

University of Huddersfield Repository

Pesce, Giovanni L., Fletcher, Ian W., Grant, James, Molinari, Marco, Parker, Stephen C. and Ball, Richard J.

Carbonation of Hydrous Materials at the Molecular Level: A Time of Flight-Secondary Ion Mass Spectrometry, Raman and Density Functional Theory Study

Original Citation

Pesce, Giovanni L., Fletcher, Ian W., Grant, James, Molinari, Marco, Parker, Stephen C. and Ball, Richard J. (2017) Carbonation of Hydrous Materials at the Molecular Level: A Time of Flight-Secondary Ion Mass Spectrometry, Raman and Density Functional Theory Study. Crystal Growth and Design, 17 (3). pp. 1036-1044. ISSN 1528-7505

This version is available at http://eprints.hud.ac.uk/id/eprint/33340/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Carbonation of Hydrous Materials at the Molecular Level: a ToF-SIMS, Raman and DFT

study

Giovanni L. Pesce^{1,4 i}, Ian W. Fletcher^{2, il}, James Grant³, Marco Molinari^{3,5}, Stephen C. Parker^{3,*}, Richard J. Ball^{1,*}

¹ University of Bath, Department of Architecture and Civil Engineering, Bath, BA2 7AY, UK ² Intertek Wilton Laboratory, The Wilton Centre, Redcar, TS10 4RF, UK

³ University of Bath, Department of Chemistry, Bath, BA2 7AY, UK

⁴Department of Architecture and Built Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.

⁵Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK

* Corresponding authors: Stephen C. Parker, S.C.Parker@bath.ac.uk, phone: +44 (0)1225
386505; Richard J. Ball, <u>R.J.Ball@bath.ac.uk</u>; phone: +44 (0)1225 309 6944

¹ Currently at Northumbria University, Department of Architecture and Built Environment, Newcastle upon Tyne, NE1 8ST, UK

ⁱⁱ Currently at Newcastle University, School of Mechanical and Systems Engineering, Newcastle upon Tyne, NE1 7RU, UK

ToF-SIMS sample preparation

The samples for TOFSIMS were prepared in a glovebox under dry nitrogen (BOC Nitrogen Oxygen Free) and mounted onto the adhesive side of a piece of Sellotape that was attached to a clean stainless steel substrate *ca*. $1 \text{ cm} \times 1 \text{ cm}$ in size by a small piece of double-sided tape (3M 'Scotch Tape' grade 665). A small pile of powder was pressed onto the tape using a clean stainless steel micro spatula. Any excess powder was removed by gentle tapping and blowing using an ambient atmosphere duster. This assembly was subsequently attached to the base plate of a sample holder using a small piece of double-sided tape. The prepared sample was then sealed under nitrogen inside a container and transferred to the TOFSIMS instrument.

ToF-SIMS data analysis

TOFSIMS peaks with a peak area of at least 1000 counts for ionic species with mass up to 117 Dalton were considered in the study. This allowed limiting uncertainty below 3.3% and the number of ionic species to be analysed (a list of species considered in the study is reported in

Table S2 of the SI). The sum of all species with positive polarity used in the analysis accounted for 20.15%-29.23% of the related total counts, whereas the sum of all species with negative polarities accounted for 63.31%-77.55% of the related total counts. The raw data were corrected to take account of any instrumental drifts by dividing the counts of each ionic species by the total counts in the spectrum. To allow easier identification of peaks with highest counts, the data were normalized to the species with the highest count, after the initial correction.

Ionic ratios of similar species containing ¹⁶O and ¹⁸O were studied using the data normalized to the total counts for both, positive and negative polarity. All ionic species included in the evaluation of the ¹⁸O:¹⁶O ratio are listed in Table S3. To estimate the total ¹⁸O:¹⁶O ratio, the

normalized intensity of each specie was multiplied by the number of oxygen isotopes in the specie. Species containing both isotopes were not included in the calculations. The resulting values were summarised to allow calculation of the ¹⁸O:¹⁶O ratio.

ToF-SIMS results: analysis of the individual ionic species

Figure S1-S3 in the SI show the normalized intensities of ions containing different oxygen isotopes, over the course of the experiment. Data at time 0 refers to the analysis carried out after 3 minutes exposure to atmosphere. Results demonstrate that, within the first 24 hours, the intensity of positive ions containing both, Ca and ¹⁶O increases, whereas positive ions containing only ¹⁶O and ¹⁶OH decrease. At the same time, the intensity of most positive ions containing ¹⁸O decreases, with the exception of the $[Ca_2^{18}O_2]^+$ which shows a small increase. The intensity of negative species containing ¹⁶O increase with the exception of Ca¹⁶OH, which decreases. Conversely, the intensity of the $[^{18}O]^-$ and $[^{18}OH]^-$ ions decrease.

From day 1 to day 8, the intensity of ions with positive and negative polarity typically showed very little variation. Exceptions are the positive species $[^{18}O]^+$ and $[^{18}OH]^+$, which sharply decrease and increase, respectively. The negative the species $[C^{18}O_3]^-$ and $[HC^{18}O_3]^-$ show a significant increase.

From day 8 to day 137, the most substantial variations are related to ions with positive polarity containing ¹⁶O (¹⁶O, ¹⁶OH, Ca¹⁶OH, Ca¹⁶O₂ and Ca² ¹⁶O₂H), which varied in the range 10^{-2} - 10^{0} , the ions [¹⁶O]⁻ and [¹⁶OH]⁻ with variations within the range 10^{-1} - 10^{0} , and the ions [¹⁸O]⁻ and [¹⁸OH]⁻, which showed variations in the range 10^{-1} - 10^{-3} .

Overall, the results show a general reduction in the relative intensities of species containing ¹⁸O from time 0 to day 1 and a simultaneous increase of the intensities of species containing ¹⁶O. The most relevant variations were related to ions such as $[Ca^{16}OH]^+$, $[Ca_2^{16}O_2H]^+$, $[^{16}O]^-$ and $[^{16}OH]^-$. Species containing carbon such as $[HC^{18}O_3]^-$, $[C^{18}O_3]^-$ and $[HC^{16}O_2]^+$ show an increase from day 1 to day 137.

TOFSIMS: analysis of the ¹⁸O:¹⁶O ratio

Figure S4 shows the ratio of the different isotope species containing ¹⁸O and ¹⁶O considered in this work. Species with positive polarity showed a general reduction from day 0 to day 1, whereas from day 1 to day 8 and from day 8 to day 137 the ratio remained almost unchanged. Unlike other results, [¹⁸OH:¹⁶OH]⁺ ratio of the carbonated Ca(¹⁸OH)₂ shows an increase from day 1 to day 137, due to an increase in the intensity of the 18OH ion and a simultaneous reduction of the ¹⁶OH ions. From day 8 to day 137, the isotopic ratio [¹⁸O:¹⁶O]⁺ approaches the values of natural samples.

PHREEQC calculations

Script S1 represent the model is used to calculate OH⁻ concentration of a solution of pure water in equilibrium with air at 23°C, and of a saturated aqueous solution of CaOH)₂ in equilibrium with air. Lines 1-10 are specially designed to not allow the N₂ gas contained in the air to react with O and form NO₃, according to a model suggested by David Parkhurst¹². Absence of these lines would make the N₂ and O₂ in the air react to form NO₃ since, having a fixed partial pressures of N₂ and O₂ would generates huge amounts of NO₃, and the program would fail to converge. Lines 12 to19 are used to model a solution made of pure water at 23°C. Initial pH 7 is adjusted during calculations to achieve charge balance. Lines 21 to 25 are used to model an equilibrium phase simulating air that is made to reacted with the water solution. Lines 28 to 21 are used to model an infinite reservoir of Ca(OH)₂ to be reacted with the water in equilibrium with air. The Ca(OH)₂ is forced to be in equilibrium with the solution. Values of the OH⁻ concentration can be read at the end of each batch-reaction calculation. Values are reported in Table S5 of these SI, together with the related pH. Databases used for these calculations are the wateq4f.dat (a database suited for processing large numbers of water analyses) and the llnl.dat (a database that uses thermodynamic data compiled by the Lawrence Livermore National Laboratory). Results obtained with the llnl.dat database are in very good agreement with the experimentally verified previous calculations made with a different model and the same llnl.dat database.¹³

Script S1 - PHREEQC model used to calculate OH⁻ concentration in different aqueous solutions

```
1 SOLUTION MASTER SPECIES
          Ngas2
                   0 Ngas2
                                  14
2
    Ngas
3 SOLUTION SPECIES
4
    Ngas2 = Ngas2
    LogK 0.0
5
6 PHASES
7
   Ngas
8
        Nqas2 = Nqas2
9
        log k
                        -3.260
10
        delta h -1.358 kcal
11
12 SOLUTION 1 Pure water
13 temp 23
14 pH 7
         charge
15 pe 4
16 redox pe
17 units mol/kgw
18 density 1
19
   -water 1 # kg
20
21 EQUILIBRIUM PHASES 1 # Air to be in equilibrium with water
22 Ngas -0.1079
23 O2(g) -0.6990
24 CO2(g) -3.3979 # 400ppm
25 SAVE solution 1
26 END
27
28 EQUILIBRIUM PHASE 2 # Portlandite to be in equilibrium with solution 1
29 Portlandite 0 1000 # Infinite reservoir in equilibrium with solution
30 USE solution 1
31 END
```


Figure S1 - Positive ions containing ¹⁶O (above) and ¹⁸O (below). Numbers next to the chemical formula in the key represent the ionic mass in Dalton. Time 0 refers to the analysis after 3'

Figure S2 - Negative ions containing ¹⁶O (above) and ¹⁸O (below). Numbers next to the chemical formula in the key represent the ionic mass in Dalton. Time 0 refers to the analysis after 3'

Figure S3 - Positive (above) and negative (below) ions containing both, ¹⁶O and ¹⁸O. Numbers next to the chemical formula in the key represent the ionic mass in Dalton. Time 0 refers to the analysis after 3'

Figure S4 - Change over time of the isotope ratio between similar ions containing ¹⁸O and ¹⁶O. Positive ions on the top, negative ions at the bottom. Time 0 refers to the analysis after 3'

Figure S5 - Predicted isotopic dependence of Raman shift in portlandite (left) and calcite (right). The predicted shifts in peaks are shown for 100% substitution of 180 in portlandite while for calcite spectra are with all carbonates ions containing 0, 1, 2, and 3 180 isotopes.

Figure S6 – Variation of the total 180:160 ratio over the time of the test

Tables

 Table S1 - Table of experimental and simulated lattice parameters for portlandite. Experimental data from: Desgranges, L.,

 Grebille, D., Calvarin, G., Chevrier, G., Floquet, N., Niepce, J.C., Acta Crystallographica, Section B: Structural Science

 (1993) 49, p812-p817

Vector	Experiment (Å)	Simulation (Å)	Error
a,b	3.589	3.573	0.4%
с	4.911	4.794	2.4%

Table S2 – List of ions analysed in this study. Table is ordered by ionic mass and is divided into ions with positive and negative polarity. Only the oxygen isotopes are highlighted. ToFSIMS signal of the species listed in this table had at least 1000 counts

Mass [Da]	Positive polarity	Negative polarity
16	¹⁶ O	¹⁶ O
17	¹⁶ OH	¹⁶ OH
18	¹⁸ O	¹⁸ O
19	¹⁸ OH	¹⁸ OH
32	-	$^{16}O_2$
45	-	$HC^{16}O_2$
56	Ca ¹⁶ O	Ca ¹⁶ O
57	Ca ¹⁶ OH	Ca ¹⁶ OH
58	Ca ¹⁸ O	-
59	Ca ¹⁸ OH	-
60	-	$C^{16}O_3$
61	-	$HC^{16}O_3$
62	-	$C^{16}O_2^{18}O$
63	-	$HC^{16}O_2^{18}O$
65	-	$HC^{16}O^{18}O_2$
66	-	$C^{18}O_3$
67	-	$HC^{18}O_3$
72	-	$Ca^{16}O_2$
73	-	Ca ¹⁶ O ₂ H
96	$Ca_2^{16}O$	-
97	Ca ₂ ¹⁶ OH	-
98	$Ca_2^{18}O$	-
99	Ca ₂ ¹⁸ OH	-
112	$Ca_{2}^{16}O_{2}$	-
113	$Ca_2^{16}O_2H$	-
114	$Ca_{2}^{16}O^{18}O$	-
115	$Ca_{2}^{16}O^{18}OH$	-
116	$Ca_{2}^{18}O_{2}$	-
117	$Ca_{2}^{18}O_{2}H$	-

Polarity	Ionic ratio
	0
	OH
Positive	CaO
	CaOH
	Ca ₂ O
	Ca ₂ OH
	Ca_2O_2
	Ca ₂ O ₂ H
	0
Negative	OH
	CO_3
	HCO ₃

Table S3 - Ionic species for which the isotope ratio ¹⁸O/¹⁶O was calculated

	CALCITE									
	Reference	v ₁		V4		-	-	-	-	
	Kim et a;. (1)	10	88	713		281				
Nocl et al. (3) 1085 711 282 154 Kontoyannis et al. (4) 1085 711 280 154 Nehrke et al. (5) 1085 711 282 155 ARAGONITE Reference v_1 v_4 - - - - Weiner et al. (2) 1085 703 206 155 Gauldie et al. (6) 1084 701-705 205 152 Kontoyannis et al. (7) 204 152 Nehrke et al. (5) 1085 705 206 155 Netrke et al. (3) 1095 1064 <td>Weiner et al. (2)</td> <td colspan="2">1086 712</td> <td>12</td> <td>282</td> <td>156</td> <td></td> <td></td>	Weiner et al. (2)	1086 712		12	282	156				
Kontoyannis et al. (4) 1085 711 280 154 Nehrke et al. (5) 1085 711 280 155 Reference v1 v4 - - - - Weiner et al. (2) 1085 703 206 155 Gauldie et al. (6) 1084 701-705 205 152 Kontoyannis et al. (7) 204 152 Nehrke et al. (5) 1085 705 206 155 Nehrke et al. (7) 204 152 Reference V1 V4 - - - Reference V1 V4 - - - Gauldie et al. (6) 1090 1075 751 740 301 266	Noel et al. (3)	1085		711		282	154			
Nehrke et al. (5) 1085 711 282 155 ARAGONITE ARAGONITE Reference v_1 v_4 - -	Kontoyannis et al. (4)	10	85	711		280	154			
ARAGONITE Reference v_1 v_4 - - - - Weiner et al. (2) 1085 703 206 155 Gauldic et al. (6) 1085 701-705 205 152 Kontoyannis et al. (4) 1084 700-705 205 152 Tormas et al. (7) 204 152 Nehrke et al. (5) 1085 705 206 155 Nocl et al. (3) 1095 1064 Gauldie et al. (6) 1099 1064 754 713 Gauldie et al. (6) 1090 1075 751 740 301 266 106 Nehrke et al. (8) 1090 1075 752 742 Reference v_3 v_1 v_4 Netrke et al. (8) 1071 <td< td=""><td>Nehrke et al. (5)</td><td>10</td><td>85</td><td>7</td><td>11</td><td>282</td><td>155</td><td></td><td></td></td<>	Nehrke et al. (5)	10	85	7	11	282	155			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		ARAGONITE								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Reference	v	<i>'</i> 1	v_4		-	-	-	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Weiner et al. (2)	10	85	7(03	206	155			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Couldia at al. (6)	1084		701-705		205	152			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Gauldie et al. (6)	1085		701-705						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Kontoyannis et al. (4)	10	84	700-705		205	152			
Nehrke et al. (5) 1085 705 206 155 VATERITE Reference v1 v4 - - - - Kim et al. (1) 1095 1064 754 713 - - - Gauldie et al. (3) 1095 1064 752 713 - - - 106-115 Gauldie et al. (4) 1089 1074 750 738 301 266 207 106-115 Kontovannis et al. (7) - - 301 266 106 106 Nehrke et al. (5) 1090 1075 750 740 300 267 114 106 Nehrke et al. (5) 1090 1075 752 742 - - - Hu et al. (8) 1090 1075 752 742 - - - Tilli et al. (9) 1410 1070 718 - - - Til	Tomas et al. (7)					204	152			
VATERIFY Reference v1 v4 - - - - Kim et al. (1) 1095 1064 754 713 - - - Noel et al. (3) 1095 1064 751 740 301 266 207 106-115 Gauldie et al. (6) 1084 1066 752 713 - - - 1084 1066 752 713 - - - 1061 1061 1071 1084 1066 752 713 - - - 1061 1061 1061 1061 1061 1061 1061 1061 1061 1061 1061 1061 1061 1061 1061 1061 1071 718 -<	Nehrke et al. (5)	10	85	70	05	206	155			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				VA	FERITE					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Reference	V	⁷ 1	v	⁷ 4	-	-	-	-	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Kim et al. (1)	1095	1064							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Noel et al. (3)	1095	1064	754	713					
Galidie et al. (6) 1084 1066 752 713 Image: colored state s		1090	1075	751	740	301	266	207	106-115	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Gauldie et al. (6)	1084	1066	752	713					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Kontovannis et al. (4)	1089	1074	750	738	301	268		118	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Tomas et al. (7)					301	266		106	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Nehrke et al. (5)	1090	1075	750	740	300	267	114	105	
	Hu et al. (8)	1090	1075	752	742					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				IK	AITE					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Reference	v	'3	v	/1	V_4	-	-	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Hu et al. (8)			10	71	718				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	T1:1: ++ =1 (0)		1073		73	722				
$\begin{tabular}{ c c c c c } \hline HVDRO CALCITE \\ \hline Reference & v_3 & v_1 & v_2 & v_4 & - & - & - & - & - & - & - & - & - & $	Thin et al. (9)	1410		1070		718	534	507		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	MONO-HYDRO CALCITE									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Reference	V	'3	V	/1	v ₂	V4	-	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1403,	1480	10	66	873	694, 719	590, 780		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	This at al. (0)			1069		725				
AMORPHOUS CALCIUM CARBONATE Reference v_3 v_1 v_2 v_4 - - Ihli et al. (1)0 1088 <td>1 mi et al. (9)</td> <td colspan="2">107, 1486</td> <td colspan="2">1063</td> <td>872</td> <td>700, 726</td> <td>590, 674, 765</td> <td></td>	1 mi et al. (9)	107, 1486		1063		872	700, 726	590, 674, 765		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	AMORPHOUS CALCIUM CARBONATE									
Ihli et al. (1)0 1088 Image: Constraint of the state of the s	Reference	V	'3	V	[′] 1	V2	V4	-	-	
Kim et al. (1) 1084 Image: mail of the state of	Ihli et al. (1)0			10	88					
Lee et al. (11) 1080 Image: constraint of the state of the st	Kim et al. (1)			10	84					
Weiner et al (2) 1085 Noel et al. (3) 1085 Tlili et al. (9) 1390-1460 1077 868 968, 723 932, 846, 638, 583 1083 1083	Lee et al. (11)	1080								
Noel et al. (3) 1085 932, 846, 638, 583 Tlili et al. (9) 1390-1460 1077 868 968, 723 932, 846, 638, 583	Weiner et al (2)		1085							
Tlili et al. (9) 1390-1460 1077 868 968, 723 932, 846, 638, 583 1083 1083	Noel et al. (3)			10	85					
1083	Tlili et al. (9)	1390	-1460	10	077	868	968, 723	932, 846, 638, 583		
				10	83					

Table S4 - Peak positions in the Raman spectra for different phases of calcium carbonate reported in the scientific literature

 $Table \ S5-pH \ and \ OH-\ concentration \ in \ different \ aqueous \ solutions, \ calculated \ using \ PHREEQC$

Solution	Database wateq4f.dat			
Solution	pН	OH ⁻ Molality	OH ⁻ Activity	
Pure H ₂ O in equilibrium with air	5.6	3.444E-09	3.438E-09	
Ca(OH) ₂ saturated aqueous solution	12.54	3.697E-02	2.988E-02	

	Database llnl.dat			
	pН	OH ⁻ Molality	OH ⁻ Activity	
Pure H ₂ O in equilibrium with air	5.6	3.353E-09	3.347E-09	
Ca(OH) ₂ saturated aqueous solution	12.45	2.801E-02	2.321E-02	

References

- Kim, Y.-Y.; Kulak, A. N.; Li, Y.; Batten, T.; Kuball, M.; Armes, S. P. & Meldrum, F. C. Substrate-directed formation of calcium carbonate fibres *J. Mater. Chem., The Royal Society of Chemistry*, 2009, 19, 387-398
- Weiner, S.; Levi-Kalisman, Y.; Raz, S. & Addadi, L. Biologically Formed Amorphous Calcium Carbonate, *Connective Tissue Research*, 2003, 44:1, 214-218
- Noel, E. H.; Kim, Y.-Y.; Charnock, J. M. & Meldrum, F. C. Solid state crystallization of amorphous calcium carbonate nanoparticles leads to polymorph selectivity. *CrystEngComm*, 2013, 15, 697-705
- Kontoyannis, C. G. & Vagenas, N. V. Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy. *Analyst*, 2000, 125, 251-255
- Nehrke, G.; Poigner, H.; Wilhelms-Dick, D.; Brey, T. & Abele, D. Coexistence of three calcium carbonate polymorphs in the shell of the Antarctic clam Laternula elliptica. *G3*, 2012, 13, 5, 1-8
- 6) Gauldie, R. W.; Sharma, S. K. & Volk, E. Micro-Raman Spectral Study of Vaterite and Aragonite Otoliths of the Coho Salmon, Oncorhynchus kisutch *Comparative Biochemistry and Physiology -- Part A: Physiology*, **1997**, *118*, 753-757
- 7) Tomás, J. & Geffen, A. J. Morphometry and composition of aragonite and vaterite otoliths of deformed laboratory reared juvenile herring from two populations. *Journal of Fish Biology, Blackwell Science Ltd*, **2003**, *63*, 1383-1401

- 8) Hu, Y. B.; Wolf-Gladrow, D. A.; Dieckmann, G. S.; Völker, C. & Nehrke, G. A laboratory study of ikaite (CaCO₃·6H₂O) precipitation as a function of pH, salinity, temperature and phosphate concentration. *Marine Chemistry*, **2014**, 162, 10-18
- Tlili, M. M.; Ben Amor, M.; Gabrielli, C.; Joiret, S.; Maurin, G.; & Rousseau, P. Characterization of CaCO₃ hydrates by micro-Raman spectroscopy. *J. Raman Spectrosc.* 2001, 33, 10–16
- 10) Ihli, J.; Kulak, A. N. & Meldrum, F. C. Freeze-drying yields stable and pure amorphous calcium carbonate (ACC) *Chem. Commun.*, **2013**, *49*, 3134-3136
- Lee, K.; Wagermaier, W.; Masic, A.; Kommareddy, K. P.; Bennet, M.; Manjubala, I.;
 Lee, S.-W.; Park, S. B.; Cölfen, H. & Fratzl, P. Self-assembly of amorphous calcium carbonate microlens arrays. *Nat Commun*, 2012, *3*, 725
- 12) http://phreeqcusers.org/index.php?topic=67.0
- Serrapede, M.; Pesce, G.L.; Ball, R.J.; Denuault, G. Nanostructured Pd hydride microelectrodes: In situ monitoring of pH variations in a porous medium. *Analytical Chemistry.* 2014, 86 (12), 5758-5765