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Abstract— Wheel and rail wear is a significant issue in railway 

systems. Accurate prediction of this wear can improve economy, ride 

comfort, prevention of derailment and planning of maintenance 

interventions. Poor prediction can result in failure and consequent delay 

and increased costs if it is not controlled in an effective way. However, 

prediction of wheel and rail wear is still a great challenge for railway 

engineers and operators. The aim of this paper is to predict wheel wear 

and rail wear using an artificial neural network. Nonlinear 

Autoregressive models with exogenous input neural network 

(NARXNN) have been developed for wheel and rail wear prediction. 

  

Testing with a twin disc rig, together with measurement of wear using 

replica material and a profilometer have been carried out for wheel and 

rail wear under dry, wet and lubricated conditions and after sanding. 

Tests results from the twin disk rig have been used to train, validate, and 

test the neural network. Wheel and rail profiles plus load, speed, yaw 

angle, and first and second derivative of the wheel and rail profiles were 

used as an inputs to the neural network, while the output of neural 

network was the wheel wear and rail wear. Accuracy of wheel and rail 

wear prediction using the neural network was investigated and assessed 

in term of mean absolute percentage error (MAPE).  

 

The results demonstrate that the neural network can be used efficiently 

to predict wheel and rail wear. The methods of collecting wear data 

using the replica material and the profilometer have also proved 

effective for wheel and rail wear measurements for training and 

validating the neural network. The laboratory tests have aimed to 

validate the wear predictions for realistic wheel and rail profiles and 

materials but they necessarily cover only a limited set of conditions. The 

next steps for this work will be to test the methods for rail and wheel 

data from field tests.     
        

Keywords— wheel wear, rail wear, replica material, Alicona 

profilometer, wheel/rail wear prediction, neural network.        

1. INTRODUCTION  

Due to the geometry of the wheel and rail and the non-uniform 

distribution of normal and tangential forces between them the 

contact conditions at the wheel-rail interface are complex. 

Different levels of wear can occur at different points on the wheel 

and rail and surface [1] and an example showing wear at the tread 

and flange of a railway wheel is shown in Fig. 1 [2].  

 
Fig. 1 Wheel wear [1] 

 

Due to the vast length of railway track the cost of replacing worn 

rails is much greater than that of replacing any other damaged 

components [2]. Measurement of rail wear during inspection is 

normally made at three different positions as shown in Fig. 2: W1 

is the vertical wear, W2 is the horizontal wear at a vertical 

distance h, and W3 is the wear measured at an angle ⍺ from the 

horizontal [3].       

      

 
Fig. 2 Rail wear [3] 

 

Wheel wear prediction is a very complicated process which is 

difficult to predict [4]. Rail maintenance and replacement 

represent some of the major costs of running a rail network. Rail 

lifetime is generally determined by two major factors; wear and 

rolling contact fatigue [5]. The development of wear mechanisms 

at the wheel and rail contact had been studied by various 

experimental and numerical methods.  

Neural networks and other machine learning techniques have 

been used in earlier research to predict wheel and rail forces for 

railway operations [6] and to optimise the design of the railway 

suspension system [7]. They have also been widely used in 

railway and other industries for optimising tasks such as 

scheduling [8], [9] but they have not so far been applied to core 

engineering problems such as wheel or rail wear. Some relevant 

work is described below. Laboratory tests such as a twin disc test 

rig have previously been used to study the wheel and rail wear 

[10]. 

 

Singh et al., [11] used a back propagation neural network 

(BPNN) to predict drill wear. The inputs to the neural network in 

this work were thrust force, torque, feed-rate, drill diameter and 

spindle speed, while the output of the neural network was the 

flank wear. From the 49 datasets obtained in the experiment, 34 

were selected at random for training the network, and the 

remaining 15 were used for testing the network. The simulation 

results show that the neural network is able effectively to predict 

the drill wear.    
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Huang  et al., [12] used a nonlinear autoregressive network with 

exogenous inputs (NARXNN) based on load prediction to 

improve scheduling decisions in grid environments. In their 

paper, the configuration of NARXNN was as follows: input-

memory order n=3 and output-memory order m=3, initial weight 

of each component of W is randomly generated in the scope of 

(0, 1), while the sigmoid function was used as an activation 

function. The data set used to train the NARXNN was collected 

using a number of entities of a grid including resources, users, 

brokers, information service, network components. The 

simulation results show that the NARXNN predictor provides 

good load prediction.   

 

Kumar and Singh [13] used a backpropagation neural network 

(BPNN) in the prediction of wear loss quantities of A390 

aluminium alloy. A pin-on-disc apparatus was used to perform 

dry sliding wear tests. The inputs to the neural network were the 

load, sliding speed and time; while the output of the neural 

network was mass loss. 45 examples were used to train the neural 

network. The simulation results show that the neural network 

results was close to experimental results. They concluded that 

neural network can be used efficiently for wear prediction.     

 

Khudhair and Talib [14] used a back propagation neural network 

(BPNN) to predict wear. A pin-on-ring machine was used to 

study the 13%Cr steel. The inputs to the neural network model 

were the sliding speed, load, and test time, and the output of the 

neural network was the wear rate. The simulation results show 

that the neural network wear was close to actual wear with 

correlation coefficient of 0.99. The neural network model 

predictions in this work exhibited good results. They concluded 

that the neural network can be considered as an excellent tool for 

wear prediction.  

 

Falomi et al., [15] use two approaches for the detection of the 

wheel-rail contact points. The first is the semi-analytical 

approach, which considers the wheel and the rail as two 

mathematical surfaces whose analytic expression is known. The 

second approach consists in the application of neural networks. 

The aim of this approach is to develop a model which is as 

reliable as the semi-analytical methods, but requiring a lower 

calculation time, consistent with real-time constraints of 

multibody simulations. The neural network algorithm is 

composed of a first part in which, on the basis of the wheelset 

geometric configuration, the number of contact points is defined. 

Then the location of the contact points is calculated with feed-

forward neural networks. The networks are trained using the 

results of semi-analytical procedures based on the minimization 

of the surface defined as the difference between the wheel surface 

and the rail surface.  

 

Pit [2], used a neural network for rail wear prediciton. He studied 

experimentally the wear behaviour of carbide-free bainitic rails. 

Neural network modelling was carried out on the data received 

from the British Steel Swinden Technology Center in an attempt 

to produce a useful empirical model for rail wear prediction. The 

inputs to the neural network were rail hardness, rail 

microstructure, wheel hardness, wheel microstructure, Charpy 

fracture energy, and contact stress. The output of the neural 

network was the rail wear rate. British Steel Swinden Technology 

Center provided rail/wheel wear rate, hardness and Charpy 

fracture energy. A microstructure parameter was used as an input 

to indicate whether each roller was pearlitic or bainitic; a pearlitic 

given value of zero and a bainitic given value of one. The author 

concluded that it is difficult to develop a model for rail wear 

prediction, the neural network was not successful as there was 

not enough data for a reliable model to be generated, but a small 

amount of data showed promising results.    

 

2. ARTIFICIAL NEURAL NETWORKS (ANN)  

Artificial neural networks (ANNs) are currently used to solve a 

wide range of complex engineering problems. An ANN has the 

ability to learn by example, consequently, it is very useful for 

simulations of any correlation that is difficult to describe with 

physical models or other mathematical approaches [14]. Though 

perfect prediction is seldom possible, neural networks can be 

used to make reasonably good predictions in a number of cases. 

In particular, feedforward neural networks have been used 

frequently in this respect [16]. ANNs have been used to predict 

the wear behaviour of materials [17].  

In a feedforward neural network, the information is passed from 

the inputs of the network to the outputs without feedback 

between output layer and input layer. Fig. 3 shows a feedforward 

neural network with a single hidden layer. A feedforward neural 

network can consist of more than one hidden layer  [18], [19]. 

Increasingly, feed-forward neural networks have been used in 

many areas; for instance, prediction in non-linear systems [19], 

[20].  

 

In the work reported here, Nonlinear Autoregressive models with 

exogenous input neural network (NARXNN) have been 

developed to predict wheel and rail wear under different contact 

conditions.   

 
Fig. 3 Feedforward neural network [19] 

Training of an artificial neural network is a process in which the 

neural network adjusts its weights. In this process, the actual 

output response converges to the desired output response until 

they effectively merge. The ANN is then considered to have 

completed the training phase. Training algorithms can be 

categorised into supervised training and unsupervised training 

[21].  
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Most ANNs are trained using supervised training methods. 

Supervised training needs an input vector and a target vector. 

During the training session the input vector is applied to the 

network, and a resulting output vector is produced. This response 

is compared with the target response. When the actual response 

differs from the target response, the network will generate an 

error signal. This error signal is then used to update the weights 

to ensure that the actual output matches the target output. The 

error minimisation in this type of training requires a supervisor 

or a teacher; hence, the name ‘supervised training’ [21]. 

 

The NARXNN can be implemented using a feedforward neural 

network such as shown in Fig. 4 [22]. This network simply uses 

a tapped delay line (TDL) with a feedback connection from the 

output of the network to the input [12]. The NARXNN is a 

recurrent dynamic network, with feedback connections enclosing 

several layers of the network [23].  

 

Some important qualities about NARXNN with gradient-

descending learning gradient algorithm such as the learning is 

more effective in NARXNN than in other neural network (the 

gradient descent is better in NARXNN), and the NARXNN 

converge much faster and generalize better than other networks 

[22].  

 

The NARXNN was used in this work for wheel/rail wear 

prediction because the NARXNN has fast coverage, the output 

of NARXNN is fed back to the input of the feedforward neural 

network as part of the NARXNN architecture which led to more 

accurate training phase, and the NARXNN can be used to predict 

wear in case of new samples without retrain the network.        

    

 
 

Fig. 4 The structure of NARXNN [22], [12]  

 

The output of the NARXNN is represented using the following 

equation:  

y(t) = f(u(t − 1), u(t − 2), … , u(t − n), y(t − 1), y(t −
2), … , y(t − m), W).                                                               (1) 

 

Where u(t) and y(t) represent the input and output of the 

network respectively, n and m are the input-memory order and 

output-memory order respectively, W is a matrix of weights, and 

f is a nonlinear function. The output at time t depends on its past 

m values as well as the past n values of the input.  

 

The architecture of the NARXNN can be in parallel or series-

parallel as shown in Fig. 5. In the parallel architecture 

arrangement the output of the NARXNN is fed back to the input 

of the neural network. This has some advantages such as the input 

to the feedforward network is more accurate. Where 𝑢(𝑡) is the 

input, 𝑦(𝑡) is the desired output, and �̂�(𝑡) is the estimated output.   

 

 
Fig. 5 Parallel and series-parallel architecture of NARXNN [23]  

 

Both the series-parallel architecture and the parallel architecture 

of the NARXNN were used in this work for wheel/rail wear 

prediction. The Matlab ANN Toolbox function (closloop) was 

used to convert the NARXNN from the series-parallel structure 

(open loop) to the parallel structure (closed loop) to allow multi-

step-ahead prediction (wheel/rail wear prediction in case of a 

new samples). The training of neural networks was carried out 

with an open loop which called the series-parallel architecture 

including the validation and testing. After that, the parallel 

architecture was used to execute the multistep-ahead prediction 

[24], [25].     

3. WHEEL/RAIL WEAR MEASUREMENTS  

The twin disc machine, together with replica material, and an 

Alicona profilometer were used in this paper for wheel/rail wear 

measurements. The data obtained in these tests was used to train, 

validate, and test the neural networks. The twin disc rig shown in 

Fig. 6 and Fig.7 consists of an upper steel wheel of 310mm 

diameter, and a lower steel wheel with a diameter of 290mm. The 

rollers and shafts are made of EN24T steel. A vertical force of up 

to 4kN can be applied to the two wheels using a jacking 

mechanism. The rig consists of a rotary table to allow a relative 

yaw angle between the wheels to be precisely set. A three phase 

motor is used to rotate the wheel roller at varying speeds, using a 

corresponding three phase inverter [26].    



 

4 

 

 

Fig. 6 The University of Huddersfield twin disc test rig 

 

 

Fig. 7  Schematic of the University of Huddersfield twin disc rig 

[26] 

Table (1) shows the technical details of the wheel and rail roller 

for the University of Huddersfield twin disc rig.  

 

 Parameters Wheel roller Rail roller 

Profile Standard UK wheel 

profile P8 

BS 113A rail 

profile 

Scale 1/3 1/3 

Diameter 310 mm 290 mm 

Thickness 50mm 25mm 

Material EN24T steel EN24T steel 

 

Table 1 Technical details of the wheel and rail roller - University of 

Huddersfield 

 

The Alicona profilometer (INFINTE FOCUS G4) which is 

shown in Fig. 8 was used in this work for wheel/rail wear 

measurements.  

 

Fig. 8 Alicona (INFINTE FOCUS G4) - University of Huddersfield 

The Alicona microscope has a motorized stage that moves in the 

xy direction, while the microscope objective moves in the z 

direction. It is non-contact microscope. The objectives has range 

from 2.5x - 100x magnification and has a vertical resolution of 

up to 10 nm at 100x magnification [27].       

Table (2) shows the technical specifications of the Alicona 

profilometer which was used in this paper for wear measurement.   

 

 Measurement principle Non-contact, optical. 

Travel range X/Y/Z 100 mm x100 mm x100mm 

Maximum measurable area 10000mm2 

Maximum measurable profile 

length 

100mm 

Min. repeatability 0.001μm - 0.12μm 

Vertical resolution 1μm 

Maximum measurable slope 

angle 

Up to 870 

  
Table 2 Technical specifications of Alicona profilometer [28], [29] 
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The twin disc rig was used in this work to reflect some conditions 

of the real wheel/rail interface. Replica material together with an 

Alicona profilometer were used for wheel and rail wear 

measurements using the twin disc rig. Fig. 9 shows a sample of 

replica material for the wheel and rail surfaces; and after it had 

been removed.     

 

Fig. 9 Sample of replica material on the wheel and rail surfaces; 

and after removal 

 

In this paper, the wheel and rail wear were measured using the 

Alicona profilometer using the Difference Measurments Module. 

The wear was measured by taking a digital image of the wheel 

and rail surfaces before the test and saving it as a reference 1, and 

taking another image of the wheel and rail surfaces after the test 

and saving it as a reference 2; then, the Difference Measurments 

Module in Alicona software was used to compute the wheel and 

rail wear in term of volume loss per unit area (mm3/mm2) [30].      

4. NARXNN MODEL FOR WHEEL/RAIL WEAR PREDICTION  

The neural networks are divided in terms of their structure into 

two types: feedforward network and recurrent network [31]. In 

feedforward neural networks the information flows in one 

direction without feedback (loops). The information travelled 

from the inputs to the outputs, and without feedback between 

output layer and input layer. The feedforward neural network can 

consists of more than one hidden layer  [18], [19]. In recurrent 

neural network the information can a flow in forward direction 

and a backward direction (it contain feedback connections), the 

outputs of neurons can fedback to the same neurons or to neurons 

in previous layers [32].     

 

The type of neural network was used in this work for prediction 

of wheel wear and rail wear is the recurrent neural network, it is 

a Nonlinear Autoregressive model with eXogenous input neural 

network (NARXNN). The advantages of the NARXNN are that 

it has fast training and the output of NARXNN is fedback to the 

input of the feedforward neural network so that the network 

output is available during the training of the NARXNN and more 

efficient inputs can be used for training of neural network, this 

can lead to more accurate results.  

In this work a neural network model for predicting wheel and rail 

wear was developed within Matlab as illustrated in Fig. 10.  

 

  
 

Fig. 10 NARXNN model for wheel and rail wear prediction 

Training, validation, and testing process for the NARXNN is 

outlined in the following section. The neural network model 

shown in Fig. 10 was used for rail and wheel wear prediction. 

The dataset which was used for training, validation, and testing 

of the NARXNN was prepared using the twin disc rig tests as 

described above.  

The inputs to the NARXNN were: load, yaw angle, speed, 

wheel/rail profile, first derivative of wheel/rail profile, and 

second derivative of wheel/rail profile; while the output of neural 

network was the wheel/rail wear.  

 

The series-parallel NARXXNN and the parallel NARXNN were 

used to predict the wheel and rail wear such as in the following 

sections.  
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For wheel/rail wear prediction using the series-parallel 

NARXNN, the following cases were used to validate, train, and 

test the NARXNN: The vertical load was 1200N, 1400N, and 

1600N; the yaw angle was 0.2 degree, 0.3 degree, and 0.4 degree; 

and the speed was 420rpm, 540rpm, and 660rpm.  261 samples 

were collected. In this test, the dataset was divided into 70% used 

for training (seen data), 15% used for validation, and 15% used 

for testing of the neural network (unseen input data). Wheel/rail 

wear prediction was carried out using a series-parallel network 

[24], [25], [33] such as shown in Fig. 11. The input delays were 

equal to 1:2, feedback delays was equal to 1:2, and 1 hidden layer 

with 10 neurons were used.   

 

 
 

Fig. 11 Series-parallel network (NARXNN) 

A logistic function was used as an activation functions of the 

neurons in the hidden layers such as shown in the following 

equation [34].   

  𝑙𝑜𝑔𝑠𝑖𝑔(𝑥) = (1 + (𝑥))−1                                            (2) 

The performance function used in the training of the NARXNN 

was the mean square error (MSE), it is used reduce the error 

between actual output and estimated output such as in the 

following equation [22]. 

 

MSE =  
1

N
  ∑ (ei)

2N
i=1 =   

1

N
  ∑ (ti − yi)

2N
i=1                     (3) 

 

Where tithe target is output and yi is the estimated output.    

 

5. SELECTION OF THE TRAINING ALGORITHM 

 

The accuracy of wheel/rail wear prediction using neural network 

is dependent on the training method that we use, in recurrent 

neural network there are several training algorithms can be used, 

and these were evaluated prior to selection. The Levenberg-

Marquardt algorithm was used as a network training function that 

updates the weight and bias values. It was implemented in Matlab 

and the training was continued until the validation error failed to 

decrease for six iterations (validation stop). The Levenberg-

Marquardt algorithm has the fastest convergence for this type of 

network and this advantage is especially noticeable if very 

accurate training is required. In the Matlab toolbox, there are 

three algorithms that can be used to train the neural network. 

These are: Levenberg-Marquardt (trainlm); Bayesian 

Regularization (trainbr); and Scaled Conjugate Gradient 

(trainscg). In order to establish the best training algorithm for this 

work several tests were carried out to predict the wheel/rail wear 

using these three training algorithms.  The best result was 

obtained using the Levenberg-Marquardt algorithm.  This was 

then used for all subsequent training.   

 

The Levenberg–Marquardt algorithm blends the steepest descent 

method and the Gauss–Newton algorithm. It inherits the speed 

advantage of the Gauss–Newton algorithm and the stability of the 

steepest descent method and is more robust than the Gauss–

Newton algorithm, because in many cases it can converge well 

even if the error surface is much more complex than the quadratic 

situation. Although the Levenberg–Marquardt algorithm tends to 

be slower than Gauss–Newton algorithm (in convergent 

situations), it converges much faster than the steepest descent 

method. The basic idea of the Levenberg–Marquardt algorithm 

is that it performs a combined training process: around the area 

with complex curvature, the Levenberg–Marquardt algorithm 

switches to the steepest descent algorithm, until the local 

curvature is proper to make a quadratic approximation; then it 

approximately becomes the Gauss–Newton algorithm, which can 

speed up the convergence significantly [35]. 

 

The Mean absolute percentage error (MAPE) was used to 

calculate the NARXNN accuracy. The mean absolute percentage 

error is shown in the following equation [35] : 

 

MAPE =  
1

N
 ∑  

∣Ai− Pi ∣

Ai
 X 100N

i=1                                                (4) 

Where Ai is the actual output, Pi is the predicted output, i is time 

period, and N is the number of time periods (number of observed 

values). 

 

Wheel/rail wear was predicted using the parallel NARXXNN. 

This test was carried out in order to perform the multi-step-ahead 

prediction task (predict wheel and rail wear in case of new 

samples without retraining the network). The series-parallel 

architecture which was shown in Fig. 11 was converted into a 

parallel architecture using a Matlab program such as shown in 

Fig. 12 [24].  In this test, the load was 1800N, the yaw angle was 

0.5 degree, and the speed was 780rpm. 87 samples were used for 

wheel and rail wear prediction (unseen input data). The MAPE 

was again used to calculate the NARXNN model accuracy and 

was calculated using equation (4).    

 

 
 

Fig. 12 Parallel network (NARXNN) 

 

 

 

 

 

 

file:///C:/Program%20Files/MATLAB/R2016a/help/nnet/ref/trainbr.html
file:///C:/Program%20Files/MATLAB/R2016a/help/nnet/ref/trainscg.html
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6. WHEEL/RAIL WEAR PREDICTION USING NARXNN 

The developed NARXNN was used to predict wheel and rail 

wear for the twin disc rig experiments under dry, wet, lubricated, 

and sanded conditions such as shown in the following sections.  

A. Wheel/rail wear under dry conditions  

The actual and predicted wheel wear using the series-parallel 

NARXNN are illustrated in Fig. 13.  

 
Fig. 13 Actual and predicted wheel wear using series-parallel 

NARXNN under dry conditions (based on unseen input data) 

 

 

The actual and predicted wheel wear using the parallel 

NARXNN were provided in Fig.14  

 
Fig. 14 Actual and predicted wheel wear using parallel NARXNN 

under dry conditions (based on unseen input data) 

 

The actual and predicted rail wear using the series-parallel 

NARXNN are shown in Fig. 15.   

 
Fig. 15 Actual and predicted rail wear using series-parallel 

NARXNN under dry conditions (based on unseen input data)  

 

 

 

 

 

 

 

The actual and predicted rail wear using the parallel NARXNN 

are shown in Fig. 16  

 
Fig. 16 Actual and predicted rail wear using parallel NARXNN 

under dry conditions (Unseen data)  

 

 

In the following sections, the left graphs show the actual and 

predicted wheel wear using the series-parallel NARXNN; while 

the right grahps show the actual and predicted wheel wear using 

the parallel NARXNN.  
 

 

B. Wheel/rail wear under wet conditions  

The actual and predicted wheel wear using series-parallel and 

parallel NARXNN are presented in Fig. 17.  

 

 
Fig. 17 Actual and predicted wheel wear using series-parallel and 

parallel NARXNN under wet conditions (Unseen data) 

 

The actual and predicted rail wear using series-parallel and 

parallel NARXNN are presented in Fig. 18.  

 
Fig. 18 Actual and predicted rail wear using series-parallel and 

parallel NARXNN under wet conditions (based on unseen input 

data) 
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C. Wheel/rail wear under lubricated conditions  

The actual and predicted wheel wear using series-parallel and 

parallel NARXNN are presented in Fig. 19.  

 
Fig. 19 Actual and predicted wheel wear using series-parallel and 

parallel NARXNN under lubricated conditions (based on unseen 

input data) 

 

The actual and predicted rail wear using series-parallel and 

parallel NARXNN are presented in Fig. 20.  

 

 
Fig. 20 Actual and predicted rail wear using NARXNN under 

lubricated conditions (based on unseen input data)  

 

D.  Wheel/rail wear under sanded conditions  

The actual and predicted rail wear using series-parallel and 

parallel NARXNN are presented in Fig. 21.  

 
Fig. 21 Actual and predicted wheel wear using series-parallel and 

parallel NARXNN under sanded conditions (based on unseen input 

data)   

 

 

 

 

 

 

The actual and predicted rail wear using series-parallel and 

parallel NARXNN are presented in Fig. 22.   

 

 
Fig. 22 Actual and predicted rail wear using series-parallel and 

parallel NARXNN under sanded conditions (based on unseen input 

data) 

 

E. Section discussion 

The mean absolute percentage error (MAPE) between the actual 

and predicted wheel and rail wear are summarised in Table (3) 

and Table (4) respectively.    

 

 Dry Wet Lubricated Sanded 

MAPE% for 

series-parallel 

NARXNN 

8.58% 8.54% 8.94% 6.63% 

MAPE% for 

parallel 

NARXNN 

16.93% 14.46% 18.63% 17.49% 

 

Table 3 MAPE for wheel wear prediction using series-parallel and 

parallel NARXNN (for unseen input data) 

 

 

 

 Dry Wet Lubricated Sanded 

MAPE% for 

series-parallel 

NARXNN 

7.17% 11.37% 7.54% 9.54% 

MAPE% for 

parallel 

NARXNN 

16.01% 15.31% 15.87% 15.95% 

 

Table 4 MAPE for rail wear prediction using series-parallel and 

parallel NARXNN (for unseen input data)  

 

 

The percentage error for wheel wear prediction was calculated, 

and the results show good prediction of wheel and rail wear in 

term of percentage of error, where the wheel and rail predicted 

using the NARXNN predicted wear was close to actual wheel 

and rail wear.   
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The MAPE was between 6.63% and 11.37% for the series-

parallel NARXNN (using unseen input data); then, the accuracy 

of the NARXNN model was between 88.63% and 93.37%.  

The MAPE was between 14.46% and 18.63% for the parallel 

NARXNN (using unseen input data); then, the accuracy of the 

NARXNN model was between 81.37% and 85.54%.   

Therefore, the accuracy of the NARXNN model was between 

81.37% and 93.37% (for unseen input data).   

The optimal results during training and testing of the neural 

network was obtained with input delays were 1:2, feedback delay 

1:2, and 1 hidden layer with 10 neurons.  

 

The results show that the wear experienced at a wheel and a rail 

under laboratory conditions can be predicted using a neural 

network. It is recognised however that the laboratory tests do not 

cover all of the possible wear mechanisms encountered in real 

railway operations. Key variations in load, yaw angle and friction 

coefficients have been included but there are clearly other factors 

such as dynamic variations in load and position and a wide range 

of geometry variations that have not been included in these tests. 

Although validation has been carried out against laboratory tests 

using a twin disk rig and computer simulations of railway 

vehicles running on track it is recognised that further validation 

is required to establish the effectiveness of the methods proposed 

when real variations in all parameters are included. It is proposed 

that simultaneous simulations and measurements are carried out 

on wheels for vehicles running on main line track. Measured 

track irregularities and wheel and rail profiles will be included 

and the vehicle will be modelled in as much detail as possible. 

Wheel wear will be established using the replica material and 

profilometer methods presented in this paper and compared with 

the results from the Neural Network techniques. 

 

7. NEURAL NETWORK ARCHITECTURE SELECTION   

To establish the best neural network architecture for this work a 

series of simulations with different architectures were evaluated. 

The wheel/rail wear predicted using the three NARXNN 

architecture were compared with the actual wheel/rail wear were:  

 6-7-1 (6 inputs, 7 hidden layer, and 1 output layer). 

 6-10-1 (6 inputs, 10 hidden layer, and 1 output layer). 

 6-13-1 (6 inputs, 13 hidden layer, and 1 output layer). 

 

The accuracy of wheel/rail wear prediction using NARXNN was 

investigated and assessed in term of MAPE such as:  

The MAPE for series-parallel NARXNN (6-10-1) was 8.58%, it 

was smaller than the MAPE for the series-parallel NARXNN (6-

7-1) and series-parallel NARXNN (6-13-1). Therefore, the 

series-parallel NARXNN (6-10-1) was more accurate than the 

series-parallel NARXNN (6-7-1) and series-parallel NARXNN 

(6-13-1) for wheel wear prediction.  

 

The MAPE for parallel NARXNN (6-10-1) was 7.17%, it was 

smaller than the MAPE for the parallel NARXNN (6-7-1) and 

parallel NARXNN (6-13-1). Therefore, the parallel NARXNN      

(6-10-1) was more accurate than the parallel NARXNN (6-7-1) 

and parallel NARXNN (6-13-1) for rail wear prediction. 

 

 

For learning purposes, a dynamic back-propagation algorithm is 

required to compute the gradients, which is more 

computationally intensive than static back-propagation and takes 

more time. In addition, the error surfaces for dynamic networks 

can be more complex than those for static networks. Training is 

more likely to be trapped in local minima. For NARX neural 

network model the typical performance function used in training 

is MSE. In this paper, the network training function that updates 

the weight and bias values according to Levenberg-Marquardt 

algorithm (LM) because it has the fastest convergence. This 

advantage is especially noticeable if very accurate training is 

required. However, as the number of weights in the network 

increases, the advantage of this algorithm decreases. Other 

training algorithms were tested, but with a less good result. The 

neural network training was more efficient after certain 

preprocessing steps on the network inputs and targets are 

performed. The normalization of the input and target values mean 

to mapping them into the interval [-1, 1]. Where, the Matlab 

toolbox normalized the data set automatically.   

 

8. CONCLUSIONS    

The University of Huddersfield twin disc test rig together with a 

replica technique and an Alicona profilometer were used for 

wheel wear and rail wear measurements. The replica material and 

Alicona profilometer were shown to be effective tools for the 

wheel wear and rail wear measurements.  

In this paper, a Nonlinear Autoregressive models with exogenous 

input neural network (NARXNN) was developed to predict 

wheel wear and rail wear for the twin disc rig experiments under 

differ conditions such as dry, wet, lubricated, and sanded 

conditions. Both series-parallel and parallel NARXNN 

architectures were used for wheel/rail wear prediction.  Results 

show that the wheel and rail wear predicted using the NARXNN 

were close to actual wear for unseen input data under dry, wet, 

lubricated, and sanded conditions. The findings obtained using 

the proposed neural approach yielded better results from the 

perspective of the mean absolute percentage error (MAPE) 

measure. The accuracy of the NARXNN model was between 

81.37% and 93.37% (for unseen input data). Therefore, it can be 

concluded that an artificial neural network can be used efficiently 

as a predictor of wheel wear and rail wear.   

The use of different neural network architectures has 

demonstrated that the accuracy of the wheel/rail wear prediction 

using a neural network is influenced by the specific architecture. 

In particular the parallel NARXNN (6-10-1) was shown to be 

more accurate than the parallel NARXNN (6-7-1) and parallel 

NARXNN (6-13-1).  

This paper has demonstrated that the neural network can be a 

powerful tool for wheel and rail wear prediction. In this way the 

specific scientific challenges of applying computer learning 

techniques to the key engineering challenges of predicting wear 

at the critical interface between a railway wheel and rail has been 

addressed. Although the parameter variations considered have 

been a limited set of those encountered in the field, the laboratory 

tests and computer simulations have attempted to include the key 

factors influencing wheel and rail wear and the results show that 

there is significant potential in the methods presented.  
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The major contribution to knowledge of this work is outlined 

below: 

a. Neural network architecture: a nonlinear autoregressive 

model with exogenous input neural network (NARXNN) in 

series-parallel and parallel architecture were developed to 

predict the wheel and rail wear for a twin disc test rig 

experiments.  

b. Neural network inputs: the inputs to the neural network that 

are required to provide effective prediction of wheel/rail 

wear have been established. These include load, yaw angle, 

speed, wheel/rail profile, and first/second derivative of 

wheel/rail profile.   

c. Neural network parameters: the effect of various key neural 

network parameters on the ability to predict wheel/rail wear 

have been established. The effect on the accuracy of 

wheel/rail wear prediction of the correct selection of neural 

network parameters has been established.    

 

The main scientific contribution of this work has been to 

establish and validate a method for prediction of railway wheel 

and rail wear using a neural network. The major conclusion in 

this paper is that a properly designed neural network together 

with appropriately chosen inputs can predict wheel wear and rail 

wear successfully. Laboratory test methods have been 

established to measure the wear under realistic wheel-rail contact 

conditions on a test rig and measurements of resulting wear. This 

has allowed the appropriate selection, development and training 

of the Neural Network architecture.  

 

The next steps for this work will be to test the methods presented 

in this paper using field data. A successful wheel/rail, wear 

prediction tool could be used by railway operators in 

understanding remaining life of wheels or rails and in planning 

of maintenance interventions. It could therefore form part of a 

predictive maintenance strategy for reducing costs and 

improving reliability. 
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