
University of Huddersfield Repository

Gibson, M. L., Venters, Colin, Duboc, Leticia, Betz, Stefanie, Chitchyan, Ruzanna, Palacin Silva, 
V., Penzenstadler, Birgit and Seyff, Norbert

Mind the chasm: A UK fisheye lens view of sustainable software engineering

Original Citation

Gibson, M. L., Venters, Colin, Duboc, Leticia, Betz, Stefanie, Chitchyan, Ruzanna, Palacin Silva, 
V., Penzenstadler, Birgit and Seyff, Norbert (2017) Mind the chasm: A UK fisheye lens view of 
sustainable software engineering. In: 6th International Workshop on Requirements Engineering for 
Sustainable Systems (RE4SuSy), 4 September 2017, Lisbon, Portugal. 

This version is available at http://eprints.hud.ac.uk/id/eprint/32429/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/



Mind the Chasm: A FishEye Lens View
of Sustainable Software Engineering

in UK Higher Education
Madeleine L. Gibson

University of Huddersfield
Huddersfield, UK

U1364186@unimail.hud.ac.uk

Ruzanna Chitchyan
University of Leicester

Leicester, UK
rc256@leicester.ac.uk

Colin C. Venters
University of Huddersfield

Huddersfield, UK
c.venters@hud.ac.uk

Maria Palacin-Silva
LUT

Lappeenranta, Finland
maria.palacin.silva@lut.fi

Leticia Duboc
State Univ. of Rio de Janeiro

Rio de Janeiro, Brazil
leticia@ime.uerj.br

Birgit Penzenstadler
CSU Long Beach

Long Beach, CA, USA
birgit.penzenstadler@csulb.edu

Stefanie Betz
Karlsruhe Insitute of Technology

Karlsruhe, Germany
stefanie.betz@kit.edu

Norbert Seyff
FHNW and University of Zurich

Windisch, Switzerland
norbert.seyff@fhnw.ch

Abstract—Requirements that express the needs of all stake-
holders and cover the key aspects of a software system (such
as those addressing sustainability) are critical to the system’s
successful development and adoption. For practitioners who want
to develop sustainable software-intensive systems, it is also argued
that software requirements are the key leverage point.

But what do software developers know about broader sustain-
ability and sustainability requirements in particular? As part of
the University of Huddersfield’s ’Student as a Researcher’ initia-
tive1, this paper provides a FishEye2 Lens View on how novice
software developers who design and develop software systems at
software companies relate to the notions of sustainability and
sustainability requirements. The study has found that although
sustainability is valued highly by the novice software developers,
the concept of sustainability and sustainability requirements are
not fully understood. This lack of knowledge in the software
industry and organizations must be addressed to enable delivery
of truly sustainability enabling software systems.

Index Terms—Karlskrona manifesto, requirements engineer-
ing, software engineering, software requirements, sustainability,
sustainability design, sustainability requirements, sustainable
software

I. INTRODUCTION

Post-industrial societies are highly dependent on complex
software systems that underlie almost every aspect of daily
living from communication, entertainment, energy, commerce,
transportation, finance, governance, health care, as well as
defense and security [2], [3], [4]. In addition, software also
now plays a critical role in the advancement of knowledge with

1Student as a Researcher is ’a pedagogic approach to supporting students in
their engagement with undergraduate research within and/or beyond the formal
curriculum with the aim of furthering their own knowledge and understanding,
and in some cases contributing to, the broader knowledge base of their
discipline. The term is used to describe a pedagogic approach, rather than
the students themselves’ [1].

2A Fisheye lens is a special type of lens that shows a distorted view of the
world.

a paradigm shift in research towards large-scale computational
science and engineering, and data intensive science [5], [6].
Software’s increasing importance in the field of research, has
led for calls for it to be classified as a first-class, experimental
scientific instrument [7] based on the maxim, if your software
is incorrect, so will your science [8]. However, it is suggested
that in terms of structure, content, and functionality, software
systems are the most complex artifacts ever created [9]. As
such, software designers are responsible for the long-term
consequences of their designs [10].

The vision of sustainable software engineering is based on
the idea of delivering software systems, which are designed
and developed in a way that the consideration of the different
sustainability dimensions and orders of effects are reflected
in the system. Although there is no clear definition of the
term ’sustainability requirement’ [11], the bespoke reflection
and discussion is often based on requirements that align
with specific dimensions of sustainability. This highlights the
importance of requirements engineering as a central aspect
of sustainable software engineering. Moreover, it is argued
that requirements are the key to sustainability, as it is during
the requirement engineering phase when the foundations of a
systems are laid [12].

The goal of the work presented in this paper is to better
understand the perception of sustainable software engineer-
ing among UK students enrolled on computing degree pro-
grammes and young software developers in industry, which
we will collectively refer to as novice software engineers
in the reminder of this paper. More specifically, the paper
aims to find out what these novice developers think about
sustainability requirements and what they may know about
it. The remainder of this paper is structured as follows: In
section II, we describe relevant background research, while
section III gives an overview of the methodology used for



the study. In section IV, we present the results of this work,
with several relevant issues discussed in section IV. The paper
concludes in Section V, with recommendations for next steps
toward a more comprehensive and consistent perspective on
sustainability requirements and their relationship to the field of
software engineering, and the role of education in facilitating
a programme of sustainable software engineering.

II. BACKGROUND

A. Sustainability and Software

Derived from the Latin word sustinere, the Oxford English
Dictionary [13] defines sustainability as ‘the quality of being
sustained’, where sustained can be defined as ‘capable of be-
ing endured’ and ‘capable of being maintained’. This suggests
that longevity and the ability to maintain are key factors at the
heart of understanding sustainability. As a part of the concept
of sustainable development, the Brundtland commission [14],
defined the term as ‘meeting the needs of the present without
compromising the ability of future generations to meet their
own needs’. The word ‘need’ is central to this definition and
includes a dimension of ‘time’, present and future.

In the last decade the concept of sustainability has emerged
as a topic of interest in a range of different areas in the field
of computing including software engineering (SE) [15] and
requirements engineering (RE) [11]. In relation to software and
software systems, there are primarily two distinct viewpoints
that make up the topic area around software and sustainability:
sustainable software and software engineering for sustainabil-
ity (SE4S), where the former is concerned with the principles,
practices, and process that contribute to software endurance i.e.
technical sustainability [16], and the latter focuses on software
systems to support one or more dimensions of sustainability,
concerning issues outside the software systems itself [17].
The Karlskrona Manifesto [10] recognizes both viewpoints
on sustainability as an emerging concern of central relevance
and suggests to view sustainability as a construct across the
five dimensions of sustainability: environmental, economic,
individual, social and technical [12], [18]. These dimensions
are defined as follows:

• The economic dimension refers to assets, capital, and
added value including for example profitability and cap-
ital investment, etc;

• The environmental dimension refers to the long term
effects of human activities on natural ecosystems and
resources;

• The individual dimension refers to the individual well-
being including for example freedom, self-respect, edu-
cation etc;

• The social dimension refers to the interaction between
individuals and the societal constructs based on this in-
teraction and constituting a society including for example
trust, communication, employment, democracy, etc;

• The technical dimension refers to the concepts of
longevity of man-made systems, and infrastructure and
their adequate evolution.

There exist interdependencies between these dimensions
including trade-offs and synergies. Moreover, the impact on
sustainability in these five dimensions manifests in three
different orders of effect [12], [19], defined as follows:

• First order effects appear when software systems are built
and used for their primary purpose, e.g. the work time
used for implementation of Youtube;

• Second order effects appear when the use of the system
over some time induces new types of behavior or expec-
tations for the previous system, e.g. the energy waste due
to letting Youtube videos play in the background, while
only listening to the music;

• Finally, third order effects appear due to a large-scale,
longer term use of the system, e.g. as most people use
YouTube for music, professional music record producers
and sellers gradually disappear as domain actors (which is
a clear detrimental effect on the economic sustainability
of these businesses), making self-production and free
availability of music on Youtube a new social norm
(which democratises the music market for the musicians,
and increases the variety of available music for con-
sumers, positively affecting individual and social sustain-
ability).

While there have been a number of contributions to formal-
ize a definition of software sustainability [20], [15], [16], [18],
[21], consensus on what sustainability means in the field of
software and requirements engineering is still emerging [22],
[23]. The term is increasingly described in the literature as a
first-class, non-functional requirement or software quality [24],
[25], [11]. However, research is required to confirm or refute
this position.

Furthermore, Ramsey [26] argues that the fundamental
problem with definitions of sustainability is the definitional
approach itself and not just with any particular definition.
It is suggested that definitions do not lead to clarity about
the meaning of sustainability because the meaning of the
component terms, as well as the meaning of the general
concept, presupposes the existence of a set of social structures
within which the activity of defining makes sense. As such,
any attempt to impose interpretations without recognizing the
necessity and importance of those structures are doomed to
failure.

As a result, the concept of sustainability requires context
(such as that proposed by Tainter [27]), [social] structure
[26], and the simultaneous consideration of several interrelated
dimensions of sustainability [12]. In addition, rather than
seeking broad conformity of definitions, the aim should be
to clarify how the terms are used by different communities in
order to have a shared understanding [28].

B. Sustainability Studies in Software Engineering

A number of recent studies have been conducted to under-
stand how sustainability is perceived in the practice of software
engineering and how sustainability can become an inherent
part of software engineering practice.



Chitchyan et. al., [29] explored requirements engineering
practitioners’ perceptions and attitudes towards sustainability
through interviews. The results revealed that software practi-
tioners tend to have a narrow understanding of the concept
of sustainability with a focus on environmental and economic
sustainability. Their organizations also showed limited aware-
ness of the potential opportunities and benefits for engineering
sustainability in or through software. Notably, several inter-
viewees explicitly considered sustainability as a separate field
from that of software engineering.

Manotas et. al., [30] investigated what software practitioners
from ABB, Google, IBM, and Microsoft thought about energy
usage in relation to requirements, design, construction, testing,
and maintenance of their software. Their results suggest that
software engineering practitioners are concerned about energy
when they build applications; however, it was suggested that
they are not as successful as they could be because they
lack the necessary information and support infrastructure. In
addition, the results also highlighted that energy-usage is often
stated in terms other than energy usage being more often
desires rather than specific targets, which focus on idle time
and are difficult to specify directly.

Kasurinen, Palacin-Silva and Vanhala [31] investigated the
views of professional game developers on sustainability and
Green IT. The results of their study highlighted that Game
development organizations are not likely to consider eco-
impact factors such as code reusability, energy-efficient pro-
graming, social awareness impact, reuse or repurposing old
hardware components or marketing materials or support to
legacy systems in their daily work. If anything at all, code
reusability was the most regarded factor due to efficiency rea-
sons. This suggests that the game developers do not recognize
what sustainability means in their industry. Their organiza-
tions, as a whole, do not practice sustainability-conducive
activities either. The authors attributed this to the lack of
a common definition of sustainability in the field as a way
of understanding what constituted eco-impact factors; a view
supported by Penzenstadler [18]. In addition, it was also
suggested that a sustainability body of knowledge for software
engineering could provide specific guidance with regards to
addressing sustainability aspects from a software development
perspective.

Groher and Weinreich [32] investigated how sustainability
is perceived by software engineering professionals in order
to understand how sustainability is currently dealt with in
software development projects in practice. The results of the
study revealed that practitioners primarily relate sustainability
to technical sustainability with a strong focus on maintain-
ability and extensibility of the software systems. Economic
sustainability was an indirect consideration related to influ-
encing factors such as the market and customers. In contrast
to Chitchyan et. al., [29], environmental sustainability was not
mentioned at all by the study participants.

Chitchyan, Groher and Noppen [33] investigated what sus-
tainability means to the field of software engineering within
the context of Software Product Line Engineering (SPLE)

through analysis of 11 case studies. The overall results suggest
that technical and economic sustainability are the primary
focus in current SPLE practice, with social sustainability
issues, where they relate to organisations, also addressed.
However, environmental and individual sustainability concerns
were less prominent.

Overall, these studies suggest that practitioners have a
narrow perception of sustainability and that sustainability is
not a major concern in their current projects. However, more
elaborate concepts and a more stable theoretical background
regarding the body of knowledge about sustainable software
engineering is emerging, which might also influence the
perception of suitability in software engineering education.
Therefore, we could expect to see a higher degree of awareness
regarding sustainability issue when it comes to undergraduate
and graduate students, but there is no related work exploring
this issue. The research presented in this paper contributes to
filling this void.

C. Emergence of Sustainability Requirements

As the concept of sustainability has started to be discussed
in software engineering, so has the concept of sustainability
requirements. Becker et. al., [12] argue that the critical role
that software plays in society demands a paradigm shift in
the mindset of software engineering and that the focus of
this shift begins in requirements engineering. A number of
approaches have been proposed for sustainability requirements
elicitation [34], [35], codification [36], modeling [37], [38],
and management [18]. For example Penzenstadler and Femmer
[18] proposed a goal modelling based approach to capture
sustainability requirements using a generic reference model.
Betz [39] presents a business process based view to modelling
sustainability requirements. While Makropoulos [40] analyses
the specific case of sustainable urban water management,
proposing a general model of sustainability that needs to be
contextualized to assess sustainability. As far as we can ascer-
tain, there exists no formal definition of the term sustainability
requirement. In most instances, a sustainability requirement is
defined in terms of a non-functional requirement or software
quality and aligned with one or more of the dimensions of
sustainability [37], [34], [36], [41] based on characteristics
defined in ISO/IEC 25010 [42]: functional suitability, reliabil-
ity, performance, efficiency, usability, security, compatibility,
maintainability, and portability. Roher and Richardson [35]
defined a sustainability requirements as ‘requirements that may
be used to specify system behavior (e.g. requirements that will
reduce a system’s energy consumption) as well as to influence
the users’ behavior (e.g. the system incentivizes sustainable
actions)’. In contrast, Huber, Hilty, and Glinz [43] in their
investigation into the requirements of a decision support
system (DSS) suggested that a sustainability requirement is a
‘requirement for a sustainable software system which concerns
sustainability’. They argue that sustainability requirements
cannot simply be reduced to quality aspects and should be
related to positive effects suggesting that when positive en-
abling effects are taken into consideration the requirements



for a software system change under the lens of sustainable
development. While the latter definition is overly simplistic it
implicitly suggests that requirements can be viewed through a
multi-perspective lens of sustainability. The former definition
essentially points towards a subset of functional requirements
and towards user influence. As a result, neither definition
provides any insight into how sustainability requirements
differ from existing taxonomic classifications of requirements
[44], [45]. However, Venters et. al. [11] revealed that the
term sustainability requirement is used ambiguously and con-
tains significant variations across the different application and
scientific discipline domains. Their study suggests, that the
dimensions of sustainability and its time effects could help to
see which requirements pertain to sustainability of the software
system and its wider impact.

III. METHODOLOGY

The principal aim of this study is to explore the knowledge
of novice software developers with respect to sustainability,
sustainability requirements, and their relationship to software
engineering principles and practices. Its objective is two-
folded: to learn about the perspectives and ideas of novice
software developers in relation to sustainability and sustain-
ability requirements, and to highlight whether sustainability is
taught within the software engineering education. Therefore,
the study considered the following research questions:

RQ1 What are the opinions and expectations of novice
software developers on sustainability and sustainabil-
ity requirements?

RQ2 What do novice software developers know about
sustainability (within software engineering) when
developing software systems?

A. Study Design

A qualitative research approach was chosen to answer the
above research questions using semi-structured interviews,
which included open and closed questions to elicit the data.
This approach allows the classification of the data into con-
cepts and themes in order to explain a particular phenomena
and to gain a deeper understanding of the underlying reasons,
opinions, and motivations [46], [47].

1) Planning: At the planning stage, the interview questions
were designed collaboratively by all authors. The study was
piloted with one interviewee to validate the clarity of questions
and the interview structure resulting in no major changes.

2) Interviewees: The subjects were selected from current
and former students from the School of Computing and En-
gineering at the University of Huddersfield, using the contact
network of the first two authors of this paper. The criteria for
selection was as follows:

• Current students were required to be enrolled on a Bach-
elors of Science (BSc.) or Masters (MEng, MSc.) degree
programme in Computing, Computer Science, Games
Design, Game Programming, Information Systems or
Software Engineering;

• Former students were required to hold a Bachelors of
Science (BSc.) or Masters (MEng, MSc.) degree in one
of the above listed areas;

• Employed in the software industry for a minimum of six
months;

• Worked or are currently working in the software industry
as part of their industrial placement year3;

• Elicited software requirements as part of their respective
projects.

The study included eight participants of which, seven par-
ticipants were male and one was female. Four are currently
working in the software industry as part of their industrial
placement year. Three were former students currently em-
ployed in the software industry. One was enrolled on the
MEng. degree programme in Software Engineering. Their age
range was between 20-29 years and they were associated with
one of the following institutions:

• LNT Software4: a small to medium sized Enterprise
(SME) software production company dedicated to the de-
sign and development of a range of management software
systems used in care homes across the UK;

• School of Computing and Engineering, University of
Huddersfield5: a public university located in Hudders-
field, West Yorkshire, UK;

• Canalside Studios Game Design6: an independent game
studio, within the School of Computing and Engineering
at the University of Huddersfield.

3) Data Collection: The data collection was undertaken
through in-person, semi-structured interview, which lasted
approximately thirty minutes and covered four key areas:

1) Personal background, including demographics, software
industry experience, and education level;

2) Sustainability, including their understanding of the term
and concrete actions towards sustainability in both pri-
vate and professional lives;

3) Software engineering principles and practices, normally
applied in their work and their potential to contemplate
sustainability;

4) Sustainability requirements, covering their understand-
ing of functional and non-functional requirements, as
well as sustainability requirements.

4) Data Analysis: The qualitative content analysis method
[48] was used to extract views and perceptions on sustain-
ability, sustainability requirements, and software engineering
principles and practice from these interview transcripts. The
interviews were fully transcribed and analyzed using Saturate
[49]; a qualitative data analysis tool. A codebook was created
by the first two authors of the paper in order for the data to be
classified and trends observed. The initial set of codes were

3All undergraduate programs in the School of Computing and Engineering
at the University of Huddersfield include an optional year in industry:
https://www.hud.ac.uk/ce/placements/

4LNT Software: www.lntsoftware.com
5School of Computing and Engineering, University of Huddersfield:

https://www.hud.ac.uk/ce/
6Canalside Studios Game Design: http://www.canalsidestudios.com



created by the first coder and was updated with each following
coding activity. The initial codebook, as well as the updates,
were discussed and agreed upon by all co-authors of this paper.
The first two authors read each of the interviews and coded
the text with conceptual categories relevant to sustainability
perceptions, as well as peer-reviewed each other’s work. The
interview guide and the codebook are available at [50].

B. Limitations of the Study

As is normally the case with qualitative research, the results
cannot be generalized to the wider population of software
developers. This is both due to the limitations of the approach
and the limited number of subjects [51]. In addition, this study
focused solely on novice software developers, as a means to
also evaluate the coverage of sustainability within software
engineering education. As a result, participants may not have
had enough industry experience to provide valuable insights
into sustainability with software engineering and sustainability
requirements. Furthermore, the fact that all participants at-
tended the same university, also limits the conclusions to that
particular institution. However, the results corroborate with the
findings from other similar studies [29], [31], [32].

IV. STUDY FINDINGS

The main findings of this qualitative study fall into three
categories, which are discussed in the following sections. Each
of the individual interviewees is referenced by a fictitious name
to ensure anonymity.

A. Sustainability Findings

The first set of questions were intended to uncover the par-
ticipants’ understanding of and commitment to sustainability.

What is your understanding of the concept of Sustainabil-
ity? All interviewees related sustainability to the concept of
endurance over time. For example, Scott stated that sustain-
ability is “something that can be sustained effectively over a
long or short period of time”. In addition, two interviewees
suggested that sustainability could also be related to tech-
nical aspect of sustainability including software metrics and
hardware. Thomas stated that sustainability was also related
to the “metrics used to quantify how sustainable a piece of
software is” both through the “development phase and after
its hand-off to a client”. Jamie suggested that sustainability
was related to the longevity of resources stating that there
are issues with “hardware sustainability” particularly with
advances in hardware driving the game industry. Ryan said that
the concept should be considered in relation to the environment
in a more direct manner, stating that sustainability is also
related to “using less or an equal amount of resources that
are being produced at the same time”.

Have you ever considered the following sustainability
dimensions: Environmental, Economic, Individual, Social
or Technical? When asked whether they had ever considered
sustainability in relation to the five sustainability dimensions,
those participants who understood the differentiation of the

terms in relation to sustainability generally had a good un-
derstanding of the environmental, economic and technical
dimensions of sustainability but lacked any real understanding
with regard to the individual and social dimensions; these were
unheard of by seven of the participants. The other participant
stated that they had not considered sustainability in relation
to the five dimensions. This is in itself surprising especially
with regards to the prominence of environmental sustainability
in post-industrial societies particularly around recycling and
energy conservation.

Four interviewees (Scott, Claire, Steven and Thomas) stated
that they had considered environmental sustainability, citing is-
sues related to the impact of the environment including global
warming, deforestation, resource depletion and farming, as
well as ways to mitigate that impact in terms of moving
towards renewable energy sources such as wind and tidal,
and recycling. However, Steven also highlighted that envi-
ronmental sustainability “doesn’t need to be natural, it could
be artificial such as this office space” emphasizing that the
environments we work in also need to consider sustainability.
In addition, Thomas related environmental sustainability to
hardware and server capacity stating that “if the servers went
down, the software’s environment must also be sustainable”,
indirectly acknowledging the relevance of the wider notion of
the systems dependability for sustainability.

Four interviewees (Steven, Thomas, Ryan, James) also
stated that they had considered economical sustainability, three
of whom referred to it as ensuring business value, capital
growth and investment, and financial operations. For example,
James suggested that in terms of economic sustainability “I
don’t think they’ve made as much money as they have put into
this [Canalside Studios], so really, they are paying for the
students to get experience really”.

Finally, four interviewees (Steven, Claire, Mark and Ryan)
stated that they had considered technical sustainability, which
covered both the software and hardware aspects of software
systems. Steven stated that technical sustainability was “re-
lated to the ability to build a software product that is built
in a way so that it does not die”. Similarly, Claire and Mark
highlighted the importance of maintainability and extendability
of the software systems. Claire emphasized the importance of
“the ability to maintain and evolve software systems over a
prolonged period of time”. Mark explained that “I program in
a way that’s easily maintainable for people other than myself,
I make short methods that are recognizable so we minimize
the amount of lines we use”. Ryan suggested that technical
sustainability was related to effectively utilizing resources,
explaining that “technical sustainability is not using more
resources than you have, such as computer power or man
power”.

What do you do for sustainability in your daily private
life? The most common answers amongst participants were
related to [environmental] sustainability. Ben, Jamie, Scott,
Claire, Steven and Thomas articulated tasks such as switching
lights off, saving energy, and recycling. However, Ben, Jamie
and Scott also emphasized the importance of saving and



investment in relation to ensure economic stability thereby
linking activities related to economic resource usage to [eco-
nomic] sustainability. However, Mark stated, “I don’t think I
do sustainable, I rarely recycle or take consideration of the
environment”.

What do you do for sustainability in daily work life?
In contrast to how participants viewed sustainability in their
private life, there was a strong emphasis by seven participants
on [technical] sustainability specifically related to code main-
tainability and evolution associated with actions to ensure code
readability, code efficiency, coding standards, as well as the
importance of refactoring legacy code and code reusability.
Mark highlighted the issues related to unsustainable practice
stating that “the current project I am recoding is full of
memory leaks because it wasn’t coded well”. Ryan stated
that “the team make sure the code is sustainable so others
can read it later on, change it and understand it”, which
suggested that this was an important task for the entire team.
This was a view shared by the majority of participants. Claire
also highlighted the importance of the role of project man-
agement in underpinning the process. Notably, the activities
related to environmental sustainability previously mentioned
for the context of private life (e.g., switching lights off, saving
energy, and recycling) did not explicitly cross over into the
interviewees’ daily working practice.

B. Software Engineering Principles and Practice

The second set of questions investigated the subjects’
knowledge with respect to software engineering principles and
practices.

What are the main software engineering principles you
consider when working on a project?

With respect to software engineering principles, the most
common answer was related to improving “code readbility”
including coding style, formatting, naming, comments, coding
conventions, and documentation. James emphasized that it
was critical that “others within the team must be able to
understand the code with minimal explanation”. In addition,
Thomas also mentioned the need to have comprehensive
testing and utilise requirements traceability. The most in-
depth answer was given by Steven, who referred to the ability
to “adapt to change” and the ”agile principles”. He also
claimed that “everything I apply within the project is to
ensure sustainability, everything is considered for the long-
term effects of the software”. Two participants (Ben, Claire)
were unsure of what software engineering principles were.
Ben stated that “as a Game Designer, I have never really
considered software engineering principles”. However, the
responses highlight a general misperception between software
engineering principles7 such as GRASP8, SOLID9, YAGNI10,

7principle, (n). a primary assumption forming the basis of a chain of
reasoning [13]

8GRASP: General Responsibility Assignment Software Patterns
9SOLID: Single responsibility, Open-closed, Liskov substitution, Interface

segregation and Dependency inversion
10YAGNI: You Ain’t Gonna Need It! [52]

DRY11, KISS12, and best software engineering practice.

What are the software engineering principles you apply
that are related to sustainability in software systems? Similar
to the responses to the previous question on software engi-
neering principles, the most common answer was related to
improving the overall readability of the code through a variety
of best practice activities i.e. code structure, use of comments
etc. However, Mark and Ryan emphasized that this was pri-
marily to achieve the “maintainability” of the code base. Mark
explained that “I code in a maintainable way. I always code
so if I wasn’t here or available, other people would continue
from me easy, without causing [memory] leaks”. This suggests
that participants consider that maintainability is a core activity
in ensuring that the code is [technically] sustainable. However,
three participants (Claire, Ben and Steven) could not suggest
any software engineering principles specifically related to
sustainability.

What software engineering practices do you consider
when building software systems? With regard to software
engineering practices, the most common answer was related to
software development process with four participants (Steven,
Claire, Thomas and Scott) stating that they employed SCRUM
and Agile development processes’ and practice. Claire stated
that everything starts off with “an ‘amigo’ meeting in which a
small team discusses the software systems features, with tasks
be delegated into sprints”. Steven added that in addition to
the core SCRUM approach, they regularly employ techniques
such as prototyping, code reviews, pair programming, and
automated testing and deployment. The majority of responses
here are related to software engineering process.

What software engineering practices do you consider when
building software systems?

When asked to relate sustainability with software engineer-
ing practices, half of the participants (James, Scott, Mark,
Steven) fell back to the concepts of efficiency and maintain-
ability. The remaining four participants (Ben, Ryan, Claire,
Thomas) could not relate any of their current software en-
gineering practice to sustainability. Thomas stated, “I really
don’t know if I contemplate sustainability at all when consid-
ering practice”.

As a general observation of the interview, even though all
participants studied computing related subjects at a UK insti-
tution of Higher Education with a common core of software
engineering courses, the majority of the them struggled to
answer the questions related to the basic concepts of software
engineering principles and practices, suggesting that these
were not well understood by our volunteers. For instance, there
is a general lack of clarity on the difference between software
engineering principles and practice, suggesting that this dif-
ferentiation may not have been covered in the Huddersfield’s
curriculum.

11DRY: Don’t Repeat Yourself
12KISS: Keep It Simple, Stupid!



C. Sustainability Requirements

The last set of questions referred to the participants’
understanding and ideas about requirements in general and
sustainability requirements in particular.

What is your understanding of the term Functional
Requirement (FR)? Surprisingly, participants’ formal under-
standing of the term functional requirement deviated signif-
icantly from how it is generally understood within the field
of software and requirements engineering, defined in standard
software engineering textbooks [53] or SWEBOK [54]. Four
participants (Ryan, Scott, Claire, Steven) gave reasonable
definitions or examples of a functional requirement, such as
“it is what the users of the product need to be able to achieve
[...] ultimately the users have some action that they need to
achieve [...] I guess it could be related to the controls of the
game. [...] a feature you expect to do something”. However,
four participants (Ben, James, Mark, Thomas) had no or
an incorrect understanding of the term. For example, Mark
stated, “no idea, I’d just assume it’s coding in a clean and
clear way and following common practices”. These results are
unexpected, as all participants work in the software industry.

What is your understanding of the term Non- Functional
Requirement (NFR)?

Similarly, participants’ understanding of the term non-
functional requirement also deviated significantly from the
common view in the software/requirements engineering com-
munities. Three participants (James, Scott, Steven) suggested
that non-functional requirements were related to “perfor-
mance” or “reliability”. However, four participants (Ryan,
Ben, Mark, Thomas, Claire) had no or an incorrect interpre-
tation of this term. Ben described it as “something that is
not compulsory, such as something that the project doesn’t
need to succeed, but something the user wants”, ignoring that
fact that software is unlikely to be successfully used if non-
functional requirements are overlooked. Again, these results
are somewhat surprising given respondents’ previous work in
the software industry.

What is your understanding of the term “sustainability
requirements”? When asked about “sustainability require-
ments”, interviewees gave answers which were consistent
with their understanding of sustainability. Four participants
(Mark, Scott, James, Ben) considered the notions of ”time”,
”longevity” or ”maintenance”. For example, Mark suggested
that it is related to “making a system that will keep going
over a long period of time [...], followed by examples of
coding standards (e.g. classes with less than 1000 lines,
methods limited to 20 lines and a maximum of five variables
within a method). Ryan suggested a relationship with reuse
when describing a sustainability requirement: “someone could
review my code and easily reword/restructure it as well as
read it and understand it easily”. In general, explanations
lacked precision and showed confusion over the concept. For
example, James suggested that a sustainability requirement is
“a requirement that is sustainable over a prolonged period”.
Thomas said that it was about “having a piece of software

that is sustainable, rather than having requirements that just
meets functionality demands”. One interviewee was unable to
give an answer.

Elicitation, modelling, and evaluation of “sustainability
requirements”. The last three questions of the interview
focused on elicitation, modelling and the evaluation of sus-
tainability requirements13.

However, while the questions generated a small amount
of discussion, participants either lacked confidence or were
unable to answer these questions with the majority opting for
a fall back position of “I don’t think I could give you an
answer to that”. Five participants (Ryan, Jamie, Scott, Mark,
Steven and Thomas) were unsure how to formally analyze
requirements per se, which may in some instance be related
to their working environment where “the specifications and
requirements are already drawn up for us” suggesting that
this task is the responsibility of another team member. Most
telling was that the majority of the participants were unable
to relate any existing software and requirements engineering
practice to the elicitation, modelling or the evaluation of sus-
tainability requirements. However, with regards to modelling
a sustainability requirement, Thomas suggested , “I would
use basic UML modelling so I could visualize the problem
or requirement...I don’t really have any examples”. Claire
suggested employing “user stories then breaking that down
into scenarios”; she believed that the method as a whole could
be used to enable sustainability within software development.

V. DISCUSSION

A. Sustainability

All interviewees had a very broad understanding of sus-
tainability, which was not limited to an environmental or
technical perspective. Only when prompted on the dimensions,
the interviewees related specific aspects, and, unsurprisingly,
they could relate better to the environmental, economic, and
technical dimensions than to the individual and social ones.
Emphasis on action for sustainability in their private lives cen-
tered around the environmental dimension, including activities
like saving energy and recycling. In their work lives, it was
focused strongly on technical sustainability, especially in terms
of maintainability, coding practices and team management.
These findings confirm the results reported for experienced
software [32] and requirements [29] engineering practitioners,
and professional game developers [31]. Even though we cannot
[yet] draw wider conclusions on the generalisability of the
results, this may serve as indicator that we need to better
infuse the different dimensions of sustainability into software
engineering education, and specifically give examples for the
individual and social dimensions [55].

13The questions are:
• How would you elicit a sustainability requirement? Could you utilise

any existing techniques?
• How would you model a sustainability requirement? Could you utilise

any existing techniques?
• How would you test or evaluate a sustainability requirement? Could

you utilise any existing metrics and measures?



B. Sustainability Requirements

The interviewees in this study sample appear to have no
considered opinion on or grounded knowledge of sustainability
in software engineering in general and sustainability require-
ments in particular. Though, when pressed for an answer, they
relate the notion of sustainability requirements to software
maintainability and longevity, which is consistent with findings
from [29]. Moreover, our interviewees were not clear about
the notions of functional and non-functional requirements
either. While the missing knowledge on sustainability could
be attributed to lack of this topic’s coverage in Software
Engineering Curriculum, we are certain that the notion of
functional and non-functional requirements is presented to the
students within several modules throughout their SE studies.
Yet, as per this study, this knowledge has not been retained,
suggesting that it has not been applied in common practice.

Furthermore, the SE community is well aware that non-
functional requirements (such as maintainability, extendabil-
ity, usability, security, etc.) are often the key factors in the
software systems’ success or failure. Yet, our interviewees
lack proper understanding of these. One explanation of this
contradiction may lie in the “early career” stage of our
sample. As novice developers, they are likely to be focused
on the specific functionality implementation allocated to them,
while senior colleagues, such as team leads, or software
architects handle the concerns of non-functional (including
sustainability-related) requirements. This view is supported by
prior work (e.g., [56]) where senior engineers demonstrate key
engagement with NFRs.

Consideration of the concept of a sustainability require-
ments did not lead our interviewees to relate it to their
practice (e.g., one even interpreting environmental dimension
of sustainability as having to do with the weather). While dis-
appointing, this result is not entirely unexpected, as the notion
of sustainability is so very broad that, at first encounter, it
seems not connected to a specific task. Moreover, requirements
that directly relate to sustainability are not perceived as such,
as they are traditionally treated under segregated headings
(e.g., accessibility and usability directly relate to the individ-
ual sustainability dimension; maintainability to the technical
and economic dimension, etc.). To address this challenge,
related research on collecting domain-specific sustainability
requirements has recently been initiated [57], as well as an
effort to illustrate sustainability relevance to software process
and products with examples [12], [58]. A collection of such
practical examples could serve as a good educational resource
for the novice practitioners, such as our interviewees.

C. Software Engineering: Principles and Practice

From our interviews we observe, that none of the partici-
pants considered principles specifically dedicated to sustain-
ability. Some participants have their own sets of practices
that pertain to system longevity and maintainability, and also
used agile methods (like code reviews and pair programming).
However, four out of eight interviewees, were not able to
relate any software engineering practice with sustainability.

This shows that there is a lack of coverage of sustainability
in software engineering education, although there exist several
examples that propose principles and practices for including
and explicitly addressing sustainability in SE; some of this
work is described in the background section of this paper. For
example, the principles for sustainabiltiy design are explicitly
listed in the Karlskrona Manifesto [10], and many practices
are proposed by Naumann et. al. [15], Mahaux [59], Penzen-
stadler [60], Betz [39], Chitchyan et. al., [58]. This is even
more evident as the study has been conducted with recently
graduated students.

Overall, this leads to the question as to what education
about sustainable software engineering should look like and
how to integrate sustainability principles and practice into
it? Should there be a dedicated teaching module for this, or
should the topic be spread across the regular SE modules?
One way of integrating sustainability education into the SE
curriculum is through infusing the sustainability considerations
into SE courses as an overall aspect of long-term (strategic)
development, which prevents accumulation of sustainability
debt (including technical debt, social and personal dissatisfac-
tion, economic losses, and environmental costs) [39]. Indeed,
sustainability is an ever present concern in SE, even if not
always explicitly acknowledged [10].

VI. CONCLUSIONS AND OUTLOOK

This paper reported results of an interview study on the
knowledge of novice software developers with respect to
sustainability, sustainability requirements, and the relationship
of these concepts to software engineering principles and prac-
tices.

Our findings highlight that sustainability is generally un-
derstood in its broadest sense i.e. ‘capable of being endured’
but it also often encompasses environmental, economic, and
technical dimensions. However, we also observe a gap in
understanding the notions of social and individual sustainabil-
ity, which is corroborated by the findings from other similar
studies [33], [32], [31].

The results also suggest that while sustainability is not a
primary or overarching focus of our interview participants’
cohort, the concept of sustainability is valued highly by
these novice software developers, with a strong emphasis
on attaining technical sustainability through maintainability
related activities. In this context, the drive towards achieving
maintainability aligns with ‘the ease with which a software
system or component can be modified to correct faults, im-
prove performance or other attributes, or adapt to a changed
environment’ [54]. As such, it is important to recognize that
sustainability is an explicit consideration even if the primary
focus of the system under design is not sustainability; a view
supported by the Karlskrona Manifesto [10].

In addition, the results highlight a deficit in the knowl-
edge of basic software engineering theory and practice as
it is generally understood by the software and requirements
engineering community as a whole, as well as a misalignment
with existing software engineering principles and practice in



relation to sustainability. While these results by themselves
provide a Fisheye view lens of software engineering and
sustainability, it raises serious questions regarding whether
software engineering education at this particular institution
is fit for purpose or whether it is symptomatic of a larger
problem in the software engineering curriculum. To address
this question, we require further research and evidence.

We note that the education sector as a whole has an
important role to play in ensuring that software designers of
the future fully understand the concept of sustainability and
its integral relationship to the field of software engineering by
bridging the chasm between software engineering and sustain-
ability. Education presents a key avenue for improvement in
understanding sustainability. Educators need to consider how
to integrate sustainability into software engineering curricula
and articulate the competencies required for successful sus-
tainability design. In this context, there is a need to expand
the pool of examples of how to include sustainability in
software engineering curricula, particularly from the inter-
national organizations that provide curricula guidelines. In
ACM/IEEE SWE Curricula, sustainability is mentioned only
once. Similarly, in the SWEBOK curricula, sustainability is
mentioned twice in the software economics area.

This paper provides further evidence that we must consider
the question of what would sustainable software engineering
education would look like? To further investigate the current
situation with regards to software engineering education and
sustainability, future work will extend this study by conducting
more studies in different organizations from different coun-
tries. Based on the results of theses studies, we are planning
to work on curricula guidelines and recommendations.

ACKNOWLEDGEMENTS

We would like to express our sincere thanks and gratitude
to our friend and colleague Professor Christoph Becker14,
University of Toronto (Canada), for his significant contribu-
tions and insights into the ongoing research agenda of the
Karlskrona Consortium into sustainability design15. We also
gratefully acknowledge the eight participants who willingly
gave up their time to participate in this study.

REFERENCES

[1] H. Walkington, “Students as researchers: Supporting undergraduate
research in the disciplines in higher education,” 2015.

[2] H. Pham, Software reliability. Wiley Online Library, 1999.
[3] F. P. Deek, J. A. M. McHugh, and O. M. Eljabiri, Strategic Software

Engineering: An Interdisciplinary Approach. Auerbach Publications,
2005.

[4] R. Kitchin and M. Dodge, Code/space: Software and everyday life. Mit
Press, 2011.

[5] A. Geist and R. Lucas, “Major computer science challenges at exascale,”
Journal of High Performance Computing Applications, vol. 23, no. 4,
pp. 427–436, 2009.

[6] T. Hey, S. Tansley, K. M. Tolle et al., The fourth paradigm: data-
intensive scientific discovery. Microsoft research Redmond, 2009,
vol. 1.

[7] C. Goble, “Better software, better research,” IEEE Internet Computing,
vol. 18, no. 5, pp. 4–8, Sept 2014.

14Christoph Becker: https://ischool.utoronto.ca/christoph-becker/
15Sustainability Design: http://sustainabilitydesign.org/

[8] Z. Merali, “Computational science: Error, why scientific programming
does not compute,” Nature, vol. 467, no. 7317, pp. 775–777, 2010.

[9] M. M. Lehman, “Software’s future: Managing evolution,” IEEE soft-
ware, vol. 15, no. 1, pp. 40–44, 1998.

[10] C. Becker, R. Chitchyan, L. Duboc, S. Easterbrook, B. Penzenstadler,
N. Seyff, and C. C. Venters, “Sustainability design and software:
The karlskrona manifesto,” in Proceedings of the 37th International
Conference on Software Engineering - Volume 2, ser. ICSE-SEIS ’15,
May 2015, pp. 467–476.

[11] C. C. Venters, N. Seyff, C. Becker, S. Betz, R. Chitchyan, L. Duboc,
D. McIntyre, and B. Penzenstadler, “Characterising sustainability re-
quirements: A new species, red herring, or just an odd fish?” in Pro-
ceedings of the 39th International Conference on Software Engineering:
Software Engineering in Society Track, ser. ICSE-SEIS ’17, 2017, pp.
3–12.

[12] C. Becker, S. Betz, R. Chitchyan, L. Duboc, S. M. Easterbrook,
B. Penzenstadler, N. Seyff, and C. C. Venters, “Requirements: The Key
to Sustainability,” IEEE Software, vol. 33, no. 1, pp. 56–65, Jan-Feb
2016.

[13] “Oxford English Dictionary Online, 2nd edition,” http://www.oed.com/,
July 2003.

[14] G. H. Brundtland and UN World Commission on Environment and
Development, Our common future. Oxford University Press, 1987.

[15] S. Naumann et al., “The greensoft model: A reference model for green
and sustainable software and its engineering,” Sustainable Computing:
Informatics and Systems, pp. 294–304, 2011.

[16] H. Koziolek, “Sustainability evaluation of software architectures: a
systematic review,” in ACM SIGSOFT Conf. QoSA and ISARCS. ACM,
2011, pp. 3–12.

[17] A. Molla, V. A. Cooper, and S. Pittayachawan, “It and eco-sustainability:
Developing and validating a green it readiness model,” ICIS 2009
Proceedings, p. 141, 2009.

[18] B. Penzenstadler, “Towards a definition of sustainability in and for soft-
ware engineering,” in Proceedings of the 28th Annual ACM Symposium
on Applied Computing, ser. SAC ’13, 2013, pp. 1183–1185.

[19] L. M. Hilty and B. Aebischer, “Ict for sustainability: An emerging
research field,” in ICT Innovations for Sustainability. Springer, 2015,
pp. 3–36.

[20] R. C. Seacord et al., “Measuring software sustainability,” in ICSM, Sept
2003, pp. 450–459.

[21] C. Calero et al., “Quality in use and software greenability,” in Workshop
RE4SuSy, 2014.

[22] C. C. Venters, C. Jay, L. Lau, M. K. Griffiths, V. Holmes, R. Ward,
J. Austin, C. E. Dibsdale, and J. Xu, “Software sustainability: The mod-
ern tower of babel,” in Proceedings of the Third International Workshop
on Requirements Engineering for Sustainable Systems (RE4SuSy 2014),
2014.

[23] C. Calero and M. Piattini, Green in software engineering. Springer,
2015.

[24] C. C. Venters, L. Lau, M. K. Griffiths, V. Holmes, R. R. Ward, C. Jay,
C. E. Dibsdale, and J. Xu, “The blind men and the elephant: Towards
an empirical evaluation framework for software sustainability,” Journal
of Open Research Software, vol. 2, no. 1, 2014.

[25] B. Penzenstadler, A. Raturi, D. Richardson, and B. Tomlinson, “Safety,
Security, Now Sustainability: The Nonfunctional Requirement for the
21st Century,” IEEE Software, vol. 31, no. 3, pp. 40–47, May 2014.

[26] J. L. Ramsey, “On not defining sustainability,” Journal of Agricultural
and Environmental Ethics, vol. 28, no. 6, pp. 1075–1087, 2015.

[27] J. A. Tainter, “Social complexity and sustainability,” Journal of Ecolog-
ical Complexity, no. 3, pp. 91–103, 2006.

[28] B. Knowles et al., “Exploring sustainability research in computing:
Where we are and where we go next,” in UbiComp. ACM, 2013,
pp. 305–314.

[29] R. Chitchyan, C. Becker, S. Betz, L. Duboc, B. Penzenstadler, N. Seyff,
and C. C. Venters, “Sustainability design in requirements engineering:
State of practice,” in Proceedings of the 38th International Conference
on Software Engineering Companion, ser. ICSE-SEIS ’16, 2016, pp.
533–542.

[30] I. Manotas, C. Bird, R. Zhang, D. Shepherd, C. Jaspan, C. Sadowski,
L. Pollock, and J. Clause, “An empirical study of practitioners’ per-
spectives on green software engineering,” in Proceedings of the 38th
International Conference on Software Engineering, ser. ICSE ’16, 2016,
pp. 237–248.



[31] J. Kasurinen, M. Palacin-Silva, and E. Vanhala, “What concerns game
developers?: A study on game development processes, sustainability and
metrics,” in Proceedings of the 8th Workshop on Emerging Trends in
Software Metrics, ser. WETSoM ’17, 2017, pp. 15–21.

[32] I. Groher and R. Weinreich, “An interview study on sustainability
concerns in software development projects,” in Proceedings of the
43rd Euromicro Conference on Software Engineering and Advanced
Applications, ser. SEAA ’17, 2017.

[33] R. Chitchyan, I. Groher, and J. Noppen, “Uncovering sustainability
concerns in software product lines,” Journal of Software: Evolution and
Process, vol. 29, no. 2, February 2017.

[34] M. Mahaux, P. Heymans, and G. Saval, “Discovering sustainability
requirements: an experience report,” in Intl. Working Conf. REFSQ,
2011, pp. 19–33.

[35] K. Roher and D. Richardson, “A proposed recommender system for
eliciting software sustainability requirements,” in Workshop USER, 2013,
pp. 16–19.

[36] ——, “Sustainability requirement patterns,” in Requirements Patterns
(RePa), 2013 IEEE Third Intl Workshop on, 2013, pp. 8–11.

[37] J. Cabot et al., “Integrating sustainability in decision-making processes:
A modelling strategy,” in 31st ICSE. IEEE, 2009, pp. 207–210.

[38] S. A. Kocak, “Green software development and design for environmental
sustainability,” in 11th International Doctoral Symposium an Empirical
Software Engineering (IDOESE 2013). Baltimore, Maryland, vol. 9,
2013.

[39] S. Betz, “Sustainability aware process management using xmlnets,” in
Proceeding of the 28th EnviroInfo Conference, 2014.

[40] C. K. Makropoulos, K. Natsis, S. Liu, K. Mittas, and D. Butler,
“Decision support for sustainable option selection in integrated urban
water management,” Environ. Model. Softw., vol. 23, no. 12, pp. 1448–
1460, Dec. 2008.

[41] S. A. Kocak, G. I. Alptekin, and A. B. Bener, “Integrating environmental
sustainability in software product quality,” in RE4SuSy 2015: Require-
ments Engineering for Sustainable Systems, vol. 1416. CEUR, 2015,
pp. 17–24.

[42] “ISO/IEC 25010:2011: Systems and software engineering. Systems and
software quality requirements and evaluation (SQuaRE),” 2011.

[43] M. Z. Huber, L. M. Hilty, and M. Glinz, “Uncovering sustainability
requirements: An exploratory case study in canteens,” in RE4SuSy 2015:
Requirements Engineering for Sustainable Systems, vol. 1416. CEUR,
2015, pp. 35–44.

[44] M. Glinz, “Rethinking the notion of non-functional requirements,” in
Third World Congress for Software Quality, Sep. 2005, pp. 55–64.

[45] J. Eckhardt, A. Vogelsang, and D. M. Fernández, “Are ”non-functional”
requirements really non-functional?: An investigation of non-functional
requirements in practice,” in Proceedings of the 38th International
Conference on Software Engineering, ser. ICSE ’16, 2016, pp. 832–842.

[46] E. Fossey, C. Harvey, F. McDermott, and L. Davidson, “Understanding
and evaluating qualitative research*,” Australian and New Zealand
Journal of Psychiatry, vol. 36, no. 6, pp. 717–732, 2002.

[47] J. W. Creswell, Qualitative inquiry & research design: choosing among
five approaches, 3rd ed. SAGE, 2013.

[48] P. Mayring, “Qualitative Content Analysis,” in Forum Qualitative Sozial-
forschung/Forum: Qualitative Social Research, vol. 1, no. 2, 2000.

[49] Simple Collaborative Qualitative Analysis. [Online]. Available: http:
//www.saturateapp.com

[50] “Fisheye lens view: Interview guide & codebook,” http://tinyurl.com/
h8dz4s3.

[51] P. A. Ochieng, “An analysis of the strengths and limitation of qualitative
and quantitative research paradigms,” Problems of Education in the 21st
Century, vol. 13, June/2009 2009.

[52] R. E. Jeffries, A. Anderson, and C. Hendrickson, Extreme Programming
Installed. Addison-Wesley Longman Publishing Co., Inc., 2000.

[53] I. Sommerville, Software engineering, tenth, global ed. Pearson
Education Limited, 2016.

[54] P. Bourque, R. E. Fairley, and I. C. Society, Guide to the software
engineering body of knowledge: SWEBOK, version 3.0. IEEE, 2014.

[55] R. Chitchyan, S. Betz, L. Duboc, B. Penzenstadler, S. Easterbrook,
C. Ponsard, and C. Venters, “Evidencing sustainability design through
examples,” in Fourth International Workshop on Requirements Engineer-
ing for Sustainable Systems (RE4SuSy), August 2015.

[56] D. Ameller, C. P. Ayala, J. Cabot, and X. Franch, “Non-functional
requirements in architectural decision making,” IEEE Software, vol. 30,
no. 2, pp. 61–67, 2013.

[57] M. Al Hinai and R. Chitchyan, “Engineering requirements for social
sustainability,” ICT4S, 2016.

[58] R. Chitchyan, W. Cazzola, and A. Rashid, “Engineering sustainability
through language,” in Proceedings of the 37th International Conference
on Software Engineering - Volume 2, ser. ICSE ’15, vol. 2. IEEE, 2015,
pp. 501–504.

[59] M. Mahaux, P. Heymans, and G. Saval, “Discovering sustainability
requirements: an experience report,” in International Working Confer-
ence on Requirements Engineering: Foundation for Software Quality.
Springer, 2011, pp. 19–33.

[60] B. Penzenstadler, “Infusing green: Requirements engineering for green
in and through software systems.” in RE4SuSy@ RE, 2014, pp. 44–53.


