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ABSTRACT 

The adsorption of copper on the 2:1 clay mineral illite (0.4 to 20 μm in size) was studied 

using a combination of extended X-ray adsorption fine structure (EXAFS) and hybrid-

Density Functional Theory (DFT) modelling. The study evaluates the effect of varying 

pH and copper concentration on the mechanisms of copper adsorption in solutions at 

background electrolyte concentration typical of natural surface continental freshwaters 

in granitic environments. The EXAFS spectra revealed both the elongated square 

pyramidal and Jahn-Teller octahedral coordinated copper clusters as feasible with the 

former providing better fits using spertiniite (crystalline copper hydroxide) as model 

compound. Additionally, ab initio calculations also predicted the square pyramidal 

geometry to be more stable. Copper ions have four Oeq at an average distance of 

1.95(1) Å and two independent Oax at average distances of 2.32(16) Å and 3.06(9) Å, 

with the latter decreasing to 2.97(2) Å as copper concentration and pH are increased. 

This may reveal different mechanism by which copper adsorbs on illite, as a weakly 

bound complex at low pH likely at exchange and edge sites and changing towards more 

strongly bound complexes at high affinity edge sites at higher pH and copper loads. 

Above 1% Cu model fits suggest formation of copper oligomers with average Cu-Cu 

distance of 3.10(2) Å. These occur at pH greater than 6, where the correlation between 

Cu-Cu and Al-Al distances in the illite edge surfaces supports the formation of surface 

precipitates. 

 

Keywords: Clay minerals, illite, copper adsorption, edge surfaces, Cu K-edge EXAFS, 

ab initio calculations. 
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1. INTRODUCTION 

An understanding of the interaction of metal ions with mineral surfaces is a key 

requirement for assessing the fate of metals in the environment (Bradl, 2004; Egirani et 

al., 2005; Mellouk et al., 2011). Clay minerals are among the most important inorganic 

phases in natural systems due to their high exchange and adsorption capacities of metal 

ions, and they have been considered in many applications including remediation of 

mining areas and radioactive waste disposal facilities, as well as engineered retention 

and reactive barriers (Sanchez et al., 1999; Vengris et al., 2001; Alvarez-Puebla et al., 

2005; Uddin, 2017). Thus developing models for the mechanisms of retention of metal 

ions on clays is fundamental to predicting their fate and obtaining an accurate 

evaluation of the environmental risks.  

Surface complexation modelling (SCM) is a well-established approach to evaluate the 

condition of metal retention and stability at the mineral-water interface (Sherman, 

2009). While SCM has proven successful in providing insight for the molecular scale 

mechanisms, additional structural information (coordination geometries) of the 

adsorbed metals onto surfaces is needed to validate the models. Structural insights are 

generally achieved using X-ray Absorption Spectroscopy (XAS) performed at 

synchrotron radiation sources (Cheah et al., 1998; Scheidegger et al., 1998; Thompson 

et al., 2000; Brigatti et al., 2004; Peacock and Sherman, 2004, 2005a; Peacock and 

Sherman, 2005b; Schlegel and Manceau, 2013) or more recently using atomistic 

modelling (Kerisit and Parker, 2004; Martins et al., 2009; Martins et al., 2014; Zhang et 

al., 2016; Zhang et al., 2017). 

Amongst the transition metals, copper is a common cation, and its environmental 

concentration has increased due to a diversity of anthropogenic activities, such as 
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mining, manufacturing, agriculture, and waste disposal (Berti and Jacobs, 1996; Madrid 

and Díaz-Barrientos, 1998). Adsorption studies of copper onto clay minerals have been 

generally focused on swelling clays, especially montmorillonite (Papelis and Hayes, 

1996; Scheidegger et al., 1998; Chen and Hayes, 1999; Hyun et al., 2000; Morton et al., 

2001; Dähn et al., 2003; Brigatti et al., 2004; Schlegel and Manceau, 2006; Yang er al., 

2015), whereas less attention has been paid to the role of non-swelling clays (Hesterberg 

et al., 1997; Chen and Hayes, 1999; Gier and Johns, 2000; Flogeac et al., 2004; 

Alvarez-Puebla et al., 2005; Sajidu et al., 2008;  Strawn and Baker, 2009; Bradbury and 

Baeyens, 2009; Turan et al., 2011). However, non-swelling clays, such as illite, are 

amongst the most common phyllosilicates at the Earth surface (Srodon and Eberl, 1984; 

Du et al., 1997) and can be de dominant clay mineral in some surface environments, 

such as in poorly developed soils in granitic areas (Gonçalves et al., 2004). Therefore, 

their interaction with metals such as copper and many others may significantly control 

their distribution and partitioning between the terrestrial and aqueous environment. 

Many factors control the adsorption of transition metals onto clay minerals, such as, the 

structure of the adsorbate metal species, surface composition, and charge which in turn 

largely depend on the aqueous environment conditions in contact with the mineral 

phase. However, some of these factors have not been fully addressed yet, and lack of a 

general theoretical basis that can predict unequivocally how and where does a transition 

metal ion adsorbs on a mineral surface still requires the exploration of particular 

systems under pre-determined aqueous solution conditions. For example, the structure 

(coordination and geometry) of the adsorbed copper cluster onto clay minerals has been 

subject of debate, with 6-, 5- and 4-fold coordination clusters and possibly even 

dynamic coexistence having all been proposed (e.g., Bryantsev et al., 2008; Frank et al., 

2015; Hyun and Hayes, 2015; La Penna et al., 2015; Liu et al., 2015). In contrast, 
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controlled laboratory experiments normally focus on the influence that variables such as 

the pH or the background electrolyte concentration have on the adsorption of metals. 

The choice of adequate conditions defines the type of sites it is possible to probe, either 

high or low energy sites and cation exchange (Tournassant et al., 2013). However, 

depending on the substrate geology, many natural surface waters have fairly low 

electrolyte concentrations (< 10-3 M), while heavily polluted circumscribed areas are 

likely to develop highly concentrated solutions (Gonçalves et al., 2004; Figueiras et al., 

2009). In contrast, although several experiments in the literature span a wide range of 

ionic strength conditions (Tournassant et al., 2013) the majority favor the use of high 

background electrolyte concentration ( 0.1 M) which only in very particular 

circumstances occur in natural environments. There are also several models for illite 

surface properties and divalent cation adsorption published in the literature (e.g. Du et 

al., 1997a; Du et al., 1997b; Alavrez-Puebla et al., 2005; Bradbury and Baeyens, 2009), 

that do not fully agree. Besides, only a few of the available studies have considered 

adsorption of copper onto the basal (001) surfaces of montmorillonite, a mechanism that 

was found to increase as ionic strength decreases (Morton et al., 2001). This situation 

still raises many uncertainties on the detailed mechanisms and geometrical 

configurations of divalent metal ions adsorbed onto clay mineral surfaces under typical 

natural freshwater ionic strength conditions. 

In this study, we have used a combined approach of experimental (EXAFS) and 

modelling techniques (ab initio calculations) to study the effect of pH and Cu 

concentration on the adsorption geometries of copper on pure illite samples to unravel 

the mechanisms and influence of the non-swelling components of the clay mineral 

phase on copper adsorption at low ionic strength conditions. 
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2. METHODOLOGY 

2.1. EXAFS sample preparation. 

Samples for analysis with EXAFS, were prepared from a series of adsorption 

experiments performed in batch mode using the IMt-1 illite from Silver Hill, Montana 

(Cambrian Shale) (Hower and Mowatt, 1966) purchased from the Clay Minerals Society 

repository of “special clays”. To eliminate any surface interfering phase, illite was pre-

treated using standard procedures and its physical and chemical characterization was 

done by SEM-EDS, XRD, and ATR-FTIR at all stages of illite preparation (details in 

the Supporting Information file for these and other measured parameters of the illite 

used in this study). Solution pH was chosen according to 3 different groups of aqueous 

solutions studied and analysed in granitic areas (Figueiras et al., 2009): i) pH 4.5, 

infiltrating shallow groundwater after interaction with organic acids in soils; ii) pH 5.5, 

surface runoff waters in equilibrium with atmospheric CO2; and iii) pH 6.5, solutions 

showing initial signs of pollution from landfill leachates. The concentration of copper 

used in the set of experiments ranged between 5  10-5 M and 10-3 M of Cu(NO3)2 such 

that a low, intermediate and high (saturation) concentration of adsorbed Cu on illite are 

obtained for each experimental set to analyze their differences by EXAFS, using a 

background electrolyte concentration of 10-3 M of KNO3. The choice of the background 

electrolyte concentration was based in the average solution conductivities measured in 

granitic areas which corresponded to salt concentrations varying between slightly higher 

than 10-4 M up to 10-3 M. The reactors were filled with 0.20(0) g of illite for 50 mL of 

solution with the pH adjusted to the previously chosen values. Experiments ran in two 

stages: 1. Illite pre-conditioning stage: Illite is suspended in 50 mL of a KNO3 solution 

only (10-3 M) and the pH is adjusted to 4.5, 5.5, or 6.5. Reactors are sealed and put into 

an orbital shaker for 24 h. After that time, the suspension is transferred into tubes and 
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centrifuged at 4000 rpm for 45 minutes. The supernatant is transferred into a glass vial 

and the pH measured. 2. Adsorption stage: Another aliquot with 50 mL of a combined 

KNO3/Cu(NO3)2 solution with the same background electrolyte concentration and initial 

pH but with different copper concentration is added into each centrifuge tube with the 

illite from the previous step. After vigorous shaking, the content is transferred into the 

reactors in the orbital shaker. The suspensions are agitated for 24 h and the pH corrected 

after 12 h with HNO3, as deemed necessary to restore the initial pH of the solution. 

After the 24 h agitation, the suspensions are centrifuged at 4000 rpm for 45 minutes. 

About 2/3 of the supernatant solution is retrieved for pH measurement and copper 

analysis by atomic absorption spectroscopy (Varian SPECTRAA FS 220). The 

concentration of copper adsorbed onto illite is determined by the difference between the 

initial and final solution copper concentration normalized to the mass of adsorbent used 

in each experiment. The remaining portion is transferred into a crucible for filtration 

under vacuum using 0.20 m membranes. A small volume of distilled water is added to 

wash the excess copper solution in the illite paste which is retrieved for the X-ray 

absorption fine structure (EXAFS) measurements. 

2.2. EXAFS experiments. 

The EXAFS Cu-K edge measurements were conducted in the Laboratory for 

Environmental Studies (SUL-X) of the ANKA synchrotron facility (KIT, Germany). 

The light beam is produced in a Wiggler radiation source, monochromated with Si(111) 

crystals in a double-crystal monochromator and focused to approximately 50 × 50 µm 

by an elliptical Kirkpatrick-Baez mirror system. The intensity of the incident beam (Io) 

was measured using the first ionisation chamber. The energy calibration was achieved 

measuring repeatedly a Cu-foil as reference (8.979 keV, first inflection point). 
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Spertiniite (Cu(OH)2) and tenorite (CuO) were used as model materials, with the 

crystals structures obtained from Oswald et al. (1990) and Calos et al. (1996), 

respectively. The fine powdered copper models were measured as pressed pellets in 

transmission mode. When necessary they were finely ground and homogeneously 

dispersed in cellulose pellets. 

The samples were mounted between two Kapton films and measured in fluorescence 

mode. The Cu Kα X-ray fluorescence emission radiation was collected using an energy 

dispersive 7 element Si(Li) fluorescence solid state detector (SGX Sensortech, former 

Gresham). A 45° geometry was used between the incident radiation beam and the 

sample and a 90° geometry between the incident beam and the detector. The 

experimental absorption coefficient (µ), for a given element, was obtained by taking the 

ratio of the fluorescence detector signal to the signal of the incident photon beam from 

the first ionization chamber (If/Io). 

The data was evaluated using the ATHENA and ARTEMIS codes from IFEFFIT 

package programs in the graphical interface DEMETER (Ravel and Newville, 2005). 

Multiple scans were normalized relative to Eo (determined from the inflection point of 

the derivative of the spectra) and merged. The baseline correction was performed. 

Subsequently, the spectra were changed from energy dependence to photoelectron wave 

number (k). The EXAFS signal χ(k) was extracted from experimental data, and Fourier 

transformed for the data range from k = 3.4 to 11.8 Å-1 using a Kaiser-Bessel window. 

The theoretical amplitudes and phases for the chosen scattering paths were calculated 

using FEFF8.2 (Ankudinov et al., 1998) taking the reference materials as model 

structures for Cu-O and Cu-Cu pairs. 

Prior to fitting, EXAFS data were Fourier filtered over R-range 1-3 Å, using a Hanning 

window. A common procedure during the beginning of the fitting process is to rely on 
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the use of restraints to ensure the physicality of the parameters obtained, even though in 

the majority of the cases they were not necessary during the fitting of the data. The 

current work was mainly based on default weights with the different ranges as follows: 

i) Oax had 0.5<S0
2<1.1 and 0.05<ΔR<0.05; ii) Oeq had 0.5<S0

2<1.1, 0.5<ΔR<0.5 and 

0.001<σ2<0.010; iii) copper oligomers had 0.5<S0
2<1.2, 0.5<ΔR<0.5 and 

0.001<σ2<0.015. 

2.3. ab initio calculations. 

Electronic calculations were conducted using the Gaussian03 package (Frisch et al., 

2003). Full structural optimizations were carried out using hybrid DFT functional 

B3LYP (Lee et al., 1988; Becke, 1993), coupled to 6-311G(d,p) basis set (Krishnan et 

al., 1980; McLean and Chandler, 1980; Frisch et al., 1984) for each of the copper 

configurations. These calculations were performed for the Cu(H2O)6, Cu(H2O)5 and 

Cu(OH)2(H2O)4 configurations in the gas-phase (g) and aqueous system (l), the latter 

resorting to the polarized continuum model using the integral equation 

formalism (Cances et al., 1997; Mennucci et al., 1997; Mennucci and Tomasi, 1997; 

Tomasi et al., 1999). Vibrational frequency calculations were subsequently carried out 

on all optimized structures to ensure that energy minima had been reached. 

 

3. RESULTS 

3.1. Batch experiments. 

Adsorption of Cu onto illite suspensions is presented as adsorption isotherms (Fig. 1 

with fitted models, and Fig. S4 in SI file with a combined plot of the raw data only). 

Bulk copper concentrations (adsorbed on illite) ranged between 0.1 and 0.8 wt% illite 

for the experiments at pH 4.5 and 5.5, while for pH 6.5 copper concentration attained 

2.8 wt% illite (weight percentage of copper to mass of adsorbent, herein designated as 
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mass percentage of copper adsorbed or simply % Cu). The results of batch adsorption 

experiments show that at both pH 4.5 and 5.5, the adsorption of copper onto illite 

generally follows a Langmuir-type isotherm, with a steep linear increase for low copper 

concentration in solution followed by a flattening of the isotherm indicating an 

approximately constant adsorbed copper concentration as its concentration in solution 

increases. The experiments at pH 5.5 show higher saturation levels of copper on the 

surface, with a bulk average concentration around 8 mg Cu/g of adsorbent compared to 

approximately 4 mg Cu/g of adsorbent for pH 4.5. However, experiments at pH 6.5 

show a completely different pattern because as copper in solution is increased so is the 

copper adsorbed by the illite, never reaching a plateau as in the previous experiments. 

The relation is nearly linear meaning that copper is continuously withdrawn from 

solution as the solution gets more and more concentrated, suggesting that a Cu phase 

may be precipitating on the surface as will be argued later. 

3.2 Surface speciation modelling 

Previous work has determined the acid-base surface properties of the IMt-1 illites 

(Gonçalves, 2006) to be in general agreement with the properties determined by Du et 

al. (1997a). The model was further refined for the number of sites and retaining 1 pKa 

surface constant (unpublished data) equivalently to one of the models in Du et al. 

(1997a). Solution and surface speciation was performed with PHREEQC (Parkhust and 

Appelo, 1999) in equilibrium with atmospheric CO2 (Fig. S8 in SI) and shows that the 

hydrated Cu2+ dominates in solution at the pH range conditions of the reacted illites for 

EXAFS analysis. Surafce speciation reactions were taken form Du et al. (1997b) and 

these indicate that the surface species SOCu+ starts to form at pH > 4 and at pH > 6 

SOCu2(OH)2 becomes the dominant surface species/precipitate (Fig. S9). Model 

description and parameters are reported in the SI file. 
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Using these same model parameters, the isotherms were also successfully modelled with 

the surface speciation model of Du et al. (1997b), with the exception of the experiments 

at pH 6.5 (Fig. 1). At pH 4.5 and 5.5, the Diffuse Double Layer (DDL) model was used 

in agreement with the optimization procedure for estimation of the surface acidity 

constants, which provided overall good results. However, pH 6.5 required using the CD-

MUSIC surface complexation model (Hiemstra and Van Reimsdijk, 1996) implemented 

in PHREEQC to closely fit the experimental data. It should be noted that the surface 

precipitate in the model of Du et al. (1997b) was modeled as a solid phase, not as a 

surface species. This same approach was used for the solution and surface speciation 

model in Figure S9 (SI) providing a major difference in the amount of Cu withdrawn 

from the aqueous solution. In Fig. 1 the experimental points with the best SCM results 

based in the data of Du et al. (1997a; 1997b) and Gonçalves (2006), are plotted along 

with the surface acid-base constants of Bradbury and Baeyens (1999) for comparison. 

The results using the adsorption model of Cu on iliite of Alvarez.-Puebla et al. (2005) 

are provided in the SI file (Fig, S10 and S11). 

3.3. EXAFS experiments 

3.3.1. Evaluation of the spectra 

The Fourier Transform (FT) and the associated inverse Fourier-filtered scattering curve 

(FT-1) generated from the Cu K-edge EXAFS spectra of copper adsorbed illites are 

reported in Fig. 2 (see Fig. S7 for the k-space spectra). 

The overall changes derived from the variation of pH make a quantifiable impact on the 

raw spectra and will be detailed independently below (see Fig. 3 for stacked spectra and 

Fig. S5 for overlapping spectra). At pH 4.5 the increase of copper concentration leads to 

an increase of feature IV. At pH 5.5 the increase of copper concentration shows a 

decreasing trend of feature III but also the increase of features IV and V as shown in 
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Fig. 3 b. At pH 6.5 feature III decreases even further and virtually disappear at adsorbed 

copper concentrations above circa 0.6% Cu as can be seen in Fig. 3 c. Furthermore, 

above 0.6% Cu the features IV and V show a pronounced increase. Considering the 

spectra of spertiniite, it can be observed that feature III results from combined signal 

from the first shell oxygens and the most distant axial oxygen, while feature IV is the 

signal of the first Cu shell. On the other hand, the first Cu shell for tenorite is shifted 

towards feature III and partially overlaps the signal from the axial oxygens, which in 

turn only have a slight contribution to feature II. 

3.3.2. Spectral analysis 

Spectral and model fitting used the model compounds tenorite (CuO), spertiniite 

(Cu(OH)2) and variants with a mixing character of both. In general, there is a good 

match in the peak positions and peak intensities when using the experimental spectra of 

both model compounds, as shown in Fig. 2 for spertiniite and tenorite. The major 

difference between these model compounds is the coordination environment of copper 

with respect to the axial oxygen atoms. While in tenorite, copper is 4-fold coordinated 

with two additional axial O atoms at equivalent distances exhibiting the characteristic 

Jahn-Teller distortion, in spertiniite, copper is 5-fold coordinated (square pyramidal), 

with an additional axial oxygen at a greater distance. While both model compounds 

capture the main feature (I), related to the 4 equatorial oxygens (Oeq), and part of the 

remaining spectra, fitting the details of the remaining features are very much dependent 

of the model used. Therefore, apart from using each model compound separately, a 

combination of Oeq from Cu(OH)2 with Oax from CuO was also tested. However, the fits 

derived using CuO as model compound are generally poorer, a similar result to that 

previously obtained by Brigatti et al. (2004). Using the tenorite model would imply 

assigning feature III mostly to the Cu first shell, while the signal due to the axial 
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oxygens should be shifted towards the right at slightly higher distances, which means 

that at low Cu coverages that feature should be absent or much depressed in the 

collected spectra. Therefore, the coordination environment of copper in spertiniite 

provides the best initial trial structure for fitting the obtained spectra, an aspect that even 

the mixed models used did not improve noticeably. The results of the best fits with 

spertiniite are summarized in Fig. 4 and Table 1. These show that copper atoms were 

determined to have four O atoms at average distances of 1.95(1) Å, indicating that 

Cu-Oeq is 4-fold. The use of spertiniite as a basis for the fitting allowed us to distinguish 

two independent O atoms that form Cu-Oax at average distances of 2.32(16) and 

3.06(9) Å. The latter value generally decreases with higher % Cu, having initially an 

average distance of 3.11(8) Å, which then reduces to 2.97(2) Å above circa 0.5 wt%. 

Furthermore, the inclusion of copper oligomers to the structural models were seen to 

make an improvement to the fit for % Cu above circa 1 wt%, having a coordination of 2 

and average Cu-Cu distance of 3.10(2) Å.    

3.4. ab initio calculations 

Accordingly with EXAFS spectra fitting and modelling results, the Cu(H2O)5 geometry 

was optimized and yielded elongated square pyramidal structures. Inclusion of implicit 

solvent model led only to a very small decrease of the Cu-O distances by 0.01 Å (Fig. 5; 

Table S3 in SI file). The square pyramidal geometry for Cu2+ in aqueous solution was 

modelled by Liu et al. (2015) in their study of Cu redox potential, a geometry that was 

further confirmed by La Penna et al. (2015) in their calculation of Cu2+ XANES spectra. 

However, Frank et al. (2015) provided a combined theoretical and experimental 

(EXAFS) study of Cu2+ speciation in aqueous solution. Therefore, following the 

approach of Frank and co-workers on Cu(H2O)5 + H2O, geometry optimizations were 

performed with the extra water molecule starting at 2.3 and 3.3 Å from the copper atom. 
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This enabled us to include the minima proposed by the EXAFS performed by Frank et 

al. (2015) on aqueous solutions (l), and also at 2.8 Å to include a mid-point, whereby 

the sixth water molecule was added in an axial position at the different distances 

indicated and hence starting the calculations with a coordination shell of six. In the gas 

phase (g), the geometries obtained for the extra water molecule starting at 2.8 and 3.3 Å 

were identical, optimizing to elongated square pyramidal configuration while the 

structure with an extra water molecule starting at 2.3 Å optimized to a Jahn-Teller 

octahedral (Fig. 5). The energy of the octahedral was approximately 17 kJ/mol less 

stable than the 5-fold configuration (elongated square pyramidal). In aqueous conditions 

all starting configurations revert to the elongated square pyramidal configuration with 

4-fold average distance of Cu-Oeq equal to 1.97(1) Å, and Cu-Oax of 2.20 Å and 3.63 Å, 

where the latter is from a non-bonded water molecule. Other charged clusters such as 

the Cu(OH)2(H2O)4 trans structure studied by Bryantsev et al. (2009) lead to the square 

planar geometry. 

 

4. DISCUSSION 

It has been widely shown that adsorption phenomena (i.e. ions and molecules) onto 

mineral surfaces depend on the pH of the solution, with the surface adsorption capacity 

of cations, such as copper, increasing as pH increases. The reason is clear, as shown in 

Fig. S9, since the number of negatively charged surface sites increases with pH. But 

phyllosilicates, whose (001) basal surface bears a permanently negative charge can 

make this simple observation more complicated than it seems. Changing background 

electrolyte concentration can lead to changes in total adsorption capacity, and dynamics 

between outer-sphere and inner-sphere complex formation, such as in Co and Pb on 

montmorillonite (Papelis and Hayes, 1996; Strawn and Sparks, 1999). However, 
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Tournassat et al. (2013) points out the importance of ionic strength selection in 

constraining the information on surface charge and site availability. Morton et al. (2001) 

found increasing adsorption onto the (001) sites on montmorillonite as the background 

electrolyte concentration of the solution tended towards zero. Therefore, it would 

require a wide range of background electrolyte concentration to properly assess its 

influence on materials used. Thus, this systematic study of copper adsorption on illite 

focus on the range of pH values in order to identify mechanisms and structural 

configurations prevailing in copper adsorption onto illite surfaces. 

4.1 Batch experiments 

The batch experiments suggest two different mechanisms for copper sorption at pH 

of 5.5 or below, and pH of 6.5. According to speciation modeling results (Fig. S9) it is 

inferred that adsorption at pH 4.5 and 5.5 is dominated by the formation of a copper 

surface complex at the expense of the hydrated Cu2+ in solution, namely SOCu+ and 

very marginally the complex SOCuOH. We can ascertain that illite adsorbs 

significantly more copper at pH 5.5 than at pH 4.5 (80-100% more using averaged 

values), which agrees with the speciation modeling and also with what is generally 

observed in similar systems (Gonçalves, 2006).  

As previously noted, using Du et al. (1997b) model of the adsorption equilibrium of 

copper onto illite surfaces combined with their illite surface chemical properties (Du et 

al., 1997a), provided very good results for explaining the adsorption behavior of Cu in 

the batch experiments for EXAFS analysis. This is not the only illite surface speciation 

model available, but using Bradbury and Baeyens (2009) surface protonation-

deprotonation constants as an alternative framework gave different results, with 

substantially less Cu adsorbed predicted at pH 4.5 and noticeable less at pH 5.5 than 

obtained in our preparation experiments. Alternatively, the model of Alvarez-Puebla et 
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al. (2005), a linear combination of 2 Langmuir isotherms (lower and higher pH) and one 

Freundlich isotherm for the precipitated phase, underestimates Cu adsorption at pH 4.5 

and 5.5 as compared with experimental data (Fig. S10 and S11), noting that at pH 5.5 

their linear model must be truncated because the function is unbounded at high Cu 

concentrations. However, the observed conditions for Cu hydroxide precipitation in the 

model of Alvarez-Puebla et al. (2005) are at odds with our own experimental data. This 

means that if the final Freundlich term is eliminated altogether at the fitted conditions 

close to pH 4.5 and 5.5, we get an acceptable approximation that slightly underestimates 

our experimental data for the concentration range used (Fig. S11), but fails for pH 6.5 

because it is controlled by precipitation and the model last term. It should be noted that 

Du’s model does not consider outer-inner sphere complex distinction, a feature that 

certainly would have a role in the proper description of the Cu-solution-mineral system, 

and already outlined by other researchers (e.g. Peacock and Sherman, 2004; Zhang et 

al., 2017). The contribution of the SOCuOH surface complex is only marginal and 

mainly at pH 5.5. However, using a slight different log K for the formation of 

SOCu2(OH)2+ (referred as Model 2 in Fig. 1) improves fitting at pH 6.5 with still 

acceptable fits for the remaining pH values. Without this change part of the adsorption 

at pH 4.5 would be better explained by a combination with cation exchange (Fig. 1), 

which could also be supported by some published results under similar experimental 

conditions which are extensively reviewed by Tournassat et al. (2013). 

The linear increase in adsorbed copper as solution copper concentration increases 

observed at pH 6.5 is highly suggestive of a different mechanism, which as will be 

argued later, is mainly controlled by Cu surface precipitation. However, other 

possibilities can potentially explain the measured adsorbed copper in solutions at pH 6.5 

as being significantly higher than at lower pH, and thus we will start arguing why these 
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hypotheses can be ruled out. At the highest copper concentrations used in the starting 

solution (103 M) at pH 6.5 copper hydroxide (Cu(OH)2) is slightly supersaturated 

(calculated saturation index is 0.44 as seen in Fig. S8) and thus it may potentially 

precipitate. However, once copper is added to the reactor solution it quickly adsorbs 

onto the suspended illite, and thus the saturation index of copper hydroxide is likely to 

drop significantly. Additionally, if copper hydroxide had precipitated out of the 

solution, and because pH was always monitored for correction after 12 h, we should 

have observed a significant pH drop in the solution inside the reactors. Direct copper 

hydroxide precipitation is thus ruled out because no significant pH drop was registered 

in these experiments, and so most probably the rapid adsorption of copper onto the illite 

surface depresses the saturation index of Cu(OH)2 so much that prevents crystal 

nucleation and precipitation, sustaining undersaturated conditions. Formation of surface 

carbonate complexes can be an understandable concern at higher pH because the 

solutions in the batch experiments were in equilibrium with the atmosphere. However, 

because Du et al. (1997b) while studying their system used a wide range of pH up to 9, 

needed to account for carbonate complex formation and in fact identified surface 

carbonate species using FTIR (a feature we didn’t identify in the collected spectrum, see 

Fig. S3). Furthermore, the simulations show that in order to have significant carbonate 

species present, pH values in excess of 7 would be required (Fig. S8), which was not 

attained in our experiments. So, we conclude that there was no carbonate effect in the 

experiments, or at most may be so marginally small that remained undetected.  

Ruling out these hypotheses leads to the effects of surface Cu precipitation and 

simulating the surface Cu hydroxide species of Du’s model as a phase indicates that it 

starts forming at Cu solution concentrations in excess of 18 mg/l (0.28 mM) in 

equilibrium with adsorbed Cu on illite, explaining the sudden increase in Cu uptake at 
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higher solution concentrations (Fig. 1c). The other aspect to properly explain the 

experimental data is the use of the CD-MUSIC surface complexation model at pH 6.5, 

which seems to suggest that more than one surface site may be active in Cu adsorption. 

This result can be assigned to the surface charge distribution assumed in this model. 

4.2 EXAFS experiments 

The evaluation of EXAFS spectra (Fig. 2 and 3) have shown that the equatorial oxygen 

(Oeq) atoms have a dominant effect in features I, II and III (the last one in the case of 

model spertiniite only), as it has been previously seen in montmorillonite and kaolinite 

samples (e.g. Schlegel and Manceau (2013)). We found that features II and III were 

also linked with axial oxygen atoms (Oax) and their relative positions. The use of both 

spertiniite (Cu(OH)2) and tenorite (CuO) as model compounds in the fitting procedure, 

also made apparent that feature IV, and to a smaller extent also III are related to Cu-Cu 

interactions. In tenorite, the signal of the first Cu-Cu shell would shift the spectra 

towards feature III. So the details of the fitting of feature III on our experimental data 

provides the distinction in considering it the result of the first Cu shell (as in tenorite) or 

the signal from the distant axial oxygen as seen in spertiniite, which has given better fits 

and more realistically coordination environments for the formation of Cu oligomers as 

will be discussed later.   

Analysis of the EXAFS data led to the widely accepted 4-fold coordinated Cu-Oeq 

(1.95(1) Å). The Cu-Oax presented a bimodal distance distribution with bond lengths of 

2.32(16) and 3.06(9) Å (Fig. S6); the latter changed as a function of % Cu, decreasing 

from 3.11(8) Å for % Cu below 0.5% to 2.97(2) Å above such value. This trend with 

increasing % Cu is clearly seen as the pH increases, being less obvious at pH 4.5 

although a distance at 3.04 Å has been fitted. Modelling of batch experiments at pH 6.5 

and higher copper content indicates the presence of copper surface precipitates (Fig. S9) 
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which is accompanied by the clear enhance of feature IV and almost disappearance of 

feature III (Fig. 2), thus leading us to test the inclusion of copper oligomers in the 

EXAFS fits at higher % Cu, and again compatible with the spertiniite spectrum. With 

copper content higher than 1% Cu, which is only obtained in the pH 6.5 experiments, 

the Cu-Cu distance obtained was on average 3.10(2) Å. These results are consistent with 

copper dimers and trimers with Cu-Cu distances around 3 Å, in montmorillonite 

(Brigatti et al., 2004; Morton et al., 2001), kaolinite (Peacock and Sherman, 2005b), and 

Goethite, Hematite, and Lepidocrocite (Peacock and Sherman, 2004). Therefore, these 

Cu-Cu distances are concurrent with the formation of a surface precipitate, that has the 

structural characteristics of a Cu hydroxide phase, most likely the SOCu2(OH)3(sp) 

surface precipitate predicted by Du’s model. 

When considering the Cu-O distances we obtained from EXAFS up to 3 Å (Hathaway, 

1987), is suggestive of a five-fold first coordination shell for copper for % Cu 

below 0.5% or lower pH (at least < 5.5). At higher copper content the Cu-O bond 

lengths are commensurate with six-fold coordination environment. Furthermore, the 

Cu-O distances obtained from our EXAFS fitting agree well with previous work on 

copper coordination in solution i.e. elongated square pyramidal and Jahn-Teller 

octahedral structures (Pasquarello et al., 2001; Persson et al., 2002; Schwenk and Rode, 

2003; Burda et al., 2004; Frank et al., 2005; Chaboy et al., 2006; Bryantsev et al., 2008; 

Bryantsev et al., 2009; Ames and Larsen, 2009; Liu et al., 2010; Gomez-Salces et al., 

2012; Frank et al., 2015; Zhang et al., 2017). 

The non-bonded character of the longest EXAFS Cu-Oax (3.11(8) Å) may be viewed as 

the result of a weaker bonding to the surface. The review by Tournassat et al. (2013) on 

adsorption of divalent metals on montmorillonite surfaces may provide some insight to 

interpret our results. According to these authors, cation exchange is the dominant 
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mechanism in low ionic strength solutions (103 M), while the model of Alvarez-

Puebla et al. (2005) considering the pH, finds a somewhat similar conclusion at low pH 

(4 – 4.5). Therefore, using 103 M concentration of a background electrolyte the 

conditions for the adsorption experiments would indicate cation exchange as the main 

adsorption mechanism, but since it develops onto the (001) permanently charged clay 

surfaces, means that Cu adsorption would be pH independent, and we observe 

differences between pH 4.5 and 5.5 experiments and in EXAFS data. However, Morton 

et al. (2001) and Papelis and Hayes (1996) found such evidence for infinitely diluted 

solutions and unchanged adsorption behaviour with pH, respectively. So, we cannot 

dismiss cation exchange entirely, which may partially lend some credit to the low pH 

adsorption models of Alvarez-Puebla et al. (2005) or even to part of our SCM at pH 4.5. 

Since EXAFS spectra is an average probe of the signal of adsorbed Cu on the illite 

surface, these longer Cu-Oax distances may be probing more than a single mechanism, 

possibly cation exchange and outer-sphere-type complex, because both represent 

weakly bond complexes on the surface, at low copper content (below 0.5% Cu). 

The decrease in the average Cu-Oax distance to 2.97(2) Å at copper loads greater than 

0.5% Cu (and increasing pH) indicates a stronger bonding character for the surface 

copper complex, which may be linked to the increased affinity for different edge sites. 

Again, Tournassat et al. (2013) provide in their review of the published literature that at 

least in montmorillonite these changing conditions activate low and high energy sites 

(LES and HES, respectively). So, HES are also high affinity sites that likely control 

adsorption at high ionic strength and low metal equilibrium concentration. Increasing 

metal solution concentration saturates HES and activates adsorption on LES. These 

situations have been observed by Dähn et al. (2011) and later modelled by Churakov 

and Dähn (2012) for Zn in montmorillonite, and more recently by Zhang et al, (2017). 
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The model of Bradbury and Baeyens (2009) is the only providing more than one surface 

affinity site for illite, but the use of Du’s Cu surface complexation model gave very 

good fits to the experimental results in all experiments. Nevertheless, as noted before, at 

pH 6.5 the use of the DDL model provided a poor fit to the experimental results, and the 

corresponding improvement with CD-MUSIC may well suggest that at higher pH and 

increasing Cu loads more than a single site activates, which according to Tournassat et 

al. (2013) would mean both HES and LES. It is worth noting that at pH 6.5 with the 

lowest Cu loads, Cu-Oax is 3.01 Å, at about the same distance or even less than at higher 

Cu loads and pH 4.5 and 5.5. Whether this may also represent a transition towards an 

inner-sphere-type complex is uncertain, but surely advocates for a stronger binding to 

the illite surface. 

Finally, our finding that the Cu-Cu distance is 3.10(2) Å, at % Cu above 1% and pH 6.5, 

is very well correlated with the Al-Al distances of the edge surfaces from the octahedral 

sheet (Martins et al., 2014), suggesting that higher copper loads lead towards the 

epitaxial control on copper deposition. This observation has yet another implication, 

which is the predominance of the edge surfaces relative to the basal ones in controlling 

Cu uptake at this pH because of the Cu-Cu and Al-Al distances correlation. 

Finally, it should be noted that using first principles molecular dynamics, Zhang at al. 

(2017) provide the mechanisms of Cu adsorption on 2:1 clay edge sites, suggesting the 

octahedral vacant site as a HES in the sense of Tournassat et al. (2013) definition. While 

their study provide a geometrical configuration of the Cu complex in the edge surface, 

with Cu forming edge-sharing bi-dentate complexes in the Al-sites, it should be stressed 

that the EXAFS data collected probes an average signal of the bound Cu-complexes on 

the surface. A similar result is also provided by Yang et al. (2015) using experimental 

data. Nevertheless, it generally agrees with both our findings of the importance of the 
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Al-sites and the more likely five-fold coordination for Cu. Therefore, given the 

correlation of the sixth coordinated oxygen distance with Cu concentration and pH we 

favour this as showing the changing mechanisms of Cu bonding to the edge surface as 

pH and Cu concentration increase in aqueous solution. 

We therefore postulate that the conversion to the stronger bonding mechanism onto high 

affinity sites is linked with the appearance of oligomers which in turn lead to more 

contact points with the illite edge surfaces hence the interaction becomes stronger.  

4.3 ab initio calculations 

Our DFT calculations predicted both the elongated square pyramidal and Jahn-Teller 

octahedral coordination geometries, with the former being more stable both in gas and 

aqueous phases. It should be noted that the Cu(H2O)5 + H2O geometry optimizations in 

the gas phase yielded both an elongated square pyramidal and Jahn-Teller octahedral 

configurations, depending on the initial position of the extra water molecule. However, 

of these the former configuration was also determined to be more stable (by 

approximately 17 kJ/mol). Being a small value it supports the proposal that both 

coordination clusters are accessible, agreeing and supporting the EXAFS fits whereby a 

5-fold first shell is attained al low % Cu and 6-fold at high % Cu.  

In terms of the structure obtained from our simulations at the aqueous environment 

(closer to the EXAFS experimental conditions), the elongated square pyramidal 

calculations are in excellent agreement with the data obtained from our best fitting 

(e.g. for the distribution of the Cu-Oax experimentally averaged to 2.30(18) Å and 

calculated to be 2.19 Å). We therefore show evidence that the results obtained from our 

ab initio calculations on the copper configurations in aqueous solution have merit in 

interpreting the structural configuration of this metal in adsorption studies, although 

models of adsorbed copper on edge surfaces would be even more invaluable. 
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5. CONCLUSIONS 

We have studied copper adsorption on illite samples using a combination of 

experimental and computational techniques in a systematic approach. In spite the 

inherent difficulty in interpreting EXAFS data since it depends on the model used for 

the fitting procedure, a consistent pattern emerged in the Cu-Oax and Cu-Cu distances, 

in which they are found to be highly correlated with the pH and copper concentration. 

We found that the elongated square pyramidal configuration is the more likely for the 

first shell of Cu-water configuration based on the fits obtained to the EXAFS data, 

which was corroborated by our ab initio calculations. Use of large scale molecular 

modelling based on molecular dynamics may thus usefully explore whether there is a 

dynamic equilibration in the coordination of the clusters. EXAFS data analysis suggests 

that copper initially adsorbs onto illite surfaces establishing weaker bonds, possibly due 

to a combination of surface complexation and cation exchange at lower pH, based on 

the characteristic of the Cu-Oax distances and supported by surface complexation 

modelling. As these distances decrease with increasing copper concentration, we infer 

that the adsorption mechanism changes favouring high affinity edge surface sites. At 

high pH and copper content, there is the formation of copper oligomers at the surfaces 

of illite. The geometry of the adsorbed oligomers is governed by the edge surfaces 

based on the correlation of the Cu-Cu and Al-Al distances. We have critically assessed 

the models used for the fitting of EXAFS data and infer that although models based on 

aqueous copper still give valuable results, structural models based on copper adsorbed 

at edge surface of clay should be considered in order to clarify some of the persisting 

incongruences in these models. Future work is due in characterizing the adsorption sites 

and processes on the edge surfaces via atom level simulation. 
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Fig. 1. Results of the batch adsorption experiments with the illites prepared for EXAFS 

analysis, with fitted models. The models labelled as 1 and 2 are based in Du et al. 

(1997a; 1997b) and Gonçalves (2006) fitted parameters and Cu speciation model, and 

are detailed in the SI file. Model 2 changed the surface equilibrium constant of surface 

reaction 4 (equation 4 in SI) to -11.0, in order to better fit the data at pH 6.5 and used 

for the remaining pH as well. Also shown are the results using the surface 

protonation/deprotonation constants of Bradbury and Baeyens (2009) for pH 4.5 and 

6.5. A: Experiments at pH 4.5 with exchange reaction included in Models 1 and 2 for 

fitting purposes. B: Experiments at pH 5.5 where two pH values (5.5 and 5.3) are used 

in Model 2 to show the corresponding variation. C: Experiments at pH 6.5, where major 

differences are related to the surface complexation modelling used, DDL – diffuse 

double layer as in all other models in A and B, and CD-MUSIC, which provided best 

fits. All models show the clear onset of surface precipitation at the higher Cu 

concentrations, which is also clearly indicated by the data. 
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Fig. 2. Cu K-edge EXAFS data for copper adsorbed illites with concentration around 

0.35 wt% illite. a) FT and b) associated FT-1 scattering curve spectra. Solid black lines 

are from the experimental data with the respective label for the pH conditions, the solid 

red line is the experimental spectra for spertiniite (Cu(OH)2), and the solid green line is 

the experimental spectra for tenorite (CuO). The annotation above the spectra refers the 

major contributions of each path to the experimental spectrum of spertiniite..  
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Fig. 3. FT of shifted experimental EXAFS data where a) represents the spectra at 

pH 4.5, b) pH 5.5 and c) pH 6.5 conditions each with different amount of adsorbed Cu. 
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Fig. 4. Best fits of the FT EXAFS are given in dashed lines whereas the data is shown 

in solid lines, for the samples: a) pH 4.5-0.27%, b) pH 4.5-0.32%, c) pH 4.5-0.36%, 

d) pH 4.5-0.37%, e) pH 4.5-0.43%, f) pH 4.5-0.58%, g) pH 5.5 -0.12%, 

h) pH 5.5-0.13%, i) pH 5.5 -0.32%, j) pH 5.5-0.45%, k) pH 5.5-0.57%, l) pH 5.5  

-0.79%, m) pH 6.5-0.27%, n) pH 6.5-0.52%, o) pH 6.5-1.13%, p) pH 6.5-1.31%, 

q) pH 6.5-2.76%, r) pH 6.5-2.76%. Fit parameters are given in Table 1. 

 



37 

 
Fig. 5. Optimised geometries for the gas phase (top) and aqueous phase (bottom), for 

the configurations, a) Cu(H2O)5, b) Cu(H2O)5 + H2O and c) Cu(OH)2(H2O)4 trans. 

Where i) represent results from calculations with the extra water molecule started at 

2.3 Å and ii) at 2.8 and 3.3 Å. Final bond lengths with the respective uncertainty (when 

possible) is indicated. Synthesis of data also in Table S3 in SI. 
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Table 1. Results of EXAFS analyses. 3 

  
Cu-Oeq Cu-Oax Cu-Cu 

ΔE0 
d R e 

N a R b (Å) σ c (Å) N a R b (Å) σ c (Å) N a R b (Å) σ c (Å) N a R b (Å) σ c (Å) 

pH 4.5 
 

0.27% Cu 2.8 1.94 0.005 0.5 2.68 0.008 1.0 3.19 0.011 - f - f - f -4.1 0.008 

0.32% Cu 3.5 1.95 0.005 0.7 2.25 0.010 0.6 3.13 0.010 - f - f - f -2.0 0.005 

0.36% Cu 3.7 1.96 0.006 0.8 2.25 0.008 0.6 3.04 0.011 - f - f - f -1.8 0.010 

0.37% Cu 3.9 1.95 0.006 0.7 2.25  0.7 3.10 0.010 - f - f - f -2.3 0.004 

0.43% Cu 3.6 1.95 0.006 0.5 2.25 0.010 0.6 3.10 0.010 - f - f - f -2.8 0.007 

0.58% Cu 3.4 1.95 0.005 0.6 2.23 0.010 0.7 3.16 0.010 - f - f - f -2.7 0.007 

pH 5.5 

0.12% Cu 3.5 1.95 0.006 0.5 2.26 0.010 1.0 3.24 0.010 - f - f - f -3.3 0.006 

0.13% Cu 3.0 1.94 0.005 0.5 2.67 0.004 0.9 3.20 0.010 - f - f - f -4.2 0.012 

0.32% Cu 2.8 1.94 0.004 0.6 2.67 0.003 0.6 3.00 0.010 - f - f - f -3.0 0.009 

0.45% Cu 3.6 1.95 0.006 0.8 2.25 0.010 0.6 3.07 0.010 - f - f - f -2.0 0.005 

0.57% Cu 3.8 1.96 0.006 0.7 2.25 0.006 0.7 3.00 0.003 - f - f - f -1.9 0.004 

0.79% Cu 3.5 1.95 0.005 0.6 2.24 0.008 0.7 2.99 0.009 - f - f - f -2.1 0.007 

pH 6.5 

0.27% Cu 3.5 1.95 0.005 0.6 2.24 0.010 0.7 3.01 0.010 - f - f - f -2.5 0.007 

0.52% Cu 3.5 1.95 0.005 0.7 2.25 0.010 1.0 3.00 0.009 - f - f - f -2.0 0.009 

1.13% Cu 3.6 1.95 0.005 0.8 2.24 0.010 1.1 2.95 0.006 1.4 3.13 0.015 -1.8 0.010 

1.31% Cu 3.7 1.95 0.005 0.7 2.27 0.010 1.0 2.95 0.008 1.0 3.07 0.014 -2.6 0.008 

2.76% Cu 3.7 1.95 0.006 0.7 2.25 0.010 0.7 2.95 0.001 1.3 3.10 0.015 -2.6 0.005 

2.76% Cu 3.5 1.95 0.005 0.9 2.25 0.011 1.0 2.97 0.007 1.4 3.09 0.015 -1.7 0.008 

a - Coordination number; b - Refined interatomic distance; c - Debye-Waller factor; d - Energy shift; e - Figure of merit of the fit; f - Better fits where obtained without the inclusion of such parameters. 4 
Note that values in italic are at the limit of their restraint. 5 
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