
University of Huddersfield Repository

Shadija, Dharmendra, Rezai, Mo and Hill, Richard

Towards an Understanding of Microservices

Original Citation

Shadija, Dharmendra, Rezai, Mo and Hill, Richard (2017) Towards an Understanding of 
Microservices. In: 23rd International Conference on Automation and Computing (ICAC'17), 7th-8th
September 2017, University of Huddersfield, UK. 

This version is available at http://eprints.hud.ac.uk/id/eprint/32319/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/



Towards an Understanding of Microservices

Dharmendra Shadija and Mo Rezai
Department of Computing

Sheffield Hallam University
United Kingdom

Email: {d.shadija},{m.j.rezai}@shu.ac.uk

Richard Hill
School of Computing and Engineering

University of Huddersfield
United Kingdom

Email: r.hill@hud.ac.uk

Abstract—Microservices architectures are a departure from
traditional Service Oriented Architecture (SOA). Influenced
by Domain Driven Design (DDD), microservices architectures
aim to help business analysts and enterprise architects develop
scalable applications that embody flexibility for new function-
alities as businesses develop, such as scenarios in the Internet
of Things (IoT) domain. This article compares microservices
architecture with SOA and identifies key characteristics that
will assist application designers to select the most appropriate
approach.

Service Oriented Architecture (SOA), microservices,
Domain Driven Design (DDD), Software Engineering

1. Introduction

Software engineering as a discipline is mature [1] and
many approaches to developing software architectures have
been proposed. Our focus is upon service-based approaches,
in particular microservices. Service-Oriented Architecture
(SOA) has been established for some time now and we have
chosen to undertake a comparative study between SOA and
microservices, to enable greater understanding of the relative
characteristics of each approach.

1.1. The context for services

A clear methodology for structuring application logic
first appeared with the advent of Jackson Structured Pro-
gramming (JSP) [2]. JSP encouraged the maintenance of a
library of subroutines, each of which would do one thing
well (cohesion), for example printing a text string to the
screen. In doing so, JSP promotes modularity and reuse of
code blocks. Pervasive adoption of Object Orientation (OO)
was the next paradigm shift [3]. OO focuses on creating
code block abstractions (called objects) as a set of services
that could be called by clients (other objects) [4]. This
abstraction enables the object internals to be complex, often
using services of other objects for business logic, data cal-
culations and data transformation. Objects also encapsulate
data and control access to data, for reading or for changing
the encapsulated data [4]. An example of an object would

be an IncomeTaxCalc object in an HR system. This
object would provide a service for calculating income tax
on an employee’s salary. It could encapsulate details of the
personal taxation data provided by the government of the
employee’s country of residence. It may not provide access
to the encapsulated data as no other object in the system
is likely to require access to this data. This object’s service
comprises of business logic and data calculation. A client
of this object may be the WageSlip object, to create the
data necessary for an individual report of an employee’s
contributions towards taxation. Another feature of OO that
is pertinent to this discussion is messaging between the
objects [4]. Objects publish well-specified interfaces and it is
through these interfaces that services of objects are called by
the clients. An interface to an object identifies the object, the
block of code within the object that is to execute, parameters
for the code, and any return type [4]. Abstraction can be
described as the separation of interface of the object from the
internal implementation of the object. By abstracting how an
object is used from how an object works, dependency of the
client upon the object is reduced [4]. Modularity is another
inherent characteristic of object oriented systems. The aim
of modularity is to decompose the application into highly
modular objects, each of which encapsulates coherent func-
tionalities that enable maximum reuse of the objects. Code
reuse is ultimately the payback in OO. Good modularity
and well-designed encapsulation results in highly reusable
objects. As a consequence, object based development is
generally considered to be system development at a low level
of granularity [4]. Component-based system development
was the next significant development. In an attempt to work
at higher levels of granularity, a number of objects are
packaged together as a component. The idea is that working
with components (as opposed to objects) would increase
productivity [4] as it would be working at relatively higher
level of granularity, and therefore be easier to translate form
and to business logic. WageSlip would be an example of
a component that would encapsulate a number of objects
such as IncomeTaxCalc, NationalInsuranceCalc
and PensionCalc. Reuse of WageSlip would result in
higher productivity payback.



1.2. Service Oriented Architecture

In Service Oriented Architecture (SOA), a service encap-
sulates a number of components into a single interface to
provide a discrete business function. For example, a service
to check a share price on the financial exchange would
support all functions to do with managing the checking
of the share dealing account. In this respect services work
at a higher level of granularity than the components [5].
A component could be a service if it is wrapped in a
service layer. For example a WageSlip component could
be exposed as a service. The aggregation of components
build an application and this is not the case with services.
A service is consumed through late binding at runtime [34].
In the case of distributed systems, protocols that are used
to access components cannot easily pass through enterprise
firewalls. Service layers enable industry standard, widely
accepted protocols, that simplify access to the service thus
promoting interoperability.

1.3. Multi-tier architectures

Fig 1 illustrates a traditional multi-tier architecture. The
core components are as follows:

1) Data tier. Different data sources such as relational
databases, XML databases, MS Excel spreadsheets,
object databases, etc.

2) Integration tier. Managing the connections to data
sources (connection classes), and the execution of
queries against each connection. This tier is decou-
pled from the rest of the tiers. There should be no
business logic in this layer. Program code must be
to do with data access only.

3) Business tier. Classes in this layer carry out busi-
ness logic. Business logic could be bespoke for
the application, for instance special requirements
or dealing with legacy applications. Business logic
could be standard libraries from a third party if
available. There is no database utility in this layer.

4) Presentation tier. This layer encapsulates all of the
presentation applications. Fig 1 depicts an MVC
website, but the presentation tier can be extended
to include web forms, mobile applications, desktop
applications, etc.

5) Web services tier. If required, business layer classes
can be exposed as web services. In that respect a
web service becomes another type of presentation
tier but without a user interface and merely a data
service and/or business processing service.

Such an architecture promotes the reuse of program
code (via objects), although the emergence of more flexible
business models is now creating a demand for architectures
that can scale more freely than the traditional multi-tier
model.

Figure 1. Illustration of a SOAP Service in relation to a Model View
Controller (MVC) application architecture.

2. Defining microservices

At present, there is considerable interest in microservices
architectures, amongst academic and industrial communities
alike. Many explanations of microservices have emerged in
recent years as communities attempt to propose a definition.
As we work towards a definition, many inconsistencies and
misnomers become apparent.

One such example is that of the meaning of ‘micro’;
some literature reports that a microservice is very small,
and therefore such an architecture makes use of many, small
services. As we have discovered, ‘micro’ is a relatively
ambiguous term, that does not always describe the size of
a service, as these can vary. Therefore, we have examined
a range of literature that is relevant to microservices archi-
tecture, in order to assist the development community who
might be considering using microservices architectures for
their applications.

Dragoni et al [6] [7] define microservices as:
“A microservice is a cohesive, independent

process interacting via messages.”
This definition describes two key features of microservices.
First, microservices should be highly cohesive units; they
should do one thing well. Second, microservices must be
able to execute their own processes which allows for in-
dependent deployment. However, the same definition might
also be applied to an OO class.

Dragoni et al [6], [7] also offers a definition for a
microservice architecture.

“A microservice architecture is a distributed
application where all its modules are microser-
vices.”

Microservice architecture is about a service addressing a
single business capability, with a clearly defined interface.
In a microservice architecture a series of microservices are
chained together to perform a bigger business function. To
enable these characteristics, each microservice has its own
data model and a class model. Fig 3 below shows a sam-



ple application which utilises a microservices architecture.
Adrian Cockcroft defines microservices as:

“loosely coupled service in a bounded con-
text.”

This definition refers to ‘bounded context’ which is derived
from the Domain Driven Design [8] literature. A bounded
context captures the key properties of a microservice ar-
chitecture: the focus upon business capabilities, rather than
programme code decomposition and reuse. Such a perspec-
tive supports the capture and modelling of requirements
in complex multi-agency domains such as the delivery of
community healthcare [9], [10] or applications for the In-
ternet of Things [11]. Related business functionalities are
combined into a single business capability which is then
implemented as a service. However this definition does not
provide any insight into the level of granularity required
for the functionality to be branded as a microservice. For
example, at what point does service decomposition become a
method call upon another object? This is a pertinent question
for designers of applications that exploit Internet of Things
infrastructure [12], [13].

Another definition of microservice from Sam Newman
states [14] that microservices are:

“Small autonomous services that work to-
gether, modelled around a business domain”

. This suggests the importance of service autonomy, under-
lining the need for a service to own its own data model.
Daniel Bryant [15] states that a microservice should be
“... designed around single responsibility principal.” We
infer from this the reference towards responsibility from
the perspective of business requirements. Johannes Thőnes
defines a microservice as [16]:

“a small application that can be deployed in-
dependently, scaled independently, and tested in-
dependently and that has a single responsibility.”

This definition addresses a number of characteristics of
a microservice, namely that the microservice should be
self-reliant, flexible and fault-tolerant. In addition to the
above this also highlights that microservices should have
single responsibility. Again, like many definitions that are
being proposed, the level of granularity is still an area for
further exploration. Some of the key architectural concerns
that microservice architecture aims to address are around
scalability, being able to deploy updates to microservices
independently, and lightweight mechanisms around orches-
tration and choreography. Microservices communicate using
Representational State Transfer (REST) or Message Queue
(MQ). This light weight communication mechanism sug-
gests that a microservice architecture is more tolerant of
physical infrastructure that has distributed computation and
storage. The continued growth of wireless devices places
considerable demands upon architectures that cannot scale
sufficiently to flexibly adopt new resources as they become
available. It follows that a microservice architecture can
bring its own challenges. Since each service has its own
data model, replication of that data is necessary across a
number of data stores;

“Replicating data in real time is a difficult
problem for which no good, general approach
currently exists”.

[17]
One of the misconceptions associated with microservices

is that they should be small. Microservices could be as
small as a method implementation, however by having such
fine grained microservices it introduces issues in terms of
being able to manage the whole architecture. There are con-
siderable benefits to be had with coarser-grained services,
not least for the translation of business requirements into
application design. Therefore, the level of granularity of a
service is an important part of microservice architecture.
From Newman [14]:

“Avoid approaches like enterprise service bus
or orchestration systems, which can lead to cen-
tralization of business logic and dumb services. In-
stead, prefer choreography over orchestration and
dumb middleware, with smart endpoints to ensure
that you keep associated logic and data within
service boundaries, helping keep things cohesive.”

A key difference between XML Web Service based
architecture and Microservice architecture is the decreased
reliance on heavyweight middleware. In an XML Web Ser-
vices based architecture, web services are glued together
using robust mechanisms such as Enterprise Service Busses
(ESB). ESB advocates cite the centralisation of application
integration as being a significant advantage, where smaller
services provide functionality for the ESB to deal with how
they are integrated, routed, authenticated and ultimately,
deciding how to apply business rules. However, the robust
nature of an ESB component in an architecture serves also
to constrain any application flexibility in the future. This, in
turn, impacts upon how an application can deal with chang-
ing business needs. In contrast, a microservice architecture
specifies end points with the associated business logic. As
the application grows, microservices can be updated in an
isolated manner and deployed without affecting the rest
of the application. This is not always the case with OO
architectures that promote object reuse. By decentralising
the application architecture, software developers can write
more logic within the microservices, and communication
between services is kept simple using REST calls. As an
ESB dealt with lot of the logic around service routing, data
and protocol transformation [18] web services could be quite
small (fine grained) as per Fig 2. For example, updating a
customer record in an e-commerce application. However,
with microservices, end points have to be smart [19] and
services are coarser grained. Fig 3 illustrates the potential
microservices in an e-commerce application: shopping cart
service, checkout service, pricing service, payment process-
ing service, fraud detection service and order fulfilment
service. As the services are coarse grained it facilitates loose
coupling between the services. Eric Evans advocates that a
microservice approach could be looked at “from a software
design perspective” [20]. Microservices architecture started
with the goal to be able to deploy smaller parts of software



independently without affecting rest of the application [20].
However this has evolved and started to influence the way
software is architected from the outset. Microservices there-
fore suit evolutionary design, where the business anticipates
that certain functions may fail in the future. Business models
that are scalable need applications that can be reconfigured
and augmented as scenarios evolve. Since each microservice
is a small business process, and because it represents a
small aspect of business functionality, it is easy to replace
or change the work flow. A web service based approach is
more challenging in this respect, as the focus on object reuse
means that changes can often affect many disparate parts of
the application.

3. Characteristics of a microservice architec-
ture

Lewis et al advocate a number of characteristics for a
microservice architecture [19]. This section evaluates the
characteristics in comparison to SOAP service architectures.

3.1. Modularity of services

The objective of modularity in software development
is to decompose the system into more manageable compo-
nents. Effective decomposition renders components that are
easier to deploy, to replace, and to change. SOAP services
encourage loose coupling through the provision of interfaces
that other applications use to consume a service. Similarly,
systems are ‘componentised’ into a number of microser-
vices. Microservices expose interfaces which ensure loose
coupling between the microservices [6]. Componentisation
in microservices also provides us with the ability to make
changes to a component and only redeploy the changed com-
ponent as opposed to the whole application. Microservices
are therefore a move away from multi-tier architectures to-
wards more flexible architectures. Microservices encapsulate
all the resources that they require to function. One of the
aims of the architecture is to facilitate scalability through
virtualising a resource (the microservice) [7]. Effective mod-
ularity of the service therefore becomes realisable when it
comes to scalability.

3.2. Organised around business capability

This is not only about what the services do and how
they are architected, but also about the constitution of the
teams that build the services. In the case of typical multi-tier
applications, code and usually teams are organised around
functional areas. Changes to system requirements will have
a consequence for cross-team communication requirements
and work allocation. There is also the risk of embedding
logic and/or data in layers that teams have access to [MEC].
SOAP Services are constructed as an additional commu-
nication layer on existing logic, typically of a multi-tier
architecture. Consequently, these services inherently suffer
the detriments of injurious changes to the underlying system.

This is not the case with microservices. Microservice is
not an additional communication layer. It is an application
architectural style. The system is decomposed as a number
of microservices, each one organised around a business
capability [7]. An example of a business capability may
be ‘Shopping Cart Management’. This microservice would
encapsulate all the related and appropriate functionalities
such as ‘Add to Cart’, ‘Remove from Cart’, ‘Go to Cart’,
‘Persist Cart’, ‘Retrieve Cart’, etc. For better scalability,
microservices also encapsulate all of the required resources
including business logic and data services.

3.3. Products not projects

With microservices, the design focus shifts towards busi-
ness capability or the product. A business domain system
is decomposed as a series of business sub-domain systems
[21], each of which are further decomposed into microser-
vices. This is in contrast with more traditional system devel-
opment process where a number of projects are established
to address different parts of the system. For example we
may have UI team working on a UI project and Database
team working on Data Project and system, in its entirety, is
designed, built, tested and placed in production. Microser-
vice architecture advocates decentralised processes. Each
process is for developing part of the system, which may be
one microservice. One benefit of this approach is the loose
coupling between microservices. In turn, loose coupling
between the microservices expedites an evolutionary system
development process and enhances future extensibility of the
system.

3.4. Smart endpoints and dumb pipes

Microservices are smart endpoints because they encap-
sulate all the resources that they require for them to function
effectively. Pipes or communication between the end points
is through messaging. One other tenet of Service Oriented
Architecture is the decoupling of what the service does from
how to communicate with the service. This is referred to
as the separation of ‘what’ from the ‘how’. The underly-
ing idea is that communication with a service necessitates
extensive use of changeable technology, and decoupling
the messaging mechanism from the service will result in
improved longevity of the service. In light of this, SOAPSer-
vices manifest this in the schema for their Web Services
Description Language (WSDL) description. SOAP is used
as the messaging mechanism between the SOAPService
and its client application. SOAP is a lightweight messag-
ing protocol that is further decoupled from the mechanism
for transport albeit it usually makes use of the ubiquitous
HTTP. The fundamental difference between Microservices
and SOAPServices is in the use of middleware for busi-
ness process. SOAPServices extensively use heavy-weight
middleware for orchestrating services. One example of such
middleware is Enterprise Service Bus (ESB). In contrast,
microservices are choreographed using RESTful protocols.
Because of this SOAPServices are sometimes referred to as



Figure 2. Example of application architecture using Service Oriented
principles.

‘big’ services and the use of the work ‘micro’ may be a
reaction to this. Dumbness in microservices is a reference
to the use of lightweight message bus [22] such as ZeroMQ
[23] for simple reliable asynchronous messaging between
microservices.

3.5. Decentralised data management and gover-
nance

In a microservice architecture, data is decentralised and
distributed between the constituent microservices. This is in
contrast with traditional application architecture and cen-
tralisation of data, usually in a relational database. This
causes a number of issues. Each microservice is a solution
to a business capability in a sub-domain and works with a
conceptual data model for that sub-domain. Moreover, with
decentralisation of governance, the design and development
of microservice is devolved to a team. A consequence of
decentralisation would be lack of a unified data model for
the system. As well as the different data models, Microser-
vices may opt for different data storage systems including
relational database systems, file systems, etc. Decentralising
data decisions and data management has its implications.
Distributed databases make use of transactions for managing
updates.

4. Constraints and limitations

Alongside the potential of microservices architecture,
there are a number of constraints that are imposed by
this approach. First, the focus upon domain understanding
means that the enterprise/software architect must be able
to specify the appropriate bounded contexts for a service.
Any misunderstanding at this stage will result in services
being built that might not be sufficiently cohesive, or the
messaging between services might be too abundant. This
will build-in to the design additional costs for the future.

Figure 3. Microservices based example of application architecture.

Second, the principle of resilience for each microservice
places additional resource demands upon the notion of scal-
ability; conceptually a microservices architecture is much
more scalable than one based on SOAPServices, however
the overhead of monitoring each service creates a demand
for more processing cycles and data storage than would be
required with an equivalent SOA approach. As businesses
take advantage of utility computing and transfer their in-
telligence processes to clouds [24], the additional overhead
maybe absorbed by elastic compute resources, but this is
still an issue that has to be considered. Third, the SOA
approach is still ‘purer’ in that contracts between objects
can be completely de-coupled (albeit at a finer grain) and
the interoperability between web services is much easier to
facilitate.

5. Conclusions

Decomposition of a product into microservices requires
the designer to contemplate a manageable size for the mi-
croservice. Use of the word ‘micro’ in this context is often
taken too literally and can be misleading. In addition, the
term ‘service’ tends to encourage a direct comparison with
SOAPServices. However, a SOAPService is a communica-
tion layer on top of the business logic of an application.
A microservice is a Service Oriented Architectural style
for the application. Microservices are built around business
capability. One tenet of SOA is that a service must be of
a tangible benefit to the consumer. SOA does not assert
a size for the service but tangibility in this context could
mean ‘usefulness’, suggesting that if a service is not useful,
consumers will not demand it. Tangibility to the consumer,
more often than not, hints at larger and more substantial
services with the potential to remove a sizeable burden.
For example, a payment micro service should oversee all
payment utilities including take payment, make refund, deal
with payment enquiry, etc.

Hence, microservices are generally coarse-grained.
SOAPService is an integration technology whereas mi-



TABLE 1. COMPARING KEY CHARACTERISTICS OF XML WEB SERVICES AND MICROSERVICES.

Characteristic XML Web services Microservices
Design motivations Interoperability between heterogeneous systems [25] Scalability of evolutionary applications
Messaging protocols supported SOAP and REST REST and MQ such as Rabbit MQ [29]
Message payload No limit on the message payload No limit on the message payload

Orchestration Heavy weight using ESB or WS-* standard (WSBPEL) [26] [27] Kubernetes [30], Docker’s built-in Swarm Mode
[31], Orchestration not preferred approach in microservices [14]

Primary use Inter and intra-organisation communication Primarily for intra-organisation communication
Choreography Using WS-CDL Choreography preferred approach in microservices [14]

Granularity Fine grained [28] with ESB Coarse grained as messaging between applications
is lightweight

croservices is the application architecture. They do have
some similarity as they are both subsets of SOA. In enter-
prise application development, there is scope for both ap-
proaches to be utilised, particularly when there is a foreseen
business need for an application to scale in the future.

References

[1] N. Wirth, “A Brief History of Software Engineering”, IEEE Annals of
the History of Computing, 2008.

[2] M. Jackson, “Principles of Program Design”, Academic Press, London,
1975.

[3] O. J. Dahl, C. Hoare, “Hierarchical program structures”, Structured
Programming, Academic Press, 1972, pp175-220.

[4] A. Snyder, “The essence of objects: Common concepts and termi-
nology”, Technical Report HPL-91-50, Hewlett Packard Laboratories,
1991.

[5] S. Alahmari, E. Zaluska, D. De Roure, “A Service Identification Frame-
work for Legacy System Migration into SOA”, 2010 IEEE International
Conference on Services Computing, 2010, pp614-617.

[6] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustan, L. Sana, “Microservices: yesterday, today, and tomorrow”,
https://arxiv.org/abs/1606.04036

[7] N. Dragoni, S. Dustdary, S. Larsenz, M. Mazzara, “Microservices: Mi-
gration of a Mission Critical System”, https://arxiv.org/abs/1704.04173,
2017.

[8] E. Evans, “Domain-driven design: tackling complexity in the heart of
software”, Addison-Wesley Professional, 2004.

[9] M. Beer, W. Huang, R. Hill, “Designing community care systems
with AUML”. In: Proceedings of the International Conference on
Computer, Communication and Control Technologies (CCCT ’03),
IEEE Computer Society, 2003, 247-253.

[10] R. Hill, S. Polovina, M. Beer, “From concepts to agents: towards
a framework for multi-agent system modelling”. In Proceedings of
the fourth international joint conference on Autonomous agents and
multiagent systems (AAMAS ’05). ACM, New York, NY, USA, 2005,
1155-1156. DOI=http://dx.doi.org/10.1145/1082473.1082670

[11] A. Ikram, A. Anjum, R. Hill, N. Antonopoulos, L. Liu, S. Sotiri-
adis, “Approaching the Internet of things (IoT): a modelling, analysis
and abstraction framework”. Concurrency and Computation: Practice
and Experience, 27(8), 2015, pp1966-1984. C. Guidi, I. Lanese, M.
Mazzara, F. Montesi, “Microservices: a Language-based Approach”,
2017.

[12] N. Bessis, F. Xhafa, D. Varvarigou, R. Hill, M. Li, “Internet of Things
and Inter-cooperative Computational Technologies for Collective Intel-
ligence”. Studies in Computational Intelligence 460, Springer, 2013,
ISBN 978-3-642-34951-5.

[13] R. Hill, J. Devitt, A. Anjum, M. Ali, “Towards In-Transit Analytics
for Industry 4.0”. FCST2017, IEEE Computer Society, 2017, Exeter.

[14] S. Newman, “Building Microservices - Designing Fine-Grained Sys-
tems”, O’Reilly, 2017.

[15] D. Bryant, “The Seven Deadly Sins of Microservices”.
https://opencredo.com/the-seven-deadly-sins-of-microservices-redux/,
2016.

[16] J. Thőnes, “Microservices”. IEEE Software, 32(1), 2015, pp116-116.

[17] N. Viennot, M. Lecuyer, J. Bell, R. Geambasu, J. Nieh, “Synapse: A
Microservices Architecture for Heterogeneous-Database Web Applica-
tions”. Proceedings of the Tenth European Conference on Computer
Systems, ACM 2015.

[18] L. Walker, “IBM business transformation enabled by service-oriented
architecture”. IBM Systems Journal, 2007, 46(4).

[19] J. Lewis, M. Fowler, “Microservices a definition of this new architec-
tural term”. https://martinfowler.com/articles/microservices.html, 2014.

[20] E. Evans, “DDD & Microservices: At Last, Some Boundaries!”.
GOTO 2015.

[21] E. Evans E., “Domain-Driven Design, Tackling Complexity in the
Heart of Software”, Addison-Wesley, 2003, ISBN 0-321-12521-5.

[22] W. Hasselbring, “Microservices for Scalability: Keynote Talk Ab-
stract”. Proceedings of the 7th ACM/SPEC on International Conference
on Performance Engineering Pages 133-134. 2016.

[23] 0MQ: Distributed messaging. http://zeromq.org/

[24] H. Al-Aqrabi, L. Liu, R. Hill, N. Antonopoulos, “Taking the Business
Intelligence to the Clouds”. 9th International Conference on Embedded
Software and Systems (HPCC-ICESS), Liverpool, IEEE Computer
Society, 2012, pp953-958.

[25] Berners-Lee T. “Web Services”
https://www.w3.org/DesignIssues/WebServices.html

[26] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, “Web Services:
Concepts, Architectures, Applications”. Springer, 2004.

[27] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, D. Ferguson,
“Web Services Platform Architecture”, 2005, Prentice Hall.

[28] X. Xu, L. Zhu, Y. Liu, M. Staples, “Resource-Oriented Business
Process Modeling for Ultra-Large-Scale Systems”. Proceedings of
the 2nd international workshop on Ultra-large-scale software-intensive
systems, 2008, pp65-68.

[29] Inc. Pivotal Software. “Rabbitmq - messaging that just works”.
https://www.rabbitmq.com/

[30] Inc Kubernetes, “Kubernetes - production-grade container orchestra-
tion”. http://kubernetes.io.

[31] Inc Docker, “Swarm mode overview - docker”.
https://docs.docker.com/engine/swarm/.

[32] M. C. MacKenzie, K. Laskey, F. McCabe, P. F. Brown, R. Metz, B.
A. Hamilton, “Reference model for service oriented architecture 1.0”.
OASIS Standard, 2006, 12.

[33] Inc. Mesosphere. “Marathon: A container orchestration platform for
mesos and dc/os”. https://mesosphere.github.io/marathon/.

[34] A. Mos, T. Jacquin, “A Platform-Independent Mechanism for De-
ployment of Business Processes Using Abstract Services”, 17th IEEE
International Enterprise Distributed Object Computing Conference
Workshops, 2013, pp72-78.


