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Automated error analysis of serial manipulators and

servo heads

J M Freeman® and D G Ford

The Ultra Precision Engineering Centre, University of Huddersfield, UK

Abstract: This paper presents a general mathematical treatment of serial manipulators, an
important example of which is the servo head. The paper includes validation by application to the
angle head via comparison with the previously known transformations and a new application to the
error analysis of the angle head.

The usual approach to the error analysis of a servo head is to develop a geometrical model by
elementary geometrical considerations using trigonometric relationships and various simplifying
assumptions. This approach is very error prone, difficult to verify and extremely time consuming. The
techniques described here constitute matrix methods that have been programmed in a general way to
derive automatically the analytical equations relating the angles of rotation of the head and alignment
errors in the head to the position of the tool and errors in that position. The approach is to use
rotation and transformation matrices to evaluate the influence of the various errors such as offsets
and angular errors. A general approach to the sign convention and notation for angular errors is

presented in an attempt to reduce the possibility of errors of definition.

Keywords: servo head, geometric errors, error analysis, error compensation

NOTATION

A front axis

Ap,and C, angles of rotation about axes A and C

C rear axis

N total number of transformations to be
performed

q arrray of structures defining the variables

" transformation representing rotation by A

degrees about axis x

T(x',y,z') transformation representing translation
by x’, ¥' and 7’ along axes x, y and z

X vector of Cartesian coordinates x, y and z

Xx° initial X vector

Y, fixed angle between the A and C axes

Y general transformation matrix which may

be a rotation or a translation
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1 INTRODUCTION

A machine tool requires accurate orientation and
positioning of a cutter in three-dimensional space,
whereas a measuring machine requires accurate know-
ledge of only the position of its probe tip. Thus the
essential difference between measurement machines and
machine tools is that any errors due to the tilt of a
measurement sensor can be compensated for in soft-
ware, whereas the tilt of a cutting tool requires to be
within tolerance, no software corrections being possible.
Thus it is necessary in cutting machines to apply
geometrical compensation in real time [1-3] in order to
ensure accurately machined components. This can be
achieved by introducing corrections into the feedback to
the controller [1,2]. The volumetric accuracy of the
machine can be simulated off-line using an error
simulation package [4].

In principle the location of a sensor or a cutter head
exhibits six degrees of freedom. These may be specified
in various ways, the usual constituting the x, y and z
Cartesian coordinates of the head and the angular
rotations of the components of the head about the
various rotational axes of the head. The physical
arrangement of these axes depends on the detailed
nominal design of the head. It is impossible to
manufacture heads to the exact nominal design and
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even small offsets of a few micrometres or angular errors
of a few arcseconds in the alignment of the various
components of the head would produce significant
positioning and orientation errors of the tool tip. Thus
it is essential to measure the true geometry of the head
and to apply compensation in real time to correct for the
small errors from the nominal design.

The usual approach to the error analysis of such a
servo head is to develop a geometrical model by
elementary geometrical considerations using trigono-
metric relationships and various simplifying assump-
tions [5]. This approach is very error prone, difficult to
verify and extremely time consuming. The results of
such an analysis [5,6] are available for a fork head,
which is considerably simpler than the angle head of
interest here.

The techniques described in this paper constitute
matrix transformation methods [3] that have been
programmed in a general way to derive automatically
the analytical equations relating the angles of rotation of
the head and alignment errors in the head to the position
of the tool and errors in that position. The approach is
to use rotations and translations to evaluate the
influence of the various errors such as angular errors
and offsets in the components of the head. A general
representation of the problem is possible and the
problem for the user is reduced to defining the com-
ponents of error and the order in which the rotations
and translations should be applied. A general approach
to the notation and sign convention for angular errors is
presented in an attempt to reduce the possibility of
errors of definition.

2 A REVISED NOTATION FOR ANGULAR
ERRORS

The normal procedure is to define angles by mechanical
terms such as yaw, pitch, roll, squareness to spindle,
squareness to vertical, etc. [5,6]. The signs of these
angles must be specified by reference to diagrams. This is
potentially confusing and leads to possible ambiguity.
The approach here is to use a purely mathematical
definition of angles. Thus an angle of rotation R} is
defined by reference to its axis of rotation x and its size
A. The sign of the angle is defined as positive in an
anticlockwise direction looking up the axis. Since matrix
rotations can only be performed around axes passing
through the origin, it is sometimes necessary to perform
translations to ensure that this condition is satisfied
before a rotation is attempted. If necessary, the
translation can be reversed afterwards. A translation
or offset is defined simply as the corresponding
displacements along the three Cartesian axes
Tx,y,z = (x,y,z).

Proc. Instn Mech. Engrs Vol. 217 Part C: J. Mechanical Engineering Science

3 MATHEMATICAL ANALYSIS

For the purpose of illustration of the method, assume
that it is required to analyse a head with a tool of length
G in a spindle having two main angles of rotation A,
and Cj, about axes A and C, the front and rear axes. The
terms ‘front' and ‘Tear' are intended to be used as a
generic description for heads of this type, describing the
relationship between the axes. The front axis is carried
by the back axis in order to orient the cutter in any
desired direction. Any additional axes in a more
complex system should be similarly ordered from front
to back. This arrangement has many possible errors,
including offsets and various angular errors of align-
ment of the various axes.

3.1 The basic transformations for the angle head

The angle head is used on some five axis machines to
enable flexible orientation of the tool tip. It has two
rotational axes and is illustrated in Fig. 1. The angle C,,
defines the rotation of the head about the C axis, which
is along the z axis in the figure. The A axis is at an
arbitrary angle Y, to the C axis and a rotation A, about
axis A allows the tool tip to be oriented in most desired
directions (depending on the actual value of Y ). If Y, is
50° then the head can sweep through a total of 190°.
During normal operation the orientation of the head is
controlled by the computer numerically controlled
(CNC) controller and is transparent to the programmer.
However, if there are errors in the construction of the
head from its nominal design, these will cause errors in
the tool tip position which must be analysed and
compensated for.

The first requirement is to analyse the relationship
between the angles A, and C, and the Cartesian
coordinates of the tool tip. This has already been
investigated and the analytical solution obtained by
geometrical methods is available [7]. Here description is
confined to the new approach. The definition of angle
C, is positive in a clockwise direction in Fig. 1, this
being retained for ease of comparison with the analytical
solution.

The procedure involves assuming that the tool is
initially in an easily defined configuration; then rotations
about axes A and C are performed to bring the tool into
its actual position. A slight complication arises because
the C axis does not pass through the origin and the A
axis is not in line with any of the Cartesian axes. Hence
translations and additional rotations must accompany
the rotations by angles A, and Cj, to ensure that they are
executed correctly.

Assume that the origin is at the intersection of the A
axis and the axis of the spindle and that the angles A and
C are both zero. This can be achieved by a translation G,
the length of the spindle, along the z axis. The tool is

C13302 © IMechE 2003
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Angle Head

X

Origin

Fig. 1 Basic configuration of the angle-type servo head

then in the position (0,0, — G), as in Fig. 1. Let the angle
Y, generalize the fixed tilt for the head in Fig. 1. If the
spindle is now rotated clockwise about the x axis by an
angle Y, (or —Y,in the anticlockwise direction, which is
defined as positive) the axis A then lies along the z axis.
The spindle can then be rotated by angle A, about the z
axis as shown in Fig. 2. The rotation by Y, should now
be reversed to bring the A axis back to its original
position, leaving the tool tip effectively rotated by A,
about the A axis (see Fig. 2). This requires a rotation Y,
anticlockwise about the x axis. Before the rotation
about C can be performed, the assembly requires shift-
ing so that the C axis passes through the origin. This can
be achieved by a translation of (0, —e, —e/tan Y),
placing the origin at the intersection of the A and C axes.
The rotation by angle C, can then be implemented as a
rotation — Cp, about the z axis. It is important to realize
that the front rotation by A, must be executed before
the back rotation Cj,. The effect on the angle head of all
these transformations is shown in Fig. 2 to illustrate the
method.

The result of the above rotations and translations is
that the tool tip is moved from its initial position
corresponding to A =0 and C =0 to its actual position
for any given angles A, and C,,. This assumes that there
are no errors in the assembly. Obviously, the result
would normally be numerical if performed on a
computer using numerical matrix multiplication and
addition routines.

The mathematical representation of the above proce-
dure can be concisely represented by

X =R T c—c/unv, Ry R} Ry To0,-6)X"

where X is chosen to represent the origin and the
transformations are executed from the right by repeated
application of succeeding transformations to X °. The
result vector X contains the Cartesian coordinates of the
tool tip, taking the intersection of the A and C axes as

C13302 © IMechE 2003

the origin. If required, a translation can be performed to
return the origin to its original position at the tool tip.

3.2 The error analysis for the angle head

The procedure is similar to that used for the basic
transformation, but all the sources of error must be
included as transformations. The first step, as before, is
to fix the tool along the z axis. The spindle can be out of
alignment with the tool, having possible angular errors
about the x and y axes only. One of these, the one about
X, can be incorporated into errors in Y, A rotation
ThetaAg, as defined in Table 1, can be performed about
y to bring the spindle in line with the z axis, thus
displacing the tool tip to a new position that includes
the effect of the angular error.

The next step is to apply a translation to bring the
main rotational axis A so that it passes through the
origin. This involves the offset between A and the spindle
in the y direction. This must be followed by the rotation
by — Y, about the x axis to bring the A axis nominally
along the z axis as before, followed by a rotation by
the error in Y ,, dY. Then, since the A axis may be out
of alignment with the yz plane, a rotation ThetaA,,
will be necessary to bring the A axis exactly along the
z axis. Then a rotation about A can be performed.

The procedure continues until all angular errors and
both main rotational angles A, and C, have been
accounted for. It is here assumed that all the errors are
small and therefore any interactions between the
rotations and translations can be ignored as second-
order effects. The result is that the transformed tool tip
will then be in its actual position, accounting for the
angular rotations and all the errors but ignoring second-
order effects.

Table 1 gives a complete definition of all the possible
variables and errors in the angle head and a description of
the meaning of the notation as well as an indication of
which variables represent small errors and which are large

Proc. Instn Mech. Engrs Vol. 217 Part C: J. Mechanical Engineering Science
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A axis

A axis

z

T(0,-e,-e/tanAp)
| e—

T(0,0,-G)
 ———
A axis
X
R
X Yy ~p
! I \ A axis z

Fig. 2 The basic transformations on the angle head

quantities. Also indicated is the sign, which will be
negativeifitisdefined in a clockwise direction to maintain
consistency with previous work. The complete mathe-
matical representation of the transformations required
to perform the error analysis using all the variables in
Table 1 assuming that X © represents the origin is

— Rt y z
X = RThetanRThetaChR—CpT(O, —e,—e/tanY)
x 4 y X x
XT(oc,,0c,,0)Ry, Ry Rypan, Ry Ry,

X T0,0,,.0R reas. Ti0.0.-6)X

Proc. Instn Mech. Engrs Vol. 217 Part C: J. Mechanical Engineering Science

4 ALGEBRAIC REPRESENTATION OF THE
PROCESS

The derivation above gives numerical results if imple-
mented directly on a digital computer. However, what is
required is an algebraic representation of the position of
the tool tip and algebraic matrix translations and
rotations. This requires matrix multiplication and
addition routines utilizing techniques of algebraic
representation via specialized encoding methods. The
general form of the process is discussed by Chen and

C13302 (@© IMechE 2003
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Table 1 Definition of variables in the angle head

Variable name  Size Sign  Definition

1 Large Constant =1

G Large Spindle length

Y, Large +ve  Fixed angle between the A and C axes
A, Large +ve  Angular rotation A front axis

E Large Displacement between the C and A axes with A =0 and C=0
Cp Large —ve  Angular rotation Cp,: back axis
ThetaA ¢ Small —ve  Angle between A and spindle S

Oa, Small Offset A to S

ThetaA ,, Small +ve  Angle between A and the yz plane
DY Small Error in angle Y,

Oc, Small Offset of C in the x direction

Oc, Small Offset of C in the y direction

ThetaCy, Small +ve  Angle between C and the xz plane
ThetaC,, Small +ve  Angle between C and the yz plane

Geddam [3] and can be represented by
N-1
x=(]J[w)x°
i=0

where vector X © represents the Cartesian coordinates of
the tool tip before any transformations are performed
and vector X represents the Cartesian coordinates of the
tool tip in its final position. For simplicity, each of the N
transformations ¥; is considered to represent either a
rotation or translation, rather than the usual combina-
tion of the two, depending on whether the error i is
angular or is an offset.

It is necessary to develop a coding system to define
algebraically the X and X © vectors and the transforma-
tion matrices V. In the type of problem of interest there
are a limited number of possible elements that can occur
in X and W. These are either constants, angles, the sines
or cosines of angles or simple offsets, so it is feasible to
define a set of these variables in an array of structures
qli], where i is the variable number, which is sufficient
to construct X and ¥ by coded reference to ¢. The
elements of the structures ¢ are the actual names of the
variables and an indication of the size of the variable, as
found in Table 1, indicating whether it represents a
main variable or a small error. The latter is used to aid
simplification of the algebra by removing user-specified
higher products of small quantities and replacing
trigonometric relationships by first-order approxima-
tions. The matrix operations cause many additional
algebraic terms to be generated at every step, So
algebraic simplification is necessary, this being achieved
by searching for trigonometric simplifications and any
zero multipliers.

The required formulae can be obtained by interpret-
ing the final vector X in an algebraic form. Also, it is
possible to interpret the names contained in vector ¢ in a
form suitable for inclusion as declarations in other
software. This reduces the likelihood of errors and

C13302 © IMechE 2003

speeds up the process of writing software using the
formulae.

Table 2 gives the formulae generated by the software
for the angle head in a form suitable for inclusion in a
high-level language program. The results are quoted for
the direct transformation with no errors included,
represented by the formulae for X, ¥ and Z and for
the inclusion of first-order error terms only represented
by DX, DY and DZ. Thus X gives the x position of the
tool tip and DX gives the error in the x position at the
tool tip to a first-order approximation, etc.

4.1 Validation of the direct transformation

The software to derive the direct transformation was
first successfully validated against the fork head, for
which a manual analytical solution is available [S]. The
formulae for the direct transformation of the angle head
with no errors have been compared with a previous
analysis [7], the equations of which are not of exactly the
same form, by computing x, y and z for various typical
A and C values. The assumed values for G, e and Y were
20mm, 10mm and 50° respectively. The results are
quoted in Table 3, where the origin for the computer-
generated results has been shifted to correspond to that
previously assumed. The equivalence of the two sets of
formulae is evident.

4.2 The transformation with errors included

The software to derive the first-order error equations
was first successfully validated against the fork head,
for which a manual analytical solution is available [5].
No previous results are available for the error analysis
of the angle head for comparison with the present
results since the equations are too laborious to derive
manually. To visualize the implications of the formulae

Proc. Instn Mech. Engrs Vol. 217 Part C: J. Mechanical Engineering Science
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Table 2 The computer-generated analytical equations for the angle head

X = G*sin(Yp)*sin(Ap)*cos(Cp)
-G*sin(Yp)*cos(Ap)*cos(Yp)*sin(Cp)
+G*cos(Yp)*sin(Yp)*sin(Cp)

+e*sin(Cp);

Y = G*sin(Yp)*sin(Ap)*sin(Cp)
+G*sin(Yp)*cos(Ap)*cos(Yp)*cos(Cp)
-G*cos(Yp)*sin(Yp)*cos(Cp)

-e*cos(Cp);

Z = -G*sin(Yp)*cos(Ap)*sin(Yp)
-G*cos(Yp)*cos(Yp)

-e/tan(Yp);

DX = G*ThetaAs*cos(Ap)*cos(Cp) ~G*cos(Yp)* ThetaAv*cos(Ap)*cos(Cp) +Oas*cos(Yp)*sin(Ap)*cos(Cp)
-G*cos(Yp)*DY*sin(Ap)*cos(Cp) +Ocx*cos(Cp) +G*ThetaAs*sin(Ap)*cos(Yp)*sin(Cp)
-G*cos(Yp)*ThetaAv*sin(Ap)*cos(Yp)*sin(Cp) -Oas*cos(Yp)*cos(Ap)*cos(Yp)*sin(Cp)
+G*cos(Yp)* DY *cos(Ap)*cos(Yp)*sin(Cp) +G*sin(Yp)*DY *sin(Yp)*sin(Cp) -Oas*sin(Yp)*sin(Yp)*sin(Cp)

-Ocy*sin(Cp) -G*sin(Yp)*cos(Ap)*sin(Yp)* ThetaCh -G*cos(Yp)*cos(Yp)* ThetaCh -e/tan(Yp)* ThetaCh;

DY = G*ThetaAs*cos(Ap)*sin(Cp) -G*cos(Yp)*ThetaAv*cos(Ap)*sin(Cp) +Oas*cos(Yp)*sin{Ap)*sin(Cp)
-G*cos(Yp)*DY *sin(Ap)*sin(Cp) +Ocx*sin(Cp) -G* ThetaAs*sin(Ap)*cos(Yp)*cos(Cp)

+G*cos(Yp)* ThetaAv*sin(Ap)*cos(Yp)*cos(Cp) +Oas*cos(Yp)*cos(Ap)*cos(Yp)*cos(Cp)
-G*cos(Yp)*DY*cos(Ap)*cos(Yp)*cos(Cp) -G*sin(Yp)*DY *sin(Yp)*cos(Cp) +Oas*sin(Yp)*sin(Yp)*cos(Cp)

+0cy*cos(Cp) -G*sin(Yp)*cos(Ap)*sin(Yp)* ThetaCv -G*cos(Yp)*cos(Yp)* ThetaCv -e/tan(Yp)* ThetaCv;

DZ = -G*sin(Yp)*sin{Ap)*sin(Cp)* ThetaCv -G*sin(Yp)*cos(Ap)*cos(Yp)*cos(Cp)* ThetaCv
+G*cos(Yp)*sin(Yp)*cos(Cp)* ThetaCv +e*cos(Cp)* ThetaCv -G*sin(Yp)*sin(Ap)*cos(Cp)*ThetaCh

+G*sin(Yp)*cos(Ap)*cos(Yp)*sin(Cp)* ThetaCh -G*cos(Yp)*sin(Yp)*sin(Cp)* ThetaCh -e*sin(Cp)*ThetaCh
+G* ThetaAs*sin(Ap)*sin(Yp) -G*cos(Yp)* ThetaAv*sin(Ap)*sin(Yp) -Oas*cos(Yp)*cos(Ap)*sin(Yp)

+G*cos(Yp)*DY*cos(Ap)*sin(Yp) -G*sin(Yp)*DY*cos(Yp);

Table 3 Numerical comparison of analytical and computer-generated equations for the angle head

Angle A Angle C Analytical Computer Analytical Computer Analytical Computer
(deg) (deg) X (mm) X (mm) Y (mm) Y (mm) Z (mm) Z (mm)

30 40 13.144206 13.144206 6.252881 6.252881 —18.427610 —18.427610
20 50 11.483648 11.483648 7.204478 7.204478 —19.292204 —19.292204
10 90 10.149614 10.149614 12.660444 12.660444 —19.821696 —19.821696

for DX, DY and DZ in Table 2, simulation software
was written to use the computer-generated equations
for both first- and second-order approximations of the
error model. The second-order equations are obtained
by ignoring only terms involving products of more than
two small quantities and are very lengthy. They are
therefore not quoted here. The angular errors were
assumed to be small, which is not strictly true for the
second-order solution. However, the results give a good

Proc. Instn Mech. Engrs Vol. 217 Part C: J. Mechanical Engineering Science

indication of the magnitude of the second-order effects,
which gave no significant change from the first-order
approximations, as would be expected for the small
angular errors assumed to be present in these struc-
tures.

The output of the simulation software consists of
separate tables of errors for x, y and z. These tabulate
the errors against various regularly spaced values of A,
and C,. The tables can be plotted to form three-

C13302 © IMechE 2003
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Fig. 3 Graphical representation of error in the Y axis versus A, and C,

dimensional representations of the error plotted on a
rectangular grid against A, and Cp. A typical result is
given in Fig. 3 for the first-order errors for which it was
assumed that G=20mm, Y,=500, Oc, = 0.005 mm,
Oc, =—-0.015mm, DY=0, ThetaA,=100arcsec,
ThetaCy, = 150arcsec and ThetaC,= —50arcsec. C
and A, vary from —60° to 60° across the graph.

It is not possible to plot representative graphs for all
possible angular errors because of the number of
variables involved. However, the error simulation soft-
ware ESP developed at the University of Huddersfield
[4] could be adapted to include these sources of error.

p

5 THE EXPERIMENTAL MEASUREMENT OF
THE ERRORS

In order to measure the errors with a view to including
them in compensation software it is necessary to find
measurement protocols that will allow the derivation of
the individual errors from actual measurable quantities.
Thus equations are required in as simple a form as
possible, so that they can be used to evaluate the errors,
ideally one by one. There are a very large number of
possible measurement experiments that could be per-
formed, but the resulting equations will vary in
complexity for each. The requirement is for a measure-
ment protocol that leads to the simplest possible analysis

C13302 © IMechE 2003

and is feasible practically. The approach is to allow A
and C to have values of 0, 90, 180 and 270°, leading to
16 possible combinations.

If A and C are both set to zero the equations are
simplified and errors can be extracted from one or more
of the resulting equations. Also, as an illustration, if X is
measured for A =90, C=0 and A =270, C=180°, the
difference DX in X between the two measurements gives
20¢y. Since there are 16 sets of equations it is too
difficult to analyse and search for tractable equations
manually.

The error analysis software includes a feature
whereby all 16 sets of equations are generated and the
known values substituted for A and C. These simulta-
neous equations are then algebraically added and
subtracted to and from each other for all the possible
combinations and the resulting equations simplified.
The user can then choose to set any particular variable
to zero, such as DY, which is reasonable since it
represents the error in the fixed angle between the A and
C axes. An automatic search is then made for the
simplest equations and these are displayed on screen. If
one or more equations involving only one unknown is
available, the user chooses the most appropriate
equation. The software then considers that the variable
has been identified and that its value is known in
equations generated subsequently. The user then
chooses the next variable to be identified and the
software continues to find the simplest equation

Proc. Instn Mech. Engrs Vol. 217 Part C: J. Mechanical Engineering Science
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Table 4 Output of the software describing the measurement protocol

PROTOCOL EQUATIONS

Parameters assumed zero DY

Test 1  Ocx from Xdiff (90,0,-270,180) = Ocx*2

Test2 Oas from Xdiff (90,0,-270,0) = Oas*cos(Yp)*2 +G*sin(Yp)*2

Test3 Ocy from Xdiff (0,270,-0,90) = Oas*2 +Ocy*2 -e*2

Test 4 ThetaCh from Zdiff (0,270,-0,90) = e*ThetaCh*2

Test 5 ThetaCv from Zdiff (0,0,-0,180) = e*ThetaCv*2

Test 6 ThataAs from Xdiff (0,0,-0,180 )= G*ThetaAs*2 -G*cos(Yp)*ThetaAv*2 +Ocx*2

Test 7 TheatAs from Ydiff (90,180,-270,180) = G*ThetaAs*cos(Yp)*2 -
G*cos(Yp)*ThetaAv*cos(Yp)*2

Test 8§ Theta Av from Xdiff (0,0-0,180) = G*ThetaAs*2 -G*cos(Yp)*ThetaAv*2 +Ocx*2

Notes - Xdiff is the difference in X at the tool tip for two measurements made with
Ap and Cp as quoted in parenthesis in the order (Ap(l),Cp(l),Ap(Z),Cp(Z)).

Tests 6 and 7 form simultaneous equations from which ThetaAs can be found.

involving that variable and the least possible number of
other unknowns. When there is more than one
unknown then the user must choose suitable simulta-
neous equations from which the variables can be
determined. A report is produced by the software,
which summarizes all the user choices and lists the
necessary equations. This can be seen in Table 4 for the
angle head.

6 CONCLUSIONS

A general solution to the geometrical analysis of serial
manipulators, in particular the servo head, has been
presented. It makes possible the automatic generation of
analytical equations for the direct transformation and
for all the Cartesian errors of any new head without
resorting to manual geometrical derivations. A good
understanding of the possible errors in the head and
their representation as rotations or translations is all
that is required to use the software.

The computer-generated equations can easily be built
into compensation software, thus providing full real-time
error compensation for multiple-axis machines. Simula-
tion software has been written that can investigate the
effect of the various errors in the head on the resultant
error of the machine. Also, it is possible in the future to
develop the ESP simulation software package [4]in order
to estimate the volumetric accuracy of the machine.

Proc. Instn Mech. Engrs Vol. 217 Part C: J. Mechanical Engineering Science
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