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Abstract 

The prediction of percutaneous absorption is of enormous importance for the effective 

design, development and quality assessment of topical and transdermal formulations. In vitro 

diffusion experiments are widely carried out for such predictions and are of substantial interest 

across the pharmaceutical and cosmetic industries. Human or animal skin, usually excised, are 

often used in in vitro drug diffusion studies. However, difficulties in obtaining the mammalian 

skin and variation in their permeability directed researchers towards using synthetic membranes 

as skin mimics in preformulation screening experiments, where a large number of experiments 

are required. Polydimethylsiloxane (PDMS) membranes have been accepted as the most 

commonly used in vitro skin mimic because of their homogeneity, uniformity and skin-

analogous rate-limiting permeation properties. 

This thesis investigates the effects of ionisation and surfactants on the permeation of 

pharmaceutical compounds of varied physicochemical properties through PDMS membranes 

using a flow-through diffusion cell system. Data suggests that drug permeation had a 

dependency on the extent of its ionisation, with the permeation being more favourable for the 

more unionised form of a drug. All of the surfactants studied were found to reduce the 

permeation of the drugs, with an inverse relationship being observed between the surfactant 

concentration and the amount of drug permeated. DSC (differential scanning calorimetry), SEM 

(scanning electron microscopy), FTIR (Fourier transform infrared) and NMR (nuclear magnetic 

resonance) spectroscopy were employed to study the interactions between the membrane and 

the surfactants. Results indicated that the permeation effects of the surfactants are a 

consequence of the interactions between the drugs and surfactant micelles, and/or the 

membrane and the surfactants. 

Air plasma treatment was used to modify the PDMS surfaces to become hydrophilic, 

which was confirmed by water contact angle (WCA) and SEM-EDX analysis. The permeation 

data for the modified membranes revealed that the plasma-induced hydrophilicity significantly 

reduced the fluxes of the hydrophobic compounds, while not affecting that of the hydrophilic 

drug. Aging studies of the plasma-treated membranes showed that the hydrophilic surfaces were 

maintained even after 8 weeks under airtight storage conditions.  

In summary, ionisation and surfactant effects on drug permeation across PDMS were 

thoroughly investigated, and plasma treatment was found to be a stable, economic and 

convenient method of modifying PDMS to offer skin-like slower drug permeation i.e. to 

produce a potential in vitro skin mimic.  
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1 

Chapter 1: Introduction 

 

1.1 Background 

 Topical and transdermal administration of drugs has received enormous interest as it 

fulfils a variety of medical and cosmetic purposes including the treatment of local skin 

disorders, therapy of local muscle injury, UV protection and systemic drug delivery. Such 

interest has prompted a significant research effort into the analysis of drug permeation 

through skin, and the prediction of such permeation (Anissimov & Roberts 2011). A number 

of in vitro methods have been established for the prediction of percutaneous permeation. 

Examples include mathematical models, cultured skin alternatives and synthetic membranes 

(Waters 2015). These predictive techniques are important not only for the design and 

development of novel formulations, but also for the quality assessment of products (Shah et 

al.  1999), and toxicity screening (Zorin et al.  1999). Amongst the predictive models, 

synthetic membranes have found extensive application as accepted in vitro skin mimics, 

based on their competitive advantages including better reproducibility, reduced cost (Ng et 

al.  2012), and simplicity of use. One such widely used skin mimic for studying transdermal 

permeation is poly(dimethylsiloxane) (PDMS) membrane (Waters et al. 2013), simply 

known as silicone membrane. The fact that PDMS membrane is a simplified model of skin, 

means that it has the advantage of producing greater reproducibility in data acquired yet has 

the disadvantage of behaving differently to skin under certain conditions. Several factors 

have already been reported to effect permeation through PDMS including membrane 

thickness (Lee et al. 2008), solvent selection (Dias et al. 2007; Shahzad et al. 2014) and 

temperature (Waters et al. 2013). Furthermore, surfactants are a group of compounds that are 

known to have the ability to alter skin permeation (Walters et al. 1993; Shokri et al. 2001), 

and have been studied, though to a very limited extent, to find their effect on the permeation 
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of compounds through PDMS membrane (Waters et al. 2013). The role of compound 

ionisation (as a result of formulation pH) on permeation across PDMS has also received very 

little attention, and is not well understood. Another influential factor on permeation is 

changing the PDMS surface, for example, by making the surface more hydrophilic, by means 

of chemical or physical treatment. Numerous applications have been reported for modified 

PDMS membrane (Hsu & Chang 2015; Ko et al. 2008), yet the impact of such modification 

on in vitro drug diffusion has received very little attention, and hence requires a thorough 

investigation. Understanding all of the above-mentioned aspects could further the suitability 

of PDMS membrane as an in vitro skin mimic, especially in the design and development of 

topical and transdermal formulations.            

       

1.2 Human skin: structure and function  

 The skin is considered the most complex and largest organ in the human body 

(Ghafourian et al. 2010), and provides a multifunctional interface between the body and the 

external environment. The main purpose of the skin is to protect the body from the 

penetration of harmful chemicals (Gupta et al.  2016) i.e. an excellent biological barrier. The 

skin contributes to the body weight by about 4 %, and is 102 – 104 times less permeable than 

a blood capillary wall (Cevc & Vierl 2010). It has a surface area of approximately 1.5 – 2 m2, 

with a wide-ranging thickness according to gender and anatomical site (Pegoraro et al.  2012). 

Below are a few examples of the functions of the skin: 

 Protects the internal body against foreign pathogens, chemicals, allergens, UV 

radiation. 

 Prevents the loss of water, electrolytes and macromolecules. 

 Helps in the synthesis of Vitamin D 
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 Forms an extensive sensory surface for sensing touch, pressure, heat, cold and 

pain (Moss et al. 2015). 

 Plays a role in homeostasis by regulating body temperature and blood pressure 

(Benson & Watkinson 2012). 

The skin is a multi-layered organ composed of three distinctive histological layers – 

the outer epidermis, the dermis and the hypodermis (also known as the subcutaneous tissue) 

(Fig. 1.1 A). 

 

 

 

 

 

 

 

Fig. 1.1: (A) Cross-section of human skin (B) Human epidermis (Pegoraro et al. 2012)  

 The epidermis is the outermost, and also the thinnest, part of the skin. It is a multi-

layered epithelium, consisting of four, or often five, separate layers – the stratum corneum 

(SC), the stratum lucidum (present in thick skin), the stratum granulosum, the stratum 

spinosum and the stratum germinativum (also known as the basal layer) (Fig.1.1. B). The 

outermost layer of the epidermis, and hence of the skin, is the stratum corneum, which is 10-

20 µm thick. It is highly compacted, and acts as the primary barrier for the permeation of 

drugs. The SC consists of several layers of corneocytes with about 10 lipid bilayers 

compacted between two adjacent corneocyte layers. These lipid bilayers form the 

intercellular lipid matrix of the SC (Mitragotri 2003). The next layer of the skin is dermis (or 

corium), which lies immediately above the hypodermis. It contains blood vessels, lymphatic 
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vessels, nerve tissues, sense receptors, hair follicles, sweat glands and sebaceous glands (Fig. 

1.1. A: numbered as 1, 2, 3, 4, 5, 6 respectively). It is usually 1 – 5 mm in thickness (Moss 

et al. 2015), and consists of collagen, elastin, glycosaminoglycan, salts and water. 

Underneath the dermis is the hypodermis, the deepest region of the skin. The hypodermis is 

rich in collagen and fat. Its main functions are insulation and shock-absorption (Dias et al. 

2001; Pegoraro et al.  2012).    

 The skin, in recent years, has widely been accepted as a site for topical and systemic 

drug delivery. Topical application of drugs is useful when the target site is the skin. This type 

of drug delivery is usually intended to treat local skin disorders, or for cosmetic purposes. 

Examples of topical formulations include ointment, gel, cream, powder, foam, lotion and 

spray (Mugglestone et al. 2012). For systemic administration, drugs are delivered through 

the transdermal route using a vehicle such as a transdermal patch (Lenz & Gillespie 2011).     

  

1.3 Transdermal drug delivery 

 In transdermal drug delivery or TDD, therapeutic compounds are administered 

continuously through the skin. The last few decades have resulted in significant development 

and success in the area of transdermal drug delivery (Hillery et al. 2001). The success of the 

TDD method can be evidenced by the fact that, currently in the USA, more than 35 

transdermal products are approved for use to treat a number of conditions including severe 

pain, hypertension, nicotine dependence, female menopause and contraception (Thomas & 

Finnin 2004). There are also several products in the late-stage development phase that can 

potentially extend the use of TDD into complex therapeutic areas such as Parkinson’s disease, 

female sexual dysfunction and attention deficit and hyperactivity disorder (ADHD). Another 

interesting application of the TDD method is the possibility of administering vaccines 

through the skin, to directly target the immune cells of the viable epidermis and initiate a 
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strong immune reaction (Pegoraro et al. 2012).  Drug delivery via the transdermal route is 

considered a useful alternative to the intravenous or oral route, and the benefits have been 

well-documented. Below are several examples: 

 TDD offers improved patient compliance (Thomas & Finnin 2004). 

 No hospitalisation is required. 

 The treatment mode is non-invasive. 

 The affected area can be targeted selectively. 

 First-pass effect can be avoided. 

 Drug pharmacokinetics can be enhanced. 

 The release of drugs can be controlled and sustained (Pegoraro et al. 2012).  

 

1.4 Transdermal routes of drug permeation  

 Drugs can permeate through the skin by four possible routes (Mitragotri 2003): 

i. Free-volume diffusion across lipid bilayers 

ii. Lateral diffusion along lipid bilayers 

iii. Diffusion through pores 

iv. Diffusion through the transappendageal route  

The transappendageal route is also known as the ‘shunt route’, for the fact that the 

skin has several natural openings, for example, sweat glands, hair follicles and wrinkles, 

which enable drug permeation through the skin. However, this route only constitutes 0.1 % 

of the total surface of the skin, and hence, is limited (Pegoraro et al. 2012). Transdermal 

transport of drugs, especially hydrophobic ones, is predominantly governed by the skin’s 

lipid bilayers (Mitragotri 2003), which create a lipophilic route of permeation. When 

permeating through the lipid bilayers of the intercellular lipid matrix, drugs can also diffuse 

through the corneocytes, though this hydrophilic route is unfavourable for most drugs. Hence, 
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the preferred pathway for transdermal permeation is the intercellular route – a continuous but 

twisted pathway across the intercellular lipid matrix (Fig. 1.2) (Pegoraro et al. 2012).  

           

 

 

 

 

 

Fig. 1.2: Transepidermal routes of drug diffusion: transcellular and intercellular (Pegoraro 

et al. 2012). 

 

1.5 Factors affecting drug permeation  

 Skin permeation of drug involves several processes including release of the drug from 

the formulation, followed by partitioning into, and diffusion through the stratum corneum, 

then uptake into other skin layers and penetration through to the deeper tissues or cutaneous 

circulation (Benson & Watkinson 2012). The rate and extent to which a drug permeates the 

skin depend not only on physiological factors but also on the physicochemical properties of 

the drug, and the formulation (Moss et al. 2015).  

 

1.5.1 Physicochemical properties of penetrant     

The permeation of drugs, into and across, the skin is known to be significantly 

affected by their physicochemical properties such as partition coefficient, molecular size and 

shape, aqueous solubility and ionisation. Le and Lippold found a linear relationship between 

permeability and partition coefficient for the permeation of homologous esters of nicotinic 

acid through the skin (Le & Lippold 1995). Moss et al. discussed that compounds with an 
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intermediate lipophilicity – having a log log P of between 1 and 3 – would permeate the skin 

via both lipophilic and hydrophilic routes but the intercellular pathway would predominate, 

and lipophilic compounds (those having a log P greater than 3) would traverse predominantly 

through the intercellular pathway (Moss et al. 2015). Molecular size and shape of a drug is 

also known to affect skin permeation. It has been shown that permeant size is inversely 

related to skin permeation (Idson 1975; Pugh et al. 2000). Scheuplein and Blank observed a 

decrease in the skin permeability of steroids when polar groups were incorporated in their 

structures (Scheuplein et al.  1969). Another important factor affecting transdermal 

permeation is the drug solubility in the lipid domain of the stratum corneum. The melting 

point (MP) of a drug is often used, in predictive models, to determine such solubility 

(Ostrenga et al. 1971). Drugs with a relatively low melting point, for example, nicotine (MP 

-79 °C) and nitroglycerine (13.5 °C), are very good skin penetrants (Benson & Watkinson 

2012). Skin permeation can also be affected by the concentration of a drug in a topical 

formulation. Moss et al. mentioned that an increase in drug concentration would increase the 

amount of drug permeated through the skin (Moss et al. 2015). Permeation also depends on 

the ionisation state of a drug, in terms of its pKa and the formulation pH. As the stratum 

corneum is predominantly lipophilic in nature, the unionised species are more likely to 

penetrate the skin than the ionised species. Therefore, the adjustment of formulation pH will 

alter the rate and extent of drug permeation across the skin (Moss et al. 2006).    

 

1.5.2 Physiological factors     

Besides the physicochemical properties of a penetrant, there are a number of 

physiological factors that can alter skin permeation. One of the important factors is skin 

condition. Generally, skin permeability relates to the permeation of penetrants across healthy 

and intact skin. Hence, the ‘quality’ of the skin is significant in experiments that are intended 
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to determine skin absorption. Diseases, such as eczema, or mechanical damage, such as cuts 

and abrasions, or chemical burns may disrupt the skin barrier and hence skin permeability 

(Moss et al. 2015). For example, one study found a 46-fold and 146-fold increase in the skin 

permeation of salicylic acid in mild dermatitis and severe dermatitis, respectively, relative to 

healthy skin (Benfeldt et al. 1999). There are some other physiological factors that can have 

a profound effect on skin permeation. These include skin hydration, skin age, anatomical site 

and skin temperature. Generally, permeation rate increases with an increase in skin 

temperature. It is known that skin permeation is initially a process of diffusion and therefore 

temperature dependant. Another factor that affects drug permeation is skin hydration, which 

is known to enhance the permeation of most chemicals – by elevating the rate of diffusion 

(Moss et al. 2015). With regards to skin age, the skin structure – in particular, the lipid 

composition – changes significantly as the skin ages which can alter the skin permeability of 

drugs (Benson & Watkinson 2012). For example, the skin permeation of topical steroids has 

been found to be greater in children than in adults (Idson 1975). However, not all penetrants 

show the age-related permeability pattern. One example is the permeation of sufentanil and 

fentanyl, where neither gender nor age were found to affect their permeation through skin 

(Roy & Flynn 1990). One widely studied area – with regards to percutaneous absorption –  

is skin permeability at different body sites (Benson & Watkinson 2012).  Wide variations in 

skin permeation rates are generally observed across different anatomical sites in the same 

individual and between different individuals. Attempts have been made to rank body sites in 

terms of skin permeability. Below is an example of such rankings: 

posterior aricular skin > scrotum > head and neck > abdomen > forearm > thigh > 

instep > heel > planter (Moss et al. 2015) 
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1.5.3 Formulation effects    

As mentioned previously, skin permeation involves a series of steps – diffusion and 

partitioning from, and between, a number of compartments within the several skin layers. 

Formulations can be tailored to meet their goals – either enhancement/optimisation of 

percutaneous absorption, for example, in the case of pharmaceutical applications, or 

reduction of absorption into the physiologically active tissue in the case of cosmetic purposes 

(Moss et al. 2015). Formulations may include penetration retardants to discourage skin 

permeation, especially, to combat xenobiotic-related toxicity issues (Kaushik et al.  2008), 

or penetration enhancers to elevate drug permeation (Borrás-Blasco et al.  1997; Javadzadeh 

et al. 2010) and hence, to optimise transdermal drug delivery. Formulation selection can also 

enhance drug penetration through skin hydration and occlusion. For example, ointment and 

waxes are generally known to increase hydration through occlusion. However, the 

permeation profiles of drugs from different formulations can be significantly different. One 

example is the permeation of benzoic acid, caffeine and testosterone from three different 

vehicles (ethylene glycol, petroleum and an aqueous gel) through the skin (Moss et al.  2015). 

With regards to penetration enhancers, a number of excipients have been reported to have 

skin penetration enhancement effects. Examples include terpenes (Kang et al.  2007), fatty 

acid esters (Casiraghi et al. 2012), pluronic gels (Escobar-Chávez et al. 2005), cinnamic acid, 

cinnamic alcohol, cinnamaldehyde (Zhang et al. 2007), cyclodextrins (Sinha et al.  2003) and 

liposomes (Bouwstra & Honeywell-Nguyen 2002). One group of compounds that are known 

to have an effect on skin penetration are surfactants. They are known to intercalate with the 

continuous lipid domain of the stratum corneum, thus enhancing fluidity. The effects of 

surfactants on skin permeation have been investigated using a wide range of compounds. 

Surfactants have also been used in conjunction with physical penetration enhancement 

techniques such as iontophoresis to enhance transdermal drug delivery (Silva et al.  2012).  
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1.6 Surfactants 

 ‘Surfactant’ is a diminutive form of ‘Surface Active Agent’. Many pharmaceutical, 

cosmetic and agro-chemical formulations contain surfactants where they are used as an 

emulsifier, or as a suspending, solubilising, wetting and stabilising agent (Borrás-Blasco et 

al.  1997). More importantly, recent years have seen a widespread use of surfactants as 

penetration enhancers to increase drug permeation through skin. The effects of surfactants on 

the skin is determined by their interactions with the skin –  binding with the surface proteins, 

denaturing the surface proteins, solubilising the lipid bilayers, penetration through the lipid 

domain, and interaction with the living cells (Mohd. Yasir et al.  2012). The effects of 

surfactants can lead to an alteration in skin permeability. Many studies suggest an apparent 

concentration-dependent biphasic action of surfactant on skin permeability, such that skin 

permeability increases at low surfactant concentrations but decreases at higher values, usually 

above the critical micelle concentration (CMC). CMC is known as a narrow range of 

concentrations upon reaching which surfactant molecules form micelles (Walters et al.  

1993). At concentrations below the CMC, surfactant exists as monomers and/or premicelles 

(Cui et al.  2008). Any surfactant-driven increase in skin permeability at these concentrations 

(i.e. below the CMC) is generally attributed to the ability of the monomers to penetrate the 

skin lipid domain and to increase its fluidity, thus disrupting the skin barrier function. At or 

above the CMC, a high level of solubilisation of penetrants into the micelles occurs, and this 

decreases the thermodynamic activity of the penetrants and hence, their permeation through 

the skin (Walters et al.  1993). 

Surfactants are amphipathic molecules consisting of a hydrophilic (or polar) head 

group attached to a hydrophobic tail, which is a straight or branched hydrocarbon or 

fluorocarbon chain with 8 – 18 carbon atoms. The molecular weights of surfactants range 

from low to moderate. The uniqueness of their properties is evident in the fact that they tend 
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to concentrate at interfaces and reduce interfacial tension (Mohd. Yasir et al.  2012). The 

interfaces could be between solid/liquid, liquid/liquid, or gas/liquid pairs of phases. 

Surfactants can be well-differentiated from other compounds by two important properties – 

1) adsorption at the surface, and 2) formation of micelles in solution (Porter 1994) (Fig. 1.3).  

 

 

 

 

 

 

Fig. 1.3: Surfactant adsorption and micelle formation (Alexandrova 2007). 

 

Micelles aggregate in a way that the hydrophobic tails are aligned towards the centre 

of the micelles, and the hydrophilic polar heads towards the aqueous bulk phase. To put 

simply, a micelle can be thought of as having two regions – a hydrophilic or polar region and 

a hydrophobic core. Compounds with predominantly lipophilic properties tend to partition 

into the hydrophobic core in a process called solubilisation (Walters et al.  1993), whereas 

hydrophilic or polar compounds prefer to stay in the aqueous bulk phase. 

 

Surfactants are classified into four categories (Mohd. Yasir et al.  2012), based on the 

nature of their polar head groups: 

 Anionic surfactant 

 Cationic surfactant 

 Zwitterionic or amphoteric surfactant 

 Non-ionic surfactant 
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Anionic surfactants carry a negative charge in their head groups. Examples of this 

class include carboxylates (e.g. alkyl carboxylate-fatty acid salts), sulphonates (e.g. alkyl 

benzene sulphonates), phosphate esters (e.g. alkyl ether phosphates) and sulphates (e.g. 

sodium dodecyl sulphate). The penetration enhancement effects of anionic surfactants are 

associated with their ability to penetrate the skin and interact with keratin protein in the 

corneocytes, and the lipid bilayers. The interactions with keratin result in the unfolding of its 

coiled structure thus increasing the water binding sites, and hence enhancing skin hydration. 

The interactions with lipid bilayers induce a structural disorder of the lipid domain of the 

skin. Such disordering increases the fluidity of the stratum corneum, and therefore skin 

permeability (Mohd. Yasir et al.  2012). Several studies reported skin penetration 

enhancement effects of anionic surfactants, both in vitro and in vivo. In one study, sodium 

dodecyl sulphate (SDS) was found to increase the permeation of an antiviral agent, foscarnet, 

through rat skin (Piret et al.  2000). SDS has also been reported to enhance in vitro skin 

permeation of diazepam (Shokri et al.  2001) and lorazepam (Nokhodchi et al.  2003). 

Kitagawa and Ikarashi reported an increase in skin permeation of ketotifen induced by the 

presence of SDS (Kitagawa & Ikarashi 2003). Yamato et al. observed a higher skin 

permeation of propofol, both in vitro and in vivo, with the combined use of SDS and 

propylene glycol in the formulation (Yamato et al. 2009). SDS treatment of murine skin 

resulted in an enhancement of the transdermal permeation of polyethylene glycol (Tsai et al.  

2003).   

Unlike anionic surfactants, cationic surfactants contain a positive charge in their head 

groups. Most of the surfactants of this category correspond to nitrogenous compounds such 

as quaternary ammoniums and fatty amine salts. Examples of cationic surfactants include 

cetyltrimethylammonium bromide (CTAB), benzalkonium chloride (BZK) and cetrimide. 

Cationic surfactants are more damaging to the skin than anionic surfactants (Walker & Smith 
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1996). They alter skin permeability mainly by disrupting keratin fibrils of the skin 

corneocytes. The disruption results in the swelling of the stratum corneum and a subsequent 

increase in skin permeability (Mohd. Yasir et al.  2012). The cationic surfactant n-

dodecyltrimethylammonium bromide has been reported to enhance drug permeation across 

skin (Kitagawa & Ikarashi 2003). Shokri et al. found that both benzalkonium chloride and 

CTAB  induced a higher flux of diazepam through rat skin (Shokri et al.  2001). These two 

surfactants have also been reported to increase the percutaneous absorption of lorazepam 

(Nokhodchi et al.  2003).     

Zwitterionic surfactants exhibit both cationic and anionic dissociations. The polar 

head groups of these surfactants contain a quaternary amine group and a carboxyl or sulfonic 

group. Examples are CHAPS, phospholipids (phosphatidylethanolamine, 

phosphatidylcholine), dodecylbetaine and hexadecylbetaine, and amino acids. Zwitterionic 

surfactants enhance skin permeability through the solubilisation of the stratum corneum 

lipids (Mohd. Yasir et al.  2012). Ridout et al. examined the effect of dodecylbetaine and 

hexadecylbetaine on the permeation of nicotinamide across excised skin and found an 

increment in nicotinamide flux owing to the presence of these surfactants (Ridout et al.  

1991). CHAPS has been reported to increase the flux of mannitol through Caco-2 cells, an in 

vitro model of the intestinal mucosa (Nerurker et al.  1996).    

Finally, non-ionic surfactants do not ionise in aqueous solution. Their head groups do 

not carry any charge and are of non-dissociable types, for example, alcohol, phenol, ester, 

amide and ether. Examples of non-ionic surfactants include Tween 80, polyoxyethylenes-2-

oleyl ether, polysorbates, Span 20, poloxamer and Brij 35 (Shin et al.  2001). Non-ionic 

surfactants are less of an irritant than other surfactants and are most frequently used in drug 

delivery applications (Mohd. Yasir et al.  2012). Literature suggests that non-ionic surfactants 

enhance skin permeability by disrupting the intercellular lipids and/or keratin filaments of 
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the corneocytes (Nokhodchi et al.  2003). Limpongsa and Umprayn found Tween 80 to 

increase the skin permeation of diltiazem hydrochloride by three fold (Limpongsa & 

Umprayn 2008). Brij 35 has been reported to enhance the permeation of atenolol (Mohd. 

Yasir et al.  2012).    

 From the above discussion, it is clear that surfactants have widely been studied as 

penetration enhancers using both human and animal skin. However, the effects of surfactants 

on permeation have also been studied using artificial membranes such as polyethersulfone 

(PES) and polydimethylsiloxane (PDMS) membranes. Rahimpour et al. investigated the 

effects of CTAB, SDS and Triton X-100 on the flux of pure water and milk across PES 

membrane (Rahimpour et al.  2007). They observed an increase in water and milk flux, which 

they attributed to the surfactant-induced porosity of the membrane. Another study found 

Tween 80 to enhance water flux through PES membrane (Amirilargani et al.  2009). Waters 

et al. investigated the effects of two surfactants, namely, SDS and Brij 35, on the permeation 

of methylparaben and ethylparaben through PDMS membrane, and found a reduction in 

paraben permeation by SDS, whereas no significant effect was observed with Brij 35 (Waters 

et al.  2013).    

 

1.7 In vitro drug diffusion  

 The assessment of skin permeation of drugs or other penetrants is vital for several 

reasons such as: 

 Estimation of the potential of transdermal drug delivery  

 Risk assessment of the contact of toxic substances with skin (Ottaviani et al.  2006) 

 Measurement of the percutaneous absorption of materials used in cosmetics 

 Risk assessment of the occupational exposure of materials used in several industries 

(Moss et al.  2015) 
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There are a number of ways skin permeation can be measured or predicted such as in 

vivo (Pillai & Panchagnula 2003; Rosado et al.  2003; Godin & Touitou 2007), ex vivo 

(Schwingel et al.  2008; Minghetti et al.  2000), in situ (Plessis et al.  2001) and in vitro 

(Padula et al.  2008; Kwon et al.  2012; Fang et al.  2001) methods. Schwingel et al. used an 

ex vivo technique to measure the skin permeation of 3-O-methylquercetin, a potential 

antiviral flavonoid (Schwingel et al.  2008). In one study the skin permeability of doxylamine 

was investigated using both in vitro and in situ methods, and a good correlation was found 

between the two techniques within a specific period of time (Plessis et al.  2001). However, 

amongst all of the above-mentioned methods, in vitro and in vivo systems have been 

extensively used in skin permeation research.  

In vivo techniques have been reported to provide useful information about the 

mechanism of skin permeation. They are generally non-invasive in a sense that skin 

responses, such as vasodilatation or skin blanching, are assessed in these techniques, rather 

than measuring blood samples or punch biopsies for subsequent analysis. However, they are 

limited in their applicability to those chemicals that do not produce any non-invasively 

quantifiable physiological changes. Moreover, the non-invasive monitoring of certain 

chemicals, such as those in cosmetics, does not provide any indication of cutaneous toxicity. 

In vivo methods are suitable, particularly, if the compound to be examined is an established 

material (such as ibuprofen), and its ADME (absorption, distribution, metabolism and 

elimination) are measured by analysing bodily fluids (Moss et al.  2015). Nevertheless, it can 

be significantly difficult to perform such experiments for a number of penetrants not only for 

toxicological aspects but also for logistical reasons, for example, the consistent availability 

of volunteers (Ansari et al.  2006). In addition to human volunteers, animals are also used to 

analyse skin permeation in vivo. However, a growing concern against animal testing and a 

ban on animal-tested cosmetics in the EU since 2013 has led researchers to alternative 
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approaches (Adler et al.  2011). Overall, because of the limits of in vivo methods in terms of 

feasibility, availability, or ethical concerns, in vitro techniques are being increasingly 

accepted. 

In vitro techniques are often used prior to in vivo tests and in some instances, for 

example, the evaluation of new compound, are solely used to assess the potential toxicity to 

the human body. Consequently, in vitro models find a widespread application in the 

assessment of the risks and hazards associated with the skin exposure of exogenous 

chemicals. The vast majority of mathematical models have been developed based on the data 

obtained from in vitro experiments using excised human skin. In vitro methods for assessing 

percutaneous absorption are numerous and different in the details of their experimental 

protocols. The diversity of such methods is based on the selection of the diffusion membrane, 

nature of the experiments (e.g. occlusion, duration), type of diffusion cell (i.e. static or flow-

through cells) and the composition of the donor, or receptor phases that are placed either side 

of the diffusion membrane (Moss et al.  2015). The temperature at which an in vitro 

permeation study is performed can also be varied. The majority of the published experiments 

were conducted at either 32 or 37 °C. However, a number of studies were also conducted at 

temperatures of 31-32, 22-30 and 25-31 °C (Moss et al.  2009).    

The aim of an in vitro skin permeation study is to measure the amount of permeant 

that penetrates into and across skin. For this purpose, a diffusion apparatus is used which has 

two chambers – a donor chamber and a receptor chamber – separated by a membrane 

(generally human or animal skin, or artificial). The formulation containing the permeant of 

interest is introduced in the donor chamber at the start of an experiment. The receptor 

chamber is the chamber which is exposed to the membrane, and into which the permeant may 

diffuse, following transport into and across the membrane. A viable diffusion gradient must 

be maintained between donor and receptor solution to avoid equilibrium between both 
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chambers (Moss et al.  2015). The receptor chamber usually has a sampling port from which 

aliquots of samples are collected at pre-determined time intervals for quantification. 

Permeation across the membrane is generally measured by monitoring the rate of compound 

permeation into the receptor chamber, or the rate of compound loss from the donor chamber 

(Ottaviani et al.  2006). 

There are two major types of diffusion cells: static and flow-through cells (Fig. 1.4). 

The static diffusion cells are commonly known as Franz cells (Franz 1975). In a Franz cell, 

the permeant penetrates into a “static” receptor chamber of a fixed volume that is kept at a 

controlled temperature and is continuously stirred to ensure homogenous mixing of the 

receptor solution throughout an experiment and to avoid any “dead” zones or diffusion 

gradients within the receptor chamber. Franz-type permeation cells can be found in a range 

of designs and sizes. These cells are upright and hence allow a range of pharmaceutic or 

cosmetic formulations such as solutions, creams or ointments to be investigated. One of the 

main limitations of Franz-type diffusion cells is the associated issue of “sink conditions”. In 

a static permeation cell, the concentration of penetrant in the receptor chamber needs to be 

no greater than 10 % of its saturated solution (Anissimov & Roberts 1999). An alternative 

way of solving issues related with “sink conditions” is to use flow-through type diffusion 

cells. Flow-through cells are also known as “Bronaugh” cells. In a flow-through diffusion 

cell, the receptor solution is continuously pumped through tubing that supplies a small 

compartment beneath the membrane and is collected into a receptacle for analysis, either 

offline or online. The advantage of a flow-through system is that the receptor phase does not 

have to be replaced, even for a permeant that rapidly penetrates. Despite the flexibility of 

flow-through cells, these cells are more complex and significantly more expensive than static 

Franz cells. The other commonly used diffusion cell is a side-by-side diffusion cell, which 

has the advantage of stirring and mixing in both donor and receiver chambers, but is limited 
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by the fact that a number of formulations can be difficult to apply in this system (Moss et al.  

2015).       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.4: Examples of major types of diffusion cells (PermeGear 2015)     

 

In in vitro skin permeation studies, the donor phases generally involve aqueous or 

water-ethanol solvents. Other organic solvents such as propylene glycol may also be used to 

facilitate drug delivery across the skin. The majority of the receptor phases are based on 

buffer solutions, usually phosphate buffers with a pH of 7.4 (Moss et al.  2015). The receptor 

solution may also contain solubilising agents including various surfactants and proteins (e.g. 

bovine serum albumin). It is clear that there are significant variations in the composition of 
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formulations (donor or receptor solutions), yet only a few studies have considered 

formulation matters (Pugh et al.  2005; Ghafourian et al.  2010). In particular, ionisation of 

compound is not generally taken into consideration when modelling percutaneous absorption. 

The widely used membrane in the assessment of in vitro skin permeation is human 

skin (Franz 1975). Skin from several animal species such as pigs, rats, snakes, monkeys and 

guinea pigs are also commonly used as a human skin replacement (Roberts & Mueller 1990; 

Barbero & Frasch 2009). Amongst animal skins, pig and rat skins have found widespread 

use, with the former being similar to the diffusion characteristics of human skin and hence a 

better surrogate for transdermal studies. Rat or mouse skin is more permeable (up to 10 times) 

than human skin (Roberts & Mueller 1990). However, rodent skin is also very popular, 

possibly because of its predominant use in pharmacological research. LSEs (living skin 

equivalents) have also been reported when studying in vitro skin permeation (Hager et al.  

1994). Nevertheless, LSEs have so far failed to find widespread use, mainly because of the 

cost, reproducibility issues and their lack of robustness compared with human or animal skin. 

Moreover, they are generally known to overestimate the permeation rate through human skin 

(Moss et al.  2015). Studies have also reported the use of natural membranes such as egg, 

tomato, peach and onion membranes as skin mimics. One study compared the in vitro 

permeation of diclofenac across onion membrane and human skin, and found no significant 

difference in permeation (p > 0.93) (Ansari et al.  2006). However, these natural membranes 

are very limited in terms of applicability and robustness.  

Human skin, usually excised, is the gold standard for in vitro drug diffusion studies, 

yet the use of excised skin is not without problems. Human skin is generally obtained from 

skin banks or tissue donors where surgical procedures including amputations are used to 

remove the skin. Surgical procedures for removing the skin may involve the use of alcohol-

based disinfectants, which can compromise the barrier integrity of the skin and hence the skin 
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permeability. Therefore, the experimenter of in vitro permeation study has little control over 

the handling and quality of the skin. Moreover, the skin may be kept frozen prior to dispatch 

for use in experiments, and this can possibly cause the damage or degradation to the 

membrane (Moss et al.  2015). Furthermore, human or animal skin can be difficult to obtain, 

and there can be variation in skin permeability because of age, sex, race and anatomical site 

(Ansari et al.  2006). The above-mentioned difficulties and limitations of using mammalian 

skin have led researchers to consider artificial (or synthetic) membranes as in vitro skin 

mimics. Synthetic membranes are very useful when a large number of experiments, in 

particular, preformulation screening studies, need to be carried out (Moss et al.  2015).     

 

1.8 Synthetic membranes as skin mimics 

 Synthetic membranes are composed of polymeric macromolecules, generally 

compacted in layers. They can be prepared using synthetic polymers (such as polysulfone or 

polycarbonate) or semi-synthetic polymer (such as cellulose acetate or regenerated cellulose 

etc.). Synthetic membranes have found their extensive applications, mainly, in industrial 

separation processes such as gas separation, pervaporation, reverse osmosis, electrodialysis, 

microfiltration and ultrafiltration (Ng et al.  2012). For in vitro drug diffusion studies, 

synthetic membranes are utilised, as mentioned earlier, to reduce the variation in skin 

permeability or when biological skins are not available. Numerous studies have considered 

the use of synthetic membranes to study drug diffusion in vitro (Parks et al.  1997; Feldstein 

et al.  1998; Iordanskii et al.  2000; Wasdo et al.  2008; Sugibayashi et al.  2010; Ng et al.  

2010). Synthetic membranes for in vitro drug diffusion experiments are intended mainly for 

two purposes – either to simulate the skin, or to assess the quality of drug products. In 1989, 

Shah and co-researchers from the FDA demonstrated that synthetic membranes, along with 

Franz diffusion cells can be used for the quality assessment of semi-solid products (Shah et 
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al.  1989). Unlike skin simulation, synthetic membranes for quality assessment purposes 

should not be rate-limiting, and should only provide a means for separating the donor and 

receptor phases (Ng et al.  2012). Examples of synthetic membranes used for in vitro 

permeation studies include pure cellulose, cellulose acetate, cellulose ester, cellulose nitrate, 

carbosil (Feldstein et al.  1998), Celgard 3500, polycarbonate, polypropylene, polysulfone 

and silicone membranes (Ng et al.  2012). One study investigated the permeation of ibuprofen 

across a total of 14 synthetic membranes, namely, cellulose nitrate, Nuclepore, Celgard, 

Cyclopore, Tuffryn, Supor, AN69, cellulose ester, Biodyne B, Biodyne C, Cuprophan, 

benzoylated cellulose, Visking and PDMS membranes (Ng et al.  2010). The study suggested 

that when selecting a synthetic membrane, it would be important to consider the compatibility 

of the membrane with the donor and receptor solution, and the cost effectiveness of the 

membrane. 

 Synthetic membranes employed in in vitro drug diffusion studies can be broadly 

divided into two categories – cellulose-based and polymeric-based membranes. Cellulose- 

based membranes are made of regenerated cellulose and its derivatives, whereas polymer-

based membranes are composed of non-cellulose polymers such as polysulfone, 

polycarbonates and polydimethylsiloxane (PDMS). The synthetic membranes used for 

topical formulation assessment are generally based on regenerated cellulose (Reid et al.  

2008; Ng et al.  2012). Cellulose ester and polysulfone membranes are also used in the 

assessment of topical drug products (Shah et al.  1989; Wu et al.  1992). The common feature 

of the membranes used for topical formulation assessment is that they contain pores. 

Therefore, these membranes do not offer rate-limiting permeation properties, which are 

necessary, should the membranes be used to simulate human skin. One type of synthetic 

membrane that has a skin-like rate-limiting barrier property is PDMS membrane, commonly 

known as silicone membrane. Silicone membrane has been extensively used in vitro to 
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estimate or predict the skin permeability of drugs or cosmetic ingredients (McCarley & 

Bunge 2003; Ley & Bunge 2007; Santos et al.  2009; Oliveira et al.  2010; Santos et al.  2011; 

Oliveira et al.  2012).  

 

1.9 Polydimethylsiloxane membrane 

 Polydimethylsiloxane (PDMS) (Fig. 1.5) membrane is a non-porous, amorphous and 

hydrophobic elastomer (Twist & Zatz 1986). The siloxane bond (-Si-O-Si-) that forms the 

backbone of the membrane is very highly stable. PDMS membrane can be immersed into 

water for a long period, with no effect on its mechanical strength or physicochemical 

properties. The physiological and chemical inertness of PDMS membrane broadened its 

applications in a number of fields including medical, electronic, automotive and aerospace 

industries (Simon et al.  2008). In particular, PDMS has found its widespread use in the 

fabrication of microfluidic devices, mainly because of its incredible properties such as gas 

permeability, transparency and ease of patterning with soft lithography. PDMS-containing 

microfluidic devices are used for several purposes including electrophoresis, long-term 

organotypic culture and cell culture  (Markov et al.  2014).  

 

 

 

Fig. 1.5: Chemical structure of polydimethylsiloxane (Glombitza & Muller-Goymann 

2001)  

 The non-porous nature of PDMS membrane made it suitable for the selective 

permeation of liquids and gases, and thus the membrane is used for water desalination, the 

separation of gases from liquids and many other purposes. Amongst many synthetic 

membranes, PDMS has shown excellent analytical performance for the fast and efficient 
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permeation of a range of volatile organic compounds (VOCs), with an exception to polar 

compounds such as alcohols (Boscaini et al.  2004). Moreover, PDMS membrane is widely 

used in in vitro drug diffusion studies to simulate the skin. The suitability of PDMS to predict 

drug permeation is generally attributed to the skin-analogous hydrophobicity and rate-

limiting properties of the membrane. Drug permeation through PDMS membrane can be 

explained using a solution-diffusion model. According to this model, drug molecules first 

dissolve in the membrane and diffuse across the membrane down a concentration gradient. 

In this model, the steady-state flux (J) of drug is based on Fick’s law of diffusion (Eq. 1.1) 

(Ng et al.  2012)   

𝐽 =  
D . K . CV

h
                                                           (1.1) 

where, K is the partition coefficient of drug between the vehicle and the membrane, D is the 

diffusion coefficient of drug into the vehicle that fills in the membrane pores, Cv is drug 

solubility in the vehicle, and h is the membrane thickness. To permeate across a non-porous 

membrane, such as PDMS, drug molecules traverse through the tiny gaps between the 

polymer chains of the membrane, which generally results from the thermal motion of the 

polymer molecules (Ng et al.  2012).  

A large number of studies have been performed on PDMS membrane, either to 

compare drug permeability profiles with an in vivo situation (Woolfson et al.  1998) or human 

skin in vitro (Romonchuk & Bunge 2006), or to establish QSPR (Quantitative Structure-

Permeation Relationship) models (Geinoz et al.  2002), or to search for factors affecting drug 

permeation (Oliveira et al.  2010; Dias et al.  2007; Santos et al.  2011). Romonchuk and 

Bunge studied the permeation of two compounds, 4-cyanophenol and methyl paraben, from 

pure powder and saturated aqueous solution through human skin and PDMS membrane 

(Romonchuk & Bunge 2006). They found a faster permeation for both of the model 
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compounds across PDMS compared with the skin. Wasdo et al. found correlations (r2 = 

0.743) between hairless mouse skin and PDMS membrane for the permeation of 32 

compounds from water (Wasdo et al.  2009). Woolfson et al. examined the permeation of 

tetracaine (a local anaesthetic agent) from a range of formulations through PDMS membrane, 

and found good in vivo correlations in cases where the lipophilicity of the permeant was the 

prime factor for drug permeation (Woolfson et al.  1998). With regards to a QSPR model, a 

major study for quantifying permeability across PDMS membrane was carried out by Chen 

et al. (Chen et al.  1996) where they developed a model (Eq. 1.2) using the permeation data 

of 103 compounds.  

log  𝐽mss = − 2.497 − 4.339 ∑ 𝑒+ − 1.531 ∑ 𝑒− + 4.065 (∑ 𝑒+ . ∑ 𝑒𝑝−)

+ 0.649 log 𝐶𝑠 − 0.00651 MW − 0.640 imidazole + 0.689 amine 

[𝑛 = 103    𝑟2 = 0.966   𝑠 = 0.238   𝐹 = 386.5]    (1.2) 

 where 

𝐽mss is the maximum steady-state flux (µ mol/s/cm2); 

∑ 𝑒+ is the sum of the charge values of hydrogen atoms with charge higher than 0.1 

and the positive charge of a nitrogen atom in a nitro group; 

∑ 𝑒− is the sum of the absolute charge values of all other heteroatoms with unshared 

electron pairs in the same molecule; 

𝐶𝑆 is the solubility; 

MW is the molecular weight (g/mol); and 

Imidazole and amine are indicator variables for imidazole and aliphatic amine groups.  
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Using the data published by Chen et al. (1996), Agatonovic-Kustrin et al. developed a novel 

artificial neural network model, which indicated that molecular shape and size, hydrogen-

bonding capacity of drugs, intermolecular interactions and conformational stability were 

important for drug penetration across PDMS membrane (Agatonovic-Kustrin et al.  2001). 

Several studies have reported that drug permeation through PDMS membrane can be 

affected by a number of factors including vehicles, temperature and the physicochemical 

properties of the drug itself. Oliveira et al. studied the permeation of methyl paraben in the 

presence of butanol and heptanol across PDMS membrane at different temperatures, and 

found an enhancement of paraben permeation owing to both the vehicles and temperature 

(Oliveira et al.  2010). Dias et al. investigated the role of several solvents on the permeation 

of three model compounds, namely, caffeine, salicylic acid and benzoic acid, across silicone 

membrane, and suggested that the drug diffusion process was influenced by both the 

membrane-solvent interactions and solute characteristics such as size, shape and charge 

distribution (Dias et al.  2007). Two other factors that can affect permeation through PDMS 

membrane (though have only been studied to a limited extent), are ionisation (Smith & Irwin 

2000) and surfactants (Waters et al.  2013). 

 One of the attractive features of PDMS-based materials is that their surface properties 

can be altered using a range of chemicals (Roman & Culbertson 2006), or physical treatment 

techniques (Markov et al.  2014). In particular, the surfaces of PDMS-based materials can be 

transformed from hydrophobic to hydrophilic, and then additional functional groups can be 

added to the modified surface to customise it for various applications, for example, making 

the materials more suitable for separation purposes. Several methods are utilised for the 

modification of PDMS surface, with each method having its own specifications, and purposes 

such as improving electroosmotic flow, making the membrane surface more hydrophilic and 

resistant to chemical absorption or adsorption (Roman & Culbertson 2006).  
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1.10 Methods for the modification of PDMS surface  

 PDMS surfaces can be modified by a number of methods. The purposes of such 

modifications range from improving the performance of PDMS-based microfluidic devices 

to optimising gas permeability through PDMS membrane. Various surface modification 

techniques can be found in literature:  

i. Generally, plasma discharge and/or UV radiation are used to oxidise PDMS surfaces. 

Such treatments result in the surface silane (Si-CH3) groups of the membrane being 

replaced with silanol (Si-OH) groups, thus introducing hydrophilicity to the 

membrane surface (Sui et al.  2005). The silanol groups of the PDMS surface can 

then be used to attach a variety of functional groups using simple silanisation or free 

radical chemistry. For example, acrylamide can be attached onto the oxidised PDMS 

surface through a silanisation process. (Roman & Culbertson 2006). Polyethylene 

glycol (PFG) can also be attached onto the modified PDMS surface. The resulting 

PEG-grafted surface is relatively stable and shows protein-propelling characteristics, 

which is required for the development of microfluidic-based biosensing devices 

(Papra et al.  2001). 

ii. Covalent surface modification techniques involve the use of chemicals such as cerium 

and nitric acid to oxidise the PDMS surface. This technique does not use coronal 

discharge or plasma (Roman & Culbertson 2006). The oxidised PDMS surface can 

then be used for the attachment of acrylamide, which offers a reproducible and stable 

coating of the microfluidic device allowing highly efficient peptide separation (Slentz 

et al.  2002). Covalent surface modification can also be achieved, for example, in 

assembled PDMS channels, using graft photo-polymerisation. However, the 

requirement of multiple washings of the channels makes the procedure lengthier 

(Bauer et al.  2010). 
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iii. Non-covalent methods involve the use of proteins, ionic surfactants and 

polyelectrolyte layers (Roman & Culbertson 2006). For example, Badal et al. used 

SDS and CTAB solutions in PDMS-coated microchip devices to control 

electroosmotic flow (EOF) (Youssouf Badal et al.  2002). Yang et al. used a protein-

bound phospholipid bilayer-coated PDMS microchannel for a rapid immunoassay 

(Yang et al.  2001). Polyelectrolyte layers are used to increase, decrease, or reverse 

the EOF (Roman et al.  2005).   

iv. Chemical vapour deposition (CVD) methods are used to coat the luminal surfaces of 

PDMS-based lab-on-a-chip devices with thin polymer films such as poly (p-xylene 

carboxylic acid pentafluorophenolester-co-p-xylene) (PPX-PPF) and poly (p-xylene-

2,3-dicarboxylic acid anhydride). Such coatings are used to immobilise protein in 

PDMS-based microfluidic devices, and to screen pharmacologically active 

compounds in cell-based assays (Lahann et al.  2003). 

v. Sol-gel methods are generally used to modify cured PDMS surfaces. In these 

methods, inorganic compounds, for example, silica and the oxides of titanium, 

zirconium, aluminium and germanium, are imbedded within the PDMS surface. Sol-

gel techniques are suitable for rapid and efficient inorganic coatings, which increase 

the separation efficiencies of PDMS-based microfluidic devices (Roman & 

Culbertson 2006).  

               

The above-mentioned methods for PDMS surface modification have predominantly 

been used or studied with regards to PDMS-based microfluidic devices. Among these 

methods, plasma surface treatment has been accepted as an easy, economic and reliable 

technique. In some cases, plasma treatment acts as a first stage in a series of procedures to 

modify the PDMS surface (Yu et al.  2015). The purposes of modifying PDMS membrane 
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surface by plasma treatment have been limited – either to induce grafted polymerisation (Lee 

et al.  1996), investigate gas permeability (Markov et al.  2014), or analyse surface properties 

such as wettability (Bodas et al.  2008). 

       

1.11 Plasma surface treatment  

 ‘Plasma’ is regarded as the fourth state of matter. Plasma is generated when gases are 

excited by radio frequency (rf), microwave or electrons from a hot filament discharge. It 

contains highly excited gas atoms and molecules, ions, electrons, UV radiation, neutral gas 

atoms and molecules, and radical species. The high density of excited and ionised species of 

plasma can interact and alter material surfaces placed in contact with plasma. Plasma 

treatment can incorporate different functional groups on polymer surfaces. Examples include 

carboxyl, hydroxyl, hydroperoxide, carbonyl and amino groups (Tu et al.  2005). Plasma 

surface treatment is performed in an evacuated chamber. After pumping the air out from the 

chamber, a gas or mixture of gases is allowed to flow in at low pressure. Energy in the form 

of electrical power is then applied through the gas, and plasma is generated. The energy is 

produced and provided by an excitation source, known as a plasma source (Fig. 1.6). Active 

oxygen species and UV radiation from plasma break up the separating agents, impurities and 

oils from sample surface. These are pumped away by a vacuum system. Activated oxygen 

species (radicals) from plasma react and bind with the active surface sites all over the sample 

material, producing a highly chemically reactive surface.   
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Fig. 1.6: Schematic diagram of a plasma source (Chu et al.  2002) 

 

Through plasma surface treatment, it is possible to change the compositions and 

properties of a polymer such as wettability, chemical inertness, metal adhesion and 

biocompatibility. Consequently, plasma-based techniques have found extensive and diverse 

applications, mainly, in the biomedical field, for example, to treat surgical instruments and 

venous catheters to improve friction and biocompatibility (Chu et al.  2002). For biomedical, 

biotechnological and bio-diagnostic applications, plasma-based approaches are utilised in 

several strategies: 

i. Biologically active molecules, such as proteins, are immobilised on plasma-

fabricated surfaces through conventional chemical reaction. 

ii. Protective surfaces or coatings are created to control bio-interfacial interactions. 



 
30 

iii. Non-reactive surfaces are produced that do not possess attractive interfacial forces 

toward proteins and thus have non-fouling properties (Siow et al.  2015). 

 

 Plasma treatment can be of various types depending on the choice of gas or mixture 

of gases. Below are the few examples that have been reported in literature: 

 Air plasma (Volkov et al.  2015) 

 Nitrogen-based plasma such as N2, NH3 (Kull et al.  2005; Lai et al.  2008; Pang et 

al.  2012)  

 Ar-plasma (Lee et al.  1996)  

 O2 plasma (Kim et al.  2002; Sartowska et al.  2003; Bodas et al.  2008) 

 H2O plasma (Steen et al.  2002)  

 Acrylic acid plasma (Weibel et al.  2006) 

 Mixed gas-based plasma such as Ar/NH3 (Bryjak et al.  2002; Kull et al.  2005), 

O2/NH3 (Kull et al.  2005), C2H2/N2 (Tu et al.  2005). 

 

It can be seen from these examples that plasma types are diverse, and this diversity 

has enabled plasma treatment to be used for a wide range of purposes. For example, 

Zarshenas et al. utilised corona air plasma for modifying polyamide membrane to improve 

gas separation performance (Zarshenas et al.  2015). H2O and N2 plasmas were used to 

improve antifouling properties of polypropylene membrane (Yu et al.  2008). Weibel et al. 

modified polyurethane membrane using acrylic acid plasma to improve the efficiency for the 

separation of methanol from methyl-t-butyl ether (Weibel et al.  2006). H2O plasma was used 

to increase the wettability of polyethersulfone and polyethylene membranes (Steen et al.  

2002). Nitrogen plasma was used to create a permanent hydrophilic membrane surface (Kull 

et al.  2005). Markov et al. used low pressure air plasma to measure oxygen diffusivity 
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through PDMS membrane to understand normoxic and hypoxic oxygen conditions in 

microfluidic bioreactor systems (Markov et al.  2014).  Despite the extensive research on 

plasma treatment methods for the modification of synthetic membranes, limited research, as 

mentioned in Section 1.10, has focused on such modification with regards to PDMS 

membrane. Moreover, no known study has considered the implication of plasma-modified 

PDMS membranes in in vitro drug diffusion studies, where PDMS membranes are often used 

as skin mimics.          

 

1.12 Aim and objectives 

The research presented in this thesis aims to understand the effect of several factors 

including formulation pH, excipients, and membrane surface modification on drug 

permeation through a chemical based skin mimic, namely silicone membrane. 

The objectives of this research work are presented below: 

1. To study the effect of the ionisation on the permeation of drugs through silicone 

membrane.  

2. To study the effect of surfactants on the permeation of drugs across silicone 

membrane. 

3. To predict the mechanism of surfactant effect on drug permeation through silicone 

membrane. 

4. To investigate the effect of plasma surface modification of silicone membrane on 

the permeation of drugs. 
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Chapter 2: Experimental 

  

2.1 Materials 

Polydimethylsiloxane (PDMS) membrane, with a standard thickness of 130 µm, was 

purchased from ATOS Medical (Hörby, Sweden). The flow-through diffusion cells were 

purchased from PermeGear Inc. (Hellertown, PA 18055 USA). De-ionised water was used 

throughout the experiments. Chemicals used are listed in Table 2.1, along with their 

physicochemical properties (Table 2.2).  

Table 2.1: The purity and supplier of the compounds analysed 

Compound Purity Supplier 

1-methyl-3-phenylpropylamine 98.0 % Sigma-Aldrich 

Benzocaine ≥ 99.0 % Sigma-Aldrich 

Benzoic acid > 99.5 % Sigma-Aldrich 

Benzotriazole 99.0 % Sigma-Aldrich 

Caffeine 97.0 % Sigma-Aldrich 

Ibuprofen > 97.0 % BASF 

Ketoprofen > 98.0 % TCI Europe 

Lidocaine > 98.0 % Sigma-Aldrich 

Sodium dodecyl sulfate ≥ 99.0 % Sigma-Aldrich 

Brij 35 Proteomics grade BDH Laboratory 

CTAB ≥ 98.0 % Sigma-Aldrich 

CHAPS ≥ 98.0 % Fisher Scientific 

Tween 80 Super refined  Croda International  
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Table 2.2: Physicochemical properties of chemicals (Molecular weight, polar surface area 

and log P were generated from ACD/labs, RSC, UK)  

1-methyl-3-phenylpropylamine 

 

Molecular weight 149.23 g/mol 

Polar surface area  26 Å2 

log P 2.18 

pKa (U.S National 

Library of Medicine 

2016) 

9.79 

CAS Number 22374-89-6 

Benzocaine 

 

Molecular weight 165.19 g/mol 

Polar surface area  52 Å2 

log P 1.95 

pKa (DrugBank 2016) 2.78 

CAS Number 94-09-7 

Benzoic acid 

 

Molecular weight 122.12 g/mol 

Polar surface area 37 Å2 

log P 1.89 

pKa (Wang et al.  

2013) 
4.2 

CAS Number 65-85-0 

Benzotriazole 

 

Molecular weight 119.12 g/mol 

Polar surface area 42 Å2 

log P 1.34 

pKa (Benitez et al.  

2015) 
8.2 

CAS Number 95-14-7 
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Caffeine  

 Molecular weight 194.19 g/mol 

Polar surface area 58 Å2 

log P -0.13 

pKa (ACD Lab, RSC) 0.52 

CAS Number 58-08-2 

Ibuprofen 

 
Molecular weight 206.28 g/mol 

Polar surface area 37 Å2 

log P 3.72 

pKa (Willian & 

Pritchett 2014) 
4.9 

CAS Number 15687-27-1 

Ketoprofen  

 

Molecular weight 254.28 g/mol 

Polar surface area 54 Å2 

log P 2.81 

pKa (Bechet 1999) 4.0 

CAS Number 22071-5-4 

Lidocaine 

 

Molecular weight 234.34 g/mol 

Polar surface area 36 Å2 

log P 3.63 

pKa (Liu et al.  2003) 7.8 

CAS Number 137-58-6 
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Sodium Dodecyl Sulphate 

 

Molecular Weight 288.40 g/mol  

Charge Anionic 

CMC 8 mM 

Micellar shape Spherical 

Brij 35 

 

Molecular Weight 1199.54 g/mol 

Charge Non-ionic 

CMC 0.09 mM 

Micellar shape Spherical 

CTAB 

 

Molecular Weight 364.45 g/mol 

Charge Cationic 

CMC 0.82 mM 

Micellar shape Spherical 

CHAPS 

 

Molecular Weight 614.88 g/mol 

Charge Zwitterionic 

CMC 4 mM 

Micellar shape Rod-like 

Tween 80 

 

Molecular Weight 1310 g/mol 

Charge Non-ionic 

CMC 5-50 µM 

Micellar shape Cylindrical  
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2.2 Methods 

2.2.1 iGC SEA (Inverse gas chromatography – surface energy analyser) methodology 

 70 mg of PDMS membrane was cut into small pieces and packed into an 

individualised iGC silanised glass column. The dispersive surface energy (s
D) and the acid-

base free energy (s
AB) of adsorption were determined by running the sample at a series of 

surface coverage with alkanes and polar probe molecules. The sample column was pre-

conditioned for 2 hours at 25 °C and 0 % RH with 10 mL/min helium carrier gas. The 

experiment was conducted at 25 °C with 10 mL/min total flow rate of helium, and using 

methane for dead volume correction. The data were analysed using both standard and 

advanced surface energy analysis software (Surface Measurement Systems, UK). 

 

2.2.2 Differential scanning calorimetry (DSC) 

 PDMS membrane was cut to an appropriate size for investigation and treated 

overnight in phosphate buffer (0.02 M PBS, pH 7.4) solution with or without the surfactants 

(SDS, Brij 35, CTAB, CHAPS and Tween 80) present in the buffer at 20 mM. The samples 

were then dried with soft tissue to remove excess liquid. DSC scans of the untreated and the 

treated samples were performed using a DSC 1 (Mettler-Toledo Ltd., Leicester, UK), at a 

heating rate of 1 °C/min over a range of -60 °C to -20 °C. All DSC thermograms were 

assessed with regard to the phase transition of PDMS membrane, which was reported to be -

40 °C (Dias et al.  2007).          

 

2.2.3 Fourier-transform infrared (FTIR) spectroscopy 

 FTIR analysis of the untreated and treated membranes (see Section 2.2.2 for treatment 

procedure) were performed using a Nicolet IR 380 spectrometer. The samples were cut into 

suitable sizes and placed in direct contact with the diamond crystal of the spectrometer. A 
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measurement range of 4000-400 cm-1 was used for all experiments. The data were obtained 

from, and analysed by a spectrometer-linked computer equipped with the Omnic software 

(version 7.2a).  

     

2.2.4 Nuclear magnetic resonance (NMR) spectroscopy 

 SDS and Brij 35 were used to prepare the sample solutions, at concentrations of 4, 6, 

8, 10 and 20 mM for the former, and 1 and 10 mM for the latter. When necessary, membranes 

were kept in the solutions for ~24 h. D2O was used as solvent. In all 1H NMR experiments, 

samples were analysed using a Bruker AV400 spectrometer (400 MHz) at 25 °C, and the 

spectra were then processed using Bruker TopSpin 3.1 software.    

 

2.2.5 Plasma surface treatment process  

The surface of PDMS membrane was modified using a standard plasma surface 

treatment method. The treatments were performed in a benchtop laboratory plasma unit 

(Henniker Scientific) (Fig. 2.1).  

 

 

 

 

 

 

 

 

 

Fig. 2.1: A benchtop laboratory plasma unit. 



 
48 

PDMS membrane pieces were cut with a diffusional area of 0.554 cm2 for flow-

through permeation cells and placed in the plasma unit under low pressure on full power (40 

kHz, 100 W). The same treatment was repeated on the alternate surface of the pieces under 

identical conditions with both surfaces exposed to air plasma for 90 seconds each. Contact 

angle measurement, SEM (Scanning Electron Microscopy), EDX (Energy Dispersive X-ray) 

analysis and permeation studies were conducted using the membrane immediately after the 

plasma treatment.  

For aging studies, the treated PDMS samples were stored under air tight conditions 

for a maximum of 8 weeks, and permeation studies were performed using the stored samples 

aged for 1, 2, 4 and 8 weeks.    

  

2.2.6 Contact angle measurement 

 Contact angle analysis was carried out to examine the alteration of hydrophilicity of 

PDMS membrane before and after the plasma treatment. The static contact angles of the 

treated and untreated PDMS samples were measured at room temperature using a sessile drop 

method. This method employs an optical goniometer with an attached precision syringe 

(FTA1000, Surface Science Instruments, USA). A droplet of deionised water was dispensed 

from the precision syringe onto PDMS surface (treated or untreated) and the resultant angles 

were measured over a period of 200 s.  

 

2.2.7 Scanning electron microscopy (SEM) 

 SEM images of PDMS membrane were obtained on a FEI Quanta 250 equipped with 

backscattering and secondary electron detectors. The membrane samples were affixed to a 

standard aluminium stub by double-sided carbon tape and then sputter-coated with a thin 

layer of Au (gold) to prevent surface charging. After that the samples were loaded in the SEM 



 
49 

for imaging. For the study mentioned in Chapter 5, two categories of PDMS samples were 

analysed – untreated and treated (see Section 2.2.2 for treatment procedure). For the study 

mentioned in Chapter 6, three categories of PDMS samples were investigated – untreated, 

plasma-treated, and aged (maximum for 8 weeks) plasma-treated. In all analysis, the 

acceleration voltage was 5 keV. Everhart-Thornley detector (ETD) was used to detect the 

secondary electrons that are ejected from the k-shell of the sample atoms.    

    

  

 

 

 

 

 

 

 

 

 

Fig. 2.2: A FEI Quanta 250 Scanning Electron Microscope. 

  

2.2.8 Energy dispersive X-ray analysis (EDX) 

  EDX analysis of the PDMS membranes, both plasma-treated and aged plasma-

treated, were performed using an Oxford detector attached to a FEI Quanta 250 ESEM. The 

procedure was analogous to that mentioned in Section 2.2.6. 
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2.2.9 Permeation experiments and data analysis 

A system employing flow-through type diffusion cells with a diffusional area of 0.554 

cm2 was used for all permeation studies. PDMS membrane, with a measured thickness of 130 

µm, was employed as a permeability barrier. In all cases, except for plasma-treated samples, 

the membrane was soaked in buffer solution for 30 minutes prior to being mounted in the 

diffusion cells. After assembly the cells were placed on a cell warmer for a temperature of 

32 °C to be maintained. To start each permeation experiment, 0.8 mL of the donor solution 

containing model compound (and/or surfactant) was added to the diffusion cell. In all 

experiments the concentration of the model compounds in the donor solution was 1 mg/mL. 

In the cases whereby surfactants were involved (Chapter 4), the concentrations used were 0, 

4, 8 or 20 mM for SDS, Brij 35, Tween 80, CTAB and 0, 2, 4 or 20 mM for CHAPS. 

Phosphate buffer saline (pH 7.4 for the study discussed in Chapter 4 and 6, and pH 4.5, 6.0, 

6.5, 7.0, 7.4, 8.0 and 8.5 for the study discussed in Chapter 3) was pumped through the cells 

at 5 mL/h. The concentration of PBS used in Chapter 3 and 4 was 0.02 M, whereas for 

Chapter 6 it was 0.05 M. The samples were collected by means of a fraction collector at the 

predetermined time intervals.  

Extracted samples were assayed by means of a validated UV spectroscopic method 

to quantify the model compounds (1-methyl-3-phenylpropylamine at 217 nm, benzocaine at 

258 nm, benzoic acid at 226 nm, benzotriazole at 262 nm, caffeine at 273 nm, ibuprofen at 

230 nm, ketoprofen at 264 and lidocaine at 219 nm). Calibration plots were constructed using 

at least five concentration points for all model compounds and found to be linear (R2 ≥ 0.990) 

in the range of 2-10 µg/mL.   

The steady state flux (𝐽) was determined from the slope of the best-fit linear plot of 

the cumulative amount of the drug permeated per unit area versus time. All values are 

expressed as the mean values of three replicates shown with standard deviation based error 
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limits. Statistical analysis was carried out using Minitab software (version 16). One-way 

ANOVA at 95 % confidence interval level (p ≤ 0.05) was performed to test the significance 

in the values obtained, and post hoc comparison was executed using pairwise Tukey’s test, 

where the difference in means was found to be significant. 
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Chapter 3: Effect of ionisation on the permeation of compounds 

through poly(dimethylsiloxane) membrane 

 

This chapter investigates the role of compound ionisation on their permeation across 

polydimethylsiloxane (PDMS) membrane. Six model compounds were analysed to determine 

the amount permeated across the membrane, each at three specific percentages of ionisation. 

In addition, iGC-SEA (Inverse Gas Chromatography Surface Energy Analyser) was utilised 

to determine the surface chemistry and surface energy profile of the membrane.        

 

3.1 Introduction 

 The permeation of compounds through human skin is a complex process and can be 

difficult to predict using currently established in vitro methods such as mathematical models, 

cultured skin alternatives and artificial membranes (Waters 2015). Despite the limited ability 

of predicting percutaneous absorption, their development and use have gained widespread 

interest among researchers as there is an on-going trend to move away from an animal-based 

testing model in the EU. In particular, artificial membranes have found extensive application 

in early-stage assessment of percutaneous absorption (Moss et al.  2015). Analytical 

techniques using artificial membranes are mainly concerned with the use of polymeric 

materials such as polydimethylsiloxane (PDMS) membrane, generally known as silicone 

membrane (Oshima et al.  2012). PDMS is a commonly used polymer that has a wide range 

of industrial applications, for example, liquid and gas separation (Li et al.  2013; Alexander 

Stern 1994), pervaporation (Dong et al.  2014) and microfluidic devices (Fan et al.  2015). 

In pharmaceutical analysis, PDMS membrane is used to mimic human stratum corneum (the 

outermost layer of skin) in a system incorporating a donor solution and receptor solution, the 

latter from which samples are taken routinely for analysis to quantify the rate and extent of 

compound permeation within a pre-determined period of time (Sloan et al.  2013). Such data 

are useful to predict the fate of compounds following their application on to the skin surface 
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which is crucial for toxicological assessment and formulation development. Studies based on 

these in vitro predictive methods use diffusion apparatus known as Franz cells and are 

routinely carried out for analysing pharmaceutical, cosmetic and household products (Baert 

et al.  2010; Bartosova & Bajgar 2012). PDMS membranes are favourable (Zhu et al.  2010) 

amongst researchers for a number of reasons, for example, simplicity of their use, 

reproducibility of their composition and thickness, and cost effectiveness (Ng et al.  2012). 

Moreover, PDMS membrane has been reported to show good correlation with the in vivo 

situation in the case where the penetrant lipophilicity is the prime determinant of compound 

permeation across the membrane (Moss et al.  2015). The hydrophobic nature of the 

membrane creates a barrier effect, as is seen in vivo and provided that certain conditions are 

met, i.e. permeation is via passive diffusion, the penetrant is metabolically inert and no 

permeability enhancer is present in the formulation (Waters et al.  2013), then useful 

permeability data can be attained.  

 When analysing the permeation of compounds using skin (or skin mimics, such as 

PDMS) there exists a vast collection of donor phase compositions – ranging from water-

based solutions of the model compound (Majumdar et al.  2007) to compositions that 

duplicate the complex formulations intended for market (Watkinson et al.  2010). For 

instance, even in the case of ibuprofen as a model compound, previous work has focused on 

a basic aqueous solvent at a pre-determined pH through to the use of far more complex 

formulations, such as ibuprofen gel, as would be applied on to human skin (Herkenne et al.  

2007) or the addition of surfactants (Waters et al.  2013). However, the question – how, or 

why, certain solvents have been chosen for the donor solution in the majority of cases – has 

been paid very little attention although a recent study within our group has begun to consider 

the role of the binary mixtures present in the donor solution (Shahzad et al.  2014). Such 
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study clearly indicates that donor phase composition can, and does, play a role in compound 

permeation yet the extent to which it occurs has yet to be known.  

 For any aqueous based formulation, the physicochemical behaviour of the compound 

under investigation can be fundamentally dictated by the pH of the chosen solution. By 

knowing the pKa of a compound the percentage ionised can be calculated using the 

Henderson-Hasselbalch equation (Eq. 3.1) at any given pH with the ionised species (A-) 

being in equilibrium with the unionised species (HA).  

                                           pH = p𝐾a + log (
[A−]

[HA]
)                (3.1) 

 Hence, the pH of a solution can be manipulated so that the ratio of the concentration of 

unionised species to that of ionised species can be controlled and determined for any 

compound with a known pKa. Compound permeation can also be influenced by other 

physicochemical factors, such as log P (the octanol-water partition coefficient). Therefore, 

this study selected a set of compounds with a wide range of lipophilicities to confirm the 

importance of this additional determinant on permeation.  

 For the prediction of the behaviour of a compound in a formulation using Franz-cell 

based experiments, researchers often choose donor solutions with pH values analogous to 

those found in vivo. For example, some research has considered a donor solution at low pH 

to mimic the typical skin pH (Guo et al.  2014) whereas others have chosen pH values such 

as 7.4 (Mertz & Sloan 2014). Although such studies focused on the importance of controlling 

and selecting the pH of the donor phase, little attention has been paid to understand the 

relationship between the extent of ionisation and permeation in Franz cell based studies. One 

particular study analysed only one compound, namely salicylic acid, to understand the effect 

of ionisation on the subsequent permeation across human skin and silicone membrane (Smith 

& Irwin 2000). The study found a direct relationship between permeation and the degree of 

ionisation of compound. However, only one specific compound was considered in the study. 
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This study aimed to understand whether a similar relationship would be observed for a range 

of compounds that, upon ionisation, form cationic and anionic species, and have a wide range 

of lipophilicities.   

                                     

3.2 Results and discussion 

3.2.1 Effect of ionisation on compound permeation across PDMS membrane 

Six model compounds were selected to assess the permeation dependence with 

ionisation. The amounts of the compounds permeated through PDMS membrane were 

determined using a flow-through diffusion cell with each compound at three specific 

percentages of ionisation (calculated using Eq. 3.1 and pKa values of 1-methyl-3-

phenylpropylamine 9.79 (U.S National Library of Medicine 2016), benzoic acid 4.2 (Wang 

et al.  2013), benzotriazole 8.2 (Benitez et al.  2015), ibuprofen 4.9 (Willian & Pritchett 

2014), ketoprofen 4.0 (Bechet 1999) and lidocaine 7.8 (Liu et al.  2003). These compounds 

were selected for their diverse range of pKa values and lipophilicities, the latter ranging from 

a log P of 1.2 for benzotriazole (Hart et al.  2004) to 3.6 for ibuprofen (Waters et al.  2010).          

  A previous study (Smith & Irwin 2000) investigated the permeation of salicylic acid 

across PDMS membrane to determine if it followed the pH-hypothesis whereby steady-state 

flux and permeability coefficients increased with a decrease in pH and a linear relationship 

was found between the flux and fraction unionised. The results suggested that the change in 

salicylic acid flux was a direct consequence of pH, which regulated the concentration of 

unionised species. However, the study only considered salicylic acid i.e. one specific 

compound. The aim of this study was to determine if a similar relationship would be observed 

for a diverse range of compounds with different pKa and log P values, i.e. to identify if the 

flux-pH relationship can be applied more generally. The permeation profiles of all six 
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compounds are displayed in Figs. 3.1-3.6 with the cumulative amount permeated shown for 

a period of seven hours.      

    

  

 

 

 

 

 

 

 

 

 

Fig. 3.1: Cumulative amount of 1-methyl-3-phenylpropylamine permeated with percentage 

unionised. Each data point represents the mean ± SD (n = 3). The corresponding pH values 

to obtain 1.6 %, 0.41 % and 0.02 % of unionised compound were 8.0, 7.4 and 6.0, 

respectively.   
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Fig. 3.2: Cumulative amount of benzoic acid permeated with percentage unionised. Each 

data point represents the mean ± SD (n = 3). The corresponding pH values to obtain 33.39 

%, 0.50 % and 0.06 % of unionised compound were 4.5, 6.5 and 7.4, respectively.  

 

 

 

 

 

 

 

 

 

 

Fig. 3.3: Cumulative amount of benzotriazole permeated with percentage unionised. Each 

data point represents the mean ± SD (n = 3). The corresponding pH values to obtain 99.37 

%, 98.04 % and 86.32 % of unionised compound were 6.0, 6.5 and 7.4, respectively. 
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Fig. 3.4: Cumulative amount of ibuprofen permeated with percentage unionised. Each data 

point represents the mean ± SD (n = 3). The corresponding pH values to obtain 0.79 %, 0.32 

% and 0.08 % of unionised compound were 7.0, 7.4 and 8.0, respectively. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.5: Cumulative amount of ketoprofen permeated with percentage unionised. Each data 

point represents the mean ± SD (n = 3). The corresponding pH values to obtain 0.10 %, 0.04 

% and 0.003 % of unionised compound were 7.0, 7.4 and 8.5, respectively. 
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Fig. 3.6: Cumulative amount of lidocaine permeated with percentage unionised. Each data 

point represents the mean ± SD (n = 3). The corresponding pH values to obtain 1.24 %, 24.02 

% and 61.24 % of unionised compound were 6.0, 7.4 and 8.0, respectively. 
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permeated. A clearer picture of this phenomenon can be drawn by plotting Q7 (the amount 

permeated after 7 h) values against the percentage of compound unionised (Figs. 3.7-3.12). 

A plot of such data allows comparison to be made between the gradients i.e. how influential 

the percentage ionised is on compound permeation across PDMS membrane.   

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.7: Amount of 1-methyl-3-phenylpropylamine permeated after 7 h at three specific 

percentages of ionisation 
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Fig. 3.8: Amount of benzoic acid permeated after 7 h at three specific percentages of 

ionisation 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.9: Amount of benzotriazole permeated after 7 h at three specific percentages of 

ionisation 
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Fig. 3.10: Amount of ibuprofen permeated after 7 h at three specific percentages of ionisation 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.11: Amount of ketoprofen permeated after 7 h at three specific percentages of 

ionisation 
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Fig. 3.12: Amount of lidocaine permeated after 7 h at three specific percentages of ionisation 
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upon factors, such as log P. This analysis was performed in a similar manner to that of Smith 

and Irwin (Smith & Irwin 2000) whereby they found a linear relationship for the one 

compound studied, namely salicylic acid. Data for all six compounds are shown in Table 3.1.  

Table 3.1: Permeation data for six model compounds across silicone membrane over a series 

of percentages/fractions unionised 

 

Compound % Unionised 
Fraction 

Unionised 

Steady-state flux 

(µg/cm2/h) 

1-methyl-3-

phenylpropylamine 

 

0.02 2 × 10-4 30.61 ± 0.96 

0.41 4 × 10-3 55.21 ± 2.56 

1.60 0.02 118.09 ± 4.96 

Benzoic acid  

0.06 6 × 10-4 3.80 ± 0.95 

0.50 5 × 10-3 31.91 ± 0.53 

33.39 0.33 75.36 ± 1.21 

Benzotriazole 

86.32 0.86 8.23 ± 0.03 

98.04 0.98 10.68 ± 0.65 

99.37 0.99 11.38 ± 0.23 

Ibuprofen 

0.08 8 × 10-4 23.22 ± 0.10 

0.32 3 × 10-3 32.91 ± 0.82 

0.79 8 × 10-3 89.03 ± 2.30 

Ketoprofen 

0.003 3 × 10-5 1.05 ± 0.10 

0.04 4 × 10-4 1.82 ± 0.11 

0.10 1 × 10-3 2.84 ± 0.07 

Lidocaine 

1.24 0.01 33.99 ± 2.05 

24.02 0.24 91.09 ± 3.14 

61.24 0.61 123.30 ± 1.89 
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Moreover, the flux values were statistically analysed using One-way ANOVA, and 

the calculated p-values for each compound are displayed in Table 3.2.    

 

Table 3.2: p-values calculated using ANOVA test for each compound 

Drug p-values 

1-methyl-3-phenylpropylamine 0.000 

Benzoic acid 0.000 

Benzotriazole 0.000 

Ibuprofen 0.000 

Ketoprofen 0.000 

Lidocaine 0.000 

 

 

 The p-values (Table 3.2) demonstrate that for all compounds a change in fraction 

unionised resulted in a significant change (p < 0.05) in their flux across PDMS membrane. 

Considering the data in Table 3.1, a trend similar to Smith and Irwin 2000 was observed for 

that discussed above, i.e. from comparative consideration of the amount permeated with 

percentage unionised, as all experiments of the study were conducted for seven hours. Again, 

the relationship between fraction unionised and flux was predominantly linear with the one 

exception of benzoic acid where the intermediate fraction of unionised solution seemed to 

show greater flux than expected. This anomaly was unexpected although the general trend 

was similar to that of the remaining compounds. One factor that can certainly be excluded 

from consideration is membrane thickness as this was consistent throughout the study, the 

importance of the consistency of membrane thickness has been mentioned by others (Firpo 

et al.  2015). Overall it can be concluded that steady-state flux increases as the percentage of 

unionised compound increases.           

  



 
67 

3.2.2 iGC SEA membrane surface analysis 

  The BET Specific Surface Area (BET-SSA) of PDMS membrane was determined 

with the adsorption of ethanol molecules by DVS (Dynamic Vapour Sorption) method. To 

calculate the BET specific surface area, the BET equation was employed (Eq. 3.1). 

1

𝑛 [(
𝑝0

𝑝 ) − 1]
=  

𝑐 − 1

𝑛𝑚𝑐
(

𝑝

𝑝0
) + 

1

𝑛𝑚𝑐
… … … … … … … . . (3.1) 

where, 𝑝 and 𝑝0 are the equilibrium and saturation pressure of adsorbates at the temperature 

of adsorption, 𝑛 is the adsorbed gas amount, 𝑛𝑚 is the monolayer adsorbed gas amount, 𝑐 is 

sorption constant. This equation is an adsorption isotherm and a straight line was taken by 

plotting  𝑝/𝑝0 versus 
1

𝑛[(
𝑝0
𝑝

)−1]
 (data not shown). The sorption constant (c) and the monolayer 

capacity (𝑛𝑚) were calculated from the slope and intercept of the line. The surface area was 

determined by the following equation: 

𝑆𝐵𝐸𝑇 =  
(𝑛𝑚𝑁𝐴𝑣𝑎)

𝑉𝑚
… … … … … … … … … (3.2) 

where, 𝑛𝑚 is the monolayer adsorbed gas amount, 𝑁𝐴𝑣 is the Avogadro’s number, 𝑎 is the 

adsorption cross section of the adsorbing species, 𝑉 is the molar volume of adsorbed gas and 

𝑚 is the mass of adsorbent (in g). 

The results are presented in Table 3.3.  

Table 3.3: Specific surface area data for PDMS membrane using iGC 

 

The dispersive (s
d), acid-base (s

ab) and total surface energy (s
t) profiles of the membrane 

are shown in Fig. 3.13. The profiles show that the sample is energetically heterogeneous, i.e. 

Sorption constant 
Monolayer capacity 

(cm3/g) 

BET Specific Surface 

Area (m2/g)  
R2 

5.832 2.061 19.560 0.999 
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the surface energy changed as a function of surface coverage with a major contribution from 

the dispersive component. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.13: Surface energy profiles (as a function of surface coverage) of PDMS membrane 

 

 

 To represent the heterogeneity of the sample in a more illustrative manner, the surface 

energy distributions were obtained by a point-by-point integration of the surface energy 

profiles, resulting in plots of s
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ab and s
t surface energy versus percentage of surface (area 

increment), as shown in Fig. 3.14. As expected, the energetically heterogeneous membrane 

has a wide variation of surface active sites. Fig. 3.14 shows that the membrane exhibits a 

relatively wide range of  s
d distribution, ranging from 10.12 to 30.19 mJ/m2 and with a mean 

value of 13.88 mJ/m2.   
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Fig. 3.14: Dispersive surface energy distribution for PDMS membrane 

 

 

 Furthermore, the specific (acid-base) Gibbs free energy of adsorption (∆Gsp) changed 

with surface coverage, again confirming the heterogeneous nature of the membrane. The 

∆Gsp profiles, resulted from the interactions of the membrane with five polar probe 

molecules, are shown in Fig. 3.15. From analysing the interactions with the polar probe 

molecules the rank order of decreasing ∆Gsp was found to be acetonitrile > ethanol > 

dichloromethane > acetone > ethyl acetate although the membrane showed only a relatively 

small degree of interactions with all five probes.  
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Fig. 3.15: Specific (acid-base) free energy of different solvents for PDMS membrane 

 

 The surface chemistry of the membrane was assessed by Gutmann acid (Ka) and base 

(Kb) numbers, determined using the following probes: dichloromethane, ethyl acetate, 

acetonitrile and chloroform. Ka and Kb values of the membrane were calculated using the 

∆Gsp values of the polar probes at the particular surface coverage (Fig. 3.16). It can be seen 

that Kb values are consistently higher than Ka. These results indicate that the surface of PDMS 

membrane is basic in nature and possesses a high concentration of electron-donating surface 

functional groups. These can be the Lewis bases in the form of bridging oxygen atoms in Si-

O-Si backbone. Moreover, there may be some residual un-substituted hydroxyl groups from 

the manufacturing process (based on the chemistry of the material).    
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Fig. 3.16: Gutmann acid and base number profiles of PDMS membrane 

 

  The above-mentioned findings can be linked with the previously discussed 

permeation data to elucidate why it was always the more unionised form of a compound that 

favoured permeation. This can be explained in terms of the iGC data which indicated the 

basicity of the PDMS surface. Thus it can be expected that the basic surface would repel the 

ionised form of the acid compounds (benzoic acid, benzotriazole, ibuprofen and ketoprofen) 

and weakly bond the ionised form of basic compounds (1-methyl-3-phenylpropylamine and 

lidocaine). In either case, the ionised form of a compound would be less inclined to permeate 

through the basic membrane surface than the unionised form.      
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3.3 Conclusion 

The results confirm that permeation has a dependence on compound ionisation. 

Permeation experiments of six compounds were carried out using PDMS membrane, with 

each compound at three specific percentages of ionisation. The surface energetics and surface 

chemistry of the membrane were determined using iGC SEA. The iGC data showed that the 

membrane is energetically heterogeneous and more basic in nature.  

From considering the combined results of the permeation study and iGC SEA it can 

be seen that data presented based on permeation suggests there is a general preference for 

permeation for the most unionised forms for all compounds. Based on these findings it can 

be concluded that the overall hydrophobic nature of PDMS membrane outweighs the effects 

of any surface groups that might be present. Alternatively, there might be the existence of a 

peripheral layer of basic groups that creates an electrostatic attraction or repulsion for the 

ionised species of compounds, thus hindering their permeation. In either case, the permeation 

would be more favourable for the more unionised form of a compound notwithstanding the 

presence of a basic membrane surface.     
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Chapter 4: Effect of surfactant type on the permeation of 

pharmaceutical compounds through silicone membrane 

  

This chapter examines the effects of different surfactants on drug permeation across 

polydimethylsiloxane (PDMS) membrane. Four model compounds were investigated to 

determine their permeation through PDMS in the presence of four types of surfactants, 

namely, anionic, cationic, non-ionic and zwitterionic surfactants.          

 

4.1 Introduction 

Pharmaceutical formulations often include excipients that are known to have human 

skin penetration effects (HSPE). Some examples of these excipients are terpenes (Kang et al.  

2007), pluronic gels (Escobar-Chávez et al.  2005), fatty acid esters (Casiraghi et al.  2012), 

nanoemulsions (Barakat et al.  2011) and liposomes (Bouwstra & Honeywell-Nguyen 2002). 

Another class of compounds that are known to alter skin permeation is surfactants (Walters 

et al.  1993; Shokri et al.  2001) where they intercalate with the continuous lipid region of 

stratum corneum, thus facilitating fluidity. A number of studies has reported their use to 

enhance transdermal permeation of compounds. One of the studies was carried out by Borras-

Blasco et al. (1997) which estimated the influence of an anionic surfactant, namely sodium 

lauryl sulphate (SLS), on the penetration of seven model compounds of a wide range of 

lipophilicities across rat skin, and they found SLS to be a penetration enhancer depending on 

the lipophilicities of the compounds. Some other studies were carried out to examine the 

penetration effect of cationic surfactant such as CTAB (cetyltrimethylammonium bromide) 

and non-ionic surfactant such as Tween 80. For example, Nokhodchi et al. (2003) 

investigated the effect of CTAB and Tween 80 on Lorazepam permeation across rat skin and 

observed a significant enhancement caused by both of the surfactants. Zwitterionic 
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surfactants such as CHAPS have been reported to enhance mannitol permeability across 

Caco-2 cells, an in vitro model for mimicking intestinal mucosa (Nerurker et al.  1996). 

Nevertheless in some circumstances surfactants were observed to initiate only a minimal 

enhancement. One such study approached an attempted enhancement of methotrexate 

permeation using a variety of surfactants, where SLS did not produce a substantial 

enhancement effect (Javadzadeh & Hamishehkar 2011). To summarise, the presence of 

surfactants, along with other factors, are known to alter compound permeation across 

biological membranes, though little research has investigated the impact of such changes 

with respect to silicone membrane – a widely accepted artificial in vitro skin mimic. One 

particular study has investigated the effect of two surfactants, namely sodium dodecyl sulfate 

and Brij 35, on the permeation of methylparaben and ethylparaben through silicone 

membrane (Waters et al.  2013).  The paraben derivatives, considered in the study, are widely 

used excipients in cosmetic and pharmaceutical products. However, the study found a 

reduction in paraben permeation in the presence of SDS (an anionic surfactant) whereas Brij 

35 (a non-ionic surfactant) did not show any significant effect. Whether a similar relationship 

would be observed for a range of surfactants such as cationic or zwitterionic types, or a range 

of therapeutic compounds was not considered. Hence, this study investigates the permeation 

of a range of therapeutic compounds through silicone membrane in the presence of four types 

of surfactants.                      

 

4.2 Results and discussion 

A set of four model compounds were examined to assess the permeation effect of 

different surfactants across silicone (PDMS) membrane. The model compounds were 

benzocaine, benzotriazole, ibuprofen and lidocaine. These compounds were selected because 

of their diverse range of lipophilicities ranging from a log P of 1.2 for benzotriazole (Hart et 
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al.  2004) to 3.6 for ibuprofen (Waters & Bhuiyan 2016). The surfactants selected for this 

study were SDS (an anionic surfactant), CTAB (a cationic surfactant), CHAPS (a zwitterionic 

surfactant), Brij 35 and Tween 80 (non-ionic surfactants) i.e. to encompass all four types. 

As a control, the permeation of the model compounds through silicone membrane 

were assessed at 32 °C with no surfactant present in the donor solution over a period of 6 

hours. Three additional solutions were then prepared containing the surfactants at three 

different concentrations (4, 8 and 20 mM for SDS, CTAB, Brij 35 and Tween 80, and 2, 4 

and 20 mM for CHAPS) and the permeation of the model compounds were measured. In all 

cases, the donor solution pH was 7.4. The concentrations of the surfactants were chosen to 

be, where suitable , either below, equal or above the critical micellar concentration (CMC). 

The CMCs of the surfactants considered for this study were 8 mM for SDS (Waters et al.  

2013), 0.83 mM for CTAB (Prazeres et al.  2012), 0.09 mM for Brij 35, 0.012 mM for Tween 

80 (Chou et al.  2005) and 4-6 mM for CHAPS (Chattopadhyay & Harikumar 1996). Two 

permeation parameters i.e. steady-state flux (𝐽) and the cumulative amount of compound 

permeated after 6 hours (Q6) were calculated from the data obtained using a flow-through 

diffusion cell system and are summarised in Table 4.1, 4.2, 4.5 and 4.6. The steady-state flux 

(𝐽) values of the compounds were analysed statistically using One-way ANOVA, and the 

calculated p-values for each compound and surfactant are presented in Table 4.3 and 4.4. The 

p-values in Table 4.3 reflect whether there is a difference in compound permeation owing to 

a change in surfactant concentration, and that in Table 4.4 shows whether the variability in 

surfactant types caused a significant difference in compound permeability.  
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Table 4.1: Steady-state flux values of four model compounds in the presence of SDS, CTAB, 

Brij 35 and Tween 80 across silicone membrane 

* To examine the permeation effect of Tween 80, only three model compounds, namely, benzocaine, 

ibuprofen and lidocaine, were studied. Benzotriazole was not studied in this instance. This is because 

the purpose of using Tween 80 was only to confirm the phenomenon associated with Brij 35 

(discussed later in this chapter).      

 

C
o
m

p
o
u
n
d

 

S
u
rf

ac
ta

n
t Steady-state flux (µg/cm2/h) of compound at three different surfactant 

concentrations 

0 mM (control) 4 mM 8 mM 20 mM 

B
en

zo
ca

in
e 

SDS 97.92 ± 2.22 89.80 ± 1.70 89.16 ± 0.85 62.87 ± 1.84 

CTAB 104.59 ± 3.22 70.77 ± 6.79 56.71 ± 2.94 38.82 ± 5.48 

Brij 35 102.07 ± 6.88 77.54 ± 5.67 63.29 ± 2.61 43.36 ± 1.15 

Tween 

80 
106.66 ± 3.15 78.50 ± 0.55 65.33 ± 1.72 43.34 ± 0.40 

B
en

zo
tr

ia
zo

le
 *

 

SDS 18.33 ± 0.80 17.94 ± 0.43 13.75 ± 0.23 12.21 ± 0.26 

CTAB 9.96 ± 0.58 9.51 ± 0.27 8.00 ± 0.25 6.88 ± 0.23 

Brij 35 13.30 ± 0.09 13.04 ± 0.73 10.62 ± 0.43 9.58 ± 0.37 

Ib
u
p
ro

fe
n

 

SDS 26.25 ± 1.95 27.53 ± 1.40 23.37 ± 1.27 21.29 ± 1.55 

CTAB 21.15 ± 1.46 9.82 ± 0.55 5.12 ± 0.75 2.37 ± 0.31 

Brij 35 31.00 ± 1.83 26.50 ± 1.69 17.49 ± 0.12 12.29 ± 0.33 

Tween 

80 
28.20 ± 1.48 21.53 ± 1.25 14.76 ± 0.55 9.96 ± 0.17 

L
id

o
ca

in
e 

SDS 69.70 ± 1.12 43.07 ± 1.70 31.69 ± 3.10 13.54 ± 1.08 

CTAB 56.98 ± 6.64 52.93 ± 4.63 47.77 ± 6.77 37.66 ± 3.23 

Brij 35 64.84 ± 3.66 66.96 ± 3.09 60.48 ± 4.07 57.44 ± 2.57 

Tween 

80 
60.05 ± 0.92 65.14 ± 8.52 61.23 ± 5.74 44.45 ± 1.00 
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Table 4.2: Steady-state flux values of the model compounds in the presence of CHAPS 

across silicone membrane  

 

In an ideal condition, all donor solutions of the same penetrant should yield an 

identical steady-state flux across a membrane, not depending on the composition of the 

vehicle, provided that the formulation components do not interact with the membrane (Dias 

et al.  2007). Therefore, the steady-state flux of a compound from donor solutions from any 

of the surfactant-containing vehicles would be anticipated to be same. However, the data 

presented in Table 4.1 and 4.2 demonstrate that the flux values of the penetrants are not 

identical. This indicates that the situations were not ideal and, approximately in all cases, 

interactions between either surfactant and membrane, or drug and surfactant were observed 

that could possibly alter the compound flux across the membrane. These types of interactions 

can be affected by the choice of surfactant concentration and surfactant types. The p-values 

in Table 4.3 show the evidence of a significant difference in permeation owing to a change 

in surfactant concentration whereas Table 4.4 indicates that compound permeation can also 

be affected by different surfactant types. 

 

 

 

 

C
o
m

p
o
u
n
d

 

S
u
rf

ac
ta

n
t Steady-state flux (µg/cm2/h) of compound at three different 

concentrations of CHAPS 

0 mM 

(control) 
2 mM 4 mM 20 mM 

Benzocaine CHAPS 107.95 ± 3.99 105.10 ± 6.75 106.75 ± 5.42 87.53 ± 4.10 

Benzotriazole CHAPS 10.46 ± 0.53 10.14 ± 0.51 9.45 ± 0.26 9.47 ± 0.18 

Ibuprofen CHAPS 32.13 ± 1.12 32.48 ± 1.76 18.50 ± 0.39 9.90 ± 1.93 

Lidocaine CHAPS 55.28 ± 6.64 54.68 ± 3.73 52.62 ± 3.05 49.94 ± 4.01 
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Table 4.3: p-values calculated using ANOVA test for each compound and surfactant 

Compound Surfactant  p-values 

Benzocaine SDS 0.000 

CTAB 0.000 

Brij 35 0.000 

CHAPS 0.004 

Tween 80 0.000 

Benzotriazole SDS 0.000 

CTAB 0.000 

Brij 35 0.000 

CHAPS 0.035 

Ibuprofen SDS 0.005 

CTAB 0.000 

Brij 35 0.000 

CHAPS 0.000 

Tween 80 0.000 

Lidocaine SDS 0.000 

CTAB 0.012 

Brij 35 0.034 

CHAPS 0.510 

Tween 80 0.006 
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Table 4.4: p-values calculated using ANOVA test for each compound and surfactant (20 

mM) 

 SDS  CTAB  CHAPS  Brij 35  Tween 80  

SDS    

B: 0.002 

BT: 0.000 

I: 0.000 

L: 0.000 

B: 0.001 

BT: 0.000 

I: 0.001 

L: 0.000 

B: 0.000 

BT: 0.001 

I: 0.001 

L: 0.000 

B: 0.000 

I: 0.000 

L: 0.000 

CTAB  

B: 0.002 

BT: 0.000 

I: 0.000 

L: 0.000 

 

B: 0.000 

BT: 0.000 

I: 0.003 

L: 0.015 

B: 0.233 

BT: 0.000 

I: 0.000 

L: 0.001 

B: 0.228 

I: 0.000 

L: 0.025 

CHAPS  

B: 0.001 

BT: 0.000 

I: 0.001 

L: 0.000 

B: 0.000 

BT: 0.000  

I: 0.003 

L: 0.015 

  

B: 0.000 

BT: 0.686 

I: 0.102 

L: 0.053 

B: 0.000 

I: 0.962 

L: 0.083 

Brij 35  

B: 0.000 

BT: 0.001 

I: 0.001 

L: 0.000 

B: 0.233 

BT: 0.000 

I: 0.000 

L: 0.001 

B: 0.000 

BT: 0.686 

I: 0.102 

L: 0.053 

  

B: 0.972 

I: 0.000 

L: 0.001 

Tween 80  

B: 0.000 

I: 0.000 

L: 0.000 

B: 0.228 

I: 0.000 

L: 0.025 

B: 0.000 

I: 0.962 

L: 0.083 

B: 0.972 

I: 0.000 

L: 0.001 

  

B, Benzocaine; BT, Benzotriazole; I, Ibuprofen; L, Lidocaine. 

 

  

To understand the effect of individual surfactant type and concentration, the 

cumulative amount of compound permeated after 6 h were tabulated in Table 4.5 and 4.6. It 

can be seen from these tables that the amount of the model compounds permeated after 6 

hours varies with a change in surfactant concentration and type. Moreover, permeability 

profiles were shown as percentage permeated after 6 h, graphically, in Figs. 4.1 – 4.4 in an 

attempt to provide a comprehensive understanding of the relationship between the surfactant 

concentration and the reduction in the amount permeated. In all of the figures (Figs. 4.1 – 

4.4) the amount permeated after 6 h for the control solution was considered 100 %, and then 

the calculations for other solutions were performed accordingly. The data from all 

calculations are shown in Tables 4.7 and 4.8. Such presentations offer a convenient way of 
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comparing different active compounds in terms of the effect on their permeation by a 

surfactant.      

 

Table 4.5: The values of cumulative amount permeated after 6 hours (Q6) of four model 

compounds in the presence of various surfactants across PDMS membrane  

 

 

C
o
m

p
o
u
n
d

 

S
u
rf

ac
ta

n
t Q6 values (µg/cm2) of compound at three different surfactant 

concentrations 

0 mM 

(control) 
4 mM 8 mM 20 mM 

B
en

zo
ca

in
e 

SDS 570.65 ± 13.00 526.98 ± 11.19 520.29 ± 4.56 
370.01 ± 

10.93 

CTAB 611.95 ± 20.24 412.35 ± 37.75 336.94 ± 17.46 
229.99 ± 

31.91 

Brij 35 600.99 ± 39.63 456.40 ± 32.33 372.96 ± 14.80 257.46 ± 6.52 

Tween 

80 
 627.31 ± 19.04  461.77 ± 3.21  386.27 ± 10.18  257.13 ± 2.28 

B
en

zo
tr

ia
zo

le
 

SDS 110.80 ± 3.90 108.55 ± 2.60 83.72 ± 1.33 74.63 ± 1.24 

CTAB 60.06 ± 3.23 57.66 ± 2.03 48.92 ± 1.40 41.99 ± 1.41 

Brij 35 80.90 ± 0.64 79.45 ± 4.24 64.79 ± 2.29 58.10 ± 2.22 

Ib
u
p
ro

fe
n

 

SDS 155.67 ± 10.95 163.60 ± 8.24 138.18 ± 6.53 126.20 ± 9.45 

CTAB 126.09 ± 8.67 60.67 ± 3.51 31.88 ± 4.27 15.23 ± 1.80 

Brij 35 185.47 ± 10.62 158.84 ± 10.30 105.09 ± 0.51 74.88 ± 2.15 

Tween 

80 
  167.61 ± 8.62 127.94 ± 7.75  87.54 ± 3.07  59.84 ± 1.10 

L
id

o
ca

in
e 

SDS 410.35 ± 8.29 253.74 ± 11.36 187.76 ± 17.99 81.17 ± 6.68 

CTAB 333.97 ± 37.25 314.68 ± 27.91 283.63 ± 41.67 
221.73 ± 

20.32 

Brij 35 380.52 ± 22.63 394.04 ± 18.87 354.49 ± 24.16 
337.36 ± 

15.73 

Tween 

80 
352.27 ± 5.62  383.75 ± 51.90  359.09 ± 34.18  258.94 ± 5.46 
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Table 4.6: The values of cumulative amount permeated after 6 hours (Q6) of four model 

compounds in the presence of CHAPS across PDMS membrane  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C
o
m

p
o
u
n
d

 

S
u
rf

ac
ta

n
t Q6 values (µg/cm2) of compound at three different 

concentrations of CHAPS 

0 mM 

(control) 
2 mM 4 mM 20 mM 

Benzocaine CHAPS 635.17 ± 23.38 617.92 ± 41.17 630.04 ± 31.97 
517.98 ± 

24.85 

Benzotriazole CHAPS 62.59 ± 3.57 61.18 ± 3.07 56.85 ± 1.67 
56.72 ± 

1.16 

Ibuprofen CHAPS 188.30 ± 7.40 194.57 ± 10.60 109.94 ± 1.93 
59.05 ± 

11.19 

Lidocaine CHAPS 322.81 ± 39.99 318.98 ± 21.29 308.78 ± 19.19 
293.14 ± 

24.37 
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Table 4.7: The values of percentage (%) permeated after 6 h of four model compounds in 

the presence of various surfactants across PDMS membrane  

 

 

 

 

 

 

C
o
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d

 

S
u
rf

ac
ta

n
t % permeated of compound after 6 h at three different surfactant 

concentrations 

0 mM 

(control) 
4 mM 8 mM 20 mM 

B
en

zo
ca

in
e
 

SDS 100 ± 2.28 92.35 ± 1.96 91.17 ± 0.80 64.84 ± 1.92 

CTAB 100 ± 3.31 67.38 ± 6.17 55.06 ± 2.85 37.58 ± 5.21 

Brij 35 100 ± 6.59 75.94 ± 5.38  62.06 ± 2.46 42.84 ± 1.08 

Tween 

80 
     100 ± 3.04     73.61 ± 0.51    61.58 ± 1.62  40.99 ± 0.36 

B
en

zo
tr

ia
zo

le
 

SDS 100 ± 3.52 97.97 ± 2.35 75.56 ± 1.20 67.36 ± 1.12 

CTAB 100 ± 5.38 96.00 ± 3.38 81.45 ± 2.33 69.91 ± 2.35 

Brij 35 100 ± 0.79  98.21 ± 5.24  80.09 ± 2.83 71.82 ± 2.74 

Ib
u
p
ro

fe
n

 

SDS 100 ± 7.03 105.09 ± 5.29 88.76 ± 4.19 81.07 ± 6.07 

CTAB 100 ± 6.88 48.12 ± 2.78 25.28 ± 3.39 12.08 ± 1.43 

Brij 35 100 ± 5.73 85.64 ± 5.55 56.66 ± 0.27 40.37 ± 1.16 

Tween 

80 
     100 ± 5.14    76.33 ± 4.62    52.23 ± 1.83 35.70 ± 0.66 

L
id

o
ca

in
e 

SDS 100 ± 2.02 61.84 ± 2.77 45.76 ± 4.38 19.78 ± 1.63 

CTAB 100 ± 11.15  94.22 ± 8.36 84.93 ± 12.48 66.39 ± 6.08 

Brij 35 100 ± 5.95 103.55 ± 4.96 93.16 ± 6.35 88.66 ± 4.13 

Tween 

80 
     100 ± 1.60 108.94 ± 14.73 101.94 ± 9.70 73.22 ± 1.55 
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Table 4.8: The values of % permeated after 6 hours of four model compound in the presence 

of CHAPS across PDMS membrane  

 

In the first set of experiments, permeation of benzocaine, benzotriazole, ibuprofen 

and lidocaine through silicone membrane from the donor solutions containing SDS (an 

anionic surfactant) at three different concentrations (4, 8 & 20 mM) were evaluated. It can 

be seen in Fig. 4.1, and also in Table 4.3, that the presence of the anionic surfactant 

significantly (p < 0.05) affected the transport of all compounds over a period of 6 h with the 

lowest percentage permeated observed at the highest concentration of surfactant examined.  

Overall, the results here would indicate that the reduction in the amount permeated is 

directly related to the concentration of surfactant. These results are similar to the findings of 

a recent study where Waters and co-researchers reported a decrease in the permeation of 

paraben derivatives with an increase in SDS concentration in the donor solution (Waters et 

al.  2013).  It can be seen in Fig. 4.1 that the maximum reduction in permeation of each 

compound resulted from 20 mM SDS being present in the donor compartment, with lidocaine 

experiencing a reduction of 80.22 %, being the highest when compared with other model 

compounds, and ibuprofen having a reduction of 18.93 %, being the lowest.  
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S
u
rf

ac
ta

n
t % permeated of compounds after 6 h at three different 

concentrations of CHAPS 

0 mM 

(control) 
2 mM 4 mM 20 mM 

Benzocaine CHAPS 100 ± 3.68 97.28 ± 6.48 99.19 ± 5.03 
81.55 ± 

3.91 

Benzotriazole CHAPS 100 ± 5.70 97.75 ± 4.90 90.83 ± 2.67 
90.62 ± 

1.85 

Ibuprofen CHAPS 100 ± 3.93 103.33 ± 5.63 58.39 ± 1.02 
31.36 ± 

5.94  

Lidocaine CHAPS 100 ± 12.39  98.81 ± 6.60 95.65 ± 5.94 
90.81 ± 

7.55 
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Fig. 4.1: Effect of the presence of SDS on compound permeation across PDMS membrane 

  

The other noticeable phenomenon in Fig. 4.1 is that the permeability profiles of 

benzocaine, benzotriazole, and ibuprofen, position themselves, more likely, to be part of a 

group whereas lidocaine is very distinctive in this regard. Therefore, the scenario suggests 

that SDS is behaving differently to two groups which can be based on their physicochemical 

properties. From the physicochemical perspective, lidocaine is basic in nature whereas the 

other three compounds are acidic. Thus, upon ionisation in buffer solution, lidocaine 

produces cations while benzocaine, benzotriazole, and ibuprofen, produce anions. Hence, the 

compounds, in donor solutions, would exist as ionised (charged) species and unionised 

(neutral) species. As PDMS membrane is predominantly hydrophobic in nature, only the 

neutral species can pass through the membrane while the charged species stay in the donor 

solution. Although both the neutral and charged (anionic and cationic) species can interact 

with SDS, the interaction of SDS with an anion could not be the same to that with a cation, 

and this variation might result in the compounds experiencing a dissimilar effect from SDS.         

0.00

20.00

40.00

60.00

80.00

100.00

120.00

0 2 4 6 8 10 12 14 16 18 20 22

%
 p

er
m

ea
te

d
 a

ft
er

 6
 h

SDS concentration (mM)

Benzocaine Benzotriazole Ibuprofen Lidocaine



 
88 

From the above discussion, it is clear that the influence on compound permeability 

can result from a multidimensional interaction or a mixture of interactions, such as, 

surfactant-membrane, and/or surfactant-drug interaction. One study suggested surfactant-

membrane interaction to be a triggering factor in the reduction of compound permeation 

(Waters et al.  2013). Their study assumed that the hydrophobic tail of SDS was submerged 

within PDMS membrane, thus, resulting in the charged head group exposed to the donor 

solution. Therefore, they proposed that the SDS impregnated membrane surface create a 

negatively charged environment which would, in turn, repel the neutral species of compound. 

Their study also, similar to this study, found 20 mM SDS to produce a greater hindrance in 

permeation than all others (0, 4 and 8 mM SDS) which, they suggested, is because of the 

coexistence of free monomer, monomer-membrane surface interactions and micellisation. It 

is noticeable that the above-mentioned mechanisms offer a comprehensive explanation of 

SDS effect on the overall reduction in compound permeation. However, the fact that SDS 

produces a dissimilar effect for different compounds cannot be addressed by applying these 

mechanisms. Therefore, a detailed look at surfactant-drug or surfactant-membrane 

interactions would be necessary.  

As mentioned above, only the unionised form of compound can permeate through 

PDMS membrane. Thus, the extent of permeation depends on the availability of compounds 

in their unionised form in the donor compartment of the diffusion cell. In a solution, an 

equilibrium exists between unionised and ionised forms while maintaining a specific ratio 

between two forms depending on the pH of the solution. For example, in a buffer solution of 

pH 7.4, ibuprofen would have 0.32 % of total as neutral (unionised) and 91.68 % as anionic 

(ionised) species whereas lidocaine would have 24.02 % as neutral and 75.98 % as cationic 

species. This ratio gives the actual percentage of species in the donor solution, provided that 

they do not interact with other components such as surfactant. However, this might not be 
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the case for lidocaine. As lidocaine produces cations in the solution, a portion of these ions 

might weakly bond the anionic head groups of SDS. In other words, a portion of cationic 

lidocaine molecules, from the bulk solution, will migrate to the SDS-submerged membrane 

surface. Therefore, to maintain the equilibrium ratio between two species (ionised and 

unionised) in the bulk solution a certain number of unionised species would be converted to 

the ionised form which, in turn, decrease the number of neutral (unionised) lidocaine 

molecules available to diffuse through the membrane. In the case of a micellar surfactant 

solution, an additional interaction can happen where cationic lidocaine species interact with 

SDS head groups in the micelles thus further decreasing the number of neutral lidocaine 

molecules that would pass through the membrane. In both cases, the permeation of lidocaine 

would be further reduced. These scenarios might not be observed for benzocaine, 

benzotriazole and ibuprofen, as upon ionisation they produce anions which would be repelled 

by the SDS head group, and stay in the bulk solution i.e. the equilibrium ratio of ionised and 

unionised forms would not be affected.  

A second type of surfactant was investigated in this study, namely a cationic 

surfactant, cetyltrimethylammonium bromide (CTAB). Fig. 4.2 shows the permeability 

profiles of the compounds in the presence of CTAB. Fig. 4.2, along with the p-values (< 0.05) 

from Table 4.3, clearly indicate that the compound fluxes were significantly influenced by 

the cationic surfactant being present in the donor solution.    
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Fig. 4.2: Effect of the presence of CTAB on compound permeation across PDMS membrane 

 

Such an effect of CTAB was hypothesised in a study by Waters and co-researchers 

(Waters et al.  2013) where they assumed that CTAB would reduce the transport of paraben 

derivatives (the model compounds considered in their study) across PDMS membrane. Their 

hypothesis stated that CTAB would create a positively charged membrane surface i.e. the 

hydrophobic tail of CTAB would be submerged within PDMS membrane thus exposing the 

cationic head group to the donor solution, and consequently, this would reduce the likelihood 

of the permeation of neutral paraben molecules through the membrane. The same mechanism 

could be observed in this study. In other words, the positively charged CTAB-submerged 

membrane surface could repel the compound molecules away from the membrane resulting 

in an overall reduction in permeation. As mentioned earlier (in the case of SDS), though this 

mechanism may explain the reduction of compound permeation in general, it cannot clarify 

the inter-difference amongst the compounds in terms of percentage reduced. It can be seen 
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from Fig. 4.2 that the percentage of the amount reduced by CTAB is different for each 

compound.  

Although both SDS and CTAB create a barrier effect in compound permeability, the 

overall trend they follow is different. From Fig. 4.1 and 4.2, if the percentages of overall 

reduction are placed in an order, then for CTAB the order appears as ibuprofen > benzocaine 

> lidocaine > benzotriazole whereas, for SDS it becomes lidocaine > benzocaine > 

benzotriazole > ibuprofen. In general, the reduction effect of both these surfactants on 

compound permeation is different for each drug. Previously, it was mentioned that the 

difference produced by SDS was due to the interaction between its anionic head groups and 

ionised compound species in the donor solution. In the case of CTAB, the difference in 

compound reduction can be the result of the interaction between its cationic head groups and 

ionised species of the compounds. To explain, it can be assumed that the hydrophobic regions 

of CTAB are submerged in PDMS membrane thus exposing the cationic head groups to the 

donor solution and making a positively charged membrane surface. A portion of anionic 

species, which are formed upon ionisation of acid compounds, may migrate to the positively 

charged membrane surface, and weakly bond the cationic head groups of CTAB. 

Consequently, to maintain the equilibrium ratio between ionised and unionised forms of acid 

compounds in the bulk solution, a number of unionised species are converted to the ionised 

(anionic) species, thus, decreasing the total available number of neutral molecules to be 

transported across the membrane. In the case of a micellar solution, the number of neutral 

molecules can be further decreased because of the interaction between the anionic form of 

the compound and the cationic head group of CTAB. In both scenarios, the compound would 

experience a reduction in transport through membrane. However, the aforementioned 

circumstances may not be observed for lidocaine as it forms a cation upon ionisation which 

is repelled by the cationic CTAB head. Unexpectedly, though benzotriazole forms an anion 
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upon ionisation, it was not affected by the scenarios mentioned above. This may be the result 

of a complex chemical interaction which is currently unclear and the focus of current study. 

The third type of surfactant, investigated in this study, was a zwitterionic surfactant, 

namely CHAPS. The effect of CHAPS on compound permeation is shown in Fig. 4.3.                            

Fig. 4.3: Effect of the presence of CHAPS on compound permeation across PDMS 

membrane 

It appears that the overall permeation of compounds, except for ibuprofen, was not 

significantly affected by CHAPS. It is also observable that the permeation of ibuprofen was 

reduced only in the presence of CHAPS being present at, and above its CMC which is 4 mM. 

At 2 mM, i.e. below the CMC, CHAPS did not affect ibuprofen permeation. This may be the 

result of an interaction between the ibuprofen molecules and CHAPS micelles as upon 

reaching the CMC, the surfactant forms micelles. The formation of surfactant micelles creates 

a hydrophobic core which contains the hydrophobic regions of surfactant. One study reported 

that the hydrophobic core of micelles can strongly interact with hydrophobic molecules and 

entrap them inside the core (Tehrani-Bagha & Holmberg 2013). A similar mechanism can be 
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observed in this study where ibuprofen, with a log P value of 3.6, strongly interacted with the 

hydrophobic core of CHAPS micelles and became trapped inside them thus reducing the 

number of ibuprofen molecules available to cross through PDMS membrane. Consequently, 

there would be a reduction in ibuprofen permeation. As the other three compounds are 

relatively less hydrophobic, they might not as strongly interact with CHAPS micelles and 

hence, their fluxes would not be significantly affected. 

This study also investigated the effect of a non-ionic surfactant, namely Brij 35, on 

drug transport across PDMS membrane. The results (Fig. 4.4 and Table 4.8) indicate that the 

presence of this non-ionic surfactant significantly retarded the overall transport of all 

compounds except for lidocaine. It can also be seen that the fluxes of lidocaine and 

benzotriazole remain unaffected in the case of 4 mM Brij 35.  

Fig. 4.4: Effect of the presence of Brij 35 on compound permeation across PDMS membrane 

Nevertheless, in general, an increase in the concentration of Brij 35 resulted in a 

decrease in the flux of the compounds. Interestingly, this finding appears to be different than 
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that observed in a recent study (Waters et al. 2013). In that study, Brij 35 was reported not to 

have a significant effect on compound permeation through PDMS membrane. The study 

considered paraben derivatives, namely, methylparaben and ethylparaben as model 

compounds. However, to investigate whether such an anomaly of Brij 35 effect results from 

its particular interaction with different model compounds based on their physicochemical 

properties, some relevant properties of all compounds from both studies, were tabulated and 

compared (Table 4.9). 

Table 4.9: The physicochemical properties1 of the model compounds  

Compound Log P 
Polar surface 

area (Å2) 

Free rotating 

bonds  

H bond 

acceptors 

H bond 

donors 

Methylparaben 1.87 47 2 3 1 

Ethylparaben 2.40 47 3 3 1 

Benzocaine 1.95 52 3 3 2 

Benzotriazole 1.34 42 0 3 1 

Ibuprofen 3.72 37 4 2 1 

Lidocaine 3.63 36 5 3 1 

1The physicochemical properties were generated from ACD/Labs, RSC, UK 

A closer look at Table 4.9 reveals that there is no observable pattern in the 

physicochemical characteristics of the compounds which could explain the anomaly in Brij 

35 effect on their permeation. Hence, further investigation, such as a calorimetric study of 

surfactant-compound interaction, could be useful and remains the focus of current study.  

However, to confirm if this phenomenon is a result of Brij 35 in particular (or a more 

broadly observed trend of non-ionic surfactant) a further study was carried out focusing on 

the permeation of three model compounds (benzocaine, ibuprofen and lidocaine) in the 

presence of another non-ionic surfactant, namely Tween 80.  
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Fig. 4.5: Effect of the presence of Tween 80 on compound permeation across PDMS 

membrane 

Fig. 4.5 clearly shows that the presence of this non-ionic surfactant retards the 

permeation of the compounds in a similar trend to that observed for Brij 35. Therefore, it can 

be inferred that this non-ionic surfactant does affect compound permeation. 

In summary, the current study demonstrates that all five surfactants investigated here 

had a significant effect on compound permeation. Comparing different concentrations of 

various surfactants, it is obvious from Table 4.1 that the solution containing 20 mM surfactant 

leads to the lowest flux of compound across PDMS membrane. However, while the 

surfactants show the greatest reduction effect at 20 mM, clear differences can be found in 

their effect at this concentration (Fig. 4.6). It also appears from Fig. 4.6 that among the four 

surfactants tested, CTAB facilitates the lowest flux in the case of all compounds, except for 

lidocaine – the lowest flux of lidocaine was obtained in the presence of SDS. The same trend 

was observed for the surfactants being present in the donor solution at a concentration of 4 

mM (figure not shown).       
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Fig. 4.6: Effect of the presence of surfactant (20 mM) on compound permeation across 

PDMS membrane 

 While the studies reported here demonstrate a phenomenon common to all 

surfactants, there was a clear difference in their effect on compound permeation through 

silicone membrane. Creating a detailed mechanistic picture of this difference would require 

an in-depth investigation of surfactant- compound -membrane interactions using techniques 

such as calorimetric techniques, and is the focus of a current study. 
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4.3 Conclusion 

The current study exhibits a wider perspective of surfactant effect on compound 

permeation across silicone membrane. The surfactants examined in this study appear to 

reduce the transport of four compounds through the membrane. Overall, there was an inverse 

relationship between surfactant present and the amount of compound permeated. It was also 

observable that the effect of surfactant on compound permeation was different for different 

surfactant types, and also for different compounds. This variance was thought to result from 

a variation in the interaction of the charged and neutral compound species with the surfactant 

head group, and/or the surface and core of the surfactant micelle. Comparing all four 

surfactants, CTAB appeared to facilitate the lowest flux of compound through silicone 

membrane.          

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
98 

References 

Barakat, N., Fouad, E. & Elmedany, A., 2011. Enhancement of skin permeation and anti-

inflammatory effect of indomethacin using microemulsion. Asian Journal of 

Pharmaceutics, 5(3), pp.141–149. 

Bouwstra, J.A. & Honeywell-Nguyen, P.L., 2002. Skin structure and mode of action of 

vesicles. Advanced Drug Delivery Reviews, 54, pp.41–55. 

Casiraghi, A., Grigoli, M., Cilurzo, F., Gennari, C.G.M., Rossoni, G. & Minghetti, P., 2012. 

The Influence of the Polar Head and the Hydrophobic Chain on the Skin Penetration 

Enhancement Effect of Poly(Ethylene Glycol) Derivatives. AAPS PharmSciTech, 

13(1), pp.247–253. 

Chattopadhyay, A. & Harikumar, K.G., 1996. Dependence of critical micelle concentration 

of a zwitterionic detergent on ionic strength: Implications in receptor solubilization. 

FEBS Letters, 391(1–2), pp.199–202. 

Chou, D.K., Krishnamurthy, R., Randolph, T.W., Carpenter, J.F. & Manning, M.C., 2005. 

Effects of Tween 20 and Tween 80 on the stability of Albutropin during agitation. 

Journal of Pharmaceutical Sciences, 94(6), pp.1368–1381. 

Escobar-Chávez, J.J., Quintanar-Guerrero, D. & Ganem-Quintanar, A., 2005. In vivo skin 

permeation of sodium naproxen formulated in Pluronic F-127 gels: effect of Azone 

and Transcutol. Drug Development and Industrial Pharmacy, 31, pp.447–54.  

Hart, D.S., Davis, L.C., Erickson, L.E. & Callender, T.M., 2004. Sorption and partitioning 

parameters of benzotriazole compounds. Microchemical Journal, 77(1), pp.9–17. 

Javadzadeh, Y. & Hamishehkar, H., 2011. Enhancing percutaneous delivery of 

methotrexate using different types of surfactants. Colloids and Surfaces B: 

Biointerfaces, 82(2), pp.422–426.  

Kang, L., Yap, C.W., Lim, P.F.C., Chen, Y.Z., Ho, P.C., Chan, Y.W., Wong, G.P. & Chan, 

S.Y., 2007. Formulation development of transdermal dosage forms: Quantitative 

structure-activity relationship model for predicting activities of terpenes that enhance 

drug penetration through human skin. Journal of Controlled Release, 120(3), pp.211–

219. 

Nerurker, M.M., Burton, P.S. & Borchardt, R.T., 1996. Effect of CHAPS (zwitterionic 

surfactant) on the permeation. Pharmaceutical research, 13(4), pp.528–534. 

Prazeres, T.J.V., Beija, M., Fernandes, F. V., Marcelino, P.G.A., Farinha, J.P.S. & 

Martinho, J.M.G., 2012. Determination of the critical micelle concentration of 

surfactants and amphiphilic block copolymers using coumarin 153. Inorganica 

Chimica Acta, 381, pp.181–187.  

Shokri, J., Nokhodchi, A., Dashbolaghi, A., Hassan-Zadeh, D., Ghafourian, T. & Barzegar 

Jalali, M., 2001. The effect of surfactants on the skin penetration of diazepam. 

International Journal of Pharmaceutics, 228(1–2), pp.99–107. 

Tehrani-Bagha, A.R. & Holmberg, K., 2013. Solubilization of hydrophobic dyes in 

surfactant solutions. Materials, 6(2), pp.580–608. 

Walters, K. a, Bialik, W. & Brain, K.R., 1993. The effects of surfactants on penetration 

across the skin. International journal of cosmetic science, 15(6), pp.260–71.  



 
99 

Waters, L.J. & Bhuiyan, A.K.M.M.H., 2016. Ionisation effects on the permeation of 

pharmaceutical compounds through silicone membrane. Colloids and Surfaces B: 

Biointerfaces, 141, pp.553–557.  

Waters, L.J., Dennis, L., Bibi, A. & Mitchell, J.C., 2013. Surfactant and temperature effects 

on paraben transport through silicone membranes. Colloids and Surfaces B: 

Biointerfaces, 108, pp.23–28.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
100 

Chapter 5: Prediction of the mechanism of the effect of surfactant 

on compound permeation through silicone membrane.  

 

This chapter aims to predict the mechanism behind the effect of surfactant on drug 

permeation through silicone membrane. Analytical techniques such as differential scanning 

calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy and scanning electron 

microscopy (SEM) were used to investigate the physicochemical properties of the untreated 

and surfactant-treated membrane whereas nuclear magnetic resonance (NMR) spectroscopy 

was used to examine the behaviour of two surfactants in the solution with or without the 

membrane being present.    

 

5.1 Introduction 

 As mentioned in Chapter 4, a previous study in our laboratory investigated the effects 

of two surfactants, namely, sodium dodecyl sulphate (SDS) and Brij 35, on the permeation 

of two paraben derivatives through PDMS membrane (Waters et al.  2013). The study found 

that the presence of SDS significantly reduced the permeation of the parabens, whereas the 

presence of Brij 35 had no substantial effect on their permeation. The authors postulated that 

SDS molecules were impregnated within the membrane creating a charged barrier, thus 

repelling the paraben molecules attempting to permeate, although the exact mechanism was 

yet to be confirmed using further analytical techniques.  

Surfactants are known to self-assemble into micelles upon reaching the critical 

micelle concentration (CMC) with a mixture of monomers and pre-micelles at concentrations 

lower than this value. A study by Khossravi proposed that surfactant reduced drug permeation 

by entrapping drug molecules within its micelles (Khossravi 1997), which may be analogous 

to that observed here, yet the mechanism was not confirmed by further investigation. In this 

study, a number of analytical techniques, namely, differential scanning calorimetry (DSC), 

scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and nuclear 
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magnetic resonance (NMR) spectroscopies were used to investigate the interactions between 

PDMS membrane and different surfactants to enhance our understanding of how some 

surfactants alter drug permeation through the membrane, yet some do not.     

 

5.2 Results and discussion 

5.2.1 Differential scanning calorimetry (DSC) 

 Differential scanning calorimetry (DSC) was employed to investigate whether the 

surfactant-treatment of PDMS membrane induced any structural change of the membrane. 

The surfactants were selected to encompass all four types – SDS (anionic), Brij 35 and Tween 

80 (non-ionic), CTAB (cationic), and CHAPS (zwitterionic). Fig. 5.1 shows the DSC 

thermograms of PDMS membranes, either untreated or pre-treated in the surfactant solutions.       

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1: DSC thermograms of PDMS membrane – untreated or pre-treated   

  

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

-50.00 -45.00 -40.00 -35.00 -30.00 -25.00

H
ea

t 
fl

o
w

 (
m

W
)

Temperature (°C)

Untreated PDMS No surfactant

SDS 20 mM CTAB 20 mM

Brij 35 20 mM CHAPS 20 mM

Tween 80 20 mM



 
102 

The onset, and crystalline melting point temperatures for the samples are given in 

Table 5.1. For the untreated membrane the crystalline melting point was at -39.94 °C, which 

is consistent with the literature value of -40.00 °C (Dias et al.  2007). The DSC curves for 

the pre-treated samples were compared with that of the untreated membrane to observe any 

characteristic change that might result from the treatment with the surfactant solutions. 

Table 5.1: Values of onset and crystalline melting temperatures for PDMS membranes either 

untreated or pre-treated in different solutions 

Treatment type Onset temperature (°C) Crystalline melting point (°C) 

Untreated membrane  – 41.83 °C  – 39.94 °C 

No surfactant – 42.68 °C – 40.20 °C 

SDS 20 mM – 42.79 °C – 40.20 °C 

CTAB 20 mM – 42.50 °C – 40.19 °C 

Brij 35 20 mM – 42.62 °C – 40.05 °C 

CHAPS 20 mM – 42.75 °C – 40.22 °C 

Tween 80 20 mM – 42.49 °C – 40.05 °C 

 

 From Fig. 5.1 and Table 5.1 it is clear that none of the surfactants appeared to produce 

a significant shift in the crystalline melting point of the membrane, and the DSC thermograms 

for all of the treated samples are very similar to that for the untreated sample. Moreover, there 

was no additional peak formed in any of the DSC curves for the treated membranes. These 

findings suggest that the surfactants under investigation do not interact with the PDMS 

structure. This is because any interaction with the membrane structure would result in a clear 

shift of the crystalline melting point of the membrane, as stated in a previous study, whereby, 

upon treatment with IPM (isopropyl myristate), PDMS showed a shift in its crystalline 

melting point to a lower temperature, whereas no shift was observed for the treatment with 
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propylene glycol and decanol (Dias et al.  2007). With regards to the permeation effect of the 

surfactants discussed in Chapter 4, the DSC data indicates that the surfactants do not reduce 

the permeation of the compounds across PDMS membrane by interacting with or altering the 

bulk structure of the membrane.       

 

5.2.2 FTIR (Fourier transformed infrared) spectroscopy 

 Previously, DSC results suggested that the surfactants did not alter the 

physicochemical properties of PDMS membrane. To further confirm the DSC findings, FTIR 

spectroscopy was utilised to investigate any possible structural change in PDMS membrane 

owing to its treatment in the surfactant solutions. This technique is frequently used to 

characterise chemical structure or to identify any structural change (Chen et al. 2009). Fig. 

5.2 shows the FTIR spectra of the untreated and pre-treated samples, with the latter being 

soaked overnight in the surfactant solutions.     
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Fig. 5.2: FTIR spectra of PDMS samples – untreated, and pre-treated  

 

 It is apparent from Fig. 5.2 that all of the spectra are very similar, with the intensities 

of the peaks also being identical. It is also to be noted that no appreciable water content was 

found by FTIR spectroscopy. Moreover, no further peak was formed except the peaks for the 

untreated PDMS membrane, and no band from the surfactants was observed.  These findings 

can further be confirmed by looking at the values of the major peaks of the FTIR spectra for 

all samples (Table 5.2). The peak values for the untreated sample were used as reference to 

evaluate other spectra. For the untreated PDMS, the characteristic peak at 2962.0 cm-1 was 

assigned to the asymmetric and symmetric stretching vibrations of C-H bonds of the methyl 

group (Juárez-moreno et al.  2015). The peaks at 1258.1 cm-1 and 784.2 cm-1 are associated 

40090014001900240029003400

Wavenumber (cm-1)

Untreated PDMS No surfactant SDS 20 mM CTAB 20 mM

Brij 35 20 mM CHAPS 20 mM Tween 20 mM
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with Si-(CH3)2 (Zhang et al.  2011), whereas the peak at 1006.3 cm-1 is attributed to the 

stretching vibration of Si-O bond of the backbone of PDMS structure (Paschoal et al.  2011). 

When comparing the absorption bands for all spectra, it is obvious from Table 5.2 that there 

is no significant variation in their values.       

Table 5.2: The major peak values of the typical FTIR spectra of PDMS membranes – 

untreated or pre-treated in surfactant solutions 

Treatment type 

Values of absorption bands (cm-1) for different bonds present in 

PDMS structure 

C-H Si-(CH3)2 Si-O Si-C 

Untreated 

membrane 
2962.0 1258.1 1006.3 784.2 

No surfactant 2961.8 1258.1 1006.2 785.9 

20 mM SDS 2961.7 1258.1 1006.7 783.7 

20 mM CTAB 2962.0 1258.1 1007.8 783.4 

20 mM Brij 35 2961.7 1258.1 1008.2 783.1 

20 mM CHAPS 2961.9 1258.1 1007.7 784.0 

20 mM Tween 80 2961.8 1258.1 1006.5 783.5 

  

 Using FTIR spectroscopy it is possible to identify any change in a chemical structure 

by looking at the intensity of absorbance signal or the formation of a new peak. For example, 

the intensity of an absorbance signal may become weak because of a cross-linking 

modification (Han et al.  2011), or new peaks can be formed as a consequence of the change 

in PDMS structure by a chemical, for example, tetraethylorthosilicate (Chen et al.  2009).  

None of the above-mentioned phenomena was observed in this study. Therefore, it can be 

said that the structure of PDMS membrane remains intact in the presence of the surfactants. 

Again, in relation to the surfactant effect on compound permeation discussed in Chapter 4, 
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the FTIR results conform to the DSC findings whereby the mechanisms for reducing 

compound permeation were not associated with the structural modification of PDMS 

membrane.    

 

5.2.3 Scanning electron microscopy (SEM) 

The surfaces of the untreated, and pre-treated PDMS membranes were examined by 

scanning electron microscopy. Fig. 5.3 shows the microscopic images for different 

membrane samples.  All of the images illustrate a certain degree of asymmetry and patterned 

surface associated with these membranes. It is known that polymeric membranes such as 

PDMS, often have patterned surfaces that are advantageous to compound permeation, and 

any change in the pattern can alter permeability across the membrane (Redondo et al.  2001). 

To investigate whether the presence of surfactant induces any change in the patterned PDMS 

surface, the morphology of the pre-treated membranes was compared with that of the 

untreated sample. It is apparent from Fig. 5.3 that the surfactant-treatment does not alter the 

morphology of PDMS membrane, with all of the images showing a significant similarity. 

Therefore, with regards to the permeation effect of the surfactant (discussed in Chapter 4), 

SEM data suggests that the mechanism behind the barrier effect is not associated with the 

morphological changes of PDMS membrane.       
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Fig. 5.3: SEM micrographs of the untreated, and pre-treated PDMS surfaces 
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5.2.4 Nuclear magnetic resonance (NMR) spectroscopy 

  Previously, the morphology and chemical structure of PDMS membrane were 

analysed both in the presence and absence of surfactants to predict the mechanism behind 

their effect on compound permeation across the membrane, and based on DSC, FTIR and 

SEM, it was found that the mechanism is not associated with the morphology or structure of 

the membrane. In this section, the behaviour of surfactant in aqueous solution was examined 

using 1H NMR spectroscopy. Primarily, two surfactants were selected – SDS and Brij 35. 

These surfactants were reported in a previous permeation study (Waters et al.  2013) whereby 

SDS was found to reduce compound permeation across PDMS membrane with Brij 35 

showing no appreciable effect. However, in this study, both of the surfactants appeared to 

reduce the permeation of compounds across the membrane. To investigate the anomaly with 

regards to Brij 35, and also to predict the mechanism of the surfactant effect on compound 

permeation, NMR studies of the surfactants were conducted. 

 In the first set of experiments, the chemical shifts for H1 and H5 for SDS were 

measured at five different concentrations both in the presence and absence of PDMS 

membrane. The results are shown in Table 5.3. The proton numbering of the chemical 

structure of SDS is shown in Fig. 5.4. 

  

Fig. 5.4: Chemical formula of SDS with proton numbering (Cui et al.  2008) 

 

 

 

 

 

 

 

 

 

 

    CH3 (CH2)8CH2CH2CH2SO4
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Table 5.3: Chemical shifts (ppm) for H1 and H5 protons of SDS in the presence and absence 

of PDMS membrane 

 Chemical Shift (ppm) H1 Chemical Shift (ppm) H5 

4 mM SDS 0.7447 3.9151 

4 mM SDS + membrane 0.7429 3.9143  

6 mM SDS 0.7448 3.9152 

6 mM SDS + membrane 0.7451 3.9152 

8 mM SDS 0.7466 3.9134 

8 mM SDS + membrane 0.7462 3.9137 

10 mM SDS 0.7545 3.9083 

10 mM SDS + membrane 0.7582 3.9129 

20 mM SDS 0.7576 3.8955 

20 mM SDS + membrane 0.7554 3.9089 

 

 The aim of the chemical shift measurements was to find out if there were any 

significant changes in the chemical shifts of SDS before and after the immersion of PDMS 

membrane in the SDS solutions. Any changes in the chemical shifts would indicate a change 

in SDS concentration, based on a study by Cui et al. (Cui et al. 2008). The study found that 

a decrease in SDS concentration resulted in a decrease in the chemical shift for H1 proton 

accompanied by an increase in that for H5 proton, and vice versa. The study also mentioned 

that the chemical shifts move to the high-frequency side as the concentration increased, and 

when the surfactant concentration reached its CMC, the chemical shift changed significantly 

with the increase in concentration, which implied micelle formation. In this study, it was 

hypothesised that the immersion of PDMS membrane would change the chemical shifts of 
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SDS. To comprehend this phenomenon, the experimental procedure can be considered. The 

sample solution was kept in a small volumetric flask with or without the pieces of PDMS 

membrane placed at the bottom of the flask. The samples for NMR were taken from the upper 

regions of the solutions i.e. considerably far from the membrane. It was assumed that a 

number of SDS molecules would be adsorbed on the membrane surface (PDMS membrane 

is hydrophobic in nature, and hence the hydrophobic tail of the surfactant can be impregnated 

into the membrane surface), subsequently decreasing the number of the molecules in the rest 

of the solution i.e. a decrease in SDS concentration. In such a scenario, a decrease in SDS 

concentration would happen in the upper part of the solution, which is not adjacent to the 

membrane. Therefore, it was expected that there would be significant changes in the chemical 

shifts of SDS upon immersing PDMS membrane in the solution which would in turn indicate 

a decrease in SDS concentration. However, it is apparent from Table 5.3 that the variations 

in chemical shifts that occurred upon the addition of PDMS membrane for all concentrations 

studied are not significant. For all cases, the changes in the chemical shifts are in the third or 

fourth decimal places. Overall, it can be said that the NMR data does not show any 

meaningful change when comparing the SDS solutions with those which have had PDMS 

membrane immersed in them. It might also be that the NMR method used in this study is not 

sensitive enough to detect small changes in SDS concentration upon the immersion of PDMS 

membrane.   

 In the second set of experiments, the behaviour of Brij 35 was examined at two 

different concentrations both in the presence and absence of PDMS membrane. The chemical 

shifts for H2 and H7 protons of Brij 35 were measured and are presented in Table 5.4. The 

formula of the surfactant with proton numbering is shown in Fig. 5.5.    
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Fig. 5.5: Chemical formula of Brij 35 with proton numbering (Hongchang et al.  2002) 

 

Table 5.4: Chemical shifts (ppm) for H7 and H2 protons of Brij 35 in the presence and 

absence of PDMS membrane 

 Chemical Shift (ppm) H7 Chemical Shift (ppm) H2 

1 mM Brij 35 0.7701 3.5267 

1 mM Brij 35 + membrane 0.7708 3.5269 

10 mM Brij 35 0.7798 3.5456 

10 mM Brij 35 +membrane 0.7803 3.5461 

 

 It can be seen in Table 5.4 that for both samples in the presence of the membrane, 

there was no significant change in the chemical shifts of Brij 35, a scenario similar to SDS.  

Therefore, it can be said that the concentration of Brij 35 remained unchanged in the presence 

of the membrane, and there could be a tendency for Brij 35 molecules to stay in the solution 

rather than being adsorbed into the membrane surface. These findings can help explain the 

phenomenon observed in a previous study that compound permeation across silicone 

membrane is ‘blocked’ by the adsorption of SDS on the membrane surface resulting in a 

reduction in permeation, yet Brij 35 does not exhibit the same effect (Waters et al. 2013). 

However, in this study (Chapter 4) Brij 35 was found to reduce compound transport through 

silicone membrane. One explanation of this anomaly could be that in a micellar solution of 

Brij 35, the compounds that are considered in this study – benzocaine, benzotriazole, 

ibuprofen and lidocaine – interact with and become entrapped within the hydrophobic core 

of the micelles, thus reducing their permeability through the membrane whereas the 

compounds considered in the previous study, namely methylparaben and ethylparaben, do 

CH3 (CH2)9 CH2 CH2OCH2CH2O(CH2CH2O)21CH2CH2OH 

H7      H6     H5   H4    H1             H2              H3 
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not show such interaction thus not having any effect on their permeation. However, a 

calorimetric study of Brij 35 and the compounds would be useful to confirm the above-

mentioned phenomena and hence remains the focus of a current study. 

 In the case of SDS, though the NMR data did not show any meaningful changes when 

comparing the SDS solutions with or without PDMS membranes, however, based on the 

DSC, FTIR and SEM data, and the findings by Waters et al. (Waters et al. 2013), two 

mechanisms can be suggested for the permeation effect of this surfactant. Firstly, the 

surfactant molecules are adsorbed on the membrane surface with their charged head group 

exposed to the donor solution of the diffusion cell thus preventing the permeation of the 

neutral drug molecules by repelling them away from the membrane. Secondly, the surfactant 

micelles can bind with, or entrap the drug molecules in their hydrophobic core (Tehrani-

Bagha & Holmberg 2013) and thus stop them passing through the membrane. The 

aforementioned mechanisms are illustrated in Figs. 5.6 and 5.7. These mechanisms can also 

be related to the permeation effect of other surfactants that were discussed in Chapter 4, 

namely, CTAB, CHAPS and Tween 80.   
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Fig. 5.6: Drug permeation across silicone membrane in the absence of the surfactant in the 

donor solution 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.7: Drug permeation across silicone membrane in the presence of the surfactant in the 

donor solution 
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5.3 Conclusion 

DSC, SEM, FTIR and NMR spectroscopy were used to predict the mechanism behind 

the effect of the selected surfactants on drug permeation across silicone membrane. The DSC, 

FTIR and SEM studies of the untreated and surfactant-treated membrane indicate that the 

surfactants do not reduce the drug transport across the membrane by altering either the 

chemical structure or the surface morphology of silicone membrane. NMR studies of two 

surfactants, namely, SDS and Brij 35, did not show significant differences when comparing 

the surfactant solutions with or without PDMS membrane. However, from DSC, SEM, FTIR 

and permeation data it can be suggested that the drug molecules are entrapped within the 

surfactant micelle and/or repelled, or blocked by the surfactant-impregnated membrane 

surface, with both of the cases resulting in a reduced permeation of drugs across the 

membrane. However, additional studies such as calorimetric investigation of drug-surfactant 

interaction would be helpful to further characterise the system under investigation.    
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Chapter 6: Plasma surface modification of polydimethylsiloxane 

membrane and its effect on the permeation of pharmaceutical 

compounds 

 

Previous chapters investigated the effects of several factors, namely the ionisation of 

compounds, the presence of surfactants in the donor solution, on the compound permeation 

through polydimethylsiloxane (PDMS) membrane. This chapter highlights the modification 

of PDMS membrane using plasma treatment, and its implication in the permeation study of 

five model compounds. Moreover, the stability of the treatment will be examined through 

aging studies of the modified membranes.       

 

6.1 Introduction 

 Polydimethylsiloxane (PDMS) is a commonly used attractive polymer based on many 

advantages it possesses such as high optical transparency, biocompatibility, thermal stability, 

low toxicity (Bacharouche et al.  2013) and gas permeability (Markov et al.  2014). The wide-

ranging use of PDMS includes environmental control (Turner & Cheng 1998), air separation 

(Kujawska & Kujawski 2015; Li et al.  2013), liquid mixture separation (Dong et al.  2014), 

microfluidics (Fan et al.  2015), wound dressings and medical applications (Agarwal et al.  

2012; Juárez-moreno et al.  2015), and biochemical sensing (Gu et al.  2013). In spite of 

many advantages, PDMS membrane often needs modification of its surface to enhance its 

suitability, particularly in the area of microfluidics. This is because of the easy and strong 

interaction of biological samples with the PDMS surface which is inherently hydrophobic. 

There are numerous applications of modified PDMS surface including cell culture, DNA 

hybridisation (Hsu & Chang 2015), biomolecule separation and immunoassay (Ko et al.  

2008).   

 A number of techniques have been employed to modify the surface of PDMS 

including physical or chemical treatments, or a combination of both. In particular, plasma 
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treatment has widely been used, in recent years, for modification of the PDMS surface (Bodas 

et al.  2008). Plasma treatment is capable of altering the surface polarity and wettability of 

most polymers (Kull et al.  2005). It is generally accepted that during plasma treatment the 

methyl groups (–CH3) of PDMS surface are removed and replaced with hydroxyl groups (–

OH) (S. Bhattacharya, A. Datta, J. M. Berg 2005) resulting in an oxidised membrane surface. 

This creates a hydrophilic PDMS surface which can be observed through a significant 

reduction in the water contact angle (WCA) (Deshpande et al.  2012). As a consequence of 

this modification, the properties of the membrane transforms, for example, it has been 

reported that freshly treated (oxidised) PDMS showed a substantially smaller gas diffusion 

coefficient relative to untreated membrane (Markov et al.  2014). In some studies plasma 

treatment process is the first stage in a series of procedures to change the surface i.e. to create 

various complex products that again, possess different properties to the original PDMS or 

evade some disadvantages. For instance, following plasma treatment compounds can be 

incorporated onto the treated surface to minimise nonspecific protein adsorption thus 

expanding the use of PDMS-based microfluidic chips to carry out complex biological 

investigation (Yu et al.  2015). 

 One issue with plasma treatment is that the hydrophilicity of the treated surface may 

disappear during aging, and the surface can recover its hydrophobicity over time.  One study 

investigated the hydrophobic recovery of plasma-treated PDMS surface stored either in air 

or under water (Markov et al.  2014). It was found that in the presence of air the treated 

surface recovered hydrophobicity after 3 days. Interestingly, storage under water delayed 

recovery for ~ 3 weeks. Moreover, the study compared two types of PDMS membrane – 

standard and highly cross-linked. It was observed that, in the presence of air, it took only 3 

days for the standard membrane to recover whereas for the highly cross-linked membrane 

the surface was not restored even after a 3-week aging period. In another study, 
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polyethersulfone (PES) membrane, which is also hydrophobic in nature, was modified to 

have a hydrophilic surface using plasma treatment (Kull et al.  2005). Interestingly, their 

modified membrane did not show any hydrophobic recovery even 12 months after treatment 

i.e. the hydrophilicity of the membrane was stable for 12 months. It is important to mention 

that hydrophobic recovery needs to be eliminated or reduced to prolong the shelf life of 

modified membrane for practical applications.  

 One important area of topical and transdermal research is the use of PDMS membrane 

to predict the permeation of pharmaceutical compounds across skin. Consequently, PDMS 

has been suggested, in recent years, as a reliable, economic and ethical alternative for 

measuring compound permeation together with a variety of other techniques (Waters 2015). 

Although, PDMS has been utilised in a significant number of drug diffusion studies, no 

known study has previously focused on the implication of plasma-treated PDMS in drug 

diffusion experiments. In the current study, the surface of PDMS membrane was modified 

using plasma treatment. The treated membranes were characterised by a number of surface 

analytical techniques such as contact angle measurement, SEM (scanning electron 

microscopy), and EDX (energy dispersive X-ray) analysis. Moreover, we reported the first 

study aimed at understanding the impact of plasma surface modification on permeation of a 

set of model compounds with the intention of creating a more hydrophilic, and thus 

potentially more suitable, in vitro skin mimic. The hydrophilic stability of the treated 

membrane was examined using in vitro drug diffusion studies and EDX analysis.       

       

6.2 Results and discussion 

6.2.1 Surface modification of PDMS membrane 

 PDMS is known to have a hydrophobic surface which can be modified with the 

application of plasma surface treatment. In this study, the surface of PDMS membrane was 
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exposed to air plasma to make it more hydrophilic. Water contact angle (WCA) was used to 

assess the change in membrane hydrophilicity induced by plasma treatment. WCAs were 

measured for both treated and untreated PDMS membrane. The WCAs were plotted as a 

function of the age of the water drop (Fig. 6.1). Figure 6.1 shows that the contact angle was 

significantly reduced after plasma treatment of the membrane surface. Therefore, it can be 

inferred that the hydrophobicity of PDMS surface was reduced by the plasma treatment, as 

expected based on previous literature (Bodas et al.  2008).    

  

Fig. 6.1: Static contact angles for water on a PDMS membrane untreated or plasma-treated   

  

In addition to the contact angle measurement, the reduction in the hydrophobicity of 

the PDMS surface was further evidenced by SEM-EDX analysis. The elemental composition 

(C, O & Si) of PDMS surface untreated, and plasma-treated, was measured using SEM-EDX, 

and the results are presented in Table 6.1. 
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Table 6.1: Percentage of weight of chemical elements at the surface of PDMS membrane 

before and after the plasma treatment. [The data are presented as mean ± SD, (n = 3)] 

 

The results in Table 6.1 clearly demonstrate that following the plasma treatment of PDMS 

surface there was an increase in oxygen content with a subsequent decrease in carbon content. 

More specifically, the oxygen content of the membrane surface increased by ~ 17 % with a 

concomitant decrease in carbon content (by ~ 16 %). It is evident from literature that during 

plasma treatment the methyl groups (–CH3) of PDMS membrane surface are removed and 

replaced with hydroxyl groups (–OH) (Markov et al.  2014). The same process could be 

observed here i.e. the plasma treatment resulted in an increase in the hydroxyl (–OH) groups 

with a concomitant decrease in methyl (–CH3) groups at the membrane surface. In other 

words, the treatment incorporates a significant concentration of oxygen containing functional 

groups at the membrane surface. These functional groups are covalently bonded to the 

polymeric backbone with the formation of silanol groups (Si–OH). Thus, following plasma 

treatment, the surface of PDMS membrane became more hydrophilic.  

 

6.2.2 Membrane integrity 

 Fig. 6.2 shows SEM images of PDMS membrane surfaces. Images for both treated 

and untreated membranes illustrate a certain degree of asymmetry associated with these 

membranes. It can also be seen that the plasma treatments did not cause any obvious damage 

Element 

% of weight of elements at PDMS membrane surface 

Untreated Membrane Plasma Treated Membrane 

Carbon (C) 46.33 ± 2.69 30.68 ± 2.26 

Oxygen (O) 29.86 ± 2.21 46.49 ± 2.44 

Silicone (Si) 23.82 ± 2.09 22.84 ± 2.20  
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to the membrane surfaces. Therefore, the membrane integrity was not compromised by these 

treatments.   

 

 

 

 

 

 

 

Fig. 6.2: SEM micrographs of the surface of untreated and plasma-treated PDMS membrane 

 

6.2.3 Effect of surface modification of PDMS membrane on compound permeation 

The permeation of five model compounds was carried out through silicone (PDMS) 

membrane prior to plasma treatment, and immediately after the treatment. The model 

compounds were benzocaine, benzotriazole, caffeine, ibuprofen and lidocaine. These 

compounds have a diverse range of lipophilicities ranging from a log P of -0.07 for caffeine 

(Waters et al. 2013) to 3.6 for ibuprofen (Waters & Bhuiyan 2016) i.e. to encompass both 

hydrophilic and hydrophobic types. For all compounds, the pH of the donor and receptor 

solutions was 7.4. The percentages of compounds unionised were 0.000024 %, 86.32 %, 

0.00000013 %, 0.32 % and 24.02 % for benzocaine, benzotriazole, caffeine, ibuprofen and 

lidocaine, respectively.   

The effects of PDMS surface modification on the permeation of the model 

compounds are graphically presented in Figs. 6.3 – 6.7. In addition to the graphical 

presentations, two permeation parameters i.e. 𝐽 (steady-state flux) and Q6 (cumulative 

amount permeated after 6 hours) were calculated, and the values are shown in Table 6.2 and 

6.4. The flux values were statistically analysed using One-way ANOVA, and the calculated 
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p-values for each compound are shown in Table 6.3. The p-values were employed to identify 

any significant difference in compound permeation owing to the modified membrane surface. 

 

 

 

 

 

 

 

 

 

 

Fig. 6.3: Permeation profiles of benzocaine through PDMS membrane untreated or plasma-

treated 

 

 

 

 

 

 

 

 

 

 

Fig. 6.4: Permeation profiles of benzotriazole across PDMS membrane untreated or plasma-

treated 
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Fig. 6.5: Permeation profiles of caffeine across PDMS membrane untreated or plasma-treated 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.6: Permeation profiles of ibuprofen across PDMS membrane untreated or plasma-

treated 
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Fig. 6.7: Permeation profiles of lidocaine across PDMS membrane untreated or plasma-

treated. 

  

It can be seen in Figs. 6.3 – 6.7 that the permeation profiles of all compounds, except 

for caffeine, were significantly affected by the plasma-modified PDMS surface. A more 

specific and quantitative view of this phenomenon can be obtained from the data presented 

in Table 6.2, 6.3 and 6.4. The data in these tables indicate that the plasma modification of 

PDMS resulted in a significant change (p < 0.05) in the flux of all compounds across the 

membrane, with caffeine being the exception (p > 0.05). The lower flux values of benzocaine, 

benzotriazole, ibuprofen and lidocaine obtained with the plasma-modified PDMS surface 

show a clear interaction between these compounds and the modified membrane. However, 

caffeine was found not to have an observable interaction with the modified PDMS surface. 

It is obvious from the above-mentioned facts that the modification of membrane surface does 

play an important role in compound permeation.          

 

 

 

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

0 50 100 150 200 250 300 350 400

C
u

m
u

la
ti

ve
 A

m
o

u
n

t 
P

er
m

ea
te

d
 (

µ
g
/c

m
2
)

Time (min)

Fresh PDMS

Plasma Treated PDMS



 
125 

Table 6.2: Steady-state flux values of five model compounds across untreated or plasma-

treated silicone membrane 

 

 

Table 6.3: p-values calculated using ANOVA test for each drug 

Drug p-values 

Benzocaine 0.004 

Benzotriazole 0.001 

Caffeine 0.308 

Ibuprofen 0.000 

Lidocaine 0.000 

 

 

 In addition to the flux values, this study also calculated the cumulative amount of 

compound permeated after 6 h and the results are presented in Table 6.4. The purpose of such 

calculation was to understand the extent of reduction in permeation owing to the plasma 

treatment of PDMS membrane. Using the data in Table 6.4, the percentage of compound 

permeated after 6 h was calculated and shown in Table 6.5 and Fig. 6.8. In Table 6.5 the 

amount of compound permeated after 6 h across untreated membrane was considered 100 %, 

and then the calculation for plasma-treated membrane was performed accordingly. Such 

Compound 

Steady-state flux (µg/cm2/h) of compounds across PDMS membrane 

Untreated Membrane Plasma Treated Membrane 

Benzocaine 97.03 ± 2.52 62.89 ± 9.80 

Benzotriazole 11.05 ± 0.71 6.57 ± 0.62 

Caffeine 4.57 ± 0.32  4.14 ± 0.56 

Ibuprofen 35.26 ± 1.30 10.03 ± 0.81 

Lidocaine 76.97 ± 2.47 43.07 ± 2.50 
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presentation provides a convenient way of comparing different model compounds with 

regards to the effect of a modified membrane on their permeation.   

 

Table 6.4: The values of cumulative amount permeated after 6 hours (Q6) of five model 

compounds across untreated or plasma-treated silicone membrane 

 

 

Table 6.5: The values of percentage (%) permeated after 6 hours of five model compounds 

across untreated or plasma-treated silicone membrane 

 

Compound 

Q6 values (µg/cm2) of compounds across PDMS membrane 

Untreated Membrane Plasma-treated Membrane 

Benzocaine 566.59 ± 13.67 363.41 ± 55.81 

Benzotriazole 65.65 ± 3.84 39.48 ± 3.63 

Caffeine 28.22 ± 1.86 24.85 ± 3.54 

Ibuprofen 214.48 ± 7.80 63.54 ± 4.90 

Lidocaine 453.72 ± 15.41 252.16 ± 15.59 

Compound 

% permeated of compounds after 6 hours across PDMS membrane 

Fresh Membrane Plasma-treated Membrane 

Benzocaine 100 ± 2.41 64.14 ± 9.85 

Benzotriazole 100 ± 5.85 60.14 ± 5.53 

Caffeine 100 ± 6.59 88.06 ± 12.54 

Ibuprofen 100 ± 3.64 29.63 ± 2.28 

Lidocaine 100 ± 3.40 55.58 ± 3.44 
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 It can be seen in Table 6.5 and Fig. 6.7 that the presence of the plasma-modified 

PDMS surface created a significant reduction in the permeation of benzocaine, benzotriazole, 

ibuprofen and lidocaine. This scenario, therefore, indicates that the modified membrane 

surface prevents these compounds passing across the membrane and passing into the receptor 

chamber of the flow-through diffusion cell. In contrast to this, the permeation of caffeine was 

not significantly affected by the modified membrane surface and hence no appreciable 

reduction in its permeation was observed. These findings portray that the plasma-treated 

PDMS surface is generating a barrier effect for the former four compounds, preventing their 

movement through the membrane – a situation not apparent with caffeine.   

 

 

 

 

 

 

Fig. 6.8: The values of percentage of compound permeated after 6 h through plasma-treated 

PDMS membrane. The % permeated was defined with respect to the corresponding value for 

the untreated membrane. 

 

As previously stated, plasma treatment replaces the methyl groups (–CH3) on the 

PDMS surface with hydroxyl groups (–OH), resulting in a predominant presence of oxygen 

containing functional groups on the membrane surface. Therefore, it can be postulated that 

the treatment of the membrane surface results in a significant number of the hydroxyl groups 

(–OH) being present at the membrane surface exposed to the donor solution of the flow-
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through diffusion cell, thus rendering the membrane surface hydrophilic. As benzocaine (log 

P of 1.9), benzotriazole (log P of 1.2), lidocaine (log P of 2.4) and ibuprofen (log P of 3.6) 

are lipophilic in nature, they could be reluctant to approach the plasma-treated membrane 

surface as it presents a hydrophilic environment thus repelling the compounds away from the 

membrane resulting in a reduced permeation through to the receptor chamber. However, 

although all four compounds experienced a reduction in permeation owing to the plasma 

treatment, the trend they follow is not the same. From Table 6.5, if the extent of overall 

reduction for these four compounds is positioned in an order, then it appears as ibuprofen > 

lidocaine > benzocaine > benzotriazole. Considering the log P values of these compound the 

order suggests that the higher the log P the greater the reduction in compound permeation. In 

other words, the compound with a higher lipophilicity faces a greater barrier effect from the 

plasma-modified hydrophilic PDMS surface, as hypothesised. Ibuprofen, with a log P value 

of 3.6, experienced a reduction of ~ 70 %, being the highest when compared with the other 

compounds, and benzocaine, with a log P value of 1.9, had a reduction of ~ 36 %, being the 

lowest. As caffeine is hydrophilic in nature, the same phenomenon i.e. the barrier effect from 

the plasma-treated hydrophilic surface would not occur to repel caffeine away from PDMS 

membrane, and hence no reduction in permeation would result. Thus, the permeation profile 

of caffeine through the untreated and treated silicone membrane would be similar. However, 

one might expect that, as the treated surface becomes hydrophilic, it should enhance caffeine 

permeation which was not observed in this study. This is because though the surface becomes 

hydrophilic after the plasma treatment, the core of the membrane remains hydrophobic in 

nature. In other words, the core remains unchanged for both the treated and untreated 

membranes as plasma treatment only works at surface level. As prior to transport into a 

receiver compartment of diffusion cell, caffeine molecules permeate through the hydrophobic 
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core, their permeation rate would be similar for both treated and untreated silicone 

membrane.  

In addition to log P values, two other physicochemical properties, namely the number 

of hydrogen bond donors, and hydrogen bond acceptors, of the model compounds were also 

considered to investigate if there is an effect of these properties on compound permeation 

through plasma treated membrane. The properties are tabulated below (Table 6.6). 

Table 6.6: The physicochemical properties1 of the model compounds  

 Benzocaine Benzotriazole Caffeine Ibuprofen Lidocaine 

H bond 

acceptors 
2 1 6 1 1 

H bond 

donors 
3 3 0 2 3 

1The physicochemical properties were generated from ACD/Labs, RSC, UK 

Comparing the data in Table 6.5 and 6.6, it is apparent that there is no observable 

relationship between the percentages permeated of the compounds through the plasma-

treated membranes and the number of hydrogen bond donors/acceptors of the compounds. 

Therefore, it can be inferred that, even though the hydrogen bond donors/acceptors of the 

compounds may interact with the hydroxyl groups on the surface of the plasma-treated 

membrane, such interactions would not significantly affect compound permeability through 

the plasma-treated membrane.          

6.2.4 Stability studies of plasma treated PDMS membrane 

  It is clear from the above-mentioned discussion that plasma treatment does create a 

permeability barrier for compounds by creating a hydrophilic membrane surface. However, 

as mentioned earlier, the hydrophilic stability of the treated surface can be time-dependent 

(Kull et al.  2005). Studies suggest that the hydrophilic stability of plasma treated membrane 

varies depending on the type and composition of the membrane, and also the sample storage 
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condition (Markov et al.  2014). However, none of the above-mentioned studies considered 

the storage of membrane samples under airtight conditions. Moreover, the effect of aging of 

the plasma-treated silicone membrane on compound permeation is yet to be known. In this 

study, the plasma-treated PDMS membrane was aged for 1, 2, 4 and 8 weeks under airtight 

conditions at room temperature. The aged samples were then used in the permeation study of 

a model compound, namely lidocaine. The pH of the donor and receptor solutions used in the 

permeation study was 7.4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.9: Permeation profiles of lidocaine through PDMS membrane before and after the 

plasma-treatment. Note: the plasma-treated samples were used either immediately after the 

treatment or aged over a period of 1, 2, 4 and 8 weeks prior to the permeation experiments 

  

The permeation of lidocaine through the aged samples was then compared with that 

through the untreated membrane to examine the hydrophilic stability of the treated membrane 

(Fig. 6.9). The data was also used to investigate the effect of aging of the treated membrane 

on lidocaine permeation.  It can be seen in Fig. 6.9 that the permeation profiles of lidocaine 

across the untreated and the aged treated membranes are clearly distinctive. For all of the 
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aged treated membranes, there was a significant reduction in lidocaine permeation when 

compared with the untreated samples. A quantitative view of this phenomenon can be 

obtained by looking at the data presented in Table 6.7 and 6.8. Table 6.7 shows the steady-

state flux values of lidocaine whereas Table 6.8 demonstrates the p-values calculated using 

ANOVA test.  

 

Table 6.7: Steady-state flux values of lidocaine across plasma-treated PDMS membrane with 

or without aging 

Length of aging Steady-state flux (µg/cm2/h) 

Untreated membrane 76.97 ± 2.47 

No aging (freshly treated) 43.07 ± 2.50 

1 week 26.99 ± 3.79 

2 weeks 30.26 ± 2.08 

4 weeks 32.4 ± 4.49 

8 weeks 25.42 ± 5.46 

 

 

Table 6.8: p-values calculated using ANOVA test 

 Untreated No aging  1 week 2 weeks 4 weeks 8 weeks 

Untreated  0.000 0.000 0.000 0.000 0.000 

No aging 0.000  0.004 0.002 0.023 0.007 

1 week 0.000 0.004  0.260 0.186 0.704 

2 weeks 0.000 0.002 0.260  0.496 0.225 

4 weeks 0.000 0.023 0.186 0.496  0.163 

8 weeks 0.000 0.007 0.704 0.225 0.163  
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It is obvious from Table 6.7 that the flux values obtained for the untreated and the 

aged treated membranes are different, and the p-values in Table 6.8 show that the difference 

in lidocaine fluxes is significant (p < 0.05) when comparing the flux values through the 

untreated membrane with that through any of the aged treated membranes. Moreover, all of 

the aged treated samples drastically reduced lidocaine permeation (Table 6.7), a phenomenon 

also observed for the freshly treated membrane (no aging). It was mentioned in the previous 

section that the permeation of the hydrophobic lidocaine was reduced because of the presence 

of a hydrophilic membrane surface resulting from the plasma treatment. Therefore, these 

findings imply that the plasma-treated membranes retain their hydrophilic surfaces even after 

8 weeks of storage under airtight condition, thus producing a permeability barrier for the 

hydrophobic lidocaine.  

 However, it is known from literature that the hydrophilic surface of plasma-treated 

PDMS membrane is thermodynamically unstable, and the treated membrane undergoes 

hydrophobic recovery with storage time (Bodas & Khan-malek 2007). Hydrophobic recovery 

is generally ascribed to the migration of unmodified low molecular weight chains from the 

bulk towards the surface and the diffusion of the oxidised species from the surface inside the 

bulk of PDMS polymer (Bacharouche et al.  2013). On the basis of these phenomena, one 

study mentioned that a polymeric membrane with a smaller amount of low molecular weight 

species would remain hydrophilic longer (Bodas et al.  2008). Another study, previously 

mentioned, found that the hydrophobic recovery could be delayed by using a highly cross-

linked PDMS membrane rather than a standard version (Markov et al.  2014). Thus, it can be 

postulated that the PDMS membranes, employed in this study, are highly cross-linked, and 

contain fewer low molecular weight species, thus showing a hydrophilic stability upon aging 

following the plasma treatment. Storage under airtight conditions can also contribute to the 

longer hydrophilic stability by preventing contamination of the treated surface from air 
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exposure. It is evident from literature that this decreases the hydrophilicity of the treated 

membrane surface (Bacharouche et al.  2013).   

 In addition to the permeation data, the hydrophilic stability of the plasma-treated 

membrane was also assessed by SEM-EDX analysis. For this purpose, the elemental 

composition (C, O and Si) of the treated surface, aged for 8 weeks, was determined using 

SEM-EDX and the data were then compared with the untreated surface (Table 6.9). 

Table 6.9: Percentage of weight of chemical elements at the surface of PDMS membrane, 

either untreated, or treated also with 8 weeks of aging  

 

It can be seen in Table 6.9 that for the plasma-treated surfaces, the oxygen and carbon 

content remain similar before and after the aging period. Therefore, it is obvious that aging 

under airtight conditions did not affect the hydrophilic stability of the treated surface. Overall, 

from the above-mentioned discussion it can be suggested that the hydrophilic stability of the 

plasma-treated PDMS surface can be maintained for a moderately long period (> 8 weeks) 

by storing the samples under airtight conditions.   

 The other interesting phenomenon is that the flux of lidocaine across any of the aged 

samples is significantly lower than that across the non-aged sample (Table 6.7), thus 

indicating that upon aging, even for only 1 week, the plasma-treated surface becomes more 

hindering to lidocaine permeation. Such an increase in hindrance might be because of the 

reorientation of the polar surface groups upon aging. However, the exact mechanism is yet 

Element % of weight of elements at PDMS membrane surface 

 
Untreated 

membrane 

Treated membrane 

with no aging 

Treated membrane with aging for 

8 weeks under airtight condition  

Carbon (C) 46.33 ± 2.69 30.68 ± 2.26 31.90 ± 2.37 

Oxygen (O) 29.86 ± 2.21 46.49 ± 2.44 43.01 ± 2.67 

Silicone (Si) 23.82 ± 2.09 22.84 ± 2.20  25.09 ± 2.46 
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to be known, and is the focus of a current study. It can also be seen in Table 6.8 that the fluxes 

of lidocaine through the treated samples, aged for 1, 2, 4, and 8 weeks, are not significantly 

different from each other (p > 0.05). Therefore, it can be postulated that the above-mentioned 

surface reorientation occurs within 1 week of aging, and the reoriented surface remains 

unchanged for any further period of aging i.e. 2, 4 and 8 weeks. Thus, all of the aged samples 

offer a similar flux of lidocaine.   
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6.3 Conclusion 

Hydrophilic PDMS membranes were created by air plasma treatment which resulted 

in the incorporation of oxygen containing polar functional groups at the membrane surface. 

The presence of these groups was confirmed by SEM-EDX analyses, which showed higher 

oxygen content in the treated membranes, compared with the untreated membrane. The 

hydrophilicity of the modified membrane was demonstrated by measuring water contact 

angle (WCA). The membrane integrity was examined using SEM images, which showed no 

physical damage of the treated membrane. The modified membranes appeared to reduce the 

permeation of the hydrophobic compounds, namely benzotriazole, benzocaine, ibuprofen and 

lidocaine, while not affecting the hydrophilic caffeine permeation. As the plasma treatment 

produced a hydrophilic surface, hydrophobic compounds would be reluctant to approach it. 

Moreover, it was found that the higher the log P of the compound, the greater the reduction 

in its permeation through the modified membrane.  

With respect to stability studies, the combined results of lidocaine permeation through 

aged samples and EDX analysis revealed that the modified membranes retained their 

hydrophilic stability even after aging for 8 weeks under airtight conditions. The reasons for 

the hydrophilic stability were assumed to be – 1) the highly cross-linked nature of the 

membrane and 2) the prevention of organic contamination of the modified membrane 

surfaces by storing them under air tight conditions.            
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Chapter 7: Conclusion and future work 

Chemical based skin mimics, for example, silicone membranes, are widely used to 

simulate the stratum corneum of skin in in vitro drug diffusion studies. In particular, 

polydimethylsiloxane (PDMS) membrane, simply known as silicone membrane, is frequently 

employed as an in vitro skin mimic, to aid the prediction of percutaneous absorption, and to 

perform the qualitative assessment of compounds. A number of attempts have been made to 

investigate factors affecting drug permeation across PDMS membrane, including those 

reported in this thesis. This study, also, found plasma surface treatment to be an economic, 

convenient and stable method of modifying silicone membrane to make it, potentially, a more 

suitable in vitro skin mimic.    

The objectives of this thesis, as mentioned in Chapter 1, were accomplished 

successfully, and are summarised below: 

1. To study the effect of ionisation on the permeation of drugs through silicone 

membrane.  

Chapter 3 investigated six model drugs, namely, 1-methyl-3-phenylpropylamine, 

benzoic acid, benzotriazole, ibuprofen, ketoprofen and lidocaine, to determine their 

permeation across PDMS membrane at three specific percentages of ionisation. Moreover, 

iGC SEA was employed to characterise the surface chemistry of the membrane. The data 

suggested that there was an overall linear relationship between the percentage unionised of 

the drugs and the amount permeated. In other words, permeation was preferable for the 

unionised forms for all drugs, though the membrane surface is basic in nature, as confirmed 

from the iGC SEA data, thus indicating that the overall hydrophobic nature of the membrane 

outweighs any possible surface effect. In summary, it can be said that formulation pH does 

play an important role in the permeation of drugs through silicone membrane.    
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2. To study the effect of surfactants on the permeation of drugs across silicone 

membrane. 

Chapter 4 examined the permeation of four model drugs, namely, benzocaine, 

benzotriazole, ibuprofen and lidocaine, through PDMS membrane in the presence of four 

types of surfactants – anionic (SDS), cationic (CTAB), non-ionic (Brij 35 and Tween 80) and 

zwitterionic (CHAPS). All of the surfactants were found to reduce the permeation of the 

drugs through the membrane, though the extent of the reduction varied for different 

surfactants. The variations in reduction effects were assumed to result from the variability of 

the interactions of drug species with the surfactant head groups and/or micelles. Overall, there 

was an inverse relationship between surfactant concentration and the amount of drug 

permeated over a period of 6 h. For benzocaine, benzotriazole and ibuprofen, the highest 

permeation-hindering effect came from CTAB, whereas for lidocaine, that was from SDS. 

CHAPS appeared not to have a significant effect on drug permeation, except for ibuprofen. 

   

3. To predict the mechanism of surfactant effect on drug permeation through silicone 

membrane. 

Chapter 5 aimed at predicting the mechanism of surfactant effects on drug permeation 

through PDMS membrane. DSC, FTIR spectroscopy and SEM were used to analyse the 

surfactant-treated PDMS membrane, whereas NMR was used to study the behaviour of two 

surfactants, namely, SDS and Brij 35, in solutions with or without PDMS membrane being 

present. The data from DSC, FTIR and SEM suggested that the surfactants do not alter either 

the physicochemical properties or chemical structure or morphology of the membrane, and 

therefore, the mechanisms for permeation-reduction effects by the surfactants were not 

associated with these. Although NMR data did not show any significant change, based on the 

data from DSC, SEM, FTIR and permeation studies, two mechanisms can be suggested – 1) 
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the binding or entrapment of the drug molecules within the surfactant micelles, and 2) the 

repulsion and/or obstruction of the drug molecules by the surfactant-impregnated membrane 

surface. Both of these mechanisms, alone or in combination, could result in a decrease in 

drug permeation across PDMS membrane. 

    

4. To investigate the effect of plasma surface modification of silicone membrane on 

the permeation of drugs. 

In Chapter 6, PDMS membrane surfaces were modified by air plasma treatment, and 

the permeation studies of five model drugs, namely, benzocaine, benzotriazole, caffeine, 

ibuprofen and lidocaine, were conducted using the modified membranes. The plasma-

induced hydrophilicities of the modified membranes were confirmed by the WCA 

measurements and SEM-EDX analysis. Moreover, SEM images of the modified membrane 

surfaces showed no apparent physical alteration following the plasma treatment. The 

permeation data revealed that plasma-induced hydrophilicity produced a significant 

reduction in the fluxes of the hydrophobic compounds (benzocaine, benzotriazole, ibuprofen 

and lidocaine), whereas the permeation of caffeine, which is hydrophilic, was unaffected. It 

was also observed that the higher the log P of the drug, the lower the flux through the plasma-

treated membrane.  

The stability of the plasma-modified PDMS membrane was analysed using SEM-

EDX and in vitro permeation studies. The modified membranes were aged for 1, 2, 4 and 8 

weeks under airtight conditions, and the permeation of lidocaine was performed using the 

aged membranes. The combined data from EDX analysis and permeation studies suggested 

that the hydrophilicities of the modified membranes lasted even after 8 weeks, which could 

be because of the highly cross-linked nature of PDMS membrane, and the absence of organic 

contamination of the membranes under airtight storage conditions.   
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Future work 

This work could be expanded through several avenues, including: 

a) Expansion of analytical techniques 

The magnitude of the reduction in drug permeation were dissimilar for different 

surfactants. To explain these phenomena, it would be useful to investigate the interactions 

between the drugs and the surfactants by isothermal calorimetry (ITC). Moreover, ITC could 

provide a detailed mechanistic picture of the surfactant effects. 

 The NMR studies were conducted only for SDS and Brij 35. Further NMR studies 

involving CTAB, CHAPS and Tween 80 would be helpful to enhance the understanding of 

the surfactant effects on drug permeation through PDMS membrane. 

 The elemental composition of the PDMS surface was analysed by SEM-EDX 

method. A better accuracy of such analysis could be obtained by X-ray photoelectron 

spectroscopy (XPS).    

b) Use of different plasma treatments and conditions 

This study used air plasma to modify the PDMS surface to have silanol (Si-OH) 

groups, thus rendering it hydrophilic. There is scope for using additional plasmas such as 

nitrogen-based plasmas (N2, NH3), which can incorporate amine functionalities on the PDMS 

surface, which can then be chemically reacted with suitable acyl chlorides to produce amide 

groups analogous to that present in the skin ceramides, thus broadening the possibility of 

using the membrane as a skin surrogate in in vitro drug diffusion studies. 

The plasma-treated membranes were stored under airtight conditions for the stability 

studies. Several other storage conditions, for example, under water, phosphate buffers and 

liquid nitrogen, could be explored to determine their effect on stability. There is also need to 
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investigate different treatment times and powers for the purpose of optimising experimental 

conditions.  

With regards to drug permeation through the modified membrane, more compounds 

and the calculation of more parameters, such as permeability coefficients (Kp), are needed to 

allow comparison of data with human or animal skin, or the in vivo situation. Such a 

comparison could be useful for the development of an effective in vitro skin mimic in the 

assessment of topical and transdermal products.  
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