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Cloud-based Scalable Object Detection and
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Abstract

Recent advances in cameras, cell phones and camcorders Ð particularly the
resolution at which they can record an image/ video, are generating large
amounts of data. This video data is often so large that manually inspect-
ing it for useful content can be time consuming and error prone Ð thereby
requiring automated analysis to extract useful information & metadata. Au-
tomated analysis often involves approaches to detect, track and recognize
objects. But most of these approaches address challenges that are applica-
ble to still images. These approaches operate under a supervised learning
domain, requiring substantial amounts of labelled data and training time.
There is still a wide gap present in terms of processing of video data and in
extracting meaningful information from it. We present a cloud-based, au-
tomated video analysis system to process a large number of video streams,
and enabling the underlying infrastructure to scale based on the number
and size of the stream(s) being considered. The system automates the video
analysis process and reduces the involvement of human factor. An operator
using this system only speciÞes the object of interest which is to be located
from the video streams. The video streams are then automatically fetched
from the cloud storage and analyzed in an unsupervised way. Objects are
extracted from video streams independently and then object recognition is
performed for identiÞcation. All the speciÞed objects can be classiÞed from
the video streams without requiring any metric learning stage and costly la-
belled training data. The proposed system locates and classiÞes an object of
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interest from one month of recorded video streams comprising 175GB size on
a 15 node cloud in 6.52 hours. The GPU powered infrastructure took 3 hours
to accomplish the same task. Occupancy of GPU resources in cloud is opti-
mized and data transfer between CPU and GPU is minimized to achieve high
performance. The system is independent of any metric learning stage and
costly labeled training data. The scalability of the system is demonstrated
along with a classiÞcation accuracy of 95%. The system reduces processing
time by up to 90x when compared to analysis of full frames (tested on a large
number of video streams).

Keywords:
Unsupervised Object ClassiÞcation, Cloud Computing, GPUs, High
Performance Video Analytics.

1. Introduction

The increasing availability and deployment of video cameras has resulted
in the generation of thousands of high resolution videos streams. Such a
video can be sub-divided into a number of frames of interest. Various types of
information can be extracted from these video frames, such as classiÞcation
of moving objects corresponding to a speciÞc area of interest. The term
video analytics refers to the optimized processing of these video frames by
using intelligent approaches such as a machine learning, so that clusters of
information can be extracted from them.

Video analytics systems mainly perform object detection and recogni-
tion. Object detection refers to the detection of all instances of an object
belonging to a known category, such as faces or cars, within a sequence of
frames. Often a video may contain a number of objects. These objects can
reside at any location within a frame Ð requiring the detection process to
investigate di!erent parts of the frame to locate the object of interest. Ob-
ject recognition, on the other hand, refers to the identiÞcation of detected
objects. Labels are assigned to the detected objects during this process. A
video stream and some known labels are provided to the system. It then
assigns the correct labels to the detected objects in a video stream. [1][2][3]
describe how video frame analysis can be used to support detection, track-
ing and recognition of objects. But these systems are expensive in terms
of processing time and cost [4], require human monitoring and intervention
[5] and address challenges that are often relevant for still images [6]. These
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systems require a large number of resources such as operators and working
place. Due to cognitive limitations, an operator cannot focus on recorded
video streams for more than 20 minutes; making it unfeasible to perform
e"cient and robust large scale video analysis. Scaling such analysis to large
data volumes also remains a challenge. Additionally, to gain greater insights
into the analysed video content, computationally intensive algorithms (e.g.
deep learning algorithms [7]) with large storage requirements are needed.

This work utilizes the advantages of machine learning based classiÞcation
approaches to develop an automated video analysis system which overcomes
these challenges. The focus of this work is to build a cloud based robust
and scalable solution for the processing of large number of video streams.
We employed the detection and classiÞcation algorithms in combination in
order to combine the beneÞts of both supervised and unsupervised learn-
ing domains. The Haar Cascade ClassiÞer [8] has been demonstrated to be
highly accurate for object detection, especially for detecting faces in still
images [10]. We have therefore investigated its use for video sequences. Sim-
ilarly, Local Binary Pattern Histogram [9] is a widely used classiÞcation algo-
rithm, primarily because of its computational simplicity and high accuracy.
Our system requires minimum human interaction for identifying objects in a
large number of video frames. The system is based on a very simple object
matching concept. After the extraction of desired objects, we employed the
object matching algorithm to perform object recognition. This enabled us
to perform classiÞcation without any metric learning algorithm and labelled
training data.

An operator using the system only speciÞes the object of interest which
is to be located. The video streams are then automatically fetched from
the cloud storage and processed frame by frame. The moving object is Þrst
detected in a frame to provide a reference for the location of the object
which can be tracked in the subsequent frames. It is cropped and saved at
a separate image, so that the recognition step will have to process a smaller
sized image. The moving object is then passed on to the subsequent object
recognition phase for identiÞcation.

The recognition phase Þrst analyzes the marked input object. It extracts
and stores features from it. This marked object is then compared with all the
other frames. If the same object is identiÞed in any other frame its instance is
updated and its corresponding time and location is saved. If the comparison
fails then it means that the marked object is not present in the video stream
which is currently being processed. This marked object is then fed to the
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next video stream and the same process is repeated. Depending upon the
features being considered, a decision is made whether the object is present
in the analysed video stream. If the object is located in the video stream,
its time and location is saved and updated. This mechanism is performed
for all the video streams and cumulated time and locations are stored in a
database.

The proposed video analysis system achieves its functionality without re-
quiring a learning stage or any (costly) labeled data. Statistical similarity
measures are used to compare extracted frames. To support scalability and
throughput, the system is deployed on compute nodes that have a combina-
tion of CPU and GPU, within a cloud system. This also enables on-the-ßy
and on-demand analysis of video streams.

The main contributions of this paper are as follows: Firstly, a robust
video analysis system is proposed which employs two learning algorithms in
combination, to perform quick analysis on large number of video streams.
Secondly, we perform object classiÞcation on the extracted objects in an au-
tomated and unsupervised way. No training or manually labeled dataset is
required in our approach. Thirdly, the proposed system is scalable with high
throughput as it is deployed on a cloud based infrastructure that have a com-
bination of CPU and GPU.
The paper is structured as follows: Section 2 compares the approach with
related approaches, providing a survey of most recently used features and
classiÞers for object detection and recognition. The proposed approach and
its architecture are explained in Section 3 and 4 respectively. The implemen-
tation of the proposed system is described in Section 5. Section 6 details
the experimental setup and Section 7 reveals the results obtained from im-
plementation in terms of accuracy, scalability, performance and throughput.
The conclusions drawn from the work and the future directions are presented
in Section 8.

2. Related Work

SigniÞcant literature already exists for image and video processing. How-
ever, the e!ective use of these techniques for analysing a large volume of
video data, the size of which may not be known apriori, is limited. Addi-
tionally, carrying out such analysis on scalable/ elastic infrastructures also
remains limited at present.
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Object ClassiÞcation Approaches:Object classiÞcation has been an area
of great interest by many researchers from the past decade. Yuanqing et
al. [11] proposed an automated fast feature extraction approach for large
scale image classiÞcation using Support Vector Machines. Similarly Nikam
et al. [12] developed a scalable and parallel rule based system to classify large
image datasets and concluded that the system is reliable, with computation
time decreasing as the number of nodes increase.

Giang et al. [13] used CNN to di!erentiate between pedestrians and non-
pedestrians. They scan input images at di!erent scales, and at each scale all
windows of Þxed size are processed by a CNN classiÞer to determine whether
an input window is pedestrian or not. Feature extraction and classiÞcation
phases were integrated in one single fully adaptive structure. All the three
layers of CNN i.e. convolution layers, sub-sampling layers, and output layers
were used to perform classiÞcation. This work showed that it is possible to
lower training time while maintaining a threshold classiÞcation rate.

In another study, Masayuki et al. [14] implemented a parallel cascade
of classiÞers consisting of a large number of stages. The Þrst stage contains
a subset of features selected from training data that distinguish e"ciently
two classes. The cascade is then applied on the training data where more
false positives are observed. A new training set is formed by combining the
miss-classiÞcations which are then used for second stage of cascade. This
procedure continues until an acceptable performance in a training sequence
is achieved. According to the authors, the later stages are not executed
quite often so only early stages were executed in parallel Ð leading to a
reduced total processing time. To make such a cascade of classiÞers more
e!ective, Xusheng et al. [15] exploited the use of genetic algorithms as a
post optimization procedure for each stage classiÞer and achieved a speedup
of 22%.

Xing et al. [16] used multiple independent features to train a set of classi-
Þers online, whichcollaboratewith each other to classify the unlabeled data.
This newly labeled data is then used to update classiÞers using co-training.
The independent features which were used are HoG and color histograms.
A Support Vector Machine (SVM) was trained by each feature and Þnal
classiÞcation results were produced by combining the outputs of all SVMs.

Object ClassiÞcation in the Clouds:When object classiÞcation is needed
to be performed on large scale datasets, it requires large storage and compu-
tational resources. E"cient object classiÞcation using cloud systems has also
been explored in literature Ð by managing distribution of video streams and
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load balancing among various available cloud nodes [23]. A pervasive cloud
computing infrastructure was utilized in [24] to recognize food images. Cloud
computing was used to process images of di!erent kinds of foods using var-
ious lighting conditions, in various colors and viewing angles. However, the
authors concluded that it is not promising to use cloud computing paradigm
for small datasets as the job preparation overhead reduces the performance
of the system.

A Hadoop based object classiÞcation system was implemented in [25] by
using two dimensional principle component analysis. In another study, a mas-
sively parallel cloud computing architecture was presented [26] to classify as-
tronomical images. A large scale video processing system was demonstrated
by [27][34] using a MapReduce based clusters. However, no enhancement in
the video processing routines was presented in these studies.

Recently, the use of GPUs as a high performance resource for the pro-
cessing of large scale video data has become an active research area [28], as
GPUs support a multi-threading architecture and o!er abundant computa-
tional power. They have been used for various large scale video processing
tasks such as object detection [29], motion estimation [30], and object recog-
nition by using deep belief networks [31] and sparse coding [32]. It has been
demonstrated in these studies that a speedup of 5 to 15 times can be achieved
as compared to the use ofstandardCPUs [33].

Admittedly, the use of the above mentioned classiÞers provides good per-
formance in terms of accuracy but on the other hand they have their own
limitations. Most of the classiÞers work in a serial fashion with a large num-
ber of features which are necessary for accurate classiÞcation, but this slows
down the process. Also the construction of the classiÞer is a time consum-
ing task, because a large number of training examples must be collected and
labeled manually. These training examples enable the system to capture vari-
ations in object appearances but also burden the training process [17, 18].
Machine learning approaches such as semi supervised learning and unsuper-
vised learning are a way to reduce the time required for the training process.
They train the system with a small number of completely labeled examples
and another set of unlabeled examples which reduces the computation time.

The focus of this paper is to propose a cloud based video analysis system
(using a combination of CPU and GPU-based compute nodes) to identify
objects of interest from a large number of video streams. The proposed sys-
tem requires minimum human interaction and performs object classiÞcation
in an unsupervised way.
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Algorithm 1 Object ClassiÞcation

for all streams in the database do
for all decoded frames from stream do

Launch object detection module
Extract (crop) desired object from frame
Generate local patterns for the extracted object
Store generated patterns in an associated bu!er
End For
for all object recognition patterns in

the database do
Launch object matching module
Compare stored patterns with market objects
Generate matching scores for each object
Store results in the database
End For
End For

3. Video Analysis

We present the approach behind our video analysis system in this sec-
tion. Each video stream is Þrst decoded to extract individual video frames.
The objects of interest are extracted from the video frames by detecting and
cropping around the area of detection. The local patterns of each extracted
object are then generated and stored in the associated bu!er. Object match-
ing is then performed on the generated local features. The generated results
are then stored in the database. Algorithm 1 shows the approach used in our
object classiÞcation system.

The system applies multiple machine learning algorithms for detection
and recognition in a cascaded way. The algorithms are employed in such
a way that the results produced by one algorithm are further processed by
the following algorithm. The Þrst algorithm is used to extract the object of
interest from the whole frame in such a way that it narrows down the image
area. The rest of the frame which contains unwanted information is discarded
to save processing time and resources. This algorithm independently operates
on all the frames in a sequence. This results in the extraction of all the desired
objects from all the video frames. Figure 1 presents the process followed in
our approach.
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Figure 1: Video Processing Workßow

3.1. Object Detection
We have used Haar Cascade ClassiÞer for the extraction of objects Ð

which involves extraction of ÒHaarÓ features from the image. Haar features
are generated by computing the sum of pixels under the white rectangle
region subtracted by the sum of pixels under the black rectangle region.
These regions are adjacent to each other and possess the same shape and
size. The integral images are helpful to compute the features very rapidly.
The integral image can be computed by adding all the pixels above and to
the left of a speciÞc location [19]. Then by using four array references any
rectangular sum can be calculated as:

I (x, y) =
!

x! <x,y ! <y

i (x!, y!) (1)

where I(x,y) is the integral image and i(x,y ) is the original image. As the
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number of features generated by Haar is quite large, it is necessary to select
features to reduce the dimensionality of the problem. This dimension reduc-
tion can be best by using AdaBoost [20] Ð a learning algorithm which works
in a cyclic process. It starts by keeping a set of weights which are distributed
uniformly over every training example. It then selects one feature in its Þrst
cycle that gives best recognition performance and deÞnes a weak classiÞer
against it. The subsequent cycles assign higher weights to the training ex-
amples that were misclassiÞed by the Þrst weak classiÞer. This enables the
newly chosen feature to concentrate more on misclassiÞed examples. This
process continues and ultimately ends upon a strong classiÞer which is a lin-
ear combination of all the weak classiÞers selected during each cycle. Other
approaches could also be used in this context, primarily focusing on the use
of other bagging and boosting/ensemble-based learning approaches. A weak
classiÞer hj(x) can be represented as [8];

h(x) =
"

1 pj f j (x) < p j ! j

0 Otherwise
(2)

where f j (x) is the feature, ! j is the threshold andpj is the parity to show
the direction of the inequality sign. For instance, consider an image that has
the desired object (e.g. a face) and other regions which do not. By passing
the image through a cascade of classiÞers, it is possible to identify part of
the image that is of interest. Continuing the example, as most of the image
being considered is not likely to contain the desired object, the part of the
image that passes the classiÞer will be the face region. This assumes that
there is only one object of interest in the image being considered.

The extraction of desired objects from the frames helps to improve the
performance of the system in two ways: (i) since the frame area is reduced so
the analysis algorithm now has to process a smaller sized frame as compared
to original one. This reduces the processing time of individual frame and in
turn reduces the overall processing time of whole video. (ii) as the frame has
been narrowed down to only object(s) of interest, by removing the unwanted
area of the frame, it now contains only the desired object. The illumination
e!ects and noise which have the possibility to be present in the unwanted
area is now taken care of. Since the unwanted areas are cropped out from
the frame, these illumination e!ects and noise will not reßect in the object
recognition process. This will lead to improvement in the accuracy of overall
system.
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3.2. Object ClassiÞcation

The extracted objects are then processed via the object recognition phase,
which generates local binary patterns of all the extracted objects. These local
binary patterns serve as features which can be used for the recognition of a
known object. These features represent the extracted objects in such a way
that they become highly discriminative and invariant to various gray-level
changes in the objects.

We have used LBPH algorithm [9] for the generation of local pattern
features. The algorithm makes use of the local binary patterns in order
to generate feature vectors. LBP features (Algorithm 2) are computed by
dividing the examined window into cells. Each cell contains a number of
pixels. Then each pixel in the cell is compared to its neighboring pixels. If
the value of center pixel is greater than its neighbour pixel, 1 is stored at
that location. If it is the other way round then 0 is stored at that location.
This is known as the labeling of pixels. LBP code of a single pixel of an
image can be given as [9]:

LBP P,R =
p" 1!

p=0

s(gp ! gc) " 2p (3)

s(x) =
"

1, x # 0
0 x < 0

gp = Neighbor Pixel ; gc = Centre Pixel
A histogram is then calculated and normalized for each occurrence. These
normalized histograms give a feature vector of the window. The histogram
is calculated as [9]:

H =
!

x,y

I
#

f (x, y) = i
$

, i = 0, 1, 2, 3, ..., n ! 1 (4)

where f(x,y) is the labeled image and n represents the labels which are gen-
erated by the LBP operator.

The computation of the local pattern features is a compute intensive
procedure as it involves the manipulation of every pixel in the video frame.
The porting of this compute intensive procedure to GPUs is performed to
reduce the computation demands. A GPU kernel (Algorithm 3) is developed
for this purpose. It performs the procedure of local pattern feature generation
in parallel instead of sequential processing as in a CPU.
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Algorithm 2 Computing LBP on CPU

1: procedure ComputeLBP
2: FrameHeight$ number of rows
3: FrameWidth $ number of columns
4: for i++;i<FrameHeight do
5: for j++;j<FrameWidth do
6: gc[i ][j ] $ CentrePixel
7: gp[i ][j ] $ NeighbourPixel
8: if gp[i ][j ] ! gc[i ][j ] > 0 then
9: gp[i ][j ] $ 1

10: else
11: gp[i ][j ] $ 0

12: F rameData[i ][j ] $
p%

i =1
NeighbourP ixels[i ][j ] %2p

13: Replace frameData

In order to perform face recognition, the face image is divided into mul-
tiple blocks or regions. Then for each block or region, LBP histogram is

Algorithm 3 Compute LBP on GPU

1: procedure Kernel
2: c $ get current column
3: r $ get current row
4: idx $ get current pixel index
5: if c < F rameWidth AND r < F rameHeight then
6: gc $ CentrePixel[idx]
7: gp $ NeighbourPixel[idx]
8: if gp ! gc > 0 then
9: gp $ 1

10: else
11: gc $ 0

return F rameData[idx ] $
p%

i =1
NeighbourP ixels[idx ] %2p

12: Copy Back to Host f rameData
13: Replace frameData
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Figure 2: Object Detection and ClassiÞcation Process

computed as explained above. The feature vector of the whole image is a
combination of all LBP histograms of all regions in an image. Figure 2 shows
the relation between Haar Cascade ClassiÞer and the LBPH algorithm.

An object matching algorithm (Algorithm 4) is then applied on the lo-
cal patterns of detected objects for recognition. The recognition process is
performed by comparing the detected object features with the stored object
information. The comparison is made on the basis of histogram intersec-
tion which is used as a distance measure. The histogram intersection can be
calculated as [21]:

D(S, M ) =
B!

b" 1

min (Sb, Mb) (5)

Each comparison generates a score of each individual. These scores ob-
tained after performing the histogram intersection determine the recognition
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of marked person. We have used a threshold of 90 percent match in our
experiments. We obtained over 90 percent accuracy rate in case of match-
ing individual objects. The matching scores for unmatched individuals is
70 percent or below. The matching scores along with locations and time of
presence are stored in the database. This module is totally unsupervised and
is independent of any metric learning stage. The recognition is performed
only on the basis of similarity measure between the features of two objects.
Manually trained classiÞer is not required for this purpose.

Algorithm 4 Object Matching

1: procedure ObjectMatching
2: LBPMarkedObjectHistogram$ LBP Histogram of Marked Object
3: LBPStreamObjectsHistograms$ LBP Histograms of Objects in Video Streams
4: for i++;i<LBPStreamObjectsHistograms do
5: MarkedObjectHistogram$ LBPMarkedObject
6: StreamObjectHistogram$ LBPStreamObjects[i]
7: HistogramIntersectionResult $ MarkedObjectHistogram &

StreamObjectHistogram
8: if IntersectionResult> 0.9 then
9: ObjectFound

10: else
11: ObjectNotFound

4. System Architecture

The overall architecture of the system is illustrated in Figure 3. The
proposed system provides scalable and automated classiÞcation of objects in
a large number of video streams in an unsupervised way. It is independent
of the need of labelled training data and metric learning stage. The use
of GPU enabled cloud compute nodes enables the system to achieve high
throughput. Scalability challenge is also addressed by leveraging the beneÞts
of GPU mounted servers in the cloud. The transfer time overhead of moving
the video data from the camera to cloud storage is not considered in this
work. This overhead is dependent on the speed of the network connecting
the camera/data capture source to the cloud system.

The video streams are Þrst fetched from cloud storage and are decoded
to extract individual video frames. The decoded individual video frames
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Figure 3: System Architecture

are stored in the input frame bu!er. This bu!er is a temporary storage in
main memory for decoded video frames. The recorded video streams are
encoded with the H.264 encoder to save storage space. Each video stream
is recorded at 25 frames per second Ð with 3000 (120*25) video frames for a
video stream of 120 seconds length. The number of decoded video frames is
dependent upon the length of video stream being analyzed.

Each frame is then processed individually for object detection and recog-
nition. The machine learning algorithms are applied on each frame for de-
tection and recognition purposes. The objects of interest are Þrst detected
using the Haar cascade classiÞer algorithm. This detection helps to extract
only the desired objects from the overall frame. The extracted objects are
stored in the memory bu!er for further processing.

The object extraction module mainly consists of object detection and
cropping of detected objects. The object detection module searches the whole
frame and provides detection of the objects of interest. Nothing is detected
if an object of interest is not present in the frame. The video frame is then
cropped around the detected object area. The cropping process removes
the image areas that do not contain the desired objects and reduces the
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operational area for the subsequent algorithm.
The next module after the extraction of desired objects is feature genera-

tion module. This module generates the local patterns against each detected
object. These local patterns serve as features which are further used to rec-
ognize the marked object. This module mainly consists of the execution of
local binary pattern histogram. A histogram of each of the detected objects
is created and stored in the bu!er as an output of this module. We have used
a proÞling mechanism to identify the compute intensive steps of our system.
The generation of local pattern features is a compute intensive process. This
compute intensive feature generation process has been ported to a GPU Ð
through the design/ implementation of a kernel which performs generation
of local patterns on GPUs. Each pixel of the video frame is mapped to a
thread. This thread is then responsible for launching kernel for each pixel
and processing it in parallel. The size of the thread block is dependent on the
size of the frame. These threads work in a synchronous way to process frame
data in parallel. A high level of parallelism is achieved since each pixel in
the video frame is processed in parallel. Once the processing of frame bu!er
is completed, the resulting processed frame is stored in an output bu!er Ð
another temporary bu!er in memory.

5. System Implementation

This section provides a description of the system components, their func-
tionality and implementation. The operations employed to process video
streams to support object detection and recognition are also described.

5.1. Video Decoding

The video streams are decoded to extract individual video frames Ð a
total of 3000 frames for a video stream of 120 seconds length. These frames
are then transferred to the processing module to enable the detection and
recognition process to be carried out. Hence, each frame can be processed
independently of each other. This approach enables the processing of indi-
vidual frames on cloud resources, leading to high throughput and scalability.

5.2. Object Extraction

After the frame is decoded from the video stream, the next step is to
extract faces from frames using an object detection algorithm. We have used
Haar Cascade ClassiÞer for this purpose. The input image is cropped around
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Figure 4: Extracted faces from video streams

the output of Haar Cascade algorithm for the next step i.e. faces recognition.
This helps to narrow down the area of image to a small rectangle containing
the desired face. Figure 4 shows some of the extracted faces from the video
streams. We also monitor the persistence of an object across multiple frames
of a video stream. In this way, although each frame is individiually processed,
tracking an object across multiple frames enables us to monitor its presence
over a particular time period.

The Haar Cascade ClassiÞer is constructed on top of Haar features which
are extracted from objects present in video frames. In order to make the
classiÞer scale-invariant, frame pyramid approach [22] has been used. The
pyramid represents the same frame in multiple scales and enables the detector
to be scale invariant. Objects with varying image sizes can easily be detected
through the pyramid approach. An object pyramid can be constructed by
using the down-sampling approach which samples the frame by one scale in
each iteration. Integral image for each scale in the pyramid is then calcu-
lated to speed up the process of generating a pixels sum. Integral image [19]
helps to compute the summation of pixels present in a rectangular region by
utilizing only four pixel corners. This approach of using integral images is
highly e"cient especially for the cases in which pixels sum of many rectan-
gular regions of the same image need to be computed. Since the detector
uses the sliding window approach and pixel sum for each shifted window is
required, this approach reduces the complexity of the overall process. Figure
5 shows a representation of the integral image.

The sliding window is used, pixel by pixel, on the whole frame in search
of a an object (e.g. a face). The area under the sliding window is passed
to the cascaded classiÞer. As most of the image area is non-face region it
groups the features into di!erent stages based on the classiÞers used. The
region that passes all stages of the cascaded classiÞer is a face. The area
under the sliding window is required to be passed through all stages of the
cascade classiÞer. If at any stage, the input region is unable to pass the
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Figure 5: Original and Integral Image

stage by not meeting the required threshold, it is immediately rejected. If
the region passes all the stages successfully, then it is considered to be the
face. On detection, an object recognition algorithm is invoked.

5.3. Local Feature Generation

Each detected object of interest is then analysed, by using local binary
pattern histogram. The algorithm computes local binary patterns in order
to generate feature vectors. In order to compute LBP features, the examined
window is divided into multiple cells. Each cell contains a sub-block of 3" 3
pixels. Then each pixel in the sub-block is compared to its neighboring
pixels. If the value of centre pixel is greater than its neighbor pixel, 1 is
stored at the location of that pixel. If the values of centre pixel is less than
the neighboring pixel, the gray value of that pixel is replaced with 0. This
makes the sub-block a binary block containing 0 and 1 depending upon its
pixel values. This is known as the labeling of pixels. These labelled pixels
generate a binary pattern which is then converted into one decimal value.
The gray value of centre pixel is then replaced with the decimal value. This
procedure is repeated on the whole image and an LBP image is obtained. A
histogram is then calculated over the frequency of each number occurrence.
This histogram gives a feature vector of the window.

In order to perform face recognition, the face image is divided into mul-
tiple blocks or regions. Then for each block or region, LBP histogram is
computed as explained above. The feature vector of the whole image is a
combination of all LBP histograms of all regions in an image. Figure 6 shows
the original faces and the LBP computed faces from video streams.

5.4. Similarity Measure

This procedure of LBP histogram generation is performed for all the
video frames and the image which is to be matched. Matching is performed
by comparing the LBP histogram of the marked object frame with all the
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Figure 6: Original and LBP Faces

Figure 7: Visualization of matching process

frames of a video stream. The histogram intersection is used as a distance
measure to calculate the similarity between two frames. After the persons
face is authenticated correctly, the matching score associated to it is stored
in a database. This phenomenon can be visualized in Þgure 7.

5.5. Local Pattern Feature Generation on GPUs

Generation of local patterns from a video frame is a compute intensive
procedure. It is therefore ported to GPUs to reduce the computation de-
mands. A GPU kernel is designed and implemented to perform this proce-
dure. However, the execution ßow is di!erent which a!ects the performance
of the system. The processing of pixels is sequential in CPU based imple-
mentation. A video frame with a width and height of 528" 704 sequentially
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can consume a lot of time (even for a single frame). The processing time
increases exponentially when the number of video frames increases.

The GPU implementation on the other hand works in parallel fashion
instead of sequential functionality like in a CPU. GPU implementation is
known as GPU kernel and is executed by a number of threads generated
by a GPU. The number of threads that a GPU can generate depends upon
the processing cores of a GPU, memory and registers. It is also dependent
upon the size of thread block and grid. Since each pixel is mapped to an
individual thread, the number of generated threads should be equal to the
number of pixels in a video frame. The availability of frame data in GPU
memory enables the parallel processing of each pixel. Upon completion of
the frame data processing, the processed frame data is copied back to CPU
memory bu!er (host) from GPU memory bu!er (host).

We have used CUDA to implement and generate local pattern features
on GPUs. It uses SIMD (Single Instruction Multiple Data) parallel program-
ming model and provides a bunch of APIs to execute instructions on a GPU.
A CUDA program initiates on a CPU and process data on a GPU through
CUDA kernels. The GPU memory is Þrst allocated, so that frame data can
be transferred from CPU to GPU. The size of the GPU memory is allocated
according to the size of video frame. Three di!erent data transfer mecha-
nisms including page-able memory, pinned memory and zero copy have been
implemented and tested in this work. Upon successful completion of frame
processing, the results are transferred back to the CPU memory.

The GPU kernel is executed by a number of threads. There can be
a maximum of 32 threads in a warp and each thread block has numerous
warps. Thread blocks are further grouped into grid. It is the responsibility
of CUDA Work Distributor (CWD) to allocate thread blocks on a GPU. At
the Þrst step of kernel execution, these thread blocks are allocated. Kernal
execution is performed in parallel with the help of CUDA streams.

The proposed system works partially on CPUs and partially on GPUs.
The decoding of frames from video streams and extraction of faces is per-
formed on a CPU. The compute intensive process of generation of local fea-
tures is performed on a GPU using the CUDA kernel. The processed results
are then transferred back to CPU. The results section provides a more de-
tailed analysis of the accuracy of recognized objects and the processing time
of the system.
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6. Experimental Setup

This section provides the details of our experimental setup used to eval-
uate the proposed system. The parameters used to evaluate the perfor-
mance of the system are the accuracy of the algorithms, processing speed-up
achieved, resource consumption, scalability, and processing time of each video
frame. The purpose of cloud based deployment is to evaluate the scalability
of the system. The cloud deployment with GPUs evaluates the performance,
throughput, resource consumption and processing time of video streams.

The conÞguration of the cloud resources is as follows: the cloud instance
has Ubuntu LTS 14.04.1 and is running OpenStack Icehouse. There are six
server machines and each server machine is equipped with 12 cores. Each
server is running with 6-core Intel Xeon Processors at 2.4 Ghz. It has a
storage capacity of 2 Terabyte with 32GB RAM. The cloud instance is con-
Þgured with 192GB RAM, storage capacity of 12TB and 72 processing cores.
OpenStack facilitates with a dashboard to manage and control the resources
such as storage, network and pool of computers.

A cluster consisting of 15 nodes is conÞgured to evaluate the proposed
system. The conÞguration of each node is as follows: 4 VCPU running at
2.4GHz with 8GB RAM. Each node is conÞgured with a storage capacity of
100GB. The evaluation parameters to measure the performance of the system
include total analysis time of the system, impact of task parallelism on each
node and the variations of compute nodes in the cloud. This experimental
setup helps to measure the performance of the system for scalability and
robustness with varying cloud conÞgurations.

The Hadoop MapReduce framework is utilized to evaluate the system
in cloud resources. Hadoop comes with Yarn which is responsible for man-
aging resources and scheduling jobs for the running processes. It further
facilitates with a NameNode in charge for the management of nodes, a
Data/ComputeNode to process and store the data, and a JobTracker for the
tracking of running jobs. These components of Hadoop MapReduce frame-
work help to schedule and analyze tasks on the available nodes in parallel.

The accuracy and performance of the proposed system is evaluated on
cloud nodes with 2 GPUs. The nodes are equipped with Intel Core i7 3.60
GHz processor with 16 GB RAM. Each node is supported with an ASUS
GeForce GTX 780 GPU. This Kepler architecture based GPU is enriched
with 12 Streaming Microprocessors (SM). It has 2304 CUDA cores and a
memory of 3 GB. A total of 2048 threads can be generated in parallel by
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each streaming processor. These threads are executed in 64 warps and each
warp has the capability to execute 32 threads in parallel. A local memory of
512 KB is possessed by each thread and there are 255 registers per thread.
Each streaming microprocessor (SM) uses 16 thread blocks with 2048 bytes
of shared memory per block.

The GT610 GPU has 48 CUDA cores with a memory of 1GB. The archi-
tecture of this GPU is Fermi based and has one streaming microprocessor.
The streaming microprocessor can support a total of 8 thread blocks. It can
support 48 warps per SM and each warp contains 32 threads. Each thread
has a total of 63 registers and a local memory of 512kb.

The dataset is self-generated consisting videos of di!erent objects. The
total video data used for the experimentations consists of one month of video
streams. Each video stream has a duration of 120 seconds. The video streams
are encoded with H.264 format. The frame rate for each video stream is 25fps.
The data rate and bitrate for each video stream are 421kbps and 461kbps
respectively. The decoding of each video stream generates a frame set of 3000
video frames. Each video frame holds a data size of 371kb.

7. Experimental Results

This section explains the results obtained by executing the experiments
with the dataset and the experimental setup with two di!erent conÞgurations
mentioned in Section 6. This section is further divided into three subsections.
The Þrst subsection explains the accuracy of object classiÞcation system and
the speedup achieved by the cropping process. The second subsection ex-
plains the throughput and performance of the system for video stream de-
coding, transfer of data between CPU to GPU and vice versa and perfor-
mance gains achieved by utilizing the GPUs for compute intensive parts of
the algorithm. The third subsection explains the scalability and robustness
of the whole system by analyzing decoded video streams and transferring
the video data from local storage to cloud nodes. It also measures the time
required to analyze video data on the cloud nodes and gathering the results
after the completion of analysis. A discussion of the observations from these
results is also provided in this section.

7.1. Performance of the unsupervised object classiÞcation

The performance of the unsupervised object classiÞcation system is evalu-
ated by measuring the accuracy to classify objects and the speedup achieved
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Frames Video Stream 1 Video Stream 2 Video Stream 3
1 1 0.7437 0.7624
2 0.9613 0.7424 0.7594
3 0.9629 0.7434 0.758
4 0.963 0.7351 0.7546
5 0.9646 0.7339 0.7552
6 0.9665 0.7271 0.7573
7 0.9573 0.7266 0.7575
8 0.9525 0.7308 0.7512
9 0.9619 0.7285 0.7512
10 0.9453 0.7272 0.7626

Table 1: Matching results of a person in multiple video streams

by the cropping process.

7.1.1. Object ClassiÞcation Accuracy
The marked object which is to be identiÞed in the video stream is matched

with all the frames of a video. It is to be noted that for a video stream with
a frame per second rate of 25, we decoded only 5 frames per second. It
is obvious that no change can occur in such a short interval of time, so
processing all the frames would only increase the processing time. Table
1 shows the matching results of a marked object with multiple frames of
multiple video streams.

The values in the columns represent the distance measure of marked ob-
ject against di!erent objects of multiple video streams using the LBPH al-
gorithm. The values near to 1 depict a closer match of marked object. It
can be seen from the table that all values in the column of video stream
1 are above 90 percent. This shows that the marked object is present in
the video stream 1. On the other hand, all values in the second and third
video streams are below 90 percent and depict that the marked object is not
present in these video streams. So we have used a threshold of 90 percent
to distinguish between the matched and unmatched objects. Figure 8 shows
the video streams in which the marked object is most likely to reside.

It can be seen from the Þgure that video stream 1 has the highest proba-
bility of having the marked object. The other two streams are not probable
to contain the marked object. Local binary pattern histogram hence provides
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Figure 8: Presence of marked object in multiple streams

a good measure for the presence of marked objects in video streams.
Cropped Frame Processing Time: A signiÞcant amount of speedup is

achieved in the processing time of each frame due to the object detection
approach. Cropping of video frame around the detected object helped to
reduce the processing area for LBPH algorithm. The resolution of overall
video frame is decreased which in turn reduced the overall processing time
of frame. The processing time of each individual frame before cropping and
after cropping is calculated and is shown in Figure 9.

The decrease in processing time is because of the fact that the resolution is
reduced signiÞcantly because of cropping. The video used in this experiment
had a frame resolution of 640" 480. But the detected object which was
extracted from the whole frame and later used by LBPH for comparison
had a resolution of around 160" 160 in most of the cases. This decrease in
resolution improved the total frame processing time by almost 90%.

7.2. Object ClassiÞcation on GPUs

This section describes the throughput and performance of the object clas-
siÞcation system. The analysis of object classiÞcation system on GPU can
be divided into two major steps i) time required for decoding a video stream
and transferring it from CPU to GPU memory, ii) time required to process
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Figure 9: Frame processing time of individual frames

the video frame data for object classiÞcation. The performance measures of
these two major steps are explained in the rest of this subsection.

7.2.1. Data Transfer Time
We have tested three di!erent memory allocation techniques to transfer

data from CPU to GPU and then back from GPU to CPU. The three tech-
niques are page-able memory, pinned memory and zero copy. The e!ect of
these three techniques has been demonstrated by varying the number of video
streams from 1 to 10. A total memory allocation of 371.712 KBs is required
by each video frame with a resolution of 704" 528. A video stream recorded
at 25 frames per second has a data transfer rate of 10.89 MB per second.
For a varying number of video streams from 1 to 10, the data transfer per
second varied from 10.89 MB to 108.9 MB. It has been observed that zero
copy memory allocation technique remained fastest among the three tech-
niques for transferring video frame data from CPU to GPU and vice versa.
The time taken by each technique is summarized in Table 2.

7.2.2. Frame Processing Time
The total time taken to process an individual frame of a video stream is

calculated by using the three memory allocation techniques discussed in the
previous section. The total time required to process an individual video frame
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CUDA

Streams

Data Transfer Time (in Milliseconds)

CPU to GPU GPU to CPU

Pageable Pinned Zero Copy Pageable Pinned Zero Copy

1 0.113 0.104 0.001 0.123 0.1 0.001

2 0.212 0.117 0.025 0.16 0.151 0.011

3 0.321 0.208 0.12 0.311 0.233 0.0869

4 0.36 0.215 0.126 0.374 0.293 0.126

5 0.42 0.286 0.197 0.438 0.415 0.196

6 0.471 0.313 0.216 0.489 0.502 0.275

7 0.56 0.373 0.267 0.597 0.686 0.328

8 0.612 0.431 0.316 0.65 0.83 0.38

9 0.643 0.499 0.322 0.795 0.878 0.485

10 0.733 0.517 0.397 0.872 0.982 0.509

Table 2: Data Transfer Time from CPU to GPU and GPU to CPU

involves is the sum of time required to read and decode a frame, transfer time
from CPU to GPU and GPU to CPU and the time required to compute local
binary pattern of frame. The Þgure 10 depicts the elapsed time of di!erent
frame processing operations by each memory allocation technique. It has
been observed that zero copy remained the most e"cient mechanism because
of direct video frame data access from GPU to CPU. GPU memory address
space is mapped to CPU memory address space in zero copy mechanism, so
GPU can access CPU memory as its own address space. This mapping also
enables the GPU to access a particular memory location in host memory
whenever data is copied from host to device. The same procedure is followed
to copy data back to the host from GPU memory.

Another way to quantify the performance of the system is to measure the
number of frames processed per second. The number of frames processed per
second using the three memory allocation mechanisms is calculated and de-
picted in Þgure 11. As it was predicted, the highest throughput is achieved
by the zero copy mechanism with varying number of video streams. It is
observed that two video streams per GPU provided the most optimum per-
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Figure 10: Frame Processing Operations and Processing Time

formance by processing almost 100 frames per second. By increasing the
number of video streams a steep reduction was observed in the frame pro-
cessing time. This is because of the fact that data transfer time from CPU
to GPU and GPU to CPU remained optimized with two CUDA streams as
described in Table 2.

7.2.3. Computation Time with Varying Video Resolutions
The processing time of a video frame is highly dependent on the resolution

of a video frame. For a high resolution video frame, more computation time
is required as more data is needed to be processed. We have tested di!erent
video streams with varying resolutions on the system and computed the total
processing time. This time includes the time required to process the frame
as well as the video decoding time. The generated results are also compared
with the results produced by stand-alone CPU node as depicted in Þgure 12.

It has been observed that optimum utilization of GPUs can be achieved
by having the videos with high resolution. The processing of low resolution
videos on GPUs will not generate much speedup as compared to CPUs. This
is because of the fact that a CPU processes each pixel sequentially. On the
other hand a GPU performs the processing of pixels in parallel by mapping
each pixel to individual thread. This elevates the processing speed of indi-
vidual frames. However, if the video frame is of low resolution, no signiÞcant
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Figure 11: Frame processing time and number of Video Streams
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Figure 12: Video Processing comparison on di!erent Platforms

speedup in the processing time of video frame is observed as compared to
CPU due to data transfer overheads.

7.3. Object ClassiÞcation on the Cloud

In order to evaluate the scalability of our approach, we have executed
it on the cloud infrastructure described in the experimental setup section.
The evaluation is performed on the following three parameters. i) Time
taken to transfer video stream data from storage server to the cloud nodes
ii) Analysis time of video streams on various cloud nodes iii) Time required to
collect results from cloud nodes. Hadoop File System (HDFS) is utilized for
storing Þles. The MapReduce framework is used to analyze video streams by
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executing unsupervised object classiÞcation algorithm explained in Section
3. The analysis results are then stored in the database.

7.3.1. Hadoop Sequence File Creation
The video streams are Þrst decoded to extract individual video frames

from the input video. The total size of one month of recorded video streams
is 175GB. Each video stream is recorded at 25 frames per second. The number
of decoded video frames is dependent upon the length of video stream being
analyzed. These individual frames are not suitable for directly processing on
the compute nodes with the MapReduce framework. This is because of the
fact that MapReduce is designed to process large Þles. Processing small Þles
will only result in the decrease of overall performance. These small Þles are
bundled into a large Þle termed as Hadoop sequence Þle and then transferred
to the cloud nodes for processing. The sequence Þle is then moved to cloud
storage for unsupervised object classiÞcation.

7.3.2. Hadoop Sequence File Creation Time
The time required to generate a sequence Þle is directly proportional to

the size of dataset. Multiple datasets of varying sizes from 5GB to 175GB
have been used in this paper to generate results. The dataset of varying
sizes helped to evaluate numerous aspects of our system. The time taken to
create a sequence Þle for sizes ranging from 5GB to 175GB varied from 6.15
minutes to 10.73 hours respectively. The larger the dataset, more time it will
require to generate the sequence Þle. However, it is a one-time process and
once the sequence Þle is generated, it can be stored in the cloud data storage
for future analysis tasks.

7.3.3. Sequence File Transfer Time
The generated sequence Þle is moved to cloud data storage as object

classiÞcation will be performed on cloud nodes for analysis. The transfer
time required to transfer the Þle to cloud data storage depends on various
parameters. These parameters include network bandwidth, data replication
factor and cloud data storage block size. The data transfer time varies with
the size of the dataset. For the dataset sizes reported in this paper (5GB to
175GB), the data transfer time varied from 2 minutes to 3.17 hours. Figure
13 depicts the data transfer time of various dataset sizes with varying cloud
storage block size.
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Figure 13: Data Transfer Time to Cloud Storage

Figure 14: Video Stream Analysis Time on Cloud Nodes

7.3.4. Object ClassiÞcation on Cloud Nodes
We have evaluated the scalability and robustness of the system by exe-

cuting object classiÞcation on large number of video streams. The datasets
have also been varied from 5GB to 175GB to observe the e!ects on the cloud
nodes. The HDFS block sizes have also been varied to measure the execution
time and resources consumed during the analysis tasks on cloud nodes. The
performance of the system is measured by measuring the time required to
analyze the dataset of various sizes and the resources consumed during the
analysis task.

We have varied the block size from 64MB to 256MB, in order to observe
the e!ect of varying block size on Map task execution. It has been observed
that the execution time of Map task increases by increasing the size of dataset
as depicted in Þgure 14. But the variation in block sizes has no major impact
on the execution time of Map/Reduce tasks. For the dataset size varying be-
tween 5GB and 175GB, the total execution time varied between 6.38 minutes
and 5.83 hours.

The memory consumption of all the block sizes remained the same except
for the 64MB block. The requirement of physical memory for the 64MB
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Figure 15: Memory Consumed for Analysis in the Cloud

Nodes Tasks per Node
Tasks Execution
Time (Hours)

15 94 5.83
12 117 7.10
9 156 7.95
6 234 14.01
3 467 27.80

Table 3: Analysis Task Execution Time with Varying Cloud Nodes

block size is higher than other block sizes as depicted in Þgure 14. The
default block size of cloud storage is 128MB. A 64MB block size thus produces
more data blocks which are needed to be processed by cloud nodes causing
memory overhead. More memory is required to process small block sizes as
the number of map tasks turn out to be deÞcient with the smaller block sizes.
Figure 15 shows the memory required with varying datasets for analysis on
the cloud.

7.3.5. Robustness with changing cluster size
The robustness of the system is evaluated by measuring the total analysis

time and the speedup achieved by increasing the number of cloud nodes. We
have measured the total time required for the analysis of dataset with varying
number of nodes. The total analysis time of whole dataset decreases as the
number of nodes increases in the cloud. Table 3 shows the execution time
required to analyze the dataset with varying nodes.

We have also measured the total time required for analysis of whole
dataset with varying number of nodes and block sizes. Figure 16 depicts that
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Figure 16: Analysis Time with Varying Number of Cloud Nodes

the execution time decreases as the number of nodes in the cloud increases.
A decreasing trend has been observed in the analysis of whole dataset. A
total execution time of 27.80 hours was required for the processing of 175 GB
dataset with 3 nodes, whereas, it took only 5.83 hours to process the same
amount of data with a 15 node cloud.

7.3.6. Task parallelism on Compute Nodes
The total number of analysis tasks executing on a compute node is di-

rectly proportional to the number of input splits. The number of input splits
are further dependent on the dataset size, cloud data storage block size and
available physical resources. The dataset size of 175GB gives rise to 1400
map/reduce tasks with a default cloud storage block size of 128MB. It has
been observed during the experiments that the number of analysis tasks on
each node increases as the number of nodes decreases. We varied the number
of nodes between 3 and 15 in these experiments. As the number of tasks per
node increases, the performance of the overall system degrades. This is be-
cause of the fact that the increase in number of tasks per node generates over
occupied resources and each task has to wait more for scheduling and exe-
cution. A summary of task execution time corresponding to varying number
of nodes is shown in table 3.

We have also calculated the analysis time of varying datasets with varying
block sizes. It is observed that if the block size is large, less computation
time will be required to analyze the data as compared to smaller block size.
The large block size will have less number of map tasks, reduced memory
requirement and management overhead as compared to small block size. This
will result in the faster processing of dataset. However, it is to be noted that
varying block sizes does not a!ect the execution time of Map task. The block
size of 512MB required the same processing time as 256MB block size for the
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175GB dataset. The same phenomenon is observed with other block sizes as
well. However, the time required to transfer the data with larger block sizes
is greater and required larger compute nodes to process the data.

The reducers in the map/reduce tasks have the responsibility to gather the
analysis results and write them on the output sequence Þle. A separate utility
is used to extract meta-data from the output sequence Þle. This contains the
classiÞcation results obtained from the object classiÞcation approach.

8. Conclusion & Future Work

A cloud based video analysis system based on Haar Cascade ClassiÞer
and the Local Binary Pattern Histogram is presented in this paper. The
proposed system requires minimum human interaction and provides auto-
mated object classiÞcation from large number of video streams. The system
performs classiÞcation under unsupervised learning domain and without re-
quiring any metric learning stage or labelled training dataset. An accuracy
of more than 95 percent is achieved when the application is tested on multi-
ple video streams. Also a speedup of 90 percent is achieved to recognize an
object on individual frame as compared to full frame.

The proposed system is capable of coping with the challenges of increased
volume of data. The objects are detected and classiÞed from one month of
video data comprising a size of 175 GB. It took 6.52 hours to analyze this
data on a 15 node cloud. By increasing the number of nodes in the cloud, a
decreasing trend in processing time is observed in analyzing the video data.
A reduction from 27.80 hours to 5.83 hours is observed, when the number
of cloud nodes increased from 3 to 15. However, the analysis time is also
dependent on the amount of data being analyzed. The analysis time varied
from 6.38 minutes to 5.83 hours for the dataset sizes ranging from 5GB to
175GB in the cloud.

The processing time further reduced to 3 hours for 175GB data when the
video stream analysis is performed on GPU mounted cloud nodes. Several
factors contributed to achieving high throughput such as optimized resource
utilization of GPUs, e"cient and optimal data transfer techniques, improved
occupancy and e"cient memory allocation. The mapping of each pixel of a
video frame to individual light-weight GPU threads played a major role in
achieving high performance in the system.

In future, we would like to make the system more generic by detecting
and recognizing other objects from di!erent object classes such as cars, bikes
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and pedestrians. The optimization of detection and recognition algorithms
by analyzing them in the frequency domain will also be the focus of our
future work. We would also like to achieve more speedup and scalability by
using in-memory processing cluster coupled with the computation power of
GPUs. This will help to overcome the delays which occur due to various I/O
operations.
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