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Abstract 

Context: Modern societies are highly dependent on complex, large-scale, software-intensive systems 

that increasingly operate within an environment of continuous availability, which is challenging to 

maintain and evolve in response to the inevitable changes in stakeholder goals and requirements of 

the system. Software architectures are the foundation of any software system and provide a 

mechanism for reasoning about core software quality requirements. Their sustainability -- the capacity 

to endure in changing environments -- is a critical concern for software architecture research and 

practice. 

 

Problem: Accidental software complexity accrues both naturally and gradually over time as part of the 

overall software design and development process. From a software architecture perspective, this 

allows several issues to overlap including, but not limited to: the accumulation of technical debt design 

decisions of individual components and systems leading to coupling and cohesion issues; the 

application of tacit architectural knowledge resulting in unsystematic and undocumented design 

decisions; architectural knowledge vaporisation of design choices and the continued ability of the 

organization to understand the architecture of its systems; sustainability debt and the broader 

cumulative effects of flawed architectural design choices over time resulting in code smells, 

architectural brittleness, erosion, and drift, which ultimately lead to decay and software death. 

Sustainable software architectures are required to evolve over the entire lifecycle of the system from 

initial design inception to end-of-life to achieve efficient and effective maintenance and evolutionary 

change. 

 

Method: This article outlines general principles and perspectives on sustainability with regards to 

software systems to provide a context and terminology for framing the discourse on software 

architectures and sustainability. Focusing on the capacity of software architectures and architectural 

design choices to endure over time, it highlights some of the recent research trends and approaches 

with regards to explicitly addressing sustainability in the context of software architectures. 

 

Contribution: The principal aim of this article is to provide a foundation and roadmap of emerging 

research themes in the area of sustainable software architectures highlighting recent trends, and 

open issues and research challenges. 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2 

1. Introduction  

Modern societies are highly dependent on complex software systems, which are deeply 

embedded into the "unconsciousness" of every facet of daily living, from commerce, 

communication, education, energy, entertainment, finance, governance, healthcare, 

transportation, as well as defence and security [Kitchin, 2011]. Fashioning complex 

conceptual constructs is the fundamental essence of software engineering. For example, 

modern modes of transportation such as the Airbus A380, which has an estimated 

operational lifespan of 25 years includes 120 millions of lines of mission-critical code 

[Charette, 2009]. However, there are increasing concerns regarding the fragility of these 

systems, which operate in a highly connected ecosystem with emergent properties, whose 

interdependencies can lead to cascading failures [Cerf, 2017]. Despite the emergence of 

clear and systematic approaches, the design and development of high-quality, sustainable 

software systems are still extremely challenging for software engineers involved in their 

design, development, and maintenance [Brooks, 1986; Lehman, 1998; Somerville, 2007; 

Taivalsaari and Mikkonen 2017]. The challenges are further exacerbated by change [Bener, 

2014]. It is estimated that approximately 50%–70% of a system's total lifecycle cost is spent 

on its evolution [Ecklund, 1996] and maintenance [Garcia, Ivkovic and Medvidovic, 2013]. 

Similarly, continuous evolution and deployment of systems are heralded as the new 

"stairway to heaven" of software engineering, where systems and organizations evolve 

together to satisfy more agile customer demands [Oreizy et al., 1998; Bosch, 2014; Ameller 

et al., 2017, Fitzgerald and Stol, 2017; Rodríguez et al., 2017]. In this era of post-

deployment, many systems are reconfigured several times on the client side or are updated 

automatically based on third-party software providers (e.g. mobile apps updated at any time 

on a smartphone). While the emergence of continuous software engineering allows 

development teams to release the current development version of their software to users at 

any time in the development cycle [Fitzgerald, 2017], this continuous cycle of  redeployment 

is affected by how well prepared the systems are for integrating new requirements that must 

be satisfied within hours or days. As a result, this can lead to unexpected increases in 

memory and CPU usage that can lead to a significant decrease in system performance and 

regression failures in stable parts of the system [Tarvo, 2009]. As a result, how to design 

more sustainable software systems that can endure is one of the grand challenges in the 

field of software engineering. 

 

Modern society's reliance on 'dangerously fragile' software [Booch, 2015] has resulted in the 

emergence of software sustainability as a growing area of interest in the field of software 

engineering [Venters et al., 2014a]. The Karlskrona Manifesto [Becker et al., 2014] reflects 

this new trend by providing a focal point for establishing a common ground for the software 

engineering community to engage. It argues that designers of software technology are 

responsible for the long-term consequences of their designs - a position also supported by 

Cerf [2017] - and proposes a set of key principles and commitments that underpin 

sustainability design. These include the importance of recognising that sustainability is an 

explicit consideration even if the primary focus of the system under design is not 

sustainability, i.e. a concern independent of the purpose of the system, which requires action 

on multiple levels. While consensus on what sustainability means in the field of software 

engineering is still emerging [Venters et al., 2014b], there has been a focus towards 

understanding technical sustainability whose overarching goal is for software developers to 
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achieve maintainable and extendable systems [Amri and Saoud, 2014]. Koziolek [2011] 

postulates that software systems are sustainable if they can be cost-efficiently maintained 

and evolved over their entire life-cycle, which is arguably determined by the software 

architecture. It is widely accepted that software architectures are the foundation of any 

software system as they provide ‗the fundamental organisation of a system embodied in its 

components, their relationships to each other, and to the environment, and the principles 

guiding its design and evolution' [ISO/IEC 42010-2007]. As such, they provide a mechanism 

for reasoning about key software qualities (e.g. maintainability, extendability, scalability, 

security, performance, reliability, portability etc.) [Garlan, 2000]. However, while a plethora of 

software metrics can be used to measure and understand code complexity issues, the ability 

to determine the sustainability of a legacy or new system from an architectural perspective in 

terms of its cost and energy with regards to maintenance and evolution cycles is an open 

research area. There is still a fundamental lack of metrics to estimate architecture 

sustainability or the sustainability of architectural design decisions; this and other challenges 

are the primary focus of this article. We highlight the current state of the practice of software 

sustainability and identify the problems that new metrics and tools must address in the 

future. 

 

The remainder of this paper is structured as follows. In Section 2, we outline the different 

dimensions of software sustainability and discuss their applicability to the broader field of 

software engineering to frame the discussion with regards to the area of software 

architectures. Section 3 addresses sustainability from a software architecture point of view 

and how it affects reference and software architectures, while Section 4 describes how the 

architecture design decisions must also be sustainable as long-term and stable decisions. In 

Section 5, we address software metrics related to estimating the sustainability in architecture 

and code from a practical point of view, and Section 6 provides perspectives from academia, 

concerning how and where an awareness of software sustainability is developed with 

regards to scientific and engineering research software. Finally, the paper concludes by 

identifying some open issues and research challenges in Section 7. 

2. Software and Sustainability 

Before software sustainability can be measured, it must be understood [Seacord et al., 

2003]. In modern English, sustainability refers to the ‗capacity' of a system ‗to endure' 

[Oxford 2010]. The term‘s Latin origin sustinere was used as both endure and as uphold, 

furnish [something] with means of support.1 This suggests that longevity as an expression of 

time and the ability to maintain are key factors at the heart of understanding sustainability. A 

closely related concept, sustainable development, was defined by the Brundtland 

Commission [Brundtland, 1997] as ‗meeting the needs of the present without compromising 

the ability of future generations to meet their own needs‘. The word ‗need' is central to this 

definition and includes a dimension of time, present and future, as well as a direct reference 

to acknowledging changing requirements of stakeholders and evolution 

                                                
1
 http://en.wiktionary.org/wiki/sustineo#Latin  
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In relation to software, there exist at least two distinct viewpoints for the topic area of 

software and sustainability: sustainable software and software engineering for sustainability 

(SE4S). The former is concerned with the principles, practices, and processes that 

contribute to software endurance, i.e. technical sustainability, and the latter focuses on 

software systems to support one or more dimensions of sustainability, concerning issues 

outside the software systems itself [Penzenstadler, 2013]. The Karlskrona Manifesto [Becker 

et al., 2014] recognises both viewpoints of software sustainability as an emerging concern of 

central relevance and advocates that sustainability must be viewed as a construct across 

five dimensions: environmental, economic, individual, social and technical [Becker et al., 

2015]. These dimensions are defined as follows: 

● The economic dimension focuses on assets, capital and added value that comprises 

wealth creation, prosperity, profitability, capital investment, income, etc.  

● The environmental dimension is concerned with the long-term effects of human 

activities on natural systems, which includes natural ecosystems and resources, the 

climate, pollution and waste, etc.  

● The individual dimension refers to the well-being of humans as individuals, which 

includes mental and physical well-being, education, freedom, self-respect, mobility, 

agency etc.  

● The social dimension covers societal communities (groups of people, organisations) 

and the factors that erode trust in society. The concepts analysed here encompass 

social equity, justice, employment, democracy, etc.  

● The technical dimension includes the concept of the longevity of information, 

systems, and infrastructure and their adequate evolution within changing 

environmental conditions, which covers inter alia, system maintenance, 

obsolescence, and data integrity. 

 
Nevertheless, interdependencies exist between these dimensions including tradeoffs that 
may have to be negotiated for a system under analysis [Becker et al., 2016]. For example, 
consider a car sharing system composed of a fleet of private cars that are being shared, a 
client/server software application that allows users to connect and sign up for rides, and a 
database server that stores the information in the background. We can identify the following 
details for the five dimensions: 
 

● Economic: Sharing rides as opposed to having to own a car, or offering up rides in 

one's car can save costs for the user and (accumulated) for the user community. The 

service can only be sustainable if it is economically sustainable in terms of the 

continued supply of income streams sufficient to keep it operational. Cost efficiency 

for the software system's development, maintenance and operations will be affected 

by such choices as using open source components and applying architectural 

patterns to avoid incurring technical debt. 

● Environmental: IT systems as well as cars require energy and therefore have an 

impact on the environment, e.g. through emissions. Furthermore, there is a lifecycle 

for the respective hardware parts that have to be resourced from somewhere, 

manufactured, maintained, and eventually disposed of or recycled. In a sharing 

system, the bottom line usage of resources often decreases, which reduces its 

environmental impact [Wadud et al., 2016]. 

● Individual: A user may benefit individually from access to individual mobility and an 

improved sense of responsibility linked to environmentally conscious behaviour.  
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● Social: Depending on the system and its mechanisms, a new community of users 

can form with a focus on helping each other out in choosing less carbon-intensive 

modes of transport; or social ride-sharing communities can erode as slowly grown 

personal connections are replaced by routing algorithms. 

● Technical: Both the connecting IT system and the cars have to be maintained over 

time. The system's longevity will be influenced by such factors as technical debt, the 

ability of its architecture to evolve, and the lifecycles of supporting technologies. 

 

Relationships between specific dimensions arise instantly; however, all of these dimensions 

-- and their intersections -- have to be analysed with regards to what their impact is for a 

long-term vision of the system and how it can be ensured that they are well supported. The 

research community is increasingly aware of the need to move towards a more 

comprehensive view of sustainability, which embraces these different dimensions. In 

addition, the impact on sustainability in these five dimensions manifests in three orders of 

effect [Hilty and Aebischer, 2015], defined as follows: 

 

● First order effects appear when software systems are built and used for their direct 

purpose, e.g. the resourcing, manufacturing, installing and usage of the hardware 

and software needed for the car sharing system; 

● Second order effects appear when the use of the system over time induces new 

types of behaviour or expectations from the previous system, e.g. users of the car 

sharing system organise themselves into a community resulting in smaller individual 

environmental footprints; 

● Finally, third order effects appear due to a large-scale, longer-term use of the system, 

e.g. less downtown parking space problems, improved air quality in cities, etc. 

 

The concept of sustainability is not widely understood in the field of software engineering, 

with opposed views on its meaning in the software engineering community. [Venters et al., 

2014a; Chitchyan et al., 2016; Manotas et al., 2016; Kasurinen et al., 2017; Groher and 

Weinreich, 2017]. Nevertheless, a number of contributions have proposed a formal definition 

of software sustainability, generally focused on the software system's capacity to endure 

[Koziolek, 2011; Penzenstadler, 2013; Calero, Moraga, and Bertoa, 2013]. As a result, the 

term has been described in the literature as a first-class, non-functional requirement or 

software quality [Penzenstadler et al., 2014]. For example, Venters et al., [2014] defined 

software sustainability as a composite, non-functional requirement which is ‗a measure of a 

system's extensibility, interoperability, maintainability, portability, reusability, scalability, and 

usability'. Several of the metrics are directly related to the concept of evolution of the 

software system. The rationale for including usability as a metric of sustainability is that it is 

directly related to perceived usefulness from a stakeholder's perspective and thereby aligns 

sustainability with the issue of need. In addition, several of the quality attributes specify the 

‗effort required' to achieve a particular outcome. This suggests that the concept of 

sustainability is strongly coupled to other quality attributes such as energy and cost 

efficiency, and resource utilisation over the software's entire lifetime and aligns with the 

dimensions of environmental and economic sustainability. However, consensus on what 

sustainability means in the field of software engineering is still emerging [Venters et al., 
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2014] and further research is required to confirm or refute this position. In addition to the 

simultaneous consideration of several interrelated dimensions of sustainability [Becker et al., 

2016], it is argued that the concept of sustainability requires context -- such as that proposed 

by Tainter [2006] -- and (social) structure [Ramsey, 2015]. Similarly, it is suggested that 

rather than seeking broad conformity of definitions, the aim should be to clarify how different 

communities use the terms to have a shared and common understanding [Knowles et al., 

2013].  

The primary focus of research in the field of software engineering with regards to 

sustainability has focused on reference models to develop sustainable software and 

approaches for software sustainability evaluation. In the area of software engineering and 

sustainability, a number of reference models to develop sustainable software (i.e. a system 

that requires less maintenance effort to be changed or reduces its energy consumption 

during execution saving the resources as well) have been proposed. For example, Naumann 

et al., [2011] proposed the GREENSOFT model for the development of sustainable software; 

a conceptual reference model, which includes a cradle-to-grave product life cycle model for 

software products, sustainability metrics and criteria for software, and extensions for 

software engineering. The model covers development, distribution, usage, deactivation and 

disposal of software systems, and offers two categories of sustainability criteria and metrics 

for software products covering direct and long-term impact. Similarly, Mahmoud and Ahmad 

[2013] propose a development model aimed at supporting (environmentally) sustainable 

software engineering that includes a list of metrics to measure the environmental 

sustainability of each software engineering phase. While these approaches primarily focus 

on environmental sustainability, they acknowledge that the identification of impacts of the 

software systems on sustainable development should not be limited to a single dimension 

but should also include other sustainability dimensions such as that proposed by 

Penzenstadler and Femmer [2013]. Their proposed method comprises a generic 

sustainability reference meta-model and instances derived for specific processes and 

software systems that are primarily designed to aid software developers by demonstrating 

how environmental sustainability can be aligned with the other dimensions of sustainability, 

i.e. economic, individual, social, and technical. 

In addition to the development of a number of reference models for sustainable software, a 

number of approaches for software sustainability evaluation, which focus on evaluating the 

longevity of software systems have also been proposed. Cabot et al., [2009] proposed the i* 

framework as a sustainability taxonomy for modelling and integrating stakeholders' 

sustainability issues, which can be used for exploring alternative design options during the 

development of a software system where decisions may have a potential impact on 

sustainability. However, the extent to which this approach can be utilised beyond the case 

study used to develop the taxonomy is unclear but provides a useful basis to explore its 

limits and generalizability.  Jansen, Wall and Weiss [2011] focus on sustainability from an 

economic perspective and consider how a system can remain economically viable over its 

entire lifetime. To address this, they propose TechSuRe as a method for reasoning about 

sustainability in assessing software evolution and technology integration from three 

perspectives: time, risk and cost benefit. Sustainability is defined in terms of ‗sustainability 

risk' which is an estimated value based on nine high-level indicators: lifetime in production; 

lifetime; competence risk; technology evolution risk; risk of changing business model; market 

risk; lifetime certainty; complexity risk; and technology evolution-fitness. The output of the 
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assessment is an indication of the expected lifetime of the technology's economic 

sustainability. Koziolek et al., [2013] developed a multi-perspective approach to analyzing 

architecture sustainability (i.e. it could be understood in terms of (i) the design of sustainable 

systems, (ii) the capacity of a software architecture to evolve and cope with new changes 

without affecting the fundamental structure of the design) using scenario analysis, 

architecture compliance checking, and architecture metric tracking. This multi-perspective 

approach enables tracking changes in requirements and technology as well as to prevent 

architecture erosion. Durdik et al., [2012] developed a catalogue of sustainability guidelines 

for different stakeholders such as managers, architects and programmers covering the 

software development life-cycle from system design to maintenance. The guidelines include 

software engineering methods, techniques and tools to enhance the longevity of systems in 

a cost-efficient way. Both approaches focus on the technical and the economic dimension of 

sustainable software systems and do not discuss the meaning of different sustainability 

dimensions. In addition, other related work on sustainability in the field of software and 

requirements engineering has focused on sustainability requirements elicitation [Mahaux et 

al., 2011] and modelling [Roher and Richardson, 2013a; Roher and Richardson, 2013b]. 

In this article, we distinguish the five dimensions that articulate concerns of relevance and 

provide a scope for the indicators and concepts required to understand the capacity of real-

world cyber-physical and socio-technical systems to endure. We focus the discussion more 

specifically on two particular aspects of software architecture sustainability. To do this, we 

focus more narrowly on three concepts: 

1. Software sustainability. The capacity of the software-intensive system itself to endure 

will be a concern for the operating organisation and the community [Becker et al., 

2015].   

2. Software architecture sustainability. The capacity of that software system to endure 

in turn is contingent upon its structures and their ability to evolve. This is often 

referred to as architecture sustainability (i.e. the degree to which the architecture of 

the software system supports its continued maintenance and evolution over time 

without requiring substantial and expensive restructuring) [Koziolek, 2011]. 

3. Sustainable software architecture design decisions. This architecture, in turn, reflects 

the foundational design decisions that structure the system and its elements, so 

decision making is increasingly a focus of attention (van Vliet & Tang, 2016). 

Because architectural decisions have long-lasting effects and are expensive to 

revise, the capacity of each decision to remain valid is a primary concern to the 

architects. This notion has been described as the sustainability of software 

architecture design decisions (Zdun et al., 2013). 

 

The following sections provide an overview of fundamental concepts and highlight some of 

the recent work in the area of software architecture sustainability (Section 3), architectural 

decisions (Section 4), and metrics to estimate sustainability (Section 5). 

3. Software Architectures and Sustainability  

Software systems are directly dependent on their architectural design to ensure their long-

term use, efficient maintenance, and appropriate evolution in a continually changing 

execution environment [Kruchten et al., 2016]. Bass et al., [2012] state that software 
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architectures are the critical factor in the capacity of software systems to endure and evolve. 

Architecture sustainability refers to the ability of the architecture to tolerate changes resulting 

from shifts in requirements, environment, technologies, business strategies and goals 

throughout software system life cycles [Avgeriou et al., 2013; Kim et al., 2014]. However, the 

sustainability of any system architecture is degraded by two related phenomena: 

architectural drift and erosion [Taylor et al., 2009]. Architectural erosion often appears when 

the source code becomes sub-optimal compared to the designed architecture. In contrast, 

architectural drift is considered a divergence of the code of a system from its underlying 

architecture. Both problems are the product of unsystematic, unintended addition, removal, 

and modification of architectural design decisions and can arise during evolution and 

maintenance cycles of the system [Garcia et al., 2013]. Many factors can lead to architecture 

erosion and drift, from the accumulation of wrong or sub-optimal design decisions to 

communication problems between design and development teams [Jaktman et al., 1999]. 

The field of software architectures as a distinct discipline within the broader context of 

software engineering is still embryonic despite its rise to prominence over the last fifteen 

years [Woods, 2016]. Despite the pivotal role that software architectures play in the design 

of software systems, the topic of software architecture sustainability has only recently 

emerged as a specific area of research. This has primarily focused on investigating the role 

of technical debt and architectural metrics to measure the sustainability of architectural 

designs [Avgeriou et al., 2013; Durdik et al., 2012; Giesecke et al., 2011; Koziolek et al., 

2012; Koziolek et al., 2013; Sehestedt et al., 2014].  

 

One approach to designing flexible, open software architectures that are sustainable is to 

pre-emptively design them to accommodate future changes to a greater extent without 

significant change to the basic structure of the system with minimal cost [Kim et al., 2014]. 

For this, adherence to established design principles (e.g. separation of concerns and 

conceptual integrity etc.) and the avoidance of poor evolution decisions are critical factors 

[Garlan, 2000]. The emergence of software reference architectures, which embody the 

architectural knowledge of structures, elements and the relations of many successful 

architectural implementations, can provide templates for designing sustainable architectures 

albeit constrained to a particular domain or a family of software systems [Nakagawa, 2014]. 

Well-known reference architectures include: AUTOSAR2 for the automotive sector; 

Continua3 for health systems; OASIS Service-Oriented Foundation; IBM Service-Oriented 

Solution Stack (S3) for Service-Oriented Architectures (SOA); and the recent Industrial 

Internet Reference Architecture (IIRA). For example, AUTOSAR has brought a number of 

significant benefits related to standardisation, interoperability facilitation, knowledge reuse, 

and improvement in communication among interested parties (e.g. vehicle manufacturers, 

suppliers and other companies from the electronics, semiconductor and software industry) 

[Martinez et al., 2015]. However, sustainability has not been explicitly or adequately 

addressed in these reference architectures. While software architectures constitute the 

design solution for specific systems, reference architectures operate at a higher level of 

abstraction for a set of systems in specific domains. Both types of architecture embody 

elements of reusable knowledge of critical design decisions that endure in favour of 

standardisation and the sustainability of proven solutions over time. One of the most 

                                                
2
 http://www.autosar.org 

3
 http://www.pchalliance.org 
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apparent and visible indicators of the success of these architectural solutions is their 

longevity. However, this is dependent on their resilience to design degradation and the ability 

to detect degradation symptoms [Bertran, 2014]. To address this, AUTOSAR adopts an 

update policy with release and version control of its documentation to manage evolution; as 

each document is continually updated taking parts of different releases. The main evolution 

phases and releases of AUTOSAR are presented in Figure 1. 

 

 

Figure 1: Evolution Phases and Main Releases of AUTOSAR 

 

Other reference architectures also present a continuous delivery of new versions, as shown 

in Figure 2. However, while new releases include refinements and extension, this has 

resulted in a significant increase in the amount of documentation. For example, the first 

version of Continua in 2008 contained 231 pages, while the current version has almost three 

times the number of pages (654), similar to IIRA. 

 

 

Figure 2: Updates in Reference Architectures 

 

Nevertheless, while a number of reference architectures have been proposed for a diverse 

range of application domains, many of them have not been adopted or survived. For 

example, Oliveira et al., [2010] analysed sixteen reference architectures focusing on the 

Service Oriented Paradigm for systems development. The results highlighted that thirteen of 

them did not present any evidence of use (i.e., no website, projects, or related publications). 
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However, as new challenges demand changes in these architectures to support new 

requirements (e.g. smart car functions), references architectures must be ready to integrate 

further design decisions that endure over time. From a broader perspective, some of the 

principal factors that make reference architectures sustainable are: 

 

● Alignment to state-of-practice use case scenarios and the widely accepted and 

adopted technologies in the target domains (including architectural patterns and 

styles, domain standards and legislation, communication protocols, etc.);  

● Regular updates and releases; 

● Decisions that endure over time when the architectures evolve with the addition of 

new requirements without having a detrimental effect on existing decisions;  

● The existence of a community around the architecture, which can in some instances 

be strengthened via a consortium of companies, research centres, and universities.  

 

Examining these features suggests that a critical factor in the long-term existence of 

reference architectures is that their communities sustain them. Sustainability should also be 

considered as the primary, overarching quality attribute in the process of the design and 

evolution of reference architectures such as ProSA-RA taking into account the significant 

effort and time required in their establishment [Nakagawa, 2014].  Similarly, as reference 

architectures provide the foundation for the design of a number of derived systems 

architectures, sustainability of the subsequent systems should be the central concern. 

Hence, revisiting existing reference architectures to re-architect them for sustainability is a 

rational middle to long-term investment for both the reference architectures sustainability and 

the sustainability of derived architectures. 

4. Software Architecture Decisions and Sustainability 

The multi-faceted concept of "sustainability debt" (i.e. how technical debt can be used to 

identify and communicate about the effects of software design decisions on sustainability) 

discussed in Betz et al., [2015] reflects the hidden effect of past design decisions as a 

negative factor affecting the five sustainability dimensions including the economic issue of 

long-term costs. As a result, design decisions strongly influence the longevity of systems and 

their architecture. However, the sustainability of designs rely not only on the quality of 

optimal design decisions but also on economic, individual, social, and technical factors 

required to capture those decisions including lack of motivation or incentive, lack of 

adequate tools, the effort in capturing architectural knowledge (AK), disrupting the design 

flow, lack of stakeholder understanding, and knowing what knowledge is relevant and 

valuable to capture which is especially challenging in Agile projects where documentation is 

reduced to a minimalistic set of data [Zimmermann, 2007]. Nevertheless, it is suggested that 

the many barriers related to capturing AK stem from the significant and ongoing effort 

required to efficiently store large quantities of codified knowledge that can not only be 

difficult to manage but also to efficiently use [Capilla et al., 2016]. As a result, there is a need 

to capture a sustainable body of design decisions that are easier to maintain and that can be 

usefully applied. For example, Zdun [2013] proposed capturing a minimal set of significant 

architectural design decisions using configurable AK templates to reduce AK documentation 

effort. Consequently, achieving sustainable decisions should be based on timeless and 

strategic knowledge, which can extend the longevity of systems and their architectures, 
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combined with minimalistic and lightweight approaches that can succinctly reduce the 

documentation and capture the salient decisions. To address this, Carrillo et al., [2015] 

proposed a meta-model and set of guidelines to enable the construction of flexible 

Architectural Knowledge Management4 (AKM) tools, which allows designers to create more 

sustainable architectural design decisions. Their approach is based on a flexible and 

configurable new meta-model that overcomes the inflexibility of previous approaches 

[Zimmermann et al., 2007; Capilla et al., 2011] by combining a set of AKM tools for 

maintaining a minimal set of AK, a set of configurable entities to extend and customize new 

AK, and a set of related metrics that can be used to measure the sustainability of the design 

decisions. Quality attributes such as timeliness, changeability, complexity and cost of the AK 

are strongly related to the metrics and proposed criteria to estimate AK sustainability [Capilla 

et al., 2017]. As a result, it is suggested that the model and the set of proposed criteria can 

be used to build flexible and configurable AKM tools that can measure the sustainability of 

the size of the decisions captured (e.g. number of AK items captured, number of trace links 

etc) during the design process, and how well the decisions evolve (i.e. estimate the impact of 

changes using ripple effect and instability metrics). As an improvement to the meta-model 

proposed by Carrillo et al., [2015], Carrillo [2017] proposed a modification that suggests a 

refinement to the sustainability model and the extensions used for capturing additional AK 

items (Figure 3). 

 

 Figure 3: Refined meta-model to measure decisions that endure and other sustainability 
estimators related to AK 

                                                
4
 Architecture Knowledge Management (AKM) can be understood as the process of creating, sharing, 

using and managing architectural design decisions and other coded and reusable knowledge.  
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In Figure 3, the classes belonging to the DD Extensions package add a list of configurable 

AK items that can be used to capture different amounts of AK (i.e. the smaller the number of 

AK items captured reduces the burden and maintenance cost of the AK capturing process 

and leads to more sustainable decisions networks), and those attributes can then be used to 

estimate the longevity, timeliness and validity of decisions (e.g. createdWhen, 

modifiedWhen, validity, version, numberOfChanges). In the Sustainability of the Design 

Decision Model package, a number of quality attributes related to the estimation of 

sustainability are proposed such as the number of decisions and edges as useful indicators 

to estimate the complexity of a decision network. Other metrics related to evolution include 

ripple effect measures as a way to understand the impact of changes and to highlight which 

decisions are frequently modified. In addition, the Sustainability of the Design Decision 

Model package was extended with two new components (i.e. JGraphT and Neo4j) to 

visualise the decision network as well as new methods to estimate sustainability based on 

the complexity of the decision networks.  

Similarly, Carrillo [2017] investigated the effort required to capture as well as the quality of 

key architectural design decisions using different architectural templates: short (seven 

items), medium (ten items), and long (fourteen items). The experiment included sixty-four 

participants, randomly divided into eleven different groups; nine groups with six participants 

and two groups with five. Each group was composed of three different roles (junior, senior, 

and cognitive software architects) to capture the key design decisions of a given system over 

a four week period. As a research methodology, we used an exploratory case study to 

identify what would happen if different stakeholders chose different AK templates to capture 

architectural design decisions and how the subjects can cooperate during the decision-

making activity. We did not use test and control groups because we were not testing an 

independent variable but instead estimating how much effort the subjects employ for 

capturing the AK using the different templates and how many alternative decisions they 

captured on average. The results suggest that participants worked more efficiently with a few 

decisions as these were easier to manage during evolution cycles and that short and 

medium templates proved more useful for capturing the AK (Figure 4). From the results 

shown in Figure 4, we can conclude that groups using the short template spent less time in 

general than those using the medium and long templates. However, in the case of group G1, 

the team members spent almost three times more than groups G7 and G10 using the same 

template because they captured much more decisions. Groups using the medium template 

produced the expected results compared to those using the short one, but only group G4 

spent more time than G3, G6 and G11 capturing less number of decisions. This dissonance 

is the product of the wrong answers given by the team members during the individual tests 

we ran to check the accuracy of the results, which in some cases were exaggerated by the 

subjects. Finally, group G5 exhibits an anomalous result compared to G2 as the members 

spent less effort than G2 in capturing more decisions, which can be attributed to an incorrect 

answer during the tests. 
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Figure 4: Capturing effort architecture design decisions using three different templates 

 

With regard to the capturing effort, we measured the effort spent by the groups in capturing 

the different number of alternative decisions. The results revealed that groups capturing 

between two and four design alternatives also required less effort than those capturing more 

than four (Figure 5). As a result, an increase in the number of decision alternatives revealed 

an exponential increase in the time taken to make, deliberate and capture more alternative 

decisions, which may have a definite impact on agile projects [Martin, 2003]. Similarly, the 

results highlight that groups G2 and G10 exhibit lower values in capturing effort when they 

captured decisions with more than four alternatives compared to decisions that only included 

two and four alternative decisions. This suggests that because they capture fewer decisions 

with more than four alternatives than those between two and four the overall number of 

decision points captured is lower and hence, the overall capturing effort. 

 

Figure 5: Capturing effort of alternative decision per group 
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Figure 6 shows the total effort spent in capturing decisions with a different number of 

alternative decisions. The results reveal that time increases accordingly with the number of 

alternatives considered during the decision making and evaluation activity.  

 

Figure 6: Total time spent in capturing decisions with different number of alternatives 

 

The results also highlighted that groups reused Enterprise architecture design patterns 

suitable for the target problem, so many of the decisions made were technically sound and 

grounded on established knowledge.   

The software architecture of a system is the product of a set of architectural design 

decisions. However, the knowledge of the architectural design decisions of a software-

intensive system is easily lost, which leads to increased maintenance and evolution costs, 

and design erosion [Tofan, Galster and Avgeriou, 2011]. The benefits of capturing, sharing, 

and reusing AK is widely acknowledged in mitigating architectural knowledge vaporiszation 

[Ali Babar et al., 2009]. While the field of architectural knowledge (AK) management can be 

traced back to the early 90's and has resulted in a range of models, approaches, and 

research tools the cost of capturing relevant knowledge has been a significant barrier to 

widespread adoption. Critical to architectural sustainability is capturing decision viewpoints 

and their rationale as first-class elements of architectural descriptions. The ability to 

understand architectural design decision is crucial for the evolution of the system in 

measuring how sustainable the AK is during architectural changes and can provide an 

estimation of the maintenance and documentation effort needed when new requirements 

trigger new decisions. 

5. Metrics to Estimate Sustainability 

The potential loss of quality of a system must be estimated using appropriate indicators and 

metrics that can smell that the quality is decreasing during evolution cycles. The appearance 

of the different dimensions of technical debt [McConnell, 2007] [Fowler, 2009] as a quality 

indicator of suboptimal design decisions and coding practices, led software developers to 

keep this debt under control [Letouzey, 2012] to reduce the remediation cost of technical 
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debt management. Therefore, we need to discover the root and sources of the debt 

[Kazman, 2015] and those "hot-spots" [Mo, 2015] in long-living systems to be able to 

measure software sustainability both in architecture and code [Le, 2016]. A number of 

approaches have investigated modularity metrics as an indicator of technical debt [Liang, 

2014], but many more quality attributes are often affected when the debt is not repaid. In this 

section our intention is not to provide an extensive list of the plethora of metrics that could be 

used individually or be combined to address sustainability or other quality indicators, but to 

highlight the different types of metrics according to different quality goals that could be 

chosen to estimate technical sustainability from different perspectives and abstraction levels. 

Code and architecture metrics: Software metrics used to estimate the quality of systems 

by examining defects in source code are the most popular approaches to identifying ―code 

smells‖ and increasing the maintainability of system [Briand, 1993]. However, there is a 

plethora of code metrics that can be used to estimate different types of defects and bad 

programming practices affecting important quality attributes such as complexity, 

maintainability, and reusability etc. Metrics that are employed to estimate the complexity, 

coupling, cohesion and dependencies between modules are commonly combined to provide 

meaningful indicators on the quality of code and to estimate the technical debt ratios.  

Koziolek et al. [2011] suggested a number of more than forty metrics that could be used to 

estimate software sustainability of software architecture including evolution concerns. 

Further work by Koziolek et al. [2013] limited the number of metrics to twelve. Garcia et al. 

[2009] introduced the concept of ―architectural bad smell‖ (i.e., an anti-pattern or inadequate 

design practice that violates a well-established design principle) exemplified by anti-patterns, 

architectural mismatch, defects and code smells that impact on the quality of designs, 

detailing four of these architectural smells as a class of cumulative design problems that lead 

to architectural refactoring. Studying the evolution of architectural decay is a primary concern 

for the maintainability of systems, as highlighted by the study with open source systems 

described in Le et al. [2015].  

  

Architecture knowledge metrics: Metrics to estimate the sustainability of architectural 

knowledge and the design decisions captured is still an emerging area of research where 

only a small number of metrics have emerged. For example, Zimmermann [2015a] suggests 

counting the number of design problems solved and the number of options considered per 

problem as an architectural decision metric. A more elaborate version was suggested by 

Capilla et al. [2017] who proposed a taxonomy of quality attributes and metrics for 

maintaining and evolving the design decisions with sustainability in mind. They state that 

complexity of the decision networks can help to estimate its sustainability based on the 

granularity of the design decisions and the number of traceability links among them. They 

also suggest the estimation effort for capturing AK items, such as the results of the study 

described in Section 4 [Carrillo, 2017], as another form to compute how much AK should be 

captured to make the set of design decisions sustainable during maintenance and evolution 

cycles. Finally, metrics to compute the impact of changes in the design decisions are based 

on ripple effect, instability and change-proneness metrics [Ampatzoglou, 2015]. For 

example, Ampatzoglou et al. [2015] use instability and change-proneness metrics to 

estimate the stability of design patterns (i.e. stability in this context is defined as the 

resistance of a software system to the ripple effect), where the resistance of classes to 

changes helps to determine the stability of the classes participating in a change. These early 
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attempts at the estimation of the sustainability of AK highlight that this is an open and fruitful 

area of research. 

  

Aggregated metric sets: A combination of metrics often has a more significant impact to 

provide more accurate quality indicators when we estimate the sustainability of the system‘s 

architecture. For instance, in a renewed study, Koziolek et al., [2015] categorise software 

metrics ranging from modularisation to volatility with their potential to impact on estimating 

architecture sustainability. Similarly, Le et al., [2016] suggest other combinations of metrics 

and introduce three new metrics (i.e., BDCC: Bi-Directional Component Coupling, ASD: 

Architectural Smell Density, ASC: Architectural Smell Coverage) to understand technical 

sustainability and estimate when architecture start to erode or decay. They state in order to 

relate architectural qualities and smells, the combination of Concern Diffusion over 

Architectural Components (CDAC) with Component-level Interlacing Between Concerns 

(CIBC) metrics is suitable to estimate the scattered parasitic functionality as a concern-

based issue for maintenance, which has a definite impact on modifiability and reusability. 

However, one of the challenges is to find out which combination of metrics provides more 

meaningful indicators, as some tools only offer coarse-grained indicators about technical 

debt and other quality properties. 

  

As an overview of metrics that could be potentially be used to estimate and understand the 

sustainability of systems at different levels of abstraction, we summarise a representative 

number of these metrics that can be combined or used in isolation to relate the qualities 

desired with the smells in Table 1. This classification is based on previous work [Koziolek, 

2011; Koziolek et al., 2013; Le, 2016; Capilla et al., 2017], which summarises the seminal 

work on architecture level metrics. The information in Table 1 can serve as a guide on which 

metrics to combine in order to evaluate a particular quality attribute that may help to estimate 

technical sustainability. However, we do not provide specific relationships indicating which 

concrete metrics measure each particular quality attribute. It should be noted that conflicts 

between different metrics are not discussed in this table. 

 

Table 1: Overview of software metrics that can be used to estimate architecture sustainability. 

Architecture level metrics 

  Smells Metrics Quality 

attributes 

Maintenance 

  

  

  

  

Smells about ambiguous and unused 

interfaces, when functionality of modules 

are rather small or big and those smells 

concerning delegation of functionality 

Module interaction index, Attribute 

hiding factor, API function usage 

index, Module Size Uniformity 

Index, Module Size Boundedness 

Index 

Complexity, 

Modularity [Mitchell 

2006], Analyzability, 

Effectiveness, 

Understandability 

Smells that effect to duplicate functionality 

and coupling between components 

Clone detection, Coupling between 

object, Ratio of cohesive 

interaction, Modularization Quality 

Reusability, 

Complexity, 

Modifiability, 

Modularity 
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Smells where multiple components realise 

the same concern or a component 

implements an excessive number of 

concerns. Therefore, we can identify 

components with a suitable percentage of 

methods 

Concern diffusion over 

architectural components, 

Component-level interlacing 

between concerns, Number of 

concerns per component, Well-

sized Methods Index 

Reusability, 

Modifiability, 

Understandability, 

Modularity 

We identify components with an excessive 

number of dependencies, cyclic 

dependencies and dependencies that 

crosscut layers 

Cyclic dependency index, API 

function usage index, Layer 

Organization Index, Cumulative 

component dependency, 

Excessive structural complexity 

Modularity, 

Understandability, 

Changeability 

Modifiability 

Other cross-cutting smells affecting any 

part of the architecture 

Architectural smell coverage 

Architectural smell density 

Cost 

Evolution 

  

Elements that change too often, Number of 

elements impacted by a change 

Instability, Ripple effect, Distance 

from Main Sequence, Module 

Interaction Stability Index 

Stability, 

Evolvability 

Likelihood of components that evolve 

together 

Bi-directional coupling component Complexity, 

Evolvability 

Architecture knowledge level metrics 

Maintenance 

  

Excessive number of decisions and trace 

links 

NodeCount, EdgeCount Complexity, Stability 

Too many AK ítems and decision 

alternatives 

Cost of AK capturing effort Cost 

Evolution A change impact on many decisions Ripple effect, instability, change 

proneness 

Changeability, 

Stability 

Obsolete decisions and frequent changes Decision volatility Timeliness 

  

6. Sustainability in Academic Research and Practice 

In addition to the increasing dependency of modern society on software in general, it also 

now plays a critical role in the advancement of knowledge, with the paradigm shift in 

research towards large-scale, data-intensive computational science and engineering [Hey, 

Tansley, and Tolle, 2009]. Software's increasing importance in the field of research has led 

for calls for it to be classified as a first-class, scientific instrument [Goble, 2014; Allen et al., 

2017; Crick et al., 2017]. While Hettrick et al., [2014] demonstrated the importance of 

software in research -- 59% of respondents claimed that software was fundamental to their 

research -- the study highlighted that 56% of researchers developed code with 21% of them 

having no training in software development. As a result, this raises serious questions 
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regarding the overall quality of the software per se, the potential implications on the reliability 

and validity of the research output, as well as the sustainability of essential codebases 

critical to the research communities. 

 

The use of metrics to estimate software architectural sustainability serves to highlight the 

presence of a range of underlying issues. The correct use and interpretation of these metrics 

- and subsequent identification and resolution of the causes of sustainability problems - 

requires appropriate knowledge and expertise in developing useful and usable software 

artefacts. Progress in scientific research is dependent on the quality and accessibility of 

software at all levels, and it is now critical to address the variety of challenges related to the 

development, deployment, and maintenance of reusable software. Despite significant and 

continuing efforts across academia, from undergraduate students through to senior 

academics and research leaders, to draw attention to the importance of developing and 

maintaining software that underpins a growing proportion of the research base, there is 

increasing recognition that a lack of software development skills exists in the education and 

research pipeline that needs to be addressed [Brown et al., 2014; Murphy et al., 2017].  

 

A critical issue in research is that methods used to generate research output are required to 

continually adapt to an evolving research agenda, potentially discipline-specific, where new 

hypotheses are generated and subsequently tested. Thus, the software that underpins that 

research is consequently required to evolve with that agenda. This continual change 

presents a significant challenge to developing sustainable software in itself, and one that is 

exacerbated by a lack of relevant education, skills and professional development for 

researchers. However, issues of sustainability, or indeed architecture sustainability and 

associated metrics and dimensions, are rarely encountered or highlighted as important 

factors for developing useful and usable software. What is required is a partnership between 

researcher and software experts, to ensure that the software not only meets its initial 

research requirements but can evolve as those requirements change over the lifetime of a 

research project. 

 

The emergence of international community-driven initiatives such as WSSSPE5 (Workshop 

on Sustainable Software for Science: Practice and Experiences) promotes sustainable 

research software by addressing challenges related to the full lifecycle of research software 

through shared learning and community action have catalysed change, especially in the 

broader context of open science and research. In October 2016, a Knowledge Exchange 

Workshop on Research Software Sustainability [Hettrick, 2016] brought together key 

European stakeholders that deliver infrastructure and services for higher education and 

research, identifying five recommendations to improve the sustainability of research 

software: 

 

1. Academics must raise awareness of the fundamental role of software in research; 

2. Research software should be recognised as a valuable research object in line with 

the investment it receives and the research it makes possible; 

3. Funders should use their position to promote software sustainability; 

                                                
5
 http://wssspe.researchcomputing.org.uk/  



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

19 

4. Skills related to software sustainability must be embedded in the research 

community; 

5. The creation of organisations (centralised or distributed) to act as focal points for 

software sustainability expertise. 

 

A number of initiatives have emerged to address some of these issues such as Software 

Carpentry, which aims to teach the fundamental computational skills to doctoral and 

postdoctoral researchers to fill this skills gap [Wilson, 2016]. Founded in 1998, Software 

Carpentry has evolved from a US National Laboratories course into a global volunteer-based 

effort, which focuses on practical two-day courses teaching attendees task automation, 

program design and version control, along with techniques that are considered standard 

practice in the software industry. Similarly, in 2014 the increasing need for researchers to 

improve their skills in managing and analysing data led to the development of Data 

Carpentry, a sibling organisation that adopts the same two-day course approach, but 

focused on research data. These initiatives have met with significant demand and uptake 

worldwide (for example, 400 workshops for over 12,000 researchers between January 2013 

and July 2015) and have made notable gains in addressing the lack of skills endemic within 

the research community. However, these are retrospective initiatives to address a problem 

that -- in the longer term -- should ideally be handled much earlier in the career path of 

researchers and practitioners. We, therefore, need to consider education and skills 

development, especially for undergraduate students across computational science and 

engineering disciplines. 

 

The issue of recruiting software expertise in academia is further exacerbated through a 

‗hotchpotch' of different solutions that have been developed to meet the disparate needs of 

local human resources and finance departments, university culture and restrictions from 

funders' [Hettrick 2016]. The lack of a formal career path -- with software experts associated 

with careers unrepresentative of their work -- makes it difficult to recruit and retain such 

valuable staff. In the UK, a powerful disincentive to employ software experts is that they do 

not attract overheads on funding bids, so universities are unable to recover the full economic 

cost for such positions. In addition, funder review panels are biased against recruiting 

software experts over "traditional" researchers. In turn, this leads to a lack of these experts 

in senior roles that would function to raise recognition of the role and effect cultural and 

institutional change [Brett et al., 2017]. Thus, what is needed is a recognised career path for 

these Research Software Engineers (RSEs), which would enable overheads to be recouped 

and their efforts gauged against metrics appropriate to their role (as opposed to just 

publications). This would also raise awareness and recognition for the role, and help 

persuade review panels of the legitimacy of recruiting software experts. A supported 

recruiting, and retention process would increase access to skills fundamental to modern 

research while improving the sustainability and reproducibility of the software that underpins 

that research. Research software Engineering is far from a niche community: the RSE State 

of the Nation report [Brett et al., 2017] estimates there are between 1,000-14,000 RSEs in 

the UK, although it was acknowledged that due to software experts being ‗hidden' in other 

roles, an upper limit is hard to estimate. 

 

Beyond support for the RSE role itself, support from institutions is needed for their activities. 

To address this need, a new model for organising university software expertise has 
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emerged: the Research Software Group. Different research groups will have different 

requirements for software development, so recruiting a permanent Research Software 

Engineer within that group is not the answer for every situation. Where larger researcher 

groups with a high degree of software development may employ many RSEs, those small 

groups with requirements for less development may seek to use such expertise on a short-

term basis only, or leverage the expertise of centralised groups of these engineers. Thus, 

Research Software Groups permanently employ RSEs who collaborate with researchers. 

Through funding a core capability and leadership team via top-slicing research funding, 

additional RSEs are then funded through paid-for services. This model allows the group to 

develop and grow over time. University College London pioneered this model, and over a 

five-year period has grown its team from three centrally funded posts to six grant-funded 

posts. Other research software groups have subsequently emerged internationally across 

institutions and universities6. 

 

More broadly, there is the need for national support for research software communities. 

Founded in 2010, the Software Sustainability Institute is a partnership of the universities of 

Edinburgh, Manchester, Oxford and Southampton [Crouch, 2014]. Initially funded by the 

UK's Engineering and Physical Sciences Research Council (EPSRC), its second phase of 

funding in 2015 has also attracted funding from two other UK research funding councils, 

namely the Biotechnology and Biological Sciences Research Council (BBSRC) and the 

Economic and Social Research Council (ESRC). The establishment of an institute highlights 

the growing recognition and support for cultivating sustainable software development across 

a range of academic disciplines in the UK, which was the first country to invest in such an 

organisation. EPSRC is also supporting the community and role of RSEs through a number 

of Research Software Engineer Fellowships, starting with a pilot call in 2015 and investing 

up to £3m for five-year Fellowships, awarded to "exceptional individuals with combined 

expertise in programming and a solid knowledge of the research environment‖7. This 

fellowship scheme has led to the formation of new RSE groups at the Universities of 

Sheffield and Bristol. 

 

The Software Sustainability Institute is organised into five teams, to address the broad issue 

of software sustainability within the UK. In addition to a Communications team, the 

Community team runs workshops and a fellowship programme. The Training team runs 

training events and is the UK administrator for Software and Data Carpentry workshops. The 

Policy team investigates community issues related to software and runs campaigns to raise 

awareness and solve these issues. The Software team helps to assess and improve 

research software and practices directly. Given the scale of potential work in the area of 

software improvement, the Software team periodically runs an "Open Call for Projects" which 

reviews and prioritises applications for selection, with a key criterion being the potential 

benefit to the broader research community. The assessments take the form of a software 

evaluation, which analyses the software itself, the use of development and operational 

infrastructure, and the processes used to develop the software and manage that 

development, and is supplied as an experience-based report of observations and 

recommendations for improvement. An analysis of the areas in which the Software team 

                                                
6
 http://rse.ac.uk/community/international-rse-groups/  

7
 https://www.epsrc.ac.uk/funding/calls/rsefellowships/  
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assisted with Open Call projects from May 2013 to October 2015 is shown in Figure 7, 

representing a total of 19 projects from the first five rounds of the Institute's Open Call. 

 

 
Figure 7: Areas that the Institute Software team assisted with Open Call Projects that were 

undertaken from May 2013 to October 2015 

 

These results are typical of the issues commonly highlighted by the research community8, 

and serve to reinforce the core cultural and technical problems already identified: namely, 

the need to address the lack of skills in the areas of research software development, 

deployment (and subsequent use), and maintenance of reusable software. As previously 

highlighted, there is a relationship between architectural issues and other problems, such as 

code maintainability, modifiability (in part, extensibility), and system evolution (which is 

related to many of these areas). However, looking at architecture directly, aside from 

aspects of process and supporting infrastructure (i.e. development processes, code 

management and community engagement), and focusing on areas of improvement that 

relate to the technical properties of the software, we can see that software architecture 

features within the top five assistance areas, featuring as an issue in over a quarter of 

projects. 

 

Beyond the Software team, the Institute‘s Policy team has campaigned to raise awareness 

of the RSE role and formed a community of RSEs that became the UK RSE Association9. 

Launched in 2014, the Association is a democratic organisation that campaigns for ‗the 

recognition and adoption of the RSE role within academia along with the need for 

appropriate reward and career opportunities for RSEs‘. The RSE State of the Nation report 

[Brett et al., 2017] indicates there are 780 RSE Association members as of February 2017. 

 

Finally, the Knowledge Exchange workshop report [Hettrick, 2016] highlights that other 

models to approach national support for sustainability exist, e.g. in the Netherlands, an 

                                                
8
 Note that 'funding' in this figure refers to help provided by the Software team to projects concerning 

how to fund specific development tasks, not the much broader community issue of how to fund RSEs 
9
 http://rse.ac.uk/ 
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approach involving shared responsibility across the DANS10 and SURFsara11 centres are 

being considered. The report also highlights broad agreement at the workshop for an EU-

level organisation that should be investigated, acting as an ‗umbrella group that shares 

expertise across national organisations and campaigns for software sustainability at an EU 

level‘. The impact of the various national and international community initiatives have 

catalysed awareness and cultural change of software sustainability within and outside of 

academia, permeating into broader professional and industrial practice through new models, 

methodologies and metrics. However, there is still significant work to be done, particularly for 

software architecture sustainability, as well as building stronger translation, adoption and 

embedding of academic research into real-world practice. 

7. Outlook and Future Directions 

Modern societies are dependent upon complex software systems that operate continuously 

in highly connected and distributed ecosystems with emergent behaviour, that are difficult to 

change (i.e. brittle), and tend to break in multiple places when a single change is made (i.e. 

fragile). This environment results in challenging requirements for availability, resilience, and 

sustainability. As a result of changing stakeholder requirements, software systems are the 

product of accidental complexity that presents significant challenges with regards to 

maintenance and evolution. While Brooks [1986] argues that complexity is an essential 

property of software it should not be accidental; this presents significant challenges and 

threats to ensure the dependability and longevity of software systems. 

 

The concept of sustainability has emerged as a growing area of interest in the field of 

software engineering to address the challenges of designing software systems that can 

endure. This raises the question, what is the most efficient and effective method or approach 

for managing change and evolution regarding a software system? Sustainable software 

requires a solid foundation that allows efficient and effective maintenance and evolutionary 

change over its entire life-cycle. Software architectures are the foundation of any software 

system and provide the mechanism for reasoning about key software quality attributes. 

Moreover, it is essential to understand and, if needed, minimise the effects software systems 

under design have on their socio-technical environment over time.  

 

This article argues that software architectures are fundamental to the development of 

sustainable software since they manifest the major design decisions that determine a 

system's initial development and deployment and its evolutionary change. The rationale for 

this position is that successful software systems development and evolution is highly 

dependent on making informed decisions at the architectural level, as the architecture is the 

primary carrier of system qualities such as maintainability, modifiability, reusability, portability 

and scalability etc. None of these can be achieved without a unifying architectural vision. 

Software architectures strongly influence sustainability, because they affect how developers 

can understand, analyse, extend, test and maintain a software system. As a result, software 

architectures the blueprint of how the software system will be built; they hold the key to post-

deployment system understanding, maintenance, and evolution. This suggests that software 
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architectures are fundamental to achieving software sustainability if they can be cost-

efficiently maintained and evolved over their entire life-cycle. Since its inception as a 

discipline, the field of software architectures has implicitly focused on the concept of 

sustainability. However, in the last decade research has increasingly focused explicitly on 

the concept of architectural sustainability.  

 

It is argued that sustainability should be an explicit consideration in the design of a system, 

even when the primary purpose of the software system is not sustainability [Becker et al., 

2014]. The principal aim of this paper was to explore emerging work to provide the 

theoretical foundation to support this position by examining some of the recent trends in 

software engineering and software architectures in relation to the concept of sustainability.  

 

The primary focus of research in the field of software engineering with regards to 

sustainability has focused on reference models to develop sustainable software and 

approaches for evaluating sustainability. At their heart are a set of metrics that measure the 

degree to which a software system exhibits some property and are widely considered as an 

approach to achieving higher quality software. However, a plethora of software metrics have 

been proposed to estimate code complexity including cyclomatic complexity, Halstead 

metrics, source lines of code (SLOC), Fagan inspection, defect counting, etc. which has 

resulted in a software quality "quagmire" [Voas and Kuhn, 2017]. 

 

Considered as a broader quality attribute, architecture sustainability can unfold in other 

quality attributes including maintainability (i.e. analyzability, stability, testability, 

understandability), modifiability, portability, and evolvability. We suggest that at the very 

minimum, software sustainability should address two core quality attributes: maintainability 

and extensibility. However, to what extent existing metrics and measures of the quality 

attributes defined within existing standards are appropriate for measuring a software 

artefact's technical sustainability is an open research question that provides further avenues 

for research. Similarly, a number of architecture-level metrics have also been proposed to 

estimate and understand the sustainability of systems at different levels of abstraction. 

However, many were based on plausibility and had yet to be systematically validated. A key 

issue in assessing the value of software metrics is whether they support decision-making. As 

a result, which are the most appropriate architectural-level metrics to analyse the 

sustainability of software architectures is an open research question. In addition, how to 

make software sustainable both in terms of the software artefact, the development process, 

and how these relate to the wider concerns of environmental, economic, social, individual, 

and technical sustainability remains an open area of research.  

 

Architectural-level code metrics frameworks have led to an improvement in the overall code 

quality at the design level because measurement instruments are in place. This suggests 

that while software maintenance remains a challenge, assessments can be conducted with 

limited effort through regular assessment code can be enhanced through refactoring to 

achieve improved sustainability. Nevertheless, further work is required to correlate software 

maintenance costs with the architectural metrics to enable quantitative cost-benefit analysis. 

Similarly, while a number of existing methods exist to assess sustainability, they do not 

provide sufficient support for the systematic analysis of ripple effects, or the integration with 
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reverse engineering tools and knowledge management support. How this can be achieved in 

practice is an open research area. 

 

One approach to designing software architectures that are sustainable is adherence to 

established design principles enshrined in reference architectures, which embody the 

wisdom of reusable architectural knowledge of key design decisions and provide a common 

vocabulary and template solution for an architecture for specific domains or a family of 

software systems. As a consequence, significant benefits could be achieved, including a 

reduction in the cost and effort related to software maintenance and evolution. An open 

research issue is how to re-architect existing reference architectures for sustainability, which 

will subsequently affect the sustainability of derived architectures. A key factor in the 

continued long-term existence of reference architectures is that their communities sustain 

them. However, despite their apparent value in providing a foundation for the design of 

derived systems architectures the significant increase in the amount of documentation of 

new versions presents a considerable threat to their adoption by the wider community.  

 

As the foundation of software systems, software architectures encompass the architects‘ and 

stakeholders‘ strategic decisions, often made in unsystematic and undocumented manners. 

This can lead to architectural drift and erosion, a decrease in software quality, and in turn 

increased costs and dissatisfied stakeholders. Software architectures not only comprise a 

system‘s structure but essential design decisions based on architectural knowledge. As 

such, software architectures are the product of architectural-level reasoning and manifest 

design decisions, which strongly influence the longevity of systems and their architecture. 

How to make informed and systematic design decisions is one of the grand challenges in 

software engineering. Numerous approaches have been developed by the research 

community over the last decade in relation to Architectural Knowledge and its management, 

but these methods have not yet found widespread adoption in practice. It is suggested this 

stems from the significant and ongoing effort required to efficiently store large quantities of 

codified knowledge that can not only be difficult to manage but also to use effectively. To 

achieve sustainable architectures requires capturing significant sustainable design decisions 

and their rationale as failure to do so can lead to decision rationale erosion. A key challenge 

is how to capture a minimalistic set of salient design decisions combined with lightweight 

approaches that can succinctly reduce the documentation. How this can be achieved in 

practice is unclear and is an area ripe for research.  

 

The challenges related to the development and maintenance of reusable software for 

science and engineering are a growing concern, as many scientists' research is increasingly 

dependent on the quality and availability of software upon which their work is based. The 

development of software in the field of computational science and engineering research by a 

significant proportion of researchers with no or a minimal educational background in 

software engineering principles and practice is alarming as it raises serious concerns 

regarding the overall quality of the software per se, as well as having severe implications for 

the reliability and validity of the research output. In a number of instances, the consequences 

of poorly designed software have led to retractions of scientific papers [Miller, 2006]; it is 

essential that researchers be able to learn and adopt software-related skills and 

methodologies. While a number of initiatives exist to teach fundamental software 

engineering skills, the limited exposure to fundamental software engineering knowledge 
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cannot bridge the chasm. A key challenge is how to train and educate the broad spectrum of 

domain scientists or advance their skills to develop software that is sustainable. As such, the 

education sector as a whole has an important role to play in ensuring that software 

designers of the present and future fully understand the concept of sustainability and its 

integral relationship to the field of software engineering by bridging the chasm between 

domain scientists and software engineering theory, principles, and practice. Similarly, 

educators need to consider how to integrate sustainability into software engineering curricula 

and articulate the competencies required for successful sustainability design. A principal 

challenge is how to embed software architectural practice into software engineering best 

practice rather than viewed as a by-product of the software engineering process. This is 

particularly true of software developed in academic environments, where the concepts of 

software architectures are often merely accidental.  

 

Architecture sustainability is the capacity of a software architecture to endure different types 

of change through efficient maintenance and orderly evolution over its entire lifecycle. 

Software architectures can be considered the Quoins of sustainable software. While 

research into the relationship between software architectures and sustainability is strictly 

limited, emerging evidence suggests that the architecture plays a critical role in addressing 

sustainability in software systems. Software architectures are fundamental in understanding 

how the software system is built in the first instance; they are also essential to post-

deployment system maintenance and evolution, which in turn leads to software that is 

sustainable. Garlan [2000] declared that while the field of software architectures had 

experienced considerable growth over the past decade in developing the technological and 

methodological base for treating architectural design as an engineering discipline much 

remained to be done. Today, the changing face of technology presents a number of new 

challenges for the field of software architecture. This article provides a foundation of 

emerging research themes in the area of sustainable software architectures highlighting 

recent trends, and open issues and research challenges. 
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