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Abstract—Bearings have been inevitably used in broad 

applications of rotating machines. To increase the efficiency, 

reliability and safety of machines, condition monitoring of 

bearings is significant during the operation. However, due to 

the influence of high background noise and bearing 

component slippages, incipient faults are difficult to detect. 

With the continuous research on the bearing system, the 

modulation effects have been well known and the 

demodulation based on optimal frequency bands is approved 

as a promising method in condition monitoring. For the 

purpose of enhancing the performance of demodulation 

analysis, a robust method, ensemble average autocorrelation 

based stochastic subspace identification (SSI), is introduced 

to determine the optimal frequency bands. Furthermore, 

considering that both the average and autocorrelation 

functions can reduce noise, auto-correlated envelope 

ensemble average (AEEA) is proposed to suppress noise and 

highlight the localised fault signature. In order to examine 

the performance of this method, the slippage of bearing 

signals is modelled as a Markov process in the simulation 

study. Based on the analysis results of simulated bearing fault 

signals with white noise and slippage and an experimental 

signal from a planetary gearbox test bench, the proposed 

method is robust to determine the optimal frequency bands, 

suppress noise and extract the fault characteristics. 

Keywords—bearing; fault detection; auto-correlated 

envelope ensemble average; SSI 

I. INTRODUCTION 

Bearings play an important role in the field of rotating 

machinery and the failure of bearings may result in the 

breakdown of machines or even catastrophic accidents. In 

order to maintain the efficiency, safety and reliability of 

machines, application of condition monitoring (CM), 

accessing the health condition of machines by periodic 

monitoring, is effective to prevent failure and avoid its 

consequences. With the continuous investigation of the 

bearing system, the high frequency resonance technique 

(HFRT), later called ‘‘envelope analysis’’, was developed 

[1] owing to the outstanding ability of the good resolution 

after the frequency shift from high carrier frequency bands 

to low fault frequency bands. Since the technique of high 

frequency demodulation was introduced by Darlow, 

plenty of research has been explored to make 

demodulation analysis[2]. As Antoni [3] studied spectral 

kurtosis (SK) thoroughly, Fast Kurtogram [4] based on 

short-time fast Fourier transform (STFT) and wavelet 

transform (WT) has been developed and explored by many 

researchers[5], [6]. Gu [7] introduced modulation signal 

bispectrum (MSB) to identify and quantify the common 

faults of a compressor. Tian [8] and Rehab [9] verified 

modulation signal bispectrum (MSB) with high 

performance of robustness to detect the optimal bands and 

bearing faults even though the signal-to-noise ratio (SNR) 

is very low. 

System identification techniques have been employed 

to thoroughly understand the dynamics of bearings. A 

series of models [10]–[14] were developed to simulate the 

vibration of bearings with local defects. Based on the 

understanding of the outputs and inputs, the determination 

of the proper frequency bands is the identification of the 

natural frequencies. Therefore, the system identification 

methods can be used to choose the carrier frequencies 

automatically and SSI, using output-only vibration 

measurements, has attracted numerous researchers for 

decades and the real breakthrough of SSI algorithms is 

introduced in [15]. Continually, a reference-based 

covariance driven SSI was generalised by Peeters and De 

Roeck [16]. Then, improvements and expansion[17]–[20] 

on this algorithm have been carried out. In this paper, a 

novel method, ensemble average autocorrelation based 

stochastic subspace identification (SSI) was developed to 

automatically select the optimal bands according to the 

characteristics of modulation signals. 

Usually the phase information of vibration induced by 

rotating machines is constant with the shaft rotating but the 

impulsive behaviours of rolling element bearings with 

localized defects are approximately periodic owing to the 

randomly varying slippage[5], [21]. Assuming that there is 

no slippage between components, theoretical fault 

frequencies of bearings with different faults are calculated 

by the impacts on the corresponding components. 

This paper is supported by China Scholarship Council. 

Proceedings of the 23rd International Conference on 
Automation & Computing, University of Huddersfield, 

Huddersfield, UK, 7-8 September 2017 



However, a slight slippage of 2% happens in the practical 

working conditions[21]. In this paper, the effect of 

slippage between bearing elements is also explored in the 

simulation study. To address the problem, an auto-

correlated envelope ensemble average (AEEA) method is 

developed to tolerate the slippage of the bearing 

components. 

This paper is arranged as follows: the second section 

mainly introduces the novel method; next, a vibration 

signal induced by a rolling element bearing with a local 

defect is simulated and the noise-free signal with high-

level noise and randomly phase is used to examine the 

performance of the proposed method; in the third portion, 

the bearing tests are presented and the novel method is also 

employed to extract the fault signature from the 

experimental signals; and lastly the conclusion is made to 

highlight the performance of the method in the field of 

denoising and fault detection. 

II. AUTO-CORRELATED ENSEMBLE AVERAGE BASED 

STOCHASTIC SUBSPACE IDENTIFICATION 

Vibration from a bearing with defects is usually of 

amplitude modulation signal [10]. This is resulted from the 

interactions between the periodical impulses and system 

resonances. However, the signal often submerged in 

various noises such as measurement systems and nearby 

vibration sources. Especially, when the fault is at its early 

stage, the modulation feature is very small and make it 

difficult to detect. Therefore, effective noise reduction 

methods are required to enhance the modulation features. 

The authors suggested [22] to use the autocorrelation 

ensemble average which is applied to the filtered signals 

for noise and aperiodic interference suppression and 

allows an implementation of higher sensitivity and 

robustness detection of small bearing faults.  

A further study shows that the bearing vibration signals 

could also consists of phase modulation noises. Although 

rolling bearings are designed to operate under pure rolling 

process for reducing frictions between raceways and 

rolling elements, it enviably undergoes small relative 

sliding between the races and elements because of various 

random impacts, load variations, local deformations and 

lubrication status changes. In addition, the sliding may 

become more obvious when bearing radial clearances 

become larger with service life time when the bearing is 

more likely to start local fatigue defect. This small sliding 

causes random variations between the periods of impulses 

and exhibits as phase modulations, leading to a lower 

signal to noise ratio. 

In order to enhance the robustness of system 

identification, the auto-correlated envelope ensemble 

average is considered to be the inputs instead of the raw 

vibration signals [22] and the following procedure is 

referred to the conventional covariance driven stochastic 

subspace identification. Hence, ensemble average 

autocorrelation [23]–[25] based stochastic subspace 

identification [18], [26]–[28] (EAAC-SSI) is employed to 

supress noise and determine the optimal band for 

demodulation analysis and the main steps of the method 

are shown in the first portion of Fig. 1. 

Based on the optimal frequency bands selected by the 

novel method automatically, the filtered vibration signal is 

then divided into short segments with the same length. 

Then, the envelope of the segments are obtained by Hilbert 

transform. As autocorrelation is able to enhance the 

periodic impulses [29] and the white noise decays to zero 

quickly [30], the autocorrelation function is employed to 

supress noise and detect faults. Hence, the autocorrelation 

functions of segment envelope are calculated. Since the 

auto-correlated envelopes of segments are acquired, the 

amplitude spectrum of the average autocorrelation of the 

envelope is computed to demonstrate the fault features. 

The procedure of the demodulation method is detailed in 

the second part of Fig. 1. 
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Fig. 1. Flow chart of EAAC-SSI and AEEA 

III. SIMULATION STUDY 

In order to examine the effectiveness of the novel 

approach, the bearing signal simulation is carried out. A 

defective bearing signal is a typically amplitude 

modulation signal [10]. The vibration signal of a bearing 

system with a local fault consists of periodical impulses, 

system resonance and noise. Hence, it can be expressed as 

equation (1). 

 ( ) ( ) ( ) ( )x t h t u t n t     (1) 



where, ( )h t  is the impulse system response, which 

consists of the system resonant behaviours; ( )u t  is 

periodic impacts induced by the rolling element passing 

the defects; ( )n t  is the inevitable noise which results 

from the working environments and the data acquisition 

system. 

It is simple to generate the modulation signal based on 

equation (1). However, the vibration including fault 

information is a phase-lock signal and it cannot indicate 

the slippage of bearings in the practical working condition. 

Additionally, the slippage between bearing components is 

a typical Markov process. Consequently, the random 

slippage at each impact is simulated and the array of 

impacts is rearranged to a Markov chain, which is 

expressed as follows.  

 
1 ( ) 1,2i i f s it t T t i N      (2) 

where, 
it  is the moment of the 

thi  impact; 
fT  is the 

cycle of impacts; and 
( )s it  is the random slippage at 

thi  

impact. 

As a result, the impact array satisfying Markov 

property is generated. According to the different level 

slippage, the bearing vibration with local faults can be 

simulated more practically. 

TABLE I.  KEY PARAMETERS 

Parameters Symbol Value 

Sampling Rate Fs  96,000 Hz 

Natural Freuency rsf  5400 Hz 

Fault Frequency ff  89.8 Hz 

Data Length t  90 s 

 

As shown in TABLE I, key parameters of the 

simulated bearing signal are listed and the waveform of the 

periodic signal is depicted in Fig. 2. As aforementioned, 

two cases--white noise and slippage--were investigated in 

the simulation study and the following contents give 

details of the results from the novel approach and the 

average spectrum of conventional envelope analysis. 

A. High level white noise 

The influence of white noise is inevitable in the 

procedure of fault detection and the ambient working 

condition of rotating machines generates large quantities 

of noise and results in the failure of incipient fault 

detection. Accordingly, the robustness of the novel method 

to the influence of high level noise is studied. 

 

Fig. 2. Typical time waveform of the simulated signal 

Fig. 2 demonstrates the temporal waveform of the 

noise-free signal and the second inset shows that the 

periodic signal with fault information is submerged by the 

high level noise at -27dB. In order to benchmark the 

proposed fault detector, the average spectrum of 

conventional envelope is employed to extract fault 

features. Based on optimal bands selected by EAAC-SSI, 

the filtered signal with bandwidth 600Hz is obtained and 

then divided into the same length subdivisions. Next, the 

envelope spectrum of each segment signal is calculated 

and finally, the average spectrum of conventional 

envelope is acquired. In order to compare the results of two 

methods, the spectra are normalized to illustrate the 

effectiveness. 

 

Fig. 3. Normalized envelope spectrum by AEEA applied to noisy 

signal 

As shown in Fig. 3, EAAC-SSI automatically 

determines the optimal centre frequency 5393.1Hz, which 

is the carrier frequency of the modulation signal and based 

on the proper frequency band, auto-correlated envelope 

ensemble average clearly highlights the fault frequency 

89.8Hz and its corresponding 3rd harmonic. However, 

conventional method fails to detect the defects even with 

the application of the optimal bands. Therefore, EAAC 



detector is more reliable and accurate than the 

conventional envelope spectrum. 

B. Random slippage 

Practically, the bearing elements (the shaft, inner race, 

rolling elements, outer race, and the housing) are not fixed 

in the motion. According to reference [21], approximate 2% 

slippage happens to lead to the randomness of the phase. 

In this section, the cyclostationary signal is simulated 

based on a Markov phase chain. 

 

Fig. 4. Random phase and frequency due to slippage 

The frequency fluctuation induced by the slippage is 

shown in Fig. 4. Owing to the occurrence of the slippage, 

the theoretical fault frequency is unstable. The simulated 

bearing vibration with slippage and noise is processed by 

two methods and the spectra are depicted in Fig. 5. 

 

Fig. 5. Normalised envelop spectrum by applying AEEA to 

slippage signal 

As the strong interference of amplitude and phase 

modulation, the EAAC-SSI fails to extract the natural 

frequencies. However, based on the optimal frequency 

bands selected manually, Fig. 5 indicates that AEEA is 

effective in fault detection of cyclostationary signals with 

high level noise at SNR of –26dB. Auto-correlated 

envelope ensemble average shows the fundamental fault 

frequency and the second harmonic while the benchmark 

one only shows the information of strong white noise. The 

ability of AEEA to resist the effects of phase modulation 

and Gaussian is still robust, whereas the average 

convention envelope spectrum shows little details about 

the fault characteristics. 

In the simulation study, the proposed method is 

employed to tackle the bearing signal with high level noise 

and high percentage of slippage and the results show that 

AEEA is a more reliable and more accurate method to 

detect the early faults. 

IV. EXPERIMENTAL EVALUATION 

For the purpose of benchmarking the novel method, 

different simulated signals were generated to be the inputs. 

As the examination is completed, an experimental signal 

from a test rig of the planetary gearbox system is acquired 

to be analysed by the novel method.  

As described in Fig. 6 (a), the test system consists of a 

motor, a two stage helical gearbox, a planetary gearbox, 

and a DC generator. Therefore, the vibration signal of the 

ball bearing from the complicated test system is 

contaminated seriously, which means the signal is 

interfered by the gear mesh, planetary motion and noise.  

(a)

DC Generator Couplings
Planetary 

Gearbox
Motor

Helical 

Gearbox

Bearing 

Location
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(b) (c)

Fig. 6. Test system and the fault bearing 

The maximum torque of planetary gearbox 

demonstrated in Fig. 6 (b) is 670 Nm and the maximum 

input speed is 388 rpm and maximum output speed is 2800 

rpm. By way of addition, Fig. 6 (c) shows the inner ring 

fault of the SKF 6008 deep groove ball bearing and the 

specifications are listed in TABLE II. 

 

 



 

TABLE II.  SPECIFICATION OF THE BALL BEARING 

Parameters Value 

Number of Balls 9 

Ball Diameter 9.53 mm 

Pitch Circle Diameter 46.4 mm 

Contact Angle 0 

 

In the experiment, the planetary gearbox operates at 

75% of its full input speed and 25% of the full load. The 

vibration is measured by a generally piezoelectric 

accelerometer with a sensitivity of 31.9 
2/mv ms  and 

frequency response ranges from 1 Hz to 10,000 Hz. The 

vibration data were logged simultaneously for 30 seconds 

by a multiple-channel, high-speed, and 24-bit resolution 

data acquisition system at 96 kHz sampling rate. 

According to the encoder signal from the end of motor and 

the transmission ratio of two gearboxes, the shaft 

frequency is 9.5344Hz and the inner race fault frequency 

based on equation (4) is 65.6 Hz under the operating 

condition. 

 1 cos
2

br

i r

c

DN
f f

D


 
  

 
 (3) 

where, 
rN  is number of balls, 

rf  is the shaft rotating 

frequency, 
bD  is the roller diameter, 

cD  is the pitch circle 

diameter, and   is the contact angle. 

As the bearing signal is collected by the data 

acquisition system, the fault detectors are applied to 

analyse the data sets. An optimal centre frequency 1339.3 

Hz is determined by the system identification technique 

and then the demodulation analysis of the filter signal at 

1339.3 Hz with the bandwidth of 1000Hz is carried out.  

 

Fig. 7. Normalized spectra of AEEA 

Fig. 7 illustrates the spectra of two modulation signals. 

In the first inset, the fault frequency 65.6 Hz and its 

harmonics can confirm the occurrence of localized defects 

on the inner ring. Besides, the second harmonic of the 

rotating frequency is captured in the spectrum of the auto-

correlated envelope ensemble average and the sidebands 

of the fault frequency are also distinct. In the other hand, 

the average spectrum of the conventional envelope also 

detects the faults but the baseline is higher than the novel 

method, which denotes AEEA performs better to suppress 

noise. Furthermore, the second and third harmonic of the 

conventional method is difficult to distinguish from the 

noise. 

In the practical application, AEEA conveys many 

details to promise the happening of local faults, which 

shows that the novel method is more robust in the field of 

condition monitoring. 

V. CONCLUSIONS 

System identification based condition monitoring is a 

promising technique and EAAC-SSI is a reliable and 

accurate method to automatically determine the optimal 

frequency bands for further demodulation analysis. Even 

though the impact signal is submerged by the high level 

noise, the system identification method is effective to 

extract the modal parameters. Furthermore, for the sake of 

the tolerance of fault frequency fluctuation and the noise 

reduction, auto-correlated envelope ensemble average is 

developed. In the simulation study, the novel fault detector 

resolves the contaminative signal at SNR of -26dB and in 

the slippage case, AEEA also successfully extracts the 

fault features and achieves the high noise reduction effect. 

The benchmark method, average spectrum of conventional 

envelope fails to indicate fault features in both two cases 

of simulation studies. Similarly, the robustness of the auto-

correlated envelope ensemble average are analogous in the 

experimental signal processing with that in the simulation 

cases. To sum up, EAAC-SSI can be used to determine the 

optimal frequency bands. Furthermore, AEEA is accurate 

and reliable in the field of fault detection and it is robust to 

the high level noise and bearing system slippage. 
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