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 

Abstract—Hot spotting is a reliability problem in photovoltaic 

(PV) panels where a mismatched cell heats up significantly and 

degrades PV panel output power performance. High PV cell 

temperature due to hot spotting can damage the cell encapsulate 

and lead to second breakdown, where both cause permanent 

damage to the PV panel. Therefore, the development of two hot 

spot mitigation techniques are proposed using a simple and 

reliable method. PV hot spots in the examined PV system was 

inspected using FLIR i5 thermal imaging camera. 

Multiple experiments have been tested during various 

environmental conditions, where the PV module I-V curve was 

evaluated in each observed test to analyze the output power 

performance before and after the activation of the proposed hot 

spot mitigation techniques.  One PV module affected by hot spot 

was tested. The output power during high irradiance levels is 

increased by approximate to 1.26 W after the activation of the first 

hot spot mitigation technique. However, the second mitigation 

technique guarantee an increase in the power up to 3.97 W. 

Additional test has been examined during partial shading 

condition. Both proposed techniques ensure a decrease in the 

shaded PV cell temperature, thus an increase in the PV output 

power. 

 
Index Terms— Hot spot mitigation; photovoltaic (PV) hot 

spotting analysis; solar cells; thermal imaging. 

I. INTRODUCTION 

hotovoltaic (PV) hot spots are a well-known phenomenon, 

described as early as in 1969 [1 and 2] and still present in PV 

modules [3 and 4]. PV hot spots occur when a cell, or group of 

cells, operates at reverse-bias, dissipating power instead of delivering 

it and, therefore, operating at abnormally high temperatures. This 

increase in the cells temperature will gradually degrade the output 

power generated by the PV module as explained by M. Simon & L. 

Meyer [5]. 

Hot spots are relatively frequent in current PV modules and this 

situation will likely persist as the PV module technology is evolving to 

thinner wafers, which are prone to developing micro-cracks during the 

manipulation process such as manufacturing, transportation, and 

installation [6-8].  

Other reliability issues in PV modules such as PV micro cracks [9], 

PV module disconnection [10], maximum power point tracking 

(MPPT) efficiency [11], and PV wind speed and humidity variations 

[12]. These factors can affect the PV modules output power 

performance, thus decrease its annual yield energy. However, in this 

paper hot spots in PV modules will be investigated. 
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PV hot spots can be easily detected using IR inspection, which has 

become a common practice in current PV applications as shown in [13 

and 14]. However, the impact of hot spots on operational efficiency 

and PV lifetime have been narrowly addressed, which helps to explain 

why there is lack of widely accepted procedures which deals with hot 

spots in practice as well as specific criteria referring to acceptance or 

rejection of affected PV modules in commercial frameworks as 

described by R. Moretón et al [15]. 

In the past, the increase in the number of bypass diodes (up to one 

diode for each cell) was proposed as a possible solution [16 and 17]. 

However, this approach has not encountered the favor of crystalline 

PV modules producers since it requires a not negligible technological 

cost and can be even detrimental in terms of power production when 

many diodes are activated because of their power consumption as 

discussed by S. Daliento et al [18]. 

In addition, the main prevention method for hot spotting is a passive 

bypass diode that is placed in parallel with a string of PV cells. The 

use of bypass diodes across PV strings is standard practice that is 

required in crystalline silicon PV panels [19]. Their purpose is to 

prevent hot spot damage that can occur in series-connected PV cells 

[20-22]. Bypass diodes turn “on” to provide an alternative current path 

and attempt to prevent extreme reverse voltage bias on PV strings. The 

general misunderstanding is that bypassing a string protects cells 

against hot spotting.  

More recently, it has been shown that the distributed MPPT 

approach suggested by M. Coppola [23] is beneficial for mitigating the 

hot spot in partially shaded modules with a temperature reduction up 

to 20 0C for small shadows. On the other hand, authors in [24 and 25] 

show the “inadequateness” of the standard bypass diodes, the insertion 

of a series-connected switch are suited to interrupt the current flow 

during bypass activation process. However, this solution requires a 

quite complex electronic board design that needs devised power supply 

and appropriate control logic for activating the hot spot protection 

device.  
This paper presents a simple solution for mitigating the impact of 

hot spots in PV solar cells. Two techniques are proposed, where both 

hot spot mitigation techniques consists of two MOSFETs connected to 

the PV panel which is affected by a hot spot. Several experiments have 

been examined during various environmental conditions. The PV 

module I-V curve was evaluated in each observed test to analyze the 

output power performance before and after the activation of the 

proposed hot spot mitigation techniques. 

One PV module affected by a hot spot was tested. After activating 

the first technique the output power of the PV module increased by 

1.26 W in high irradiance levels, 1.44 W in medium irradiance levels 

and 0.48 W in low irradiance levels. Same experiments were carried 

out using the 2nd proposed hot spot mitigation technique, while the 
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output power increased by 3.97 W for high irradiance levels, 3.51 W 

in medium irradiance levels and 1.31 W in low irradiance levels. 

This paper is organized as follows: section II presents the examined 

PV module electrical characteristics, while section III describes the 

proposed hot spot mitigation techniques. Section IV shows the 

validation process of the proposed hot spot protection method using 

two case studies. Lastly, section V demonstrates the conclusion and 

the future work. 

II. EXAMINED PHOTOVOLTAIC MODULE CHARACTERISTICS 

In this work, the PV system used comprises a PV plant containing 

9 polycrystalline silicon PV modules each with a nominal power of 

220 Wp. The photovoltaic modules are organized in 3 strings and each 

string is made up of 3 series-connected PV modules. Using a 

photovoltaic connection unit which is used to enable or disable the 

connection for any PV module from the entire PV plant. Each 

photovoltaic string is connected to a Maximum Power Point Tracker 

(MPPT) unit which has an output efficiency not less than 98.5% [26]. 

The existing PV system is shown in Fig. 1. 

The SMT6 (60) P solar module manufactured by Romag has been 

used. The tilt angle of the PV installation is 42o. The electrical 

characteristics of the solar modules are shown in Table 1. Additionally, 

the standard test condition (STC) for these solar panels are: solar 

irradiance (G): 1000 W/m2 and module temperature (T): 25 °C. 

III. HOT SPOT DETECTION AND PROTECTION SYSTEM 

The investigation of the hot spots in the tested PV system was 

captured using i5 FLIR thermal camera as shown in Fig. 2, where its 

specification is shown in Table 2 [27]. After examining the hot spots 

in the PV modules, the hot spot mitigation techniques will be activated. 

The first proposed hot spot protection system is connected to each 

PV string in the PV module. As can be seen in Fig. 3(a), the examined 

PV module used in this work contains three sub strings connected 

throw bypass diodes. In order to apply the proposed hot spot mitigation 

technique, two MOSFETs were connected to each PV string as shown 

in Fig. 3(b). Switch 1 is in series with the PV string and is normally 

“on”; it opens when a hot spot condition is detected to prevent further 

hot spotting. While, switch 2 is in parallel with the PV string and it is 

normally in “open” mode, it turns “on” to allow a bypass current path 

when the PV string is open circuited. 

Another hot spot mitigation technique was used with the PV module 

instead of the connection for each MOSFET to the PV string as shown 

in Fig. 3(c). The same concept has been applied, where switch 1 is in 

series with the PV module is normally “on”; it opens when a hot spot 

condition is detected to prevent further hot spotting. Switch 2 is in 

parallel with the PV module and is normally “open”; it turn “on” to 

allow a bypass current path when the PV string is open circuited. The 

two switch PV protection device has been implemented and connected 

to the PV panel which contains the hot spot. 

As can be noticed, the proposed techniques are simple to implement, 

where the connection steps is also within the PV module limit, since it 

requires only to add additional MOSFETs to the hot spotted PV 

module. In the next section, the validation and comparison between the 

developed hot spot mitigation techniques will be presented. 

IV. VALIDATION OF THE PROPOSED HOT SPOT MITIGATION 

TECHNIQUES 

In this section the validation for both proposed hot spot 

mitigation techniques are illustrated and compared in brief. The 

output power are compared using the I-V curve analysis, and the 

detection of the hot spots have been captured using i5 FLIR camera. 

 
 

Fig. 1.  Examined PV system installed at the University of Huddersfield, 

United Kingdom   
  

TABLE I 

PV MODULE ELECTRICAL CHARACTERISTICS 

PV module parameter Value 

PV peak power 220 W 

One PV cell peak power 3.6 W 
Voltage at maximum power 

point (Vmpp) 

28.7 V 

Current at maximum power 
point (Impp) 

7.67 A 

Open Circuit Voltage (Voc) 36.74 V 

Short Circuit Current (Isc) 8.24 A 
Number of cells connected in 

series 

60 

Number of cells connected in 
parallel 

1 

 

 

TABLE 2 
FLIR I5 CAMERA SPECIFICATION 

Comparison Value 

Thermal image quality 100x100 pixels 

Field of view 210 (H) x 210 (V) 

Thermal sensitivity 32.18 F  

 

 

 
 
Fig. 2.  Hot Spot detection using FLIR thermal camera 
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A. PV Hot Spot and I-V Curve Analysis 

The proposed hot spotting techniques were tested in an 

experimental setup with a resistive load powered by the PV module 

which contains the hot spot previously shown in Fig. 2. The 

MOSFETs are placed in the examined PV module as shown in Fig. 

3(b) and Fig. 3(c). 

There are several stages that have been carried out during the 

operation of the proposed hot spotting mitigation techniques, these 

stages are describes as follows: 

 

i. Hot spot mitigation technique 1: 

The results obtained by the first mitigation technique is shown in 

Fig. 4(a), the results can be described as the following: 

 

a) Before the activation: the temperature of the hot spotted 

PV solar cell is equal to 70 0F, while the adjacent 

(reference) solar cells temperature is equal to 61.5 0F.  

b) 1 minute after the activation: the temperature of the hot 

spotted PV solar cell reduced to 68.7 0F, the difference 

between the hot spotted PV solar cell with the reference 

solar cell temperature is equal to 7.2 0F. 

c) 2 minutes after the activation: the maximum 

enhancement of the temperature for the hot spotted PV 

solar cell is reduced to 67.1 0F, comparing to 70 0F 

before the activation of the mitigation technique. 

 

ii. Hot spot mitigation technique 2: 

The results obtained by the first mitigation technique is shown in 

Fig. 4(b), the results can be described as the following: 

 

a) Before the activation: the temperature of the hot 

spotted PV solar cell is equal to 70.6 0F, while the 

adjacent (reference) solar cells temperature is 

equal to 61.8 0F.  

b) 1 minute after the activation: the temperature of 

the hot spotted PV solar cell reduced to 66.3 0F, 

the difference between the hot spotted PV solar 

cell with the reference solar cell temperature is 

equal to 4.5 0F. 

c) 2 minutes after the activation: the maximum 

enhancement of the temperature for the hot spotted 

PV solar cell is reduced to 64.9 0F, comparing to 

70.6 0F before the activation of the mitigation 

technique. 

 

As can be noticed, the obtained results from the hot spot 

mitigation technique 2 has better performance comparing to 

technique 1, where the where the maximum difference between the 

hot spotted PV solar cell and the adjacent solar cells is equal to 3.1 
0F. 

           
                                                 (a)                                                                                                          (b) 
     

 
 

(c) 

 
Fig. 3.  (a) Structure of the PV string in the examined PV module, (b) First hot spot mitigation technique, (c) Second proposed hot spot mitigation technique 
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The main reason for the proposed hot spotting mitigation technique 

is to improve the output power efficiency for the examined hot spotted 

PV modules.  

The value of the power before and after the activation for each 

proposed technique was monitored in three different irradiance levels: 

High irradiance level: 840 W/m2, medium irradiance level: 507 W/m2 

and low irradiance level: 177 W/m2, while in all tested scenarios, the 

PV temperature is estimated at a fixed value approximately equals to 

16.2 oC. 

Fig. 5(a) shows the output I-V curves of the PV module at high 

irradiance level. The measured output power after the activation of 

the proposed 1st technique has a power loss equals to 3.95 W 

comparing to 5.21 W with no mitigation technique deployed in the 

PV module. However, the minimum loss in the output power is 

 
(a) 

 

 
(b) 

 

Fig. 4. (a) Output hot spot mitigation using technique 1, (b) Output hot spot mitigation using technique 2 
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estimated while activating the 2nd hot spotted mitigation technique 

(Ploss = 1.24 W). A brief comparison between both examined 

techniques are shown in Table 3. 

The output I-V curves for the examined PV module under 

medium and low irradiance levels are shown in Fig. 5(b) and Fig. 

5(c) respectively. The output results show a significant 

improvement in the output power while activating the 2nd hot spot 

mitigation technique comparing to the 1st technique. Table 3 shows 

a comparison of the output results in each examined irradiance 

level. 

In conclusion, this section shows the validation and the 

enhancement in the PV temperature and the output power generated 

by the PV module using both proposed hot spot mitigation 

techniques. Technique 2 has a better performance comparing to the 

1st proposed mitigation technique in both, PV output power and the 

maximum reduction in the hot spotted solar cell temperature. 

Moreover, Power MOSFETs IRFZ44V were used to implement 

and test the suggested hot spot mitigation techniques. The 

MOSFETs drain-to-source breakdown voltage is equal to 60 V, and 

the voltage drop in drain-to-source as low as 50 mV.  The cost of 

the MOSFET is equal to £0.85. Therefore, the total cost for the first 

and second presented techniques using one PV module are equal to 

£5.1 and £1.7 respectively. 

There are no electrical complexity in developing both mitigation 

techniques as a commercial product, since it is only require to add 

the MOSFETs in series with the hot spotted PV module. 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Fig. 5. Photovoltaic I-V curve. (a) Before and after considering hot spot mitigation techniques at G: 840 W/m2, (b) Before and after considering hot spot 
mitigation techniques at G: 507 W/m2, (c) Before and after considering hot spot mitigation techniques at G: 177 W/m2 
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B. Partial Shading Analysis 

The main purpose of this section is to test the ability of the 

proposed hot spot mitigation techniques to increase the output 

power of the PV module in partial shading conditions affecting any 

PV module; it is not necessary that the tested PV module has a hot 

spotted PV solar cell. 

In order to test the ability of the proposed hot spot mitigation 

technique, another experimental setup has been tested on a PV 

module with partially shaded solar cell. Fig. 6 shows an image for 

the examined PV module under shaded solar cell using paper 

opaque object. The PV module was examined at irradiance level of 

784 W/m2. The temperature of the shaded solar cell was captured 

using the i5 FLIR camera. 

The first test was carried out using the activation of the first 

proposed hot spot mitigation technique. Fig. 7(a) shows the 

thermography image of the shaded solar cell before and after the 

activation of the 1st mitigation technique.  

Before the activation, the temperature of the shaded solar cell is 

equal to 66.6 0F. The solar cell temperature decreases to a minimum 

value of 63.9 0F after the activation of the hot spot mitigation 

technique.  

This decrease in the value of the temperature will guarantee an 

increase in the output power produced by the PV module. As 

illustrated in Fig. 8(a), the output power before and after the 

activation is equal to 171.787 W and 172.508 W respectively. Thus, 

the total increase in the output power is equal to 0.721 W. 
The second test was carried out using the activating of the second 

proposed hot spot mitigation technique. Fig. 7(b) displays the 

thermography images of the examined shaded solar cell before and 

after activating the mitigation technique.  

The difference in the temperature of the shaded solar cell is 

shown in (1). 

 

Difference = (No mitigation) 71.0 0F – (After activating the 2nd hot 

spot mitigation technique) 65.3 F = 5.7 0F                                 (1) 

TABLE 3 
COMPARISON BETWEEN THE FIRST AND SECOND PROPOSED HOT SPOT MITIGATION TECHNIQUE USING HIGH, MEDIUM AND LOW IRRADIANCE LEVELS 

Irradiance 
(W/m2) 

Theoretical 
Power (W) 

Case Scenario Voltage 
(V) 

Current 
(A) 

Power 
(W) 

Ploss 

(W) 
Efficiency 

(%) 

 

High 

840 

 

 

186.4 
 

No mitigation 28.59 6.33 181.18 5.21 97.2 

1st Technique 28.67 6.36 182.44 3.95 97.88 

2nd Technique 28.93 6.40 185.15 1.24 99.33 

 
Medium 

507 

 
 

108.2 

 

No mitigation 27.31 3.79 103.75 4.45 95.89 

1st Technique 27.39 3.83 105.15 3.01 97.18 

2nd Technique 27.69 3.87 107.25 0.94 99.12 

 
Low 

177 

 
 

34.4 

 

No mitigation 25.27 1.30 32.85 1.55 95.51 

1st Technique 25.44 1.31 33.33 1.07 96.88 

2nd Technique 25.68 1.33 34.15 0.24 99.28 

 

 

 

 

 
Fig. 6.  Opaque paper object covering one solar cell 

  

 
(a) 

 
(b) 

 
Fig. 7.  (a) Thermographic image of the shaded PV solar cell before and 

after the activation of the first hot spot mitigation technique, (b) 

Thermographic image of the shaded PV solar cell before and after the 
activation of the second hot spot mitigation technique 
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This decrease in the temperature of the shaded solar cell 

guarantee an increase in the measured maximum power point of the 

PV module. Fig. 8(b) shows that the total increase in the measured 

output power which is equal to 1.689 W. 

In conclusion, this section demonstrates that both proposed hot 

spot mitigation techniques are useful in case a partial shading 

conditions occurs in the PV module.  An enhancement of the 

temperature and output power of the PV module is guaranteed. In 

addition, the second proposed hot spot mitigation technique shows 

better performance comparing to the 1st technique. 

V. CONCLUSION 

In this paper, the design and development for two hot spot 

mitigation techniques are proposed. The offered techniques are 

capable to enhance the output power of PV modules which are 

effected by hot spots and partial shading conditions. Both 

techniques use two MOSFTEs in the affected PV module. 

Several experiments have been examined during various 

environmental conditions, where the PV module I-V curve was 

evaluated in each observed test to analyze the output power 

performance before and after the activation of both proposed hot 

spot mitigation techniques. One PV module affected by a hot spot 

was tested. After activating the first mitigation technique the 

output power of the PV module increased by 1.26 W in high 

irradiance levels, 1.44 W in medium irradiance level and 0.48 W 

in low irradiance level. Same experiments were carried out using 

the 2nd proposed hot spot mitigation technique, while the output 

power increased by 3.97 W for high irradiance levels, 3.51 in 

medium irradiance levels and 1.31 W in low irradiance levels. 
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