstim 

Participant F(1,139) p partial η
2
 F(2,139) p partial η

2
 F(1,139) p partial η

2
 

29 11 23.29 <.001 .079 6.88 .001 .090 0.19 .663 .001 

30 28 19.08 <.001 .099 1.74 .180 .023 7.78 .006 .053 

31 7 16.80 <.001 .078 2.49 .087 .035 2.09 .150 .015 

32 59 8.35 .004 .006 39.31 <.001 .358 13.05 <.001 .086 

33 42 3.79 .053 .005 5.43 .005 .071 6.65 .011 .046 

34 34 7.16 .008 .040 2.31 .103 .031 7.78 .006 .053 

35 43 1.10 .295 .000 9.29 <.001 .117 0.56 .454 .004 

36 19 23.92 <.001 .074 10.71 <.001 .132 2.25 .136 .016 

37 51 0.19 .668 .000 0.54 .586 .008 0.00 .973 .000 

38 29 4.65 .033 .022 0.59 .558 .008 0.46 .497 .003 

39 16 28.72 <.001 .081 12.97 <.001 .156 2.94 .089 .021 

40 14 26.21 <.001 .124 1.05 .352 .014 10.50 .001 .070 

41 40 0.19 .662 .006 5.83 .004 .077 0.04 .845 .000 

42 29 12.07 .001 .032 6.06 .003 .079 5.23 .024 .036 

43 57 0.60 .439 .011 2.37 .097 .033 3.72 .056 .026 

44 15 23.13 <.001 .108 0.95 .389 .013 5.50 .020 .038 

45 21 26.09 <.001 .112 3.63 .029 .048 4.61 .034 .032 

46 36 0.86 .356 .004 0.63 .534 .009 9.73 .002 .065 

47 15 22.29 <.001 .086 4.20 .017 .055 5.96 .016 .041 

48 51 0.02 .877 -.000 1.56 .215 .022 9.76 .002 .066 

49 21 12.94 <.001 .038 6.81 .002 .088 2.87 .093 .020 

50 43 1.75 .188 .015 0.41 .661 .006 0.86 .354 .006 

51 56 10.60 .001 .035 9.48 <.001 .117 8.40 .004 .057 

52 9 14.81 <.001 .032 10.55 <.001 .130 4.47 .036 .031 

53 28 4.99 .027 .009 8.55 <.001 .108 2.22 .139 .016 

54 61 0.16 .687 .001 0.30 .742 .004 3.79 .054 .027 

55 3 56.66 <.001 .190 9.34 <.001 .117 7.21 .008 .049 

56 18 19.45 <.001 .065 6.62 .002 .085 4.29 .040 .030 

57 60 1.19 .277 .005 1.38 .254 .019 0.39 .535 .003 

58 20 54.63 <.001 .236 1.14 .323 .016 0.04 .836 .000 

 

 

 

Key   p < .05 

 
  .05 ≤ p < .10 

 
  p > .10 

 

  



Appendix 3 Individual differences for participants in 

experiment five. 

  no. of 
errors 

distance location largerstim 

Participant F(1,115) p partial η
2
 F(2,115) p partial η

2
 F(1,115) p partial η

2
 

1 27 3.14 .079 .009 4.92 .009 .078 3.07 .082 .026 
2 31 .597 .441 <.001 5.19 .007 .080 1.95 .165 .017 

3 22 15.8 <.001 .075 3.21 .044 .054 .607 .438 .005 

4 14 29.1 <.001 .130 12.7 <.001 .180 .096 .757 .001 

5 12 27.4 <.001 .148 1.82 .166 .028 7.21 .008 .059 

6 26 7.35 .008 .025 4.70 .011 .077 0.93 .337 .008 

7 12 14.4 <.001 .043 13.1 <.001 .182 10.1 .002 .081 

8 9 61.0 <.001 .258 8.94 <.001 .130 13.8 <.001 .107 

9 2 51.1 <.001 .253 2.73 .069 .045 1.39 .241 .012 

10 11 31.2 <.001 .122 10.8 <.001 .156 .867 .354 .007 

*11 95 21.1 <.001 .107 3.18 .045 .049 2.89 .092 .025 

12 5 32.2 <.001 .170 3.62 .030 .059 2.23 .138 .019 

13 13 24.8 <.001 .130 4.17 .018 .067 5.22 .024 .043 

14 20 14.2 <.001 .074 6.42 .002 0.10 .285 .595 .002 

15 18 8.99 .003 .042 6.86 .002 .107 1.36 .246 .012 

*16 77 4.83 .030 .040 .967 .383 .016 1.18 .279 .010 

17 19 4.78 .031 .021 3.33 .039 .055 .224 .637 .002 

18 26 2.65 .107 .016 5.35 .006 .086 .336 .563 .003 

19 14 18.8 <.001 .062 15.0 <.001 .205 4.62 .034 .039 

20 19 6.12 .015 .033 1.81 .168 .030 1.67 .198 .014 

21 20 21.4 <.001 .164 4.88 .009 .080 1.43 .234 .012 

*22 95 .008 .929 .002 2.11 .126 .035 .090 .764 .001 

23 13 16.6 <.001 .062 9.21 <.001 .136 2.81 .097 .024 

*24 51 .051 .822 .007 7.25 .001 .109 1.22 .272 .010 

25 15 17.6 <.001 .073 8.12 .001 .123 .115 .735 .001 

26 15 26.5 <.001 .093 15.1 <.001 .206 2.55 .113 .022 

*27 56 .110 .741 .004 1.62 .202 .027 8.77 .004 .071 

28 11 59.3 <.001 .217 19.2 <.001 .250 .063 .803 .001 

29 7 57.7 <.001 .263 8.64 <.001 .131 5.36 .022 .045 

30 16 10.0 .002 .046 3.24 .043 .056 1.92 .168 .016 

31 28 1.22 .271 .002 5.38 .006 .086 .237 .627 .002 

32 10 29.1 <.001 .139 6.50 .002 .099 13.7 <.001 .107 

*33 76 1.65 .201 .022 2.65 .075 .041 3.98 .048 .033 

34 27 1.78 .185 .004 7.25 .001 .111 4.83 .030 .040 

*35 100 16.1 <.001 .097 1.74 .180 .029 12.4 .001 .097 

36 11 51.6 <.001 .210 12.5 <.001 .179 .531 .468 .005 

37 12 12.4 <.001 .039 8.64 <.001 .132 1.11 .295 .010 

38 10 22.9 <.001 .128 1.30 .276 .023 1.15 .287 .010 

39 22 4.43 .037 .008 12.0 <.001 .173 1.85 .176 .016 

40 50 .134 .715 .002 .459 .633 .009 1.31 .255 .011 

41 32 3.74 .055 .003 9.77 <.001 .144 .345 .558 .003 

42 14 11.0 .001 .036 9.53 <.001 .142 .327 .569 .003 

43 12 11.3 .001 .025 14.2 <.001 .197 .277 0.60 .002 

44 13 13.9 <.001 .041 10.8 <.001 .158 .008 .930 <.001 

45 21 20.5 <.001 .093 4.92 .009 .077 1.78 .184 .015 

*46 69 .111 .740 <.001 2.59 .080 .046 2.42 .122 .021 

47 21 2.80 .097 .010 2.38 .097 .040 0.05 .823 <.001 

48 10 20.7 <.001 .087 6.26 .003 .097 0.48 .490 .004 

49 19 23.2 <.001 .130 1.60 .206 .026 1.99 .161 .017 

50 3 42.9 <.001 .179 9.93 <.001 .145 1.92 .168 .016 

51 47 .102 .750 .001 2.34 .101 .039 .242 .624 .002 

52 16 22.1 <.001 .074 13.9 <.001 .189 12.2 .001 .096 

53 13 27.0 <.001 .109 11.3 <.001 .163 2.13 .147 .018 

54 20 5.19 .025 .017 4.59 .012 .072 6.03 .016 .050 
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