
University of Huddersfield Repository

Simpson, R.M., Long, Derek, McCluskey, T.L. and Fox, Maria

Generic types as design patterns for planning domain specifications

Original Citation

Simpson, R.M., Long, Derek, McCluskey, T.L. and Fox, Maria (2002) Generic types as design 
patterns for planning domain specifications. In: The AIPS-2002 Workshop on Knowledge 
Engineering Tools and Techniques for AI Planning, April 24th, 2002, Toulouse, France. 
(Unpublished) 

This version is available at http://eprints.hud.ac.uk/id/eprint/3284/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/



Generic Types as Design Patterns for Planning Domain Specification

R. M. Simpson and T. L. McCluskey
School of Computing and Mathematics, The University of Huddersfield, Huddersfield, UK

r.m.simpson@hud.ac.uk, lee@zeus.hud.ac.uk

Derek Long and Maria Fox
Department of Computer Science, University of Durham, UK

d.p.long@dur.ac.uk, maria.fox@dur.ac.uk

Abstract

In this paper we investigate the use of ‘Generic Types’
as design patterns to assist in the specification of plan-
ning domains. Current planning technology uses in-
duced patterns discovered in a domain specification to
speed up plan creation. We argue that such generic
types can also be used to help a domain author to de-
velop a design for a domain at specification time using
concepts at a much higher level of abstraction than is
normally provided by domain specification languages.

Introduction
Research into domain independent AI Planning and
Scheduling, has traditionally focused on the devel-
opment of algorithms to efficiently find solutions to
planning problems within the domain. The problems
of dealing with what is perceived to be realistically
large problems has been very difficult but recent ad-
vances in algorithms appear to make the problems more
tractable. Perhaps because of the difficulty in develop-
ing capable solution generating algorithms knowledge
engineering for applications of AI Planning technol-
ogy is still very much in its infancy. Recent success-
ful AI planning applications (Muscettola et al. 1998;
A. Tate (editor) 1996) have nonetheless highlighted
the problems facing knowledge engineering in planning.
Questions raised by such work include issues of how
to encode knowledge into domain models for use with
planning algorithms. Subsequently concern over the de-
velopment of knowledge engineering issues in AI Plan-
ning has resulted in a set of workshops and initiatives,
including (Benjamins, Nunes de Barros, Shahar, Tate
and Valente (eds) 1998; PLANET 1999).

In this paper we describe a domain definition strategy
and tools to support the knowledge acquisition phase,
to be carried out by domain experts rather than experts
in AI Planning. We show that planning domains can
be constructed using concepts at a much higher level
of abstraction than has traditionally been the case in
domain independent planning. Traditional languages
for the specification of planning domains allow the au-
thors of a new domain great freedom in their choice of
representation of the domain details. This freedom is
we contend for the most part unnecessary and provides

an unwanted conceptual barrier to the development of
effective domain definitions. As part of our ongoing
project to enhance the tools available for knowledge
engineering in planning we recently released a “Graph-
ical Interface for Planning with Objects” called GIPO
(Simpson et al. 2001). This is an experimental GUI
and tools environment for building classical planning
domain models, providing help for those involved in
knowledge acquisition and the subsequent task of do-
main modelling. The current work is an enhancement
to the GIPO tools environment which is supported by
EPSRC grant GR/M67421, within the PLANFORM
project http://scom.hud.ac.uk/planform.

Generic Types
The primary purpose of generic types in planning
as introduced by Fox and Long (Fox & Long 1997;
Long & Fox 2000; 2001) was to provide control infor-
mation to planning algorithms to boost the speed of
finding solutions to planning problems. The underlying
conjecture in that work is that if common structural
elements can be detected in a domain definition then
specialised algorithms can be brought to bear on those
elements of the problem to speed up the detection of
solutions. With this in mind researchers have now iden-
tified a number of candidate generic types that can be
found in a range of the domains publically available.
The purpose of our research is to investigate the possi-
bility of using generic types as design patterns to assist
the domain modeller in the construction of an initial
specification. Defining a design pattern in his seminal
work (Alexander et al. 1977), Alexander states that:

Each pattern describes a problem which occurs
over and over again in our environment, and then
describes the core of the solution to that problem
in such a way that you can use this solution a mil-
lion times over without ever doing it the same way
twice. Christopher Alexander

There are many potential advantages to presenting
the domain modeller with a range of patterns around
which a domain can be structured. Just as the con-
cept of design patterns has promoted greater reuse at
a higher level of abstraction in software engineering,



it can equally be beneficial for planning domain engi-
neering. The domain modeller can benefit from en-
capsulated clean and elegant solutions to representa-
tion of common domain structures. Another advantage
is, again as with software engineering practice, the de-
signer is encouraged to conceptualise the domain at a
higher level of abstraction than has typically been the
case for modellers working in STRIPS derivative lan-
guages such as PDDL. A further benefit is that the
use of canonical, “normalised” domain representations
supports the opportunity for reuse of deeper domain
knowledge associated with the patterns, such as con-
trol knowledge, specialised algorithmic problem-solvers
and so on.

The language OCL (Liu & McCluskey 2000) which
has a design suite of tools GIPO (Simpson et al. 2001)
itself tries to lift the level of generality at which the
modeller can design the domain by making the concept
of an object and the changes of state that they undergo
central to the conceptualisation of the domain. How-
ever the research group acknowledges that the task for
the domain modellers who are not themselves experts in
the field of A.I. planning is still too difficult. Along with
other approaches being investigated by the team, this
current research is seen as having the potential to help
bridge the gap between the tools and techniques usable
by a domain expert, who is not necessarily steeped in
the technologies of AI, and those that may only be used
by experienced practitioners in the field of AI Planning.

In software engineering, design patterns (Gamma et
al. 1995) are described using stylised natural language
templates, combined with UML class diagrams, describ-
ing the relationships between the fundamental build-
ing blocks of object-oriented software. In planning do-
mains the corresponding notion of a generic type is
described using relationships between the fundamental
building blocks of planning domain descriptions: sorts
(or types), predicates, object states and state transi-
tions (associated with operators). These relationships
can be captured graphically, in a diagram rather like
a UML class diagram (Figure 1), or more formally, us-
ing declarative specifications of the necessary relation-
ships between the components. The formalisation of
these descriptions is still the subject of current research,
since the precise language should combine expressive-
ness with precision and tractability. The role of generic
types has expanded from being patterns to be identi-
fied and exploited, which demands a description that
can be matched efficiently against domain descriptions,
to that of domain engineering construct, which is not
concerned with pattern-matching, but with expressive-
ness and ease of instantiation.

Broadly, a generic type then defines a class of classes
of objects all subject to common transformations dur-
ing plan execution. Within OCL we refer to sorts which
are sets of objects all subject to the same characteri-
sation and transformations, in typed-PDDL the range
of a type identifies a set of objects all subject to the
same characterisation and transformations. A generic

Type L

Type M1

at1

Type M2

at1

Type P

at1 in1

1

2
3

4

5

5: The move for M2 is enabled by the loaded
    condition for the portable type, P.
6: M2 is a carrier for the portables P.
7: The location at which the load or unload takes place
    is the location of the carrier.

1: A single type satisfies the fingerprints for mobile 
    and portable types (M1 = P).
2: The locatedness properties of the portable and mobile 
    instantiations are the same.
3: The locatedness property links the mobile to a 
    location type, L.
4: A second mobile, M2, also moves on locations L.

6
7

Figure 1: Pattern description for the driver generic
type.

type accordingly ranges over the types or sorts of in-
dividual domains. The degree of commonality in the
characterisation and transformations that these types
or sorts must share have been described in the litera-
ture in terms of state machines describing the patterns
of transformations that the objects undergo.

In the following section we illustrate the way in which
a generic type can be used as a design pattern to sup-
port a more abstracted view of the structure within a
planning domain during the engineering process.

An Extended Example
We will describe the generic type for a “mobile”. A
“mobile” can initially be thought of as describing the
types of objects that move on a map. They can very
simply be characterised by the state machine shown in
figure 2

Type L
P

Transformation by action A

Type M

Predicate in property P relates objects
of type M to objects of type L.

Figure 2: The Mobile Generic Type

In this one-state-machine the state is characterised by
the property of the mobile object corresponding to its
locatedness and the transition is identified by the action
causing it to move. For this generic type to be applica-
ble to a type or sort in a particular domain there must
be a type such that there is an action that changes the
truth value of a n placed predicate N >= 2, let us call it
at, where one argument identifies the type in question,
M , and another a value L which changes as a result of
the application of the operator. That is the value of L
differs in the pre- and post-conditions of the action in
the reference to the at predicate. No other predicate
referencing M should change truth value in the same
action definition in this most basic form of the mobile
prototype. The namings of predicates and arguments



may (and will) be different in different instances of the
generic type. This is a very weak characterisation of a
mobile, in that domains that describe actions that per-
form transformation on some property of the objects in
question might fulfill the above requirements and hence
be characterised as a mobile. From the point of view of
the designer of planning algorithms this does not rep-
resent a problem as it just means that any specialised
algorithms identified to speed up processing domains
containing such structures will have wider application.
From the point of view of someone trying to produce
tools to assist domain developers it poses a problem in
conveying to the user precisely what is the scope and
potential uses of the pattern we have described as mo-
bile. This problem of communication is probably ex-
acerbated when we realise that subtle variations of the
pattern need to be distinguished from one another.

Flavours of Mobiles First we characterise the tran-
sition made by such a “mobile” in terms of the
formula [at(Mobile0, LocA) ∧ LocA �= LocB] ⇒
[at(Mobile0, LocB)] where the compound predicate
within square brackets to the left of ⇒ describes the
object Mobile0 prior to application of the action and
the formula to the right describes it after the application
of the operator. The question arises as to the nature of
the relationship between the values of LocA and LocB.
In the formula they are required to be distinct and, we
will assume, of the same type but their relationship is
not otherwise constrained.

In some domains a more complex relationship might
be required to hold between the two locations in order
to allow movement between them. For example if “a”
and “b” are locations then the transition from “a” to
“b” can only be made if there is a “road” from “a” to
“b”. In the case of the logistics domain transition are
allowed if both locations are in the same city. In yet
other cases e.g. the rocket world the only restriction
may be the one we have assumed anyway that the loca-
tions are all of the same type and that they are distinct
from one another. Distinguishing these differences may
be necessary when analysing existing domains with the
intention of speeding up solution detection but it does
not follow from that that we should provide the domain
developer with the freedom to create each variant, with
the consequent additional burden of forcing the devel-
oper to distinguish conceptually between the different
patterns. We must decide whether or not the differences
are essential to capturing distinct behaviours of objects
in the respective domains or whether they are merely
alternative ways of describing the same behaviour and
represent nothing deeper than differences in encoding
strategies. We believe that there are advantages to re-
quiring the developer to come to terms with a minimal
toolkit of canonical concepts to allow them to model
their domains. We should only deviate from this if min-
imality means that the developer must conceptualise a
problem at a level of abstraction that is too far removed
from a natural way of thinking of the domain, in which

case we may introduce features which from the mini-
malist point of view are redundant. Determining what
represents a “natural” way of thinking about domain
structures is a matter of experience and of judgement —
we anticipate the need to refine the collection of generic
types offered as a domain design patterns as their use
develops.

Data Structures

Consideration of the very simple model of a mobile de-
scribed above leads us further to distinguish different
elements of a generic cluster. In particular, we need to
distinguish between data structures that are referenced
in the cluster and the dynamic generic types. Data
structures are elements within the domain that are cap-
tured in predicates that do not change truth value dur-
ing the application of a plan. In PDDL, data structures
are given in the initial state of a problem. An exam-
ple is the set of connectedness propositions that define
the road structure in the truck-world which form a con-
nected graph. Such data structures may be referenced
by multiple operator definitions within the planning do-
main. The dynamic generic types are types or groups of
types characterised by the changes in state they make
during plan application.

Data structures in planning domains are not normally
identified in terms of their structure but are captured
implicitly in collections of predicates. In PDDL data
structures are to be found in a subset of the proposi-
tions defined as true in the initial state of a problem
definition. In OCL, these static propositions that do
not change truth value during the planning process are
collected together in the atomic invariants section of
the domain specification.

Examples
• Sets In the logistics domain the proposition

in-city(pgh-po,pgh) is used as a way of asserting that
pgh-po is a member of the set of locations defined
as part of the city pgh. Sets may be identified more
simply than this. A set may simply be represented
as the values of a particular argument in a predicate.
We would describe the locations that can be visited
in the brief-case world as forming a set, though they
are never referred to in the domain specification other
than as values of the location argument in the predi-
cate that relates an object such as the “briefcase” to
a location. Given this example it might seem that
the range of every typed variable could be regarded
as forming a set but we distinguish between dynamic
and static types and only the ranges of static types
are regarded as candidates to be identified as sets.
The distinction between dynamic and static objects
we have discussed in (Simpson et al. 2000). To sum-
marise: dynamic objects are those that would nor-
mally be regarded as changing their properties or re-
lations during plan execution, where as static objects
do not change. Again referring to the briefcase world,



in the at(briefcase1, home) predicate that describes
the location of the briefcase1 as being at home, it
would be normal to regard briefcase1 as changing lo-
cation when moving from “home” to the “office”, but
we would not think of the locations themselves as
changing state simply as a result of the arrival or
departure of a briefcase. Hence we regard the “brief-
case” as dynamic but the “home” as static.

• Maps Examples of maps can be found in the “travel”
world that contains collections of predicates such as
road(a, b) in the “init” sections of the problem spec-
ifications. The collection taken as a whole for each
problem specifies a directed graph which has to be
navigated by some dynamic object, the locations are
again regarded as static.

• Sequences Examples of sequences are rarer and less
obvious in the public domain planning domains.
They occur in such domains as the “elevator” do-
main to show the relationships between floors but
we would probably use a map in such an instance to
model the relationship. In domains such as “truck”
and “ferry” and “rocket” worlds there are single step
sequences moving from “full” to “empty”, which pro-
vides a very primitive way of representing resources
in those domains. We generalise this and provide the
notion of a sequence to enumerate the stages in the
consumption or production of a resource. The use
of this idea can be seen in the encoding of fuel lev-
els and space resources in the Mystery and Mprime
domains (AIPS’98 Planning Competition) and also
in aspects of the encoding of the FreeCell domain
(AIPS’00 Planning Competition).

Definitions
• A map we define as a named directed graph with

nodes identified by simple labels/names and edges
identified by a tuple containing the map name and
node names. The tuple {x,a,b} identifies that there
is an edge in map “x” from node “a” to node “b”.

• A sequence we define as a fully ordered set with mem-
bers identified by simple labels/names and a unique
named < relation. The tuple {< x,a,b} identifies that
“a” immediately precedes “b” in the “< x” sequence.

• A set we define as a set of items uniquely identified
by labels and a predicate name identifying the set.
The tuple {x,a} identifies “a” as a member of the set
“x”.

Defining Core Generic Types

The work done to date primarily identifies a family of
types clustering around the notion of a “mobile”. Fig-
ure 3 shows an initial pattern language for this collec-
tion of patterns. We distinguish two forms of mobile,
those constrained to move on “maps” and those that
move on “sets”. The first we call “mobiles” the second
we call “carriers”. There is then a number of optional

components that can be added to both mobiles and car-
riers. First both may be used to transport other objects.
In which case the other objects will make a transition
analogous to the “mobile” when the mobile moves but
they will also make transitions when “loaded” into the
mobile and “unloaded”. These objects which we call
“portables” can be characterised by state diagrams as
shown in figure 4 The behaviour of portables are to be

L

FSM for Mobile Objects

MP

Location Objects

"in" relates P objects to M objects

to L objects.
"at" relates P objects

"at" relates M objects to L objects.

FSM for Portable Objects

at

in

at

Feature 1

Feature 2

Feature 3

Feature 4

Feature 5

load

unload

Consider pre- and post-conditions
of load and unload actions.

The following components form the fingerprint for portability:

1. A previously identified mobile generic type, M , and its linked lo-

cation generic type, L.

2. A new type, P , with a FSM containing two states linked by tran-

sitions in both directions.

3. One state of the FSM for P must include a property formed from

a predicate linking the P type objects to the M type objects.

4. The other state of the FSM must contain a property formed from

a predicate linking the P type objects to the L type objects.

5. The operators from which the two transitions in the P type FSM

are derived must require an M object to be located at the same

location as the P object is located at the appropriate end of the

transition.

Note that the names of the operators and predicates are irrelevant

and that the name of the predicate in feature 4 need not be the same

as the locatedness predicate for type M .

Figure 4: The Portable Generic Type

determined by three actions, the action to move the
mobile, an action to load the portable into the mo-
bile and an action to unload the portable from the
mobile. The state diagram for the portable does not
however specify how the movement of the portable is
to relate to the similarly structured movement state di-
agram for the mobile. Given that both describe the
same “movement” action there are two plausible ways
that they may relate to one another. First the transi-
tions may both be required to take place together, in
which case it will be a precondition of the “movement”
action that the portable be “in” the mobile before any
movement can take place. Portables of this sort we call
“Drivers” and a specific transition needs to be defined
for each driver participating in the action. The second



Restricted 
Mobile

Passenger Ignition Key

Driver

Portable

Location

Dynamic Map

Map

Static Map

Carrier

Mobile

Restricted 
Carrier

Driven
Mobile

Key-protected
Mobile

Driven Mobile
Key-protected Key-protected mobile

requires ignition key

Simple
Portable

between locations
accessibility

Map identifies

between locations
Mobile moves

Carrier carries portables

requires driver
Driven mobile

Figure 3: A Hierarchy of Mobile-related Generic Types

case arises when the transition of the portable is con-
ditional on the portable being in the mobile but it is
not required that a portable be in the mobile to allow
the mobile itself to make the movement transition. In
this case the conditional transition will apply to any in-
stance of the portable “in” the mobile. We have there-
fore distinguished two types of mobile (a) carriers and
(b) mobiles both being capable of being associated with
two types of portable (i) drivers (ii) portables.

We have not yet exhausted our elaboration of the
“mobile” generic type. In a number of domains, in-
cluding one of the simplest, the “rocket” world, there is
a notion of fuel which is a resource to be consumed as a
result of the mobile moving. In the rocket world the fuel
is consumed in one shot. The rockets starts with fuel
full but any movement action results in the rocket being
empty of fuel. We can easily see that the consumption
of the resource could have been staged and to accom-
plish this we model the movement action as traversing
a step of a sequence on each movement. Given the
sequence {full, half, empty} a single movement action
might take the rocket from full to half and from half
to empty. With the notion of resources we can aug-
ment any transition as any transition might consume
or produce some resource. The movement action may
consume fuel, but equally loading or unloading some
portable may consume energy.

In the discussion above we have not described fea-
tures of mobiles that require “dynamic maps” nor “key”
enabled actions. We have given an indication of the
complexity and flexibility of the “mobile” generic type,
viewed as a design pattern.

Composition of Generic Types

The problems of the composition of patterns falls
broadly in two. The simple case is that already ex-
plored where a complex pattern has many optional but
predictable variations. Examples are where a mobile
requires a driver or consumes a resource. The more
problematic case is where the domain contains two or

more patterns where the same object type plays a role
in more than one pattern instance. This can happen
even in domains just containing mobiles. In a variation
of the “hiking” domain we may have cars which can be
used to transport the hikers from one centre to another
but the hikers themselves may be mobiles in that they
also walk from some locations to neighbouring moun-
tain tops. In relation to the car(s) mobile pattern the
hikers will play the role of either, or both, the roles of
“drivers” and “portables” but in relation to their walk-
ing they play the role of mobiles perhaps even with their
own portables such as the “tent” which they may carry
on some walks.

The problem of composition also occurs where we
have conceptually independent patterns. To illustrate,
one of the patterns we are working with we call a “bis-
tate” and it represents objects that typically exist in
one of two states and there are actions to change back
and forth between the states. A canonical example of
a bistate would be a switch that can be “off” or “on”.
In the hiking domain the tent that the hikers sleep in
may play a role as “portable” relative to the car and the
hikers themselves, but may additionally be modelled as
a bistate in that it is typically either “up” i.e. erected
or “down”. In this case the “erect” transition may be
captured by the formula [down(Tent0)] ⇒ [up(Tent0)]
The “load” and “unload” transitions associated with
the tent as portable may be captured as:
[at(Tent0, LocA)] ⇒ [in(Mobile0, T ent0, LocA] and
[in(Mobile0, T ent0, LocA] ⇒ [at(Tent0, LocA)].
The combination that we require is to associate the
“down” state with the “at” state but we cannot simply
replace the designation of the “down” state with that
of the “at” state because the “at” state carries extra
information about the location of the tent. We could
not adequately describe the transition of the tent when
we take it down as [up(Tent0)] ⇒ [at(Tent0, LocA)]
as there is no indication as to how the “LocA” vari-
able is to be bound. Obviously the location of the
tent is the same as that it had when the tent was



erected. Accordingly to preserve the location informa-
tion we must merge the arguments in the “at” and
“down” states and then propagate additional argu-
ments to the other state descriptors in the merged pat-
terns. In this case the “erect” transition now becomes
[at(Tent0, LocA)] ⇒ [up(Tent0, LocA)] and the “take
down” transition is similarly enhanced.

The strategy shown here is the one that we gener-
ally follow in combining instances of patterns where a
common state exists between the roles of the merged
patterns.

Domain Definition using Generic Types
To enable the domain developer to use the identified
generic types to structure a domain we have developed
a series of dialogs which we have integrated into the
GIPO domain development tool. The dialogues allow

Figure 5: The Pattern Manager

the user to choose the relevant patterns and then tailor
them to the problem in hand. In simple cases tailoring
is simply a matter of naming the components of the
pattern in an appropriate way. In more complex cases
the user must add optional components to the pattern
again by form filling and in the most complex cases en-
sure that domains using multiple patterns allow them
to interact with each other in the correct way. The set
of dialogues form a domain editor in such a way that
the user committing her choices in the editing dialogues
will result in the formal domain specification being au-
tomatically generated. We illustrate the process with
snapshots taken from the “Pattern Manager” in figure 5
which is used to control the addition and editing of pat-
terns known and instantiated within the domain. We
also show the main dialog for defining the parameters
of the “mobile” pattern in figure 6.

Evaluation
The implemented pattern editors that we have pro-
duced currently give good coverage of domains featuring
“mobiles” of one sort or another. Our evaluation is cur-
rently limited to testing to see if we can produce using
the pattern editors versions of the domains that have
been made available as part of previous AIPS compe-
titions. We are judging equivalence of domains not at

Figure 6: The Mobile Dialog

the level of encoding the operators and problems but
rather at the level of generality that would allow us to
say that derived solutions to equivalent problems are
equivalent. We do not require for example that any
planner that works with the original will work with our
generated version, as this is not the case even in the
rocket world as our encoding uses conditional effects
whereas the commonly available originals typically do
not. We would also judge domains to be equivalent
even where they do not contain the same number of
operators or predicates, for example a move operator
may be either expanded into multiple move operators
each responsible for moving objects of different sorts or
conversely we may contract multiple operators into a
single operator dealing with a more general sort.

An interesting observation is that though the
pattern-directed reconstructions of classic domains are
not always identical to the familiar encodings we con-
sider it a strength of the use of patterns that a canon-
ical encoding, with its attendant well-understood be-
haviours, is used to encode the domains. Nevertheless,
it raises an important point about the expected be-
haviour that a domain is intended to capture. In recon-
structing domains we expect to find that there is a cor-
respondence between legal states of the reconstructed
domain and the original encoding, with an induced cor-
respondence between plans in the two domains (see fig-
ure 7). Confirmation that this correspondence exists
forms a reasonable element of the evaluation of the use
of the pattern-directed approach to domain construc-
tion.

Evaluation of the provision of support for domain
construction by domain design patterns is difficult. It
is intended that they make domain construction easier,
but this is a matter of HCI and could only be empir-
ically evaluated with access to a reasonable sample of
potential users. Of course, the developers consider the



Initial Final

Plan

Initial Final

Plan

State correspondence
S

S

Induced plan correspondence

Original encoding

Reconstructed encoding

Figure 7: Equivalence between domain encodings.

approach to be an efficient and convenient way to gen-
erate domains. A separate dimension of evaluation is
to consider the extent to which the patterns provide
support across a wide range of domains. For example,
one might consider how many benchmark domains can
be reconstructed using the patterns, with the patterns
providing support for a high-level view of the domain
objects and their behaviours. It is of interest to note
that many of the benchmark domains include a trans-
portation element (Logistics, Gripper, Briefcase, Grid,
Mystery and MPrime are all examples). The Tyreworld
domain consists chiefly of interlocking bistate elements
(hubs can be up or down, nuts are on or off, loose or
tight, and wheels are on or off, inflated or deflated).
Many of the other domains contain a construction com-
ponent (Hanoi, Blocksworld, Assembly and Freecell)
and we are currently exploring the implementation of a
generic cluster to support construction.

Further Work

The work described above is still work in progress. We
continue to develop it at a number of levels. We con-
tinue to work on incorporating known “generic types”
into the GIPO tool and to enhance the facilities within
the tool for creating, editing and combining patterns.
At the level of the patterns themselves there is still
more work to be done in identifying new patterns and
elaborating further the existing patterns. We are also
working at formulating more formally the rules for com-
bining patterns with an ultimate goal of providing a for-
mal description of patterns and an “algebra” for their
composition. Ideally the outcome of this work would
be tools to allow the domain designer to develop a wide
range of domain definitions without the need to develop
the domain in any way at the level of the underlying
specification language such as OCL or PDDL. A further
goal of the work is also to provide planning algorithms
with information on the instantiated patterns to allow
them to use this as control information to inform the
planning process itself. We do not expect however that
this will eliminate the need for further domain analysis
to assist in speeding up planning solution production.

References
A. Tate (editor). 1996. Advanced Planning Technol-
ogy: Technological Achievements of the ARPA/Rome
Laboratory Planning Initiative. IOS Press.
Alexander, C.; Ishikawa, S.; Silverstein, M.; Jacobson,
M.; Fiksdahl-King, I.; and Angel, S. 1977. A Pattern
Language. Oxford University Press.
Benjamins, Nunes de Barros, Shahar, Tate and Va-
lente (eds). 1998. Workshop on Knowledge Engineer-
ing and Acquisition for Planning: Bridging Theory
and Practice. Proceedings of AIPS.
Fox, M., and Long, D. 1997. The Automatic Inference
of State Invariants in TIM. JAIR 9:367–421.
Gamma, E.; Helm, R.; Johnson, R.; and Vlissides, J.
1995. Design Patterns: Elements of reusable software.
Addison-Wesley.
Liu, D., and McCluskey, T. L. 2000. The OCL Lan-
guage Manual, Version 1.2. Technical report, Depart-
ment of Computing and Mathematical Sciences, Uni-
versity of Huddersfield .
Long, D., and Fox, M. 2000. Automatic synthesis
and use of generic types in planning. In Proc. of 5th
Conference on Artificial Intelligence Planning Systems
(AIPS), 196–205. AAAI Press.
Long, D., and Fox, M. 2001. Planning with generic
types. Technical report, Invited talk at IJCAI’01
(forthcoming Morgan-Kaufmann publication).
Muscettola, N.; Nayak, P. P.; Pell, B.; and Williams,
B. C. 1998. Remote Agent: To Boldly Go Where
No AI System Has Gone Before. Artificial Intelligence
103(1-2):5–48.
PLANET. 1999. PLANET Knowledge Technical Co-
ordination Unit. http://scom.hud.ac.uk/planet.
Simpson, R. M.; McCluskey, T. L.; Liu, D.; and
Kitchin, D. E. 2000. Knowledge Representation in
Planning: A PDDL to OCLh Translation. In Proceed-
ings of the 12th International Symposium on Method-
ologies for Intelligent Systems.
Simpson, R. M.; McCluskey, T. L.; Zhao, W.; Aylett,
R. S.; and Doniat, C. 2001. GIPO: An Integrated
Graphical Tool to support Knowledge Engineering in
AI Planning. In Proceedings of the 6th European Con-
ference on Planning.


