
University of Huddersfield Repository

Chen, Xiaomei, Koenders, Ludger and Parkinson, Simon

Correlation and convolution filtering and image processing for pitch evaluation of 2D micro- and 
nano-scale gratings and lattices

Original Citation

Chen, Xiaomei, Koenders, Ludger and Parkinson, Simon (2017) Correlation and convolution 
filtering and image processing for pitch evaluation of 2D micro- and nano-scale gratings and 
lattices. Applied Optics, 56 (9). pp. 2434-2443. ISSN 0003-6935 

This version is available at http://eprints.hud.ac.uk/id/eprint/31504/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/



Correlation and convolution filtering and image 

processing for pitch evaluation of 2D micro- and 

nano-scale gratings and lattices 

Xiaomei chen1*, Ludger Koenders2, Simon Parkinson3 
1Centre for Autonomous & Cyber-Physical System, Cranfield University, Cranfield MK43 0JR, UK 
2Surface Metrology Dep., Physicalisch-Technische Bundesanstalt(PTB), Bundesallee 100, 38116 Braunschweig, Germany 
3School of Computing, University of Huddersfield, Queensgate, HD1 4DH Huddersfield, West Yorkshire, UK 
*Corresponding author: xiaomei.chen@cranfield.ac.uk  

 
We have mathematically explicated and experimentally demonstrated how a correlation and convolution filter can 
dramatically suppress the noise that coexists with the raster-scanned topographic signals of 2D gratings and 
lattices with 2-dimensional (2D) perspectives. To realize pitch evaluation, the true peaks’ coordinates have been 
precisely acquired after detecting the local maxima from the filtered signal, followed by image processing.  The 
combination of 2D filtering, local maxima detection and image processing make up the pitch detection (PD) 
method. It is elucidated that the pitch average, uniformity, rotation angle and orthogonal angle can be calculated 
using the PD-method. This has been applied to the pitch evaluation of several 2D gratings and lattices, and the 
results are compared with the results of using the CG- and FT-method. The differences of pitch averages which are 
produced using the PD-, CG- and FT-methods are within 1.5 pixels. Moreover, the PD-method has also been applied 
to detect the dense peaks of Si (111) 77 surface and the HOPG basal plane. 

 

NOMENCLATURE 
CC Correlation and convolution; correlation or convolution 
XYZ or XOY 3D or 2D coordinates system of sample surface 
xyz or xoy 3D/2D coordinates of measuring instrument, e.g. an SPM 
x , y The angles that XOY plane tilts relative to x- and y-axis of 

xyz system 
PX, PY Pitches of a 2D grating or lattice, and periods of its 

topographic signal f (X,Y) in XYZ system 
Px , Py Projections of PX and PY in xoy plane: PxPXcosx, 

PyPYcosy 
x, y Scanning step sizes of an SPM in x- and y-axis 
px ,  py Computer-sampled data numbers within Px and Py   

periods 
Pq, Pr Periods of a half 2D sinusoidal waveform 
q , r Element intervals of a half 2D sinusoidal waveform 
p q , p r Element numbers within Pq and Pr periods 

1. INTRODUCTION 
The pitch described in this paper is the distance between adjacent similar structural features of one-dimensional (1D) and two-dimensional (2D) 

gratings and lattices on surfaces. In nanometer metrology and measurement, the International Organization for Standardization (ISO) stipulates 1D 
and 2D gratings and lattices in several documents to calibrate diverse microscopes and instruments after metrologically verifying the pitch-related 
parameters, such as pitch average, pitch uniformity, etc. Microscopes and instruments include a family of scanning probe microscopes (SPM) [1], 
scanning electron microscopes (SEM) [2,3], various optical microscopes and contact stylus instruments that are used for areal surface roughness 
measurement [4,5]. Usually, metrological atomic force microscopes (AFM) and nano-measuring machines (NMM) [6-8] implement the metrological 
verification. This typically includes two steps: acquiring the three-coordinate topographic signal in raster-scan mode, and afterwards evaluating the 
pitch-related parameters according to a pitch evaluation method. 

Beside the center-of-gravity (CG) method [9,10] and Fourier-transform-based (FT) method [10], another pitch evaluation method of 1D gratings 
based on a 1D correlation filter has been previously published [11,12]. A half 1D sinusoidal waveform sequence with period PT  is taken as a 
correlation filter. When it cross-correlates with a 1D grating topographic signal with period P, the noise can be dramatically suppressed if PT P. After 
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correlation filtering, the distance between any two adjacent waveform peaks, along the direction perpendicular to 1D grating lines, is one pitch. The 
method was described as the peak detection (PD) method. The pitch average, uniformity and rotation angle around z-axis can be calculated using the 
PD-method. 

It has always been cumbersome to evaluate the pitches of 2D gratings and lattices based on CG- and FT-methods. The 2D gratings and lattices 
(defined by XOY plane) are mounted on the stage (defined by xoy plane) of the measuring instrument to be subsequently raster-scanned into images. 
It is found from processing a cluster of imaged 2D grating and lattice features, that the grating and lattice structures are always orientating an 
unknown  angle around z-axis relative to the xoy plane. The unknown  angle, plus the accompanied noise, will make the CG- and FT-method 
performance more demanding and less correct. In order to avoid the  angle, the strategy is to make sure that the   angle in xoy plane is minimized 
to zero (  0). To achieve this, the 2D grating or lattice that has been loaded onto the xoy plane, needs to be located, orientated, image-scanned and 
image-analyzed to determine if the raster-scan lines are parallel to any assumed line that passes through a series of gravity centers of the 2D grating 
or lattice. The above procedures has to be iteratively repeated until   0. Regardless of the size, the raster-scan area is indispensable [13] for 
metrologically verifying a 2D grating or lattice on a metrological AFM or a NMM, as well as applying it as a standard material to metrologically 
calibrate an SPM [14], and to map its errors [15,16] in accordance with ISO standards [17]. Except for CG- and FT-methods, there is an absence of 
literature addressing the problem in 2D pitch evaluation methods. Therefore, our intention is to apply the PD-method to the pitch evaluation of 2D 
gratings and lattices by suppressing the noise and making the  angle known, so that the CD- and FT-method can be precisely fulfilled with 
decreasing workload. 

Commercially available software [18] has taken a unit cell of topographic signals from 2D gratings and lattices as the template to calculate the 2D 
correlation average. In this paper, a half 2D sinusoidal waveform is proposed as a template for all features of 2D gratings and lattices. It can achieve 
the equivalent impact and high credibility for analyzing the images and topographic signals containing repeated 3D structural features. Furthermore, 
the template as a CC filter can dramatically suppress the noise and greatly improve the signal-to-noise-ratio (SNR), consequently the positions and 
orientations of 3D features can be precisely characterized and measured. 

For identifying positions and locations of the repeated structural features on diverse surfaces [19-22], others have applied a grayscale threshold 
segmentation to binarize images, and edge and centroid detection to extract the borders and locate the centers. In contrast, we will introduce the 2D 
CC filter and the peak detection based on local maxima detecting and image processing for identifying the peak positions of 2D gratings and lattices. 
To the best of our knowledge, the binary and ternary image reconstruction procedure presented in the paper is unique. Finally, the mathematical 
explanation of the 2D CC filtering, as well as the practical algorithm to determine the periods of a 2D half sinusoidal waveform template have been 
annexed. 

2. 2D SINUSOIDAL GRATING 

A. Topographic and coexisted signals 

When an SPM or a scanning tunneling microscope (STM) raster-scans a 2D sinusoidal grating along two orthogonal direction x   and  y at the step 
size x and y, it crosses the X- and Y-pitches, PX and PY, of the 2D sinusoidal grating with an unknown   angle. The raster-scanned 2D signal F(x,y) (in 
such physical units as length, voltage, current, etc.), against the positions (x,y) can be decomposed as a 2D sinusoidal topographic signal f(x,y), a 
nonlinear drift signal U(x,y) and a noise signal W(x,y), i.e. 

       , , , ,F x y f x y U x y W x y  
      (1) 

Coordinate x and y, signal F(x,y), f(x,y), U(x,y) and W(x,y) are all M  N matrices in a raster-scan range Mx  Ny. An example signal of a 2D 
sinusoidal grating with 300 nm nominal pitches, F(x,y), is shown by a 2D intensity graph in Fig. 1(a). 

It is supposed that the origin of XYZ coincides with that of xyz. Due to the existence of a 2D nonlinear drift signal U(x,y), the XOY plane tilts a   x  

angle relative to x-axis and  y angle relative to y-axis. If the 2D sinusoidal topographic signal, in XYZ system is defined by 
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It is expressed in xyz system as 
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where, 1) X(xcosysin)/cosx and Y(xsinycos)/cosy means that the coordinates first rotate-transform by an   angle from the XOY 
coordinates (of the 2D sinusoidal grating) to the xoy coordinates (of the measurement instrument), subsequently rotate-transform by  x   angle 
around the x-axis and  y angle around the y-axis respectively; 2) The X- and Y-axes are parallel to the direction of the X-pitch and Y-pitch, PX and PY, 
respectively; 3) Px=PX cosx and Py=PY cosy mean the projections of PX and PY  in xoy plane. 

U(x,y), according to ISO/DIS 11952[17], is presumably caused by piezo drift or creep in lateral or vertical direction; mechanical stresses of the 
sample holders and its fixers; mechanical expansion of the components such as measurement frame of an SPM. The diminishing effect on the 
accurate pitch evaluation can be leveled by rotation-transforming  x  and  y angles around the x- and y-axis respectively, so that U(X,Y)0 in XYZ 
system, which means the drift signal theoretically does not exist in XYZ system. Mathematically, it is expressed by a 2D polynomial function in the xyz 
system whether it has been leveled or unleveled: 



1 1,( ) ( ) ( ) .TU
K

K Kx y c a x b y a x b yR      
   (4) 

where, c=a0+b0 is the content item, ai and bi  (i=1,2, …, K) are the coefficients of the ith order item of  variable x and y , respectively. 
W(x,y) is given by the amplitude ax,y at any raster-scan position (x,y): 

 ,( , ) .x yW x y a                              (5) 

B. 2D CC-filtered signals 

A half 2D sinusoidal waveform template T(q, r) with Pq and Pr periods is described by 

2 2
( ) sin sin, .
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P P
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T(q, r) has a matrix of MTNT elements against a matrix of MTNT positions (q,r) with intervals q and r. 
The correlation or convolution between F(x,y) and T(q,r) is expressed by 

, , , ,( ) ( ) ( ) ( ).TF Tf TU TWR R R Rx y x y x y x y  
       (7) 

 
                     (a)                                                                                                       (b)                                                                                                        (c) 

Fig. 1. (a), (b) and (c) shows 2D sinusoidal grating topographic signal F(x, y), correlation-filtered signal RTF(x, y) and peaks detection image in intensity graphs, respectively. 

 

 

Fig.2. Based on convolution operation, 3D plots of filtered topographic signal RTF(x,y) (without normalization) with periods Px=Py= 20 pixels;  figure a, b, c, d, e and f are 
corresponding to Pq=Pr= P/4, P/2, P, 2P, 3P and 4P, respectively . 



RTF(x,y), RTf(x,y), RTU(x,y) and RTW(x,y) are named as filtered signal, filtered topographic signal, filtered nonlinear drift signal and noise residue 
signal, respectively. 

If correlation operator (+) and convolution operator () are combined into one operator (), RTf(x,y), RTU(x,y) and RTW(x,y) in xyz system is 
developed as equation (8), (9) and (10), respectively. The mathematical developments are listed in Annex A. 
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where, C[Pq] and X[Pq] are concerned with Pq whilst D[Pr] and Y[Pr] are related with Pr. They are defined by equation (A.3) (A.6) in the Annex A. 
J is the constant item; J1, J2,, JK are the weighted index of monomial item, quadratic item, …, and Kth order item of the binary polynomials, 
respectively. They are explained by equation (A.8) (A.10) in Annex A. 

Comparing to equation (3), equation (8) verifies that RTf (x,y) remains a 2D sinusoidal signal. Its periods, Px and Py, are equal to that of f(x,y), though 
the amplitude has changed to C[Pq]D[Pr] and phases have shifted to X[Pq] and Y[Pr]. 

Comparing to equation (4), equation (9) interprets that RTU(x,y) still is a nonlinear drift signal. It will not disturb the peaks detection even if it is 
unleveled beforehand, or if it is not totally diminished after leveled. 

Contrast to equation (5), equation (10) is the operation of weighted moving average (WMA) of the noise signal ax,y by using a matrix of data Ak,l 
(k=0, 1, ..., MT -1, l=0, 1, ..., NT -1) as the weights. Ak,l is expressed by equation (A.12) in Annex A. 

Therefore, after correlation or convolution (CC) filtering, the noise signal ax,y, from highly dense irregularities, is minimized to a small and gently 
changing noise residue signal RTW(x,y). Although it can more or less modulate the amplitude of the RTf (x,y) if it is superimposed to the latter, it does 
not influence the periodicity of the latter (see Fig. 3 ref.[12]). 

An 8080 2D sinusoidal simulation signal f(x,y) of 1 arbitrary unit (a.u.) amplitude and 20 a.u. periods (Px=Py=20), with Gaussian white noise 
W(x,y) of 0.3 a.u. standard deviation, was taken as an example to demonstrate how RTF(x,y) varies with period Pq and Pr of a half 2D sinusoidal 
waveform template T(q,r). T(q,r) has 1 a.u. amplitude and MTNT elements, where MTPq/2, NTPr/2. Based on convolution operation, the 3D plots 
of RTF(x,y) are shown in Fig. 2, where 3D plots marked by a, b, c, d, e and f correspond to PqPrP/4, P/2, P, 2P, 3P and 4P, which are 5, 10, 20, 40, 60 
and 80 a.u., respectively. 

From a half 1D sinusoidal waveform as 1D cross-correlation filter [11,12],  we can derive that a half 2D sinusoidal waveform of Pq and Pr periods 
correlates or convolutes with the raster-scanned signal of a 2D sinusoidal grating of Px and Py  periods with noise. We can deduce: 

(1) can greatly filter noise if Pq Px and Pr Py; 
(2) cannot completely filter noise if Pq <<Px;  
(3) can filter noise but severely modulate the amplitude of signal RTf (x,y) to make it impossible to distinguish RTf (x,y) from RTW(x,y) if Pq >>Px and 

Pr >>Py.  
Thus, instead of directly detecting the pitches from the raster-scanned signal F(x,y), the filtered signal RTF(x,y) is validated for the pitch detection if 

we chose PqPx and PrPy. For 2D sinusoidal grating signal F(x,y) shown in Fig. 1(a), the correlation-filtered signal RTF(x,y) is exhibited in 2D intensity 
graph in Fig. 1(b). The practical algorithm on how to choose Pq and Pr to implement the CC filtering is attached in Annex B. 

3. 2D LATTICES 
A 2D lattice is a repetitive arrangement of 3D features, such as pillars, hills, holes, dimples, etc. The 3D convex type features have parallelogram 

(rectangle, square, diamond, etc.) or circle bottoms and the 3D concave type features have parallelogram or circle tops. Lattices are fabricated such 
that the features are arranged in square, rectangular, hexagonal and oblique array. The arrangement is in similarity to 2D solid crystalline lattices. 
Mathematically, they are described by different analytic functions inside and zero outside the 3D features. 

A. Topographic signals 

For a Px - and Py -pitch lattice with any 3D feature in square, rectangular, hexagonal, and oblique array, the raster-scanned topographic signal (with 
Px- and Py-periods) is defined as f(x,y) inside the 2D waveforms and zero outside. A primitive unit cell with a bottom or top area A can be defined in 
the rectangular range G{-Px/2xPx/2,  -Py/2yPy/2} so that the 3D feature waveforms at the origin lies entirely within the primitive unit bottom or 
top, where x and y are two independent real variables in the whole feature array. The topographic signal of two exemplar square lattices with 3D 
central-symmetric features in parallelogram holes and hills is shown in Fig. 3(a) and (b), respectively. 

The topographic signal of a lattice can be developed as a 2D Fourier series in complex exponential form: 

,
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where, xI = 2I/Px and yJ = 2J/Py are the angular frequency in x- and y-axes, respectively; AIJ is the Fourier transformation coefficient given by  
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                                      (a)                                                                                 (b) 

 
                                       (c)                                                                               (d) 

Fig. 3. Topographic signals of square lattices with 3D features in parallelogram holes and hills in (a) and (b); the correspondent correlation filtered signals are in (c) and (d) 
respectively. 

To expand Equation (11) as the real form (Annex C), we find that 2D signal f(x,y) consists of four group of 2D sinusoidal signals with different 
phase shifts in each group. Each group includes a constant item (I, J=0) and infinite numbers of 2D sinusoidal signals including a fundamental (I, J = 1) 
period Px and Py, and harmonic period Px/I and Py/J (I, J = 2, 3, 4,···). Since the amplitude AIJ  decreases sharply with I and J increasing [25], the 
sinusoidal waveform in fundamental period (I, J=1) dominates equation (11). Concerning the square lattices with such 3D central symmetric features 
as shown in Fig. 3 (a) and (b), equation (11) can be simplified as  

, 0

( , ) 4 sin( )sin( )
2 2
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x yf x y A x y
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      (13) 

B. 2D CC-filtered signals 

If a half 2D sinusoidal waveform with period PqPx and PrPy is used to filter a series of 2D sinusoidal signals of 2D lattice (with periods Px/I and 
Py/J using equation (13)). The filtered 2D sinusoidal signal with fundamental periods (I, J=1) has the same period Px and Py. The filtered 2D sinusoidal 
signals with harmonic periods, due to Pq >>Px /I and Pr >>Py/J (I,J=2,3,4···), have been severely modulated. Moreover, with periods decreasing (i.e. I 
and J increasing), their amplitudes sharply dropped. Therefore, when the filtered 2D sinusoidal signals with fundamental and harmonic periods are 
combined into the filtered signal of 2D lattices, the filtered 2D sinusoidal signal in fundamental periods dominates. 

The images of the 2D square holes and 2D hills in square arrays in Fig. 3 (a) and (b) are raster-scanned by different types of AFM in 256256 
pixels. The actual raster-scan ranges are 90m90m and 50m50m, respectively. After correlation-filtered using a half 2D sinusoidal waveform 
with periods, p q and p r of 30 pixels and 40 pixels, the filtered signals are plotted as 2D intensity graphs in Fig. 3 (c) and (d), respectively. 

4. AUTOMATIC PEAK DETECTION 

The peak detection in RTF(x,y) can be performed as follows. If a data RTF(m,n) at (m,n) (m=0,1, ..., M-1, n=0,1, ..., N-1) position in MN matrix signal is 
the true peak, it is the local maximum in both row m and column n. First, two MN zero matrices BR and BC are constructed. Based on the algorithm to 
find the local maxima in a sequence signals by applying quadratic/parabolic interpolation of three adjacent samples [23, 24], the following two steps 
are taken to detect the local maxima from row vectors and column vectors, respectively. Subsequently, the new values are assigned to the 
corresponding positions in BR and BC, respectively: 

(1) The local maxima of RTF(m,n) are detected row by row. If RTF(m,n) is detected as a local maximum in row m, BR(m,n) is converted to 1, 
otherwise it remains 0. 

(2) The local maxima of RTF(m,n) are detected column by column. If RTF(m,n) is detected as a local maximum in the column n,           Bc(m,n)  is 
converted to 1, otherwise it remains 0. 



As a result, BR and BC are dual-value MN matrices. Apparently, RTU(x,y) and RTW(x,y) do not influence the local maxima detection, though they are 
included in RTF(x,y). If a data item RTF(m,n) is a true peak, it should be grey-scale 1 in both images, i.e. BR(m,n)BC(m,n)=1. However, if it is only a local 
maxima, either BR(m,n)1, BC(m,n)0 or BR(m,n)0, BC(m,n)1. If BR and BC are merged into a new image GE using logical ‘AND’ or arithmetical ‘add’ of 
the corresponding pixels, GE consists of 0 and 1 or 0, 1 and 2 values. The former is called binary image and the latter is called ternary image. Those 
pixels with grey-scale 1 in the binary image GE or grey-scale 2 in the ternary image GE are the true peaks. Thus, the ternary images are displayed in 
dark background (grayscale=0), colored pixels (grayscale=1) and bright pixels (grayscale=2). The local maxima (grey-scale1), which have 
disappeared in the binary image, can produce good visual effect in the ternary image to associate the peaks with the original and filtered images. 

The peaks detection to the topographic signal of the 2D sinusoidal grating in Fig. 1(a) is shown by the ternary image in Fig.1 (c). The peak 
detection of the signals in Fig.3 is shown in Fig. 4. Where, (a) and (b) are the ternary images before 2D correlation filtering. They appear chaotic and 
disordered due to noise; (c) and (d) are the ternary images after 2D correlation filtering. The true peaks in bright pixels with grayscale 2 can be easily 
extracted from the ternary images Fig. 4 (c) and (d).  

The peak detection process was applied to the raster-scanned signals of 2D atomic lattices: (1) silicon (111)-77 scanned by the variable 
temperature scanning tunneling microscope (VT STM) in 30nm30 nm range and 800800 pixel density shown in Fig. 5 (a); (2) HOPG scanned by 
the VT STM in 10nm 10 nm range and 150150 pixel density shown in Fig. 6 (a). As a result, the correlation-filtered signals (pq=pr=30 and 10 pixels, 
respectively) and the ternary images including true peaks and local maxima are shown in Fig. 5 (b) and (c) as well as Fig 6 (b) and (c), respectively. It 
is made possible to use atoms positions and unit cells to detect the directional drift of the sample, i.e., the motion of the scanner in an STM. 

 

  
                                   (a)                                                                                    (b) 

  
                                         (c)                                                                                    (d) 

Fig. 4. Ternary image (a), (b), (c) and (d) are the peak detection results corresponding to the topographic signal (a) and (b), correlation filtered signal (c) and (d) in Fig. 3,  
respectively. 

 

 
                                                                (a)                                                                                                               (b)                                                                                                         (c) 



Fig. 5. Topographic signal of silicon (111)-77 (30 nm30 nm scan-range, 800800 pixel density) in (a), its correlation filtered signal in (b) and the peak detection ternary 
image in (c). 

   
                                                                        (a)                                                                                            (b)                                                                                                        (c) 

Fig. 6. Topographic signal of HOPG (10 nm10 nm scan-range, 150150 pixel density) in (a), its correlation filtered signal in (b) the peak detection ternary image in (c). 

  
                                      (a)                                                                                (b) 

Fig. 7. Two narrow window, rotation angles r  and c and orthogonal angle o are schematically illustrated in the ternary image of the topographic signal of the 2D 
holes in (a); the correspondently fitted LSMLs are mapped in (b). 

5. PITCH EVALUATION 
If a pixel at (m,n) in a binary/ternary image is detected as true peak (grayscale=2), the correspondent computer-sampled position at (m, n) is (x, y). 

If any two narrow windows are manually built, which enclose a line of peaks along Px-direction and a line of peaks along Py-direction, as 
demonstrated in Fig.7 (a), the peaks coordinates will be found to be (x1(r), y1(r)), (x2(r), y2(r)), (x3(r), y3(r)),···, (xK(r), yK(r)) and (x1(c), y1(c)), (x2(c), y2(c)), (x3(c), 
y3(c)),···, (xL(c), yL(c)) within the two narrow windows. The pitches are calculated by 
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In addition, one least-square mean line (LSML) r (y=ar x+br) along Px-direction and another LSML c (y=ac x+bc) along Py-direction can be 
automatically fitted to two groups of peaks coordinates. Consequently, rotation angles r  and c as well as orthogonal angle o  between the r and c 
can be determined by r=tan-1(ar), c=tan-1(ac) and o=rc , respectively. 

Moreover, LSML r1, r2, , rM and LSML c1, c2, , cN can be fitted to the peaks coordinates in a ternary image. For example, the ternary image of the 
2D square holes in Fig. 7 (a) has nine LSMLs along Px-direction and ten LSMLs along Py-direction. They are mapped in Fig.7 (b). 

If the pitches in a narrow window are counted as P1, P2, , PL, (nm), the pitch average P  and uniformity  can be automatically calculated using 
statistical mathematics. 

6. PITCH EVALUATION RESULTS 
PD-method is applied to the 2D grating in Fig.1 and two 2D lattices in Fig.3 for evaluating of pitch Px and Py, and related parameters. Before CC-

filtering, three raster-scanned signals are leveled using the coordinate rotation-transformation to diminish the drift component U(x,y), so as to make 
Px  PX  and Py   PY. 
 
Table 1 Average of pitchesP , uniformity, rotation angles c and r ,  



orthogonal angle o , etc. evaluated by the PD-method. 

2D lattices 2D holes 2D CCD Hutley 
unit pixel nm pixel nm pixel nm 

xP -PD  26.6 9351.6 31.4 6132.8 19.6 306.3 

yP -PD 28.4 9984.4 28.2 5507.8 18.9 18.9 

 x  1.4 492.2 1.9 371.1 1.0 15.6 

 y  1.3 457.0 1.4 273.4 1.7 26.6 

c  (deg) 89.509 94.927 90.997 

r (deg) 2.242 11.982 1.649 

o (deg) 87.267 82.945 89.348 

 
After leveling, CC-filtering and peak detecting, the fitted LSML coefficients ar and ac of 2D gratings and lattices can be acquired. Thus, the averages 

of rotation angles c and r as well as orthogonal angle o are calculated from the average ca and ra .  

The pitch averages xP -PD and yP -PD, uniformity x and y, averages of rotation angles c (deg) and r (deg), orthogonal angles o , etc. are 

listed in table 1, where 2D holes, 2D CCD and Hutley represent 2D square holes in square array, 2D CCD array panel and 2D sinusoidal grating, 
respectively. The scale factors Cx and Cy, are determined by the ratio of raster-scan ranges (unit: nm) to image sizes (pixel) in x- and y-axis 
respectively, which are 90000/256, 50000/256 and 4000/256 (nm/pixel), respectively. The '2D holes' is a certified 2D pitch standard with verified 
pitch value Px=Py=10030 nm and expanded uncertainty 30nm; the '2D CCD' has (60005000) nm2 nominal area in unit cell; the 'Hutley' has 
nominal pitch values of 300nm.  

From table 1 we can notice that there exist the varying degrees of non-orthogonality between x- and y-axes, unequal pitch average xP and yP for 

2D holes and Hutley, and dispersed individual pitch value Px and Py. It implicates that the three different AFMs that were used for raster-scanning 
three 2D gratings and lattices have unequal scale factor Cx and Cy, cross-talking between x- and y-scanners, and other geometrical errors described in 
[17]. Therefore, if an AFM is not metrologically calibrated and corrected, the raster-scanned images will exhibit severely aberrance and distortion as 
shown in fig. 3 (a) and (b). 

7. COMPARISION OF PITCH EVALUATION METHOS 

As two series of LSMLs (i.e., r1, r2, , rM and c1, c2,  , cN) along the Px- and Py-directions can be fitted to the peaks coordinates in the ternary image 
based on PD-method, two groups of 1D topographic signal sequences of a 2D grating or lattice can be extracted along the series of LSMLs. 
Consequently, the CG- and FT- methods can be applied in two groups of 1D signal sequences to evaluate pitches. The inter-comparison of three pitch 
evaluation methods is realized about 2D gratings and lattices. 

 
Table 2 Inter-comparison of pitch evaluation results among the PD-, CG- and FT-method. 

2D lattices 2D holes 2D CCD Hutley 
unit pixel nm pixel nm pixel nm 

xP -PD 27.1 9511.7 30.9 6040.7 19.6 306.1 

xP -CG 27.0 9484.4 30.9 6035.2 19.5 305.4 

xP -FT 25.7 9023.4 30.7 5998.9 19.5 304.7 

x -PD 1.9 671.9 1.8 343.2 1.0 16.3 

x -CG 1.9 668.0 1.7 323.7 1.4 21.2 

- xP  0.8 274.4 0.1 22.7 0.1 0.7 

yP -PD 28.7 10072.3 27.9 5449.2 18.9 295.7 

yP -CG 28.5 10023.0 27.9 5449.2 19.0 296.4 

yP -FT 27.6 9696.1 27.4 5348.3 18.9 295.4 

y -PD 1.7 597.7 1.4 273.4  25.0 

y -CG 1.6 555.5 1.4 276.7 2.1 32.2 

- yP  0.6 204.5 0.3 58.3 0.1 0.5 

 
The results for inter-comparisons among PD-, CG- and FT-methods are listed in table 2: xP -PD and yP -PD, xP -CG and yP -CG, xP -FT and yP -FT 

represent two pitches averages using the PD-, CG and FT-method; - xP  and - yP denote the standard deviation of two pitches evaluation results, 

which reflect how three pitch evaluation methods are in agreement with each other; the x  and y  are the averages of pitches’ uniformities  x and 

 y. 
From the comparison among pitch evaluation methods, it is concluded that: 
(1) The pitch averages evaluated by using the PD- and CG-methods are within one pixel difference from each other, and the pitch average 

evaluated using the FT-method are within one and half pixels difference from that evaluated using the PD- and CG-methods, whereas one 
pixel is proportional to three significantly different raster-scan step lengths in nanometers, which are 351.56, 195.31and 15.62 (nm) 
respectively; 



(2) It should be emphasized here that the CG- and FT-methods deal with 1D topographic signal sequences along the two series of LSML. Any 
LSML does not completely cross through all the peaks detected by the PD-method within the corresponding narrow window. Nevertheless, 
the PD-method truly deals with the 2D topographic signals of 2D gratings and lattices. 

8. CONCLUSION 
Mathematic analysis has explicated that a half 2D sinusoidal waveform template can be used as a 2D correlation and convolution (CC) filter. When 

it correlates or convolutes with the topographic signal f(x,y) of a 2D grating or lattice raster-scanned by an SPM, and if its periods Pq and Pr are 
approximately equal to that of the topographic signal, Px and Py, the coexisted noise W(x,y) can be dramatically suppressed. The practical algorithm 
has interpreted how to determine its two periods so as to implement the 2D CC filtering. After CC filtering, the peaks can be acquired based on local 
maxima detecting, followed by image processing. The pitch evaluation based on 2D CC filtering together with local maxima detecting and image 
processing to detect peak positions is called peaks detection (PD) method. The PD-method will not be influenced by the unknown angles of 2D 
gratings and lattices rotating in-plane relatively to the stage of measuring instruments. The 2D nonlinear drafting signal U(x,y) which are 
simultaneously generated in the raster-scan process will not interfere the CC filtering, whether or not it is leveled using coordinate rotation-
transformation. The CC filtering allows conveniently and reliably evaluating the local pitches, the average and uniformity of the pitches, rotation 
angle, orthogonal angle between two pitches of 2D gratings and lattices. It is an additional benefit to the precise pitch evaluation of 2D gratings and 
lattices. 
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ANNEX A: MATHEMATIC EXPLATION OF CC FILTERING 

To deduce the three items of correlation or convolution operation in equation (7), correlation operator (+) and convolution operator () are 
combined into one operator () in the following equation developments. 

The filtered topographic signal RTf (x,y) can be expressed and developed as: 
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To factorize and reintegrate equation (A.1), it is rewritten as 
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To express equation (A.2) in xyz coordinate system, it is rewritten as 
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The filtered nonlinear drift signal RTU(x,y) can be expressed and developed as  
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If (kq+lr) and jj x+bj y are set, according to binomial theorem, 
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The coefficients of each item Ji (i=0, 1, 2, , K) in equation (A.9) is given by 
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The noise residue signal RTW(x,y) is factorized and reintegrated as  
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is set, equation (A.11) is rewritten as 
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ANNEX B: PRACTICAL ALGORITHM OF CC FILTERING 
The algorithm is used for practically choosing the period Pq and Pr to implement the correlation or convolution between T(q,r) and F(x,y). 
If the raster-scanning positions x and y as well as 2D signal F(x,y) of a 2D grating or lattice (with pitch PX and PY) are computer-sampled at equal 

step size, x=y.  x, y and F(x,y) are all M  N matrices of data, i.e., x=x, 2x, ..., (M-1)x and y=y, 2y, ..., (N-1)y. The indexed element x(m,n), y(m,n) 
and F(m,n) (m=0,1,...,M-1; n=0,1,...,N-1) mean the sampled position and topographic data in row m and column n. Here, m and n do not mean actual 
physical-coordinate value [26]. If F(x,y) is plotted in 2D intensity graph and 3D plot, it is plotted against indices (m,n) but not against actually 
computer-sampled position data. 

If x=mx (m=0,1, 2,,M-1), y=ny (n=0,1, 2,,N-1), Pxpxx, Pypyy and x=y are put into equation (3),  RTf (x,y) can be written in discrete form: 
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where, digital px and py are the equivalents of the sampled data number within the period Px and Py of f(x,y). As Px and Py are unknown parameters 
that need to be evaluated, px and py can be roughly estimated from the plotted 2D intensity graph of F(x,y). 

Likewise, if qkq (k=0,1,2,,MT-1), rlr (l=0,1, 2,,NT-1), Pqpqq and Prprr are put into equation (5), T(q,r) can be written in discrete form: 
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where, digital pq and pr are the equivalents of the elements number within period Pq and Pr of T(q,r). Thus, pq and pr can be chosen approximately 
equal to px and py, i.e. pq px and pr py; the T(k,l) elements numbers, MT and NT, can be calculated as MTpx/2 and NTpy/2. Consequently, the 
algorithm of the 2D CC filtering is implemented by  
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ANNEX C: EXPRESSION OF 2D SIGNAL OF LATTICES 
To expand the topographic signal of a lattice expressed by equation (12) as the real form [25]: 
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