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Current definitions and computation of areal surface texture parameters are based on planar, measured
or unwrapped, surface which is not applicable for non planar irregular meshes. In this paper an extension
of areal surface texture parameters (height and hybrid parameters) for freeform surface is proposed. The
proposed method can be used for both general and complex surfaces and it works well on surfaces where
there are undercuts and non uniformly spaced points. The proposed method has been tested on six sets of
different types of surfaces and the computed parameter results were compared with the values of the
parameters defined in ISO 25178-2:2012.
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1. Introduction

Nowadays advanced manufacturing technologies empower
complicated geometries to be designed and manufactured. For
example additive manufacturing (AM) allows internal and external
components with freeform geometries to be manufactured. This
has led to a series of challenges in characterisation of complex sur-
faces. One challenge is the measurement of complex surfaces and
the follow-on is the characterisation of the measured surface.
While computed tomography (CT) has been considered as one of
the promising measurement systems for certain complex surfaces
(subject to its material), extracting surface information from CT
measurement is an imperative operation.

To perform such extraction, the first necessary step is the recon-
struction from volume to mesh that can produce an adaptive
meshing based on the maximum allowable distance between the
implicit function (surface with constant grey value) and the final
triangular mesh [4]. A bonus of such operation is that the extracted
mesh allows re-entrant features (undercuts). However one cannot
directly compute areal surface texture parameters from such
extracted mesh.

Areal parameters (‘‘Birmingham 14” project) where initially
developed during a EU funded project leaded by Birmingham uni-
versity [22]. There were some ambiguity in the definition of the
parameters regarding the features characterisation and the mate-
rial ratio parameters needed to be more indicative [14]. Further
developments and standardisations, such as a detailed analysis of
advanced and robust filtration techniques and subdivision of sur-
face in hills and dales through the watershed decomposition, were
proposed in the subsequent SurfStand project and published in
Blunt and Jiang [3]. These definitions were later adopted in ISO
25178-2 [13]. The assumption on the calculation of the areal
parameters is that the measured surface is represented by a planar
mesh; it is assumed that the height coordinate of the measured
surface can be described as a function of the others, z ¼ f ðx; yÞ. Cur-
rent commercial measurement software packages compute height
and hybrid parameters based on a discrete approximation on a
rectangular grid. With irregular 3D meshes (such as the extracted
surface from CT measurement) is not possible to perform the inte-
grals based on the definitions from ISO 25178-2 otherwise the
computation results of the parameters will have significant bias.
It is then necessary to generalise those parameters to be suitable
for both regular and irregular meshes. A study aiming to define
the height parameters on a triangular mesh has been recently pro-
posed in Abdul-Rahman et al. [1]. The authors proposed to firstly
parameterise the surface form, represented through a triangular
mesh, and then compute the areal parameters in the parametric
space. The generalisation of the surface texture parameters is not
restricted to triangular meshes, but can be applied to all surfaces.
The extension to triangular meshes is performed through the finite
element method and does not depend on the mesh parametrisation,
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whereby the proposed triangular mesh method is faster and no
distortion is introduced.

In this paper a set of new definition of areal surface texture
parameters (height parameters, i.e. Sa, Sq, Ssk and Sku, and hybrid
parameters, i.e. Sdq and Sdr) for general parametric surface is pro-
posed. One the advantages of this method is that it is possible to
characterise a freeform surface without unwrapping it. It should
be noted that if the form surface does not have a parametric repre-
sentation it is not always possible to unwrap the mesh.

All computation of the parameters on the examples in this
paper are carried out on the primary surface without any filtration,
to eliminate any effect of filtration that bias the comparison of the
parameters’ result.

The paper is organised as follows: the proposed method is pre-
sented and discussed in Section 2 including two methods for the
surface approximation. In Section 3 the proposed method is tested
on six sets of different types of surfaces and the computed param-
eter results compared with the values of the parameters defined in
the ISO 25178-2.
2. Parameter definitions

In this paper it is assumed that a manufactured surface can be
described with a regular surface R � R3 as

rðu;vÞ ¼
x ¼ xðu;vÞ
y ¼ yðu;vÞ
z ¼ zðu;vÞ

8><
>: ð1Þ

with u ¼ ðu; vÞT and U � R2;U is called the parameters space.
Suppose that it is possible to decompose the surface into two

parts

rðu; vÞ ¼ rformðu;vÞ þ rresðu;vÞ ð2Þ
where Rform : rformðu;vÞ represents the form and Rres : rresðu; vÞ the
residual surface [19].

The proposed method can be explained with a profile example
shown in Fig. 1a. A portion of a profile is described by a parametric

curve x; yð ÞT ¼ rðtÞ. It is assumed that the form profile is y ¼ 0 and
20 points uniformly distributed on the curve are generated. If the
curve is treated as a function y ¼ f ðxÞ and if the integral is com-
puted with the adaptive rectangular rule, the computation of Ra
can be carried out as illustrated in Fig. 1b. It is possible to observe
that the y values oscillate. The proposed method is based on the
computation of Ra of a parametric curve as be the area highlighted
Fig. 1. Example of a profile
in Fig. 1c, where t is an abstract parameter. It can be, for example,
arc length parametrisation [6]. The residual coincide with y
because the form surface is y ¼ 0; the profiles in Figs. 1a and c rep-
resent the same profile, the only difference is the representation
used for the abscissa. Although the discrete method is not concep-
tually correct, as the number of sampled points increases, it can
approximate the value of the parameter. In fact the discrete
method can be interpreted as a Monte Carlo integration of the
function y ¼ yðtÞ, but the stretching of the form profile in the
parameter space t is not considered. Here it is proposed to extend
the roughness parameters based on the height of the surface, i.e. it
is not related to the volume of the material (void if the value of the
function is negative) between the scale limited surface and the
form surface.

If a total least squares approach is implemented the last term in
Eq. (2) could be rewritten as

rresðu;vÞ ¼ rresðu; vÞnformðu; vÞ ð3Þ
where rresðu; vÞ is the distance between rðu;vÞ and its projection on
the form surface rformðu;vÞ and nformðu;vÞ is the surface normal.
rresðu;vÞ can be interpreted as a scalar field on the surface
rformðu;vÞ. If it is possible to describe the value of the surface
rresðu;vÞ on the form surface without stretching and if no re-
entrant features appear on the residual surface, the parameters
can be computed with the definition of the ISO 25178-2. Form sur-
faces developable to a plane are all the surfaces where the Gaussian
curvature is null everywhere [6], such as cylinder, so it is possible to
transform this surface to a plane without stretching. When the form
surface cannot be described by a developable surface, such as a gen-
eral freeform surface, the local stretching must be taken into
account [10]. Let rform;i the partial derivative along the dimension
i, the parameters on the primary surface can be computed by
weighting the function values with the infinitesimal surface area

drform ¼ rform;uðu;vÞ � rform;vðu; vÞ
�� ��dudv : ð4Þ

The scenario in Eq. (3) is analysed first, after that a method to esti-
mate the areal parameters of a general surface is presented. Accord-
ing to the definition of the parameters in the ISO 25178-2, a
generalisation of the arithmetic mean of the absolute value of the
height can be computed as [19]

Sa ¼ 1
A

ZZ
Rform

rresðu;vÞj jdrform ð5Þ

where A ¼ RR
Rform

drform is the area of the form surface, the root mean

square height as
portion with undercut.
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Sq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
A

ZZ
Rform

r2resðu; vÞdrform

s
ð6Þ

the skewness as

Ssk ¼ 1

ASq3

ZZ
Rform

r3resðu;vÞdrform ð7Þ

the kurtosis as

Sku ¼ 1
ASq4

ZZ
Rform

r4resðu;vÞdrform ð8Þ

the root mean square gradient as

Sdq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
A

ZZ
Rform

J form G�1
form

� �T
$urresðu;vÞ

����
����
2

drform

vuut ð9Þ

where J form ¼ J formðu;vÞ is the Jacobian matrix of the form surface,

Gform ¼ JTformJ form and $urresðu;vÞ is the gradient of the residual
surface.

The developed interfacial area ratio can be computed as

Sdr ¼ 1
A

ZZ
Rform

ru � rvk k � rform;u � rform;v
�� ��drform ð10Þ

where

ruðu; vÞ ¼ rform;u þ rres;unform þ rresnform;u

rvðu;vÞ ¼ rform;v þ rres;v nform þ rresnform;v

where nformðu;vÞ is the normal vector of the form surface and

nform;u ¼ a11 rform;u þ a21 rform;v

nform;v ¼ a12 rform;u þ a22 rform;v

a11 ¼ f F � eG

EG� F2

a12 ¼ g F � f G

EG� F2

a21 ¼ eF � f E

EG� F2

a22 ¼ f F � g E

EG� F2

E; F and G are the coefficients of the first fundamental form and e; f
and g are the coefficients of the second fundamental form [6]

E ¼ rform;u � rform;u F ¼ rform;u � rform;v G ¼ rform;v � rform;v

e ¼ nform � rform;uu f ¼ nform � rform;uv g ¼ nform � rform;vv :

If the vector function rres is available the parameters could be com-
puted similarly to the flux integral [10]. The absolute value of the
height can be computed as

Sa ¼ 1
A

ZZ
Rform

rresðu;vÞ � nformðu;vÞ
�� ��drform ð11Þ

the root mean square height as

Sq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
A

ZZ
Rform

rresðu; vÞ � nformðu;vÞ
� �2 drform

s
ð12Þ

the skewness as

Ssk ¼ 1
ASq3

ZZ
Rform

rresðu;vÞ � nformðu; vÞ
� �3 drform ð13Þ

the kurtosis as

Sku ¼ 1

ASq4

ZZ
Rform

rresðu; vÞ � nformðu;vÞ
� �4 drform ð14Þ
the root mean square gradient as

Sdq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
A

ZZ
Rform

J form G�1
form

� �T
$u rresðu;vÞ � nformðu; vÞ

� �����
����
2

drform

vuut
ð15Þ

where

$u rres � nform
� � ¼ rres;u � nform þ rres � nform;u

rres;v � nform þ rres � nform;v

	 

:

If the unit normal of the form surface is not differentiable, an
approximation of the Sdq parameter could be

Sdq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
A

ZZ
Rform

J form G�1
form

� �T
Jresnformðu;vÞ

����
����
2

drform

vuut ð16Þ

where Jres ¼ Jresðu;vÞ is the jacobian matrix of the residual surface.
The developed interfacial area ratio can be computed as

Sdr ¼ 1
A

ZZ
Rform

ru � rvk k � rform;u � rform;v
�� ��drform ð17Þ

where

ruðu;vÞ ¼ rform;uðu; vÞ þ rres;uðu;vÞ
ruðu;vÞ ¼ rform;vðu;vÞ þ rres;vðu;vÞ:
In order to compute the areal parameters the surface must be
reconstructed first. In this work two reconstruction methods are
analysed: a parametric surface represented by the locally refined
B-spline and the triangular mesh. B-spline surface reconstruction
has been used in Harris et al. [12] to approximate discrete data
and to compare various software packages, while the triangular
mesh is the common representation in finite element analysis. In
the following sections the two methods are briefly introduced.

2.1. Surface reconstruction - LR B-spline

Since the reconstructed surface can be described by a triangular
mesh, in order to transform it to a parametric function it has to be
parameterised. Parametrisation of a mesh means attaching a coor-
dinate system [5]. The aim of the parametrisation is to describe the
points of the triangulated surface (xi) with a function x ¼ f ðu; vÞ,
where u and v are two abstract parameters. In the previous section,
it has been assumed that the parameters space is known, but when
with real data is used the parameter space must be constructed.
Stretch minimising approach proposed in Yoshizawa et al.
[25,24] is employed because it minimise the area distortion, it is
therefore a good candidate for the surface reconstruction. The
method has been implemented in OpenGI [20]. This parametrisa-
tion are used for all the surfaces illustrated in this paper.

The form surface is then estimated with a total least squares
(TLS) approach. Plane, cylinder, sphere and a complex surfaces will
be analysed to show that the proposed method does not depend on
a specific form surface. The differences between the point cloud
and the projections on the form surface are computed first. Both
the two point clouds, form and residuals, are then approximated
with the LR B-spline algorithm [9]. It is not possible to use the
same algorithm used in Harris et al. [12] because the interpolation
is possible only with samples available on a regular grid in the
parameter space. The locally refined algorithm iteratively parti-
tions the parameters domain adaptively, i.e. where the difference
between the reconstructed and the measured surface is greater
than a specified tolerance. The algorithm terminates when all the
differences between the approximated and the measured points
is below a threshold or when a maximum level of the refinements
is reached. A maximum value of 10 iterations and a threshold value
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of 0.01 were set in the approximation algorithm. During the
approximation stage all the values were coded between 0 and 1
to avoid the scale effect. The abstract parametrisation domain

was 0;1½ �2.
The areal parameters (Sa, Sq, Ssk, Sku, Std and Sdr) of the primary

surface can be computed as the integral of the residuals on the
form surface. Since both the involved surfaces, rform and rres, share
the parameters domain, the integration can be performed with a
numerical quadrature rule. The numerical integration is performed
with the h-cubature method implemented in Johnson [15]. This
method recursively partitions the integration domain into smaller
sub-domains, the quadrature rule is applied to each, until a conver-
gence criterion is reached.

2.2. Surface reconstruction - Triangular mesh

If the surface is approximated with a triangular mesh, the sur-
face integral of a function f ðb0; b1; b3Þ (in barycentric coordinates
system) can be computed as

Xntri�1

i¼0

Ai

Xnq�1

j¼0

f ijwj ð18Þ

where ntri is the number of the triangles in the mesh, Ai is the area of
the i-th triangle of the form surface, nq is the number of the quadra-
ture points, f ij is the value of the function in the i-th triangle at the j-
th quadrature point and wj is the quadrature weight. The area of
each triangle can be computed using the definition of the cross
product

Al ¼ ðv j � v iÞ � ðvk � v iÞ
2

where v i is the i-th vertex of the triangle, while surface area is the
sum of the triangles areas

A ¼
Xntri�1

i¼0

Ai:

Linear elements are used to approximate the integrals. The param-
eters are computed as a per vertex scalar field (see Fig. 2). Sa, Sq, Ssk
and Sku can be computed using Eq. (18). The quadrature points
depends on the degree of the function to integrate. The efficient
symmetrical Gaussian quadrature rule implemented in Shao [8] is
used. It allows the computation of the minimum number of quadra-
ture points to evaluate the integral on a triangular domain. The gra-
dient of the residual function on the l-th triangle can be computed
as [5]
Fig. 2. Linear function over triangular mesh.
$rresðbÞ ¼ ðrresðejÞ � rresðeiÞÞ v i � vkð Þ?
2Al

þ ðrresðekÞ � rresðeiÞÞ

� v j � v i
� �?

2Al
ð19Þ

where b ¼ b0; b1; b2ð ÞT is a vector of barycentric coordinates, ei is the
vector with one in the i-th entry and zeros otherwise and ? denotes
a counterclockwise rotation by p

2 in the triangle plane. The mean
square gradient can therefore be computed as

Sdq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
A

Xntri�1

i¼0
Ai $rresðiÞk k2

r
ð20Þ

where $rresðiÞ is the gradient on the i-th triangle. There is only one
quadrature point because the gradient is a constant function on
each element. The value of the parameter Sdr can be approximated
evaluating both the area of the measured or scale limited mesh and
the area of the form surface.
3. Experimental results

In this section the proposed method is evaluated both on mea-
sured and simulated surfaces. The computation of parameters with
the proposed method is first compared with the ISO method imple-
mented in SurfStand v6.0 [23]. Four validation surfaces available in
SurfStand are first analysed. The heights of the surfaces can be
described as a function of two coordinates (z ¼ f ðx; yÞ).

The rest of this section focuses on the evaluation result of two
measured surfaces: a casting sample (Rubert & Co. Ltd, UK) with
nominal Ra of 25 lm and an AM component. The casting sample
was measured both with a Focus Variation (FV) instrument (Ali-
cona InfiniteFocus G4g [7]) and with a CT device (Nikon XT H
225 microfocus CT). The FV dataset presents an equally spaced
sampling, the resulting mesh is isotropic (all the elements have
similar area). It is used to evaluate the agreement of the proposed
method with the ISO 25178-2 definition. Two simulated data sets
are then constructed adding the residuals to a developable (cylin-
der) and a non developable (sphere) surfaces. The effect of the dis-
tortion during the unwrapping stage is discussed. CT sets of data
for the casting sample and the AM component are analysed to
investigate the effect of an unequally spacing of the points on
the computation of the parameters. Finally, in order to prove that
the proposed method does not depend on the form surface, a sim-
ulated complex surface is investigated. The following methods are
analysed:

� SurfStand: it represents the parameters computed with the
SurfStand software.

� LR B-spline SL: it represents the parameters computed with the
scale limited (primary) surface, according to the ISO 25178-2
definition, approximating the surface with the LR B-spline
algorithm.

� Mesh: it represents the parameters computed with the pro-
posed method using the triangular mesh approximation.

� LR B-spline 1D: it represents the parameters computed with the
proposed method based on the scalar field (Eqs. (5)–(10)),
approximating the surfaces with the LR B-spline algorithm.

� LR B-spline 3D: it represents the parameters computed with the
proposed method based on the vector field (Eqs. (11)–(17)),
approximating the surfaces with the LR B-spline algorithm.

� Discrete: it represents the approximation of the surface texture
parameters with a meshfree method.
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3.1. Validation surfaces

In this section four surfaces are analysed to evaluate the perfor-
mances of the proposed methods. As shown in Fig. 3, each surface
has its own characteristics. The first surface presents two grooves
along a direction, the second one has some regularly located peaks,
the third one has some plateaus and the forth one is a typical ran-
dom surface.

Each surface is levelled with a least squares plane in SurfStand
and the primary surface analysed. Tables 1–4 show the computed
values of the parameters. The discrepancies between the height
parameters (Sa, Sq, Ssk and Sku) are negligible. The maximum dif-
ferences is the estimation of Sq (2%) for the skin_1 surface, and is
probably due to the limited amount of points of the surface com-
pared to the other test cases. The method based on the triangular
mesh tend to overestimate the value of the Sdq parameter. Sdr esti-
mations agree between all the tested methods except for the
stain_steel surface. The biggest difference is equal to 9.22%
between SurfStand (28.15%) and LR B-spline 1D (18.93%). The dif-
ference is due to an approximation of the computation method
implemented in SurfStand [2]. It should be noted that values based
on the LR B-spline algorithm have slightly lower Sdr values, this is
an effect of the smoothing during the surface approximation stage.
Fig. 3. Demo surfaces
3.2. Rubert casting sample: FV reconstruction

A Casting sample with nominal Ra of 25 lmwas measured with
the Alicona InfiniteFocus G4g. The form surface was approximated
with the total least square plane, that corresponds to the first two
scores of the principal component analysis (PCA) of the point cloud
covariance matrix. Fig. 4 shows a portion of the measured mesh of
the sample (grey) and the estimated form surface (blue). Since no
undercuts were present in the FV mesh, it is also possible to
approximate the scores of the PCA with the LR B-spline method.
In Table 5 the parameters computed according to the ISO 25178-
2 and with the proposed methods are reported. Since the scores
of the PCA are not located on a regular rectangular grid, it was
not possible to use SurfStand. The discrete method was used to
compute Sa, Sq, Ssk and Sku. There is no difference between the dis-
crete, LR B-spline SL and mesh methods in the estimation of the
parameters. The discrepancies of the proposed methods are bigger
due to the surface approximation, but since the maximum percent-
age error is 0.6% the differences are negligible.

The above procedure was applied to the whole set of data of the
measured casting sample (see Fig. 5). The evaluation of the param-
eters was applied to a bigger point cloud to check the robustness of
the approximation. Table 6 shows the parameters computed on the
(values in lm).



Table 1
Areal parameters disc_fr.

Sa (lm) Sq (lm) Ssk Sku Sdq Sdr (%)

SurfStand 55.20 69.81 �0.38 2.78 0.22 2.56
LR B-spline SL 55.00 69.63 �0.40 2.79 0.22 2.25
Mesh 55.03 69.66 �0.40 2.79 0.35 2.51
LR B-spline 1D res 54.89 69.49 �0.40 2.80 0.21 2.15
LR B-spline 3D res 54.86 69.46 �0.40 2.80 0.21 2.05

Table 2
Areal parameters skin_1.

Sa (lm) Sq (lm) Ssk Sku Sdq Sdr (%)

SurfStand 66.79 83.20 0.35 2.81 0.40 7.91
LR B-spline SL 65.81 81.67 0.26 2.74 0.41 7.50
Mesh 65.87 81.80 0.26 2.79 0.71 7.51
LR B-spline 1D res 65.67 81.47 0.27 2.74 0.39 6.91
LR B-spline 3D res 65.65 81.46 0.27 2.74 0.39 7.23

Table 3
Areal parameters stain_steel.

Sa (lm) Sq (lm) Ssk Sku Sdq Sdr (%)

SurfStand 0.174 0.210 �0.85 2.93 0.81 28.15
LR B-spline SL 0.174 0.210 �0.86 2.94 0.80 22.52
Mesh 0.174 0.210 �0.85 2.94 1.26 23.90
LR B-spline 1D res 0.173 0.209 �0.86 2.91 0.69 18.93
LR B-spline 3D res 0.173 0.209 �0.87 2.91 0.68 21.52

Table 4
Areal parameters sur.

Sa (lm) Sq (lm) Ssk Sku Sdq Sdr (%)

SurfStand 1.23 1.63 �0.71 6.26 0.17 2.00
LR B-spline SL 1.21 1.60 �0.72 6.30 0.20 1.92
Mesh 1.23 1.63 �0.71 6.23 0.31 1.96
LR B-spline 1D res 1.22 1.61 �0.76 6.42 0.20 1.90
LR B-spline 3D res 1.21 1.61 �0.76 6.43 0.19 1.70

Fig. 4. Subset of the reconstructed mesh of the nominal Ra 25 lm plate (values in
mm). Fig. 5. Reconstructed mesh of the nominal Ra 25 lm plate (values in mm).
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primary surface. As for the previous scenario the parameters esti-
mated with all the analysed models obtain similar results.
3.3. Primary surface on cylinder

To check the stability of the proposed method a data set with a
cylindrical form was analysed. The scores of the PCA of the previ-
Table 5
Areal parameters FV data subset.

Sa (lm) Sq (lm)

Discrete 27.04 34.21
LR B-spline SL 27.05 34.22
Mesh 27.03 34.20
LR B-spline 1D res 26.91 34.03
LR B-spline 3D res 26.91 34.03
ous test case were approximated with the MBA algorithm [16] to
predict the points on a regular grid. The LR B-spline algorithm
was not applied in order to investigate the robustness of the recon-
struction method. The approximate points on a regular grid of
985 � 799 were then added, along the normal direction, to a por-
tion of a cylinder. The angle of the cylinder ranges from �p to 0,
while the radius was computed as
Ssk Sku Sdq Sdr (%)

�0.33 2.93 – –
�0.33 2.93 0.29 4.27
�0.33 2.93 0.57 4.28
�0.31 2.93 0.29 3.99
�0.31 2.93 0.29 4.16



Table 6
Areal parameters FV data.

Sa (lm) Sq (lm) Ssk Sku Sdq Sdr (%)

Discrete 31.67 40.67 �0.45 3.52 – –
LR B-spline SL 31.66 40.65 �0.45 3.52 0.30 4.21
Mesh 31.66 40.66 �0.45 3.52 0.60 4.64
LR B-spline 1D res 31.60 40.54 �0.42 3.50 0.29 3.98
LR B-spline 3D res 31.61 40.54 �0.42 3.50 0.29 4.28
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q ¼ Dy
Dh
where Dy is the resolution of the coordinate in radial direction and
Dh is the angle resolution. With this radius the distances on the
cylinder coincide with the distances on the plane. Fig. 6 shows
the simulated mesh and the computed mesh parametrisation is
shown in Fig. 7. The primary dataset is split between the y and z
coordinates. It is not possible to see clusters of points, illustrative
of the goodness of the parametrisation.

The surfaces were reconstructed with the method described in
the previous section. The computed parameters are reported in
Table 7. From the table it is possible to observe that the proposed
method can achieve good performance also when the form surface
is a developable surface.

In order to check the robustness of the procedure when the
nominal form is not a plane, the full FV point cloud was added to
the half cylinder shape. Table 8 shows the computed height param-
eters. The differences are similar to the values of Table 7, illustra-
Fig. 6. Texture on a cylindrical shape (values in mm).

Fig. 7. Mesh parametrisa
tive of the robustness of the proposed method respect to the
mesh sample size.

3.4. Primary surface on a sphere

In this section the data set of the previous section was added to
a portion of a sphere to evaluate the performances on a non devel-
opable surface. Fig. 8 shows the simulate measured surface and the
unwrapped one. The unwrapped coordinates are computed as

x ¼ q sin/

y ¼ q cos h

�

where q, set to 1, is the radius, h is the longitude and / is the colat-
itude. Since it is not possible to unwrap a sphere without distortions
the length on a curve parallel to the equator, especially near the
pole, has a strong stretching. The estimated parameters are shown
in Table 9. It is possible to observe that, since the residual are non
structured on the surface, the differences between the parameters
is negligible. To understand the effect of the stretching the values
of the areas of the form and the measured surfaces are reported
in Table 10. The difference of the ISO method, compared to the tri-
angular mesh, is 50.99% and 48.09%, respectively, for the form and
the measured surface. It is therefore possible to conclude that the
small difference in the parameter Sdr is due to a compensation of
errors.

3.5. Rubert casting sample: CT reconstruction

The casting sample with a nominal Ra of 25 lm was acquired
also using a Nikon XT H 225 microfocus CT. Nikon CT-Pro software
[18] was used to perform the volume reconstruction. CT voxel size
for all coordinates was 12.9 lm (x; y; z). Mesh reconstruction was
performed by an adaptive algorithm implemented in CGAL
[4,21]. This algorithm allows the reconstruction of an implicit sur-
face with the desired approximation; the maximum allowable
tion (values in mm).



Table 7
Areal parameters FV data subset on cylindrical shape.

Sa (lm) Sq (lm) Ssk Sku Sdq Sdr (%)

Unwrapped discrete 27.03 34.19 �0.33 2.93 – –
Wrapped LR B-spline SL 27.01 34.18 �0.33 2.93 0.27 3.49
Unwrapped mesh 27.01 34.17 �0.33 2.93 0.47 3.49
Unwrapped LR B-spline 1D res 26.94 34.06 �0.32 2.93 0.26 3.34
Unwrapped LR B-spline 3D res 26.88 34.00 �0.32 2.93 0.26 3.43

Table 8
Areal parameters FV data on cylindrical shape.

Sa (lm) Sq (lm) Ssk Sku Sdq Sdr (%)

Unwrapped discrete 31.31 40.26 �0.48 3.57 – –
Wrapped LR B-spline SL 31.30 40.26 �0.48 3.58 0.24 2.81
Unwrapped mesh 31.31 40.26 �0.48 3.58 0.42 2.81
Unwrapped LR B-spline 1D res 31.19 40.07 �0.46 3.55 0.24 2.72
Unwrapped LR B-spline 3D res 31.11 39.98 �0.47 3.56 0.23 2.73

Fig. 8. Texture on a non developable surface (values in mm).

Table 9
Areal FV data subset on a spherical shape.

Sa (lm) Sq (lm) Ssk Sku Sdq Sdr (%)

Unwrapped discrete 27.03 34.19 �0.33 2.93 – –
Wrapped LR B-spline SL 27.01 34.18 �0.33 2.93 0.67 17.69
Unwrapped mesh 27.97 35.23 �0.36 2.98 1.07 20.09
Unwrapped LR B-spline 1D res 27.50 34.53 �0.30 2.85 0.67 18.93
Unwrapped LR B-spline 3D res 27.45 34.44 �0.29 2.84 0.66 19.66

Table 10
Area spherical shape.

AF (mm2) DAF (%) AP (mm2) DAP (%)

Wrapped LR B-spline SL 7.10 50.99 8.36 48.09
Unwrapped mesh 4.70 – 5.65 –
Unwrapped LR B-spline 1D res 4.70 < 0.01 5.59 �0.96
Unwrapped LR B-spline 3D res 4.70 < 0.01 5.63 �0.37
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error was set to 5 lm, almost 1
3 of the voxel size. The output mesh is

a manifold mesh, so no post processing is needed in order to com-
pute the parametrisation. It should be noted that the mesh recon-
structed with the marching cube algorithm [17] may have some
non manifold vertices or edges. Fig. 9 shows the reconstructed
mesh (grey) and the estimated form surface (blue). Two datasets
are analysed, the small one is a subset of the other. These sets of
data correspond to the meshes analysed in Section 3.2.

Considering the adaptive meshing applied the spacing of the
points is not constant, this can lead to a biased estimation of the
height parameters with the discrete method. Since the surface
may present some undercuts, it is not possible to approximate
the surface of the scores of the PCA and the Sdq parameters of



Fig. 9. Reconstructed mesh of nominal 25 lm Rubert plate, CT reconstruction (values in mm).
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the 3D residual must be computed using Eq. (16). It should also be
noted that the discrete method is not compliant with the ISO
25178-2 because it is not an approximation of integrals described
in the standard. The values will be computed to evaluate the bias.
After applying the parametrisation and the reconstruction the areal
parameters were computed. Tables 11 and 12 show the parameters
of the datasets. The difference between discrete and the other
methods increase compared to the previous test case. This is the
effect of the unevenly spaced points and the re-entrant features.

3.6. AM component: CT reconstruction

An additive manufactured component measured and the sur-
face was reconstructed with the algorithm mentioned above. The
CT voxel resolution was 17.5 lm in all x; y and z directions. The
Table 11
Areal parameters CT data subset.

Sa (lm) Sq (lm)

Discrete 30.26 38.58
Mesh 31.80 40.22
LR B-spline 1D res 31.62 39.98
LR B-spline 3D res 31.62 39.94

Table 12
Areal parameters CT data.

Sa (lm) Sq (lm)

Discrete 35.22 44.59
Mesh 36.70 46.51
LR B-spline 1D res 36.35 46.03
LR B-spline 3D res 36.37 46.05

Fig. 10. Reconstructed mesh and a magnificat
threshold was selected according to the ISO 50 method imple-
mented in VGStudio Max software [11]. The analysed surface along
with a magnification, where is possible to observe a reconstructed
undercuts, these are shown in Fig. 10. The reconstructed surface
was again parametrised and approximated with the LR B-spline
approximation.

The computed parameters are reported in Table 13. Sa and Sq
parameters computed with the discrete approximation are biased,
while the differences between Ssk and Sku are negligible. The abso-
lute value of the difference is comparable to the previous test case.
But, since the estimation are smaller, the percentage differences
correspond to 8.20% and 6.73% for Sa and Sq. These discrepancies
should be taken into account because the values are computed
on the same set of data.
Ssk Sku Sdq Sdr (%)

0.02 3.01 – –
�0.52 2.82 0.60 9.60
�0.51 2.83 0.45 9.12
�0.51 2.83 0.45 9.53

Ssk Sku Sdq Sdr (%)

�0.21 3.19 – –
�0.64 3.22 0.60 9.09
�0.61 3.24 0.39 7.11
�0.61 3.24 0.40 8.06

ion showing an undercut (values in mm).



Table 13
Areal parameters AM part.

Sa (lm) Sq (lm) Ssk Sku Sdq Sdr (%)

Discrete 16.37 20.61 �0.41 3.43 – –
Mesh 14.57 19.31 �0.25 3.49 0.62 9.92
LR B-spline 1D res 15.07 19.09 �0.31 3.66 0.48 9.21
LR B-spline 3D res 15.13 19.15 �0.31 3.65 0.48 10.13
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3.7. Complex surface

In this section a complex form surface is tested. The aim of this
section is to show that with the proposed method it is possible to
analyse the surface texture on a freeform surface. The surface of a
turbocharger was reconstructed with the CT device (the voxel size
Fig. 11. Reconstructed and analy
was 57.23 lm for x; y and z). A maximum allowable distance of
5 lm was set and the reconstructed surface is shown in Fig. 11a.
A blade was manually segmented after the mesh reconstruction
(blue mesh in Fig. 11a and mesh in Fig. 11b). After the parametri-
sation of the form surface the primary dataset of the casting sam-
ple data from CT reconstruction has been added to the form
sed surfaces (values in mm).



Table 14
Areal parameters turbocharger.

Sa (lm) Sq (lm) Ssk Sku Sdq Sdr (%)

Discrete 35.43 45.17 �0.64 3.41 – –
Mesh 34.39 44.69 �0.63 3.34 0.31 1.14
LR B-spline 1D res 35.02 44.59 �0.64 3.35 0.21 1.56
LR B-spline 3D res 34.95 44.50 �0.64 3.37 0.21 1.21
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surface. Fig. 11c and d shows the residual and the simulated
meshes. During the parametrisation there are some distortions
both on the left and right corners. Table 14 reports the computed
parameters. In this test case it is possible to observe that the differ-
ences between the parameters are negligible. The goodness of the
discrete method can be explained with the low value of the Sdr
parameter and the isotropy of the reconstructed mesh. It should
be noted that there is no other method to compute the Sdq and
Sdr parameters.
4. Conclusion

A method to compute the height and hybrid parameters of areal
surface texture for freeform surfaces has been proposed based on
two types of surface reconstruction: LR B-spline and triangular
mesh. The proposed approach has been compared first with the
definition of the areal parameters described in the ISO 25178-2.
The six test sets have been carried out on reconstructed irregular
meshes from plane, cylinder, sphere and a complex surface. The
test results show a good approximation to the ISO definitions. It
also indicates that the Sa and Sq parameters computed with the
discrete method are biased, while the difference between LR B-
spline and triangular mesh is negligible.

Future work involves development of the generalisation of the
definitions of other areal parameters if the analysed surface is com-
plex or presents undercuts. The concept of scale-limited surface for
complex surface has also to be defined and investigated. All the
computed values in this paper are based on the primary surface,
this is due to the fact that the S filter, L filter and F operator defined
in the ISO standards are based on a planar surface. Therefore revis-
ing the set of filters based on irregular meshes is also part of the
future work.
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