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Full-field 3D shape measurement 
of discontinuous specular objects 
by direct phase measuring 
deflectometry
Yue Liu1,2, Shujun Huang1, Zonghua Zhang1,2, Nan Gao1, Feng Gao2 & Xiangqian Jiang   2

With the advent of intelligent manufacturing, phase measuring deflectometry (PMD) has been widely 
studied for the measurement of the three-dimensional (3D) shape of specular objects. However, 
existing PMDs cannot measure objects having discontinuous specular surfaces. This paper presents a 
new direct PMD (DPMD) method that measures the full-field 3D shape of complicated specular objects. 
A mathematical model is derived to directly relate an absolute phase map to depth data, instead of the 
gradient. Two relevant parameters are calibrated using a machine vision-based method. On the basis 
of the derived model, a full-field 3D measuring system was developed. The accuracy of the system was 
evaluated using a mirror with known positions along an accurate translating stage. The 3D shape of a 
monolithic multi-mirror array having multiple specular surfaces was measured. Experimental results 
show that the proposed DPMD method can obtain the full-field 3D shape of specular objects having 
isolated and/or discontinuous surfaces accurately and effectively.

With the development of the three-dimensional (3D) optical shape measurement technique, it has been widely 
applied in the fields of reverse engineering, biological recognition and digitalization of cultural relics, etc. 
However, most of the existing techniques are applied to measure objects with diffused surface. There are a large 
number of transparent, black, and reflective objects in industrial applications. The research of shape measure-
ment for these objects is still in the early stage. The main methods of measuring the 3D shape of such objects 
use a coordinate measuring machine1 or change the surface characteristics by spraying paint, which destroys the 
surface properties and is unacceptable in many fields. With the advent of intelligent manufacturing, there are 
many specular objects in actual industrial fields. It is therefore important to study optical 3D shape measurement 
methods for specular objects2.

Phase measuring deflectometry (PMD) or fringe reflection deflectometry (FRD) has been widely studied to 
test specular free-form surfaces3, 4 because of the advantages of non-contact operation, full-field measurement, 
fast acquisition, high precision and automatic data processing5–7. PMD has been applied to measure an aspheric 
mirror and dynamic specular surface and to detect subsurface cracking8, from a micro-size to a large specular 
surface9–14. Such a technique needs to display straight sinusoidal fringe patterns on a screen or to project a struc-
tured pattern onto ground glass. From a different viewpoint, fringe patterns reflected by a measured surface 
appear deformed with regard to the slope variation of the specular surface and the modulated fringe patterns 
can be captured by an imaging device, such as a charge-coupled device (CCD) camera. Phase information in the 
deformed fringe patterns is demodulated to obtain the slope of the measured specular surface and the 3D shape 
of the tested surface can then be reconstructed by integrating the gradients15, 16. The above PMD methods there-
fore only measure the local slope of smooth surfaces17, instead of the actual 3D shape. Owing to the integration 
procedure, complicated specular components having isolated and/or discontinuous surfaces18 cannot be directly 
measured from phase data. White light interferometry19, wavelength scanning interferometer20 and multiple 
wavelength interferometer21 can be used to measure specular objects having discontinuous surfaces. However, the 
field of view of the objective lens, the range of the scanner and the limited synthetic wavelength are restricted to 
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the measurement range. These kind of interferometry are normally used for surface finish measurement instead 
of surface form measurement.

To solve the above problem, an FRP method has been used to measure absolute coordinates of discontinuous 
specular surfaces22. However, this method requires complicated spatial geometry computation. Moreover, the 
distance translated by a translating stage strongly affects the measurement accuracy, especially when the axis of 
translation and surface normal of the reference plane are not parallel. A zonal wavefront reconstruction algo-
rithm has been implemented to realize three-dimensional, highly reflected and specular surface reconstruction23. 
Although gauge blocks with two different heights were tested, it is difficult to measure multiple discontinuous 
surfaces because this method needs each measured surface of the step object to have one perturbed stripe.

This paper presents a new direct PMD (DPMD) method that measures the full-field 3D shape of specular 
objects having isolated and/or discontinuous surfaces by directly building the relationship between the absolute 
phase map and depth data24. When a liquid crystal display (LCD) screen is located at two known positions along 
the normal direction, a mathematical model is derived to directly relate the phase to depth, instead of the slope of 
the measured specular surface. A plate beam splitter (BS) is used to realize the parallel design of two LCD screens 
and thus avoid mechanically moving a screen to two positions. Sinusoidal fringe patterns having optimum fringe 
numbers are generated by software and displayed on the two screens25. A CCD camera captures the two sets of 
deformed fringe pattern images from a reflected viewpoint. Wrapped and absolute phase maps are calculated 
using a four-step phase-shifting algorithm26 and an optimum three-fringe number selection method, respectively. 
After calibrating the system, depth information of a specular object can be directly obtained from the calculated 
phase map. Experimental results for a monolithic multi-mirror array having multiple specular surfaces show that 
the proposed measurement method can obtain the full-field 3D shape of specular objects with isolated and/or 
discontinuous surfaces accurately and effectively.

Results
A measurement system, as illustrated in Fig. 1, was developed to obtain the 3D shape of specular objects by 
displaying the same fringe pattern onto two LCD screens. The hardware system consists of a computer, a CCD 
camera, two LCD screens and a plane BS. The two LCD screens are from LG Electronics Inc. The CCD camera is 
the latest industrial camera from SVS Company with the model number ECO655 and resolution of 2050 × 2448 
pixels. The camera supports external and internal trigger modes. The relative positions of the two LCDs and BS 
were adjusted to let LCD2 be parallel to the virtual image LCD1′ of LCD1. Using the proposed calibration meth-
ods, the two parameters d and ∆d were calibrated and their values are 154.532 mm and 17.905 mm. After the 
parameters of ∆d and d were calibrated using the method described above, the 3D shape of the specular surface 
could be measured by the developed system.

To evaluate the accuracy of the developed 3D measurement system, the plate mirror M1 was placed on an 
accurate translating stage with resolution of 1 μm. The plate was positioned at −3.7, −1.3, 1.3 and 3.7 mm with 
respect to the reference plane. At each position, depth data were calculated using the calibrated parameters. 
The translating distance of the stage, the measured average distance and absolute error (i.e., absolute difference 
between the measured average distance and position of the stage) are listed in Table 1. The maximum abso-
lute error was smaller than 0.064 mm. The results clearly show that the proposed calibration method accurately 

Figure 1.  Hardware of the developed 3D measurement system.

Position of the mirror −3.7 −1.3 1.3 3.7

Measured distance −3.764 −1.353 1.341 3.743

Absolute error 0.064 0.053 0.041 0.043

Table 1.  Experimental results for the accurately positioned mirror (Unit: mm).



www.nature.com/scientificreports/

3Scientific Reports | 7: 10293  | DOI:10.1038/s41598-017-11014-5

converts the absolute phase into depth data. Because all the points on one plane mirror have the same depth value 
to the reference plane in principle, the flatness of the plane can be used to calculate the repeatability of the meas-
urement in the same condition. The repeatability value of the measurement is 0.032 mm by measuring a mirror 
plane 10 times in the same condition.

In order to further test the accuracy of the 3D measuring system, an artificial step having discontinuous spec-
ular surfaces has been designed and manufactured. The distance between neighboring steps was measured by a 
coordinate measuring machine (CMM). Twelve sinusoidal fringe patterns having optimum fringe numbers25 of 
64, 63 and 56 were generated by software and sequentially displayed on the two LCD screens. The fringe patterns 
reflected by the specular surface of the artificial step were captured by the CCD camera. Depth data were obtained 
from the captured fringe patterns by using equation (5), as illustrated in Fig. 2. As listed in Table 2, the measured 
results by the deflectometry system were compared to that by the CMM method. The maximum absolute error 
is 0.052 mm.

A monolithic multi-mirror array on the Mid-Infrared Instrument (MIRI) Spectrometer Optics for the James 
Webb Space Telescope, which has multiple discontinuous specular surfaces, was measured by the developed 3D 
measurement system, as illustrated in Fig. 3. Twelve sinusoidal fringe patterns having optimum fringe numbers 
of 64, 63 and 56 were generated by software and sequentially displayed on the two LCD screens. The fringe pat-
terns reflected by the specular surface of the monolithic multi-mirror array were deformed and captured by the 
triggered CCD camera from another viewpoint. Using the four-step phase-shift algorithm, three wrapped phase 
maps were calculated for the measured specular object, as shown in Fig. 4(a)–(c). The absolute phase of each pixel 
was determined using the optimum three-fringe selection method, as shown in Fig. 4(d). Using the calibrated 
parameters ∆d and d, depth data were obtained as shown in Fig. 5. Because the reflected fringe patterns by the 
connecting surface cannot be seen by the CCD camera, only step surface data without the connecting surfaces are 
obtained. The results show that the proposed method can directly measure a specular object having isolated and/
or discontinuous surfaces. In order to capture the reflected fringe patterns by the multiple surfaces, the base sur-
face of the monolithic multi-mirror arrays needs to have an angle with respect to the reference plane. Therefore, 
the calculated depth data on both two groups (Mirror 1 to Mirror 11 and Mirror 12 to Mirror 21) have a positive 
slope.

Discussion
This paper presented a new full-field 3D shape measurement method for specular surfaces that uses the direct 
relationship between absolute phase and depth. Two LCD screens and one BS were used to realize the design of 
two parallel screens. The same fringe pattern sets were displayed on the two screens and reflected by the specular 
surfaces of the measured objects. Two absolute phase maps were obtained from the captured fringe patterns using 
a four-step phase-shifting algorithm and an optimum three-fringe number selection method. After two param-
eters of the system were calibrated using a machine vision method, depth data could be directly derived from 

Figure 2.  Measured depth of the measured step.

Step distance Measured distance Absolute error

3.987 4.036 0.049

7.025 7.062 0.037

5.006 5.058 0.052

6.099 6.143 0.044

Table 2.  Experimental results on the measured step (Unit: mm).
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the obtained absolute phase map. Because depth directly relates to the absolute phase without needing gradient 
integration, the proposed method can measure specular objects having isolated and/or discontinuous surfaces. 
Initial experimental results on measuring the monolithic multi-mirror array on the MIRI Spectrometer Optics 
for the James Webb Space Telescope having multiple specular surfaces show that the developed 3D measurement 
system obtains depth data effectively and accurately.

The proposed DPMD method has the following advantages. (1) Ability of full-field measuring 3D shape of 
specular objects having isolated and/or discontinuous surfaces by using the direct relationship between an abso-
lute phase map and depth data. (2) Simple operation during calibration and measurement due to no moving 
parts. (3) Potential high accuracy without error accumulation from gradient integration.

There are several future research directions for the proposed method. (1) Capturing speed: The generated 
fringe patterns will be coded into different color channels of the two LCD screens and then captured simultane-
ously by the corresponding color channels of a color CCD camera. (2) Accuracy: Efficient calibration methods 
will be applied to obtain more accurate parameters and the performance will be evaluated using other optical 
metrology. (3) Calibration: Only the relationship between the absolute phase and depth was determined. It is 
beyond the scope of this paper with regard to pixel position to transverse coordinate values. (4) Error analysis: 

Figure 3.  A monolithic multi-mirror array on the MIRI Spectrometer Optics for the James Webb Space 
Telescope.

Figure 4.  Phase of the monolithic multi-mirror array. (a–c) are three wrapped phase maps having 64, 63 and 56 
projected fringes, while (d) is the absolute phase map.
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Effects of all kinds of error sources on the measurement results need to be analyzed; e.g., non-parallelism of the 
two screens and inaccuracy of the calibrated parameters ∆d and d.

Methods
Figure 6 shows the schematic setup of the proposed 3D shape measurement system of specular surfaces using 
DPMD. The system comprises two LCD screens, a CCD camera and a plate BS.

The BS is set in one proper position, such that a virtual image LCD1′ of LCD1 is parallel to LCD2, just like two 
LCD screens are located at two different positions. Moreover, the two screens are parallel to the reference plane. 
The parallelism is established by repeating adjustment of the relative orientations of the three components (the 
two LCD screens and the mirror at reference plane) and generating pre-distorted fringe patterns for compensa-
tion. Hollow ring markers matrix is generated in software and displayed on both LCD screens. The CCD camera 
captures the hollow ring markers matrix on three components surface. The external parameters of the three com-
ponents in camera coordinate system are obtained by using the known separation between neighboring markers 
and the internal parameters of the camera. Based on the obtained external parameters, the relative orientation of 
the three components is adjusted. This procedure is repeated several times until the three components are nearly 
parallel. Finally, a software-based method is applied to generate pre-distorted fringe patterns to compensate for 
the non-parallelism of the three components27. Therefore, the two LCD screens and the mirror at the reference 
plane are parallel. The plate beam splitter is therefore used to realize the parallel design of the two screens to 
avoid mechanically moving a screen to two positions LCD1′ and LCD2 along the normal of the reference plane. 
The layout has two advantages. (1) There are no moving parts during calibration and measurement, and there 
is thus no effect on the resultant data from moving components. (2) Two sets of fringe patterns can be captured 

Figure 5.  Measured depth of the monolithic multi-mirror array.

Figure 6.  Schematic setup of the 3D measurement system.
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simultaneously by a color CCD camera when the fringe patterns are coded into different color channels of the 
two LCD screens.

The distance between LCD1′ and LCD2 and that between the reference plane and LCD1′ are denoted ∆d and 
d, respectively. When the same sinusoidal fringe patterns having the optimum fringe numbers are generated by 
software and displayed on the two LCD screens, they are reflected and deformed by the reference mirror and 
the specular surface under test. The deformed fringe patterns are captured by the CCD camera from another 
viewpoint for post-processing. The corresponding absolute phase of each point on the two LCD screens can be 
calculated by combining the four-step phase-shifting algorithm and the optimum three-fringe number selection 
method.

Assuming that the imaging system is a pinhole projection, two rays of light are displayed and reflected into the 
CCD camera via the measured surface and the reference mirror, as illustrated in Fig. 5. The two incident rays 
correspond to the same reflection light. The absolute phases of the two incident rays are denoted ϕr1 (or ϕ′r1) and 
ϕr2 on the reference mirror and ϕm1 (or ϕ ′m1 ) and ϕm2 on the measured specular surface. θ and θ + Φ are the angle 
between the incident ray and the normal vector of the reference mirror and the angle between the incident ray 
and the normal vector of the measured specular surface, respectively. The period of the displayed fringe pattern 
on the LCD screen is denoted q. ∆l is the distance on LCD1′ between the two incident rays because of the height 
and gradient of the measured surface. Parameter h stands for the height of the measured specular surface with 
respect to the reference mirror.

The geometric relationship in Fig. 6 gives the relations

ϕ − ϕ π = ∆ θ( )q/2 dtan , (1)r1 r2

ϕ − ϕ π = ∆ θ + Φ( )q/2 dtan( ), (2)m1 m2

+ θ + ∆ = − θ + Φl(d h)tan (d h)tan( ), (3)

ϕ − ϕ π = ∆ .( )q/2 l (4)r1 m1

From equations (1)–(4), height h of the measured specular surface is

=
∆ ϕ − ϕ − ϕ − ϕ − ϕ − ϕ

ϕ − ϕ + ϕ − ϕ
.h d( ) d[( ) ( ) ]

( ) ( ) (5)
r1 m1 r1 r2 m1 m2

m1 m2 r1 r2

This equation clearly shows that height information can be directly calculated from the captured fringe pat-
terns on the measured specular surface only if the two parameters d and ∆d and phase information on the ref-
erence plane are known beforehand. Because the optimum three-fringe number selection method is used to 
calculate the absolute phase pixel by pixel, the specular objects having isolated and/or discontinuous surfaces can 
be measured employing the proposed method.

To obtain 3D shape data, an important step is to build the relationship between the absolute phase and depth. 
According to the derived mathematical model expressed as equation (5), the parameters of ∆d and d need to be 
determined beforehand. Two accurate plane mirrors were manufactured. M1 has an ideal plane surface while M2 

Figure 7.  Diagram of the calibration of ∆d.
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has a hollow ring marker matrix with known separation. M1 is fixed on an accurate translating stage and moved 
to a known position ∆h along the normal direction of the two LCD screens, as illustrated in Fig.7. At each mirror 
position, fringe pattern sets having the optimum fringe numbers are generated and displayed on LCD2 and LCD1. 
The displayed fringe patterns are reflected by M1 and captured by the CCD camera.

The geometric relationship in Fig.7 gives the relations

ϕ ′ − ϕ
π

= ∆ θ( ) q
2

dtan , (6)r1 r2

+ ∆ θ − ∆ = − ∆ θ(d h)tan l (d h)tan , (7)

∆ = ϕ ′ − ϕ ′
π

l ( ) q
2

, (8)m1 r1

where the parameters q, d, ∆d, ∆l and θ have the same meaning as before. The obtained absolute phase has the 
relationship

∆ = ∆ ϕ ′ − ϕ ϕ ′ − ϕ ′ .d 2 h( )/ ( ) (9)r1 r2 m1 r1

In principle, one known depth ∆h and the corresponding phase value can determine ∆d. To improve the 
accuracy of ∆d, the translating stage moves to several known positions to build an over-determined equation set.

To determine d, mirror M2 is positioned parallel to the LCD screen and its surface is chosen as the reference 
plane, as illustrated in Fig. 8. After calibrating the internal parameters of the CCD camera28–30, the orientation of 
M2 is determined in the camera coordinate system using the hollow ring marker matrix31 on the surface of M2. 
The same hollow ring marker matrix is generated by software and displayed on the LCD1 screen. Owing to the 
reflection from the surface of M2, the CCD camera can view and capture the marker matrix at the position LCD1″ 
(the virtual image of LCD1′). The orientation of LCD1″ (LCD1′) is therefore obtained in the camera coordinate 
system using the hollow ring marker matrix on LCD1

32. Distance d can be calculated using the obtained orienta-
tion of M2 and LCD1 in the same camera coordinate system.
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