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ABSTRACT
Nanocrystalline metals are considered highly radiation-resistant materials due to their large grain
boundary areas. Here, the existence of a grain size threshold for enhanced irradiation resistance in
high-temperature helium-irradiated nanocrystalline and ultrafine tungsten is demonstrated. Aver-
age bubble density, projected bubble area and the corresponding change in volumeweremeasured
via transmission electron microscopy and plotted as a function of grain size for two ion fluences.
Nanocrystalline grains of less than 35 nm size possess ∼ 10–20 times lower change in volume than
ultrafine grains and this is discussed in terms of the grain boundaries defect sink efficiency.

IMPACT STATEMENT
Agrain size threshold in nanocrystalline andultrafine tungstenhas been shown to exist for enhanced
irradiation-resistance performance during high-temperature helium irradiation.
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Grain size refinement is proposed as a solution for
enhanced radiation tolerance in materials under extreme
irradiation conditions due to the high grain boundary
density it can induce [1]. Grain boundaries which act
as defect [2] and particle (e.g. helium, He) [3] sinks are
also postulated to enhance vacancy-interstitial annihi-
lation [4]. This can lead to a decrease in defect (e.g.
interstitial clusters, bubbles, voids, etc.) density and thus
to an enhancement of the irradiation resistance of the
microstructure. Tungsten (W), which is an important
material for the major components of several nuclear
fusion systems including the divertor region in ITER
[5], is an example of a material in which grain size
refinement can significantly enhance its performance [6].
When exposed to He irradiation at high temperatures,
W has been shown to suffer from high He bubble densi-
ties in the grain matrices [7]. Over an ion dose threshold,
this is considered to be the main phenomenon respon-
sible for severe microstructural changes and the forma-
tion of fuzz (fiberformmorphology) which occur at high

CONTACT O. El-Atwani oelatwan25@gmail.com Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545,
USA

ion doses [7]. If a major driver for these microstruc-
tural changes is indeed the high bubble densities in the
grain matrices as has been suggested [8], it can then
be hypothesized that the high grain boundary area in a
nanocrystalline W microstructure will increase the ion
dose threshold required to form these microstructures at
temperatures where no grain growth (which changes sink
strength) is possible.

To correlate the nanoscale phenomena of bubble evo-
lution to microscale structural changes such as fuzz
formation, fundamental studies regarding bubbles in
grain-refined W are essential to understand the role
of grain boundaries in limiting bubble densities in the
grain matrices. El-Atwani et al. [9] have demonstrated
preferential bubble formation on the grain boundaries
in nanocrystalline W grains and lower bubble densi-
ties in their matrices. Investigations are required on
grain-refined (nanocrystalline (<100 nm) and ultrafine
(100–500 nm)) W to explore possible trends in bubble
density as a function of grain size and the grain size

© 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.tandfonline.com
http://orcid.org/0000-0002-1862-7018
http://orcid.org/0000-0002-7069-1789
http://orcid.org/0000-0001-9656-5185
http://orcid.org/0000-0001-8037-1319
mailto:oelatwan25@gmail.com
http://creativecommons.org/licenses/by/4.0/


344 O. EL-ATWANI ET AL.

threshold required to achieve significantly lower bub-
ble densities in the grain matrices. Moreover, since the
average bubble size may also change as a function of
grain size, the total volume of the bubbles (which we
equate to change in grain volume as discussed below) is
a more effective indicator for the performance of a grain
compared to bubble density alone.

In this study, we attempt to answer the above questions
using in situ ion irradiation of nanocrystalline and ultra-
fine tungsten (where nanocrystalline and ultrafine grains
coexist) within the JEOL JEM-2000FX transmission elec-
tronmicroscope (TEM) at theMicroscope and IonAccel-
erator forMaterials Investigations (MIAMI) facility at the
University of Huddersfield which is described in detail
elsewhere [10]. The in situ observation during the exper-
iment confirmed that the sample was irradiated uni-
formly and that no grain growth or bubble coalescence
occurred during irradiation; two possible phenomena
that can disturb bubble density and size determination.
High-purity (99.95% wt%) W samples containing both
ultrafine and nanocrystalline grains were irradiated with
2 keV He ions at 950°C to two different ion fluences
of 3.6× 1019 and 3.2× 1020 ionsm−2 (flux was approx-
imately 1.8×1017 ionsm−2 s−1). Preparation of ultra-
fine and nanocrystalline W material and the TEM sam-
ples (via electropolishing) has been detailed elsewhere
[11,12].

Ex situ TEM was performed using a JEOL JEM-3010
and an FEI-TECNAI-20 with electron beam energies of
300 and 200 keV, respectively. Images were captured in
underfocus conditions in which cavities are visible with
a bright Fresnel fringe on their inside edge. At the angle
of incidence of 60° between the ion beam and the sam-
ple surface at 0° tilt, the projected range for 2 keV He
ions in W is 10.6 nm as calculated by the ‘detailed cal-
culation with full damage cascade’ option in the Monte
Carlo computer code Stopping Range of Ions in Matter
(SRIM version 2013) [13]. The projected range is there-
fore much less than the nominal thickness of the film
of about 100 nm. This is an important consideration to
be sure that all the helium is stopped in the grains and
also when comparing phenomena such as bubble for-
mation which can be affected by the proximity to free
surfaces in the foil. The TEM images were then used to
determine the bubble areal number density (henceforth
referred to as bubble density) and projected area of the
bubbles as a function of grain size. Grain size was mea-
sured as the minimum distance across a grain through
the point inside the grain farthest from any grain bound-
aries. Grain volume was calculated by measuring the
projected area of the grain and multiplying by a nomi-
nal sample thickness of 100 nm. Details about He bubble

quantification and possible factors affecting bubble den-
sity measurements were illustrated in a previous work
regarding He irradiation on nanocrystalline iron [14].

The performance of the refined grains under irradi-
ation in terms of bubble formation is illustrated in the
plots in Figure 1. Bubble density as a function of grain size
in the ultrafine and nanocrystalline regimes is plotted for
the two ion fluences used. In the plots, the bubbles judged
to be on the grain boundaries were not considered. To
the best of our knowledge, the effect of grain boundary
bubbles on swelling is still not reported. Moreover, sev-
eral factors (such as defect accommodation in the grain
boundary free volume, bubble densities on different grain
boundaries and possible void-grain boundary pinning
during the volumetric change) need to be understood to
quantify the effect of grain boundary bubbles on swelling.
However, bubbles on all regions of the grains except
the denuded zones (bubble-free regions) were consid-
ered. Results from the post-irradiation analysis of the
two different ion fluences showed a very similar trend
(Figure 1(a)) demonstrating no effect of ion fluence on
the response of the nanocrystalline grains in this range.
The bubble density vs grain size trend also demonstrates
how sink strength (proportional to grain boundary area
per unit of grain volume) [15] affects the performance of
grains as regards to bubble formation in the grain matri-
ces. The bubble density increased in a logarithmic fashion
with grain size up to 75–100 nm where it increased at a
slower rate and eventually reached a saturation value. The
saturation value, however, was different for the two ion
fluences (0.005 and 0.009 bubble nm−2) for 3.6× 1019
and 3.2× 1020 ionsm−2, respectively). Grains with of a
size of less than 35 nm demonstrated the lowest bubble
densities of up to approximately 10 and 3 times lower
than the saturation values for the ion doses of 3.6× 1019
and 3.2× 1020 ionsm−2, respectively. The bubble density
results can be affected by the surface sink effects. How-
ever, surface effects are expected to play amore significant
role in large grains due to the longer diffusion path of the
defects to the grain boundaries. In our results, we observe
larger bubble densities in the matrices of the large grains
than those in the small grains which confirms that sur-
face sink effects do not dominate in this experiment and
the enhanced performance of the small grains. The scat-
ter in the data (i.e. similarly sized grains with different
bubble densities) has been observed before in He ion-
irradiated iron and were explained by El-Atwani et al.
[14] in terms of grain boundary sink efficiency and its
dependent parameters. Under the irradiation conditions
in this study, both interstitial and vacancy defects are cre-
ated and can migrate [16]. Moreover, vacancy clusters
and small He-vacancy complexes [17] can alsomigrate to
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Figure 1. Plots of (a) average bubble density (number/nm2) vs grain size for the two different ion fluences showing a very similar
trend; and (b) bubble density (number/nm2) vs grain size for the two different ion fluences with exponential decay fitting. (Fitting
curves are y = 0.005 − 0.0038e−x/35and y = 0.009 − 0.0052e−x/18 for the 3.6× 1019 and 3.2× 1020 ionsm−2, respectively. Bright-
field underfocus TEM images showing: nanocrystalline (NC) grains of size less than 35 nm adjacent to larger grains for (c) 3.6× 1019 and
(d) 3.2× 1020 ionsm−2.

the boundaries [18]. The sink efficiency of a grain bound-
ary, however, was shown by others to depend on the
full grain boundary character (including the misorienta-
tion angle and the grain boundary plane) [19]. Therefore,
grains with different grain boundaries can have differ-
ent bubble densities due to the different sink efficien-
cies of their boundaries. Figure 1(c,d) shows bright-field
underfocus TEM images typical of the two ion-irradiated
fluences studied. Nanocrystalline grains clearly demon-
strated lower bubble densities than adjacent ultrafine
grains.

Bubble density is not sufficient on its own to charac-
terize the bubble populations in the irradiated grains as
bubble size must also be taken into account. In this study,
the microstructural changes were characterized in terms
of these bubbles and the change in grain volume they are
taken to represent. The change in microstructure, in this
study, is characterized by the change in volume due to
bubble formation observed in the Fresnel TEM images.

The relative volume change is found by [20]

�v

v
= 4

3
πr3cNv ,

where�v is the change in volumeof the grain, v is the vol-
ume of the grain,Nv is the bubble density per unit volume
(bubble areal density divided by the sample thickness)
and rc is the average radius of the bubbles in the grain.
Figure 2(a) shows the average bubble size vs grain size for
both ion fluences. Small grains of less than 35 nmdemon-
strate the smallest average bubble sizes. The scatter in
the average bubble size data can be explained using the
sink efficiency arguments discussed above. The change in
grain volumes was calculated using the bubble densities
shown in Figure 1 and rc was calculated from the average
bubble sizes. The relative changes in volume are plotted
in Figure 2(b). An exponential decay of �v/v as a func-
tion of grain size is evident with the grains of less than
35 nm having the smallest relative changes in volume.
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Figure 2. Plots showing (a) average bubble area (nm2) as a function of grain size for the two fluences; and (b) relative change in volume
(�v/v) for the two samples as a function of grain size with exponential decay fitting. (Fitting curves are y = 0.237 − 0.2e−x/54 and
y = 0.573 − 0.45e−x/15 for the 3.6× 1019 and 3.2× 1020 ionsm−2, respectively. Error bars in the average bubble size graph represent
the standard error of the mean.

For the lower ion fluence, the smallest relative change in
volume was approximately nine times less than the satu-
ration value of approximately 0.022 bubble nm−2; for the
higher ion fluence, the smallest relative change in volume
was approximately 24 times less than the saturation value
of approximately 0.06 bubble nm−2.

In the grain size regime of less than 35 nm, it is evident
that a nanocrystalline grain in the higher dose sample
can have a comparable bubble density, size and change
in volume to a similar grain size in the lower dose sam-
ple despite being irradiated to a 10 times higher ion dose.
This can be related to the sink efficiency of the boundaries
and the low diffusion length for defects (including He-
vacancy complexes) in those grains. Below a grain size
threshold whichwas found to be around 35 nmunder the
experimental conditions in this study, the grain bound-
aries appear to absorb a significant proportion of the
mobile defects from the grain sufficient to have a sub-
stantial impact on bubble formation within the grain.
Therefore, it is concluded that these observations demon-
strate efficient defect absorption by the grain boundaries
and that this has significant implications for the evolution
of bubbles in the nanocrystalline grains and especially in
grains smaller than 35 nm. However, the deviation of the
grain size threshold as a function of temperature is an
important factor to consider and is yet to be studied. At
the irradiation conditions in this work, vacancies, inter-
stitials and small He-vacancy clusters are mobile. There-
fore, grain boundaries can play a dominant role in defect
absorption and annihilation and a grain size threshold
can be identified. A similar grain size threshold has also
been identified in BCC Fe material [24] at conditions

where defects are mobile. Moreover, while the higher flu-
ence was around one order of magnitude greater than
the lower fluence studied, the bubble density-to-relative-
volume-change-saturation ratios were approximately 1.8
and 2.7, respectively. A fewpossible explanations can help
to explain this observation. The irradiations were per-
formed with 2 keV helium ions which is higher than the
displacement energy threshold of around 500 eV in W
[21]. Therefore, vacancy supply to bubbles is always pos-
sible and thus over-pressurized bubbles do not form [22].
The He-to-vacancy ratio in the bubbles of the irradiated
samples can then be different (larger for the higher flu-
ence). Moreover, in the higher fluence case, it is expected
that higher interstitial loop and dislocation densities will
be able tomore efficiently trap He atoms [23]. Nucleation
of small bubbles on dislocations under similar irradiation
conditions has been reported in the literature [9] con-
firming the He trapping behavior of dislocations. How-
ever, it is expected that the dominant factor is the efficient
absorption of defects by grain boundaries as supported
by the high number of large bubbles observed on the
grain boundaries. Grain boundary absorption of vacan-
cies, vacancy clusters and He-vacancy complexes can
result in reduced bubble densities as it is the agglomera-
tion of these smaller defects which leads to the nucleation
of the bubbles. This is reflected by the larger densities
and bubble sizes on most of the grain boundaries of the
higher dose sample as observed in many TEM micro-
graphs.An example is shown in Figure 3(a,b). It should be
noted that bubble densities and average sizes on the grain
boundaries are not uniform but this is to be expected as
different grain boundaries are known to have different



MATER. RES. LETT. 347

Figure 3. Bright-field underfocus TEM micrographs showing (a) and (b) samples irradiated to 3.6× 1019 and 3.2× 1020 ionsm−2,
respectively, demonstrating the difference in bubble density and size at the grain boundaries (GB); and (c) a sample irradiated to
3.2× 1020 ionsm−2 showing several grain boundaries decorated with different densities, shapes and sizes of bubbles. Please note the
different scale in (a) and (b) compared to (c).

Figure 4. Bright-field underfocus TEM micrographs showing (a) the partially denuded and (b) the non-denuded grain boundaries at a
fluence of 3.2× 1020 ionsm−2.

sink efficiencies [19] as discussed above. The formation of
a non-uniform distribution of large bubbles on the grain
boundaries observed in this work has also been seen on
other materials irradiated with He [24].

As can be seen from Figures 1, 3 and 4, many bub-
bles on the grain boundaries were facetted. The faceting
of cavities has been demonstrated to occur when a cavity
becomes sufficiently large such that it can minimize its
surface energy by diverging from a spherical shape [25].
Therefore, these facetted bubbles are further evidence of
significant vacancy trapping by the grain boundaries and
it is reasonable to assume similar efficiency for coincident
trapping of helium. The difference in sink efficiencies
of different grain boundaries can also be experimen-
tally confirmed by the observation of denuded zones
(a bubble-free region in the vicinity of a boundary) as
the width of the denuded zone is directly proportional
to the grain boundary sink efficiency [26]. In the cur-
rent study, the regions around grain boundaries demon-
strated inconsistent behavior with some being denuded

and some only partially denuded. Figure 4 shows exam-
ples of denuded and partially denuded zones along grain
boundaries pointing to the differing sink efficiencies of
the bordering grain boundaries.

The performance of nanocrystalline and ultrafine W
at low fluences can assist in understanding the changes
in morphology such as fuzz formation observed at larger
scales. This is evidenced by the finding here that simi-
lar bubble densities, average bubble sizes and change in
volume trends exist at very different fluences differing
by more than one order of magnitude. It is clear that
nanocrystalline grains below a size threshold are more
tolerant to intra-grain bubble formation compared to
ultrafine grains. The threshold values identified in the
bubble density and the volume change plots shown in
Figure 2 correspond to grains in the ultrafine regime.
A comparison with coarse-grained W is unfortunately
not currently possible as no data exist yet on bubble
density as a function of grain size in the fine regime
(>500 nm). However, as the grain size in coarse-grained
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W is above the threshold grain size identified here, it is
reasonable to assume that it would behave similarly to the
ultrafine-grained W. Assuming that the hypothesis that
fuzz formation is correlated with high bubble densities
in the matrix as proposed by Kajita et al. [8] is correct
and neglecting other possible effects (such as defect and
bubble-induced stresses [27,28]), it may be conjectured
that aW sample of 35 nm grainsmay be able to resist fuzz
formation to an ion fluence at least one order of magni-
tude greater than a sample of ultrafine or fine W based
on the results reported here. Indeed, recently a sample
of nanocrystalline and ultrafine W was demonstrated to
have an order of magnitude greater threshold for fuzz
formation when compared to coarse-grained W [6].

While it is promising that bubble density and change-
in-volume trends can be controlled by the engineering of
grain size, the high density of large bubbles on the grain
boundaries is of concern. Since themechanical properties
of nanocrystalline materials are dominated by the grain
boundaries [29], the decoration of these by cavities may
degrade performance and a tradeoff grain size or grain
size distribution may have to be reached or other meth-
ods of limiting bubble nucleation and growth should be
developed such as the addition of impurities or forma-
tion of tungsten alloys. Bubbles can nucleate through
the growth of He-vacancy complexes [30]. Impurities are
previously discussed to have several effects in helium-
irradiated materials such as trapping interstitial helium
(decreasing nucleation sites), enhancing recombination
by trapping point defects and impurity segregation to
grain boundaries which alters their sink efficiency [31].
Impurities can also inhibit bubble migration and clus-
tering [32]. The results in the work can act as a refer-
ence for forthcoming studies on irradiation resistance of
nanocrystalline tungsten alloys.

In summary, bubble density, average bubble size and
change-in-volume as a function of grain size in He-
irradiated W have been identified and fitted to an expo-
nential decay trend. A grain size threshold of approx-
imately 35 nm has been shown to exist below which
efficient defect absorption by the grain boundaries (evi-
denced by large and facetted bubble formation on the
grain boundaries) has significant implications for the
evolution of bubbles in these nanocrystalline grains. The
nature of the trends observed were not affected by ion
fluence within the one order of magnitude range stud-
ied. The results and trends reported here will be invalu-
able in correlating the performance of polycrystalline W
material at the macro and micro scales to their structure
and radiation response at the nanoscale. The results can
also serve as a reference to other studies including the
effects of impurities on irradiation resistance of tungsten
or tungsten alloys.
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