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Abstract

The large hadron collider (LHC) uses the most energetic and highest lumi-
nosity man made proton beams on Earth. The high luminosity (HL-LHC)
[1] upgrade aims to increase the levelled luminosity of the LHC by a factor
of five, to 5 · 1034cm−2s−1, by increasing the bunch population from 1 to
2.22 ·1011 protons, and decreasing emittance, and β∗. Thus the stored beam
energy increases from ≈ 362 MJ to ≈ 675 MJ per beam.

All synchrotrons encounter unavoidable proton losses. Protons that popu-
late the beam halo pose a threat to the performance and lifetime of certain
hardware, such as superconducting magnets, which in the LHC may be
quenched by an impact of ≈ 1 · 106 protons [2]. A multi stage collimation
system must operate at an efficiency such that no more than 2 · 10−5% of
protons incident on collimators may escape and impact upon these magnets
[3].

To predict and protect against proton losses in the HL-LHC, collimation
simulations must be performed. MERLIN, a C++ accelerator physics li-
brary, has been updated to carry out such simulations for the HL-LHC.
Novel materials such as molybdenum graphite have been investigated as
collimator materials, and a novel technique - collimation enhancement via
a hollow electron lens (HEL) - has been studied. Using detailed simula-
tions the performance and operation of possible collimation upgrades are
explored.
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5.55 Poincaré section for a DC ‘Tevatron’ HEL in the nominal LHC from

SixTrack simulations, comparing the original (left), and adjusted (right)

input Rmin. Particles are initially populated between 0 - 10 σ. We can

see without the adjustment that there is no influence from the HEL, and

after making the adjustment the islands shown in the right plot show

the expected HEL behaviour. . . . . . . . . . . . . . . . . . . . . . . . . 233

5.56 HEL radial kick profiles, comparing MERLIN (right) with SixTrack (left),

for identical Tevatron HEL parameters. As expected the profiles are

identical in MERLIN and SixTrack. . . . . . . . . . . . . . . . . . . . . 234
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Introduction

1.1 Thesis Organisation

After introducing the LHC and HL-LHC in Chapter 1, the required accelerator physics

and beam collimation is covered in Chapters 2 & 3. In Chapter 4 a detailed summary

of the work done on the MERLIN C++ accelerator physics library is given, including

some relevant physics. The focus of this thesis is developing aspects of MERLIN rel-

evant to the challenges presented by the HL-LHC collimation system, namely; hollow

electron lens collimation, treatment of composite and novel materials, long term track-

ing, and loss map production, such that MERLIN is a versatile tool. MERLIN is then

benchmarked in Chapter 5, followed by the results of novel simulations in Chapter 6,

including an integration study of the HEL in the HL-LHC. A summary and conclusion

follows in Chapter 7.

1.2 LHC

1.2.1 Overview

The large hadron collider (LHC) was designed in the 1980’s, approved in 1995, and built

between 1998 - 2008. The purpose of the synchrotron is to address current mysteries

in physics, including but not limited to:

• Explaining the origin of mass in the standard model of particle physics.

• Unifying of the fundamental forces.

• Investigating the nature of dark matter.

• Investigating matter antimatter asymmetry.
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• Investigating early stages of the universe.

To achieve these goals, two counter rotating proton (or lead ion) beams are accel-

erated up to an energy of 7 TeV
u , and collide at one or more of four large multi-purpose

detectors.

The LHC is split into octants, as shown in Fig. 1.1, it has a total length of 26.659 km

but is not perfectly circular. It is split into 8 long straight sections (LSS), and 8 arcs,

with dispersion suppressor (DS) regions between each arc and LSS.

Figure 1.1: The LHC is split into octants, the interaction points are referred to as IPs
and insertion regions as IRs, for example ATLAS is located at IP1, and the momentum
collimation insertion is in IR3. From [4].

Two general purpose detectors exist; a toroidal LHC apparatus (ATLAS) and the

compact muon solenoid (CMS) at IPs 1 and 5 respectively. The LHC beauty (LHCb)

detector at IP 8 is an asymmetric detector that investigates matter antimatter asym-

metry as well as other particle physics. A large ion collision experiment (ALICE) at IP

2 is primarily used for the lead-lead (Pb-Pb) collisions that take place for one month of

every year of LHC operation. The four main detectors are shown in Fig. 1.2 along with
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Figure 1.2: The CERN accelerator complex.

the accelerator complex. As well as these there exist smaller experimental insertions,

including; total cross section, elastic scattering and diffraction dissociation (TOTEM),

LHC forward (LHCf), and monopole and exotics detector at the LHC (MoEDAL).

The nominal operational parameters of the LHC are shown in Table 1.1. The

LHC achieved first beams on 10th September 2008, however there was a catastrophic

failure on the 19th September 2008, in which the superconducting (SC) interconnect

between two dipole magnets that had not been correctly soldered, caused a quench.

Superconducting magnets are operated at very low temperatures, a quench is the return

of a SC magnet to a normal conducting state. As ≈ 10 GJ of energy is stored in the SC

magnets, a fail-safe exists to remove the power to these magnets in case of a quench.

This fail-safe acted as expected, however an electrical arc caused a breach in the high

pressure supercooled helium vessel, which resulted in a pressure explosion with enough

force to break the 10 tonne magnets from their mountings, and caused contamination

and damage in a large section of the machine.

As a result of the disaster, Run I of the LHC was set back to November 2009.
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On 30th November 2009, the LHC reached a milestone in circulating 1.18 TeV beams,

beating the previously held record of 0.98 TeV at the Tevatron [5]. An energy of 3.5 TeV

per beam was reached in early 2010, in November 2010 the first proton run ended and

the first lead ion run began. After running at 4 TeV from 2011, long shutdown 1 (LS1)

was postponed until early 2013 due to the announcement by ATLAS and CMS, of the

discovery of a ‘Higgs like’ particle at 126 GeV
c2 .

LS1 began in February 2013, and involved general maintenance and upgrades of the

LHC and its injectors. A consolidation of all magnet interconnects was also performed

in order to prevent failures similar to the one in 2008. To operate at higher beam

energies, the SC magnets must be ‘trained’ to reach higher currents and thus magnetic

fields. This is a slow process and lead to the decision to start Run II at 6.5 TeV rather

than the nominal 7 TeV. On the 3rd of June 2015 Run II began at a collision energy of

13 TeV, the proton run ended in November when the lead ion run began, and a record

energy of 1 PeV was reached for lead ions.

The projected peak and integrated luminosity of the LHC is shown in Fig. 1.3, at

the end of 2015 the LHC had reached an integrated luminosity of ≈ 30 fb−1 [6], and

a peak luminosity of ≈ 5·1033 cm−2s−1 [6] at ATLAS and CMS.

Figure 1.3: Possible peak and corresponding integrated luminosity up to the ‘ultimate’
limit, including long shutdowns (LS) 1 to 3, and the end of year technical stop (EYETS)
in 2016. From [7].
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1.2.2 Collimation

In order to obtain the maximum experimental data, the LHC must remain operational.

To reduce downtime a complex machine protection system exists, at the heart of which

is the collimation system; a hierarchy of beam targets that intercept the beam halo in

order to reduce proton losses in superconducting magnets and other sensitive hardware.

In the transverse beam plane (xy in later defined co-ordinates), accelerator beams

are generally Gaussian in shape. The beam profile of the LHC is observed to be

Gaussian; ≈ 67.3 % of the particles are contained within one standard deviation, or σ

of the bunch. As depicted in Fig. 1.4, the core of the beam is generally accepted to be

the particles within 3 σ. As the LHC beam is Gaussian, the core contains ≈ 99.7 % of

the particles, leaving ≈ 0.3 % in the beam halo.

Figure 1.4: The LHC beam core and halo in transverse phase space. From [4].

Quench limits for LHC dipoles were previously thought to be of the order≈ 10 mW cm−3,

however more recent studies have estimated up to 47 mW cm−3 [8]. This equates to

a tiny fraction of the LHC stored beam energy of 362 MJ at nominal settings.

The collimation system must provide a cleaning efficiency of 99.99992 %, i.e. this

proportion of proton losses in the LHC must be in collimators rather than other com-

ponents. To achieve this a multi-stage collimation system operates, as well as injection

and extraction protection, and protection of the inner triplet magnets (quadrupoles
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that focus the beam at collision points). A full description of the collimation is given

in chapter 3. One of the expected performance limitations of the LHC is the cleaning

efficiency at nominal energy [9].

1.3 High Luminosity LHC

The high luminosity LHC upgrade (HL-LHC) aims to improve the performance of the

LHC by increasing the machine luminosity, defined in equation 1.1, by a factor of 5,

and thus the integrated luminosity by a factor 10 [9].

L = γ
nbN

2frev
4πβ∗εn

R, (1.1)

the geometrical reduction factor R is given by equation 1.2;

R =
1√

1 + θcσz
2σ

, (1.2)

where:

γ is the Lorentz gamma factor,

nb is the number of machine bunches,

N is the number of particles in a bunch,

frev is the revolution frequency of a bunch in the machine,

β∗ is the beta function at the interaction point,

εn is the normalised transverse emittance of the beam,

θc is the full crossing angle between colliding beams,

σ is the transverse r.m.s. beam size, and

σz is the longitudinal r.m.s. beam size.

The increase in luminosity will be achieved by;

reducing the beam emittance ε,

increasing the bunch population N ,

decreasing the bunch spacing to 25 ns,

reducing the interaction point β∗ using large aperture NbTi separator and Nb3Sn

inner triplet magnets,

reducing the crossing angle θc with the use of crab cavities,

preparing the machine for collision debris and radiation.
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Parameter [unit] LHC HL-LHC 25 ns HL-LHCBCMS 25 ns HL-LHC 50 ns
Collision energy [TeV] 7 7 7 7

Number of particles per bunch Nb [-] 1.15·1011 2.2·1011 2.2·1011 3.5·1011

Number of bunches per beam nb [-] 2808 2748 2604 1404

Total number of particles Ntot [-] 2.3·1014 6·1014 5.7·1014 4.9·1014

Beam current [A] 0.58 1.09 1.03 0.89
Crossing angle [µrad] 285 590 590 590
Beam separation [σ] 9.4 12.5 12.5 11.4
Beta function at collision β∗ [m] 0.55 0.15 0.15 0.15
Normalised emittance εn [µm] 3.75 2.5 2.5 3

Bunch length r.m.s [m] 7.55·10−2 7.55·10−2 7.55·10−2 7.55·10−2

Geometric luminosity factor
(no crab cavities) R0 [-] 0.836 0.305 0.305 0.331
Geometric luminosity factor
(with crab cavities) Rcc [-] (0.981) 0.829 0.829 0.838
Peak luminosity (without crab

cavities) [cm−2s−1] 1·1034 7.55·1034 7.55·1034 7.55·1034

Virtual luminosity (with crab cavities)

Lpeak ·
R0
Rcc

[cm−2s−1] (1.18·1034) 19.54·1034 18.52·1034 21.38·1034

Levelled luminosity [cm−2s−1] - 5·1034 5·1034 2.5·1034

Table 1.1: High luminosity and nominal LHC parameters. From [9].

1.3.1 Overview

In order for the HL-LHC to be attainable an upgrade of the entire injector chain is

also under way; the LHC injector upgrade (LIU) project should be completed in LS2

(2019) [9] at a cost of ≈ 186 million Swiss francs [10], the HL-LHC project has a

projected cost of ≈ 830 million Swiss francs. As well as this upgrades are planned for

ATLAS and CMS between LS2-LS3, and for LHCb and ALICE in LS2 [9].

Table 1.1 details the possible HL-LHC parameters for various configurations, in-

cluding 25 or 50 ns bunch spacing, and the BCMS regime with very small emittance.

Figure 1.5: The LHC baseline plan including luminosity, energy, and the purposes of
each long shutdown. From [9].

The systems of the LHC that are expected to reach the end of their lifetime by LS3,

or require modification to enable luminosity beyond the LHC design, are summarised
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below [9]:

Inner Triplet Magnets: Some triplet quadrupoles and corrector magnets will

be radiation damaged after receiving a dose of ≈ 30 MGy after 300 fb−1. In order

to avoid sudden failures, replacement must take place before sufficient damage.

Cryogenics: A new cryogenics plant will be installed in IP4 to allow interventions

in the inner triplet regions without warming up the arc section magnets.

Collimation: As well as upgrading the majority of the collimation system with

novel materials to withstand the increase in luminosity and decrease impedance,

additional collimators are required in the dispersion suppressor (DS) regions

where off-momentum particles have been observed to be lost. This is particu-

larly important for fragmented ions in IP2, and all particles after the collimation

insertions in IP3 and IR7. A DS collimator must be cold, thus it is proposed

to replace a standard LHC dipole (8.3 T field, 14.2 m length) with a high field

magnet of shorter length (11 T field, 11 m long), thus making room for a special

collimation device.

Cold Powering: To improve availability, some electronic devices (power supplies

and associated equipment) will be moved out of the tunnel to protect them from

radiation. Current electronic boards will be replaced with radiation hardened

ones to improve robustness. New materials for superconducting links, such as

YBCO, Bi-2223, and MgB2 will allow power converters to be moved further from

the machine.

Quench Protection System: The design of this system is almost two decades

old and thus it will be updated.

Machine Protection: The injection kicker system, injection protection collima-

tors (TDIs), and interlock systems require renovation post 2020.

Remote Manipulation: As elements of the machine will become radiation

damaged, a system is required for replacing parts such as collimators safely. This

is likely to involve robotics and remote manipulation.

The project is organised into work packages (WPs), as shown in Fig. 1.6.

1.3.2 WP2: Accelerator Physics

1.3.2.1 Reducing Beta∗

There are three main limitations to decreasing β∗, assuming replacement of the inner

triplet only [9]:
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Figure 1.6: The organisation of HL-LHC work packages. From [9].

• mechanical acceptance of the existing matching section,

• gradient limits of the matching quadrupoles,

• strength limits of the arc sextupoles.

It was found that β∗ is limited to 30 cm by the aperture and material of the

SC triplet quadrupoles, this was estimated to be reduced to ≈ 25 cm when using

higher gradient Nb3Sn technology [9]. To reach the required β∗ for the HL-LHC,

the only solution is to use larger aperture (150 mm) triplet magnets, and D1 (first

separation/recombination dipole).

A novel optics configuration of the LHC, the achromatic telescope squeezing (ATS)

scheme has been developed in order to decrease the β∗ for the HL-LHC. This involves

using the arcs adjacent to the respective IP as matching sections. As a result the β-

beating waves generated in these adjacent arcs reach their maximum at every other

sextupole, thus increasing their chromatic correction efficiency, and removing the third

limitation [11].

The ATS scheme is partly compatible with the nominal LHC, and was tested in
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machine development (MD) studies in 2011 [11] and 2012 [12]. Operationally the ATS

scheme has two stages [11]:

(i) pre-squeeze: a standard squeeze using the matching quadrupoles in the high

luminosity insertions (IR1 and IR5).

(ii) telescoping squeeze: a further reduction in β∗ (typically by a factor 4-8) by

acting only on arcs adjacent to IP1 and IP5 (i.e. arcs 81, 12, 45, and 56), in which

β-beating waves at the position of sextupoles results in an increase in effectiveness

of chromaticity sextupoles in these arcs.

1.3.2.2 Approaches to Luminosity Levelling

In order to operate within pile-up limitations of the detectors, the HL-LHC will operate

with a levelled luminosity much lower than the possible peak luminosity, as shown in

Fig. 1.7. This will allow a sustained luminosity for each ‘physics’ part of the LHC

operational cycle.

Figure 1.7: Levelled luminosity in the HL-LHC. The left hand plot compares luminosity
lifetimes of the nominal LHC (black), virtual peak HL-LHC (red), and intended levelled
HL-LHC (blue). The right hand plot compares the average luminosities for the virtual
peak HL-LHC (red) and intended levelled HL-LHC (blue). From [9].

There are multiple approaches to achieving luminosity levelling, mostly utilising the

relationships in equation 1.1, one or more variables may be modulated over time, once

the required luminosity is attained, in order to compensate for the loss of particles N

in collisions and other mechanisms:

1. Decreasing the crossing angle θc.

2. Decreasing the bunch length σz.

3. Decreasing β∗ by focussing the beam.
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4. Varying the distance between the two colliding beams.

5. Changing the crab cavity (CC) radio-frequency (RF) voltage.

The nominal LHC target for integrated luminosity is around 40 fb−1 per year, the

HL-LHC has a target of ≈ 250 fb−1.

1.3.3 WP4: Crab Cavities & RF

At the collision points of the LHC, bunches that are spaced by either 50 or 25 ns travel

in the same vacuum chamber. In this part of the machine it is possible for ‘long-range

beam-beam’ effects or ‘parasitic’ collisions to take place as well as the desired ‘head-on’

collisions, as shown in Fig. 1.8. Parasitic collisions are collisions between particles in

bunches other than those in the current head-on collision. The beam-beam effect refers

to the electromagnetic forces that occur between bunches that travel in close proximity.

These forces are complex, non-linear, may be time dependent, and result in a major

limit for all colliders.

Figure 1.8: Long range beam-beam interaction and head-on collisions in a particle collider
experiment. From [13].

The minimum separation between each beam is limited by the beam-beam inter-

action and parasitic collisions, for the HL-LHC it is larger (in σ) than in the LHC

(Table. 1.1. This results in a larger crossing angle and thus reduction in luminosity at

collision points. One major tool in the goal of achieving higher luminosity is the ability

to reduce the geometric reduction factor (equation 1.2). Crab cavities (CCs) are novel

RF deflecting cavities that are used to rotate particle bunches in the longitudinal plane

in order to compensate for the geometric luminosity loss at the IPs.

Due to limited separation between beam pipes near the main detector IPs (194 mm),

a global CC scheme was investigated, where a single CC or CC insertion was used per
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beam in an area with larger pipe separation (near IP4 420 mm is available) which

would allow for larger CCs. It is clear that the position of all CCs depend on the phase

advance of the bunch, and it was found that a global scheme was incompatible with

the two crossing schemes used in IP1 (vertical) and IP5 (horizontal) [9].

Instead the option of local CC insertions was deemed more practical, despite the

minimal beam pipe separation of 192 mm. This way crabbing of the beam is performed

immediately prior to the IP, and is corrected immediately post-IP. This option requires

more CCs and for the CCs to be compact [9]. In total 2-4 CCs are required per IP and

per beam, resulting in a total of 8-16 CCs in the HL-LHC.

1.3.3.1 Crab Cavity Failures

CCs have never been used in a hadron machine before, so experience must be taken from

the KEKB collider [14] at KEK in Japan. CC failures are amongst the most devastating

failure cases for the HL-LHC as simulations have shown that the beam may be kicked

transversely by a number of σ in the ultra-fast regime (i.e. before a beam dump can be

triggered) [9]. The LHC beam dump system can normally be triggered (by significant

losses in beam loss monitors (BLMs) or other interlocks) after 3 turns. The beam loss

system has a detection time of 40 µs, however the time between failure detection and

a beam dump is of the order of 200 µs, as shown in Fig. 1.9. Each LHC turn is 80 µs,

meaning that the time between detection of a failure and a beam dump trigger in the

LHC is 3 turns. The BLM interlock is the quickest in response time, for comparison

the collimation system interlocks have a detection time of ≈ 1 ms.

Figure 1.9: Machine protection system (MPS) response time from detection to beam
dump. From [9].

CC failures can occur on different time scales, slow failures such as power or cryo-

genics issues are expected to take longer than 15 ms, which is not of major concern for

the MPS. A CC quench, an arc in the CC coupler, or a CC failure due to multipacting
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however may occur in less than a single turn. Quenches for example may cause a volt-

age decay or phase shift that can cause an overpopulation of the bunch tails before the

BLM system can trigger a beam dump, corresponding to ≈ 30 MJ of stored energy [9].

The collimation system is designed to withstand only 1 MJ in case of accidental fast

losses. CC failures are more devastating if more than one cavity fails at the same time.

A number of mitigation options are being investigated, such as new tools for faster

detection of such failures, and the installation of removable absorbers.

To protect against CC failures and for improved machine protection and collima-

tion of the HL-LHC beam, active halo control, i.e. a method of controlling the halo

population, is an area of great interest. If one can deplete the halo in a controllable

way, such failures may cause less damage.

1.3.4 WP5: Collimation

As one of the performance limitations of the LHC is collimation and machine protection

for beams with a stored energy of 362 MJ , it is clear that for the HL-LHC a signifi-

cant collimation upgrade is required. This upgrade involves improved design concepts,

novel collimator materials, dispersion suppressor collimation, and advanced collimation

methods.

Collimators consist of movable jaws of a given material, that are inserted into the

beam in the transverse xy axis to intercept halo particles. Possible improved designs

for the HL-LHC include a rotatable collimator that has numerous faces, developed

at SLAC [15] and shown in Fig. 1.10. If a face is damaged, instead of removing and

replacing a conventional collimator or jaw, the novel collimator could simply be rotated,

thus offering robustness and decreasing down time.

Another improvement developed for the HL-LHC is the addition of button shaped

beam position monitors (BPMs) that are embedded into the face of the collimator jaw

at the extremities in order to align the collimators quickly [16]. The embedded BPM

button, shown in Fig. 1.10, is now the baseline for all collimators and a number of new

collimators were installed in LS1 with the BPM technology.

1.3.4.1 Novel Materials

Due to the increased stored beam energy in the HL-LHC new materials are under

investigation, with the following driving properties [9]:

• low resistive wall impedance to increase beam stability,

• high cleaning efficiency for effective collimation,
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Figure 1.10: Rotatable collimator prototype (top left), and button BPM embedded in
collimator jaws (top right, bottom). From [9].

• high geometrical stability to maintain precision under thermal stress,

• high structural robustness to cope with worst case scenarios (e.g. injection kicker

failure).

Two metal-carbon composites have been identified as options as they combine the

electrical and mechanical properties of metals with the thermal advantages of car-

bon allotropes (graphite and diamond). The two best candidates are copper-diamond

(CuCD) and molybdenum-graphite (MoGr). As with other collimator materials, me-

chanical strength may be improved with the use of carbon fibres, and coatings such as

pure molybdenum may be used to decrease the impedance.

1.3.4.2 Dispersion Suppressor Collimation

It has been observed in proton and ion operation of the LHC that significant losses

occur in certain DS regions, particularly the DS regions adjacent to the collimation

insertions (IR3 and IR7), and collision IPs (IP1,2,4, and 8). This poses problems

as there is a lack of available space in the DS regions, and collimation may require

a collimator compatible with cryogenic operation. Initially an LS1 intervention was
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planned, to move 24 SC magnets per IR, this was a massive modification to the LHC,

and was deemed unnecessary after evaluating collimation performance from 2011 and

2012. Instead the longer time scale allowed the development of 11 T dipole magnets

so that a collimator may be integrated between the SC dipoles without affecting the

machine optics. Replacing a 14.2 m long 8 T SC dipole with two high field 6.257 m long

11 T magnets allows 2.4 m for a warm collimator. This solution is more practical as

any SC dipole in the LHC may be replaced with the double 11 T dipole plus collimator

combination, as shown in Fig. 1.11.

Figure 1.11: Schematic of replacement for 8 T dipoles; two 11 T dipoles with 2.4 m of
space for a warm collimator. From [17].

Collimation simulations have been performed with SixTrack [18] and FLUKA [19] to

compare the collimation system with and without DS collimators (called TCLDs) [8].

Results are shown in Fig. 1.12, and clearly show that TCLDs greatly reduce power

deposition in SC elements from dispersive losses. Currently the space available when

using the 11 T dipoles allows for an 80 cm active jaw length TCLD. As the TCLDs are

not envisioned to be exposed to large beam loads, a heavy tungsten alloy is assumed

sufficient for the jaw material.

1.3.4.3 Halo Diffusion

Two advanced concepts that require further R&D are crystal collimation and the hollow

electron lens (HEL). Both are methods of controlling the diffusion of halo particles onto

aperture limits (i.e. collimators). By controlling diffusion one can control loss rates or

the halo population. This is useful as losses may be spread out over time, or the halo

may be depleted to mitigate the effects of certain catastrophic failures.

Figure. 1.13 illustrates the use of a HEL and a crystal collimator in the LHC colli-

mation hierarchy.

A full description of the HEL is given in Chapter 3. It has been demonstrated

to provide a method of active halo control [20] at the Tevatron [5], and relies on the
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Figure 1.12: Simulated power density map in the horizontal plane of DS dipoles for
nominal 7 TeV operation and a beam lifetime of 0.2 h (4.5e11 protons lost per second).
Comparison of the present layout and a layout with two DS collimators. We observe the
large power loads on the 11th and 9th dipole magnets (above), and the reduction after
inserting collimators (below). From [8].

Figure 1.13: Illustration of collimation hierarchy with a HEL (left) or a crystal collimator
(right). The HEL acts as a collimation enhancer, working with the current hierarchy it
intercepts the halo and controls the diffusion onto the primary collimator. The crystal acts
as a primary collimator, channelling the primary halo such that it may be absorbed at a
much larger distance from the beam core, and thus creating a new collimation hierarchy
which is dependent on the success of the crystal. From [9].

interaction of an annular beam of electrons with the LHC proton beam in order to kick

halo particles such that their diffusion onto collimators is increased in a controllable
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manner.

As the HEL could not be implemented until the time of a long shutdown, other

methods for controlled halo diffusion were investigated in case they were needed post

LS1. These are tune modulation created using quadrupoles, and excitation of halo

particles using the transverse damper (ADT) system. Simulations using these methods

have been coupled with machine developments (MDs), this work is still ongoing [21].

Crystal collimation for the LHC has been studied extensively over the last few

years [22], however experimental tests in the LHC have only been done recently [23].

The working principle is to replace primary collimators with high purity bent crystals,

which channel halo particles and steer them onto a single absorbing material. As this

method of active halo control has already been studied in detail, it will not form part

of this thesis.
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Beam Dynamics

2.1 Charged Particle Motion

2.1.1 Frenet-Serret Curvilinear Co-ordinate System

For a synchrotron we adopt a co-moving co-ordinate system, as shown in Fig.2.1.

The reference orbit is a line in space through a given geometry that may be arbi-

trarily chosen, for example it may be taken as the closed orbit of an accelerator. The

longitudinal co-ordinate s is the distance along the reference orbit from a given start-

ing point. In the co-moving frame x and y are the transverse horizontal and vertical

co-ordinates respectively, which are orthogonal to s. r denotes the radius of curvature

of the reference orbit.

This co-ordinate system is known as a Frenet-Serret curvilinear system. We define

this system to have units of metres, and as all three unit vectors x̂, ŷ, ŝ are orthogonal,

the system is orthonormal.

The two LHC beams are counter rotating, beam 1 travels clockwise, thus positive x

points away from the machine centre, and beam 2 travels anticlockwise, with positive

x pointing to the machine centre.

2.1.2 MERLIN Co-ordinates

We must take into account the displacement from the reference orbit in three dimen-

sions, (x, y, ct), where ct is the longitudinal time from the reference s, normalised to

units of metres. As each particle may have a spatial displacement from the reference

orbit, it may also have a momentum displacement, described by (x′, y′, dp). The angle

x′ is defined as x′ = dx
ds , and is unitless. y′ is defined similarly. dp is the fractional offset
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Figure 2.1: Frenet Serret co-moving co-ordinate system. The closed orbit is indicated by
the black circle. Particles travel with a velocity v in the s direction. The transverse axes x
and y indicate horizontal and vertical displacement from the reference orbit. x̂, ŷ, ŝ forms
the basis of the co-ordinate system. r0 indicates the reference orbit, and r the orbit of a
particle.

from the reference momentum magnitude P0, as defined in equation 2.1, and is unitless.

As it will be used extensively and may be easily confused with other quantities, we will

interchange dp with δ where appropriate.

dp = δ =
P − P0

P0
=

P

P0
− 1 (2.1)

MERLIN uses these three co-ordinate pairs; (x, x′), (y, y′), (ct, δ) to define a particle
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as a six dimensional vector p, as shown in equation 2.2.

p =



x

x′

y

y′

ct

δ


. (2.2)

2.1.3 Lorentz Force

Using Newtonian mechanics we may describe the motion of a charged particle in a

magnetic field by using the force, or rate of change of momentum dP
dt = F.

Accelerators control charged particle beams using electromagnetic fields. The Lorentz

Force Law describes the force F exerted on a charged particle in an electromagnetic

field:

dP

dt
= F = q(E + v×B), (2.3)

where q is the particle charge, E the electric field strength, B the magnetic flux density,

and v the particle velocity.

Newton’s second law F = md2x
dt2

may be used to derive the equations of motion, we

may also use Lagrangian or Hamiltonian mechanics.

2.1.4 Hamiltonian Mechanics

A full treatment of the use of Hamiltonian mechanics to derive the equation of motion

may be found in general accelerator physics textbooks. Here we take the approach

outlined in [24].

Hamilton’s equations are generally expressed as shown in equations 2.4 and 2.5;

dxi
dt

=
∂H

∂pi
, (2.4)

dpi
dt

= −∂H
∂xi

, (2.5)

where xi are the co-ordinates of the particle, and pi the conjugate momentum

components, and i = 1 . . . N in an N -dimensional co-ordinate space. The Frenet-

Serret co-ordinate system is 3 dimensional, thus we can describe the motion of a particle
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in time t using 3 pairs of conjugate co-ordinates, a and pa, where a is one of (x, y, z),

by defining a Hamiltonian for the system, and using Hamiltons equations.

The Hamiltonian H defines the dynamics of the particle;

H = H(xi; pi; t). (2.6)

For a simple mechanical system in the non-relativistic case it is expressed as the

sum of the kinetic and potential energies (T and V respectively),

H = T + V. (2.7)

The Hamiltonian for a relativistic particle of charge q in an electromagnetic field is

given by equation 2.8 [24].

H = c
√

(p− qA)2 +m2c2 + qφ (2.8)

where φ is the scalar potential, and A the vector potential of an electromagnetic

field.

Thus the Hamiltonian using corresponding co-ordinates may be solved to accurately

track particles through the electromagnetic fields of accelerator components.

We must perform a transformation of our independent variable from the time t to

the distance along the accelerator lattice s. This is done using ds
dt = vs

r
r+x , and finding

the derivatives of r and y, see [25] for a full derivation.

2.1.5 Transverse Motion

Using Newtonian or Hamiltonian mechanics we may derive the transverse equations of

motion for a charged particle in an accelerator; Hill’s Equations, which may be written

as:

d2x

ds2
+Kx(s)x = 0,

d2y

ds2
+Ky(s)y = 0. (2.9)

Here Kx and Ky are periodic focussing functions dependent on the magnetic fields.

A full derivation may be found in Wiedemann [26].

These second order linear partial differential equations describe a pseudo-harmonic

oscillator. Particles perform ‘betatron’ oscillations about a stable ‘closed orbit’ as they

travel around the synchrotron. The closed orbit is the path of a reference particle

through the elements of an accelerator. Solutions to Hill’s equations are not discussed
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in detail here, and may be found in Lee [27].

The motion described by Hill’s equations has a variable spring constant K(s) which

is dependent on the magnetic properties of the accelerator. As the accelerator is a

synchrotron it has periodicity C, where C is the circumference of the reference particle

orbit. Thus K(s) = K(s+C), and we may infer that a solution has position dependent

amplitude and phase. To provide a set of auxiliary functions that allow us to extract the

maximum information from Hill’s equations, the Courant-Snyder formalism proposes

the ansatz that the solution to the transverse equation of motion is:

x(s) =
√
εxβx(s)cos(ψ(s) + ψ0), (2.10)

where βx is a position dependent amplitude, ψ is a position dependent phase, and

εx is an important constant that will be defined later. These variables are defined for

each of the planes of our co-ordinate system, thus the subscript x is used for the (x, x′)

plane, and is interchangeable for y in the (y, y′) plane. Subsequent occurrences may

not be subscripted, in which case will assume that all variables in a relationship are in

the same plane. We may also drop the (s) denoting that these variables are a function

of the s position, in which case it is assumed that all variables are taken at the same s.

Substituting equation 2.10 into Hill’s equations 2.9, we obtain two differential equa-

tions [25]:

1

2

(
β
d2β

ds2
− 1

2

dβ

ds

2)
− β2ψ2 + β2k = 0, (2.11)

dβ

ds

dψ

ds
+ β

d2β

ds2
= 0. (2.12)

Integrating equation 2.12 we obtain a relationship between the phase and amplitude

functions:

ψ(s) =

∫ s

0

ds

β(s)
. (2.13)

Next we define two functions α(s) and γ(s) in equations 2.14 and 2.15 respectively.

α(s) = −1

2

dβ(s)

ds
. (2.14)

γ(s) =
1 + α2(s)

β(s)
. (2.15)

Combining our ansatz for x(s), equation 2.10, with its own derivative with respect
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to s, and using α, we arrive at the definition of ε:

εx = 2Jx = γx2 + 2αxx′ + βx′2. (2.16)

Where x′ = dx
ds , ε is the Courant-Snyder invariant, sometimes called the single

particle emittance (a constant of the motion of a particle), and Jx is the action variable.

If we plot the Poincaré section of a particle in (x, x′) phase space it will form an ellipse

that has an area that is also a constant equal to πεx.

Figure. 2.2 illustrates the relationship between the Courant-Snyder functions α, β,

γ and the particle in phase space at an arbitrary s.

Figure 2.2: Courant-Snyder functions for a particle in (x, x′) phase space at an arbitrary
s. The area of the ellipse is invariant, and the shape is defined by α, β, and γ.

The β function is an important parameter, it is always positive, and is related to

focussing in the accelerator. It has the same periodicity as the accelerator lattice as it
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depends on the magnets. We see from Fig. 2.2 that β gives us the (phase dependent)

amplitude of the particle at a given position in the accelerator. The actual size depends

on the invariant also. We have defined α as half of the rate of change of the β function,

thus it is maximised in focussing magnets (i.e. quadrupoles).

It is important to distinguish between the single particle emittance, and the beam

emittance. We may define the beam emittance using the mean of the action or the

particle co-ordinates in a single plane [24]:

εx = 〈Jx〉 =
√
〈x2〉〈x′2〉 − 〈xx′〉2, (2.17)

where εx refers to the horizontal beam emittance, and 〈 〉 indicates the mean of

an enclosed quantity over all particles in a bunch. ε will be used to denote the beam

emittance from this point on.

Transfer maps may be used to compactly write the solutions of the equation of

motion that takes a particle from an initial state i to a final state f . In the linear case

these maps may be represented as matrices. Transfer maps must provide an explicit

solution to the equations of motion, such that dynamical variables may be substituted

into them.

For example the map M(i|f) may be used to transform a particle defined for the

vector p defined in equation 2.2, from an initial position s0 to a final position s1 in the

accelerator, as:

pf = M(i|f) pi = M(s0|s1) pi. (2.18)

As p has 6 dimensions, M(s1|s2) must be a 6 x 6 matrix if linear, with further terms

if higher order. In the case of linear maps, we may use the fact that matrix algebra is

associative, thus a map from s0 to s2 may be formed from the matrices from s0 to s1,

and s1 to s2:

M(s0|s2) = M(s1|s2)M(s0|s1). (2.19)

As matrix algebra is not commutative the order of matrices must be maintained.

Using this notation we define the one-turn map, a map that transforms a particle for

a complete turn of an accelerator with circumference C:

MOT = M(s0|s0 + C). (2.20)

Thus we may represent n turns of the accelerator as (MOT )n.
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It is common to define a transfer map for each individual element of an accelerator,

the contents of a transfer map M for a given element is determined by the solutions to

the equations of motion in that element. We may also define a transfer matrix using

the Courant-Snyder functions, also known as Twiss parameters. For one plane (x, x′)

the transfer matrix between s0 and s1 is shown in equation 2.21 [27]:

M(s0|s1) =

 √
β1

β0
(cosψ + α0sinψ)

√
β1β0sinψ

α0−α1√
β1β0

cosψ − 1+α1α0√
β1β0

sinψ
√

β1

β0
(cosψ − α0sinψ)

 , (2.21)

where ψ is the s dependent phase defined in equation 2.13, and is known as the

phase advance from s0 to s1, and the Twiss parameters are those in the corresponding

(x, x′) plane.

Using the periodicity of α, β, and γ we may define the one-turn map in terms of

the Twiss parameters:

MOT =

(
cosΨ + αsinΨ βsinΨ

−γsinΨ cosΨ− αsinΨ

)
. (2.22)

Where the phase advance for a single turn Ψ is given by changing the limits of

equation 2.13 to one turn of the accelerator, as shown in equation 2.23:

Ψ =

∫ s+L

s

ds

β(s)
, (2.23)

This gives us an important quantity, the machine tune ν (equation 2.24), which is a

measure of beam stability and physically equates to the number of betatron oscillations

of a particle in a single plane. The tune is a property of each particle, and the machine

tune refers to that of the reference particle.

ν =
Ψ

2π
=

1

2π

∫ s+L

s

ds

β(s)
. (2.24)

The tune is not constant across all particles, a tune offset exists for each particle,

this is dependent on the machine chromaticity ξ and the particle’s momentum offset,

as shown in equation 2.25:

∆νx = ξx · δ (2.25)

As the dispersion D arises from the difference of particle trajectories in bending
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magnets due to their momentum offset δ, chromaticity ξ arises from the difference

in trajectories in focussing magnets due to δ. Sextupole magnets are used to correct

chromatic aberration.

If the particle tune ν is an integer, betatron oscillations will resonate and particles

are lost due to machine imperfections (for example in the magnetic fields of a given

magnet), thus integer tunes are not permitted in accelerators to avoid such instability.

The same is true if ν is a half integer. The fractional part of ν in the transverse plane

(νx, νy) may combine to cause instabilities, this occurs when the point (νx, νy) in tune

space crosses a 1
n resonance, where n is an integer. Lower order resonances (e.g. 1

2 ,
1
3)

are the most dangerous, and in most accelerators oscillations caused by high order

resonances are damped on a sufficiently short time scale for them not to interfere with

operation.

Although crossing such resonances causes instability in accelerators, if one has ex-

cellent knowledge of the behaviour of particles in tune space, one may purposely cross

resonances in order to force losses. This may be useful for active halo control.

The trajectory of a charged particle in a dipole field is dependent on its energy.

For a dipole with a purely vertical field, there is a horizontal-longitudinal coupling.

We define the dispersion D(s) in terms of the change in the periodic trajectory with

respect to the momentum [24]. The dispersion adds an extra term to our solution to

the equation of motion as shown in equation 2.26:

x(s) =
√
εxβx(s)cos(ψ(s) + ψ0) +Dx(s)δ, (2.26)

where δ is the momentum offset defined in equation 2.1. As with the Twiss param-

eters, the dispersion is defined for each transverse plane.

2.1.6 Longitudinal Motion

In synchrotrons such as the LHC, particles are injected at the injection energy (i.e.

longitudinal momentum), this is 450 GeV from the Super Proton Synchrotron (SPS)

into the LHC. After the LHC has completed the fill of bunches, the beam is accelerated

using radio frequency (RF) cavities to a top energy, this phase of operation is referred

to as the ramp. The bending magnets must also ramp up synchronously with the

acceleration so that particles do not deviate from a stable orbit. After reaching the top

energy the synchrotron operates in ‘storage ring’ mode to maintain a constant orbit.

The voltage of the RF cavity is a sinusoid:
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V (t) = V0 sin(ωRF t) = V0 sin(Φs). (2.27)

The RF frequency ωRF is chosen to be an integer multiple of the revolution fre-

quency of the accelerator so that an ‘on-energy’ (or synchronous) particle always wit-

nesses the same RF voltage. V0 is the peak accelerating potential. We define Φs = ωRF t

to be the synchronous phase, which is equal to zero when no acceleration is taking place.

There is a spread in particle arrival time due to the length of each bunch. Each

particle enters the RF cavity at some phase φ with respect to the RF frequency Φs.

We may write equation 2.27 for a particle with a phase φ as:

V (t) = V0 sin(Φs + φ(t)) (2.28)

For the special case of φ = 0 the particle will arrive at the synchronous phase, this

is the case for the reference particle.

Let us consider the storage ring case where the beam is not accelerated, instead

the RF is used to maintain the beam energy. In reality particles that arrive late have

φ > 0, and those that are early have φ < 0, as illustrated in Fig. 2.3. Late particles are

accelerated, and early particles are decelerated, thus the RF cavities kick the particles

towards the synchronous phase Φs which maintains the beam energy.

When the LHC enters the ‘ramp’ stage, particles are accelerated. In this case Φs

is set to a value in the range 0 < Φs < π, thus the synchronous particle will gain

energy at every turn. In this case particles that arrive late have φ > Φs, and those

that are early have φ < Φs. As a result we observe one of two consequences. The path

length around the accelerator, and thus the revolution frequency will depend on the

particle momentum offset δ. We recall that δ > 0 for particles with larger longitudinal

momentum than the reference particle.

If the revolution frequency is higher for a particle with δ > 0 then that particle

will arrive at the RF cavities earlier φ < Φs, and we have longitudinal stability for

0 < Φs <
π
2 . This is because higher energy particles receive a smaller kick from the RF

cavity electric field, and lower energy particles (φ > Φs) will receive a larger kick. Thus

both cases are forced towards Φs, this process, known as phase focussing, is illustrated

in Fig. 2.4. As a consequence we observe an oscillation in δ depending on particle

arrival time ct, this is known as synchrotron motion. If the revolution frequency is

lower for a particle with δ > 0, the stability condition changes to π
2 < Φs < π. The

stability of particles about Φs is known as the principle of phase stability.

The energy change ∆E for a particle arriving in an RF cavity at a phase φ is given
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Figure 2.3: RF voltage for Φs = 0, i.e. in storage mode. Particle a arrives late (φ > Φs)
and sees a positive voltage and thus receives a positive longitudinal kick. Particle b arrives
early (φ < Φs) and thus receives a negative longitudinal kick. Both particles are forced
towards the synchronous phase Φ0.

by equation 2.29:

∆E = qV0 sin(φ), (2.29)

where q is the particle charge.

We can plot the Poincaré section for particles undergoing synchrotron oscillations

in (ct, δ) phase space, as shown in Fig. 2.5. Here the reference particle has co-ordinates

(0, 0), and has φ = Φs. Particles with deviation in either plane perform synchrotron

oscillations and circle the stable point at (0, 0), however this is only the case for small

deviations in both planes. The area of stability is defined by the separatrix, and is

referred to as the RF bucket. As the accelerator has periodicity the beam is a train of

bunches, which each occupying an RF bucket in longitudinal phase space. This means

that at injection, bunches must be matched not only to the transverse optics (i.e. Twiss

parameters), but to the RF acceptance.

Bunches of particles are thus confined to the RF bucket, particles outside the bucket
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Figure 2.4: RF voltage for 0 < Φs <
π
2 , i.e. in acceleration mode. Particle d arrives

late (φ > Φs), and particle c arrives early (φ < Φs). In both cases the particle received
a positive longitudinal kick, however particle c will be decelerated, and particle d will
be accelerated, with respect to the synchronous particle. Thus both particles are forced
towards the synchronous phase Φ0.

(referred to as the coasting beam) will inevitably be lost in an aperture of the machine,

which is dangerous for machine operation.

In the LHC bunches do not occupy adjacent RF buckets, they are spaced by 10

RF buckets, which equates to 7.5 m or 25 ns at design settings. There also exists a

large separation between the last and first bunch to allow enough time to trigger kicker

magnets to extract the beam and transport it to the beam dump where it is deposited

in a 7 m long graphite absorber encased in steel. This is the abort gap, and measures

900 m, or 3 µs.

2.2 Particle Tracking

In order to simulate the motion of charged particles in an accelerator we must take

into account both transverse and longitudinal dynamics. We have defined our particle

in a six-dimensional vector p in equation 2.2, and have established that maps may be
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Figure 2.5: RF bucket in (ct, δ) phase space. The red line indicates the separatrix,
which is the limit of stability. Particles inside the separatrix take elliptical trajectories in
a clockwise direction and undergo synchrotron oscillations, particles outside the separatrix
are unstable and likely to be lost after few turns.

used either in terms of magnetic field components or Twiss parameters to represent

transverse particle transformations between accelerator components or for a full turn.

Longitudinally we must apply the RF voltage, which is made simpler when operating

the accelerator in storage ring mode (which will always be the case in this thesis).

There are various methods that can be used in order to track particles, we use

the method of ray-tracing; tracking individual particle trajectories through elements of

an accelerator, either element-by-element or turn-by-turn. A number of formalisms are

available to minimise computational time and provide an accurate approximation of ac-

celerator components. MERLIN offers three; TRANSPORT, SYMPLECTIC, and THIN LENS

tracking. Here we will consider only the first two, as they use the thick lens approxima-

tion, i.e. using s dependent maps for each element of length Ln, rather than the thin
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lens approximation that treats each element as a thin kick at the centre of Ln, with a

separation between each thin kick of Ln
2 + Ln+1

2 , where n is the element number.

As we are interested principally in collimation, the thick lens method allows us

to split the map for any element Mi into m maps, i.e. Mi = Mm ·Mm−1 · · · · ·M0

(with exceptions for co-ordinate transforms at the start or end of an element). We may

also use a model of the machine aperture that is continuous over s and thus perform

collimation at any position in the accelerator whilst tracking with ease.

2.2.1 TRANSPORT Tracking

The TRANSPORT [28] method makes the following assumptions:

• the paraxial approximation is used i.e. particles have small angles x′ and y′,

• magnets are hard-edged and have no fringe fields,

• magnetic fields in the transverse vertical plane y are symmetric,

• linear and second order terms in the magnetic field are used, which is valid for

small particle deviations around the reference orbit.

A Taylor expansion of the magnetic field B(x) is taken around the design orbit,

and is truncated at second order. As it is not linear, tensors are required as well as

matrices as shown in equation 2.30. A particle at position s0 defined by equation 2.2

p(s0) may be transformed to a position s1 by the operation of matrices Rij and tensors

Tijk shown in equation 2.30, and is then denoted p(s1).

p(s1) =

6∑
j=1

Rij pj(s0) +

6∑
j=1

6∑
k=1

Tijk pj(s0) pk(s0), (2.30)

where i refers to the elements of equation 2.2, and the integer i = 1, · · · , 6.

As the TRANSPORT maps are based on a concatenated Taylor expansion of the

Hamiltonian, they do not offer conservation of energy over many turns. For the creation

of loss maps we observe particle losses that take only a few hundred turns, in which

case this method is valid. For HEL simulations however we require thousands of turns

and must use a method that conserves energy over this time-scale.

2.2.2 Symplectic Tracking

A transfer map is symplectic if it meets the condition:
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J · S · JT = S, (2.31)

where J is the Jacobian of the map, JT is its transpose, and S is the antisymmetric

matrix..

The Jacobian matrix is matrix of first order partial derivatives for a vector-valued

function, as defined in [24]. In the case of particle tracking the vector-valued function

is the transfer map, and thus the Jacobian is a 6 x 6 matrix. The determinant of the

Jacobian is denoted as det(J). We may use matrix algebra to relate the determinants

of the Jacobian J and the antisymmetric matrix S:

det(JSJT ) = det(J)2det(S) = det(S), (2.32)

since the determinant of the antisymmetric matrix det(S) = 1 [24], it follows that

det(J) = ±1, and |det(J)| = 1.

Physically a symplectic map conserves the Hamiltonian, and thus the energy of the

system. Approximating the solutions to the equations of motion may not satisfy the

symplectic condition, however we may make certain approximations to the Hamiltonian

and maintain symplecticity in the solutions derived from it.

MERLIN contains symplectic maps written by Prof. Andrzej Wolski, using the

co-ordinates and method covered in [24].

As the co-ordinates used for a symplectic map are conjugate (they satisfy Hamilton’s

equations 2.4 and 2.5), our current phase space vector p is not valid. The required

symplectic variables are the conjugate pairs (x, px), (y, py) in transverse phase space,

where px,y indicates the transverse momentum component (usually normalised to the

total reference momentum p0) in either horizontal or vertical plane. In our case we are

not using the conjugate momenta but the angles x′ and y′.

We will see in Chapter 4 that a change of co-ordinate definitions will impact heavily

on collimation routines, and would require large amounts of code to be rewritten as well

as the handling of switching between trackers etc. Instead we maintain the phase space

co-ordinates of p as defined in equation 2.2, as the symplectic tracking in MERLIN

takes into account these differences.

The co-ordinate system remains the same, and thus the positions x, y, ct are equiv-

alent. The conjugate momenta px and py take the place of our x′ and y′. As we use

the paraxial approximation we assume that using x′ = dx
ds ≈

px
ps

, where ps is the longi-

tudinal momentum, is valid. y′ is treated similarly. The momentum offset δ is defined

the same way for both Symplectic and TRANSPORT tracking.
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Thus for long term particle tracking a symplectic method is required, and now

operational in MERLIN. The method was previously provided in MERLIN but due to

many years of updates and added functionality, the interface between lattice definition

and particle tracking required updating. Symplectic tracking will be used in this thesis

for all simulations unless stated otherwise.
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Beam Collimation

3.1 Requirements

The LHC collimation system exists as a pillar of the machine protection system (MPS).

The collimation system has the following roles [9]:

• Beam halo cleaning: Removal of halo particles so that they do not deposit

energy in other apertures which could cause; quenching of superconducting ele-

ments, radiation damage to electronics, and unnecessary activation.

• Passive machine protection: As the aperture restrictions of the machine,

collimators provide an ongoing protection of critical elements such as the inner

triplet magnets during the squeeze phase of operation.

• Cleaning of collision debris: Around the IPs collimators are used to pro-

tect elements downstream of the IP in both directions from debris created in IP

collisions.

• Experimental background: By removing the beam halo, background caused

by halo collision events in the IPs is reduced [29].

• Concentration of radiation losses: Energy deposition from lost beam par-

ticles causes activation, the collimation system ensures that this is concentrated

on collimators, thus enhancing the lifetime of other elements, as well as localis-

ing radiation sources which becomes important for environmental protection and

proper handling of ‘hot’ materials.

• Local protection and improved lifetime: Collimators are used to protect

specific elements to ensure a longer lifetime, for example the warm magnets in

IR7.

• Halo diagnostics: Collimator scans may be used as a diagnostic tool to measure
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the beam tail population [30], this is difficult for other techniques as the bunch

population is dominated by the core.

• Halo scraping: Collimators may be used to shape the beam, as demonstrated

in special physics runs at the LHC [31].

The collimator jaw material requirements are [3, 32]:

• a good absorption rate for cleaning efficiency,

• high robustness to withstand normal and abnormal operation without damage

- must withstand beam impacts of up to 500 kW of deposited energy without

significant damage and maintain a jaw surface with flatness on the 10 − 25 µm

level,

• low electrical resistivity to reduce impedance,

• remote operation due to radiation levels.

These requirements are conflicting; use of a low Z (atomic number) material would

imply robustness, whereas high Z materials offer better cleaning efficiency. Using metals

could reduce impedance but they are susceptible to damage in accident scenarios. To

meet these requirements multiple materials must be used. A multi-phased approach

was adopted in the LHC, with robustness being the priority, and increased cleaning

efficiency added later.

The HL-LHC requirements are similar to that of the LHC, however due to the

higher luminosity beams and thus higher stored beam energy, a number of upgrades

are required as described in Chapter 1. To summarise, the higher stored beam energy

will result in higher loss rates on collimators and SC magnets, however the damage and

quench limits remain the same as the LHC. Differences in the optics of the HL-LHC and

its physical layout means that there are different and possibly new aperture bottlenecks

that require local protection, and the higher luminosity gives rise to higher fluxes of

physics debris for both protons and heavy ions. In addition to activation, radiation, and

lifetime of hardware, the higher beam intensity also means a reduction in beam stability

for similar collimator openings due to the effect of resistive wall impedance [33]. As the

HL-LHC beams will have a smaller size, the corresponding collimator jaw openings will

be smaller, this will also increase beam instabilities due to resistive wall impedance.

New hardware such as the crab cavities (CCs) introduce new failure modes, the machine

must be protected from this added risk. In particular dispersion suppressor (DS) losses
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in IR7 are thought to be the limiting loss case for regular HL-LHC operation. These

occur when single diffractive interactions in the IR7 collimators produce off-momentum

protons with sufficient energy deviation to continue in the accelerator but be lost in

the next dispersive region.

3.2 Machine Protection

The performance of the LHC as an experiment is dependent on its availability, i.e. the

amount of time that the machine is operational. In order to take the most physics data

possible, machine protection (MP) is concerned with providing the maximum beam

time to experiments by anticipating possible failures, and putting in place a system

to reduce the risk of such failures. In accelerators the MPS is concerned mostly with

failures in handling energy and power. An uncontrolled release of the power or stored

energy can result in equipment damage, unwanted activation, and loss of operation

time. A particle accelerator contains many subsystems that must rely on a complex

and interlocked MPS in order to operate safely, such as the RF systems, magnets, and

power converters. In this section we are only concerned with the collimation aspects

of the MPS, and will omit other important considerations such as energy stored in SC

magnets.

Over time technology has advanced and resulted in synchrotrons with a higher

stored beam energy, and smaller beam size, resulting in higher energy density and

power. In this section we will summarise the major concerns of handling beams with a

high stored energy in the LHC (362 MJ) and HL-LHC (675 MJ).

3.2.1 Beam Loss Monitors

The primary tools for monitoring losses in the LHC are the beam loss monitor (BLM).

These detect the showers from proton impacts on an aperture restriction, and provide

one of the many LHC interlocks. The system consists of around 4000 BLMS. Two

types of monitor are used; ion chambers that are designed to last 30 years of operation

in the LHC, and secondary emission monitors for regions with very high loss rates.

The ionisation chambers are cylindrical and contain a sensitive volume of 1.5 L [34]

of nitrogen at atmospheric pressure, the secondary emission monitors are similar but

under vacuum and less sensitive. The BLMs must operate over a range of integration

times (between 40 µs and 1.3 s [34]) to measure steady state and instantaneous losses.

The BLM system provides a trigger which will dump the LHC beam if loss thresholds
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are exceeded. BLMs may also be used to estimate the proton loss required to quench

a superconducting magnet, for example see [35].

For a beam loss protection system the location of BLMs is determined from knowl-

edge of possible loss locations. This requires particle tracking and loss studies, and

production of simulated loss maps. This means that simulations such as those per-

formed in this thesis, coupled with studies of secondary particle showers, can be used

to determine optimal locations for BLMs in the LHC and HL-LHC. As the particle

showers are in the direction of the beam, beam 1 and beam 2 losses can be separated

by placing BLMs at the location of maximum secondary particle shower, usually around

1 m downstream of the loss location.

The beam interlock system operates to protect the machine and shut down the

respective part of the LHC if a failure is detected. For example if a magnet quench

is detected by the fast magnet current change monitors, the beam is dumped and

magnet current is reduced accordingly. Other systems that can detect failures include

the vacuum system, collimation system, and beam position monitor system.

3.2.2 Injection and Extraction Failures

The injection of the SPS beam into the LHC is done in batches of 288 bunches. These

bunches traverse one of the transfer lines from the SPS (which includes its own colli-

mation system), and are kicked and steered into the LHC. Errors that may occur in

the SPS, the transfer lines, or the injection kickers can cause beam loss in the LHC.

This type of failure is expected several times a year, and occurred twice in Run I, in

one case a full batch destroyed a beam pipe in the transfer line.

The extraction of the LHC beam is performed using a system of kicker magnets

which must be fired at the correct time (in the abort gap). A misfire of one of these

magnets can result in parts of the beam not being extracted and being left in the

accelerator possibly far from the orbit, at large transverse displacement, or outside of

the RF bucket. Inevitably these particles will be lost in an aperture restriction, causing

damage. This ‘asynchronous beam dump’ is amongst the most catastrophic expected

failures, with a predicted rate of once per year, though none occurred in Run I.

3.2.3 Beam Dump

The MPS is interlocked to trigger a beam dump in case of failures that present an

uncontrolled release of power or energy. Approximately 10 % of beam dumps were

triggered due to beam losses in the LHC in 2012 [36].
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The beam dump system is located in IR6, in which each beam-line contains 15 ex-

traction kicker magnets (MKD) that fire in the abort gap to deflect the beam vertically

into a transfer line that ends in a beam dump block. The beam is then painted onto

the dump block with extraction dilution magnets (MKB) in order to dilute the energy

density. The beam dump system is the only LHC system that is designed to absorb

the entire beam stored energy.

3.2.4 Magnet Quenches

The LHC contains 1232 SC niobium-titanium (NbTi) dipole magnets, each 14.3 m long,

operating at 8.3 T (current of 11.8 kA), and cooled to 1.9 K using super-fluid helium.

The collimation system must protect these magnets from energy deposition that could

result in a quench.

The SC magnets can withstand a small amount of local heating before undergoing

a phase change to the normal conducting phase, this phase transition is known as

quenching. A quench is dangerous for many reasons, firstly the magnetic field is no

longer as desired. This may result in a deflection of the entire beam, which may cause

catastrophic damage to the entire machine. A more likely scenario is that the current

fed to the magnet itself will cause damage to the cryogenic systems.

The worst recorded LHC disaster occurred in a similar manner. On September

19th 2008, a fault developed in the dipole bus bar in the interconnection between

quadrupole Q24.R3 and the neighbouring dipole. Later discovered to be the result of

faulty soldering, it caused an electrical arc as the high power could not be transported

through the SC circuit (the resistance increased from ≈ 0.35 nΩ to ≈ 220 nΩ). The

arc punctured a super-fluid helium enclosure, and secondary arcs developed. Around

400 of the 600 MJ stored energy in the circuit was dissipated in the cold-mass and

in electrical arcs. A total of 6 tonnes of helium was released, which caused a large

number of 35 tonne magnets to be ripped from their anchor points, 53 of which had

to be repaired. Debris contaminated the vacuum pipe for over 2 km, and the machine

was out of operation for more than a year [36].

Though this failure was due to a mishandling of stored energy in the magnets,

and no beam was present, it resulted in major MPS upgrades, and consolidation of all

magnet splices. It limited the machine energy to 4 TeV until Run II, and necessitated

2 years of shut-down to consolidate the splices in LS1.

The maximum allowed loss rate depends on the time-scale of the loss process and

energy of the particles. A constant loss of 3 · 10−10 % or fast (one turn) loss of 3 · 10−7
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% of the nominal beam intensity is able to quench an LHC dipole magnet [37].

3.2.5 Triplet Lifetime

The inner triplet (IT) quadrupoles focus the LHC beam to a spot size of around

0.016 mm at the IPs, meaning that the beam size has a maximum of around 1.5 mm

in the IT, this is illustrated in Figure 3.1. The inner triplet quadrupoles provide the

limiting aperture of the LHC after collimators. As a result of their size the beams are

susceptible to the non-linear fields of the magnets, thus the IT contains a number of

correctors as well as the 3 main quadrupoles (Q1, Q2, Q3). The predicted lifetime of

the IT is around 7 years at nominal parameters [38], or an integrated luminosity of

300 fb−1. The main limitation is damage to the resin used in the inner magnet coil.

the expected replacement of the IT in 2016 [39] was not required in LS1 as the LHC

had a staged operation in Run I due to the 2008 disaster. As an integrated luminosity

of 300 fb−1 is not expected to be reached until much later, a replacement of the IT is

not required until LS3 (2022), coinciding with the HL-LHC upgrade.

Figure 3.1: Illustration of beam envelopes in the inner triplet magnets either side of IP1
(ATLAS). The beam size is greatly reduced in the 60 m either side of the IP following the
squeeze. Beam 1 is blue, beam 2 is red. From [40].
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3.2.6 Crab Cavity Failures

Crab cavities are not required in the LHC, however they are for the HL-LHC. The

current CC scheme for the HL-LHC includes 4 CCs pre and post IP for ATLAS and

CMS, totalling 16. An earlier scheme included only 3 CCs pre and post IP, however,

certain CC failures were estimated to cause a 1.5 σ orbit distortion. Measurements of

LHC beam show overpopulated tails (2% outside 4σ) [41] in the transverse distribution,

this would result in around 2 MJ of energy deposition in collimators [42], which is

above their damage limit. The probability of such catastrophic failures resulted in

the increased number of CCs in the latest HL-LHC design, as this requires a lower

operational voltage which reduces the risk.

Another possible mitigation of such catastrophic damage is a method of partially

depleting the beam halo, or active halo control, this could include the HEL. Highly

reliable monitoring and interlocking of the halo population is also required.

3.2.7 Other Damage

Off momentum particles follow dispersive tracks in bending magnets. The dispersion

suppressor regions match the optics between the long straight sections and the arcs.

Due to single diffractive scattering (in the case of protons), and ultra-peripheral nuclear

collisions (in the case of lead ions), dispersive trajectories have resulted in unexpected

losses in the dispersion suppressor regions in IR7.

Activation of machine elements may not only reduce their operational lifetime, but

mean that they are not safe for human handling. This gives rise to a small number of

radiation hardened robots that perform minor maintenance on the LHC. If an element,

for example a collimator, is predicted to become too active (or hot) to handle, it

must be removed before this. Radiation can also effect the electronic systems used to

power elements, a power supply trip can cause an emergency beam dump for example.

Making electronics radiation hardened, or removing the electronics from the proximity

of radiation, can help to minimise machine down time.

3.3 Losses

Losses can generally be categorised as either transient or continuous. Transient losses

occur on a shorter time scale and are more catastrophic than continuous losses. Fast

losses are those that cannot be handled within the response time of the beam dump

system (≈ 200µs), slow losses are due to continuous processes such as the normal
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diffusion of halo particles. In order to provide a rigorous machine protection system,

all loss cases must be taken into account.

3.3.1 Loss Mechanisms

Particles in the same bunch can undergo multiple small-angle Coulomb scattering

(MCS) as they undergo betatron and synchrotron oscillations, this is known as intra-

beam scattering (IBS). Energy exchange between particles results in a coupling of

horizontal, vertical, and longitudinal emittances. If these do not maintain an equilib-

rium, the bunch emittance continuously increases, which is the case for the LHC. The

emittance growth times (the time taken for the emittance to double in a given plane)

are larger than 30 hours for the LHC [32], which is longer than the operational cycle

of around 24 hours.

When intra-beam scattering results in a large momentum transfer in the longitu-

dinal plane, particles may have a large enough energy deviation to be outside the RF

bucket, thus being lost or forming part of the coasting beam, this is known as Touschek

scattering. The Touschek growth time is around 1.2 · 104 hours for the LHC [32].

Despite the ultra high vacuum (UHV) operation of the LHC (a pressure of <

10−9 mbar), residual gas molecules may be present in the vacuum chamber. Gases

such as carbon dioxide and helium are present in small amounts, and can cause nuclear

scattering with beam protons. Beam gas interactions can cause protons to be kicked to

large amplitudes where they are lost, and beam emittance can increase due to nuclear

scattering with residual gases.

Unidentified falling objects (or UFOs) were a surprise loss mechanism in the LHC.

Around 20 beam dumps were triggered in 2012 [36] because of such events. Analysis

of these dumps has found that small dust particles of around 10 µm in diameter enter

the beam. After this UFOs were monitored, and it was found that the vast majority

of UFOs lead to losses below the dump threshold. In the injection kickers, UFOs were

traced to aluminium oxide particles, subsequently a cleaning operation was performed

in LS1. It was also found that the rate of UFOs was damped during operation over

the year, implying conditioning due to normal operation. UFO losses can occur on a

time-scale between one to tens of turns, the faster losses are below the minimum beam

dump response time and can be dangerous. In order to sensitise the MPS to UFOs, a

number of BLMs were relocated in LS1.

Other interactions may populate the beam halo or cause losses, for example particle

interactions at the interaction points such as long range beam-beam effects. Wakefields
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generated in areas of large impedance can cause bunch instabilities - the collimators

themselves contribute largely to the impedance budget of the LHC.

Operational inevitabilities such as orbit drifts, optics changes, beam resonance cross-

ing and stages such as the energy ramp can all cause beam loss and population of the

beam halo. A failure of kicker magnets in either the injection or extraction system can

result in a large proportion of the beam impacting upon an aperture restriction due to

a translation of the beam in phase space. This can also occur due to a failure of one

or more crab cavities.

3.4 Cleaning Inefficiency and Performance

Particles escaping the primary and secondary collimators may be lost in the cold aper-

ture (SC magnets) of the machine. The global cleaning inefficiency ηc describes the

performance of the collimation system, it is defined for an aperture Ac by:

ηc(Ac) =
Np(A > Ac)

Nabs
, (3.1)

where Np(A > Ac) is the number of particles leaving the cleaning insertion with

a normalised amplitude A > Ac. Nabs is the total number of particles which have

experienced inelastic collisions in a collimator jaw. In the LHCAc is typically considered

to be 10 σ.

It is a requirement of the LHC collimation system to operate with an ηc < 10−3

at top energy, corresponding to 99.9% efficiency. A high local concentration of losses

can cause quenching even if this condition is satisfied, thus we define the local cleaning

efficiency η̃c as:

η̃c =
ηc
Ldil

, (3.2)

where Ldil is the dilution length of the losses, assumed to be ≈ 50 m [32]. Using

powerful simulation for tracking and aperture models, high resolution localisation of

losses is possible. Loss maps provide identification of critical loss regions of the machine.

3.5 Collimator Materials

For simulations we assume the collimator is a solid block of material. The material(s)

used depend on the purpose of the collimator, those currently used in the LHC are:
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• INERMET R© 180: by weight 95% tungsten (W), 3.5% nickel (Ni), and 1.5%

copper (Cu), this material is resistant to thermal shock making it robust.

• GlidCop R© AL-15: this material is mainly copper strengthened with alumina,

offering similar thermal and electrical conductivities to copper, with enhanced

strength.

• CFC AC-150K (carbon fibre reinforced carbon composite): composed of carbon

or graphite fibre reinforcements in carbon or graphite matrices, giving it excellent

resistance to corrosion and abrasion, as well as good thermal conductivity.

These materials are sufficient for the LHC requirements, however for the HL-LHC

they are limited. AC-150K is limited by its electrical conductivity and radiation hard-

ness [43], and INERMET R© 180 used in tertiary collimators has low robustness in case

of beam impacts [44]. It is thought that LHC performance may be limited by colli-

mator material related concerns such as the impedance due to carbon based secondary

collimators [45].

For the HL-LHC, new materials are required in order to reduce the machine impedance

(the collimators are a major contributor to the impedance budget of the machine), and

because the higher beam luminosity will result in higher energy deposition in normal

operation and failure cases. Carbon and diamond provide low density, high thermal

conductivity, and low thermal expansion, whereas metals such as copper and molyb-

denum provide high mechanical strength and good electrical conductivity [44]. The

proposed HL-LHC collimator materials attempt to combine these materials and thus

their properties. One proposed method is the use of diamonds embedded in a metallic

material, two examples, copper and molybdenum diamond composites, are shown in

Figure 3.2.

After preliminary investigations (see for example [47]), the following two materials

are currently under investigation for HL-LHC collimator jaws:

• MoGr (molybdenum carbide graphite, or molybdenum graphite): by volume this

material consists of 40% natural graphite flakes, 20% short (300 µm) carbon fibres,

20% long (3 mm) carbon fibres, and 20% molybdenum powder. Jaws made of

MoGr with a Mo coating provide high robustness and reduced impedance for

secondary collimators.

• CuCD (copper carbon-diamond, or copper diamond): by volume this material

consists of 60% diamond, 39% copper powder, and 1% boron powder. This ma-

terial is envisioned for more robust tertiary collimators for triplet protection [48].

90



3.5 Collimator Materials

Figure 3.2: Scanning electron microscopy images of copper diamond (left) and molybde-
num diamond (right) composites, showing diamond embedded in metals. The diamonds
are between 45 - 100 µm wide. From [46].

Property CuCD MoGr INERMET R© 180 GlidCop R© AL-15 CFC AC-150K

Density ρ [ g

cm3 ] 5.4 2.5 18 8.93 1.656

Atomic Number Z [−] 11.4 15.9 70.83 29 6

Thermal Conductivity λ [ W
m K

] 490 135 90.5 365 168

Melting Temperature Tmelt [◦C] 1083 2505 1400 1083 3650

Electrical Conductivity σ [ MS
m

] 12.6 1 8.6 53.8 0.14
Young’s Modulus E [GPa] 220 53 360 130 77
Tensile Strength [MPa] 70 95.7 66 413 87

Table 3.1: Comparison of existing and novel LHC collimator jaw materials. Adapted
from [44, 47, 49].

A comparison of collimator jaw materials for the LHC and HL-LHC is given in

Table 3.1. It is clear that both of these materials offer improved properties over current

secondary and tertiary collimator jaw materials. To capitalise on the desirable electrical

conductivity of metals, pure Mo or Cu coatings are also currently being investigated to

reduce jaw impedance [44]. The final decision on jaw materials for the HL-LHC depends

on further investigation such as radiation hardness experiments. MoGr samples have

been shown to break after high doses of radiation [48], which could mean that this

material is unsuitable.
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3.6 LHC Collimation System

3.6.1 Multi Stage Collimation

Due to conflicting optics requirements it is necessary to use separate insertions for be-

tatron (IR7) and momentum (IR3) collimation, i.e. a multi-staged collimation system.

The collimation system follows a hierarchical layout in both insertions, and the full

ring.

Betatron cleaning refers to the removal of particles with large betatron oscillation

amplitude, i.e. the transverse halo. Thus the transverse extension of the beam halo

is limited to minimise losses in SC magnets and other valuable hardware. Collimators

are required to cover the full phase-space in horizontal, vertical, and skew (at an angle

between horizontal and vertical) planes.

Momentum cleaning deals with the removal of particles that are off-momentum, i.e.

those that would be longitudinal losses. As the horizontal dispersion is much larger

than vertical dispersion in the LHC only the horizontal component need be cleaned.

Momentum collimation is performed in a place of maximum dispersion in order to

maximise its effectiveness.

The primary beam halo is intercepted and cleaned by primary collimators, however

a secondary halo escapes. Similarly a tertiary halo escapes the secondary collimators,

and in order to protect the inner triplet (IT) final focussing magnets at the IPs, a set

of tertiary collimators must clean the tertiary halo, and reduce damage to the IT, as

well as reducing the background to the detector experiment. Passive absorbers are also

required to shield the separation and recombination dipoles D1 and D2 from physics

collision debris.

3.6.2 Collimation Hierarchy

A particle impacting a collimator jaw receives a kick to both phase space co-ordinates

(z, z′) through the collimator length, where z is either x or y in our co-ordinates, as

shown in Fig.3.3. The transverse displacement (zkick) is of the same order as the impact

parameter ( 1 µ m). The scattered protons populate an area of phase space roughly

corresponding to a straight line at the amplitude of the collimator jaw.

The z′ kick can cause the particles to either be scattered back into the material (or

vacuum pipe further down) or into the beam. Those that return to the beam form what

is referred to as the secondary halo. The secondary halo can damage the machine just

as the primary, and must be controlled with the use of secondary collimators. These
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Figure 3.3: Scattering of particles in (z, z′) phase space. The scattered particle achieves
a larger divergence after impact (blue ellipse). From [3].

are placed downstream of the primary collimators, and the combination is referred to

as a two-stage collimation system.

Figure 3.4: Two stage collimation system in normalised zz′ phase space. A primary
collimator (1) scatters a particle close to maximum transverse position z = n1, if it is not
absorbed it is scattered into the secondary halo (towards z = n2). A secondary collimator
at depth n2 at the phase advance ∆µ is used to control the secondary halo. From [3].

Figure 3.4 demonstrates a two stage collimation system in normalised z − z′ phase

space. Note that the half-gap of the secondary collimators must be larger than the half-
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gap of the primaries, so as to intercept only the secondary halo instead of populating

it.

The secondary half-gap is set to a distance n2 = n1 + dσ, where n1 is the primary

collimator half-gap, n2 is the secondary collimator half-gap, and dσ is the offset between

the secondary and primary collimator half-gap. A ‘safe’ retraction dσ of around 1σ in

both transverse planes is suggested for the LHC. The downstream longitudinal distance

between primary and secondary collimators is specified by a phase advance ∆µ [50]:

cos(∆µ) =
n1
n2
. (3.3)

Figure 3.5 shows that the maximum amplitude of the scattered particles exists at

two phase advances from the primary collimator (TCP). Thus two secondary collimators

(TCS) are needed for each primary collimator to operate efficiently [51] as shown in

Fig. 3.5. The optimum phases are also dependent on the jaw openings of primary and

secondary collimators [50].

Figure 3.5: Required jaw opening of secondary collimators (TCS1) and (TCS2) with
respect to primary collimator (TCP) at the optimum phase advance µ. From [51].

The LHC also makes use of Tertiary and Quaternary stage collimators to maximise

efficiency. Tertiary collimators exist upstream of critical magnets in the experimental

IPs, whereas quaternary collimators are mainly absorbers that protect the machine
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from low energy particle showers. These are created via inelastic proton interactions

with the collimator jaws. In reality the LHC collimation system has 5 stages; pri-

mary collimators, secondary collimators, absorbers in collimation insertions, tertiary

collimators, and local absorbers.

3.6.3 Existing LHC Collimation System

The Phase 1 LHC collimation system prioritised robustness, it consisted of 98 two-sided

and 2 one-sided movable collimators of various materials, and is shown in Fig. 3.6.

Collimators must be moved as functions of time to guarantee optimum performance

during energy ramp and betatron squeeze phases of LHC operation [52].

The phases of the LHC operational cycle are as follows: Injection (‘setup’, ‘probe’

or ‘physics’ depending on the types of beam), ramp preparation, energy ramp (where

the beam is accelerated), flat top, squeeze (where the beam is focussed for higher

luminosity at the IPs), adjust (when collisions are established), and stable beams (data

taking periods). Collimators follow complex functions of time (four per collimator i.e.

one per motor) during the ramp, squeeze and adjust modes. They sit idle at discrete

settings in other modes. Three different types of interlocks (versus time, versus energy

and versus β∗ in the collision points) are active at all times and trigger a beam abort in

case any of the collimator position or gap measurements exceed safe boundaries. The

temperature of each collimator (using 5 sensors per device) is also interlocked. From

the settings management point of view, this is one of the most complex LHC systems

[53].

The layout of the Run I LHC collimation system is shown in Fig.3.6.

During LS1 the LHC collimation system was upgraded, as envisioned in the two-

phase implementation. The goals of the upgrade were as follows [54]:

• to enhance the operation efficiency and machine protection by improving the

flexibility of IR configuration,

• to improve the collimator layout in the experimental regions by providing better

cleaning of incoming beam and outgoing physics products,

• to optimise the location and distribution of losses, improving the lifetime of the

warm magnets and optimise doses to equipment and personnel.

This was achieved by a number of modifications. The tertiary collimators in all IRs

were replaced with collimators using embedded BPMs (see Chapter 1). The primary

95



3. BEAM COLLIMATION

Figure 3.6: Layout of the phase I LHC collimation system for both beam 1 and 2. Red
text indicates beam 1 collimators, black text indicates beam 2 collimators. From [32].
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Insertion Region Collimator Type End of Run I Post LS1 New in LS1
IR7: TCP 6 6 0
Betatron TCSG 22 22 0
Cleaning TCLA 10 10 0

TCSM 0 0 0
TCLD 0 0 0
TCAP 6 6 0

IR3: TCP 2 2 0
Momentum TCSG 8 8 0
Cleaning TCLA 8 8 0

TCSM 0 0 0
TCLD 0 0 0
TCAP 2 4 +2

IR6: TCSG 2 0 -2
Beam TCSP 0 2 +2
Dump TCDQ 2 2 0

TCLA 0 0 0
IR1/5: TCTH/V 8 0 -8
High TCTPH/V 0 8 +8
Luminosity TCL 4 12 +8
Experiments TCTPH/V 0 0 0

TCLD V 0 0 0
IR2: TCTH/V 4 0 -4
ALICE & TCTPH/V 0 4 +4
Beam 2 TCLIA/B 2 2 0
Injection TDI 1 1 0

TCDD 1 1 0
TCLD 0 0 0

IR8: TCTH 2 0 -2
LHCb & TCTVB 2 0 -2
Beam 2 TCTPH/V 0 4 +4
Injection TCLIA/B 2 2 0

TDI 1 1 0
TCDD 0 0 0
TCLD 0 0 0

Transfer TCDIH/V 13 13 0
Lines
Total 108 118 +28

Table 3.2: Summary of LHC collimators at the end of Run I, and post LS1. From [55].

dump protection collimator which consisted of two 3 m long single-sided (TCDQ) beam

dump absorber blocks were replaced with three 3 m long blocks. These consist of

sandwiched layers of CFC and graphite, whereas previously they were solid graphite.

This particular modification was to allow safer beam dumping at higher energy beams.

As well as this the layout of physics debris absorbers in the high luminosity insertions

was adjusted, additional passive absorbers were added in the momentum collimation

insertion, and new active absorbers were added to the dump protection collimation

system. The phase 2 LHC collimation system consists of 118 collimators, of which 108

are movable. These are detailed in Table 3.2.

The name and function of each collimator type is detailed in Table. 3.3. In this

acronym notation, the first T stands for target, thus TCP is a ‘Target Collimator

Primary’.

Both cleaning insertions (betatron in IR7, and momentum in IR3) are warm, i.e.

have normal conducting magnets, and thus activation from halo losses is confined to

these warm insertions.
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Acronym Name Function Material
TCP Primary Collimator Primary betatron cut CFC
TCSG Secondary Collimator Graphite (IR 3,7) Secondary betatron cut CFC
TCSM Secondary Collimator Metallic Secondary betatron cut MoGr
TCTH Tertiary Collimator Horizontal Local triplet protection W
TCTV Tertiary Collimator Vertical Local triplet protection W
TCTVB Tertiary Collimator (2-in-1) Local triplet protection W
TCTPH Tertiary Collimator Horizontal + BPM Local triplet protection W
TCTPV Tertiary Collimator Vertical + BPM Local triplet protection W
TCLA Shower Absorber Large amplitude shower absorber W
TCLA Shower Absorber (IR6) Large amplitude shower absorber for Q4 and Q5 W
TCAP Passive Absorber Reduce total dose in warm magnets W
TCL Physics Debris Absorber Clean matching section and DS Cu (W)
TCDQ Secondary Dump Protection (IR6) One-sided dump absorption block C
TCSG Primary Dump Protection (IR6) Aperture definition for dump protection CFC
TCSP Primary Dump Protection + BPM (IR6) Aperture definition for dump protection CFC
TCLIA Injection Protection Absorber Auxiliary injection protection C
TCLIB Injection Protection Absorber Auxiliary injection protection C
TCLD Dispersion Suppressor Collimator Local DS cleaning W
TDI Injection Protection Primary Collimator Injection protection absorption block C
TCDIH Injection Protection Collimator Transfer line injection protection Gr
TCDIV Injection Protection Collimator Transfer line injection protection Gr
TCDD Injection Protection Mask Movable D1 mask C

Table 3.3: Definition of LHC collimator acronyms and corresponding materials. CFC
refers to CFC AC150K, W refers to Inermet R© 180, Cu refers to Glidcop R© AL-15, and C
is graphite. From [55].

3.6.4 Betatron Insertion

The betatron system in IR7 consists mainly of primary (TCP) and secondary (TCSG)

collimators with some absorbers (TCLA). Primary and secondary collimators are two

sided, and have CFC jaws, which limits energy absorption in the jaws and makes

them extremely robust. To have the best compromise between cleaning efficiency and

robustness an active length of 60 cm was chosen for primaries, and 1 m for secondaries.

Two sided active absorbers (TCLA) intercept the tertiary halo and particle showers

from the TCP and TCSGs. These use Glidcop R© jaws with an Inermet R© inlay to

absorb maximum energy. An example betatron cleaning (IR7) system insertion is

shown in Fig. 3.7. Table 3.4 lists the nominal half-gaps for the IR7 betatron cleaning

system.

Collimator Injection half-gap [σ] Collision half-gap [σ]

TCP 5.7 6

TCSG 6.7 7

TCLA 10 10

Table 3.4: Nominal betatron collimator settings at injection and collision energy. The
betatron collimation system is located in IR7. Adapted from [32].
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Figure 3.7: Top: 3 stage cleaning system to protect the arc cold aperture at injection.
Bottom: At 7 TeV the machine bottleneck is given by the SC triplets rather than the arc
SC magnets. Tertiary collimators are closed defining a 4-stage cleaning system. In reality
another absorber stage exists after the tertiaries to define a 5 stage system. From [32].

3.6.5 Momentum Insertion

The momentum cleaning insertion in IR3 of the LHC offers an area of large dispersion.

As the machine is a synchrotron vertical dispersion is negligible, thus the momentum

cleaning insertion is optimized for horizontal collimation, greatly reducing the number

of collimators required. This system consists of 2 horizontal primary (TCP), 16 sec-

ondary (TCS) and 4 absorbing collimators (TCLA), each of which is similar to those

in IR7.

Table 3.5 lists the nominal half-gaps for the IR3 momentum cleaning system.

Collimator Injection half-gap [σ] Collision half-gap [σ]

TCP 8 15

TCSG 9.3 18

TCLA 10 20

Table 3.5: Nominal momentum collimator settings at injection and collision energy. The
momentum collimation system is located in IR3. Adapted from [32].
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3.6.6 Injection/Extraction Protection

Injection collimation systems exist in IR2 and IR8, and extraction collimation systems

in IR6.

The injection protection TDI is a vertical collimator consisting of two 4.2 m long

CFC jaws. Supplementary graphite TCLI collimators also provide injection error pro-

tection downstream of IP2 (beam 1) and IP8 (beam 2). Due to their half-gaps (shown

in table 3.6) the TCLIs must be retracted for the energy ramp phase.

Three 3 m long extraction protection TCDQA collimators made from sandwiched

layers of CFC and graphite are installed in IR6. A supplementary TSCG collimator

provides further extraction error protection downstream of the TCDQAs.

Collimator Injection half-gap [σ] Collision half-gap [σ]

TDI (Injection) 6.8 N/A

TCLI (Injection) 6.8 N/A

TCDQA (Extraction) 8 8

TCSG (Extraction) 7 7.5

Table 3.6: Nominal injection/extraction protection collimator settings at injection and
collision energy. The injection protection collimation system is located in IR2 and IR8.
The extraction protection collimation system is located in IR6. Adapted from [32].

3.6.7 IP Protection

At top energy the beam must be squeezed in order to reach the nominal β∗ values

at the IPs. This means that the β function at the SC triplet magnets (quadrupoles

Q1, Q2, and Q3) must increase, and thus the available aperture is reduced in the IPs.

Horizontal TCTH and vertical TCTV tertiary collimators are installed upstream of the

SC triplets to provide protection during squeeze and collision. These consist of two

sided, 1 m long copper jaws with a tungsten inlay. Tertiary vertical collimators in IR1

and IR5 have the classical one-beam design - the TCTVA is identical to the TCLA.

Following the squeeze of the beam, when the triplet aperture becomes smaller than the

arc aperture, the TCTs must also be closed [32]. Table 3.7 lists the nominal half-gaps

for the IP protection system.

The TCTs clean the tertiary halo that leaks from the collimation insertion in IR7,

and may be used to tune experimental backgrounds. In the case of a catastrophic

failure the TCTs are designed to intercept a large proportion of the beam energy, thus

protecting the SC triplet quadrupoles, however the TCTs are likely to be destroyed in
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Collimator Injection half-gap [σ] Collision half-gap [σ]

TCTH/V (IR1-5) 9.5 8.3

TCTH/V (IR2) 9.2 45

TCTH/V (IR8) 9.2 30

Table 3.7: Nominal IP protection collimator settings at injection and collision energy.
Adapted from [32].

such a failure.

As well as active TCTs and absorbers, the high luminosity IPs (1 and 5) contain

two passive absorbers on each side of the IP. The TAS (target absorber) protects the

inner triplet from collision debris. The TAN (target absorber neutral) protects the

beam separation dipole (D2) from neutral products of collisions in the detector region.

A full layout of IP1 is shown in Fig. 3.8.

Figure 3.8: Layout of the ATLAS interaction point (IP1). IP1 shows the collision point,
followed by the TAS, the inner triplet (Q1, Q2, Q3), the separation dipole D1, the TAN,
the recombination dipole D2, and subsequent quadrupoles (Q4 - Q7). From [56].

3.6.8 Run I

A more up to date table of collimators used before LS1 is shown in table 3.8

The LHC ran successfully between 2008 and 2013 operating at energies of up to 4

TeV per beam. This equates to 140 MJ stored beam energy at a peak luminosity of

7 · 1033cm−2s−1 [53].

Losses in the post collimation and post interaction point dispersion suppressor re-

gions were observed, which were later identified as those from off-momentum protons

having undergone single diffractive interactions in the collimators. For ions, similar

losses were observed due to bound-free pair production [53]. No magnet quenches were

observed from circulating beam loss.
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Functional Type Name Plane Number Material

Primary IR3 TCP H 2 CFC

Secondary IR3 TCSG H 8 CFC

Absorbers IR3 TCLA H, V 8 W

Primary IR7 TCP H, V, S 6 CFC

Secondary IR7 TCSG H, V, S 22 CFC

Absorbers IR7 TCLA H,V 10 W

Tertiary IR1/2/5/8 TCT H, V 16 W/Cu

Physics abs. IR1/5 TCL H 4 Cu

Dump protection IR6 TCSG H 2 CFC

TCDQ H 2 C

Inj. protection (lines) TCDI H, V 13 CFC

Inj. protection IR2/8 TDI V 2 C

TCLI V 4 CFC

TCDD V 1 CFC

Table 3.8: LHC collimators used in the 2010-2013 run. CFC refers to CFC AC150K, W
refers to Inermet 180, Cu refers to Glidcop AL-15, and C is graphite. From [53].

3.6.9 Run II

To prepare for the increase of beam energy from 4 TeV to 6.5 TeV per beam, 12 TCL

collimators were added to the LHC to protect from collision debris downstream of

ATLAS (IP1) amd CMS (IP5). These additional collimators improved the flexibility

for forward physics experiments and allowed concentration of radiation hot spots [57].

Validation loss maps were generated (using the transverse damper to excite losses and

measuring losses using BLMs), and showed the highest cold losses to be well below the

required cleaning inefficiency (≈ 0.0001) [57]. As in the previous run the largest cold

losses were found to be in the dispersion suppressor magnets post betatron collimation

(IR7). Due to the excellent performance of the collimation system, the β∗ was pushed

to ≈ 30% beyond its nominal value [57]. By adding collimators with embedded BPMs

in LS1, alignment of the collimators was performed in a matter of seconds (as compared

to hours in the previous run), and the stability of the collimation system (variation in

cleaning inefficiency over time) was much improved.
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3.7 HL-LHC Collimation System

3.7.1 Possible Upgrades

The current HL-LHC baseline includes 56 new collimators (some added and some re-

placed), to be installed in LS3 [48].

The HL-LHC optics present a new aperture bottleneck at the high luminosity IPs

(IP1 and IP5), presently a pair of horizontal and vertical TCTs protect the inner triplet

quadrupoles (Q1, Q2, Q3) from the beam halo, and provide passive protection in case

of an asynchronous beam dump or equivalent failure. The potential bottleneck occurs

upstream of the TCTs, at the Q4 and Q5 quadrupoles, thus an additional set of TCTs

is required to protect these quadrupoles [58]. This results in 4 additional ‘TCT5’s per

beam, two in IP1, two in IP5. In addition these IPs will require additional physics

debris absorbers, and fixed masks at each of the three absorbers [33].

To reduce losses in the dispersion suppressor regions on either side of the betatron

cleaning insertion (and at other areas where this is an issue), DS collimators (TCLD)

are required. Two TCLDs are required per beam in IR7, with at least one per beam in

IR2 due to ion losses from collisions in ALICE. Half of these are planned to be installed

in LS2, the IR7 TCLDs must be placed between 11 T dipoles (as discussed in the next

section), but the IR2 TCLDs do not require the high gradient dipoles. The rest of

the TCLDs and corresponding 11 T dipoles will be installed in LS3 if they are deemed

necessary.

The LHC is limited by the robustness and impedance of the collimators. As men-

tioned previously a large research and development campaign was started in order to

identify and test possible materials for collimator jaw upgrades (for the LHC and HL-

LHC). The current TCSG material (CFC) results in an impedance limitation to the

HL-LHC, and a staged replacement with MoGr (or suitable alternative), possibly with

a metal coating, is envisioned for the HL-LHC. In total 22 IR7 secondary collima-

tors require replacement, 8 - 10 of these will be completed in LS2 [48], with the IR3

collimators being replaced if deemed necessary.

The TAN is a passive neutral absorber that is required in IP1 and IP5. It protects

the twin-aperture SC separation dipoles (D2) from forward high energy neutral prod-

ucts from collisions, and localises activation. In the LHC each of these IPs require two

TANs, each absorbing around 210 W of neutral particles when the LHC is colliding

beams [59]. For the HL-LHC an upgraded TAN (named TAXN) is being designed [60].

Energy deposition studies have indicated that a large leakage occurs if using the
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present TCL physics debris absorber jaws. This has prompted an updated TCLX design

with larger jaws to protect magnets from D2 to Q4 [60]. The TCL4 tertiary collimator

has jaws that have a transverse cross section of 2 × 3.4 cm, the TCLX instead uses 4

× 7 cm.

As well as these upgrades are the novel collimation schemes such as crystal collima-

tion, hollow electron lens collimation, and the use of a rotary collimator, all of which

are discussed in Chapter 1.

3.7.1.1 Dispersion Suppressor Collimator

FLUKA simulations have indicated a power deposition of > 90 mW cm−3 in the SC

magnets in the DS region post IR7 due to heavy ion losses in the HL-LHC. This is

higher than the quench limit of ≈ 50 mW cm−3 [61].

In order to alleviate such losses a collimator is required in the DS region post IR7.

The losses occur in a region currently occupied by SC dipoles, thus there is no space

for a collimator. Two options exist; shifting many magnets up or down-stream in order

to fit a collimator into the lattice, or replacing an 8 T dipole with two higher field

magnets, thus making space for a collimator between. The latter was chosen, and a

prototype 11 T dipole was designed and built at CERN.

The DS is a cold region of the machine, and preliminary studies showed that a

cold collimator (i.e. a collimator in a cryostat) was not practical [62]. Thus a warm

collimator with a cryo-bypass that sits between two cold 11 T SC dipoles is envisioned

for the HL-LHC. The current design is shown in Fig. 3.9.

Figure 3.9: Proposed design of two 11 T dipoles with a dispersion suppressor collimator
(TCLD) collimator between them. This design would replace an existing 8 T dipole.
From [62].

SixTrack simulations indicate a factor 10 reduction in peak power deposited in the

SC magnets in the DS regions when operating with two TCLDs in IR7 for a single
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beam [33].

3.7.1.2 Novel Collimation Schemes

Crystal collimation offers improved cleaning performance and impedance over current

primary collimators. By using a bent crystal to channel halo particles onto a single

absorber, the current multi staged collimation approach may be bypassed. Machine

development (MD) studies were carried out in 2015 demonstrating crystal channelling

in the LHC (6.5 TeV protons and 450 GeV lead ions). Cleaning at top energy has yet

to be demonstrated, as well as channelling for 6.5 TeV ions. A further concern is the

performance of crystal collimators in dynamic machine phases such as the ramp and

squeeze.

Hollow electron lens collimation has not yet reached the stage of crystal collimation.

The current design includes a 5 T, 3 m long SC solenoid (in parts) in a cryostat, with

bending toroid resistive coils, in an S shaped layout with electron gun and collector at

the extremities [63]. The HEL solenoid is superconducting and operates at 4.2 K, thus

access to liquid helium is necessary. The HEL design is shown in Figure 3.10.

The HEL requires compact construction, maximum vacuum chamber diameter, easy

access for installation, modification and maintenance, and further insertions such as

BPMs and diagnostics in order to align the HEL beam with the proton beam. It

operates on a single beam, so a large beam to beam distance is required. Two candidate

locations in IR4 have been suggested; RB44 and RB46. The beam to beam distance at

these locations is 420 mm.

Another interesting and novel scheme for the HL-LHC is to compensate beam-beam

effects using an electrical wire embedded inside a TCTP tertiary collimator jaw near

the IPs. A high DC current of 350 A flows through the wire which is positioned less

than 3 mm from the jaw surface, whilst maintaining TCT functionality. No change in

damage limits from normal Inermet R© TCTs has been found, and four collimators with

wires for beam-beam compensation are included in the HL-LHC baseline.

In order to correctly set the collimator positions and jaw openings, a very accurate

knowledge of the beam orbit and size is required. One cannot rely on the nominal

values for these variables as imperfections and errors cause uncertainties that are large

when compared to the collimator gaps. Thus deterministically setting the collimators

is not an option, and instead a beam-based alignment technique is used. This was

done manually at the start of Run I, taking around 20 minutes per collimator. The

optimisation of beam-based alignment was performed and reduced this set up time to
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Figure 3.10: Proposed design of an ‘S-shaped’ LHC hollow electron lens. The electron
gun and collector are located in the extremities of the ‘S’, and the injection and extraction
toroids are shown in the bends. The main section is a SC solenoid, and the beam pipe for
protons extrude on either end. From [63].

less than 5 minutes per collimator [4]. BPMs were installed in a number of collimators

in LS1, and an upgrade of all collimators to include these BPM ‘buttons’ is foreseen in

the HL-LHC, in order to provide better halo diagnostics and reduce collimator set up

time. Collimators with embedded BPM buttons were installed in LS1, and are shown

in Figure 1.10.

3.7.2 Proposed Layout

The proposed layout of the HL-LHC, with the addition of one HEL per beam (not

currently in the HL-LHC baseline), is shown in Fig. 3.11.
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Figure 3.11: Layout of the LHC collimation system after LS1 for both beam 1 and
2, with possible additions for HL-LHC, and two HELs (which are not currently part of
the baseline but give an indication of their possible positions). Yellow highlights indicate
newly installed collimators in LS1, blue highlights indicate collimators that were replaced
(for example with embedded jaw BPMS), and green highlights indicate collimators that
were removed and put back in place. Red text indicates existing beam 1 collimators,
black text indicates existing beam 2 collimators, and blue text indicates possible HL-LHC
upgrades. Adapted from [33].
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3.8 Hollow Electron Lens Collimation

The hollow electron lens (HEL) is an annular beam of electrons which may be used to

interact with the LHC proton halo in order to control halo diffusion, thus providing a

method of active halo control.

3.8.1 Tevatron Operation

The HEL was demonstrated for the first time at the Tevatron [20] p+p− collider. The

Tevatron Electron Lens (TEL) was used was used for abort gap cleaning [64] 24/7 for

a duration of five years with only a few eight hour accesses to replace failed compo-

nents [65], thus demonstrating compatibility with regular collider operation. TEL used

a solid electron beam. The second lens, TEL-2, was used successfully for long range

beam-beam compensation over a period of months [66].

TEL-2 was the first hollow electron lens to be used in a hadron collider, it demon-

strated controllable halo particle removal without affecting the beam core [20]. The

applications of electron lenses are summarised in [67].

3.8.2 Existing Operation Modes

Four existing operation modes exist for collimation enhancement using the HEL, these

are detailed in [67], and summarised below:

• DC: The HEL current is continuously at maximum. Halo particles receive a kick

that is proportional to the particle transverse displacement (as in equation 3.7),

and collimation enhancement relies on the coupling of this kick with machine

resonances.

• AC: The HEL current is modulated over time in order to drive the betatron

oscillations of halo protons. Collimation enhancement is achieved by increasing

transverse displacement of the forced betatron oscillation.

• Diffusive: The HEL is either switched on/off, or the current is modulated, on a

turn by turn basis. It is not possible to do this on a bunch by bunch basis in

the LHC. By applying this randomly modulated kick to the halo protons, the

natural diffusion of the halo, and thus the collimation enhancement is performed

in a controlled manner.

• Turnskip: The HEL is switched to DC mode every n turns, in an attempt to

drive the betatron oscillations as in the AC mode.
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3.8.3 LHC HEL

In the HL-LHC beam sizes are smaller than in the LHC, requiring smaller collimator

gaps and thus larger impedance contributions, and corresponding beam instability. The

HEL can operate closer to the beam core than a collimator jaw without contributing

significantly to the impedance budget, this may also allow some collimators to have

larger jaw openings, as the HEL will kick halo protons onto the primary collimators

to deplete the halo. As the HEL is not solid there is no material to damage, and due

to the SC solenoid the HEL beam is very well controlled. In controlling halo depletion

the HEL offers a method of reducing the damage caused by catastrophic failures. If

the halo is depleted before such a failure, the intensity of protons that would impact

upon the collimators or magnets would be decreased. This is especially useful for the

HL-LHC due to the use of crab cavities, which are a major concern in terms of possible

failures.

The use of a HEL for LHC collimation was first suggested in 2006 [65], in which the

highly reliable Tevatron hardware was summarised and scaling of this for use in the

LHC was suggested. It was stated that for the LHC two to three HELs per beam, each

operating with current of 10 A, length of 2 m, and voltage of 20 kV would be necessary

to obtain controlled diffusion of the halo similar to that achieved in the Tevatron.

An investigation was performed in 2013 [68], in which SixTrack [18], the standard

CERN collimation simulation tool was modified and used to perform simulations of a

HEL in the nominal LHC lattice using hardware similar to the TEL. It was found that;

the AC mode was most effective at exciting halo particles onto the primary collimator

(around 75% removal in ≈ 20 s) after the AC parameters were optimised, the DC mode

showed no noticeable effect, and the diffusive mode was less effective than the AC mode.

It was also observed that doubling the current in diffusive mode was comparable to the

AC mode removal rate.

Later in 2013 the HEL was mentioned in the HL-LHC preliminary design report [69],

though not in the HL-LHC baseline at that time it was highlighted as a possible means

for collimation enhancement in the HL-LHC.

After further study a conceptual design report (CDR) was produced in 2014 [70],

in which experimental experience from TEL operation and numerical simulations were

used to produce a conceptual design for a HEL that met the requirements for HL-LHC

collimation enhancement. The hardware parameters of the TEL and LHC HEL are

summarised in Table 3.9.

At the proposed location for the HEL in the HL-LHC, the beam is not round. The
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Parameter Tevatron LHC

Interaction Length [m] 3 3
e− Energy [keV ] 5 10
e− Current [A] 1.2 5

Table 3.9: HEL hardware properties

HEL beam is round due to the cathode shape, and is maintained by the magnets and

space charge forces [67]. Collimation enhancement is thus optimal in regions where the

proton beam is round. We therefore compare the position at RB46 (for beam 1) where

the beam is non-round, to another position nearby where the beam is round, in order

to compare the effect on collimation enhancement.

For this study the parameters detailed in Table 3.10 were used. For SixTrack

comparisons, the Tevatron HEL parameters shown in Table 3.9 were used, with LHC

optics version 6.503, shown in the LHCTev column of Table 3.10.

The remaining columns of Table 3.10 compare the round and non-round positions

for HL-LHC optics version 1.2, with collision or separation. It is clear that the difference

in optics is negligible. This study therefore uses only collision optics.

Parameter LHCTev HLSep HLSep HLColl HLColl
Round Non-round Round Non-round

s [m] 10032 9967 9908.4 9967 9908.4
βx [m] 181.7 211.1 331.7 213.4 331.7
βy [m] 180.4 217.2 211.9 215.9 211.9
αx -0.32 -0.8 -1.26 -0.82 -1.26
αy 0.96 0.18 -0.09 0.18 -0.09
Dx [m] -0.14 -0.31 -0.43 -0.35 -0.5
Dy [m] 0.08 0.15 0.09 0.15 0.08
σx [µm] 292 315 395 316 395
σy [µm] 291 319 315 318 315
σx′ [µrad] 1.67 1.9 1.9 1.91 1.91
σy′ [µrad] 2.24 1.5 1.5 1.5 1.5
µx 25.16 24.34 24.25 24.35 24.25
µy 22.85 22.68 22.67 22.7 22.67

Table 3.10: HEL simulation lattice functions for nominal LHC (v6.503) and HL-LHC
(v1.2) optics. Separated beam (Sep) and collision (Coll) optics are shown for both round
and non-round positions in the HL-LHC.
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3.8.4 HEL Modelling

The machine beam interacts with the electromagnetic (EM) field generated by the HEL

beam, the HEL interaction is not based on scattering [67].

3.8.4.1 Assumptions

In order to derive the force on a proton interacting with the HEL EM field, we assume

a perfect HEL:

• The HEL is a perfect hollow cylinder, with no variation of thickness, or inner or

outer radii (Rmin and Rmax respectively) through its interacting length L.

• The electron distribution is perfectly uniform both longitudinally and radially.

• The electron charge density is azimuthally symmetric.

These assumptions mean that any proton inside the HEL minimum radius Rmin,

i.e. the beam core, feel no net force and is therefore not affected by the HEL. This

ideal HEL is shown in Figure 3.12.

Figure 3.12: Diagram of a perfect HEL beam, the blue line indicates the proton beam
axis L is the active length, Rmin the minimum radius, and Rmax the maximum radius.

For modelling we also ignore the effect on protons from the magnetic fields, i.e.

the SC solenoid, and the injection and extraction toroids. The HEL beam can overlap

the proton beam at its injection and extraction points, we ignore this effect as it was

demonstrated not to affect beam intensity or emittance at the Tevatron [67], and we

assume the same to be true in the LHC case.
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3.8.4.2 HEL Kick

The full kick derivation may be found in Appendix B. We model the HEL beam as an

infinite line charge, as shown in Figure 3.13.

Figure 3.13: HEL modelled as an infinite line charge, indicating direction of the EM fields
that influence proton motion. The magnetic field lines B, the electric field lines E, the
HEL current I, the electron velocity ve, the proton velocity vp, and the radial displacement
r are shown.

The electric field E and magnetic flux density B generated by an infinite line charge

are well defined (see Appendix. B), and can be substituted into equation 2.3 to give

the force on a proton with velocity vp travelling parallel to the HEL at some transverse

displacement r. Noting that the vectors B and vp are perpendicular, we find the force

on the proton in the lab frame to be:

F (r) =
Iq(1± βeβp)

2πε0ve r
. (3.4)

Where I is the electron beam current, q is the proton charge, βe = ve
c is the

normalised electron velocity, and βp =
vp
c is the normalised proton velocity. The ±

originates from the addition or subtraction of the magnetic flux density term from the

electric field term in 2.3, which is dependent on the relative directions of proton and

electron beams.

As the electric field E is generated by electrons, the direction of this force on a

proton is attractive, i.e. towards the propagation axis of the charge, which in this case

is the centre of the HEL beam.

We use the angular velocity to translate this force (see Appendix. B) into the

maximum angular kick given to a proton interacting with the HEL:
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θmax(r) =
1

4πε0c2
2LIr(1 + βeβp)

(Bρ)pβeβp

1

r
, (3.5)

where Ir is the charge enclosed by the radius r, and L is the length of the HEL.

We may define a function f(r), which, for an ideal HEL with uniform charge density

and radial symmetry, modulates the charge enclosed Ir in this expression to take into

account the hollow cylindrical distribution of electrons:

f(r) =


0, r < Rmin
r2−R2

min

R2
max−R2

min
, Rmin < r < Rmax

1, r > Rmax

(3.6)

where:

r is the machine particle radius in transverse phase space,

Rmin is the minimum HEL radius in transverse phase space, and

Rmax is the maximum HEL radius in transverse phase space.

Thus the magnitude of the HEL kick on a proton is defined as a function of the

protons transverse radius r, the beam rigidity of the machine beam (Bρ)p, the HEL

current I, length L, and the HEL and machine beam normalised velocities βe and βp

respectively, in equation 3.7:

θkick(r) = f(r) · 1

4πε0c2
2LHELI(1 + βeβp)

(Bρ)pβeβp

1

r
. (3.7)

3.8.5 Non Round Beams

The HEL electron distribution is round in transverse space, this is due to the cylin-

drical cathode and is maintained by the solenoid field and space charge effects [67].

Therefore the HEL offers the greatest interaction with the beam halo at a position in

the accelerator where the beam is round, that is to say where βx ≈ βy. For positions

where this is not the case, a large proportion of the halo may not interact with the

HEL, thus diminishing its effectiveness as a collimation enhancer.

3.8.5.1 Elliptically Matched Operation

For operation of a HEL on a ‘non-round’ beam (i.e. where βx 6= βy) an ‘elliptical’

matching has been devised to attempt to maximise the overlap of the HEL with the
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non-round beam halo.

Assuming dispersion to be negligible, we may illustrate the transverse footprint of

the beam at a given position in the accelerator using an ellipse with semi-major and

semi-minor axes (a, b respectively) being proportional to the square root of the beta

functions in x and y. That is to say an ellipse with a = nσx and b = nσy, where n is the

number of sigma that denotes the minimum HEL radius. When βx ≈ βy, this ellipse is

a circle. For the non-round position in the HL-LHC, βx ≈ 1.3 · βy, and thus the beam

footprint may be depicted as an ellipse with a = 1.3 · b. As the HEL minimum radius

Rmin is set using σx, in reality this results in a radius that is 1.14 times too large in

the y plane, as shown in Fig. 3.14. Thus the halo in one plane does not fully interact

with the HEL, resulting in a diminished collimation enhancement.

Figure 3.14: Diagram of the HEL intersection with a non-round beam footprint. The
red points indicate the electrons in the HEL, the green points indicate the position of the
halo (4-6 σ in x and y), and the blue points the core of the beam (0-4 σ in x and y). Here
the HEL minimum and maximum radii are set to 4 and 8 σx respectively. The left plot
shows the core, halo and HEL beams, the right plot omits the core for clarity.

By taking an extreme case we may derive an expression to modify the radii and

offset of the HEL, in order for it to overlap with more of the halo in both planes. This

is shown schematically in Fig. 3.15.

By setting Rmin to meet the beam core ellipse at its semi-minor extremity (in

this case the maximum y), and crossing both semi-major extremities (in this case the

maximum x values), we may use simple trigonometry to find the magnitude of the

required HEL inner radius, which we will label Rmin (elliptical):

114



3.8 Hollow Electron Lens Collimation

Figure 3.15: Diagram of an offset HEL minimum radius (blue), with a non-round beam
core envelope (red) where the semi-major is much greater than the semi-minor axis. The
left figure illustrates variables used to derive the shifted HEL centre and radii. The right
figure shows the co-ordinates and kick in the beam frame and the HEL frame.

Rmin (elliptical) =
a2 + b2

2b
. (3.8)

We must also express the shift in co-ordinates (in this case in y), yshift, as:

yshift = y −Rmin (elliptical) + b. (3.9)

Thus we may use a HEL with minimum radius Rmin (elliptical), shifted to be centred

at (x, yshift), to maximise the overlap of the round HEL on a non-round accelerator

beam where βx > βy. In order to set the HEL maximum radius Rmax we use the fact

that the ratio g:

g =
Rmax
Rmin

, (3.10)

is a constant that depends only on the hardware (i.e. the cathode geometry), such

that:

Rmax (elliptical) = g ·Rmin (elliptical). (3.11)

We also note from Fig. 3.15, that Rmin (elliptical) overlaps with the beam core. This
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is undesirable, and is mitigated by using a scaling factor of
√

a
b , modifying equation 3.8:

Rmin (elliptical) =

√
a

b
·
(
a2 + b2

2b

)
. (3.12)

The resulting ‘matched’ HEL is shown in Fig. 3.16.

Figure 3.16: Beam core at non-round position (blue), original HEL Rmin (red dotted),
offset HEL Rmin elliptical (yellow dashed), and corrected and offset Rmin elliptical (purple),
all shown in units of normalised σ where σx = 1.3σy, and σy = 1

4 .

In reality the beam footprint is cumulative over many turns, particles trace an ellipse

in phase space and thus any space in the phase space ellipse may contain a particle at

a given turn. This is simply an approach to improve the performance of the HEL as a

collimation enhancer when forced to use it at a position in the accelerator where the

beam is non-round. The effectiveness of this approach will be ascertained in Chapter 6.
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3.8 Hollow Electron Lens Collimation

3.8.5.2 Pogo Operation

The first attempt at dynamic operation in simulations, this mode translates the ellipti-

cally matched HEL beam such that it alternately touches the top and bottom transverse

extremities of the beam core on a turn-by-turn basis, as shown in Fig. 3.17, in order to

improve halo coverage.

Figure 3.17: Dynamic Pogo operation of the HEL; the elliptically matched HEL is trans-
lated between the two transverse extremities in the semi-minor plane of the beam ellipse.
The beam core is green, and the halo purple.
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3.8.5.3 Hula Operation

This dynamic operation mode translates the elliptically matched HEL beam around

the proton beam core. In order to reduced complexity a simple 4-step process was

implemented in simulations, such that the HEL touches the top, right, bottom, then

left transverse extremities of the beam core. This is shown in Fig. 3.18.

Figure 3.18: Dynamic Hula operation of the HEL; the elliptically matched HEL is trans-
lated between the four transverse extremities of the beam ellipse. The beam core is green,
and the halo purple.
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3.8.5.4 Close Hula Operation

Building on the Hula operation mode, this dynamic mode simply maintains a minimum

HEL radius as it is translated, thus attempting to improve halo coverage as shown in

Fig. 3.19.

Figure 3.19: Dynamic Close Hula operation of the HEL; the HEL is translated to the four
transverse extremities of the beam ellipse and has the smallest possible minimum radius,
which is given by the elliptical matching at the semi-minor extremities, and the unmatched
HEL radius at the semi-major extremities. The beam core is green, and the halo purple.
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3.9 Modelling the Collimation System

The collimation system of the HL-LHC (and LHC) is vastly complicated, collimators are

distributed over the entire synchrotron, offering multi-stage cleaning. The collimation

system is designed to provide cleaning efficiencies of over 99.99%, thus loss locations

must be identified with high statistical accuracy.

In order to predict limiting loss locations, and to understand measured losses, large

scale simulations are required. In order to minimise run times, only the halo of the

beam need be simulated. Other requirements include:

• accurate tracking of large orbit and energy deviations (of order of a few beam σ),

• many (& 105) turn simulations,

• modelling of errors in jaw flatness and position, machine optics, and orbit.

The goal of a full simulation campaign is to determine the energy lost in the SC

magnets for a given beam intensity impacting upon collimators. This is done using a

number of tools, at CERN the first stage is done using SixTrack [18]. This includes

particle tracking, collimation scattering, and loss locations for the production of loss

maps. These maps identify the location and magnitude of proton losses after a beam

halo has impacted upon the primary collimator. Typically a loss map simulation is done

using 6.4 · 106 protons, for 200 turns. This is enough turns for the majority of particles

to be lost, and provides the necessary statistics to resolve losses below the quench

level [71]. An example measured qualification loss map is shown in Fig. 3.20, this is

generated by forcing a partially populated beam to cross a machine resonance in order

to generate ‘artificial’ losses (i.e. losses not occurring in normal operation), usually in

a single plane - in this case horizontal betatron losses. This qualification verifies the

efficiency of the collimation system, and is performed regularly during operation.

As collimators are the aperture restrictions of the machine we anticipate the highest

losses to be in collimation insertions. As expected the highest losses in the LHC occur

in the collimators in IR7, followed by losses in IR3.

After this simulation stage energy deposition studies are performed using FLUKA [19],

and thermo-mechanical analysis is executed using codes such as ANSYS-AutoDyn [72].

In this thesis MERLIN takes the place of SixTrack, offering coupling to FLUKA

in a similar manner to that of SixTrack (though it is not used), as well as updated

proton-collimator scattering routines, novel and composite materials, and a more com-

prehensive HEL routine. Though these routines may be implemented in SixTrack,

MERLIN provides ease of use; written in C++ (as opposed to multiple languages as
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3.9 Modelling the Collimation System

Figure 3.20: Example measured qualification loss map for the LHC at 3.5 TeV . This loss
map is created by crossing a third order resonance to force particles onto the collimators.
Losses are normalised to the highest loss (horizontal TCP in IR7). From [71]

in SixTrack) it is easier to read and supplement. MERLIN provides many features

that SixTrack implements as post-processing (e.g. aperture checking). As well as this

MERLIN is more adaptable because it is a library, for example the user may write their

own physics, tracking, and input classes to override existing ones.
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MERLIN 5.01

4.1 History & Overview

MERLIN is an accelerator physics library written in C++, created by Nick Walker

at DESY in 2000, to study International Linear Collider [73] (ILC) beam delivery

system ground motion [74]. Later the main linac and damping rings were added [75]

necessitating wakefield, collimation, and synchrotron radiation processes [76]. As the

ILC is an electron linac, the TRANSPORT maps were deemed acceptable for particle

tracking. Later Andy Wolski added synchrotron functionality, including a module to

calculate the Twiss parameters, closed orbit, and dispersion, and symplectic integrators

for many turn simulations.

Many people were involved in the upgrades to MERLIN for LHC collimation, in-

cluding Roger Barlow [77], Rob Appleby, Hywel Owen, Adina Toader [78], James Mol-

son [79], Maurizio Serluca [80], Adriana Bungau, and Sam Tygier. The MERLIN

collaboration have worked to meet a number of LHC collimation requirements, for

previous work see [49].

4.2 Motivation

The current loss map tool for the LHC is SixTrack [18], a particle tracking code that

was updated to include the K2 [81] scattering routines for collimation [82]. SixTrack is

a thin lens tracker written in a number of Fortran versions, and is therefore difficult to

modify. The scattering routines are a modification of the K2 code which is outdated.

As SixTrack does not check if a particle has left the machine aperture, SixTrack col-

limation studies must perform this step using a post-processing tool, thus SixTrack is
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not optimised for speed. The SixTrack hollow electron lens ‘elens’ routine was written

by Valentina Previtali [68], but has not been used for a number of years, currently the

routine is outdated, poorly documented and not well understood.

It was decided to update the MERLIN C++ library to include the requirements

for a complementary simulation of the LHC collimation system. MERLIN is written

in C++ making it modular, and easy to modify. It offers thick lens tracking, an

on-line aperture check, and a number of physics processes. The scattering physics

has recently been updated to include more advanced proton-nucleon elastic and single

diffractive scattering [49]. These updates, together with the modifications detailed in

this chapter, ensure that MERLIN offers a fast, accurate, and future-proofed tool for

ultra-relativistic proton tracking, collimation, and a robust hollow electron lens process.

4.3 Modifications

In recent years MERLIN has been under the stewardship of Prof. Roger Barlow of the

International Institute for Accelerator Applications (IIAA), University of Huddersfield.

MERLIN was split into two branches, one developed at the University of Manchester

and the other at Huddersfield. The two codes will be referred to as the ‘Loss Map

branch’ [79], developed at Manchester by Robert Appleby, James Molson, Maurizio

Serluca, and Sam Tygier, and the ‘Hollow Electron Lens (HEL) branch’ [83], developed

at Huddersfield by Roger Barlow and Haroon Rafique.

In 2015 the two code branches were merged, combining the advanced scattering from

the loss map code with the modular collimation and hollow electron lens processes of

the HEL branch. Here we detail the result of merging both branches, MERLIN version

5.01 [84], which will henceforth be referred to simply as MERLIN. MERLIN is currently

developed by Haroon Rafique, Sam Tygier, Alessandra Valloni, and James Molson,

under the oversight of Roger Barlow and Rob Appleby.

MERLIN is prepared for operation with FLUKA in a similar way to SixTrack. It

provides a more robust hollow electron lens routine, long term symplectic tracking,

6D tracking (including synchrotron motion), and the ability to read input files for the

HL-LHC upgrade.

This chapter details the parts of MERLIN included and updated for collimation.

Some of this was produced by others; the advanced single diffractive and elastic scat-

tering routines (James Molson, Maurizio Serluca), the lattice functions, ring iterator,

and symplectic tracker (Andy Wolski), as well as the existing framework of MERLIN.

The majority of this work was produced by the author in collaboration with others,
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either in modification of existing code or joint production, including but not limited to:

the CollimateParticleProcess, the MADInterface, apertures and their construction,

collimators and their construction, accelerator components, the CollimatorSurvey,

materials, particle distributions and beam data, integrators, scattering processes, some

physics content in particle scattering routines, and outputting non-collimator losses.

Part of this work was produced solely by the author in agreement with the MERLIN

collaboration: the proton collimation process, crab cavity failure process (not detailed

here) and required phase advance functions, the FLUKA database, composite materials,

the scattering model and all subsequent functions, the cross sections class, all collima-

tion outputs with the exception of non-collimator losses, and the hollow electron lens

process. Appendix D contains a more detailed code description with examples.

4.4 MERLIN 5.01

MERLIN version 5 is the result of merging the loss map and HEL codes. The definition

of a MERLIN particle can be found in Chapter 2, equation 2.2, and the unit system

used is defined in Table 4.1.

Quantity Unit Symbol Base Unit

Energy electron volt eV 1 [GeV ]
Distance metre m 1 [m]
Angle radian rad 1 [rad]
Time second s 1 [s]
Frequency Hertz Hz 1 [Hz]
Voltage Volt V 1 [GV ]
Magnetic Flux Density Tesla T 1 [T ]
Cross Section barn b 1 [b]

Table 4.1: MERLIN units defined in the PhysicalUnits namespace.

The following sections describe the physics used for a MERLIN collimation sim-

ulation. A MERLIN simulation consists of three main parts: creating an accelerator

model, defining a beam, and selecting and using a tracker to transport the defined

beam through the created accelerator. Physics processes may also defined and assigned

to the tracker.
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4.4.1 Accelerator Model

The model must define the type and location of accelerator elements. Each element

contains an EM field, a geometry, and an aperture. Special cases exist, for example

collimators also contain a jaw material which is required for scattering.

These accelerator components are stored as an AcceleratorModel, which is an

ordered vector of AcceleratorComponents, which is used by the ParticleTracker to

set the integrators that describe the paths taken by individual particles as they travel

through the elements.

The user may either define each individual element manually and construct a model

using these, or standard MADX [85] thick lens TFS table may be passed through

the MADInterface class to extract the AcceleratorComponents. This is detailed in

Appendix D.

4.4.2 Apertures

In order to correctly perform collimation, it is important that apertures exist for the

entire accelerator. A MADX generated aperture list may be used to create the aper-

tures for the accelerator. More information on apertures and their setup is given in

Appendix D.

4.4.3 Lattice Functions

Apertures set using the MADX generated input file are set in units of metres, and

centred on the perfect reference machine orbit (transverse (0,0)). For collimator jaw

openings we use units of σ, which is proportional to the beam emittance and beta

function on the given plane at the requested position in the lattice. For example in the

x plane σx =
√
βxεx. This means that when setting collimator apertures we require

the lattice functions.

MERLIN calculates these functions for all elements in the lattice, this is done by

tracking a single particle and adjusting the initial conditions until the closed solution

(i.e. the closed orbit) is found. Particles are then tracked with small deviations with

respect to the closed orbit to construct the one turn map, and the other parameters

are calculated using the particle co-ordinates at each element. The lattice functions are

calculated from eigenvectors of the one turn map. A detailed description of the lattice

function class is given in Appendix D.
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4.4.4 Collimators

After constructing the AcceleratorModel, and assigning Apertures to all non-collimator

elements, we must give particular attention to the Collimators in the lattice. As MER-

LIN has been developed to focus on the collimation system of the LHC, and now the

HL-LHC, the ApertureConfiguration class is currently hard-coded not to set aper-

tures for Collimator elements.

4.4.4.1 Collimator Database

The ConfigureCollimators() function is used to construct collimator apertures, for

which a number of methods are available. The first is performed when giving this

function only the AcceleratorModel, and uses the values given in the input file without

taking into account the closed orbit or lattice functions of the machine. This method

is therefore only valid when using units of metres in the input file for half gaps.

The more effective method is to use the overloaded ConfigureCollimators() that

also takes the transverse emittances, and a pointer to the LatticeFunctionTable.

Two flags exist that allow the user to take into account the closed orbit, and match

collimator half gaps to the beta functions at the start and end of each collimator. By

default these two flags are set to true, but may be switched off using the functions

MatchReferenceOrbit() and MatchBeamEnvelope().

The jaw half gap g, perpendicular half gap g⊥, rotation angle α, and jaw tilts θ are

illustrated in Fig. 4.1.

Using these definitions and the input file, the collimator apertures may be set in

units of σ using equation 4.1:

σ =
√
βxεxcos2(α) + βyεysin2(α), (4.1)

where β is the beta function in the given plane at the position of the collimator, ε is

the beam emittance, and α is the jaw rotation in real transverse space. Note that we do

not take into account the dispersion when setting the collimator apertures, instead the

dispersion contribution is included in the jaw half gap value in σ [86]. In this manner

the collimator jaws are set such that they follow a linear interpolation from the beam

size (
√
βε) at the start, to the end of the collimator. This can be a difference of order

0.1 mm in the LHC depending on the position of the collimator in the lattice, and can

be observed from the beta functions.

In SixTrack all apertures are thin i.e. have zero length, the values are input in units

of σ, but define the aperture at the centre of the collimator. In order to compare with
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Figure 4.1: Definitions of jaw half gap g (top left), perpendicular half gap g⊥ (top right),
jaw tilt θ (bottom left), and jaw rotation α. Note that as the perpendicular gap is usually
much larger than the jaw half gap, the effective aperture in real transverse space is often
a slit, as depicted by the orange dotted rectangle in the top right figure. Blue shows the
face of the jaws, orange the view from above.

SixTrack the function UseMidJawHalfGap() was added to the CollimatorDatabase.

This function sets a flag which calculates the beta function at the centre of the colli-

mator and uses it to set a collimator aperture that is constant throughout the length

of the collimator.

The different methods of setting the collimator jaw half gaps are shown in Fig. 4.2.

This is plotting using the CollimatorSurvey output, which is detailed in Appendix D.
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Figure 4.2: CollimatorSurvey output used to show the three different methods for
setting collimator jaw half gaps. The unmatched method in black uses the β function at
the start of the collimator, the matched method in blue adapts the opening to the beam
envelope to maintain a constant half-gap in units of beam σ, and the MidJaw option in
orange imitates SixTrack by using the beta function in the centre of the collimator.

4.4.4.2 Materials

The Material class stores all material properties required for scattering. A material

may be created using the overloaded constructor, or by creating an empty Material and

adding attributes individually. The attributes and expected units stored in Material

are shown in Table 4.2. More information on this class is given in Appendix D.

The MaterialDatabase class provides a dictionary of standard materials (listed in

Table 4.3) that may be used without the user defining the corresponding Material

object. This dictionary is detailed in Appendix D.

Pure elements are stored as Material objects, but other types of materials may

be stored as CompositeMaterials, or Materials. The difference between these is

covered in the following section and the difference in implementation is explained in

the collimation section.
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Attribute Symbol Expected Unit MERLIN name
Name - - Name
Symbol - - Symbol
Atomic Number Z - AtomicNumber
Atomic Mass A amu AtomicMass
Elastic Nucleus Reference Cross Section σE b SixtrackElasticNucleusCrossSection
Rutherford Nucleus Reference Cross Section σR b SixtrackRutherfordNucleusCrossSection
Inelastic Nucleus Reference Cross Section σI b SixtrackInelasticNucleusCrossSection
Total Nucleus Reference Cross Section σtot b SixtrackTotalNucleusCrossSection

Density ρ kg

m3 Density

Conductivity σ S
m

Conductivity

Radiation Length χ0
g

m2 RadiationLength

Mean Excitation Energy Ī eV MeanExcitationEnergy

Electron Density ne m−3 ElectronDensity

Nuclear Slope bn
GeV
c2

SixtrackNuclearSlope

Table 4.2: Material attributes, symbol, and the expected unit for Material construction
in MERLIN.

Material Symbol

Carbon (graphite) C
Beryllium Be
Copper Z

Aluminium Al
Lead Pb
Boron B

Oxygen O
Tungsten W

Carbon Diamond CD
Copper Carbon Diamond CuCD

CFC AC150K AC150K
Inermet 180 IT180

Glidcop GCOP
Molybdenum Carbide Mo2C

Molybdenum Carbide Graphite MoGr

Table 4.3: Materials currently available in the MaterialDatabase dictionary, and the
symbols used as accessors.
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4.4.4.3 Composite Materials

In order to model novel composite materials for collimator jaw upgrades, a new Composite

Material class has been created in MERLIN. This allows the user to create a com-

posite material from existing or user defined Materials. These constituent Materials

may be pure elements or other composites. The class itself is based on the Material

Mixture class from the loss map code, however MaterialMixture does not provide

the required functionality, and as a result is not compatible with the new Collimate

ProtonProcess.

CompositeMaterial contains a number of accessing and setting functions as in

Material, constituents may be added by mass (mi) or number (ni) fractions using the

AddMaterialByMassFraction() or AddMaterialByNumberFraction() functions.

A full treatment of the calculation of composite material properties can be found

in Appendix C. The mass fraction mi of the composite may be calculated from the

number fraction ni as shown in equation 4.2:

mi =
niAi∑
i
niAi

, (4.2)

where Ai is the atomic mass of the constituent i. Conversely the number fraction

ni may be calculated from the mass fraction mi as shown in equation 4.3:

ni =

(
mi
Ai

)
∑
i

(
mi
Ai

) . (4.3)

After all constituents have been added, the Assemble() function calculates com-

posite material properties. The following properties always return a weighted average

of the constituent material properties: atomic mass, atomic number, electron density,

plasma energy, mean excitation energy, stopping power
(
dE
dx

)
, and radiation length. We

may define the mean atomic number Z̄ [45],

Z̄ =
∑
i

ni · Zi, (4.4)

where ni is the number fraction of constituent i, which has atomic number Zi. The

mean atomic mass Ā is defined as a similarly weighted property [45],

Ā =
∑
i

ni ·Ai, (4.5)
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where Ai is the atomic mass of constituent i.

Using these definitions we can define the electron density ne, mean excitation energy

Ī, and the radiation length χ0 for the composite material, as shown in Appendix C.

When handled by the new CollimateProtonProcess, the user may select one of

two ways to handle all CompositeMaterials.

The first is to treat them as homogeneous materials with imaginary nuclei that

represent a weighted average of all constituents, this is the approach taken for ‘new

materials’ in SixTrack [45], and was created for comparison with SixTrack. A compar-

ison of composite materials created in this manner and their properties in MERLIN

and SixTrack is given in Table 4.4. The nuclear reference cross sections for a composite

are calculated using equation 4.6:

σpN =
∑
i

niσpN i, (4.6)

where σpN i is the reference cross section for the corresponding nuclear process in

the constituent i. A comparison of the cross sections for composites in MERLIN and

SixTrack can be found in Table 4.5.

This approximation is required for the calculation of the total mean free path λtot

for composite materials.

The second and more appropriate method of treating CompositeMaterials is to

use the homogeneous approach for bulk scattering, i.e. MCS and ionisation, but select

a weighted random constituent for point like processes. By default MERLIN uses

this approach, the function ScatteringModel::SetComposites(bool) can be used to

switch to the first approach for SixTrack comparison by using the argument ‘false’ or

‘0’.

Composite properties can be checked using the VerifyMaterial() function which

checks all constituent materials as well as the composite, and returns a false boolean

if there is an unset or unreasonable value.

For comparison the reference cross section values calculated in MERLIN were over-

written with those used in SixTrack. The resulting values are shown in Table 4.4 and

Table 4.5 as MERLIN modified. The differences between the two codes are mostly

negligible, where this is not the case they are justified below or in Appendix C.

We note that the proton nucleon cross sections for elastic and single diffractive

scattering are not dependent on the reference nuclear cross sections, and so are not

affected by the differences between MERLIN and SixTrack.

When using MERLIN scattering with the proper treatment of composite materials,

132



4.4 MERLIN 5.01

Property MoGr CuCD Glidcop Inermet180

Z
MERLIN 6.611 11.896 28.824 67.66
SixTrack 6.653 11.898 28.823 67.657

A
MERLIN 13.44 25.23 63.145 166.7
SixTrack 13.532 25.238 63.149 166.68

ρ [ g
cm3 ]

MERLIN 2.5 5.4 8.93 18
SixTrack 2.5 5.4 8.93 18

σel [MS
m ]

MERLIN 1 12.6 53.8 8.6
SixTrack 1 12.6 53.8 8.6

χ0 [m]
MERLIN 0.1214 0.03164 0.01443 0.00385
SixTrack 0.11931 0.03162 0.01442 0.00385

dE
dx

MERLIN 0.7188 1.981 2.685 5.576

bn [GeV
c2

]
MERLIN 79.69 121.3 223.59 427
SixTrack 76.665 114.961 208.669 392.137

λtot [m]
MERLIN 0.2301 0.1259 0.0892 0.0577
SixTrack 0.2484 0.1356 0.0942 0.0603

MERLIN Modified 0.2257 0.1259 0.0892 0.0577

Table 4.4: Properties of composite materials in MERLIN and SixTrack [45].

the only effect of the composite properties is seen in the multiple Coulomb scattering

and ionisation calculations (ScatteringModel::EnergyLoss() and ScatteringModel::

Straggle()). These functions rely on the electron density, plasma density, mean ex-

citation energy, and radiation length, which are all treated with standard methods for

composites. The mean free path is also used as a step length in the collimation process

function CollimateProtonProcess::DoScatter().

Once we have constructed our lattice in the form of an AcceleratorModel, set the

machine aperture using the ApertureInterface, and configured the material and set-

tings for all collimators via the CollimatorDatabase, we have a complete accelerator.

The next step is to create a beam of particles to simulate, and a tracker to track these

particles and assign physics processes to.
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Property MoGr CuCD Glidcop Inermet180

σpN tot ref

MERLIN 0.3545 0.572 1.246 2.546
SixTrack 0.362 0.572 1.246 2.548

σpN I ref

MERLIN 0.244 0.370 0.765 1.525
SixTrack 0.247 0.370 0.765 1.473

σpN R ref

MERLIN 11.9·10−5 0.000449 0.00151 0.006807
SixTrack 9.4·10−5 0.000279 0.001385 0.005737

σpN tot

MERLIN 0.3827 0.6068 1.293 2.611
MERLIN modified 0.3902 0.6068 1.293 2.613

σpN E

MERLIN 0.07459 0.1584 0.4217 0.939
MERLIN modified 0.0796 0.1583 0.4217 0.993

σpn E

MERLIN 0.04487 0.05536 0.07516 0.1039
MERLIN modified 0.04487 0.05536 0.07516 0.1039

σpn SD

MERLIN 0.001879 0.02318 0.03148 0.0435
MERLIN modified 0.001879 0.02318 0.03148 0.0435

Table 4.5: Cross sections of composite materials in MERLIN and SixTrack citequaran-
taprivate, all values are given in barns.
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Accessor Component Index

x x 0
xp x′ 1
y y 2
yp y′ 3
ct ct 4
dp δ 5

type Type of last particle scatter 6
s Location in lattice 7
id Individual particle ID 8
sd Single diffractive flag 9

Table 4.6: Components of the PSVector class.

4.5 Bunch Definition

MERLIN stores particles as PSVectors, a class that contains the particle co-ordinate

vector as components, as well as a number of other variables, all of which are detailed

in Table 4.6.

The ParticleBunchConstructor class is used to create an initial bunch matched to

the machine lattice functions at any chosen injection position. In order to do this a Beam

Data object must be created and fed to the bunch constructor. The user must specify

a ProtonBunch in construction or the default ElectronBunch will be constructed.

4.5.1 Distributions

MERLIN provides a number of bunch distributions, all of which are stored in the

ParticleBunchConstructor. The majority are described in [49], this will not be re-

peated here. The first particle in a bunch is always the reference particle. The user

may specify the construction of the bunch via an input file as shown in Fig. D.19, the

file must contain six columns, listing the co-ordinates: x, x′, y, y′, ct, δ in that order,

with a new particle on each line, and the first particle as the reference particle.

The bunch constructor matches the beam to the lattice functions as shown in equa-

tion 4.7, where the individual transformations are given in equations 4.8 - 4.10.

pf = DBA pi, (4.7)
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D =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

Dx Dx′ Dy Dy′ 0 1


(4.8)

B =



√
βx 0 0 0 0 0

0 1√
βx

0 0 0 0

0 0
√
βy 0 0 0

0 0 0 1√
βy

0 0

0 0 0 0 1 0

0 0 0 0 0 1


(4.9)

A =



1 0 0 0 0 0

−αx 1 0 0 0 0

0 0 1 0 0 0

0 0 −αy 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(4.10)

For the study of the HEL in the LHC and HL-LHC, a HEL halo distribution was cre-

ated. This is a simple halo bunch that is populated between σxmin and σxmax in x, and

σymin and σymax in y, thus a matched halo distribution in xy phase space is generated,

as shown in Fig. 4.3. The minima and maxima are specified using the BeamData class

as discussed previously. All other coordinates are matched to regular beam parameters

and the optics of the machine at the point of injection in the simulation.
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4.5 Bunch Definition

Figure 4.3: HEL halo distribution in xy, xx′, yy′, and x′y′ phase space. Purple points are
a ‘core’ bunch populated between 0-4 σx and σy, green points are a ‘halo’ bunch populated
between 4-6 σx and σy. This bunch is created at an ‘injection’ position of HEL in the
nominal LHC.
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4.6 Tracker

Integrators define the tracking for a particle through a single element of the accelerator

lattice, and can be stored using any method that is compatible with the defined particle

bunch co-ordinates. Integrators are described in Appendix D.

The TRANSPORT integrators are described in Chapter 2, and detailed in Appendix D.

4.6.1 SYMPLECTIC

The SYMPLECTIC integrator set was added to MERLIN by A. Wolski, however as it

was not used it did not behave as expected with MERLIN 5.01. It was found that all

particles were lost unexpectedly when running LHC loss map simulations, the tracks

of these particles are compared with those from the TRANSPORT integrator in Fig. 4.4.

Figure 4.4: Particle tracks in the 6.5 TeV LHC indicating the incorrect path taken by
protons when using the original SYMPLECTIC (green) tracker, compared to the correct path
when using the TRANSPORT (red) tracker. Particles being tracked by the SYMPLECTIC tracker
are unexpectedly lost in a vertical aperture of the machine.

To ascertain the cause of the incorrect tracking, each integrator in the set was

debugged. It was evident that a number of functions required updating, in particular

the map for multipoles was not being applied properly. Once resolved, particle tracking

with the SYMPLECTIC tracker became almost identical to that with the TRANSPORT

tracker as expected.
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4.6.2 Tracking Output

The particle tracker has the capability to take an output class as detailed in Ap-

pendix D. This may be used to output individual particle tracks, which can be used to

observe the paths taken by particles that have scattered differently in the collimator

jaws. This tool was also used to identify bugs in the SYMPLECTIC tracker.

This type of output is particularly useful for observing the effect of different scat-

tering types on a proton impacting upon a collimator. Figure 4.5 shows the tracks of

a proton halo that impacts the primary horizontal collimator in IR7 in the 6.5 TeV

LHC lattice. Recording the first scattering type shows us how the dispersion suppres-

sor losses are caused by single diffractive scattering in the collimator jaws. The same

discovery in SixTrack led to the explanation of the unexpected losses in LHC operation,

the consequence of which are the dedicated TCLD dispersion suppressor collimators for

the HL-LHC upgrade.

Figure 4.5: Tracks of a proton halo distribution that impacts upon the horizontal pri-
mary collimator. Particles that undergo an initial scattering type of proton-nucleon single
diffractive (magenta), proton-nucleon elastic (blue), and proton-nuclear elastic (green) are
shown in the horizontal and vertical planes in IR7 of the 6.5 TeV LHC. Black lines indi-
cate the apertures of collimators and other elements. Where coloured lines end they are
absorbed by an aperture or undergo inelastic scattering in a collimator.
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4.6.3 Synchrotron Motion

Synchrotron motion provides another mechanism for particle loss, as particles outside

the RF bucket will likely be lost in an aperture. The off-momentum collimation inser-

tion in IR3 of the LHC is designed for this purpose. The RF bucket, and synchrotron

motion in MERLIN is demonstrated in Fig. 4.6, which is from an LHC simulation with

collimation disabled.

Figure 4.6: Poincaré section in ct, δ phase space of a large initial distribution (black) over
100 turns in the LHC (red), showing RF bucket and synchrotron motion.

We may compare Fig. 4.6 with Fig. 4.7, which is from a simulation with collimation

enabled. We observe that particles with large momentum deviation are lost in the

apertures of the machine, and note that the initial distribution in both figures is not

physical, and used only for a demonstration of these effects.
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4.6 Tracker

Figure 4.7: Poincaré section in ct, δ phase space of a large initial distribution (black) over
100 turns in the LHC (red), showing the effect of collimation on particles with large energy
deviation.
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4.7 Physics Processes

Physics processes may represent any mechanism, the process may be run at selected

accelerator elements, or all. Collimation and the action of the hollow electron lens as

a collimation enhancer are performed in MERLIN using dedicated processes.

4.8 Collimation Process

The collimation process has been developed by the MERLIN collaboration for the

past few years with the goal of LHC loss map production. In the loss map code

the collimator scattering was performed in the ProtonBunch via CollimateParticle

Process. In the HEL code an independent collimation process was developed using

a child class of CollimateParticleProcess named CollimateProtonProcess. This

uses an optimised modular system of classes that are detailed in this section, and used

as default in MERLIN 5.01. The code flow for proton collimation in MERLIN 5.01 is

shown in Fig. 4.8.

Figure 4.8: The code flow of proton collimation in MERLIN 5.01. CollimateParticle

Process is attached to the tracker, if the particles being tracked are protons, the Collimate
ProtonProcess DoScatter function is called when a particle is outside the machine aper-
ture. This in turn calls the ScatteringModel functions that perform calculation of the path
length, the energy loss and particle kick due to MCS in the collimator material over this
length, and any point-like scattering. In order to do this the ScatteringModel functions
have access to the collimator material, the cross sections for scattering in that material,
the Scattering)Process functions that perform point-like scattering, and various output
classes.
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A complete example of creating the proton collimation process is shown in Ap-

pendix D.

4.8.1 CollimateParticleProcess

CollimateParticleProcess is called at every element in the tracker (if the process has

been attached to the tracker). This parent collimation class was originally developed for

ILC collimation which is relatively simple as the ILC is an electron machine. By default

this process is for electrons, a remnant from the original application. The process uses

the standard functions for a physics process.

SetCurrentComponent() records the first element name and s position, which are

used as an increment marker for the turn (which is used in the CollimateProton

Process for a number of outputs), the internal turn integer is incremented each time

the process is called at the start element. SetCurrentComponent() also checks that

the bunch contains particles, and that the current element has an aperture, if so then

the process will run. If the element has no aperture at all, no collimation is performed.

Collimation with scattering only occurs for Collimator elements with a Collimator

Aperture, for all other elements the aperture is the surface of a black absorber which

will cause the loss of any particle that crosses the aperture boundary.

CollimateParticleProcess contains a step size which may be set with the Set

OutputBinSize() function, DoProcess() iterates through these steps and calls the

DoCollimation() function at each iteration.

DoCollimation() contains the main collimation routine, it begins by running a

pre-check, iterating through the bunch and checking if any particles are outside the

aperture using the aperture PointInside() function. This is done because the process

copies the entire bunch into one that is operated upon, only surviving particles are

copied back into the original bunch at the end of the process. This is currently the best

way of removing lost particles, though memory intrusive it is preferable to removing

particles from a list. Performing the pre-check minimises the time taken for collimation

as for most elements no particles are lost. If no particles are outside the aperture

process is exited, otherwise a marker is set and the pre-check ends, full collimation is

then performed for the marked particle and all subsequent particles.

The process then iterates through the bunch and uses the Aperture::PointInside()

function to check if each particle is outside the aperture. If the element is not a collima-

tor and doesn’t have a collimator aperture, the particle is lost, and its co-ordinates are

stored for output. The ScatterAtCollimator() function may be used to turn off scat-
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tering in collimators in order to use them as black absorbers similar to non-collimator

elements.

In DoCollimation() the DoScatter() function is called for a particle outside the

aperture of a collimator. This function is overloaded, in the HEL code if using elec-

trons, the simple electron scattering routine is called. In the loss map code this func-

tion calls the corresponding function in ProtonBunch. In MERLIN 5.01 the electron

scattering routine is no longer used. In the HEL code, and MERLIN 5.01, the user de-

clares a CollimateProtonProcess rather than CollimateParticleProcess, and the

CollimateProtonProcess::DoScatter() function performs proton collimation. In a

similar manner the user may define collimation processes for any given particle to be

tracked in MERLIN, as a child class of CollimateParticleProcess.

If the particle is lost due to scattering in the collimator jaw, DoScatter() returns

true, and the particle is stored for output. If the particle survives, it is added to a

new particle bunch, which becomes the particle bunch at the end of the process, this is

less expensive computationally than removing individual particles from a bunch. For

non-collimator elements the lost particles are tracked through the element to find the

lost position to the nearest step size bin.

4.8.2 CollimateProtonProcess

When using protons CollimateProtonProcess must be attached to the Particle

Tracker. This class uses the functions from CollimateParticleProcess except where

they are redefined, as it is a child class. DoScatter() is the only one to be redefined in

CollimateProtonProcess. The ScatteringModel is set here with the SetScattering

Model() function.

DoScatter() controls proton scattering in the collimator jaw. From here, the

ScatteringModel functions that perform multiple Coulomb scattering (MCS), ioni-

sation energy loss, and point like scattering are called. DoScatter() starts by checking

which outputs have been selected in the ScatteringModel, whether they have been

selected for the current collimator, and preparing accordingly. Next the function loops

over the bin size, or the remaining collimator length as appropriate, iterating over steps

which are calculated using a random variant of the mean free path in the material using

the ScatteringModel::PathLength() function.

The proton is tracked along the step size, MCS and ionisation energy loss is per-

formed for the path length, and a check is performed to ascertain whether or not the

MCS has caused the proton to return to the aperture, or if the proton travels to the
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end of the bin or collimator without interacting with a nucleus in the collimator jaw.

Point like nuclear scattering is then performed using the ScatteringModel::Particle

Scatter() function. If the proton undergoes inelastic scattering, or its energy is below

a certain threshold (for example 1 GeV), the particle is lost.

Before detailing the ScatteringModel class and its functions, we must explain the

CrossSections class which calculates and stores cross sections for each material, and

the ScatteringProcess class, which provides the mechanism for nuclear and nucleon

scattering.

4.8.3 CrossSections

For optimisation the CrossSections class calculates and stores all cross sections for

a given material. The components of the class are shown in Table 4.7. These cross

sections are called by the ScatteringProcess classes when performing point like scat-

tering, and in ScatteringModel::PathLength() to retrieve the total mean free path

λtot. By using this class to compute and save the cross sections, MERLIN minimises

computation time at the cost of an inexpensive amount of memory.

CrossSections stores the advanced ppElasticScatter and ppDiffractiveScatter

classes (for more details on these classes see [49]), allowing access to them during the

collimation processes.

MERLIN provides 5 predefined combinations of ScatteringProcesses, one of which

may be selected using the ScatteringModel::SetScatterType() function, which takes

an integer that corresponds to the columns in Table 4.8, detailed in the following sec-

tion. For each combination the cross sections and mean free path must be calculated

in the appropriate manner. As well as an advanced treatment of single diffractive and

nucleon elastic scattering, MERLIN contains SixTrack+K2 like scattering (henceforth

referred to as ST-like) for comparison and validation purposes [49]. This is not up-

to-date with the scattering used in the most recent collimation version of SixTrack,

however it provides useful functionality, and demonstrates the ease with which a user

may port their own methods into MERLIN.

The probability that a proton of momentum P will interact with a nucleus, or

nucleon of that nucleus, is given by the nuclear (σpN ) and nucleon (σpn) cross sections

respectively. Cross sections are measured in units of area, the standard unit used is the

barn b, where 1 b = 10−28m2.

In order to calculate nucleon cross sections the number of free nucleons nn is used

to approximate the number of nucleons in a nucleus that a proton may scatter off of,
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Component Symbol Parameter

E0 E0 Reference Energy
sig pN tot ref σpN tot ref Reference Total Nuclear Cross Section
sig pN inel ref σpN I ref Reference Inelastic Nuclear Cross Section
sig pN R ref σpN R ref Reference Rutherford Nuclear Cross Section
sig pN tot σpN tot Total Nuclear Cross Section
sig pN inel σpN I Inelastic Nuclear Cross Section
sig pN el σpN E Elastic Nuclear Cross Section

sig R σR Rutherford Nuclear Cross Section
sig pp tot σpp tot Total Proton-Proton Cross Section
sig pp el σpp el Elastic Proton-Proton Cross Section
sig pp sd σpp SD Single Diffractive Proton-Proton Cross Section
sig pn el σpn el Elastic Proton-Nucleon Cross Section
sig pn sd σpn SD Single Diffractive Proton-Nucleon Cross Section

lambda tot λtot Total Mean Free Path
elastic diff ∆σpp el Difference in σ with and without Coulomb Peak [49]

density ρ Material Density
atomic mass A Atomic Mass

atomic number Z Atomic Number
scat type - Scattering Type
symbol - Material Symbol

Table 4.7: Components of the CrossSections class.
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it is defined as:

nn = 1.618 A
1
3 , (4.11)

where A is the atomic mass of said nucleus.

When using MERLIN scattering, the total proton-proton cross section σpp tot, i.e.

the probability of a proton interacting with a proton in the collimator jaw, is given

by a parameterisation provided by the particle data group (PDG) [87]. In the case

of the ST-like (SixTrack like) scattering, equation 4.12, which is derived from a fit of

experimental data from the PDG, is used [88]:

σpp tot ST = σpp tot ref ·
(
P0

Pref

)0.05788

, (4.12)

where σpp tot ref = 40 mb is the reference cross section, at a reference energy Pref =

450 GeV , and P0 is the beam momentum: 7 TeV in the case of the nominal LHC. In all

cases proton-neutron scattering is considered equal to proton-proton scattering, which

has been measured more extensively, giving more experimental data.

Two main types of proton-nucleon scattering are considered. The first is an elastic

scatter, in which the beam proton transfers some of its momentum to the nucleon, is

scattered at some angle θ, and both nucleons survive. The second is a single diffrac-

tive scatter, in which one of the protons is excited to a higher mass state, which will

dissociate and be lost. For the purpose of collimation we only consider the case of

the target nucleon dissociating, as it may result in a large momentum transfer from

the incident proton, and a large angle scatter. This is particularly interesting as it is

thought to be the main cause of unexpected proton losses in dispersion suppressor re-

gions after collimation and interaction insertions, as part of the betatron halo becomes

an off-momentum halo [53].

MERLIN generates the differential cross sections for elastic and single diffractive

nucleon scattering, and integrates them to provide more accurate cross sections than

those used in SixTrack+K2, this is done using a fit to selected relevant data (see [49]).

In the ST-like case the elastic proton-proton cross section σpp el is derived from a fit of

experimental data provided by the PDG [88]:

σpp el ST = σpp el ref ·
(
P0

Pref

)0.0479

, (4.13)

where σpp el ref = 7 mb is the reference cross section at the reference energy Pref =

450 GeV . For single diffractive scattering in the ST-like case, the method proposed by

147



4. MERLIN 5.01

Goulianos [89] is simplified to give the cross section:

σpp sd ST = A ln(0.15 E2
com), (4.14)

where E2
com is the squared centre of mass energy, and A = 0.00068 is a constant.

In both scattering methods, the proton-nucleon cross sections are given by multi-

plying the number of free nucleons nn with the respective proton-proton cross section:

σpn sd = nnσpp sd, (4.15)

σpn el = nnσpp el. (4.16)

The total nuclear cross section for both MERLIN and ST-like scattering is given by

summing the total proton-nucleon cross section with the reference total nuclear cross

section:

σpN tot = σpN tot ref · nn(σpp tot − σpp tot ref ), (4.17)

where σpN tot ref is defined for the material by the user or computed in the materials

class, the reference proton-proton cross section σpp tot ref = 0.04 b, and σpn tot is the

computed proton-nucleon cross section that corresponds to the MERLIN or ST-like

method.

Nuclear elastic scattering is similar to the nucleon case, however the interaction

is with the nucleus rather than a nucleon. The elastic nuclear cross section is the

remainder once all other nuclear cross sections are computed and subtracted from the

total cross section:

σpN el = σpN tot − σpN I − σpn el − σpn sd, (4.18)

this is the same for both MERLIN and ST-like scattering.

Electromagnetic scattering from the nucleus is treated as Rutherford scattering.

Both MERLIN and ST-like scattering use the user input (or calculated) Rutherford

cross sections. The final cross section required is the inelastic, which defines the proba-

bility that the scattered proton does not survive the point-like scattering process. In the

collimation process we treat an inelastically scattered proton as lost, though in reality

a number of secondary particles may shower due to this interaction, this is outside the

scope of MERLIN. MERLIN uses the reference nuclear inelastic cross section, however
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the ST-like method scales this as shown in equation 4.19:

σpN I ST = σpN I ref

(
σpN tot

σpN tot ref

)
. (4.19)

Each individual cross section is used by, and associated with its own Scattering

Process, the CrossSections::ConfigureCrossSections() function is called in the

constructor, and performs calculation of the cross sections using the appropriate meth-

ods. The GetTotalMeanFreePath() function returns the mean free path computed

using the corresponding cross sections (i.e. MERLIN or ST-like). MERLIN calculates

the mean free path using equation 4.20:

λtot =
A

(σpN tot +A ·∆elσpp el) · ρNa
, (4.20)

where ∆el is the difference in the proton-proton elastic cross section when including

or excluding the low t Coulomb peak from the fit to data [49]. For ST-like scattering,

equation 4.21 is used:

λtot =
A

σpN tot · ρNa
, (4.21)

Thus the probabilities for each ScatteringProcess are calculated once per mate-

rial, and stored inside a CrossSections object, that may be accessed where required

in the collimation process.

4.8.4 ScatteringProcess

ScatteringProcess is a virtual class for individual point-like scattering processes.

It contains a pointer to the Material and CrossSections classes, the process cross

section, the beam energy, and two functions: Configure() and Scatter().

We use the Lorentz invariant Mandelstam variables to perform particle scattering,

the momentum transfer t, and the centre of mass energy squared E2
com, where:

t = −2P 2(1− cosθ) ≈ −(Pθ)2, (4.22)

where P is the beam momentum, and θ is the polar angle:

θ = tan−1
√
x′2 + y′2. (4.23)

We simplify the momentum transfer by assuming an elastic interaction, and using

the small angle approximation. The second Mandelstam variable is defined as:
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s = E2
com = 2mpP + 2m2

p ≈ 2mpP, (4.24)

where the first expression is used for MERLIN scattering, and the second (a simpli-

fication) is used for ST-like scattering. The centre of mass energy squared is the total

available energy for the interaction, and is often referred to as s.

The Configure() function takes the Material and CrossSections pointers as

arguments, gets the cross section and beam energy from the CrossSections object,

and calculates the momentum transfer t. The Scatter() function takes a PSvector

object (i.e. a particle) and performs scattering using the overloaded ScatterStuff()

functions. These functions take a number of variables, the simplest form uses the

momentum transfer t to calculate the polar angle θ, and applies this angular scatter to

the particle, the second form adds the nuclear recoil, and the third is used when the

energy change is calculated in the Scatter() function.

MERLIN contains a number of ScatteringProcesses, including the ST-like vari-

ants, those currently available are shown in Fig. 4.9.

Figure 4.9: Scattering processes currently available in MERLIN 5.01.
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The user may select a predefined combination of these ScatteringProcesses us-

ing the ScatteringModel::SetScatterType() function, which takes an integer corre-

sponding to the combinations displayed in Table 4.8.

Process 0 1 2 3 4

Rutherford ST ST ST ST M
pn Elastic ST M ST ST M
pN Elastic ST M ST ST M
Single Diffractive ST ST M ST M
Ionisation ST ST ST M M

Table 4.8: Preset combinations of ScatteringProcesses and ionisation in MERLIN 5.01.
ST refers to the ST-like process, M to the MERLIN process, and all combinations include
an inelastic process.

Each particle, as a PSVector, has a type member, which corresponds to the last type

of point-like scattering that the particle has undergone. At construction of the initial

bunch all particles are set to -1 (no scatter), this changes every time the particle passes

through the ScatteringProcess::Scatter() function, or the functions for ionisation

or MCS. Table 4.9 shows the type integers and the corresponding scattering processes.

We note that a particle is only recorded as undergoing MCS or ionisation if point-

like scattering has not occurred, this exception is allowed because particles always

experience MCS and ionisation along any path length travelled in a material.

Scatter Type Label

None -1
Ionisation 0
Inelastic 1

pN Elastic 2
pn Elastic 3

pn Single Diffractive 4
Multiple Coulomb Scattering 5

Rutherford 6

Table 4.9: Scattering types and integer labels given to the particle type.

The individual ScatteringProcesses currently available in MERLIN are detailed

in the following subsections.
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4.8.4.1 Rutherford

SixTrack and MERLIN treat Rutherford scattering in the same way, however MERLIN

includes a nuclear recoil effect. The momentum transfer is given by equation 4.25:

tRuth =
tmin

1−Ru
, (4.25)

where Ru is a uniformly random generated number between 0 and 1, and tmin =

0.9982 · 10−3 GeV 2 [3].

4.8.4.2 pn Elastic

For proton-nucleon elastic scattering, MERLIN generates the momentum transfer t in

the advanced ElasticScatter class. For ST-like scattering, the nuclear slope bpp is

used to take into account the energy dependence of the differential cross section:

bpp = 8.5 + 1.086 ln(E2
com), (4.26)

This slope is part of the approximation of the differential cross section for this

process, of the form dσ
dt = σ b(s) e−b(s) |t|, where b represents the slope of the expo-

nential, σ is the total cross section, and s is the centre of mass energy squared. This

approximation and its merits and assumptions are discussed in [49], however it is con-

sidered appropriate for the energy range of the LHC (450 GeV to 7 TeV). From this

the momentum transfer t is given:

tpn el = − ln(Ru)

bpp
. (4.27)

Once again MERLIN includes a recoil effect whereas the ST-like method does not.

4.8.4.3 pN Elastic

Proton-nuclear elastic scattering is similar for MERLIN and ST-like scattering, with

the usual nuclear recoil included in MERLIN scattering. In both cases the nuclear slope

bN is used to approximate the energy dependence of the cross section:

bN = bN ref ·
σpN tot

σpN tot ref
. (4.28)

The momentum transfer for this process is then computed using equation 4.29:
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tpN el = − ln(Ru)

bN
, (4.29)

where Ru is a uniform random number between 0 and 1.

4.8.4.4 Single Diffractive

For MERLIN scattering, the momentum transfer t and recoil mass mrec are generated

in the advanced DiffractiveScatter class. In the ST-like case, the recoil mass (that

of the excited mass state) is given by:

mrec = e

(
Ru ln

√
E2
com

)
. (4.30)

It modifies the momentum transfer using a simple fit of the data, which gives a

different slope parameter b depending on the mass range [88]. This is performed using

the piecewise equation 4.31:

b =



2bpp, M2 < 2 GeV 2

1
36(106− 17M2)bpp, 2 ≤M2 ≤ 5 GeV 2

7
12bpp, M2 > 5 GeV 2

(4.31)

The momentum transfer is then computed using:

tpn sd = − ln(Ru)

b
, (4.32)

Both methods include recoil from the excited mass state, and use an energy loss δsd

of:

δsd =
m2
recE

E2
com

, (4.33)

where E is the incident proton energy.

4.8.4.5 Inelastic

For most materials the total cross section is dominated by inelastic interactions. As

mentioned previously these can result in a shower of secondary particles, but for the

purposes of collimation in the LHC (i.e. loss map production), in order to minimise run
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time, and to prevent the recreation of a full shower code, MERLIN treats an inelastic

interaction as a proton loss.

4.8.5 ScatteringModel

The ScatteringModel class contains the functions required for performing collimation.

A predefined or user created combination of ScatteringProcesses may be used, and

are handled by the ScatteringModel in order to compute cross sections, path lengths,

and perform bulk (ionisation and MCS) and point-like scattering. The Scattering

Process must be attached to the CollimateProtonProcess as shown in Fig. D.25.

4.8.5.1 PathLength

Protons travel a finite distance through a material before colliding with a material

nucleus. Along this distance the proton loses energy as it collides with electrons, ionising

atoms in its path, scattering in angle and position via MCS. The distance travelled is

referred to as the path length in MERLIN, and it is calculated in the PathLength()

function.

In order to calculate the path length, the mean free path must first be computed.

ScatteringModel initialises the treatment of materials by creating a single Cross

Sections object for each material. These are stored in a map, in this way all cross

sections and the mean free path calculated in the CrossSections object need only be

computed once per material. For a CompositeMaterial, there are two options avail-

able to the user. The first is the default, where a CrossSections object is created for

each constituent element in the composite, and each is stored in (if not already added

to) the CrossSections map. As well as this a CrossSections class is created for the

composite as a homogeneous mixture of its constituents, including cross sections for all

processes, and the mean free path for the composite, this is the one used for the path

length calculation. The second option is the ST-like method of only creating a single

CrossSections object for the composite, treating it as a homogeneous mixture for all

cross sections as well as the mean free path. This option may be enabled by the user

with the ScatteringModel::SetComposites(bool) function with a false argument.

The path length is not constant, the mean free path is retrieved from the appropriate

CrossSections class, and equation 4.34 is used to return the path length lpath for the

proton in the current material.

lpath = −λtotln(Ru), (4.34)
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where Ru is a uniformly distributed random number from 0 to 1.

Each ScatteringProcess contributes to the total cross section. The fraction of

the total cross section for each process is stored in an array using the Configure

Processes() function. For each material (or constituent for a composite), an array

of fractions is created, and stored in a vector that may be accessed in the Particle

Scatter() function when point like scattering occurs.

4.8.5.2 EnergyLoss

As a proton travels through a material it collides with electrons, these collisions may

result in the removal of electrons, and a loss in proton energy. The interaction is

defined by the Bethe-Bloch equation [87]. MERLIN offers an overloaded EnergyLoss()

function to perform the energy loss that takes place due to ionisation in a material.

The ST-like method uses the simple Bethe-Bloch, or the stopping power, shown in

equation 4.35, which describes the energy lost by a particle traversing a material with

atomic number and mass Z and A [88]:

− dE

dx
= Kz2

Z

A

1

β2

[
1

2
ln

2mec
2β2γ2Tmax
I2mean

− β2 − δ

2

]
, (4.35)

where β and γ are the relativistic kinematic variables describing the proton velocity,

Imean is the mean excitation energy of the target atom, K is a constant, me is the

electron mass, c is the speed of light in a vacuum, δ is a density effect. Tmax is the

maximum transferable energy in a single collision, as defined in equation 4.36 [87]:

Tmax =
2mec

2β2γ2

1 + 2γmeM +
(
me
M

)2 , (4.36)

where M is the mass of the incident particle. For the ST-like EnergyLoss() func-

tion, the value of dE
dx is stored in the material class, and is used to perform the energy

loss for the path length that the proton travels.

The overloaded function is a more complete treatment of the energy loss due to

ionisation using the full Bethe-Bloch, shown in equation 4.37 [49]:

dE

dx
= 2πr2emec

2ne
z2

β2

[
ln

(
2mc2β2γ2Tmax

I2mean

)
− 2β2 − δ +H

]
, (4.37)

where re is the classical electron radius, ne is the electron number density of the

material, z is the incident particle charge, and H contains high order corrections. The

higher order corrections are considered in [49]. In summary MERLIN only adds the
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effects that are relevant to LHC energies; the effect due to the dielectric polarisability

of solid materials, the Mott correction which is an enhancement from close collisions

due to spin, and the finite size correction taking into account the size and structure of

the proton. As well as these corrections, the energy spread of the outgoing proton is

sampled using the Landau distribution, which is a more accurate representation of the

physical effect [87].

4.8.5.3 Straggle

A proton travelling through a material will perform many small-angle elastic scatters

from the electrons and nuclei, known as multiple Coulomb scattering (MCS), illustrated

for a particle traversing a distance x through a material in Fig. 4.10.

Figure 4.10: Multiple Coulomb scattering of a particle travelling through a material of
thickness x. The particle undergoes a number of interactions, and leaves the material
with an offset (y), and an angular kick (θ). In reality there is an offset and kick in two
dimensions, only one is shown. From [90].

MERLIN and SixTrack treat MCS in the same way [49], as outlined by the PDG [87].

A Gaussian distribution is sampled to perform MCS, with an r.m.s. width of θ0 as

shown in equation 4.38:

θ0 =
13.6 MeV

βcp

√
∆x

χ0

[
1 + 0.088 ln

(
∆x

χ0

)]
, (4.38)

where p is the particle momentum, χ0 is the radiation length of the material, and
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∆x is the path length taken in the material. The particle angle θMCS and offset yMCS

in each transverse plane are generated using equations 4.39 and 4.40 respectively:

θMCS = Ruθ0, (4.39)

yMCS = Ru∆x
θ0√
12

+ ∆x
θMCS

2
, (4.40)

where Ru is a uniform random number between 0 and 1 that is re-generated at

every call. In this way MERLIN simulates the MCS shown in Fig. 4.10 in both planes

independently, for each path length taken in a material.

4.8.5.4 ParticleScatter

ParticleScatter() is called when a particle has travelled its path length and remains

in the material, which means it will interact with a material nucleus or nucleon (i.e. a

point-like scatter). When using a composite, by default the CompositeMaterial::Get

RandomSymbol() is used to return the symbol of a weighted random constituent element

in the composite, which is then used to select the corresponding CrossSections object

from the map of stored CrossSections. However when using the SixTrack like method

the CrossSections object for the imaginary composite atom is used, and thus the

probability of each ScatteringProcess is that of the homogeneous mixture rather

than its constituents.

Next the corresponding array of cross section fractions is called and used to ran-

domly select and call the ScatteringProcess::Scatter() function which performs

particle scattering. The function then returns a boolean to indicate whether or not the

particle was lost in the scatter (via inelastic scattering or sufficient energy loss).

4.8.6 Note on Uncertainties

Measured total and elastic cross sections are given for proton-proton collisions in [87],

which can be used to calculate the nuclear cross sections for given materials using the

methods described in this chapter. From the total cross section the mean free path

of a proton of given energy is calculated in that material. The mean free path gives

the distance between nuclear interactions. These interactions are given a weighted

probability, where the weight corresponds to their individual cross section. The cross

sections therefore affect loss map simulations in two ways.

Cross sections are calculated based on models which extrapolate experimental data,
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for example the MERLIN single diffractive cross section is calculated as described

in [49]. Uncertainty is given from experimental data, and the fit to said data that

provides the model used to extrapolate and calculate the cross section at a given en-

ergy. Depending on the amount of available data for each individual scattering type,

uncertainties can be large when extrapolating to LHC energies. MERLIN takes the

measured total, inelastic, and Rutherford cross sections for a material as input when

available. The uncertainty on these values vary, again depending on measured data

or the fit or model used to calculate them [86]. The extrapolation of cross sections to

LHC energies is required, in some cases there is little data to cover the energy range of

interest. See [49] for a more detailed example.

The uncertainty in the single diffractive cross section is likely to be the largest

because of the lack of data. This data is used to create a model as described in [49]

from which the cross section at a given energy may be obtained. The cross section at

LHC energies has an uncertainty of ≈ 10% - 12% [86]. In order to obtain the uncertainty

in loss map simulations (i.e. in collimation inefficiency) numerous approaches may be

taken. Propagating the cross sections uncertainties into the Monte Carlo loss map

simulations is non-trivial. A numerical approach may be used, such as that in [91],

where the single diffractive cross section was manually manipulated by ± 20%, and the

effect on losses in specific magnets was observed. It was found that the inefficiency

in dispersion suppressor dipoles immediately after the betatron collimation insertion

(IR7) may change by up to 60%. In some of these magnets the variation in inefficiency

was negligible. These DS magnets provide the largest inefficiency in standard loss

map simulations. For machine operation an accurate estimate of this inefficiency is

required These particular losses are dominated by single diffractive interactions in the

collimators, therefore they are heavily dependent on this cross section. A similar study

is planned for MERLIN.

4.9 Collimation Outputs

A number of output functions have been constructed to obtain useful data from col-

limation simulations. Details for these outputs may be found in Appendix D, some

examples are given here.

The impact parameter of a proton on collimator jaws can be useful, either to verify

the expected parameter when starting a simulation, or to see the influence of a process

such as the hollow electron lens. The ScatteringModel::JawImpact() function out-

puts the location of collimator jaw impacts on the front face of a selected collimator.
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An example for a single turn in a collimation simulation is shown in Fig. 4.11, showing

the correspondence between the initial distribution (which starts immediately in front

of the primary collimator), with the recorded impact co-ordinates.

Figure 4.11: Initial distribution (blue) and impacts recorded on the primary horizontal
collimator (orange) using JawImpact, for the positive (above) and negative (below) colli-
mator jaws. The blue line indicates the collimator aperture, where the jaw begins. This
simulation is for the 6.5 TeV LHC at flat top, using beam 2.

For debugging and visualisation it is useful to view the tracks that particles take

while scattering in a collimator jaw. The ScatteringModel::ScatterPlot() function

allows us to plot these tracks, as shown in Fig. 4.12.

We observe from Fig. 4.12 the effect of the collimation bin size. Particles undergo

scattering, MCS, and ionisation energy loss for as long as they are in the collimator jaw.

Even if a particle has exited a collimator jaw, the aperture check cannot take place until

the particle has travelled a path length lpath, or at the end of the collimation bin. This
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Figure 4.12: ScatterPlot output showing the proton tracks taken in a 1 m long copper
collimator with an impact paramter of 1 µm in the y plane, using a 10 cm collimation bin
size. The grey area indicates the collimator jaw, and the particles are not tracked by this
output if they exit the collimator jaw.

is evident as particle tracks abruptly stop at 10 cm intervals in the figure. By reducing

the bin size, a small path length is forced, and computation time will increase, however

by using a larger bin size protons may undergo significantly more bulk scattering (MCS

and ionisation energy loss) when they have in fact already left the collimator jaw. The

10 cm bin size that is used by default allows regular aperture checks without enforcing

too small a path length, or compromising the condition of protons that return to the

bunch after undergoing scattering in a collimator jaw.

The location of an inelastic interaction along a collimator jaw may be output using

the ScatteringModel::JawInelastic() function. MERLIN assumes that a proton

is lost if an inelastic interaction occurs. This provides a necessary comparison tool

to observe the effect of different collimator materials, an example histogram of the

distribution of losses in a given collimator is shown in Fig. 4.13.
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Figure 4.13: Inelastic proton interactions (proton losses) in a secondary collimator in the
nominal LHC using the JawInelastic output. Comparing losses in pure carbon (blue)
with CFC AC150K (orange).
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4.10 Hollow Electron Lens Process

The hollow electron lens (HEL) process provides the means to simulate the effect of

a HEL on a particle beam. This process makes a number of assumptions (detailed in

Chapter 3), and treats the HEL only as a collimation enhancer, simulating the small

angle kick that a proton interacting with the HEL EM field receives. The SetCurrent

Component() function checks that the current AcceleratorComponent is a Hollow

ElectronLens, if not the process exits.

In order to insert the HEL into the lattice as a thin (zero length) element, the

process requires the user to specify the active length. The HEL is treated as a drift

tube by MERLIN as mentioned previously, however even if the HEL has a length in

the lattice, its active length must be specified by the user using one of the provided

HollowELensProcess constructors, or the SetEffectiveLength() function.

The basic constructor allows the user to specify the HEL current, electron Lorentz

β, and proton beam rigidity. Overloaded constructors add the effective length, and the

radii of the HEL. The radii may be set in two ways, in a similar fashion to the setting

of collimator half gaps.

The HEL process records its own turn value for the simulation, this is necessary

for the turnskip and AC modes of current modulating operation. The user should note

that this turn value is incremented every time the process is called, thus assuming a

single HEL in the lattice.

A complete example of the method of creating the HEL process may be found in

Appendix D.

4.10.1 Radii Setting

The first method using the function SetRadii() sets the radii in units of m, and does

not take into account the beam envelope or the closed orbit.

The second method uses the SetRadiiSigma() function, which takes the radii in

units of beam σ, the transverse beam emittances, and the LatticeFunctionTable

for the lattice. The function iterates through the LatticeFunctionTable, finds the

position of the HEL in the lattice, and uses the β function in the horizontal x plane

to set the HEL inner and outer radii, Rmin and Rmax respectively. If the beam is

not round at this position (i.e. βx 6= βy), as the HEL beam is round there will be a

mismatch of the HEL overlap with the beam halo and core. The overloaded SetRadii

Sigma() simply adds the phase advance to the list of details output to screen when

computing the matched radii, using the new PhaseAdvance class.
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As in SixTrack, two functions are provided to include the radial dependence of the

EM field generated by the HEL beam. The ‘perfect’ profile is the piecewise function

given in equation 3.6, and may be set using the SetPerfectProfile() function. The

second profile is a parameterisation of the measured prototype cathode [92], and may

be selected using the SetRadialProfile() function. This parameterisation is given for

the Tevatron-like HEL parameters, and so when using the LHC parameters an empirical

adjustment must be made to produce the expected profile, this is switched on using

the SetLHCRadialProfile() function.

Two functions exist to output the HEL profile and footprint. OutputProfile()

outputs the value of the HEL kick between a minimum and maximum value (in units

of σ) of the positive x co-ordinate, using 1000 points of reference equally spaced between

these. For example a user may specify a range of 0 - 10 σ, and the HEL profile will

be output every 0.01 σ in x. The output file columns are described in Table 4.10.

OutputFootptint() creates a sample of points in transverse space between ±3
2Rmax,

and performs a check to find whether or not these points hit the HEL beam or not. If so

they are included in the output file which, when plotted, will produce the footprint of

the HEL. The footprint output is useful when observing the effect of novel geometrical

operation modes of the HEL. Table 4.11 indicates the columns for OutputFootprint().

r [σ] Kickradial Kickperfect |Kickradial| |Kickperfect|

Table 4.10: Column headings for the HollowELensProcess::OutputProfile() file.

x [m] y [m] r [m]

Table 4.11: Column headings for the HollowELensProcess::OutputFootprint() file.

4.10.2 Current Modulation Modes

Four current modulating operation modes are available in MERLIN, these are detailed

in Chapter 3, and may be selected using the SetOpMode() function which takes an

enumerator (DC, AC, Diffusive, or Turnskip). The DC and Diffusive modes do

not require any further information, however the turnskip and AC modes require fur-

ther functions to specify certain variables. The number of turns defining the turnskip

operation is set using the SetTurnskip() function, which takes an integer.

The AC mode requires a number of variables, these are set using the SetAC()
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function, which takes the machine tune ν, the tune range ∆ν (the function sweeps

between the tune ±∆ν), the tune variation per step, the turns corresponding to a single

step, and an integer multiplier m. The AC mode works by attempting to modulate

the HEL current in resonance with the machine tune ν, for the full derivation of this

method see [68]. An operating tune (or frequency) νop is defined using equation 4.41:

νop = νmin + w · δnu, (4.41)

where νmin is the minimum tune of the specified range, w is the step, and δnu is

the tune step which is taken at a user specified number of turns. νop is used to define

a harmonic frequency φ using equation 4.42:

φ = m · T · 2πνop, (4.42)

where T is the turn, and m is an integer multiplier. The HEL kick θ is then

modulated using equation 4.43:

θ = θ · 1

2
(1 + cos(φ)). (4.43)

These operation modes are implemented in the DoProcess() function, where a

switch differentiates between the four current modulating operation modes.

4.10.3 Geometrical Operation Modes

MERLIN contains four novel geometrical operation modes, these and the current mod-

ulating modes are not mutually exclusive. Whereas a current modulating operation

mode must be specified (or set to DC by default), a geometrical operation mode does

not need to be used.

These modes are described in Chapter 3. One may be selected using the ap-

propriate function from: SetEllipticalMatching(), SetHulaElliptical(), SetPogo

Elliptical(), SetCloseHulaElliptical(). All modes attempt to improve the op-

eration of the round HEL beam on a non-round proton beam by translating the HEL

and adjusting the radii appropriately. All modes except the elliptical matching are

dynamic, and assume that there is only a single HEL in the lattice when performing

geometrical adjustments.

In the DoProcess() function conditional statements are used to implement the

hula, close hula, and pogo geometries using adjustment functions. These functions use

the elliptical adjustment as a basis, and include the stepping of the HEL footprint in

164



4.10 Hollow Electron Lens Process

real space for dynamic modes on a turn by turn basis. As well as this adjustment, the

flags engaged when a novel geometrical mode is initialised, are used as conditionals to

decide whether or not the offsets are included in the particle angle calculation, in order

to take into account the correct kick direction.

4.10.4 Kick Calculation

The maximum HEL kick is given by equation 3.5. Appendix B explains that the relative

directions of the HEL and machine beams will modify the net force that provides the

kick due to the addition of electric and magnetic field components. The SetElectron

Direction() function allows the user to modify this net force by changing the direction

of the HEL beam. In most cases however we only consider the case where the kick is

larger, and the electric and magnetic components sum.

The CalcThetaMax() function is called from both kick calculation methods, it takes

into account the electron direction, and uses equation 3.5 to return the maximum kick

that a proton may be given due to the HEL. Two functions exist to provide the actual

kick given to a proton: CalcKickSimple() is called when the user has selected the

perfect HEL profile, and CalcKickRadial() is called when the user has requested the

measured profile. Both of these functions take a particle, calculate its position relative

to the HEL using offset variables for each transverse plane that are set in the geometrical

functions, calls the CalcThetaMax() function, and returns the kick for the individual

particle. This kick is then given to the particle using equation 4.44.

x′ = x′ + θ · cos(ψ), y′ = y′ + θ · sin(ψ), (4.44)

where ψ is the particle angle as defined by equation 4.45:

ψ = tan−1
(
y − yshift
x− xshift

)
, (4.45)

where yshift and xshift are the variables used to take into account any translation

of the HEL centre with respect to the beam centre.

The HEL process takes place in the DoProcess() function, which uses a switch

to perform the current modulation, and other functions to perform any geometrical

translation of the HEL at each turn. DoProcess() then iterates through the particle

bunch, calculates the HEL kick for each particle - zero for a particle that does not

interact with the HEL - and applies the kick to the particle.
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4.11 Summary

In this chapter we have detailed the parts of MERLIN that have been added, updated,

merged, and optimised in MERLIN 5.01. The user may define their accelerator in

the form of an AcceleratorModel, using the MADInterface class to read a standard

MADX TFS table. Further input files may be read by the ApertureConfiguration

class to define the apertures of the accelerator, and the CollimatorDatabase to set up

collimators. The user may then calculate the lattice functions of the accelerator, and

in turn use these to define a beam, which leads to the construction of a ParticleBunch

that is matched to the accelerator at the desired position. A particle tracker may be

constructed selecting from either TRANSPORT or SYMPLECTIC integrator sets, and physics

processes may be attached to it. Finally the user may run the tracking simulation, and

create outputs using a myriad of existing output functions, or define their own. This

standard MERLIN code flow is shown in Fig. 4.14, which is an example given for a

collimation simulation.

Figure 4.14: The code flow of a typical collimation simulation using MERLIN 5.01. First
the user must create the AcceleratorModel, which in this case is done using seperate input
files for the apertures, elements, and collimators, and passing them through the respective
parsing classes. The lattice functions are then calculated using this AcceleratorModel,
from which the initial bunch distribution may be generated and matched to any selected
‘injection’ position (i.e. where the bunch is tracked from). A particle tracker is created,
and physics processes are added to it, in this case only the collimation process. The bunch
is also given to the tracker, which then performs all tracking and user selected as well as
default output.
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MERLIN Validation

5.1 Lattice Functions

We perform a comparison of the lattice functions in MERLIN (calculated with Lattice

FunctionTable and Dispersion classes) and those calculated in MADX, in order to

validate the MERLIN calculations. Similarity is essential as they are a direct repre-

sentation of the magnetic fields of the accelerator lattice. An agreement indicates that

MERLIN and MADX are both simulating same machine. In the LHC case this ma-

chine is a 26.67 km long synchrotron and so any error in its representation will have

severe consequences on the reliability of simulations. MADX has been developed for

over a decade, it is well maintained, and widely accepted as accurate and reliable, thus

agreement with MADX implies reliability in terms of the accelerator description. As

stated in Chapter 4, the calculations are performed in 4 dimensions in both codes. Beta

functions are compared in Fig. 5.1 and Fig. 5.2, dispersion in Fig. 5.3, and the closed

orbit in Fig. 5.4, all for the 6.5 TeV LHC using beam 2 at flat top, which is the period

after acceleration to top energy, and before the squeeze to reduce β∗ at the collision

IPs.

We observe excellent agreement between MERLIN and MADX in the calculation of

the lattice functions, the dispersion and the closed orbit. We note that the Dispersion

class outputs the dispersion at larger intervals than MADX, leading to a step-like plot

instead of a smooth interpolation.

167



5. MERLIN VALIDATION

Figure 5.1: βx function for beam 2 of the 6.5 TeV LHC at flat top, MERLIN (blue) is
compared to MADX (orange) in the top plot. The bottom plot shows the difference between
MERLIN and MADX, which is made using an interpolation algorithm. The difference is
negligible.

5.2 Apertures

The apertures of the machine are set using a separate input file. MERLIN’s interpo-

lated aperture in the horizontal plane is shown in Fig. 5.5, and compared to a linear

interpolation between the points specified in the input TFS file generated by MADX.
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Figure 5.2: βy function for beam 2 of the 6.5 TeV LHC at flat top, MERLIN (blue) is
compared to MADX (orange) in the top plot. The bottom plot shows the difference between
MERLIN and MADX, which is made using an interpolation algorithm. The difference is
negligible.

The overall agreement is good, with a few small differences that are deemed insignif-

icant. These may be because of zero length elements or the linear interpolation of

the plot. As mentioned in Chapter 4, MERLIN’s aperture configuration will soon be

updated to take these into account.
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Figure 5.3: Dispersion Dx function for beam 2 of the 6.5 TeV LHC at flat top, MERLIN
(blue) is compared to MADX (orange).

5.3 Tracking

As mentioned in Chapters 2 and 4, the MERLIN SYMPLECTIC integrator preserves the

actions of the system, whereas the TRANSPORT method is not symplectic, and for a large

number of turns will become inaccurate due to small numerical instabilities caused by

the integration method. This is observed in Fig. 5.6, where particles tracked with the

TRANSPORT integrators are perturbed from stability after a large number of turns.

We also observe this to some extent in δ vs ct phase space, as shown in Fig. 5.7.

We observe the slight difference in RF structure integrators at large amplitudes.

The symplectic condition is JSJT = S, where S is antisymmetric matrix and J is

the Jacobian. As the determinant of the transpose is equal to the determinant of the

original matrix, the symplectic condition for a transfer map is shown in equation 5.1:

JSJT ≡ Det(J)2 = 1⇒ Det(J) = ±1. (5.1)

The effect of each individual element on a particle may be described using the

transfer matrix of that element. We may combine these matrices in the correct sequence

to provide a matrix that represents the transformation of a particle travelling through
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Figure 5.4: Closed orbit in the transverse x plane for beam 2 of the 6.5 TeV LHC at flat
top, MERLIN (blue) is compared to MADX (orange) in the top plot. The bottom plot
shows the difference between MERLIN and MADX, which is made using an interpolation
algorithm. The difference is negligible.

a single turn of the accelerator. In a linear approximation this is the one-turn-map

(OTM).

Instead of calculating the determinant of each individual transfer matrix, we may

find the determinant of the one-turn-map |DET (OTM)|, to compare SYMPLECTIC and

TRANSPORT tracking. This is done as a function of transverse horizontal displacement
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Figure 5.5: Apertures in the transverse x plane for beam 2 of the 6.5 TeV LHC at flat
top at IP5, MERLIN (blue) is compared to MADX (orange).

Figure 5.6: Poincaré section in xx′ phase space for two arbitrarily chosen particles in the
nominal LHC for 106 turns. The left hand plot shows tracks from SYMPLECTIC tracking,
the right hand plot shows tracks from TRANSPORT tracking.
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Figure 5.7: Poincaré section in ct vs δ phase space. Purple tracks show SYMPLECTIC

tracking, green tracks show TRANSPORT tracking.

x in Fig. 5.8, and as a function of longitudinal displacement ct in Fig. 5.9. In these

plots, an initial pencil distribution (one with all initial co-ordinates set to 0) is used

with either a spread in x or a spread in ct.

We observe that deviation of |DET (OTM)| from 1 for the SYMPLECTIC tracker is

smaller than for the TRANSPORT tracker in both cases. For transverse displacement

the deviation from one increases as the particle moves further from the closed orbit,

however this is not the case for longitudinal displacement. This is due to the fact that

the magnetic fields for most elements vary as a function of transverse displacement,

whereas a particle arriving earlier or later will see the same field.
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Figure 5.8: The determinant of the one turn map minus 1, as a function of initial
transverse displacement x. Purple tracks show SYMPLECTIC tracking, green tracks show
TRANSPORT tracking.

Figure 5.9: The determinant of the one turn map minus 1, as a function of initial
longitudinal displacement ct. Purple tracks show SYMPLECTIC tracking, green tracks show
TRANSPORT tracking.

It is important to note that there is no standard acceptable range for this figure

of merit, it is merely used to compare the two integrator sets, and suggest that the
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SYMPLECTIC method offers some advantage to the TRANSPORT method.

5.4 Scattering in Collimator Materials

The constituents of the most commonly used composite materials for the LHC and HL-

LHC collimator jaws are shown in Table 5.1. Table 5.2 compares their cross sections

and properties. CFC AC150K is not shown in Table 5.2 as it is treated as a pure

material, and is identical in both SixTrack and MERLIN.

Material Z A ρ σel Atomic Content

[ g
mol ] [ g

cm3 ] [MS
m ] [%]

CFC 6 12.01 1.67 0.14 100 C
MoGr 6.653 13.532 2.5 1 2.7 Mo2C, 97.3 C
CuCD 11.898 25.238 5.4 12.6 25.7 Cu, 73.3 CD, 1 B

Glidcop 28.823 63.149 8.93 53.8 99.1 Cu, 0.9 Al2O3

Inermet180 67.657 166.68 18 8.6 86.1 W, 9.9 Ni, 4 Cu

Table 5.1: Collimator jaw materials and their corresponding atomic contents and prop-
erties [45].

5.4.1 Proton Scattering

A test case was used to compare the proton scattering in MERLIN with that of other

codes. The simulation involves impacting a pencil beam on a vertical collimator jaw 0.5

m long, at an impact parameter of 1 µm. The horizontal output distribution is plotted

and compared with the the same test case performed with FLUKA [19], Struct [94] and

K2 [81]. We note that the test case performed using these codes was done a number

of years ago in [94], and it is likely that the models used have since been updated.

This comparison remains valid as any update will only likely have small effect on the

distributions exiting the collimator. The length of the collimator ensures that the

scattering is not dominated by a single point-like process.

We may compare the effect of scattering between the loss map version and ver-

sion 5.01 of MERLIN in Fig. 5.10. We observe that there is a small difference in the

transverse position spread and peak of the exiting proton beam. Performing the same

comparison using ST-like scattering in both versions of MERLIN in Fig. 5.11, the dis-

crepancy is similar. In these figures we observe good agreement with the data from [94],

noting that the transverse distributions when using ST-like scattering in MERLIN 5.01

are similar to the K2 routine on which SixTrack’s proton scattering is based. It is
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Property MoGr CuCD Glidcop Inermet180

σpN tot ref

MERLIN 0.3545 0.572 1.246 2.546
SixTrack 0.362 0.572 1.246 2.548

σpN I ref

MERLIN 0.244 0.370 0.765 1.525
SixTrack 0.247 0.370 0.765 1.473

σpN R ref

MERLIN 11.9·10−5 0.000449 0.00151 0.006807
SixTrack 9.4·10−5 0.000279 0.001385 0.005737

σpN tot

MERLIN 0.3827 0.6068 1.293 2.611

σpN E

MERLIN 0.07459 0.1584 0.4217 0.939

σpn E

MERLIN 0.04487 0.05536 0.07516 0.1039

σpn SD

MERLIN 0.001879 0.02318 0.03148 0.0435

λtot [m]
MERLIN 0.2301 0.1259 0.0892 0.0577
SixTrack 0.2484 0.1356 0.0942 0.0603

Table 5.2: Cross sections and total mean free path of composite materials in MERLIN
and SixTrack [93], all values are given in barns unless specified. Subscripts: pN proton
nuclear, pn proton nucleon, ref reference, tot total, I inelastic, E elastic, sd single
diffractive, R Rutherford. λtot is the mean free path.

also clear that the energy loss when using MERLIN scattering has a smaller cut-off.

Figure 5.12 compares MERLIN and ST-like scattering in MERLIN 5.01. From this the

difference in the energy loss distribution is clear, as well as the slightly larger transverse

spread when using MERLIN scattering.

Thus we may conclude that MERLIN is in good agreement with existing codes for

this test case, with the ST-like scattering within MERLIN noticeably similar to the K2

scattering which forms the basis of SixTrack proton scattering. The most prominent

difference is the energy loss distribution when using MERLIN scattering, which will be

investigated in the following subsections, and is due to the advanced single diffractive

scattering routine.
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5.4 Scattering in Collimator Materials

Figure 5.10: Scattering probabilities for a 7 TeV proton impacting on a 0.5 m long
Cu jaw. Change in position (top), angle (middle) and energy (bottom) are compared for
MERLIN 5-01 (red) and the loss map version of MERLIN (blue). Both cases use MERLIN
scattering. The data is overlaid onto that from the same study performed using other codes
in [94]. We observe a difference between MERLIN scattering and the other codes in the δ
distribution tail, the reason for this is clarified in Section 5.4.3.
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Figure 5.11: Scattering probabilities for a 7 TeV proton impacting on a 0.5 m long Cu jaw.
Change in position (top), angle (middle) and energy (bottom) are compared for MERLIN
5-01 (red) and the loss map version of MERLIN (blue). Both cases use SixTrack+K2 like
scattering. The data is overlaid onto that from the same study performed using other codes
in [94]. In this case the δ distribution is in better agreement with K2, this is no surprise
as the scattering processes used are based on K2.
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Figure 5.12: Scattering probabilities for a 7 TeV proton impacting on a 0.5 m long
Cu jaw. Change in position (top), angle (middle) and energy (bottom) are compared for
MERLIN (red) and SixTrack+K2 like scattering (blue). The difference in δ is is made clear
from the bottom plot, with MERLIN scattering givint a lower cut-off.

179



5. MERLIN VALIDATION

5.4.2 Choice of Collimator Jaw Materials

The test case was repeated with different materials in order to compare the effect of

pure materials with composites. Figure 5.13 compares the use of pure carbon with CFC

AC150K, it is clear that though the distributions have similar ranges, more particles

survive the interaction with AC150K. This is also the case when comparing pure copper

with the physical counterpart - GlidCop, and pure tungsten with Inermet180, as shown

in Fig. 5.14. As the collimators are made of these three materials, treating them as pure

elements gives rise to an underestimation of the escaped halo and thus non-collimator

losses.

To directly compare the use of the ST-like homogeneous composite with the MER-

LIN composite material, as well as the MERLIN and ST-like scattering routines, CuCD

and MoGr are used in Fig. 5.15. In both figures, the difference between MERLIN and

ST-like scattering is as noted in the previous section, with MERLIN scattering provid-

ing a slightly larger spread in the transverse position and angle, and a sharper cut-off

in momentum. The effect of scattering is much more prevalent than the method of

composite material treatment, with the difference between MERLIN and ST-like scat-

tering much more obvious than that from using different composite methods. This

provides a preliminary conclusion - that the homogeneous composite method used in

SixTrack appears equivalent to MERLIN’s more complex method - as at these length

scales there is no discernible divergence. This implies that the more computationally

expensive method of composite material implementation is not necessary.
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Figure 5.13: Scattering probabilities for a 7 TeV proton impacting on a 0.5 m long
collimator jaw. Change in position (top), angle (middle) and energy (bottom) are compared
for C and AC150K, note that neither of these materials are treated as composites in
MERLIN. It is clear that the composite treatment is similar in behaviour to the pure
element, however the frequency of scatters is much higher when using the composite.
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Figure 5.14: Scattering probabilities for a 7 TeV proton impacting on a 0.5 m long
collimator jaw. Change in position (top), angle (middle) and energy (bottom) are compared
for the pure material Cu and composite material GCOP (left), and for the pure material
W and composite material IT180 (right). Again both comparisons show similar behaviour
between pure elements and composites, with composites giving a larger number of scatters
for all materials.
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Figure 5.15: Scattering probabilities for a 7 TeV proton impacting on a 0.5 m long
collimator jaw. Change in position (top), angle (middle) and energy (bottom) are compared
for CuCD (left) and MoGr (right) as a composite and ST-like homogeneous composite,
using MERLIN and ST-like scattering for each. For these materials the difference between
treating them as a composite and pure material appears negligible. The difference between
MERLIN and ST-like Scattering is clear however.
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5.4.3 Scattering Processes

In this section we perform a comparison of individual scattering processes. The simu-

lation set up is similar to that used in the previous test case, however we use a 1 cm

long collimator with no jaw opening. Impacting a pencil beam of protons upon this

solid block of material at the origin ((x, y) = (0, 0)) provides a scattering thickness

that is less than the mean free path for protons in the tested materials, and thus it

is more likely that only a single scattering process will take place. Using the tagging

of scattering processes (the particle type co-ordinate), we may selectively output and

histogram the effect of individual scattering processes over this thickness of material.

It must be noted that, whereas a thickness of 1 cm decreases the likelihood of multi-

ple point-like scattering processes taking place, it does not guarantee that more scatters

will not occur. Multiple Coulomb scattering (MCS) and energy loss due to ionisation

will occur along the entire 1 cm length. In the following section the momentum transfer

is calculated using the final particle momentum offset δ or dp, rather than the exact

momentum change due to the scattering process, thus it is the sum of the scattering

process and ionisation momentum transfers. The polar angle θ is also calculated from

the final particle co-ordinate, and is thus the sum of MCS and any individual scattering

processes. This approach offers a valid method of comparison as in most cases these

quantities are small for MCS.

We observe from Fig. 5.16 that the effect of MCS and energy loss via ionisation

produce a final particle polar angle of order 10−6 rad, and momentum transfer of order

108 GeV 2. These are both an order of magnitude smaller than any other scattering

process and should not invalidate a direct comparison with SixTrack data, which is

produced for the scattering process rather than over the 1 cm distance, demonstrated

in the next section.

Figure 5.17 shows the distributions of particles that have undergone proton-nucleus

elastic scattering. There is little difference between MERLIN and ST-like scattering

with both giving an angular spread of around 10−5 rad, with the exception that the

simpler ST-like routine generates a more uniform distribution in ∆dp. This translates

to a similar momentum transfer, with a range of around 1011 GeV 2. Proton-nucleon

elastic scattering is shown in Fig. 5.18, here there are two noteworthy differences; the

uniform ∆dp distribution generated in the ST-like scattering routine, as in proton-

nuclear scattering, and the double peak at low |x′| which translates into a peak at low

θ. This double peak is currently not understood, as it is believed to be an artefact

from the advanced proton-nucleon elastic scattering routine that is beyond the scope
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5.4 Scattering in Collimator Materials

Figure 5.16: Co-ordinate distributions of 6.4 · 106 protons that have undergone multiple
coulomb scattering and ionisation only, comparing MERLIN and ST-like scattering in
MERLIN when traversing 1 cm of CFC AC150K.

of this thesis. This will be investigated in the future. The angular spread is an order of

magnitude larger than the proton-nuclear elastic case at 10−4 rad, and the t range is

increased by a factor ≈ 5. The proton-nuclear elastic interaction has a higher contribu-

tion to the total cross sections for protons at the LHC energy than the proton-nucleon,

as shown in Table 5.3.

The largest momentum transfer is given by single diffractive interactions, as shown

in Fig. 5.19. There is a clear difference between both routines in MERLIN, evidence

of the improvements given by the advanced scattering routine [49] when compared to

the ST-like. The range of 1012 GeV2 is double that of proton-nucleon elastic, though

the contribution to the total cross section is much smaller as shown in Table 5.3. This

large ∆dp range clarifies the origin of the difference between MERLIN and SixTrack

like scattering in the 0.5 m collimator test case performed in section 5.4.1.

The number of point like scatters for 6.4 · 106 protons in 1 cm of each possible

collimator jaw material is shown in Table 5.3. The percentage of interactions for each

process is compared to the percentage of the process’ cross section for non-composite el-

ements (as composite elements have cross sections for each constituent). It is clear that

in all cases the percentage of point-like scatters is equal to the cross section percentage,
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Figure 5.17: Co-ordinate distributions of 6.4 ·106 protons that have undergone MCS, ion-
isation, and proton-nucleus elastic scattering, comparing MERLIN and ST-like scattering
in MERLIN when traversing 1 cm of CFC AC150K.

as expected.

It is also clear that, as shown in various figures in this section, the number of

interactions is reduced when using the composite elements rather than their elemental

counterparts. In the case of CFC AC150K this is due to different cross sections as this

material is not treated as a composite in MERLIN. For GlidCop and Inermet this is

due to the presence of elements that have lower interaction cross sections, which dilute

the total cross section and thus the mean free path. In reality there is not a blanket

reduction in the number of interactions, as this depends on the composite constituents.

The inelastic cross section includes cross sections for all interactions that produce

secondary particles (with the exception of single diffractive dissociation), and con-

tributes more than half of the total cross section for the materials detailed in Table 5.3,

MERLIN treats an inelastic interaction as a lost proton.

Using the 1 cm collimator test case we have compared MERLIN and ST-like scat-

tering within MERLIN, identifying that MCS and ionisation are identical but for the

∆dp distributions, which though of different forms are similar in magnitude. The elas-

tic scattering routines (proton-nuclear and proton-nucleon) are similar with the caveat

that the ST-like routines generate a uniform ∆dp distribution which translates to a

similar momentum transfer. The advanced proton-nucleon elastic routine produces an
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Figure 5.18: Co-ordinate distributions of 6.4 · 106 protons that have undergone MCS,
ionisation, and proton-nucleon elastic scattering, comparing MERLIN and ST-like scatter-
ing in MERLIN when traversing 1 cm of CFC AC150K. The peak at low θ comes from the
advanced proton-nucleon elastic scattering routine that is beyond the scope of this thesis,
it is not understood and will be investigated in the future.

unexplained peak at low θ which requires further clarification. Single diffractive scat-

tering is significantly different, as expected due to the work in [49]. This test case has

allowed us to identify the difference in the previous 0.5 m collimator test dp distribu-

tion, which is due to the larger range given by the advanced single diffractive scattering

routine in MERLIN.

5.4.4 Composite Material Implementation

The two main novel materials under study for LHC collimator jaw upgrades are molybdenum-

carbide-graphite (MoGr), and copper-carbon-diamond (CuCD). A comparison of MCS,

nucleon elastic, and single diffractive scattering between MERLIN and SixTrack is

performed in this section for these materials. This includes the use of the MERLIN

composite, the ST-like homogeneous composite in MERLIN, and data from a recent col-

limation version of SixTrack [93] [95], which uses the homogeneous composite method.

We aim to identify any differences due to composite treatment, and advise as to the

validity of the simple model as compared to the more advanced composite in MERLIN.

This study is interesting for two reasons, to identify differences between the compos-
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Figure 5.19: Co-ordinate distributions of 6.4 · 106 protons that have undergone MCS,
ionisation, and single diffractive scattering, comparing MERLIN and ST-like scattering in
MERLIN when traversing 1 cm of CFC AC150K. The ∆dp cut-off when using MERLIN
scattering explains the same cut-off shown in previous comparisons in Section 5.4.1, and is
from the advanced single diffractive scattering routine which is described in [49].

ite material treatments, but also the difference in scattering routines - though MERLIN

is equipped with ST-like scattering routines, these are not identical to the scattering

in recent collimation versions of SixTrack. The SixTrack data is provided for the scat-

tering interaction, i.e. the angular and momentum changes imparted to the proton

only take into account the individual scatter, whereas in MERLIN these quantities are

those of the particle after the scatter - where MCS and ionisation energy loss has taken

place for any path length that the proton has traversed in the material. We have seen

in the previous section that the contribution from MCS and ionisation energy loss is

small compared to point-like scattering, and has negligible effect, however MCS and

ionisation has been manually disabled in MERLIN where labelled in order to make a

better comparison with SixTrack.

In the following figures we use S to denote SixTrack-like scattering in MERLIN,

and M to denote MERLIN scattering. We also use ST-like to indicate the SixTrack-

like homogeneous composite material method, and Composite for the more advanced

MERLIN method. We plot histograms of frequency in order to compare the behaviour

in each chosen co-ordinate, as well as the number of scattering events. We must also
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C AC150K W IT180 Cu GCOP MoGr CuCD
Inelastic
Scatters 163478 123266 645388 618000 411811 410721 175929 311286
Scatter % 64.47 64.57 58.09 58.58 59.15 59.09 64.25 62.60
Cross Section % 64.47 - 58.05 - 59.07 - - -
pN Elastic
Scatters 46378 34848 403812 372892 226426 225882 51559 113156
Scatter % 18.29 18.26 36.34 35.35 32.52 32.50 18.83 22.76
Cross Section % 18.39 - 36.32 - 32.61 - - -
pn Elastic
Scatters 30789 22985 41537 43324 40178 40741 32563 51182
Scatter % 12.14 12.04 3.74 4.11 5.77 5.86 11.89 10.29
Cross Section % 12.06 - 3.78 - 5.78 - - -
Single
Diffractive
Scatters 12891 9474 17397 18055 17021 16897 13703 21427
Scatter % 5.08 5.11 1.57 1.71 2.44 2.43 5.00 4.31
Cross Section % 5.05 - 1.58 - 2.42 - - -
Rutherford
Scatters 47 49 2962 2663 818 835 61 225
Scatter % 0.019 0.026 0.267 0.252 0.117 0.12 0.022 0.045
Cross Section % 0.021 - 0.27 - 0.117 - - -
Total
Scatters 253583 190895 1111096 1054934 696254 695076 273815 497276

Table 5.3: Number and percentage of point like interactions for 6.4·106 protons impacting
upon a 1 cm long solid material.

ascertain if the ST-like composite in MERLIN is similar to that in SixTrack in order

to gauge if other differences between the codes may be ignored.

First we compare the effect of composite implementation on MCS and ionisation.

We expect that these processes will be identical regardless of the methods used, as MCS

and ionisation routines are similar between the codes. Our expectation is confirmed

for MoGr in Fig. 5.20, in which all scattering and composite material methods show

similar behaviour. CuCD is similar and thus not shown.

In the following figures the MCS and ionisation routines in MERLIN were switched

off manually in order to compare with the SixTrack data, the figures are labelled as

such. The spread in the transverse horizontal momentum (or angle) component x′ due

to nucleon elastic scattering is shown in Fig. 5.21 for CuCD. The agreement between

SixTrack and the ST-like composite is clear, indicating that the models are similar.

The difference between the two scattering methods in MERLIN is negligible in this

co-ordinate, however there is clear disparity between the homogeneous composite and

the MERLIN composite, which has a larger spread in the tails at larger x′.

The nucleon elastic x′ is shown in Fig. 5.22 for MoGr, it is interesting to note

that for this material there is no noticeable difference between scattering or composite

implementation. This is likely due to MoGr being mostly (97.3%) carbon, whereas

CuCD contains 25.7% copper and 73.3% carbon diamond. The homogeneous mixture

of MoGr is dominated by carbon and will behave similarly to the composite material,

which is not the case for CuCD.
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Figure 5.20: Co-ordinate distributions of 6.4 · 106 protons that have undergone multiple
coulomb scattering and ionisation only, when traversing 1 cm of MoGr. Line thickness is
exaggerated in order to clarify that, as expected, the data is similar for all cases.

The magnitude of the change in momentum deviation co-ordinate δ (or dp) for sin-

gle diffractive scattering is compared in Fig. 5.23. We observe little difference between

the codes when using ST-like scattering, the SixTrack data showing a small increase

in frequency of scatters at dp < 0.05 GeV. There is a significant change in the ∆dp

cut-off when using MERLIN’s more advanced single diffractive scattering. This shows

that the ST-like implementation of SD scattering in MERLIN is in good agreement

with SixTrack, and also that MERLIN’s more advanced SD routine provides a larger

frequency of high momentum transfer scatters, though the ST-like and SixTrack scat-

tering give a larger overall range of momentum transfer. The cause of this difference

is beyond the scope of this thesis as it has been covered in detail in [49]. MoGr is not

shown as the results are similar to CuCD for this case.

When looking at the polar angle distribution of single diffractive scattering in

Fig. 5.24, it appears that when using ST-like scattering SixTrack again generates more

interactions than MERLIN but otherwise the behaviour is similar. For MERLIN scat-

tering there is clearly a difference with SixTrack, though again the effect of the com-

posite implementation is negligible. The polar angle for this plot is shown for MoGr

only, as CuCD is similar.

Figures 5.25 and 5.26 show the momentum transfer distributions for single diffrac-
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Figure 5.21: Transverse horizontal angle x′ distribution of 6.4 · 106 protons that have
undergone proton-nucleon elastic scattering when traversing 1 cm of CuCD. SixTrack-like
scattering in MERLIN is shown above, with MERLIN scattering below. Treating CuCD as
a composite gives a larger spread in angle. This shows that composite treatment can offer
significant differences in scattering, and cannot be ignored despite the larger scale results
in Section 5.4.1 (which appears to show no influence from modelling CuCD as a composite
rather than a pure material).
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Figure 5.22: Transverse horizontal angle x′ distribution of 6.4 · 106 protons that have
undergone proton-nucleon elastic scattering when traversing 1 cm of MoGr. SixTrack-like
scattering in MERLIN is shown above, with MERLIN scattering below. The difference
observed in Fig. 5.21 is not observed here, this is due to MoGr being dominated by a single
element (97.3% carbon).

tive scattering in CuCD and MoGr respectively. With ST-like scattering it is clear

that there are a larger number of scatters for the MERLIN composite. With MERLIN

scattering this is not so apparent, however there is a larger spread, and larger number
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Figure 5.23: Momentum offset magnitude |δ| distribution of 6.4 · 106 protons that have
undergone single diffractive scattering when traversing 1 cm of CuCD. SixTrack-like scat-
tering in MERLIN is shown above, with MERLIN scattering below. The momentum offset
cut-off in the bottom plot is the hallmark of the advanced single diffractive scattering in
MERLIN.

of scatters when compared to the homogeneous composite in SixTrack. This is of par-

ticular importance when considering losses in areas of high dispersion. The momentum

transfer for single diffractive scattering has the largest range, this will produce the ma-
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Figure 5.24: Polar angle θ distribution of 6.4 · 106 protons that have undergone pro-
ton nucleon elastic scattering when traversing 1 cm of MoGr. SixTrack-like scattering in
MERLIN is shown above, with MERLIN scattering below. The advanced single diffractive
scattering in MERLIN gives a larger θ range than that in SixTrack as shown in the bottom
plot.

jority of secondary halo protons that are lost in the dispersion suppressor regions post

collimation in IR7.

Table 5.4 compares the percentage of total scatters in MERLIN and ST-like ho-
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Figure 5.25: Momentum transfer magnitude |t| distribution of 6.4 ·106 protons that have
undergone proton nucleon elastic scattering when traversing 1 cm of CuCD. SixTrack-like
scattering in MERLIN is shown above, with MERLIN scattering below.

mogeneous composites attributed to each scattering process. It is evident that the

homogeneous composite cross sections do not reproduce an accurate representation of

the expected scattering types, though the total number of scatters may be similar. This

is particularly clear for CuCD and MoGr, where some scatters differ by more than a
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Figure 5.26: Momentum transfer magnitude |t| distribution of 6.4 · 106 protons that
have undergone single diffractive scattering when traversing 1 cm of MoGr. SixTrack-like
scattering in MERLIN is shown above, with MERLIN scattering below.

per cent.
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IT180 GCOP MoGr CuCD

Inelastic
ST-like % 58.29 59.06 63.76 60.84
MERLIN % 58.58 59.09 64.25 62.60

pN Elastic
ST-like % 35.82 32.58 19.54 26.12
MERLIN % 35.35 32.50 18.83 22.76

pn Elastic
ST-like % 3.99 5.79 11.81 9.08
MERLIN % 4.11 5.86 11.89 10.29

Single Diffractive
ST-like % 1.65 2.45 4.86 3.88
MERLIN % 1.71 2.43 5.00 4.31

Rutherford
ST-like % 0.257 0.12 0.029 0.074
MERLIN % 0.252 0.12 0.022 0.045

Total
ST-like Scatters 1055230 695259 274324 497225
MERLIN Scatters 1054934 695076 273815 497276

Table 5.4: Percentage of point like interactions for 6.4 · 106 protons impacting upon a
1 cm long solid material, comparing the ST-like homogeneous composite with MERLIN’s
more advanced composite.

When comparing SixTrack with ST-like scattering and composite treatment in

MERLIN (labelled MERLIN S ST-like), we observe that the number of single diffractive

scatters is always higher in SixTrack. In this case we are using imitations of SixTrack’s

scattering and homogeneous composite method, the fact that MERLIN’s ST-like data

is not identical to SixTrack shows that there is a small difference between the codes.

As the scattering in SixTrack has recently been updated [91] this is expected. Taking

this into account, the number of single diffractive interactions is increased when using

the MERLIN composite as compared to the homogeneous composite.

We now have a number of tentative conclusions on the effect of the two methods

of implementing composite materials, and the use of ST-like or MERLIN scattering

routines, for the 1 cm test case.

• As expected there is negligible difference in MCS and ionisation between both

codes and all methods of composite or scattering implementation.

• The new single diffractive scattering routine in MERLIN offers different behaviour

from that in SixTrack, this was previously observed on the scale of a loss map
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in [49] but has been clarified at a much smaller scale here.

• The effect of different composite material implementations is more pronounced for

CuCD. Though it was not previously noticeable in the 0.5 m test case, it has been

shown to be important on a small scale, due to the material composition. This

implies that when a composite material is not dominated by a single element (as in

the case of CuCD), the homogeneous composite is not a valid approximation. In

the case of proton-nuclear elastic scattering in CuCD it is clear that the composite

treatment has more impact than the choice of scattering routine.

• In some instances it is clear that the scattering routine has a larger impact than

the composite treatment, for example single diffractive scattering. This means

that both are important considerations in successful modelling of proton interac-

tion with LHC collimators.

• When using a combination of ST-like scattering and homogeneous composite

method in MERLIN, the results are similar to that of SixTrack, with a difference

in frequency of scatters only, likely due to differing cross sections arising from

recent updates to SixTrack [91].
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5.4.5 Summary

We have compared MERLIN 5-01 with an existing set of results from [94], and have

obtained an agreement better than previous versions of MERLIN. The slight difference

in dp is explained by the use of a new and improved single diffractive scattering rou-

tine [96]. A more rigorous comparison with codes such as FLUKA may be done, this

was started in [49] however only for the loss map version of the code which has since

been merged and updated, this is envisioned for MERLIN 5.01 in the future.

Using the set up of this test case we have compared scattering in pure elements

with the corresponding composite materials used for LHC collimators, in all cases

investigated the number of interactions was higher when using the composite. This is

important for simulating the interaction between halo protons and the LHC collimators

as it will affect the number of particles that form the secondary halo, as well as the

condition of the particles. When comparing MERLIN and ST-like scattering in the 50

cm test case the difference was observed to be negligible on this length scale.

The second test case of a pencil beam impacting upon a 1 cm long solid material

was used to show that MERLIN’s imitations of SixTrack (scattering routine and ho-

mogeneous composite) were in good agreement with SixTrack data. The effects of each

scattering process were compared, and the advanced single diffractive routine differs

significantly from previous models. An unexpected peak in the θ distribution given by

the advanced proton nucleon elastic scattering was observed, and must be clarified in

the future. MERLIN scattering offers differences which have already been identified as

improvements when compared to experimental data [49], here we simply quantify the

differences.

Homogeneous composites were compared with the more advanced MERLIN method,

from which it was evident that when a composite is not dominated by a single element

the homogeneous approximation is not valid. Thus MERLIN offers a more robust

method of treating composite materials. This work is ongoing [97], and a more detailed

comparison is expected in the future.

In conclusion we have validated MERLIN scattering and composite treatment against

a number of well established codes, and where they are not in agreement it has been

shown that MERLIN offers an improved method of modelling. We have also identified

that the treatment of composite materials is important, and that the homogeneous

method used in SixTrack has been improved upon.
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5.5 Collimation

To validate MERLIN as a collimation tool for the LHC, we use the 6.5 TeV beam

2 lattice at flat top to compare MERLIN loss map simulation results with simulated

SixTrack and measured loss maps. The beta functions, dispersion, aperture, and closed

orbit have been compared for this case at the start of the chapter, and were found to

be identical for MERLIN and SixTrack inputs. Table 5.5 shows the collimator settings

used for the 6.5 TeV collimation simulations.

Insertion Region Collimator Family Setting [σ]
7 Primary 5.5

Secondary 8
Absorber 14

3 Primary 15
Secondary 18
Absorber 20

1 Tertiary 37
Absorber 999

5 Tertiary 37
Absorber 15

6 Dump Protection 9.1
Secondary 9.1

2 Tertiary 37
Injection 999

8 Tertiary 37

Table 5.5: LHC collimator settings used for the nominal 6.5 TeV beam 2 simulations in
MERLIN, SixTrack, and measurement.

Figures 5.27 to 5.30 compare the initial distribution used in MERLIN with that

used in the SixTrack simulations. In both cases a distribution between 5.5-5.54 σx is

used in the transverse horizontal plane, and a 2 σy Gaussian distribution is used in the

transverse vertical plane. We observe that the initial bunch distributions are slightly

dissimilar between the codes, most noticeably the highest concentration of particles in

transverse real space is more compact in MERLIN. This is simply due to a difference

in the definition of the initial halo, and may give rise to nonconformity in loss map

simulations. The majority of particles exist at around 5.5 σ, whereas in SixTrack the

particles are initially between 4 - 5.54 σ, thus more particles will impact upon the

primary collimator in early turns in MERLIN. Normally loss maps are simulated using

a purely transverse distribution, in which case the effect of 6D tracking is difficult to

compare to that of 4D, thus we use the 2 σz Gaussian distribution in ct dp longitudinal
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5.5 Collimation

Figure 5.27: Initial distribution in real space used for 6.5 TeV beam 2 loss maps, com-
paring that used in MERLIN (left) with SixTrack (right). We observe that there is some
difference in the way that MERLIN and SixTrack generate an initial halo bunch, with
SixTrack giving a larger transverse spread.

Figure 5.28: Initial distribution in xx′ phase space used for 6.5 TeV beam 2 loss maps,
comparing that used in MERLIN (left) with SixTrack (right). In this phase space the
distributions are similar.

phase space.

We begin by ascertaining the effect of using SYMPLECTIC and TRANSPORT tracking

and the importance of 6D tracking is clarified, followed by a brief comparison of sim-

ulating collimator jaws as composite materials rather than pure elements. Loss maps
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5. MERLIN VALIDATION

Figure 5.29: Initial distribution in yy′ phase space used for 6.5 TeV beam 2 loss maps,
comparing that used in MERLIN (left) with SixTrack (right). In this phase space the
distributions are similar.

Figure 5.30: Initial distribution in longitudinal ctdp phase space used for 6.5 TeV beam
2 loss maps, comparing that used in MERLIN (left) with SixTrack (right). In this phase
space the distributions are similar.

are plotted for the entire length of the lattice, for the LHC we use beam 1 co-ordinates,

where s = 0 is defined at IP1.
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5.5.1 Effect of Integrators and 6D Tracking

The difference between 4D and 6D tracking is shown in Fig. 5.31, this is clarified in

Fig. 5.32 - without 6D tracking there are orders of magnitude fewer losses in IR3 (s

= 6000 - 7000 m). IR7 is the focus of our concern for the largest collimation losses,

Fig. 5.33 appears to show that we gain little from using 6D tracking, however with the

increased number of lost particles in the momentum collimation insertion, the number

of losses in IR7 decreases.

Table 5.6 compares the number of losses for each loss map simulation in this section.

When using 6D tracking with a bunch that has a longitudinal component (momentum

deviation or offset in ct) we observe that the total number of losses is larger than in the

4D case. Around 5 ·105 particles are lost in the momentum collimation region, reducing

the losses in the betatron collimation region. With 4D tracking, there are almost no

losses in the momentum collimation insertion.

There is a difference of around 50% in the IR3 collimator losses when comparing

the trackers, this is likely due in part to the different RF cavity integrators as shown

previously. Apart from this difference in the momentum collimation insertion, 6D

tracking provides a more realistic prediction of loss locations for halo particles that

lose momentum in collimators but re-enter the beam (i.e. the secondary and tertiary

halos). 6D SYMPLECTIC tracking will be used for all following simulations where not

otherwise stated.

Region Type Losses
4D 6D 6D 6D

Pure Pure Composite Composite
SYMPLECTIC SYMPLECTIC TRANSPORT SYMPLECTIC

Entire LHC Collimator 6298362 6391014 6385850 6388154
Cold 3010 3553 5356 4860
Warm 240 425 726 663

IR7 Collimator 6294407 5819657 5503059 5771352
Cold 2933 2463 3332 3230
Warm 240 202 261 350

IR3 Collimator 2824 570358 880889 614758
Cold 4 1030 1929 1537
Warm 0 223 465 313

Table 5.6: Breakdown of losses in 4D, 6D,TRANSPORT and SYMPLECTIC loss maps for beam
2 of the 6.5 TeV LHC. Note that the 4D and 6D loss map simulations use pure materials,
whereas the integrator comparison simulations use composite materials.

Figure 5.34 compares the use of the TRANSPORT and SYMPLECTIC integrator sets,
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5. MERLIN VALIDATION

Figure 5.31: Loss maps for beam 2 of the 6.5 TeV LHC, plotted in the s co-ordinates
for beam 1, using pure collimator materials and comparing the use of 6D tracking (above)
with the use of 4D tracking (below). We observe that when using 6D tracking the losses
in IR3 are significantly higher.

both using 6D tracking. The difference between these methods is negligible as expected,

due to the fact that a loss map simulation requires only 200 turns, and thus does not

present enough iteration for the TRANSPORT tracker to deviate from the Hamiltonian
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Figure 5.32: Loss maps for beam 2 of the 6.5 TeV LHC in the momentum collimation
insertion, plotted in the s co-ordinates for beam 1, using pure collimator materials and
comparing the use of 6D tracking (above) with the use of 4D tracking (below). We observe
that when using 6D tracking the total number of losses in IR3 are increased by a factor of
200.

conserving SYMPLECTIC tracker. The number of losses and their locations is compared

in Table 5.6, which shows that both integrator sets provide similar loss distributions

with the only difference a factor of 1.5 increase in IR3 collimator losses when using
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5. MERLIN VALIDATION

Figure 5.33: Loss maps for beam 2 of the 6.5 TeV LHC in the betatron collimation
insertion, plotted in the s co-ordinates for beam 1, using pure collimator materials and
comparing the use of 6D tracking (above) with the use of 4D tracking (below). Though
not evident, collimator losses are decreased by 7.5% when using 6D tracking.

the TRANSPORT tracker due to the thin lens RF cavity integrator. As expected the

betatron collimation insertion losses are nearly identical between the two trackers.

Figure 5.35 shows the transverse distribution of particles that impact upon the

most loaded secondary collimator in IR7 when using 4D SYMPLECTIC tracking, 6D
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5.5 Collimation

Figure 5.34: Loss maps for beam 2 of the 6.5 TeV LHC, plotted in the s co-ordinates
for beam 1, using composite collimator materials and comparing the use of TRANSPORT

tracking (below) with the use of SYMPLECTIC tracking (above). There is no significant
difference when using different trackers.

SYMPLECTIC is shown in Fig. 5.36, and 4D TRANSPORT tracking is shown in Fig. 5.37.

The distributions are slightly different when comparing 4D and 6D tracking - in the 4D

case the left jaw has more impacts, and the opposite occurs in the 6D case. Negative x

indicates the outer side of the accelerator, this effect may be due to synchrotron motion
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(i.e. 6D tracking) causing particle momentum offset, this in turn would cause particles

to travel through bending magnets with an increased bending radius, thus being lost on

the inside (right) jaw. As these impacts depend on scattering in primary collimators,

this particular difference is not significant enough to be of concern.

Figure 5.35: Transverse distribution of particles impacting the secondary collimator
TCSG.B5L7.B2 for beam 2 of the 6.5 TeV LHC, comparing pure with composite materials
when using 4D SYMPLECTIC tracking. This collimator has a tilt angle of 2.47 radians. More
protons are lost on the outside jaw when using 4D tracking.

5.5.2 Effect of Composite Materials

We may use pure elements to model the LHC collimator jaws in order to perform pro-

ton scattering in said jaws. To improve upon this first approximation and benefit from

the advanced scattering in MERLIN, the CompositeMaterial class and its appropriate

handling in the collimation process has been added. We replace the pure elements of

carbon, copper, and tungsten, with the composites corresponding to the physical ma-

terials used for LHC collimators - CFC AC150K, Glidcop, and Inermet180 respectively.

We have already identified that these changes have an effect on proton scattering in a

0.5 m collimator in the previous sections, here we observe how this changes loss maps

on a much larger scale.

Figure 5.38 compares the full 6.5 TeV beam 2 loss map using pure collimator ma-

terials, with that using composite materials. We observe similar primary and larger
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5.5 Collimation

Figure 5.36: Transverse distribution of particles impacting the secondary collimator
TCSG.B5L7.B2 for beam 2 of the 6.5 TeV LHC, comparing pure with composite materials
when using 6D SYMPLECTIC tracking. This collimator has a tilt angle of 2.47 radians. More
protons are lost on the inside jaw when using 6D tracking, this is as expected as particles
with a momentum offset due to scattering will take a smaller bending radius through dipole
magnets and be lost on the inside jaw.

secondary collimator losses when using composite materials, and a 30% increase in cold

losses. IR7 is shown in Fig. 5.39, when using composites the losses in secondary colli-

mators and absorbers are slightly increased, as are cold DS losses. Figure 5.40 shows

the momentum collimation insertion, from which it appears there is little difference

between the two material methods, however there is an increase in collimator losses

when using composite materials, as shown in Table 5.7, which compares the losses in

the two collimation insertions. This shows that there is a 50% increase in secondary

and cold losses, and a 7% increase in primary losses in IR3.

We compare the distribution of losses in the primary horizontal collimator in IR7

with that recorded in SixTrack [95], in Figures 5.41 to 5.44. In Fig. 5.41 we see that

the longitudinal distribution of losses is similar in all cases, with a slight reduction in

immediate losses as we move from 4D to 6D tracking. The 4D case is most similar to

SixTrack in behaviour, with SixTrack having more losses in total, this is likely due to

the higher interaction cross section. The loss distribution in x is shown in Fig. 5.42 for

both jaws, the difference between the 4D tracking and SixTrack is due to the differ-

ence in initial distribution, however it is interesting to note that the 6D losses have a
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5. MERLIN VALIDATION

Figure 5.37: Transverse distribution of particles impacting the secondary collimator
TCSG.B5L7.B2 for beam 2 of the 6.5 TeV LHC, comparing pure with composite materials
when using 4D TRANSPORT tracking. This collimator has a tilt angle of 2.47 radians. Again
using 6D tracking gives more losses on the inside jaw as expected.

Region Type Losses
4D Pure 4D Composite 6D Pure 6D Composite

LHC Collimator 6298362 6288308 6391014 6388154
Cold 3010 3897 3553 4860
Warm 240 425 425 663

IR7 Collimator 6294407 6282753 5819657 5771352
(Primary) 5493499 5314820 5156956 4934111
(Secondary) 798662 963148 660756 832726

Cold 2933 3816 2463 3230
Warm 240 424 202 350

IR3 Collimator 2824 3320 570358 614758
Cold 4 6 1030 1537
Warm 0 1 223 313

Table 5.7: Breakdown of losses for beam 2 of the 6.5 TeV LHC comparing simulations
using pure and composite materials.

larger variance, which is likely due to an increased impact parameter as off-momentum

protons not captured by the momentum collimation insertion are collimated by the

horizontal primary. The x′ loss distribution in this collimator (Fig. 5.43) is similar in

all cases, though it is clear that the 4D MERLIN simulation is closest to SixTrack,
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Figure 5.38: Loss maps for beam 2 of the 6.5 TeV LHC, plotted in the s co-ordinates
for beam 1, comparing the use of pure materials (above) with composite materials (below)
for collimator jaws. Using composites increases cold losses across the LHC, particularly in
dispersion suppressor regions post collimation.

the 6D simulation produces a slightly larger variance again due to off-momentum par-

ticles being scattered to larger angles. Figures 5.45 and 5.44 show that the y and y′

distributions of lost particles are similar for all cases.
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Figure 5.39: Loss maps for beam 2 of the 6.5 TeV LHC in the betatron collimation
insertion, plotted in the s co-ordinates for beam 1, comparing the use of pure materials
(above) with composite materials (below) for collimator jaws. There is in increase in
secondary collimator and cold losses when using composites.

Figure 5.46 shows the longitudinal loss distribution for the most loaded secondary

collimator in this loss map. Comparing the 4D and 6D tracking we observe that this has

less of an effect than the method of collimator jaw material treatment. More particles

are lost in this secondary collimator when using composite materials. This is due to
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Figure 5.40: Loss maps for beam 2 of the 6.5 TeV LHC in the momentum collimation
insertion, plotted in the s co-ordinates for beam 1, comparing the use of pure materials
(above) with composite materials (below) for collimator jaws. There is in increase in
collimator and cold losses when using composites.

more particles escaping the primary collimators and populating the secondary halo

which interacts with the secondary collimators.

213



5. MERLIN VALIDATION

Figure 5.41: Longitudinal distribution of lost particles in the primary collimator
TCP.C6R7.B2 for beam 2 of the 6.5 TeV LHC, comparing 4D with 6D tracking, pure
with composite materials, and MERLIN results to SixTrack [95]. Use of composites gives
a more even spread of inelastic interactions along the length of the collimator. 4D tracking
gives more losses nearer the collimator jaw face, and the number of losses in MERLIN is
always less than in SixTrack.
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Figure 5.42: x distribution of lost particles in the primary collimator TCP.C6R7.B2
for beam 2 of the 6.5 TeV LHC, comparing 4D with 6D tracking, pure with composite
materials, and MERLIN results to SixTrack [95]. The above plot shows the positive jaw,
the below plot shows the negative jaw. The higher number of losses closer to the jaw edge
in both Sixtrack and 4D MERLIN tracking may be due to a difference in impact parameter
on the jaw due to synchrotron motion in 6D tracking. It is difficult to compare MERLIN
and SixTrack due to the difference in initial distribution as shown in Fig. 5.27.
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Figure 5.43: x′ distribution of lost particles in the primary collimator TCP.C6R7.B2
for beam 2 of the 6.5 TeV LHC, comparing 4D with 6D tracking, pure with composite
materials, and MERLIN results to SixTrack [95]. The bottom plot is an enlargement of
the peaks in the top plot. We observe that using 6D tracking changes the x’ distribution.
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Figure 5.44: y′ distribution of lost particles in the primary collimator TCP.C6R7.B2
for beam 2 of the 6.5 TeV LHC, comparing 4D with 6D tracking, pure with composite
materials, and MERLIN results to SixTrack [95]. The bottom plot is an enlargement of
the peak in the top plot.
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Figure 5.45: y distribution of lost particles in the primary collimator TCP.C6R7.B2
for beam 2 of the 6.5 TeV LHC, comparing 4D with 6D tracking, pure with composite
materials, and MERLIN results to SixTrack [95].

Figure 5.46: Longitudinal distribution of lost particles in the secondary collimator
TCSG.B5L7.B2 for beam 2 of the 6.5 TeV LHC, comparing 4D with 6D tracking, and
pure with composite materials. This collimator has a tile angle of 2.47 radians.
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5.5.3 Comparison with Measurement

A complete quantitative comparison with measured loss maps is not available when

using MERLIN or SixTrack, and a simulation of full proton scattering and secondary

shower production for the entire LHC would be immensely computationally expensive.

We may use the approximations of MERLIN to predict loss location and magnitude.

Figure 5.47 compares the measured LHC loss map with 4D and 6D MERLIN simula-

tions using pure elements for collimator materials. The collimation hierarchies in IR7

and IR3 are observed in all loss maps.

Measured loss maps are generated using an excitation of a single beam’s betatron

amplitude, which forces the loss pattern generated by the betatron collimation insertion

only. This is shown by the magnitude of losses in IR3 being of order 10−3, which is

similar to that in the 4D simulation. In normal machine operation the momentum

collimation insertion is in use as particles lose momentum in elastic collisions at the

experimental IPs, as well as mismatches with the RF bucket and other mechanisms

discussed in Chapter 3. The loss map is measured with BLMs, and using a single beam

allows us to disentangle BLM signals which would be generated from losses in both

beams during normal operation. As the absolute loss rate is higher in a qualification

loss map, the signal to noise is much higher than in normal operation [71].

IR7 is the limiting loss location for the LHC, and is thus the main concern, as

depicted in Fig. 5.48. We note that BLMs are not distributed continuously throughout

the LHC, and thus signals appear more concentrated in the collimation insertions where

there are more BLMs. The collimation hierarchy is clear in all loss maps, and the

location of the highest cold losses - the DS region following the betatron collimation

insertion - is similar though secondary particles cause a higher signal in the measured

loss map. IR3 is shown in Fig. 5.49, this is mostly dominated by BLM signal from

secondary losses, some of which are likely to be from beam 1 (due to the hierarchy

direction). Though the highest loss is of similar magnitude to that in the 4D MERLIN

simulation, losses are not of concern in the regime of the measured noise.

It is difficult to draw conclusions with direct comparisons between MERLIN (or

SixTrack) generated and measured losses. This is due mainly to the effect of secondary

showers. The missing step can be performed using a shower code such as FLUKA [19],

and such comparisons have been performed. In previous comparisons it has been shown

that losses predicted in SixTrack, and propagated in FLUKA to produce secondary

particle showers, show good agreement with measured losses [71]. Thus in the next

section we compare MERLIN to SixTrack to draw firmer conclusions on the validity of
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MERLIN as a loss map generator for the LHC and HL-LHC.

More detailed comparisons of MERLIN and measured losses are currently being

performed [98], though these also omit the use of shower simulations. A possible method

of direct comparison would be to perform a machine development (MD) experiment at

the LHC, using a bunch of low population in only one beam direction to trigger a

betatron loss at a specific primary collimator. USing a small number of protons could

provide a cleaner loss signal with the BLMs, and knowledge of the loss (i.e. which

primary collimator is hit - horizontal, vertical, or skew - as well as full collimator

settings) would provide the simulation set-up for comparison in MERLIN.
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Figure 5.47: Loss maps for beam 2 of the 6.5 TeV LHC, plotted in the s co-ordinates for
beam 1, comparing measurement (above) with MERLIN using 4D (middle) and 6D (below)
SYMPLECTIC tracking, and pure elements for collimator jaws. The main loss locations and
relative magnitudes are similar when comparing MERLIN with measurements, with the
exception of the IR6 collimator which gives a large loss in measurements. This dump
protection collimator is likely closed more than in the MERLIN simulations. This may
explain why the MERLIN 6D IR3 loss is much larger than that in measurement, as protons
are lost in IR6 rather than downstream in IR3.
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Figure 5.48: Loss maps for beam 2 of the 6.5 TeV LHC in the betatron collimation
insertion, plotted in the s co-ordinates for beam 1, comparing measurement (above) with
MERLIN using 4D (middle) and 6D (below) SYMPLECTIC tracking, and pure elements for
collimator jaws.
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Figure 5.49: Loss maps for beam 2 of the 6.5 TeV LHC in the momentum collimation
insertion, plotted in the s co-ordinates for beam 1, comparing measurement (above) with
MERLIN using 4D (middle) and 6D (below) SYMPLECTIC tracking, and pure elements for
collimator jaws.
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5.5.4 Comparison with SixTrack

The 6.5 TeV beam 2 simulation at flat top was performed using MERLIN and Six-

Track [95] with identical collimator settings in order to directly compare loss maps.

SixTrack was run using homogeneous composites, MERLIN with either pure elements

or advanced composites, the initial distributions for these simulations are shown in

Fig 5.27 to 5.30. Figure 5.50 compares the SixTrack loss map with 4D and 6D MERLIN

simulations using pure elements for collimator materials. Upon inspection it appears

that SixTrack is using 4D tracking, as the losses in IR3 are of much lower magnitude

than the 6D MERLIN case. This may also be due to the difference in initial proton

distributions (in transverse real space as shown in Fig. 5.27).

Figure 5.51 compares SixTrack data to the 4D MERLIN simulation using composite

collimator materials. Loss locations and magnitudes are almost identical over the entire

machine, with the exception of a few small order cold losses which are dependent on

the last interaction of a proton with the collimator from which it escaped.

Comparing IR7, Fig. 5.52 shows better agreement between SixTrack and MERLIN

(using composites) in terms of collimator loss magnitudes. The location of losses is

similar in all cases with a small difference in cold DS losses further from the collimation

insertion. The use of homogeneous composite materials in SixTrack leads to a difference

in the contribution of each scattering process to the total cross section, and may be the

reason for the greater amount of cold losses in SixTrack when compared to the MERLIN

composite. It is clear when comparing composite and pure materials in MERLIN, that

the pure elements provide an underestimate of cold losses in this region. There are

fewer proton interactions with pure materials, so the likelihood of a single diffractive

interaction, which provides the large momentum transfer required for a cold DS loss,

is reduced.

Figure 5.53 provides a closer look at the DS region post IR7. From this it is clear

that when using composite materials more protons are lost in the final collimators in

MERLIN as compared to SixTrack, and thus fewer cold DS losses occur. The combi-

nation of advanced scattering and composite treatment suggest that SixTrack slightly

overestimates the magnitude of these losses. In this case as we are using materials that

are dominated by a single pure element it is likely that this difference is mostly due

to scattering routines. The pattern of losses is similar in all cases. The magnitude of

the highest cold loss (around s = 19690 m) is much larger in MERLIN. It may be that

the dp cut-off given by the advanced single diffractive scattering routine translates to a

more localised concentration of losses in this particular position relative to the proton
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interactions with the primary collimator.

The momentum cleaning insertion in IR3 is compared in Fig. 5.54. The losses shown

in this case are dependent on the debris from IR7 and thus not as simple to compare

directly. The magnitude and location of collimator losses is similar when comparing

the MERLIN composite simulation with SixTrack.

Overall the comparison with SixTrack shows that MERLIN is in good agreement,

with small differences which are attributed to differences in scattering routines and

possibly initial distributions. Thus we can conclude that, as SixTrack has previously

been combined with shower simulations to compare favourably with measurements [71],

MERLIN provides a valid tool for loss map generation. Table 5.8 compares the distri-

bution of losses in these simulations as a percentage of the total loss. From this we see

that the proportion of collimator losses is always higher in MERLIN, and as a result

the proportion of cold losses is diminished. The composite simulation provides slightly

more cold losses than that using pure materials as expected, and the use of 6D tracking

gives rise to a higher proportion of warm losses, which are mostly in the momentum

collimation insertion.

Case Loss Location Percentage of Total Losses
SixTrack Collimator 99.9017

Cold 0.0927
Warm 0.0055

MERLIN 4D Pure Collimator 99.948
Cold 0.0478
Warm 0.0038

MERLIN 4D Composite Collimator 99.9313
Cold 0.0619
Warm 0.0068

MERLIN 6D Composite Collimator 99.9134
Cold 0.076
Warm 0.0104

Table 5.8: Percentage of total losses for beam 2 of the 6.5 TeV LHC comparing simulations
using pure and composite materials with SixTrack.
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Figure 5.50: Loss maps for beam 2 of the 6.5 TeV LHC in the betatron collimation
insertion, plotted in the s co-ordinates for beam 1, comparing SixTrack (above) with with
MERLIN using 4D (middle) and 6D (below) SYMPLECTIC tracking, and pure elements for
collimator jaws. From this comparison it appears that SixTrack is run with 4D tracking
as this agrees well with MERLIN 4D tracking.
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Figure 5.51: Loss maps for beam 2 of the 6.5 TeV LHC in the betatron collimation
insertion, plotted in the s co-ordinates for beam 1, comparing SixTrack (above) with with
MERLIN using 4D (below) SYMPLECTIC tracking, and composite materials for collimator
jaws.
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Figure 5.52: Loss maps for beam 2 of the 6.5 TeV LHC in the betatron collimation
insertion, plotted in the s co-ordinates for beam 1, comparing SixTrack (above) with with
MERLIN using pure elements (middle) and composite materials (below) for collimator
jaws, and SYMPLECTIC tracking. The larger cold losses in SixTrack are due to the larger
single diffractive cross section in SixTrack.
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Figure 5.53: Loss maps for beam 2 of the 6.5 TeV LHC in the dispersion suppressor
region following the betatron collimation insertion, plotted in the s co-ordinates for beam
1, comparing SixTrack (above) with with MERLIN using pure elements (middle) and
composite materials (below) for collimator jaws, and SYMPLECTIC tracking. The larger
cold losses in SixTrack are due to the larger single diffractive cross section in SixTrack.
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Figure 5.54: Loss maps for beam 2 of the 6.5 TeV LHC in the momentum collimation
insertion, plotted in the s co-ordinates for beam 1, comparing SixTrack (above) with with
MERLIN using pure elements (middle) and composite materials (below) for collimator
jaws, and SYMPLECTIC tracking. Loss locations are similar in MERLIN and SixTrack.
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5.6 HEL

5.6.1 SixTrack Comparison

In order to benchmark the MERLIN HEL process, the test case of the Tevatron HEL

hardware in the nominal LHC (lattice v.6.503) was repeated as in [68]. In this case the

parameters used were those in the first column of tables 3.9 (with the caveat that the

active length L = 2 m) and 3.10, all simulations in this section use these parameters

unless otherwise stated.

5.6.1.1 SixTrack HEL Radius Error

The SixTrack implementation of the HEL exists as the ‘elens’ subroutine of collima-

tion. The HEL is implemented as a special collimator, if a proton hits the HEL, the

collimate elens function is called, which in turn calls the elens kick function to

perform the HEL kick on the proton.

To use the HEL in SixTrack a special block is required in the collimator input file,

in which a number of parameters are defined by the user. These include; the HEL

inner radius Rmin in σ, the ratio g = Rmax
Rmin

, the current I, voltage V , and the operation

mode.

In order to fully benchmark MERLIN’s HEL implementation, the SixTrack imple-

mentation had to be resurrected. SixTrack was previously widely spread, with different

research groups using separate offshoots. For example the collimation version includes

scattering (based on the K2 code [3]), and post-processed aperture checking. The ver-

sion of SixTrack that includes the HEL was written for crystal and HEL collimation

by Valentina Previtali [68]. The crystal routines were passed on to, and comprehen-

sively updated by Daniele Mirarchi [22]. The HEL routines were not used and were

subsequently neglected.

After obtaining Valentina’s original version of SixTrack, it was compiled and run

for the nominal LHC test case. As a first test the Poincaré section for a DC HEL in

the nominal LHC was plotted. The effect of the HEL on the bunch in xx′ phase space

was not observed. After investigation it was clear that the value for the minimum HEL

radius Rmin, and thus the maximum HEL radius Rmax were not correct in the HEL

routine.

The Rmin value is fed from the collimator definition input file as mentioned previ-

ously. It is entered in units of beam σ, and together with the angle of the collimation

plane in transverse xy space (with respect to the horizontal), it is used to set the radii
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at a given value of σ, where σ is the corresponding beam size at the given angle. For

example if the angle given is 0 rad, σ = σx, and Rmin = n σx, where n is the value

input by the user.

At the chosen location of the HEL in the nominal LHC (s = 10037 m), σx = 293 ·
10−6 m, or 293 µ m. Rmin is defined as 4 σx and Rmax as 6.8 σx as stated in Table. 3.10,

thus in SixTrack the user must enter n = 4, and g = 1.7. These values pass through

the main tracking interface of SixTrack, then the collimation routine, before finally

reaching the elens subroutine. When output at the elens routine the values returned

in metres were Rmin = 2.834 · 10−3 m, Rmax = 4.8 · 10−3 m, which are a factor ≈ 4.2

larger than the expected Rmin = 1.17 · 10−3 m, Rmax = 1.99 · 10−3 m, and correspond

to values of 9.7 and 16.4 σx for the minimum and maximum HEL radii respectively.

In order to correct this, values of n = 1.65 and g = 17 were used in the SixTrack

collimator input file in order to obtain the correct values for the HEL radii at the elens

routine. It is not understood why this was necessary, however the author does not

have the knowledge or experience of SixTrack and its collimation routine to propose an

explanation. In the near future the SixTrack HEL process will be updated by Miriam

Fitterer (Fermilab) and Joschka Wagner (CERN), and may include the novel models

from the MERLIN HEL process.

Figure 5.55 shows the ensuing discrepancy when using the initial input values (n

= 4, and g = 1.7), compared to the adjusted values (n = 1.65 and g = 17). It is clear

that the DC HEL effect begins at around 1.17 ·10−3 m, as expected, whereas the initial

value Poincaré section is akin to that produced with no HEL in use. This confirms the

Rmin value of 9.7 σ given when requesting a value of 4 σ in the collimator input file.

After confirming that the elens process in SixTrack is acting on the correct part of

the proton bunch, we may observe the expected effect of the different HEL operation

modes on the beam halo. In order to benchmark the MERLIN HEL process we may

compare these modes using the Poincaré sections.

5.6.1.2 HEL Profile

In both SixTrack and MERLIN, there exist two HEL profiles. These are the selection

functions f(r) used to calculate the kick θkick shown in equation 3.7 as opposed to the

maximum kick θmax shown in equation 3.5. The ‘radial’ profile is a parameterisation

of the measured profile of the prototype LHC HEL cathode. The selection function,

shown in equation 3.6, is referred to as the ‘perfect’ or ‘simple’ profile; the profile given

for a perfectly symmetrical e− distribution with uniform charge density.
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Figure 5.55: Poincaré section for a DC ‘Tevatron’ HEL in the nominal LHC from SixTrack
simulations, comparing the original (left), and adjusted (right) input Rmin. Particles are
initially populated between 0 - 10 σ. We can see without the adjustment that there is no
influence from the HEL, and after making the adjustment the islands shown in the right
plot show the expected HEL behaviour.

Figure 5.56 compares the two profiles for the Tevatron HEL hardware in the nominal

LHC, as expected both codes are equivalent.

It is important to note that, as mentioned previously, the HEL force is attractive

to protons, thus the profiles in Fig. 5.56 are in fact only magnitudes as the actual kick

is negative, i.e. towards the centre of the beam axis. Also all models are constructed

such that if a particle is within the HEL minimum radius Rmin, there is no kick, a

result of the assumption of uniform electron density and radial symmetry of the HEL

beam. Also the HEL will effect particles outside the maximum HEL radius Rmax, the

kick being similar to that from a line charge at the centre axis.

We note that the radial profile maximum is not at Rmax as we would expect. This

could be due an artifact from measurement, or some other error. We will assume that

this is correct however in order to compare directly with SixTrack.

5.6.1.3 Poincaré Section Comparisons

It is important to note that there are differences in the tracking between MERLIN and

SixTrack. We use the thick lens symplectic tracker in MERLIN, whereas a thin lens
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Figure 5.56: HEL radial kick profiles, comparing MERLIN (right) with SixTrack (left),
for identical Tevatron HEL parameters. As expected the profiles are identical in MERLIN
and SixTrack.

symplectic tracker is used in SixTrack. The difference is evident from Fig. 5.57, where

the Poincaré sections for 64 equally space protons between 0 - 10 σx are plotted for 104

turns in the nominal LHC, at the position of the HEL. This initial distribution sets all

other initial particle coordinates to 0, which means that it represents an ideal bunch

with no transverse momentum components, and no longitudinal displacement. This is

not representative of an accelerator beam, and is only used to demonstrate the effect of

the HEL on what should otherwise be perfectly stable motion in the accelerator, which

is represented as smooth ellipses in phase space as shown in Fig. 5.57.

Due to the differences in tracking between MERLIN and SixTrack we do not expect

identical results when plotting the Poincaré sections for HEL operation modes. The

first and simplest operation mode to be implemented is the DC mode, in which the

HEL constantly runs at maximum current, and collimation enhancement relies on the

coupling with machine resonances. This is manifest in the formation of islands in the

Poincaré section as shown in Fig. 5.58.

We observe in Fig. 5.58, that in both MERLIN and SixTrack there is no perturbation

to normal particle motion inside the HEL minimum radius Rmin, this is as expected as

both models of the HEL assume no effect inside Rmin. In SixTrack islands are created

near 4 σx, whereas in MERLIN perturbations take the form of small ripples. It was

later found that the machine optics used in MERLIN was different to that in SixTrack.

Identical optics were not used because there was no way of reverse engineering the
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Figure 5.57: Poincaré section for a 64 protons in the nominal LHC, comparing SixTrack
(red), and MERLIN (green) tracking. Particles are initially populated between 0 - 10 σx.
We observe small differences at large displacement due to differences in tracking between
MERLIN and SixTrack, this could also be due to slightly different optics settings which
were found later.

existing SixTrack generated input files (from the resurrected HEL version of SixTrack)

to provide the required MERLIN input. Instead the same lattice version was used

with standard settings in MERLIN. When combined with tracking differences, this
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Figure 5.58: Poincaré section for a DC HEL in the nominal LHC, comparing SixTrack
(left), and MERLIN (right). Particles are initially populated between 0 - 10 σx. The
lack of islands in MERLIN simulations could be due to octupole and chromaticity settings
differences in the lattice used.

may account for variation between the two codes as the Poincaré sections are affected

by octupole and chromaticity settings. Octupoles drive resonances, and chromaticity

affects how the particles are swept over these resonances. The perturbations are of

similar magnitudes in both codes.

The AC mode relies on driving the betatron oscillations of the protons by modu-

lating the HEL current at a frequency in resonance with the machine tune. This mode

takes a large number of variables in order to define the modulation, all of which are

described in Chapter 4. A full investigation of this mode, including the optimisation of

the parameters used, was performed in [68], and has not been repeated using MERLIN.

Instead the optimal parameter settings (referred to as H20 in the previous investigation)

from [68] is used for all AC operation in this thesis. The effect of this mode is shown

in Fig. 5.59, where as well as the ripples caused by the DC operation, the Poincaré

sections are widened in both MERLIN and SixTrack. Tracks from SixTrack are more

diffuse than those from MERLIN, there are many possible reasons for this, including

the lack of optimisation of the AC parameters in MERLIN, and possible differences in

octupole settings.

When considering the HEL as a collimation enhancer, our aim is to force halo
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Figure 5.59: Poincaré section for an AC HEL in the nominal LHC, comparing SixTrack
(left), and MERLIN (right). Particles are initially populated between 0 - 10 σx.

particles onto collimators. The primary collimator is typically located at a position of

≈ 6σ in the respective plane. Thus our goal is to excite a proton that exists between 4 -

6 σ, to a larger transverse displacement such that it will be absorbed by the collimation

system. In the case of a DC HEL, this will only occur if the proton crosses a resonance

- accelerators are designed to minimise the probability of this. The proton must also

have a transverse displacement near that of the collimator jaw, as the HEL gives only

a small displacement in transverse phase space.

With the AC HEL, the widening of particle tracks in transverse phase space is

observed to be larger than the displacement given by the DC HEL. This means that

collimation enhancement should be greater for the AC mode when compared to the

DC mode, as more halo particles will be excited to a displacement large enough to be

intercepted by the collimation system.

Diffusive HEL operation gives a random kick to the halo on a turn by turn basis in

order to enhance the diffusion of halo particles onto a collimator. Figure 5.60 compares

the diffusive HEL operation in MERLIN and SixTrack. As expected the transverse dis-

placement in both codes is much larger than all other operation modes. Not only does

this mode offer the greatest collimation enhancement, it is not dependent on rigorous

knowledge of the machine tune as in the AC case. Comparing the maximum displace-

ment after 104 turns, shown in Fig. 5.60, we may consider MERLIN and SixTrack to
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be similar.

Figure 5.60: Poincaré section for a diffusive HEL in the nominal LHC, comparing Six-
Track (left), and MERLIN (right). Particles are initially populated between 0 - 10 σx. As
the diffusive mode is random it is difficult to compare the codes, however both MERLIN
and SixTrack cause similar growth in the Poincaré section.

By directly comparing the DC, AC, and diffusive operation modes of the HEL in

MERLIN and SixTrack, we may conclude that SixTracks additional physics processes

and thin lens tracking cause only a small difference between the two codes, there is also

a small effect from the different optics used. In reality the variation in HEL Poincaré

sections due to the differences between MERLIN and SixTrack are small, and for a

large number of particles and turns are likely to be negligible.

5.6.1.4 Real Space Footprint

A MERLIN HELHaloDistribution was used to create two LHC bunches of 103 protons,

one populated between 0 - 4 σ which will be referred to as the core, and the other pop-

ulated between 4 - 6 σ which will be referred to as the halo. These initial distributions

are shown in green in Fig. 5.61, together with their Poincaré sections for 100 turns in

purple. The HEL Rmin and Rmax are indicated in red.

From Fig. 5.61 we see that the beam is round, which is one of the reasons for the

selection of this position in the nominal LHC, we also observe that despite initially

populating the core up to a maximum of 4 σ, a very small percentage of particles may
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Figure 5.61: HEL footprint at the position of the HEL in the nominal LHC; red lines
show Rmin and Rmax, green points are the initial distribution, purple are a Poincaré section
of this bunch over 100 turns. The left plot shows an initial halo distribution between 4 -
6 σx, the right plot shows an initial core distribution between 0 - 4 σx.

have a larger transverse displacement for a few turns, and thus interact with the HEL.

As the HEL kick is very small, interaction for a small percentage of particles for only

a few turns will have a negligible effect, therefore we are not concerned with long term

tracking of the core. It is clear that for a halo distribution, particles traverse the area

inside 0 - 4 σ despite being initially populated outside this range, thus the HEL does

not necessarily operate on a halo particle at every turn.

We must also note that if simulating a halo bunch populated between 4 - 6 σ, in

the presence of a collimator with an insertion of 6 σ, a small percentage of the halo

will impact upon the collimator without the presence of a HEL. Therefore it is more

prudent to simulate a halo between 4 - 5.8 σ so that we may have negligible losses in

the case where no HEL is present in the lattice, and thus compare the HEL cleaning

enhancement to that of no enhancement when no HEL is present.

5.6.2 Collimation Enhancement Comparison

The initial distribution for HEL simulations is a HELHaloDistribution from 4 − 5.8 σ

with no longitudinal component. Figure 5.62 shows particle survival when using a HEL

in the nominal LHC at s = 10037 m. Collimator jaw openings are shown in Table 6.1.

We observe that the diffusive mode is the only one to enhance collimation in these simu-

lations. MERLIN excels over SixTrack in that it can perform full collimation scattering
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and on-line aperture checking with a HEL for many turns within a reasonable simula-

tion time, whereas previous simulations using the HEL in SixTrack omitted scattering

in order to minimise run time.

Figure 5.63 shows the effect of doubling the diffusive HEL current; particle survival

is roughly halved. The same investigation performed using SixTrack [68] is compared

in Fig. 5.63, both codes agree despite the use of full collimation scattering in MERLIN.

The impact distribution on the primary collimator is shown for these two currents in

Fig. 5.64, we observe that the doubled current increases the likelihood of larger impact

parameters.

Insertion Region Collimator Family Setting [σ]
7 Primary 6

Secondary 7
Absorber 10

3 Primary 15
Secondary 18
Absorber 20

1 Tertiary 8.3
Absorber 10

5 Tertiary 8.3
Absorber 10

6 Dump Protection 8
Secondary 7.5

2 Tertiary 30
8 Tertiary 30

Table 5.9: LHC collimation settings used for HEL simulations.
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Figure 5.62: Normalised particle survival for 105 turns in the nominal LHC, with the
HEL using various operation modes, and without a HEL (NH). The initial halo distribution
is populated between 4 - 5.8 σ, and the HEL operates between 4 - 6.8 σ. In this simulation
full collimation scattering is performed, and only the diffusive HEL operation gives some
collimation enhancement.

Figure 5.63: Normalised particle survival for 105 turns in the nominal LHC, with a
diffusive HEL, for an initial halo distribution populated between 4 - 5.8 σ, and a HEL
operating between 4 - 6.8 σ (left). Compared to a similar simulation performed with
SixTrack (from [68]) for 2 ·105 turns on the right. In both cases two sets of data are shown,
one with a diffusive HEL current of 1.2 A, and the second with double the current, 2.4 A.
MERLIN and SixTrack are in good agreement, showing similar survival after 105 turns.
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Figure 5.64: The jaw impact distribution for the primary collimator for 105 turns in the
nominal LHC, with a diffusive HEL, for an initial halo distribution populated between 4
- 5.8 σ, and a HEL operating between 4 - 6.8 σ. The top two plots are histograms of the
distributions on the left and right collimator jaws respectively. The bottom two plots show
the impacts on the jaw in transverse space. Orange shows data when using a diffusive HEL
current of 1.2 A, and the blue with double the current, 2.4 A. Increasing the HEL current
increases the impact parameter of protons on the primary collimator.
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5.6.3 HL-LHC HEL

For the HL-LHC the HEL is a promising tool for active halo control. The HEL is

not currently part of the baseline, this will be decided after operational experience of

the LHC at nominal settings (i.e. post 2016), when there is better understanding of

the collimation system performance at higher energy. In order to inform the decision,

we use numerical simulations to estimate the cleaning enhancement of a HEL in the

HL-LHC. Inevitably this depends on many factors: the hardware used, as well as the

capability of the magnet systems to shape, translate, and maintain the electron beam.

The sensitivity of cleaning enhancement on HEL operational parameters (active length,

electron current etc.) can be assessed using numerical simulations. First it is important

to identify the sensitivity to the position of the HEL in the HL-LHC. We will use beam

1 as the two beams offer similar optics.

The preliminary HEL position in RB46, 88.6 m upstream of IP4, was decided be-

cause of the available space, and the fact that there are currently no hardware conflicts

at this position. The transverse beam shape in real space (x, y) is not round at this

position. As discussed earlier the HEL beam is considered to be perfectly round. Due

to the beam shape at IP4 - 88.6 m, this will be referred to as the ‘non-round’ position.

In order to gauge the sensitivity of HEL cleaning enhancement to the HEL position,

two subsequent HEL integration points have been chosen for comparison. The first

position offers a round beam (βx ≈ βy), and is located at (s = IP4 − 30 m). This

will be referred to as the ‘round’ position. The final identified position offers a more

elliptical beam than the non-round position, and is located at (s = IP4− 119 m), this

will be referred to as the ‘oval’ position.

Figure 5.65 shows the beta functions at the three identified positions, from which

the difference in beam roundness is clear. The dispersion in this region is low as it is

an interaction point, this is shown in Fig. 5.66.

We have benchmarked the HEL process in MERLIN against that in SixTrack, and

will use MERLIN to:

1. Compare the effect of HEL operation modes at the round and non-round HEL

positions in the HL-LHC to identify any unexpected differences from the LHC

behaviour.

2. Confirm that, as expected, the HEL cleaning enhancement is reduced at the non-

round position when compared to the round position.

3. Confirm that, as expected, the HEL cleaning enhancement decreases as the beam

243



5. MERLIN VALIDATION

Figure 5.65: Beta functions at the positions of the three identified HEL locations for this

study. We see that the beam is round (
√

βx

βy
≈ 1) at the round position, and becomes less

round at the non-round and oval positions.

Figure 5.66: Dispersion functions at the positions of the three identified HEL locations
for this study. The dispersion is similar at the three positions.
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becomes less round (i.e. using the oval position).

4. Obtain the most successful existing HEL operation mode at each of the three

integration positions.

5. Propose and investigate novel geometrical operation modes to improve the clean-

ing enhancement at the non-round and oval positions, in order to negate the

expected decrease in collimation enhancement at non-round HEL positions.

6. Investigate the sensitivity of cleaning enhancement on HEL hardware parameters,

including the HEL current, the HEL beam energy, and the HEL active length.

In following this plan of research not only will we inform the design of the HL-LHC,

but we will demonstrate the use of MERLIN as a complete tool for collimation with

additional physics processes.

5.6.3.1 HEL Profile

We see from equation 3.5 that the maximum HEL kick is inversely proportional to

the HEL maximum radius Rmax. Thus at positions where the beam size is larger, the

maximum HEL kick is smaller. This is shown in Fig. 5.67, where θmax is larger for the

round beam due to the smaller beam size in x.

Figure 5.67: HEL radial kick profiles taken along the transverse horizontal axis, com-
paring the round (left) and non-round (right) positions for the LHC HEL in the HL-LHC,
where Rmin = 4 σx and Rmax = 8 σx. Both the perfect (simple) and radial models are
shown. The radial profiles are not as expected (see Fig. 5.56).
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Figure 5.67 also shows us that the radial model is no longer applicable, and gives a

θmax larger than the theoretical maximum. The radial profile is a parameterisation of

the prototype cathode which had g = Rmax
Rmin

= 1.7, whereas the LHC cathode is defined

to have g = 2 [70]. By using a radial profile, numerical studies are brought closer to

reality, thus the parameterisation for the radial profile was empirically adjusted until

the expected profile was obtained (i.e. one showing a similar relationship between

measured and theoretical profiles as in Fig. 5.56). The result is shown in Fig. 5.68.

Figure 5.68: HEL radial kick profiles taken along the transverse horizontal axis, com-
paring the round (left) and non-round (right) positions for the LHC HEL in the HL-LHC,
where Rmin = 4 σx and Rmax = 8 σx. Both the perfect (simple) and empirically adjusted
radial models are shown. The radial profiles are now as expected (similar to those in
Fig. 5.56).

The corrected radial profile will be used for all simulations that follow.

5.6.3.2 Real Space Footprint

A MERLIN HELHaloDistribution was used to create two HL-LHC bunches, one for

the core populated between 0 - 4 σ, and the other for the halo, populated between 4

- 6 σ. The initial distributions, the footprint of these bunches for 100 turns, and an

indication of Rmin and Rmax are shown in Fig. 5.69 at the non-round position, and

Fig. 5.70 for the round position.

At the non-round position we observe the larger HEL radii, and the fact that Rmin

touches the extremities of the core only in the horizontal. This results in a smaller

overlap of the beam halo and the HEL, as shown in the halo footprint (right plot).

At the round position the HEL radii are smaller in real space, and as seen for the
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Figure 5.69: HEL footprint at the non-round position of the HEL in the HL-LHC; red
lines show Rmin and Rmax, green points are the initial distribution, purple are a Poincaré
section of this bunch over 100 turns. The left plot shows an initial core distribution between
0 - 4 σx, the right plot shows an initial halo distribution between 4 - 6 σx. We see that at
the non-round position the HEL does not optimally cover the halo as in Fig. 5.70.

nominal LHC case, a small percentage of the core has a transverse displacement larger

than 4 σ for a small number of turns. As the beam is nearly round (βxβy ≈ 1.01),

Rmin encloses the extremities of the core, meaning a complete overlap with the initial

halo. Due to the reduced overlap and thus interaction with the halo at the non-round

position, we expect the HEL cleaning enhancement to be reduced when compared to

the round position.

In order to improve the cleaning enhancement where the beam is not round, the first

novel HEL operation is the elliptical matching proposed in Chapter 3. The resulting

footprint of the HEL in the non-round and oval positions are compared in Fig. 5.71. In

both cases we choose to match the HEL inner radius to the vertical maximum of the

bunch in real space. We see that the HEL radii are larger at the oval position because

of the need to avoid any overlap with the beam core.

The second approach to negate the decrease in collimation enhancement at non-

round beam positions is the Pogo operation mode. As discussed in Chapter 3 this

is possibly more practical than the Hula operation, and may represent more realistic

cleaning enhancement in long term numerical simulations. The Pogo operation mode

for the non-round and oval positions are compared in Fig. 5.72. In the case we are

interested in, i.e. where the beam is larger in x, the Pogo operation alternates the

elliptical matching between the vertical maxima.
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Figure 5.70: HEL footprint at the round position of the HEL in the HL-LHC; red lines
show Rmin and Rmax, green points are the initial distribution, purple are a Poincaré section
of this bunch over 100 turns. The left plot shows an initial core distribution between 0 -
4 σx, the right plot shows an initial halo distribution between 4 - 6 σx.

The next approach to improving cleaning enhancement at non-round beam positions

when using the HEL, is the Hula mode of operation proposed in Chapter 3. In this first

dynamic HEL operation mode, we choose to elliptically match the HEL to the vertical

maxima, and then translate this HEL around the bunch such that Rmin touches each

horizontal and vertical extremity. This is done in the order shown in Fig. 5.73 in

order to imitate a clockwise rotation in real space. As discussed in Chapter 3, this

is an approximation as in reality it may not be possible to re-size and translate the

HEL beam on a turn by turn basis, it is more likely that many more steps may be

required between these maxima, which is likely to reduce the increase in collimation

enhancement. Thus we take the Hula operation mode as a best case scenario.

We note that with the Hula operation the HEL no longer covers both sides of the

horizontal halo at once, thus decreasing halo coverage. To improve this we use the Close

Hula dynamic operation mode. Here the HEL is translated and re-sized each time to

allow the smallest possible Rmin and thus the maximum halo coverage, as shown in

Fig. 3.19.

The results of the HL-LHC HEL simulations are presented in Chapter 6, section 6.2.
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Figure 5.71: HEL footprint for elliptical operation of the HEL in the HL-LHC; blue
points indicate the HEL footprint, green points are the core protons, purple are the halo
protons. The left plot shows the non-round position, the right plot shows the oval position.

Figure 5.72: HEL footprint for Pogo operation of the HEL in HL-LHC; blue points
indicate the HEL footprint odd turns, yellow points indicate the HEL footprint on even
turns, green points are the core protons, purple are the halo protons. The left plot shows
the non-round position, the right plot shows the oval position.
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Figure 5.73: HEL footprint for Hula operation of the oval HEL in the HL-LHC; blue and
yellow points indicate the HEL footprint, green points are the core protons, purple are the
halo protons. The top left plot shows the first and fifth turn, the top right plot shows the
second turn, the bottom left plot shows the third turn, and the bottom right plot shows
the fourth turn.
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Results

In this chapter we present the results of novel simulations of the LHC and HL-LHC

collimation system, including the effect of dispersion suppressor collimators and novel

composite collimator jaw materials on loss maps, and an integration study of the HEL

in the HL-LHC.

6.1 Collimation

6.1.1 Nominal LHC

The 7 TeV beam 1 LHC is used to confirm the effect of composite materials over

pure elements when simulating collimator jaws, then to produce loss maps with novel

collimator materials.

Table 6.1 shows the collimator settings used for the nominal LHC collimation simu-

lations. The initial distribution used is similar to that in the 6.5 TeV beam 2 simulation,

without any longitudinal component. A halo distribution in MERLIN is used with an

impact parameter of 1µm on the primary collimator, a 2σ Gaussian in yy′ phase space

is used. 6D symplectic tracking is used in all of the following simulations unless stated

otherwise.
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Insertion Region Collimator Family Setting [σ]
7 Primary 6

Secondary 7
Absorber 10

3 Primary 15
Secondary 18
Absorber 20

1 Tertiary 8.3
Absorber 10

5 Tertiary 8.3
Absorber 15

6 Dump Protection 8
Secondary 7.5

2 Tertiary 25
Injection 999

8 Tertiary 25

Table 6.1: LHC collimator settings used for the nominal 7 TeV LHC beam 1 simulations
in SixTrack and MERLIN.
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6.1.1.1 Effect of Composite Materials

Loss map simulations were run using pure elements as collimator jaw materials (car-

bon, copper, tungsten), and compared to those run using composite materials (CFC,

Glidcop, Inermet). The full 7 TeV lattice is shown in Fig. 6.1, and IR7 in Fig. 6.2. Ta-

ble 6.2 shows the differences in losses in IR7, and that composite materials give slightly

fewer losses over the entire LHC. As in the 6.5 TeV case, the composite simulation gives

around 5% fewer losses in the primaries, 15% more secondary losses, and around twice

the number of absorber losses, in IR7. The use of composites results in an increase

in cold losses throughout the machine, and a small but important redistribution of

losses. As loss location and magnitude prediction in the real machine is our goal, these

significant differences show the necessity of accurately modelling composite materials.

Fewer interactions in the primary collimators when using CFC AC150K (as seen

in the 0.5 m test case in Chapter 5) leads to more protons escaping and forming the

secondary halo. This in turn gives rise to an increase in secondary losses. In the

case of absorber losses we have observed in Chapter 5 (Table 5.3) that the composite

implementation of Inermet appears to give a slightly larger inelastic contribution to the

total cross section. Together with the increase in the secondary halo that escapes from

the primary collimator, this is the reason for the rise in absorber losses. The increased

DS losses are due to the increase in the single diffractive contribution to the total cross

section in the primary collimators given when using CFC AC150K rather than pure

carbon, together with the increase in particles escaping the primary collimators. Thus

we confirm what was identified in the 6.5 TeV loss map validation simulations.

Figure 6.3 shows the distribution of protons impacting upon the most loaded sec-

ondary collimator, comparing the pure and composite material cases. When using pure

materials the losses are slightly more concentrated on the outer (negative) jaw. This

indicates that large momentum transfer interactions are more frequent in CFC AC150K

than pure carbon. This has already been identified in the previous chapter. As Fig. 6.3

shows the probability density function it is not shown that there are around 20% more

impacts when using composite materials, as more particles escape the primary collima-

tors.
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Figure 6.1: Loss maps for beam 1 of the nominal LHC comparing the use of pure elements
for collimator jaws (above) with composite materials (below). Using composites gives rise
to an overall decrease in collimator losses and a small increase in cold losses. This shows
the importance of modelling materials as composites.
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Figure 6.2: Loss map for beam 1 of the nominal LHC comparing the use of pure elements
for collimator jaws (above) with composite materials (below), showing losses in IR7. When
using composites more protons escape the primary collimators. This gives rise to more
secondary, absorber, and cold losses.
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Pure Composite
Entire LHC Collimator 6116063 6076341

Cold 1525 1950
Warm 16 61

IR7 Collimator 6111836 6069342
(Primary) 5135092 4908907
(Secondary) 972142 1151514
(Absorber) 4602 8921

Cold 1404 1766
Warm 14 57

IR3 Collimator 1649 1955
Cold 32 58
Warm 2 4

Table 6.2: Breakdown of losses in loss maps for beam 1 of the 7 TeV LHC, comparing
the use of pure elements and composites for collimator jaw materials.

Figure 6.3: Particle impact distribution in the transverse plane for the most loaded
secondary collimator TCSG.B5L7.B1, comparing the use of pure and composite materials
for secondary collimator jaws. The distribution of losses is changed when using composites,
again highlighting the need for proper treatment of materials as this can greatly effect loss
location prediction.
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6.1.1.2 Effect of Novel Materials

We replace primary collimators with those made of novel materials in order to observe

the effect on loss maps. The more likely scenario is that the secondary collimators in

the LHC will be replaced for HL-LHC.

Figure 6.4 shows the loss map for MoGr primary collimators, and compares to a

similar simulation run with SixTrack. We note that the collimator settings in SixTrack

are slightly different, as the tertiary collimators in IR2 and IR8 are inserted, whereas

they are more relaxed in the MERLIN simulation. IR7 is compared in Fig. 6.5 for

the same simulations, it is clear that there are more DS losses in MERLIN, as well

as extra collimators (one primary and one secondary) which is likely due to the use

of a newer lattice in MERLIN simulations. Other than these missing collimators and

the difference in cold DS losses, the loss patterns appear similar. The use of CuCD

primary collimators is shown and compared with SixTrack in Fig. 6.6, with IR7 shown

in Fig. 6.7. In both MERLIN and SixTrack there is a significant reduction in the DS

losses in IR7 when using CuCD rather than MoGr as the primary collimator material.

As the collimator settings are different in SixTrack these loss maps are only com-

pared to show the agreement in the reduction of IR7 DS losses when using novel primary

collimator materials. We may quantitatively compare the difference in losses using Ta-

ble 6.3, which details the breakdown of important loss locations and magnitude when

using novel composite materials for primary or secondary collimators in MERLIN.

Table 6.4 displays this information in IR7 as a percentage of losses obtained with stan-

dard composite collimators. When replacing the primary collimators with those made

of novel composites, there is a 1% increase in primary losses, and a reduction in sec-

ondary losses. MoGr gives a 22% decrease in the IR7 DS losses, however CuCD gives

a much larger decrease at 48% when compared to standard collimator materials. This

indicates the benefit of using these novel materials as they offer an improvement in

proton absorption.

Due to the requirements of robustness, it is more likely that secondary collimators

will be replaced with novel composite materials. Loss maps generated from simulations

with novel secondary collimator materials are compared with those using standard

composites. The full loss map when using CuCD is shown in Fig. 6.8, from which we

observe a reduction in most losses outside of IR7. Looking closely at IR7 in Fig. 6.9

we remark that primary losses are identical as expected, with a small but noticeable

decrease in some secondary losses, and the absorbers. Cold DS losses in IR7 appear

to be slightly reduced, Table 6.4 shows that there is a 9% decrease. Though there are
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few losses in IR3, fewer losses are recorded when using CuCD secondary collimators as

shown in Table 6.3.

The loss map generated with MoGr secondary collimators is shown in Fig. 6.10, the

reduction in losses post-IR7 is not so obvious. IR7 is shown in Fig. 6.11, from which we

observe identical primary losses, similar secondary losses, and a perceivable difference

in absorber losses. There appears to be no reduction in DS losses, which is confirmed in

Table 6.4 which shows a 1% increase. It is interesting to note that IR3 losses, shown in

Table 6.3, are almost identical, implying that MoGr is much less effective than CuCD

in reducing the halo escaping from IR7. Replacing secondary collimator jaws with

novel composite materials thus offers comparable cleaning to existing materials, whilst

offering other advantages not observable from loss maps, such as increased robustness

and reduced impedence.

Figure 6.12 shows the impact distribution of protons on the most loaded secondary

collimator, comparing the use of CuCD and MoGr as primary collimator materials.

Not shown is the fact that there are ≈ 30% fewer impacts from CuCD primaries,

a result of more inelastic interactions in CuCD, summarised in Table 6.3. It is more

probable for a secondary halo particle from MoGr primaries to impact upon the positive

jaw, a consequence of reduced rigidity due to large momentum transfer scatters, in

this case due to the slightly larger contribution of single diffractive interactions. The

dp distribution of particles impacting upon the most loaded secondary collimator is

shown in Fig. 6.13. It is evident that the probability distributions are identical for all

primary collimator materials, with the 0.12 GeV cut-off a hallmark of the advanced

single diffractive algorithm, showing that this collimator is dominated by particles that

have undergone a single diffractive interaction in the primaries.

The loss distribution in the most loaded secondary collimator is shown in Fig. 6.14,

from which we observe a hierarchy dominated by the mean free path of each material.

As CuCD has a mean free path almost half that of MoGr, there is an increased likelihood

of inelastic interactions occurring at the start of the collimator.

It is evident that using novel materials in primary collimators provides the best

improvement to DS losses, a reduction of 40% is obtained with CuCD which appears

more promising than MoGr.
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Figure 6.4: Loss map for beam 1 of the nominal LHC, comparing MERLIN (above) with
SixTrack [93] (below) using MoGr for primary collimator jaws. As there are more primary
and secondary collimators present in the MERLIN simulation (due to using a newer lattice),
fewer protons escape IR7. In the SixTrack simulations the tertiary collimators in IP2 and
IP8 are inserted, which explains the collimator losses around s = 23000 and s = 3000 m.
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Figure 6.5: Loss map for beam 1 of the nominal LHC in IR7, comparing MERLIN (above)
with SixTrack [93] (below) using MoGr for primary collimator jaws. The extra collimators
in the MERLIN simulation are evident.
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Figure 6.6: Loss map for beam 1 of the nominal LHC, comparing MERLIN (above) with
SixTrack [93] (below) using CuCD for primary collimator jaws.
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Figure 6.7: Loss map for beam 1 of the nominal LHC in IR7, comparing MERLIN
(above) with SixTrack [93] (below) using CuCD for primary collimator jaws. In both codes
we observe a significant decrease in cold losses in IR7 as compared to using MoGr primary
collimators.
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Figure 6.8: Loss map for beam 1 of the nominal LHC, comparing the use of CFC (above)
with CuCD (below) for secondary collimator jaws. We observe a decrease in cold losses
throughout the machine when using CuCD secondary collimators.
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Figure 6.9: Loss map for beam 1 of the nominal LHC in IR7, comparing the use of
CFC (above) with CuCD (below) for secondary collimator jaws. We observe a decrease in
cold and absorber losses in IR7 due to the increase in inelastic scattering events in CuCD
secondary collimators as compared to CFC.
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Figure 6.10: Loss map for beam 1 of the nominal LHC, comparing the use of CFC (above)
with MoGr (below) for secondary collimator jaws. There appears to be less of a difference
in cold losses when compared to using CuCD for secondary collimator jaws.
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Figure 6.11: Loss map for beam 1 of the nominal LHC in IR7, comparing the use of CFC
(above) with MoGr (below) for secondary collimator jaws. Similar to CuCD we observe
a reduction in cold and absorber losses due to an increase in inelastic scattering events in
MoGr secondary collimators. This is not as pronounces as when using CuCD however.
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Figure 6.12: Particle impact distribution in the transverse plane for the most loaded
secondary collimator TCSG.B5L7.B1, comparing the use of CuCD and MoGr for primary
collimator jaws. The inside jaw receives more impacts, and the novel materials give different
impact distributions.

Figure 6.13: Particle impact distribution in dp at the most loaded secondary collimator
TCSG.B5L7.B1, comparing the use of pure elements, standard composites, CuCD, and
MoGr for primary collimator jaws. All of these distributions are similar, and show the
characteristic cut-off from single diffractive scattering in the primary collimator.
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Figure 6.14: Loss distribution in s at the most loaded secondary collimator
TCSG.B5L7.B1, comparing the use of pure elements, standard composites, CuCD, and
MoGr for secondary collimator jaws. CuCD has the shortest mean free path, giving a loss
distribution skewed more towards the start of the collimator.

Region Type Losses
MoGr CuCD MoGr CuCD

Primary Primary Secondary Secondary
Entire LHC Collimator 6133915 6155375 6077073 6076465

Cold 1519 836 1936 1749
Warm 54 58 16 4

IR7 Collimator 6127191 6150336 6072520 6073432
(Primary) 5151768 5458136 4902892 4899948
(Secondary) 966973 685110 1164456 1171704
(Absorber) 8450 7090 5172 1780

Cold 1375 740 1791 1609
Warm 54 57 15 3

IR3 Collimator 1522 850 1916 1819
Cold 52 28 51 51
Warm 0 1 1 1

Table 6.3: Breakdown of losses in loss maps for beam 1 of th 7 TeV LHC, comparing the
use of novel composites MoGr and CuCD for primary or secondary collimator jaw materials
in MERLIN.
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MoGr CuCD MoGr CuCD
Primary Primary Secondary Secondary

IR7 Collimator +1% +1% +0% +0%
(Primary) +5% +11% +0% +0%
(Secondary) -15% -40% +1% +2%
(Absorber) -5% +26% -42% -80%

DS -22% -48% +1% -9%

Table 6.4: Percentage change in losses for beam 1 of the 7 TeV LHC, comparing the use
of novel composites as primary or secondary collimator jaw materials, with the standard
composites currently used.
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Insertion Region Collimator Family Setting [σ]
7 Primary 6

Secondary 7
Absorber 10
TCLD 999 / 10

3 Primary 15
Secondary 18
Absorber 20

1 Tertiary 8.3
Absorber 10

5 Tertiary 8.3
Absorber 10

6 Dump Protection 8
Secondary 7

2 Tertiary 8.3
8 Tertiary 8.3

Table 6.5: HL-LHC collimation settings used for loss map simulations.

6.1.2 HL-LHC

We begin by observing the effect of standard and novel composite materials on loss map

results, and then move on to look at the implementation of TCLD dispersion suppressor

collimators, before studying the hollow electron lens as a collimation enhancer. Version

1.2.1 of the beam 1 HL-LHC lattice was used for these simulations, with collision

optics and two thick lens TCLDs in IR7. The horizontal beta and dispersion functions

calculated in MERLIN are compared with that of those calculated in MADX in Fig. 6.15

and 6.16 respectively. MERLIN is identical to MADX as expected. The collimator

settings used for these loss map simulations are detailed in Table 6.5. The initial

distribution used is similar to that in the 7 TeV simulations, a horizontal halo with no

longitudinal component and an impact parameter of 1 µm, as shown in Figures 6.17

to 6.19.
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Figure 6.15: βx function for beam 1 of the HL-LHC, MERLIN (blue) is compared to
MADX (orange)in the top plot. The bottom plot shows the difference between MERLIN
and MADX, which is made using an interpolation algorithm. The difference is small, and
is due to the number of significant figures used in the data.
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Figure 6.16: Dispersion Dx function for beam 1 of the HL-LHC, MERLIN (blue) is
compared to MADX (orange).

Figure 6.17: Initial distribution for the HL-LHC beam 1 simulations, showing normalised
transverse space.
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Figure 6.18: Initial distribution for the HL-LHC beam 1 simulations, showing normalised
xx′ phase space.

Figure 6.19: Initial distribution for the HL-LHC beam 1 simulations, showing normalised
yy′ phase space.
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6.1.2.1 Effect of Composite Materials

Once more we compare the effect of using composite materials with pure elements for

collimator jaws. Figure 6.20 compares the loss maps for the full LHC, and Fig. 6.21

shows IR7. The differences are much the same as in the 7 TeV case: there are more

total losses with pure elements, ≈ 30% more cold losses when using composites, as well

as more primary losses and twice the absorber losses in IR7. More losses occur in IR3

with composites, as shown in Table 6.6 which gives a full breakdown of losses.

The transverse impact distribution on the most loaded secondary collimator in IR7

is shown in Fig. 6.22, and the dp distribution is shown in Fig. 6.23. These show the

same trends as in the nominal LHC, with a small shift towards the most loaded jaw

when using pure elements, and the opposite when using composites. The dp distribu-

tion shows how the new single diffractive algorithm provides the hallmark of particles

that have undergone such an interaction in the primaries and escape to dominate this

collimators impacts.

The differences between the secondary halo escaping the pure and composite pri-

mary collimators in IR7 and impacting upon this collimator are very similar to the

nominal LHC case. A 16% increase in IR7 secondary collimator losses occurs when

switching pure elements with composite materials. This is smaller than the 26% in

6.5 TeV, and 18% in nominal loss maps. The use of composite materials reveals larger

cold losses in the dispersion suppressor magnets following the betatron collimation

insertion. This is important when considering the dispersion suppressor collimators

(TCLDs), which are added in the next section.

Pure Composite
Entire LHC Collimator 6353351 6330894

Cold 3060 3915
Warm 15 39

IR7 Collimator 6298590 6269523
(Primary) 5250714 5046364
(Secondary) 1042435 1213363
(Absorber) 5441 9796

Cold 2174 2585
Warm 14 37

IR3 Collimator 968 1195
Cold 0 4
Warm 1 2

Table 6.6: Breakdown of losses in loss maps for beam 1 of the HL-LHC, comparing the
use of pure elements and composites for collimator jaw materials.
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Figure 6.20: HL-LHC loss maps comparing the use of pure elements (above) with com-
posite materials (below) for collimator jaws. The losses appear quite similar, though there
are differences which are summarised in Table 6.6.
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Figure 6.21: HL-LHC loss maps comparing the use of pure elements (above) with com-
posite materials (below) for collimator jaws in IR7. When using composites more protons
escape the primary collimators, giving rise to an increased loss in secondary collimators,
absorbers, and cold elements in the dispersion suppressor region.
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Figure 6.22: Particle impact distribution at the most loaded secondary collimator
TCSG.B5L7.B1, comparing the use of pure elements and standard composites for sec-
ondary collimator jaws.

Figure 6.23: Particle impact distribution in dp at the most loaded secondary collimator
TCSG.B5L7.B1, comparing the use of pure elements and standard composites for secondary
collimator jaws. Again the cut-off is ascribed to single diffractive interactions in the primary
collimators.
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Figure 6.24: Loss distribution in s at the most loaded secondary collimator
TCSG.B5L7.B1, comparing the use of pure elements, and standard composites for sec-
ondary collimator jaws.
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6.1.2.2 Effect of Dispersion Suppressor Collimators

The TCLDs post betatron collimation insertion in IR7 were closed to 10σ in order to

predict their effectiveness in reducing cold losses in the DS region. The TCLD jaws are

made of Inermet180 R©. The beta and dispersion functions in x are shown in Fig. 6.25

and Fig. 6.26 respectively, and Table 6.7 details the half gaps in m. The dispersion

increases after the collimation insertion (19.8 - 20.2 km), the TCLDs are positioned

on this steep rise in order to intercept particles that have undergone single diffractive

scattering in the collimation insertion and escape it, as observed in LHC operation.

Using standard composite materials for collimator jaws, the loss maps using 0, 1,

and 2 TCLDs are shown in Fig. 6.27, where the use of one TCLD means the first only

(TCLD.8R7.B1). It is evident that the presence of one TCLD reduces the cold DS

losses and the majority of cold losses in the machine, and the addition of the second

TCLD reduces almost all cold losses. In future work the secondary collimator in IR6

should be given a more relaxed jaw opening in order to reduce the impact on this

loss map. We also see that momentum collimation losses are reduced greatly with two

TCLDs closed, this hints at a violation of the momentum collimation hierarchy as a

TCLD becomes the primary momentum collimator. As this loss map is for betatron

collimation and not momentum collimation this is not conclusive.

IR7 is shown in Fig. 6.28, in which the reduction in DS losses is clear, there is a

94 % reduction with a single TCLD, and 96 % with both. A breakdown of losses is

given in Table 6.8, from which we see that the second TCLD appears to violate the

momentum collimation hierarchy.

We observe that the use of two TCLDs post IR7 closed at 10 σ, removes nearly

all DS cold losses, and in fact the momentum halo escaping the betatron collimation

insertion. This raises a concern however as it appears that the second TCLD acts as the

primary momentum collimator, this (under normal operation with an off-momentum

halo) is likely to cause more DS losses as particle showers escape the TCLD under high

load.

Off-momentum halo studies with TCLDs have been performed [99], the preliminary

findings of which indicate that a jaw opening of 12.5 σ does not violate the momentum

cleaning hierarchy, however at 10 σ the TCLDs become primary momentum collimators.

This has been shown to reduce the efficiency of the momentum collimation system,

and cause cold DS losses as a secondary momentum halo is created in a region with

no downstream secondary collimators. This is a cause for concern as it limits the

effectiveness of the TCLDs, further study is required in this area.
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Figure 6.25: βx function at IR7 for beam 1 of the HL-LHC, MERLIN (blue) is compared
to MADX (orange).

Figure 6.26: Dispersion Dx function at IR7 for beam 1 of the HL-LHC, MERLIN (blue)
is compared to MADX (orange).
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Parameter TCLD.8R7 TCLD.10R7
s [m] 20287.06 20366.59
βx [m] 32.34 46.55
βy [m] 126.04 133.2
Half Gap [σ] 10 10
Half Gap [m] 0.00121 0.00146

Table 6.7: HL-LHC collimation settings used for HEL simulations.

Region Type Losses
Composite Composite Composite
0 TCLDs 1 TCLD 2 TCLDs

Entire LHC Collimator 6330894 6333244 6333252
Cold 3915 1272 1231
Warm 39 58 49

IR7 Collimator 6269523 6273292 6275564
(Primary) 5046364 5047076 5047224
(Secondary) 1213363 1212470 1211859
(Absorber) 9796 9771 9639
(TCLD8) - 3975 4007
(TCLD10) - - 2835

Cold 3915 224 160
Warm 39 53 49

IR3 Collimator 1195 1220 11
Cold 4 3 0
Warm 2 5 0

Table 6.8: Breakdown of losses in loss maps for beam 1 of the HL-LHC, comparing losses
with 0, 1, or 2 TCLD jaws closed to 10 σ, using standard composite materials for collimator
jaws. 1 TCLD refers to the first downstream of IR7 - TCLD.8R7.B1, 2 TCLDs refers to
both this and the next downstream TCLD.10R7.B1.
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Figure 6.27: HL-LHC loss maps comparing the use of 0, 1, and 2 TCLDs with composite
materials for collimator jaws. There is a clear reduction in cold losses from protons escaping
the betatron collimation insertion. The reduction of losses in the momentum cleaning
insertion (around s = 6500 m) indicates that the momentum cleaning hierarchy has been
violated.
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Figure 6.28: HL-LHC loss maps comparing the use of 0, 1, and 2 TCLDs with composite
materials for collimator jaws in IR7. We confirm that nearly all cold losses in the dispersion
suppressor are mitigated with the use of two TCLDs.
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6.1.2.3 Effect of Novel Materials

Novel composites are being investigated in order to provide an efficient HL-LHC col-

limation insertion. It is envisioned that such materials will replace the current CFC

AC150K R© secondary collimator jaws. As such they were replaced in MERLIN in order

to compare the effect on loss maps, firstly with TCLD jaws open. Full loss maps using

the standard composite CFC AC150K R©, and novel materials MoGr and CuCD are

shown in Fig. 6.29.

These loss maps appear similar, with CuCD resulting in reduced collimator losses

at the interaction points 8, 1, and 5. The breakdown of losses is given in Table 6.9,

from which it is clear that there is a similar total loss in all cases, which is what

we expect from the previous nominal LHC investigation. We see the reduction in

IR7 absorber losses when using novel composites, indicating a reduction in the halo

escaping the primary and secondary collimators. In the nominal LHC case the use

of novel secondary collimator materials did not have a great impact on the cold DS

losses in IR7, however in the HL-LHC case there is a clear reduction without the use of

TCLDs, with a reduction of 44% for CuCD, and 42% for MoGr. There is no noticeable

effect on the momentum collimation insertion losses.

The requirement for novel collimator jaw materials in the HL-LHC is driven by

impedance and robustness, for which these materials are believed to offer an improve-

ment over CFC [47]. Here we have shown that MoGr and CuCD offer some improve-

ment over CFC. When using novel composites as secondary collimator jaw materials

it is clear that MoGr and CuCD behave similarly, and both materials offer compara-

ble efficiency to the CFC AC150K R© jaws currently used, with a significant reduction

in the cold DS losses post collimation. The cold DS magnets are the loss location of

greatest concern in the LHC, and with higher luminosity their protection is a necessity.

Therefore we conclude that MoGr and CuCD are suitable for secondary jaw materials

in the HL-LHC, assuming they offer improved mechanical properties (i.e. related to

robustness and impedance) over CFC.
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Region Type Losses
Composite CuCD MoGr
0 TCLDs 0 TCLDs 0 TCLDs

Entire LHC Collimator 6330894 6324299 6322987
Cold 3915 2995 3140
Warm 39 3 18

IR7 Collimator 6269523 6289275 6284774
(Primary) 5046364 5047412 5050741
(Secondary) 1213363 1239002 1227394
(Absorber) 9796 2861 6639

Cold 3915 2206 2281
Warm 39 0 16

IR3 Collimator 1195 1033 1067
Cold 4 3 1
Warm 2 3 2

Table 6.9: Breakdown of losses in loss maps for beam 1 of the HL-LHC, comparing losses
standard composite materials, and the novel composites CuCD and MoGr for collimator
jaws. TCLDs are open in these simulations.
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Figure 6.29: HL-LHC loss maps comparing AC150K, CuCD, and MoGr composite ma-
terials for collimator jaws, with TCLDs open. As shown in Table 6.9 MoGr and CuCD
reduce the halo leakage from IR7 by a small amount when compared to CFC, resulting in
fewer cold losses throughout the machine.
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Figure 6.30: HL-LHC loss maps comparing AC150K, CuCD, and MoGr composite ma-
terials for collimator jaws, with TCLDs open, showing IR7. Though it is not evident, the
total cold loss in IR7 is reduced by approx 40% when using the novel composites MoGr or
CuCD for secondary collimators when compared to CFC.
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6.1.2.4 Effect of TCLDs with Novel Materials

Finally we add the TCLD collimators in IR7 whilst using novel materials for secondary

collimators. First we consider CuCD, the full loss maps with 0, 1, and 2 TCLDs

are shown in Fig. 6.31, and IR7 in Fig. 6.32. When comparing to the loss maps

with standard composites in Fig. 6.20 we note a clear reduction in the IP5 tertiary

collimators, the IR6 secondary collimator, and IP8 tertiary. These are all due to the

reduction in halo particles escaping the betatron collimation insertion. In IR7 the

loss pattern in the collimation insertion is identical until the DS region as expected.

Compared to the standard composite materials fewer particles are lost in the TCLDs,

indicating a smaller load on these collimators. As in the standard composite case, one

TCLD reduces the cold DS losses greatly, though fewer particles escape the betatron

collimation insertion. The reduction is 90% and 97% for one and two TCLDs, which is

similar to the 94% and 96% in the standard composite case.

In the case of MoGR secondary collimators, the full loss maps are shown in Fig. 6.33,

and IR7 in Fig. 6.34. There are again reductions in collimator losses in IR8, IR1, and

IR6 when compared to the standard composite loss maps, however not as significant

as the CuCD loss maps. As more particles escape the betatron collimation insertion as

compared to CuCD, there are more TCLD losses. The reduction in cold DS losses in

IR7 is 90% and 96% which is almost identical to CuCD.

The impact distributions for the TCLDs in cell 8 and 10 of IR7 are shown in Fig. 6.35

and Fig. 6.36 respectively. Comparing the three materials (where composite is CFC

AC150K) there appears to be little difference on the negative jaw, with fewest impacts

on the TCLD.8R7 positive jaw when using MoGr. It is interesting to note that in both

cases the majority of particle impacts occur on the negative jaw, for beam 1 positive

x points outwards, thus the single diffractive losses will be on the negative jaw due to

reduced rigidity. In the case of the cell 10 TCLD it appears that a one sided collimator

may be sufficient for proton cleaning in this case, which could reduce contributions to

the machine impedance. The transverse impacts have a range of a few mm, which is

much larger than the previously examined secondary collimator which had a range of

a few cm. This means that the alignment and jaw gap settings for these collimators

are extremely important. Together with the concern of momentum cleaning hierarchy

violation these collimators require special attention in future studies.

The loss distributions in s and dp are shown in Fig. 6.37 and Fig. 6.38 respectively.

Both show that the losses are more concentrated at the start of the collimator when

compared to the previously investigated most loaded secondary IR7 collimator. Though
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these simulations use a 1 m active length it is likely that due to space constrains between

two 11 T magnets the actual TCLD active length will be 0.6 m, which should be

sufficient according to these plots. There appears to be little influence from secondary

collimator material, in reality there is a difference in the number of losses, the most

with CFC AC150K, then MoGr, and finally CuCD.

As in the standard composite case, the violation of the momentum collimation

hierarchy is hinted at with novel materials. A breakdown of CuCD losses is shown in

Table 6.10, and MoGr in Table 6.11. In all cases the total number of losses increase

as TCLDs are added, and the reduction in cold losses is similar. This indicates that

MoGr and CuCD are viable alternatives to secondary collimator jaw materials, though

as previously mentioned, other material aspects are under study. It appears that CuCD

offers a slight benefit over MoGr as more particles are cleaned in IR7.

In conclusion the novel composite secondary collimators show a reduction in the

halo escaping from the betatron collimation insertion when compared to existing CFC

jaws, and CuCD provides the greatest improvement in this sense. The use of 2 TCLDs

is preferable in terms of reducing cold losses in the machine which are due to the

escaping halo from the betatron collimation insertion, however there is a concern for

the momentum collimation hierarchy at a TCLD jaw opening of 10 σ.

Region Type Losses
CuCD CuCD CuCD

0 TCLDs 1 TCLD 2 TCLDs
Entire LHC Collimator 6324299 6325878 6326852

Cold 2995 869 678
Warm 3 6 1

IR7 Collimator 6289275 6291183 6294364
(Primary) 5047412 5047001 5047996
(Secondary) 1239002 1238678 1238312
(Absorber) 2861 2844 2818
(TCLD8) - 2660 2640
(TCLD10) - - 2598

Cold 2206 227 67
Warm 0 4 1

IR3 Collimator 1033 1009 14
Cold 3 0 0
Warm 3 2 0

Table 6.10: Breakdown of losses in loss maps for beam 1 of the HL-LHC, comparing
losses with 0, 1, or 2 TCLD jaws closed to 10 σ, using CuCD for secondary collimator
jaws. 1 TCLD refers to the first downstream of IR7 - TCLD.8R7.B1, 2 TCLDs refers to
both this and the next downstream TCLD.10R7.B1.
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Region Type Losses
MoGr MoGr MoGr

0 TCLDs 1 TCLD 2 TCLDs
Entire LHC Collimator 6322987 6325458 6325765

Cold 3140 937 732
Warm 18 14 15

IR7 Collimator 6284774 6287967 6290726
(Primary) 5050741 5051608 5050581
(Secondary) 1227394 1226329 1227575
(Absorber) 6639 6686 6614
(TCLD8) - 3344 3240
(TCLD10) - - 2716

Cold 2281 224 101
Warm 16 13 15

IR3 Collimator 1067 1049 15
Cold 1 1 0
Warm 2 1 0

Table 6.11: Breakdown of losses in loss maps for beam 1 of the HL-LHC, comparing
losses with 0, 1, or 2 TCLD jaws closed to 10 σ, using MoGr for secondary collimator jaws.
1 TCLD refers to the first downstream of IR7 - TCLD.8R7.B1, 2 TCLDs refers to both
this and the next downstream TCLD.10R7.B1.
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Figure 6.31: HL-LHC loss maps with CuCD for secondary collimator jaws, comparing
the use of 0, 1, and 2 TCLDs. There is a clear reduction in cold losses throughout the
machine, however momentum collimation hierarchy violation is also observed when using
two TCLDs.
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Figure 6.32: HL-LHC loss maps with CuCD for secondary collimator jaws, comparing
the use of 0, 1, and 2 TCLDs, showing IR7. We notice that all cold losses in the dispersion
suppressor are mitigated with the use of two TCLDs and CuCD secondary collimators.
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Figure 6.33: HL-LHC loss maps with MoGr for secondary collimator jaws, comparing
the use of 0, 1, and 2 TCLDs. Again there is a clear reduction in cold losses throughout
the machine, however momentum collimation hierarchy violation is observed when using
two TCLDs.

293



6. RESULTS

Figure 6.34: HL-LHC loss maps with MoGr for secondary collimator jaws, comparing the
use of 0, 1, and 2 TCLDs, showing IR7. We see that nearly all cold losses in the dispersion
suppressor are mitigated with the use of two TCLDs and MoGr secondary collimators.
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Figure 6.35: Jaw impact distribution for TCLD.8R7 comparing the effect of CFC (la-
belled Composite), CuCD, and MoGr secondary collimator materials. The TCLD collima-
tor is always constructed from IMET180. The losses are nearly all on the inside jaw as this
collimator is dominated by protons that have undergone a single diffractive interaction in
the previous collimators.
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Figure 6.36: Jaw impact distribution for TCLD.10R7 comparing the effect of CFC (la-
belled Composite), CuCD, and MoGr secondary collimator materials. The TCLD colli-
mators are always constructed from IMET180. In this case the losses are all (bar one)
on the inside jaw as this collimator is dominated by protons that have undergone a single
diffractive interaction in the previous collimators.
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Figure 6.37: Loss distribution for TCLD.8R7 and TCLD.10R7 comparing the effect of
CFC AC150K, CuCD, and MoGr secondary collimator materials. The TCLD collimator is
always constructed from IMET180. This indicates that a length of 0.6 m may be sufficient
for these collimators.
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Figure 6.38: δ distribution of lost protons in TCLD.8R7 and TCLD.10R7 comparing
the effect of CFC AC150K, CuCD, and MoGr secondary collimator materials. The TCLD
collimator is always constructed from IMET180.
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6.1.3 Summary

Using the merged and updated version of MERLIN, we have observed the effect of using

composite materials over pure elements when simulating proton scattering at different

energies in collimator jaws. We have observed the differences in losses summarised

in Table 6.12. Evidently the difference is significant enough to warrant the improved

composite method over the pure element approximation.

Region 6.5 [TeV ] Beam 2 Nominal Beam 1 HL-LHC Beam 1
Total -0.045% -0.65% -0.35%
IR7 Primaries -4.3% -4.4% -3.9%
IR7 Secondaries +26% +18.5% +16.4%
IR7 Absorbers +132% +93.7% +80%
IR7 Cold +31.1% +25.8% +18.9%

Table 6.12: Percentage change in losses when switching pure elements with standard
composite materials for collimator jaws.

In the HL-LHC case the addition of two TCLDs in IR7 after the betatron collimation

insertion result in a drastic reduction of cold DS losses as expected. Though the halo

leakage from the collimation insertion is desirable, there is indication of a violation of

momentum cleaning hierarchy which is a major concern. Not only could this interfere

with the efficiency of the collimation system, but it could cause a greater cold loss in

the IR7 DS region than it was designed to remove.

When using novel composite materials for primary collimators in the nominal LHC

a reduction in cold DS losses of 48% and 22% is given for CuCD and MoGr respectively.

The use of novel materials alone is not enough to remove the DS losses, and due to

other requirements such as robustness, replacing primary collimator materials is not

likely to occur for the HL-LHC upgrade. In the HL-LHC, the two novel materials have

a similar effect on loss maps, though as CuCD has a much smaller path length more

protons are lost in the betatron collimation insertion when using CuCD secondaries.

Both materials offer an improvement on CFC AC150K in terms of reduction in halo

leakage from IR7.

Combining novel secondary collimator materials with TCLDs offers some insight

into the likely collimation system for the HL-LHC. CuCD and MoGr offer viable al-

ternatives to CFC AC150K in terms of proton scattering and collimation efficiency,

however there are other material considerations that are currently being investigated,

such as radiation hardness. TCLDs are desirable however further investigation into

their effect on momentum collimation is required. For the first time we have investi-
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gated the use of TCLDs in the HL-LHC using MERLIN, as well as combining them

with novel secondary collimator composite materials, demonstrating the versatility of

MERLIN.
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Insertion Region Collimator Family Setting [σ]
7 Primary 6

Secondary 7
Absorber 10

3 Primary 15
Secondary 18
Absorber 20

1 Tertiary 8.3
Absorber 10

5 Tertiary 8.3
Absorber 10

6 Dump Protection 8
Secondary 7.5

2 Tertiary 8.3
8 Tertiary 8.3

Table 6.13: HL-LHC collimation settings used for HEL simulations.

6.2 HEL

Here we consider the use of a HEL as a collimation enhancer, investigating the possible

HL-LHC integration point. As discussed in Chapter 5 we consider three HEL integra-

tion points; the round (IP4 - 30 m), non-round (IP4 - 88.6 m), and oval beam positions

(IP4 - 119 m). No TCLDs are present in these simulations as they were performed

with lattice version 1.2.0 with collision optics and no thick lens TCLD collimators im-

plemented. The collimator settings used are shown in Table 6.13, and full collimator

scattering is performed. The HEL uses the LHC parameters; a current of 5 A, electron

beam energy of 10 KeV, and active length of 3 m.

An initial HEL halo bunch populated between 4 − 5.8 σ is used in the following

simulations with no longitudinal component. Particle survival is shown in this section,

this is defined as the number of particles that remain of the original halo bunch, as a

function of turn. Note that the bunch is constructed such that at the round integration

point the entire halo interacts with the HEL, however this is not true at the non-round

and oval positions. 5.8 σ is chosen as the primary betatron collimator setting is 6 σ,

thus any particle impacting upon this collimator must have been excited onto it via

the HEL. Simulations are run for 105 turns, which is ≈ 9 s of operation.
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6.2.1 Current Modulating Operation Modes

We begin by comparing the current modulating operation modes at the three integra-

tion points. The following figures display particle survival as a function of turns in the

machine. Survival when using a HEL at the round position is shown in Fig. 6.39, at

the non-round position in Fig. 6.40, and at the oval position in Fig. 6.41.

As observed in Chapter 5 the diffusive mode offers the greatest collimation enhance-

ment. The AC mode (which has not been optimised in terms of defining parameters)

only kicks those particles nearest to the collimator on to it, performing an almost in-

stant cut of these halo protons. We confirm that, as expected, the round position offers

greatest enhancement, with a 54% halo removal after 105 turns, this is around 21% at

the non-round, and 18% at the oval positions.

It is interesting to note that at the non-round and oval positions the AC mode offers

comparable cleaning enhancement to the diffusive mode after 105 turns, though it is

clear that the diffusive mode would cause greater enhancement over a longer period of

time whereas the AC mode appears to plateau.

Figure 6.39: Survival fraction of a HELHalo bunch populated between 4 - 5.8 σ for 105

turns in the HL-LHC with no HEL (NH), and DC, AC, and diffusive current modulat-
ing HEL operation modes, at the round beam position (s = IP4 - 30 m). The diffusive
mode offers continuous halo diffusion whereas the (unoptimised) AC mode gives an almost
immediate but short enhancement as seen in Chapter 5.
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Figure 6.40: Survival fraction of a HELHalo bunch populated between 4 - 5.8 σ for 105

turns in the HL-LHC with no HEL (NH), and DC, AC, and diffusive current modulating
HEL operation modes, at the non-round beam position (s = IP4 - 88.6 m). Cleaning
enhancement for all modes is reduced as compared to using the same HEL at the round
position.

Figure 6.41: Survival fraction of a HELHalo bunch populated between 4 - 5.8 σ for 105

turns in the HL-LHC with no HEL (NH), and DC, AC, and diffusive current modulating
HEL operation modes, at the oval beam position (s = IP4 - 119 m). Cleaning enhancement
for all modes is reduced as compared to using the same HEL at the non-round position.
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6.2.1.1 DC

As seen from Figures 6.39 - 6.41, the DC mode offers almost no collimation enhancement

in the HL-LHC, with a halo reduction of 1.3%, 1.98%, and 2.24% at the round, non-

round, and oval positions respectively. It shall therefore be ignored for the remainder of

this study. This is likely due to the optics being used, which has low chromaticity and

octupole current. Octupoles provide resonances which can be exploited by the HEL,

and particles are more likely to experience such resonances with increased chromaticity.

6.2.1.2 AC

There is a small improvement at round position when using the AC mode (not opti-

mised), though collimation enhancement between the non-round and oval positions are

similar, as shown in Fig. 6.42. The halo is reduced by 23.7%, 18.84%, and 17.89% at

the round, non-round, and oval positions respectively.

Figure 6.42: Survival fraction of a HELHalo bunch populated between 4 - 5.8 σ for
105 turns in the HL-LHC using a HEL in AC mode, at the round, non-round, and oval
beam positions. The immediate enhancement is large, indicating that optimisation of this
operation mode may offer a collimation enhancement similar to the diffusive operation
mode.
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6.2.1.3 Diffusive

We clarify the significant improvement at the round position when using the diffusive

mode in Fig. 6.43. We aim to bring the non-round collimation enhancement closer to

that of the round position, which is the motivation for attempting novel HEL operation

modes.

Figure 6.43: Survival fraction of a HELHalo bunch populated between 4 - 5.8 σ for 105

turns in the HL-LHC using a HEL in diffusive mode, at the round, non-round, and oval
beam positions. As expected this mode gives a continuous collimation enhancement.

Halo survival for the existing HEL operation modes in the HL-LHC are summarised

in Table 6.14.

Operation Mode Round Non-Round Oval

DC 98.7 98.02 97.76
AC 76.3 81.16 82.11
Diffusive 45.69 79.15 81.47

Table 6.14: Particle survival n
no

% for an initial halo of 104 particles between 4 - 5.8 σ

after 105 turns in the HL-LHC with a HEL in the corresponding position using existing
operation modes.
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6.2.1.4 Collimation Enhancement

In practical operation the AC mode requires good knowledge of the machine tune, and

numerical simulations have shown that a number of AC parameters (see Chapter 4)

must be optimised for each machine lattice. The diffusive mode offers much simpler

operation as either the HEL may be switched on or off or the current may be modulated

randomly, on a random turn-by-turn basis. Though this may appear to be a boon, it

may not be practical for the cathode to operate in the diffusive mode when compared

to the AC, as it is more demanding to switch the cathode and corresponding electronics

and magnets of the HEL continuously from zero to maximum current. The AC mode

allows comparatively gentle ramping of currents when the parameters are set.

As no investigation of AC parameters was performed the AC mode in these sim-

ulations may not be enhancing collimation as well is possible. This provides another

direction for future investigation using MERLIN.
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6.2.2 Geometrical Operation Modes

Assuming the diffusive mode of operation to be the most effective in enhancing collima-

tion, we propose a number of novel geometric and dynamic operation modes designed

to improve the cleaning enhancement at non-round beam HEL positions. These novel

modes all use the diffusive method of current modulation.

6.2.2.1 Elliptical Matching

The first novel operation mode is the elliptical matching algorithm defined in Chapter 3.

Figure 6.44 compares this mode at the non-round and oval positions with the diffusive

modes at all three integration positions. This method appears to reduce the collimation

enhancement, which is not surprising as the non-round and oval positions have beams

that are larger in x than y. This means that the elliptical matching attempts to reconcile

coverage of the vertical halo, which reduces the enhancement in the horizontal plane.

It is interesting to see that in the non-round position the survival is similar after 105

turns, attempting simulations with many more turns could indicate an improvement in

collimation enhancement over a longer time period.

Figure 6.44: Survival fraction of a HELHalo bunch populated between 4 - 5.8 σ for
105 turns in the HL-LHC using a HEL in diffusive mode with elliptical matching, at the
non-round, and oval beam positions. For comparison the survival for a HEL in diffusive
mode with no geometrical enhancement at the round, non-round, and oval beam positions
are also shown. The elliptical matching offers no improvement at the non-round and oval
positions.
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6.2.2.2 Pogo Operation

As the elliptical matching attempts to cover one side of the elliptical halo (in this case

the positive vertical), the dynamic Pogo mode alternates between both semi-minor

sides of the halo (in this case positive and negative vertical). Halo survival is shown

in Table 6.15 and compared with normal diffusive operation, we observe that this

first attempt at dynamic operation offers similar collimation enhancement to the static

elliptical matching. Particles in the beam halo do not maintain their position each turn,

they undergo betatron and synchrotron oscillations that cause them to trace an elliptical

Poincaré section at the HEL. This means that as well as the particle movement, the

HEL is randomly switched on and off, and the HEL may or may not cover the particle

in question as it is being translated vertically back and forth. It is likely the vertical

translation negates any possible improvement due to increased halo coverage.

Operation Mode Non-Round Oval

Diffusive 79.15 81.47

Elliptical 79.9 87.61
Pogo 79.76 88.2
Hula 85.37 90.52
Close Hula 78.18 82.25

Table 6.15: Particle survival n
no

% for an initial halo of 104 particles between 4 - 5.8 σ after

105 turns in the HL-LHC with a HEL in the corresponding position and operation mode.
The aim is to approach the collimation enhancement shown at the round HEL position,
which is 45.69%, it is clear that these dynamic modes do not rectify the decreased halo
removal due to the beam not being round.

6.2.2.3 Hula Operation

The major concern when using the dynamic Pogo HEL operation is that the HEL does

not overlap sufficiently with the horizontal halo as it attempts to cover the vertical

halo. In order to remedy this another dynamic operation mode, the Hula mode, trans-

lates the elliptically matched HEL between the four horizontal and vertical maxima of

the transverse beam. The result of this operation mode in the HL-LHC is shown in

Table 6.15, we observe that the Hula operation reduces the collimation enhancement.

This is likely due to the fact that when the HEL is translated to touch the horizontal

extremities of the bunch core, the minimum radius is too large due to the elliptical

matching, and halo coverage is reduced.
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6.2.2.4 Close Hula Operation

In order to improve upon the Hula operation, the Close Hula operation mode main-

tains the minimum HEL radius as well as translating it around the beam core. We

observe from Fig. 6.45 that this method offers a very small improvement on cleaning

enhancement after 105 turns at the non-round position, though this is not enough to

approach that of the round position. As summarised in Table 6.15 the Close Hula

operation reduces the halo to 78.18% and 82.25% at the non-round and oval positions

respectively after 105 turns.

Figure 6.45: Survival fraction of a HELHalo bunch populated between 4 - 5.8 σ for 105

turns in the HL-LHC using a HEL in diffusive mode with dynamic Close Hula operation, at
the non-round, and oval beam positions. For comparison the survival for a HEL in diffusive
mode with no geometrical enhancement at the round, non-round, and oval beam positions
are also shown. This dynamic mode offers a very small improvement at the non-round
position, but not at the oval position.
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6.2.3 HEL Beam Properties

As the dynamic operation modes offer no significant cleaning enhancement improvement

at the non-round and oval positions, we perform a brief investigation of the main HEL

parameters: the active length, electron current, and electron energy. Increasing these

parameters may be preferable to using novel operation modes in order to improve

collimation enhancement at non-round beam positions.

6.2.3.1 e− Energy

First we increase only the electron beam energy from 10 KeV to 15 KeV and 20 KeV.

The resulting particle survival at the non-round position is shown in Fig. 6.46. We ob-

serve that increasing the energy decreases the collimation enhancement. To understand

this we must recall the kick given by the HEL, equation 3.7. The electron energy is

present in this equation in the form of the normalised energy βe. A βe term is present

on both the numerator and denominator, however the rigidity term in the denominator

is much larger than the remaining numerator. Increasing the electron energy results in

a decreased kick. In reality a sufficiently high electron energy must be used in order to

reduce the force from the proton beam which could distort the electron beam greatly,

thus negating its effectiveness, and likely interfering with the proton beam core. Ta-

ble 6.16 confirms that this reduction occurs at all chosen integration positions, and

doubling the electron beam energy results in a ≈ 20% decrease halo cleaning after 105

turns.

6.2.3.2 e− Current

Next we increase only the electron beam current. From the kick equation 3.7 we expect

a linear increase in collimation efficiency as the current is increased. The resulting

survival is shown in Fig. 6.47. This shows the expected behaviour, an increase in HEL

beam current results in an increased kick and therefore improved halo removal. This

is the highest achieved improvement on collimation enhancement at the non-round

position with a survival of 66.01% after 105 turns.

Table 6.16 shows the survival at the three integration points compared to that when

doubling the beam current. We observe the improvement in all cases, but note that

the improvement is larger at the oval position when compared to the non-round. This

implies that the position of the kick, or rather the phase advance between the HEL

and the collimators, is of great importance. Drawing the conclusion that an increase

in current equates to an increase in collimation enhancement up to a certain limit is
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Figure 6.46: Survival fraction of a HELHalo bunch populated between 4 - 5.8 σ for
105 turns in the HL-LHC using a HEL in diffusive mode for various HEL energies, at the
non-round position. As explained in the text increasing the HEL beam energy results in a
reduced collimation enhancement.

naive. The collimation enhancement is dependent on many factors, and conclusions

drawn here may only be valid for the specific simulated set up. For this reason we

attempt to draw conclusions on behaviour rather than quantify possible achievable

collimation enhancement.

6.2.3.3 Interaction Length

Finally we compared the effect of increasing the active length of the HEL. As expected

there is a linear increase in collimation efficiency as the length is increased, as shown in

Table 6.16. We don’t observe the same limit as when increasing the current, however

the halo cleaning does not approach the limit previously identified in the non-round

position. We observe the effect of increasing the active length from 3 m to 5 m at each

of the integration points in Fig. 6.48. In this case the 170% increase in length results

in an increase of 146%-207% in halo cleaning.

6.2.4 Integration

We also attempt to increase all three of the HEL parameters that directly impact

upon the kick, this is shown in Fig. 6.49 where a HEL current of 10 A, length of 5 m,
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Operation Mode Round Non-Round Oval

Diffusive 45.69 79.15 81.47

HEL Beam Energy
10 [keV] 45.69 79.15 81.47
15 [keV] - 82.97 -
20 [keV] 56.35 83.68 84.74

HEL Beam Current
5 [A] 45.69 79.15 81.47
6 [A] - 76.14 -
7 [A] - 72.06 -
8 [A] - 71.35 -
10 [A] 26.09 66.01 76.12

HEL Active Length
3 [m] 45.69 79.15 81.47
4 [m] - 73.8 -
5 [m] 29.83 69.42 73.98

5 [m] 10 [A] 20 [keV] 21.58 61.23 68.33

Table 6.16: Particle survival n
no

% for an initial halo of 104 particles between 4 - 5.8 σ

after 105 turns in the HL-LHC with a HEL in the corresponding position and operation
mode.

Figure 6.47: Survival fraction of a HELHalo bunch populated between 4 - 5.8 σ for
105 turns in the HL-LHC using a HEL in diffusive mode for various HEL currents, at
the non-round position. As expected, increasing the HEL current results in an increased
collimation enhancement.
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Figure 6.48: Survival fraction of a HELHalo bunch populated between 4 - 5.8 σ for 105

turns in the HL-LHC using a HEL in diffusive mode with a length of 5 m at all three HEL
positions. For comparison the standard setting of 3 m is shown for all three positions. As
expected, increasing the HEL active length results in an increased collimation enhancement.

and energy of 20 keV is used at all three integration points. We observe that particle

survival is halved after 105 turns at the round position, whereas the reduction is around

20% and 15% at the non-round and oval positions respectively. In hindsight increasing

the HEL beam energy was unwise due to the results shown in Section 6.2.3.1, however

these simulations were run in parallel. This shows that any improvement is reduced

because of the reduced HEL overlap with the halo at non-round positions.

6.2.5 Summary

We have observed the expected reduction in collimation enhancement when integrat-

ing the HEL at a non-round beam position as compared to a round beam position.

Collimation enhancement at the oval beam position is further reduced, confirming our

initial hypothesis that this enhancement reduces as the beam becomes less round.

Upon comparing the current modulating operation modes we see that the DC mode

offers no noticeable collimation enhancement, the AC mode causes an almost instant

cut in the halo, and the diffusive mode causes a continuous diffusion of halo particles

onto the collimators. This results in 54% halo removal after 105 turns at the round,

21% at the non-round, and 18% at the oval positions.

Whereas the diffusive mode appears to be simple as it does not require good knowl-
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Figure 6.49: Survival fraction of a HELHalo bunch populated between 4 - 5.8 σ for 105

turns in the HL-LHC using a HEL in diffusive mode with a current of 10 A, length of 5 m,
and energy of 20 keV at all three HEL positions. For comparison the standard setting of
5 A, 3 m, and 10 keV is shown for all three positions. At the non-round position we begin
to approach the cleaning enhancement of that at the round position.

edge of the tune, from a hardware perspective random modulation of the HEL current

requires rapid rise times in power supplies and the cathode, which may be very de-

manding. The AC mode may be preferable as it uses a relatively gentle modulation.

Though the diffusive mode offers the greatest collimation enhancement, note that the

AC mode has not been optimised. The requirement for AC optimisation makes the

diffusive mode the obvious choice for an investigation of novel geometrical operation.

Novel elliptical matching is used to increase coverage of the halo when the beam is

not round, and novel dynamic operation modes have been combined with the diffusive

current modulation in order to attempt an increase in collimation efficiency at the

non-round position. Through multiple iterations of dynamic operation the collimation

efficiency was increased, however this improvement does not compare to that at the

round position. Practically an elliptical matching may be possible, but the dynamic

modes are less likely, as translation of the HEL on a turn-by-turn basis may be a slow

process. The EM field felt by the beam core may be of concern as the HEL is offset

from the centre of the beam, this could amplify the effect of any instabilities in the

HEL beam.

It is preferable to optimise the HEL active length or current, which are proportional
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to the kick, rather than use dynamic or geometric operation. When the kick is increased

we improve the collimation enhancement up to a certain limit. It is postulated that

this limit is the point at which the kick focusses the betatron halo rather than exciting

betatron oscillations and thus diffusion. When increasing the HEL beam energy it is

observed that the collimation enhancement is reduced, this is due to the kick decreasing.

As the HEL intercepts the beam halo at 4 σ the question of betatron collimation

hierarchy violation arises. Whether the presence of the HEL imposes restrictions on

collimator jaw openings has not been investigated in this thesis, and provides an inter-

esting opportunity for future study.

The dynamics of the proton halo influences the HEL performance, and can affect

beam lifetime, emittance growth, and collimation efficiency. Many factors influence

diffusion of halo particles onto collimators or aperture restrictions. HELs are the

most flexible and demonstrated tools for active halo control when using high power

beams [100]. A machine development campaign has begun to measure halo diffusion

rates in the LHC using collimator scans [101]. MERLIN may be used to approximate

the diffusion rate given by the HEL by simulating a delta function (or pencil beam) at

a given x (that falls within the HEL radii), and measuring the resulting Gaussian dis-

tribution in x after a given number of turns. Using an identical simulation in SixTrack

as a benchmark, this could be useful for the HL-LHC. A required removal rate could

be set using estimates for asynchronous beam dump or crab cavity failure scenarios,

and the predicted HEL removal rate compared.
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Conclusion

In 2019 the LHC as we know it will cease to operate; the machine will be upgraded to

meet the demands of the High Luminosity project, which aims to rapidly increase the

amount of particle physics data taken by the LHC. In order to deal with this upgrade,

new materials and novel collimation schemes must be investigated. With this in mind,

MERLIN has been developed as a collimation tool, and has been used to investigate

the novel materials CuCD and MoGr, as well as the novel HEL collimation scheme.

MERLIN is a C++ accelerator library that, due to its modular nature, is easy to

use and modify. It has been significantly upgraded since it was given to the current

collaboration by Nick Walker. New algorithms include those needed for handling rel-

evant collimation input files, proton collimation, scattering routines, loss map output,

and a robust HEL processes. This describes the modifications made for MERLIN 5-01,

giving a detailed overview of modifications in Chapter 4 and Appendix D.

We have performed a number of benchmarks in order to validate MERLIN. Com-

paring proton scattering in MERLIN with existing FLUKA, STRUCT, and K2 data

for a 50 cm long collimator test case shows excellent agreement. Using a 1 cm solid

material test case we have compared individual scattering routines with SixTrack, and

quantified differences due to the improved scattering in MERLIN. We have also shown

that the SixTrack-like scattering routines in MERLIN are comparable with those in

SixTrack, meaning we may use this scattering to imitate that in SixTrack for further

comparisons.

We have modelled collimator jaws as composite materials for the first time in MER-

LIN, and discovered that there is a large difference in the number of scatters when

compared to modelling materials as pure elements. Composite materials are avail-

able in SixTrack, however an homogeneous mixture method is used. The functionality
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and proper treatment of composite materials has been added to MERLIN, and shown

to differ from the homogeneous approximation used in SixTrack. The homogeneous

method was also added to MERLIN as a comparison tool and shown to be similar to

that SixTrack. The 1 cm test case was also used to show that when a composite is not

dominated by a single element, the homogeneous approximation is not valid. Thus we

can conclude that properly modelling composite materials is important for loss map

production.

More detailed comparisons of composite treatment and particle scattering may be

performed using particle shower codes such as FLUKA, however MERLIN aims to

balance accurate modelling with performance. No secondary particles are tracked in

MERLIN, and any inelastic interaction is deemed a proton loss, in order to minimise

simulation time.

Loss maps have been directly compared with SixTrack and are in excellent agree-

ment. The effects of 6D and 4D tracking on loss maps has been compared, and the

SYMPLECTIC tracker has been debugged and used for the LHC for HEL simulations.

When producing loss maps for the LHC we observe the importance of using composite

materials over the pure elements that have been previously used as an approximation.

When using novel composites, the greatest improvement in collimation was given when

replacing primary collimators, however it is more likely that secondary collimators will

be replaced, so this was also investigated. It was observed that this still provides a

reduction in the halo leakage from the betatron collimation insertion. Based on these

results, CuCD is preferred for upgraded secondary collimators as it offers better proton

absorption than MoGr, though both offer an improvement on the currently used CFC

AC150K. These conclusions must be supported with experimental data. The HiRad-

Mat [102] (high radiation to materials) experiment at CERN hopes to impact proton

bunches from the SPS (super proton synchrotron) on novel collimator jaw materials

in order to gauge their robustness and response. This should indicate if the proposed

materials MoGr and CuCD behave as expected.

The use of TCLD dispersion suppressor collimators post-IR7 in the HL-LHC has

been investigated. It is clear that the TCLDs can almost completely remove cold DS

losses after the betatron collimation insertion, however they also appear to violate the

momentum collimation hierarchy when using a half-gap of 10 σ. This needs to be in-

vestigated thoroughly; will they perform the required mitigation of cold DS losses with

a larger half-gap, without violating the momentum collimation hierarchy? The TCLD

material may also require appraisal, as it has been shown that an asynchronous beam

dump may cause catastrophic TCLD loss rates [103]. We have shown (assuming the jaw
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material remains Inermet) that an active length of 0.6 m should be sufficient, which is

useful as the baseline may be reduced to this value (from 1 m) due to space constraints.

One could ascertain the safe half-gap of the TCLDs by performing momentum colli-

mation simulations with MERLIN, using an initial momentum halo distribution rather

than the betatron halo used in this thesis.

A HEL algorithm has been added to MERLIN and benchmarked against SixTrack.

The algorithm makes a number of assumptions that could be built upon in future work.

These include ignoring the regions at the start and end of the HEL where the electron

beam may overlap the proton beam, and the toroidal magnetic fields used to bend

the HEL beam into and out of the proton beamline. The diffusive current modulating

operation mode has been identified as the most promising in this simulation campaign,

though this may be due to lack of proper optimisation of the AC operation mode,

which was not performed. A proper optimisation of the AC parameters should be

performed for each lattice version used, it would be useful to develop an algorithm in

MERLIN that automated this optimisation for future work. Though the diffusive mode

appears the simplest, as it does not require a good knowledge of the machine tune and

optimisation of a number of parameters as in the AC mode, it may not be the most

hardware friendly as it requires fast and random current modulation.

The identified HEL integration position in the HL-LHC offers a non-round beam,

and as the HEL beam is round this reduces its overlap with the proton halo. For the

projected LHC HEL hardware the radial profile required an empirical update. The loss

in collimation enhancement at non-round positions has been shown, and attempts to

rectify this have been made using novel geometrical and dynamic operation modes. The

culmination of these novel operation modes offers only a small improvement to colli-

mation enhancement, thus an investigation into the effect of changing HEL parameters

at the non-round position was performed. It was found that increasing the HEL beam

energy decreases the kick, and increasing the HEL active length or current increases

the kick. Increasing the kick is not necessarily a good thing due to the focussing effect

of the kick. We observe an improvement to collimation enhancement when increasing

the HEL active length or current. There is also an indication that the phase advance

between the HEL and the TCP is important, such that the integration position may

need to take this into account in order to improve collimation enhancement. Practi-

cally hardware expenses increase with the length, and more space is required in the

machine, increasing the current requires novel hardware. Further investigation into the

HEL parameters effect on collimation enhancement would clarify the effects and lim-

its observed. In summary we have shown that, when using the existing baseline HEL
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hardware (length of 3 m, energy of 10 keV, current of 5 A) at the non-round position,

it is not possible to obtain similar cleaning enhancement to that at a round beam posi-

tion by using novel dynamic HEL operation. By increasing the HEL current or active

length, the reduction in collimation enhancement due to the non-round beam may be

diminished. This however requires a large R&D effort to increase the HEL cathode cur-

rent, or extra space in the machine. In order to use the HEL as a collimation enhancer

the best option is to ensure that it operates at a round beam position. The priority for

HEL collimation should therefore be obtaining a more suitable integration point in the

HL-LHC.

MERLIN now provides a robust and tested platform for HL-LHC collimation stud-

ies. The MERLIN collaboration plans next to add an existing crab cavity integra-

tor [104] (whih can cause large losses under failure scenarios) in order to further the

capabilities of MERLIN for modelling HL-LHC collimation.
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Appendix A

Collimation

A.1 Losses

A.1.1 Transient

For transient losses the number of protons required to induce a quench is given by:

nq =
∆Qc
ε

, (A.1)

where ∆Qc is the amount of heat per unit volume necessary to increase the temper-

ature of the SC coils of the magnet to transition temperature Tc (where the magnet will

quench), and ε is the energy per proton per unit volume deposited in the SC magnet

coil.

The time needed to reach a thermal equilibrium inside the magnet coil is τmetal =

6, 3 [ms], at 450 [GeV ] and 7 [TeV ] respectively. If the duration of losses δt << τmetal

the heat is concentrated around the impact point. If losses are slow enough (δt ≥ τmetal)
that heat diffuses in the cable but is not transferred to the surrounding cryogenic

system. If the loss duration δt ≥ τhelium, where τhelium = 44, 8 ms at 450 [GeV ] and

7 [TeV ] respectively, an equilibrium temperature is reached between the super-fluid

helium and the cable.

Table A.1 details the quench limits for local losses for various loss durations δt.

Considering an LHC bunch of 1.15 · 1011 protons, only 4 · 10−4% of a single bunch

locally deposited in an SC magnet may cause a quench at 7 TeV .
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A. COLLIMATION

Energy [TeV ] Loss Duration δt [ms] Quench limit for local losses [protons]

0.45 < 6 (τmetal) 1 · 109

0.45 ≥ 6 (τmetal) 2.7 · 109

0.45 ≥ 44 (τhelium) 2.5 · 109

7 < 3 (τmetal) 4.7 · 105

7 ≥ 3 (τmetal) 8.5 · 105

7 ≥ 8 (τhelium) 3.4 · 107

Table A.1: Number of protons required to induce SC magnet quenches for transient
losses. From [32].

A.1.2 Continuous

In order to maintain the condition of T < Tc in the continuous loss case, heat must

be continuously removed. The energy of impacting protons is dissipated over a certain

length that can be approximated with the effective length of the secondary particle

showers Leff . The local proton loss rate R̃q inducing a quench can then be defined as:

R̃q =
Rq
Leff

, (A.2)

where Rq is the maximum allowed proton loss rate, or quench limit. From Monte

Carlo simulations [32]: Leff = 1 [m] a t450 [GeV ], 0.7 [m] at 7 [TeV ].

Table A.1 displays quench limits for local transient proton losses, and table A.2

displays proton loss rates in the continuous slow loss regime as a function of energy.

Energy [TeV] Quench Limit Rq[p · s−1] Local Quench Limit R̃q[p · s−1 ·m−1]
0.45 7 · 108 7 · 108

3.5 2.1 · 107 2.4 · 107

4 1.6 · 107 1.9 · 107

7 5.4 · 106 7.8 · 106

Table A.2: Maximum allowed proton loss rates Rq and local loss rates R̃q for continuous
slow losses on the LHC SC magnets as a function of energy. From [32]

A.2 Energy Deposition and Loss Rates

The collimation system sets the tightest restriction on the machine aperture in order

to protect the machine in normal operation and in accident scenarios. The collimators

322
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receive the highest radiation dose and are the first objects to be hit by the beam in

failure scenarios. The total transverse energy density is defined as:

ρE =
ENtot

2πσxσy
, (A.3)

where σx and σy are the transverse beam sizes in the horizontal and vertical plane

respectively, E is the proton energy, and Ntot is the total number of protons. Typically

ρE = 1GJ ·m−2 at the location of primary collimators (where RMS transverse beam

size σx ≈ σy ≈ 240 µm) at nominal intensity (Ntot = 3.22 · 1014 p) and E = 7 TeV .

Each individual collimator can only handle a small fraction of the beam.

The maximum allowed proton loss rate Rloss at the collimators is calculated from

the local quench limit R̃q and local cleaning inefficiency η̃c:

Rloss =
R̃q
η̃c
. (A.4)

This is correlated to the beam lifetime:

τ ' Ntot

Rloss
. (A.5)

The loss rate peaks in the ramping phase of the LHC, where up to 5 % of the

RF-uncaptured beam is estimated to be lost [32].

For continuous losses a minimum lifetime of 1 hour is specified at 450 GeV and 7

TeV. The loss rates Rloss and maximum power deposition Ploss in the collimators were

calculated from equation A.5 for a given duration T , and displayed in Table A.3.

Mode Loss Duration T [s] τ [h] Quench Limit Rloss [p · s−1] Ploss [kW ]

Injection cont. 1 0.8 · 1011 6

Injection 10 0.1 8.6 · 1011 63

Ramp ≈1 0.006 1.6 · 1013 1200

Top Energy cont. 1 0.8 · 1011 97

Top Energy 10 0.2 4.3 · 1011 487

Table A.3: Maximum proton loss rates and resulting power deposition for loss durations
T in given lifetime τ cases. From [105].

At the full intensity of protons, a 1 hour lifetime corresponds to a loss rate of 90

billion protons a second, which equates to 0.1 MJs−1, or 100 kW .

Table A.4 displays the specified beam loads for various error scenarios.
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Beam Energy [TeV] Deposited Intensity [p] Deposited Energy [kJ] Duration [ns]

Injection error

0.45 2.9 · 1013 2073 6250

Asynchronous dump (all MKDs)

0.45 6.8 · 1011 49 150

7 4.8 · 1011 538 100

Asynchronous dump (one MKD)

0.45 10.2 · 1011 74 225

7 9.1 · 1011 1021 200

Table A.4: Beam load deposited in collimators for injection and extraction failure sce-
narios. From [106].

In order to operate the machine, losses in magnets must remain below the quench

limit Rq. This gives us the condition that the collimation system (and MPS) must

meet:

Ntot

τb
· η̃c < Rq. (A.6)

Using equations A.5, A.4, and 3.2, we may rearrange equation A.6:

η̃c <
Rq
Rloss

. (A.7)

Approximating Rq = 5·106, and Rloss = 1·1011, and in the one hour lifetime case,

we can see that the required collimation inefficiency is < 10−4.

A.3 Hardware

The LHC collimators consist of two movable jaws which are centred and aligned with

respect to the beam. Each jaw is encased in a block housing, has a back stiffener

for support, and a cooling circuit to allow water cooling of the jaw (which operates at

room temperature). The jaw half-openings (or half-gaps) are changed though the beam

phases (injection, ramp, squeeze etc). Each jaw contains blocks of different materials

(dependent on collimator type) as discussed in Chapter 3. Each collimator uses water

cooling and heat exchangers in the form of copper-nickel pipes. The length of collimator

jaw is also dependent on the type of collimator, however most collimators include 10 cm

of tapering at either end of the jaw to reduce geometrical impedance effects. All jaws

are 80 mm wide and 25 mm deep along the active length [32]. Figure A.1 shows the
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taper at either end of a secondary collimator.

Figure A.1: Single CFC secondary collimator jaw (left) and two parallel jaws in an
assembly module (right). Each jaw has 10 cm tapers at either end to reduce the impedance,
giving the secondaries an active length of 1 m, and primaries 60 cm. From [71].

A.4 Multi Phase Collimation

A.4.1 Phase 1

Phase 1 is the central collimation system designed for maximum robustness and flexi-

bility [107], comprised of primary and secondary collimators, and absorbers to protect

sensitive machine parts.

Low Z materials were chosen such that primary and secondary collimators are highly

resistant to beam impact. It is intended to continue to use the phase 1 system for

the entire lifetime of the current LHC design. Phase 1 collimators are robust but

impedance-limited.
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A. COLLIMATION

A.4.2 Phase 2

Phase 2 is comprised of secondary collimators, using low impedance materials with a

higher cleaning efficiency (i.e. high Z). Using higher Z material makes the phase 2

collimators less robust but increases energy deposition, thus phase 2 collimators are

intended to only be used at top energy under stable conditions. Phase 2 collimators

were installed in LS1.
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Appendix B

Derivation of the Hollow

Electron Lens Kick

First we approximate the hollow electron lens (HEL) to be an infinite line charge.

If we take an infinite line charge with charge per unit length λ, which is equal to

the charge Qe per unit length L, we may calculate the electric and magnetic fields

generated by this line charge. Using the Biot-Savart law shown in equation B.1, we

can calculate the magnetic flux density B at a position r from the line charge to be

that shown in equation B.2. Similarly using Gauss’s law shown in equation B.3 we

calculate the electric field E at a position r from the line charge to be that shown in

equation B.4.

B =
µ0
4π
·
∫
C

I dL× r̂

r3
(B.1)

B =
µ0 I

2π r
(B.2)

∮
E · dA =

Qenclosed
ε0

(B.3)

E =
λ

2πε0 r
(B.4)

The Lorentz force, given in equation B.5 defines the force on a particle of charge

q moving with velocity v, in an electromagnetic field. Noting that the magnetic flux

density B, the electric field E, and the current I, are orthogonal, the cross product

v × B simplifies to vBsin(θ), with θ = π/2, thus the Lorentz force is simplified as
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B. DERIVATION OF THE HOLLOW ELECTRON LENS KICK

shown in equation B.6.

F = q(E + v×B) (B.5)

F = q(E ± vpB) (B.6)

Here vp is the proton velocity, we note that if the proton travels in the opposite

direction to the electron, the E and B components of the force sum, and if the electron

and proton travel in the same direction, the B component is subtracted from the E

component.

Using the expressions for the electric field E and magnetic flux density B for an

infinite line charge, and the equalities for the permeability of free space µ0, the charge

per unit length λ, the Lorentz β, the transit time tHEL, and the current I, shown

in equations B.7, B.8, B.9, B.10, and B.11, we may substitute into, and rearrange

equation B.6, to find equation B.12.

µ0 =
1

ε0c2
(B.7)

λ =
Q

L
(B.8)

β =
v

c
(B.9)

tHEL =
LHEL
v

(B.10)

I =
Q

tHEL
(B.11)

F = q

(
λ

2πε0 r
± vp

(
µ0 I

2π r

))
=

q

2πr

(
λ

ε0
± vpµ0I

)
=

q

2πrε0

(
I

ve
± Iβp

c

)
(B.12)

Which can once again be rearranged to find the force of the HEL on a proton at a

radial distance r from the outside of the electron beam (equation B.13).

F (r) =
Iq(1± βeβp)

2πε0ve r
(B.13)
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As the electric field E is generated by electrons, the direction of this force on a

proton is attractive, i.e. towards the propagation axis of the charge, which in this case

is the centre of the HEL beam.

In order to find the angular kick given to a proton due to this force, we use the

angular velocity ω shown in equation B.14, and the centrifugal force Fcentrifugal shown

in equation B.15;

ω =
θ

t
=
vp
r
, (B.14)

Fcentrifugal =
γmpvp
r

, (B.15)

where γ is the Lorentz gamma of the particle in the synchrotron, v its velocity, and

p its momentum.

We may subsititute equations B.15 and B.10 into the angular velocity (equation B.14),

to find an expression for the angular kick due to the HEL force.

θ

t
=
vp
r

=
vpF

γmpv2p

θ =
Ft

γmpvp
=

FL

γmpv2p
=
Irqp(1± βeβp)

2πε0ver

L

γmpv2p

It can be shown using equations B.5 and B.15 that the beam rigidity Bρ is as shown

in equation B.16;

Bρ =
γm0v

q
=
p

q
. (B.16)

Thus

θ =
IrL(1± βeβp)

2πε0
· 1

vpve
· 1

r
,

which gives the maximum angular kick on a proton with a normalised velocity v
c of

βp, due to a HEL with electrons travelling at βe, as;

θmax(r) =
1

4πε0c2
2LIr(1 + βeβp)

(Bρ)pβeβp

1

Rmax
, (B.17)

where Ir is the charge enclosed by the radius r, and L is the length of the HEL.

We may define a function f(r), which, for an ideal HEL with uniform charge density

and radial symmetry, modulates the charge enclosed Ir, as shown in equation B.18.
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f(r) =


0, r < Rmin
r2−R2

min

R2
max−R2

min
, Rmin < r < Rmax

1, r > Rmax

(B.18)

where:

r is the machine particle radius in xy phase space,

Rmin is the minimum radius of the HEL in xy phase space, and

Rmax is the maximum radius of the HEL in xy phase space.

Thus the magnitude of the HEL kick on a machine proton is defined as a function

of the proton’s transverse radius in xy phsae space r, the HEL current I, the HEL

length L, the beam rigidity of the machine beam (Bρ)p, and the HEL and machine

beam normalised velocities βe and βp respectively, in equation B.19:

θkick(r) = f(r) · 1

4πε0c2
2LHELI(1 + βeβp)

(Bρ)pβeβp

1

r
. (B.19)
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Appendix C

Composite Material Properties

The following variables will be used in this appendix.

ni atomic content (number fraction) of ith component.

mi mass fraction of ith component.

Z atomic number.

A atomic mass.

ρ density.

σel electrical conductivity.

χ0 radiation length.

Material Z A ρ σel Atomic Content χ0 λtot
[ g
mol ] [ g

cm3 ] [MS
m ] [%] [cm] [cm]

CFC 6 12.01 1.67 0.14 100 C 25.57 35.45
MoGr 6.653 13.532 2.5 1 2.7 Mo2C, 97.3 C 11.931 24.84
CuCD 11.898 25.238 5.4 12.6 25.7 Cu, 73.3 CD, 1 B 3.162 13.56

Glidcop 28.823 63.149 8.93 53.8 99.1 Cu, 0.9 Al2O3 1.442 9.42
Inermet180 67.657 166.68 18 8.6 86.1 W, 9.9 Ni, 4 Cu 0.385 6.03

Table C.1: New materials in SixTrack and their corresponding atomic contents and
properties [45].

Using molybdenum-carbide-graphite (MoGr) we will explain the steps required to

calculate the atomic content in mass and number fraction, and thus the material prop-

erties of MoGr using the constituent elements and their respective properties. MoGr

is made of molybdenum powder, graphite flakes, and carbon fibres. We begin by cal-

culating the molecular mass of molybdenum carbide (Mo2C), the minor component of
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MoGr, using equation C.1.

Mtot =
∑
i

siMi, (C.1)

where si is the number of atoms, and Mi is the molecular mass, of the ith element

in the composite. This is simplified when a composite can be treated as a mixture of

pure elements:

Mtot =
∑
i

siAi, (C.2)

where Ai is the atomic mass. As Mo2C contains 2 atoms of molybdenum and 1

atom of carbon, using eqn. C.2 we find that MMo2C = 203.934. The mass fraction mi of

a constituent in a composite (in terms of molecular content) is given from equation C.3,

mi =
niMi∑
i niMi

, (C.3)

where ni is the number fraction. This is simplified for a simple composite (treated

as a mixture of pure elements):

mi =
niAi∑
i niAi

, (C.4)

Thus the mass fraction of molybdenum in Mo2C is 0.941, or 94.1%. The atomic

content (in number fractions) of MoGr is given from measurements after the production

process is complete [45], and is detailed in Table C.3. Using equation C.5 [93], the

mass fraction of component a in composite C may be approximated.

ma =

ρa·ρb
ρC
− ρa

ρb − ρa
, (C.5)

where a and b are the constituents of composite molecule C, and ρ is the density of

the respective material. An example, for the mass fraction of Mo2C in MoGr is given

in equation C.6. This approximation is used because during the construction process

the molybdenum and graphite form Mo2C as well as a significant recrystallization of

graphite [47].

mMo2C =

ρMo2C
·ρGr

ρMoGr
− ρMo2C

ρGr − ρMo2C
, (C.6)

Using this equation we find the mass fraction of Mo2C in MoGr to be 0.137 or
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13.7%. We may calculate the number fraction using the atomic mass and mass fraction

of each element in the composite using equation C.7:

ni =

(
mi
Ai

)
∑

i

(
mi
Ai

) . (C.7)

Thus far we have obtained the number and mass fractions of Mo and C in Mo2C,

and of Mo2C and C in MoGr. To model MoGr as the pure elements Mo and C we

must use the fact that the mass fraction of molybdenum in Mo2C is 94.1%. Of the

13.7% Mo2C in MoGr, 94.1% is Mo and we may approximate molybdenum graphite as

12.9% molybdenum, and 87.1% carbon by mass fraction. Using equation C.7, we find

the number fractions to be 1.7% Mo, 98.3% C.

AMo 95.962
AC 12.01

nMo
2
3

nC
1
3

mMo 0.941
mC 0.059

ρMo2C 8.4 g
cm3

Table C.2: Relative properties of a single molecule of Mo2C.

AMo 95.962
AC 12.01

AMoGr 13.436
ZMoGr 6.611

nMo2C 0.027
nGr 0.973

nMo 0.01698
nC 0.98302

mMo2C 0.137
mGr 0.863

mMo 0.1213
mC 0.8787

ρGr 2.25 g
cm3

ρMoGr 2.5 g
cm3

Table C.3: Relative properties of MoGr.
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Using the calculated mass and number fractions we may now use them to approx-

imate the composite material in MERLIN by treating it as a weighted mixture of the

constituent elements. This is not the final approach used, however it is available to

compare directly with SixTrack. The final approach uses the composite bulk properties

for MCS and ionisation, but for point like scattering the number fractions are used

to select a weighted random constituent element from the composite. Thus point like

scattering is performed using the advanced scattering methods developed in [49] for

elements for which the properties are well defined.

For the case of MoGr we treat it as a mixture of pure Mo and C. The mean atomic

number Z̄ of the composite may be calculated using [45]:

Z̄ =
∑
i

ni · Zi, (C.8)

where ni is the number fraction of constituent i, which has atomic number Zi. The

mean atomic mass Ā is similar,

Ā =
∑
i

ni ·Ai. (C.9)

Using these definitions we can define the electron density ne, mean excitation energy

Ī, and the radiation length χ0 for the compound material. The electron density of a

compound material is given by:

ne =
Z̄

Ā
Naρ, (C.10)

where ρ is the density of the compound, which must be entered by the user as it

cannot be calculated. The value of ρ is given by experimental measurements (see [47]

for measured novel collimator material properties). The radiation length of a compound

material is:

1

χ0
=
∑
i

mi

χi
. (C.11)

The mean excitation energy is given by equation C.12 [49]:

Ī =
∑
i

mi
Zi
Ai
· ln

1.13 · e

(
Ii
Z̄
Ā

) , (C.12)

where the factor of 1.13 is due to stronger atomic bonding in composites [108].
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For copper-carbon-diamond (CuCD or copper diamond), we are given the con-

stituents in volume fractions. In this case we may use equation C.14 to calculate the

mass fractions:

mi = Vi
ρi
ρ
, (C.13)

where Vi is the volume fraction, ρi is the density of the constituent, and ρ is the

density of the composite. From this the mass fractions shown in Table C.4 are obtained.

Both mass fraction and number fraction must satisfy the conditions:

mtot =
∑
i

mi = 1, ntot =
∑
i

ni = 1. (C.14)

As these condition are not met by the calculated mass fractions we must nor-

malise the calculated mass fractions to calculate the correct number fractions and other

weighted properties.

We compare the properties of these composite materials in MERLIN with those in

SixTrack in Table C.5. We note that the differences between MERLIN and SixTrack are

the mean free path λtot, the nuclear slope bn, and the radiation length χ0. This is due

to differences in the calculation of these quantities between the codes. For the radiation

length MERLIN and SixTrack perform a weighted average using equation C.15, from

which it is clear that a small difference in the constituent material radiation length or

mass fraction will result in a difference in the averaged radiation length.

1

χ0
=
∑
i

mi

χi
. (C.15)

The difference in the case of MoGr may be explained as in SixTrack this composite

is treated as a compound of Mo2C and graphite, whereas in MERLIN we treat it as

a compound of pure carbon and molybdenum. The calculation of the nuclear slope is

nearly identical in both codes, and is shown in equation C.16.

bn MERLIN = 14.1A
2
3 , bn SixTrack = 14.1A0.65. (C.16)

The difference in these expressions explains that of the bn values in both codes.

In SixTrack the total nuclear reference cross section σpN tot is calculated from the

mean free path λtot in the material, which is obtained from the Particle Data Group

(PDG) [87], in units of [ g
cm2 ]. Equation C.17 is then used:
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VCu 0.39
VCD 0.60
VB 0.01

ACu 63.546
ACD 12.01
AB 10.811

ACuCD 24.1607
ZCuCD 11.4181

Calculated
mCu 0.6471
mCD 0.3489
mB 0.0044

Normalised
mCu 0.6467
mCD 0.3489
mB 0.0044

nCu 0.2568
nCD 0.733
nB 0.0103

ρCu 8.96 g
cm3

ρCD 3.52 g
cm3

ρB 2.37 g
cm3

ρCuCD 5.4 g
cm3

Table C.4: Relative properties of CuCD.

σpN tot =
A

Na · λtot
· 1024, (C.17)

where Na is Avogadro’s constant, and the factor of 1024 is used to convert from

units of cm2 to barn. In MERLIN (as discussed in Chapter 4) the mean free path

λtot is given from the total cross section, which is a sum of the cross sections of all

ScatteringProcesses assigned to the collimation process. For a composite in SixTrack,

the λtot value is not available from the PDG (who obtain data from experiments),

instead it is taken as a weighted average of the constituent element mean free paths λi

using the mass fractions as shown in equation C.18:

λ =
1∑
i
mi
λi

. (C.18)

Then, as for a pure element, σpN tot is calculated using equation C.17. MERLIN
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Property MoGr CuCD Glidcop Inermet180
Z

MERLIN 6.611 11.896 28.824 67.66
SixTrack 6.653 11.898 28.823 67.657

A
MERLIN 13.44 25.23 63.145 166.7
SixTrack 13.532 25.238 63.149 166.68
ρ [ g

cm3 ]
MERLIN 2.5 5.4 8.93 18
SixTrack 2.5 5.4 8.93 18

σel [MS
m ]

MERLIN 1 12.6 53.8 8.6
SixTrack 1 12.6 53.8 8.6
χ0 [m]

MERLIN 0.1214 0.03164 0.01443 0.00385
SixTrack 0.11931 0.03162 0.01442 0.00385

dE
dx

MERLIN 0.7188 1.981 2.685 5.576

bn [GeVc2 ]
MERLIN 79.69 121.3 223.59 427
SixTrack 76.665 114.961 208.669 392.137
λtot [m]

MERLIN 0.2301 0.1259 0.0892 0.0577
SixTrack 0.2484 0.1356 0.0942 0.0603

MERLIN Modified 0.2257 0.1259 0.0892 0.0577
MERLIN Modified

(SixTrack Scattering) 0.2297 0.1283 0.0909 0.0588
MERLIN (SixTrack Scattering) 0.2342 0.1282 0.0909 0.0588

Table C.5: Properties of composite materials in MERLIN and SixTrack [45], after up-
dating cross sections for molybdenum and copper in MERLIN.

takes a similar approach but works from the cross sections, equation C.19 is used to

find the reference nuclear cross section (total, inelastic, elastic, or Rutherford):

σpN =
∑
i

niσpN i. (C.19)

We compare the cross sections in Table C.6. For comparison the values used in

MERLIN are overwritten with those used in SixTrack. The resulting mean free paths

and cross sections are shown in Table C.5 and Table C.6 respectively, as MERLIN

modified. We find that the cross sections calculated in MERLIN and SixTrack to be

identical for the specified composites, despite the difference in approach.

We note that the proton nucleon cross sections for elastic and single diffractive
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Property MoGr CuCD Glidcop Inermet180

σpN tot ref

MERLIN 0.3545 0.572 1.246 2.546
SixTrack 0.362 0.572 1.246 2.548

σpN I ref

MERLIN 0.244 0.370 0.765 1.525
SixTrack 0.247 0.370 0.765 1.473

σpN R ref

MERLIN 11.9·10−5 0.000449 0.00151 0.006807
SixTrack 9.4·10−5 0.000279 0.001385 0.005737

σpN tot

MERLIN 0.3827 0.6068 1.293 2.611
MERLIN modified 0.3902 0.6068 1.293 2.613

σpN I

MERLIN 0.244 0.370 0.765 1.525
MERLIN modified 0.247 0.370 0.765 1.473

σpN E

MERLIN 0.07459 0.1584 0.4217 0.939
MERLIN modified 0.0796 0.1583 0.4217 0.993

σpn E

MERLIN 0.04487 0.05536 0.07516 0.1039
MERLIN modified 0.04487 0.05536 0.07516 0.1039

σpn SD

MERLIN 0.001879 0.02318 0.03148 0.0435
MERLIN modified 0.001879 0.02318 0.03148 0.0435

σR
MERLIN 11.9·10−5 0.000449 0.00151 0.006807

MERLIN modified 9.4·10−5 0.000279 0.001385 0.005737

Table C.6: Cross sections of composite materials in MERLIN and SixTrack citequaran-
taprivate, after updating cross sections for molybdenum and copper in MERLIN, all values
are given in barns.

scattering are not dependent on the reference nuclear cross sections, and so are not

affected by the differences between MERLIN and SixTrack.

When using MERLIN scattering with the proper treatment of composite materials,

the only effect of the composite properties is seen in the multiple Coulomb scattering

and ionisation calculations (ScatteringModel::EnergyLoss() and ScatteringModel::

Straggle(). These functions rely on the electron density, plasma density, mean exci-

tation energy, and radiation length, which are all treated with standard methods for

composites. The mean free path is also used as a step length in the collimation process
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CollimateProtonProcess::DoScatter(). We have shown that the radiation length

and mean free path are comparable with those in SixTrack. The difference in radiation

length is small, and is due to the difference in stored radiation lengths for constituent

elements. The difference in mean free paths is more noticeable, particularly for MoGr.

As MERLIN uses its own advanced scattering routines to calculate the cross sections

(despite using similar reference cross sections as SixTrack), it is inevitable that this

difference will occur, and is in fact understood to be an improvement on SixTrack.
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Appendix D

MERLIN 5-01

In this appendix brief code snippets will be used to help describe and explain MERLIN,

the colour convention in these snippets is described in Fig. D.1.

1 //Comments are shown in dark green
//Units are shown in lime , and C++ keywords in blue

3 Unit ;
double length = 26.67 ∗ km ;

5

//Base c l a s s e s are shown in azure , and user c l a s s e s in orange
7 Base_Class User_Class ;

MADInterface∗ myMADInterface = new MADInterface ( ) ;
9

// Functions are shown in pink , s t r i n g s in gray
11 Function ( ) ;

string test = "string" ;
13 myMADInterface−>TreatTypeAsDrift ("DRIFT" ) ;

Figure D.1: Colour convention used for code snippets.

To define a beam energy of 7 TeV for example, one would use the code shown in

Fig D.2.

The following sections describe how a collimation simulation may be written using

double beam_energy = 7 ∗ TeV ;

Figure D.2: Example of the use of units in MERLIN.
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D. MERLIN 5-01

MERLIN, indicating differences between the LHC and HL-LHC requirements, and

new modifications. A MERLIN simulation consists of three main parts: creating an

accelerator model, defining a beam, and selecting and using a tracker to transport the

defined beam through the created accelerator. Physics processes may also defined and

assigned to the tracker.

D.1 Accelerator Construction

MERLIN stores an accelerator as an AcceleratorModel object, this requires three

input files for the purpose of LHC and HL-LHC collimation, the first for an accu-

rate model of the individual components of the accelerator, the second to define the

apertures of the machine, and the third to define collimator parameters. In order to

translate these inputs into a MERLIN AcceleratorModel, a number of input interfaces

and configuration utilities are required.

D.1.1 Accelerator Model

The model must define the type and location of accelerator elements, which MERLIN

stores as AcceleratorComponents. The AcceleratorModel is an ordered vector of

AcceleratorComponents, which is used by the ParticleTracker to set the integra-

tors that describe the paths taken by individual particles as they travel through the

elements.

D.1.1.1 AcceleratorComponent

Each AcceleratorComponent contains an EM field, a geometry, an aperture, and a

wake potential object (the latter of which will not be used in this thesis). Special cases

exist, for example a Collimator also contains a jaw material which is required for

scattering. Figure D.3 shows the inheritance of the standard AcceleratorComponents,

both Collimator and HollowElectronLens elements are tracked as, and therefore

derived from, the Drift component (a vacuum pipe with no field).

D.1.1.2 MADInterface

A standard MADX [85] thick lens TFS table is passed through the MADInterface class

to extract the AcceleratorComponents. MADInterface strips the header then reads

the column headers to see what is defined in the TFS table, before iterating through
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D.1 Accelerator Construction

Figure D.3: Accelerator components currently available in MERLIN.

each element and creating the appropriate AcceleratorComponent, and appending it

to the AcceleratorModelConstructor, a standalone class used in MADInterface.

A bug exists in the creation of thick lens RFCAVITY elements in MADX, such that

the length of the cavity is incorrect. MADX creates an RFCAVITY and DRIFT pair,

such that the total length is correct. However the RFCAVITY length is not a multiple

of λ
2 , where λ is the wavelength of the cavity wave. This is a requirement of the cavity,

as well as the corresponding integrator, if this condition is not met then MERLIN will

throw an exception. In order to correct this a flag has been added to calculate the

correct number of cavity cells, each with length λ
2 , this can be set using the SetSingle

CellRF() function. Any left over length is appended as a DRIFT.

The TFS table may contain the element apertures, however in the LHC and HL-

LHC case the apertures do not correspond exactly to the elements, thus a separate

input file is required. Construction of apertures using MADInterface may be enabled or

disabled using the ConstructApertures() function. Finally the AcceleratorModel, a

vector of ordered AcceleratorComponents, may be extracted from MADInterface using

the ConstructModel() function, which returns a pointer to the created Accelerator

Model. The code required to construct an AcceleratorModel using MADInterface is

shown in Fig. D.4.

MERLIN contains a number of standard components, detailed in Table D.1. Any

element may be treated as a drift using the MADInterface::TreatTypeAsDrift() func-

tion, though this is unwise for certain magnets. MERLIN currently handles a small

number of elements as drifts as standard because there is no integrator to perform the

expected function, or the expected function cannot be performed using an integrator

(for example the hollow electron lens), these elements are listed in Table D.2.
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1 MADInterface myMADInterface = new MADInterface ("LatticeFile.tfs" ) ;
myMADInterface−>TreatTypeAsDrift{"OCTUPOLE" } ;

3 myMADInterface−>ConstructApertures ( false ) ;
myMADInterface−>SetSingleCellRF ( true ) ;

5

AcceleratorModel∗ myAcceleratorModel = myMADInterface−>ConstructModel ( ) ;

Figure D.4: Construction of an AcceleratorModel using a MADX TFS table input file
and the MADInterface class. In this example we treat octupole elements as drifts, do not
construct apertures from the ‘LatticeFile.tfs’, and use the single cell RF flag to fix the
MADX thick lens RFCAVITY length bug.

D.1.2 Apertures

For collimation, all AcceleratorComponents must have apertures, these may not neces-

sarily correspond 1:1 with accelerator components, this is the case in the LHC and thus

a separate MADX generated aperture list is required. In the case of the HL-LHC this

file is constructed by hand and stored in a similar MADX format. MERLIN contains

a number of aperture types, as shown in Figure D.5.

Figure D.5: Aperture types and inheritance.

All apertures contain a PointInside() function, which takes the spatial co-ordinates

of a particle (x, y, z), and checks if those co-ordinates are inside the aperture. This func-

tion is used by the collimation process to select which particles should undergo scatter-

ing, or be lost and thus removed from the bunch after recording the loss location. The

RectEllipse type of aperture is illustrated in Fig D.6.
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Component MADX name MERLIN name
Vacuum pipe DRIFT Drift
RF Cavity LCAV SWRFStructure
RF Cavity RFCAVITY SWRFStructure
Collimator RCOLLIMATOR Collimator
Collimator ECOLLIMATOR Collimator
Collimator COLLIMATOR Collimator
Rectangular Dipole RBEND SectorBend1

Sector Dipole SBEND SectorBend1

Multipole MULTIPOLE -2

Vertical Corrector YCOR YCor
Vertical Kicker VKICKER YCor
Horizontal Corrector XCOR XCor
Horizontal Kicker HKICKER XCor
Quadrupole QUADRUPOLE Quadrupole
Skew Quadrupole SKEWQUAD SkewQuadrupole
Solenoid SOLENOID Solenoid
Hollow Electron Lens - HollowElectronLens
Sextupole SEXTUPOLE Sextupole
Octupole OCTUPOLE Octupole
Skew Sextupole SKEWSEXT SkewSextupole
Crab Cavity CRABRF TransverseRFStructure3

Monitor MONITOR BPM, RMSProfileMonitor4

Marker MARKER Marker

Table D.1: Accelerator components and their MADX TFS and MERLIN names. 1 With
appropriate pole face rotation pre and post element. 2 MERLIN uses the lowest order
non-zero magnet coefficient to set a MADX MULTIPOLE to the lowest order magnet
possible. 3 Crab Cavities are not yet supported in MERLIN, though an integrator has
been constructed and will be implemented in the near future. 4 The MADInterface reads
the suffix of ‘MONITOR’, if this is ‘BPM’ a beam position monitor (BPM) is created, if
the suffix is ‘WS’ an RMSProfileMonitor is created, an unknown monitor type defaults to
a BPM.

Component MADX name MERLIN name
Vacuum pipe DRIFT Drift
Generic Kicker KICKER Drift
Generic Kicker TKICKER Drift
Instrumentation Device INSTRUMENT Drift
Placeholder PLACEHOLDER Drift

Table D.2: Accelerator components treated as drifts by default in MERLIN, with their
corresponding MADX TFS names.

D.1.3 Aperture Configuration

The ApertureConfiguration class was added to the loss map version of MERLIN,

and modified for the HEL and merged codes. The input TFS table contains columns
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Figure D.6: RecTellipse aperture in real space, showing the elliptical component in green,
and rectangular component in red. Adapted from [49].

as depicted in Table D.3.

KEYWORD NAME PARENT S L APER 1 APER 2 APER 3 APER 4 APER TYPE

Table D.3: Aperture TFS table column headers.

When merging ApertureConfiguration it was updated to take account of the HL-

LHC aperture files, which assume that all elements have a RectEllipse aperture - in

which case the final column of the file is omitted. This may be activated using the

SetAllRectEllipse() function. After giving the ApertureConfiguration class the

input file, the ConfigureApertures() function takes a pointer to the Accelerator

Model, and sets the apertures for all elements except Collimators using this input file,

as shown in Fig. D.7.

The ApertureConfiguration class can create interpolated apertures. This is re-

quired for two reasons, firstly the apertures of the machine do not necessarily correspond

1:1 with the elements of the machine, thus more than one apertures may be defined

for a single element, and secondly because the aperture file gives the size of apertures

at discrete positions in the machine, rather than a continuous model. The workflow of

the ConfigureElementApertures function is shown in Fig. D.8.

All collimator apertures are set using the CollimatorDatabase class which is dis-

cussed in a later subsection.
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D.1 Accelerator Construction

ApertureConfiguration∗ myApertureConfiguration = new

ApertureConfiguration ("ApertureInput.TFS" ) ;
2

myApertureConfiguration−>SetAllRectEllipse ( ) ;
4 myApertureConfiguration−>ConfigureElementApertures ( myAcceleratorModel )

;

Figure D.7: Construction of apertures using a MADX TFS table aperture input file and
the ApertureConfiguration class. In this example we use the SetAllRectEllipse flag
to use an HL-LHC aperture file.

Element Name S |horizontal positive| |horizontal negative| |vertical positive| |vertical negative|

Table D.4: ApertureSurvey column headers.

D.1.3.1 ApertureSurvey

The ApertureSurvey class allows the user to output the complete aperture of the

machine being simulated in MERLIN, in the horizontal and vertical planes. The user

may specify either a number of steps to sample per element, or an increment length.

The ApertureSurvey object must simply be created, it then automatically generates

an output file (for which the format is shown in Table D.4) in the directory given as

an argument to the constructor. The ApertureSurvey constructor and corresponding

arguments are shown in Fig. D.9. If the number of points per element is greater than

0, this is used to survey the machine aperture, otherwise the specified step size (in

metres) is used. Without these values the default method is to survey the aperture of

the machine at 10 cm steps per element.

This output allows the user to directly compare the MERLIN aperture with that of

the input file, or another code. The aperture for the start of the 6.5 TeV LHC lattice is

compared with the MADX aperture file in Fig. D.10. We observe small differences due

to the fact that apertures are continuous in MERLIN, whilst the MADX input file only

gives the aperture at discrete points (though it is plotted using a linear interpolation

between these points).

D.1.4 Lattice Functions

The LatticeFunctionTable class takes the AcceleratorModel and beam energy to

calculate the lattice functions by particle tracking. LatticeFunctions are added
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Figure D.8: Workflow of the ApertureConfiguration::

ConfigureElementApertures() function. This does not take into account the up-
dated SetAllRectEllipse flag. From [49]

1 ApertureSurvey ( AcceleratorModel∗ model , string directory , double

step_size=0.1 , size_t points_per_element=0) ;

Figure D.9: The ApertureSurvey constructor, currently no other function is required to
use this class.

to this table either individually, or using the LatticeFunctionTable::UseDefault

Functions() function which is called in the constructor. Each lattice function has

3 indices i, j, k, the combinations and their corresponding parameters are detailed in

348



D.1 Accelerator Construction

Figure D.10: Comparison of MADX apertures (vertical = red, horizontal = blue) with
MERLIN apertures (vertical = green dashed, horizontal = black dashed) for the first 100 m
of the LHC using 6.5 TeV optics. The positive horizontal aperture and inverted positive
vertical aperture are shown.

Table D.5.

The lattice functions are calculated from eigenvectors of the one turn map, which is

not complete without the action of RF cavities, which may not always be used. In order

to compensate for this the ScaleBendPath() function is used to adjust the ct and δ

values such that the lattice functions may be calculated with no convergence errors. For

collimation simulations the MADX TFS table used to create the AcceleratorModel

usually contains the lattice functions, which are also calculated using a 4D method.

The functions of the lattice shown in Table D.5 are stored in the LatticeFunction

Table, where they are accessed using the LatticeFunctionTable::Value() function,

which takes the indices i, j, k and a fourth index which corresponds to the position of

the element in the AcceleratorModel - this is the number of the element in the vector,

not its physical position. An example of the use of this class is shown in Fig. D.18,
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i j k Parameter

1 0 0 Closed orbit x
2 0 0 Closed orbit x′

3 0 0 Closed orbit y
4 0 0 Closed orbit y′

5 0 0 Closed orbit ct
6 0 0 Closed orbit δ
1 1 1 βx
3 3 2 βy
1 2 1 −αx
3 4 2 −αy
0 0 1 Fractional phase advance µx
0 0 2 Fractional phase advance µy

Table D.5: LatticeFunctionTable indices and corresponding parameters.

where the βx calculated in MERLIN is plotted against that calculated in MADX in

Fig. D.11.

Figure D.11: βx calculated using the LatticeFunctionTable class in MERLIN (blue)
compared with that calculated in MADX (orange), for beam 1 of the nominal LHC.

The Dispersion class is used to calculate the dispersion of a given lattice, although

this functionality is given by the LatticeFunctionTable, a more accurate method is
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used in this class. The use of this class is shown in Fig. D.18, and an example of the

output is given in Fig. D.12.

Figure D.12: The dispersion in the x plane Dx calculated using the Dispersion class
in MERLIN (blue) compared with that calculated in MADX (orange), for beam 1 of the
nominal LHC.

D.1.5 Phase Advance

The PhaseAdvance class has been created to calculate and return the phase advance

in x or y at a given element, or between any two elements in the lattice. This can

be calculated using either the name or the number of the element in the Accelerator

Model. The PhaseAdvance class takes the LatticeFunctionTable and Accelerator

Model as arguments, and iterates through the lattice in order to sum the fractional

phase advance from the LatticeFunctionTable. This class is required for the crab

cavity failure process which is experimental and outside the scope of this thesis, however

the functionality may be helpful for other processes.

D.1.5.1 Collimator Database

The CollimatorDatabase class reads a separate file which defines the collimator set-

tings.
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Name Jaw Half Gap [σ] Perpendicular Plane (⊥) Half Gap [σ] Jaw Rotation α [rad] Material Symbol

Table D.6: Column headings for the collimator setup file read by CollimatorDatabase

when use sigma is true.

Name Half Gap [σ] ⊥ Half Gap [σ] α [rad] Tilt1 [rad] Tilt2 [rad] Material

Table D.7: Column headings for the collimator setup file read by CollimatorDatabase

when use sigma is false.

CollimatorDatabase takes the collimator file name, a pointer to MaterialDatabase

(see later section), and a boolean use sigma that tells the class the format of the input

file. If true the column headings shown in Table D.6 are expected, if false the column

headings shown in Table D.7 are expected, adding any tilting of the collimator jaws.

CollimatorDatabase extracts all collimators in the AcceleratorModel and iterates

through them. The corresponding lattice functions are obtained from the Lattice

FunctionTable, and one of the above methods is used to create a collimator aperture

and attach it to the Collimator element. The Collimator also contains a Material

which is set here using the MaterialDatabase.

The majority of collimators consist of two movable jaws, however some LHC colli-

mators, for example the dump protection TCDQs are one-sided. The names of these

collimators are stored in the CollimatorDatabase, and if one of these collimators is

selected, a single sided aperture is created in the appropriate plane. In the near future

this class will be updated for FCC (Future Circular Collider) [109] apertures [110], and

will also include a function to input one-sided collimator names. If a collimator that

exists in the lattice is not defined in the collimator input file, it will have no aperture.

Figure D.13 shows an example of how to use the CollimatorDatabase.

1 CollimatorDatabase∗ myCollimatorDatabase = new CollimatorDatabase ( "

collimator_file.dat" , myMaterialDatabase , true ) ;

3 myCollimatorDatabase−>MatchBeamEnvelope ( true ) ;
myCollimatorDatabase−>UseMidJawHalfGap ( ) ;

Figure D.13: CollimatorDatabase usage with the UseMidJawHalfGap function in order
to set a constant collimator aperture for the length of each collimator, with half gaps
calculated using the beta functions at the centre of the collimator.
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ID Name α βx βy g Material L σx σy θ1 θ2 nσ

Table D.8: FLUKADatabase output file column headings.

D.1.5.2 CollimatorSurvey

CollimatorSurvey is similar to the ApertureSurvey class, however only collimator

apertures are surveyed and output. This allows a detailed survey (for example at

increments of mm) of the collimator jaw openings. This provides a mechanism to show

the difference between collimator jaw setting methods, the MatchBeamEnvelope and

MidJaw options are compared using the CollimatorSurvey for the primary collimator

in IR7 in Fig. 4.2.

D.1.5.3 FLUKA Database

The FLUKADatabase is an output designed for future use of MERLIN with FLUKA,

though not currently pursued, it is useful for certain direct comparisons with SixTrack.

This file includes columns listed in Table D.8, for all non-zero length collimators. α

is the collimator rotation angle, the ID is an arbitrary integer that is stored in the

Collimator and used for outputting FlukaLosses, L is the collimator length, σ is the

value of 1 beam σ at the collimator, g is the half gap in the primary plane of the

collimator, nσ is the jaw opening in units of beam σ, and θ is the jaw tilt. All values

are given either at the start of the collimator, or the middle, depending on whether or

not the UseMidJawHalfGap() option has been used.

As all required values are calculated in, or pass through the CollimatorDatabase

class, this is where the FLUKADatabase data is stored and output using the function

CollimatorDatabase::OutputFlukaDatabase(std::ostream* os).

D.2 Materials

The Material constructor is shown in Fig. D.14, it is important to remember that

when using MERLIN scattering a number of properties not included in the constructor

are required; the total nuclear cross section, the nuclear slope, and the mean excitation

energy. Some of these attributes may be calculated using related functions that form

part of the class, these are shown below the constructor in Fig. D.14.

All Material properties are private, they may be set using the constructor, or the

corresponding setting function. The setting function for a property is Set followed
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2 Material ( string name0 , string sym0 , double A0 , int AtomicNumber0 ,
double Sigma_E0 , double Sigma_I0 , double Sigma_R0 , double dEdx0 ,
double X00 , double Density0 , double Conductivity0 ) ;

4 double CalculateSixtrackTotalNucleusCrossSection ( ) ;
double CalculateSixtrackNuclearSlope ( ) ;

6 double CalculateMeanExcitationEnergy ( ) ;

Figure D.14: The Material constructor, taking the name, symbol, atomic mass, atomic
number, elasic cross section, inelastic cross section, Rutherford cross section, stopping
power, radiation length, density, and conductivity as arguments. Functions to calculate
material attributes required for MERLIN scattering.

1

Material∗ Be = new Material ("Beryllium" , "Be" , 9 .012182 , 4 , 0 . 069 ,
0 . 199 , 0 .000035 , 0 . 55 , 651900 , 1848 , 3 .08 E7 ) ;

3 Be−>SetSixtrackTotalNucleusCrossSection ( 0 . 2 68 ) ;
Be−>SetSixtrackNuclearSlope ( 7 4 . 7 ) ;

5 Be−>SetMeanExcitationEnergy (63 . 7∗ eV ) ;
Be−>SetElectronDensity (Be−>CalculateElectronDensity ( ) ) ;

7 Be−>SetPlasmaEnergy (Be−>CalculatePlasmaEnergy ( ) ) ;

9 Material∗ Pb = new Material ( ) ;
Pb−>SetAtomicNumber (82) ;

11 Pb−>SetAtomicMass ( 2 07 . 2 ) ;
Pb−>SetName ("Lead" ) ;

13 Pb−>SetSymbol ("Pb" ) ;
Pb−>SetSixtrackTotalNucleusCrossSection ( 2 . 9 60 ) ;

15 Pb−>SetSixtrackInelasticNucleusCrossSection ( 1 . 7 7 ) ;
Pb−>SetSixtrackRutherfordCrossSection ( 0 . 00907 ) ;

17 Pb−>SetSixtrackdEdx ( 3 . 4 0 ) ;
Pb−>SetConductivity (4 .8077 E6 ) ;

19 Pb−>SetRadiationLength (Pb−>CalculateRadiationLength ( ) ) ;
Pb−>SetDensity (11350) ;

21 Pb−>SetSixtrackNuclearSlope ( 4 55 . 3 ) ;
Pb−>SetMeanExcitationEnergy (823 .0∗ eV ) ;

23 Pb−>SetElectronDensity (Pb−>CalculateElectronDensity ( ) ) ;
Pb−>SetPlasmaEnergy (Pb−>CalculatePlasmaEnergy ( ) ) ;

Figure D.15: An example of constructing Beryllium using the Material constructor,
setting functions, and calculation functions. An example of constructing Lead using the
Material setting functions and calculation functions.
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by the MERLIN name detailed in Table 4.2, for example SetDensity(), a number of

these functions are shown in Fig. D.15. The access function is similar but has the prefix

Get, for example GetDensity(). A number of functions exist to calculate the following

properties: electron density, plasma energy, mean excitation energy, nuclear slope,

radiation length, total nuclear cross section, and the inelastic nuclear cross section.

The MaterialDatabase class provides a dictionary of standard materials (listed in

Table 4.3) that may be used without the user defining the corresponding Material

object. The FindMaterial() function allows the user to search the dictionary by the

material symbol, and returns a pointer to the Material object. This is shown in

Fig. D.16, where the symbol for copper is used to return a pointer to the corresponding

Material. The VerifyMaterial() function checks that all required properties are set

and non-zero, it returns a true boolean if this is the case, or a false boolean if not,

as well as outputting the discrepancy.

1

MaterialDatabase∗ myMaterialDatabase = new MaterialDatabase ( ) ;
3 Material∗ myMaterial = myMaterialDatabase−>FindMaterial ("Cu" ) ;

bool verified = myMaterial−>VerifyMaterial ( ) ;

Figure D.16: An example of using the MaterialDatabase to find and return a pointer
to the Material object for copper.

The construction of the CompositeMaterial (detailed in Chapter 4) copper-carbon-

diamond (CuCD) in the MaterialDatabase dictionary is shown in Fig. D.17.

D.2.1 BeamData

BeamData provides a data structure for definition of the 6D beam phase space. Using

the LatticeFunctionTable the user may define parameters at the injection position,

which are fed to the ParticleBunchConstructor. The components of BeamData are

shown in Table D.9. To improve user control over the initial bunch, a number of

parameters were added to the BeamData class to set minimum and maximum values for

the initial co-ordinates.

The use of the LatticeFunctionTable to set BeamData components is shown in

Fig. D.18, we note that in order to define a matched initial bunch, components labelled

in Table D.9 must be set. A number of these parameters are set to zero by default.

Using the ParticleBunchConstructor as shown in Fig. D.20 is preferable as the
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1 CompositeMaterial∗ CuCD = new CompositeMaterial ( ) ;
CuCD−>SetName ("CopperCarbonDiamond" ) ;

3 CuCD−>SetSymbol ("CuCD" ) ;

5 CuCD−>AddMaterialByMassFraction (CD , 0 . 3 4 8 9 ) ;
CuCD−>AddMaterialByMassFraction (Cu , 0 . 6 4 6 7 ) ;

7 CuCD−>AddMaterialByMassFraction (B , 0 . 0 0 4 4 ) ;

9 CuCD−>SetDensity (5400) ;
CuCD−>SetConductivity ( 12 . 6 E6 ) ;

11 CuCD−>Assemble ( ) ;
CuCD−>VerifyMaterial ( ) ;

Figure D.17: The construction of the CompositeMaterial CuCD in the Material

Database dictionary.

LatticeFunctionTable∗ myTwiss = new LatticeFunctionTable ( myAccModel ,
beam_energy ) ;

2 myTwiss−>ScaleBendPathLength (1e−22) ;
myTwiss−>Calculate ( ) ;

4

Dispersion∗ myDispersion = new Dispersion ( myAccModel , beam_energy ) ;
6 myDispersion−>FindDispersion ( start_element_number ) ;

8 BeamData myBeam ;
myBeam . beta_x = myTwiss−>Value ( 1 , 1 , 1 , start_element_number ) ∗meter ;

10 myBeam . x0 = myTwiss−>Value ( 1 , 0 , 0 , start_element_number ) ;
. . .

12 myBeam . Dx = myDispersion−>Dx ;
myBeam . Dy = myDispersion−>Dy ;

Figure D.18: Calculation of lattice functions using the LatticeFunctionTable and
Dispersion classes, and accessing these values to set properties of the initial distribu-
tion via the BeamData class. start element number is an integer corresponding to the
position of the start element in the AcceleratorModel.

bunch is matched to the accelerator lattice.

The BunchFilter class may be created and applied to the bunch construction

process if the user wishes to perform specific operations on the initial distribution.

A child of BunchFilter, the HorizontalHaloParticleBunchFilter class is used in

Fig. D.20 to remove any part of the bunch that occupies ±4σx, in order to avoid

simulating stable particles for a loss map simulation.

356



D.3 Tracker

Component(s) Parameter(s)

x0, xp0, y0, yp0, ct0, dp0 Beam centroid1

beta x, beta y, alpha x, alpha y Lattice functions1

emit x, emit y Emittances1

sig dp Relative energy spread
sig z Bunch length
p0 Reference momentum1

c xy, c xyp, c xpy, c xpyp x-y coupling
Dx, Dxp, Dy, Dyp Dispersion1

charge Particle charge1

min sig x, max sig x Minimum and maximum beam size in x (in σ)2

min sig y, max sig y Minimum and maximum beam size in y (in σ)2

min sig z, max sig z Minimum and maximum bunch length2

min sig dp, max sig dp Minimum and maximum energy deviation2

Table D.9: Components of the BeamData class. 1 Must be specified. 2 units are dependent
on the type of distribution selected in the ParticleBunchConstructor.

ProtonBunch∗ myBunch ;
2 ParticleBunchConstructor∗ myBunchCtor ;

4 // Input f i l e streams f o r mu l t ip l e input bunches
ifstream∗ bunch_input_core = new ifstream ("core_bunch_input.txt" ) ;

6 ifstream∗ bunch_input_halo = new ifstream ("halo_bunch_input.txt" ) ;

8 // S e l e c t one input bunch
istream∗ is = bunch_input_core ;

10

myBunch = new ProtonBunch ( beam_energy , myBeam . charge , ∗is ) ;
12 myBunch−>SetMacroParticleCharge ( myBeam . charge ) ;

Figure D.19: Construction of a ProtonBunch using an input file.

D.3 Tracker

The ParticleTracker class performs the tracking in MERLIN, using the transport

process template function to define a BunchProcess which uses ComponentTrackers to

provide the transfer maps.

A collection of integrator classes, the ComponentTracker is used to construct the

tracker fed to the ParticleTracker for each type of element. These individual integra-

tors perform the mathematical transformation of the particle bunch. MERLIN contains
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1 ProtonBunch∗ myBunch ;
ParticleBunchConstructor∗ myBunchCtor = new ParticleBunchConstructor (

myBeam , n_part , HELHaloDistribution ) ;
3

HorizontalHaloParticleBunchFilter∗ hFilter = new

HorizontalHaloParticleBunchFilter ( ) ;
5 double h_offset = myTwiss−>Value ( 1 , 0 , 0 , start_element_number ) ;

double tcpsig = 266E−6;
7 hFilter−>SetHorizontalLimit (4∗ tcpsig ) ;

hFilter−>SetHorizontalOrbit ( h_offset ) ;
9

myBunchCtor−>SetFilter ( hFilter ) ;
11

myBunch = myBunchCtor−>ConstructParticleBunch<ProtonBunch>() ;
13 delete myBunchCtor ;

Figure D.20: Construction of a ProtonBunch using the ParticleBunchConstructor,
and a HorizontalHaloParticleBunchFilter.

a number of integrators, which are can be grouped to select a tracking method.

The tracker takes an AcceleratorComponent iterator for the AcceleratorModel.

This can either be a linear Beamline (e.g. a linear accelerator), or a RingIterator for

a repeating lattice (e.g. a synchrotron). The tracker also takes the particle bunch, as

shown in Fig. D.21.

The ParticleTracker contains a ProcessStepManager class, which manages all

processes attached to the simulation, this includes the particle tracking, as well as any

other physics processes that have been attached to it.

D.3.1 Integrator Sets

Integrators define the tracking for a particle through a single element of the acceler-

ator lattice, and can be stored using any method that is compatible with the defined

particle bunch co-ordinates. Integrators are divided into a number of sets, and simple

integrators exist for monitors, markers, solenoids and sector bends.

The SetIntegratorSet() function was added by Sam Tygier to enable selection of

the desired set of integrators used for a tracker, as shown in Fig. D.21. If no integrator

set is selected, the default TRANSPORT set is used.
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1 AcceleratorModel : : RingIterator beamline = myAccModel−>GetRing (
start_element_number ) ;

ParticleTracker∗ myParticleTracker = new ParticleTracker ( beamline ,
myBunch ) ;

3 bool symplectic = true ;
if ( symplectic )

5 myParticleTracker−>SetIntegratorSet ( new ParticleTracking : : SYMPLECTIC : :
StdISet ( ) ) ;

else

7 myParticleTracker−>SetIntegratorSet ( new ParticleTracking : : TRANSPORT : :
StdISet ( ) ) ;

9 myParticleTracker−>Track ( myBunch ) ;

Figure D.21: Defining a ParticleTracker with a circular accelerator iterator, or
RingIterator, and selecting the SYMPLECTIC or TRANSPORT integrators.

D.3.2 TRANSPORT

The TRANSPORT integrators are described in Chapter 2. Individual integrators are

defined using this method for; drifts, sector bends, rectangular multipoles, quadrupoles,

sextupoles, and pole face rotations. The THIN LENS integrators for kickers and SWRF

(standing wave radio frequency) cavities are used in the TRANSPORT integrator set, as

well as the simple solenoid integrator.

This set has been used for the majority of past MERLIN simulation studies. In the

case of the ILC (a single pass machine), and loss map simulations which require 200

turns of the LHC, the TRANSPORT integrator is valid. However for long term simulations,

such as those performed for the HEL, it is not recommended because the integration

method does not preserve the Hamiltonian of the system.

This integrator set is used when calculating the lattice functions using the LatticeFunctionTable

class as mentioned previously. An example of the computed closed orbit is shown in

Fig. D.22.

D.3.3 SYMPLECTIC

This integrator set includes symplectic integrators for: drifts, thin multipoles, sector

bends, quadrupoles, pole face rotations, combined function sector bends, RF structures,

and SWRF structures. The simple integrators for monitors, markers, solenoids, and

travelling wave radio frequency cavities, are included in this set, though the latter is

not currently used.
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Figure D.22: The closed orbit in x calculated using the LatticeFunctionTable class
in MERLIN (blue) compared with that calculated in MADX (orange), for beam 1 of the
nominal LHC.

D.3.4 Synchrotron Motion

Synchrotron motion occurs when SWRF structures are operational in the machine. It

is important to note that these integrators affect the calculation of the lattice functions.

When using MADX, the lattice functions are generated in 4 dimensions (x, x′, y, y′),

thus in order to compare to this and use the same settings (for example collimator jaw

half-gaps are proportional to β
1
2 ) the klystron control class may be used. This can

be attached to multiple RF cavities, allowing the user to change the RF voltage and

phase of those cavities, its use is shown in Fig. D.23.

D.3.5 Tracking Output

The particle tracker can take a SimulationOutput class that can be used to output,

for example, particle tracks throughout the simulation, or for a selected range. The

TrackingOutputAV class was created as a child of SimulationOutput to output in-

dividual particle tracks in order to observe the paths taken by particles that have

scattered differently in the collimator jaws. This tool was also used to identify bugs in

the SYMPLECTIC tracker. Data at the start of every element is stored and output.

The SetTurn() function may be used to select a single turn for which particles
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1 // After con s t ru c t i on o f the a c c e l e r a t o r model , c r e a t e a vec to r to hold
RF c a v i t i e s

std : : vector<RFStructure∗> RFCavities ;
3 // Extract only the ACS type (LHC naming convent ion )

myAccModel−>ExtractTypedElements ( RFCavities , "ACS*" ) ;
5 // Attach these c a v i t i e s to the con t r o l c l a s s

Klystron∗ myKlystron = new Klystron ("KLY1" , RFCavities ) ;
7 // Set v a r i a b l e s

myKlystron−>SetVoltage ( 0 . 0 ) ;
9 myKlystron−>SetPhase ( pi /2) ;

. . .
11 // After c a l l i n g Latt iceFunct ionTable : : Ca l cu la te ( ) , s e t vo l tage in MV

myKlystron−>SetVoltage ( 2 . 0 ) ;

Figure D.23: Use of the Klystron control class to set the voltage and phase of a selection
of RF cavities.

are tracked, or the SetTurnRange() function specifies two turns defining a range in

which the data is output. A single turn in this manner begins at the start of the

AcceleratorModel, and ends at the end of the AcceleratorModel, being incremented

when s = 0. The SetSRange() function may be used to limit output to a range in the

s co-ordinate of the accelerator. Figure D.24 shows an example of the usage of this

class, outputting only for the first turn, in the s range that corresponds to the entire

LHC lattice. We note that if we use these commands for a loss map simulation, the

tracking output will begin at the injection position in the betatron collimation insertion

(s ≈ 19000 m, where s = 0 is defined to be at IP1).

TrackingOutputAV∗ myTrackingOutputAV = new TrackingOutputAV ("
TrackingOutput.dat" ) ;

2 myTrackingOutputAV−>SetSRange (0 , 27000) ;
myTrackingOutputAV−>SetTurn (1 ) ;

4 myTrackingOutputAV−>output_all = 1 ;

6 myParticleTracker−>SetOutput ( myTrackingOutputAV ) ;

Figure D.24: Use of the TrackingOutputAV class in MERLIN to output particle tracks.

The file name (including the file path if required) is set in the TrackingOutputAV

constructor, and the output format is shown in Table D.10. Note that the output all

component of SimulationOutput must be set to 1 for the output to be performed.
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Particle ID Turn s x x′ y y′ δ Scatter Type

Table D.10: Column headings for the TrackingOutputAV output file.

D.4 Physics Processes

The ParticleBunchProcess is a template BunchProcess. This can represent any

mechanism, for example particle tracking, application of a physical process (e.g. syn-

chrotron radiation), or even data output. The process may be run at selected Accelerator

Components in the lattice, or all of them, and may be defined for only a single type of

bunch, or all. These processes (henceforth referred to as physics processes) may specify

a priority (where 0 is highest, followed by incremental integers), and by default will be

executed in the priority that they are added to the tracker. Particle tracking is a Bunch

Process and by default takes priority over all other physics processes.

Each physics process must define a number of functions; InitialiseProcess()

initialises the process with the particle bunch, SetCurrentComponent() allows the

user to set the current accelerator component and verify if the process should be run

for this component, GetMaxAllowedStepSize() returns the step size for the process,

and the main process is normally contained within DoProcess(). Processes can have

more functions as required, but these are the minimum.

Figure D.25 shows an example of the use of the CollimateProtonProcess in MER-

LIN. The contents of this are detailed in Chapter 4.

A complete example of the method of creating the HEL process is shown in Fig. D.26,

the contents of which are described in Chapter 4.

D.5 Collimation Outputs

A number of output functions have been constructed to obtain useful data from colli-

mation simulations. The majority of these are part of the ScatteringModel class, and

are detailed in this section.

D.5.1 Death Report

DeathReport() is a function of the ScatteringModel, meaning that it can only record

data from within the collimator. It is used to store special forms of output, as a

template function for the user. For example in its simplest use it can store data for

362



D.5 Collimation Outputs

CollimateProtonProcess∗ myCollimateProcess = new CollimateProtonProcess

(2 , 4 , NULL ) ;
2

// Create LossMapDustbin and attach to proce s s
4 LossMapDustbin∗ myLossMapDustbin = new LossMapDustbin ;

myCollimateProcess−>SetDustbin ( myLossMapDustbin ) ;
6 // Use Beam2( ) func t i on only when running LHC beam 2

bool beam2 = true ;
8 myLossMapDustbin−>Beam2 ( beam2 ) ;

10 // Create a Scatter ingModel , a s s o c i a t ed outputs , and attach to proce s s
ScatteringModel∗ myScatter = new ScatteringModel ;

12 // Use d e f au l t MERLIN ( true ) or ST− l i k e ( f a l s e ) composite mat e r i a l s
method

myScatter−>SetComposites ( true ) ;
14 // Output proton impacts on the primary c o l l ima t o r

myScatter−>SetJawImpact ("TCP.C6R7.B2" ) ;
16 // Output shower p l o t data f o r primary c o l l ima t o r s c a t t e r i n g

myScatter−>SetScatterPlot ("TCP.C6R7.B2" ) ;
18 // Output exact map o f l o s s e s f o r secondary c o l l ima t o r

myScatter−>SetJawInelastic ("TCSG.B5R7.B2" ) ;
20 // Attach Scatter ingModel to p roce s s

myCollimateProcess−>SetScatteringModel ( myScatter ) ;
22

// Create FlukaLosses and attach to proce s s
24 FlukaLosses∗ myFlukaLosses = new FlukaLosses ;

myCollimateProcess−>SetFlukaLosses ( myFlukaLosses ) ;
26

// Set p rede f in ed combination o f S ca t t e r i n gPro c e s s e s
28 bool use_sixtrack_like_scattering = false ;

if ( use_sixtrack_like_scattering ) {myScatter−>SetScatterType (0 ) ;}
30 else{myScatter−>SetScatterType (4 ) ;}

32 // Spec i f y 10 cm bins f o r c o l l ima t i on aper ture check and non−c o l l ima t o r
l o s s output

myCollimateProcess−>SetOutputBinSize ( 0 . 1 ) ;
34

// Attach the c o l l ima t i on proce s s to the t r a cke r
36 myParticleTracker−>AddProcess ( myCollimateProcess ) ;

Figure D.25: A complete example of the CollimateProtonProcess and associated
classes and functions that are used in MERLIN to define the collimation simulation.

collimator-only loss maps.
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// Constructor d e f i n i n g : p r i o r i t y , mode , HEL current , e l e c t r o n beta ,
2 // proton beam r i g i d i t y , and e f f e c t i v e HEL length

HollowELensProcess∗ myHELProcess = new HollowELensProcess (3 , 1 , 5 ,
0 . 195 , 2 .334948339 E4 , 3 . 0 ) ;

4

// Set HEL beam d i r e c t i on , 1 = oppos i t e to protons ( f o cu s s i n g )
6 myHELProcess−>SetElectronDirection (1 ) ;

8 // S e l e c t r a d i a l (measured ) or p e r f e c t p r o f i l e
// us ing p r ev i ou s l y de f ined boolean

10 if ( perfect_profile ) { myHELProcess−>SetPerfectProfile ( ) ; }
else{ myHELProcess−>SetRadialProfile ( ) ;

12 // Sca l e the measured r a d i a l p r o f i l e emp i r i c a l l y f o r LHC hardware
myHELProcess−>SetLHCRadialProfile ( ) ; }

14

// Centre the HEL on the c l o s ed o rb i t and use the l a t t i c e f unc t i on s
16 // to match the HEL beam s i z e to the proton beam enve lope

// us ing minimum rad iu s = 4 sigma and maximum rad iu s = 8 sigma
18 myHELProcess−>SetRadiiSigma (4 , 8 , myAccModel , emittance , emittance ,

myTwiss , 7000) ;

20 // S e l e c t cur r ent modulation mode us ing p r ev i ou s l y de f ined boo leans
if ( ACon ) { myHELProcess−>SetAC ( 0 . 3 1 , . 002 , 5E−5, 1E3 , 2 . ) ;

22 myHELProcess−>SetOpMode ( AC ) ; }
else if ( DCon ) { myHELProcess−>SetOpMode ( DC ) ; }

24 else if ( Diffusiveon ) { myHELProcess−>SetOpMode ( Diffusive ) ; }
else if ( Turnskipon ) { myHELProcess−>SetTurnskip (31) ;

26 myHELProcess−>SetOpMode ( Turnskip ) ; }

28 // S e l e c t geomet r i ca l ope ra t i on mode us ing p r ev i ou s l y de f ined boo leans
if ( elliptical_HEL ) { myHELProcess−>SetEllipticalMatching ( true ) ; }

30 else if ( hula_HEL ) { myHELProcess−>SetHulaElliptical ( true ) ; }
else if ( closehula_HEL ) { myHELProcess−>SetCloseHulaElliptical ( true ) ; }

32 else if ( pogo_HEL ) { myHELProcess−>SetPogoElliptical ( true ) ; }

34 // Attach the proce s s to the t r a cke r
myParticleTracker−>AddProcess ( myHELProcess ) ;

Figure D.26: A complete example of the HollowELensProcess and associated setting
functions that are used in MERLIN to define the hollow electron lens simulation.

D.5.2 Impact Parameter

The ScatteringModel::JawImpact() function outputs the co-ordinates of particles

that impact the front face of selected collimators. As well as co-ordinates, the turn at

which the impact occurred is also output, this allows the user to observe any change in

the impact parameter over time. This output is useful for observing the effect of the
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HEL. An example of this output for a single turn in a collimation simulation is shown

in Fig. 4.11, showing the correspondence between the initial distribution (which starts

immediately in front of the primary collimator), with the recorded impact co-ordinates.

ID x x′ y y′ ct δ Turn

Table D.11: Column headings for the JawImpact output file.

D.5.3 Scattering Tracker

The ScatteringModel::ScatterPlot() function stores the position of particles at

each path length step along a collimator to plot scattering tracks along the collimator.

This function has been a useful tool for debugging the collimation process, ensuring

that aperture checks are performed at appropriate intervals, and showing the effect of

the collimation bin size. The columns of this output file are shown in Table D.12.

ID z x y Turn

Table D.12: Column headings for the ScatterPlot output file.

D.5.4 Inelastic Interactions

ScatteringModel::JawInelastic() stores the co-ordinates of inelastic interactions,

in the format shown in Table D.13.

ID x x′ y y′ ct δ z Turn

Table D.13: Column headings for the JawInelastic output file.

D.5.5 Selected Interactions

ScatteringModel::SelecScatter() stores the co-ordinates of selected interactions,

outputting the data shown in Table D.14, which includes the momentum transfer t and

the polar angle θ.

As the raw data files produced can be very large, the OutputSelectScatterHistogram()

function was created to histogram the data and produce a smaller output. An example

of the histogrammed polar angle data is shown in Fig. D.27.
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ID x x′ y y′ ct δ z θ t type

Table D.14: Column headings for the SelectScatter output files.

Figure D.27: Polar angle histogrammed in the OutputSelectScatterHistogram() out-
put function, showing the angular distribution of particles that have undergone inelastic
interactions in a collimator made of CFC AC150K R©. In reality this angular spread is
given by MCS.

D.5.6 Dustbin

Dustbin is a virtual class used to store lost particle data. It uses the LossData struct

shown in Table D.15 to store information that may be useful for output.

The Dispose() function is called when a particle is lost, and a LossData struct is

created and stored in a vector. The Finalise() function is called at the end of the

simulation, and is used to collate losses, which are stored in a separate vector. The user

may define multiple methods for this, the constructor takes an OutputType to switch

between these. To output the collated data, the Output() function takes a user defined

output stream (pointer) and performs the previously selected output.

D.5.6.1 LossMapDustbin

The LossMapDustbin is a child class of the Dustbin output class which was created

for loss map production, the current available options for loss maps are to store losses
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Name Variable Type

ElementName string Name of element
p PSvector Lost particle
s double s position of element

interval double Bin interval within element
position double Exact loss position
length double Length of element

lost double Number of lost particles
temperature int Warm/cold/collimator element

turn int Turn in which particle is lost
coll id int Collimator ID
angle double Collimator tilt angle

Table D.15: Information stored in the LossData struct.

to the nearest element, at the precise position of the loss (in the s co-ordinate), or in

10 cm bins (the default setting).

The LossMapDustbin::Dispose() function takes the current AcceleratorComponent

address, the exact position of the loss, the particle address, and the turn. It is called

in the CollimateProtonProcess::DoScatter() function when a particle is lost in a

collimator, and the CollimateParticleProcess::DoCollimation() function when a

particle is lost in a non-collimator element. Only collimator losses may be output

at exact positions, as the method used for calculating the position of non-collimator

losses uses the user specified bin size (which by default allows the location of the non-

collimator loss to the nearest 10 cm). This is also the case when scattering is turned

off for the collimation process (collimators are treated as black absorbers), as the exact

loss position for a collimator is the s co-ordinate of an inelastic interaction or energy

cut, whereas when no scattering takes place, the location is where a particle exits the

aperture.

The temperature indicator is used to output cold, warm, and collimator losses in

different colours or separately. The LossMapDustbin contains a hard-coded selection

method to decide whether the element is superconducting (cold), normal conducting

(warm), or a collimator, that is only relevant for the LHC. The user may use the

LossMapDustbin::Beam2() function to switch this selection function when performing

simulations for beam 2, this is necessary as the selection uses element names and

positions. Though this hard-coded method is not ideal, the Dustbin class is designed

to provide the user the means by which to define, store, collate, and print their own

output with full control.
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LossMapDustbin::Finalise() is optimised by using the LossData struct, which

has overloaded functions for the relational < and =, binary +, and unary ++ operators,

used to sort, collate, and increment losses. The column headings of the standard 10 cm

loss map output are specified in Table D.16.

Element Name s+Interval Interval nlost Temperature Collimator Length

Table D.16: Column headings for the LossMapDustbin output file.

D.5.7 FlukaLosses

FlukaLosses was created to record every interaction of a tracked proton with all colli-

mator jaws. The class imitates the Fluka output of SixTrack [111], storing all inelastic

and single diffractive interactions. As with the FLUKADatabase this class is not cur-

rently used with FLUKA but provides a method of direct comparison with current

SixTrack outputs. The class also allows selection of other interactions to record, how-

ever for all interactions other than inelastic, the same particle may interact more than

once.

In a similar manner to the Dustbin class, a FlukaLossData struct, detailed in

Table D.18, has overloaded operator functions and is used to store interaction data.

Variable Type Name

int coll id Collimator ID
double angle Collimator tilt angle
double s s position of element

PSvector p Lost particle
int turn Turn in which particle is lost

double lost Number of lost particles
double x offset Collimation plane offset (orbit)
double y offset Perpendicular plane offset (orbit)
string ElementName Name of element

Table D.17: Information stored in the FlukaLossData struct.

FlukaLosses::Record() is similar to Dustbin::Dispose(), and creates a Fluka

LossData struct that is stored in a vector. This class also has a Finalise() function

that may be used to collate the stored data, and store it in another vector.

The FlukaLosses::Output() function strays from the unit conventions of MER-

LIN, outputting the particle displacements x, y in mm, and angles x′, y′ in mrad. The
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D.5 Collimation Outputs

Name Variable Type

coll id int Collimator ID
angle double Collimator tilt angle

s double s position of element
p PSvector Lost particle

turn int Turn in which particle is lost
lost double Number of lost particles

x offset double Collimation plane offset (orbit)
y offset double Perpendicular plane offset (orbit)

ElementName string Name of element

Table D.18: Information stored in the FlukaLossData struct.

column headings for the output file are stated in Table D.19.

Collimator ID α s x− xoffset x′ y − yoffset y′ Type Particle ID Turn

Table D.19: Column headings for the FlukaLosses output file.
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