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Abstract 

Carbonation of hydrous minerals and of calcium hydroxide (Ca(OH)2) in particular, is an 

important process in environmental and industrial applications for the construction industry, 

geological disposal repositories for nuclear waste and green technologies for carbon capture. 

Although the role of ions during the carbonation mechanism of Ca(OH)2 is still unclear, we 

identified the exchange of ions during the dissolution-and-precipitation process, by 

determining the change in isotopic composition of carbonation products using Time-of-Flight 

Secondary Ion Mass Spectrometry. Our samples of pure Ca(18OH)2 carbonated in air were 

characterized using Scanning Electron Microscopy and Raman spectroscopy, aided by Density 

Functional Theory calculations.  

Our results show that the carbonation process at high pH is a two-stage mechanism. The first 

stage occurs in a short time after Ca(18OH)2 is exposed to air and involved the dissolution of 

surface Ca ions and hydroxyl 18OH groups, which reacts directly with dissolved CO2, leading 

to 1/3 of 18O in the oxygen content of carbonate phases. The second stage occurs within 24h of 

exposure allowing a rebalance of the oxygen isotopic composition of the carbonate phases with 

higher content of 16O. 

Introduction 

The carbonation process of hydrous materials and minerals such as calcium and magnesium 

hydroxides (Ca(OH)2 and Mg(OH)2, respectively) is important for a number of environmental 

and technological applications. These include carbon capture and storage (CCS)1,2, scrubbing 

procedures of solid waste incinerators3, emerging low carbon building technologies for 

construction4-6, and geological disposal repositories for nuclear waste7,8 where portlandite 

content in cements becomes a critical factor. Despite its importance,2,4,9-14 the carbonation 

mechanism in high pH environment is debated and not yet fully understood. Hence, to devise 
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successful and efficient strategies for carbon dioxide (CO2) sequestration, soil stabilization in 

geoengineering and building mortars with enhanced properties, a clear understanding of the 

details of carbonation mechanisms is required. 

Two carbonation mechanisms have been proposed for portlandite at low temperature and 

pressure (i.e. STP). These are based on a solid state and a dissolution-carbonation15-19 process 

(the former is highly unlikely whereas the latter has been documented in a number of cases). 

Moorehead20 suggested that carbonation of Ca(OH)2 at room temperature in CO2-rich 

environments is a solid-state reaction, which entails substitution of hydroxyl groups (OH-) with 

carbonate groups (CO3
2-) in a topotactic transition, leading to a change of the portlandite d{001} 

spacing.11,20-22 Other authors suggested that the reaction occurs via a dissolution-and-

precipitation mechanism catalyzed by water molecules adsorbed on the mineral surfaces11,23,26  

(a detailed description of the carbonation mechanisms has been recently published by 

Rodriguez Navarro and colleagues26-27). Overall, these two mechanisms would be expected to 

lead to different reaction rates, and to the formation of passivating carbonate layers25 that 

quenches the exploitation of Ca(OH)2 surface properties.11  

The natural variation of stable isotopes, such as carbon-13 (13C) or oxygen-18 (18O), can be 

exploited in the study of carbonation of surfaces, and thus provides complementary results to 

other techniques.29-32 An isotope can be traced during chemical reactions and, as different 

reaction mechanisms lead to different products with distinctive isotopic compositions29-34, it 

provides insights on the stages occurring during the reaction. Our research investigated the role 

of OH- ions in the carbonation mechanism of Ca(OH)2 by using Time-of-Flight Secondary Ion 

Mass Spectrometry (ToF-SIMS) on a Ca(18OH)2 sample carbonated in air (rich in 16O) for 3 

minutes, 1, 8 and 137 days at 27% RH (3 minutes) an 50% RH (1, 8 and 137 days).26 Samples 

were characterized using Scanning Electron Microscopy (SEM) and Raman spectroscopy. 

Density functional theory calculations were also employed to corroborate the Raman shifts 
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associated with different degrees of isotopic substitution in Ca(OH)2 and CaCO3. We finally 

discuss critical factors in the carbonation process, which provides new insights of the 

carbonation mechanism of Ca(OH)2. 

Experimental and Theoretical Methods 

Material preparation 

18O-calcium hydroxide was produced by reacting calcium metal of 99% purity with isotopic 

labelled water containing >99% 18O (Taiyo Nippon Sanso Corporation), on a platinum (Pt) foil 

99.9% pure. To prevent oxygen contamination and carbonation of the Ca(OH)2 sample, the 

reaction was performed in an inert atmosphere inside a glove bag filled with nitrogen, where 

CO2 and RH were monitored using a K-30 10,000ppm sensor for CO2, and a DHT22 sensor 

for temperature and humidity. Both sensors were controlled via an Arduino Uno 

microcontroller, which was also used for real time monitoring of the conditions. 

Experiments were conducted as follows. 1) The equipment and materials were placed into a 

glove bag that was then filled with nitrogen. 2) The residual air in the bag was flushed using 

dry Nitrogen until the sensor readings were 0 ppm CO2 and <5% RH. 3) 20mg of Ca metal was 

weighed on a precision balance and deposited on a Pt foil, positioned inside an open crucible. 

4) 800μl of 18O-water was reacted with the Ca metal using a glass Hamilton syringe equipped 

with a metal needle. The reaction was carried out in an excess of 18O-water to promote the 

complete reaction of Ca. 5). To ensure the complete evaporation of excess of 18O-water, the 

bag was flushed several times with dry nitrogen. 6) When the majority of the water had 

evaporated, portions of the sample were removed from the Pt foil. Portions were sealed inside 

a glass cell with a quartz window for the Raman analysis; the N2-rich atmosphere prevented 

carbonation before completion of the analysis. The same procedure was followed for samples 

for SEM analysis except samples were placed in a small vial and stored under low vacuum. 
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Material for SIMS analysis was kept on Pt foil and stored in a specifically designed glass vial 

under low vacuum. 

ToF-SIMS analysis 

In order to study the isotopic composition of carbonates at the very beginning of the reaction, 

the first ToF-SIMS analysis was carried out after approximately 3 minutes exposure to air at 

23°±2°C and 27±10% RH. Low RH levels were used to minimize the carbonation rate.26 After 

initial analysis, the samples were removed from the instrument and allowed to stand in a dust-

free controlled environment at 23±2°C and 50±10% RH for 1, 8 and 138 days before further 

analysis. Care was taken to analyze fresh areas of the samples that had not previously been 

exposed to the ion and electron beams. An Analar CaCO3 powder was analyzed under similar 

conditions as a reference. 

Static ToF-SIMS analyses were carried out using an ION-TOF ‘TOF-SIMS IV – 200’ 

instrument (ION-TOF GmbH, Münster, Germany) of single-stage reflectron design.32 Positive 

and negative ion spectra of the samples were obtained using a Bi32+ focused liquid metal ion 

gun at 20keV energy, incident at 45° to the surface normal and operated in ‘bunched’ mode for 

high mass resolution. This mode used 7ns duration ion pulses at 10kHz repetition rate. Charge 

compensation was effected by low-energy (ca. 20eV) electrons provided by a flood gun.  The 

total ion dose density was less than 5 × 1016 ions m-2 in all cases. The topography of the sample 

surface and the ion gun mode of operation limited the mass resolution in this work to ca. m/Δm 

= 4000.  

Positive and negative ion static SIMS spectra of the samples were recorded in triplicate at 

room temperature with a 128 × 128 pixel raster and a field of view of 50μm × 50μm. Sample 

preparation and data analysis was carried out according to the procedure detailed in the SI. 
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Raman analysis 

Raman analysis was performed using a Renishaw inVia Raman Microscope equipped with 

lasers operating at wavelengths of 785 nm. The analysis was undertaken by focusing the laser 

with a 50x long distance objective. Laser power was set to 66mW (sample) and the acquisition 

time was set between 3 and 10s for each of the 10 accumulations acquired. Each spectrum was 

taken over the wavenumber range 77–1290cm−1. Three spectra per sample were acquired to 

evaluate differences among the different locations. Prior to the analysis, the spectrometer was 

calibrated using a monocrystalline silicon standard specimen. Renishaw WiRe 4.0 software 

was applied for peak fitting and deconvolution of Raman spectra. The sample was initially kept 

in a N2-rich atmosphere inside the glass cell with quartz window to prevent contamination by 

atmospheric CO2. To investigate the initial stage of carbonation, the quartz window was 

removed and spectral acquisition of the carbonate phases formed at 23°C and 30%±10%RH 

was started. These conditions were chosen in order to reduce the carbonation rate and, 

therefore, have a better evidence of the phase transformations related to carbonation. Spectra 

were take up to 55 minutes from initial exposure of sample to air.  

SEM analysis 

SEM images were obtained using a JEOL field emission scanning electron microscope 

(FESEM) model JSM6301F. Working distance for scanning and acquiring the images was 

7mm, accelerating voltage was of 5kV and the spot size 7nm. Prior to analysis the sample 

powder was fixed to a metal holder using a double-sided carbon tape and then dried for 24 

hours in a vacuum chamber before application of a 10nm thick layer of chromium using a 

Quantum Q 150T Turbo-Pumped Sputter Coater to prevent surface charging. Once removed 

from the sputter coater, the sample was immediately inserted in the SEM and analyzed. 

Computational procedure 

Simulations were used to determine the vibrational shifts and Raman spectra for 16O and 18O-

calcium hydroxide (Ca(16OH)2, Ca(18OH)2 respectively), as well as calcite containing different 
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amount of 18O (CaC18Ox
16O(3-x) with x=0,1,2,3). Calculations were performed at the DFT level 

using the VASP36-36 code with the PBE39-40 exchange-correlation functionals including the van 

der Waals correction optB86b-vdW41,42, which improves the description of layered materials. 

The Brillouin zone was sampled using 4 × 4 × 4 Monkhorst-Pack k-point mesh for portlandite 

and 4 × 4 × 1 for calcite with a plane wave cut-off of 500 eV. Convergence criteria were 10−8 

eV for the electronic relaxation and 10−4 eV Å−1 for ionic forces, allowing both atoms and 

lattice to relax. 

The calculated structure of portlandite contains 1 Ca(OH)2 unit and has lattice parameters of 

a = b = 3.573Å, c = 4.794Å, α = β = 90° and γ = 120°, which compare well with the 

experimental values of Desgranges et al.44 The calculated structure of calcite contains 6 CaCO3 

units and has lattice parameters of a = b = 5.03Å, c = 16.80Å, α = β = 90° and γ = 120°, and 

agrees well with the experimental values of Effenberger et al.45 

From the minimized structures, the vibrational frequencies were obtained using finite 

displacements46 and the Raman activity47,48 was then estimated by calculating the polarizability 

of the vibrational modes. As noted, the minimized structure for portlandite compares well with 

the experimental values (Table S1) and this model has recently been shown to perform well for 

the calcium oxide and carbonate.49,50 Additional calculations were undertaken to predict the 

shift in Raman frequencies due to isotopic substitution and compared to the DFT predicted 

Raman active peaks. Each vibrational mode implies certain modes that involves species. The 

interaction between species can be related to a bond and the strength of each bond can be 

illustrated considering a diatomic molecule, by a force constant k from which the frequency, f, 

can be calculated according to Equation 1, where 𝜇 is the reduced mass of the components of 

the mode given by Equation 2, where m1 and m2 are the masses vibrating. 

𝑓 = √
𝑘

𝜇
                       (1) 

𝜇 =
𝑚1𝑚2

𝑚1+𝑚2
                       (2) 
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When accounting for the difference in mass between 16O and 18O the reduced mass changes 

according to the O isotope. In practice, we evaluate and diagonalise the complete mass-

weighted force constant matrix.51-53  

 

Figure 1 - FESEM image of the Ca(18OH)2 produced 

Results  

SEM and Raman results 

Microscopic FESEM image in Figure 1 shows Ca(18OH)2 sample comprising of hexagonal 

plate-shaped crystals of 200-400nm and crystalline particles of 70-150 nm . The presence of 

various shaped crystals suggests a very high nucleation rate that led to numerous crystal seeds 

competing for growing. No crystals with the characteristic morphology of calcite or other 

CaCO3 polymorph were found in the sample, and this suggests that the reaction with 

atmospheric CO2 was limited during sample preparation. 

Hexagonal plate-shaped crystals 

Crystalline particles 
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Figure 2 - Raman spectrum of the Ca(18OH)2 produced during the experiments, compared with 

the Raman spectrum of a generic 16O-Ca(OH)2 (lime putty). 

Figure 2 shows the Raman spectrum from 100 to 1200 cm-1 of Ca(18OH)2 after about 10 

minutes from exposure to air, compared with the spectrum of a generic 16O-lime putty partially 

exposed to air. Both spectra contain portlandite and calcite peaks. Several peaks of Ca(18OH)2 

are shifted to lower wavenumbers compared to the Ca(16OH)2: the peak at 356cm-1 is shifted 

~19cm-1 to 337cm-1, the peak at 251cm-1 is shifted ~12cm-1 to 239cm-1 and the peak at 1086 is 

shifted to 1067 cm-1. 
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Figure 3 - Raman spectrum of the Ca(18OH)2 produced partially carbonated. Spectra taken after 

10’, 30’ 55’ since the beginning of the tests, which exposes the sample to air. 

Figure 3 shows the Raman spectra from 100 to 1300 cm-1 of the Ca(18OH)2 produced, after 

10, 30 and 55 minutes from the opening of the cell, which allow the sample to be in contact 

with air. Peaks at 239, 337 and 655 cm-1 are related to Ca(18OH)2 and become weaker over the 

time. This provides evidence of Ca(18OH)2 reacting with atmospheric CO2 containing 16O and 

forming CaCO3. According to our simulations, peaks at 152, 271, 698 and 1067 cm-1 can be 

associated to 18O-calcite (although it is likely that the peak at 1067cm-1 also includes a 

contribution of 18O-enriched ACC; see later in this paragraph). These peaks are shifted to lower 

wavenumbers compared to literature spectra of 16O-calcite (Table S4). Intensity of the peak at 

152 cm-1 remains unaltered over time, whereas intensity of the peaks at 271, 698 and 1083 cm-

1 increase, suggesting progression of the carbonation reaction with the formation of an 

increasing amount of 16O-calcite. The broad peaks at 450 disappearing after 10 minutes 
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reaction, suggests presence of a metastable phase such as ACC (main peak included in the 

1067cm-1 peak as previously mentioned). 

 

Computation Results  

Table 1 compares Raman active modes of a natural (Ca(16OH)2) and an isotopically labelled 

(Ca(18OH)2) portlandite calculated using DFT with experimental values. Although, the relative 

positions of the peaks are captured for both minerals, there is a systematic displacement of the 

predicted peaks relative to the experimental positions53. This is a well-known effect of DFT 

calculations and relates to the estimation of bond strengths.  

 

Table 1 - Comparison of experimental and simulated Raman active modes of portlandite. The 

Raman shift due to the different O isotopes is Δ, which is compared to the theoretically derived 

values (Equation 1). 

Experiment [cm-1] Simulation [cm-1] 
Theory  

[cm-1] 

Ca(16OH)2 Ca(18OH)2 Δ Ca(16OH)2 Ca(18OH)2 Δ Δ 

251 239 -12 256 242 -14 -14 

356 337 -19 381 361 -20 -19 

675 675 0 715 715 0 0 

 

The two low frequency peaks of portlandite are associated with vibrations of the hydroxide 

ions relative to each other in plane and out of plane. In the case where two hydroxide ions are 

vibrating as whole units the individual masses in the pure case are m1=m2=17 while for full 

isotopic substitution with 18O these increase to m1=m2=19. The reduced masses are 17/2 and 

19/2 respectively, and thus the theoretical treatment as in Equation 1 predicts the isotopically 

doped system has a frequency to (17/19)1/2 of the natural case corresponding to shifts of -14cm-

1 (for peak 1 at 251cm-1) and -19cm-1 (peak 2). In contrast, the high frequency portlandite peak 
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at 675cm-1 is associated with the rocking mode of individual hydroxide ions. Since this is a 

rotational vibration, any shift is due not to the change in effective mass associated with isotopic 

substitution but with the moment of inertia. The resulting Raman shift due to isotopic 

composition is predicted to be ~0.3% (compared with ~5% in the previous cases) which is 

consistent with no observed shift in the experimental and simulated spectra. Comparison of 

calculated and experimental peak positions provides evidence that Raman spectroscopy can 

distinguish between different isotope compositions of the same material as already suggested 

by Ruiz-Agudo et al.54 

Calcite with different isotopic composition (CaC16Ox
18O3-x) shows Raman shifts at higher 

wave number with increasing x, the number of 18O per carbonate ion (Table 2). The peak at 

about 152 cm-1 in the experimental spectra is noisy and difficult to isolate in both natural and 

18O-sample but the remaining Raman active peaks are relatively well defined and more easily 

characterized. Overall, the computational results are in good agreement with the measured 

spectra. The advantage of the calculation is that the vibrational motion associated with each 

active mode can be identified.52 For example, we can clearly identify the high frequency peak 

as the symmetric stretch of the C-O bond in the carbonate ions, whereas the peak at 700 cm-1 

is an antisymmetric coupling between carbonate ions in different layers. The vibrations of the 

remaining peaks are complex motions of carbonate bending in different layers. 

 

Table 2 - Comparison of experimental and simulated Raman active modes of calcite. In 

brackets the Raman shift due to the different O isotopes compared to CaC16O3. The two 

columns in the experimental results are related to carbonate phases with different 18O content. 

Peak 
Experiment [cm-1] Simulation [cm-1] 

CaCO3 CaCO3 CaC16O3
 CaC18O16O2 CaC18O2

16O CaC18O3 
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18O > 
16O 

18O < 
16O 

1 152 152 159-165                 156-162 (-3)  154-160 (-5)  151-157 (-8) 

2 277 282 293 288 (-5) 285 (-8) 282 (-11) 

3 698 713 680 672-665 (-8/-15) 661-652 (-19/-28) 645 (-35) 

4 1066 1086 1055 1036 (-19) 1015 (-40) 995 (-60) 

 

ToF-SIMS Results 

Tof-SIMS allows the determination of the elemental, isotopic, or molecular composition of 

surfaces to a maximum depth of 1-2 nm. It is a destructive technique that reveals, using a mass 

spectrometer, the mass:charge ratio of secondary ions ejected from the surface when a primary 

ion beam is fired against it. Therefore, during the analysis secondary ions may be positively 

and negatively charged depending on their composition and mass. Data analysis has therefore 

to take into account both polarities. Full details of mass:charge ratio of ejected secondary ions 

considered in this study are in Table S2 and Table S3 where a detailed analysis of the results 

is also reported. To assess the accuracy of the ToF-SIMS measurement, we tested an Analar 

CaCO3 reference sample, which gave an average 18O:16O ratio of 0.021 (Table 3) in agreement 

with the isotopic ratio between 0.019 and 0.02157-59 of naturally occurring samples. Data for 

the carbonated Ca(18OH)2 samples, show a reduction in the relative intensities of species 

containing 18O over the time, and a simultaneous increase of the intensities of species 

containing 16O (Figures S1-S3 in the SI). Simultaneously, species containing carbon such as 

[HC18O3]
- and [C18O3]

- (Figures S1-S3) show an increase. This is clear evidence of the 

carbonation of portlandite surfaces as secondary ions ejected from the surface destruction have 

greater carbon content. 

Table 3 reports the 18O:16O ratio calculated for all the secondary ions produced by the 

destruction of the surface over the duration of the experiment. Data shows an initial isotope 

ratio of 0.62 for positive ions and a ratio of 0.51 for negative ions. The weighted average value 
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of 0.54 suggests that, at very early stage of the carbonation reaction, for every atom of 18O in 

carbonate ions, there would be two 16O (theoretical 18O:16O ratio 0.5). However, from day 0 to 

day 1 the data shows a dramatic decrease in the 18O:16O ratio to a value of 0.038 that shows 

little variation in the following days. This value shows little variation after 137 days of 

carbonation. The isotope ratio for positive and negative species converges towards the same 

value of 0.046, which is approximately double the value for natural samples. 

 

Table 3 - 18O:16O ratio calculated from the intensity of the ToF-SIMS counts for the ionic 

species with positive and negative polarity 

 
Analar 

CaCO3 

Carbonated Ca(18OH)2 

Day 0 Day 1 Day 8 Day 137 

[ 𝑂18 𝑂16⁄ ]
+

 0.035 0.616 0.057 0.044 0.046 

[ 𝑂18 𝑂16⁄ ]
−

 0.007 0.509 0.032 0.029 0.046 

Weighted 

Average 
0.014 0.537 0.038 0.033 0.046 

 

Discussion 

The combination of complementary results from the vibrational fingerprint of the materials 

with different isotopic composition and the ToF-SIMS experiments show that we can elucidate 

the carbonation mechanism of hydrous materials. However, before discussing our data, the role 

of the pH in the carbonate precipitation and on the behavior of different isotopes during the 

process should be highlighted. 

Recent work on the precipitation of carbonates in natural systems (i.e. at approximately 

neutral pH) shows that an isotopic equilibrium is reached between the solution and the 

precipitated solid, which only depends on temperature.34,59 On the other hand, precipitation of 

carbonates from saturated solutions of Ca(OH)2 takes place under high pH (12.4 at 23°C)14 and 
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therefore is in non-equilibrium conditions. As a consequence, the main phenomenon producing 

fractionation during precipitation is the reaction kinetics related to the solution high pH.29-33 At 

pH above 9, various authors29,31-33 suggested that the direct reaction of CO2 with the hydroxyl 

group (OH-) produced by the dissociation of water is the primary pathway for carbonate ion 

formation (Equation 3).29 This pathway is suggested to be faster than the one leading to the 

formation of CO3
2- from the reaction of CO2 in natural waters at neutral pH58 (Equations 4-7) 

and, consequently, it prevents isotope equilibration of gaseous CO2(g) with the dissolved CO2(aq) 

(Equation 4). Since heavier isotopes react slower than lighter isotopes, in the carbonate 

precipitates at high pH we would expect a lower concentration of 18O and 13C compared to the 

carbonates precipitated under equilibrium conditions.29 Examples of carbonate phases with a 

very different isotope signature are limestone of marine and continental origins, and carbonates 

produced during cement setting.31-33 

 

𝐶𝑂2(𝑎𝑞) + 𝑂𝐻− ↔ 𝐶𝑂3
2− + 𝐻+     (3) 

𝐶𝑂2(𝑔) ↔ 𝐶𝑂2(𝑎𝑞)       (4) 

𝐶𝑂2(𝑎𝑞) + 𝐻2𝑂(𝑙) ↔ 𝐻2𝐶𝑂3(𝑎𝑞)     (5) 

𝐻2𝐶𝑂3(𝑎𝑞) ↔ 𝐻𝐶𝑂3(𝑎𝑞)
− + 𝐻(𝑎𝑞)

+      (6) 

𝐻𝐶𝑂3(𝑎𝑞)
− ↔ 𝐶𝑂3(𝑎𝑞)

2− + 𝐻(𝑎𝑞)
+       (7) 

 

Equilibrium in Equation 3 implies that the carbonate ion contains a mixture of the isotopic 

composition of aqueous CO2(aq) (similar to the isotopic composition of gaseous CO2(g)) and 

OH- ions.29,31,33 The 18O composition of these carbonates (n18O) can be described by 

considering the abundancwe of 18O in the different species, according to Equation 8. 

𝑛 𝑂𝑐𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒 ↔18  
1

3
𝑛 𝑂𝑂𝐻 +18 2

3
𝑛 𝑂𝐶𝑂2(𝑔)

18     (8) 
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Letolle et al.29 have calculated that one third of the oxygen in the carbonates formed under 

conditions of high pH, is provided by the OH- ions originated from the dissociation of H2O 

molecules catalyzing the reaction between Ca(OH)2 and aqueous CO2(aq). This implies that 18O 

content of OH- groups is related to the isotopic composition of H2O. Letolle et al.29, however, 

did not provide any information on the role of OH- ions produced by the dissolution of Ca(OH)2 

on the isotopic composition of carbonate phases. 

To demonstrate that hydroxyl groups from the surface have a fundamental role in the 

formation of carbonate phases, we have studied Ca(18OH)2 samples made of 18O. Therefore, 

during the carbonation of Ca(18OH)2, the sample itself is by far the most important source of 

18O (a very limited contribution can be due to the CO2 and H2O
60,61) whereas the atmospheric 

water and CO2 are the only source of 16O. Any mixture of the isotope in the resulting carbonate 

phases provides the most likely source of oxygen in the formation of carbonate ions and 

therefore the carbonation mechanism. 

The Raman spectrum of Ca(18OH)2 confirms the purity of the sample but also the high 

surface reactivity, as demonstrated by the formation of carbonate phases after 10 minutes from 

exposure to atmospheric CO2. This is in agreement with the results of previous studies on the 

carbonation kinetics and on the role of water vapor on the Ca(OH)2/CO2 solid-gas reaction.12,62 

The shift observed for the Raman peaks of portlandite and calcite can be associated with 

variations in the isotopic composition of the minerals and are supported by ab initio 

calculations. In the case of portlandite, the shifts in the Raman peaks arise from substitution of 

all the 16O with 18O (Figure 2), whereas the shift in the Raman peaks of carbonate phases 

formed after the reaction with atmospheric CO2 arise from partial substitution of 16O with 18O 

(Figure 3). DFT data (Table 2) support  that the experimental peaks at 152, 271, 698 and 1066 

cm-1 are associated with calcite containing 1/3 of 18O (18O:16O ratio 0.5). The main vibrational 

fingerprint of this phase could be identified in the peak at 1066 cm-1 (Figure 3). The peak at 
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1083 cm-1 belongs to 16O-calcite, which is a minor phase at the beginning of the reaction but 

that grows over the time. 

SIMS results allow calculation of the 18O:16O ratio for the secondary ions ejected from 

surface destruction. At the early stage of carbonation (~3 minutes exposure to air), the ratio is 

of 0.51 (Table 3). This value is in good agreement with the results of our theoretical analysis 

of Raman shifts and with Letolle’s proposition29 indicating that in carbonate precipitates at 

high pH, 2/3 of oxygen is supplied by CO2 whereas 1/3 of the oxygen is provided by OH- ions. 

However, unlike Latolle’s proposition suggesting that the OH- groups involved in the 

carbonation originate from the dissociation of H2O molecules, our results clearly demonstrate 

that the Ca(OH)2 plays an important role in the formation of hydroxyl groups. ToF-SIMS data 

displays carbonate species that contain 1/3 of 18O (the remaining 2/3 comes from C16O2), which 

in our case can only be produced by the dissolution of the surface and not by the dissociation 

of adsorbed water molecules, which comprise mainly 16O. This is also supported by 

PHREEQC57,63 modelling (see model description and Table S5 in the SI) showing that 

concentration of OH- ions produced by the dissolution of Ca(OH)2 in pure water at 25°C, is 

several orders magnitude greater than the concentration of OH- ions produced by the natural 

dissociation of pure water. Therefore, the OH- ions from Ca(OH)2 are more likely to take part 

in carbonation reaction than those from water. As a consequence, it is possible to infer that in 

highly alkaline conditions, the isotopic composition of precipitated carbonates, which is 

generally described by Equation 8, can be rewritten by considering the abundance of 18O in the 

CO2 and in the Ca(OH)2 as reported in Equation 9. This new equation marks the very early part 

of the first stage of the carbonation reaction where the dissolution of the surface is the rate 

limiting step. Although this equation can be an oversimplification of the real process (since it 

is unknown what fraction of the resulting carbonates forms via this pathway), it can be used as 

a simple description of the process. 
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𝒏 𝑶𝒄𝒂𝒓𝒃𝒐𝒏𝒂𝒕𝒆 ↔𝟏𝟖  
𝟏

𝟐
𝒏 𝑶𝑪𝒂(𝑶𝑯)𝟐

+𝟏𝟖 𝟐

𝟐
𝒏 𝑶𝑪𝑶𝟐(𝒈)

𝟏𝟖                        (9) 

 

Subsequent to the formation of 18O rich carbonate phases in the first stage of the carbonation 

mechanisms, where the dissolution of portlandite surfaces must occur, our ToF-SIMS data 

show a dramatic reduction in 18O:16O ratio within the first day of carbonation (Table S6). This 

is also shown by the growth of the Raman peak at 1083 cm-1 of 16O-calcite over time (Figure 

3) and can be explained by the transformation of the initial metastable carbonates into more 

stable phases over time.64-77 Figure 3 shows also disappearance over the time of a peak at 

495cm-1 that can be related to metastable hydrated phases55. A possible explanation of this re-

equilibration of 18O:16O ratio is the dissolution of metastable phases that give in some 18O and 

the subsequent recrystallization of more stable phases that acquire some 16O during the 

precipitation process happening in equilibrium conditions. 

This marks the second stage of the carbonation, which involves the transformation of less to 

more stable carbonate phases. A detailed explanation of this transformation has been recently 

provided by Rodriguez Navarro et al.27 

Earlier, Rodriguez-Blanco et al.70 described the transformation mechanism of ACC to calcite 

as a two stage process: 1) ACC particles rapidly dehydrate and crystallize forming individual 

particles of vaterite; 2) the vaterite dissolves and re-precipitates as calcite (Ogino et al.71 also 

confirmed the latter stage also for aragonite). Stage 1, mainly entails the release of water 

molecules initially embedded in the structure of hydrated phases. Stage 2, involves the release 

of CO3
2- ions that, according to equations 2-5, can lead to an exchange of oxygen atoms with 

the water molecules. We infer that our data is consistent with this proposition. The oxygen 

exchange and the formation of new carbonate phases richer in 16O at the top of the carbonate 

phases initially formed (stage 1) explains the sudden variation of the 18O:16O ratio within the 

first 24h. Therefore, it is possible to infer that, whereas precipitation of meta-stable phases 
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takes place in non-equilibrium conditions (i.e. at high pH, which does not allow isotope 

equilibration), the dissolution-and-precipitation mechanism leading to the formation of stable 

carbonate phases and the precipitation of new carbonate phases richer in 16O, occurs at lower 

pH allowing an isotopic equilibrium of carbonates. It is worth noting that in our experiments 

this equilibration occurred within the initial 24 hours even at 50% RH (a relatively low RH 

value for carbonation) and this suggests that stage 2 of the carbonation is a fast kinetic pathway. 

Conclusions 

Our results show new insights in the carbonation mechanism of portlandite. They 

demonstrate that during the early stage of the carbonation reaction (first 3 minutes, in our 

experiments) the surface hydroxyl groups are the source of oxygen for the formation of 

carbonate ions and hence the growth of carbonate begins by the dissolution of hydroxyl and 

Calcium ions followed by the formation of metastable calcium carbonate. The second stage of 

the reaction occurs within the 24h after the carbonation started. This involves the 

transformation of the metastable carbonate phases into stable calcite. During this 

transformation there is a release of water, which is the source of oxygen for the formation of 

new carbonate ions.  

This is extremely valuable in understanding the evolution of Portland cements for usage in 

construction industry and in geological disposal facilities for nuclear waste as well as in devise 

of successful green technologies for carbon sequestration and storage because it introduces a 

new paradigm in the formation of carbonate ion during precipitation of carbonates. 
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SYNOPSIS: At pH above 9, the direct reaction of CO2 with the hydroxyl group produced by 

the dissolution of Ca(OH)2 is the primary pathway for carbonate ion formation. This pathway 

is faster than the one leading to the formation of CO3
-2 from the dissolution of CO2 in natural 

waters at neutral pH 


