

University of Huddersfield Repository

Patricio, Joao, Angelis-Dimakis, Athanasios, Castillo-Castillo, Arturo, Kalymkova, Yuliya and Rosado, Leonardo

Prioritizing Countries and Regions for Carbon Capture and Utilization in Europe

Original Citation

Patricio, Joao, Angelis-Dimakis, Athanasios, Castillo-Castillo, Arturo, Kalymkova, Yuliya and Rosado, Leonardo (2017) Prioritizing Countries and Regions for Carbon Capture and Utilization in Europe. In: ISIE-ISSST 2017: Science in Support of Sustainable and Resilient Communities, 25-29 June 2017, University of Illinois at Chicago.

This version is available at http://eprints.hud.ac.uk/id/eprint/33700/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Innovation Hub Partner Network Market Developer ENCO₂RE =

Region prioritization for development of CCU technologies

João Patrício^{1,}, Athanasios Angelis-Dimakis², Arturo Castillo-Castillo², Yuliya Kalmykova¹, Leonardo Rosado¹

¹Chalmers University of Technology, Gothenburg - Sweden ²Imperial College London, London - UK

Climate-KIC is supported by the EIT, a body of the European Union

Urban Metabolism Group

Architecture and Civil Engineering, Chalmers University of Technology

Yuliya Kalmykova Associate Professor, group director

Leonardo Rosado Assistant Professor

Per Berg Senior Researcher

João Patrício PhD candidate

Alexandra Lavers PhD candidate

Svetlana Obydenkova PhD candidate

Paul Gontia PhD candidate

Introduction:

- European Union aim to reduce the levels of the Greenhouse Gas Emissions (GHG) at least by 80-95% below the values from 1990 by 2050 (European Roadmap for 2050);
- Carbon Capture and Utilization (CCU) has been rapidly developing worldwide during the last decade from pilot and demonstration plants to full scale projects;
- CCU can play an important role in the future not only to reduce the CO₂ emissions but also to create valuable products.

<u>Gap:</u>

Necessary to identify and prioritize regions to develop CCU technologies. The last can be done by identifying regions where both CO₂ sources and industries already co-exist.

Methodological framework

CO₂ Availability

ENCO₂RE =

Figure 1: CO₂ availability

- 1,913 Mt CO₂ were emitted in 2012 at a European level by 2,215 stationary industrial sources.
- Thermal power stations (50% weight), oil and gas refineries (7%) and production of pig iron or steel (5%) were the more CO₂ intense sectors.
- The majority of the emissions occurred in Germany (454.6 Mt CO_2), United Kingdom (221.2 Mt CO_2), Poland (192.3 Mt CO_2) and Italy (154.1 Mt CO_2).

Figure 1: CO₂ availability

- 1,913 Mt CO₂ were emitted in 2012 at a European level by 2,215 stationary industrial sources.
- Thermal power stations (50% weight), oil and gas refineries (7%) and production of pig iron or steel (5%) were the more CO₂ intense sectors.
- The majority of the emissions occurred in Germany (454.6 Mt CO_2), United Kingdom (221.2 Mt CO_2), Poland (192.3 Mt CO_2) and Italy (154.1 Mt CO_2).

Figure 2: CO₂ availability at regional level

How CCU Technologies were selected?

Nine selected technologies:

Industrial Process	Type of use	TRL	Conversion Factor
Lignin Production	CO ₂ used in black Liquor pH regulation	8-9	$0.22 \text{ tCO}_2 \text{ per t of lignin produced (Manninen 2010); (Tomani et al. 2011)}$
Methanol Production	Electrochemical reduction of CO ₂ .	7-9	1.3 tCO $_2$ per t of methanol produced (Van-Dal and Bouallou 2012)
Polyurethane Production	CO ₂ used as raw material to produce plastics and fibers	7-9	0.1-0.3 tCO2 per t of polyols (Stute, 2015)
Polycarbonate Production	CO ₂ used as raw material to produce plastics and fibers	7-9	0.43 tCO ₂ per t of PPC produced (Demire 2015)
Concrete Curing (Concrete blocks)	CO ₂ used for precast concrete curing	7-8	0.03 tCO ₂ per t of block produced
			0.12 tCO ₂ per t of precast concrete (El-Hassan and Shao 2014)
Mineral Carbonation	CO ₂ reacted with calcium or magnesium containing minerals	7-8	0.25 tCO_2 per t of steel slag (Huijgen et al. 2005)
Bauxite Residue Carbonation	CO ₂ is used to neutralize bauxite residues	9	0.053 tCO_2 per t of red mud (Yadav et al. 2010)
Horticulture Production	CO2 supplementation on plant growth	9	0.5–0.6 kgCO ₂ /hr/100m ² (Blom et. al, 2009)
			160 tCO ₂ per ha (for tomatoes in Sweden) (Jordbruksverket, 2007)
Urea production	Urea production from ammonia and CO ₂	9	0.46 tCO ₂ per t of precast urea (Hignett 1985)

Example:

*Source:Van-Dal and Bouallou 2012

CCU in European Union 28 at country Level

Figure 3: CO₂ utilisation at country level

Industrial Process	CO ₂ Utilization (Mtpa)
Concrete curing	22.5
Horticulture production	22.0
Lignin production	8.4
Mineral carbonation	5.3
Polyurethane	4.7
Polycarbonate Production	4.3
Urea	3.9
Methanol	1.5
Bauxite Residue Carbonation	0.2

TOTAL: 68.4 MtCO₂ 3.6% of total CO₂ emissions

Countries Prioritization:

 $ENCO_2RE =$

- The amount of available CO_2 is greater than the potential for CO_2 utilization in all countries.
- Germany, UK, France, Belgium, Poland, Italy, Spain, Sweden and Norway are the countries with more potential for the development of CCU partnerships.

(eit) Climate-KIC

Regions prioritization

- Six most promising regions: Dusseldorf and Cologne (Germany), Antwerp Province and East Flanders (Belgium), Cataluña (Spain) and Śląskie (Poland).
- Other promising regions: Łódzkie (Poland), Etelä-Suomi and Helsinki-Uusimaa (Finland), Lombardia (Italy) and Södra Sverige (Sweden).

eit Climate-KIC

- The annual amount of CO₂ released by industrial sources in Europe was approximately 1,900 MtCO₂ while the potential utilization could reach 68 MtCO₂, based on nine selected technologies, which represents 3.6% of the total amount of CO₂ available.
- The study has shown that the countries with the largest emissions also have the highest potential for utilizing the CO₂, with Germany, United Kingdom and France being the most promising followed by Spain, Italy and Poland.
- A more detailed analysis has also revealed several regions where CO₂ reuse schemes could be developed. The majority of them are located in Central Europe (Germany, Belgium and Poland) and Scandinavia (Sweden and Finland).
- These regions may take advantage of the available resources as well as technologies to increase the industrial production and decrease the dependence on fossil fuels based materials while simultaneously decreasing the net CO₂ emissions, by recycling CO₂ in the same region.

Future work at regional level

Regions Prioritization

Top down approach

Statistical Data

Total amounts

Future work at regional level

Example – Obtained results Algae production

Climate-KIC

18

22.06.17

ENCO₂RE =

Innovation Hub Partner Network Market Developer

Questions?

Thank you!

Climate-KIC is supported by the EIT, a body of the European Union