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Abstract 29 

Alpha and beta-glucoisosaccharinic acids ( (2S,4S)-2,4,5-trihydroxy-2-30 

(hydroxymethyl)pentanoic acid  and (2R,4S)-2,4,5-trihydroxy-2-(hydroxymethyl)pentanoic 31 

acid) which are produced when cellulosic materials are treated with aqueous alkali are 32 

potentially valuable platform chemicals. Their highly functionalised carbon skeleton, with 33 

fixed chirality at C-2 and C-4, makes them ideal starting materials for use in synthesis. In 34 

order to assess the potential of these saccharinic acids as platform chemicals we have 35 

explored the protecting group chemistry of the lactone form of alpha-glucoisosaccharinic 36 

acid (-GISAL). We report here the use of single and multiple step reaction pathways 37 

leading to the regioselective protection of the three different hydroxyl groups of -GISAL. 38 

We report strategies for protecting the three different hydroxyl groups individually or in 39 

pairs. We also report the synthesis of a range of tri-O-protected -GISAL derivatives 40 

where a number of the products contain orthogonal protecting groups. 41 

 42 

Key words: 43 

Saccharinic acids; Isosaccharinic acid; Glucoisosaccharinic acid; protecting groups.  44 

  45 



3 
 

 46 

1. Introduction 47 

Saccharinic acids[1, 2] are a group of branched-chain polyhydroxyl acids which are 48 

generated in large quantities when cellulosic materials are treated with aqueous alkali[3]. 49 

The mechanism for saccharinic acid production has been studied in detail and the base 50 

catalysed depolymerisation of cellulose is known to proceed via a ‘peeling’ reaction[4, 5] 51 

[6-8]. Depending on the reaction conditions (type of alkali, length of reaction and 52 

temperature) a large number of different hydroxy acids can be formed but the main 53 

saccharinic acids formed from cellulose, accounting for up to 80% of the total organic 54 

matter, are a pair of C-2 epimeric six carbon glucoisosaccharinic acids (GISA) [9-11]. 55 

Whistler and Bemiller have reported that the calcium salt of the 2S-epimer, alpha-56 

glucoisosaccharinic acid (-GISA (1); (2S,4S)-2,4,5-trihydroxy-2-(hydroxymethyl)pentanoic 57 

acid) can be economically manufactured by heating lactose with a saturated aqueous 58 

calcium hydroxide solution[12]; on cooling, the 2S-epimer precipitates whilst the 2R-epimer 59 

and other impurities remain in solution. The salts of -GISA are highly polar and have 60 

limited solubility in most organic solvents. However, in the presence of mild acids -GISA 61 

(1) undergoes an internal esterification reaction to give the less polar -62 

glucoisosaccharino-1,4-lactone (-GISAL (2)): 63 

 64 

(1)                                   (2) 65 

Scheme 1. Acid catalysed lactonisation of -GISA(1) to generate -GISAL(2) 66 
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Despite the ease of preparation of -GISA (1) and its ready conversion to its less polar 67 

lactone (2) the two have rarely been exploited as starting materials in synthesis. Florent et 68 

al[13] and Monneret et al [14] have incorporated -GISA (1) into the synthesis of a range 69 

of anthracycline analogues.  Monneret et al have incorporated -GISA (1) into the 70 

synthesis of nucleoside analogues with antiviral or antitumor activity[15]. Hanessian and 71 

Roy have utilised -GISA (1) in the synthesis of the antibiotic spectinomycin[16].  72 

Thomassigny et al have incorporated -GISA (1)  into the synthesis of a small number of 73 

heterocycles including variously protected pyrrolidines[17] and piperidines[18].  74 

It has been estimated that many millions of metric tons of saccharinic acids are produced 75 

each year as by products in the alkaline pulping of wood[19-22]. Currently, this large 76 

reservoir of potentially valuable organic molecules is combusted within pulping mills to 77 

recover their calorific value. Ideally, wood pulping companies would like to be able to 78 

extract extra value from these saccharinic acids and one way this could be achieved is by 79 

employing them as staring materials in synthetic chemistry. For this ambition to be realised 80 

and to determine the true synthetic utility of GISAs it will be necessary to develop 81 

strategies for the regioselective protection of the different hydroxyl groups, either 82 

individually or in groups. In this paper we report our studies of the protecting group 83 

chemistry of -GISAL (2), including the regioselective protection of different combinations 84 

of the three hydroxyl groups.  85 

It should be noted that whilst the gluco-prefix identifies GISAs as being derived from a 1,4-86 

glucan such as cellulose , in the early scientific literature and also in current literature 87 

describing environmental aspects of GISA’s properties[23-26] these molecules are 88 

frequently referred to as isosaccharinic acids (ISA).   89 

 90 
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2. Results and Discussion 91 

2.1 Preparation of 2,5,6-tri-O-protected--GISALs in a single step procedure. 92 

In the first set of experiments, attempts were made to protect all three hydroxyls of GISA 93 

as ester derivatives (Fig. 1, 3a-5a). We have previously reported the synthesis of the 94 

tribenzoyl-ester of -GISAL (2) which was achieved by reaction of -GISAL (2) with a 95 

large excess of benzoyl chloride with pyridine as solvent and employing 96 

dimethylaminopyridine as an acyl-transfer catalyst[27]. When an acetylation reaction was 97 

performed with an excess of acetic anhydride with sodium acetate as a base a near 98 

quantitative yield of the 2,5,6-tri-O-acetyl--GISAL (3a, 99%) was recovered. However, 99 

when an attempt was made to reduce the quantity of the bulkier acylating reagents to 100 

nearer stoichiometric amounts (3.3 equivalents) a mixture of di and triacylated products 101 

was obtained. The trisubstituted derivative 4a could only be produced as a single 102 

compound when a large excess of benzoyl chloride was used (10 equivalents). 103 

 104 

 105 

Figure 1. 2,5,6-Tri-O-protected (3-5a) and 5,6-di-O-protected--GISAL (3b, 6b-10b). 106 

A similar picture emerged with the attempted synthesis of sulfonate esters. Reaction of 2 107 

with six equivalents of methanesulfonyl chloride in the presence of pyridine gave the 108 

trimesylated product 5a in reasonable yield (61%). In contrast, when 2 was reacted with a 109 
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large excess of p-toluenesulfonyl chloride a crude product was isolated which, after 110 

column chromatography, gave  the 5,6-di-O-tosylated derivative 6b (55%) and only a small 111 

amount (<10%) of the desired 2,5,6-trisubstituted -GISAL was produced. Further 112 

attempts to form triprotected derivatives of 2, as either benzyl, trityl or silyl ethers, all led to 113 

the isolation of 5,6-di-O-protected derivatives (see section 2.2).  114 

It is clear that derivatisation of all three hydroxyl groups in a single step procedure was 115 

only possible when using either forcing conditions (large excess of reagent), or when small 116 

sterically undemanding protecting groups (acetyl or mesyl) were employed. It is of note 117 

that Kumar and Alen have reported the synthesis of mixtures of mono and di-esters in the 118 

of a-glucoisosaccharino-1,4-lactone with tall oil fatty acids[28]. 119 

2.2. Preparation of 5,6-di-O-protected--GISALs in single step procedures. 120 

It was expected that the greater reactivity of the hydroxymethylene groups compared with 121 

that of the tertiary alcohol in 2 would allow direct access to the 5,6-di-O-protected--GISAL 122 

derivatives. Reaction of the lactone with two equivalents of acetyl chloride in pyridine and  123 

also the reaction of the lactone with two equivalents of p-toluenesulphonyl chloride in 124 

pyridine produced the desired 5,6-di-O-protected lactones  3b (63%) & 6b (55%) in 125 

reasonable yields. Reaction of the lactone with the larger trityl chloride generated a 126 

mixture of di-O-protected and mono-O-protected products which were easy to separate by 127 

column chromatography to give a very low yield of the desired 5,6-di-O-trityl--GISAL 7b 128 

(13%), a similar amount of the 5-mono-O-trityl--GISAL 7e (12%) and  a very small 129 

amount of the 6-mono-O-trityl--GISAL 7f ( <2%).  130 

Attempts to prepare the 5,6-di-O-benzylated derivative 8b using sodium hydride as a base 131 

in DMF failed and only ring opened lactone products were obtained. Giordano and 132 

Iadonisi[29] have recently reported the regioselective benzylation of primary alcohols in 133 
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carbohydrate based polyols using a combination of benzyl bromide and the base 134 

diisopropylethylamine in the presence of a di-tert-butyltin oxide catalyst. When the reaction 135 

was applied to the lactone 2 a reasonable yield of the desired 5,6-di-O-benzylated product 136 

8b (59%) was recovered.  137 

Reaction of 2 with an excess of TBDMSCl in pyridine gave, after column chromatography, 138 

5,6-di-O-TBDMS--GISAL 9b  as the major product (69%). In a similar reaction, treatment 139 

of the lactone with TIPDSCl in pyridine afforded a high yield (82%) of the 5,6-TIPDS--140 

GISAL (14) in which the protecting group bridges between the 5 and 6-positions. The 5,6-141 

arrangement of the protecting group was confirmed by acetylating the remaining hydroxyl 142 

group and identifying strong NOE contacts between the protons of the isopropyl groups 143 

and the methylene protons at 5 and 6 in the acetylated product (15). 144 

 145 

 146 

Scheme 2. Synthesis of 5,6-cyclic-O-TIPDS--GISAL (14) and its conversion to 2-O-147 

acetyl-5,6-TIPDS--GISAL(15). 148 

 149 

In order to expand the range of protecting groups, an attempt was made to introduce acid 150 

stable carbonates at the 5 and 6-positions. Gioeli and Chattopadhyaya[30] have reported 151 

the use of the FMOC-carbonate group to protect the hydroxyl groups of ribose, however, 152 

when the lactone 2 was reacted with a large excess of FMOCCl,  either in the presence or 153 

absence of an acyl transfer catalyst, a mixture of di-protected and mono-protected 154 
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products were obtained. Despite using longer reaction times and up to ten equivalents of 155 

the 9-fluorenylmethoxycarbonyl chloride, the maximum yield of the desired di-protected 156 

product 10b never exceeded 27%. From these studies, it was clear that the reaction had 157 

reached equilibrium in which the diprotected, monoprotected and unreacted FMOCCl were 158 

all present. As was the case with trityl-O-protection, pure samples of the desired 5,6-di-O-159 

FMOC--GISAL10b, the 5-mono-O-protected 10e and small amounts of the 6-mono-O-160 

protected--GISAL 10f were isolated by column chromatography. 161 

2.3. Preparation of 2,6-di-O-protected--GISALs in single step procedures. 162 

The combined protection of the primary alcohol at the 6-position and the tertiary alcohol at 163 

the 2-position using an isopropylidene group has previously been reported by Florent et 164 

al[13]. In a similar reaction, the lactone 2 was condensed with freshly distilled 165 

benzaldehyde in the presence of an acid catalyst to give the 2,6-O-benzylidene protected 166 

lactone 12b (78%) as a pair of diastereoisomers in a 1:3.5 ratio (7R:7S; scheme 2). 167 

Reaction of the 2,6-acetal protected substrates with either FMOCCl  or benzoyl chloride in 168 

pyridine provided mixtures of starting materials and products, with only moderate yields of 169 

the desired products  being obtained after column chromatography (11c 14% and 12c 170 

20%). The low yields are consistent with steric crowding reducing access to tri-O-protected 171 

products, especially when bulky protecting groups are employed.  172 

 173 
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Scheme 3. Synthesis of 2,6-cyclic-O-acetals(11b & 12b) and their further elaboration 174 

through addition of orthogonal protecting groups at the 5-OH: synthesis of 5,6-orthogonally 175 

protected -GISAL derivatives (11c and 12c). 176 

 177 

2.4 Preparation of 2,5,6-tri-O-protected--GISALs in two step procedures. 178 

The ease of formation of the 5,6-di-O-protected--GISALs (6b-10b) provided an 179 

opportunity to introduce orthogonal protection at the tertiary hydroxyl groups albeit with the 180 

requirement for the use of a small protecting group. Both the 5,6-di-O-dibenzyl--GISAL 181 

8b and the 5,6-O-diTBDMS--GISALs 9b were converted in variable but not optimised 182 

yields to their 2-O-acetyl-5,6-di-O-protected--GISALs (8c 30%, 9c 80%)  on reaction with 183 

acetic anhydride using sodium acetate as a base catalyst (Fig 2; reagents a). In a similar 184 

manner, treatment of the 5,6-O-diFMOC--GISAL 10b with acetic anhydride in the 185 

presence of zinc dichloride afforded the 2-O-acetyl-5,6-di-O-protected--GISAL 10c (Fig. 186 

2; reagents b, 55%). 187 

 188 

 189 

Scheme 4. Addition of orthogonal protecting groups to the primary versus tertiary alcohol 190 

groups. 191 
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Reaction of the 2,6-O-isopropyliene--GISALs 11b with FMOCCl provided the opportunity 192 

to place orthogonal protecting groups onto the primary alcohols, 5-OH versus 6-OH, and 193 

gave the 2,6-O-isopropyliene-5-O-FMOC--GISAL 11c but in low yield (14%). In a similar 194 

reaction, treatment of 12b with benzoyl chloride in pyridine gave the 2,6-O-benzilydene-5-195 

O-benzoyl--GISALs 12c also in low yield (20%). 196 

2.5 Preparation of the mono-O-protected -GISAL derivatives.  197 

 198 

Figure 2. Mono-O-protected -GISAL derivatives (3d, 7e, 7f, 9e, 10e and 10f). 199 

In most cases, attempts to directly add a single protecting group to the lactone 2 did not 200 

give single products: the similar reactivity of the two primary hydroxyls meant that in the 201 

majority of cases mixtures of the 5,6-di-O-protected, 5-mono-O-protected and small 202 

amounts of the 6-mono-O-protected--GISALs were recovered. However, in the majority 203 

of the reactions, more of the 5-mono-O-protected product was obtained and when using 204 

the relatively bulky TBSDMSCl as reagent the reaction took place exclusively at the 5-205 

position. As the starting lactone was easy to prepare and because it proved to be relatively 206 

straight forward to separate the different mono-O-protected lactones, this route provided 207 

an opportunity to prepare a range of mono-O-protected--GISAls (Fig. 2) including the 208 

mono-substituted trityl-ethers (7f, 13% & 7e, 2%) the silyl ether (9e, 46%) and the 209 

carbonates (10e, 24% and 10f, 56%).  210 
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A number of additional mono-protected products were synthesised by three step 211 

procedures in which the required regioselective protection was achieved by first generating 212 

a di-O-protected product, followed by the addition of a small orthogonal protecting group at 213 

the remaining free-hydroxyl and then removal of the original protecting group. Treatment of 214 

the 5,6-di-O-FMOC-2-O-acetyl--GISAL with triethylamine generated the 2-O-acetyl--215 

GISAL 3d in near quantitative yield. Likewise, treatment of the 5,6-O-isopropylidene-2-O-216 

FMOC lactone 12c with aqueous acid generated the 5-FMOC--GISALs 10e in 217 

quantitative yield. 218 

2.6 Preparation of a 5,6-di-O-protected--GISALs in a two-step one pot procedure  219 

 220 

Scheme 5. Synthesis of a 5,6-orthogonally protected -GISAL derivative (13) in a one pot 221 

sequential reaction sequence. 222 

The greater reactivity of 5-OH towards the silylating agent TBDMSCl meant that it is was 223 

possible to add orthogonal protecting groups onto the primary alcohols in a sequential 224 

reaction series in a one pot reaction (Scheme 3). Reaction of -GISAL 2 with one 225 

equivalent of TBDMSCl in pyridine followed by the addition of 1.1 equivalent of acetic 226 

anhydride led to the isolation, after column chromatography, of the 6-O-acetyl-5-O-227 

TBDMS--GISAL (13). 228 

3. Conclusion: 229 

Many of the reactions used in this study to generate protected glucoisosaccharinic acids 230 

derivatives are the same as those that are applied to protect hydroxyls in 231 
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monosaccharides. The main difference in their outcome is related to the steric demands of 232 

trying to put bulky protecting groups on a tertiary alcohol which is alpha to a carbonyl 233 

carbon. In order to get reaction at the tertiary alcohol either forcing conditions or the use of 234 

small sterically undemanding protecting groups was required. Unsurprisingly, the 235 

attempted synthesis of mono-protected glucoisosaccharinic acids led to the isolation of 236 

mixtures of products. However, the higher reactivity of the C-5 primary hydroxyl group 237 

makes this the preferred initial point of reaction and this was particularly true when 238 

reaction was with a bulky-silylating agent. Despite these difficulties, the use of multiple 239 

steps and the employment of orthogonally protected hydroxyls have provided access to a 240 

wide range of novel -glucoisosaccharinio-1,4-lactone derivatives which we hope will be 241 

employed in the synthesis of value added products. 242 

  243 
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 244 

4. Experimental 245 

4.1 General Methods 246 

All reagents were purchased from commercial sources unless otherwise stated and were 247 

used without further purification. Anhydrous solvents were dried over molecular sieves 248 

(activated under vacuum at 200 oC) and stored under an inert atmosphere before use. The 249 

solvents used for column chromatography were GPR grade. Analytical TLC was 250 

performed on Silica Gel 60-F254 (Merck) and detection was either by charring following 251 

immersion in 5% H2SO4/H2O and/or fluorescence. 1D 1H and 13C-NMR spectra were 252 

recorded on a Bruker Avance 400 MHz spectrometer operating at ambient temperature. 253 

2D-NMR (COSY, HSQC, HMBC or NOESY spectra) were recorded at 500 MHz using 254 

Bruker pulse sequences. NMR samples were dissolved in either D2O, deuterated acetone 255 

or CDCl3 and referenced to either internal tetramethylsilane ( = 0 ppm), internal CDCl3 (1H 256 

 = 7.23 ppm and 13C  = 77.00 ppm) or internal HOD (1H  = 4.65 ppm, 303K). Chemical 257 

shifts are given in parts per million.  258 

High resolution mass spectra (HRMS) were recorded either by direct injection on an 259 

Agilent 6210 ToF spectrometer or by HPLC-MS (Agilent 1200 series HPLC coupled to an 260 

Agilent 6210 ToF Spectrometer). The HPLC employed a Phenomenex Luna 5 C18 2.4 x 261 

250 mm column and samples were eluted using an acetonitrile and water mobile phase 262 

operating with gradient elution: starting at 30% acetonitrile climbing to 95% acetonitrile 263 

over 15 mins. The mobile phase flow rate was 0.2 ml.min-1.  264 

Stocks of the calcium salt of -glucoisosaccharinic acid 1 and -glucoisosaccharino-1,4-265 

lactone 2 were prepared using the procedures described by Whistler and Bemiller[12].  266 

4.2 Synthesis of tri-O-protected lactone derivatives: 3a, 4a and 5a. 267 
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4.2.1 2,5,6-Tri-O-acetyl--D-glucoisosaccharino-1,4-lactone (3a). 268 

α-D-Glucoisosaccharino-1,4-lactone (1.0 g; 6.17 mmol) was added whilst stirring to an ice 269 

cooled solution of acetic anhydride (10 mL), once the lactone had dissolved sodium acetate 270 

(0.5 g) was added and the reaction was heated to 100 oC for 4 h. The reaction was halted 271 

by addition of the contents of the round bottom flask to ice cold water (100 mL) and the 272 

solution was stirred at room temperature for a further 1 h. The organic products were then 273 

extracted into chloroform (3 x 60 mL) and the combined organic extracts were dried over 274 

anhydrous magnesium sulphate and concentrated at reduced pressure to give a golden 275 

crystalline syrup (1.77 g; 6.14 mmol; Yield: 99%).IR (ATR) 2959 (C-H), 1781 & 1737 276 

(C=O), 1437, 1370 (C-H), 1202, 1045 (C-O). 1H NMR (400 MHz, CDCl3): 5.01-4.95 (m, 1H, 277 

H-4), 4.30 (s, 2H, H-6s), 4.27 (dd, 1H, J5’,4 = 3.4 Hz, J5’,5 = 12.3 Hz, H-5’), 4.13 (dd, 1H, J5,4 278 

= 6.7 Hz, J5,5’ = 12.3 Hz, H-5), 2.50 (dd, 1H, J3,4 = 9. 0 Hz, J3,5  = 14.7 Hz, H-3), 2.25 (dd, 1H, 279 

J3’,4 = 6.3 Hz, J3’,5 = 14.7 Hz, H3’), 2.11, 2.10, 2.08 (3s, 9H, 3 x CH3CO); 13C NMR (100 MHz, 280 

CDCl3):  172.0 (C1), 170.6, 170.0, 169.9 (3 x CH3-CO), 77.9 (C2), 74.7 (C4), 65.3 (C6), 281 

64.8 (C5), 32.1 (C3), 20.7, 20.6, 20.5 (3 x Me-CO). HRMS (m/z) Calcd for C12H16O8 282 

[M+NH4]+: 306.1183, Found:306.1187. 283 

4.2.2  2,5,6-Tri-O-benzoyl--D-glucoisosaccharino-1,4-lactone (4a). 284 

The procedure used to prepare 4a was identical to that used to prepare 2,5,6-tri-O-285 

benzoyl--D-glucoisosacharino-1,4-lactone reported by Shaw et al[27] and the product 286 

was recovered from a crude mixture by column chromatography (pale yellow syrup, 4.93g 287 

starting from 20g of GISAL(2)) (TLC Hex/EtOAc 1:1; RF 0.34). IR (ATR) 1771 & 1722 288 

(C=O), 1451 (Ar C-C), 1262, 1233, 1092 & 1062 (C-O), 701 & 684 (Ar C-H). 1H NMR (400 289 

MHz, CDCl3):  8.08-7.48 (m, 15H, 3 x Ph), 5.40 (m, 1H, H-4), 4.93 (d, 1H, J6,6’ = 11.2 Hz, 290 

H-6), 4.70 (d, 1H, J6,6’ = 11.2 Hz, H-6’), 4.65 (dd, 1H, J5,4 = 3.4 Hz, J5,5’ = 12.3 Hz,  H-5), 291 
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4.53 (dd, 1H, J5’,4 = 6.5 Hz, J5’,5 = 12.3 Hz, H-5’), 2.82  (dd, 1H,  J3,4 = 8.8 Hz, J3,3' = 15.2 292 

Hz, H-3), 2.62 (dd, 1H, J3’,4 = 7.2 Hz, J3,3’ = 15.2 Hz, H-3’). 13C NMR (100 MHz, CDCl3):  293 

171.96 (C1), 166.20, 165.74, 165.47 (3 x PhCO) 130.00, 129.96, 128.90, 134.24, 134.07, 294 

130.12, 129.96, 129.20, 128.90, 128.71 (ArC), 78.46 (C2), 75.45 (C4), 66.09 (C6), 65.39 295 

(C5), 32.65 (C3). HRMS (m/z) Calcd for C27H22O8 (M+Na)+: 497.1207, Found: 497.1236. 296 

4.2.3 2,5,6-Tri-O-methylsulphonyl--D-glucoisosaccharino-1,4-lactone (5a). 297 

The method used to prepare 5a was adapted from that reported by Kabalka et al[31]. A 298 

solution of α-D-glucoisosaccharino-1,4-lactone (1.0 g; 6.17 mmol) in anhydrous pyridine 299 

(10 mL) was added to a round bottomed flask and cooled to 0 oC whilst stirring. 300 

Methanesulphonyl chloride (3 mL; 38.8 mmol) was added cautiously over a period of 10 301 

min. The reaction mixture was kept at 0 oC for a further 5 min before continuing to stir at 302 

room temperature for 16 h. The reaction was halted by addition of ice cold water (25 mL) 303 

and dichloromethane (50 mL). The organic and aqueous layers were separated and any 304 

remaining organic product in the aqueous layer was extracted with dichloromethane (2 × 305 

25 mL). The organic extracts were combined, washed with 5 % sodium bicarbonate (2 × 306 

25 mL) and saturated brine (2 × 25 mL) before being dried over anhydrous magnesium 307 

sulphate. The solvent was removed at room temperature on a rotary evaporator to give a 308 

cream-orange coloured solid as the crude product (2.44 g). The product was purified by 309 

column chromatography (100% EtOAc). Fractions containing the desired product 5a were 310 

combined and reduced by rotary evaporation to give 5a as a white solid (1.50 g; yield: 61 311 

%) (Rf: 0.48, EtOAc). IR (ATR)   773.6 (CO), 1347.5, 1172.0 (SO2). 1H NMR (400 MHz, 312 

d-DMSO):  5.02 (m, 1H, H-4), 4.52 (dd, 1H, J5,5’ = 11.7 Hz, J5,4 = 2.6 Hz, H-5), 4.37 (dd, 313 

1H, J5’,4 = 6.3 Hz, J5’,5  = 11.7 Hz, H-5’),   4.01 (2 x d, 2H, J6,6’ = 7.0 Hz, H-6,6’), 3.24, 3.29, 314 

3.39 (3s, 9H, 3 x Me-SO3), 2.89-2.47 (m, 2H,  H-3,3’). 13C NMR (100 MHz, d-DMSO):  315 
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169.9 (C1), 83.7 (C2), 32.1 (C3), 76.1 (C4), 69.8 (C5), 70.0 (C6), 41.0, 37.4, 37.3 (3 x 316 

Me-SO3). HRMS (m/z) Calcd for C9H16O11S3 (M+NH4)+: 414.0193, Found: 414.0188. 317 

 318 

4.3 Synthesis of 5,6-di-O-protected lactone derivatives (3b, 6b-10b)  319 

4.3.1.    5,6-Di-O-acetyl--D-glucoisosaccharino-1,4-lactone (3b) 320 

α-D-Glucoisosaccharino-1,4-lactone (2, 500 mg; 3.09 mmol) was dissolved in pyridine (5 321 

mL) while stirring at room temperature for 10 min. Acetyl chloride (470 µL; 6.48 mmol, 2.1 322 

eq) was added cautiously at room temperature. The reaction was allowed to proceed 323 

uninterrupted for 3 h at room temperature. The reaction was halted by adding 324 

dichloromethane (30 mL) followed by ultra-pure water (30 mL), the organic layer was 325 

separated and the aqueous layer was further extracted with dichloromethane (2 x 30 mL). 326 

The combined organic layer was washed with 1% copper sulphate solution (2 x 50 mL) 327 

and dried over anhydrous magnesium sulphate, then concentrated to give 3b (1.20 g; 5.61 328 

mmol; Yield: 55%) IR (ATR) 3079 (O-H), 1781 &1743 (C=O), 1482, 1373 (C-H), 1233, 329 

1196 (C-O).1H NMR (400 MHz, CDCl3)  4.82-4.76 (m, 1H, H-4), 4.22 (dd, 1H, J5,4 = 2.88 330 

Hz, J5’,5 = 12.4 Hz, H-5), 4.20 (2d, 2H, J6,6’ = 1.16 Hz, H-6 & 6’), 4.04 (dd, 1H, J5’,4 = 6.28 331 

Hz, J5’,5 = 12.4 Hz, H-5’),  2.23 (dd, 1H, J3,4 = 6.20 Hz, J3,3’ =  13.54 Hz, H-3), 2.07 (dd, 1H, 332 

J3’,4 = 9.32 Hz, J3’,3 = 13.52 Hz, H-3’) 1.94 & 1.89 (2s, 6H, 2 x CH3CO); 13C NMR (100 333 

MHz, CDCl3): 175.4 (C1), 170.4 & 170.1 (2 x CH3CO), 74.9 (C4), 74.0 (C2), 65.0 (C6), 334 

64.6 (C5), 35.1 (C3), 20.6 & 20.5 (2 x CH3CO). HRMS (m/z): Calcd for C10H14O7 (M+NH4)+: 335 

269.0748, Found: 269.0740. 336 

 337 
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4.3.2.  5,6-Di-O-p-toluenesulphonyl--D-glucoisosaccharino-1,4-lactone (6b) 338 

p-Toluenesulphonyl chloride (2.58 g; 13.6 mmol; 2.1 eq.) was reacted with  α-D-339 

glucoisosaccharino-1,4-lactone (1.06 g; 6.51 mmol) in anhydrous pyridine (5 mL) using the 340 

same procedure described in section 4.3.1 except that after the addition was complete, the 341 

solution was stirred at room temperature for a further 60 h. The crude product 5,6-di-O-342 

tosyl-α-glucoisosaccharino-1,4-lactone was purified by column chromatography eluting 343 

with a solvent system with a starting composition of hexane and EtOAc (3:1) rising to 100 344 

% EtOAc. The purified compound 6b (RF= 0.35; hexane/ether, 1:1) was isolated as a pale 345 

yellow syrup (1.69 g; yield: 55 %). IR (ATR)  3460.1 (OH), 1782.1 (CO) 1597.1, 1354.3, 346 

1171.3, 810.6. 1H NMR (400 MHz, CDCl3): 7.80-7.78 (m, 4H, 2 x Ar-H), 7.39-7.36 (m, 347 

4H, 2 x Ar-H), 4.83 (m, 1H, H-4), 4.24-4.11 (m, 2H, H-5s), 4.16 (d, 1H,  J6,6’ = 10.6Hz, H-348 

6), 4.07  (d, 1H, J6’,6 = 10.6 Hz, H6’), 2.48-2.44  (m, 6H, CH3-Ph), 2.37 (m, 1H, H-3),  2.22 349 

(m, 1H, H-3’). 13C NMR (100 MHz, CDCl3):  173.3 (C1), 145.6, 145.7, 130.2, 130.2, 131.8, 350 

132.0, 128.1, 128.1, (8 x ArC), 74.7 (C4), 74.3 (C2), 70.2 (C6), 68.7 (C5), 34.2 (C3), 21.7 351 

(2 x CH3Ar); HRMS (m/z): Calcd for C20H22O9S2 (M+NH4)+: 488.1043, Found: 488.1049. 352 

4.3.3.  5,6-Di-O-triphenylmethyl--D-glucoisosaccharino-1,4-lactone (7b) , 6-O-353 

triphenylmethyl--D-glucoisosaccharino-1,4-lactone (7e) and 5-O-triphenylmethyl--354 

D-glucoisosaccharino-1,4-lactone (7f)  355 

The following synthetic procedure was adapted from the work by Choudhary and 356 

Hernandez[32]. Triphenylmethyl chloride (25.07 g; 89.9 mmol) and α- D-357 

glucoisosaccharino-1,4-lactone 2 (6.82 g; 41.9 mmol) were dissolved in pyridine (300 mL) 358 

and a catalytic amount of DMAP (1 g; 8.19 mmol) was added. The resulting solution was 359 

stirred at 25 oC for 12 h under an atmosphere of nitrogen. After the reaction was complete, 360 

the solution was added to an equal volume of water and then extracted into chloroform (2 361 

× 200 mL). The two layers were separated and the organic layers were washed with 362 
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saturated brine (100 ml) a saturated solution of sodium bicarbonate (100 ml) and dried 363 

over anhydrous sodium sulphate. Evaporation of solvent produced a beige coloured solid 364 

(13.9 g). Subsequent TLC analysis showed the presence of three compounds of interest. 365 

Following separation by column chromatography  eluting with  Hex/EtOAc (2:1), the 366 

desired compounds were identified as 2,5-di-O-trityl--GISAL 7b (Rf 0.79; Hex/EtOAc ( 367 

(2:1)); 3.34 g; yield: 12 %, followed by the 6-mono-O-trityl--GISAL 7e (Rf 0.29; 368 

Hex/EtOAc,1:2 v/v)); 0.20 g; yield: <2 % and 5-mono-O-trityl--GISAL 7f  was recovered 369 

from a chloroform wash (Rf 0.16; Hex/EtOAc, (1:2)); 2.25 g; yield: 13 %.   370 

7b IR (ATR)  1779 (CO) 762.2, 745. 1H NMR (400 MHz, CDCl3)  7.48-7.27 (m, 30H, 6 x 371 

PhH), 4.82 (m, 1H, H-4), 3.41 (d, 1H, J6,6’ = 9.1Hz, H-6), 3.30  (d, 1H, J6’,6 = 9.1 Hz, H-6’), 372 

3.36 (dd, 1H, J5,4 = 6.0 Hz, J5,5’ = 10. 5 Hz, H-5), 3.28 (dd, 1H, J5’,4 = 3.8 Hz,  J5’,5 = 10.5 373 

Hz, H-5’), 2.20 (m, 2H, H-3); 13C NMR (100 MHz, CDCl3): 176.4 (C1), 143.3, 143.6, 128.7, 374 

128.7, 128.0, 128.0, 127.3, 127.2, 86.9 &  87.2 (TrC*), 77.4  (C4), 75.5 (C2),  65.4 (C5), 375 

65.3 (C6), 35.0 (C3).HRMS (m/z) Calcd for  C44H38O5 (M+Na)+: 669.2611, Found: 376 

669.2592. 377 

7e IR (ATR)  3353.1 (OH) 1774.0 (CO) 763.4, 745.8, 697.7. 1H NMR (400 MHz, CDCl3)  378 

7.46-7.27 (m, 15H, 3 x PhH), 4.77 (m, 1H, H-4), 3.91 (dd, 1H, J5,4 = 2.8 Hz, J5,5’ = 12.7 Hz, 379 

H-5), 3.65 (dd, 1H, J5’,4 = 5.1 Hz, J5’,5 = 12.7 Hz, H-5’), 3.42 (d, 1H, J6,6’ = 9.2 Hz, H-6), 380 

3.32 (d, 1H, J6’,6 = 9.2 Hz, H-6’), 2.33 (dd, 1H, J3,4 = 7.1 Hz, J3,3’ =  13.8 Hz, H-3), 2.21 (dd, 381 

1H, J3’,4 = 8.5 Hz, J3’,3 = 13.8 Hz, H-3’); 13C NMR (100 MHz, CDCl3): 176.2  (C1), 143.2 , 382 

128.7, 128.0, 127.3, 87.3 (TrC), 75.9 (C2), 78.2 (C4), 65.3 (C6), 63.6 (C5), 33.6 (C3). 383 

HRMS (m/z) Calcd for C25H24O5 [M+Na]+: 427.1516, Found: 427.1513. 384 

7f IR (ATR)  3365.8 (OH) 1772.8. (CO) 763.6, 746.0, 697.2. 1H NMR (400 MHz, CDCl3): 385 

 7.46-7.27  (m, 15H, 3 x PhH,), 4.89 (m, 1H, H-4), 3.84 (d, 1H, J6,6’  = 11.7 Hz, H-6), 3.71 386 
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(d, 1H, J6’,6= 11.7 Hz, H-6’), 3.43 (dd, 1H, J5,4 = 3.3 Hz, J5,5’ = 10.5 Hz, H-5), 3.22 (dd, 1H, 387 

J5’,4 = 5.0 Hz, J5’,5 = 10.5 Hz, H-5’), 2.22 (dd, 1H, J3,4 = 6.7 Hz, J3,3’ = 13.7 Hz, H-3), 2.12 388 

(dd, 1H, J3’,4 = 8.6 Hz, J3,3’ = 13.7Hz, H-3’); 13C NMR (100 MHz, CDCl3): 177.7 (C1) 143.4, 389 

128.6, 128.0, 127.3, 86.9 (TrC), 77.7 (C4), 73.6 (C2), 65.5 (C6), 64.2 (C5), 34.0(C3). 390 

HRMS (m/z) Calcd for C25H24O5 (M+Na)+: 427.1516, Found: 427.1506. 391 

4.3.4.  5,6-Di-O-dibenzyl--D-glucoisosaccharino-1,4-lactone (8b)  392 

The dibenzyl derivative 8b was synthesised using a method adapted from that described by 393 

Giordano and Iadonisi [29]. Dried α-glucoisosaccharino-1,4-lactone 2 (1.0 g, 6.17 mmol) 394 

was dissolved in N,N-diisopropylethylamine (DIPEA) (2.3mL, 4 eq), and a catalytic amount 395 

of dibutyltin oxide (154 mg, 0.1 eq) and tetrabutylammonium bromide (597 mg, 0.3 eq) were 396 

added while stirring. Benzyl bromide (BnBr) (6 mL, 8 eq), was added slowly and the reaction 397 

was allowed to proceed for 4 h at 90 oC. A second portion of BnBr and DIPEA (2 eqs each) 398 

were added and the reaction continued for further 2 h at 90 oC. The reaction was halted by 399 

pouring the reaction solution into a mixture of DCM (50 mL) and water (50 mL). The organic 400 

layer was separated, and the aqueous phase was extracted with DCM (2 x 50 mL). The 401 

combined organic extracts was dried over anhydrous sodium sulphate and concentrated to 402 

dryness to give crude 8b as a golden syrup which was purified by column chromatography 403 

(EtOAc:Hexane 1/1 v/v); to give the product as a transparent oil 1.24 g; yield: 59% . 1H NMR 404 

(400 MHz, CDCl3) 7.34-7.29 (m, 10H, ArH), 4.83-4.77 (m, 1H, H-4), 4.54 (AB, 4H, J7,7’ = 405 

6.08 Hz, H-7, H-7’), 3.67 (dd, 1H, J5,4 = 3.48 Hz, J5,5’ = 10.97 Hz, H-5), 3.62 (m, 2H, H-6, H-406 

6’), 3.57 (dd, 1H, J5’,4 = 5.20 Hz, J5’,5 = 10.98 Hz, H-5’), 2.33 (2 x dd, 2H, J3,4 = 2.12 Hz, J3,3’ 407 

= 7.50 Hz, H-3, H-3’); 13C NMR (100 MHz, CDCl3) 176.79 (C1), 137.59, 137.39 (ArCq), 408 

128.50, 127.89, 127.84, 127.79 (ArC), 76.78 (C4), 75.34(C2), 73.73, 73.56 (C7), 72.05 (C6), 409 

70.88 (C5), 34.61 (C3). HRMS (m/z) Calcd for C20H22O5 [M+Na+]: 365.1359, Found: 410 

365.1358. 411 
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4.3.5.  5,6-Di-O-tert-butyldimethylsilyl--D-glucoisosaccharino-1,4-lactone (5a) 412 

 The di-tert-butyldisilyl derivative 9b was synthesised using a method adapted from that 413 

described by Iadonisi et al[33] employing only a minimal amount of solvent. Dried α-414 

glucoisosaccharino-1,4-lactone 2 (1.0 g, 6.17 mmol) was suspended in anhydrous pyridine 415 

(5 mL) whilst stirring for 20 min at room temperature. It was then added cautiously to a 416 

mixture of tert-butyldimethylsilyl chloride (TBDMSCl) (2.1 g, 13.93 mmol, 2.2 eq) while 417 

stirring at room temperature. The reaction was allowed to proceed for 4 h after which time 418 

DCM (50 mL) and water (50 mL) were added. The organic layer was separated and 419 

aqueous layer was further extracted with DCM (2 x 50 mL). The combined organic layer 420 

was washed with a 1% CuSO4 solution (2 x 50 mL), dried over anhydrous sodium sulphate 421 

and concentrated to give a crude sample of 9b as a white solid. The product was purified 422 

by chromatography (elution with EtOAc/Hexane; 3:1 v/v) and the early fractions contained 423 

pure 9b (1.66 g; 4.26 mmol; 69 %) (Rf = 0.722; Hexane/EtOAc 3:1 v/v) were combined 424 

and the solvent evaporated. IR (ATR) 3259 (O-H), 2952, 2928, 2886, 2857 (C-H), 1770 425 

(C=O), 1471, 1462, 1360 (C-H), 1255, 1200, 1168 (C-O), 1097, 1044 (Si-OR) 833, 814, 426 

775. 1H NMR (400 MHz, CDCl3) 4.68-4.60 (m, 1H, H-4), 3.78 (dd, 1H, J5,4 = 3.79 Hz, J5,5’ = 427 

11.55 Hz, H-5), 3.76 (d, 1H, J6,6’ = 9.85 Hz, H-6), 3.69 (dd, 1H, J5’,4 = 4.74 Hz, J5’,5 = 11.55 428 

Hz, H-5’), 3.65 (d, 1H, J6’,6 = 9.85 Hz, H-6’), 2.32 (dd, 1H, J3,4 = 8.30 Hz, J3,3’ = 14.02 Hz, 429 

H-3), 2.17 (dd, 1H, J3’,4 = 7.40 Hz, J3’,3 = 14.02 Hz, H-3’), 0.86 (2s, 18H , 2 x TBDMS), 0.05 430 

(m, 12H, 2 x TBDMS); 13C NMR (100 MHz, CDCl3): 176.92 (C1), 77.77 (C4), 76.35(C2), 431 

65.42 (C6), 64.30 (C5), 33.72 (C3), 25.82 & 25.78 (TBDMS), 18.31& 18.24 (TBDMS). 432 

HRMS (m/z) Calcd for C18H38Si2O5 [M+Na]+ : 413.2150, Found: 413.2152.  433 

4.3.6 (1’,1’,3’,3’-Tetraisopropyldisiloxane-1,3-diyl)-5,6--D-glucoisosaccharino-1,4-434 

lactone (14) 435 
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Dried α- D-glucoisosaccharino-1,4-lactone 2 (1.0 g, 6.17 mmol) was dissolved in pyridine (6 436 

mL) at room temperature and the solution was added cautiously to 1,3-dichloro-1,1,3,3-437 

tetraisopropyl-1,3-disiloxane (TIPDS-Cl2) (2.17 mL; 6.78 mmol; 1.1 eq) whilst stirring at room 438 

temperature. The reaction was allowed to proceed for 4 h. After 4 h it was halted with the 439 

addition of DCM (60 mL) and water (60 mL). The organic layer was separated and the 440 

aqueous layer was further extracted with DCM (2 x 50 mL). The combined organic layer was 441 

washed with an aqueous CuSO4 solution (1%, 2 x 50 mL) dried over anhydrous sodium 442 

sulphate and concentrated to give crude 14 (4.14 g) as a brown crystalline syrup which was 443 

purified using column chromatography to give the desired product as a pale yellow syrup 444 

(2.05 g; 5.07 mmol; 82% yield)  (RF: 0.68, Hexane/EtOAc 4/1 v/v). IR (ATR) 2945, 2867, 445 

1771 (C=O), 1464, 1387, 1084, 1042 (R3Si-O-SiR3), 1012. 1H NMR (400 MHz, CDCl3) 4.70-446 

4.62 (m, 1H, H-4), 4.07 (d, 1H, J6,6’ = 10.6 Hz, H-6) 3.94-3.85 (m, 2H, H-5, H-5’),  3.83 (d, 447 

1H, J6’,6 = 10.6 Hz, H-6’), 2.82 (dd, 1H, J3,3’ = 13.9 Hz, J3,4 = 2.4 Hz,  H-3), 2.30 (dd, 1H, J3’,3 448 

= 13.9 Hz, J3’,4 =10.1 Hz, H-3’), 1.1-0.9 (m, 28H, TIPDS). 449 

13C (100 MHz, CDCl3) 178.2 (C1), 76.7(C2), 76.3 (C4), 66.9 (C6), 63.6 (C5), 31.8 (C3), 450 

17.19, 17.11, 17.09 & 17.07 (TIP(CH)DS), 13.5, 13.1, 12.6 & 12.4 (TIP(CH3)DS) 451 

HRMS (m/z) calculated mass for C18H36O6Si2 [M+NH4]+ 422.2389 found 422.2407 452 

To confirm the location of the protecting group, 14 (1.5g, 3.71mmol) was acetylated using 453 

the procedure described in section 4.5.1 to give, after chromatography, the product 15 as a 454 

white semi-crystalline syrup (680 mg, 1.53 mmol; 41% yield); (Rf: 0.721, Hexane/EtOAc 3:1, 455 

v/v). IR (ATR) 2944.6, 2867.5, 1779.5 & 1742.1 (C=O), 1463.9, 1369.8, 1084, 1252.1, 456 

1215.1, 1082.5, 1043.2 (R3Si-O-SiR3), 883.1. 1H NMR (400 MHz, CDCl3) 4.82-4.78 (m, 1H, 457 

H-4), 4.09 (dd, 1H, J5,5’ = 12.02 Hz,  J5,4 = 3.56 Hz, H-5), 4.05 (d, 1H, J6,6’ = 11.6 Hz, H-6), 458 

4.00 (d, 1H, J6,6’ = 11.6 Hz, H-6’), 3.85 (dd, 1H, J5’,5 = 12.0 Hz, J5’,4 = 2,16 Hz, H-5’), 2.75 459 
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(dd, 1H, J3,3’ = 13.61 Hz, J3,4 = 3.52 Hz, H-3), 2.41 (dd, 1H, J3’,3 = 13.61 Hz, J3’,4 = 9.9 Hz, H-460 

3’)  2.12 (s, 3H, OCH3) 1.1-1.0 (m, 28H, TIPDS). 461 

13C (100 MHz, CDCl3) 173.6 (C1), 170.4 (COCH3), 81.7 (C2), 77.0(C4), 64.7 (C5), 64.5 462 

(C6), 30.0 (C3), 20.8 (COCH3), 17.19, 17.15, 17.12 & 17.08 (TIPDS), 13.6, 13.5, 12.6 & 12.3 463 

(TIPDS) 464 

HRMS (m/z) calculated mass for C20H38O7Si2 [M+NH4]+ 464.2494 found 464.2503. 465 

4.3.7.  5,6-Di-O-fluorenylmethoxycarbonyl--D-glucoisosaccharino-1,4-lactone (10b) 466 

α-D-Glucoisosaccharino-1,4-lactone 2 (2.01 g, 12.4 mmol) and dimethylaminopyridine 467 

(DMAP, 0.50 g) were dissolved in anhydrous pyridine (40 mL) and stirred under an 468 

atmosphere of nitrogen for 20 min. The mixture was slowly added to a second reaction 469 

vessel, cooled to 0C, containing fluorenylmethoxycarbonyl chloride (7.05 g, 273 mmol, 470 

2.2 eq). After the addition was complete, the reaction was allowed to reach room 471 

temperature and was stirred, under an atmosphere of nitrogen, for a further 3 h. During 472 

this time a large quantity of colourless pyridinium hydrochloride precipitated from solution. 473 

The reaction was quenched by adding ice-cold water (100 mL), followed by ice-cold diethyl 474 

ether (100 mL). The organic layer was separated and the aqueous phase was extracted 475 

with diethyl ether (3 x 100 mL). The combined organic fractions were washed with a large 476 

quantity of brine (3 x 100 mL) to remove pyridine. The resulting solution was dried over 477 

anhydrous sodium sulphate, before being concentrated under reduced pressure. The 478 

crude product was a bright yellow crystalline syrup (3 g) The product was separated via 479 

chromatography (eluting with a mobile phase compose of Hexane/EtOAc 1:1 v/v). The 480 

target compound 10b (RF = 0.47 Hexane/EtOAc; 1:1v/v) was recovered as a pale yellow 481 

solid (yield: 1.47 g, 2.45 mmol, 19.8 %). IR (ATR) 2945, 2867, 1771 (C=O), 1464, 1387, 482 

1084, 1042 (R3Si-O-SiR3), 1012.1H NMR (400 MHz, CDCl3),  7.90-7.84 (m, 4H, ArH), 483 

7.65-7.59 (m, 4H, ArH), 7.43-7.37 (m, 4H, ArH), 7.34-7.28 (m, 4H,  ArH), 4.92 (m, 1H, H-484 
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4), 4.03-4.52 (m, 10H, 2 x H-5s, 2 x H-6s, 4 x H-8s & 2 x H-9s), 2.44 (dd, 1H, J3’,4 = 6.95 485 

Hz, J3,3’ = 14.2 Hz,  H-3’), 2.24 (dd, 1H, J3,4 = 5.67 Hz, J3,3’ =  14.2 Hz, H-3); 3C NMR (100 486 

MHz,CDCl3): 175 (C1), 155 (C7), 143,141,128,127,125,120 (ArC), 75.0 (C2), 74.5 (C4), 487 

70.4 (C8), 68.9 (C6), 67.8 (C5), 46.8 (C9), 34.7 (C3). Melting point:  76-77 OC. HRMS 488 

(m/z): Calcd for C36H30O9 [M+NH4]+ 624.2228 ,Found: 624.2228. 489 

4.4 Synthesis of 2,6-di-O-protected lactone derivatives (11b and 12b) and their 490 

conversion to 2,5,6-tri-O-protected lactone derivatives (11c and 12c). 491 

4.4.1 5-O-Fluorenylmethoxycarbonyl-2,6-O-isopropyliene--D-glucoisosaccharino-492 

1,4-lactone (11c) 493 

2,6-O-Isopropylidene--D-glucoisosaccharino-1,4-lactone 11b, prepared using the 494 

procedures described by Florent et al[13] (1.38 g, 6.83 mmol), was dissolved in anhydrous 495 

pyridine (20 ml). The solution was cautiously added to a flask, maintained at 0o C, containing 496 

crystalline FMOCCl (2.66 g, 0.01 mmol). The reaction was allowed to proceed for 4 h at 497 

room temperature after which time it was carefully added to a beaker containing ice cold 498 

water (60 ml) and diethyl ether (60 ml). The organic layer was separated and the aqueous 499 

phase was extracted with diethyl ether (3 x 60 ml). The combined organic extracts were 500 

washed with a saturated solution of brine (50 mL), water (50 mL) and then dried over 501 

anhydrous sodium sulphate before removing the solvent at reduced pressure to give the 502 

desired product 11c as a yellow solid (570 mg, 1.34 mmol; Yield: 19.68%); (Pet. ether/EtOAc 503 

3:1 v/v).   IR (ATR) 2945, 2867, 1771 (C=O), 1464, 1387, 1084, 1042 (R3Si-O-SiR3), 1012. 504 

1H NMR (400 MHz, CDCl3) : 7.78-7.68 (m, 2H, ArH), 7.59-7.50 (m, 2H, ArH), 7.45-7.40 (m, 505 

2H, ArH), 7.36-7.31 (m, 2H, ArH), 4.88-4.82 (m, 1H, H-4), 4.50-4.37 (m, 4H, 2 x H-5 & 2 x 506 

H-6), 4.28-4.08  (m, 3H, H-8 & H-9), 2.20  (dd, 1H, J3,3’ = 14.38 Hz, J3,4 = 7.05 Hz, H-3), 2.55 507 

(dd, 1H, J3,3’  = 14.07 Hz, J3’,4 = 7.47 Hz, H-3’); 1.49 (bs, 6H, 2 x CH3). 13C NMR (100 MHz, 508 

CDCl3): 174.8 (C1), 154.6 (FMOCCO): 142.8, 141.3, 127.9, 127.1, 125.0, 119.9 (ArC), 112.7 509 
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(C7), 80.8 (C2), 74.4 (C4), 72.0 (C6), 70.1 (C5), 67.7 ( FMOCCH) 46.4 (FMOCCH2) 36.5 510 

(C3), 26.7 (C8), 25.3 (C9). HRMS (m/z) Calcd for C24H24O7 [M+Na+]: 447.1414, Found: 511 

447.1415.  512 

4.4.2  5-O-Benzoyl-2,6-O-benzylidene--D-glucoisosaccharino-1,4-lactone (12c) 513 

Synthesis of (7S)- and (7R)-2,6-O-benzylidene--D-glucoisosaccharino-1,4-lactone 12b - 514 

Freshly distilled benzaldehyde (50 mL; 492 mmol) was added to a round bottomed flask 515 

(100 mL) containing α-glucoisosaccharino-1,4-lactone 2
 
(1.02 g; 6.27 mmol), p-TSA (20 516 

mg) and ~ 30 4Å molecular sieves. The mixture was left to reflux under a slight vacuum for 517 

4 h at 85 °C. After cooling to room temperature, the mixture was gravity filtered to remove 518 

the molecular sieves and excess benzaldehyde was removed by vacuum distillation to 519 

give the crude product as a semi-crystalline syrup. The crude mixture was purified by 520 

column chromatography (fractions were eluted with chloroform with increasing portions of 521 

methanol: 1-10%). The product eluted in two distinct bands which, after evaporating to 522 

dryness gave 0.90 g and 0.26 g of the required diastereoisomers with a combined yield of 523 

78 %. Using NOESY NMR spectra, it was determined that the first fraction (Rf: 0.17, 524 

CHCl3/MeOH 95:5 v/v) was the 7R- diastereomer of 12b whilst the second fraction (Rf: 525 

0.26, CHCl3/MeOH 95:5 v/v) contained the 7S-diastereomer of 12b. 526 

1H NMR 7S-diastereomer of 12b (400 MHz, d-DMSO): 7.35-7.55 (m, 5H, ArH), 5.98 (s, 527 

1H, PhCH), 5.25 (s, 1H, OH), 4.71 (m, 1H, H-4), 4.33 (d, 1H, J6,6’ = 9.0 Hz, H-6), 4.16 (d, 528 

1H, J6’,6  = 9.0 Hz, H-6’), 3.67 (dd, 1H, J5,4 = 2.0 Hz, J5,5’= 12.1 Hz, H-5), 3.49 (dd, 1H, J5’,4 529 

= 3.2 Hz, J5’,5 = 12.2 Hz, H-5’) 2.49 (m, 2H, H-3,3’) . 13C NMR (100 MHz, d-DMSO):  176.4 530 

(C1), 136.7, 127.4, 128.8, 130.2 (ArC), 104.9 (C7), 81.2 (C2), 78.7 (C4), 35.4 (C3), 62.5 531 

(C5), 72.9 (C6). 532 

1H NMR 7R-diastereoisomer 12b (400 MHz, d-DMSO): 7.38-7.60 (m, 5H, ArH), 5.91 (s, 533 

1H, PhCH), 5.21 (s, 1H, OH), 4.68 (m, 1H, H-4), 4.44 (d, 1H, J6,6’ = 9.5 Hz, H-6), 4.04 (d, 534 
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1H, J6’,6 = 9.5 Hz, H-6’), 3.68  (m, 1H, H-5), 3.49 (dd, 1H, J5’,4 = 3.4 Hz, J5’,5 12.3 Hz, H-5’), 535 

2.60 (dd, 1H, J3,4 = 7.7 Hz, J3,3’ = 13.8 Hz, H-3), 2.33  (dd, 1H, J3’,4 = 6.0 Hz, J3’,3 = 14.0 Hz, 536 

H-3’). 13C NMR (100 MHz, d-DMSO): 175.8 (C1), 136.9, 130.2,127. 9, 128.7 (ArC), 105.0 537 

(C7), 81.0 (C2), 78.5 (C4), 73.3 (C6), 62.5 (C5), 34.5 (C3).  538 

Synthesis of 5-O-benzoyl-(7R)-2,6-O-benzylidene--D-glucoisosaccharino-1,4-lactone 539 

12c. Compound 12b (0.90 g; 3.60 mmol) was dissolved in pyridine (50 mL) and benzoyl 540 

chloride (1.5 g; 1.3 mL; 10.7 mmol) and a catalytic quantity of DMAP (20 mg) were added. 541 

The reaction was stirred at room temperature for 2 h. The pyridine was removed by rotary 542 

evaporation and the resulting brown residue was dissolved in diethyl ether (50 mL) and 543 

washed with a saturated sodium hydrogen carbonate solution (2 x 20 mL) and then with 544 

saturated sodium chloride (20 mL). The organic layer was reduced to dryness, the crude 545 

product was dissolved in sodium dried ether (20 mL) and this was once again dried on the 546 

rotary evaporator. This process was repeated with sodium dried ether until the odour of 547 

pyridine had disappeared to give a mixture of the desired product and pyridinium 548 

hydrochloride as a semi-solid syrup. Finally, a small amount of the desired product was 549 

obtained by recrystallization from petroleum ether, the residue was dissolved in petroleum 550 

ether (bpt 40-60 oC,10 mL) and the volume of the solvent was reduced slowly until a white 551 

cloudy solution was first observed. After cooling to room temperature, the mixture was 552 

chilled at 5 °C for 3 h until white crystals were visible which were filtered under gravity and 553 

dried at room temperature in a desiccator to isolate the crystalline product 12c as white 554 

needles (0.26 g; yield: 20 %). IR (ATR)  1766.9 & 1727.2 (CO) 759.4, 708.6., 695.0. 1H 555 

NMR (400 MHz, d-DMSO): 8.05-7.35 (m, 10H, ArH),  5.98 (s, 1H, PhCH), 5.06 (m,1H, H-556 

4), 4.46 (dd, 1H, J5,4 = 6.7 Hz, J5,5’ = 12.4 Hz, H-5), 4.57 (dd, 1H, J5’,4 = 2.7 Hz, J5’,5 = 12.4 557 

Hz, H-5’), 4.33-4.31 (2 x d, 2H,  J6,6’ = 8.8 Hz, H-6, H-6’), 2.64 (m, 2H, H-3, H-3’). 13C NMR 558 

(100 MHz, d-DMSO): 175.2 (C1), 165.9 (PhCO), 136.4, 134.1,130.3, 129.8, 129.7, 129.3, 559 
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128.8 & 127.5 (ArC), 104.9 (C7), 80.9 (C2), 76.1 (C4), 71.4 (C6), 65.7 (C5), 34.9 (C3). 560 

HRMS (m/z) Calcd for C20H18O6 [M+K]+: 393.0735, Found: 393.0735.  561 

4.5 Preparation of orthogonally protected trisubstituted 2--D-glucoisosaccharino-562 

1,4-lactone  563 

4.5.1  2-O-Acetyl-5,6-di-O-benzyl--D-glucoisosaccharino-1,4-lactone (8c) 564 

5,6-di-O-Dibenzyl-D-glucoisosaccharino-1,4-lactone 8b (1.0 g, 2.92 mmol) was reacted with 565 

acetic anhydride (10 m) and sodium acetate (0.5 g) employing the procedure described in 566 

section 4.2.1 to give a brown crystalline syrup  which was purified by column 567 

chromatography ( EtOAc/hexane 5/1-1:1 v/v ) providing 8c as a colourless oil (330 mg; 0.86 568 

mmol; 29.4%); (Rf: 0.211; EtOAc/hexane 1:1 v/v). IR (ATR) 2866, 1775 & 1740 (C=O), 569 

1453, 1369, 1205 & 1096 (C-O), 736, 697. 1H NMR (400 MHz, CDCl3) 7.33-7.26 (m, 10H, 570 

ArH), 4.96-4.90 (m, 1H, H-4), 4.52-4.49 (2d, 4H, J7,7’ = 4.72 Hz, H-7s), 3.70 (m, 2H, H-6), 571 

3.63 (dd, 1H, J5,4 = 3.96 Hz, J5,5’ = 10.7 Hz, H-5), 3.57 (dd, 1H, J5’,4 = 5.04, J5’,5 = 10.7 Hz, H-572 

5’), 2.60 (dd, 1H, J3,4 = 5.84 Hz, J3,3’ = 14.3 Hz, H-3), 2.42 (dd, 1H, J3’,4 = 5.12 Hz, J3’,3 = 14.3 573 

Hz, H-3’), 2.10 (s, 3H, CH3CO). 13C NMR (100 MHz, CDCl3): 173.66 (C1), 170.00 (CH3CO), 574 

137.72 & 137.20 (PhCq), 128.48, 128.46, 127.89, & 127.78 (PhC), 79.44 (C2), 76.51 (C1), 575 

73.86 & 73.46 (PhCH2), 71.59 (C6), 71.10 (C5), 31.96 (C3), 20.63 (CH3CO). HRMS (m/z) 576 

Calcd for C22H24O6 [M+NH4]+ : 402.1911, Found: 402.1910. 577 

4.5.2.  2-O-Acetyl-5,6-di-O-tert-butyldimethylsilyl--D-glucoisosaccharino-1,4-578 

lactone (9c) 579 

The same procedure as described above for the synthesis of 8c was used to prepare 9c. 580 

After chromatography, the product 9c was recovered as a white crystalline semi-solid  (900 581 

mg, 2.08 mmol; 81%; Rf: 0.821, Hexane/EtOAc 3:1, v/v). IR (ATR) 2954, 2929, 2857, 582 

1783 &1747 (C=O), 1472, 1369, 1251, 1209 (C-O), 832, 776. 1H NMR (400 MHz, CDCl3) 583 
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4.37-4.70 (m, 1H, H-4), 3.79 (d, 1H, J6,6’ = 9.80 Hz, H-6), 3.72 (d, 1H, J6’,6 = 9.80 Hz, H-6’), 584 

3.70-3.64 (m, 2H, H-5), 2.48 (dd, 1H, J3,4’ = 6.30 Hz, J3,3’ = 14.50 Hz, H-3), 2.24 (dd, 1H, J3’,4 585 

= 5.65 Hz, J3’,3 = 14.48 Hz, H-3’), 2.01 (s, 3H, CH3CO), 0.82 (2s, 18H, 2 x TBDMS), 0.00 586 

(4s, 12H, 2 x TBDMS). 13C NMR (100 MHz, CDCl3): 173.70 (C1), 169.74 (CH3CO), 80.31 587 

(C2), 77.57 (C4), 65.36 (C6), 64.54 (C5), 31.57 (C3), 25.70, 25.63, 25.57 (TBDMS), 20.43 588 

(CH3CO), -5.23, -5.55, -5.60 (TBDMS). HRMS (m/z) Calcd for C20H40Si2O6 [M+Na]+: 589 

455.2256, Found: 455.2257. 590 

 591 

4.5.3  2-O-Acetyl-5,6-di-O-fluorenylmethoxycarbonyl--D-glucoisosaccharino-1,4-592 

lactone (10c). 593 

 594 

5,6-di-O-FMOC-α-GISAL (10b, 2.34 g, 3.86 mmol) was added to a round bottom flask 595 

containing acetic anhydride (12.5 ml, 0.13 mol) and ZnCl2 (0.5 g). The solution was heated 596 

to 100 oC and the reaction was allowed to proceed for 4 h at 100 oC. After 4h the sample 597 

was cooled to room temperature and the contents of the flask were poured cautiously onto 598 

ice cool water (100mL) to give the product as a semisolid. The suspension was stirred for 599 

30 min over which time the product solidified. The solid was filtered and the residue dried 600 

at room temperature overnight to give 10c as a white powder (1.5 g; 2.14 mmol, 55%). IR 601 

(ATR) 1784, 1745 & 1709 (C=O), 1253, 1206 (C-O), 784, 759, 739. 1H NMR (400 MHz, 602 

CDCl3) 7.77-7.73 (m, 4H, ArH), 7.61-7.56 (m, 4H, ArH), 7.42- 7.36 (m, 4H, ArH), 7.34-7.27 603 

(m, 4H, ArH), 5.13-5.05 (m, 1H, H-4), 4.53-4.40 (m, 6H, 4 x H-8 & 2 x H-5), 4.32-4.22 (m, 604 

3H, 2 x H-6 & H-9), 2.60 (dd, 1H, J3,4 = 9.38 Hz, J3,3’ = 14.32 Hz, H-3), 2.43 (dd, 1H, J3’,4 = 605 

5.93,  J3’,3 =14.32 Hz, H-3’), 2.17 (s, 3H, CH3CO). 13C NMR (100 MHz, CDCl3): 177.6, 606 

177.1 (FMOCO), 171.7 (C1), 170.1 (CH3CO), 143.2 & 141.1 (ArCq), 128.5, 127.2, 125.1 & 607 

120.5 (ArC), 77.6 (C2), 74.7 (C4), 70.7 (C8), 68.8 (C6), 67.7 (C5), 31.7 (C3), 21.1 608 

(COCH3). HRMS (m/z) Calcd for C38H32O10 [M+ Na]+ 648.1995, found 648.1992. 609 
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4.6 Preparation of mono-protected lactone derivatives (7e-f, 9e and 10e-10f) 610 

 611 

4.6.1 The single step preparation of the mono-protected lactones 7e and 7f was described 612 

in section 4.3.3  613 

4.6.2  5-O-tert-Butyldimethylsilyl-α-D-glucoisosaccharino-1,4-lactone (9e). 614 

α-D-Glucoisosaccharino-1,4-lactone 2 (1.0 g 6.17 mmol) was dissolved in pyridine (5 mL) 615 

and the resulting solution was cautiously added  dropwise to TBDMSCl (1.02 g, 6.79 mmol, 616 

1.1 eq) while stirring. The reaction was allowed to proceed for 4 h at room temperature. After 617 

4h the contents of the flask were added to DCM (50 mL) and water (50 mL) and the two 618 

layers were separated. The aqueous layer was further extracted with DCM (2 x 50 mL) and 619 

the combined organic layer was washed with 1% CuSO4, dried over anhydrous sodium 620 

sulphate and concentrated to give a white crystalline syrup 9e (780 mg; 2.83 mmol; Yield:  621 

46%); ( RF: 0.35, Hexane/EtOAc 3:1 v/v). IR (ATR) 3407 (O-H), 2952, 2929, 2856 (C-H), 622 

1761 (C=O), 1463, 1361 (C-H), 1254, 1201, 1122 (C-O), 1034 (Si-OR) 833, 776. 1H NMR 623 

(400 MHz, CDCl3) 4.72- 4.69 (m, 1H, H-4), 3.87 (dd, 1H, J5,4 = 3.20 Hz, J5,5’ = 11.70 Hz, H-624 

5) 3.78 (d, 1H,J6,6’ = 11.80 Hz, H-6), 3.69 (d, 1H, J6’,6 = 11.83 Hz, H-6’), 3.66 (dd, 1H, J5’,4 = 625 

3.76 Hz,  J5’,5 = 11.74 Hz, H-5’), 2.21 (m, 2H, H-3, H3’), 0.85 (s, 9H, TBDMS), 0.04 & 0.03 626 

(2s, 6H, TBDMS). 13C NMR (100 MHz, CDCl3): 177.76 (C1), 78.57 (C4), 75.61(C2), 65.36 627 

(C6), 63.56 (C5), 33.31 (C3), 25.70 (TBDMS), -5.42, -5.49 (TBDMS). HRMS (m/z) 628 

Calculated mass for C12H24SiO5 [M+Na]+ 299.1285, found 299.1284. 629 

 . 630 

4.6.3  5-O-Flourenylmethoxycarbonyl-α-D-glucoisosaccharino-1,4-lactone (10e) 631 

and 6-O-flourenylmethoxycarbonyl-α-D-glucoisosaccharino-1,4-lactone (10f) 632 

 633 

Dry α-D-Glucoisosaccharino-1,4-lactone (1.0 g, 6.17 mmol) was dissolved in 3-picoline (20 634 

mL) and the resulting solution was added cautiously, whilst stirring, to cooled 0 oC crystalline 635 
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9-flourenylmethyloxycarbonyl chloride (FMOCCl) (3.35 g, 13 mmol). The reaction was 636 

allowed to proceed for 3 h at room temperature. Cold water (60 mL) followed by diethyl ether 637 

(60 mL) were added. The organic layer was separated and the aqueous layer was extracted 638 

with diethyl ether (2 x 60 mL). The combined extracts was washed with 2M HCl (2 x 100 639 

mL), brine (2 x 100 mL) and dried over sodium sulphate, concentrated to dryness to give a 640 

pale yellow crystalline crude syrup (3.62 g). The crude was separated using column 641 

chromatography to give 10e (0.56 g, 1.46 mmol, 24% yield, RF = 0.120) and 10f (1.32 g, 642 

3.44 mmol, 56% yield, RF= 0.170). IR (ATR)  643 

(10 e) IR (ATR)  3460 (O-H), 1747 (C=O), 1450, 1193 & 1256 (C-O), 738 (Ar C-H). 1H NMR 644 

(400 MHz, CDCl3, 10e) 7.78-7.33 (m, 8H, ArH), 5.0-4.93 (m, 1H, H-4), 4.47-4.42 (m, 3H, H-645 

8, H-8’ & H-9), 4.29-4.24 (m, 2H, H-5, H-5’), 3.86 (d, 1H, J6,6’= 11.9 Hz, H-6), 3.73 (d, 1H 646 

J6’,6 = 11.9 Hz, H-6), 2.35 (dd, 1H, J3,3’ =13.17 Hz, J3,4 = 7.0 Hz, H-3), 2.07 (dd, 1H, J3’,3 = 647 

13.17 Hz, J3’,4 =8.56 Hz, H-3’).13C (100 MHz, CDCl3) 177.4 (C1), 155.1 (C7), 143.3 , 141.7  648 

, 128.3 , 127.2 , 125.6, 120.5 (ArC), 76.0 (C2), 75.2 (C4), 70.9 (C8), 67.6 (C5), 65.2 (C6), 649 

46.7 (C9), 33.6 (C3). HRMS (m/z) Calcd for C21H20O7 [M+Na]+: 407.1101, Found: 407.1101. 650 

(10 f) IR (ATR)  3442 (O-H), 1747.5 (C=O), 1450, 1195 & 1256, (C-O), 727 (Ar C-H).1H 651 

NMR (400 MHz, CDCl3, 10f) 7.74-7.30 (m, 8H, ArH), 4.83-4.75 (m, 1H, H-4) 4.49 (d, 1H, 652 

J6,6’ = 12.0 Hz, H-6), 4.41 (m, 2H, H-8, H-8’), 4.33 (d, 1H, J6’,6 = 12.0 Hz, H-6), 4.23 (t, 1H, 653 

J9,8= 8.37 Hz  H-9), 3.92 (dd, 1H, J5,5’ = 12.98, J5,4 =2.50 Hz, H-5) 3.62 (dd, 1H, J5’,5 = 12.98 654 

Hz, J5’,4 = 4.12 Hz, H-5’), 2.31 (2 x d, 2H, J3,3’ = 7.31 Hz, H3, H3’). 13C (100 MHz, CDCl3) 655 

175.8 (C1), 154.9 (C7), 143.1, 141.7, 128.6, 127.2, 125.4, 120.3 (ArC), 79.2 (C2), 74.9 (C4), 656 

70.6 (C8), 69.0 (C6), 63.6 (C5), 46.4 (C9), 33.8 (C3). HRMS (m/z) Calcd for C21H20O7 657 

[M+K]+: 423.0841, Found: 423.0854. 658 
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4.7 Preparation of 5,6-diprotected lactone derivative (13) in a one pot sequential 659 

reactions 660 

4.7.1 5-O-tert-Butyldimethylsilyl-6-O-acetyl--D-glucoisosacharino-1,4-lactone (13) 661 

Dried α-D-glucoisosaccharino-1,4-lactone 2 (500 mg, 3.09 mmol) was dissolved in pyridine 662 

(6 mL) whilst stirring for 10 min at room temperature. It was then added cautiously to tert-663 

butyldimethylsilyl chloride (TBDMSCl) (520 mg; 3.45 mmol; 1.1 eq) while stirring at room 664 

temperature. The reaction was allowed to proceed for 1h, then acetyl chloride (250 µL; 665 

3.40 mmol; 1.1 eq) was added cautiously. The reaction was allowed to continue for a 666 

further 2 h at room temperature. After 2 h, the reaction was halted with DCM (50 mL), 667 

followed by water (50 mL). The aqueous layer was further extracted with DCM (2 x 30 mL) 668 

and the combined organic layer was dried over anhydrous sodium sulphate and 669 

concentrated to give a crude 13 (3.30 g) as a brown syrup which was purified using 670 

column chromatography to give the desired product as a white solid (300 mg; 0.754 mmol; 671 

Yield: 24 %); (RF: 0.42; Hexane/EtOAc 5:1 v/v). IR (ATR) 3420 (O-H), 2954, 2930, 2857, 672 

1750 (C=O), 1463, 1377 (C-H), 1203, 1129 (C-O), 1044 (Si-OR), 1011, 833, 777. 673 

1H  NMR (400 MHz, CDCl3) 4.72-4.68 (m, 1H, H-4), 4.37 (d, 1H, J6,6’ = 11.56Hz, H-6), 4.19 674 

(d, 1H, J6’,6 = 11.56 H-6’), 3.92 (dd, 1H, J5,5’ = 11.72, J5,4 = 3.12 Hz, H-5 ), 3.66 (dd, 1H, J5’,5 675 

= 11.72, J5’,4 = 3.36 Hz, H-5’), 2.38 (dd, 1H, J3,3’ = 13.83, J3’,4 = 8.08 Hz, H-3), 2.23 (dd, 1H, 676 

J3’,3 = 13.83, J3’,4 = 6.88 Hz, H-3’), 2.08 (CH3CO), 0.87 (s, 9H, TBDMS), 0.06 & 0.05 (2s, 6H 677 

TBDMS). 13C (100 MHz, CDCl3) 175.5 (C1), 170.8 (C7), 77.97(C4), 74.9 (C2), 65.6 (C6), 678 

63.3 (C5), 33.7 (C3), 25.8 (TBDMS), 20.7 (C8), -5.4, -5.5 (TBDMS). HRMS (m/z): Calculated 679 

mass for C14H26O6Si [M+Na]+ 341.1391, Found: 341.1390. 680 

 681 

682 
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