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Abstract 

A combination of experimental and computational techniques has been employed to explore the 

crystal structure and thermoelectric properties of A-site deficient perovskite La1/3NbO3 ceramics. 

Crystallographic data from X-ray and electron diffraction confirmed that the room temperature 

structure is orthorhombic with Cmmm as a space group. Atomically resolved imaging and 

analysis showed that there are two distinct A-sites: one is occupied with La and vacancies and 

the second site is fully un-occupied; the diffuse super-structure reflections observed through 

diffraction techniques are shown to originate from La vacancy ordering. La1/3NbO3 ceramics 

sintered in air showed promising high temperature thermoelectric properties with a high Seebeck 

coefficient of S1 = -650 to -700 µV/K and a low and temperature-stable thermal conductivity of k 

= 2 to 2.2 W/mK in the temperature range of 300 to1000 K. First-principles electronic structure 

calculations are used to link the temperature dependence of the Seebeck coefficient measured 

experimentally to the evolution of the density of states with temperature and indicate possible 

avenues for its further optimization through electron doping and control of the A-site 

occupancies. Moreover, lattice thermal conductivity calculations give an insight into the 

dependence of the thermal conductivity on specific crystallographic directions of the material, 

which could be exploited via nano-structuring to create high-efficiency compound 

thermoelectrics. 

Keywords: Thermoelectric oxides, crystal structure, DFT, electronic structure, STEM, EELS 
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1. Introduction 

There are limited numbers of ceramic compositions suitable for high temperature thermoelectric 

(TE) applications.1 The most promising candidates include SrTiO3-based perovskites2, zinc 

oxide, tungsten bronze compositions and homologous compounds.3,4 Among these candidates, 

SrTiO3 (STO) is one of the most promising high temperature n-type oxide thermoelectrics5, as it 

has a high Seebeck coefficient6 and a simple perovskite structure which easily lends itself to 

doping and thus to tailoring of its electron and thermal transport properties.7–9 However, one of 

the drawbacks of SrTiO3-based ceramics is their high thermal conductivity with strong 

temperature dependence (from 10 W/K m at ambient temperature to 4 W/K m at 1000 K).1 

Therefore, in the search for new oxides with low thermal conductivities, which could be used on 

their own as new materials or in conjunction with STO as binary systems7, we have identified A-

site deficient perovskites as systems with great potential in thermoelectric applications.7,10–12 Of 

particular interest, La1/3NbO3 (hereafter denoted LNO) is a leading contender as its vacancy 

content in the lattice, the highest among the A-site deficient perovskite family (whereby 2/3 of 

the A-sites are vacant), may promote glass-like low thermal conductivity13. The constituent 

cations of LNO, namely La and Nb, have been previously used as A- and B- site dopants 

respectively in SrTiO3 (separately or as co-dopants),14–19 in order to achieve improved 

thermoelectric properties. This shared chemistry thus provides a direct pathway to integration 

with STO in a binary system.  

In this work we investigate the microstructural and electronic properties of the A-site deficient 

LNO ceramic itself, by applying a range of selected experimental and computational techniques, 

and we report for the first time promising thermoelectric properties.  

The complex balance between the chemistry, microstructure and the electronic structure of a 

material determines macroscopic quantities such as the electrical conductivity σ, the Seebeck 

coefficient S or the thermal conductivity κ, which when expressed via the dimensionless figure of 

merit 𝑍𝑇 =
𝜎𝑆2

𝜅
𝑇 at a given temperature T, determine the efficiency of materials for practical TE 

applications. A thorough characterisation at the atomic scale of LNO’s structure and chemistry is 

therefore essential to understand its macroscopic properties. Here we use aberration-corrected 

scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy 

(EELS) to validate at the atomic scale and along several zone axes the structure of LNO, to 
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support results from bulk characterisation techniques such as X-ray diffraction. This atomic scale 

view allows us to determine precisely the cation distribution in the structure, which has an 

important impact on the macroscopic properties of the ceramic. The electronic transport 

properties are indeed directly related to the topology of the electronic states near the Fermi 

energy (EF). Density functional theory electronic band-structure calculations combined with the 

Boltzmann transport theory20, informed by our structural and chemical characterisation, are 

therefore used to explain with excellent agreement the origin of promising electronic 

thermoelectric properties we measure experimentally, especially at high temperatures. A large-

scale-potential model-based molecular dynamics approach is then used to include LNO’s 

microstructure into the simulations and to evaluate its impact on the thermal transport properties. 

This combined theoretical and experimental approach provides the most complete description to 

date of the crystallographic and electronic structure of LNO as well as of its thermoelectric 

properties. Furthermore, the ab initio simulations allow us to make predictions about how LNO’s 

thermoelectric properties change as a function of electron doping concentration, which our 

STEM-EELS atomic-scale characterisation suggests can be readily influenced by modifying the 

local structure of the material. These results therefore offer a pathway to nanostructuring LNO, 

possibly through synthesis and/or processing, into a promising and efficient thermoelectric 

material. 

 

2. Methods  

2.1. Experimental details 

Ceramic samples of LNO were prepared by the conventional mixed oxide route. Starting 

materials were high purity powders of La2O3 (Solvay, 99.95%) and of Nb2O5 (Solvay, 99.5%). 

The powders were weighed in batches according to the required formulations and wet milled for 

24 hours in a vibratory mill using zirconia balls and propan-2-ol. The powders were then dried at 

85 oC for 24 hours and calcined at 1100 oC for 4 hours. The calcined powders were again wet-

milled for 24 hours in a vibratory mill using zirconia balls and propan-2-ol. Powders were then 

uniaxially compacted into pellets of 20 mm diameter and 5 mm thickness at a pressure of 
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50 MPa prior to sintering at 1300-1350oC for 4 hours in air on a platinum substrate. A cooling 

rate of 180 oC/hr was used. 

Densification was assessed by the Archimedes method. Structural analysis was undertaken by X-

ray diffraction using a Philips PW1830 system operating at 50 kV and 40 mA. The samples were 

first ground flat using 400 grade SiC and then scanned from 10o-100 o 2θ in steps of 0.05o with a 

dwell time of 20 s per step. Rietveld analysis of the data was undertaken using TOPAS 4.2.11 

Microstructures were examined by scanning electron microscopy using a Philips XL30 FEG-

SEM equipped with EDX capability.  

Samples for electron microscopy investigations were prepared by conventional crushing (pestle 

and mortar) techniques. The crushed powders were dispersed in chloroform, drop cast onto a 

copper grid covered with a holey carbon support film, and then dried. The specimen structures 

were initially investigated using selected area electron diffraction (SAED) and high-resolution 

transmission electron microscopy (HRTEM) techniques using a FEI FEG-TEM (Tecnai G2, 

Hillsboro, OR) operated at 300 kV. Subsequently, atomic-resolution structural characterization 

was carried out using an aberration-corrected dedicated scanning transmission electron 

microscope (STEM) (UltraSTEMTM100) which is equipped with a Gatan Enfina electron energy 

loss spectrometer. This microscope was operated at 100 kV acceleration voltage and the probe-

forming optics were adjusted to form a 0.9 Ǻ electron probe with a convergence of 31 mrad and 

beam current of approximately 75 pA. The high-angle annular-dark-field (HAADF) detector 

inner and outer semi-angles were calibrated at 82-189 mrad, while for all electron energy loss 

spectroscopy (EELS) data presented here the collection semi-angle (spectrometer acceptance 

angle) was 36 mrad. Additional EELS measurements at high energy resolution were performed 

using the Nion UltraSTEM 100MC-‘HERMES’ dedicated STEM21, which is equipped with an 

electron monochromator and a Gatan Enfinium spectrometer. The microscope was operated at 

60 kV and the monochromator and probe forming optics were adjusted to provide a beam energy 

spread of 0.025 eV, whilst retaining a 0.9 Ǻ electron probe size, with a convergence of 30 mrad 

and beam current of approximately 20 pA after monochromation. The EELS acceptance angle 

was 46 mrad. 

The chemical maps presented in this work were acquired using the spectrum imaging (SI) 

technique, whereby the electron probe is rastered serially across a defined area of the specimen 
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(such as those marked by yellow rectangles in Figures 4 and 5), recording an EEL spectrum at 

each position. EELS SI for chemical mapping were de-noised by Principal Component Analysis 

using the MSA Cime- EPFL plugin22 for Digital Micrograph. Chemical maps were subsequently 

produced by integrating pixel-by-pixel the intensity of the relevant element ionisation edge (in 

this instance the Nb L2,3 and La M4,5 edges) over a fixed energy window of 30 eV above its onset, 

after subtraction of the decaying background using a standard power law fitting function.  

Stacks of rapidly-acquired HAADF STEM frames, were corrected for specimen drift and 

scanning distortions using non-rigid registration techniques23 as implemented in the 

commercially-available Smart Align Plugin.24 The images were further corrected for 

orthogonality using the Jitterbug plugin25,26. 

Dynamic SAED simulations were performed using the JEMS simulation software27. Multi-slice 

image simulations of HAADF STEM images were performed using the Dr.Probe28 simulation 

package. The parameters used for SAED and image simulations (e.g. acceleration voltage, 

aberration coefficients, acceptance angles, specimen thickness, etc.) reflect the exact 

experimental conditions under which the LNO ceramic was observed. The structural parameters 

for the simulations were taken from Ref.29 

The Seebeck coefficient and electrical conductivity were measured simultaneously using a 

ULVAC ZEM 3 in helium atmosphere. Thermal conductivity was obtained by measuring the 

density (Archimedes method), thermal diffusivity (using a custom-built apparatus in argon 

atmosphere) and heat capacity (Netzsch STA 449C; nitrogen atmosphere). 

2.2.Computational details 

Density Functional Calculations 

First-principles density functional theory calculations within the framework of the plane-wave 

projector augmented wave formalism,30 as implemented in Vienna ab initio simulation package 

(VASP) 31–33 have been carried out in order to calculate the ground state atomic and electronic 

structure of LNO. The exchange correlation functional used for these calculations was PBE34 

with the inclusion of the Hubbard U term (PBE+U) within the Dudarev et al. approach.35 The 

selected value of Ueff was 4 eV to treat the Nb 4d electrons. The PBE+U methodology introduces 

an energy penalty for non-localized states that improves the localization of d-electrons. The 
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plane-wave cut-off energy was 500 eV and the Monkhorst-Pack k-mesh was 4x4x6. Electronic 

degrees of freedom have been converged to 10-7 eV, whereas the ionic degrees of freedom were 

converged until the forces acting on the ions became smaller than 1x10-2 eV/atom. For defect 

calculations, because of the partial occupancy of the A sites observed experimentally, and due to 

size restrictions in DFT calculations, we used a model structure for LNO with lattice parameters 

8.93Å x 8.06 Å x 5.67 Å, 90.0 x 71.62 x 90.0 degrees, i.e. a 208 atom unit cell with k-point 

sampling performed at the -point of the Brillouin zone. The minimum distance between 

periodic images of point defects is 11.15 Å with this model cell. The formation energy of a 

neutral oxygen vacancy, 𝐸𝑓[𝑉𝑂
𝑥], comprising an oxygen vacancy and reduced neighbouring 

niobium ions that ensures charge neutrality, was determined from equation 136 that assumes 

thermodynamic equilibrium: 

𝐸𝑓[𝑉𝑂
𝑥] = 𝐸𝑡𝑜𝑡[𝑉𝑂

𝑥] − 𝐸𝑡𝑜𝑡[𝑏𝑢𝑙𝑘] +
1

2
𝜇𝑂2  (1) 

Here 𝐸𝑡𝑜𝑡[𝑉𝑂
𝑥] is the energy of the supercell containing a 𝑉𝑂

𝑥, 𝐸𝑡𝑜𝑡[𝑏𝑢𝑙𝑘] is the total energy of the 

non-defective La1/3NbO3, and 𝜇𝑂2 is the chemical potential of molecular oxygen. 𝜇𝑂2 has been 

calculated as the total energy of the O2 molecule in the ground state (triplet) in vacuum in a cubic 

simulation cell of 28 Å. This is a standard procedure and assumes thermodynamic equilibrium 

with a reservoir of oxygen gas under oxygen-rich conditions and excludes thermal contributions 

to the chemical potential.37 

Boltzmann Transport Calculations 

The transport properties were calculated using the Boltzmann transport equation as implemented 

in the BoltzTraP code.38 For this purpose Kohn-Sham eigenenergies have been calculated on a 

denser 24x24x28 k-point mesh for our model LNO structure, which results in 4032 irreducible k-

points. The transport calculations are carried out as a function of temperature and chemical 

potential employing constant relaxation time (τ) approximation (CRTA), which neglects the 

weak energy dependence of τ but recovers some doping and temperature dependence.38 The 

CRTA methodology has been successfully applied to other oxide thermoelectric materials.39–41 

Within this methodology, τ is exactly cancelled in the expression of the Seebeck coefficient, and 

thus can be directly evaluated from the first-principles band structure. 
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Molecular Dynamics for Thermal Conductivity Calculations. 

To carry out thermal conductivity calculations, classical molecular dynamics (MD) simulations 

were performed using the LAMMPS package.42 The system considered consists of a 

50.03 x 50.03 x 33.77 Å simulation box of La1/3NbO3 containing 4492 atoms. The interatomic 

potentials developed by Teter43 based on partially-charged rigid ions were used as listed in Table 

1. Firstly, the simulation cell was relaxed in the NPT ensemble for 1 ns with a time step of 1 fs 

until the fluctuation of the volume was minimized at a given temperature. Secondly, further 

relaxation was performed in the canonical ensemble (NVT) as in the previous step. With the 

relaxed systems, we then carried out the thermal conductivity calculations within the Green-

Kubo formalism.44,45 The heat flux of the system was calculated under the NVT ensemble for 

5 ns at intervals of 10 time steps and correlated at each time interval. The correlations were then 

integrated along each spatial dimension, resulting in thermal conductivities as a function of 

integral length, as in previous studies.2,46 

Table 1. Teter potential parameters 𝑨𝒊𝒋, 𝝆𝒊𝒋 and 𝑪𝒊𝒋 used in the Buckingham equation 𝝋𝒊𝒋 =

𝑨𝒊𝒋𝐞𝐱𝐩⁡(−𝒓𝒊𝒋/𝝆𝒊𝒋) − (𝑪𝒊𝒋/𝒓𝒊𝒋
𝟔 ) representing the interactions between ions in La1/3NbO3, and 

associated with atomic symbols partial charges. 

Interactions 𝐴𝑖𝑗  

(eV) 

𝜌𝑖𝑗  

(Å) 

𝐶𝑖𝑗 

(eVÅ6) 

La1.8+– O1.2- 4369.3930 0.278603 60.278 

Nb3.0+– O1.2- 11448.856 0.228482 95.193 

O1.2-– O1.2- 1844.7458 0.343645 192.58 

3. Results and Discussion 

3.1. Crystal structure 

X-ray diffraction 

One of the earliest structural studies of La1/3NbO3 was carried out by Iyer et al.47 The study 

showed that the material has an orthorhombic perovskite structure where the c-planes (see figure 

S1 in the Supplementary Information provided for a schematic representation of the crystal 
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structure of LNO) are preferentially occupied by La atoms. Later studies47,48 supported this result 

and also suggested that ordered A-site vacancies lead to the formation of a superlattice with 

c≈2a. The crystal symmetry was suggested to be orthorhombic at room temperature with lattice 

parameters related to the parent perovskite structure as a ≈ aperovskite, b ≈ aperovskite, and c ≈ 

2aperovskite. This was confirmed by the in-situ synchrotron X-ray powder diffraction study of 

Kennedy et al.49, which also identified the room temperature space group of the compound as 

Cmmm. The structure was shown to transform to a tetragonal symmetry, P4/mmm with a ≈ 

aperovskite, b ≈ aperovskite, and c ≈ 2aperovskite, at 195°C, being stable up to 500°C. These structures 

were further supported by subsequent diffraction studies29,50, while electron diffraction studies 

carried out by Garcia-Martin et al.51 showed the presence of superlattice reflections in the 

electron diffraction patterns, indicating a doubling of the c-axis. The same study showed the 

presence of diffuse satellite reflections attributed to the presence of a modulated structure. 

Experimental X-ray diffraction patterns of the LNO compound presented in this work are, in 

agreement with literature,29,49 indexed based on the orthorhombic structure, using the Cmmm 

space group and a ≈ 2aperovskite, b ≈ 2aperovskite, and c ≈ 2aperovskite, as shown in Figure 1. The 

experimental X-ray data were refined using structural files available in the literature: two 

independently-derived structure files, namely ICSD 90692 and 150448 (corresponding to 

Refs29,49, respectively), were used for completeness, yielding similar goodness of fits. The lattice 

parameters, fractional coordinates, site occupancies and isotropic thermal parameters are listed in 

Table S1 of the Supplementary Information provided. 

 

Figure 1: X-ray diffraction pattern for LNO. The diffraction peaks indicated by black diamond 

markers correspond to a LaNbO4 minor secondary phase. 
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Electron Microscopy 

The local atomic structure and symmetry of the LNO ceramic were further investigated by 

transmission electron microscopy techniques. Selected Area Electron Diffraction Patterns 

(SAED) acquired along two zone axis, namely [100] and [101] are shown in Figure 2a and c, 

respectively, alongside the corresponding simulated electron diffraction patterns (Figures 2b and 

2d, respectively) using the Cmmm space group. The diffuse satellite reflections expected from 

the X-ray characterisation can be clearly seen along the [222̅] direction.  

 

 

 

Figure 2: Experimental SAED patterns acquired along the (a) [001]Cmmm and c) [101]Cmmm zone 

axes, and corresponding simulated patters in panels (b) and (d), respectively. The experimental 

diffraction patterns only show the characteristic diffuse satellite reflections along the [𝟐𝟐�̅�] 

direction. 
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Figure 3: HAADF STEM images (averaged by non-rigid registration23 from a stack of 50 

consecutive frames) of the LNO ceramic acquired along the a) [100] and b) [101] zone axes. The 

corresponding ball-and-stick models of the LNO Cmmm structure29 (oxygen positions not 

shown), are overlaid on the images for comparison (where yellow ×  symbols denote the vacant 

A2 sites).  

Atomic-scale details of the LNO structure can be observed in atomic number (Z) sensitive 

HAADF STEM images acquired along the [100] and [101] zone axes (Figures 3a and b, 

respectively); ball and stick models of the cation sites of the Cmmm space group are overlaid for 

reading clarity. In the HAADF images acquired along the [100] axis (Figure 3a) the B-site 

columns, occupied by Nb (ZNb=41), appear brighter than the A-site columns, occupied by the 

heavier La (ZLa=57). This apparent counter-intuitive HAADF image intensity discrepancy 

(𝑍𝑁𝑏
2 = 168⁡𝑣𝑠⁡𝑍𝐿𝑎

2 = 3249),i (footnote:see end of main text)  originates from the partial occupancy of the 

two A-sites of the LNO perovskite structure (A1 and A2, respectively). When the structure is 

observed along the [100] axis, the two A-sites are viewed as separate columns; the A1 site is 

occupied by La and vacancies in a 3:1 ratio, resulting in a lower total intensity than that of the 

neighbouring Nb B-sites (see also a comparison with multi-slice HAADF image simulations, in 

Figure S4 of the Supplementary Information provided). On the other hand, the A2-site is fully 

unoccupied and thus no intensity appears at these positions in HAADF images, giving the 

impression of a layered structure along the c-axis. The layering of the crystal structure can be 
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further decomposed into two distinct sub-units along the c-axis; quantitative analysis of HAADF 

images obtained using a high-precision workflow reveals that the distance c1 ≈ 3.85 ± 0.02 Å 

between B-sites on either side of the partially occupied A1 cation layer is wider than the distance 

c2 ≈ 4.23 ± 0.02 Å between B-sites on either side of the fully-vacant A2 layer, with c1 + c2 = 

2cperovskite (for details see Figure S3 in the Supporting Information provided). These observations 

are further corroborated by atomically-resolved STEM EELS chemical maps shown in Figure 4, 

which highlight the alternating partially-occupied La A1 and fully vacant La A2 sites, 

respectively, and confirm directly that the Nb columns are more closely spaced around the empty 

A2 layer (Figure 4c and  Figure S3 in the Supplementary information provided).  

 

 

Figure 4: Example of atomically-resolved EELS measurement of the LNO ceramic, performed 

along the [100] zone axis: a) HAADF STEM Survey image, showing the area used for analysis 

marked by a yellow rectangle, b) HAADF STEM signal intensity acquired simultaneously with 

the EELS signal, c) integrated EELS intensity map of the Nb L2,3 edge, d) integrated EELS 

intensity map of the La M4,5 edge and e) RGB overlay of the Nb and La maps.  
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Figure 5: Example of atomically-resolved EELS measurement of the LNO ceramic, performed 

along the [101] zone axis: a) HAADF STEM Survey image, showing the area used for analysis 

marked by a yellow rectangle, b) integrated HAADF STEM signal intensity acquired 

simultaneously with the EELS signal, c) integrated EELS intensity map of the Nb L2,3 edge, d) 

integrated EELS intensity map of the La M4,5 edge and e) RGB overlay of the Nb and La maps.  

 

In HAADF STEM images acquired along the [101] zone axis (Figure 3b and image simulations 

in Figure S4 in the Supplementary Information provided), the intensity of the B-site columns 

also appears brighter than that of the A-site (in this projection, the A1 and A2 sites overlap), again 

due to the high vacancy content of the La columns. Furthermore, and upon closer inspection of 

the atomic-resolution HAADF images in the [101] zone axis, the distribution of the high-vacancy 

content A-site columns appears to be locally non-uniform. Dark columns can often be observed 

to be grouped in adjacent pairs (Figure 3b and Figure S5 in the Supplementary Information 

provided). This implies that the A1-site vacancies are not uniformly distributed across this layer 

(as the A2-site is fully unoccupied). Interestingly, the high vacancy column pairs appear to be 

lying in lines parallel to the [1̅11] and [111̅] directions (see also Figure S5 in the Supplementary 

Information provided). It is this pairing which gives rise to the satellite reflections observed 

across the [222̅] reflections in the [101] SAED patterns (Figure 2b here and Ref.52) due to A1 

vacancy ordering along those planes. Atomic-resolution EELS maps in the [101] orientation 

corroborate these conclusions: a lower La signal intensity is systematically observed at positions 

corresponding to darker atomic columns in the simultaneously acquired HAADF images (Figure 

5). 
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The presence of cation vacancy ordering and clustering in LNO is of particular interest for its 

potential application as TE oxide and particularly to understand thermal conductivity. In addition 

to the intrinsic layered nature of the structure of LNO, which is desirable for thermal transport 

properties, the observed cation vacancy ordering has further potential for suppressing thermal 

conductivity. Extensive studies on A-site deficient perovskite systems 10–12,53–56 show that that 

cation vacancy-ordering in these systems is associated with the presence of oxygen octahedral 

nano-domains and localised oxygen octahedral distortions.11,53,57 Such nanostructuring can be 

used to promote glass-like thermal conductivity13,58 while the clustering of cation vacancies can 

induce rattling modes, suppressing further thermal conductivity in layered systems.59 These 

intriguing structural features therefore point to a possible application of LNO as a promising 

thermoelectric material, and we therefore investigated its transport properties both 

experimentally and using ab initio simulations.  

 

3.2 Electronic and Thermal Transport Properties 

There is only limited experimental data published to date on the transport properties of LNO. For 

instance electrical conductivity data can be found in the work of George et al.,60 while to the 

authors’ knowledge no experimental measurements of the Seebeck coefficient has been 

published. Thus to assess the prospects of utilizing LNO based ceramics as thermoelectric 

materials, thermoelectric transport properties have been measured. The experimentally 

determined Seebeck coefficient for the air-sintered LNO ceramic is shown in Figure 6a; the 

negative values observed suggest n-type behaviour. An increase in the absolute value of the 

Seebeck coefficient can be observed at a temperature of approximately ~480 K, where it is 

reaching its maximum value of ~701 µV/K, followed by a slight decrease as the temperature 

rises. This large value of LNO’s Seebeck coefficient is directly comparable with that of other 

known thermoelectric oxide systems with similar behaviour: for instance SrTiO3: ~1200  µV/K,7 

ZnO ~ -300 µV/K,61 and CaMnO3 ~ -200 µV/K,46,62 respectively. Interestingly, the change in the 

values of Seebeck coefficient observed at ~480 K coincides with the transition from the 

orthorhombic to tetragonal structure.49 Such a behaviour, observed previously in several oxide 

systems63–65 raises the possibility of a connection between the two phenomena, through the 

occurrence, e.g., of a phonon instability.66,67  
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Figure 6: Experimental thermoelectric properties of LNO as a function of temperature. a) 

Measured Seebeck coefficient and electrical conductivity; the red line indicates the temperature 

for which the Seebeck coefficient has the highest value; b) Experimentally determined lattice 

thermal conductivity. 

 

A clear drawback of the air-sintered LNO ceramic is its low electrical conductivity (Figure 6a), 

which nevertheless exhibits an increase with temperature, ranging from 0.5 to 6.7 S/m in the 

300-1000 K temperature range. The low electrical conductivity results in a low figure of merit 

ZT (0.0013 at 1000 K). However, the electrical conductivity of LNO is higher in the same range 

of temperature than other thermoelectric oxides prepared in similar conditions: 12 S/m for 

CaMnO3
62, 0.6×10-6 S/m for ZnO61, and 1×10-7 S/m for SrTiO3

15
. This motivates devising 

strategies for improving its transport properties, especially as LNO shows an inherently low and 

temperature-stable phonon glass-like thermal conductivity of ~2.1 W/mK (Figure 6b), which is 

highly desirable for TE applications. Higher electrical conductivity could potentially be achieved 

by carefully tailoring the composition and or microstructure of the material. For instance, 

electron doping could be achieved via reducing the valence of Nb, by employing a thermal 

treatment in reducing atmosphere, an approach similar to that used for other Nb containing TE 

oxides15,64 or by doping LNO with other elements or compounds. The partial substitution of both 

A and B sites with elements of different valance state, for instance Ca and Sr for the A- site and 

Ti and Mo for the B-site, respectively, could be a viable strategy for improving the electron 

transport. In order to understand the underlying mechanisms of the transport properties of the 
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LNO system and further explore the possibility of enhancing its electrical conductivity, we have 

performed detailed ab initio calculations presented in the following section of this paper.  

 

Figure 7: a) PBE+U band structure along the symmetry directions of the Brillouin zone. The 

high symmetry k-points of the primitive cell are: Y (½, 0, 0), Γ (0, 0, 0), B (0, 0, ½), D (0, ½, ½), 

Z (0, ½, 0) and C (½, ½, 0). b) Conduction bands in the vicinity of Γ. c) Charge density plot of 

the lowest conduction band. d) Total density and projected density of states of LNO. The CBM is 

indicated by the dashed lines.  

 

3.3. Computational Results 

 

Electronic structure calculations 

One of the main features that determine the transport properties of an n-type semiconductor is 

the curvature and multiplicity of electronic bands near the conduction band minimum (CBM).10 

In general, it is desirable for good TE performance when a system possesses two or more bands 

near the bottom of the CBM. This higher energy degeneracy is thought to promote enhanced 

Seebeck coefficient as the thermopower is related to the entropy of the charge.20 In order to gain 

insights into the electronic properties of LNO we calculated the band structure and density of 

states (DOS) of LNO as shown in Figure 7. It should be noted that the theoretical model was 

validated by a direct comparison of the DOS calculations projected onto the relevant atomic sites 

with measurements of the fine structure of the EELS O K edge (see Figure S6 of the SI 
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information provided), which in a single electron approximation is directly related to the density 

of empty states in the structure.  

 

An indirect band-gap of 2.22 eV (PBE+U) is predicted with parabolic-like bands above the 

CBM (Figure 7b). The band structure also reveals that in LNO the valence band maximum 

(VBM) is located at the B-point of the Brillouin zone, which is only 30 meV above the valence 

band at the Γ-point. The two CBM are at the Γ-point and Z-point (Figure 7b) that are separated 

(ΔE) by 29 and 34 meV, respectively. Figure 7d shows the total and DOS projected on the 

different atomic species of LNO.  

The upper valance band (VB) is derived from oxygen 2p states, whereas the lower conduction 

band is dominated by Nb 4d states (Figure 7d). This makes LNO a charge transfer insulator. To 

test the validity of the PBE+U approach in describing the electronic structure of LNO, we 

carried out further calculations at a higher level of theory with the hybrid HSE06 functional, 

which is customarily employed to validate the accuracy of GGA-functional-predicted band-gap 

values.68 The upper VB and lower CB DOS (the region that defines the electronic transport 

properties of the system) as calculated with PBE+U and HSE06 are compared in Figure 8. 

 

Figure 8: Total DOS of LNO as calculated with PBE+U and HSE06 functional. 
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As illustrated in Figure 8, there is almost no difference between the PBE+U and HSE06 DOS of 

the upper VB. The CB DOS is shifted by 0.80 eV towards higher energies in the case of the 

HSE06 functional, giving an estimated band-gap of 3.02 eV. A larger band-gap value is expected 

in the case of the HSE06 functional, because GGA functionals tend to underestimate the band-

gap due to self-interaction errors.69 The CB DOS nevertheless retains a very similar topology 

between the two methods, indicating that there is only a minor functional dependency on the 

calculated transport properties.  

In order to further validate the theoretical approach chosen here, the band gap of LNO was 

measured directly with EELS using a high-energy-resolution monochromated system providing a 

resolution of 0.025 eV in the experimental conditions chosen here. Although an absolute match 

between values determined through EELS, optical techniques and theoretical simulations is often 

hard to reach, the measured experimental value of 3.86 eV (Supplementary Material provided) is 

in good agreement with the higher gap value calculated using the HSE06 functional, as well as 

with the optical band-gap of 3.2 eV measured by Inaguma et al.70 using bulk samples. Overall, 

this relatively large band-gap of LNO confirmed both theoretically and experimentally ensures 

the absence of bipolar conduction in this system.  

 Ab initio thermal transport properties 

Having validated the chemistry and band structure of LNO through a comparison of experiment 

and theory, the Seebeck coefficient (Figure 9a) can be calculated based on the application of 

Boltzmann transport theory (details of the calculation methodology can be found in section 2.2 

of this paper):. Although absolute values seem to exhibit a factor of 2 discrepancy with the 

experimental measurements presented in Figure 6a, the trend in the temperature dependence of 

the Seebeck coefficient is well reproduced in the simulations. In particular, the magnitude of the 

calculated Seebeck coefficient reaches its maximum at ~480 K before slowly decreasing with 

increasing temperature, in excellent agreement with the experiment. 
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Figure 9: a) Calculated Seebeck coefficient as a function of temperature (results are averaged 

over all crystallographic directions). The red line indicates the temperature for which the 

Seebeck coefficient has the highest value; b) DOS as a function of chemical potential for various 

temperatures in the vicinity of the CBM; c) DOS and d) its logarithmic derivative as a function 

of temperature. 

 

The temperature behaviour of the Seebeck coefficient is generally expressed via the Mott 

expression in Equation 2.71 

𝑆(𝑇) = −
𝜋2𝑘𝐵

2

3|𝑒|
(
𝑑 ln𝑁(𝐸)

𝑑𝐸
)
𝜇
𝑇  (2) 

where kB is the Boltzmann constant, e the electron charge, N(E) the DOS, μ the chemical 

potential and T the temperature. According to Equation 2, the Seebeck coefficient is directly 

related to the topology of the DOS and carrier diffusivity near the band edge. Figure 9b shows 

the evolution of the DOS with temperature in the vicinity of the conduction band minimum 

(CBM). The temperature-dependent blurring of the Fermi-Dirac statistics leads to the DOS at the 

CBM becoming smoother and gradually increasing as the temperature rises. At temperatures of 

around 500 K there is a slight change in the slope of the DOS that leads to a minimum of its 

logarithmic derivative (Figure 9b, inset). As a result the absolute value of the Seebeck coefficient 

increases at a temperature of ~500 K, as observed experimentally, and starts to decrease 

thereafter at the expense of a rise in electronic conductivity.  
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3.4 Tailoring LNO as a high efficiency thermoelectric 

 

Electron doping 

The temperature dependence of the transport coefficients is generally attributed to a combination 

of thermal generation of carriers and doping.71 Having thoroughly investigated the evolution of 

the density of states in LNO as a function of temperature, in the following, a rigid-band model is 

used to simulate the effect of a change in electron doping concentration. This could in principle 

be achieved in LNO through chemical donor doping, taking advantage of its high vacancy 

content and structural similarities with STO. Note that this model assumes that a moderate level 

of doping does not change the shape of the band structure but only shifts the Fermi energy. The 

doping concentration dependence of the Seebeck coefficient calculated in this fashion for various 

temperatures is shown in Figure 10. 

 

 

Figure 10: Calculated Seebeck coefficient dependence on the doping concentration for various 

temperatures, using a rigid-band model that assumes no shape change in the band structure, but 

only a shift in the Fermi energy due to the changing electron doping concentration. 

 

The Seebeck coefficient curves as a function of temperature and carrier concentrations for the 

simulated electron doping within the rigid-band model shown in Figure 10 resemble the pattern 

observed in the undoped case shown in Figure 9a. The calculations show that for temperatures 

above 800 K there is an enhancement of the Seebeck coefficient up to electron doping level of 

1018 cm-3. This coincides with the change from ionic to electronic conduction above 800 K 
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observed experimentally.60 For temperatures below 800 K, the Seebeck coefficient behaves 

almost identically for all temperatures, with a linear decrease in magnitude as the carrier 

concentration increases.  

The high value of the calculated Seebeck coefficients at high temperatures for doping 

concentrations of 1016-1018 cm-3 can be explained by the band convergence effect,72 which 

occurs due to thermal blurring of the energy bands via the Fermi-Dirac function. At high 

temperatures the two lowest conduction bands at the Γ-point and Z-point are allowed to overlap 

(kBT=69 meV for T=800 K exceeds ΔE~35 meV) and contribute to the transport properties. Note 

that the properties calculated here correspond to perfect single crystals while experimental 

samples may contain different types of imperfections (such as impurities, grain boundaries, 

vacancies, point defects, etc.) that may strongly affect TE properties, in particular electron 

transport properties. Therefore, due to the complexity of the phenomena that should be taken into 

account, obtaining a full quantitative agreement between calculated and experimental electronic 

transport properties is challenging. However, ab initio modelling can still inform the experiments 

and provide trends to explain the complex experimental behaviour of materials. 

Table 2 provides selected values for the Seebeck coefficients at certain carrier concentrations and 

temperatures to highlight the fact that the coefficient is maximised for significantly different 

doping concentrations at different temperatures. This suggests that in order to maximise the 

thermopower (S2σ) of LNO in a wider temperature range, the material needs to possess 

significantly different doping concentrations at different temperatures. This could in principle be 

achieved by a functional grading of the dopant concentration i.e. using lower dopant 

concentration on the cold side of the TE device, and progressively increasing the dopant 

concentration towards the hot side. However, such an approach may present technological 

challenges due to diffusion effects and dopant solubility dependence with temperature. Finally, 

our electronic transport properties calculations also support that the injection of electronic 

carriers may increase electrical conductivity (Figure S10). However, as discussed previously one 

has to be careful, that beyond a certain carrier concentration, electron doping will affect the 

Seebeck coefficient to an opposite extent compared to the electrical conductivity.  
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Table 2: Calculated maximum Seebeck coefficient for given temperature and electron doping 

concentration. 

Seebeck 

(µV/K) 

Temperature 

(K) 

Doping 

Concentration 

(e/cm-3) 

-1161 800 K 4.9x1015 

-1047 900 K 1.8x1016 

-929 1000 K 7.7x1016 

-868 1100 K 1.4x1017 

-789 1200 K 2.8x1017 

 

Vacancies and O bonding environment 

The atomic-resolution chemical and structural study of LNO using STEM-EELS suggests a 

possible pathway to achieve the required doping, through the control of A1-site cation/vacancy 

clustering. Due to a requirement of charge neutrality, the local cation vacancy clustering 

observed experimentally may result in the presence of associated O vacancies. Using PBE+U we 

have calculated the formation energy of a neutral oxygen vacancy to be 1.41 eV for La1/3NbO3- 

(=0.02). As noted previously, oxygen vacancies formed in this fashion lead to a partial 

reduction of Nb states, which can be seen by the population of the conduction bands of Nb 

character in Figure 11a. Interestingly, these states have a ferromagnetic ordering and are 

delocalized over Nb 4𝑑𝑥𝑦 bands on every other Nb plane as shown in Figure 11b.   
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Figure 11: a) DOS and b) spin density iso surface of 1.4∙10-3 μB/Å3 for oxygen deficient 

La1/3NbO3- (=0.02). An approximate position of the oxygen vacant site is shown by a dashed 

circle. 

Vacancies and thermal conductivity 

The most attractive property of LNO as a TE candidate material system is arguably its relatively 

low thermal conductivity (Figure 6b). Calculations of the thermal conductivity along different 

lattice directions provide evidence for this. The averaged value over all crystallographic 

directions is found to be 2.3 W/mK for the range of temperatures considered, a theoretical 

prediction again fully supported by measured experimental values. Interestingly, the lattice 

thermal conductivity exhibits a weak anisotropy with crystallographic direction, being relatively 

suppressed along the c-axis (Figure 12).  

Further controlling or hindering the non-uniform distribution of vacancies in the A1-site through 

synthesis or processing steps could therefore exacerbate this transport anisotropy and thus further 

suppress the thermal conductivity along one of the main crystal axes. 
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Figure 12: Calculated thermal conductivity along the different lattice directions.  

 

4. Conclusion  

We have combined experimental and computational techniques to investigate the chemical and 

electronic structure as well as the thermoelectric transport properties of the A-site deficient 

La1/3NbO3 (LNO) perovskite. The material is shown to possess a high Seebeck coefficient along 

with a low, temperature-stable, thermal conductivity. Ab initio calculations support the 

experimental measurements and reveal that LNO possesses a desirable band-structure for n-type 

thermoelectric materials. Interestingly, it exhibits a weak anisotropy of the lattice thermal 

conductivity with crystallographic direction. This places LNO among the best thermoelectric 

oxide materials in terms of (low) thermal conductivity.1 

An increase of electrical conductivity is required to improve the thermoelectric performance of 

LNO. Our calculations show that with an appropriate electron doping and pertinent choice of 

operating temperature the electronic transport properties can be enhanced, making La1/3NbO3 a 

promising thermoelectric material for high temperature applications. This can for instance can 

achieved by reducing the valence of the B-site element, either employing a thermal treatment in a 

reducing atmosphere (for instance during the sintering stage or as a separate post-treatment), an 

approach similar to that used for other TE oxides.15,64 Perhaps the most promising approach is 

the partial substitution of both A and B sites with elements of different valance state, for instance 
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Ca and Sr for the A- site and Ti and Mo for the B-site, respectively, before applying thermal 

treatment 15 Calculations also suggest that a functional grading of the material’s electronic 

doping profile would widen its working temperature. It would also allow for band engineering, 

aimed to tune the density of states by exploiting the temperature dependence of the effective 

band degeneracy through a band convergence behaviour predicted to occur by our calculations. 

Finally control of vacancy clustering in the material, specifically designed to enhance thermal 

conduction anisotropy and further influence the electronic structure, should be eminently 

possible using synthesis and processing techniques that have proved very successful in parent 

systems10.  

Footnotes 

i For simplicity, the HAADF intensity dependence is considered to be proportional the square 

modulus of the atomic number Z, i.e. 𝐼 ∝ 𝑍2 . Multi-slice HAADF image simulations, 

corresponding to the experimental conditions are included in the Supplementary Information 

provided. (from page 10) 
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Table of Contents Synopsis 

A combination of experimental and computational techniques has been employed to explore the 

crystal structure and thermoelectric properties of the A-site deficient La1/3NbO3. Ab initio 

simulations predict the system’s thermoelectric properties change as a function of electron 

doping concentration, which atomic-scale characterisation suggests can be achieved by 

modifying the local structure. This offers a pathway to nanostructuring, into a promising and 

efficient thermoelectric material. 

 

 


